REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieure et de la Recherche Scientifique
Université Abderrahmane MIRA de Bejaia
Faculté de Technologie
Département de GENIE CIVIL

Mémoire de fin d'étude

En Vue d'Obtention du Diplôme de Master en **Génie Civil Option**: structure

Thème:

Etude d'un bâtiment (R + 9 avec 2 entre-sol) à usage d'habitation, commercial et service

Réalisé par:

Encadré par:

M ^r ZERROUK Bilal M ^r MOUSSAOUI Lyes M ^rM.SERIKMA

Jury:

M^r BELHAMDI

M^{me} BOUKEMOUCHE

Promotion juin 2019

Remerciements

Avant tout, nous tenons à remercier ALLAH le tout puissant pour nous avoir donné la force, le courage, la volonté, la patience et la santé pour terminer ce travail.

Nous remercions nos familles qui nous ont toujours encouragés et soutenus durant toutes nos études.

Nos vifs remerciements et reconnaissances s'adressent à notre promoteur Mr M.SERIKMA pour nous avoir orientés, conseillés et dirigés durant cette période.

Nous remercions les membres de jury qui nous feront l'honneur de juger notre travail.

Notre sincère gratitude va vers tous ce qui a participé de près ou de loin à ce travail.

Dédicaces

Rien n'est aussi beau à offrir que le fruit d'un labeur qu'on dédie du fond du cœur à ceux qu'on aime et qu'on remercie en exprimant la gratitude et la reconnaissance durant toute notre existence.

Je dédie ce modeste travail :

A mes très chers parents qui m'ont guidé durant les moments les plus pénibles de ce long chemin, ma mère qui a été à mes côtés et ma soutenu durant toute ma vie, et mon père qui a sacrifié toute sa vie afin de me voir devenir ce que je suis, merci infiniment mes parents.

A mon frère Sofiane

A mes sœurs: Rachida, Lila, Lynda, Zohra, Zakia et leurs maries Amine, Nadir, Madani, Lahcene.

A mon oncle Omar et son fils Zinou

A tous mes amis : Sofiane, Nabil, lehcene, Amine, Azeddine, Yakoub, Imad, Nassim et mon cousin Hicham.

A tous mes amies : Célina, tassa, Lynda

A mon binôme Moussaoui Lyes et toute sa famille.

A mon encadreur bien sûr : "Mr M.SERIKMA" qui a fait tout son possible pour nous aider et nous orienté dans l'élaboration de notre mémoire.

A Mdm Atroune qui nous a aidés vraiment

A tous les habitants et à toutes les associations du village TAZROUT.

A tous les membres de club amateur sportif TAZROUT Z.Bilal

Dédicaces

Je dédie ce modeste travail : A mes très chers parents qui m'ont guidé durant les moments les plus pénibles de ce long chemin, ma mère qui a été à mes côtés et ma Soutenu durant toute ma vie, et mon père qui a sacrifié toute sa vie afin de me voir devenir ce que je suis, merci infiniment mes parents.

A mes très chers sœurs : Razika et Karima

A mes frères : Samir, Azeddine, Hakim

A tous mes amis (es): Yakoub, Imad, Karim, Yazid, Azeddine, Souhila.

A mon encadreur bien sûr : "Mr M.SERIKMA" qui a fait tout son possible pour nous aider et nous orienté dans l'élaboration de notre mémoire.

A mon binôme Zerrouk Bilal et toute sa famille.

Résumé

Le but de ce travail est l'étude d'une structure en béton armé (R+9+ 2 entresol) qui devrait être implantée à la commune de Seddouk qui est classée comme une zone de moyenne sismicité.

La résistance du bâtiment est assurée par un système de contreventement mixte (portiques+voiles). Le calcul a été fait selon les règlements de construction en vigueur (RPA99version2003, CBA93, BAEL91).

L'étude dynamique a été modélisé par le logiciel ETABS V16. Finalement, l'étude de l'infrastructure du bâtiment a été faite par le calcul des fondations.

Mots clés:

Béton armé, contreventement mixte, étude dynamique, poteaux, poutres, voiles.

Table des matières

List	e des figures	
List	e des tableaux	
Tab	leau des symboles et notations	
Intr	oduction générale	01
Cha	pitre I : Généralité	01
	I.1.Introduction	02
	I.2.Présentation de l'ouvrage	03
	I.3.Classification de l'ouvrage.	04
	I.4. Règlements et normes utilisées.	05
	I.5.Les matériaux.	05
	I.6.Le sol	05
	I.7.Conclusion.	05
Cha	pitre II : Pré dimensionnement des éléments	
	II.1.Introduction.	06
	II.2.Disposition des poutrelles	06
	II.3.Pre dimensionnement des planchers	06
	II.4.Les poutres	09
	II.5.Les voiles.	10
	II.6.Acrotère de la terrasse inaccessible.	11
	II.7.Les escaliers.	12
	II.8.Evaluation des charges et surcharges sur le plancher	15
	II.9.Pre dimensionnement des poteaux	17
	II.10.Conclusion.	27
Cha	pitre III : Etude des éléments non structuraux	
	III.1.Introduction	29
	III.2.Etude des planchers.	29
	III.3.Etudes des escaliers	41
	III.4.Etudes de la poutre palière	49
	III.5. Etudes de la poutre brisée	52
	III.6. Etudes de la poutre de chainage	54
	III.7 Etudes de l'ascenseur	56

III.8. Etudes de l'acrotère	62
III.9.Conclusion.	66
Chapitre IV : Etude dynamique	
IV.1.Introduction	67
IV.2.Modélisation	67
IV.3 L'analyse sismique de la structure	67
IV.4.Présentation de la méthode modale spectrale	68
IV.5.Vétification des résultats obtenue vis-à-vis des exigences du	
RPA99/2003	69
IV.6.Conclusion.	78
Chapitre V : Ferraillage des éléments structuraux	
V.1.Introduction	79
V.2.Ferraillage des poteaux.	79
V.3.Ferraillage des poutres	86
V.4.Ferraillage des voiles.	94
Chapitre VI : Infrastructure	
VI.1.Introduction.	97
VI.2.Combinaison de calcul.	97
VI.3 Choix du type defondation	97
VI.4. Ferraillage du radier générale	102
VI.5 Etude des nervures	104
V I.6 Etude des voiles périphérique	109
VI.7.Conclusion	113
Conclusion générale.	114
Bibliographie	
Annexes	
Plans Architecturaux	
Rapport de sol	

Liste des figures

Chapitre II:

Figure III.20. Coupe transversale de l'acrotère.	62
Figure III.21. Section de l'acrotère à ferrailler.	64
Figure III.22. Schéma de ferraillage de l'acrotère.	66
Chapitre IV:	
Figure IV.1. Spectre de réponse	68
Figure IV.2. Disposition des voiles de contreventement.	69
Figure IV.3. Vue en 3D du modèle obtenue par ETABS	69
Figure IV.4. Mode 1 (translation suivant l'axe x-x)	70
Figure IV.5. Mode 2 (translation suivant l'axe y- y)	70
Figure IV.6. mode 3 (rotation suivant l'axe z-z)	70
Chapitre V:	, 1
Figure V.1. Zone nodale	80
Figure V.2.Section d'un poteau	
Figure V.3. Répartition des moments dans les zones nodales	89
Chapitre VI :	
Figure VI.1. Schéma d'une semelle filante	98
Figure VI.2. Schéma des lignes de ruptures.	104
Figure VI.3. Répartition des charges sur la nervure la plus défavorable selon le sens x-x	105
Figure VI.4. Répartition des charges sur la nervure la plus défavorable selon le sens y-y	105
Figure VI.5. Schéma statique de la nervure selon le sens x-x.	106
Figure VI.6. Schéma statique de la nervure selon le sens y-y.	106
Figure VI.7. Schéma des nervures.	107
Figure VI.8. Poussée des terres sur les voiles périphérique	110
Figure VI.9. Répartition des contrainte sur le voile périphérique	111

LISTE DES TABLEAUX

Chapitre II:

Tableau II.1. Evaluation des charges de plancher terrasse inaccessible	15
Tableau II.2. Evaluation des charges du plancher à étage courant	16
Tableau II.3. Evaluation des charges de plancher terrasse accessible à dalle pleine	16
Tableau II.4. Evaluation des charges de palier	16
Tableau II.5. Evaluation des charges sur la volée	16
Tableau II.6. Evaluation des charges de murs extérieure	17
Tableau II.7. Evaluation de la descente de charge de poteau PB3.	20
Tableau II.8. Evaluation de la descente de charge de poteau PB5	24
Tableau II.9. Résultats de la descente de charge obtenue pour les deux poteaux	26
Tableau II.10. Résultats de la vérification à la compression simple	27
Tableau II.11. Résultats de la vérification au flambement.	28
Chapitre III :	
Tableau.III.1. Tableau des différents types de poutrelles	29
Tableau.III.2.Choix de méthode du calcul.	30
Tableau.III.3. Tableau des charges revenant aux poutrelles sous (G)	30
Tableau.III.4.Sollicitations max dans les différents types de poutrelles du l'E-Sol2	31
Tableau.III.5. Sollicitations max dans les différents types de poutrelles du l'E-Sol1	31
Tableau.III.6. Sollicitations maximales dans les différents types de poutrelles de RDC et étages courants de 1à6	31
Tableau.III.7. Sollicitations max dans les différents types de poutrelles de 7 ^{eme} étage	31
Tableau.III.8. Sollicitations max dans les différents types de poutrelles de 8 ^{eme} étage	31
Tableau.III.9. Sollicitations maximales dans les différents types de poutrelles de 8 ^{eme} et 9 ^{eme} étage (partie terrasse inaccessible)	32
Tableau.III.10. Sollicitations optée pour le ferraillage des poutrelles.	32
Tableau.III.11.Calcul du ferraillage a l'ELU des différents niveaux	32

Tableau.III.12. Vérifications nécessaires à l'ELU	33
Tableau.III.13.Vérification des contraintes à l'ELS	34
Tableau.III.14.Vérification de la flèche à l'ELS.	35
Tableau.III.15.Schémas de ferraillage des poutrelles par niveau	36
Tableau.III.16.Les différents dalles	37
Tableau.III.17. Résultats de ferraillage de D3	38
Tableau.III.18.Vérification des contraintes	38
Tableau.III.19. Sollicitations maximales dans les dalles pleines	39
Tableau.III.20.Vérification de l'effort tranchant.	39
Tableau.III.21.Calcul du ferraillage à l'ELU	39
Tableau.III.22.Vérification des contraintes à l'ELS.	40
Tableau.III.23.Résultats de ferraillage.	43
Tableau.III.24.Vérification des contraintes.	43
Tableau.III.25.Les sollicitations (type2, volée2)	45
Tableau.III.26. Ferraillage d'escalier (type2, volée2).	45
Tableau.III.27. Vérification des contraintes (type2, volée2)	46
Tableau.III.28. Les sollicitations (type2, volée1 et 3)	48
Tableau.III.29. Ferraillage d'escalier (type2, volée1 et 3)	48
Tableau.III.30. Vérification des contraintes (type2, volée1 et 3)	48
Tableau.III.31. Résultats de ferraillage de la poutre palière en (F.S)	50
Tableau.III.32. Vérification des contraintes.	52
Tableau.III.33.Calcul en flexion simple et on torsion.	53
Tableau.III.34.Moments et ferraillages correspondant	55
Tableau.III.35. Vérification des contraintes.	56
Tableau.III.36. Ferraillage de la dalle d'ascenseur.	59
Tableau.III.37. Vérification des contraintes.	60
Tableau.III.38. Ferraillage de la dalle pleine au-dessous de l'ascenseur	61

Tableau.III.39. Vérification des contraintes.	61
Tableau.III.40.Combinaisons d'action de l'acrotère	63
Chapitre IV :	
Tableau IV.1. Périodes et taux de participation massique des trois premiers modes	71
Tableau IV.2. Périodes et taux de participation massique de la structure	72
Tableau IV.3. Valeurs des pénalités	74
Tableau IV.4. Vérification de l'effort tranchant à la base	74
Tableau IV.5. Vérification de l'effort réduit	74
Tableau IV.6. Vérification de l'effort normal réduit (après la modification des poteaux)	75
Tableau IV.7. Vérification de l'interaction voile/portique sous charges verticales	75
Tableau IV.8. Vérification de l'interaction voile/portique sous charges horizontales	76
Tableau IV.9. Vérification des déplacements de niveaux	77
Tableau IV.10. Justification vis-à-vis l'effet P-Δ	7 9
Chapitre V :	
Tableau V.1. Armatures longitudinales et minimale dans les poteaux	80
Tableau V.2. Les sollicitations dans les différents poteaux	81
Tableau V.3. Ferraillage longitudinal des poteaux	81
Tableau V.4. Ferraillage transversale des poteaux	82
Tableau V.5. Vérification du flambement pour les différents poteaux	82
Tableau V.6. Vérification des contraintes dans le béton pour les poteaux	83
Tableau V.7. Vérification des contraintes de cisaillement	84
Tableau V.8. Dimensions de la zone nodale	84
Tableau V.9. Ferraillage des poutres principales (30*45) cm ²	86
Tableau V.10. Ferraillage des poutres secondaires (30*35) cm ²	86
Tableau V.11. Vérification des contraintes tangentielles	88
Tableau V.12. Vérification des armatures longitudinal au cisaillement	88
Tableau V.13. Vérification de l'état limites de compression du béton	89
Tableau V.14. Moments résistants dans les poteaux	90

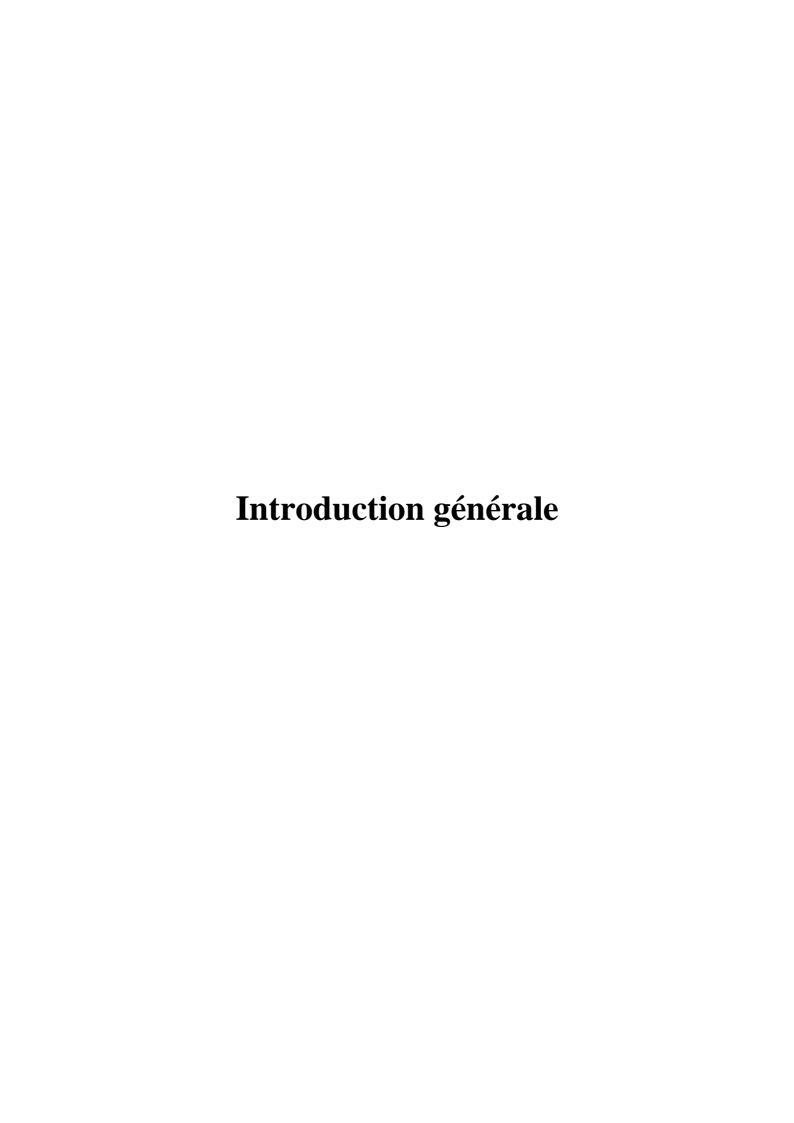

Table des matières

Tableau V.15. Moments résistants dans les poutres.	90
Tableau V.16. Vérification des zones nodales selon le sens principale	91
Tableau V.17. Vérification des zones nodales selon le sens secondaire.	92
Tableau V.18. Les sollicitations de calcul dans les voiles $V_{x(1,2,3,4)}$	93
Tableau V.19 Sollicitations et ferraillage des voiles $V_{x(1,2,3,4)}$ dans tous les niveaux	94
Tableau V.20. Sollicitations et ferraillage des voiles Vy (1,2) dans tous les niveaux	95
Tableau V.21. Sollicitations et ferraillage de voile Vy 3 dans tous les niveaux	96
Chapitre VI :	
Tableau VI.1. Somme des efforts normaux des différentes files de semelles filantes	98
Tableau VI.2. Section d'armature du radier	102
Tableau VI.3. Vérification des contraintes à l'ELS.	103
Tableau VI.4. Section d'armature du radier à l'ELS.	103
Tableau VI.5. Chargement sur les travées du sens x-x.	106
Tableau VI.6. Chargement sur les travées du sens y-y.	106
Tableau VI.7. Sollicitation dans les nervures à l'ELU selon les deux sens.	107
Tableau VI.8. Sollicitation dans les nervures à l'ELS selon les deux sens.	107
Tableau VI.9. Résultats de ferraillage des nervures.	108
Tableau.VI.10. Vérification des contraintes à l'ELS.	109
Tableau VI.11. Ferraillage des nervures à l'ELS.	109
Tableau VI.12. Ferraillage des voiles périphériques	111
Tableau VI.13. Vérification des contraintes à l'ELS.	113
Tableau VI.14. Ferraillage des voiles périphérique à l'ELS	113

Tableau des symboles et notations

Symboles	Notations		
A _r Aire d'une section d'acier de répartition			
A_{t}	Aire d'une section d'acier transversal		
$A_{\rm s}$	Aire d'une section d'acier		
b	La largeur		
B_{r}	Section réduite du béton		
$E_{\rm s}$	Module d'élasticité de l'acier		
E_{vi}	Module de déformation différée du béton à l'âge de j jour		
E_{ij}	Module de déformation instantanée du béton à l'âge de j jour		
F _{cj}	Résistance caractéristique de compression à j jour		
F_{tj}	Résistance caractéristique de traction à j jour		
F _e	Limites d'élasticité		
G	Charges permanente		
Q	Charge d'exploitation		
E Action accidentelles			
q_{u}	Charges réparties ultime		
$q_{\rm s}$	Charges réparties de service		
Ī	Moment d'inertie		
$M_{\rm u}$	Moment de calcul ultime		
$M_{\rm s}$	Moment de calcul de service		
N _u	Effort normale ultime		
N _s	Effort normal de service		
V	Effort tranchant		
S	Surface plane de la structure		
d	Position des armatures tendue par rapport à la fibre la plus		
	comprimée		
e	Epaisseur		
L	Longueur		
L_{r}	Longueur de recouvrement		
l _f Longueur de flambement			
I	Rayon de giration		
λ	Elancement		
μbu	Moment ultime réduit		
ν	Coefficient de poisson		
σ _{bc} Contraintes du béton à la compression			
$\sigma_{\rm s}$ Contraintes de l'acier à la traction			
$\varphi_{\rm t}$ Diamètre des armatures transversales			
τ Contraintes tangentielles de cisaillement			
η Coefficient de fissuration			
	Confident de Historianon		

l _r Longueur de recouvrement				
ξbc	Raccourcissement relatif de béton			
ξ _s Allongement relatif de l'acier tendu				
γ _b Coefficient de sécurité de béton				
γ _s Coefficient de sécurité de l'acier				
γ	Poids spécifique déjaugé			
A	Coefficient de l'accélération de la zone			
C _T Coefficient fonction du système de contreventement				
	type de remplissage			
C_{U}	La cohésion du sol			
D	Facture d'amplification dynamique moyenne			
ELS	Etat limite de service			
ELU	Etat limite ultime			
ELA Etat limite accidentelle				
F _s Coefficient de sécurité				
Q Facteur de qualité				
R Coefficient de comportement global				
P Poids du radier				
N Charges concentrées appliqués (ELS et ELU				
S _{rad} Surface du radier				
S _{bat} Surface total du bâtiment				
S _t Espacement des armatures				
W Poids propre de la structure				
W_{Qi}	Poids due aux charges d'exploitations			
W_{Gi}	Poids due aux charges permanentes			
Z	Bras de levier			
f Flèche				
f_{e}	Limites d'élasticité			
h _t Hauteur total du radier				
Hauteur mesurée en mètre à partir de la base de la struc				
jusqu'à dernier niveau				
σ	Contraintes normale			
φ	L'angle de frottement interne du sol			
$\sigma_{ m adm}$	Contrainte admissible au niveau de la fondation			
ξ Pourcentage d'amortissement critique				
h _t	La hauteur de la nervure			

Introduction générale

Bâtir a toujours été l'un des premiers soucis de l'homme et l'une de ses premières occupations privilégiées. A ce jour, les bâtisses ont connu un grand essor dans la plus part des pays vu le développement technologique accompagnant le développement de tissu urbain. Cette préoccupation de construire s'est accrus avec l'explosion démographique, ce qui a conduit les décideurs dans tous les pays du monde à adopter la solution de bâtir en hauteur suite aux limitations des terrains en villes et les importantes demandes en logements et espaces de travail.

Cette solution n'est pas sans difficultés, en augmentant la hauteur, les structures deviennent plus vulnérables et plus exposées aux sollicitations sismiques, mettant ainsi les vies de ses occupants ainsi que celles de ses voisins en danger sans oublier les pertes matériels.

Tout comme d'autres catastrophes naturelles, les séismes ont des manifestations spectaculaires et dévastatrices. Il est difficile d'apprécier le risque sismique tant la prévision est incertaine et leur apparitions aléatoires. On ne connaît les phénomènes sismiques que de manière imparfaite et seuls des séismes majeurs incitent la population à une prise de conscience générale. C'est pourquoi la plupart des nations n'est pas protégée contre les tremblements de terre et leurs conséquences économiques et humaines.

La résistance d'une structure aux actions horizontales est principalement assurée par le système de contreventement de cette dernière. Pour les structures en béton armé, ce système de contreventement est constitué de cadres, de voiles ou des deux en même temps.

Après le séisme du 21 Mai 2003 de Boumerdes, des études faites par des experts , ont abouti à des modifications du Règlement Parasismique Algérien. L'une de ces modifications est la nouvelle classification des zones sismiques et des valeurs des coefficients d'accélération de zone.

A cet effet l'ingénieur en génie civil est censé de vérifier des édifices de manière à faire face à ce phénomène (construction parasismique), il doit en outre tenir compte de différents facteurs tels que la résistance, la stabilité, l'économie et l'esthétique.

Le présent travail consiste à étudier un bâtiment en R+9+deux entresols contreventé par un système mixte (voiles-portiques).

L'étude de ce projet sera menée selon les étapes principales suivantes:

- ✓ La première étape portera sur la présentation complète du bâtiment, la définition de ses différents éléments et le choix de matériaux à utiliser.
- ✓ La deuxième étape sera la détermination des actions verticales présentes dans le bâtiment et le prédimensionnement des éléments structuraux et non structuraux du bâtiment.
- ✓ La troisième étape sera le calcul des éléments non structuraux (plancher, poutrelles, acrotère, garde-corps, escalier).
- ✓ La quatrième étape portera sur l'étude dynamique du bâtiment et la détermination de l'action sismique. L'étude du bâtiment sera faite par l'analyse du modèle de la structure en 3D sur le logiciel de calcul ETABS V16.
- ✓ La cinquième étape sur le calcul du ferraillage des éléments structuraux (poteaux, poutres et voiles) Les résultats donnés par ETABS V16 vont être vérifiés par le RPA
- ✓ Le sixième chapitre, pour l'étude de l'infrastructure
- ✓ On terminera le travail par une conclusion générale.

I.1.INTRUDUCTION

L'étude d'un bâtiment en génie civil nécessite des connaissances de base sur lesquelles l'intervenant en génie civil prend appuis, et cela pour obtenir une structure à la fois sécuritaire et économique.

A cet effet, on consacre ce chapitre afin de donner des généralités et des descriptions du projet à étudier.

I.2. Présentation du projet :

Présentation de l'ouvrage :

L'ouvrage qui fait l'objet de notre étude est un bâtiment en (R+9 avec 2 entre-sol) implanté à la commune de Seddouk wilaya de Bejaia, Cette structure est destinée pour l'usage mixte (commerce, habitation et service).

I.2.1Caractéristiques de la structure :

• Caractéristique géométrique

Largeur en plan 1 (entre-sols)	12.25 m
Largeur en plan 2 (étages courants et RDC)	.17.35 m
Longueur en plan	23.51 m
Hauteur totale du bâtiment (Sans acrotère)	37.06 m
Hauteur de l'entre-sol 2	.3.40 m
Hauteur de l'entre-sol 1	.3.06 m
Hauteur du RDC	3.06 m
Hauteur des étages de 1 ^{er} au 9 ^{eme} étage	3.06 m

• Système structural.

L'ossature est constituée par des portiques en béton armé et voiles. Le rôle de l'ossature est d'assurer la stabilité de l'ensemble sous l'effet des actions verticales et des actions horizontales.

I.2.2. Eléments constituants l'ouvrage

Planchers

Les planchers sont considérés comme des diaphragmes rigides d'épaisseur relativement faible par rapport aux autres dimensions de la structure. Notre bâtiment ne comporte que deux types de planchers (corps creux et dalles pleines).

• Portiques

Les portiques sont des éléments verticaux qui supportent les charges transmise par les planchers.

• Les voiles

Les voiles seront réalisés en béton armé et le choix du nombre, dimensions et leur emplacement sera étudié ultérieurement.

• Maçonnerie

Pour cet ouvrage, elle est réalisée en briques creuses comme suit :

✓ Les murs extérieurs : ils sont en doubles cloisons de 30 cm d'épaisseur, réalisés en briques creuses de (15 et 10 cm) séparés par une lame d'air de 5 cm

✓ Les murs intérieurs : ils sont réalisés en simples cloisons de briques creuses de 10 cm leurs fonctions principales est la séparation des espaces et l'isolation thermique et acoustique.

Revêtements

Les revêtements de la structure sont constitués par :

- ➤ Carrelage de 2 cm pour les planchers courants.
- L'enduit de plâtre pour les murs intérieurs.
- Faux plafonds divers pour les plafonds (bois, métallique, minéral).

Acrotère

C'est un élément en béton armé, encastrés à sa base au plancher terrasse, de 55 cm de hauteur et de 10 cm d'épaisseur, son rôle est d'assurer la sécurité et d'empêcher l'écoulement des eaux pluviales sur les façades.

• Escalier

Les escaliers sont des éléments permettant le passage d'un niveau à l'autre, ils sont réalisés en béton armé coulé sur place.

Ascenseur

L'ascenseur est un élément mécanique, qui sert à faire monter et descendre les usagers à travers les différents étages des bâtiments sans utiliser les escaliers.

1.3. Classification de l'ouvrage.

L'objet de la classification des ouvrages se traduit, dans les règles et les méthodes de calcul, par l'attribution pour chacune des catégories de cette classification des méthodes de calcul et règlements adéquats, et notre ouvrage sera classé comme suit :

1.3.1. Selon l'importance.

Le niveau minimal de protection sismique accordé à un ouvrage dépend de sa destination et de son importance vis à vis des objectifs de protection fixés par la collectivité. Notre ouvrage est classé selon le RPA dans le groupe 2 car il est d'importance moyenne, mais un coefficient d'accélération de zone A = 0.15 est retenu pour le calcul sismique.

1.3.2. Selon le système de contreventement.

La classification des systèmes structuraux est faite en tenant compte de leur fiabilité et de leur capacité de dissipation de l'énergie vis-à-vis de l'action sismique Le système de contreventement de notre structure est de type 4b (structure en portiques contreventée par des voiles en béton armé, les voiles reprennent au plus 20% des sollicitations dues aux charges verticales).

1.3.3. Selon la configuration.

Notre bâtiment est considéré comme régulier en plan et n'est pas vérifié en élévation car les critères de décrochements imposés par le RPA ne sont pas vérifiés.

- **Remarque** : la méthode statique équivalente n'est pas applicable à ce bâtiment à cause de l'irrégularité existante et même les conditions complémentaires données par le RPA 99 (art 4.1.2 page 24) pour ces cas ne peuvent pas aboutir.

1.3.4. Selon le type des nœuds.

Dans la pratique les structures subissent soit des déplacements de nœuds, soit des rotations de nœuds, rarement des déplacements et des rotations simultanément de nœuds, d'où la classification soit à nœuds fixes ou à nœuds déplaçables. Notre bâtiment est à nœuds fixes parce que les déplacements latéraux sont empêchés (structure contreventée par voiles).

I.4. Règlements et normes utilisés

Notre étude se fera en respectant les règlements et les normes en vigueur à savoir :

DTR BC 2.48: Règles Parasismiques Algériennes RPA99/Version 2003. DTR BC

2.41 : Règle de Conception et de Calcul des Structures en béton armé CBA93.

DTR B.C.2.2: Charges permanentes et charge d'exploitation.

DTR BC 2.331 : Règles de calcul des fondations superficielles. Béton aux états limites BAEL 91/Version99.

I.5.Les matériaux

I.5.1 Le béton

Pour des résistances $f_{c28} \leq 40 \text{ MPa}$

$$\begin{cases} f_{cj} = \frac{j}{4,76 + 0,83j} f_{c28} & si \quad j \le 28 \text{ jours} \\ f_{cj} = f_{c28} & si \quad j > 28 \text{ jours} \end{cases}$$

$$f_{t28} = 0.6 + 0.06 f_{c28}$$

$$\begin{cases} E_{ij} = 11000 \sqrt[3]{f_{cj}} & \text{pour un béton soumis à des contraintes normales d'une} \\ E_{vj} = 1/3 \times E_{ij} & \text{durée d'application inférieure à 24 heurs} \end{cases}$$

Donc.

- ✓ Résistance à la compression à l'âge de 28 jours : $fc_{28} = 25$ MPa.
- ✓ $f_{t28} = 2.1 \text{ MPa}$.
- \checkmark E_{vi} = 10721,40 MPa.
- \checkmark E_{ii} = 32164.20MPa.
- \checkmark $\gamma_b = 1.50$ coefficient de sécurité du béton pour les situations courantes.
- \checkmark $\gamma_b = 1.15$ coefficient de sécurité du béton pour les situations accidentel.

I.5.2. Acier

Les caractéristiques des armatures longitudinales et transversales en aciers de haute adhérence sont les suivantes :

- ✓ Fe E40 = 400 MPa.
- \checkmark $\gamma_s = 1.15$ (situations courantes).
- \checkmark $\gamma_s = 1.00$ (situations accidentel).

I.6.Le Sol

D'après les essais de pénétromètre dynamique et essais au laboratoire, la capacité portante du sol est de 1.7 bars sur une profondeur de 2,5m Le site est de catégorie S3 (site meuble) selon RPA version 2003.

I.7. Conclusion

Le calcul d'un bâtiment en béton armé passe par l'application rigoureuse et précise des règles en vigueur. Cependant, chaque ouvrage présente ses propres caractéristiques qui font que le calcul doit être fait avec précaution.

Chapitre II:

Pré-dimensionnement des éléments

II.1. INTRODUCTION

Le pré-dimensionnement des éléments a pour but de déterminer l'ordre de grandeur des différents éléments constituant notre bâtiment conformément aux règlements et normes en vigueur à savoir : CBA93, RPA99 /version 2003, BAEL91.

II.2. Disposition des poutrelles

Le choix de la disposition des poutrelles se fait en satisfaisant l'un des deux critères :

- le critère de la plus petite portée pour diminuer la flèche.
- le critère de continuité (le maximum d'appuis)

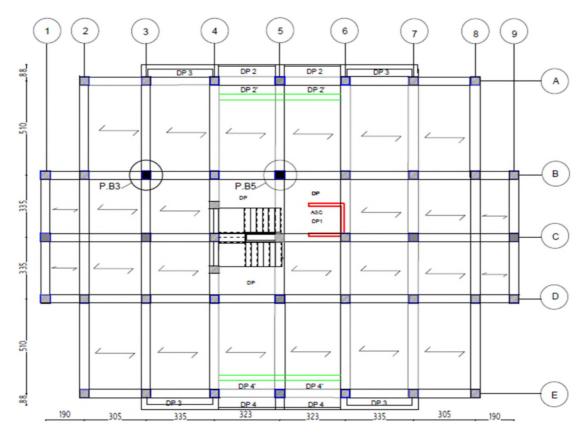


Figure II.1. Schéma de disposition des poutrelles

II.3.Pré-dimensionnement des planchers

Le plancher est un élément qui sépare entre deux niveaux, et qui transmet les charges et les surcharges qui lui sont directement appliquées aux éléments porteurs tout en assurant des fonctions de confort comme l'isolation phonique, thermique et l'étanchéité des niveaux extrêmes. Dans notre projet, on utilise deux types de planchers:

- -Plancher à corps creux.
- -Plancher à dalle pleine.

II.3.1.Plancher à corps creux

Il est constitué de :

- Corps creux : dont le rôle est le remplissage, il n'a aucune fonction de résistance.
- Poutrelles : éléments résistants du plancher.
- Dalle de compression : c'est une dalle en béton armé, sa hauteur varie de 4 à 6 cm
- Treillis soudé.

Le dimensionnement d'un plancher à corps creux revient à déterminer sa hauteur ht tel que :

$$ht \ge \frac{Lmax}{22.5}$$
 [CBA 93 art B.6.8.4.2.4]

h_t: la hauteur totale du plancher,

 L_{max} : la portée maximal dans le sens de disposition des poutrelles, calculée entre nus des appuis.

On a: $L_{max} = 450 \text{ cm}$

$$ht \ge 450/22.5$$
 $\Rightarrow ht \ge 20 \Rightarrow \text{Donc}: \text{On opte pour } h_t = 20 \text{ cm}$

Notre plancher sera de hauteur $h_t = 20$ cm

Soit : - un corps creux de 16 cm,

-Une dalle de compression de 4 cm. $h_{dc} = 4$ cm : hauteur de la dalle de compression

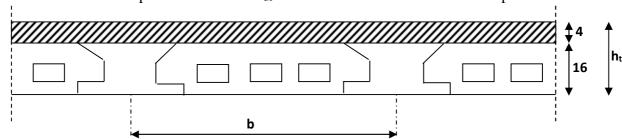


Figure. II.2: Coupe du plancher à corps creux

II.3.2.Les planchers à dalle pleine

Le pré-dimensionnement des planchers à dalles pleines se fait en se basant sur les critères suivants :

a. critère de résistance à la flexion : (CBA93)

- $Lx/35 \le e \le Lx/30$ pour une dalle sur quatre (4) ou trois (3) appuis \bot .
- $e \ge Lx/20$ pour une dalle sur un seul (1) ou deux (2) appuis //.
- $Lx/45 \le e \le Lx/40$ pour une dalle sur trois(3) ou quatre(4) appuis.

Lx: est la petite portée de la dalle la plus sollicitée

Ly : est la grande portée de la dalle.

b. critère de coupe-feu

- e≥7cmpour une heure de coupe-feu.
- $e \ge 11$ cm..... pour deux heures de coupe-feu.
- e≥ 14 pour trois heures de coupe-feu

On admet que : e= 12cm

c. isolation phonique

Selon les règles « CBA93 », l'épaisseur du plancher doit être supérieure ou égale à 14cm, Pour obtenir une bonne isolation acoustique.

On voit bien que pour l'ensemble des dalles pleines, c'est le critère d'isolation phonique qui est déterminant. Donc, on opte pour les dalles pleines d'épaisseur e=14cm.

- Les différents panneaux des dalles pleines :

• Dalle sur trois appuis D1 (dalle d'ascenseur)

$$\rho = \frac{lx}{ly} = \frac{175}{175} = 1 > 0.4$$

$$\frac{lx}{45} \le e \le \frac{lx}{40}$$

$$\frac{175}{45} \le e \le \frac{175}{40}$$

$$3.88 \le e \le 4.37$$

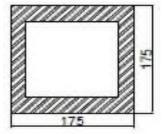


Figure II.3. Schéma de dalle D1

• Dalle sur trois appuis (D2): séchoir pour tous les étages

$$\rho = \frac{lx}{ly} = \frac{65}{278} = 0.23 < 0.4$$

$$\frac{lx}{35} \le e \le \frac{lx}{30}$$

$$\frac{65}{35} \le e \le \frac{65}{30}$$

$$1.86 \le e \le 2.16$$

e = 2 cm

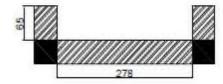


Figure II.4. Schéma de dalle D2

• Dalle sur trois appuis (D2') : séchoir pour tous les étages

$$\rho = \frac{lx}{ly} = \frac{40}{278} = 0.14 < 0.4$$

$$\frac{lx}{35} \le e \le \frac{lx}{30}$$

$$\frac{40}{35} \le e \le \frac{40}{30}$$

$$1.14 \le e \le 1.33$$

e = 1.2 cm

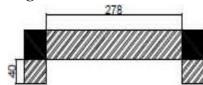


Figure II.5. Schéma de dalle D2'

• Dalle sur trois appuis (D3) : séchoir de RDC

$$\rho = \frac{lx}{ly} = \frac{65}{290} = 0.22 < 0.4$$

$$\frac{lx}{35} \le e \le \frac{lx}{30}$$

$$\frac{65}{35} \le e \le \frac{65}{30}$$

$$1.86 \le e \le 2.16$$

$$e = 2 cm$$

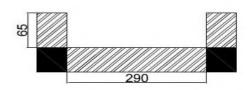


Figure II.6. Schéma de dalle D3

→ Donc la condition de l'isolation phonique est la plus défavorable,

On prend: e=14cm

II.4. Les poutres

Selon le BAEL91 le pré dimensionnement des poutres se fait en utilisant la condition suivante :

• La hauteur **h** de la poutre est déterminée par l'expression donnée par le BAEL 91/99 : $(Lmax/15) \le h \le (Lmax/10)$

L max : dimension maximale entre nus d'appuis des travées dans le sens considéré.

- La largeur de la poutre **b** est déterminée par : $(3*h)/10 \le b \le (7*h)/10$
- Condition à vérifier vis-à-vis le RPA99/2003 zone IIa :
 - ✓ $b \ge 20 \ cm$;
 - \checkmark $h \ge 30 \ cm$;
 - $\checkmark h/b \le 4$.

II.4.1. Poutres principales:

Définition

Ce sont les poutres susceptibles de reprendre les charges provenant des poutrelles, elles sont disposées perpendiculairement aux poutrelles

• Pré dimensionnement

On prend (bp; hp), les dimensions de la poutre principale

On à : Lmax = 625 cm

D'où : $(625/15)/\le hp \le (625/10) \implies 41.67 \le hp \le 62.5$; On prend : hp = 45 cm $(3*45)/10 \le b \le (7*45)/10 \implies 13.5 \le b \le 31.5$; On prend : bp = 30 cm

- Condition à vérifier vis-à-vis le RPA99/2003 :
- ✓ $bp = 30 \ge 20 \text{ cm}$, vérifiée ;
- ✓ $hp = 45 \ge 30 \text{ cm}$, vérifiée ;
- ✓ hp/bp = 1.5 < 4, vérifiée.

II.4.2. Poutres Secondaires

• Définition

Ce sont les poutres parallèles aux poutrelles

• Pré dimensionnement

On prend (bs; hs), les dimensions de la poutre secondaire.

On à : $L_{max} = 450 \ cm$.

D'où : $(450/15) \le hp \le (450/10)$

h : hauteur de la poutre.

 L_{max} : distance maximale entre nus d'appuis.

 $30 \le h \le 45$; On prend: **h** = **35** cm

$$(3*35)/10 \le b \le (7*35)/10 \implies 10.5 \le b \le 24.5$$
; On prend: **b =30 cm**

- ✓ b= 30cm ≥20cm condition vérifiée
- ✓ $h = 45 \text{cm} \ge 30 \text{cm}$ condition vérifiée (**RPA 99 version 2003**)
- ✓ h/b = 45/30 = 1.5 < 4 condition vérifiée

Après la vérification on adopte les dimensions suivantes :

- Les poutres principales : $(b*h) = (30*45) \text{ cm}^2$
- Les poutres secondaires : $(b*h) = (30*35) \text{ cm}^2$

II.5. Les voiles

Élément de contreventement vertical mince et continu, généralement en béton armé, servant de couverture ou d'enveloppe ayant une dimension plus petite que les autres qui est l'épaisseur. Elle est donnée par les conditions du RPA99/2003 suivantes :

II.5.1.voile sans abouts

- $e \ge 15 \text{cm}$...(1)
- $e \ge he/21$ (2) (**RPA Art7.7.1**)
- L≥4e(3

Dans notre cas:

- hauteur RDC : he = 3.06 m
- hauteur entre-sol 1 et autre niveau : he= 3.06cm
- hauteur entre-sol 2 : he= 3.40 cm
 - ❖ Pour les étages courants, RDC et entre-sol 1 :

$$h_e = 306-45 = 261$$
 cm.

$$e \ge 261/21 = 12.43 \implies e > 12.43$$
 cm. On prend **e=15cm**

$$L > 4*15 = 60 \text{ cm} \implies L = 60 \text{ cm}$$

❖ Pour l'entre-sol 2 :

$$h_e = 340-45 = 295$$
 cm.

$$e \ge 295/21 = 14.05 \implies e > 14.05 \text{ cm}$$
. On prend **e= 15cm**

$$L \ge 4*15 = 60 \text{ cm} \implies L=60 \text{ cm}$$

- -On adopte pour les voiles RDC et enter-sol 1 et étages courants une épaisseur de : e =15cm
- -On adopte pour les voiles entre-sol 2 une épaisseur de : e = 15cm.

II.5.2. Voile avec un seul about

- $e \ge 15 cm$(1)
- L≥4e(3

Dans notre cas:

- hauteur RDC : he = 3.06 m
- hauteur entre-sol 1 et autre niveau : he= 3.06cm
- hauteur entre-sol 2: he= 3.40 cm
 - Pour les étages courants, RDC et entre-sol 1 :

 $h_e = 306-45 = 261$ cm.

 $e \ge 261/22 = 11.86 \Rightarrow e > 11.86 \text{ cm.} \Rightarrow \text{On prend } e=15\text{cm}$

 $L \ge 4*15 = 60 \text{ cm} \Rightarrow L=60 \text{ cm}$

Pour l'entre-sol 2 :

 $h_e = 340-45 = 295$ cm.

 $e \ge 295/22 = 13.4 \Rightarrow e > 13.4 \text{ cm.} \Rightarrow \text{On prend } e=15\text{cm}$

 $L \ge 4*15 = 60 \text{ cm} \Rightarrow L=60 \text{ cm}$

- -On adopte pour les voiles RDC et enter-sol 1 et étages courants une épaisseur de : e =15cm
- -On adopte pour les voiles entre-sol 2 une épaisseur de : e = 15cm.

II.6. Acrotère de la terrasse inaccessible :

L'acrotère est un élément placé à la périphérie du plancher terrasse. Cet élément est réalisé en béton armé. Son rôle est la protection contre les infiltrations des eaux pluviales. Il sert aussi à l'accrochage des matériaux de travaux d'entretien des bâtiments. L'acrotère est considéré comme une console encastrée dans le plancher et soumise à son poids propre et une force horizontale due au séisme.

Soit S la section de l'acrotère

$$S = 10 * 55 + 3 * \frac{10}{2} + 7 * 10 \implies S = 635 \text{ cm}^2$$

Charge permanente

Poids propre

$$G_1 = \Upsilon_b * S * 1$$

$$G_1 = 25*635*10^{-4}*1 = 1.59 \text{ KN}$$

Enduit de ciment
 Poids d'enduit intérieur

$$G_2 = 20*0.02*0.55*1$$

 $G_2 = 0.22 \text{ KN}$

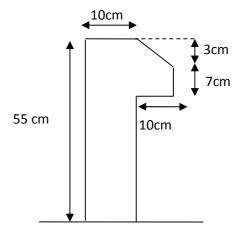


Figure. II.7 : schéma de l'acrotère

Poids d'enduit extérieur

 $G_3 = 20 * 0.02 * 0.55 * 1$

 $G_3 = 0.22 \text{ KN}$

Donc : $G = G_1 + G_2 + G_3 = 2.03 \text{ KN}$

La surcharge d'exploitation

Q=1 KN/m

II.7.Les escaliers :

Les escaliers sont une succession de marches permettant le passage d'un niveau à un autre, elles seront réalisées en béton armé coulé sur place, les différents éléments constituant un escalier sont :

- -(1) : e (épaisseur du palier de repos)
- -(2) : L₀ (projection horizontale de la paillasse)
- -(3) : g (giron) largeur de la marche
- -(4): h (Hauteur de la contre marche)
- -(5): H₀ (hauteur de la volée)
- -(6) : α (inclinaison de la paillasse)

• Dimensionnement

Pour qu'un escalier garantisse sa fonction dans les meilleures conditions de confort, on doit vérifier la présence des conditions suivantes :

- La hauteur **h** des contres marches se situe entre 14 et 18 cm
- ➤ La largeur **g** se situe entre 25 et 32 cm
- ➤ La formule empirique de BLONDEL

$$59 \le g + 2 \times h \le 64....(1)$$

Soit (n) le nombre de contre marches et (n-1) le nombre de marches

H: la hauteur de la volée

L₀ : la longueur projetée de la volée

$$H=n\!\times\!h\implies\!h=H\!/n$$

$$L_0=(n-1)\times g \implies g=L_0/n-1$$

Si
$$g + 2 \times h = 64$$
cm....(2).

On remplace dans (2): $L_0/(n-1)+2\times (H/n)=64$

n est la solution de l'équation : $64 n^2 - (64 + 2H + L_0) n + 2 H = 0$ (cm).

Pour ce qui est de notre cas on a deux types d'escalier :

- a- un escalier droit à trois volées avec deux paliers de repos
- b- un escalier droit à deux volées avec un palier de repos

II.7.1.les escaliers de l'entre-sol 2

Schéma statique :

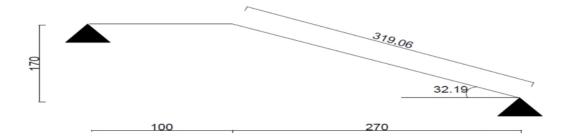


Figure II.8. Schéma statique de l'escalier de l'entre-sol2

Calcul du nombre et la hauteur des marches de l'entresol 2

H=1.70 m ; L₀=2.70m ; L_p=1 m
$$64~n^2 - (64 + 2H + L_0~)~n + 2~H=0~(cm).$$
 AN: $64~n^2 - 674~n + 340 = 0$ $\Longrightarrow n=10$
$$g = L_0/(n-1) = 270/(10-1) = ~30~cm$$

$$h=H/n=170/10=17~cm$$

• Epaisseur de la paillasse

Elle est calculée par la relation suivante:

$$\begin{split} L/30 &\leq e \leq L/20 \quad \text{Avec} \ L = L_v + L_p \\ L_v &= (L_0^2 + H^2)^{1/2} = (270^2 + 170^2)^{1/2} = 319.06 \text{ cm} \\ L &= 319.06 + 100 = 419.06 \text{ cm} \\ 13.97 &\leq e \leq 20.95 \end{split}$$

On prend: e=15 cm

Calcul de α:

$$\alpha = tg^{-1}(H/L_0) = tg^{-1}(170/270) \Longrightarrow \alpha = 32.19^{\circ}$$

Le calcul de deux volées est identique.

II.7.2.les escaliers de RDC et l'étage courant

➤ Volée 1 et 3

Schéma statique :

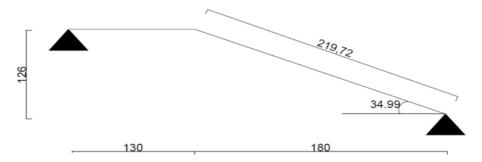


Figure II.9. Schéma statique de l'escalier de RDC et étage courants (volée 1et3)

Calcul du nombre et la hauteur des marches

H=1.26 m; $L_0=1.80 \text{ m}$; $L_p=1.30 \text{ m}$

AN:
$$64 n^{2} - (64 + 2H + L_{0}) n + 2 H=0 (cm)$$

$$64 n^{2} - 496 n + 252 = 0 \implies n=7$$

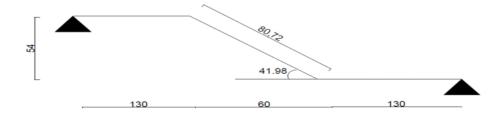
$$g = L_{0}/(n-1) = 180/(7-1) = 30 cm$$

$$h=H/n=126/7=18 cm$$

Epaisseur de la paillasse

Elle est calculée par la relation suivante:

$$\begin{split} L/30 &\leq e \leq L/20 \quad Avec \ L = L_v + L_p \\ L_v &= (L_0^2 + H^2)^{1/2} = (180^2 + 126^2)^{1/2} = 219.72 \ cm \\ L &= 219.72 + 130 = 349.72 \ cm \end{split}$$


$$11.657 \le e \le 17.486$$
; On prend : e=15 cm

Calcul de α:

$$\alpha = tg^{\text{-}1}(H/L_0) = tg^{\text{-}1}(126 \text{ } /180) \Longrightarrow \alpha = 34.99^{\circ}$$

➤ Volée 2

Schéma statique :

Figure II.10.Schéma statique de l'escalier de RDC et étage courants (volée 2)

Calcul du nombre et la hauteur des marches

H=54 cm ;
$$L_0$$
=60 cm; L_p =1.30+1.30= 2.60 m

$$64 n^2 - (64 + 2H + L_0) n + 2 H = 0 (cm)$$

AN:
$$64 \text{ n}^2 - 232 \text{ n} + 108 = 0 \implies n=3$$

$$g = L_0/(n-1) = 60/(3-1) = 30 \text{ cm}$$

$$h = H/n = 54/3 = 18 \text{ cm}$$

Epaisseur de la paillasse

Elle est calculée par la relation suivante:

$$\begin{split} L/30 &\leq e \leq L/20 \quad Avec \ L = L_v + L_p \\ L_v &= (L_0^2 + \ H^2)^{1/2} = (60^2 + \ 54^2)^{1/2} = 80.72 \ cm \end{split}$$

$$L=80.72+130+130=340.72$$
 cm

$$11.35 \le e \le 17.04 \Rightarrow On \text{ prend: } e=15 \text{ cm}$$

Calcul de α:

$$\alpha = tg^{-1}(H/L_0) = tg^{-1}(54/60) \Longrightarrow \alpha = 41.98^{\circ}$$

II.8. Evaluation des charges et des surcharges sur le plancher:

II.8.1. Evaluation des charges permanentes :

a) Plancher terrasse inaccessible:

Tableau II.1. Evaluation des charges de plancher terrasse inaccessible

	Désignation des éléments	Epaisseur(m)	Poids volumique (KN)	Poids (KN/m²)
1	Gravillons de protection	0.05	20	1
2	Étanchéité multicouche	0.02	6	0.12
3	Forme de pente	0.1	22	2.2

4	Isolation thermique (liège)	0.04	4	0.16
5	Enduit de plâtre	0.02	20	0.4
6	Plancher à corps creux (16+4)	0.2	14	2.80
	G=6.68			
Charge d'exploitation Q				Q=1

b) Plancher étage courant :

Tableau II.2. Evaluation des charges du plancher à étage courant

	Désignation des éléments	Epaisseur(m)	Poids volumique (KN)	Poids (KN/m²)
1	Revêtement en carrelage	0.02	22	044
2	Mortier de pose	0.02	20	0.4
3	Lit de sable	0.02	18	0.36
4	Enduit de plâtre	0.02	20	0.4
5	Plancher à corps creux (16+4)	0.2	14	2.8
6	Cloison de séparation	0.9		
	Cł	G=5.3		
Charge d'exploitation Q				Q=1.5

c) Plancher à dalle pleine (balcon) :

Tableau II.3. Evaluation des charges de plancher terrasse accessible à dalle pleine

	Désignation des éléments	Epaisseur(m)	Poids volumique (KN)	Poids (KN/m²)
1	Revêtement en carrelage	0.02	22	0.44
2	Mortier de pose	0.02	20	0.4
3	Lit de sable	0.02	18	0.36
4	Enduit de plâtre	0.015	20	0.27
5 Dalle pleine 0.14 25				3.5
	G=4.97			
Charge d'exploitation Q				Q=3.5

d) Palier

Tableau II.4. Evaluation des charges de palier

	Désignation des éléments	Epaisseur(m)	Poids volumique (KN)	Poids (KN/m²)
1	Revêtement en carrelage	0.02	22	0.44
2	Mortier de pose	0.02	20	0.4
3	Lit de sable	0.02	18	0.36
4	Enduit de plâtre	0.015	20	0.3
5	Dalle pleine	5		
	G=6.5			
Charge d'exploitation Q				Q=2.5

e) Volée

Tableau II.5. Evaluation des charges sur la volée

	Désignation des éléments		Epaisseur(m)	Poids volumique (KN)	Poids (KN/m²)
1	Revêtement en	Horizontal	0.02	22	0.44

	carrelage	Vertical	0.02×0.17/0.3		0.25
2	Mortier de	Horizontal	0.02	20	0.4
	pose	Vertical	0.02*0.17/0.3		0.23
3	Marche		0.17/2	22	1.87
4	Enduit de plâtre		$0.015/\cos(\alpha)$	20	0.35
5	Dalle pleine		$0.2/\cos(\alpha)$	25	5.92
6	Garde de corps		/	/	0.6
	Charge permanent G			G=10.06	
	Charge d'exploitation Q Q=2.5			Q=2.5	

f) Murs extérieurs

Tableau II.6. Evaluation des charges de murs extérieurs

	Désignation des éléments	Epaisseur(m)	Poids volumique (KN)	Poids (KN/m²)
1	Enduit ciment extérieur	0.015	18	0.27
2	Brique creuse de 15cm	0.015	/	1.3
3	Lame d'aire	0.05	/	/
4	Brique creuse de 10cm	0.01	/	0.9
5	Enduit plâtre intérieure	0.02	10	0.2
	Charge permanent G G=2.67			

II.9. Pré-dimensionnement des poteaux

Ce sont des éléments en béton armé, rectangulaire ou circulaire, destiné à transmettre les charges aux fondations, leurs pré dimensionnement se fait à la compression centrée selon les règles du BAEL91 (art B.8.4,1). Une fois la résistance à la compression vérifiée ; ces poteaux doivent répondre au critère de stabilité de forme exigé par le RPA :

- \checkmark Min(b;h) ≥ 25 cm
- \checkmark Min(b;h) \geq he/20
- ✓ $0.25 \le b1/h1 \le 4$

he : hauteur libre d'étage a 3.06 m pour tous les étages courants et RDC et l'enter-sol 1 ;et de 3.40 m pour l'entre-sol 2.

On fixera les dimensions des poteaux après avoir effectué la descente de charge, tout en satisfaisant les recommandations du RPA99.

Les sections des poteaux prises sont :

0	Entre-sol 2 et entre sol 1 :	$(h \times b) = (45 \times 45) \text{ cm}^2$
0	RDC et 1 ^{er} étage :	$(h \times b) = (45 \times 40) \text{ cm}^2$
0	2 eme et 3 eme étage :	$(h \times b) = (40 \times 40) \text{ cm}^2$
0	4 ^{eme} et 5 ^{eme} étage:	$(h \times b) = (40 \times 35) \text{ cm}^2$
0	6 ^{eme} et 7 ^{eme} étage:	$(h \times b) = (35 \times 35) \text{ cm}^2$
0	8 ^{eme} et 9 ^{eme} étage:	$(h \times b) = (35 \times 30) \text{ cm}^2$

Descente de charge

La descente de charge est le chemin suivi par les différentes actions (charges et surcharges) du niveau le plus haut de la structure jusqu'au niveau le plus bas avant sa transmission au sol, on effectuera la descente de charges pour le poteau le plus sollicité et qui a souvent la plus grande surface afférente soit le poteau PB3 et PB5

La loi de dégression

Soit Q0 la charge d'exploitation sur le toit de la terrasse couvrant le bâtiment, Q1, Q2....Qn les charges d'exploitation respectives des planchers des étages (1,2....n) numérotés à partir du sommet du bâtiment. On adoptera pour le calcul des points d'appuis des charges d'exploitation suivantes :

- sous la terrasse : Q0 ; sous le premier étage à partir du sommet (i=1) : Q0+Q1.
- sous le deuxième étage (i=2) : Q0 +0.95*(Q1+Q2).
- sous le troisième étage (i=3) : Q0+0.90*(Q1+Q2+Q3).
- -sous le quatrième étage (i=4) : Q0+0.85*(Q1+Q2+Q3+Q4)
- pour n étage (n≥5) : $Q0 + \frac{3+n}{2n}(Q1 + Q2 + \cdots Qn)$

> Descente de charge sur le poteau B3

Plancher terrasse inaccessible

La surface afférente:

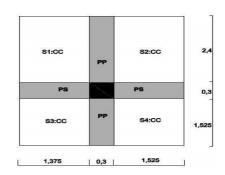
$$S=S_1+S_2+S_3+S_4=11.38 \text{ m}^2$$

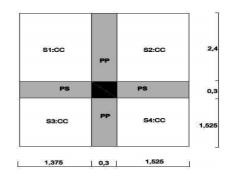
$$G_{ti} = 6.68KN/m^2$$
; $Q_{ti} = 1 KN/m^2$

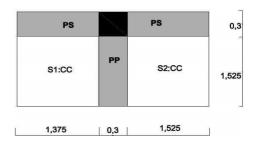
$$G_{ti}$$
=6.68*11.38 = 76.02 KN

❖ Plancher étage courant

$$S=11.38 \text{ m}^2$$
; $G_{pc}=5.3KN/\text{ m}^2$; $Q_{pc}=1.5 \text{ KN/m}^2$


$$G_{pc}=5.3*11.38=60.31 \text{ KN}$$


$$Q_{pc}=1.5*11.38=17.07 \text{ KN}$$


❖ Plancher entre-sol 1

$$S=4.42 \text{ m}^2$$
; $G_{pc}=5.3 \text{KN/m}^2$; $Q_{pc}=3.5 \text{ KN/m}^2$

$$G_{pc}=5.3*4.42=23.43$$
 KN

$$Q_{pc}=3.5*4.42=15.47$$
 KN

Poids des poutres :

$$P_{ps}=0.3*0.35*2.9*25=7.61 \text{ KN}$$

❖ Poids des poteaux

 $P_3=0.4*0.45*3.06*25=13.77 \text{ KN}$

- o Entre-sol 2 : $(h \times b) = (45 \times 45) \text{ cm}^2$ P₁=0.45*0.45*3.4*25 =17.21 KN
- o Entre-sol 1: $(h \times b)= (45 \times 45) \text{ cm}^2$
- $$\begin{split} P_2 &= 0.45*0.45*3.06*25 = 15.49 \text{ KN} \\ &\circ \text{ RDC et } 1^{er} \quad \text{\'etage :} \qquad \qquad (h \times b) = \ (45 \times 40) \text{ cm}^2 \end{split}$$
- o $2^{\text{ eme}}$ et 3^{eme} étage : $(h \times b_) = (40 \times 40) \text{ cm}^2$ $P_4 = 0.4 * 0.4 * 3.06 * 25 = 12.24 \text{ KN}$
- o 4^{eme} et 5^{eme} étage : $(h \times b) = (40 \times 35) \text{ cm}^2$ $P_5 = 0.35 * 0.4 * 3.06 * 25 = 10.71 \text{ KN}$
- o 6^{eme} et 7^{eme} étage: $(h \times b) = (35 \times 35) \text{ cm}^2$
- $$\begin{split} P_6 &= 0.35*0.35*3.06*25 = 9.37 \text{ KN} \\ &\circ \quad 8^{eme} \text{ et } 9^{eme} \text{ étage:} \\ \end{split} \qquad \qquad (h \times b) = (35 \times 30) \text{ cm}^2 \end{split}$$

❖ Poids des murs :

o Surface des murs (entre-sol 2):

 $P_7 = 0.3*0.35*3.06*25 = 8.03 \text{ KN}$

$$S_1 = (1.375*3.2) + (1.525*3.2) + (1.375+3.2) = 13.68 \text{ m}^2$$

o Surface des murs (entre-sol 1)

$$S_2 = (1.375*2.86) + (1.525*2.86) + (1.375*2.86) = 12.23 \text{ m}^2$$

o Surface des murs (RDC, étages courants)

$$(1.375*2.86) + (1.3x2.86) + (1.525 \times 2.86) = 12.01 \text{ m}^2$$

o Poids des murs (entre-sol 2):

$$4.88*2.67 = 13.03 \text{ KN}$$

$$8.8*1.3 = 11.44 \text{ KN}$$

$$\leftrightarrow P_{mur} = 13.03 + 11.44 = 24.47 \text{ KN}$$

o Poids des murs (entre-sol 1):

$$4.36 \times 2.67 = 11.65 \text{ KN}$$

$$7.865 \times 1.3 = 10.22 \text{ KN}$$

$$\leftrightarrow P_{mur} = 11.65 + 10.22 = 21.87 \text{ KN}$$

o Poids des murs (RDC et étages courants) :

$$\begin{cases} 4.36 \text{ x } 2.67 = 11.64 \text{ KN} \\ 7.65 \text{ x } 1.3 = 9.95 \text{ KN} \end{cases} \\ \leftrightarrow P_{mur} = 11.64 + 9.95 = 21.59 \text{ KN}$$

Tableau II.7. Evaluation de la descente de charge de poteau PB3.

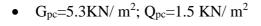
Niveau	Elément	Charges permanentes (KN)	Surcharges (KN)
Etage9	Plancher T-inaccessible	76.02	11.38
	poutre principale	13.25	
	poutre secondaire	7.61	
	Poteau (30*35)	8.03	
	Mur	21.59	
	TOTAL	126.5	11.38
Etage 8	Revenant de N11	126.5	28.45
	Plancher étage courant	60.31	
	Poutres $(pp + ps)$	20.86	
	Poteau (30*35)	8.03	
	Mur	21.59	
	TOTAL	237.29	28.45
Etage 7	Revenant de N10	237.29	43.81
	Plancher étage courant	60.31	
	Poutres (pp+ps)	20.86	
	Poteau (35*35)	9.37	
	Mur	21.59	
	TOTAL	349.42	43.81
Etage 6	Revenant de N9	349.42	57.47
	Plancher étage courant	60.31	
	poutre (pp+ps)	20.86	
	poteau (35*35)	9.37	
	mur	21.59	
	TOTAL	461.55	57.47
Etage 5	Revenant de N8	461.55	69.42
	Plancher étage courant	60.31	
	poutre (pp+ps)	20.86	
	poteau (35*40)	10.71	
	mur	21.59	
	TOTAL	575.02	69.42

Etage 4	Revenant de N7	575.02	79.66
	Plancher étage courant	60.31	
	poutre (pp+ps)	20.86	
	poteau (35*40)	10.71	
	mur	21.59	
	TOTAL	688.49	79.66
Etage 3	Revenant de N6	688.49	88.19
	Plancher étage courant	60.31	
	poutre (pp+ps)	20.86	
	poteau (40*40)	12.24	
	mur	21.59	
	TOTAL	803.49	88.19
Etage 2	Revenant de N5	803.49	96.22
	Plancher étage courant	60.31	
	poutre (pp+ps)	20.86	
	poteau (40*40)	12.24	
	mur	21.59	
	TOTAL	918.49	96.22
Etage 1	Revenant de N4	918.49	104.24
	Plancher étage courant	60.31	
	poutre (pp+ps)	20.86	
	poteau (40*45)	13.77	
	mur	21.59	
	TOTAL	1035.02	104.24
RDC	Revenant de N3	1035.02	112.78
	Plancher étage courant	60.31	
	poutre (pp+ps)	20.86	
	poteau (40*45)	13.77	
	mur	21.59	
	TOTAL	1151.55	112.78
Entre-sol	Revenant de N2	1151.55	122.33
1	Plancher RDC	60.31	
	poutre (pp+ps)	20.86	
	poteau (45*45)	15.49	
	mur	21.87	
	TOTAL	1270.08	122.33
Entre-sol	Revenant de N1	1270.08	122.33
2	Plancher entre-sol 1	23.43	
	poutre (pp+ps)	20.86	
	poteau (45*45)	15.49	
	mur	21.87	
	TOTAL	1351.73	128.67
	TOTAL	1351.73	128.67

> Descente de charge sur le poteau B5

Plancher terrasse inaccessible

La surface afférente :


$$S=S_1+S_2+S_3+S_4=11.5 \text{ m}^2$$

$$G_{ti}=6.68KN/m^2$$
; $Q_{ti}=1KN/m^2$

$$G_{ti}$$
=6.68*11.5=76.8 KN

$$Q_{ti}=1*11.5 = 11.5 \text{ KN}$$

$$S_{pc} = S_1 + S_2 = 7.032 \text{ m}^2;$$

$$G_{pc}$$
=5.3*7.032 = 37.27 KN; Q_{pc} =1.5*7.032 = 10.55 KN

• $G_{dp}=4.97 \text{ KN/ } m^2; Q_{dp}=2.5 \text{ KN/ } m^2$

$$S_{dp} = S_3 + S_4 = 4.076 \text{ m}^2;$$

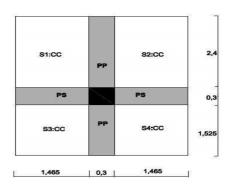
$$G_{dp}$$
= 4.97*4.067 = 20.26 KN; Q_{dp} = 2.5*4.076 = 10.19 KN

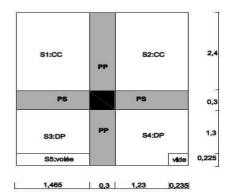
• $G_{vol\acute{e}} = 10.06 \text{ KN/ } m^2; \ Q_{vol\acute{e}} = 2.5 \text{ KN/ } m^2; \ S_{vol\acute{e}} = S_5 = 0.33 \ m^2;$

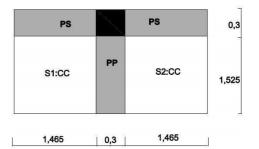
$$G_{\text{volé}}$$
= 10.06*0.33 = 3.32 KN ; $Q_{\text{volé}}$ = 2.5*0.33 = 0.825 KN

$$\Rightarrow \begin{cases} G_{tot} = 60.85 \text{ KN} \\ Q_{tot} = 21.56 \text{ KN} \end{cases}$$

❖ Plancher entre-sol 1


$$S=4.47\ m^2$$


$$G_{pc} = 4.47*5.3 = 23.69 \text{ KN}$$


$$Q_{pc} = 4.47*3.5 = 15.645 \text{ KN}$$

Poids des poutres :

$$P_{pp}=0.30*0.45*4.225*25=14.26 \text{ KN}$$

❖ Poids des poteaux

$$(h \times b) = (45 \times 45) \text{ cm}^2$$

$$P_1=0.45*0.45*3.4*25=17.21 \text{ KN}$$

$$(h \times b) = (45 \times 45) \text{ cm}^2$$

$$P_2 = 0.45*0.45*3.06*25 = 15.49 \text{ KN}$$

$$(h \times b) = (45 \times 40) \text{ cm}^2$$

$$P_3 = 0.4*0.45*3.06*25 = 13.77 \text{ KN}$$

$$(h \times b) = (40 \times 40) \text{ cm}^2$$

$$P_4 = 0.4*0.4*3.06*25 = 12.24 \text{ KN}$$

6^{eme} et 7^{eme} étage:

$$(h \times b) = (40 \times 35) \text{ cm}^2$$

$$P_5 = 0.35*0.4*3.06*25 = 10.71 \text{ KN}$$

$$(h \times b) = (35 \times 35) \text{ cm}^2$$

$$P_6 = 0.35*0.35*3.06*25 = 9.37 \text{ KN}$$

$$(h \times b) = (35 \times 30) \text{ cm}^2$$

$$P_7 = 0.3*0.35*3.06*25 = 8.03 \text{ KN}$$

Poids des murs

o Surface des murs (entre-sol 2):

$$S_1 = (1.525*3.2) = 4.88 \text{ m}^2$$

o Surface des murs (RDC)

$$S_2 = (2.4*2.86) + (1.465*2.86) = 11.04 \text{ m}^2$$

o Surface des murs (étage courant)

$$(2.4*2.86) + (1.465*2.86)*2 = 15.24 \text{ m}^2$$

o Poids des murs (entre-sol 2):

$$4.88*2.67 = 13.03 \text{ KN}$$

$$\leftrightarrow$$
 P_{mur} = 13.03 KN

o Poids des murs (RDC):

$$11.04*2.67 = 29.48$$
 KN

$$\leftrightarrow$$
 P_{mur} = 29.48 KN

o Poids des murs (étages courants) : $\leftrightarrow P_{mur} = 15.24*2.67 = 40.69 \text{ KN}$

$$\leftrightarrow$$
 P_{mur} = 15.24*2.6/ = 40.69 KN

Tableau II.8. Evaluation de la descente de charge de poteau PB5.

Niveau	Elément	Charges permanentes (KN)	Surcharges (KN)
Etage9	Plancher T-inaccessible	76.8	11.5
	poutre principale	14.26	
	poutre secondaire	8.48	
	Poteau (30*35)	8.03	
	Mur	40.69	
	TOTAL	148.26	11.5
Etage 8	Revenant de N11	148.26	33.06
	Plancher étage courant	60.85	
	Poutres $(pp + ps)$	22.74	
	Poteau (30*35)	8.03	
	Mur	40.69	
	TOTAL	280.57	33.06
Etage 7	Revenant de N10	280.57	52.46
	Plancher étage courant	60.85	
	Poutres (pp+ps)	22.74	
	Poteau (35*35)	9.37	
	Mur	40.69	
	TOTAL	414.22	52.46
Etage 6	Revenant de N9	414.22	69.71
	Plancher étage courant	60.85	
	poutre (pp+ps)	22.74	
	poteau (35*35)	9.37	
	mur	40.69	
	TOTAL	547.87	69.71
Etage 5	Revenant de N8	547.87	84.8
	Plancher étage courant	60.85	
	poutre (pp+ps)	22.74	
	poteau (35*40)	10.71	
	mur	40.69	
	TOTAL	682.86	84.8
Etage 4	Revenant de N7	682.86	97.74
	Plancher étage courant	60.85	
	poutre (pp+ps)	22.74	
	poteau (35*40)	10.71	
	mur	40.69	
	TOTAL	817.85	97.74
Etage 3	Revenant de N6	817.85	108.52
	Plancher étage courant	60.85	
	poutre (pp+ps)	22.74	
	poteau (40*40)	12.24	
	mur	40.69	
	TOTAL	954.37	108.52
Etage 2	Revenant de N5	954.37	118.65
	Plancher étage courant	60.85	
	poutre (pp+ps)	22.74	
	poteau (40*40)	12.24	

	mur	40.69	
	TOTAL	1090.89	118.65
Etage 1	Revenant de N4	1090.89	128.79
_	Plancher étage courant	60.85	
	poutre (pp+ps)	22.74	
	poteau (40*45)	13.77	
	mur	40.69	
	TOTAL	1228.94	128.79
RDC	Revenant de N3	1228.94	139.57
	Plancher étage courant	60.85	
	poutre (pp+ps)	22.74	
	poteau (40*45)	13.77	
	mur	29.48	
	TOTAL	1355.78	139.57
Entre-sol	Revenant de N2	1355.78	151.64
1	Plancher RDC	60.85	
	poutre (pp+ps)	22.74	
	poteau (45*45)	15.49	
	TOTAL	1454.86	151.64
Entre-sol	Revenant de N1	1454.86	156.23
1	Plancher entre-sol 1	23.69	
	poutre (pp+ps)	22.74	
	poteau (45*45)	15.49	
	TOTAL	1516.78	157.18
	TOTAL	1516.78	157.18

Tableau II.9. Résultats de la descente de charge obtenue pour les deux poteaux :

Poteau	G(KN)	Q(KN)	ELU	ELS
PB3	1351.73	128.67	2017.84	1480.4
PB5	1516.78	157.18	2283.42	1673.96

Après avoir effectué le calcul pour la recherche du poteau le plus sollicité, on a trouvé que c'est le poteau (PB5) qui est le plus sollicité sous charges verticales.

D'après le BAEL 91 (Art B.8.1,1), l'effort normal du poteau le plus sollicité doit être majoré de 10%.

Nu' = 2511.76 KN

> Vérification des poteaux

a) Vérification à la compression simple

• Entre sol 2

On doit vérifier la condition suivante :

$$\sigma_{bc} = \frac{Nu}{b} \le \bar{\sigma}_{bc} \text{ avec } \bar{\sigma}_{bc} = 0.85 * \frac{fc28}{1.5} = 14.2 \text{ MPA}$$

B: section du béton

On a
$$B=0.45*0.45=0.2025 \text{ m}^2$$

$$Nu' = 2511.76 \text{ KN}$$

$$B \ge \frac{2511.76}{0.85 \times 25 \times 10^3} = 0.118 \text{ m}^2$$

B adopté =
$$0.2025 \text{ m}^2 > \text{B calculé} = 0.118 \text{ m}^2 \dots \text{vérifié}$$

De la même façon de l'exemple de calcul précédent, on va vérifier le poteau le plus sollicité de chaque niveau, les résultats seront mentionnés dans le tableau II.10

Tableau II.10. Résultats de la vérification à la compression simple

Etages	Nu'	A(cm ²)	$(Br \ge Br cal)$	observation	
			Br (m2)	Br cal (m ²)	
Entre-sol1	2410.67	45*45	0.2025	0.113	vérifier
RDC	2243.62	45*40	0.18	0.105	vérifier
1 ^{er} étage	2037.48	45*40	0.18	0.095	vérifier
2 ^{eme} étage	1815.74	40*40	0.16	0.085	vérifier
3 ^{eme} étage	1596.29	40*40	0.16	0.075	vérifier
4 ^{eme} étage	1375.78	40*35	0.14	0.064	vérifier
5 ^{eme} étage	1153.96	40*35	0.14	0.054	vérifier
6 ^{eme} étage	928.61	35*35	0.1225	0.043	vérifier
7 ^{eme} étage	701.68	35*35	0.1225	0.033	vérifier
8 ^{eme} étage	471.19	35*30	0.105	0.022	vérifier
9 ^{eme} étage	239.14	35*30	0.105	0.011	vérifier

b) Vérification au flambement

D'après (CBA 93), on doit vérifier que l'effort normal ultime :

$$Nu \le \alpha * \left[Br * \left(\frac{fc28}{0.9*\gamma b}\right) + \left(\frac{As*fe}{\gamma s}\right)\right]$$
 CBA93 (art B.8.2.1)

Avec:

 α : caefficient tenant compte de l'élancement γ_s : coefficient de sécurité de l'acier =1.15

 γ_b : coefficient de sécurité du béton = 1.5

Br: section réduite du béton **As**: section des armatures $\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} \text{ pour } \lambda \le 50$

$$\alpha = 0.6 * \left(\frac{\lambda}{50}\right)^2 \text{ pour } 50 < \lambda \le 70$$

$$\lambda = \frac{lf}{i} \text{ avec } l_f = 0.7 * l_0$$

$$i = \sqrt{\left(\frac{l}{B}\right)} \text{ Tel que } I = \frac{b^3 * h}{12}$$

 $l_f = la longueur de flambement$

i : Rayon de giration On prend As= 0.8% *Br

Br calculé
$$\geq \frac{Nu'}{\alpha*\left(\frac{fc28}{0.9*\gamma b}\right)+\left(\frac{fe}{100*\gamma s}\right)}$$

Br = (a-2) * (b-2)

Il faut vérifier que : Br ≥ Br calculé

Tableau II.11.Résultats de la vérification au flambement

Etages	Nu'	i (m)	λ	α	$Br \ge Brcalc$		Observation
	(KN)				Br	Br calc	
					(m^2)	(m^2)	
Entre-sol 2	2511.76	0.129	17.36	0.81	0.185	0.135	Vérifier
Entre-sol 1	2410.67	0.129	15.52	0.82	0.185	0.129	Vérifier
RDC	2243.62	0.115	17.41	0.81	0.163	0.121	Vérifier
1 ^{ere} étage	2037.48	0.115	17.41	0.81	0.163	0.110	Vérifier
2 ^{eme} étage	1815.74	0.115	17.41	0.81	0.144	0.098	Vérifier
3 ^{eme} étage	1596.29	0.115	17.41	0.81	0.144	0.086	Vérifier
4 ^{eme} étage	1375.78	0.111	18.02	0.81	0.125	0.074	Vérifier
5 ^{eme} étage	1153.96	0.111	18.02	0.81	0.125	0.062	Vérifier
6 ^{eme} étage	928.61	0.101	19.82	0.81	0.109	0.050	Vérifier
7 ^{eme} étage	701.68	0.101	19.82	0.81	0.109	0.037	Vérifier
8 ^{eme} étage	471.19	0.094	21.27	0.79	0.078	0.026	Vérifier
9 ^{eme} étage	239.14	0.094	21.27	0.79	0.078	0.013	Vérifier

c) Vérification des conditions du RPA99/version2003

$$\begin{cases} Min (b,h) \ge 25 \text{ cm}.....(1) \\ Min (b,h) \ge he/20.....(2) \\ 1/4 \le b/h \le 4.....(3) \end{cases}$$

On remarque que les dimensions adoptées vérifient toutes les conditions du RPA

II.10.Conclusion

Etant donné que le pré dimensionnement des éléments structuraux est effectué, et que toutes les exigences réglementaires sont satisfaites, on adopte les dimensions suivantes :

- Poutres principales : 30* 45 cm²
- Poutres secondaires : 30 * 35cm2
- Epaisseur des voiles :
 - > Sans abouts
 - e = 15 cm pour l'entresol 2
 - e= 15 cm pour les étage courant, RDC et l'entresol 1
 - > Avec un seul about
 - e = 15 cm pour l'entresol 2
 - e= 15 cm pour les étage courant, RDC et l'entresol 1
- Poteaux d'entresol 2 et entresol 1 : (45*45) cm²
- Poteaux de RDC et 1^{er} étage : (40*45) cm²

- Poteaux de 2eme et 3eme étage : (40*40) cm²
- Poteaux de 4eme et 5eme étage : (35*40) cm²
- Poteaux de 6eme et 7eme étage : (35*35) cm²
- Poteaux de 8eme et 9eme étage : (30*35) cm²

Chapitre III:

Etude des éléments non structuraux

III.1.Introduction

Les éléments non structuraux sont des éléments qui ne font pas partie du système de contreventement, ils n'apportant pas de contribution significative à la résistance aux actions sismique, leur rôle est d'assurer la sécurité et le confort des usagers, ils sont réalisés généralement en maçonnerie ou bien en béton.

Dans ce chapitre, on va aborder le calcul des éléments non structuraux suivants :

- Les planchers (corps creux et dalle pleine);
- Les escaliers ;
- Les poutres de chainages ; les poutres brisée ; les poutres palière.
- L'acrotère :
- L'ascenseur.

III.2. Etude des planchers

III.2.1. Etude des planchers à corps creux

Dans notre structure, les planchers sont en corps creux (16 + 4 = 20 cm).

Plancher = poutrelles + corps creux + dalle de compression

Les poutrelles sont des sections en Té, elles portent les entrevous, ces derniers servent de coffrage perdu pour la dalle de compression, elles sont calculées en flexion simple en respectant le critère d'inertie constante.

III.2.1.1. Type de poutrelles

Selon la disposition adoptée, les planchers présentent (05) types de poutrelles qui sont résumés dans le tableau suivant :

Tableau III.1. Tableau de différents types de poutrelles

Type	Schéma statique des poutrelles						
Type 01	3.05 3.35 3.23 3.23 3.35 3.05						
Type 02	1.9 3.05 3.35						
Type 03	3.35 3.23 3.23 3.35						
Type 04	1.9 3.05 3.35 3.23 3.23 3.35						
Type 05	1.9 3.05 3.35 3.23 3.23 3.35 3.05 1.9						

Les différents types de poutrelles sont disposés comme suit :

- Plancher RDC, entresol1 et de 1^{er} au 9^{eme} étage : type 1
- RDC et plancher étage courant de 1^{er} au 9^{eme}étage : type 2
- Plancher étage courant de 7^{eme} et 8^{eme} étage : type 3
- Entresol 1: type (4 et 5)

III.2.1.2. Méthode de calcul des poutrelles

Les poutrelles sont calculées comme des poutres continues, soumises à la flexion simple, et au cisaillement

Dans notre projet, on dispose un seul type de poutrelles :

• Poutrelles hyperstatique (continue) : les sollicitations se déterminent soit par l'application de la méthode forfaitaire ou la méthode de Caquot.

III.2.1.2.1. Méthode forfaitaire (CBA article b6.2.2.1)

Pour le calcul des moments sur appuis et en travées d'une poutre continue, on se sert de la méthode forfaitaire à condition de vérifier les conditions suivantes :

- Plancher à surcharge modérée Q ≤ min (5KN/m2 ; 2G)
- Les portées successives doivent satisfaire la condition suivante : $0.8 \le (\text{Li/Li+1}) \le 1.25$
- La fissuration ne compromet pas la tenue du béton armé ni celle de ses revêtements (F.P.N)

• Les moments d'inertie des sections transversales sont les mêmes dans les différentes travées en continuité (I = Constant).

III.2.1.2.2. Méthode de Caquot Minorée

Cette méthode s'applique lorsqu'une des trois dernières conditions de la méthode forfaitaire n'est pas vérifiée. Cette méthode se base sur la méthode des trois moments.

On minore « G » par un coefficient de « 2/3 » uniquement pour le calcul des moments aux appuis, tandis que pour le calcul les moments en travées, on revient à l'intégralité de « G », (G' = 2/3 * G).

Le choix de la méthode de calcul à suivre pour les différents types est définit dans le tableau suivant :

Tableau III.2. choix de méthodes de calcul pour les différents types de poutrelles.

Types de poutrelles	Conditions d'application de la méthode forfaitaire	Cause	Méthode adoptée
Types 1 et 3	Vérifiées	$\begin{cases} Q^{max} = 5KN/\leq & \min(5KN/m^2; 2G) \\ F. P. N & \\ 0.8 \leq (L_i/L_{i+1}) \leq 1.25 \\ I = constant \end{cases}$	Méthode forfaitaire
Types 2,4 et 5	Non vérifiées	$\frac{L_{i}}{L_{i+1}} \notin [0,8;1,25]$	Méthode de Caquot minorée

Le calcul des charges revenant sur les poutrelles sont représentés dans les tableaux suivants :

Tableau III.3. Tableau des charges revenant aux poutrelles sous (G)

Désignation	G(KN/m²)	Q(KN/m²)	L ₀ (m)	Charge revenant sur le plancher (KN/m²)		Charge revenant sur la poutrelle (KN/m²)
Entre-sol 1	G = 5.3	Q = 3.5	0.65	ELU	P = 12.4	q = 8.06
Elitre-sol 1 0 -	U = 3.3	Q = 3.3	0.03	ELS	P = 8.8	q = 5.72
RDC et	G = 5.3	0 - 15	0.65	ELU	P = 9.4	q = 6.11
étages de 1à7	G = 3.3	Q = 1.5	0.03	ELS	P = 6.8	q = 4.42
	$G_1 = 5.3$	0 15		ELU	P = 9.4	q = 6.11
E40 00 0	$G_1 = 3.3$	$Q_1 = 1.5$	0.65	ELS	P = 6.8	q = 4.42
Etage 8	0 ((0)	0 - 1	0.65	ELU	P=10.52	q = 6.84
	$G_2 = 6.68$	$Q_2 = 1$		ELS	P=7.68	q = 4.99
Terrasse	C 669	0 1	0.65	ELU	P=10.52	q = 6.84
inaccessible	G = 6.68	Q = 1	0.65	ELS	P = 7.68	q = 4.99

III.2.1.3. Calcul des sollicitations dans les poutrelles

• Récapitulation des sollicitations dans les différents types de poutrelle :

Les résultats de calcul des sollicitations maximales à l'ELU et à l'ELS des différents types de poutrelles par niveau sont résumés dans les tableaux qui suivent :

Tableau III.5. Sollicitations maximales dans les différents types de poutrelles du l'entre -sol1

		E 1	L U	ELS			
T	Evalua	ation des mo	oments	Effort	Evaluation des moments		
Types	M_a^{rive}	M_a^{inter}	M_t	tranchant	M_a^{rive}	M_a^{inter}	M_t
	(KN.m)	(KN.m)	(KN.m)	Vu (KN)	(KN.m)	(KN.m)	(KN.m)
T1	-1,696	-5,656	7,667	14,856	-1,203	-4,012	5,439
T4	-1,696	-6,579	8,261	15,469	-1,203	-4,618	5,881
T5	-1,696	-5,313	6,127	13,583	-1,203	-3,73	4,385
Max	-1,696	-6,579	8,261	15,469	-1,203	-4,618	5,881

Tableau III.6.Sollicitations maximales dans les différents types de poutrelles du RDC et étage courant de 1 à 6

		E 1	L U	ELS			
Types	Evaluation des moments			Effort	Evaluation des moments		
	M_a^{rive}	M_a^{inter}	M_t	tranchant	M_a^{rive}	M_a^{inter}	M_t
	(KN.m)	(KN.m)	(KN.m)	Vu (KN)	(KN.m)	(KN.m)	(KN.m)
T1	-1,28	-4,288	5,435	11,263	-0,93	-3,1	3,931
T2	-1,28	-4,833	6,329	11,682	-0,93	-3,465	4,589
Max	-1,28	-4,833	6,329	11,682	-0,93	-3,465	4,589

Tableau III.7. Sollicitations maximales dans les différents types de poutrelles du 7^{éme} étage

		E	L U		ELS			
_	Evalua	ation des mo	oments	Effort	Evaluation des moments			
Types	M_a^{rive}	M_a^{inter}	M_t	tranchant	M_a^{rive}	M_a^{inter}	M_t	
	(KN.m)	(KN.m)	(KN.m)	Vu (KN)	(KN.m)	(KN.m)	(KN.m)	
T1	-1,28	-4,288	5,435	11,263	-0,93	-3,1	3,931	
T2	-1,28	-4,833	6,329	11,682	-0,93	-3,465	4,589	
T3	-1,28	-4,288	7	11,263	-0,93	-3,1	5,061	
Max	-1,28	-4,833	7	11,682	-0,93	-3,465	5,061	

Tableau III.8. Sollicitations maximales dans les différents types de poutrelles du 8^{éme} étage

		E 1	L U		E L S				
Trucas	Evalua	ation des mo	oments	Effort	Evaluation des moments				
Types	M_a^{rive}	M_a^{inter}	M_t	tranchant	M_a^{rive}	M_a^{inter}	M_t		
	(KN.m)	(KN.m)	(KN.m)	Vu (KN)	(KN.m)	(KN.m)	(KN.m)		
T1	-1,28	-4,288	5,435	11,263	-0,93	-3,1	3,931		
T2	-1,28	-4,833	6,329	11,682	-0,93	-3,465	4,589		
Max	-1,28	-4,833	6,329	11,682	-0,93	-3,465	4,589		

Tableau III.9. Sollicitations maximales dans les différents types de poutrelles du 8^{éme} étage (partie terrasse inaccessible) et 9^{éme} étage (terrasse inaccessible)

		E 1	L U		E L S			
Tymos	Evalua	ation des mo	oments	Effort	Evaluation des moments			
Types	M_a^{rive}	M_a^{inter}	M_t tranchant		M_a^{rive}	M_a^{inter}	M_t	
	(KN.m)	(KN.m)	(KN.m)	Vu (KN)	(KN.m)	(KN.m)	(KN.m)	
T1	-1,438	-4,796	5,95	12,597	-1,05	-3,502	4,344	
T2	-1,438	-5,171	7,18	12,996	-1,05	-3,754	5,252	
Max	-1,438	5,171	7,18	12,996	-1,05	-3,754	5,252	

2.1.4. Ferraillage des poutrelles

> Ferraillage longitudinal

Les poutrelles des différents niveaux vont être ferraillées en fonction des sollicitations maximales, pour cela on distingue 3 groupes de ferraillage :

Tableau III.10. Sollicitations optée pour le ferraillage des poutrelles.

		Sollicitation les plus défavorables									
NIVEAUX		EL	.U	ELS							
	M_a^{rive}	M_a^{inter}	M_t	V	M_a^{rive}	M_a^{inter}	M_t				
	(KN.m)	(KN.m)	(KN.m)	(KN)	(KN.m)	(KN.m)	(KN.m)				
Entre sol 1	-1,696	-6,579	8,261	15,469	-1,203	-4,618	5,881				
RDC et étage courant du 1 ^{er} au 8 ^{eme}	-1,28	-4,833	7	11,682	-0,93	-3,465	5,061				
8 ^{eme} étage(partie de T.I)+T I	-1,438	-5,171	7,18	12,996	-1,05	-3,754	5,252				

• Les résultats de ferraillage des différents types de poutrelles dans les différents niveaux sont résumés dans le tableau suivant :

Tableau III.11. Calcul du ferraillage à l'ELU des différents niveaux

niveaux	Endroit	M (KN.m)	μbu	α	Z (m)	A _{cal} (cm ²)	A _{min} (cm ²)	$egin{aligned} \mathbf{A}_{ ext{adopt\'e}} \ (\mathbf{cm^2}) \end{aligned}$
	Travée	8.261	0.032	0.04	0.177	2.75	1.19	2HA12+1HA10 =3.05
Entre-Sol 1	Appui Inter	6.579	0.025	0.032	0.177	1.54	0.21	1HA12 +1HA10 = 1,92
	appui de rive	1.696	0.006	0.008	0.179	0.50	0.21	1HA10 = 0,79
RDC et	Travée	7	0.027	0.034	0.177	2.75	1.19	2HA12+1HA10 = 3.05
étages courants	Appui Inter	4.833	0.019	0.024	0.178	1.53	0.21	1HA12 +1HA10 = 1,92
(de 1 à 8)	appui de rive	1.28	0.005	0.006	0.179	0.50	0.21	1HA10 = 0,79

	Travée	7.18	0.028	0.035	0.177	2.75	1.19	2HA12 +1HA10 =
8eme et 9eme	Travee							3.05
(terrasse	Appui Inter	5.171	0.02	0.025	0.178	1.53	0.21	1HA12 +1HA10 =
inaccessible)	Appui inter							1,92
maccessible)	appui de	1.438	0.005	0.007	0.179	0.5	0.21	1HA10 = 0.79
	rive							111/410 - 0,79

✓ Vérification des poutrelles aux états limites(ELU et ELS)

Les vérifications des poutrelles aux états limites sont illustrées dans les tableaux ci-après :

Tableau III.12. Vérifications nécessaires à l'ELU

Niveaux	Cisaillement $ au_u < \overline{ au}$ (MPa)		longitudinales $(cm^{2}) \geq \frac{\gamma_{s}}{f_{e}} \left(V_{u} + \frac{M_{u}^{inter}}{0.9 \ d} \right)$	Bielle V_u $\leq 0.267. a.b_0. f_{c28}$ (KN)	Jonction $ au_1^u \leq \overline{ au}$ (MPa)
Entre-sol 1	0.86 < 3.33	3.84 > 0.44	3.84 > -0.72	15.46 < 108.13	0.97 < 3.33
RDC et étages courants	0.65 < 3.33	3.84 > 0.33	3.84 > -0.52	11.68 < 108.13	0.73 < 3.33
8 ^{eme} et 9 ^{eme} (T.I)	0.72 < 3.33	3.84 > 0.37	3.84 > -0.54	12.99 < 108.13	0.82 < 3.33
Observation	Vérifiée	Vérifiée	Vérifiée	Vérifiée	Vérifiée

✓ Vérification des contraintes

* En travée

✓ Position de l'axe neutre (H)

$$H = \frac{b \times h_0^2}{2} - 15A(d - h_0) > 0$$

 \Rightarrow L'axe neutre passe par la table de compression, vérification des contraintes pour une section rectangulaire (b \times h).

Donc:
$$\sigma_{bc} = \frac{M_{ser}}{I}y \le \overline{\sigma}_{bc} = 0.6 \times f_{c28} = 15 MPa$$

✓ Calcul de y et I

$$\frac{b}{2}y^2 + 15. A. y - 15. A. d = 0$$

$$I = \frac{b \times y^3}{3} + 15A(d - y)^2$$

* En appui intermédiaire

$$H = \frac{b_0 \times h_0^2}{2} - 15A(d - h_0) < 0 \implies \text{calculd une section rectangulaire } (b_0 \times h)$$

✓ Calcul de y et I

$$\frac{b_0}{2}y^2 + 15. A. y - 15. A. d = 0$$

$$I = \frac{b_0 \times y^3}{3} + 15A(d - y)^2$$

Les résultats de la vérification des contraintes dans les différents niveaux sont résume dans le tableau suivant :

Tableau III.13. Vérification des contraintes à l'ELS

Niveaux	Endroit	M ^S (KN.m)	As (cm ²)	Y (cm)	I (cm ⁴)	Contraintes σ<σ̄ (Mpa)	Observation
D (14	Travée	-5.881	3.05	9.05	6135.41	7.38 < 15	vérifiée
Entre-sol 1	Appui	-4.618	1.92	7.70	4577.17	7.77 < 15	vérifiée
	Travée	5.061	3.05	9.05	6135.41	7.46 < 15	vérifiée
RDC et E.C	Appui	-3.465	1.92	7.70	4577.17	5.83 < 15	vérifiée
8 ^{eme} et 9 ^{eme}	Travée	5.252	3.05	9.05	6135.41	7.75 < 15	vérifiée
(T.I)	Appui	-3.754	1.92	7.70	4577.17	6.31 < 15	vérifiée

✓ Vérification de la flèche

Conditions de la vérification de la flèche

La vérification de la flèche n'est pas nécessaire si les conditions suivantes sont observées :

1)
$$h \ge \frac{M_{ts}}{15 M_{0s}} \times l$$

2)
$$A \leq \frac{3.6.b_0.d}{f_0}$$

$$\Delta f \le \overline{f}$$
 ; $l < 5m \implies \overline{f} = \frac{l}{500}$

 Δf : La flèche à calculer selon le **BAEL** en considérant les propriétés du béton armé (retrait, fissure,...).

$$\Delta f = (f_{gv} - f_{ji}) + (f_{pi} - f_{gi}) \dots \dots \dots BAEL91$$
 révisé 99

Pour le calcul de ces flèches, on aura besoins de

• Evaluation des moments en travée

 q_{jser} =0.65*G la charge permanente qui revient à la poutrelle sans la charge de revêtement.

 $q_{gser} = 0.65*G$ la charge permanente qui revient à la poutrelle.

q_{pser}=0.65*(G+Q) la charge permanente et la surcharge d'exploitation.

$$M_{gser} = 0.75 \times \frac{q_g \times L^2}{8}$$
; $M_{jser} = 0.75 \times \frac{q_j \times L^2}{8}$; $M_{pser} = 0.75 \times \frac{q_p \times L^2}{8}$

Calcul de Io:

$$I_0 = \frac{b}{3} \times (V_1^3 + V_2^3) + 15 \times A_s \times (V_2 + c)^2$$

$$V_1 = \frac{1}{R} \times (\frac{b \times h^2}{2} + 15 \times A_s \times d)$$
; $V_2 = h - V_1$

$$B = b \times h + 15 \times A_s$$
; $\rho = \frac{A_s}{b_0 \times d}$

$$\lambda_{i} = \frac{0.05 \times f_{i28}}{\rho \times (2 + 3 \times \frac{b_{0}}{h})} \quad ; \lambda_{v} = 0.4 \times \lambda_{i}$$

• Contraintes (σ_{ϵ})

$$\sigma_{js} = 15 \times \frac{M_{Jser} \times (d-y)}{I} \quad ; \quad \sigma_{gs} = 15 \times \frac{M_{gser} \times (d-y)}{I} \quad ; \quad \sigma_{ps} = 15 \times \frac{M_{pser} \times (d-y)}{I}$$

Calcul de
$$\mu$$
: $\mu = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_S + f_{t28}}$ Si $\mu \le 0 \Rightarrow \mu = 0$

Calcul des inerties fictives (I_f)

$$I_{fij} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_j}; I_{fig} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_g}; I_{fip} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_p}; I_{fvg} = \frac{1.1 \times I_0}{1 + \lambda_v \times \mu_g}$$

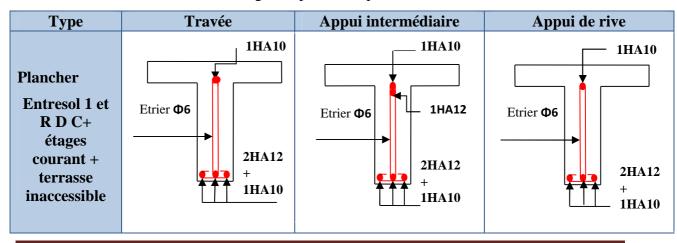
Evaluation des flèches

$$f_{ijser} = \frac{M_{jser} \times L^{2}}{10 \times E_{i} \times I_{fij}}; f_{igser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fig}}; f_{vgser} = \frac{M_{gser} \times L^{2}}{10 \times E_{v} \times I_{fvg}}; f_{ipser} = \frac{M_{pser} \times L^{2}}{10 \times E_{i} \times I_{fip}}$$

✓ Modules de Young instantané et différé

$$\begin{cases} E_v = 3700 \sqrt[3]{f_{c28}} = 10818,86 MPa \\ E_i = 3 \times E_v = 32456,60 MPa \end{cases}$$

La flèche totale Δf


$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij} < f_{adm}$$

On procède au ferraillage des différents types de poutrelles, les résultats sont présentés dans le tableau suivant :

Tableau III.14. Vérifications de la flèche à l'ELS

Niveaux	Entre sol 1	RDC et E.C	8 ^{eme} et 9 ^{eme} (T.I)
L (m)	3.35	3.35	3.35
$q_{j ser}(KN/m)$	1.82	1.82	1.82
$q_{g ser}(KN/m)$	3.44	3.44	4.34
$q_{p ser}(KN/m)$	5.72	4.42	4.99
$M_{j ser}$ (KN.m)	1.91	1.91	1.91
$M_{g ser}$ (KN.m)	3.62	3.62	4.56
$M_{p ser}$ (KN.m)	6.02	4.65	5.25
I (cm ⁴)	6135.41	6135.41	6135.41
$I_0(cm^4)$	43020.63	43020.63	43020.63
λ_i	2.44	2.44	2.44
λ_v	0.97	0.97	0.97
σ_{st}^{j} (MPa)	41.79	41.79	41.79
σ_{st}^g (MPa)	79.21	79.21	99.78
σ_{st}^{p} (MPa)	131.73	101.75	114.88
μ_j	0.25	0.25	0.25
μ_g	0.5	0.5	0.58
μ_p	0.66	0.59	0.62
$I_{fji}(cm^4)$	29392.97	29392.97	29392.97
$I_{fgi}(cm^4)$	21316.52	21316.52	19593.69
$I_{fpi}(cm^4)$	18128.52	19397.73	18832.65
$I_{fgv}(cm^4)$	31867.13	31867.13	30284.58
f_{ji} (mm)	0.22	0.22	0.22
f_{gi} (mm)	0.58	0.58	0.81
f_{pi} (mm)	1.15	0.82	0.96
f_{gv} (mm)	1.18	1.18	1.56
Δf (mm)	1.53	1.20	1.49
$f_{adm}(mm)$	6.7	6.7	6.7
Observation	Vérifiée	Vérifiée	Vérifiée

Tableau.III.15. Schémas de ferraillage des poutrelles par niveaux.

✓ Etude de la dalle de compression

$$\begin{cases} A_{\perp} = \frac{4 \times l_0}{f_e} = \frac{4 \times 0.55}{235} \times 100 = 0.94 \text{cm}^2/\text{ml} \\ A_{ll} = \frac{A_{\perp}}{2} = 0.47 \text{ cm}^2/\text{ml} \end{cases}$$

$$Soit \begin{cases} A_{\perp} : 5\phi6/ml \rightarrow s_t = 20 \text{ cm} \leq 20 \text{ cm} \dots \text{CBA} \\ A_{ll} : 4\phi6/ml \rightarrow s_t = 25 \text{ cm} \leq 30 \text{ cm} \dots \text{CBA} \end{cases}$$

 $7\phi6$

Donc on adopte un treillis soudé de mailles (150 \times 150) mm^2

1_m

Figure III.1. Ferraillage de la dalle de compression

III.2.2. Etude des dalles pleines

III.2.2.1. données de différentes dalles (Annexe 1)

Tableau III.16. Les différentes dalles

Types	Lx	Ly	ρ	ELU		ELS		
				μx	μΥ	μx	μΥ	
D1	1.75	1.75	1	0.0368	1.0000	0.0441	1.0000	
D2	0.65	2.78	0.23	/	/	/	/	
D2'	0.4	2.78	0.14	/	/	/	/	
D3	0.65	2.90	0.22	/	/	/	/	
D4	0.65	2.78	0.23	1	1	1	/	
D4'	0.4	2.78	0.14	1	1	1	/	

III.2.2.2.calcul des sollicitations :

➤ Dalles sur 03 appuis (panneau de dalle D3) :

$$e = 14 \text{ cm}$$
; $G = 4.97 \text{ KN/m}^2$; $Q = 2.5 \text{ KN/m}^2$

Pu = 10.46 KN/ml; Ps = 7.47 KN/ml

On a : $L_x = 0.65$; $L_y = 2.90$; $\rho = 0.22$ (La dalle travail dans un seul sens L_x)

ELU
$$\int \mathbf{M_u} = -(\mathbf{p_u} * \mathbf{l^2})/2$$

$$\begin{cases} M_u = -(p_u * l^2)/2 & M_u = -(p_s * l^2)/2 \\ M_u = -2.21 \text{KN.m} & M_u = -1.58 \text{ KN.i} \end{cases}$$

-Effort tranchant:

$$V_u = P_u * 1$$

 $V_u = 6.79 \text{ KN}$

❖ Ferraillage:

Le Ferraillage se fait à la flexion simple pour une bande de 1 ml,

Les résultats de ferraillage sont représentés dans le tableau suivant :

Tableau III.17. résultat de ferraillage de D3

Position	Sens	μbu	α	Z (m)	Acal (cm ²⁾	Amin (cm ²⁾	A _{choisit} (cm ²)
Nappe supérieure	X-X	0.022	0.028	0.108	1.02	1.12	4HA8=2.01

Les armatures de répartition

$$A_{répartition} = A_t^x/3 = 2.01/3 = 0.67 \text{cm}^2$$

Choix: A_{répartition}=4HA8=2.01

St=25 cm

❖ Vérifications à l'ELS :

Tableau III.18. Vérification des contraintes :

.m) Y	I (cm ⁴)	$\sigma_{bc} \leq \overline{\sigma}_{bc}(MPA)$		Obs
(cm)		σ_{bc}	$\overline{\sigma}_{bc}$	
2.29	2687.6	2.63	15	Vérifiée
	\ /	· /	, , DC	, , , , , , , , , , , , , , , , , , ,

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \overline{\sigma_{bc}}$$

$$\overline{\sigma_{bc}} = 0.6 * f_{c28} = 15 \text{ Mpa}$$

Y : position de l'axe neutre, la racine de l'équation :

$$\left(\frac{b}{2}\right) * y^2 + 15 * (A + A')y - 15(Ad + A'd') = 0$$

I : moment d'inertie de la section homogénéisée par rapport à l'axe neutre :

$$I = \left(\frac{b}{3}\right) * y^3 + 15A(d - y)^2 + 15A'(y - d')^2$$

- Vérification de l'état de déformation :

Si les trois conditions suivantes sont vérifiées il n'y a pas lieu de vérifié la flèche.

$$e \ge \max(\frac{3}{80}; \frac{Mt}{20 M_0})*L...(1)$$

$$A_{s} \leq \frac{2*b*d}{fe}....(2)$$

$$L \leq 8 \text{ m} \dots (3)$$

$$e = 14 \text{ cm} > (\text{max } (0.0375; 0.042))*65 = 2.73.....\text{vérifier}$$

 A_s = 2.01 cm² < (2*100*11)/400 = 5.5 cm²vérifier

Lx =0.65 m < 8 m.....vérifier

Conclusion : les conditions sont vérifiées, il n'y a pas lieu de vérifier la flèche

Tableau III.19: Sollicitations maximales dans les dalles pleines

				Sollici	tations			
Tymo			ELU	ELS				
Type	M _x travée	My ^{travée}	Marive	Ver (len)	X7 (L.)	M _x travée	My ^{travée}	Marive
	(kn.m)	(kn.m)	(kn.m)	Vx (kn)	Vy (kn)	(kn.m)	(kn.m)	(kn.m)
D2	4.11	0.71	-1.45	3.88	0	2.92	0.51	-1.03
D2'	1.83	0.11	-0.65	2.39	0	1.29	0.07	-0.46
D4	4.11	0.71	-2.42	3.88	0	2.91	0.5	-1.56
D4'	1.83	0.11	-1.08	2.39	0	1.29	0.07	-0.76

Tableau III.20. Vérification de l'effort tranchant.

	V _{ux} (KN)	$ \tau_{ux} \leq \overline{\tau}_{u} $ (MPA)	Obs.	V _{uy} (KN)	$ \tau_{uy} \leq \overline{\tau}_{u} $ (MPA)	Obs.
D2	3.88	0.035<1.17	Vérifiée	0	0 < 1.17	Vérifiée
D2'	2.39	0.02 < 1.17	Vérifiée	0	0 < 1.17	Vérifiée
D4	3.88	0.035<1.17	Vérifiée	0	0 < 1.17	Vérifiée
D4'	2.39	0.02 < 1.17	Vérifiée	0	0 < 1.17	Vérifiée

Tableau III.21. Calcul du ferraillage à l'ELU

Types	Sens	M (KN.m)	μ _{bu}	α	Z (cm)	A _{cal} (cm ² /ml)	A _{min} (cm ² /ml)	A _{adopté} (cm²/ml)
	X-X	4.11	0.024	0.03	0.108	1.08	1.12	4HA8=2.01
D2	у-у	0.71	0.004	0.005	0.109	0.19	0	4HA8=2.01
	Appui	-1.45	0.0084	0.0106	0.109	0.38	1.12	4HA8=2.01
	X-X	1.83	0.0106	0.0133	0.109	0.48	1.12	4HA8=2.01
	у-у	0.108	0.0006	0.0008	0.109	0.028	0	4HA8=2.01
D2'	Appui	0.65	0.0037	0.0047	0.109	0.17	1.12	4HA8=2.01
	у-у	0.4	0.002	0.0029	0.109	0.105	0	4HA8=2.01
	Appui	1.35	0.0078	0.0098	0.109	0.35	1.12	4HA8=2.01
	X-X	4.10	0.024	0.03	0.108	1.08	1.12	4HA8=2.01
D4	у-у	0.714	0.004	0.005	0.109	0.19	0	4HA8=2.01
	Appui	2.42	0.005	0.007	0.109	0.25	1.12	4HA8=2.01
D 40	X-X	1.83	0.0106	0.0133	0.109	0.48	1.12	4HA8=2.01
D4'	у-у	0.108	0.0006	0.0008	0.109	0.028	0	4HA8=2.01

Appui 1.08	0.0052 0.006	0.109 0.25	1.12	4HA8=2.01
------------	--------------	------------	------	-----------

Tableau III.22. Vérifications des contraintes à l'ELS.

Types	Sens	<i>M^s</i> (KN.m)	Y (cm)	(cm ⁴)	$ \sigma_{bc} \leq \overline{\sigma}_{bc} \\ (MPA) $	Obs.	$\sigma_{st} \leq \overline{\sigma}_{st}$ (MPA)	Obs.
	X-X	2.91	2.29	2687.6	2.49 < 15	vérifiée	141.3 < 201.63	vérifiée
D2	у-у	0.51	2.29	2687.6	0.43 < 15	vérifiée	24.62 < 201.63	vérifiée
	Appui	1.03	2.29	2687.6	0.87 < 15	vérifiée	49.86 < 201.63	vérifiée
	X-X	1.29	2.4	3239.4	0.96 < 15	vérifiée	57.48 < 201.63	vérifiée
D2'	у-у	0.08	2.4	3239.4	0.06 < 15	vérifiée	3.41 < 201.63	vérifiée
	Appui	0.46	2.4	3239.4	0.04 < 15	vérifiée	20.29 < 201.63	vérifiée
	X-X	2.91	2.29	2687.6	2.49< 15	vérifiée	141.3 < 201.63	vérifiée
D4	у-у	0.51	2.29	2687.6	0.43 < 15	vérifiée	24.62 < 201.63	vérifiée
	Appui	1.71	2.4	3239.4	1.27 < 15	vérifiée	76.05 < 201.63	vérifiée
	X-X	1.29	2.4	3239.4	0.96 < 15	vérifiée	57.48 < 201.63	vérifiée
D4'	у-у	0.08	2.4	3239.4	0.06 < 15	vérifiée	3.41 < 201.63	vérifiée
	Appui	0.76	2.4	3239.4	0.56< 15	vérifiée	33.81 < 201.63	vérifiée

***** Evaluation de la flèche

La vérification de la flèche n'est pas nécessaire si les conditions suivantes sont vérifiées :

$$\begin{cases} e \ge \max\left(\frac{3}{80}; \frac{M_x^t}{20M_0^x}\right) l_x \\ A_t \le \frac{2bd}{f_e} \end{cases}$$

✓ Pour la dalle D2

14 cm > 11.8 cm Vérifée

 $2.01cm^2 < 5.5 cm^2 \dots Vérifée$

La vérification de la flèche n'est pas nécessaire

✓ Pour la dalleD2'

14 cm > 11.79 cm Vérifiée

 $2.01 cm^2 < 5.5 cm^2 \dots Vérifiée$

La vérification de la flèche n'est pas nécessaire

✓ Pour la dalle D4

14 cm > 11.8 cm Vérifiée

 $2.01 \ cm^2 < 5.5 \ cm^2 \dots \dots \dots V$ érifiée

La vérification de la flèche n'est pas nécessaire

✓ Pour la dalle D4'

$$2.01 cm^2 < 5.5 cm^2 \dots \dots Vérifiée$$

La vérification de la flèche n'est pas nécessaire

III.3. Etude des escaliers

Cette partie consiste à calculer les sollicitations maximales que les escaliers ont soumises, et de déterminer leurs ferraillages à la flexion simple, ainsi l'évaluation des vérifications nécessaires.

III.3.1. Escalier entre-sol 2 (type1):

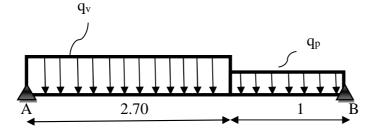


Figure III.2. Schéma statique de l'escalier type 01 avec chargement

$$\label{eq:Volée} \text{Volée} \Longrightarrow \begin{cases} G_V = 10.06 \text{ kn/m}^2 \\ Q_V = 2.5 \text{ kn/m}^2 \end{cases}$$

$$\text{Palier} \Longrightarrow \begin{cases} G_P = 6.5 \text{ kn/m}^2 \\ Q_P = 2.5 \text{ kn/m}^2 \end{cases}$$

• Calcul du chargement qui revient sur l'escalier

ELU
$$\Rightarrow$$

$$\begin{cases} qu_{v} = (1.35G_{v} + 1.5Q_{v}) * 1ml = 17.33\text{kn/m} \\ qu_{p} = (1.35G_{p} + 1.5Q_{p}) * 1ml = 12.52\text{kn/m} \end{cases}$$

ELS
$$\Rightarrow$$

$$\begin{cases} qs_{v} = (G_{v} + Q_{v}) * 1ml = 12.56\text{kn/m} \\ qs_{p} = (G_{p} + Q_{p}) * 1ml = 9 \text{ kn/m} \end{cases}$$

• Calcul des réactions d'appuis

ELU:

$$\begin{split} & \overline{\Sigma F_y = 0} \Longrightarrow R_B + R_A = 2.7^* q u_v + 1^* q u_p = 59.31 kn \\ & \Sigma M_{/A} = 0 \Longrightarrow 3.7^* R_B - q u_p * 1^* (1/2 + 2.7) - q u_v * (2.7/2) * 2.7 = 0 \\ & \Longrightarrow R_B = 17.79 \text{ KN} \; ; \; R_A = 41.52 \text{ KN} \end{split}$$

ELS:

$$\begin{split} \Sigma F_y &= 0 \Longrightarrow R_B + R_A = 2.7^* q s_v + 1^* q s_p = 42.91 \text{ KN} \\ \Sigma M_{/A} &= 0 \Longrightarrow 3.7^* R_B - q s_p * 1^* (1/2 + 2.7) - q s_v * (2.7/2)^* 2.7 = 0 \\ \Longrightarrow R_B &= 12.89 \text{ KN} \; ; \; R_A = 30.02 \text{ KN} \end{split}$$

• Calcul des sollicitations

- Calcul des moments fléchissant (ELU)

Pour le calcul on utilise la méthode de RDM.

$$0 \le x \le 2.7 \ m$$

$$M_z = R_A * x - pu_v * (x^2/2) \Longrightarrow$$

$$\begin{cases} x = 0 ; M_z = 0 \text{ KN.m} \\ x = 2.7 ; M_z = 48.93 \text{KN.m} \end{cases}$$

$$\frac{2.7 \le x \le 3.7 \text{ m}}{}$$

$$M_z = R_A * x - pu_v * (x-1.35) * 2.7 - pu_p * (x-2.7)^2 * 1/2$$

$$M_z$$
= 41.52*x - 17.33*(x-1.35)*2.7 - 12.52*(x-2.7)^2* 1/2

$$\Rightarrow \begin{cases} x = 2.7 ; M_z = 48.93 \text{KN.m} \\ x = 3.7 ; M_z = 37.41 \text{KN.m} \end{cases}$$

- Calcul du moment max en travée : (ELU)

$$\frac{dMz}{dx} = 0 \Longrightarrow 41.52 - 17.33 \text{ m}$$

$$M_0^u_{max} = 49.73 \text{ KN/m}$$

ELU:
$$M_a = -0.5*M_0^u_{max} = -24.87KN.m$$

$$M_t = 0.75* M_0^{u}_{max} = 37.30KN.m$$

- L'effort tranchant max : $T_{max} = 41.52 \text{ KN}$
- Calcul des moments fléchissant (ELS)

Pour le calcul on utilise la méthode de RDM.

$$0 \le x \le 2.7m$$

$$\begin{aligned} M_z &= R_A * x - p s_v * (x^2/2) \Longrightarrow \ x = 0 \ ; \ M_z = 0 \ KN.m \\ & x = 2.7 \ ; \ M_z = 35.27 \ KN.m \end{aligned}$$

$$2.7 \le x \le 3.7 \ m$$

$$M_z = R_A * x - ps_v * (x-1.35) * 2.7 - ps_p * (x-2.7)^2 * 1/2$$

$$M_z = 30.02*x - 12.56*(x-1.35)*2.7 - 9*(x-2.7)^2*1/2$$

$$\implies \begin{cases} x = 2.7 ; M_z = 35.27 \text{KN.m} \\ x = 3.7 ; M_z = 26.88 \text{KN.m} \end{cases}$$

- Calcul du moment max en travée : (ELS)

$$\frac{dMz}{dx} = 0 \Longrightarrow 30.02 - 12.56 * x \Longrightarrow x = 2.39 \text{ m}$$

$$M_0^{S}_{max} = 35.88 \text{ KN/m}$$

ELS:
$$M_a = -0.5*M_0^s_{max} = -17.94KN.m$$

$$M_t = 0.75* M_0^s_{max} = 26.91 KN.m$$

- L'effort tranchant max : $T_{max} = 30.02 \text{ KN}$

Ferraillage

Le calcul se fait à la flexion simple pour une bande de 1 ml

Tableau III.23.Résultats de ferraillage

Zone	Mu(KN.M)	μbu	α	Z(m)	A _{calcul} (cm ²)	$A_{min}(cm^2)$	A _{choisie} (cm ²)	St(cm)
Appui	24.87	0.103	0.136	0.123	5.81	1.81	4HA14=6.16	25
Travée	37.30	0.155	0.211	0.119	9.01	1.81	6HA14=9.24	15

• Armatures de répartitions :

On a des charges réparties
$$\Rightarrow A_{répartiton} = \frac{A_{principale}}{4}$$

En travée:

$$A_{rep} = 2.31 cm^2/ml$$
 Soit : $A_{rep} = 4HA8 = 2.01 cm^2/ml$: St = 25 cm

En appui:

$$A_{rep} = 1.54 cm^2/ml$$
 Soit : $A_{rep} = 4HA8 = 2.01 cm^2/ml$: St = 25 cm

• Vérification de l'effort tranchant :

$$V_{\text{max}} = 41.52KN \Longrightarrow \tau_{\text{u}} = V_{\text{max}}/(1 \times d) = 0.32\text{Mpa}$$
;
 $\overline{\tau u} = 0.07f c 28/\gamma b = 1.17MPa$
 $\Longrightarrow \tau_{\text{u}} < \overline{\tau_{\text{u}}}$

Donc, nous n'avons pas besoin de mettre des armatures transversales.

• Calcul à l'ELS

- vérification des contraintes

Comme la fissuration est peu nuisible, donc on vérifie uniquement la contrainte dans le béton (σ_{bc}) :

On doit vérifier : $\sigma_{bc} = (M_s/I)^* y < \overline{\sigma_{bc}} = 0.6 \text{ fc}_{28}$

La vérification des contraintes est présentée dans le tableau suivant :

Tableau III.24. Vérification des contraintes.

	M _{ser} (KN.m)	I(cm ⁴)	y(cm)	σ _{bc} (Mpa)	$\overline{\sigma_{bc}}(Mpa)$	Observation
Travée	26.91	13005.49	4.77	9.86	15	Vérifiée
Appuis	-17.91	9615.72	4.06	7.56	15	Vérifiée

- Etat limite de déformation :

Vérification de la flèche

La vérification de la flèche est nécessaire si l'une des conditions suivantes n'est pas observée :

$$\begin{cases}
e \ge \max\left(\frac{1}{16}; \frac{M_t}{20M_0}\right) * l \dots (1) \\
A \le \frac{2*b*d}{fe} \dots (2) \\
L < 8 \text{ m } \dots (3)
\end{cases}$$

(1)
$$\Rightarrow$$
 e=15 cm <23.12 cmcondition non vérifiée

$$(2) \Rightarrow A = 5.65 < 6.5 \text{ cm}^2....$$
condition vérifiée

$$(3) \Rightarrow L = 3.7 \text{ m} < 8 \text{ m} \dots \text{condition vérifiée}$$

La première condition n'est pas vérifiée donc on doit vérifier la flèche.

La flèche admissible pour une poutre inférieure à 5 mètres est définie par le BAEL91 comme suit : =370/500=0.74cm

Calcul des moments maximaux en travées sous les chargements :g, j et p

Sous g:
$$\begin{cases} q_v^g = 10.06 \text{ kn/m} \\ q_p^g = 6.5 \text{ kn/m} \end{cases} \Rightarrow M_s^g = 13.38 \text{ kn.m}$$

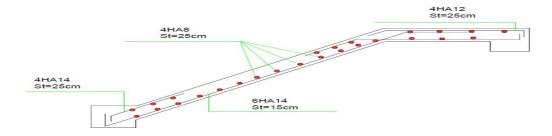


Figure III.3. Schéma de ferraillage de l'escalier type 01

NB: Pour des exigences de réalisation de règlementation algérienne exige un ferraillage minimum de T10 pour ce genre d'élément

III.3.2. Escalier Type2 (RDC; étage courants):

e = 15 cm

➤ Volée 2 :

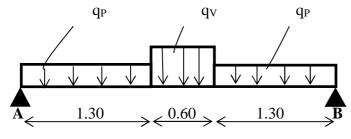


Figure III.4. Schéma statique avec chargement (type2, volée2)

Volée
$$\Longrightarrow$$
 $\int G_V = 10.06 \text{ kn/m}^2$

$$Q_V = 2.5 \text{ kn/m}^2$$
 Palier \Longrightarrow
$$\begin{cases} G_P = 6.5 \text{ kn/m}^2 \\ Q_P = 2.5 \text{ kn/m}^2 \end{cases}$$

• Calcul du chargement qui revient sur l'escalier

ELU
$$\Rightarrow$$

$$\begin{cases} qu_{v} = (1.35G_{v} + 1.5Q_{v}) * 1ml = 17.33 \text{ kn/m} \\ qu_{p} = (1.35G_{p} + 1.5Q_{p}) * 1ml = 12.52 \text{ kn/} \\ qs_{v} = (G_{v} + Q_{v}) * 1ml = 12.56 \text{ kn/m} \\ qs_{p} = (G_{p} + Q_{p}) * 1ml = 9 \text{ kn/m} \end{cases}$$

Calcul des réactions d'appuis

ELU:

$$R_A = 21.48 \text{ KN}$$
; $R_B = 21.48 \text{ KN}$

ELS:

 $R_A = 15.47 \text{ KN}$; $R_B = 15.47 \text{ KN}$

- Calcul des sollicitations
 - Calcul des moments fléchissant (ELU)

Pour le calcul on utilise la méthode de RDM. Les résultats sont représentées dans le tableau suivant :

Tableau III.25.les sollicitations (type2, volée2)

Appuis	Réactions (KN)		Vu max	$M_{0 \text{ max}} (KN.m)$		
	ELU	ELU ELS		ELU	ELS	
A	21.48	15.47	21.48	18.02	12.07	
В	21.48	15.47	21.48	18.02	13.07	

- Moments corrigés :

$$ELU \Rightarrow \begin{cases} Mt_u = 0.75 \ M_0 = 13.59 KN.m \\ Ma_u = -0.5 \ M_0 = -9.06 \ KN.m \end{cases}$$

$$ELS \Rightarrow \begin{cases} Mt_S = 0.75 \ M_0 = 9.8 \ KN.m \\ Ma_S = -0.5 \ M_0 = -6.54 \ KN.m \end{cases}$$

• Ferraillage

Le calcul se fait à la flexion simple pour une section rectangulaire (b*h= 1 ml*e)

Tableau III.26. ferraillage d'escalier (type02, volée 2)

Zone	Mu(KN.M)	μbu	A	Z(m)	A _{calcul} (cm ²)	$A_{min}(cm^2)$	A _{choisie} (cm ²)	St(cm)
Appui	-9.06	0.053	0.067	0.107	2.43	1.33	4HA10 =3.14	25
Travée	13.59	0.079	0.103	0.105	3.7	1.33	5HA10 = 3.93	20

• Armatures de répartitions :

On a des charges réparties
$$\Rightarrow A_{répartiton} = \frac{A_{principale}}{4}$$

En travée :

$$A_{rep} = 0.98cm^2/ml$$
 Soit: $A_{rep} = 4HA8 = 2.01cm^2/ml$: St = 25 cm

En appui:

 $A_{rep} = 0.78cm^2/ml$ Soit : $A_{rep} = 4HA8 = 2.01cm^2/ml$: St = 25 cm

• Vérification de l'effort tranchant :

 $Vmax = 21.48KN \Longrightarrow \tau_u = Vmax/(1 \times d) = 0.165Mpa;$ $\overline{\tau_u} = 0.07fc28/\gamma b = 1.17MPa \Longrightarrow \tau_u < \overline{\tau_u}$

Donc, nous n'avons pas besoins de mettre des armatures transversales.

• Calcul à l'ELS

- vérification des contraintes

Comme la fissuration est peu nuisible, donc on vérifie uniquement la contrainte dans le béton (σ_{bc}) :

On doit vérifier : $\sigma_{bc} = (M_s/I) * y < \overline{\sigma_{bc}} = 0.6 \text{ fc}_{28}$

La vérification des contraintes est présentée dans le tableau suivant :

Tableau III.27. Vérification des contraintes (type2, volée 2)

	M _{ser} (KN.m)	I(cm ⁴)	y(cm)	$\sigma_{bc}(Mpa)$	$\overline{\sigma_{bc}}(Mpa)$	Observation
Travée	9.8	3898.6	2.78	7.93	15	Vérifiée
Appuis	-6.54	3898.6	2.78	4.66	15	Vérifiée

- Etat limite de déformation :

Vérification de la flèche

La vérification de la flèche est nécessaire si l'une des conditions suivantes n'est pas observée :

$$e \ge \max\left(\frac{1}{16}; \frac{M_t}{20M_0}\right) * l \dots (1)$$

$$A \le \frac{2*b*d}{fe} \dots (2)$$

$$L < 8 \text{ m} \dots (3)$$

(1)
$$\Rightarrow$$
 e=15 cm < 20 cmcondition non vérifiée

(1)
$$\Rightarrow$$
 e=13 cm < 20 cmcondition non verifiee
(2) \Rightarrow A = 3.93< 6.5 cm²......condition vérifiée

$$(3) \Rightarrow L = 3.2 \text{ m} < 8 \text{ m} \dots \text{condition vérifiée}$$

La première condition n'est pas vérifiée donc on doit vérifier la flèche.

La flèche admissible pour une poutre inférieure à 5 mètres est définie par le BAEL91 comme suit : =320/500=0.64cm

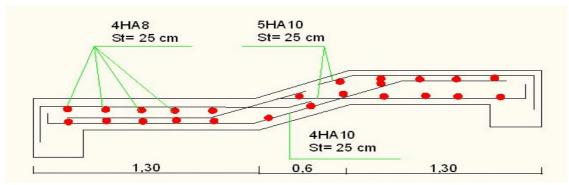
Calcul des moments maximaux en travées sous les chargements :g, j,p : $M_s^g = 8.62$ kn.m;

$$M_s{}^j = 5.78 \text{kn.m}{}^+; \ M_s{}^p = 8.62 \text{kn.m}; \\ \rho = 0.43\%; \ \lambda i = 4.83 \ ; I_0 = 190063.7 \text{ cm}^4; \\ \lambda v = 1.93$$

$$\begin{cases} Ei = 32456.6 \\ Ev = 10818.87 \end{cases}$$

✓ Calcul des σst

 $\sigma_{\rm st}^{\rm g}$ = 126.975Mpa; $\sigma_{\rm st}^{\rm j}$ = 87.495Mpa; $\sigma_{\rm st}^{\rm p}$ = 130.501Mpa


✓ Calcul des µ

$$\mu g = 0.149$$
; $\mu j = 0.212$; $\mu p = 0.159$

✓ Calcul des moments d'inertie fissurés et des flèches

$$\begin{cases}
If \mathbf{gi} = 122305cm4 \\
If \mathbf{ji} = 20907cm4 \\
If \mathbf{pi} = 118302cm4 \\
If \mathbf{gv} = 162857cm4
\end{cases} \Rightarrow \begin{cases}
fgv = 0.49mm \\
fji = 0.087mm \\
fpi = 0.229mm \\
fgi = 0.216mn
\end{cases}$$

$$\Delta f = (fgv - fji) + (fpi - fgi) = 0.041cm < \overline{f} = 320/500 = 0.64cm....$$
donc la flèche est vérifiée

Figure III.5.Schéma de ferraillage de l'escalier type 2 volée 2

NB: Pour des exigences de réalisation la règlementation algérienne exige un ferraillage minimum de T10 pour ce genre d'élément

➤ Volée 1 et 3 :

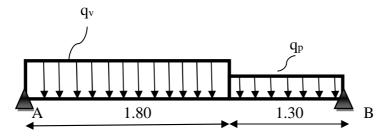


Figure III.6. Schéma statique avec chargement (type2, volée 1et 3)

Volée
$$\Longrightarrow$$
 $G_V = 10.06 \text{ kn/m}^2$ $Q_V = 2.5 \text{ kn/m}^2$ Palier \Longrightarrow $G_P = 6.5 \text{ kn/m}^2$ $Q_P = 2.5 \text{ kn/m}^2$

• Calcul du chargement qui revient sur l'escalier

ELU
$$\Rightarrow$$

$$\begin{cases} qu_{v} = (1.35G_{v} + 1.5Q_{v}) * 1ml = 17.33 \text{ kn/m} \\ qu_{p} = (1.35G_{p} + 1.5Q_{p}) * 1ml = 12.52 \text{ kn/m} \\ qs_{v} = (G_{v} + Q_{v}) * 1ml = 12.56 \text{ kn/m} \\ qs_{p} = (G_{p} + Q_{p}) * 1ml = 9 \text{ kn/m} \end{cases}$$
ELS \Rightarrow
$$\begin{cases} qu_{v} = (1.35G_{v} + 1.5Q_{v}) * 1ml = 12.56 \text{ kn/m} \\ qs_{v} = (G_{v} + Q_{v}) * 1ml = 9 \text{ kn/m} \end{cases}$$

• Calcul des réactions d'appuis

ELU:

$$R_A = 25.55 \text{ KN}$$
; $R_B = 21.92 \text{ KN}$

ELS:

$$R_A = 18.49 \text{ KN}$$
; $R_B = 15.81 \text{ KN}$

- Calcul des sollicitations
 - Calcul des moments fléchissant (ELU)

Pour le calcul on utilise la méthode de RDM. Les résultats sont représentées dans le tableau suivant :

Tableau III.28.les sollicitation (type2, volée 1et3)

Appuis	Réactions (KN)		Vu max	$M_{0 \mathrm{max}}$ ($M_{0 \text{ max}} (KN.m)$	
	ELU ELS		(KN)	ELU	ELS	
A	25.55	18.49	25.55	10.02	12.62	
В	21.92	15.81	25.55	18.83	13.62	

- Moments corrigés :

$$ELU \Rightarrow \begin{cases} Mt_u = 0.75 \ M_0 = 14.12 KN.m \\ Ma_u = -0.5 \ M_0 = -9.42 KN.m \end{cases}$$

$$ELS \Rightarrow \begin{cases} Mt_S = 0.75 \ M_0 = 11.58 KN.m \\ Ma_S = -0.5 \ M_0 = -5.45 KN.m \end{cases}$$

• Ferraillage

Le calcul se fait à la flexion simple pour une bande une bande de 1 ml

Tableau III.29.Ferraillage (type2, volée 1 et 3)

Zone	Mu(KN.M)	μbu	α	Z(m)	A _{calcul} (cm ²)	$A_{min}(cm^2)$	A _{choisie} (cm ²)	St(cm)
Appui	-9.42	0.055	0.071	0.107	2.53	1.33	4HA10 =3.14	25
Travée	14.12	0.082	0.108	0.105	3.85	1.33	5HA10 =3.93	20

• Armatures de répartitions :

On a des charges réparties
$$\Rightarrow A_{répartiton} = \frac{A_{principale}}{4}$$

En travée :

 $A_{rep} = 0.98 \ cm^2/ml \ Soit : A_{rep} = 4HA8 = 2.01 \ cm^2/ml : St = 25 \ cm^2/ml$

En appui:

$$A_{rep} = 0.78cm^2/ml$$
 Soit : $A_{rep} = 4HA8 = 2.01cm^2/ml$: St = 25 cm

• Vérification de l'effort tranchant :

 $Vmax = 25.55KN \Longrightarrow \tau_u = Vmax/(1 \times d) = 0.196Mpa$;

$$\overline{\tau_{\rm u}} = 0.07 fc28/\gamma b = 1.17 MPa \Longrightarrow \tau_{\rm u} < \overline{\tau_{\rm u}}$$

Donc, nous n'avons pas besoins de mettre des armatures transversales.

• Calcul à l'ELS

- vérification des contraintes

Comme la fissuration est peu nuisible, donc on vérifie uniquement la contrainte dans le béton (σ_{bc}) :

On doit vérifier : $\sigma_{bc} = (M_s/I)^* y < \overline{\sigma_{bc}} = 0.6 \text{ fc}_{28}$

La vérification des contraintes est présentée dans le tableau suivant :

Tableau III.30. vérification des contraintes (type 2, volée 1et3)

	M _{ser} (KN.m)	I(cm ⁴)	y(cm)	$\sigma_{bc}(Mpa)$	$\overline{\sigma_{bc}}(Mpa)$	Observation
Travée	11.58	6742.6	3.37	5.79	15	Vérifiée
Appuis	-5.45	5608.73	3.06	2.97	15	Vérifiée

- Etat limite de déformation :

Vérification de la flèche

La vérification de la flèche est nécessaire si l'une des conditions suivantes n'est pasobservée :

$$e \ge \max\left(\frac{1}{16}; \frac{M_t}{20M_0}\right) * l \dots (1)$$

$$A \leq \frac{2*b*d}{fe}$$
.....(2)
L < 8 m(3)

$$\begin{cases}
(1) \Rightarrow e=15 \text{ cm} < 19.37 \text{ cm}\text{condition non vérifiée} \\
(2) \Rightarrow A = 3.93 < 6.5 \text{ cm}^2\text{condition vérifiée} \\
(3) \Rightarrow L = 3.1 \text{ m} < 8 \text{ m}\text{condition vérifiée}
\end{cases}$$

La première condition n'est pas vérifiée donc on doit vérifier la flèche.

La flèche admissible pour une poutre inférieure à 5 mètres est définie par le BAEL91 comme suit : =310/500=0.62cm

✓ Calcul des flèches

$$\begin{cases} fgv = 0.516mm \\ fji = 0.080mm \\ fpi = 0.215mm \\ fgi = 0.238mm \end{cases}$$

 $\Delta f = (fgv - fji) + (fpi - fgi) = 0.041cm < \overline{f} = 310/500 = 0.62cm...$ donc la flèche est vérifiée.

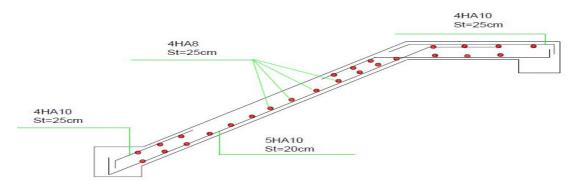
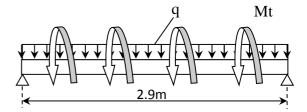



Figure III.7. Schéma de ferraillage de l'escalier type2, volée 1et3

NB: Pour des exigences de réalisation de règlementation algérienne exige un ferraillage minimum de T10 pour ce genre d'élément

III.4. Etude de la poutre palière :

FigureIII.8. Schéma statique de la poutre palière

> Dimensionnement

D'après la condition de flèche définit par le **BAEL91** :

$$L/15 \le h \le L/10 \iff 19{,}33 \ cm \le h \le 29 cm$$

> Exigences du RPA99/2003

$$\begin{cases} h \ge 30 \ cm \\ b \ge 20 \ cm \\ h/h < 4 \end{cases}$$

Donc, on prend: b = 30 cm; h = 35 cm

Définition des charges

La poutre palière est soumise à :

- **Son poids propre :** $g_0 = 25 \times 0.30 \times 0.35 = 2.625 \, KN/m$
- Charge transmise de la paillasse : $\begin{cases} ELU: R_{Bu} = 26.9 \ KN/m \\ ELS: R_{Bs} = 19.42 \ KN/m \end{cases}$
- **Moment de torsion** $M_{tor} = M_B \times l/2$: provoqué par la flexion de la paillasse.

> Calcul à la flexion simple

Calcul des sollicitations

$$q = \left\{ \begin{array}{l} \text{ELU: } q_u = 1.35 \ g_0 + R_{Bu} = 30.44 \ \text{KN/m} \\ \text{ELS: } q_s = g_0 + R_{Bs} = 22.05 \ \text{KN/m} \end{array} \right.$$

Moments:
$$M_{0u} = \frac{q_u l^2}{8} = 32 \text{ KN. m} \implies \begin{cases} M_{tu} = 0.85 \text{ M}_0 = 27.2 \text{ KN.m} \\ M_{au} = -0.5 \text{ M}_0 = -16 \text{ KN.m} \end{cases}$$

Effort tranchant: $V_u = q_u \frac{l}{2} = 44.14 \text{ KN}$

> Ferraillage à l'ELU

Les résultats de ferraillage sont récapitulés dans le tableau suivant :

Tableau III.31. Résultats de ferraillage de la poutre palière (en F.S)

Position	M(KN.m)	Pivot	μ_{bu}	α	Z(m)	$A_{F.S}^{cal}(cm^2)$	$A^{min}(cm^2)$	$A^{cal} \ge A^{min}$
Travée	27.2	A	0.058	0.075	0.32	2.44	1.19	Vániti á a
Appui	- 16		0.034	0.044	0.32	1.44	1.19	Vérifiée

> Contrainte de cisaillement en flexion simple

$$\tau_u = \frac{V^{max}}{b \times d} = \frac{44.14 \times 10^{-3}}{0.30 \times 0.33} = 0.46 \text{ MPa}$$

> Armatures transversales

On fixe St = 15 cm et on calcul A_{trans}

a)
$$A_{trans} \ge \frac{0.4 \times b \times St}{f_e}$$
 $\Rightarrow A_{trans} \ge 0.45 \text{ cm}^2$

a)
$$A_{trans} \ge \frac{0.4 \times b \times St}{f_e}$$
 \Rightarrow $A_{trans} \ge 0.45 \text{ cm}^2$
b) $A_{trans} \ge \frac{b \times St(\tau_u - 0.3f_{t28})}{0.9 f_e}$ \Rightarrow $A_{trans} \ge 0.005 \text{ cm}^2$

 $A_{trans} = \max(0.45cm^2; 0.005cm^2)$, donc on prend $A_{trans} = 0.45 cm^2$

Calcul à la torsion

Moment de torsion

$$M_{tor} = M_B \times \frac{l}{2} = 13.83 \times \frac{2.9}{2} = 20.05 \text{ KN. m}$$

Avec : M_B : Moment en appui (B) obtenu lors du calcul de la partie AB de l'escalier (Type1)

D'après le **BAEL 91**, dans le cas de la torsion, la section réelle (b × h) est remplacée par une section creuse équivalente Ω d'épaisseur ($e = \emptyset/6$); car des expériences ont montrés que le noyau d'une section pleine ne joue aucun rôle dans l'état limite ultime de torsion.

 $\emptyset = \min(b, h)$: Diamètre du cercle pouvant être inclus dans la section (b × h).

$$e = \frac{h}{6} = 5.83 \text{cm}$$
 \Rightarrow $\Omega = (b - e) \times (h - e) = 705.04 \text{ cm}^2$

U = 2(b + h) = 130 cm: Périmètre de la section de la poutre palière.

> Armatures longitudinales

$$A_l^{tor} = \frac{M_{tor} \times U}{2 \times \Omega \times f_{st}} = \frac{20.05 \times 10^{-3} \times 1.3}{2 \times 0.0705 \times 348} = 5.31 \text{ cm}^2$$

> Armatures transversales

on fixe
$$St = 15 \ cm$$
 $\Rightarrow A_l^{tor} = \frac{M_{tor} \times St}{2 \times \Omega \times f_{st}} = 0.61 \ cm^2$

> Contrainte de cisaillement

$$\tau^{tor} = \frac{M_{tor}}{2 \Omega e} = \frac{20.05 \times 10^{-3}}{2 \times 0.0705 \times 0.0583} = 2.44 MPa$$

On doit vérifier : $\tau_{total}^{tor} \leq \bar{\tau}$

Avec:
$$\tau_{total}^{tor} = \sqrt{\tau^{F.S^2} + \tau^{tor}^2} = \sqrt{0.46^2 + 2.44^2} = 2.48 Mpa$$

 $F. P. N \Rightarrow \bar{\tau} = \min\left(\frac{0.2 f_{cj}}{v_h}; 5 MPa\right) = 3.33 MPa$

Ce qui donne : $au_{total}^{tor} < ar{ au}$ pas de risque de rupture par cisaillement

> Ferraillage globale

En travée :
$$A_{st} = A_{trav}^{F.S} + \frac{A_l^{tor}}{2} = 2.44 + \frac{5.31}{2} = 5.52 \text{ cm}^2$$

Soit
$$5HA12 = 5.65 \text{ cm}^2$$

En appui :
$$A_{sa} = A_{app}^{F.S} + \frac{A_l^{tor}}{2} = 1.44 + \frac{5.31}{2} = 4.10cm^2$$

Soit: $4HA12 = 4.52 \text{ cm}^2$

Armature transversales:

$$A_{trans} = A_{trans}^{F.S} + A_{tran}^{tor} = 0.45 + 0.61 = 1.06cm^2$$

Soit $408 = 2.01 \text{ cm}^2$ (un cadre + un étrier).

> Vérification à l'ELS

√ Vérification des contraintes

$$q_s = g_0 + R_{Bs} = 22.045 \text{ KN/m}$$

Moments:
$$M_{0s} = \frac{q_s l^2}{8} = 23.17 \text{ KN. m} \implies \begin{cases} M_{tu} = 0.85 \text{ M}_0 = 19.69 \text{ KN.m} \\ M_{au} = -0.5 \text{ M}_0 = -11.58 \text{ KN.m} \end{cases}$$

La vérification des contraintes est présentée dans le tableau suivant :

Tableau III.32. Vérification des contraintes à l'ELS

Position	M _{ser} (KN.m)	Y(cm)	I (cm ²)	σ _{bc} (MPa)	σ̄ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma}_{bc}$ (MPa)
En travée	19.69	11.12	54323.1	4.03	15	Vérifiée
En appui	-11.58	10.16	45856.6	2.56	15	Vérifiée

√ Vérification de la flèche

La flèche est à vérifier si les conditions suivantes ne sont pas observées :

1)
$$h \ge \max\left(\frac{1}{16}; \frac{M_t}{10 M_0}\right) \times l \iff h = 35 \text{ cm} > 24.64 \text{ cm} \dots \dots Vérifiée$$

2)
$$A \le \frac{4,2. b. d}{f_e} \Leftrightarrow 5.65 cm^2 < 10.4 cm^2 \dots Vérifiée$$

3)
$$L = 2.9 m < 8 m \dots Vérifiée$$

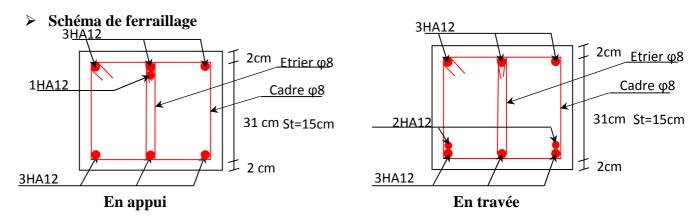


Figure III.9. Schéma de ferraillage de la poutre palière

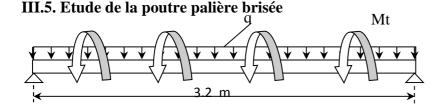


Figure III.10. Schéma statique de la poutre brisée

III.5.1. Dimensionnement

D'après la condition de flèche définit par le BAEL91 :

$$\frac{L}{15} \le h \le \frac{L}{10} \iff 21.33 \ cm \le h \le 32 \ cm$$

> Exigences du RPA99/2003

$$\begin{cases} h \ge 30 \ cm \\ b \ge 20 \ cm \\ h/b < 4 \end{cases}$$

Donc, on prend: b = 30 cm, h = 35 cm

> Définition des charges

La poutre palière est soumise à :

- Son poids propre : $g_0 = 25 \times 0.30 \times 0.35 = 2.625 \, KN/m$
- Charge transmise de la partie (AB) : $\begin{cases} ELU: R_{Bu} = 21.48 \ KN/m \\ ELS: R_{Bs} = 15.47 \ KN/m \end{cases}$
- **Poids de murs :** $g_1 = 20 \times 0.20 \times (3.06 1.36) = 6.8 \, KN/m$
- **Moment de torsion** $M_{tor} = M_B \times l/2 = 15.07$ KN. m: provoqué par la flexion de la partie (AB).

Le calcul à la flexion simple et à la torsion est résumé dans le tableau suivant :

Tableau III.33. Calcul en flexion simple et en torsion

	Flexion simple		Tousion	Total	
	Travée	Appui	Torsion	Total	
q (KN/ml)	34	1.2	34.2	/	
M (KN.m)	37.21	-21.89	15.07	/	
τ (MPa)	0.34		1.83	1.86	
A(cm2)	3.34	1.95 3.07		$A_{tr} = 4.88$ $A_{ap} = 3.49$	
A _{trans} (cm2)	0.	45	0.46	0.91	

III.5.2. Ferraillage opté et vérification nécessaires

> Ferraillage

$$\{A_{st} = 4.88cm^2 \ Soit 5HA12 = 5,65 cm^2 \ En travée \ A_{sa} = 3.49 cm^2 \ Soit 3HA14 = 4.62 cm^2 \ En appui \$$

$$A_{trans} = 0.91 \text{ cm}^2$$
 Soit $4\emptyset8 = 2,01 \text{ cm}^2$ (un cadre + un étrier).

> Cisaillement

$$\tau_{tot} = 1.86 \, MPa < \bar{\tau} = 3{,}33 \, MPa$$
......Vérifiée

Vérification des contraintes à l'ELS

En travée :
$$\sigma_{bc}=9.57~MPa \leq \overline{\sigma}_{bc}=15MPa.....$$
vérifiée
En appui : $\sigma_{bc}=4.19MPa \leq \overline{\sigma}_{bc}=15MPa....$ vérifiée

> Vérification de la flèche

La vérification de la flèche dépende de l'observation des conditions suivantes :

1)
$$h \ge \max\left(\frac{1}{16}; \frac{M_t}{10 M_0}\right) \times l \iff h = 35 \text{ cm} > 27.2 \text{ cm} \dots \text{ werifiée}$$

2)
$$A \le \frac{4.2 * b * d}{f_e} \Leftrightarrow 8.01 \text{ cm}^2 < 10.4 \text{ cm}^2 \dots \text{vérifiée}$$

$$3) L = 3.2 \text{ m} < 8 \text{ m} \dots \text{vérifiée}$$

Les trois conditions sont vérifiées, donc nous n'avons pas besoin de vérifier la flèche.

> Schéma de ferraillage

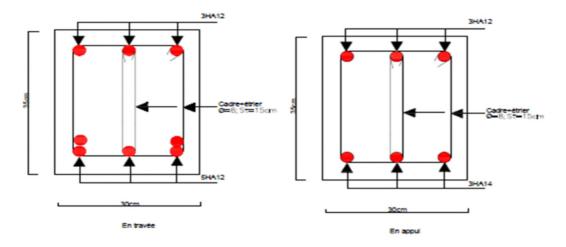


Figure III.11. Schéma de ferraillage de la poutre brisée

III.6. Etude de la poutre de chainage :

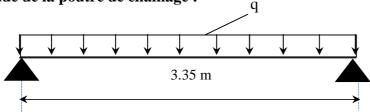


Figure III.12. Schéma statique de la poutre de chainage

III.6.1. Dimensionnement

D'après le **RPA99** (**Art 9.3.3**), la dimension minimale de la poutre de chainage doit être supérieure ou égale à 15 cm ou à 2/3 de l'épaisseur de l'élément supporté.

Dans notre cas, la poutre sert d'appui pour les poutrelles du plancher à corps creux, et pour reprendre le poids des cloisons.

$$h \ge \max\left(\frac{2}{3} \times 20 \ cm ; 15cm\right) \implies h \ge 15 \ cm$$

❖ Condition de la flèche

$$L/15 \le h \le L/10 \iff 22.33 \ cm \le h \le 33.5 cm$$

\$ Exigences du RPA 99/2003

$$\begin{cases} h \ge 30 \ cm \\ b \ge 20 \ cm \\ h/b < 4 \end{cases}$$
 Donc, on prend: $b = h = 25 \ cm$

> Calcul des sollicitations

La poutre de chainage qu'on va étudier est soumise aux chargements suivants :

- **Poids propre :** $G_p = 25 \times 0.25 \times 0.25 = 1.56 \, KN/ml$
- **Poids du mur :** $G_m = (3.06-0.45)*2.67 = 6.97$
- **Charge d'exploitation sur la poutre :** $Q_0 = 1 \ KN/m$

Donc, la charge totale qui revient sur la poutre de chainage est :

$$\begin{cases} ELU: \ q_u = 1,35 \ (G_p + Gm) + 1,5Q_0 = 11.52 \ KN/m \\ ELS: \ q_S = G_p + Gm + Q_0 = 9.53 \ KN/m \end{cases}$$

$$\text{Moments isostatiques} \quad \begin{cases} ELU: M_{0u} = q_u \times \frac{l^2}{8} = 16.16 \ KN. \ m \\ ELS: M_{0s} = q_s \times \frac{l^2}{8} = 13.37 \ KN. \ m \end{cases}$$

Moments en travée
$$\begin{cases} ELU: M_{tu} = 0,85 \ M_{0u} = 13.73 \ KN. \ m \\ ELS: M_{ts} = 0,85 \ M_{0s} = 11.36 \ KN. \ m \end{cases}$$

Moment en appui :
$$M_a = -0.4 \ M_0 \begin{cases} ELU: M_{au} = -6.46 \ KN. m \\ ELS: M_{as} = -5.35 \ KN. m \end{cases}$$

> Ferraillage à l'ELU

Tableau III.34. Moments et ferraillages correspondant

Position	M (KN.m)	Pivot	μ_{bu}	α	Z (m)	A^{cal} (cm^2)	A^{min} (cm^2)	A ^{adop} (cm ²)
Travée	13.73	Λ	0.073	0.094	0.22	1.79	0.69	3HA12 = 3.39
Appui	- 6.46	А	0.034	0.044	0.22	0.82	0.69	3HA10 = 2.36

> Vérification de l'effort tranchant CBA93 (Art A.5.1.1)

$$V_u = q_u \times \frac{l}{2} = 19.29 \text{ KN} \implies \tau_u = \frac{V_u}{b \times d} = 0.335 \text{ MPa}$$

F.P.N
$$\Rightarrow \overline{\tau} < \min(0.2 f_{c28}/\gamma_b; 5 MPa) = 3.33 MPa$$

 $au_u < \overline{ au} \implies v \acute{e}rifi\acute{e}$, donc pas de risque de rupture par cisaillement.

> Armatures transversales

On fixe St = 15 cm puis on calcul A_{trans}

a)
$$A_{trans} \ge \frac{0.4 \times b \times St}{f_e}$$
 \Rightarrow $A_{trans} \ge 0.37 \ cm^2$

b)
$$A_{trans} \ge \frac{b \times St(\tau_u - 0.3f_{t28})}{0.9 f_e} < 0$$

Soit un cadre $\phi 8$ + un étrier $\phi 8$ $\longrightarrow A_t = 4\phi 8 = 2{,}01 \ cm^2$

Vérifications à l'ELS

On doit vérifier la contrainte de compression dans le béton, ainsi que la flèche au niveau de la section dangereuse (à mi- portée).

Les résultats obtenus sont résumés dans les deux tableaux qui suivent :

Tableau III.35. Vérification des contraintes

Position	M _{ser} (KN.m ²)	Y (cm)	I (cm²)	$egin{aligned} \sigma_{bc} \leq \overline{\sigma}_{bc} \ (MPa) \end{aligned}$
En travée	11.36	7.85	15700.74	5.68 ≤ 15
En appui	5.35	6.78	9372.09	$3.87 \le 15$

Vérification de la flèche

1)
$$h \ge \max\left(\frac{1}{16}; \frac{M_t}{10 M_0}\right) \times l$$

$$\Leftrightarrow$$
 h = 25 cm < 28.46 cm vérifiée

$$2) A \le \frac{4,2. b. d}{f_e}$$

3)
$$L = 3.35 m < 8m$$

Les conditions sont vérifiées, donc on n'a pas besoin de calculer la flèche

> Schémas de ferraillage

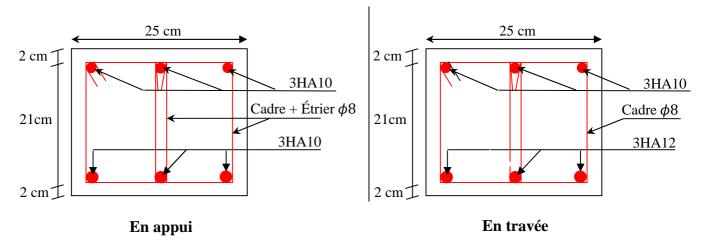


Figure III.13. Schéma de ferraillage de la poutre de chainage

III.7. Etude de l'ascenseur

III.7.1. Définition

L'ascenseur est un appareil mécanique, servant au déplacement vertical des personnes et des chargements vers les différents niveaux de la construction.

Elle se constitue d'une cabine, qui se déplace le long d'une glissière verticale dans l'ascenseur muni d'un dispositif mécanique permettant le déplacement de la cabine

L'ascenseur qu'on étudie est pour 06 personnes.

Figure III.14. Schéma statique et concept d'ascenseur

III.7.2. Les caractéristiques

V = 0.63 m/s: Vitesse de levage.

 $P_m = 15 \text{ KN}$: Charge due à la salle de machine.

 $D_m = 82 \text{ KN}$: Charge due au poids propre de l'ascenseur.

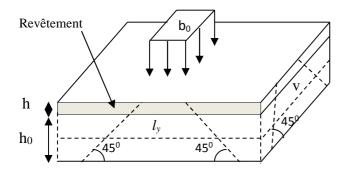
 $F_c = 50 \text{ KN}$: Charge due à la rupture des câbles

Course maximale = 50 m

 $B_s \times T_s = 1,75 \times 1,75 \text{ m}^2 \text{ dimensions de la gain.}$

Figure III.15. Dalle d'ascenseur

La charge nominale (personne): 5,4 KN.


Selon les charges on définit deux types de dalles qui sont :

- 1)- Dalle de salle machine (locale).
- 2)- Dalle qui sert d'appui à l'ascenseur.

$$P = P_m + D_m + 5.4 = 15 + 5.4 + 82 = 102.4 \text{ KN}$$

III.7.3. Dalle de salle machine (locale)

- h₀: épaisseur de la dalle
- h: épaisseur de revêtement
- a₀ et U sont ∥à l_x
- b₀ et V sont ∥à l_v

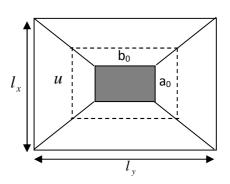


Figure III.16. Schéma représentant la surface d'impact.

$$U = a_0 + h_0 + 2 \xi * h$$

$$V = b_0 + h_0 + 2 \xi * h$$

$$Avec: \xi = 0.75 ; le revêtement est moins résistant$$

$$U = 80 + 15 + 2*0.75*5 = 102.5 cm$$

$$V = 80+15+2*0.75*5 = 102.5 \text{ cm}$$

Remarque: On prend l'épaisseur de la dalle 15 cm (il supporte des charges importantes).

> Calcul des moments

$Arr M_1^x$ et M_1^y Du système de levage

On a un chargement concentré centré:

$$\begin{cases} M_1^x = (M_1 + v * M_2) \ q(U * V) \\ M_1^y = (M_2 + v * M_1) \ q(U * V) \end{cases}$$

En utilisant les tableaux BAEL (Annexe 2), on tire les coefficients M_1 et M_2 en fonction de U/L_x , V/L_y et ρ :

$$\rho = 1 \; ; \; U/L_x \; = 102,5/175 = 0,59 \; ; \; V/L_y = 102,5/175 = 0,5/175 =$$

Soit
$$M_1 = M_2 = 0.076$$

Avec
$$\nu = 0$$
 à l'ELU et $\nu = 0.2$ à l'ELS

$$q_{\nu} = 1,35 P = 1,35 \times 102,4 = 138,24 KN$$

$$M_1^x = 0.076 \times 138,24 \times (1.025 \times 1.025) \implies M_1^x = 11.04 \text{ KN. } m$$

$$M_1^y = 0.076 \times 138,24 \times (1.025 \times 1.025) \Longrightarrow M_1^y = 11.04KN.m$$

❖ M₂^x et M₂^ydû aux poids propre de la dalle

$$\begin{cases} M_2^x = \mu_x \times q \times l_x^2 \\ M_2^y = \mu_y \times M_2^x \end{cases}$$

$$\rho = l_x/l_y = 1 > 0.4 \implies$$
 La dalle travaille dans les deux sens.

$$\mu_x = 0.0368$$
; $\mu_y = 1$

Le poids propre de la dalle et du revêtement (pour un revêtement de 5 cm)

$$G = 4.75 \text{ KN/m}^2$$
; $Q = 1 \text{KN/m}^2$

$$q_u = 1,35 \times 4,75 + 1,5 \times 1 = 7,911 \text{KN/}ml$$

$$M_2^x = 0.0368 \times 7.91 \times 1.75^2$$

$$M_2^y = M_2^x = 0.89 \text{ KN. m}$$

La superposition des moments donnés :

$$M_x = M_1^x + M_2^x = 11,04 + 0,89 = 11,93 \text{ KN. m}$$

$$M_y = M_1^y + M_2^y = 11,04 + 0,89 = 11,93 \text{ KN. m}$$

> Ferraillage

Le ferraillage se fait pour une longueur unité avec

$$M_{tx} = M_{ty} = 0.85 M_x = 10.14 \text{KN.m}$$
; $M_{ay} = M_{ax} = -0.4 M_x - 4.77 \text{ KN.m}$

Tableau III.36. Ferraillage de la dalle D'ascenseur

Position	M(KN.m)	μ_{bu}	α	Z(m)	$A^{cal}(cm^2)$	$A^{min}(cm^2)$	$A^{adop}(cm^2)$
Travée	11,93	0,049	0,063	0,127	2,69	1,57	4HA10 = 3,14
Appui	- 4,77	0,019	0,025	0,129	1,06	1,57	3HA10 = 2,36

Vérification au poinçonnement :

$$q_u \leq 0.045 \times U_c \times h \times fc28/\gamma b$$

Avec U_c Périmètre du rectangle d'impact

$$U_c = 2 \times (U + V) = 2 \times (102.5 + 102.5) = 410 cm$$

$$138,24 \le \frac{0,045 \times 4,10 \times 0,15 \times 25 \times 10^3}{1,5}$$

 $138,24 \le 461,25$

> Vérification de l'effort tranchant

Les efforts tranchants sont max au voisinage de la charge (milieu), U=V

$$T_U = T_v = \frac{q_u}{3 \times U} = \frac{138,24}{3 \times 1.02} = 45,176 \text{ KN}$$

$$\tau_U = \frac{T_U}{b \times d} = \frac{45,176 \times 10^{-3}}{1 \times 0.13} = 0,35 MPa$$

$$\bar{\tau}_U = 0.07 \times \frac{f_{c28}}{v_h} = 0.07 \times \frac{25}{1.5} = 1.17 MPa$$

$$\tau_U < \bar{\tau}_U$$

➤ Calcul à l'ELS

Moment engendré par le système de levage :

$$q_{ser} = 102,4KN$$

$$\begin{cases} M_1^x = (M_1 + v \times M_2) \ q(U \times V); \Rightarrow M_1^x = (0,076 + 0,2 \times 0,76) \times 102,4 \times 1,02 \times 1,02 \\ M_1^y = (M_2 + v \times M_1) \ q(U \times V); \Rightarrow M_1^y = (0,076 + 0,2 \times 0,76) \times 102,4 \times 1,02 \times 1,02 \end{cases}$$

$$M_1^x = 9,72 \text{ KN.M}; M_1^y = 9,72 \text{ KN.M}$$

Moment dû au poids propre de la dalle :

$$q_s = 4,75 + 1 = 5,75 \text{ KN/}ml$$

 $M_2^x = 0,0441 \times 5,75 \times 1,75^2$

$$M_2^y = 0.78 * 1 = M_2^x = 0.78 \text{ KN.M}$$

La Superposition des Moments:

$$M_x = M_y = M_1^x + M_2^x = 9,72 + 0,78 = 10,6$$
KN. m

Vérification des contraintes dans le béton

$$M_{tx} = M_{ty} = 0.85 M_x = 9.01 KN. \text{ m}$$
; $M_{ay} = M_{ax} = -0.4 M_x = -4.24 \text{ KN. m}$

Tableau III.37. Vérifications des contraintes à l'ELS

Position	<i>M_x</i> (KN.m)	A_s cm^2	y (cm)	I cm ⁴	$\sigma_{bc} \leq \overline{\sigma}_{bc}$ (MPA)	Observation
Travée	9,01	3,14	3,06	5608	4,92 < 15	Vérifiée
Appui	- 4,24	2,36	2,70	4411	2,59 < 15	Vérifiée

> Schémas de ferraillage

3HA10/ml; $S_t=33$ cm

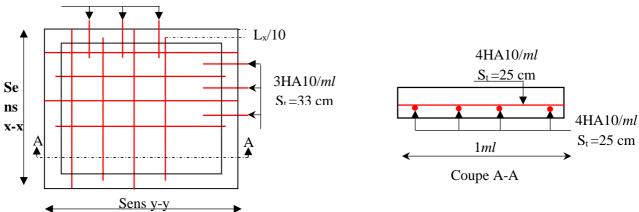


Figure III.17. Schéma de ferraillage du local machine

III.7.4. Etude de la dalle pleine au-dessous de l'ascenseur

Les dimensions sont les mêmes (175×175 et h =15cm)

- Poids propre de la dalle et du revêtement : $G_1 = 4,75$ KN/m²
- Poids propre de l'ascenseur : $G_2 = \frac{F_c}{S} = \frac{50}{1.75 \times 1.75} = 16,33 \text{KN/m}^2$
- $G^{total} = G_1 + G_2 = 21,08 \text{ KN/m}^2$

$$P_u = 1.35 \times G^{total} = 28.46 \text{ KN/m}^2$$

 $\rho = l_x/l_y = 1 > 0.4 \implies$ La dalle travaille dans les deux sens.

$$\mu_x = 0.0368$$
; $\mu_y = 1$

> Calcul des moments à l'ELU

$$M_x = 0.0368 \times 28.46 \times 1.75^2$$

$$M_{v} = M_{x} = 3,21 \, KN. \, m$$

$$M_{tx} = M_{ty} = 0.85 M_x = 2.73 \text{KN. m}$$
; $M_{ay} = M_{ax} = -0.4 M_x = -1.28 \text{ KN. m}$

> Ferraillage

Les résultats de calculs sont résumés dans le tableau suivant:

Position	M (KN.m)	μ_{bu}	α	Z (m)	A^{cal} (cm^2)	A^{min} (cm^2)	$A^{adop} \ (cm^2)$
Travée	2,73	0,011	0,0138	0,129	0,61	1,57	3HA10 = 2,36
Appui	- 1,28	0,005	0,006	0,129	0,28	1,57	3HA10 = 2,36

Tableau III.38. Ferraillage de la dalle pleine au-dessous de l'ascenseur

Calcul à l'ELS

$$P_s = 21.08 \text{ KN/m}^2$$

$$M_x = 0.0441 \times 21.08 \times 1.75^2$$

$$M_{\nu} = M_{x} = 2,85 \, KN. m$$

$$M_{tx} = M_{ty} = 0.85 M_x = 2.42 \text{KN. m}$$
; $M_{ay} = M_{ax} = -0.4 M_x = -1.14 \text{ KN. m}$

Vérification des contraintes

Les résultats de calculs sont résumés dans le tableau suivant:

Tableau III.39. Vérification des contraintes

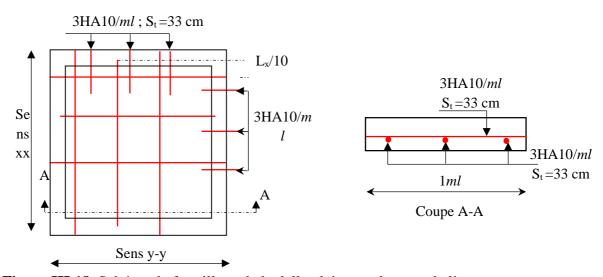
Position	M_{χ} (KN.m)	$\frac{A_s}{cm^2}$	y (cm)	I cm ⁴	$\sigma_{bc} \leq \overline{\sigma}_{bc}$ (MPA)	Observation
Travée	2,24	2,36	2,70	4411,7	1,37 < 15	Vérifiée
Appui	- 1,14	2,36	2,70	4411,7	0,70 < 15	Vérifiée

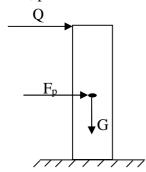
> La flèche

$$\begin{cases} e \geq \max(\frac{3}{80}; \frac{M_x^t}{20M_0^x})l_x \\ A_t \leq \frac{2bd_x}{f_e} \end{cases} \Rightarrow \begin{cases} e = 15 \ cm > 6,87 \ cm \ \dots \dots V \acute{e}rifi\acute{e}e \\ A_t = 2,36 \ cm^2 < 6,5 \ cm^2 \dots \dots V \acute{e}rifi\acute{e}e \end{cases}$$

La vérification de la flèche n'est pas nécessaire

Schémas de ferraillage




Figure III.18. Schéma de ferraillage de la dalle pleine au-dessous de l'ascenseur

III.8. Etude de l'acrotère

L'acrotère est un élément de sécurité au niveau de la terrasse, il forme une paroi contre toute chute. Il est considéré comme une console encastrée à sa base, soumise à son poids propre (G), à une surcharge horizontale due à la main courante (Q) et à une force sismique (F_p) .

Le calcul se fera en flexion composée au niveau de la section d'encastrement pour une bande de 1 mètre linéaire. Les dimensions de l'acrotère sont données dans la figure (III.19).

NB: Le calcul se fera pour l'acrotère le plus sollicité, autrement dit celui ayant une hauteur égale à 1,20 m, pour les autres on adoptera le même ferraillage.

55 cm 10cm 5cm

Figure III.19. Modèle de calcul de l'acrotère III.8.1 Hypothèses de calcul

Figure III.20. Coupe transversale de l'acrotère.

- ✓ Le calcul se fera pour une bande de 1 ml.
- ✓ La fissuration est considérée préjudiciable.
- ✓ L'acrotère sera calculé en flexion composée.

III.8.2 Evaluation des charges et surcharges

Poids propre :

$$G_0 = 25 \times S_{acr} = 25 \times 0.0625 = 1.56 \, KN$$

 $G^{rev} = 18 \times 0.02 = 0.36 \, KN$

D'où, la charge totale est $G = W_p = 1.92 \text{ KN}$

charge d'exploitation

$$O = 1 KN$$

❖ Force sismique

La force sismique est donnée par la formule suivante :

$$F_p = 4 \times A \times Cp \times W_p.....RPA99 (Art 6.2.3)$$

$$Avec \begin{cases} A = 0.15 \ (zone \ IIa) : coefficient \ d'accelération de \ de \ la \ zone \ ; \\ C_p = 0.8 : facteur \ de \ force \ horizontale \ ; \\ W_p = 1.92 \ KN : poids \ propre \ de \ l'acrotère. \end{cases}$$

Donc,
$$F_p = 0.92 KN$$

> Calcul des sollicitations

$$\textbf{Calcul du centre de gravit\'e:} \begin{cases} X_G = \frac{\sum A_i.X_i}{\sum A_i} \\ Y_G = \frac{\sum A_i.Y_i}{\sum A_i} \end{cases} \Rightarrow \begin{cases} X_G = 6.13cm \\ Y_G = 30.13cm \end{cases}$$

L'acrotère est soumis à :

$$\begin{cases} N_G = 1.92 \ KN \\ M_G = 0 \ KN.m \end{cases} \begin{cases} N_Q = 0 \ KN \\ M_Q = Q \times h = 0.55 KN.m \end{cases} \begin{cases} N_{Fp} = 0 \ KN \\ M_{Fp} = F_p \times Y_G = 0.28 \ KNm \end{cases}$$

Tableau III.40. Combinaisons d'action de l'acrotère.

Combinaisons	ELU Accidentelle	E L U Fondamental	ELS
Sollicitations	G + Q + E	1.35G + 1.5Q	G + Q
N (KN)	1.92	2.59	1.92
M (KN.m)	0.83	0.825	0.55

Calcul de l'excentricité

$$\begin{cases} e_0 = \frac{M_{u \ acc}}{N_{u \ acc}} = \frac{0.83}{1.92} \times 10^2 = 43.23cm \\ \frac{h}{6} = 9.17 \ cm \end{cases} \implies e_0 > h/6$$

Le centre de pression se trouve à l'extérieur du noyau central, ce qui veut dire que la section est partiellement comprimée, de plus N est un effort de compression donc le ferraillage se fait par assimilation à la flexion simple soumise à un moment $M_u = N_u \ x$ e.

D'après le **BAEL** (**Art 4.4**), la section est soumise à un effort normal de compression, elle doit se justifier vis-à-vis l'état limite ultime de stabilité de forme (flambement).

Donc, le risque de flambement conduit à remplacer (e₀) par (e) tel que :

$$e = e_0 + e_a + e_2$$

Avec:

e_a : Excentricités additionnelles traduisant les imperfections géométriques initiales.

e₂: Excentricité due aux effets du second ordre, liés à la déformation de la structure.

 $e_a = max (2 cm ; h/250) = 2 cm.$

$$e_2 = \frac{3 \times l_f^2 \times (2 + \emptyset \times \alpha)}{10^4 \times h_0}$$

Ø : Rapport de la déformation finale dû au fluage à la déformation instantanée sous la charge considérée.

$$\alpha = \frac{M_G}{M_G + M_O} = \frac{0}{0 + 0.55} = 0$$

 $l_f = 2 \times h = 1.1 m$: Longueur de flambement (h = 10cm : hauteur de la section)

$$\Rightarrow e_2 = \frac{3 \times 1.1^3 \times 2}{10^4 \times 0.10} = 0.00726m$$

D'où :
$$e = 43.23 + 2 + 0.726 = 45.95$$
 cm

Les sollicitations de calcul deviennent :

 $N_u = 2.59 \text{ KN}.$

$$Mu = Nu \times e = 2.59 * 0.4595 = 1.19 KN. m$$

III.8.3. Ferraillage de l'acrotère

> Calcul à l'ELU:

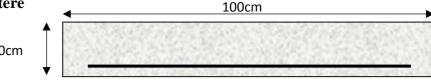


Figure III.21. Section de l'acrotère à ferrailler

On calcule les armatures à l'ELU, puis on effectuera la vérification des contraintes à l'ELS.

 $(h/6 < e_0)$ \Longrightarrow La section est partiellement comprimée et e_0 en dehors de la section, donc le calcul se fait par assimilation à la flexion simple avec M_{ua} :

$$M_{ua} = M_u + N_u (d - \frac{h}{2}) = 1.24 \text{ KN. } m$$

$$\mu_{bu} = \frac{M_{ua}}{f_{bu} \times b \times d^2} = \frac{1.24 \times 10^{-3}}{14.2 \times 1 \times 0.07^2} = 0.018 < \mu_l = 0.392 \Rightarrow A' = 0$$

$$\begin{cases} \alpha = 1.25 \left[1 - \sqrt{1 - 2\mu_{bu}}\right] = 0.023 \\ z = d(1 - 0.4\alpha) = 0.069 \text{ m} \end{cases} \Rightarrow A_1 = \frac{M_{ua}}{z \times f_{st}} = 0.52 \text{ cm}^2$$

On revient à la flexion composée :

$$A = A_1 - \frac{N_u}{f_{st}} = 0.51 \ cm^2 / ml$$

Remarque:

Le ferraillage se fera à l'ELU puisque c'est la situation la plus défavorable. Car l'ELU accidentelle a donné les résultats suivants :

$$A_1 = 0.38 \ cm^2$$
.

$$A = 0.37 \ cm^2$$
.

❖ Vérification à l'ELU

√ Vérification de la condition de non fragilité

Donc on ferraille avec A_{min}

✓ Vérification au cisaillement

On doit vérifier si $\tau_u < \overline{\tau}$

ELU:
$$V_u = 1.5Q = 1.5 \times 1 = 1.5 KN$$

$$\tau_u = \frac{V_u}{b \times d} = \frac{1.5 \times 10^{-3}}{1 \times 0.07} = 0.021 MPa;$$

 $\overline{\tau} < \min(0.1 f_{c28}; 4MPa) = 2.5 MPa$

Situation accidentelle: $V_u = Q + F_p = 1 + 0.92 = 1.92KN$

 $au_u = 0.021 MPa < \overline{ au} = 2,5 MPa \dots Condition vérifiée$

Armatures de répartition

$$A_r = \frac{A}{4} = 0.5 \ cm^2/ml$$

***** Choix des armatures

Sens principal : $A = 0.84 \text{ cm}^2/\text{ml}$ On prend $4\text{HA}8 = 2.01 \text{ cm}^2/\text{ml}$ Sens secondaire : $A_r = 0.50 \text{ cm}^2/\text{ml}$ On prend $4\text{HA}6 = 1.13 \text{ cm}^2/\text{ml}$

***** Calcul des espacements

Sens principal: $S_t \le 100/4 = 25cm$ Sens secondaire: $S_t \le 100/4 = 25cm$

Vérifications à l'ELS

***** Vérification des contraintes

$$F.N \Rightarrow \overline{\sigma} = \min\left(\frac{2}{3} \times f_e; 110\sqrt{\eta \times f_{t28}}\right) = 201,63 \, MPa \text{ avec } \eta=1,6 \text{ (pour les aciers HA)}$$

$$\sigma_{bc} = \frac{N_{ser}}{\mu_t} \times y$$

Calcul de v

$$(y = y_c + C)$$

$$C = e_G - \frac{h}{2} = \frac{M_{ser}}{N_{ser}} - \frac{h}{2} = 0.28 - 0.05 = 0.23 \, m \quad (avec \ C < 0 \, et \, y_c > 0)$$

$$y_c^3 + p y_c + q = 0....(1)$$

$$\begin{cases} p = -3 C^2 - \frac{90A'}{b}(c - d') + \frac{90A}{b}(d - c) = -0.17 m^2 \\ q = -2C^3 - \frac{90A'}{b}(c - d')^2 - \frac{90A}{b}(d - c)^2 = -0.026 m^3 \end{cases}$$

La solution de l'équation (1) dépend $~\Delta = 4p^3 + 27q^2 = -1.4 \times 10^{-3} < 0$

Donc il existe 3 racines réelles, on garde celle qui convient à l'intervalle suivant :

$$-C \le y_c \le h - C \quad \Leftrightarrow \quad -0.236 \le y_c \le -0.136$$

$$\begin{cases} y_{c1} = a\cos(\emptyset/3) = 0.46 \\ y_{c2} = a\cos(\emptyset/3 + 120^{\circ}) = -0.27 \\ y_{c3} = a\cos(\emptyset/3 + 240^{\circ}) = -0.19 \end{cases} avec: \begin{cases} a = 2\sqrt{-p/3} = 0.47 \\ \emptyset = \cos^{-1}\left(\frac{3q}{2p}\sqrt{-3/p}\right) = 15.48^{\circ} \end{cases}$$

Donc, on prend $y_c = -0.19 \implies y = 0.046 m$

$$\mu_t = \frac{by^2}{2} - A(d - y) = 1.053 \times 10^{-3} \text{ m}^3$$

$$\text{d'où} \qquad \sigma_{bc} = \frac{N_{ser}}{\mu_t} \times y = \frac{1.92 \times 10^{-3}}{1.053 \times 10^{-3}} \times 0.046 = 0.08 MPa < \overline{\sigma} \dots v\acute{e}rifi\acute{e}e$$

> Schémas de ferraillage

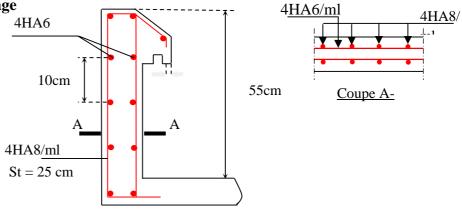


Figure III.22. Schéma de ferraillage de l'acrotère

Remarque : Pour des exigences de réalisation, le règlement algérien exige un ferraillage minimum de T10 pour ce genre d'élément.

III.9.Conclusion

Le but de ce chapitre est la détermination des sections d'acier nécessaire pour reprendre les charges revenant aux éléments secondaires, avec toutes les vérifications nécessaires tout en respectant les règles données par le BAEL91/99 et le RPA99/2003. Ces éléments ont été étudiés et ferraillés.

Chapitre IV: Etude dynamique

IV.1.INTRODUCTION

L'étude dynamique d'une structure vise à assurer une protection acceptable des constructions vis à vis des effets des actions sismiques par une conception et un dimensionnement appropriés tout en satisfaisant les trois aspects essentiels de la conception qui sont : la résistance, l'aspect architectural et l'économie.

Cet objectif ne peut être atteint qu'avec un calcul adéquat tout en respectant la réglementation en vigueur. Dans notre cas on a utilisé le logiciel ETABS pour la modélisation.

IV.2. MODELISATION

La modélisation est la transformation d'un problème physique réel ayant une infinité de degrés de liberté (DDL) à un modèle possédant un nombre de DDL fini qui décrit le phénomène étudié d'une manière aussi fiable que possible, autrement dit, ce modèle doit refléter avec une bonne précision le comportement et les paramètres du système d'origine à savoir : la masse, la rigidité, l'amortissement, etc.

Parmi les méthodes de modélisation qui existent, on trouve la modélisation des bâtiments en trois dimensions, cette méthode consiste à appliquer des charges statiques, effectuer une analyse statique et dynamique modale et spectrale, effectuer une analyse post flambage et analyse ductile avec des rotules plastiques et apprendre les principes de la conception des bâtiments en béton armé en utilisant, c'est pourquoi on se sert du logiciel ETABS V16 afin de simplifier les calculs.

Ce logiciel (ETABS V16) permet de déterminer automatiquement les caractéristiques dynamiques d'une structure (rigidité, déplacement, effort, etc.) à partir d'une modélisation en trois dimensions préalable est appropriée.

Selon les règles parasismiques Algériennes (RPA99/version2003) l'étude peut être menée suivant deux méthodes :

- 1. Par la méthode statique équivalente ;
- 2. Par la méthode dynamique
 - La méthode d'analyse modale spectrale
 - La méthode d'analyse par accélérogramme

IV.3. ANALYSE SISMIQUE DE LA STRUCTURE

La méthode d'analyse modale spectrale peut être utilisé dans tous les cas, et en particulier dans le cas où la méthode statique équivalente n'est pas permise, la méthode d'analyse dynamique par accélérogramme peut être utilisée dans tous les cas, tout en justifiant auparavant le choix des séismes de calcul et des lois de comportement utilisées.

Notre structure n'est pas régulière en élévation, ainsi les conditions complémentaires du RPA99/version 2003 (art 4.1.2) $H_{structure} > 23 \text{ m}$

Donc les conditions d'application de la méthode statique équivalente ne sont pas satisfaites, c'est pourquoi on adopte la méthode d'analyse modale spectrale.

IV.4. Présentation de la méthode modale spectrale

La méthode modale spectrale est, sans doute, la méthode la plus utilisée pour l'analyse sismique des structures, dans cette méthode, on recherche pour chaque mode de vibration le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. Ces effets vont être combinés par la suite suivant la combinaison la plus appropriée pour obtenir la réponse totale de la structure.

Une fois l'effort dynamique est calculé, le RPA prévoit de faire la vérification suivante :

$$V_{dyn} \ge 0.8 V_{st}$$

Dans le cas où la condition n'est pas vérifiée, toutes les réponses obtenues à partir de la méthode dynamique doivent être majorés de $(0.8 V_{st}/V_{dyn})$.

Avec, V_{dyn} : l'effort tranchant dynamique (calculé par la méthode spectrale modale)

$$V_{st} = \frac{A.D.Q.W}{R}$$
: L'effort tranchant statique à la base du bâtiment.

IV.4.1. Spectre de réponse de calcul

Le spectre réglementaire de calcul est donné par l'expression suivante :

$$\frac{S_a}{g} = \begin{cases}
1.25 \times A \times \left(1 + \frac{T}{T_1} \left(2.5 \eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\
2.5 \times \eta \times (1.25A) \times \left(\frac{Q}{R}\right) & T_1 \le T \le T_2 \\
2.5 \times \eta \times (1.25A) \times \left(\frac{Q}{R}\right) \times \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0 \text{ s} \\
2.5 \times \eta \times (1.25A) \times \left(\frac{T_2}{3}\right)^{2/3} \times \left(\frac{3}{T}\right)^{5/3} \times \left(\frac{Q}{R}\right) & T > 3.0 \text{ s}
\end{cases}$$

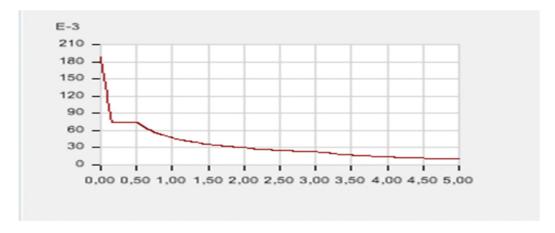


Figure IV.1. Spectre de réponse

IV.4.2. Résultats obtenus

Après la modélisation de notre structure en utilisant le logiciel ETABS16, nous avons obtenus les résultats suivants :

> DISPOSITION DES VOILES

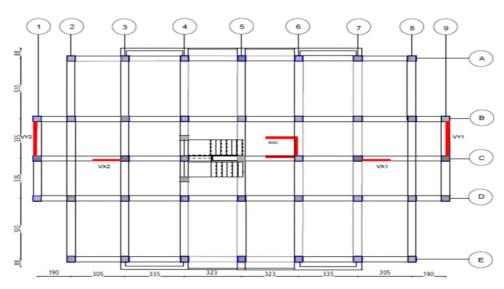


Figure IV.2. Disposition des voiles de contreventement

Avec : $Vx_1 = Vx_2 = Vx_3 = Vx_4 = 1.75 \text{ m}$; $Vy_1 = Vy_2 = 3.35 \text{ m}$; $Vy_3 = 1.75 \text{ m}$

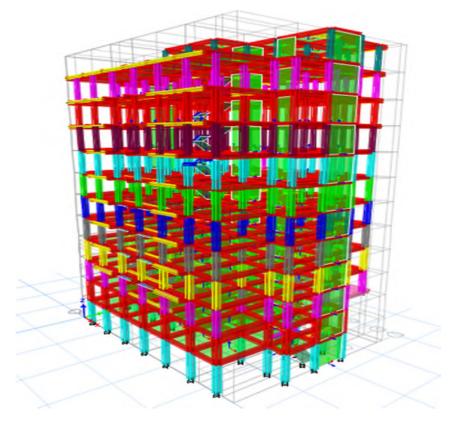


Figure IV.3. Vue en 3D du model obtenue par le logiciel ETABS16

> Vérification du comportement

Interprétation des résultats obtenus

- ✓ Le premier mode est un mode de translation suivant l'axe X-X \Rightarrow Tx = 1.087 s
- ✓ Le deuxième mode est un mode de translation suivant l'axe Y-Y \Rightarrow Ty = 0.945 s
- ✓ Le troisième mode est une rotation selon l'axe Z-Z. \Rightarrow Tz = 0.864 s

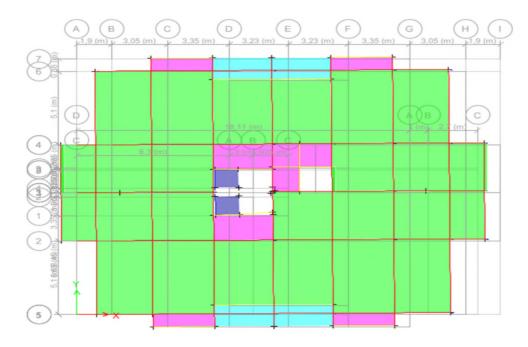
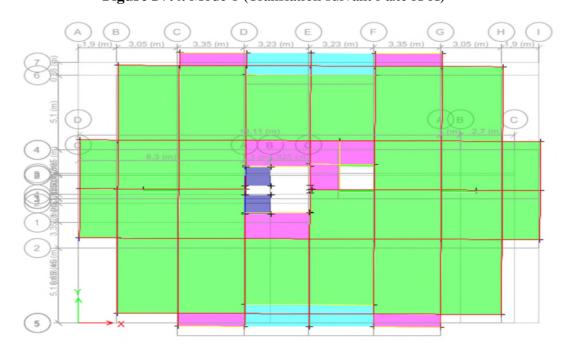



Figure IV.4. Mode 1 (Translation suivant l'axe X-X)

Figure IV.5. Mode 2 (Translation suivant l'axe Y-Y)

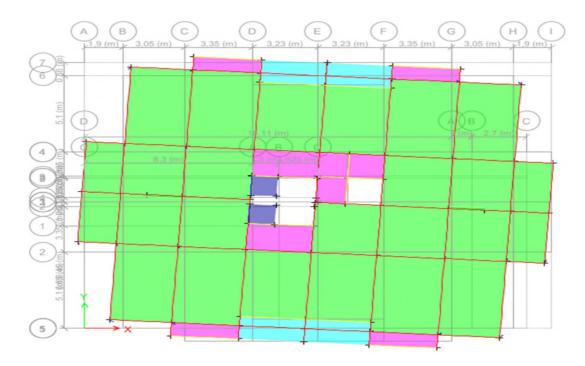


Figure IV.6. Mode 3 (Rotation selon l'axe Z-Z)

> Vérification de la participation massique modale :

Le coefficient de participation massique correspond au ième mode de vibration, représente le pourcentage d'énergie sismique absorbé à ce mode par le bâtiment. La somme de ces coefficients représente la quantité d'énergie totale absorbée par le bâtiment.

Les différents modes de vibration ainsi que la période et le taux de participation massique qui leur revient sont résumés dans le tableau suivant :

Tableau IV.2. Périodes et taux de participation massique de la structure

Madas	Période	(%) de la M	asse modale	(%) Cumulé de la masse modale		
Modes	(s)	Suivant X (UX)	Suivant Y (UY)	Suivant X (UX)	Suivant Y (UY)	
1	1,087	0,6665	0,002	0,6665	0,002	
2	0,945	0,0019	0,643	0,6683	0,6449	
3	0,864	0,0058	0,0008	0,6741	0,6458	
4	0,341	0,1073	0,0001	0,7814	0,6459	
5	0,271	0,00001109	0,142	0,7814	0,7878	
6	0,244	0,0025	0,0024	0,784	0,7902	
7	0,176	0,0445	0,00003335	0,8285	0,7903	
8	0,128	0,0004	0,0598	0,8289	0,8501	
9	0,119	0,0213	0,0026	0,8502	0,8527	
10	0,103	0,009	0,0004	0,8591	0,8531	
11	0,101	0	0,000001579	0,8591	0,8531	
12	0,079	0,028	0,0037	0,8872	0,8568	

13	0,077	0,0028	0,0392	0,8899	0,896
14	0,065	0,0012	0,0007	0,8911	0,8967
15	0,057	0,0295	0,0008	0,9206	0,8975
16	0,054	0,0002	0,0431	0,9209	0,9406

On constate que la participation massique modale atteindra les 90% de la masse totale lorsqu'on prend 15 modes selon X et 16 modes selon Y.

IV.5. Vérification des résultats obtenus vis-à-vis des exigences du RPA99/2003

IV.5.1. Vérification de la résultante des forces sismique à la base

Le RPA99/2003 exige de vérifier la relation suivante $V_{dyn} \ge 0.8 V_{st}$

Avec, V_{dyn}: l'effort tranchant dynamique (calculé par la méthode spectral modal).

$$V_{st} = \frac{A.D.Q.W}{R}$$
: L'effort tranchant statique à la base du bâtiment.

Tel que:

A: Coefficient d'accélération de zone;

D : Facteur d'amplification dynamique moyen ;

W : Poids total de la structure ;

R : Coefficient de comportement de la structure ;

Q : Facteur de qualité.

Les paramètres cités au-dessus dépendent des caractéristiques de notre structure:

✓ {Groupe d'usage (2)
Zone sismique (II a)
$$\Rightarrow$$
 A= 0,15

✓ Dans le cas de notre projet, on adopte pour un système de contreventement mixte portiques-voiles avec justification de l'interaction, donc : $\mathbf{R} = \mathbf{5}$

$$\checkmark Q = 1 + \sum_{1}^{6} P_q$$
 RPA99/2003 (Formule 4.4)

 $\boldsymbol{P_q}$: est la pénalité à retenir selon que le critère de qualité (q) est observé ou non.

Les valeurs à retenir sont dans le tableau suivant :

Tableau IV.3. Valeurs des pénalités

N°	« Critère q »	Observation	Pénalités
01	Conditions minimales sur les files de contreventement	Vérifié	0
02	Redondance en plan	vérifié	0
03	Régularité en plan	Non vérifié	0.05
04	Régularité en élévation	Vérifié	0
05	Contrôle de qualité des matériaux	Vérifié	0
06	Contrôles d'exécution	Vérifié	0

Donc,
$$\begin{cases} Q_x = 1,05 \\ Q_y = 1,05 \end{cases}$$

$$W = \sum_{i=1}^{n} W_i$$
 avec $W_i = W_{Gi} + \beta \times W_{Qi}$ **RPA99/2003** (Formule 4.5)

- \checkmark W_{Gi}: Poids dû aux charges permanentes et à celles des équipements fixes éventuels, solidaires à la structure.
- ✓ W_{Oi} : Charges d'exploitation.
- \checkmark β : Coefficient de pondération, il est fonction de la nature et de la durée de la charge d'exploitation.

Avec :
$$\beta = 0.2 \ \text{pour les \'etages \`a usage d'habitation}$$

$$\beta = 0.3 \ \text{pour les \'etages \`a usage commercial}$$

Dans notre cas d'après l'ETABS : W = 45667,68 KN

$$\checkmark D = \begin{cases}
2.5\eta & 0 \le T \le T_2 \\
2.5\eta \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0 \text{ s} & \text{RPA99/2003 (Formule 4.2)} \\
2.5\eta \left(\frac{T_2}{3.0}\right)^{2/3} \left(3.0/T\right)^{5/3} & T \ge 3.0 \text{ s}
\end{cases}$$

$$\sqrt{\eta} = \sqrt{7/(2+\xi)} \ge 0.7$$
RPA99/2003 (Formule 4.3)

 ξ : Le pourcentage d'amortissement critique fonction du matériau constitutif, du type de structure et de l'importance des remplissages.

Pour notre structure, on a : $\xi = 10\%$

RPA99/2003 (Tableau 4.2)

D'où, $\eta = 0.76$

✓ On a un site meuble S3,

D'après le rapport de sol
$$\Rightarrow$$
 $\begin{cases} T_1 = 0.15 \text{ s} \\ T_2 = 0.50 \text{ s} \end{cases}$ **RPA99/2003 (Tableau 4.7)**

✓ Calcul de la période fondamentale de la structure :

Le contreventement de notre structure est assuré par un système mixte, donc :

$$\begin{cases} T = C_T \times H^{3/4} \dots \dots (1) \\ T = \frac{0,09H}{\sqrt{L}} \dots \dots (2) \end{cases}$$

H = 37.06 m: Hauteur total du bâtiment (acrotère non compris).

 C_T =0,05 : Coefficient qui dépend du système de contreventement utilisé (**Tableau 4.6 du RPA99/2003**)

L : Dimension maximale du bâtiment à sa base dans le sens de calcul.

$$\begin{cases} L_x = 23.51 \ m \\ L_y = 17.35 \ m \end{cases}$$

Donc,
$$\begin{cases} T_x = \min(0.75 \, s \,, 0.688 \, s \,) = 0.688 \, s \\ T_y = \min(0.75 \, s \,, 0.801 \, s \,) = 0.75 \, s \end{cases}$$

Ce qui donne pour les deux sens :

$$D = 2.5\eta \left(\frac{T_2}{T}\right)^{2/3} \quad \Longrightarrow \quad \begin{cases} D_x = 1.53 \\ D_y = 1.45 \end{cases}$$

La force sismique statique totale à la base de la structure est :

$$\begin{cases} V_{xst} = 1833.46 \ KN \\ V_{vst} = 1847.68 \ KN \end{cases}$$

Les résultats sont présentés dans le tableau suivant :

Tableau IV.4. Vérification de l'effort tranchant à la base

Sens	Vdyn (KN)	Vst (KN)	Vdyn/Vst>0.8	Observation
х-х	1490.35	1833.46	0.81	Vérifiée
у-у	1628.41	1847.68	0.88	Vérifiée

Interprétation des résultats : La condition des efforts tranchants est vérifiée.

IV.5.2. Vérification de l'effort normal réduit

On entend par effort normal réduit, le rapport : $\gamma = N/(f_{c28} \times B)$

N : Désigne l'effort normal de calcul s'exerçant sur une section de béton ;

B: l'aire (section brute) de cette dernière;

fcj : la résistance caractéristique du béton.

Afin d'éviter ou de limiter le risque de rupture fragile sous sollicitation d'ensemble dues au séisme, Le **RPA99/2003** (**7.4.3.1**) nous exige de vérifier pour chaque niveau (là où il y a réduction de section) la relation suivante :

$$\gamma = N/(f_{c28} \times B) \le 0.3$$

Tableau IV.5. Vérification de l'effort normal réduit

Niveaux	b	h	B (m ²)	N (KN)	γ	Observation
E.S.2	0.45	0.45	0.2025	2254.65	0.445	Non Vérifiée
E.S.1	0.45	0.45	0.2025	2163.65	0.427	Non Vérifiée
RDC	0.4	0.45	0.18	1759.78	0.391	Non Vérifiée
Etage 1	0.4	0.45	0.18	1577.16	0.351	Non Vérifiée
Etage 2	0.4	0.4	0.16	1395.55	0.348	Non Vérifiée
Etage3	0.4	0.4	0.16	1194.64	0.298	Vérifiée
Etage 4	0.35	0.4	0.14	1017.97	0.291	Vérifiée
Etage 5	0.35	0.4	0.14	844.32	0.241	Vérifiée

Etage 6	0.35	0.35	0.1225	528.02	0.172	Vérifiée
Etage 7	0.35	0.35	0.1225	391.27	0.127	Vérifiée
Etage 8	0.3	0.35	0.105	330.81	0.126	Vérifiée
Etage 9	0.3	0.35	0.105	173.93	0.066	Vérifiée

Remarque : L'effort normal réduit n'est pas vérifié pour les deux entresols et le RDC et les deux premiers étages à cet effet nous proposons une augmentation de leurs coffrages.

Tableau IV.6. Vérification de l'effort normal réduit (après la modification des poteaux)

Niveaux	В	h	B (m ²)	N (KN)	γ	Observation
E.S.2	0.65	0.65	0.42	2824.93	0.27	Vérifiée
E.S.1	0.65	0.65	0.42	2643.15	0.25	Vérifiée
RDC	0.60	0.65	0.39	1970.90	0.20	Vérifiée
Etage 1	0.60	0.65	0.39	1762.82	0.18	Vérifiée
Etage 2	0.60	0.60	0.36	1556.04	0.17	Vérifiée
Etage3	0.60	0.60	0.36	1330.97	0.15	Vérifiée
Etage 4	0.55	0.60	0.33	1130.01	0.14	Vérifiée
Etage 5	0.55	0.55	0.3025	932.91	0.12	Vérifiée
Etage 6	0.50	0.55	0.275	739.23	0.11	Vérifiée
Etage 7	0.50	0.50	0.25	548.81	0.087	Vérifiée
Etage 8	0.45	0.50	0.225	361.31	0.064	Vérifiée
Etage 9	0.45	0.45	0.2025	194.45	0.038	Vérifiée

IV.5.3. Vérification de l'interaction voiles portiques

Le RPA99/2003 (Art3.4.a) exige pour les systèmes mixtes ce qui suit :

✓ Sous charges verticales

Les voiles doivent reprendre au plus 20% des sollicitations.

Les portiques doivent reprendre au moins 80% des sollicitations.

✓ Sous charges horizontales

Les voiles doivent reprendre au plus 75% des sollicitations.

Les portiques doivent reprendre au moins 25% des sollicitations.

Les résultats obtenus sont récapitulés dans le tableau suivant :

Tableau IV.7. Vérification de l'interaction voiles-portiques sous charges verticales

NIS	iveaux	Charges ver	ticales (KN)	(%) des charges verticales			
1/1	iveaux	Portiques	Voiles	Portiques	Voiles		
S	tory 1	39276,579	2853,2855	93,22740404	6,77259596		

Tableau IV.8. Vérification de l'interaction voiles-portiques sous charges horizontales

Niveaux	Interaction	selon X-X			Interaction	selon Y-Y		
	Charges horizontales		(%) des cl horizontal	U	Charges ho	rizontales	(%) des cha horizontale	O
	Portiques	Voiles	Portique	Voiles	Portiques	Voiles	Portiques	Voiles
			S					
Story 1	196,1595	93,3426	67,75753	32,242460	227,4271	233,8342	49,305480	50,694519
Story 2	423,6382	436,5459	49,24971	50,750287	119,1434	201,5871	37,147511	62,852488
Story 3	1463,4397	280,8572	83,89854	16,101456	1204,846	359,4068	77,023737	22,976262
Story 4	971,0912	271,9851	78,11999	21,880000	795,8904	876,5411	47,588819	52,411181
Story 5	1025,9896	225,1497	82,00442	17,995574	938,1055	652,7582	58,968313	41,031686
Story 6	978,8519	184,66	84,12908	15,870916	972,3601	510,5224	65,572295	34,427704
Story 7	901,388	159,0311	85,00299	14,997004	886,9697	452,7098	66,207604	33,792395
Story 8	759,6254	157,7578	82,80350	17,196499	855,7133	343,4426	71,359637	28,640362
Story 9	670,7107	120,8616	84,73145	15,268548	722,4177	297,2025	70,851646	29,148353
Story 10	507,744	109,0783	82,31609	17,683909	656,0462	192,5426	77,310259	22,689740
Story 11	401,0865	52,9822	88,33167	11,668322	554,5316	156,5402	77,985317	22,014682
Story 12	228,1582	41,1182	84,73011	15,269886	330,2635	178,53	64,911108	35,088891

Interprétation des résultats : Les résultats obtenus montrent que l'interaction voile portique est *vérifiée* sous chargement horizontal et vertical pour tous les étages.

IV.5.4. Vérification vis-à-vis des déplacements de niveaux

Selon le RPA99/2003 (Art 5.10), les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents, ne doivent pas dépasser 1.0% de la hauteur de l'étage.

Le déplacement relatif au niveau "k" par rapport au niveau "k-1" est égale à :

 $\Delta_K = \delta_K - \delta_{K-1}$

Avec: $\delta_K = R \times \delta_{eK}$

 δK : déplacement horizontal à chaque niveau "k" de la structure donné par le RPA99/2003(Art4.43).

 δ_{ek} : Déplacement dû aux forces sismiques Fi (y compris l'effet de torsion).

R: coefficient de comportement dynamique (R=5).

Les résultats sont résumés dans le tableau suivant :

Tableau IV.9. Vérifications des déplacements de niveaux

				Sens x-x			Sens y-y				
Niveau	h _k (m)	$\begin{array}{c} \delta_{ek} \\ (m) \\ 10^{-3} \end{array}$	$\begin{array}{c} \delta_k \\ (m) \\ 10^{-3} \end{array}$	$\begin{array}{c} \delta_{k\text{-}1} \\ (m) \\ 10^{-3} \end{array}$	$\begin{array}{c} \Delta_k \\ (m) \\ 10^{-3} \end{array}$	$egin{array}{ccc} \Delta_k/h_k & & & & \\ (\%) & & & & \\ 10^{-3} & & & & \end{array}$	$\begin{array}{c} \delta_{ek} \\ (m) \\ 10^{-3} \end{array}$	$\begin{array}{c} \delta_k \\ (m) \\ 10^{-3} \end{array}$	$\begin{array}{c} \delta_{k\text{-}1} \\ (m) \\ 10^{-3} \end{array}$	$\begin{array}{c} \Delta_k \\ (m) \\ 10^{-3} \end{array}$	$\frac{\Delta_k/h_k}{(\%)}$
Story 1	3.4	0,000 1	0,0009	0	0,0009	0,0002	0,000095	0,0004	0	0,0004	0,0001
Story 2	3.06	0,001	0,0055	0,0009	0,0046	0,0015	0,0012	0,006	0,0009	0,0051	0,0016
Story 3	3.06	0,003	0,0165	0,0055	0,011	0,0035	0,0021	0,010	0,005	0,005	0,0016

Story 4	3.06	0,006	0,031	0,0165	0,0145	0,0047	0,0025	0,012	0,016	0,004	0,0013
Story 5	3.06	0,009	0,0465	0,031	0,0155	0,0050	0,0027	0,013	0,031	0,0175	0,0057
Story 6	3.06	0,012	0,062	0,0465	0,0155	0,0050	0,0026	0,013	0,046	0,0335	0,010
Story 7	3.06	0,015	0,076	0,062	0,014	0,0045	0,0025	0,012	0,062	0,0495	0,0161
Story 8	3.06	0,017	0,089	0,076	0,013	0,0042	0,0023	0,011	0,076	0,0645	0,0210
Story 9	3.06	0,02	0,1	0,089	0,011	0,0035	0,002	0,01	0,089	0,079	0,0258
Story10	3.06	0,021	0,105	0,1	0,005	0,0016	0,0017	0,008	0,1	0,0915	0,0299
Story11	3.06	0,022	0,11	0,105	0,005	0,0016	0,0004	0,002	0,105	0,103	0,0336
Story12	3.06	0,024	0,12	0,11	0,01	0,0032	0,0005	0,002	0,11	0,1075	0,0351

Interprétation des résultats :

D'après le tableau ci-dessus nous constatons que les déplacements relatifs des niveaux sont inférieurs au centième de la hauteur d'étage dans les deux sens.

IV.5.5. Justification vis-à-vis de l'effet (P- Δ)

Les effets du $2^{ième}$ ordre (ou effet P- Δ) sont les effets dus aux charges verticales après déplacement. Ils peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\theta = P_k \times \frac{\Delta_K}{V_K \times h_K} \le 0.1 \tag{4.1}$$

P_k: Poids total de la structure et des charges d'exploitation associées au-dessus du niveau (k).

$$P_k = \sum_{i=K}^{n} (W_{Gi} + \beta W_{qi})$$

 $V_K = \sum_{i=K}^{n} F_i$: Effort tranchant d'étage au niveau "k"

 Δ_K : Déplacement relatif du niveau "k" par rapport au niveau "k-1",

h_K: Hauteur de l'étage "k".

- ✓ Si $0.1 \le \theta_K \le 0.2$, les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculé au moyen d'une analyse élastique du 1^{er} ordre par le facteur $1/(1-\theta_K)$.
- ✓ Si Θ_K > 0.2, la structure est potentiellement instable et elle doit être redimensionnée.

Les résultats sont résumés dans les tableaux suivants :

Tableau IV.10. Justification vis-à-vis de l'effet P- Δ :

Nizza	h _k	$\mathbf{P}_{\mathbf{k}}$		Sens x-x	T	Sens y-y			
Niveau	(m)	(KN)	$\Delta_{k^*} 10^{-3}$	$V_k(KN)$	θ_{K}	$\Delta_{k*}10^{-3}$	$V_k(KN)$	θ_{K}	
Story 1	3,4	42129,8645	0,0009	289,5021	3,85214E-05	0,0004	461,2613	1,07454E-05	
Story 2	3,06	37510,5585	0,0046	860,1841	6,55539E-05	0,0051	320,7305	0,000194923	
Story 3	3,06	45956,6027	0,011	1744,2969	9,47106E-05	0,005	1564,2527	4,80053E-05	
Story 4	3,06	41385,4401	0,0145	1243,0763	0,00015776	0,004	1672,4315	3,23473E-05	
Story 5	3,06	36237,399	0,0155	1251,1393	0,000146711	0,0175	1590,8637	0,000130269	

Story 6	3,06	31157,6197	0,0155	1163,5119	0,000135645	0,0335	1482,8825	0,000230028
Story 7	3,06	26156,0856	0,014	1060,4191	0,00011285	0,0495	1339,6795	0,000315832
Story 8	3,06	21262,5679	0,013	917,3832	9,84661E-05	0,0645	1199,1559	0,000373748
Story 9	3,06	16472,9405	0,011	791,5723	7,48086E-05	0,079	1019,6202	0,000417098
Story 10	3,06	11895,9688	0,005	616,8223	3,15129E-05	0,0915	848,5888	0,000419182
Story 11	3,06	7365,3614	0,005	454,0687	2,65046E-05	0,103	711,0718	0,000348655
Story 12	3,06	2693,3877	0,01	269,2764	3,26873E-05	0,1075	508,7935	0,000185971

Interprétation des résultats : On remarque que les valeurs de θ_k inférieur à 0.1 donc l'effet $(P-\Delta)$ n'a pas d'influence sur la structure est peut-être négliger.

IV.6. Conclusion

Après plusieurs essais sur la disposition des voiles de contreventement et sur l'augmentation des dimensions des éléments structuraux, et en équilibrant entre le critère de résistance et le critère économique, nous avons pu satisfaire toutes les conditions exigées par le **RPA99/2003**, ce qui nous permet de garder notre modèle et de passer au calcul des éléments structuraux. Les dimensions définitives des éléments structuraux sont comme suit :

- Poutres principales : 30* 45 cm2
- Poutres secondaires : 30 * 35cm2
- Poteaux d'entresol 2 et entresol 1 : (65*65) cm²
- Poteaux de RDC et 1^{er} étage : (60*65) cm²
- Poteaux de 2eme et 3eme étage : (60*60) cm²
- Poteaux de 4eme : (55*60) cm²
- Poteaux de 5eme étage : (55*55) cm²
- Poteaux de 6eme étage : (50*55) cm²
- Poteaux de 7eme étage : (50*50) cm²
- Poteaux de 8eme étage : (45*50) cm²
- Poteaux de 9eme étage : (45*45) cm²
- Pour les voiles ; e = 15cm pour tous les étages

Chapitre V:

Ferraillage des éléments structuraux

Chapitre V : Ferraillage Des Eléments Structuraux

V.1. Introduction

Dans ce chapitre, on va étudier le ferraillage des éléments structuraux (poteaux, poutres et voiles), qui sont soumis à des différents efforts (les efforts tranchants et normaux et des moments fléchissant pour les poteaux et les voiles, et les moments fléchissant et les efforts tranchants pour les poutres).

V.2. Ferraillage des poteaux

Les poteaux sont calculés en flexion composé sous l'action des sollicitations les plus défavorables (effort normal (N) et moment fléchissant (M)) résultants des combinaisons d'action données par la RPA99/2003 comme suit :

- 1) 1.35G +1.5Q
- 4) G + Q E
- 2) G+Q
- 5) G + Q + E

RPA (Art .5.2)

- 3) 0.8G + E
- 6) 0.8G + E

Le ferraillage adopté sera le maximum entre ceux donnés par les sollicitations suivantes :

$$\begin{cases} N^{max} \longrightarrow M^{correspondant} & \longrightarrow A_1 \\ M^{max} \longrightarrow N^{correspondant} & \longrightarrow A_2 & \Longrightarrow & A = \max(A_1, A_2, A_3) \\ N^{min} \longrightarrow M^{correspondant} & \longrightarrow A_3 \end{cases}$$

V.2.1. Recommandations

> Armatures longitudinales

D'après le RPA99/version 2003 (**Article 7.4.2**), les armatures longitudinales doivent être à haute adhérence, droites et sans crochets. Leur pourcentage en zone sismique IIa est limité par :

- *Amin* = 0.8% de la section de béton
- Amax= 4% de la section de béton (en zone courante).
- Amax= 6% de la section de béton (en zone de recouvrement).
- Φmin= 12mm (diamètre minimal utilisé pour les barres longitudinales).
- La longueur minimale de recouvrement (Lmin) est de 40Φ .
- La distance ou l'espacement (*St*) entre deux barres verticales dans une face de poteau ne doit pas dépasser 25cm.

Les jonctions par recouvrement doivent être faites si possible, en dehors des zones nodales (zones critiques).

La zone nodale est définie par *l'et h'*.

$$\begin{cases} l' = 2h \\ h' = \max(\frac{h_e}{6}, b_1, h_1, 60cm) \end{cases}$$

 b_1 et h_1 : La section du poteau considéré

h_e: Hauteur d'étage

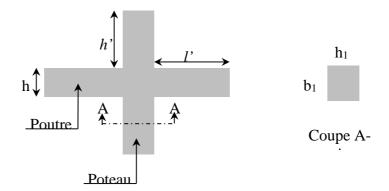


Figure V.1. Zone nodale

Les valeurs numériques des armatures longitudinales relatives aux prescriptions du RPA99/2003 concernant notre projet sont illustrées dans le tableau ci-dessous :

Tableau V.1. Armatures longitudinales et minimales dans les poteaux

	Section du	Λ.	A_{max}	(cm ²)
Niveaux	poteau (cm ²)	A_{min} (cm ²)	Zone courante	Zone de recouvrement
E.Sol 1 et .Sol 2	65×65	33.8	169	253.5
RDC et1 ^{er} étage	60×65	31.2	156	234
2 ^{ème} et 3 ^{ème} étage	60×60	28.8	144	216
4 ^{ème} étage	55×60	26.4	132	198
5 ^{ème} étage	55×55	24.2	121	181.5
6 ^{ème} étage	50×55	22	110	165
7 ^{ème} étage	50×50	20	100	150
8 ^{ème} étage	45×50	18	90	135
9 ^{ème} étage	45×45	16.2	81	121.5

> Armatures transversales :

Section des armatures transversales est donnée par la formule ci-après :

$$\frac{A_t}{t} = \frac{\rho \times V^{max}}{h_1 \times f_e}$$

- V^{max}: Effort tranchant maximal dans le poteau.
- ρ : Coefficient qui tient compte du mode de rupture fragile par effort tranchant :

$$\rho = \begin{cases} 2,50 \text{ si } \lambda \ge 5\\ 3,75 \text{ si } \lambda < 5 \end{cases} \qquad avec \quad \lambda_g = \left(\frac{l_f}{a} \text{ ou } \frac{l_f}{b}\right)$$

Sachant que **a** et **b** : sont les dimensions de la section droite du poteau dans la direction de déformation considérée.

Pour le calcul de A_t, il suffit de fixer l'espacement (t) tout en respectant les conditions suivantes :

En zone nodale : $t \le min(10 \, \emptyset_l^{min} \, , 15 \, cm).....$ zone IIa

En zone courante : $t \le 15 \, \emptyset_l^{min}$zone IIa

$$A_t^{min} = \begin{cases} 0.3\% \ (b_1 \times t) \ ou \ 0.3\% \ (h_1 \times t) \ si \ \lambda_g \ge 5 \\ 0.8 \% \ (b_1 \times t) \ ou \ 0.8 \% \ (h_1 \times t) \ si \ \lambda_g \le 3 \end{cases}$$

Les cadres et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de $10 \, \emptyset_t$ minimums.

V.2.2. Sollicitation de calcul

Les sollicitations de calcul résultant des combinaisons les plus défavorables sont tirés directement du logiciel ETABS.V16, les résultats sont récapitulés dans les tableaux suivants : **Tableau V.2.** Sollicitations dans les différents poteaux

Niveaux	N ^{max} -	$\rightarrow M^{corr}$	N^{min}	$\rightarrow M^{corr}$	M^{max} —	→ N ^{corr}	V (VN)
Niveaux	N (KN)	M(KN.m)	N (KN)	M(KN.m)	M(KN.m)	N (KN)	V (KN)
E.Sol 1. 2	-2824.93	3.68	-513.71	6.69	-77.02	-1206.98	-132.61
RDC et étage1	-1970.90	15.33	-63.79	11.37	56.48	-1864.02	33.51
Etages 2 et 3	-1330.97	49.92	-81.21	6.12	-56.44	-945.49	33.68
Etages 4	-1130	38.29	-72.80	4.70	55.68	-796.51	33.96
Etages 5	-932.90	43.06	-59.93	3.16	-54.80	-649.59	34.96
Etages 6	-739.23	38.43	-43.97	-2.26	-54.47	-504.63	33.49
Etage 7	-548.80	41.84	-25.17	-1.31	-52.65	-360.60	34.15
Etages 8	-361.31	17.70	-5.05	-3.89	-54.54	-217.48	34.99
Etage 9	-194.45	25.33	-4.47	-7.35	-47.19	-179.30	-34.86

V.2.3. Calcul du ferraillage

a. Ferraillage longitudinal

Les poteaux sont ferraillés par le maximum obtenu, après comparaison entre les ferraillages donnés par le RPA en zone IIa .

Hypothèses de calcul:

- Fissuration peu préjudiciable (e = 3 cm);
- Calcul en flexion composée;
- Calcul suivant BAEL 91 mod. 99.

Le tableau ci-après résume les résultats de ferraillage des poteaux des différents niveaux.

Tableau V.3. Ferraillage longitudinal des poteaux

Niveaux	Section (cm ²)	A^{cal} (cm ²)	A^{min} (cm ²)	$A^{adop}(cm^2)$	Choix des barres
E.Sol 1 et 2	65×65	1.17	22.18	22.24	8HA16+8HA14
RDC et etage 1	60×65	0.88	20.47	22.24	8HA16+4HA14
Etages 2 et 3	60×60	0.81	18.9	20.36	4HA16+8HA14
Etages 4	55×60	0.67	17.33	18.47	12HA14
Etages 5	55×55	0.61	15.88	18.47	12HA14
Etages 6	50×55	0.49	14.44	15.21	4HA14+8HA12
Etages 7	50×50	0.45	13.13	15.21	4HA14+8HA12
Etages 8	50×45	0.35	11.81	13.57	12HA12
Etages 9	45×45	0.34	10.63	13.57	12HA12

b. Armatures transversales

Le tableau ci-après résume les résultats de calcul des armatures transversales pour les différents poteaux des différents niveaux :

Tableaux V.4. Ferraillage transversales des poteaux

Niveaux	E.Sol 2	E.Sol 1	RDC et étage 1	Etage 2 et 3	Etage 4	Etage 5	Etage 6	Etage 7	Etage 8	Etage 9
Sections	65*65	65*65	60*65	60*60	55*60	55*55	50*55	50*50	50*45	45*45
$\emptyset_l^{min}(cm)$	1.6	1.6	1.6	1.6	1.4	1.4	1.4	1.4	1.2	1.2
l_f (cm)	206.5	182.7	182.7	182.7	182.7		182.7		182.7	182.7
λ_g	3.18	2.81	2.81	3.04	3.04	3.32	3.32	3.65	3.65	4.06
V(KN)	132.61	48.60	33.51	33.68	33.96	34.96	33.49	34.15	34.99	34.86
$t_{ m zone\ nodal}(cm)$	10	10	10	10	10	10	10	10	10	10
$t_{\text{zone courante}}(cm)$	15	15	15	15	15	15	15	15	15	15
ρ	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75
$A_t(cm^2)$	1.91	0.70	0.48	0.52	0.53	0.59	0.57	0.64	0.65	0.73
$A_t^{min}(cm^2)$	7.41	7.53	5.93	5.93	4.77	4.77	3.6	3.6	3.21	3.21
$A_t^{adop}(cm^2)$	10HA10	= 7.85	8HA10	= 6.28	8HA10	= 6.28	8HA8 =	= 4.02	8HA8	= 4.02

Conformément aux règles du **RPA 99/2003** et au **BAEL 91**, le diamètre des armatures transversales doit être supérieur au tiers du maximum des diamètres des armatures longitudinales

$$\phi_t \ge \frac{\emptyset_l^{max}}{3} = \frac{20}{3} = 6.67mm \dots Vérifiée$$

V.2.4. Vérifications nécessaires

Vérification au flambement

Les poteaux sont soumis à la flexion composée, pour cela, le **CBA93** (**Art B.8.2.1**) nous exige de les justifier vis-à-vis l'état limite ultime de stabilité de forme. La relation à vérifier est la suivante : $B_r \ge B_r^{calc} = \frac{N_u}{\alpha} \times \frac{1}{(f_{c28}/(0.9 \times \gamma_b) + f_e/(100 \times \gamma_s))}$

Avec :
$$B_r = (b-2) \times (h-2)$$
 : section réduite du poteau

La vérification des poteaux au flambement va se faire de la manière que l'exemple de calcul que nous avons exposé au Chapitre 2 (Page 27). Les résultats sont récapitulés dans le tableau suivant :

Tableau V.5. Vérification au flambement des différents poteaux

N:	NI (IZNI)	: ()	; (m) 1		(Br≥l	Observation	
Niveaux	Nu (KN)	i (m)	λ	α	Br	Br ^{calc}	Observation
E.Sol 1	2824.93	0.173	11.95	0.831	0.3969	0.151	Vérifiée
E.Sol 2	2643.15	0.173	10.56	0.835	0.3969	0.141	Vérifiée
RDC et etg 1	1970.90	0.158	11.56	0.831	0.3654	0.103	Vérifiée
Etg 2 et 3	1330.97	0.158	12.68	0.831	0.3364	0.081	Vérifiée
Etg 4	1130	0.144	12.68	0.828	0.3074	0.059	Vérifiée
Etg 5	932.90	0.144	12.68	0.828	0.2809	0.047	Vérifiée
Etg 6	739.23	0.144	12.68	0.828	0.2544	0.039	Vérifiée
Etg 7	548.80	0.144	12.68	0.828	0.2304	0.024	Vérifiée
Etg 8	361.31	0.129	14.16	0.823	0.2064	0.019	Vérifiée

Etg 9	194.45	0.129	14.16	0.823	0.1849	0.010	Vérifiée

La condition est vérifiée pour tous les niveaux, donc y a pas de risque de flambement.

> Vérification des contraintes

Puisque la fissuration est peu nuisible, donc cette vérification consiste à contrôler uniquement la contrainte de compression dans le béton du poteau le plus sollicité dans chaque niveau.

$$\begin{split} \sigma_{bc\;1,2} &\leq \bar{\sigma}_{bc} = 0,6 f_{c28} \\ &\left\{ \sigma_{bc\;1} = \frac{N_{ser}}{S} + \frac{M_{serG}}{I_{yy'}} \; V \leq \bar{\sigma}_{bc} \\ \sigma_{bc\;2} &= \frac{N_{ser}}{S} - \frac{M_{serG}}{I_{yy'}} \; V' \leq \bar{\sigma}_{bc} \end{split} \right. \end{split}$$

Avec :

 $S = b \times h + 15(A + A')$: section homogéneisée.

$$\begin{split} &M_{\text{serG}} = M_{\text{ser}} - N_{\text{ser}} \left(\frac{h}{2} - V \right) \\ &I_{yy'} = \frac{b}{3} (V^3 + V'^3) + 15A'(V - d')^2 + 15A(d - V)^2 \\ &V = \frac{\frac{bh^2}{2} + 15(A'd' + Ad)}{B + 15(A' + A)} \text{et} \qquad V' = h - V \end{split}$$

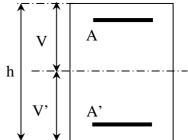


Figure V.2. Section d'un poteau

Les résultats de calcul sont résumés dans le tableau ci-après :

Tableau V.6. Vérification des contraintes dans le béton

Niveaux	E.Sol	RDC et	Etage						
INIVEAUX	2et 1	étage 1	2 et 3	4	5	6	7	8	9
Sections	65*65	60*65	60*60	55*60	55*55	50*55	50*50	50*45	45*45
d (cm)	62	62	57	57	52	52	47	47	42
$A \text{ (cm}^2)$	22.24	22.24	20.36	18.47	18.47	15.21	15.21	13.57	13.57
V (cm)	0.331	0.303	0.304	0.275	0.273	0.248	0.250	0.218	0.236
V' (cm)	0.269	0.247	0.246	0.225	0.227	0.202	0.200	0.202	0.184
I_{yy} (m ⁴)	0.014	0.012	0.010	0.008	0.007	0.006	0.005	0.004	0.004
N_{ser} (MN)	2.066	1.43	1.13	0.96	0.67	0.53	0.39	0.26	0.14
$M_{ser}(MN.m)$	0.0055	0.0041	0.0040	0.0041	0.0039	0.0039	0.0038	0.0039	0.0034
M_{serG} (MN.m)	0.0176	0.031	0.025	0.018	0.013	0.011	0.010	0.0060	0.0071
σ_{bc1} (MPa)	5.93	4.92	4.34	4.01	3.17	2.79	2.04	1.45	1.04
σ_{bc2} (MPa)	5.86	4.78	4.21	3.90	3.08	2.71	1.94	1.43	0.95
$\overline{\sigma}_{bc}$ (MPa)	15	15	15	15	15	15	15	15	15
Observation	Vérifiée								

Dans le tableau V.6, on remarque que $\sigma_{bc} < \overline{\sigma}_{bc}$ donc la contrainte de compression dans le béton est vérifiée.

Vérification des contraintes de cisaillement

D'après le **RPA99/2003** (**Art 7.4.3.2**), la contrainte de cisaillement dans le béton doit être inférieure ou égale à la contrainte de cisaillement ultime :

$$\tau_{bu} = \frac{V_u}{b.d} \le \bar{\tau}_{bu} = \rho_d \times f_{c28}$$

Avec:

$$\rho_d = \begin{cases} 0.075 & si \quad \lambda_g \ge 5 \\ 0.040 & si \quad \lambda_g < 5 \end{cases}$$

Les résultats sont illustrés dans le tableau suivant :

Tableau V.7. Vérification des contraintes de cisaillement

Niveau	Sections (cm ²)	l _f (cm)	λ_g	ρd	D (cm)	V _u (KN)	τ _{bu} (MPa)	π _{bu} (MPa)	Obs.
E. Sol 2	65*65	2.065	3.18	0.04	63	132.61	0,32	1	Vérifiée
E.Sol 1	65*65	1.827	2.81	0.04	63	48.60	0,12	1	Vérifiée
RDC et étage 1	60*65	1.827	2.81	0.04	63	33.51	0,09	1	Vérifiée
Etages 2 et 3	60*60	1.827	3.04	0.04	57	33.68	0,09	1	Vérifiée
Etage 4	55*60	1.827	3.04	0.04	57	33.96	0,11	1	Vérifiée
Etage 5	55*55	1.827	3.32	0.04	52	34.96	0,12	1	
Etage 6	50*55	1.827	3.32	0.04	52	33.49	0,14	1	Vérifiée
Etage 7	50*50	1.827	3.65	0.04	47	34.15	0,14	1	
Etage 8	50*45	1.827	3.65	0.04	47	34.99	0,18	1	Vérifiée
Etage 9	45*45	1.827	4.06	0.04	42	34.86	0,18	1	Vérifiée

D'après tableau V.7, On déduit que la condition exigée par le RPA99/2003 concernant les contraintes de cisaillement est vérifiée pour tous les étages.

> Détermination de la zone nodale

Pour des raisons de sécurité, il vaut mieux d'éviter les jonctions par recouvrement dans les zone nodales (zones critiques).

Tableau V.8. Dimensions de la zone nodale

Niveaux	x	E.Sol 2 et 1	RDC et étage 1	Etages 2 et 3	4 ^{eme} étage	5 ^{eme} étage	6 ^{eme} étage	7 ^{eme} étage	8 ^{eme} étage	9 ^{eme} étage
Sections	S	65*65	60*65	60*60	55*60	55*55	50*55	50*50	50*45	45*45
1/()	P.P	90	90	90	90	90	90	90	90	90
L'(cm)	P.S	70	70	70	70	70	70	70	70	70
h'(cm)		60	60	60	60	60	60	60	60	60

> Dispositions constructives

- La distance entre les barres verticales dans une face du poteau ne doit dépasser 25cm.
- Longueur des crochets : $L = 10x Ø_1 = 10 \times 1.2 = 12cm$.
- Longueur de recouvrement : $lr \ge 40 \times \emptyset$:

Pour
$$\emptyset = 20 \text{ mm} \rightarrow lr = 40 \times 2 = 80 \text{cm}$$
 \Longrightarrow On adopte : $lr = 80 \text{cm}$.
Pour $\emptyset = 16 \text{ mm} \rightarrow lr = 40 \times 1.6 = 64 \text{cm}$ \Longrightarrow On adopte : $lr = 65 \text{cm}$.
Pour $\emptyset = 14 \text{ mm} \rightarrow lr = 40 \times 1.4 = 56 \text{cm}$ \Longrightarrow On adopte : $lr = 60 \text{cm}$.
Pour $\emptyset = 12 \text{ mm} \rightarrow lr = 40 \times 1.2 = 48 \text{cm}$ \Longrightarrow On adopte : $lr = 50 \text{cm}$.

> Schémas de ferraillage : les Schémas de ferraillages des poteaux dans chaque niveau seront représenté dans l'annexe n⁰3

V.3. Ferraillage des poutres :

Les poutres sont calculées en flexion simple sous l'action des sollicitations les plus défavorables (Moment fléchissant et effort tranchant) résultant des combinaisons suivantes :

- 1) 1.35G + 1.5Q 4) G + Q -E 2) G + Q 5) G + Q + E
- 3) 0.8G +E 6) 0.8G E

V.3.1. Recommandations:

> Armatures longitudinales: RPA99/2003 (Art 7.5.2.1)

- Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0,5% de la section du béton en toute section.
- Le pourcentage total maximum des aciers longitudinaux est de :

4% de la section du béton en zone courante.

6% de la section du béton en zone de recouvrement.

- La longueur minimale des recouvrements est de 40Φ en zone IIa.
- Les poutres supportent de faibles charges verticales et sollicitées principalement par les forces latérales sismiques doivent avoir des armatures symétriques avec une section en travée au moins égale à la moitié de la section sur appui.

> Armatures transversales : RPA99/2003 (Art 7.5.2.2)

- La quantité d'armatures transversales minimales est donnée par : 0.3% $st \times h$

Avec St : espacement maximum entre les armatures transversales déterminé comme suit :

$$St \le \min\left(\frac{h}{4}; 12\emptyset_l\right)$$
 en zone nodale
$$St \le \frac{h}{2}$$
 en dehors de la zone nodale

Remarque:

La valeur du diamètre \emptyset_l des armatures longitudinales à prendre est le plus petit diamètre utilisé. Dans le cas d'une section en travée avec armatures comprimées, c'est le diamètre le plus petit des aciers comprimés.

Les premières armatures transversales doivent être disposées à 5cm au plus du nu d'appui ou de l'encastrement.

V.3.2. Sollicitation et ferraillage des poutres

Les sollicitations de calcul sont tirées directement du logiciel ETABS V16.

Le tableau ci-après résume les résultats de ferraillage des poutres des différents niveaux.

Tableau V.9. Ferraillage des poutres principales (30×45) cm²

Niveaux	Localisation	M(KN.m)	A _{cal} (cm ²)	A _{adop} (cm ²)	A _{min} (cm ²)	N ^{bre} de barres
E.Sol 2	Travée	43.81	2.82	3.39	6.75	3HA12
E.501 2	Appui	-54.96	3.63	3.80	6.75	2HA12+1HA14
E.Sol 1	Travée	126.85	8.81	9.24	6.75	6HA14
	Appui	-68.19	4.54	4.62	6.75	3HA14
RDC	Travée	68.18	4.54	4.62	6.75	3HA14
KDC	Appui	-60.38	4	4.21	6.75	2HA14+1HA12
Etages 1	Travée	41.13	2.69	3.39	6.75	3HA12
Etages 1	Appui	-55.64	3.68	3.80	6.75	2HA12+1HA14
Etages 2	Travée	79.24	5.32	5.75	6.75	3HA14+1HA12
Etages 2	Appui	-57.59	3.81	4.21	6.75	2HA14+1HA12
Etages 3	Travée	74.91	5.01	5.75	6.75	3HA14+1HA12
Etages 3	Appui	-53.97	3.50	4.21	6.75	2HA12+1HA14
Etages 4	Travée	40.40	2.64	5.75	6.75	3HA12
Etages 4	Appui	-54.72	3.61	3.80	6.75	2HA12+1HA14
Etages 5	Travée	40.90	2.68	3.39	6.75	2HA12+1HA14
Etages 3	Appui	-54.13	3.57	3.80	6.75	2HA12+1HA14
Etages 6	Travée	49.83	3.28	3.39	6.75	3HA12
Etages 0	Appui	-55.05	3.64	3.80	6.75	2HA12+1HA14
Etages 7	Travée	45.50	2.99	3.39	6.75	3HA12
Etages /	Appui	-54.30	3.59	3.80	6.75	2HA12+1HA14
Etages 8	Travée	42.96	2.82	3.39	6.75	3HA12
Etages o	Appui	-55.28	3.65	3.80	6.75	2HA12+1HA14
Etagag O	Travée	41.98	2.75	3.39	6.75	3HA12
Etages 9	Appui	-36.55	2.39	3.39	6.75	3HA12

Tableau V.10. Ferraillage des poutres secondaires (30×35) cm²

Niveaux	localisation	M(KN.m)	A _{cal} (cm ²)	A _{adop} (cm ²)	A _{min} (cm ²)	N ^{bre} de barres
E.Sol 2	Travée	92.67	8.45	9.24	5.25	6HA14
E.501 2	Appui	-70.01	6.20	6.79	5.25	6HA12
E.Sol 1	Travée	57.29	5	5.75	5.25	3HA14+1HA12
E.501 1	Appui	-58.34	5.10	5.75	5.25	3HA14+1HA12
RDC	Travée	62.48	5.48	5.75	5.25	3HA14+1HA12
KDC	Appui	-46.12	3.97	4.21	5.25	2HA14+1HA12
Etages 1	Travée	34.16	2.90	3.39	5.25	3HA12
Etages 1	Appui	-37.37	3.19	3.39	5.25	3HA12
Etagog 2	Travée	26.86	2.27	3.39	5.25	3HA12
Etages 2	Appui	-30.70	2.60	3.39	5.25	3HA12
Etagag 2	Travée	75.79	6.76	6.79	5.25	6HA12
Etages 3	Appui	-31.50	2.67	3.39	5.25	3HA12
Etagog 4	Travée	64.71	5.69	5.75	5.25	3HA14+1HA12
Etages 4	Appui	-32.84	2.79	3.39	5.25	3HA12

Etagas 5	Travée	53.44	4.64	5.75	5.25	3HA14+1HA12
Etages 5	Appui	-35.44	3.02	3.39	5.25	3HA12
Etagas 6	Travée	45.06	3.88	4.21	5.25	3HA12
Etages 6	Appui	-36.54	3.11	3.39	5.25	3HA12
E4	Travée	24.32	2.05	3.39	5.25	3HA12
Etages 7	Appui	-38.26	3.27	3.39	5.25	3HA12
Etagas 9	Travée	25.74	2.17	3.39	5.25	3HA12
Etages 8	Appui	-39.22	3.35	3.39	5.25	3HA12
Etages 9	Travée	24.93	3.39	3.39	5.25	3HA12
	Appui	-37.79	3.39	3.39	5.25	3HA12

Armatures transversales

\diamond Calcul de \emptyset_t

Le diamètre des armatures transversales est donné par la relation suivante :

$$\emptyset_t \le \min\left(\emptyset_{lmin}; \frac{h}{35}; \frac{b}{10}\right) \Longrightarrow \begin{cases} \text{Poutres principales: } \emptyset_t \le \min\left(12; 12.85; 30\right) \text{ mm} \\ \text{Poutres secondaires: } \emptyset_t \le \min\left(12; 10; 30\right) \text{ mm} \end{cases}$$

$$\text{avec: } \begin{cases} \text{Poutres principales: } (30*45) \text{cm}^2 \\ \text{Poutres secondaires: } (30*35) \text{cm}^2 \end{cases}$$

$$\text{Soit } \emptyset_t = 8 \text{ } mm \text{ et } A_t = 4\emptyset 8 = 2,01 \text{ cm}^2 \left(1 \text{ cadre } + 1 \text{ étrier}\right) \end{cases}$$

Calcul des espacements St :

D'après le RPA99/2003 (Art7.5.2.2):

En zone nodale:
$$St \le \min\left(\frac{h}{4}; 12\emptyset_l^{min}\right) \implies \begin{cases} \text{Poutres principales } St = 10 \text{ cm} \\ \text{Poutres secondaires } St = 10 \text{ cm} \end{cases}$$
En zone courantes: $St \le \frac{h}{2} \implies \begin{cases} \text{Poutres principales } St = 15 \text{ cm} \\ \text{Poutres secondaires } St = 15 \text{ cm} \end{cases}$

❖ Vérification des sections d'armatures transversales minimales

Pour
$$\emptyset = 14 \text{ mm} \rightarrow lr = 40 \times 1.4 = 56 \text{ cm} \implies \text{On adopte} : lr = 60 \text{ cm}.$$
Pour $\emptyset = 12 \text{ mm} \rightarrow lr = 40 \times 1.2 = 48 \text{ cm} \implies \text{On adopte} : lr = 50 \text{ cm}.$

V.3.3. Vérifications nécessaires

Vérification des pourcentages maximale d'armatures longitudinales

Pour l'ensemble des poutres :

En zone de recouvrement : $A_{max} = 4\%(b \times h)$

✓ Poutres principales : $A_{max} = 48 cm^2$

✓ Poutres principales : $A_{max} = 42 cm^2$

En zone courante : $A_{max} = 6\%(b \times h)$

✓ Poutres principales : $A_{max} = 48 cm^2$

✓ Poutres principales : $A_{max} = 42 cm^2$

Donc, c'est vérifié pour toutes les poutres.

➤ Vérifications à l'ELU

✓ Condition de non fragilité

$$\mathbf{A}^{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} \leq A^{cal} \Longrightarrow \begin{cases} \text{Poutres principales: } \mathbf{A}^{\min} = 1.34 \text{ cm}^2 \\ \text{Poutres secondaires: } \mathbf{A}^{\min} = 1.16 \text{ cm}^2 \end{cases} \dots \text{v\'erifi\'ee}$$

√ Vérification des contraintes tangentielles

La condition qu'on doit vérifier est la suivante : $\tau_{bu} = \frac{V_u}{b.d} \le \bar{\tau}_{bu} =$ $\min\left(0,2\frac{f_{c28}}{\gamma_b};5Mpa\right)\quad (F.P.N)$

La vérification concerne uniquement les poutres les plus défavorables, car si ces dernières

Les résultats sont récapitulés dans le tableau suivant :

sont vérifiées, les autres le seront surement.

Tableau V.11. Vérification des contraintes tangentielles

Poutres	V ^{max} (KN)	τ _{bu} (Mpa)	$ar{ au}_{bu} \ (ext{Mpa})$	Observation
Principale	144.73	1.37	3,33	Vérifiée
Secondaires	71.36	0.67	3,33	Vérifiée

✓ Vérification des armatures longitudinales vis-à-vis le cisaillement

Pour les appuis de rives:

 $A_{l} \ge A_{l}^{rive} = V^{max} \times \frac{\gamma_{s}}{f_{e}}$ $A_{l} \ge A_{l}^{inter} = (V^{max} + \frac{M_{a}}{0.9d}) \frac{\gamma_{s}}{f_{e}}$ Pour les appuis intermédiaires:

Tableau V.12. Vérification des armatures longitudinales au cisaillement

Poutres	V ^{max} (KN)	<i>M_a</i> (KN.m)	A_l (cm ²)	A_l^{rive} (cm ²)	A_l^{inter} (cm ²)	Observation
Principale	144.73	-68.19	4.21	4.16	- 2.35	Vérifiée
Secondaires	71.36	-70.01	3.39	2.05	- 2.61	Vérifiée

➤ Vérification à l'ELS

Les vérifications concernées sont les suivantes :

Vérification de l'état limite de compression du béton ;

Vérification de l'état limite de déformation (Evaluation de la flèche).

✓ Etat limite de compression du béton

$$\sigma_{\rm bc} = \frac{M_{ser}}{I} y \le \overline{\sigma}_{\rm bc} = 0.6 \times f_{\rm c28} = 15 \, MPa$$

Contraintes Mser Y A_s **Poutres** Localisation **Observation** (cm^2) (cm^4) (KN.m) (cm) $\sigma(MPa)$ $\overline{\sigma}(MPa)$ 92.71 9.24 15.84 141984 10.3 Vérifiée Travée 15 **Principales** -54.96 4.62 11.97 83877 7.8 15 Vérifiée **Appui** 77305 Travée 68.18 9.24 13.44 11.9 15 Vérifiée **Secondaires** -51.48 6.79 11.95 62195 9.9 15 Vérifiée Appui

Tableau V.13. Vérification de l'état limite de compression du béton

√ Vérification de l'état limite de déformation

La vérification de la flèche est nécessaire si l'une des conditions suivantes n'est pas vérifiée :

1)
$$h \ge h_f = \max\left(\frac{1}{16}; \frac{M_t}{10 M_0}\right) \times l$$

2)
$$A \le A_f = \frac{4,2.b.d}{f_e}$$

3)
$$L < 8 \text{ m}$$

Poutres principales :
$$\begin{cases} h=45cm>h_f=39.15cm\\ A=9.24cm^2< A_f=13.23\ cm^2\cdots\cdots V\'{e}rifi\'{e}e\\ L=2.90< 8\ m \end{cases}$$

Avec $M_0 = 49.43$ KN.m et $M_T = 92.67$ KN.m

$$Poutres\ secondaires: \begin{cases} h=35\ \mathrm{cm}>h_f=21.5\ \mathrm{cm}\\ A=9.24cm^2< A_f=10,08\ cm^2\ ...\ ...\ ...\ V\'erifi\'ee\\ L=2.78< 8\ m \end{cases}$$

Avec $M_0 = 43.81$ KN.m et $M_T = 68.18$ KN.m

Les trois conditions sont observées, donc la vérification de la flèche n'est pas nécessaire.

> Vérification de la zone nodale

Le RPA99/2003(Art 7.6.2) exige de vérifier la relation suivante :

$$|M_N| + |M_S| \ge 1.25 \times (|M_W| + |M_E|)$$

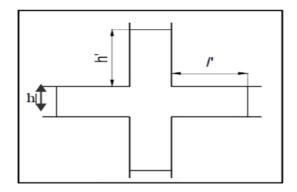


Figure v.3 zone nodale

> Détermination du moment résistant dans les poteaux et dans les poutres :

Le moment résistant (M_R) d'une section de béton dépend des paramètres suivants:

- ✓ Dimensions de la section du béton ;
- ✓ Quantité d'armatures dans la section ;
- ✓ Contrainte limite élastique des aciers.

$$M_R = z \times A_S \times \sigma_S$$
 Avec: $z = 0.9h$ et $\sigma_S = \frac{f_e}{\gamma_S}$

Tableau V.14. Moments résistants dans les poteaux :

Niveaux	h (cm)	Z (cm)	A (cm ²)	$\sigma_s(MPa)$	Mr (KN.m)
E.Sol 2 et 1	65	58.5	11.12	348	226.38
RDC et étage1	65	58.5	11.12	348	226.38
Etage 2 et 3	60	54	10.18	348	207.24
Etage 4	60	54	9.23	348	173.45
Etage 5	55	49.5	9.23	348	158.99
Etage 6	55	49.5	7.605	348	131
Etage 7	50	45	7.605	348	119.09
Etage 8	50	45	6.785	348	106.25
Etage 9	45	40.5	6.785	348	95.63

Tableau V.15. Moments résistants dans les poutres :

Niveau	Localisation	h (m)	Z (m)	As ₁	As ₂	Ost (N. 1)	M _R W	M _R e
				(cm ²)	(cm ²)	(Mpa)	(KN.m)	(KN.m)
E.Sol 2	PP	0.45	0.405	3.39	3.80	348	47.78	53.58
2,5012	PS	0.35	0.315	9.24	6.79	348	101.29	74.43
E.Sol 1	PP	0.45	0.405	9.24	4.62	348	130.23	65.11
2.5011	PS	0.35	0.315	5.75	5.75	348	63.03	63.03
BDC	PP	0.45	0.405	4.62	4.21	348	65.11	59.34
RDC	PS	0.35	0.315	5.75	4.21	348	63.03	46.15
Etage	PP	0.45	0.405	3.39	3.80	348	47.78	53.56
1	PS	0.35	0.315	3.39	3.39	348	37.61	37.61
Etage	PP	0.45	0.405	5.75	4.21	348	81.04	59.34
2	PS	0.35	0.315	3.39	3.39	348	37.61	37.61
Etage	PP	0.45	0.405	5.75	3.80	348	81.04	53.56

3	PS	0.35	0.315	6.79	3.39	348	74.43	37.61
Etage	PP	0.45	0.405	3.39	3.80	348	47.78	53.58
4	PS	0.35	0.315	5.75	3.39	348	63.03	37.61
Etage	PP	0.45	0.405	3.39	3.80	348	47.78	53.56
5	PS	0.35	0.315	5.75	3.39	348	63.03	37.61
Etage	PP	0.45	0.405	3.39	3.80	348	47.78	53.58
6	PS	0.35	0.315	4.21	3.39	348	46.15	37.61
Etage	PP	0.45	0.405	3.39	3.80	348	47.78	53.56
7	PS	0.35	0.315	3.39	3.39	348	37.61	37.61
Etage	PP	0.45	0.405	3.39	3.80	348	47.78	53.56
8	PS	0.35	0.315	3.39	3.39	348	37.61	37.61
Etage	PP	0.45	0.405	3.39	3.39	348	37.61	37.61
9	PS	0.35	0.315	3.39	3.39	348	37.61	37.61

Les résultats de la vérification concernant les zones nodales sont récapitulées dans les tableaux suivant :

Tableau V.16. Vérification des zones nodales selon le sens principale

Niveau	M _N	Ms	M _N +M _S	Mw	ME	1.25 (Mw+M _E)	Observation
E.Sol 2	226.38	226.38	452.76	47.78	53.58	126.7	Vérifiée
E.Sol 1	226.38	226.38	452.76	130.23	65.11	211.62	Vérifiée
RDC	226.38	226.38	452.76	65.11	59.34	155.56	Vérifiée
Etage1	207.24	226.38	433.62	47.78	53.56	126.7	Vérifiée
Etage2	207.24	207.24	414.48	81.04	59.34	175.47	Vérifiée
Etage3	173.45	207.24	380.69	81.04	53.56	168.25	Vérifiée
Etage4	158.99	173.45	332.44	47.78	53.58	126.7	Vérifiée
Etage5	131	158.99	289.99	47.78	53.58	126.7	Vérifiée
Etage6	119.09	131	250.09	47.78	53.58	126.7	Vérifiée
Etage7	106.25	119.09	225.34	47.78	53.56	126.7	Vérifiée
Etage8	95.63	106.25	201.88	47.78	53.56	126.7	Vérifiée

Niveau	M_N	M_S	M_N+M_S	M_W	M_E	1.25 $(M_W + M_E)$	Observation
E.Sol 2	226.38	226.38	452.76	101.29	74.43	219.65	Vérifiée
E.Sol 1	226.38	226.38	452.76	63.03	63.03	126.06	Vérifiée
RDC	226.38	226.38	452.76	63.03	46.15	109.18	Vérifiée
Etage1	207.24	226.38	433.62	37.61	37.61	75.22	Vérifiée
Etage2	207.24	207.24	414.48	37.61	37.61	75.22	Vérifiée
Etage3	173.45	207.24	380.69	74.43	37.61	112.04	Vérifiée
Etage4	158.99	173.45	332.44	63.03	37.61	100.64	Vérifiée
Etage5	131	158.99	289.99	63.03	37.61	100.64	Vérifiée
Etage6	119.09	131	250.09	46.15	37.61	83.76	Vérifiée
Etage7	106.25	119.09	225.34	37.61	37.61	75.22	Vérifiée
Etage8	95.63	106.25	201.88	37.61	37.61	75.22	Vérifiée

Tableau V.17. Vérification des zones nodales selon le sens secondaire

Interprétation des résultats

On voit bien que les moments résistants dans les poteaux sont supérieurs aux moments résistant dans les poutres dans les deux sens donc la formation des rotules plastiques se fera dans les poutres et non pas dans les poteaux.

> Schémas de ferraillage : les Schémas de ferraillages des poutres dans chaque niveau seront représenté dans l'annexe n⁰4

V.4. Ferraillage des voiles

V.4.1. Introduction

Le RPA99 version 2003 (Art.3.4.A.1.a) exige de mettre des voiles de contreventement pour chaque structure en béton armé dépassant quatre niveaux ou 14 m de hauteur en zone IIa.

Les voiles sont considérés comme des consoles encastrées à leur base, leurs modes de rupture sont :

- > Rupture par flexion.
- > Rupture en flexion par effort tranchant.
- Rupture par écrasement ou traction du béton.

D'où, Les voiles vont être calculés en flexion composée avec cisaillement en considérant le moment agissant dans la direction de la plus grande inertie.

Le calcul se fera en fonction des combinaisons suivantes :

1).1.35G +1.5Q 2). G + Q
$$\pm$$
 E

3).
$$0.8G \pm E$$

Le ferraillage qu'on va adopter est donné par les sollicitations qui suivent :

$$\begin{cases} M^{max} \to N_{corresp} \\ N^{max} \to M_{corresp} \\ N^{min} \to M_{corresp} \end{cases}$$

V.4.2. Recommandation du RPA99 version 2003

> Armatures verticales

La section d'armatures à introduire dans les voiles sera une section répartie comme suit :

- ✓ Les armatures verticales sont disposées en deux nappes parallèles aux faces des voiles.
- ✓ Les barres verticales des zones extrêmes devraient être ligaturées avec des cadres horizontaux dont l'espacement ne doit pas être supérieur à l'épaisseur du voile.
- ✓ Zone tendue : un espacement maximal de 15 cm et un pourcentage minimal de 0.20% de la section du béton, Amin = $0.2\% \times lt \times e$

Avec : l_t : longueur de la zone tendue, e: épaisseur du voile.

- ✓ À chaque extrémité du voile l'espacement des barres doit être réduit de moitié sur L/10 de la longueur du voile
- ✓ Les barres du dernier niveau doivent être munies de crochets à la partie supérieure. Toutes les autres barres n'ont pas de crochets (jonction par recouvrement).

> Armatures Horizontal

Ils sont destinés à reprendre les efforts tranchant, et maintenir les aciers verticaux, et les empêcher de flamber, donc ils doivent être disposés en deux nappes vers l'extérieur des armatures verticales.

> Armatures Transversales

Elles sont destinées essentiellement à retenir les barres verticales intermédiaires contre le flambement, leur nombre doit être égale au minimum à 4 barres / m².

➤ Règles communes [RBA99 ver 2003 ART.7.7.4.3]

- ✓ Le pourcentage minimum d'armatures verticales et horizontales des trumeaux, est donné comme suit :
 - Globalement dans la section du voile 0,15 %
 - En zone courante 0,10 %
- ✓ L'espacement des nappes d'armatures horizontales et verticales est $S_t \le \min(1,5 \ e \ ; 30 \ cm)$
- ✓ Les deux nappes d'armatures doivent être reliées avec au moins 4 épingles au mètre carré.
- ✓ Le diamètre des barres verticales et horizontales (à l'exception des zones d'about) ne devrait pas dépasser l/10 de l'épaisseur du voile.
- ✓ les longueurs de recouvrements doivent être égales à :
 - 1) 40Φ pour les barres situées dans les zones où le renversement du signe des efforts est possible.
 - 2) 20Φ pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charges.
- ✓ Le long des joints de reprise de coulage, l'effort tranchant doit être repris par les aciers de couture dont la section doit être calculée avec la formule :

$$A_{ij} = 1.1 \, V/f_e$$
 Avec $V = 1.4V_u$

Les résultats du ferraillage des voiles restants sont récapitulés dans les tableaux cidessous :

Tableau V.19. Sollicitations et ferraillage du voile $V_{x(1.2.3.4)}$ dans tous les niveaux

Niveau	E.Sol 1et 2	RDC et 1er Etages	2 ^{eme} et 3 ^{eme} Etages	4 ^{eme} et 5 ^{eme} Etages	6 ^{eme} et 7 ^{eme} Etages	8 ^{eme} Etages	9 ^{eme} Etages
Section	0.15*1.75	0.15*1.75	0.15*1.75	0.15*1.75	0.15*1.75	0.15*1.75	0.15*1.75
N(KN)	1301.75	37.22	543.38	444.76	133.91	50.56	25.14
M(KN.m)	501.46	125.41	-252.81	171.52	-37.01	-23.65	-5.58
V(KN)	205.58	177.36	167.05	123.73	93.67	52.23	58.64
Type	SPC	SPC	SPC	SPC	SPC	SPC	SPC
D	1.7	1.7	1.7	1.7	1.7	1.7	1.7
τ (MPa)	1.13	0.97	0.92	0.68	0.51	0.29	0.32
$\overline{\tau}$ (MPa)	5	5	5	5	5	5	5
A _{cal} (cm ²)	-6.49	-2.31	-2.78	-2.91	-2.26	-0.95	-0.4
Amin (cm ²)	3.9375	3.9375	3.9375	3.9375	3.9375	3.9375	3.9375
I(m ⁴)	0.07	0.07	0.07	0.07	0.07	0.07	0.07
$\sigma_{min}(MPa)$	1.59	1.50	1.23	0.55	1.87	0.72	0.02
$\sigma_{max}(MPa)$	11.51	1.78	5.37	3.93	2.06	1.14	0.17
Lt	0.21	0.8	0.33	0.21	0.83	0.68	0.21
A_{min}^{tendu} (cm ²)	0.64	2.40	0.98	0.64	2.50	2.03	0.63
N ^{barre} /face	6HA10	6HA10	6HA10	6HA10	6HA10	6HA10	6HA10
$A_{z.tendu}$	4.71	4.71	4.71	4.71	4.71	4.71	4.71
$S_t(cm)$	30	30	30	30	30	30	30
L_{c}	1.33	0.15	1.10	1.32	0.08	0.4	1.33
A_{min}^{comp} (cm ²)	1.99	0.22	1.65	1.98	0.13	0.59	2.00
$A_{\mathrm{z.compr}}$	3.02	3.02	3.02	3.02	3.02	3.02	3.02
N ^{barre} /face	6HA8	6HA8	6HA8	6НА8	6НА8	6НА8	6HA8
A_h^{cal} (cm ²)	0.94	0.81	0.76	0.57	0.43	0.24	0.27
A_h^{min} (cm ²)	0.3	0.3	0.3	0.3	0.3	0.3	0.3
A_h^{adop} (cm ²)	1.01	1.01	1.01	1.01	1.01	1.01	1.01
N ^{barre}	2HA8	2HA8	2HA8	2HA8	2HA8	2HA8	2HA8
$S_{t}(cm)$	20	20	20	20	20	20	20

 $\textbf{Tableau V.20.} \ \ Sollicitations \ et \ ferraillage \ du \ voile \ V_{y1.2} \ dans \ tous \ les \ niveaux$

Niveau	E.Sol 1et 2	RDC et 1 ^{er} Etages	2 ^{eme} et 3 ^{eme} Etages	4 ^{eme} et 5 ^{eme} Etages	6 ^{eme} et 7 ^{eme} Etages	8 ^{eme} Etages	9 ^{eme} Etages
Section	0.15*3.35	0.15*3.35	0.15*3.35	0.15*3.35	0.15*3.35	0.15*3.35	0.15*3.35
N(KN)	510.37	461.89	422.51	369.72	281.89	148.07	66.66

2.7.7.7	255.21	215.52	-1 -=	5 1.10	62.04	co 11	70.06
M(KN.m)	-257.31	-317.52	-64.65	-71.13	-63.01	-62.41	-52.86
V(KN)	246.36	448.95	311.66	216.93	168.16	90.07	85.53
Type	SPC	SPC	SPC	SPC	SPC	SPC	SPC
D	3.3	3.3	3.3	3.3	3.3	3.3	3.3
τ (MPa)	0.7	1.27	0.88	0.61	0.48	0.25	0.24
τ (MPa)	5	5	5	5	5	5	5
Acal (cm ²)	-8.38	-8.24	-5.8	-5.19	-4.03	-2.34	-1.24
Amin (cm ²)	7.5375	7.5375	7.5375	7.5375	7.5375	7.5375	7.5375
$I(m^4)$	0.47	0.47	0.47	0.47	0.47	0.47	0.47
$\sigma_{min}(MPa)$	0.10	0.21	0.61	0.48	0.34	0.07	0.06
$\sigma_{max}(MPa)$	1.93	2.05	1.07	0.99	0.79	0.52	0.32
$\mathbf{L}_{\mathbf{t}}$	0.16	0.31	1.22	1.10	1.00	0.41	0.53
A_{min}^{tendu} (cm ²)	0.49	0.93	3.65	3.29	3.01	1.23	1.58
N ^{barre} /face	6HA14	6HA14	6HA14	6HA14	6HA14	6HA14	6HA14
$A_{z.tendu}$	9.24	9.24	9.24	9.24	9.24	9.24	9.24
$S_t(cm)$	20	20	20	20	20	20	20
L_{c}	3.02	2.73	0.92	1.15	1.34	2.53	2.30
A_{min}^{comp} (cm ²)	4.54	4.09	1.38	1.73	2.01	3.79	3.44
$A_{\mathrm{z.compr}}$	5.03	5.03	5.03	5.03	5.03	5.03	5.03
N ^{barre} /face	10HA8	10HA8	10HA8	10HA8	10HA8	10HA8	10HA8
A_h^{cal} (cm ²)	0.58	1.06	0.73	0.51	0.40	0.21	0.20
A_h^{min} (cm ²)	0.3	0.3	0.3	0.3	0.3	0.3	0.3
A_h^{adop} (cm ²)	1.57	1.57	1.01	1.01	1.01	1.01	1.01
N ^{barre}	2HA10	2HA10	2HA8	2HA8	2HA8	2HA8	2HA8
$S_{t}(cm)$	20	20	20	20	20	20	20

 $\textbf{Tableau V.21.} \ Sollicitations \ et \ ferraillage \ du \ voile \ V_{y3} \ dans \ tous \ les \ niveaux$

Niveau	RDC et 1 ^{er} Etages	2 ^{eme} et 3 ^{eme} Etages	4 ^{eme} et 5 ^{eme} Etages	6 ^{eme} et 7 ^{eme} Etages	8 ^{eme} Etages	9eme Etages
Section	0.15*1.75	0.15*1.75	0.15*1.75	0.15*1.75	0.15*1.75	0.15*1.75
N(KN)	693.87	498.84	418.46	298.41	12.42	80.09
M(KN.m)	472.71	320.88	243.94	178.08	3.24	72.24
V(KN)	255.22	192.66	160.45	123.95	49.22	51.12
Type	SPC	SPC	SPC	SPC	SPC	SPC
D	1.7	1.7	1.7	1.7	1.7	1.7
τ (MPa)	1.40	1.06	0.88	0.68	0.27	0.28
₹ (MPa)	5	5	5	5	5	5
A _{cal} (cm ²)	-0.81	-1.15	-1.45	-1.04	-0.11	-0.04
Amin (cm ²)	3.9375	3.9375	3.9375	3.9375	3.9375	3.9375
I(m ⁴)	0.07	0.07	0.07	0.07	0.07	0.07
$\sigma_{min}(MPa)$	2.05	2.29	1.59	1.19	0.01	0.64
$\sigma_{max}(MPa)$	3.55	6.09	4.78	3.46	0.09	1.25

Lt	0.64	0.48	0.44	0.45	0.18	0.59
A_{min}^{tendu} (cm ²)	1.92	1.43	1.31	1.34	0.54	1.78
N ^{barre} /face	6HA10	6HA10	6HA10	6HA10	6HA10	6HA10
A _{z.tendu}	4.71	4.71	4.71	4.71	4.71	4.71
$S_t(cm)$	10	10	10	30	30	30
Le	0.47	0.79	0.88	0.85	1.75	0.56
A_{min}^{comp} (cm ²)	0.70	1.19	1.31	1.28	2.63	0.85
$A_{\mathrm{z.compr}}$	3.02	3.02	3.02	3.02	3.02	3.02
N ^{barre} /face	6HA10	6HA10	6HA10	6HA10	6HA10	6HA10
A_h^{cal} (cm ²)	1.17	0.88	0.73	0.57	0.23	0.23
A_h^{min} (cm ²)	0.3	0.3	0.3	0.3	0.3	0.3
A_h^{adop} (cm ²)	2.01	1.01	1.01	1.01	1.01	1.01
N ^{barre}	4HA8	2HA8	2HA8	2HA8	2HA8	2HA8
$S_{t}(cm)$	20	20	20	20	20	20

> Schémas de ferraillage : les Schémas de ferraillages de voile de Vx (1.2.3.4) dans chaque niveau sont représenté dans l'annexe n⁰4

Conclusion:

Le ferraillage des éléments structuraux doit impérativement répondre aux exigences du RPA qui prend en considération la totalité de la charge d'exploitation ainsi que la charge sismique. Outre la résistance, l'économie est un facteur très important qu'on peut concrétiser en jouant sur le choix de la section du béton et de l'acier dans les éléments résistants de l'ouvrage, tout en respectant les sections minimales requises par le règlement en vigueur. Il est noté que le ferraillage minimum du RPA est souvent plus important que celui obtenu par le calcul. On en déduit que le RPA favorise la sécurité avant l'économie.

Chapitre VI: l'infrastructure

VI.1. Introduction

On appelle infrastructure, la partie inférieure d'un ouvrage reposant sur un terrain d'assise auquel sont transmises toutes les charges supportées par l'ouvrage, soit directement (cas des semelles reposant sur le sol ou cas des radiers) soit par l'intermédiaire d'autres organes (cas des semelles sur pieux par exemple).

Il existe plusieurs types de fondations, le choix se fait selon les conditions suivantes :

- La capacité portante du sol;
- ➤ La charge à transmettre au sol ;
- La dimension des trames ;
- La profondeur d'ancrage.

VI.2. Combinaisons de calcul

Le dimensionnement des fondations superficielles, selon la réglementation parasismique Algérienne (,), se fait sous les combinaisons suivantes:

$$G+Q\pm E \ 0.8G\pm E$$
 D'après l'**Article 10.1.4.1** $G+Q \ 1.35G+1.5Q$ D'après le RPA99 version 2003

VI.3. Choix du type de fondation

VI.3.1. Vérification de la semelle isolée

Dans ce projet, nous proposons en premier lieu des semelles isolées, pour cela, nous allons procéder à une première vérification telle que :

$$\frac{N}{S} \le \overline{\sigma}_{sol} \dots \dots \dots \dots (1)$$

On va vérifier la semelle la plus sollicitée:

N: L'effort normal transmis à la base obtenu par le logiciel ETABS V16

$$Nser = 2066.91 \, KN$$

S : Surface d'appuis de la semelle. $S = A \times B$

 $\overline{\sigma}_{sol}$: Contrainte admissible du sol. $\overline{\sigma}_{sol} = 1.7 \ bar$

On a une semelle rectangulaire, donc on doit satisfaire la condition d'homothétie :

$$\frac{A}{a} = \frac{B}{b} \Longrightarrow A = \frac{a}{b}B$$

a, b : dimensions du poteau à la base.

On remplace A dans l'équation (1) on trouve

$$B \ge \sqrt{\frac{b}{a} \times \frac{N}{\overline{\sigma}_{sol}}} \Longrightarrow B \ge \sqrt{\frac{0.6}{0.55} \times \frac{2066.91}{170}} \Longrightarrow B \ge 3.64 m$$

Vu que l'entraxe minimal des poteaux est de 2.90m, on remarque qu'il va avoir un chevauchement entre les semelles, ce qui revient à dire que ce type de semelles ne convient pas à notre cas.

VI.3.2. Vérification de la semelle filante :

On détermine la semelle filante la plus sollicitée en utilisant le logiciel ETABS2016, en tirant les efforts normaux situés sous les poteaux/voiles qu'elle reprend.

Les résultats sont résumés dans le tableau suivant :

Tableau VI.1. Somme des efforts normaux des différentes files de semelles filantes.

e 4	File 4	File 3	File 2	File 1	Files de portiques
.2398	8963.23	11649.02	12158.50	16048.29	Σ Efforts normaux
• 4	8963.2	11649.02	12158.50	16048.29	repris (KN)

On constate que la file 3 est la plus sollicitée, donc le dimensionnement se fera en fonction de cet effort $\Sigma N_i = 16048.29 \text{ KN}$

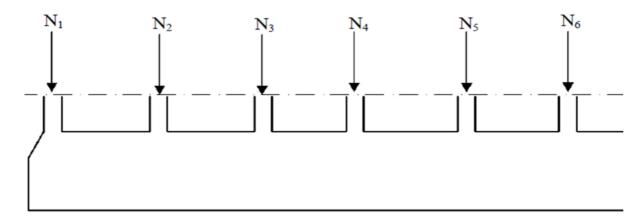


Figure VI.1. Schéma d'une semelle filante

La surface totale des semelles est donné par :

$$S_s \ge \frac{N}{\sigma_{sol}} \Longrightarrow B \times L \ge \frac{N}{\sigma_{sol}} \Longrightarrow B \ge \frac{N}{\sigma_{sol} \times L}$$

$$\sum_{i=1}^{7} N_i = 16048.29KN$$
16048.29

$$B \ge \frac{16048.29}{170 \times 23.51} = 4.01m$$

L'entraxe minimal des poteaux est de 2.9m, donc ce type de semelles filante ne convient pas à notre cas par des raisons de construction, car y'aura un chevauchement dans le coffrage.

VI.3.3. Radier général

Puisque les deux premières vérifications ne sont pas observées, on va opter pour un radier général comme type de fondation pour fonder l'ouvrage. Ce type de fondation présente plusieurs avantages qui sont :

L'augmentation de la surface de la semelle qui minimise la forte pression apportée par la structure;

- La réduction des tassements différentiels;
- La facilité d'exécution.

VI.3.3.1. Caractéristiques géométriques du radier

Le radier est considéré comme infiniment rigide, donc on doit satisfaire les conditions suivantes :

> Condition de coffrage :

h_n: hauteur des nervures.

h_r: hauteur de la dalle.

 L_{max} : la plus grande portée entre deux éléments porteurs successifs. ($L_{max} = 4.65 \text{m}$)

$$h_r \ge \frac{L}{20} = \frac{465}{20} = 23.25 \ cm$$
 Avec $h_r = 30 \ cm$: hauteur de la dalle.

$$h_n \ge \frac{L}{10} = \frac{465}{10} = 46.5 \ cm$$
 Avec $h_n = 70 \ cm$: hauteur des nervures.

> Condition de rigidité

Pour qu'un radier soit rigide il faut que :

$$L_{max} \leq \frac{\pi}{2} L_e$$

$$L_e \ge \sqrt[4]{(4.E.I)/(K.b)}$$

Avec

Le: est la longueur élastique, qui permet de déterminer la nature du radier (rigide ou flexible).

K: coefficient de raideur du sol K=4×10⁴ KN/m³ (sol moyen);

E: module d'élasticité du béton : $E = 3,216 \times 10^7 \text{ KN/m}^2$;

b: largeur de la semelle ;

$$\mathbf{I} = \frac{b. h_t^3}{12}$$
, inertie de la semelle ;

$$h_n \ge \sqrt[3]{\frac{48 L_{max}^4 K}{\pi^4 E}} = \sqrt[3]{\frac{48 \times 4.65^4 \times 4.10^4}{\pi^4 * 3.216 * 10^7}} = 65.92 cm$$

Donc,
$$h_n \ge 65.92cm \implies h_n = 70 cm$$

$$L_e \ge \sqrt[4]{\frac{0.7^3 \times 3.216 * 10^7}{3 \times 4 \times 10^4}} = 3.09 m$$

> Calcul de la surface du radier

$$S_{rad} \ge \frac{N}{\bar{\sigma}_{sol}}$$

$$S_{rad} \ge \frac{59521}{170} = 350.12m^2$$

 $S_{rad} = 350.12 < S_{bat} = 404.89 \text{ m}^2$

Donc, on n'a pas besoin d'un débord, on prend : $S_{rad} = S_{bat} = 404.89 \ m^2$

> Dimensions du radier

Nous adopterons pour les dimensions suivantes:

Hauteur de la nervure $h_t = 70 \text{cm}$;

Hauteur de la table du radier $h_r = 30 \text{cm}$;

Enrobage d' = 5cm.

La surface du radier $S_{rad} = 404.89 \, m^2$

VI.3.3.2. Vérifications nécessaires

Vérification de la contrainte dans le sol

Sous l'effet du moment renversant dû au séisme, la contrainte sous le radier n'est pas uniforme. On est dans le cas d'un diagramme uniforme ou trapézoïdal, la contrainte moyenne ne doit pas dépasser la contrainte admissible du sol.

$$\sigma_{moy} = \frac{3\sigma_{max} + \sigma_{min}}{4} \le \overline{\sigma}_{sol}$$

Avec:

$$\overline{\sigma}_{sol} = 0.17 \, MPa$$
 ; $\sigma = \frac{N}{S_{rad}} \pm \frac{M_x \times Y_G}{I_x}$

D'après le calcul du logiciel AUTOCAD, on a les caractéristiques suivantes :

$$I_x = 14231.72 \, m^4$$
 et $X_G = 11.74 \, m$; $I_y = 48030.29 \, m^4$ et $Y_G = 6.38 m$

❖ Sens X-X

Données:

$$N = 59.52 \text{ MN}; M_x = 51.02 \text{ MN.m}; I_{xG} = 14231.72 \text{ m}^4$$

$$\begin{cases} \sigma_{max} = \frac{N}{S_{rad}} + \frac{M_x \times Y_G}{I_{xG}} = \frac{59.52}{404.89} + \frac{51.02}{14231.72} 6.38 = 0.169 \\ \sigma_{min} = \frac{N}{S_{rad}} - \frac{M_x \times Y_G}{I_{xG}} = \frac{59.52}{404.89} - \frac{68.54}{14231.72} 6.38 = 0.116 \end{cases}$$

Ce qui donne:
$$\sigma_{moy} = \frac{3 \times 0.169 + 0.116}{4} = 0.156 \, MPa < \overline{\sigma}_{sol} = 0.17 \, MPa$$

Donc la contrainte est vérifiée selon le sens X-X.

❖ Sens Y-Y

Données:

$$N = 59.52MN ; M_y = 51.02 MN.m ; I_{xG} = 48030.29 m^4$$

$$\begin{cases} \sigma_{max} = \frac{N}{S_{rad}} + \frac{M_y \times X_G}{I_{yG}} = \frac{59.52}{404.89} + \frac{51.02}{48030.29} \times 11.74 = 0.159 \\ \sigma_{min} = \frac{N}{S_{rad}} - \frac{M_y \times X_G}{I_{yG}} = \frac{59.52}{404.89} - \frac{51.02}{48030.29} \times 11.74 = 0.134 \end{cases}$$

$$\sigma_{moy} = \frac{3 \times 0.159 + 0.134}{4} = 0.153 \, MPa < \overline{\sigma}_{sol} = 0.17 \, MPa$$
 Donc la contrainte est vérifiée selon le sens Y-Y.

> Vérification au cisaillement

$$\tau_{u} = \frac{V_{d}}{b \times d} \le \bar{\tau}_{u} = \min\left(0.15 \frac{f_{c28}}{\gamma_{b}}; 4\right) = 2.5 MPa$$

$$V_{d} = \frac{N_{d} \times L_{max}}{2 \times S_{rad}} \Longrightarrow \qquad d \ge \frac{V_{d}}{b \times \bar{\tau}_{u}}$$

N_d: Effort normal de calcul résultant de la combinaison la plus défavorable.

$$\begin{split} N_{\rm d} &= 81324.34 \, KN \\ V_{\rm d} &= \frac{81324.34 \times 4.65}{2 \times 404.89} = 466.98 KN \\ d &\geq \frac{466.985 \times 10^{-3}}{1 \times 2.5} = 0.18 \, m \,, \quad {\rm Soit} \quad d = 25 \, cm \end{split}$$

> Vérification au poinçonnement

Selon le **BAEL99** (Article A.5.2.4.2), il faut vérifier la résistance de la dalle au poinçonnement par effort tranchant, cette vérification s'effectue comme suit :

$$N_d \le 0.045 \times U_c \times h_n \times \frac{f_{c28}}{\gamma_b}$$

N_d: Effort normal de calcul.

 h_n : Hauteur de la nervure

U_c: Périmètre du contour au niveau du feuillet moyen.

❖ Sous le poteau le plus sollicité

Le poteau le plus sollicité est le poteau (55*60) cm², le périmètre d'impact U_cest donné par la formule suivante : $U_c = 2 \times (A+B)$

$$\begin{cases} A = a + h_n = 0.6 + 0.7 = 1.3 \\ B = b + h_n = 0.55 + 0.7 = 1.25 \end{cases} \Rightarrow U_c = 5.1 \, m$$

$$\Rightarrow N_d = 2.788 \, MN > 0.045 \times 5.1 \times 0.7 \times \frac{25}{1.5} = 2.67 \, MN \dots \dots Condition \, non \, v\'erifi\'ee$$

Donc, il ya un risque de poinçonnement. Donc on doit augmenter la hauteur totale de la section. On opte $h_n = 0.80 \text{ m}$

$$\begin{cases} A = a + h_n = 0.6 + 0.8 = 1.4 \\ B = b + h_n = 0.55 + 0.8 = 1.35 \end{cases} \Rightarrow U_c = 5.5 m$$

$$\Rightarrow$$
 N_d = 2.788 MN < 0.045 × 5.5 × 0.8 × $\frac{25}{1.5}$ = 3.3 MN Condition vérifiée

Donc n'y aura pas de risque de poinçonnement.

Vérification de la stabilité au renversement

$$e = \frac{M}{N} \le \frac{B}{4}$$
 RPA99/2003 (article.10.1.5)

Sens xx':

$$ex = \frac{59521}{510232.28} = 0.12 \le \frac{23.51}{4} = 5.87 \dots vérifiée$$

Sens yy':

$$ex = \frac{685424.62}{510232.28} = 1.34 \le \frac{12.25}{4} = 3.06 \dots vérifiée$$

VI.4. Ferraillage du radier général

Le radier se calcul comme un plancher renversé, sollicité à la flexion simple causée par la réaction du sol. Le ferraillage se fera pour le panneau le plus défavorable et on adoptera le même ferraillage pour tout le radier.

> Calcul des sollicitations

$$Q_{u} = \frac{N_{u}}{S_{rad}}$$

 N_u : L'effort normal ultime donné par la structure

$$N_{ner} = 25 * 0.8 * 0.6 * (100.05 + 90.2) = 2283 KN$$

$$N_{rad} = 25 * 0.3 * 404.89 = 3036.67 KN$$

$$N_{u} = N_{u,cal} + 1.35 * (N_{rad} + N_{ner}) = 81324.34 + 1.35 * (3036.67 + 2283)$$

$$= 88505.89 KN$$

$$Q_u = \frac{88505.89}{404.89} = 218.59 \text{ KN/}m^2$$

Le panneau le plus sollicité est :

$$L_x=3.35-0.55=2.8~m~;~L_y=5.1-0.6=4.5~m$$

$$\rho=\frac{l_x}{l_y}=0.62>0.4~\Longrightarrow \text{la dalle travaille dans les deux sens}$$

$$\{\mu_x=0.0794\\ \mu_y=0.3205$$

$$\begin{cases} M_{0x} = \mu_x \times Q_{\boldsymbol{u}} \times L_x^2 \\ M_{0y} = \mu_y \times M_{0x} \end{cases} \Rightarrow \begin{cases} M_{0x} = 0.0794 \times 218.59 \times 2.8^2 \\ M_{0y} = 0.3205 \times 136.07 \end{cases}$$
$$\Rightarrow \begin{cases} M_{0x} = 136.07 \ KN. \ m \\ M_{0y} = 43.61 \ KN. \ m \end{cases}$$

Calcul des moments corrigés

$$M_{tx} = 0.85 M_{0x} = 115.66 KN.m$$
; $M_{ty} = 0.75 M_{0y} = 32.71 KN.m$
 $M_{ax} = M_{ay} = -0.3 M_{0x} = -40.82 KN.m$

Le ferraillage se fait pour une section (b×h)= $(1\times0,3)$ m²

Tableau VI.2. Section d'armature du radier

Localisation		M(KN.m)	A _{cal} (cm ²)	A _{min} (cm ²)	A _{adop} (cm ²)	N ^{bre} de barres	St (cm)
travée	X-X	115.66	11.92	2.85	12.32	8HA14	12
Havee	Y-Y 32.71		3.23	2.4	3.39	3HA12	33
App	Appui -40.82		4.05	2.85	4.52	4HA12	25

Condition de non fragilité

On a e =30 cm > 12 cm et ρ =0.62 > 0,4

$$A_{minx} = \rho_0 \times (\frac{3-\rho}{2}) \times b \times h_r = 0.0008 (\frac{3-0.62}{2}) \times 0.3 = 2.85 \ cm^2$$

$$A_{miny} = \rho_0 \times b \times h_r = 0.0008 \times 0.30 = 2.4 \text{ cm}^2$$

> Vérification à l'ELS

$$Q_s = \frac{N_s}{S_{rad}}$$

$$N_s = 59521 + 2283 + 3036.67 = 64840.67 KN$$

$$Q_s = 64840.67/404.89 = 160.14 \text{ KN/}m^2$$

$$\begin{cases} \mu_x = 0.0844 \\ \mu_y = 0.0844 \end{cases} \implies \begin{cases} M_{0x} = 105.96 \ KN.m \\ M_{0y} = 8.94 \ KN.m \end{cases}$$

❖ Les moments corrigés

 $M_{tx} = 90.066 \, KN. m$

$$M_{tv} = 6.71 \, KN. \, m$$

$$M_{ax} = M_{ay} = -31.79 \, KN. \, m$$

***** Vérification des contraintes

Tableau VI.3. Vérifications des contraintes à l'ELS

Localisa	tion	M _s KN.m	Y (cm)	[(cm ⁴)	$\sigma_{bc} \leq \overline{\sigma}_{bc}$ (MPA)	Obs.	$\sigma_{st} \leq \overline{\sigma}_{st}$ (MPA)	Obs.
Travée	х-х	90.06	8.31	83678.90	8.18 < 15	Vérifiée	276.2 > 201.63	N. Vérifiée
Travee	у-у	6.71	4.75	28745.77	1.01 < 15	Vérifiée	71.17< 201.63	Vérifiée
Appui		- 31.79	5.41	36880.40	4.2 < 15	Vérifiée	255.61> 201.63	N. Vérifiée

On remarque que les contraintes de traction dans l'acier ne sont pas vérifiées, donc on doit recalculer les sections d'armatures à l'ELS.

Les résultats sont résumés dans le tableau qui suit :

Tableau VI.4. Section d'armateur du radier à l'ELS

Localisa	ation	M _s KN.m	$\beta \ (10^{-2})$	α	A_{cal} (cm ² /ml)	$\frac{A_{adop}}{(cm^2/ml)}$	N ^{bre} de barres	St (cm)
Travée	X-X	90.06	0.56	0.35	17.15	18.1	9HA16	10
Appı	ui	- 31.79	0.19	19 0.48 6.36		6.79	6HA12	15

Avec

$$\beta = \frac{Ms}{b*d^2*\sigma st} \quad \text{et} \quad \alpha = \sqrt{90*\beta*(\frac{1-\alpha}{3-\alpha})}$$

D'après les itérations qu'on a effectuées on trouve α

$$A_s = \frac{Ms}{d * (1 - \left(\frac{\alpha}{3}\right))\overline{\sigma s t}}$$

***** Vérification des espacements

Selon x-x: $S_t \le \begin{cases} \min(2.5 \text{ h}_r, 25 \text{ cm}) = 25 \text{ cm} \\ 100/9 = 11 \text{ cm} \end{cases}$

Selon y-y: $S_t = 14 \ cm < min(3 \ h_r; 33 \ cm) = 33 \ cm$

> Schéma de Ferraillage du radier

Le Schéma de ferraillage de radier sera représenté dans l'annexe n⁰5

VI.5. Etude des nervures

Les nervures sont des poutres de section en « T » renversées, noyées dans le radier. Elles servent d'appuis pour la dalle du radier, et sont calculées à la flexion simple.

VI.5.1. Calcul des sollicitations :

La répartition des charges sur chaque travée s'effectue en fonction des lignes de ruptures (Répartition triangulaire ou trapézoïdale), comme indiqué sur la figure ci-dessous :

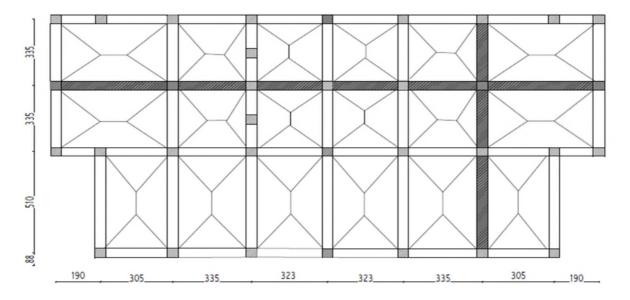


Figure VI.2. Schéma des lignes de ruptures.

Remarque : Pour l'étude des nervures, on s'intéresse au cas le plus défavorable (voir les nervures hachurées dans les deux sens, figure VI.2).

Afin de simplifier les calculs, les charges triangulaires et trapézoïdales peuvent être remplacées par des charges « q » équivalentes uniformément réparties.

• Charges triangulaires.

- Cas de plusieurs charges triangulaires sur la même travée :

$$q_m = q_v = \frac{P}{2} \times \frac{\sum l_{xi}^2}{\sum l_{xi}}$$

- Cas d'une seule charge triangulaire par travée :

$$\begin{cases} q_m = \frac{2}{3} \times p \times l_x \\ q_v = \frac{1}{2} \times p \times l_x \end{cases}$$

Ces expressions sont élaborées pour des poutres supportant des charges triangulaires des deux côtés, donc pour les poutres recevant une charge triangulaire d'un seul côté, ces expressions sont à diviser par deux.

• Charges trapézoïdales

$$q_{m} = \frac{P}{2} \left[\left(1 - \frac{\rho_{g}^{2}}{3} \right) l_{xg} + \left(1 - \frac{\rho_{d}^{2}}{3} \right) l_{xd} \right]$$

$$q_v = \frac{P}{2} \left[\left(1 - \frac{\rho_g}{2} \right) l_{xg} + \left(1 - \frac{\rho_d}{2} \right) l_{xd} \right]$$

Avec:

 q_m : Charge équivalente qui donne le même moment maximal que la charge réelle.

 q_v : Charge équivalente qui donne le même effort tranchant maximal que la charge réelle.

$$\rho = \frac{l_x}{l_y}$$

P : Charge répartie sur la surface du radier (poids des nervures non compris).

Les nervures les plus défavorables sont montrées sur les figures ci-dessous :

✓ Sens X-X

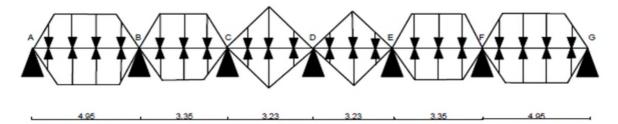


Figure VI.3. Répartiton des charges sur la nervure la plus défavorable selon le sens x-x

✓ Sens Y-Y

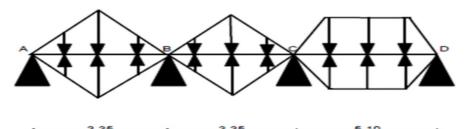


Figure VI.4. Répartition des charges sur la nervure la plus défavorable selon le sens y-y

• Calcul du chargement :

Nu'= Nu - P_{nervure} = 88505.89 - (1.35*2283) = 85423.84 KN
Ns' = Ns - P_{nervure} = 64840.67 - 2283 = 62557.67 KN

$$Pu = \frac{N'_u}{s_{rad}} = 210.98 \, KN/m^2$$

$$Ps = \frac{N_s'}{S_{rad}} = 154.05 \, KN/m^2$$

On obtient donc:

\triangleright Sens X-X:

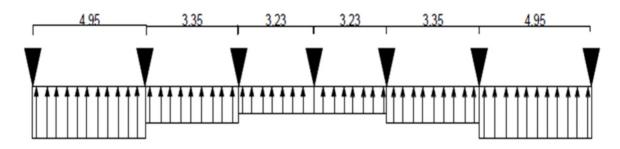


Figure VI.5. Schéma statique de la nervure selon le sens x-x

Le tableau ci-dessous récapitule le chargement sur les travées dans le sens x-x :

Tableaux VI.5. Chargement sur les travées du sens x-x.

Chargement	Travée A-B	Travée B-C	Travée C-D	Travée D-E	Travée E-F	Travée F-G
qm ^u (KN/m)	462.17	360.97	344.39	344.39	360.39	462.17
$q_m^s(KN/m)$	337.97	263.54	251.84	251.84	263.54	337.97
qv (KN/m)	365.76	270.35	258.29	258.29	270.35	365.76

\triangleright Sens Y-Y:

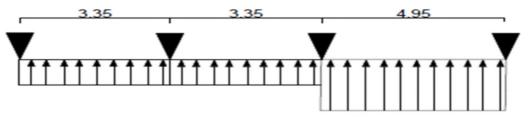


Figure VI.6. Schéma statique de la nervure selon le sens Y-Y

Le tableau ci-dessous récapitule le chargement sur les travées dans le sens y-y :

Tableaux VI.6. Chargement sur les travées du sens y-y.

Chargement	Travée A-B	Travée B-C	Travée C-D
$q_{m}^{u}(KN/m)$	353.39	353.39	612.39
qm ^s (KN/m)	258.42	258.42	447.82
q _v (KN/m)	265.04	265.04	488.26

• Calcul des sollicitations

Les sollicitations sur les nervures sont calculées en utilisant la méthode de Caquot car on a des charges modérées et la fissuration est préjudiciable.

Dans le calcul des sollicitations on doit rajouter le poids des nervures qui sont des charges uniformément réparties.

Donc :
$$\begin{cases} P_{ner}^{u} = 1.35 \times b_{av,pot} \times h_{t} \times \gamma_{b} = 1.35 \times 0.65 \times 0.8 \times 25 = 17.55 KN/m \\ P_{ner}^{s} = b_{av,pot} \times h_{t} \times \gamma_{b} = 0.65 \times 0.8 \times 25 = 13 KN/m \end{cases}$$

Les résultats des sollicitations à l'ELU et à l'ELS respectivement, sont résumés dans le tableau ci-dessous :

Tableaux VI.7. Sollicitation dans les nervures à l'ELU selon les deux sens

Sens	Travée	<i>L</i> (<i>m</i>)	q_m (KN)	M_g $(KN.m)$	M_d $(KN.m)$	X_0 (m)	M_0 $(KN.m)$	M_t $(KN.m)$	V_g (KN)	V_d (KN)
	AB	4.95	478.37	0	-1023.08	2.04	1420.51	998.27	977.28	-1390.6
	BC	3.35	376.59	-1023.08	-470.39	2.11	492.15	-182.32	795.77	-465.81
X-X	CD	3.23	360.59	-470.39	-442.58	1.64	470.15	13.86	590.96	-573.74
12 12	DE	3.23	360.59	-442.58	-470.39	1.59	470.15	13.86	573.74	-590.96
	EF	3.35	376.59	-470.39	-1023.08	1.24	492.15	-182.32	465.81	-795.77
	FG	4.95	478.37	-1023.08	0	2.91	1420.51	998.27	1390.65	-977.28
	AB	3.35	369.59	0	-487.97	1.28	489.76	303.19	473.40	-764.73
Y-Y	BC	3.35	369.59	-487.97	-1354.37	0.98	427.97	-312.21	360.43	-877.69
	CD	5.1	628.59	-1354.37	0	2.97	1987.65	1422.61	1868.47	-1337.3

Tableaux VI.8. Sollicitation dans les nervures à l'ELS selon les deux sens

Sens	Travée	L (m)	q_m (KN)	M_g $(KN.m)$	M_d $(KN.m)$	X_0 (m)	M_0 $(KN.m)$	M_t $(KN.m)$
	AB	4.95	349.97	0	-784.49	2.04	1039.23	730.31
	BC	3.35	275.54	-748.49	-344.18	2.11	360.10	-133.37
X-X	CD	3.23	263.84	-344.18	-323.84	1.64	344	10.14
11 11	DE	3.23	263.84	-323.84	-344.18	1.59	344	10.14
	EF	3.35	275.54	-344.18	-784.49	1.24	360.10	-133.37
	FG	4.95	349.97	-748.49	0	2.91	1039.23	730.31
	AB	3.35	270.42	0	-357.03	1.28	358.35	221.83
Y-Y	BC	3.35	270.42	-357.03	-990.77	0.98	313.18	-228.38
	CD	5.1	459.82	-990.77	0	2.97	1453.95	1040.64

> Ferraillage des nervures

Le ferraillage des nervures se fait à la flexion simple pour une section en T.

✓ Détermination de la largeur b

✓ Sens X-X

On a:

h = 0.8 m; $h_0 = 0.30 \text{ m}$

 $b_0 = 0.65 \text{ m}$; d = 0.75 m

$$\frac{b - b_0}{2} \le \min\left(\frac{L_x}{2}; \frac{L_y^{min}}{10}\right) \dots \dots (CBA. Art 4.1.3)$$

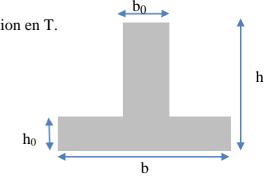


Figure VI.7. Schéma des nervures

$$\frac{b - 0.65}{2} \le \min(2.2 \ m; 0.275 \ m)$$

Donc, b = 1 m.

✓ Sens Y-Y

On a:

$$\frac{b - 0.65}{2} \le \min(2.25 \, m \, ; 0.268 \, m)$$

Donc, b = 1 m.

Les résultats de ferraillage des nervures sont récapitulés dans le tableau suivant :

Tableau VI.9. Résultats de ferraillage des nervures

Loc	alisation	M (KN.m)	A_{cal} (cm^2)	A_{min} (cm^2)	A_{adop} (cm^2)	Choix des barres
X-X	Travée	998.27	40.99	9.06	43.79	7HA25+3HA20
A-A	Appui	1422.61	60.48	9.00	61.65	10HA25+4HA20
Y-Y	Travée	-1023.08	42.09	9.06	43.79	7HA25+3HA20
1-1	Appui	-1354.37	57.25	9.00	61.65	10HA25+4HA20

VI.5.2. Vérifications a l'ELU:

✓ Vérification des efforts tranchants à l'ELU

$$\tau_u = \frac{V_u}{b \times d}$$

F.N
$$\Rightarrow \overline{\tau} < \min(0.1 f_{c28}; 4MPa) = 2.5 MPa$$

Selon le Sens (x):
$$\tau_u = \frac{1390.65 \times 10^{-3}}{1 \times 0.75} = 1.85 \, MPa < \overline{\tau} = 2.5 \, MPa \dots Vérifiée$$

Selon le Sens (y):
$$\tau_u = \frac{1337.34 \times 10^{-3}}{1 \times 0.75} = 1.78 \, MPa < \overline{\tau} = 2.5 \, MPa \dots \dots Vérifiée$$

✓ Armatures transversales

Le diamètre des armatures transversales est donné par la relation suivante :

$$\emptyset_t \le \min\left(\emptyset_{lmin}; \frac{h}{35}; \frac{b_0}{10}\right) \Longrightarrow \emptyset_t \le \min(20; 22.85; 65) \text{mm}$$

Soit
$$\emptyset_t = 10 \ mm$$
 et $A_{trans} = 6\emptyset 10 = 4.71 \ cm^2$

✓ Espacement des aciers transversaux

$$S_t \le \min(0.9 * d; 40cm) \le 40cm$$

$$S_t \le \frac{A_t * f_e}{0.4 * b_0} = 71.5 \text{ cm.}$$

$$S_t \le \frac{0.8 * A_t * f_e}{b_* (\tau_u - 0.3 f_{t28})} = 16.16 \text{ cm}$$

On opte pour : $S_t = 15$ cm

✓ Armatures de peau

D'après le CBA (Art. A.7.3), on doit mettre des armatures de peau pour éviter tout risque de fissures, vue la hauteur de la section des nervures qui est importante.

$$A_p = 0.2\% (b_0*h) = 0.002*65*80 = 8 \text{ cm}^2$$

Soit $A_p = 6HA14 = 9.24 \text{ cm}^2$

VI.5.3. Vérification des contraintes à l'ELS:

La vérification des contraintes pour le béton et les aciers à l'ELS, se fait comme suit :

$$\sigma_{bc} = \frac{M_{ser}}{I} \times y \le 0.6 \times f_{c28} = 15Mpa$$

$$\sigma_{s} = 15 \times \frac{M_{ser}}{I} \times (d - y) \le \overline{\sigma}_{s} = 201.63Mpa$$

Les résultats de calcul des contraintes pour les nervures, sont résumés dans le tableau cidessous:

Tableau VI.10. Vérification des contraintes à l'ELS

Loca	lisation	<i>M_s</i> (KN.m)	Y (cm)	I (cm ⁴)	$\sigma_{bc} \leq \overline{\sigma}_{bc}$ (MPA)	Obs.	$\sigma_{st} \leq \overline{\sigma}_{st}$ (MPA)	Obs.
X-X	Travée	730.31	25.66	2162243.49	8.67 < 15	Vérifiée	249.96>201,63	N.Vérifiée
A-A	Appui	1040.64	29.32	2769810.63	11.01 < 15	Vérifiée	257.46>201,63	N.Vérifiée
Y-Y	Travée	-784.49	25.66	2162243.49	8.88 < 15	Vérifiée	256.18>201,63	N.Vérifiée
1-1	Appui	-990.77	29.32	2769810.63	10.49 < 15	Vérifiée	245.12>201,63	N.Vérifiée

Les contraintes de traction dans l'acier ne sont pas vérifiées, donc on doit recalculer les sections d'armatures longitudinales à l'ELS.

Les tableaux ci-dessous résument les résultats de calcul des armatures à l'ELS ainsi que leur vérification :

Tableau VI.11. Ferraillage des nervures à l'ELS

Loca	lisation	<i>M_s</i> (KN.m)	$\beta \ (10^{-2})$	α	$A_{cal} (cm^2 / ml)$	A _{adop} (cm ² / ml)	N ^{bre} de barres
X-X	Travée	730.31	0.6	0.422	56.19	58.07	6HA32+2HA25
A-A	Appui	1040.64	0.9	0.504	82.69	87.52	6HA32+8HA25
Y-Y	Travée	-784.49	0.7	0.427	57.71	58.07	6HA32+2HA25
1-1	Appui	-990.77	0.9	0.491	78.35	87.52	6HA32+8HA25

VI.5.4.Schéma de ferraillage des nervures

Les schémas de ferraillage des nervures sont représentés dans l'annexe n⁰5

VI.6. Etude du voile Périphérique

D'après le **RPA 99/2003 (Art 10.1.2)**, Le voile périphérique contenu entre le niveau des fondations et le niveau de base doit avoir les caractéristiques minimales suivantes :

- L'épaisseur minimale est de 15 cm.
- ➤ Il doit contenir deux nappes d'armatures.
- Le pourcentage minimal des armatures est de 0.1% dans les deux sens.

Les ouvertures dans le voile ne doivent pas réduire sa rigidité d'une manière importante.

VI.6.1. Dimensionnement des voiles

Hauteur h=2.95 m

Épaisseur e = 15 cm

-Caractéristiques du sol

- Poids spécifique : $\gamma_h = 17.8 \, KN/m^3$

- La Cohésion : c = 0.45 bar

- Angle de frottement : $\varphi = 5.65^{\circ}$

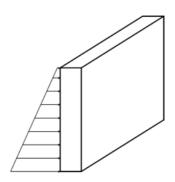


Figure VI.8. Poussée des terres sur les voiles périphériques

Remarque:

Dans le cas le plus défavorable et par sécurité on prend : C = 0.45 bar

VI.6.2. Evaluation des charges et surcharges

Le voile périphérique et soumis aux chargements suivants :

✓ La poussée des terres

$$G = h \times \gamma \times tg^{2}(\frac{\pi}{4} - \frac{\varphi}{2}) - 2 \times c \times tg(\frac{\pi}{4} - \frac{\varphi}{2})$$

$$G = 2.95 \times 17.8 \times tg^{2}(\frac{\pi}{4} - \frac{5.65}{2}) = 43.09 \, KN/m^{2}$$

✓ Surcharge accidentelle

$$q = 10KN/m^2$$

$$Q = q \times tg^2 \left(\frac{\pi}{4} - \frac{\varphi}{2}\right) \Longrightarrow Q = 8.21 \, KN/m^2$$

VI.6.3. Ferraillage du voile

Le voile périphérique sera calculé comme une dalle pleine sur quatre appuis uniformément chargée, l'encastrement est assuré par le plancher, les poteaux et les fondations.

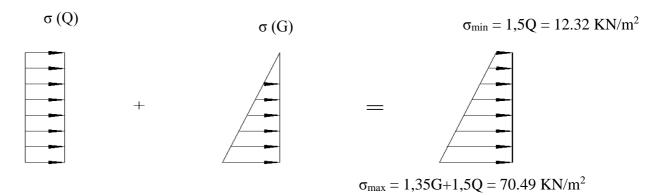


Figure VI.9. Répartitions des contraintes sur le voile périphérique

Le diagramme des contraintes est trapézoïdal, donc :

$$\sigma_{moy} = \frac{3\sigma_{max} + \sigma_{min}}{4} = \frac{3 \times 70.49 + 12.32}{4} = 55.93 KN/m^2$$

$$q_u = \sigma_{moy} \times 1 \text{ ml} = 55.93 \text{ KN/ m}l$$

Pour le ferraillage on prend le plus grand panneau dont les caractéristiques sont

 $\rho = 0.93 > 0.4 \implies$ Le voile porte dans les deux sens

> Calcul des moments isostatiques

$$\begin{split} M_{0x} &= \mu_x \times q \times {l_x}^2 \\ M_{0y} &= \mu_y \times M_{0x} \\ \rho &= 0.85 \Longrightarrow ELU \begin{cases} \mu_x = 0.0428 \\ \mu_Y = 0.8450 \end{cases} \\ M_{0x} &= 0.0428 \times 55.93 \times 2.75^2 = 18.1 \ KN. \ m \\ M_{0y} &= 0.8450 \times M_{0x} = 15.29 \ KN. \ m \end{split}$$

✓ Les moments corrigés

$$M_x = 0.85 M_{0x} = 15.38 KN. m$$

 $M_y = 0.85 M_{0y} = 12.99 KN. m$
 $M_{ax} = M_{ay} = -0.5 M_{0x} = -7.69 KN. m$

Les sections d'armatures sont récapitulées dans le tableau ci-dessous :

Avec :
$$A_{min} = 0.1\% \times b \times h$$

Tableau VI.12. Ferraillage des voiles périphérique

Localis	sation	M (KN.m)	μbu	α	Z (cm)	$\begin{array}{c} A_{cal} \\ (cm^2/ml) \end{array}$	$\begin{array}{c} A_{min} \\ (cm^2/ml) \end{array}$	$egin{aligned} \mathbf{A}_{ ext{adopt\'e}} \ (\mathbf{cm^2/ml}) \end{aligned}$
Tworvée	X-X	15.38	0.007	0.009	0.119	0.37	1.5	4HA10 = 3.14
Travée	Y-Y	12.99	0.006	0.008	0.119	0.31	1.5	4HA10= 3,14
App	oui	-7.69	0.004	0.006	0.119	0.22	1.5	4HA10=3,14

✓ Espacements

Sens x-x :
$$S_t \le \min(2e; 25 cm) \Longrightarrow S_t = 20 cm$$

Sens y-y :
$$S_t \le \min(3e; 33 \ cm) \Longrightarrow S_t = 25 \ cm$$

√ Vérifications

$$\rho = 0.93 > 0.4$$
 $e = 15 \text{ cm} > 12$

$$A_x^{min} = \frac{\rho_0}{2} \times (3 - \rho)b \times e$$

$$A_x^{min} = \frac{0,0008}{2} (3 - 0.93)100 \times 15 = 1.24cm^2$$

$$A_{\nu}^{min} = \rho_0 \times b \times e = 1.2 \ cm^2$$

$$A_{min} = 0.1\% \times b \times h = 0.001 \times 15 \times 100 = 1.5 \text{ cm}^2$$

✓ Calcul de l'effort tranchant

$$V_u^x = \frac{q_u \times L_x}{2} \times \frac{L_y^4}{L_x^4 + L_y^4} = \frac{55.93 \times 2.75}{2} \times \frac{2.95^4}{2.75^4 + 2.95^4} = 43.81KN$$

$$V_u^y = \frac{q_u \times L_y}{2} \times \frac{L_x^4}{L_x^4 + L_y^4} = \frac{55.93 \times 2.95}{2} \times \frac{2.75^4}{2.75^4 + 2.95^4} = 49.63KN$$

√ Vérification de l'effort tranchant

On doit vérifier que

$$\tau_u = \frac{V}{b \times d} \le \overline{\tau}_u = 0.07 \times \frac{f_{c28}}{\gamma_b}$$

$$\tau_u = 0.36 \, MPa \le \overline{\tau}_u = 1.17 \, MPa$$

Vérification A L'ELS

$$\rho = 0.75 \Longrightarrow ELS \begin{cases} \mu_x = 0.0684 \\ \mu_x = 0.6647 \end{cases}$$

$$\sigma_{max} = G + Q = 51.3 \, KN/m^2$$

$$\sigma_{min} = Q = 8.21 \, KN/m^2$$

$$\sigma_{moy} = \frac{3\sigma_{max} + \sigma_{min}}{4} = \frac{3 \times 51.3 + 8.21}{4} = 40.53KN/m^2$$

$$q_s = \sigma_{moy} \times 1 \text{ ml} = 40.53 \text{ KN/ m}l$$

✓ Calcul des moments isostatiques

$$M_{0x} = 0.050 \times 40.53 \times 2.75^2 = 15.33 \, KN. m$$

$$M_{0y} = 0.8939 \times M_{0x} = 15.33KN. m$$

✓ Les moments corrigés

$$M_x = 0.85 M_{0x} = 13.03 KN. m$$

$$M_{\nu} = 0.85 \, M_{0\nu} = 11.65 \, KN. \, m$$

$$M_{ax} = M_{ay} = -0.5M_{0x} = -7.66 \, KN. \, m$$

√ Vérification des contraintes

$$\sigma_{bc} = \frac{M_s}{I} y \le \bar{\sigma}_{bc} = 0.6 \times f_{c28}$$

$$\sigma_{st} = 15 \frac{M_s}{I} (d - y) \le \bar{\sigma}_{st} = \min\left(\frac{2}{3} f_e; 110 \sqrt{\eta f_{t28}}\right)$$

Tableau VI.13. Vérifications des contraintes à l'ELS

Localisation		M ^s KN.m	Y (cm)	[(cm ⁴)	$\sigma_{bc} \leq \overline{\sigma}_{bc}$ (MPA)	Obs.	$\sigma_{st} \leq \overline{\sigma}_{st} \ ext{(MPA)}$	Obs.
Travée	X-X	13.03	2.92	4713.12	8.08 < 15	Vérifiée	376.38 > 201,63	N. Vérifiée
	у-у	11.65	2.92	4713.12	7.23 < 15	Vérifiée	336.51> 201,63	N. Vérifiée
Appui		-7.66	2.92	4713.12	4.75 < 15	Vérifiée	221.26> 201,63	N. Vérifiée

On doit calculer les armatures à l'ELS car la contrainte de traction n'est pas vérifiée.

Tableau VI.14. Ferraillage des voiles périphérique à l'ELS

Localisation		<i>M_s</i> (KN.m)	$m{eta}{(10^{-2})}$	α	A_{cal} (cm ² /ml)	A _{adop} (cm²/ ml)	N ^{bre} de barres	
T	X-X	13.03	0.4	0.352	6.10	6.79	6HA14	
Travée	у-у	11.65	0.4	0.333	5.42	5.65	5HA12	
Appui		-7.66	0.3	0.270	3.48	4.52	4HA12	

> Schéma de ferraillage du voile périphérique :

Le Schéma de ferraillage de voile périphérique sera représenté dans l'annexe n⁰5

VI.7.Conclusion:

L'étude de l'infrastructure constitue une étape importante dans le calcul d'ouvrage. Ainsi le choix de la fondation dépend de plusieurs paramètres liés aux caractéristiques du sol en place ainsi que les caractéristiques géométriques de la structure.

Dans un premier temps nous avons essayé d'utiliser des semelles isolées. Cette solution a été écartée à cause du chevauchement qu'elle induisait. Les mêmes raisons ont fait écarter la solution de la semelle filante. Nous avons donc opté à des fondations sur radier général ayant les dimensions suivantes :

Epaisseur du radier : 30cm

Sections des nervures ; $(b*h) = (65 * 80) \text{ cm}^2$.

Conclusion générale

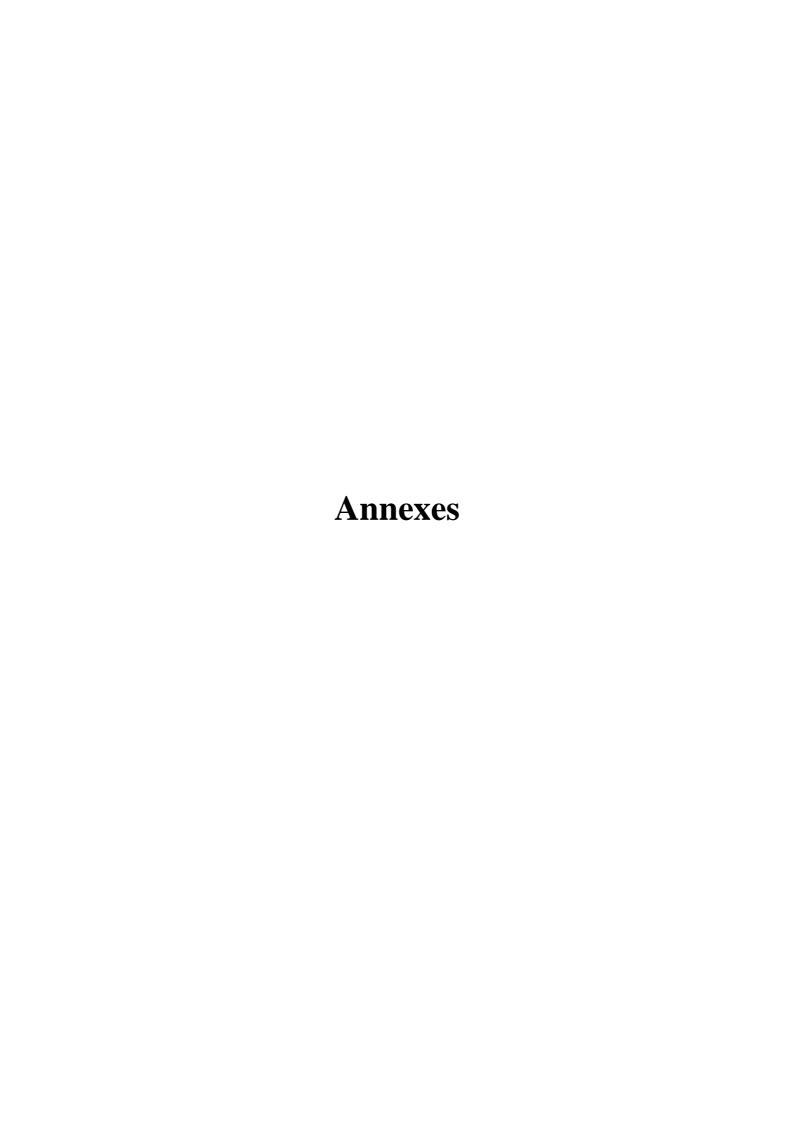
En conclusion, et d'après l'étude réalisée on peut noter les points suivants :

- Les planchers ne sont pas obligatoirement des éléments non structuraux, mais sont conçus pour résister aux forces qui agissent dans leurs plans et les transmettre aux éléments de contreventement qui sont les voiles pour notre cas.
- Les éléments non structuraux sont calculés de façon à éviter les dommages et à assurer la sauvegarde de la plupart des équipements.
- La réussite de l'ouvrage relève de la réussite du projet de fondation, selon le type d'ouvrage et son mode de conception, le sol peut constituer une base d'appuis pour l'ensemble de l'ouvrage tel que route, tunnel, barrage, mur de soutènement.
- La section d'armature des poteaux calculés par le RPA 99 est triple de celle trouvée dans l'ETABS V16 car ce logiciel prend la section minimale du système américain qui est (0,3 % b*h) et la section minimale de RPA est (0,9 % b*h)

A la lumière des résultats du calcul dynamique effectué par l'ETABS V16 on a abouti aux conclusions et recommandations suivantes :

- Les modes de translation avaient une prépondérance importante et pour réaliser 90 % de participation de la masse il fallait considérer 13 modes de vibration.
- La symétrie de la structure dans le sens transversal a été à l'origine d'une faible excentricité (0,05m) et l'absence de torsion.
- Les méthodes numériques pour l'étude dynamique utilisées par les logiciels de calcul de structure donnent des valeurs optimales des efforts par rapport à celles obtenues par la méthode statique équivalente proposée par le RPA 99 version 2003. C'est pourquoi, le RPA préconise que la résultante des forces sismiques à la base Vt obtenue par la combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente.
- La forme irrégulière du bâtiment est un facteur négatif qui a augmenté la complexité du comportement de la structure.

Par ailleurs, ce projet a constitué pour nous l'occasion de prendre connaissance des règlements et des normes de calcul utilisés dans les bureaux d'études algériens ainsi que la maîtrise du logiciel de calcul l'ETABS V16 .


L'intérêt pour nous a été donc double, apprendre à appréhender les problèmes complexes de calcul de structure et faire les premiers pas pour la résolution de questions pratiques concrètes.

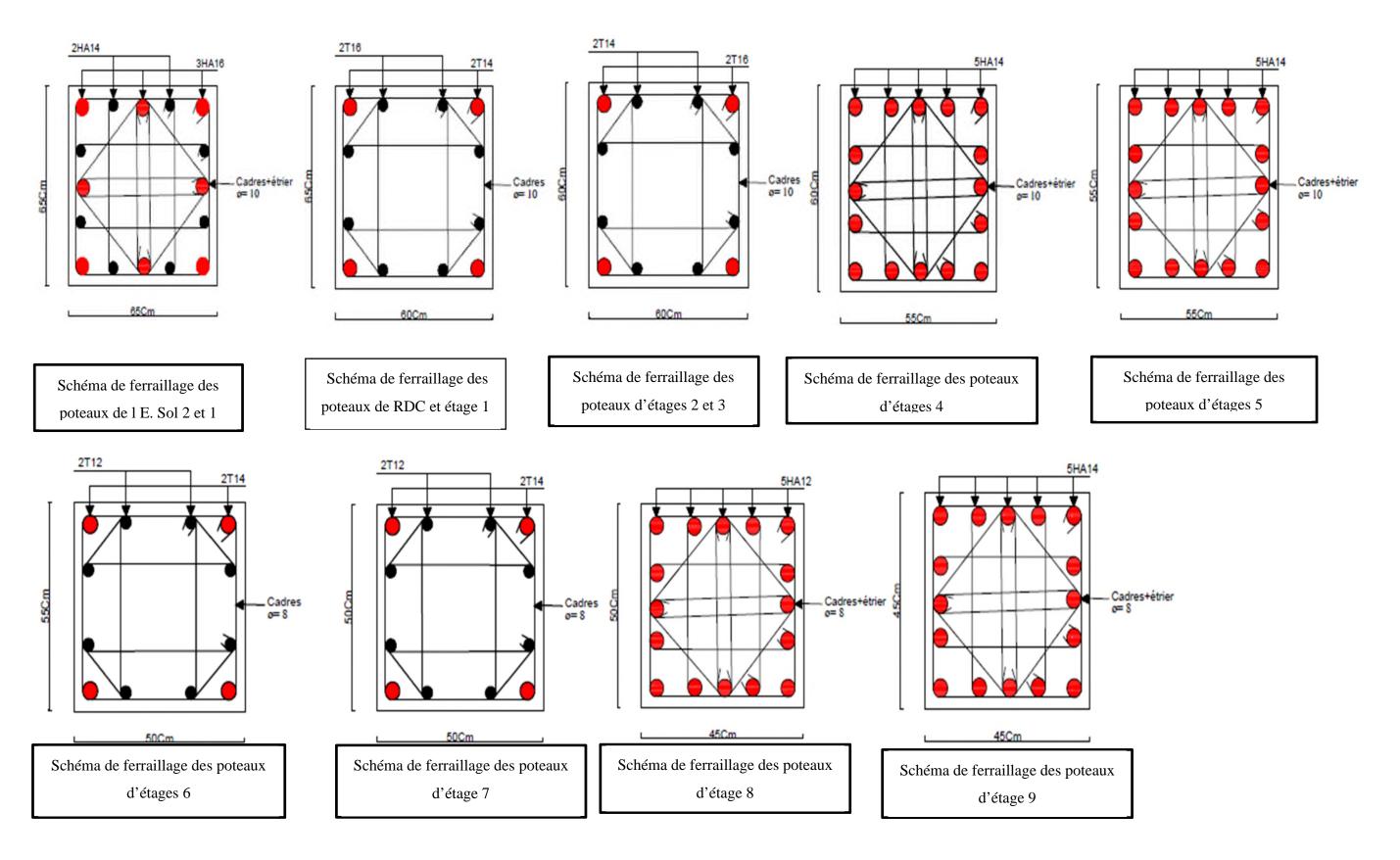
Bibliographie

- ✓ Règles de conception et de calcul des structures en béton armé (CBA93).
- ✓ Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites (B. A. E. L 91).
- ✓ Règles parasismiques algériennes (RPA 99/ version 2003).
- ✓ Document technique réglementaire (D. T. R), charges et surcharges d'exploitations.
- ✓ M. Belazougui (calcul des ouvrages en béton armé).

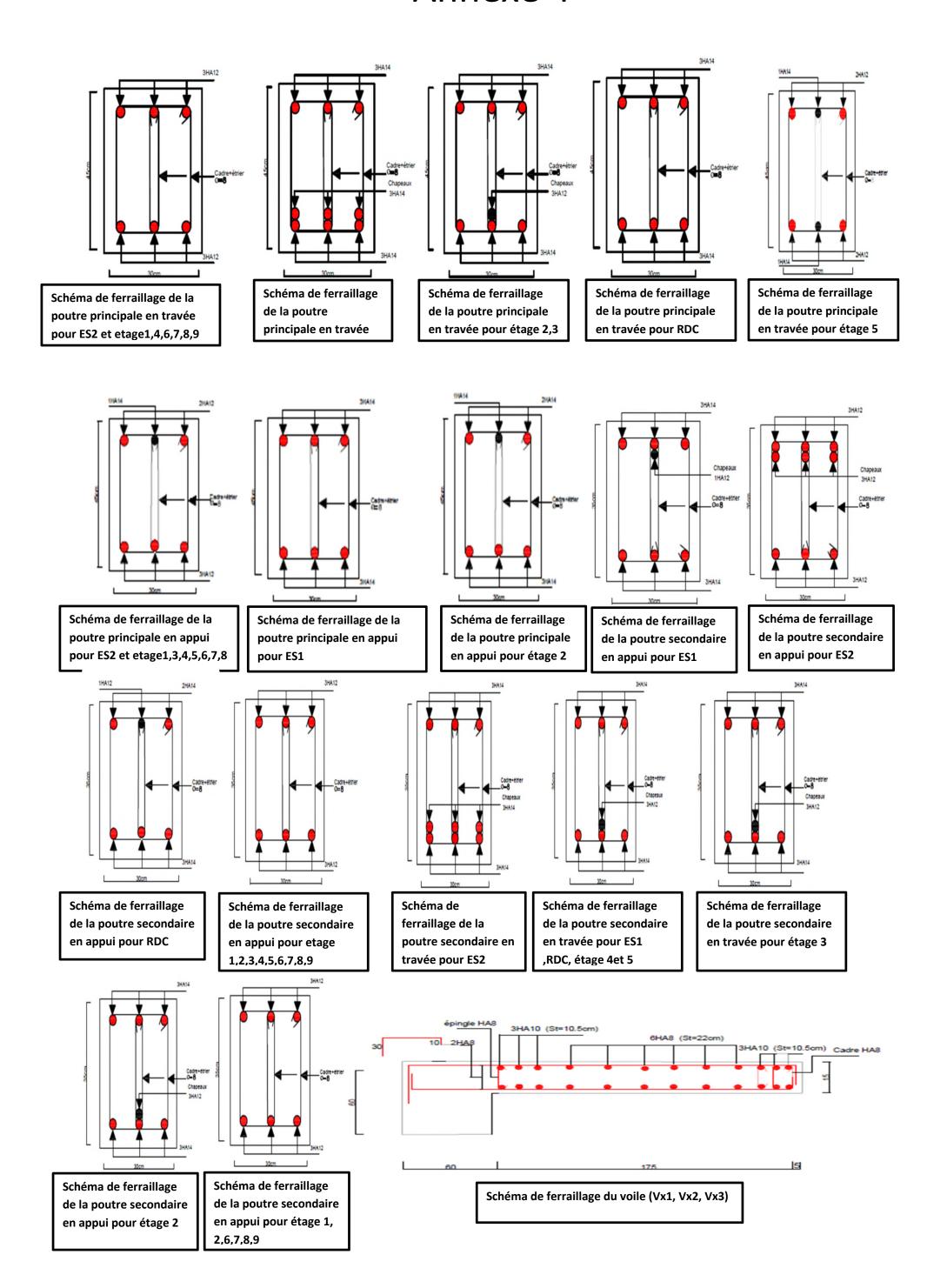
Autres documents consultés :

- Cahier de cours de cursus.
- Mémoires de fin d'études.

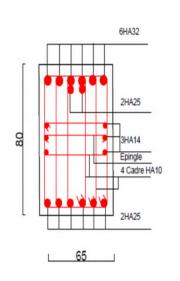
ANNEXE I

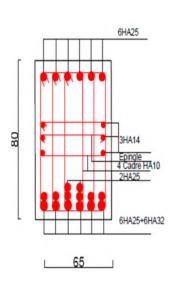

DALLES RECTANGULAIRES UNIFORMÉMENT CHARGEES ARTICULÉES SUR LEUR CONTOUR

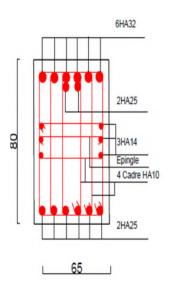
$\alpha = \frac{l_x}{l_y}$	ELU $v = 0$		ELS $v = 0.2$		$\alpha = \frac{l_x}{l_y}$	ELU $v = 0$		ELS $v = 0.2$	
	μ_{χ} μ_{y}		μ_{χ}	μ_y	l_y				
0.40	0.1101	0.2500	0.1121	0.2854	0.71	μ_{χ} 0.0671	μ_y 0.4471	μ_X 0.0731	μ_y 0.5940
0.41	0.1088	0.2500	0.1110	0.2924	0.71				0.6063
0.42	0.1075	0.2500	0.1098	0.3000	0.72	0.0658 0.0646	0.4624 0.4780	0.0719 0.0708	0.6188
0.43	0.1062	0.2500	0.1087	0.3077	0.73	0.0633	0.4780	0.0708	0.6315
0.44	0.1049	0.2500	0.1075	0.3155	0.74	0.0633	0.4938		0.6647
0.45	0.1036	0.2500	0.1063	0.3234				0.0684	
0.46	0.1022	0.2500	0.1051	0.3319	0.76	0.0608	0.5274	0.0672	0.6580
0.47	0.1008	0.2500	0.1038	0.3402	0.77	0.0596	0.5440	0.0661	0.6710 0.6841
0.48	0.0994	0.2500	0.1026	0.3491	0.78	0.0584	0.5608	0.0650	
0.49	0.0980	0.2500	0.1013	0.3580	0.79	0.0573	0.5786 0.5959	0.0639	0.6978 0.7111
0.50	0.0966	0.2500	0.1000	0.3671	0.80	0.0561	0.5939	0.0628 0.0671	0.7111
0.51	0.0951	0.2500	0.0987	0.3758	0.81	0.0550		0.0607	0.7246
0.52	0.0937	0.2500	0.0974	0.3853	1		0.6313		
0.53	0.0922	0.2500	0.0961	0.3949	0.83 0.84	0.0528 0.0517	0.6494 0.6678	0.0596 0.0586	0.7518 0.7655
0.54	0.0908	0.2500	0.0948	0.4050	0.84	0.0517	0.6864		0.7655
0.55	0.0894	0.2500	0.0936	0.4150	0.85	0.0306	0.7052	0.0576 0.0566	0.7794
0.56	0.0880	0.2500	0.0923	0.4254	1				
0.57	0.0865	0.2582	0.0910	0.4357	0.87 0.88	0.0486	0.7244 0.7438	0.0556 0.0546	0.8074 0.8216
0.58	0.0851	0.2703	0.0897	0.4462	0.89		0.7635		0.8358
0.59	0.0836	0.2822	0.0884	0.4565		0.0466		0.0537	
0.60	0.0822	0.2948	0.0870	0.4672	0.90	0.0456	0.7834	0.0528	0.8502
0.61	0.0808	0.3075	0.0857	0.4781	0.91 0.92	0.0447	0.8036	0.0518	0.8646 0.8799
0.62	0.0794	0.3205	0.0844	0.4892	0.92	0.0437 0.0428	0.8251 0.8450	0.0509 0.0500	0.8799
0.63	0.0779	0.3338	0.0831	0.5004					
0.64	0.0765	0.3472	0.0819	0.5117	0.94	0.0419	0.8661	0.0491	0.9087
0.65	0.0751	0.3613	0.0805	0.5235	0.95	0.0410	0.8875	0.0483	0.9236
0.66	0.0737	0.3753	0.0792	0.5351	0.96	0.0401	0.9092	0.0474	0.9385
0.67	0.0723	0.3895	0.0780	0.5469	0.97	0.0392	0.9322	0.0465	0.9543
0.68	0.0710	0.4034	0.0767	0.5584	0.98	0.0384	0.9545	0.0457	0.9694
0.69	0.0697	0.4181	0.0755	0.5704	0.99	0.0376	0.9771	0.0449	0.9847
0.70	0.0684	0.4320	0.0743	0.5817	1.00	0.0368	1.0000	0.0441	1.0000


Annexe II : Tableau des Armatures (en cm²)

Φ	5	6	8	10	12	14	16	20	25	32	40
1	0.20	0.28	0.50	0.79	1.13	1.54	2.01	3.14	4.91	8.04	12.57
2	0.39	0.57	1.01	1.57	2.26	3.08	4.02	6.28	9.82	16.08	25.13
3	0.59	0.85	1.51	2.36	3.39	4.62	6.03	9.42	14.73	24.13	37.70
4	0.79	1.13	2.01	3.14	4.52	6.16	8.04	12.57	19.64	32.17	50.27
5	0.98	1.41	2.51	3.93	5.65	7.70	10.05	15.71	24.54	40.21	62.83
6	1.18	1.70	3.02	4.71	6.79	9.24	12.06	18.85	29.45	48.25	75.40
7	1.37	1.98	3.52	5.50	7.92	10.78	14.07	21.99	34.36	56.30	87.96
8	1.57	2.26	4.02	6.28	9.05	12.32	16.08	25.13	39.27	64.34	100.53
9	1.77	2.54	4.52	7.07	10.18	13.85	18.10	28.27	44.18	72.38	113.10
10	1.96	2.83	5.03	7.85	11.31	15.39	20.11	31.42	49.09	80.09	125.66
11	2.16	3.11	5.53	8.64	12.44	16.93	22.12	34.56	54.00	88.47	138.23
12	2.36	3.39	6.03	9.42	13.57	18.47	24.13	37.70	58.91	96.51	150.80
13	2.55	3.68	6.53	10.21	14.7	20.01	26.14	40.84	63.81	104.55	163.36
14	2.75	3.96	7.04	11.00	15.83	21.55	28.15	43.98	68.72	112.59	175.93
15	2.95	4.24	7.54	11.78	16.96	23.09	30.16	47.12	73.63	120.64	188.50
16	3.14	4.52	8.04	12.57	18.10	24.63	32.17	50.27	78.54	128.68	201.06
17	3.34	4.81	8.55	13.35	19.23	26.17	34.18	53.41	83.45	136.72	213.63
18	3.53	5.09	9.05	14.14	20.36	27.71	36.19	56.55	88.36	144.76	226.20
19	3.73	5.37	9.55	14.92	21.49	29.25	38.20	59.69	93.27	152.81	238.76
20	3.93	5.65	10.05	15.71	22.62	30.79	40.21	62.83	98.17	160.85	251.33


Annexe 3




Annexe 4

Annexe 5

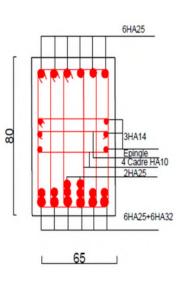


Schéma de ferraillage des Nervures en travée sens x-x Schéma de ferraillage des Nervures en appui sens x-x

Schéma de ferraillage des Nervures en travée sens y-y Schéma de ferraillage des Nervures en appui sens y-y

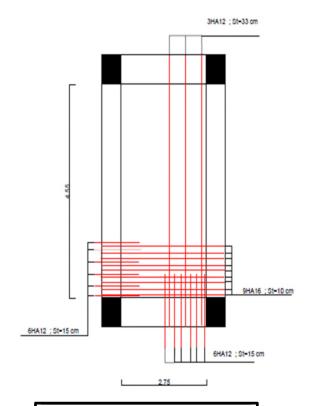


Schéma de ferraillage du radier

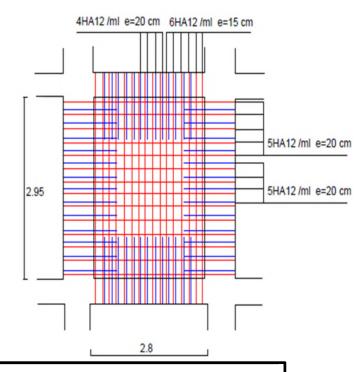
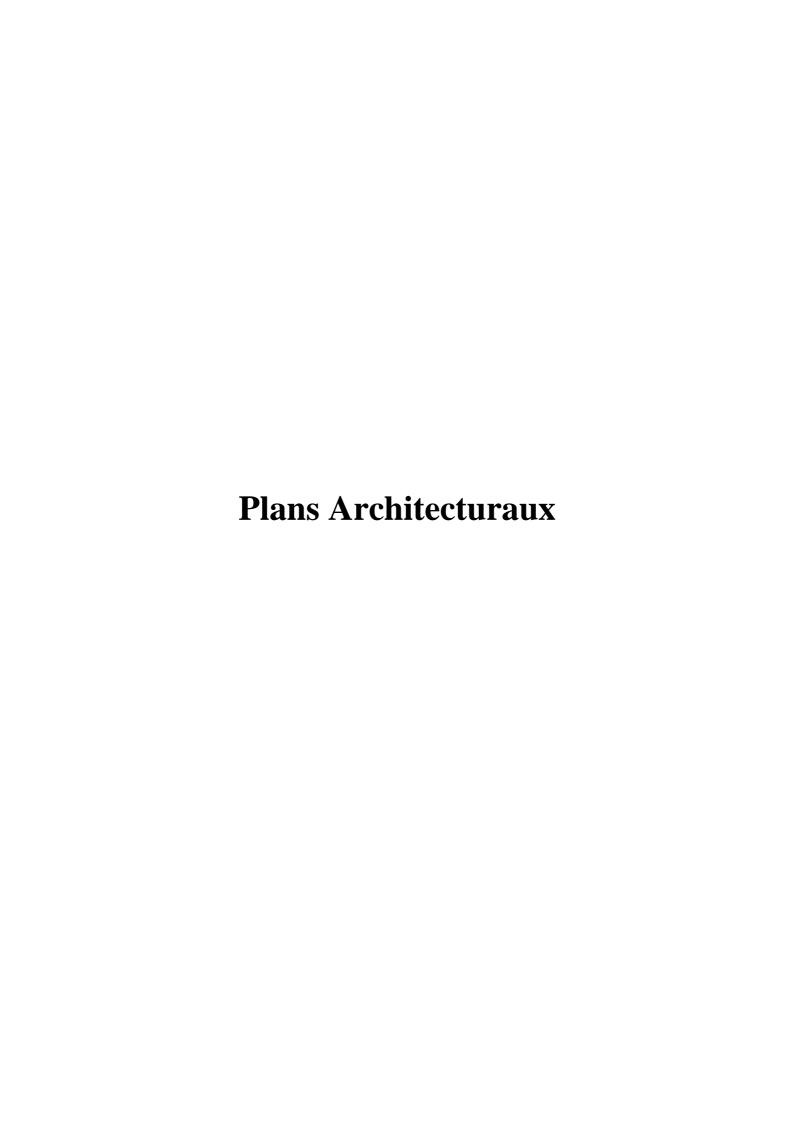
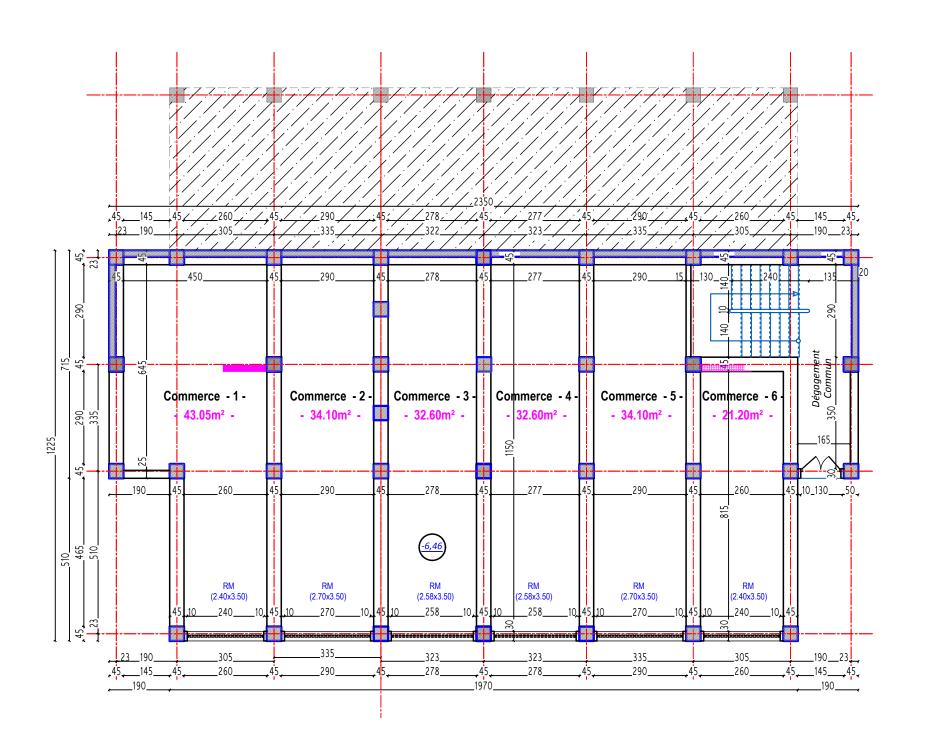
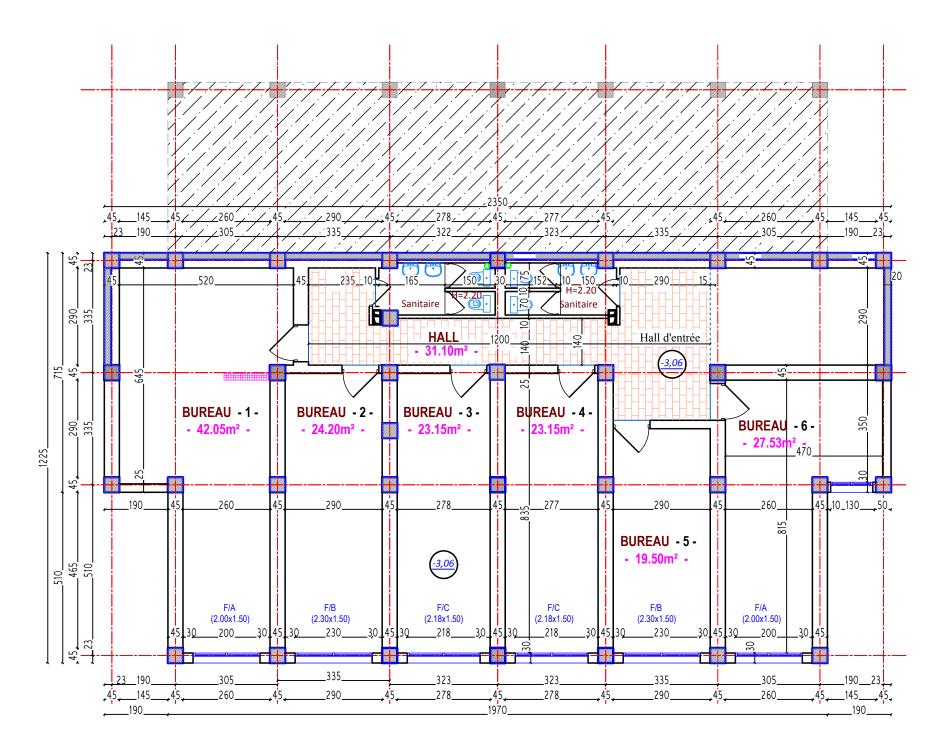
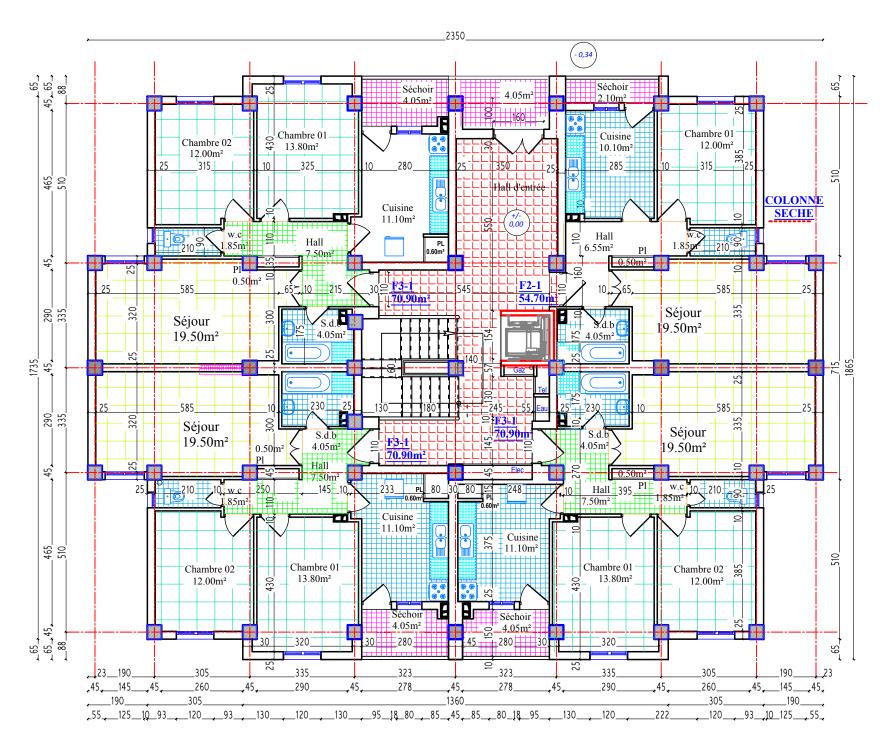
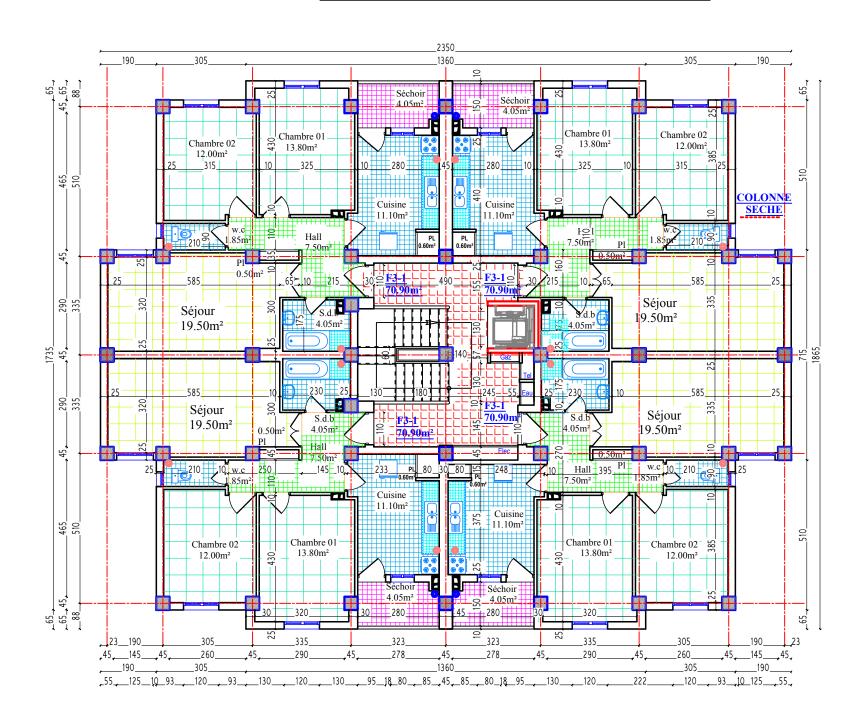





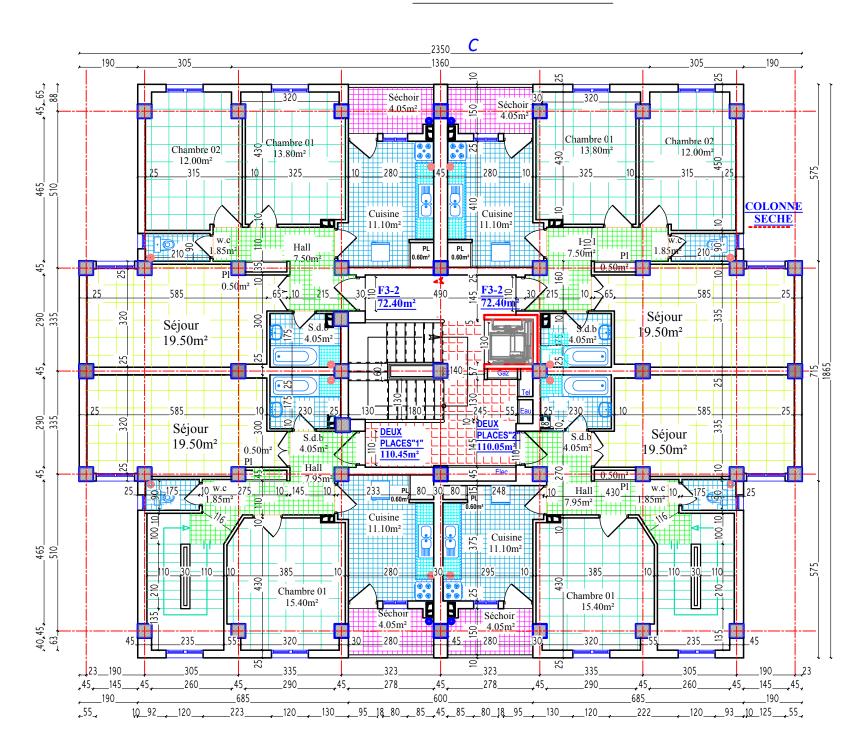
Schéma de ferraillage du mur périphérique

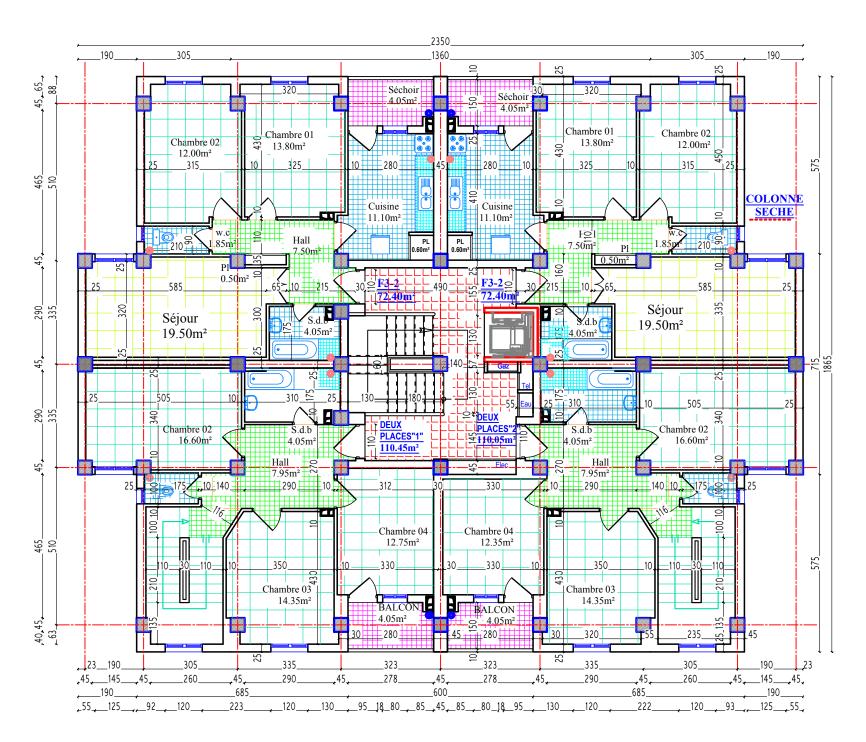


VUE EN PLAN ENTRE SOL 02 "COMMERCE"

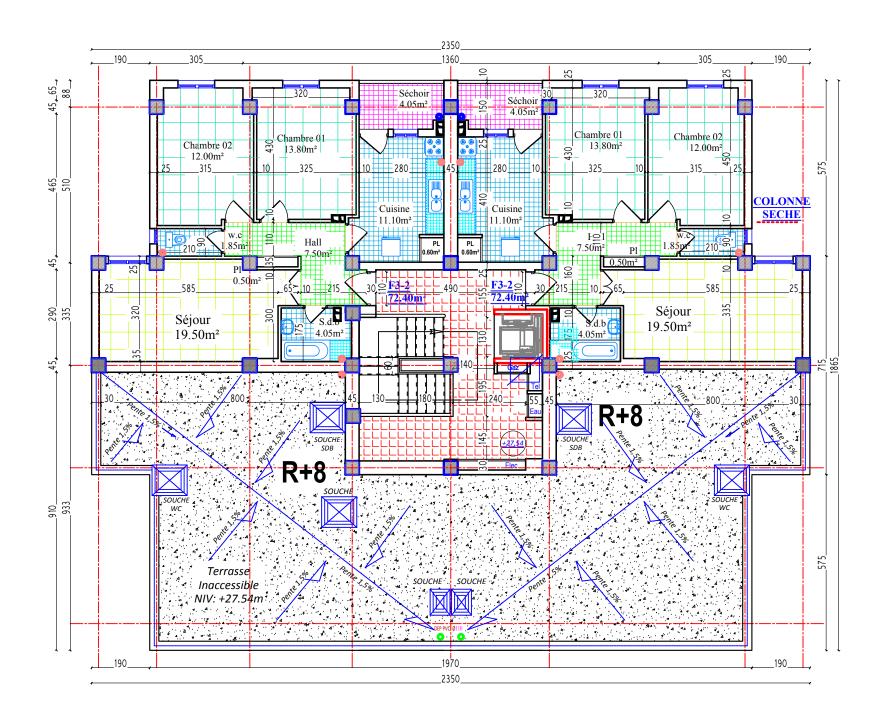


VUE EN PLAN ENTRE SOL 01 " BUREAUX"

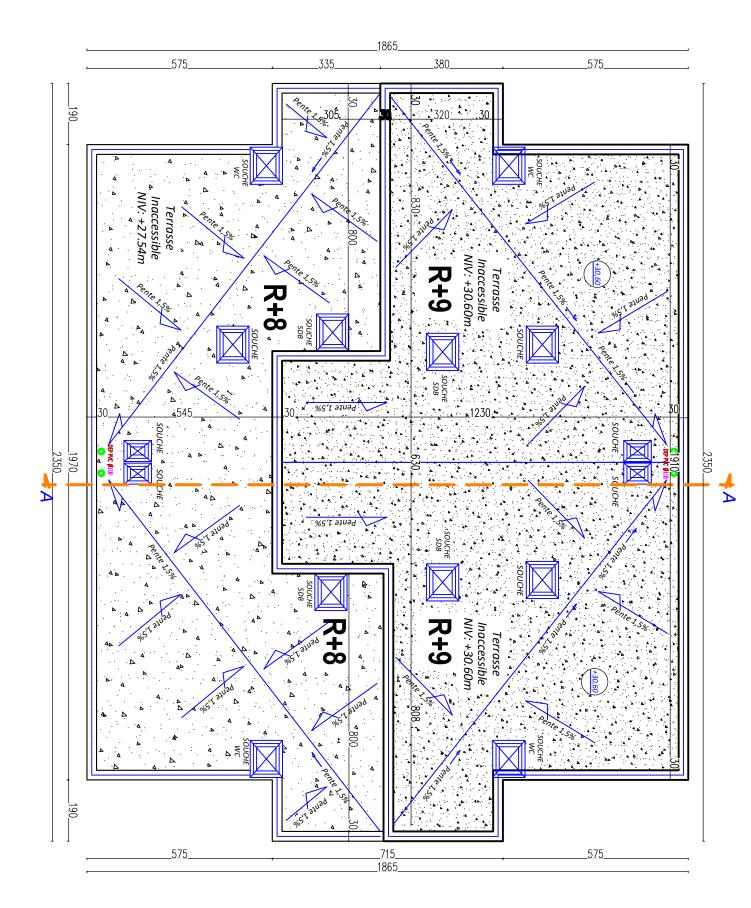


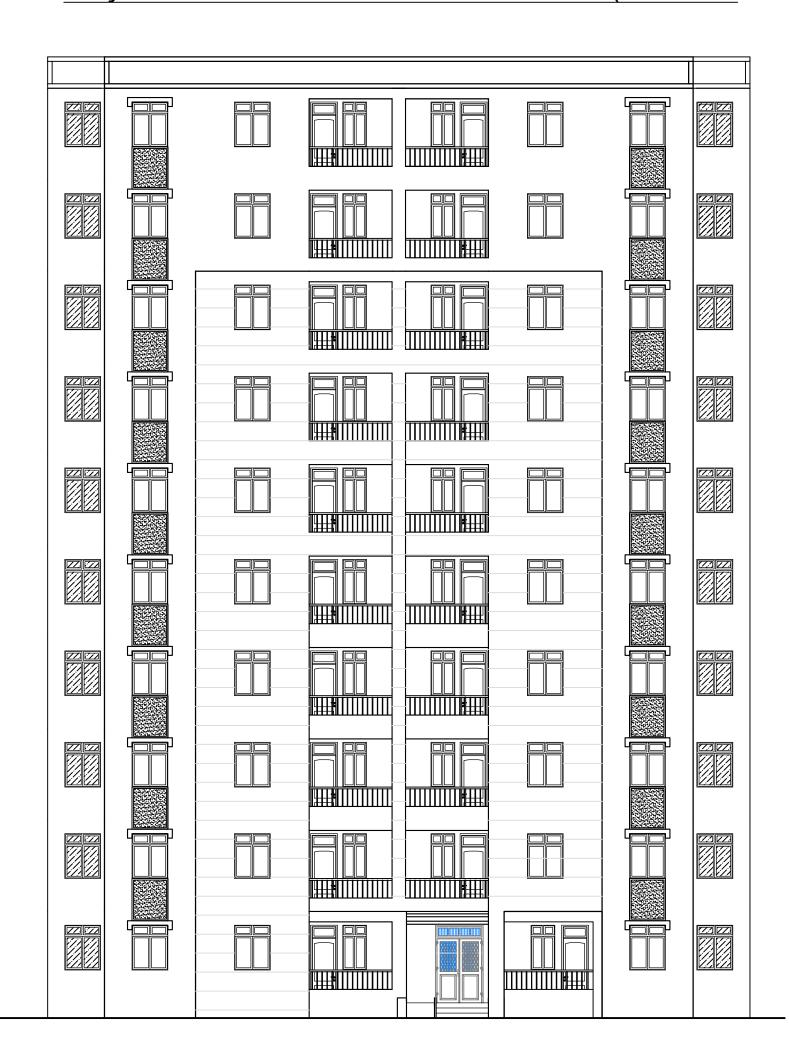

PLAN REZ DE CHAUSSEE

PLAN ETAGE COURANT " 01 a 06"

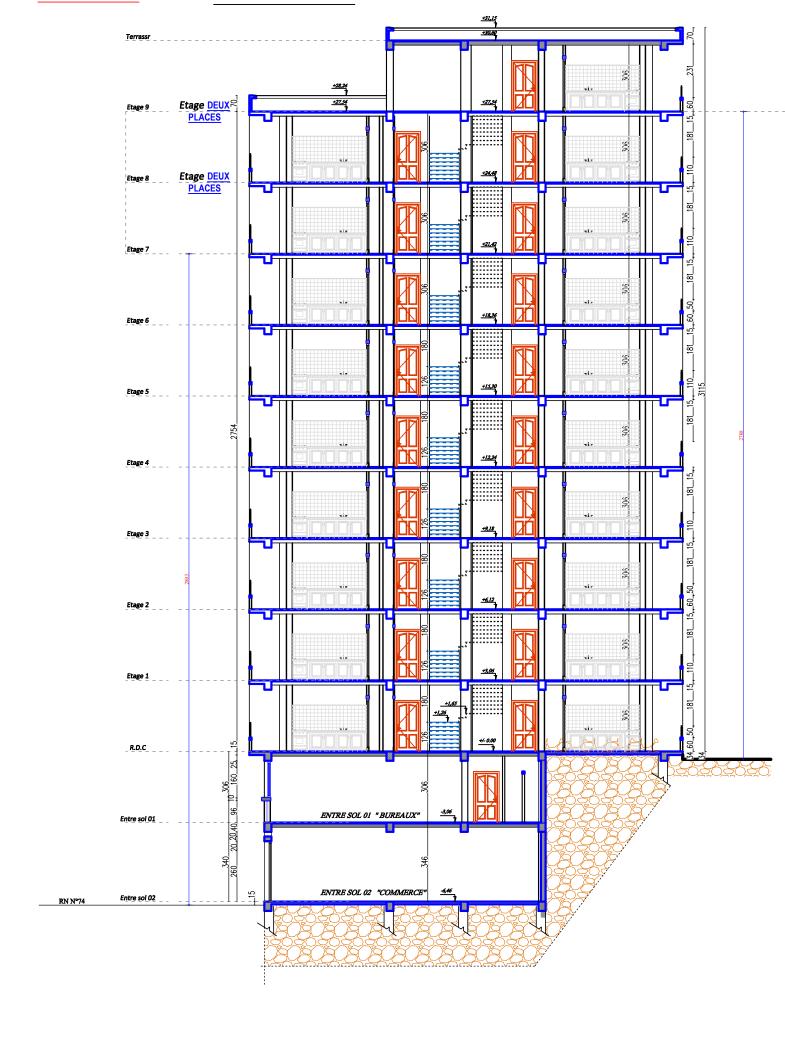


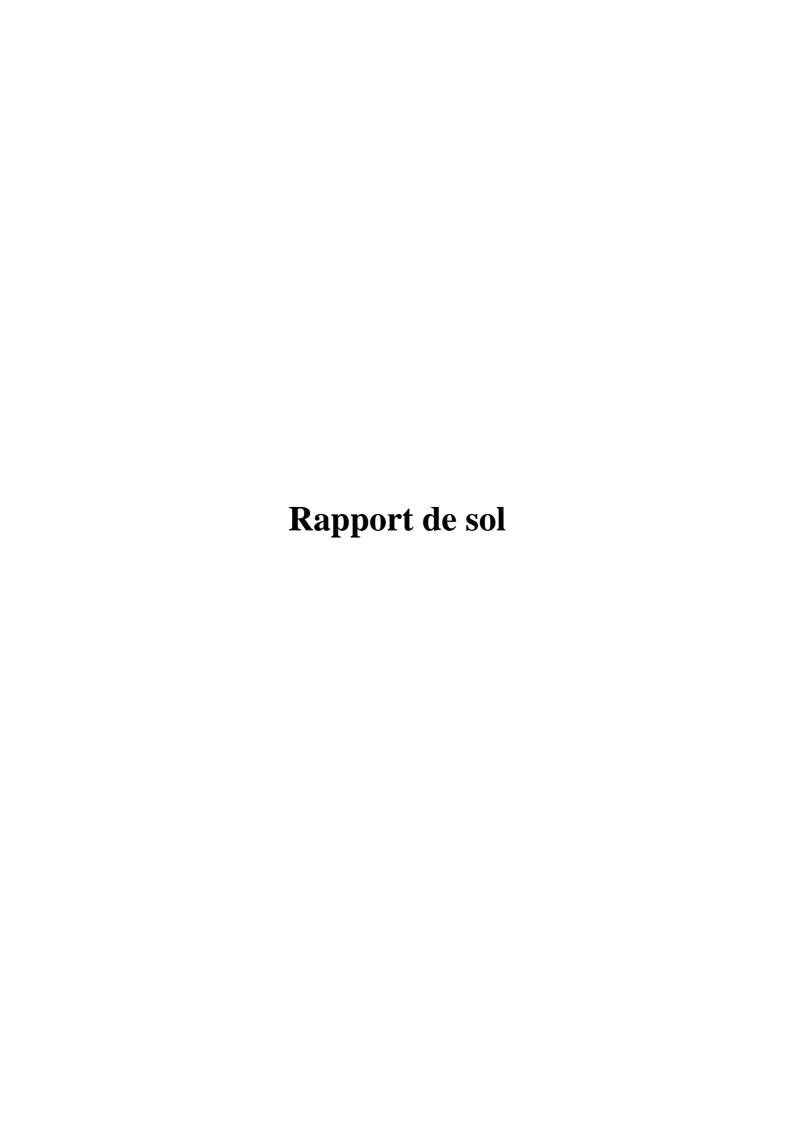
PLAN ETAGE 07




PLAN ETAGE 08

PLAN ETAGE 09




FAÇADE VERS L'INTERIEUR DE L'ILOT (ENTREE

FACADE VERS LA VOIE "RN74"

LABORATOIRE D'ANALYSE GÉOTECHNIQUE, BÂTIMENT ET TRAVAUX PUBLICS « LGBTP DJEMAOUI »

RÉALISATION DE 100 LOGEMENTS L.P.A À SEDDOUK (W) BEJAIA

V. Conclusion et recommandation :

Type et ancrage des fondations :

L'ensemble des résultats des essais réalises dans le cadre de cette étude ont mis en évidence un terrain recouvert en sa totalité par une couche de terre vigitale ou de remblai d'épaisseur variable entre 0.50m à 2.50m, sinon plus par endroit qui ne doit pas servir d'assise aux fondations des ouvrages projetés.

On optera par conséquent pour des fondations de type superficielle pour les appuis de bloc à construire à savoir : Radier général ou semelles filantes bien rigidifiés entre elles par des longrines, ancrées d'au moins de 2.50m de profondeur par rapport a cote du terrain actuel dans la formation naturelles en places (marne schisteuse argileuse)

Contrainte admissibles du sol

Toutefois compte tenu des résultats des essais au pénétrometre dynamique et des essais au laboratoire; le taux de travail admissible a été limité à 1.70bars (ou kg/cm2) pour l'ensemble du projet.

Classification de site :

Les résultats des essais réalisés dans l'assiette du projet, nous a permet de classé le site en catégorie 53 « site meuble » selon RPA 99 version 2003.

Stabilité d'ensemble et précautions à prendre :

Afin d'assuer la stabilité des fondations il est recommandé de prendre des mesures préventives suivantes :

- Un ancage des fondations de 0.80m de profondeur doit etre assuré, par raport à la plate forme finale.
- La réalisation d'un système de drainage très efficace dans l'assiette est indispensable (Capter toutes les eaux de surface, qui s'écoulent périodiquement ou de façon pérenne et les drainer),
- Les fonds de fouilles devront rester le moins long temps possibles ouverts pour éviter leur altération.

Le présent document est la propriété exclusive de gérent de l'entreprise de promotion immobiliere « Monsieur MELOUI FAOUZI »

LABORATOIRE D'ANALYSE GÉOTECHNIQUE, BÂTIMENT ET TRAVAUX PUBLICS « LGBTP DJEMAOUI »

RÉALISATION DE 100 LOGEMENTS L.P.A À SEDDOUK (W) BEJAIA

- Veiller à ce que les fondations d'un même ouvrage projeté seraient assises sur la même formation géologique.
- > Toute poche de remblai et de vase ou de formations altérés rencontrées lors de l'ouverture des fouilles sera purgée et remplacée par un gros béton.

Il appartient finalement au bureau d'étude de déterminer les modalités d'exécution ; de définir les conditions de mise en œuvre et de veiller en général a la stabilité de l'ouvrage à construire.

L'ingénieur chargé de l'étude:

T.Wissam

Le présent document est la propriété exclusive de gérent de l'entreprise de promotion immobiliere « Monsieur MELOUI FAOUZI »

aérant: