Etude de l’effet de margines sur le comportement microbien du sol: Suivi de la minéralisation du carbone

Raja Dakhli

Abstract


The oil extraction process from olive fruits produces a large quantity of liquid waste, so called as olive oil mill wastewaters “Margines” which has a very strong polluting power resulting in high levels of COD (Chemical Oxygen demand) high salinity and a strong phenolic compounds causing environmental pollution. The exploitation of this waste without preliminary treatment is very limited considering its toxicity for soils and plants. In addition, the richness of this effluent in organic compounds and especially on potassic elements represents an asset for its agronomic valorization as a fertilizer. This alternative could be regarded as promising if it is practiced in a rational way. Mineralization is the core of the symbiotic relation between soil - microorganism and plant. It is the generator of mineral elements essential to the plants nutrition. Microorganisms are the main biotic actors in this process. The product of the mineralization depends, on the first hand, on the biomass of the soil and on the second hand on the quantity, nature and characteristics of the organic matter.The monitoring of the mineralization is therefore essential after any input of organic matter with a view to its valorisation which effects are unpredictable. It is within this framework that this work has been carried out aiming to study the effect of olive oil mill waste waters spreading on the process of mineralization of organic matter and the soil content of carbon and mineral nitrogen.



Keywords


Margines, mineralization, carbon, microorganism

References


Taâmallah H,. L’epandage des Margines en vergers d’oliviers une alternative pour la valorisation de cet effluent.Thèse de Doctorat. University de Ghent. 2007. pp.21-22.

Levi –Minzi R., Saviozzi A., Riffaldi R. & Falzo L. L’épandage au champ des eaux de végétation. Effets sur les propriétés des sols. Olivae (40). 1992. pp. 20-25.

Francesco G.L. Evaluations économiques sur l’innovation technologique. Les problèmes de l’environnement dans le lecteur oléicole en Italie. Olivae, 47. (1993).pp. 15-20.

Bouranis D.L., Vlyssides A.G., Drosopoulos J.B., Karvouni G. Characteristics of new organic soil conditioner from the co-composting of olive oil processing wastewater and solid residue. Soil. Sci. Plant. Annal., 26. (1995).pp. 2461-2472.

Cabrera F., Lopez R., Martinez-Bourdiu E., Dupuy De Lome E., Murillo J.M..Land treatment of olive oil mill wastewater. International Biodegradation and Biodeterioration, 38. (1996).pp. 215-225.

Capasso. R., Evidente. A., Schivo. L., Orru. G., Marcialis. M.A., Cristinzio G.. Antibacterial polyphenols from Olive Oil Mill Waste Waters. J. Appl. Bacteriol., 79. (1995).pp. 393-398.

Capasso. R. The chemistry, biotechnology and ecotoxicology of the polyphenols naturally occurring in vegetable wastes. Curr. Top. Phytochem., Res. Trends, 1. (1997).pp. 145-156.

Gharsallah. N., Labat. M., Aloui. F., Sayadi. S. The effect of Phanerochaete chrysosporium pretreatment of olive mill wastewaters on anaerobic digestion. Ressources Conservation and recycling, 27. (1999).pp.187-192.

Garcia Garcia. I, Jimenez Pena. PR, Bonilla Venceslada. JL, Martin Martin. A, Martin Santos.MA, Ramos Gomez. E. Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Geotrichum candidum. Process Biochem, 1, 35 (8). (2000).pp.751-758.

Leger C.L., Kadiri-Hassani N., Descomps B. Decreased superoxide anion production in cultured human promonocyte cells (THP-1) due to polyphenol mixtures from olive oil processing wastewaters. J. Agric Food Chem., 48 (10). (2000).pp. 5061-5067.

Kissi M., Mountadar M., Assobhei O., Gargiulo E., Palmieri G., Giardina P., Sannia G. Roles of two white-rot basidiomycete fungi in decolorisation and detoxification. Applied Microbiology and Biotechnology. (2001). vol. 57, no. 1¬2. pp. 221¬226.

Garrido Hoyos S.E., MartinezNieto L., CamachoRubio F., RamosCormenzana A.. Kinetics of aerobic treatment of olive-mill wastewater (OMW) with Aspergillus terreus. Pro. Biochem., 37 (2002).pp. 1169-1176.

Pozo C., Martinez-Toledo M.V., Rodelas B., Gonzalez-Lopez J. Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechin (wastewater from olive oil mills) as primary carbon source. J. of Biotechnology, 97 (2002).pp.125-131.

Fenice. M., Giovannozzi Sermanni. G., Federici.F., D'Annibale .A. Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J Biotechnol, 100 (1) (2003).pp. 77-85.

Hamdi M. Future prospects and constraints of alive mill waste waters use and treatment: A. Review. Bioprocess Engineering, 8 (1993a).pp. 209-214.

Hamdi M. Valorisation et épuration des effluents des huileries d’olives: l’utilité de la microbiologie industrielle. Olivae, 46 (1993b).pp. 20-24.

Ros de Ursinos. F., Morisot M., 1981. Différentes utilisations des margines: Recherches en cours, résultats obtenus et applications. Séminaire international sur la valorisation des sous produits de l’olivier. Monastir – Tunisie. 15 – 17 décembre 1981. Eds PNUD/FAO, Madrid Espagne. 1983. pp: 93 -110.

Briccoli-Bati C. & Lombardo N. Effect of olive wastewater irrigation on young olive plants. Acta Horticulturae (Olive growing). 286. (1990).pp: 489-491.

Ammar. E., Ben Rouina. B. Potential horticultural utilization of olive oil processing wastewater. Acta horticulturae 474 (2).(1999). 741-744.

Ben Rouina. B., Ammar. E. L’utilisation des margines comme fertilisant biologique pour les cultures des plantes maraichères. Séminaire national sur l’huile d’olive et ses dérivés. Société chimique de Tunisie. Hammamet 26-28 Nov. 1999.

Banwart W.L., Tabatabai M.A., Bremner J.M.. Determination of ammonium in soils extracts and water samples by an ammonia electrode. Commun. Soil Sci. Plant Anal. 3. (1972). pp. 449–458.

Fontaine S, Bardoux G, Benest D, et al. (2004). Mechanisms of the priming effect in a savannah soil amended with cellulose. Soil Science Society of America Journal 8 (1).pp. 125-131.

Meli, M., Vergne, J., Maurel, M-C. In vitro selection of adenine-dependent hairpin ribozymes J. Biol.Chem. 278, 11 (2003). pp. 9835-9842.

Grosbellet. C. Evolution et effets sur la structuration du sol de la matière organique apportée en grande quantité. Thèse de doctorat https://tel.archives-ouvertes.fr/tel-00487882. (2008).241p.

Swift, M.J., Heal, O.W., Anderson, J.M.. Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford, U.S. (1979). 372 p.

Boer W, Folman L, Summerbell R, et Boddy L. Living in a Fungal World: Impact of Fungi on Soil Bacterial Niche Development. FEMS Microbiology Reviews 29 (4). (2005). pp.795–811.

Denef.K., Roobroeck.D., Manimel wadu, M.C.W., Lootens, P., Boeckx, P. (2009). Microbial community composition and rhisodeposit-carbon assimilation in differently managed temperate grass land soils. Soil biology and biochemistry 41. Pp. 144-153.

De Leij F.A.A.M., Whipps J. M., Lynch J. M. The use of colony development 97- for the characterisation of bacterial communities in soil and on roots. Microb Ecol 27. (1993).pp.81 -97.

Hu, S.J., Van Bruggen, A.H.C., Grünwald, N.J. (1999). Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil. Appl. Soil Ecol., 13,pp 21-30.

Schlegel, H.G. (1993). General Microbiology. Seventh Edition. Cambridge University Press, Cambridge, UK, 655 p.

Virginie Parnaudeau., (2005).Caractéristiques biochimiques de produits organiques résiduaires prédiction et modélisation de leur minéralisation dans les sols. Thèse de doctorat en Biologie et Agronomie. INRA. Unité d’Agronomie Laon-Reims-Mons. 216p.

Bertrand, I., Holloway, R.E., Armstrong, R.D., McLaughlin, M.J. (2003). Chemical characterstics of phosphorus in alkaline soils from Southern Australia, Aust. J. Soil. Res. 41, pp 61-76.

Hammel. KE. Fungal degradation of lignin. In: Driven by Nature: Plant litter quality and decomposition. Eds. G Cadish and KE Giller), CAB International, Wallingford, UK. (1997). pp 33-45.

Houot. S, Francou. C, Parnaudeau.V., Dignac. M.F., Thuries .L. Caracterisation des matieres organiques anthropiques pour comprendre et predire leurs dynamiques et leurs effets après apport au sols. 2004. Seminaire intitulé: ‘’Les Matières Organiques en France Etat de l’a r t e t prospectives’’. pp.14.

Benzarti S. Effets des margines sur les caractéristiques chimiques et l’activité biologique du sol. Mémoire de diplôme d’études approfondies en sciences agronomiques. INAT. (2003).99 p.

Piotrowska A, Rao MA, Scotti R, Gianfreda L.Changes in soil chemical and biochemical properties following amendment with crude and dephenolized olive mill waste water (OMW). Geoderma 161. (2011).pp.8–17.

Annabi, M. Stabilisation de la structure d'un sol limoneux par des apports de composts d'origine urbaine: relation avec les caractéristiques de leur matière organique. Thèse de doctorat sciences agronomiques de l'INAT-Paris-Grignon. (2005).268p.

Heal, O.W., Anderson, J.M. et Swift, M.J. Plant litter quality and decomposition: an historical overview. (1997).pp. 3-30.

Darwis, S. (1993). Effet des modalités de gestion de la paille de blé sur l'évolution du carbone et de l'azote au cours de sa décomposition dans le sol. These de doctorat en sciences agronomiques. Institut National Agronomique Paris- Grignon. 167 p.

Derenne, S., C. Largeau). "A review of some important families of refractory macromolecules:composition, origin, and fate in soils and sediments." Soil Science 166(11).pp. (2001). 833-847.

Berndt L., Ros de Ursinos J. A., Geissen K., Kachouri M., Klimm E., De Montpezat G. L, Xantoulis D. Les expériences méditerranéennes dans le traitement et l’élimination des eaux résiduaires des huileries d’olives. Document de synthèse de l’atelier d’écotechnologie organisé par le ministère de l’environnement et l’aménagement du territoire de Tunisie avec la collaboration de la GTZ. Tunis 13 décembre 1994. Eds. Deutshe Gesellschaft für Tesnishe Zusammenaarbit (GTZ) Gmbh Imprimerie Réunie de Tunisie. (1996). 380 p.

Abichou M.. Impacts de l’épandage des margines sur les propriétés physiques et chimiques du sol et sur la composition floristique naturelles des parcelles traitées. Mémoire de mastère. IRA/INAT. (2003). 66 p.

Ros de Ursinos F., Berndt L., Geissen K., Kachouri M. Klimm E. Les expériences méditerranéennes dans le traitement et l’élimination des eaux résiduaires des huileries d’olives. Coopération Tunisie-Allemagne. (1996).380 p.

Angers, D.A., Recous, S. Decomposition of wheat straw and rye residues as affected by particle size. Plant and Soil 189. (1997). 197-203.

Vanlauwe B., Diels J., Sanginga N., Carsky R.J., Deckers J., Merckx R. (2000b). Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: Response by maize to previous herbaceous legume cropping and rock phospate treatments, Soil Biol. Biochem. 32. pp. 2079–2090.

Corbeels M., Hofman G., Cleemput O.V. Simulation of net N immobilization and mineralisation in substrate-amended soils by the NCSOIL computer model, Biol. Fert. Soils 28. (1999). 422–430.

Torri S., Alvarez R., Lavado R. Mineralization of Carbon from Sewage Sludge in Three Soils of the Argentine Pampas. Published dans Communications in Soil Science and Plant Analysis. 34. (2003). pp. 13 – 14.

Dakhli. R. 2015. Effet sur les proprietés chimiques du sol et sur le rendement d’une culture d’Orge. Thèse de doctorat en sciences agronomiques. IRA/INAT.145p.

Marschner P., E. Kandeler, B. Marschner. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology & Biochemistry 35. (2003) 453–461.

Saison, C., Degrange, V., Oliver, R., Millard, P., Commeaux, C., Montange, D., Roux, X.L. Alteration and resilience of soil microbial community following compost amendment: effects of compost. Environ Microbiol. (2006) 8(2).pp.247-57.

Lejon D.P.H., Nowak V.,. Bouko S.,. Pascault N., C. Mougel, J.M.F. Martins L. Ranjard.. Genetic Structure and Diversity of Copper Resistant Bacterial Communities According to Soil Types, Organic Status and Copper Contamination. FEMS Microbiol. Ecol. 61.2007. pp. 424–437.

Lejon D.P.H., J.M.F. Martins, J. Lévêque, L. Spadini, N. Pascault, D. Landry, R. Chaussod, L. Ranjard.. Copper dynamics and impact on microbial communities in vineyard soils of variable organic status. Environ. Sci. Technol. 42(8). 2008. pp. 2819-2825.

Pascual JA, Ayuso M, Hernández T, García C. Fitotoxicidad y valor fertilizante de enmendantes diferentes orgánicos. Agrochimica 41. (1997).pp. 50–61.

Recous S. et al. . Soil inorganic N availability: effect on maize residue decomposition. Soil Biol. Biochem. 27.1995. pp. 1529-1538.

Parnaudeau, V., Nicolardot, B., Pages, J.. Relevance of organic matter fractions as predictors of wastewater sludge mineralization in soil. Journal of Environmental Quality 33. (2004).pp. 1885-1894.

Busby.R.R, H.A.Torbet, Gebhart.D.L. Carbon and nitrogen mineralization non composted and composted municipal solid waste in sandy soils. Soil Biology Biochemistry 39. (2007). Pp. 1277-1283




DOI: http://dx.doi.org/10.5281/zenodo.268572

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Raja DAKHLI dakhli

 

___________________________________________________________________________________________________________________________

 All open access articles published in AJNP are distributed under the terms of the  Creative Commons Attribution-  4.0 International License

 

 Flag Counter