Influence Of Olive Mill Waste Water Spreading On soil Microbial Activity. Short Term Effect On Carbon And Nitrogen Mineralization Process

Raja DAKHLI

Abstract


Mineralization is the core of the symbiotic relation between soil - microorganism and plant. It is the generator of mineral elements essential to the plants nutrition. Microorganisms are the main biotic actors in this process. The product of the mineralization depends, on the one hand, on the biomass of the soil and on the other hand on the quantity, nature and characteristics of the organic matter.

The monitoring of the mineralization is therefore essential after any input of organic matter with a view to its valorisation which effects are unpredictable.

It is in this context that we propose to study the impact of the three successive annual intakes of OMWW on the process of mineralization of organic matter and the soil content of carbon and mineral nitrogen.

 


Keywords


mineralization, mineral carbon, mineral nitrogen

Full Text:

PDF PDF

References


Abichou M. (2003). Impacts de l’épandage des margines sur les propriétés physiques et chimiques du sol et sur la composition floristique naturelles des parcelles traitées. Mémoire de mastère. IRA/INAT. 66 p.

Annabi, M. (2005).Stabilisation de la structure d'un sol limoneux par des apports de composts d'origine urbaine: relation avec les caractéristiques de leur matière organique. Thèse de doctorat de l'INA-PG. 268p.

Angers, D.A., and Recous, S. (1997) Decomposition of wheat straw and rye residues as affected by particle size. Plant and Soil 189, 197-203.

Alburquerque, J.A., Gonzálvez, J., García, D., Cegarra, J., 2006. Composting of a solid olive-mill by product (‘‘alperujoâ€) and the potential of the resulting compost for cultivating pepper under commercial conditions. Waste Manage. 26, 620–626.

Banwart W.L., Tabatabai M.A. and Bremner J.M. 1972. Determination of ammonium in soils extracts and water samples by an ammonia electrode. Commun. Soil Sci. Plant Anal. 3: 449–458.

Benı´tez C., Tejada M. and Gonza´ lez J.L. 2003. Kinetics of mineralization of nitrogen in a pig slurry compost applied to soils. Compost. Sci. Util. 11: 72–80.

Benzarti S. (2003). Effets des margines sur les caractéristiques chimiques et l’activité biologique du sol. Mémoire de diplôme d’études approfondies. INAT. 99 p.

Bertrand, I., Holloway, R.E., Armstrong, R.D., McLaughlin, M.J. (2003). Chemical characterstics of phosphorus in alkaline soils from Southern Australia, Aust. J. Soil. Res. 41, pp 61-76.

Bertrand, I., Chabbert, B., Kurek, B. et Recous, S. submitted. Can the biological features and histology of wheat residues explain their decomposition in soil? Plant and Soil.

Boer W, Folman L, Summerbell R, et Boddy L. (2005). « Living in a Fungal World: Impact of Fungi on Soil Bacterial Niche Development». FEMS Microbiology Reviews 29 (4): 795–811. doi:10.1016/j.femsre.2004.pp 11.005.

Bottner, P. (1985). Réponse of microbial biomass to alternante moist and dry conditions in a soil incubated with 14C and 14N labelled plant material. Soil Biology and Biochemistry 17: 299-337.

Bremner JM, McCarty GW. 1993. Inhibition of nitri®cation in soil by allelochemicals derived from plants and plant residues. In: Bollag J-M, Stotzky G, eds. Soil biochemistry. New York: Marcel Dekker, 181±218.

Brunetti, G., Senesi, N., & Plaza, C. (2007). Effects of amendment with treated and untreated olive oil mill wastewaters on soil properties, soil humic substances and wheat yield. Geoderma, 138(1–2), 144–152.

Burgos P., Cabrera F. and Madejo´ n E. 2002. Changes soil organic matter enzymatic activities and heavy metal availability induced by application of organic residues. In: Violante A., Huang P.M., Bollag J.M. and Gianfreda L. (eds), Soil Mineral– Organic Matter–Microorganism Interactions and Ecosystem Health. Ecological Significance of the Interaction among Clay Minerals Organic Matter and Soil Biota. Developments in Soil Science, Vol. 28B. Elsevier Science, Amsterdam, The Netherlands, pp. 353–362.

Busby.R.R, H.A.Torbet, Gebhart.D.L.(2007). Carbon and nitrogen mineralization non composted and composted municipal solid waste in sandy soils.VSoil Biology Biochemistry 39: pp 1277-1283.

Capasso et al., 1992; Capasso R., Cristinzio G., Evidente A., Scognamiglio F. (1992) Isolation, spectroscopy and selective phytotoxic effects of polyphenols from vegetable waste waters, Phytochem. 31, 4125–4128.

Cayuela, M.L., Sa´nchez-Monedero, M.A., Roig, A., 2006. Evaluation of two different aeration systems for composting two-phase olive mill wastes. Process Biochemistry 41, 616–623.

Claire Grosbellet.2008. Evolution et effets sur la structuration du sol de la mati`ere organique apport´ee en grande quantité. Thèse de doctorat. HAL Id: tel-00487882 https://tel.archives-ouvertes.fr/tel-00487882.

Cox, L., Celis, R., Hermosin, M. C., Becker, A., and Cornejo, J., 1997, Porosity and herbicide leaching in soils amended with olive-mill waste water, Agric. Ecosyst. Environ. 65:151.

Cookson, W. R., Cornforth, I.S. & Rowarth, J.S.. 2002. Winter soil temperature (2-15 °C) effects on nitrogen transformations in clover green manure amended or unamended soils; a laboratory and field study. Soil Biology & Biochemistry, 34 : 1401-1415.

Corbeels M., Hofman G., Cleemput O.V. (1999) Simulation of net N immobilization and mineralisation in substrate-amended soils by the NCSOIL computer model, Biol. Fert. Soils 28, 422–430.

Dakhli.R. (2009). Valorisation ddses Margines en agriculture: effet sur les proprietés chimiques du sol et sur le rendement d’une culture d’Orge. DEA. IRA-INAT.

Dakhli.R. 2015. Effet sur les proprietés chimiques du sol et sur le rendement d’une culture d’Orge. Thèse de doctorat IRA/INAT.pp.53-73

Darwis, S. (1993). Effet des modalités de gestion de la paille de blé sur l'évolution du carbone et de l'azote au cours de sa décomposition dans le sol. Institut National Agronomique ParisGrignon. Doctorat: 167 p. O." Journées Recherche Porcine 36: 97-104.

Della Greca M., Monaco P., Pinto G., Pollio A., Previtera L., Temussi F. (2001). Phytotoxicity of low-molecular-weight phenols from olive mill waste waters. Bulletin of Environmental Contamination and Toxicology. 67, pp 352-359.

De Leij F.A.A.M., Whipps J. M. and Lynch J. M. (1993) The use of colony development 97- for the characterisation of bacterial communities in soil and on roots. Microb Ecol 27:81 -97.

Denef,K., Roobroeck,D., Manimel wadu, M.C.W., Lootens, P., Boeckx, P. (2009). Microbial community composition and rhisodeposit-carbon assimilation in differently managed temperate grass land soils. Soil biology and biochemistry 41. Pp 144-153.

Derenne, S. and C. Largeau (2001). "A review of some important families of refractory macromolecules:composition, origin, and fate in soils and sediments." Soil Science 166(11): 833-847.

Douglas B.F. and Magdoff F.R. 1991. An evaluation of nitrogen mineralization indices for organic residues. J. Environ. Qual. 20: 368–372.

Elherradi, E., Soudi, B. et Elkacemi, K. (2003). Évaluation de la minéralisation de l'azote de deux sols amendés avec un compost d'ordures ménagères. Étude et Gestion des Sols 10: pp 139-154.

Eusébio, A., Mateus, M., Baeta-Hall, L., Sà água, M., Tenreiro, R., Almeida-Vara, E., & Duarte, J. (2007). Characterization of the microbial communities in jet-loop (jacto) reactors during aerobic olive oil wastewater treatment. International Biodeterioration & Biodegradation, 59(3), 226–233.

Fontaine S, Bardoux G, Benest D, et al. (2004). Mechanisms of the priming effect in a savannah soil amended with cellulose. Soil Science Society of America Journal 8 (1):pp 125-131.

Franzluebbers, A.J., Haney, R.L., Honeycutt, C.W., Arshad, M.A., Schomberg, H.H. & Hons, F.M.. 2001. Climatic influences on active fractions of soil organic matter. Soil Biology & Biochemistry, 33 : 1103-1111.

Griffin G.F. and Laine A.F. 1983. Nitrogen mineralization in soils previously amended with organic wastes. Agron. J. 75: 124–128.

Hadas.A, Portnoy.,R. 1994. Nitrogen and carbon mineralization rates of composted manures incubated in soil. J. Environ. Qual. 2311841189.

Hammel. KE (1997). Fungal degradation of lignin. In: Driven by Nature: Plant litter quality and decomposition. Eds. G Cadish and KE Giller), CAB International, Wallingford, UK. pp 33-45.

Handayanto, E., Cadisch, G. and Giller, K. E. (1997). Regulating N mineralization from plant residues by manipulation of quality. In: Cadisch, G., Giller, K. E. (Eds.), Driven by Nature - Plant Litter Quality and Decomposition. CAB International, 190 Wallingford, Oxon UK. pp. 175–186.

Heal, O.W., Anderson, J.M. et Swift, M.J. (1997). Plant litter quality and decomposition: an historical overview, p. 3-30, In eds. Cadisch, G. et Giller, K. E. Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, UK.

Houot. S, Francou. C, Parnaudeau.V., Dignac. M.F., Thuries .L, 2004. Caracterisation des matieres organiques anthropiques pour comprendre et predire leurs dynamiques et leurs effets apres apport au sols.

Huang C-C, Chen Z-S (2009) Carbon and nitrogen mineralization of sewage sludge compost in soils with a different initial pH. Soil Sci Plant Nutr 55:715–724.

Hu, S.J., Van Bruggen, A.H.C., Grünwald, N.J. (1999). Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil. Appl. Soil Ecol., 13,pp 21-30.

Jedidi, N., Van Cleemput, O., et M'Hiri, A. (1995). Quantification des processus de minéralisation et d'organisation de l'azote en présence d'amendements organiques. Canadian Journal of Soil Science 75:pp 85-91.

Keeney D.R. and Bremner J.M. 1967. Determination and isotope-ratio analysis of different forms of nitrogen in soils. 6: Mineralizable nitrogen. Soil Sci. Soc. Am. Proc. 31: 34–39.

Jenkinson, D.S. (1966). Studies on the decomposition of plant material in soil: H. Partial sterilization of soil and the biomass. Journal of Soil Science 17:pp 280-302.

Khalil MI, Hossain MB, Schmidhalter U (2005) Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil Biol Biochem 37:1507–1518.

Kirschbaum, M.U.F.. 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology & Biochemistry, 27 : 753-760.

Lejon D.P.H., V. Nowak, S. Bouko, N. Pascault, C. Mougel, J.M.F. Martins and L. Ranjard. Genetic Structure and Diversity of Copper Resistant Bacterial Communities According to Soil Types, Organic Status and Copper Contamination. FEMS Microbiol. Ecol. 61: 424–437. 2007.

Lejon D.P.H., J.M.F. Martins, J. Lévêque, L. Spadini, N. Pascault, D. Landry, R. Chaussod, and L.

Ranjard. Copper dynamics and impact on microbial communities in vineyard soils of variable organic status. Environ. Sci. Technol. 42(8): 2819-2825. 2008.

Madejon E., Burgos P., Lopez R. and Cabrera F. 2003. Agricultural use of three organic residues: effect on orange production and on properties of a soil of the Comarca ‘‘Costa de Huelva’’ (SW Spain). Nutr. Cycl. Agroecosyst. 65: 281–288.

Marschner P., E. Kandeler, B. Marschner. (2003). Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol.

Mekki A, Dhouib A, Sayadi S (2006) Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiol Res 161:93–101.

Mekki, A., Dhouib, A., & Sayadi, S. (2013). Effects of olive mill wastewater application on soil properties and plants growth. International Journal of Recycling of Organic Waste in Agriculture, 2(1), 1–7.

Meli, M., Vergne, J., Maurel, M-C. (2003). In vitro selection of adenine-dependent hairpin ribozymes J. Biol.Chem. 278, 11,pp 9835-9842.

Mohammad, M.J., & Mazahreh, N. (2003). Changes in soil fertility parameters in response to irrigation of forage crops with secondary treated wastewater. Communications in Soil Science and Plant Analysis, 34(9-10), 1281–1294.

Mohawesh, O., Mahmoud, M., Janssen, M., & Lennartz, B. (2014). Effect of irrigation with olive mill wastewater on soil hydraulic and solute transport properties. International Journal of Environmental Science and Technology, 11(4), 927–934.

Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G., Renella, G. (2003). Microbial diversity and soil functions, Plant Soil, 54, pp 655-670.

Niaounakis M, Halvadakis CP (2006) Olive processing waste management, volume 5, (2nd edn) Literature Review and Patent Survey, Elsevier, Oxford. ISBN: 9780080448510, p 514.

Nira R. and Nishimune A. 1993. Studies on mineralization properties of Tokachi soils by kinetic analysis. Soil Sci. Plant Nutr. 39: 321–329.

Papadimitriou E.K., Chatjipa I., Balis C. (1997). Application of composting to olive mill wastewater treatment. Environmental technology, 18,pp 101-107.

Paredes C., Cegarra J., Roig A., Sanchez-Monedero M.A., Bernal M.P. (1999) Characterisation of olive mill wastewater (alpechin) and its sludge for agricultural purposes, Bioresource Technol. 67, 111– 115.

Parnaudeau, V., Nicolardot, B., Pages, J. (2004). Relevance of organic matter fractions as predictors of wastewater sludge mineralization in soil. Journal of Environmental Quality 33,pp 1885-1894.

Pascual JA, Ayuso M, Hernández T, García C (1997) Fitotoxicidad y valor fertilizante de enmendantes diferentes orgánicos. Agrochimica 41:50–61.

Piotrowska A, Rao MA, Scotti R, Gianfreda L (2011) Changes in soil chemical and biochemical properties following amendment with crude and dephenolized olive mill waste water (OMW). Geoderma 161:8–17.

Recous S. et al. 1995. Soil inorganic N availability: effect on maize residue decomposition. Soil Biol. Biochem. 27, 1529-1538.

Saison, C., Degrange, V., Oliver, R., Millard, P., Commeaux, C., Montange, D., Roux, X.L. (2006). Alteration and resilience of soil microbial community following compost amendment: effects of compost.

Sierra J, Martí E, Garau MA, Cruañas R (2007) Effects of the agronomic use of olive oil mill wastewater: field experiment. Sci Total Environ 378:90–94.

Ramos-Cormenzana A., Jirez-Jiménez B. et Garcia-Pareja M.P. (1996). Antimicrobial activity of olive mill wastewaters (alpechin) and biotransformed olive oil mill wastewater. International Biodeterioration et Biodegradation. 38:pp 283-290.

Ros de Ursinos F., Berndt L., Geissen K., Kachouri M. & Klimm E. (1996). Les expériences méditerranéennes dans le traitement et l’élimination des eaux résiduaires des huileries d’olives. Coopération Tunisie-Allemagne. 380 p.

Sayadi, S., Allouche, N., Jaoua, M., Aloui, F., 2000. Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment. Process Biochem. 35, 725–735.

Schlegel, H.G. (1993). General Microbiology. Seventh Edition. Cambridge University Press, Cambridge, UK, 655 p.

Swift, M.J., Heal, O.W., Anderson, J.M. (1979). Decomposition in terrestrial ecosystems. Blackwell Scientiï¬c Publications, Oxford, 372 p.

Theuerl S, Buscot F (2010) Laccases: toward disentangling their diversity and functions in relation to soil organic matter cycling. Biol Fert Soils 46:215–225.

Torri S., Alvarez R., Lavado R. (2003). Mineralization of Carbon from Sewage Sludge in Three Soils of the Argentine Pampas Published dans Communications in Soil Science and Plant Analysis. 34 :pp 13 – 14.

Vanlauwe.B, J. Diels, N. Sanginga and R. Merckx. (1997). Driven by nature: plant litter 8 quality and decomposition, 157p.

Weber, B., Avnimelech, Y., & Juanico, M. (1996). Salt enrichment of municipal sewage: New prevention approaches in israel. Environmental Management, 20(4), 487 –495.

YoungI.M.,CrawfordJ.W.2004. Interactions and self-organization in the soil-microbe complex. Science304, 1634–1637 (doi:10.1126/science.1097394)10.1126/science.1097394.




DOI: http://dx.doi.org/10.5281/zenodo.1133241

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017

_________________________________________________________________________________________________________________________

 All open access articles published in AJNP are distributed under the terms of the  Creative Commons Attribution-  4.0 International License

The research works published in this journal are free to be accessed. They can be shared (copied and redistributed in any medium or format) and\or adapted (remixed, transformed, and built upon the material for any purpose, commercially and\or not commercially) under the following terms: attribution (appropriate credit must be given indicating original authors, research work name and publication name mentioning if changes were made) and without adding additional restrictions (without restricting others from doing anything the actual license permits). Authors retain the full copyright of their published research works and cannot revoke these freedoms as long as the license terms are followed.

 

 Flag Counter