

Je rends un grand hommage à travers ce modeste travail, en signe de respect et de reconnaissance en vers :

Mes parents pour tous les sacrifices et leurs soutient morale dont ils ont fait preuve pour que je réussisse.

Je le dédie également à :

A ma grande mère;

A mes frères et sœurs;

A tous mes oncles et tantes;

A tout mes amis:

Et sans oublier l'ensemble de mes enseignent, est tous ce qui ont contribué de près ou de loin à ma formation.

MR: Ait taleb Allaoua

A la Personne a la quelle tout les mots de l'univers sont incapable d'exprimer mon amour et mon affections pour elle a ma douce mere.mere si tu s'avais combien je t'aime?

A mon cher père qui a paye de vingt six années d'amour et de sacrifice le prix de ma façon de penser.

A mon cher mari zahir qui m'offrit la confiance, le courage, et trop d'amour pour réaliser se travaille.

Je dédié ce travaille a Mr: hamadache.N qui aguille le présent travail pour sa disponibilités et ces conseils judicieux.

Je le dédié a :

- > Mes frères: akli, kamel, samir, said
- a: hayet, nawele, nassima, nadjma, widad, ali, hilal, d ahbia, djalal, rayane, brahime, bilal, nabila, et mon charmant bébé: ghilas.
- A mes amies : salima, djoudjou, farida, tata, assia, koukou, nora, Sonia, fatiha, warda.
- > A mes bons frères et mes belles sœurs
- A toute la famille tamourt, benali, kaci, zoubiri,

LISTE DES FIGURES

Figure I.1 : Situation géographique de la zone d'étude	2
Figure II.1: Évaluation de la population	7
Figure III.1 : Emplacement de la conduite de départ	18
Figure III.2: Trop plein et vidange	18
Figure III.3: By- pass	18
Figure III.4: Système a deux prises	20
Figure III.5 : Système a siphon	20
Figure III.6 : Schéma générale du réservoir	26
Figure IV.1 : Adduction gravitaire	27
Figure IV.2: Robinet- vanne	33
Figure IV.3 : Purgeurs-ventouses	34
Figure IV.4 : Schéma d'adduction	35
Figure V.1: Constitution d'une pompe centrifuge	45
Figure V.2 : Courbes caractéristiques d'une pompe centrifuge	47
Figure V.3 : Point de fonctionnement d'une pompe	
Figure V.4 : Courbe caractéristique de la pompe (F/AB7-SR)	53
Figure V.5 : Courbe caractéristique de la pompe (F/AB6-SR)	55
Figure V.6 : Courbe caractéristique de la pompe (SR-R)	56
Figure VI.1: Réseau ramifier	
Figure VI.2: Réseau maille	59
Figure VI.3: Réseau combine	60
Figure VI.4 : État de réseau après la simulation	77
Figure VII.1: Commande par ligne pilot	88
Figure VII.2: Commande sans ligne pilot	89
Figure VII.3 : Système asservis	90
Figure VII.4 : Schéma fonctionnel général des systèmes automatisent	91

LISTE DES SYMBOLES

```
BL: Bilan(DA);
D: Diamètre de la conduite en (mm);
D: Diamètre du réservoir en (m) :
E: Energie consommée par la pompe en (KW);
e: Prix d'un KW-h
Fam: Frais d'amortissement en (DA);
Fexp: Frais d'exploitation en (DA) :
H: Hauteur du réservoir en (m);
Hmt: La hauteur manométrique totale en (m);
J<sub>L</sub>: Perte de charge linéaire en (m);
J_S: Perte de charge singulière (m);
J_T: Perte de charge total (m);
Ja: Perte de charge à l'aspiration en (m);
Jr: Perte de charge au refoulement en (m);
K: Coefficient dépendant de la nature de la conduite ;
K<sub>0</sub>: Rugosité absolue ;
Kmax-j: coefficient d'irrégularité maximal qui dépend de l'importance de l'agglomération;
Kmin-j: Coefficient d'irrégularité minimal;
L: Longueur de la conduite en (m);
m: Coefficient de rognage;
N: Vitesse de rotation de la pompe en (Tr/min);
Nn: Niveau normal
N min: Les niveaux minimaux
N max: maximaux
Nhab: Nombre d'habitant;
Ni : Nombre de consommateurs par catégorie ;
n: Intervalle d'année séparant l'année de référence et l'horizon considéré ;
Pa: Puissance absorbé par la pompe en (KW);
P%: Résidu maximum dans le réservoir en (%);
Pn: Population future à l'horizon considéré ;
P_0: Population actuelle;
Q: Débit refoulé par la conduite en (m^3/s);
Qmoy-j: Consommation moyenne journalière des consommateurs en (1/j/con);
Qmin-j: Débit d'eau minimal du jour le moins chargé de l'année;
Qmax-j: Débit d'eau maximal du jour le plus chargé de l'année;
Qmoy-h: Consommation movenne horaire;
Omax-h: Consommation maximal horaire;
Omin-h: Consommation minimal horaire;
q<sub>i</sub>: Dotation moyenne journalière des consommateurs par catégorie en (1/j/con)
T: Taux d'accroissement de la population ;
Tv: La pression de vapeur maximal;
T<sub>f</sub>: Temps de fermeture de la vanne en (s);
t: Temps de service (t = 25ans);
t': Temps de fermeture complète des vannes (900 s);
V: Volume de stockage de la station de reprise en (m<sup>3</sup>);
Vr: Volume régularisé en (m<sup>3</sup>);
Vt: Volume totale du réservoir en (m<sup>3</sup>);
Vinc: Volume de la réserve d'incendie (120 m<sup>3</sup>);
```

 $\mathbf{V}\mathbf{t}_{\mathbf{adopt\acute{e}}}$: Volume totale du réservoir adopter en (m^3) ;

V : vitesse d'écoulement dans la conduite en (m/s)

(NPSH)d: Charge nette minimal disponible à l'aspiration;

(NPSH)r: Charge nette minimal requise à l'aspiration;

α: Coefficient de vieillissement ;

amax: Coefficient qui dépend du confort au sein de l'agglomération ;

amin: Coefficient qui dépend du confort au sein de l'agglomération ;

βmax: Coefficient qui dépend du nombre d'habitant ;

βmin: Coefficient qui dépend du nombre d'habitant ;

 λ : Coefficient de frottement ;

v : Viscosité cinématique de l'eau ;

η: Rendement de la pompe en (%);

LISTE DES TABLEAUX

Tableau I.1 : Variation des températures de la willaya de Bouira	5
Tableau I.2 : Pluie journalier maximale observe a la willaya de Bouira	
Tableau II.1: Estimation de population au différent horizon	
Tableau II.2: Infrastructure existante	
Tableau II.3: Détermination des besoins domestique au différent horizon	9
Tableau II.4: Détermination des besoins sanitaire aux différents horizons	
Tableau II.5 : Détermination des besoins scolaires aux différents horizons	
Tableau II.6: Détermination des besoins socioculturel	10
Tableau II.7: Détermination des besoins administratif aux différents horizons	11
Tableau II.8: Détermination des besoins industriel aux différents horizons	11
Tableau II.9: Détermination des besoins en eau	
Tableau II.10: Consommation moyenne journalière à divers horizons avec majoration	
Tableau II.11 : Détermination des débits de consommations	
Tableau II.12 : Les valeurs de βmax en fonction du nombre d'habitants	
Tableau II.18: Bilan ressources-besoins	
Tableau III.1: Variation de la consommation journalière du réservoir	
Tableau III.2: Variation de la consommation journalière du château d'eau	
Tableau IV.1 : Prix de revient des conduites en fonte	
Tableau IV.2 : Calcul des perte de charge total	
Tableau IV.3 : Calcul de la Hmt du tronçon Forage AB7-SR	37
Tableau IV.4 : Frais d'exploitation	38
Tableau IV.5 : Frais d'amortissement	
Tableau IV.6 : Calcul du bilan	
Tableau IV.7 : Calcul de la Hmt du tronçon AB6-SR	
Tableau IV.8: Frais d'exploitation	
Tableau IV.9: Frais d'amortissement	
Tableau IV.10 : Calcul du bilan	40
Tableau IV.11 : Calcul de la Hmt du tronçon SR ₋ R	41
Tableau IV.12: Frais d'exploitation	
Tableau IV.13: Frais d'amortissement	
Tableau IV.14: Calcul du bilan	42
Tableau IV.15 : Calcul de perte de charge R-château d'eau	42
Tableau IV.16 : Récapitulation des résultats obtenue	43
Tableau V.1: La tension de vapeur d'eau pompée en fonction de la température	52
Tableau V.2 : Caractéristique de tronçons (F/AB7-STR)	53
Tableau V.1 : Caractéristique de tronçon (F/AB6-STR)	54
Tableau V.2 : Caractéristique de tronçon (STR-R)	
Tableau V.3: Tableau récapitulatif de choix des pompes et leur caractéristique	
Tableau VI.1 : Les débits au nœud	
Tableau VI.2 : État du nœud de reseau apres la simulation.	
Tableau VI.3 : État des arcs de réseau après la simulation.	80

SOMMAIRE

Introduction générale	1
Chapitre I. Présentation du site	
I. Situation de la zone d'étude	2
I.1. Situation géographique	2
I.2. Situation topographique	3
I.3. valeurs forestières	3
I.4. situation démographique	3
I.5. situation climatique	3
Chapitre II. Estimation des besoins en eau	
II.1. Introduction	6
II.2. Estimation de la population	6
II.3. Équipement et infrastructure	7
II.4. Choix de la norme unitaire de consommation	8
II.5. Consommation moyenne journalière	8
II.6. Calcules des différents besoins actuels et future	8
II.7. Récapitulations des différents besoins.	11
II.8. Majoration de la consommation moyenne journalière	1
II.9. Variation de la consommation journalière	12
II.10. variation de la consommation horaire	13
II.11. Bilan ressources-besoins	15
II.12. Conclusion.	15
Chapitre III. Le réservoir	
III.1. Introduction	16
III.2. Fonctionnements des réservoirs	16
III.3. Caractéristique du réservoir	16

III.4. Classification des réservoirs	16
III.5.Choix du type réservoir	17
III.6. Choix du site d'implantation	17
III.7. Équipement du réservoir	17
III.8. Matérialisation de la réserve d'incendie	19
III.9. Calcul de la capacité de la station de reprise	20
III.10. Calcul de la capacité du réservoir	21
III.11. Dimensionnement du réservoir	23
III.12.Dimensionnement du château d'eau	24
III.13. Conclusion	25
Chapitre IV. Adduction	
IV.1. Généralité	27
IV.2. Choix du tracé	27
IV.3. Choix du type des conduites	28
IV.4. Etude technico-économique des conduites	28
IV.5. Prix des conduites	32
IV.6. Equipment d'adduction	32
IV.7. Descriptions de schémas d'adduction	34
IV.8.Déterminations des diamètres économiques	
IV.9. Récapitulatifs des résultats obtenus	
Chapitre V. Les pompes	
V.1. Définition	44
V.2. Classification des pompes	44
V.3. Classification des pompes centrifuges	44
V.4. Constitution d'une pompe centrifuge	45
V.5. Choix de nombre du pompe	46
V.6.Choix de la pompe.	46
V.7. Les courbes caractéristiques d'une pompe	47

V.8. Caractéristiques de la conduite	48
V.9. Puissance absorbé	48
V.10. Hauteur manométrique total	48
V.11. Le point de fonctionnement de la pompe	49
V.12. Étude de cavitation	51
V.13. Types de pompe à adopter	52
V.14. Conclusion	56
Chapitre VII. La distribution	
VII.1.Introduction.	. 58
VII.2.Topologie des réseaux de distribution.	58
VII.3.Présentation du logiciel Epanet	60
VII.4.Calcul hydraulique du réseau de distribution	61
VII.5.Étude de la distribution.	64
VII.6.Conclusion.	86
Chapitre VI. Automatisation	
VI.1. Introduction	87
VI.2. Les déférentes opérations qu'il faut automatiser	87
VI.3. Les type d'automatisations	90
VI.4. Les éléments qui composent un système d'automatisation	90
VI.5.Présentation des systèmes asservis	90

LA BEBLIOGAPHIE

LES ANNEXES

Introduction générale

L'eau est une ressource naturelle vitale, elle est indispensable à la vie humaine, anomale et végétale.

L'eau douce est un élément essentiel et dynamique du milieu naturel. C'est aussi une ressource très peu abondante, puisqu'on estime qu'elle ne représente que 2,5 % de l'eau présente sur terre et que moins de 1 % de la quantité total d'eau douce est utilisable sous une forme quelconque.

Il convient alors de voir comment notre pays et plus particulièrement notre zone d'étude se sont organisés pour faire satisfaire leurs besoins en fonction des ressources disponibles.

Dans ce contexte s'inscrire notre étude qui est le renforcement en eau potable de deux communes Ain Bessam et el khabouzia, vu la diminution graduelle du rendement des forages alimentant actuellement ces communes et avec l'extension démographique de la région, le déficit s'accentue de plus en plus.

L'étude consiste essentiellement à:

- ➤ Établir un bilan des ressources disponibles et des besoins à satisfaire à long terme.
- ➤ Étudier la chaine d'adduction à partir du point de piquage conformément à un tracé bien choisit.
- Dimensionner la capacité de stockage des différents réservoirs et stations de reprise.
- Faire le choix des pompes à utiliser dans les stations de reprise.
- ➤ Pour assurer une longue vie du réseau, on procède à la protection contre le coup de bélier.

Les résultats de ces études ont détaillés dans les chapitres qui suivent.

I. Situation de la zone d'étude

I.1. Situation géographique

Ain Bassam est la commun de la willaya de Bouira la daïra de Ain Bassam, elle est situé sur la route N°18, elle s'étend sur une surface 126Km², elle se trouve à 120km d'Alger et a 20 km de Bouira.

Khabouzia est à commun de la willaya de Bouira la daïra de bir Ghbalou, elle s'étend sur une surface 56Km², elle se trouve à 27Km de Bouira.et à 7Km de Ain Bassam.

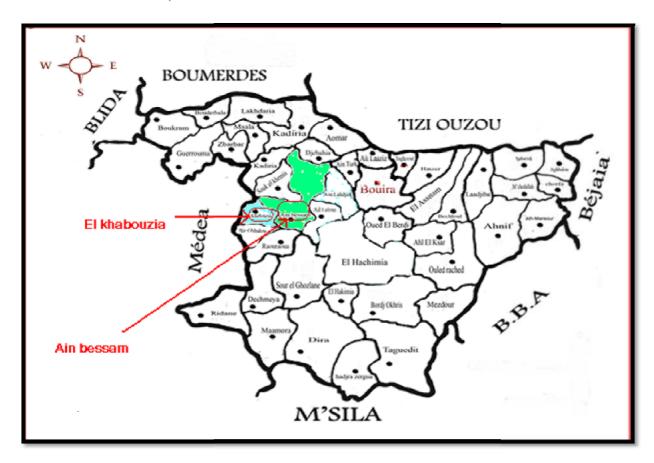


Figure I.1 : situation géographique de la zone d'étude.

Elles sont limites comme suite:

Ain Bassam:

- Au nord, par la commune de Djebahia
- 4 Au sud, par les communes de Baouraoua et Sour el Ghozlane
- A l'ouest, par les communes de khabouzia et Bir Ghbalou
- ♣ A l'est, par les communes de Ail Laloui et Ain Alhadjar

Khabouzia:

- ♣ Au nord par les communes de Souk el khemis
- ♣ Au sud par les communes de Bir Ghbalou et Raouraoua
- ♣ A l'est par la commune Ain Bassam

I.2. Situation topographique

L'altitude moyenne pour les communs d'Ain Bessam et Khabouzia est de 600 à 700m, avec un terrain de faible pente.

I.3. valeurs forestières

Les valeurs forestières sont assez faibles pour la commun de Ain Bassam et n'occupent que 20Km^2 pour une surface 126Km^2 .

I.4. Situation démographique

D'âpre le dernière recensement général de la population et de l'habitant effectue, en 31/12/2010 la population de la zone d'études est :

- Agglomérations de Ain Bassam est : 46 611hab
- Agglomérations de khabouzia est : 6 371hab

I.5 Situation climatique

I .5.1.le climat

Le climat de site est caractérisé comme étant un climat sec.

I .5.2.la température

Les deux communs est caractérisé par un été chaud et des températures très basse en hiver, selon la station météorologique de Bouira le mois le plus chaud est aout avec une température maximale de 35°cet des pointes de 37°c parfois, par contre le mois de janvier enregistré la température minimale, la plus basse est de 2.8°c.

TABLEAU (I-01) : variations des températures de la wilaya de bouira.

MOIS	J	F	M	A	M	J	J	0	S	0	N	D	ANS
TEMPS	6.9	8	9.5	13	17	19	23.3	26.4	23.2	16.6	13.1	9.4	15.4
MOY													
(°c)													
TEMPS	12	14	14	18	2.3	12	32.1	35.1	31.2	22.3	18	13.5	20.7
MAX													
(°c)													
TEMPS	2.8	3	5.2	7.5	11.1	13	17.2	18.8	16.6	11.7	8.9	5.8	10.1
MIN													
(°c)													

I .5.3.le vents

Les directions des vents prédominant sont celle de l'ouest et du sud et la vitesse moyenne du vent est voisine de 3,5m/s

I .5.4.la pluviomètre

Elle a une moyenne annuelle de400mm/an. Les données disponibles sont les pluies journalier maximale observes par la station de Bouira sur une période de 10an. les observations des précipitations durant 10an sont représenté dans ce tableau :

TABLEAU (I -2): pluies journaliers maximales observes a la station de Bouira

mois	jan	fév.	mars	avril	mai	juin	juil.	aout	sept	oct.	nov.	Valeurs
												max
1993	5.1	18	0	8.6	2.6	1.3	0	0.5	25.5	8.1	9.3	25.5
1994	36	18	22.2	3	0	31	0	12.9	18.5	22.1	10.6	35.6
1995	31	30	13.9	17.1	10.5	3.1	2.9	5.3	3.5	10.4	5.3	31.3
1996	10	7	9.2	15.3	11.8	5.8	1.4	7.4	12.4	2.5	12.8	15.3
1997	-	29	8	16	36.4	2.1	0	1.7	19.3	18.6	40.6	40.6
1998	9.4	19	19.4	0.8	60.5	1.2	0	9.3	37.7	16.6	18.1	60.5
1999	0	0	7.3	7.1	11.3	0	0	0	15.9	7.9	6.9	26.9
2000	33	10	2.9	6.9	3.3	1.4	1.3	3.8	7.9	7	8	32.9
2001	12	6.7	2.9	6.9	6.7	1.6	3.5	21	12.3	3	4.3	21
2002	27	13	5.2	54.1	3.7	15	3.4	22.8	7.3	8.7	40.6	62.5

I .5.5.situation hydraulique

Les deux communs Ain Bessam et khabouzia sont alimentée actuellement par deux (2) forages F1, F2 qui se situe a environ 4185m de Ain Bassam et de 3358 de KHABOUZIA

Les caractéristiques de forage F1 (AB7):

N.S = 10m N.D = 50,60mQ = 40 L/S

Les caractéristiques de forage F2 (AB6):

N.S = 13,56m N.D = 81mQ = 31 L/S

II .1.Introduction

L'évolution démographique et l'amélioration du niveau de vie fait accroitre la consommation pour cette raison il est nécessaire d'estimer le nombre d'habitant ainsi que les différentes besoins en eau à l'horizon d'étude.

II.2 Estimation de la population

D'après le dernier recensement général de la population en 2010, la population totale est de **52 982** habitants pour les deux communes concernées par notre étude.

Les réseaux d'alimentation en eau potable sont conçus en tenant compte de la démographie croissante et son évolution dans le temps. Donc on va calculer la population à un horizon futur en se basant sur la loi des accroissements géométriques suivante:

$$\mathbf{Pn} = \mathbf{P_0} \times (\mathbf{1} + \mathbf{T})^{\mathbf{n}}$$

- \triangleright **P**_n: population future à l'horizon considéré;
- \triangleright **P**₀: population actuelle;
- > T: taux d'accroissement de la population;
- \triangleright **n**: intervalle d'année séparant P_n et P_{0} .

D'après les données recueillies au niveau des deux communes, le taux d'accroissement est de 2,5%.

Tableau (II.1) : Estimation de la population aux différents horizons

communes	Nbre. hab.2010	taux d'accroissement (%)	Nbre. hab. 2012	Nbre. hab. 2037
Khebouzia	6 371		6 693	12 408
Ain bessam	46 611	2,5	48 970	90 787
Total	52 982		55 663	103 195

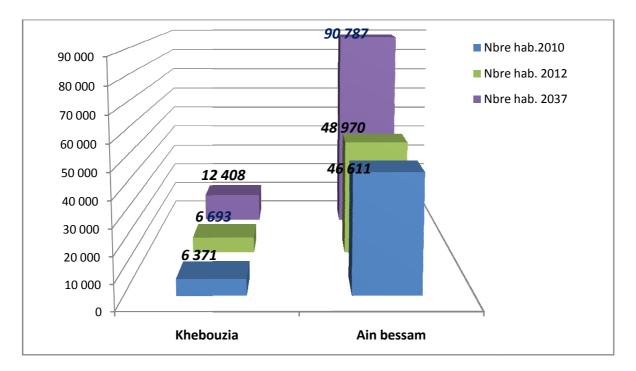


Figure (II.1): Évolution de la population

II.3 Équipement et infrastructure

Tableau (II.2): Infrastructures existantes.

	Scolaires	Sanitaires	Socioculturelles	Administr atifs	Industriel
Ain bessam	 28 Ecoles primaires 5 CEM 3 Lycée	1 polyclinique.1 centre de santé.5 salles de soins.	• 13 mosquées	1 daïraAPC3 postes	1 Abattoir1 usine de FayenceUNAB
Khebouzia	 5 Ecoles primaires 1CEM	• 1 salle de soin	•1 mosquée	• 1 poste	-

II.4 Choix de la norme unitaire de consommation

Pour une agglomération rurale, la norme de consommation est de 125 **l/j/hab.** c'est le cas de notre zone d'étude. Cette norme sera majorée de 20% à cause de l'évolution du milieu rurale. Donc on prend la dotation de 150 **l/j/hab.**

II.5 Consommation moyenne journalière

La consommation moyenne journalière est déterminée à partir de la formule suivante :

$\mathbf{Qmoy} \cdot \mathbf{j} = \mathbf{\Sigma} \left(\mathbf{q_i} \times \mathbf{N_i} / 100 \right)$

- ➤ Qmoy-j : consommation moyenne journalière [m³/j] ;
- q_i: dotation moyenne journalière [l/j/hab.] de la catégorie (i);
- N_i: nombre de consommateurs de la catégorie (i).

II.6 Calcul des différents besoins actuels et future

II.6.1 Besoins domestiques

Tableau (II.3): Détermination des besoins domestiques.

	Nombre d	l'habitants	Dotation	Besoin (m³/j)		
	2012	2037	(l/hab/j)	2012	2037	
Ain bessam	48 970	90 787		7 345,5	13 618	
Khebouzia	6 693	12 408	150	1 003,95	1 861,2	
Total				8 349,45	15 479,2	

II.6.2 Besoins sanitaires

Tableau (II.4): Détermination des besoins sanitaires

	Туре	N T 1	Surface	Dotation	Besoin (m³/j)		
	d'équipement	Nombre	\mathbf{m}^2	$(l/j/m^2)$	2012	2037	
	Polyclinique	1	360		1,8	1,8	
Ain bessam	centre de santé	1	300	5	1,5	1,5	
	salles de soins	5	180		0,9	0,9	
Khebouzia	salle de soin	1	180	5	0,9	0,9	
Total					5,1	5,1	

II.6.3 Besoins scolaires

Tableau (II.5): Détermination des besoins scolaires.

	Etablissement	Nombre	Nombre	Dotation	Besoir	(m^3/j)
	Etablissement	Nombre	élèves	(l/j/élève)	2012	2037
Ain bessam	Ecole primaire CEM Lycée	28 5 3	4950 2410 1500	10	49,5 24,1 15	49,5 24,1 15
Khebouzia	Ecole primaire CEM	5 1	994 409	10	9,94 4,09	9,94 4,09
Total					102,63	102,63

II.6.4 Besoins socioculturels

Tableau (II.6): Détermination des besoins socioculturels.

			Nombres	Dotation	Besoin (m³/j)	
	Désignation	nation Nombre d'usagers		(l/j/usager)	2012	2037
Ain bessam	Mosquée	13	130	20	2,6	2,6
Khebouzia	Mosquée	1	8		0,16	0,16
Total					2,76	2,76

II.6.5 Besoin administratif

Tableau (II.7): Détermination des besoins administratifs.

		Nomb	Nbre	Dotation	Besoin (m³/j)		
	équipement	re	emplo yé	(l/j/unité)	2012	2037	
Ain bessam	Daïra APC Post CFPA Grd communale	1 1 2 1 3	45 95 17 400 50	10	0,45 0,95 0,17 4 0,5	0,45 0,95 0,17 4 0,5	
Khebouzia	APC POST	1 1	70 4	10	0,7 0,04	0,7 0,04	
Total					6,81	6,81	

II.6.6 Besoins industriels

Les résultats sont présentés dans le tableau suivant:

Tableau (II.8): Détermination des besoins industriels.

			N .	Dotation	Besoin (m³/j)		
	équipement	Unité	Nbr	(l/j/unité)	2012	2037	
Ain haggam	Abattoir	Unité	1	1500	1,5	1,5	
Ain bessam	Usines de Fayence	Unité	1	1200	1,2	1,2	
	UNAB	nombre	150	10	1,5	1,5	
Khebouzia							
Total					4,2	4,2	

II.7 Récapitulation des différentes besoins

Tableau (**II.9**): Détermination des besoins en eau.

	Ain l	oessam	Kheb	ouzia
Besoins	2012 (m ³ /j)	2037 (m ³ /j)	2012 (m ³ /j)	2037 (m ³ /j)
Domestiques	7345.5	13618	1003.95	1861.2
Sanitaires	4.2	4.2	0.9	0.9
Scolaires	88.6	88.6 88.6		14.03
Socioculturels	2.6	2.6	0.16	0.16
Administratifs	6.07	6.07	0.74	0.74
Industriels	4,2	4,2	0	0
Total	7 451,14	13 723,64	1 019,78	1 877,03

II.8 Majoration de la consommation moyenne journalière

Les fuites aux niveaux de la conduite d'adduction et du réseau de distribution sont fonctions du type de conduite, la nature du terrain, la qualité d'entretien, ainsi que d'éventuels accidents.

Pour compenser ces fuites, on effectue une majoration de 20%.

Le débit moyen journalier sera :

$$(1+0,2)*180,56=$$
216,67 l/s

Tableau (II.10): Consommation moyenne journalière à divers horizons avec majoration

localité	Qmoy	-j (2012)	Qmoy-j (2037)		
locante	m ³ /j	l/s	m ³ /j	l/s	
Ain bessam	8 941,36	103,48	16 468,36	190,60	
Khebouzia	1 223,73	14,16	2 252,43	26,06	
Total	10 165,1	117,64	18 720,80	216,67	

II.9 Variation de la consommation journalière

Durant la journée, la consommation d'eau n'est pas régulière, elle varie en présentant des maximums et des minimums. Ces variations sont caractérisées par des coefficients d'irrégularités qui sont : Kmax.j et Kmin.j.

Tel que:

$$Kmax.j = \frac{consommation\ maximal\ journalière}{consommation\ moyenne\ journalière} = \frac{Qmax-j}{Qmoy-j}$$

Avec:

- Qmax.j : débit d'eau maximal du jour le plus chargé de l'année
- ➤ Kmax.j: coefficient de majoration maximal qui dépend de l'importance de l'agglomération, il varie entre 1,1 et 1,3

On prendra la valeur moyenne : Kmax.j = 1,2

D'où:

Qmax.j=1,2×Qmoy.j

Qmax.j = 260l/s

$$\text{Kmin.j} = \frac{\text{consommation minimal journalière}}{\text{consommation moyenn journalière}} = \frac{\text{Qmin-j}}{\text{Qmoy-j}}$$

Avec:

Qmin.j : débit d'eau minimal du jour le moins chargé de l'année

➤ Kmin.j : coefficient de majoration minimal, il varie entre 0,7 et 0,9

On prendra la valeur moyenne : Kmin.j = 0.8

D'où:

$$Qmin.j = 0.8 \times Qmoy.j$$

$$Qmin.j = 173,34 l/s$$

Tableau(II.11): Déterminations des débits de consommations journalier de deux communes :

Débits de consommations	Ain bessem	khabouzia
journalières de deux		
communs (m³/j)		
Qmoy-j	16 468.36	2 252.44
Qmax-j	19 762.04	2 702.92
Qmin-j	13 174.68	1 801.95

II.10 Variation de la consommation horaire

Le débit subit des variations horaires, ces dernières sont caractérisées par les coefficients de variations horaires :

$$Kmax.h = \frac{Qmax-h}{Qmoy-h}$$

$$Kmin.h = \frac{Qmin-h}{Qmov-h}$$

Tel que:

 \triangleright Consommation minimal horaire : **Qmin.h** = Kmin.h \times Qmoy – h

 \triangleright Consommation maximal horaire : **Qmax.h** = Kmax.h \times Qmoy – h

Consommation moyenne horaire : Qmoy.h = $\frac{\text{Qmoy-j}}{24}$

 $Qmoy.h=780 m^3/h$

Les coefficients maximal et minimal horaire « Kmax-h, Kmin-h » sont définis comme suit :

Kmax-h =
$$\alpha$$
 max $\times \beta$ max

Kmin-h =
$$\alpha$$
 min $\times \beta$ min

Avec:

amax et amin : coefficients qui dépendent du confort au sein de l'agglomération, tel que :

$$0.4 < \alpha \min < 1.4 \rightarrow \text{zone rural} : \alpha \min = 0.5$$

$$1.2 < \alpha \text{max} < 1.4 \longrightarrow \text{ on prendra} : \alpha \text{max} = 1.3$$

 β max et β min : coefficients qui dépendent du nombre d'habitant, leurs valeurs est déterminés par interpolation suivant les tableaux ci-après :

Tableau (II.12) : Les valeurs de β max en fonction du nombre d'habitants

Nombre											
hab×10 ³	< 1	1,5	2,5	4	6	10	20	30	100	300	> 1000
βmax	2,0	1,8	1,6	1,5	1,4	1,3	1,2	1,15	1,1	1,03	1,0

Le nombre d'habitation : N= **103 195**

$$100 \times 10^3 < N = 103 195 < 300 \times 10^3$$

$$1,1 < \beta \max < 1,03$$

$$\beta \max = 1, 1 - \frac{1, 1 - 1, 03}{100\,000 - 300\,000} \times (100\,000 - 103\,195)$$

$$\beta$$
max= 1,09

Donc: $\mathbf{K}\mathbf{m}\mathbf{a}\mathbf{x} \cdot \mathbf{h} = \boldsymbol{\alpha} \mathbf{m}\mathbf{a}\mathbf{x} \times \boldsymbol{\beta} \mathbf{m}\mathbf{a}\mathbf{x}$

Kmax-h=1,41

On prend Kmax-h= 1,4

Cette valeur permet de choisir le régime de consommation pour notre agglomération (annexe 1). Donc :

Qmax.h= $1 092 \text{ m}^3/\text{h}$

II.11. Bilan ressources-besoins

Le tableau des besoins en eau et les ressources en eau disponibles, nous permettent d'établir le bilan suivant :

Tableau (**II-13**): Bilan ressources-besoins.

Bilan ressources-besoins	Horizon		
	2012	2037	
Ressource disponible (2Forages) (l/s)	71	71	
Besoins (l/s)	117,64	260	
Bl (l/s)	-46,65	-189	

On remarque que les ressources mobilisées sont insuffisante pour les besoins actuels et futurs, tel que le déficit atteint **189l/s** en 2037, ce qui nécessite un renforcement de notre ressource pour compenser ce manque actuelle et futur.

II.12 Conclusion

On conclut à travers ce chapitre, que l'estimation des différents besoins en eau, nous ont permis de calculer les différents débits nécessaires pour le dimensionnement des ouvrages de transport, de stockage et de distribution.

III.1 Introduction

Le réservoir est un élément important d'un système d'alimentation et distribution d'eau. C'est un ouvrage aménagé pour contenir l'eau destinée à la consommation publique ou pour usage industriel.

III .2 Fonctionnement des réservoirs

Ils ont deux rôles complémentaires l'un à l'autre :

1. Fonctionnement techniques

- ➤ Ils permettent d'emmagasiner l'eau lorsque la consommation est inférieure à la production, et la restituent lorsque la consommation devient supérieure à la production ;
- ➤ Ils constituent une réserve pour les imprévus (rupture, panne des pompes, réparations, extension du réseau.....);
- Régularité des pressions dans le réseau ;
- Régularité dans le fonctionnement du pompage. Les pompes refoulent à un régime constant :

2. Fonctionnement économiques

Le réservoir permet de réduire les dépenses d'énergie en réduisant la puissance consommée par les pompes, et permet aussi un arrêt de pompage pendant les heures creuses de Sonelgaz.

III.3. Caractéristiques du réservoir

Durant la construction du réservoir, les matériaux utilisés doivent être choisi pour assurer :

- ➤ Une bonne étanchéité et protéger l'eau contre toute contamination ;
- Une bonne résistance face aux efforts exercés par le poids propre de l'ouvrage et de l'eau stockée.

III.4 Classification des réservoirs

- ♣ D'après la nature des matériaux, on distingue :
 - Les réservoirs métalliques ;
 - les réservoirs en maçonnerie ;
 - les réservoirs en béton armé ou précontraint :
- ♣ D'après la situation des lieux, ils peuvent être :
 - > Enterrées;
 - > Semi-enterrés ;
 - Surélevés :

- Le Enfin d'après la forme du réservoir, on distingue des réservoirs :
 - > Circulaires;
 - > cylindrique;
 - > Rectangulaires.

III-5 Choix du type de réservoir

Le réservoir le plus adéquat pour notre cas c'est le réservoir circulaire semi-enterré car il présente beaucoup d'avantage :

- Conservation de l'eau à une température constante ;
- Etanchéité plus facile à réaliser ;
- La simplicité de son étude architecturale ;
- Plus économique.

III.6 Choix du site d'implantation

Le choix du site d'implantation du réservoir est dicté essentiellement par les considérations suivantes :

- > Du point le plus bas à alimenter;
- > De la hauteur maximale des immeubles ;
- Des pertes de charges dans le tronçon reliant le réservoir et le point défavorable de la ville.

L'emplacement du réservoir à pour condition l'assurance d'une pression suffisante aux abonnées au moment du débit de pointe. L'altitude du réservoir, plus précisément du radier, doit se située à un niveau supérieur à la plus haute cote piézométrique exigée sur le réseau.

Le site du réservoir doit être le plus proche possible de l'agglomération (économie) pouvant alimenter le point le plus défavorable. Il faut prendre en considération les extensions futures.

III .7 Équipements du réservoir

III-7-1-Conduite d'arrivée

L'arrivée de la conduite d'adduction dans le réservoir peut être placée soit au fond du réservoir, soit à la partie supérieure ou même déverser au dessus de la surface libre dans celuici. Dans le cas des eaux souterrain, pauvres en oxygènes, on adopte l'arrivée en chute libre qui permet une bonne aération de l'eau. Dans notre étude on adopte l'arrivée en chute libre. L'installation d'un robinet flotteur interrompe l'arrivée de l'eau quand le réservoir atteint son niveau maximum.

III-7-2-Conduite de départ ou de distribution

Cette conduite sera disposée à l'opposé de la conduite d'arrivée, à quelques centimètres au dessus du radier (0,15 à 0,2 m) pour éviter l'entrainement des dépôts ainsi que l'entrée des matières volatiles.

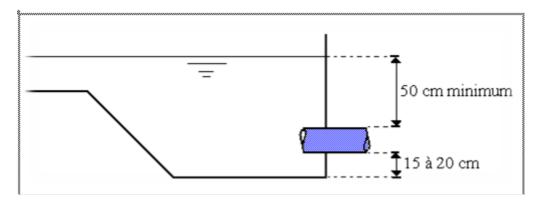
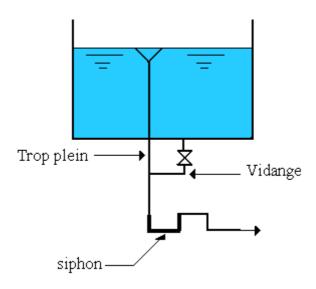


Figure III.1: Emplacement de la conduite de départ

III-7-3-Conduite de trop-plein


Dans le but d'assurer l'évacuation du débit d'adduction dans le cas ou la pompe ne serait pas arrêter, ainsi éviter le diversement du réservoir, on prévoit un trop-plein dimensionné selon le débit arrivant et débouchant à un exutoire voisin ou à l'égout.

Afin d'éviter tout émanation gazeuse désagréable et contamination de l'eau dans la cuve, on ménage un joint hydraulique constitué par un siphon à l'aval de la canalisation du trop-plein.(Voir la Fig.III.1).

III-7-4-Conduite de vidange

La conduite de vidange part du point bas du réservoir, se raccorde sur la canalisation du trop-plein, et comporte un robinet vanne.

Son rôle permet l'inspection et le nettoyage ainsi que d'éventuelles réparations.

Figure III.2: *Trop-plein et vidange*

III-7-5-Conduite de by-pass

Au moment du nettoyage ou de réparation du réservoir, le by-pass nous permet la distribution en reliant la conduite d'amener à celle de la distribution, et à l'instant voulu on procède à la fermeture et l'ouverture de la vanne.

En marche normal, les vannes 1 et 3 sont ouvertes, la vanne 2 est fermée, au moment du nettoyage ou de réparation, la vanne 2 ouverte et les vannes 1 et 3 fermées.

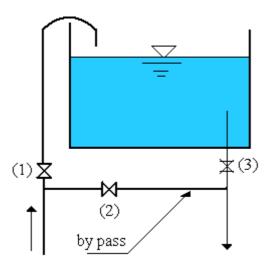


Figure III.3: By-pass

III .8. Matérialisation de la réserve d'incendie

Conserver sûrement une réserve permettant de lutter contre un incendie, il faut en interdire matériellement l'utilisation en service normal, et la rendre accessible par la manœuvre d'une vanne spéciale en cas de nécessite. Généralement, on utilise deux solutions :

✓ Le système à deux prises

La vanne (1) est fermée en service normal et la vanne (2) ouverte. En cas d'incendie, on ouvre la vanne (1). L'inconvénient de cette solution est que la réserve constitue une zone morte qui peut donner un mauvais goût à toute l'eau du réservoir.

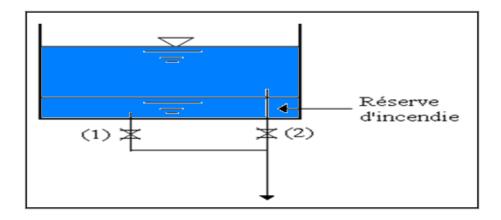


Figure III.4: Système à deux prises.

✓ Le système à siphon

En temps normal, (1) ouverte et la vanne (2) fermée. En cas de sinistre, il suffit d'ouvrir (2). Il est bon de prévoir un troisième robinet vanne (3), normalement ouvert, qui permet de réparer (1) ou (2) en cas de besoin. La vanne (2) sera, de préférence, une vanne papillon à ouverture rapide et commandée électriquement.

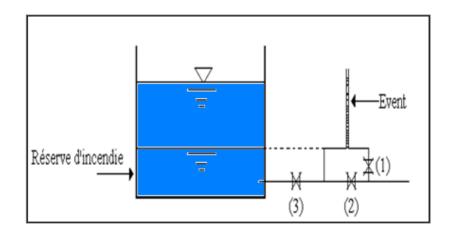


Figure (III.5): Système à siphon

III.9 Calcul de la capacité de la station de reprise

La station de reprise est un réservoir équipé d'une station de pompage permettant le refoulement intermédiaire et servant de transitaire entre un point et un autre. Le volume de stockage de ces stations est fonction de la fermeture complète des vannes de réglages du tronçon précédent. Ce temps est estimé à un quart d'heure, soit 15 minutes. Le volume de ces stations serait :

$$V_{SR} = Q_{max,j} \times t$$

- \triangleright V_{SR} : volume de stockage de la station de reprise en (m^3) ;
- $ightharpoonup Q_{max,j}$: débit maximal journalier en (m^3/j) ;
- \succ t²: temps de fermeture complète des vannes de réglage du tronçon précédent (t = 900 seconde).

Capacité du la station de reprise

La capacité de la station de reprise existante est de 300 m³

On a:

Qmax.j =
$$0.26 \text{ m}^3/\text{s}$$

t' = 900 s

D'où:

$$V_{SR} = 234 \text{ m}^3$$
.

Donc le volume de la station de reprise sera de 300m³ et celle existante est suffisante.

III.10 Calcul de la capacité du réservoir

Connaissons les variations des débits entrant et sortant, nous pouvons alors, déterminer la capacité du réservoir.

♣ Détermination du volume de stockage

La capacité de stockage du réservoir est déterminée à partir de la formule suivante :

$$Vr = (P\% \times Qmax-j)/100$$

Ou:

Vr: volume régularisé en (m³);

P% : résidu maximum dans le réservoir en (%) ;

Qmax-j: consommation maximale journalière en (m³/j);

Étant donné que la valeur de Qmax-j est connue, il nous reste qu'à déterminer celle de (P%)

$$\mathbf{P}\% = |\mathbf{R}^{+} \mathbf{max}| + |\mathbf{R}^{-} \mathbf{min}|$$

Pour déterminer la valeur du volume totale de réservoir nous devons tenir compte de la réserve d'incendie :

$$Vt = Vr + Vinc$$

Avec:

Vt: volume totale du réservoir;

Vinc: volume de la réserve d'incendie qu'est égal à 120 m³;

Tableau III.1: Variation de la consommation journalière du réservoir.

Heur	Apport %	Distribution %	Surplus%	Déficit%	Résidus%
0-1	4,545	2,50	2,045	-	0,535
1-2	4,545	2,65	1,895	-	2,43
2-3	4,545	2,20	2,345	-	4,775
3-4	4,545	2,25	2,295	-	7,07
4-5	4,545	3,20	1,345	-	8,415
5-6	4,545	3,90	0,645	-	9,06
6-7	4,545	4,50	0,045	-	9,105
7-8	4,545	5,10	-	0,555	8,55
8-9	4,545	5,35	-	0,805	7,745
9-10	4,545	5,85	-	1,305	6,44
10-11	4,545	5,35	-	0,805	5,635
11-12	4,545	5,25	-	0,705	4,93
12-13	4,545	4,60	-	0,055	4,875
13-14	4,545	4,40	0,145	-	5,02
14-15	4,545	4,60	-	0,055	4,965
15-16	4,545	4,60	-	0,055	4,91
16-17	4,545	4,90	-	0,355	4,555
17-18	4,545	4,60	-	0,055	4,5
18-19	4,545	4,70	-	0,155	4,345
19-20	4,545	4,50	0,045	-	4,39
20-21	0	4,40	-	4,4	0,01
21-22	0	4,20	-	4,2	-4,2
22-23	4,545	3,70	0,845	-	-3,355
23-00	4,545	2,70	1,845	-	-1,51
Total	100	100			

$$P\% = |R^{+} \max | + |R^{-} \min | = P\% = |9,105| + |-4,2| = 13,305\%$$

$$Vr = (P\% \times Qmax-j)/100 = (13,05 \times 22464,35)/100 = 2988,88 \text{ m}^3$$

$$Vt = Vr + Vinc = 2931,6+120 = 3108,88m^3$$

$$Vt_{adopt\acute{e}} = 3 200 \text{ m}^3.$$

On a un réservoir de capacité de $2\,000m^3$, donc on va projeter un autre réservoir de $1\,200m^3$.

III.11 Dimensionnement du réservoir

> Pour le réservoir existant

Diamètre du réservoir

$$D = \sqrt{(Vt \times 4)/(\pi \times H)}$$

Vt : volume total du réservoir ;

H: hauteur du réservoir

On a :H= [3:6] m, On prend H=5m

$$D = \sqrt{(2\ 000 \times 4)/(\pi \times 5)} = 22,57 \text{ m}$$

Hauteur d'incendie

La réserve d'incendie est de 120 m³, la hauteur d'incendie se calcule comme suit :

$$\mathbf{H_{inc}} = (4 \times \mathbf{Vinc}) / (\pi \times \mathbf{D}^2) = \mathbf{0.3m}$$

Hauteur d'eau disponible

$$Hd = H - Hinc = 4.7m$$

> Pour le réservoir projeté

Diamètre du réservoir

On a: H=[3:6] m, on prend H=4m

$$D = \sqrt{(1\ 200 \times 4)/(\pi \times 4)} = 19,55 \text{ m}$$

Hauteur d'incendie

La réserve d'incendie est de 120 m³, la hauteur d'incendie se calcule comme suit :

$$\mathbf{H}_{\text{inc}} = (4 \times \text{Vinc}) / (\pi \times \mathbf{D}^2) = \mathbf{0.39m}$$

Hauteur d'eau disponible

$$Hd = H - Hinc = 3,60m$$

III.12 dimensionnement du château d'eau de khabouzia

Kmaxh=1,7 donc on aura les résultats suivantes :

Tableau III.2 : Variation de la consommation journalière du château d'eau :

Heur	Apport %	Distribution %	Surplus%	Déficit%	Résidus%
0-1	4,545	1,00	3,545	-	6,635
1-2	4,545	1,00	3,545	-	10,18
2-3	4,545	1,00	3,545	-	13,725
3-4	4,545	1,00	3,545	-	17,27
4-5	4,545	2,00	2,545	-	19,815
5-6	4,545	3,00	1,545	-	21,36
6-7	4,545	5,00	1	0,455	20,905
7-8	4,545	6,50	-	1,955	18,95
8-9	4,545	6,50	1	1,955	16,995
9-10	4,545	5,50	-	0,955	16,04
10-11	4,545	4,50	0,045	-	16,085
11-12	4,545	5,50	-	0,955	15,13
12-13	4,545	7,00	-	2,455	12,675
13-14	4,545	7,00		2,455	10,22
14-15	4,545	5,50	1	1,955	8,265
15-16	4,545	4,50	0,045	-	8,31
16-17	4,545	5,00	-	0,545	7,765
17-18	4,545	6,50	-	1,955	5,81
18-19	4,545	6,50	-	1,955	3,855
19-20	4,545	5,00	-	0,545	3,31
20-21	0	4,50	1	4,5	0
21-22	0	3,00	1	3	-3
22-23	4,545	2,00	2,545	-	-0,455
23-00	4,545	1,00	3,545	-	3,09
Total	100	100			

 $Vr = (P\% \times Qmax-j)/100 = (2\ 252,436 \times 24,36)/100 = 548,69 \text{ m}^3$

 $Vt = Vr + Vinc = 548,69 + 120 = 668,69m^3$

On prend le volume total 700 m 3

Le château d'eau existant est de capacité de 250m³, alors on va projeter un autre de capacité de 450m³

Chapitre III Réservoir

> Pour le château d'eau projeter

Diamètre

On a: H=[3:6] m, on prendre H=4m

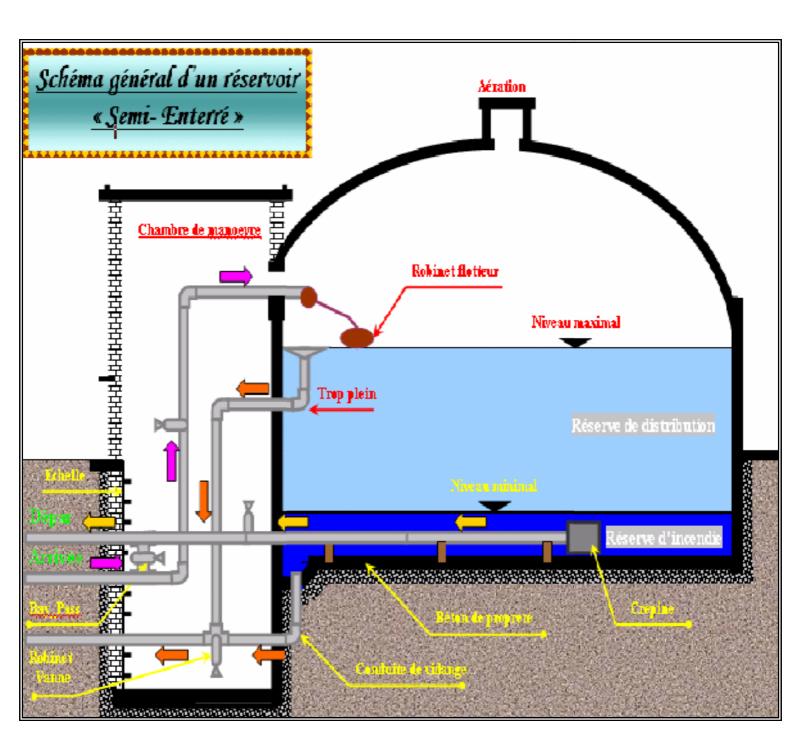
$$D = \sqrt{(450 \times 4)/(\pi \times 4)} = 11,97m$$

Hauteur d'incendie

La réserve d'incendie est de 120 m³, la hauteur d'incendie se calcule comme suit :

$$H_{inc} = (4 \times Vinc) / (\pi \times D^2) = 1,06m$$

Hauteur d'eau disponible

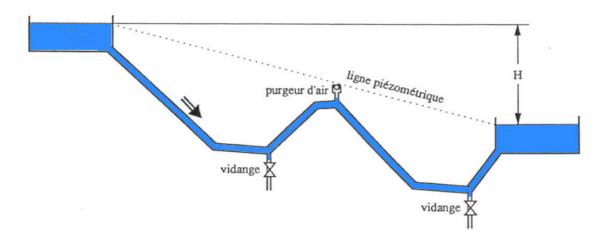

$$Hd = H - Hinc = 2,94 m$$

III.13 Conclusion

La capacité du réservoir déterminée précédemment garantira l'alimentation en eau potable pour les deux communes.

L'acheminement de l'eau vers ces réservoirs se fait par l'intermédiaire d'une station de reprise alimentée à laide d'une conduite d'adduction de deux forages renforcée par une conduite à partir d'un barrage. L'étude se cette adduction fait l'objet du prochain chapitre.

Chapitre III Réservoir



IV.1Généralité

L'adduction est le procédé qui permet de transporter des débits d'eau depuis les zones de captage jusqu'au réservoir de stockage ou de distribution. Selon la topographie du relief de la région à alimenter, on distingue deux modes d'adduction:

✓ Adduction gravitaire

La source de l'eau se situe à une cote supérieure à celle du réservoir d'accueil. L'écoulement de l'eau dans la conduite dépend de la pente et il est régit par l'effet de la pesanteur.

Figure IV.1: *Adduction gravitaire*

✓ Adduction par refoulement

Elle s'effectue dans le cas où nous avons à faire à une source d'eau qui se situe à un niveau plu bas que le réservoir d'accueil, elle s'effectue par l'intermédiaire de station de pompage.

Dans notre étude nous ferons appel à une adduction gravitaire et par refoulement.

IV.2.Choix du tracé

Le choix du tracé d'adduction d'une conduite de refoulement doit tenir compte des conditions d'ordre technique et économique qui sont en fait lié entre elles:

- ✓ Avoir un profil en long aussi régulier que possible de façon à obtenir de longs alignements.
- ✓ Raccordée par des courbes très ouvertes, afin d'éviter les butées importantes.
- ✓ Eviter les contre pentes, qui peuvent donner lien, en exploitation, dans les points haut des cantonnements d'air plus au moins difficile à évacuer.
- ✓ Et en régime transitoire, par suite de la dépression qui règne dans la conduite, le phénomène de cavitation apparaît en ces points hauts, et engendre la rupture de conduite, au cours de la phase de surpression qui succède.

- ✓ Éviter au tant que possible les traversées des obstacles.
- ✓ Chercher le tracé en plan le plus court.

IV.3. Choix du type des conduites

Les types de conduites les plus couramment utilisées qui marque une grande diffusion sont les conduites en fonte et les conduites en acier. En suite, viennent les conduites en béton armé, les conduites en béton précontraint et les conduites en matière plastique.

Le choix du type des conduites dépend des critères suivants:

- ✓ La pression à supporter;
- ✓ La perte de charge;
- ✓ Le diamètre économique;
- ✓ La nature du terrain;
- ✓ La longueur des conduites;
- ✓ La disponibilité sur le marché

. Dans notre projet, on a opté pour les conduites en fonte avec une pression de service de 250m

IV.4. Étude technico-économique des conduites

Le choix du diamètre des conduites résulte d'un compromis entre les dépenses d'exploitation et les dépenses d'investissement. En effet, plus le diamètre de la conduite est petit pour un même débit à relever, plus la perte de charge sera grande, plus le moteur d'entraînement devra être puissant, donc, plus l'énergie dépensée sera importante. La vitesse d'écoulement doit être comprise entre 0,5 et 1,5m/s.

IV.4.1. Calcul du diamètre économique

Le diamètre économique sera calculé par la formule suivante:

- Formule de Jacques BONNIN : $\mathbf{D}_1 = \sqrt{\mathbf{Q}}$
- Formule de Charles BRESS : $D_2 = 1.5\sqrt{Q}$

Avec:

D_{BONNIN}: **D**_{BRESS}: Diamètre de la conduite ; **Q**: Débit refoulé par la conduite en (m³/s).

Le diamètre le plus économique sera compris entre les deux valeurs calculées par la formule de BONNIN et celle de BRESS.

IV.4.2. Calcul de la vitesse

La vitesse d'écoulement de l'eau dans la conduite est déterminée par la loi de DARCY :

$$V = \frac{4Q}{\pi d^2}$$

Ou:

V : vitesse d'écoulement dans la conduite (m/s) ;

Q : débit véhiculé dans la conduite (m³/s) ;

D: diamètre de la conduite (m).

IV.4.3. Calcul des pertes de charge

IV.4.3.1.Les pertes de charge linéaires (J_L)

Elles sont données par la formule de DARCY-MEISBACH:

$$jl = \frac{\lambda \times L \times v^2}{2 \times g \times D}$$

Avec:

jl: perte de charge linière en (m);

L: la longueur de la conduite en (m);

g: accélération de la pesanteur (g=9,81m/s²);

 λ : coefficient de frottement, sans dimension, qui dépend du régime d'écoulement et de rugosité relative

• Calcul du coefficient des pertes de charge λ

Vu que le régime d'écoulement dans les conduites est souvent transitoire, λ est déterminé à partir de la formule de COLEBROOK:

$$\frac{1}{\sqrt{\lambda}} = -2\log 10 \left(\frac{2.51}{Re \times \sqrt{\lambda}} + \frac{K}{D \times 3.71} \right)$$

Avec:

K: coefficient de rugosité équivalente des parois ;

$$k = k\mathbf{o} + (\mathbf{\alpha} \times \mathbf{\beta})$$

Tout en tenant compte des paramètres suivants :

- Paramètre hydrauliques: vitesse moyenne, diamètre et pression.
- Paramètre physico-chimique de l'eau: acidité, PH, dureté.

Ou:

K_o: rugosité absolue.

α : coefficient de vieillissement, déterminé à partir de l'abaque de M-PETER-LAMENT.

α =0,036mm an, pour une zone de faible agressivité.

t : temps de service (t=25ans).

Pour les canalisations en fonte ductile revêtue intérieurement de mortier de ciment, on prend généralement un coefficient de rugosité K=1,1mm.

Re: le nombre de REYNOLDS;

$$Re = \frac{V \times D}{v}$$

Avec:

> v : viscosité cinématique de l'eau, calculé par la formule suivante :

$$\nu = \frac{0.0178}{(1 + 0.00337t + 0.000221t^2)}$$

Pour $t = 20^{\circ}$ C; v = 0.0185 stockes $= 10^{-6}$ m²/s.

IV.4.3.2.Les pertes de charge singulières (Js)

Les sorties des pompes étant équipées de pièces spéciales (divergent, clapet, robinet, coude.. etc.) qui peuvent engendrer des pertes de charge appréciables. Elles sont estimées à 20% des pertes de charge linéaires

 $js = 0, 2 \times jL$

IV.4.3.3.Les pertes de charge totales (J_T)

Elles sont déterminées par la somme des pertes de charge linéaires et singulières :

$$jt = jL + js = 1, 2 \times jL$$

IV.4.4.Calcul de la hauteur manométrique totale (HMT)

Elle représente la somme de la hauteur géométrique (HG) et des pertes de charge totales (J_T).

$$\mathbf{Hmt} = \mathbf{Hg} + \mathbf{J_T} \quad (\mathbf{m})$$

IV.4.5. Puissance absorbée par la pompe

$$P = \frac{9.81 \times Q \times H_{mt}}{\eta} \quad (Kw)$$

Ou:

Pa : puissance absorbée par la pompe (KW) ;

Hmt: hauteur manométrique totale (m);

Q : débit à transiter (m^3/s) ;

n : Rendement de la pompe en % (généralement on prend 75%).

IV.4.6. Énergie consommée par la pompe

$$E = P \times T_P \times 365$$
 (KWh)

E: énergie consommée par la pompe (KWh);

Pa: puissance absorbée par la pompe (KW);

t: temps de pompage (h).

On détermine le temps de pompage en fonction du rapport du débit maximum journalier sur le débit mobilisé par les deux forages multiplie par 24 heures.

$$t = (77,93/85,01) \times 24 = 22$$
 heures.

IV.4.7. Frais d'exploitation

$$F_{exp} = E \times e$$

Avec:

 F_{exp} : frais d'exploitation (DA);

 \boldsymbol{E} : énergie consommée par la pompe (KWh) ;

e: prix d'un KWh, (e = 7,64 DA /KWh).

IV.4.8.Frais d'amortissement

Ils sont donnés par la formule suivante :

$$F_{am} = p_u \times L \times A \quad (DA)$$

Ou:

 \mathbf{F}_{am} : frais d'amortissement (DA);

Pu: prix du mètre linéaire de la conduite (DA/ml);

L: la longueur de la conduite (m);

A: amortissement annuel:

$$\mathbf{A} = \frac{i}{(1+i)^n} + i$$

Ou:

i: taux d'intérêt annuel (annuité), i= 8%;

n : nombre d'années d'amortissement de la conduite (n=25ans) ;

Donc : A = 0.0936 = 9.36%.

IV.4.9. Calcul du bilan

Le bilan sera calculé par la formule suivante :

$$\boldsymbol{B}_L = \boldsymbol{F}_{am} + \boldsymbol{F}_{exp} \tag{DA}$$

IV.5.Prix des conduites

Tableau (IV.1): Prix de revient des conduites en fonte (PN25).

Diamètre de la conduite (mm)	Prix de revient (DA/ml)
100	1750,00
125	2100,00
150	2350,00
200	3070,00
250	4170,00
300	5530,00
350	6654,00
400	7950,00

IV.6.Équipements de l'adduction

IV.6.1. Vannes d'isolement de la décharge

On utilise des robinets vannes pour isoler une conduite d'amenées, en particulier pour une éventuelle réparation.

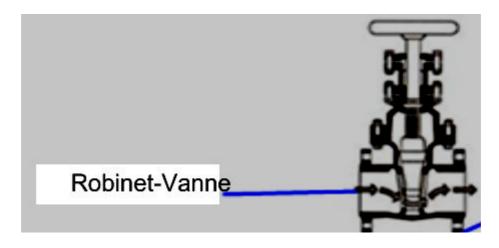


Figure IV-2: Robinet-vannes

IV.6.2. Vannes papillon

Appareils de réglage du débit et de sectionnement et dont l'encombrement est faible. Il s'agit d'un élément de conduite traversé par un axe déporté entraînant, en rotation, un disque obturateur appelé papillon.

IV.6.3. Vanne stop

Organe de sécurité, placé en tête de la canalisation, permettant d'arrêter l'encombrement si le débit dépasse une certaine valeur.

IV.6.4. Vanne de régulation de débit

Elle limite et stabilise le débit à une valeur de consigne constante quelles que soient les variations de pression amont et aval.

IV.6.5. Robinet à flotteur

Situé dans les réservoirs, il permet d'arrêter ou d'activer leur alimentation. La commande est transmise par flotteur ou par la pression hydrostatique. Il sert à régler la tranche d'eau (marnage) sur laquelle on veut travailler.

IV.6.6.Clapets de retenue

Ils sont destinés à empêcher le passage d'un fluide dans certaines conditions. Ils sont surtout utilisés dans les stations de pompage au point bas des canalisations d'aspirations (désamorçage) ou sur la conduite de refoulement (arrêt de la colonne d'eau).

IV.6.7. Robinet de Vidanges

Ils seront placés aux points les plus bas pour faciliter la vidange de la conduite en cas de besoin.

IV.6.8.Les crépines

Ce sont des appareils en forme de panier percé de trous, placés à l'extrémité des canalisations d'aspiration afin d'empêcher l'introduction des corps étrangers dans celle-ci.

IV.6.9. Purgeurs – Ventouses

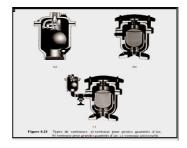


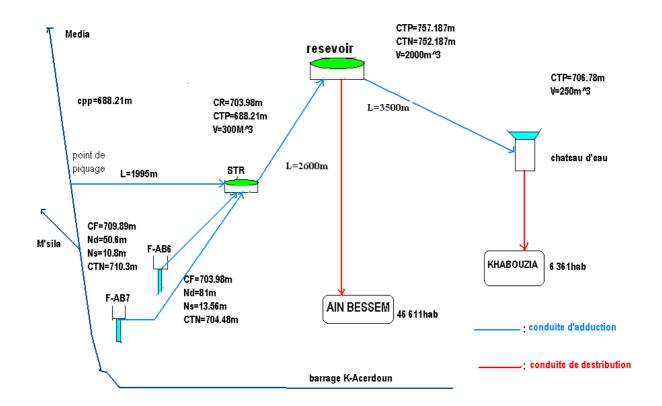
Figure IV-3: Ventouse

Appareils mis en place aux points hauts de la canalisation et servant à l'évacuation de

l'air occlus. L'air, compressible, est le pire ennemi des installations. Les bouchons d'air se

Compriment et décompriment créant des pressions qui varient sans cesse. Les sous-pressions sont souvent plus dévastatrices que les surpressions. Si l'on ne

Prévoit pas d'entrée d'air lorsque l'on vide les tuyaux, cela engendre le phénomène de


Vacuum qui engendre des déformations et dégradations importantes des tuyaux. On Injecte donc de l'air par les ventouses.

IV.7. Description du schéma d'adduction

L'alimentation en eau potable de la région d'étude, se fera à partir de deux forages AB7 et AB6 qui sont situés respectivement à des cotes de 710.3 et 704.48m. L'eau sera relevée par pompage à partir des deux forages avec un débit de 40 et 31 l/s. Un piquage à partir de la conduite du barrage Koudiate – Acerdoun Bir Aghbalou, vient renforcer les deux forages avec un débit de 189 l/s. Les eaux du piquage et ceux des forages se rencontrent au niveau de la station de reprise située à la cote de 703,98m.

À partir de cette station de reprise on va refouler un débit de 260 l/s vers le réservoir situé à une cote de 752,18 m, distant de 2600 m de cette dernière, l'eau se transite gravitairement de ce réservoir vers le château d'eau situé à une cote de 702,78m d'une distance de 3500m.

Le schéma suivant représente tout la région d'étude :

Figure(IV.4): Schéma d'adduction

IV.8.Détermination des diamètres économiques

A/ CONDUITE : point de piquage –SR

Débit refoulé : $Q = 189 \text{ l/s} = 0.189 \text{ m}^3/\text{s}$ Longueur de la conduite : L=1995 m

Cote du point de piquage : CPP= 688 .21 m

Cote du trop plein de SR= 709.25m La pression au point de piquage : 32m

La cote piézométrique au point de piquage est calculée comme suit :

$$C_{piz.p} \equiv C_{TNP} + P \label{eq:continuous}$$

$$Cpiz.p = 688,21 + 32 = 720,21m$$

Avec:

C_{tn.p.} cote géométrique du point de piquage.

C_{piz p:} cote piézométrique du point de piquage.

La différance de charge ΔH entre le point de piquage et la station de reprise SR1 est :

$$\Delta H = C_{piz.p} - C_{TP.SR1}$$

$$\Delta H = 720,21-709,25 = 10,96 \text{m}$$

 $C_{TP.SR1}$: cote trop plein de la station de reprise.

Cette différence de charge représente les pertes de charge, donc il faut chercher le diamètre qui véhicule le débit Q=189 l/s avec des pertes de charge égales à ΔH .

Dans notre cas on va fixer une vitesse de 1m/s, on trouve le diamètre égale à 500mm, qui nous donne Jt=5,80m inférieur au perte de charge $\Delta H=10,96\text{m}$. Donc on doit placer une vanne pour diminuer la pression à l'arriver de la station de reprise.

Tableau IV.2: Calcul de la perte de charge totale.

Diamètre (mm)	Vitesse (m/s)	Re	٦	J	Jt (m)
500	1	500 000	0,02378884	4,83	5,8

On adopte le diamètre 500mm qui présente des pertes de charge d'une valeur de 5,8m.

♣ Choix de la vanne

Notre choix s'est porté sur la vanne papillon pour les raisons suivantes :

- Possibilité de travailler avec des grands débits (grand diamètre)
- Facilité de manipulation.

Principe de fonctionnement

Elles sont constituées d'un obturateur de forme circulaire, se déplaçant dans un mouvement de rotation perpendiculaire à la direction du fluide.

• Angle de fermeture de la vanne

$$Hv = k \times \frac{V^2}{2 \times g}$$

Avec:

Hv : perte e charge crée par la vanne ;

K : coefficient de pertes de charges ;

On aura donc :
$$k = \text{Hv} \times \frac{2 \times g}{V^2}$$

$$Hv = \Delta H - Ht = 10,96-5,8 = 5,16m$$

Donc

$$K=5,16$$
. $\frac{2 \times 9,81}{12} = 101,24$

D'après la courbe qui donne l'angle d'ouverture de la vanne a papillon en fonction de k (annexe 10), on trouve l'angle e d'ouverture de la vanne est égal **a 54**°

B. Forage AB7 -STR

- $Q = 40 \text{ l/s} = 0.04 \text{ m}^3/\text{s}$

- L: Longueur de la conduite =570 m

- CF: Côte du forage = 709.89 m

- N_d: Niveau dynamique du forage = 50.60m

- N_s : Niveau statique du forage = 10.80m

- CTN(A)=710.30 m

- H_g =CTN (A) +0,5+ N_d -CF=710.30+0,5+50.60-709.89

 $H_g = 51.51m$

Diamètre économique :

 $- D_{BONNIN} = 0.2 m$

- $\mathbf{D}_{\text{BRESSE}} = \mathbf{0.3m}$

Tableau IV.3: Calcul de la HMT

Dex (m)	V (m/s)	Re	K/D	λ	J (m/ml)	Jt(m)	HMT (m)
0.150	2.264	339600	0.0066	0,01301257	0.022663	15.501492	64.42791
0.200	1.273	254600	0.005	0,01303012	0.005381	3.680604	54.57717
0.250	0.815	203750	0.004	0,01304755	0.0017668	1.2084912	52.517076
0.300	0.566	169800	0.0033	0,01306494	0.0007110	0.486324	51.91527

Tableau IV.4: Frais d'exploitations

D ex(m)	P (KW)	E (KW, h)	e (Da/KW, h)	Fexp (DA)
0.150	33,71	270 691,3	4,67	1 264 128,37
0.200	28,55	229 256,5	4,67	1 070 627,85
0.250	27,47	220 584,1	4,67	1 030 127,74
0.300	27,16	218 094,8	4,67	1 018 502,71

Tableau IV.5: Frais d'amortissement

D (m)	Pr(DA/ml)	L (m)	Dep (DA)	A	Fam (DA)
0.150	2 350,00	570	1 339 500	0,0936	219.96
0.200	3 070,00	570	1 749 900	0,0936	287,352
0.250	4 170,00	570	2 376 900	0,0936	390,312
0.300	5 530,00	570	3 152 100	0,0936	517,608

Tableau IV.6: Calcul du bilan

D (m)	Fexp (DA)	Fam (DA)	Bilan(DA)
0.150	1 264 128,37	220,665	1 264 349,035
0.200	1 070 627,85	287,352	1 070 915,202
0.250	1 030 127,74	390,312	1 030 518,052
0.300	1 018 502,71	517,608	1 019 020,318

Le bilan minimal est de : 1 019 020,318(DA). Le diamètre économique correspondant au bilan minimal est de **D=300mm**, avec une vitesse de **0,566m/s**

C. Forage AB6 -STR

- $Q = 31 \text{ l/s} = 0.031 \text{ m}^3/\text{s}$
- L: Longueur de la conduite =35 m
- CF: Côte du forage = 703.98 m
- N_d : Niveau dynamique du forage = 81m
- N_s : Niveau statique du forage = 13.56m
- CTN(A)=704.48m
- H_g =CTN (A) +0,5+ N_d -CF=704.48+0,5+81-703.98

 $H_g = 82m$

Diamètre économique :

- $D_{BONNIN} = 0.176 \text{ m}$
- $\mathbf{D}_{\text{BRESSE}} = \mathbf{0.264m}$

Tableau IV.7: Calcul de la HMT

Dex (m)	V (m/s)	Re	K/D	λ	J (m/ml)	Jt(m)	HMT (m)
0.150	1.755	263 250	0.0066	0.033496997	1.227	1.4724	83.4724
0.200	0.987	197 400	0.005	0.030852941	0.268	0.3216	82.3216
0.250	0.632	158 000	0.004	0.029115638	0.083	0.01	82.01
0.300	0.438	131 400	0.0033	0.027899992	0.032	0.038	82.038

Tableau IV.8: Frais d'exploitations

D ex(m)	P (KW)	E (KW, h)	e (Da/KW, h)	Fexp (DA)
0.150	33.846	271783.38	4,67	1269228.385
0.200	33.379	268033.37	4,67	1251715.838
0.250	33.253	267021.59	4,67	1246990.825
0.300	33.264	267109.92	4,67	1247403.326

Tableau IV.9: Frais d'amortissement

D (m)	Pr(DA/ml)	L (m)	Dep (DA)	A	Fam (DA)
0.150	2 350,00	35	82250	0,0936	219.96
0.200	3 070,00	35	107450	0,0936	287,352
0.250	4 170,00	35	145950	0,0936	390,312
0.300	5 530,00	35	193550	0,0936	517,608

Tableau IV.10: Calcul du bilan

D (m)	Fexp (DA)	Fam (DA)	Bilan(DA)
0.150	1269228.385	219.96	1269448.345
0.200	1251715.838	287,352	1252003.19
0.250	1246990.825	390,312	1247381.137
0.300	1247403.326	517,608	1247920.934

Le bilan minimal est de : 1247381.137(DA).

Le diamètre économique correspondant au bilan minimal est de **D=250mm**, avec une vitesse de **0,632m/s**;

D: CONDUITE: STR-R

Caractéristiques du tronçon

Débit refoulé : Q=260 l/s=0,26 m³/s

Longueur de la conduite : L=2 600m

Cote du trop plein de R : CTP R = 757,187 m

Cote du radié du STR : CR STR = 703,98 m

Hauteur géométrique : Hg = CTP(R) - CR(STR) = 53,207m

Calcul du diamètre

$$D_1 = \sqrt{Q} = 0.509 \text{mm}$$

 $D_2 = 1.5 \sqrt{Q} = 0.764 \text{ mm}$

On prend la gamme: 500; 600, 800 mm

Tableau IV.11: Calcul de la HMT

Dex (m)	V (m/s)	Re	K/D	λ	J (m/ml)	Jt(m)	HMT (m)
0.500	1,32	660 000	0,002	0,023700123	10.944	13.1328	66.34
0.600	0,920	552 000	0,0016	0.022705808	4.244	5.0928	58.30
0,800	0,517	413 600	0,00125	0.021362233	0.945	1.134	54.34

Tableau IV.12: Frais d'exploitations

D ex(m)	P (KW)	E (KW, h)	e (Da/KW, h)	Fexp (DA)
0,500	225.61	1811648.3	4,67	8460397.561
0,600	198.27	1592108.1	4,67	7435144.827
0,800	184.80	1483944	4,67	6930018.48

Tableau IV.13: Frais d'amortissement

D (m)	Pr(DA/ml)	L (m)	Dep (DA)	A	Fam (DA)
0,500	8950,00	2600	23270000	0,0936	837.72
0,600	9950.00	2600	25870000	0,0936	931.32
0,800	11950.00	2600	31070000	0,0936	1118.52

Tableau IV.14: Calcul du bilan

D (m)	Fexp (DA)	Fam (DA)	Bilan(DA)
0,500	8460397.561	837.72	8 461 235.281
0,600	7435144.827	931.32	7 436 076.147
0,800	6930018.48	1118.52	6 931 137

Le bilan minimal est de : 6931137(DA).

Le diamètre économique correspond au bilan minimal est de D=800mm, avec une vitesse de 0,517m/s;

E: Conduite: R-château d'eau

Caractéristiques du tronçon

Debit refoulé: $Q = 122.83 \text{ 1/s} = 0.12283 \text{ m}^3/\text{s}$

Longueur de la conduite : L = 3500m

Cote trop plein du château d'eau : CTP = 706.78 m

Cote de terrain naturel de R = 752.187m

La différance de charge ΔH=752.187-706.78=45.407m

Tableau IV.15: Calcul de la P.D.C.T du tronçon R-CHÂTEAU D'EAU

D (mm)	V (m/s)	Re	K/D	λ	J (m/m)	P.D.C.T (m)	Hg (m)
350	1.277	446950	0.0028	0.02612978	21.71793	26.061516	71.468516
400	0.977	390800	0.0025	0.02527477	10.75933	12.91119	58.31819
450	0.772	347400	0.0022	0.02457806	5.80682	6.968184	52.375184
500	0.625	312500	0.002	0.024001346	3.344988	4.0139856	49.4209856
600	0.434	260400	0.0016	0.023108463	1.2941014	1.55292168	46.95992168

Cette différance de charge représente les pertes, donc il faut chercher le diamètre qui véhicule le débit Q=122.83 l/s avec des pertes de charge égales à ΔH , dans notre cas on trouve le diamètre D=350 mm, qui nous donne des pertes de charge P.D.C.T = 26.06m, et pour avoir les pertes de charges égales à ΔH =45.407m, on recommande d'introduire une vanne dans ce tronçon on opte pour une vanne papillon.

• Angle de fermeture de la vanne

$$Hv = k \times \frac{V^2}{2 \times g}$$

Avec:

Hv : perte e charge crée par la vanne ;

K : coefficient de pertes de charges ;

$$k = \text{Hv} \times \frac{2 \times g}{v^2}$$

 $Hv = \Delta H - Ht = 45.407 - 26.061516 = 19.345484m$

Donc

K=.19.345484* 2*9.81/1.277²= 232.75

D'après la courbe qui donne l'angle d'ouverture de la vanne a papillon en fonction de k (annexe 10), on trouve l'angle θ d'ouverture de la vanne est égal a 61.81°

IV.9. Récapitulatifs des résultats obtenus

Les résultats obtenus de la partie adduction sont récapitulés dans le tableau suivant :

Tableau IV.16: Récapitulation des résultats obtenus

Tronçon	Longueur (m)	Diamètre (mm)
PP – SR	1995	500
Forage AB-7 – SR	570	300
Forage AB-6 – SR	35	250
SR – R	2600	800
R – Château d'eau	3500	350

V.1.Définition

On appelle pompe tout appareil qui aspire un fluide d'une région à basse pression, pour le refouler vers une région à plus grande pression.

Son rôle est de transformer l'énergie mécanique en énergie hydraulique, sous forme de pression

V.2. Classification des pompes

Selon les modes de déplacement des liquides à l'intérieur des pompes, on peut distinguer deux types de pompes :

V.2.1. Les pompes volumétriques

Leurs principes de fonctionnement consistent à déplacer des volumes élémentaires de liquide de l'aspiration vers le refoulement. On cite les pompes à piston, ces dernières sont utilisées pour des grandes pressions de refoulement.

Le déplacement du liquide de l'aspiration vers le refoulement se fait par un mouvement de translation, rotation, ou mixte.

V.2.2.Les turbopompes

Les turbopompes sont actuellement les plus employées dans le domaine d'hydraulique, les principales raison sont les suivantes :

- L'encombrement des turbopompes est environ huit fois moindre que celui des pompes volumétriques;
- Les frais d'entretiens d'une turbopompe sont peu élevés ;

Leurs principes de fonctionnement consiste en un déplacement du liquide de l'aspiration vers le refoulement en moyen d'un organe actif de la pompe qui s'appel la roue.

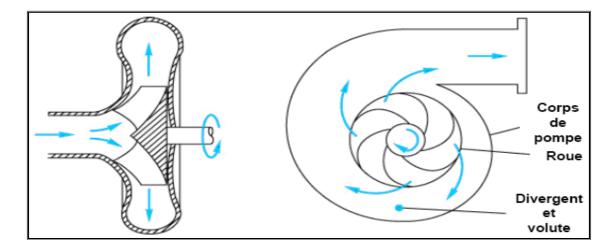
Selon le type de la roue et son mode d'action, les turbopompes sont classées en trois catégories :

- ➤ Pompes à centrifuges ;
- Pompes hélices ;
- Pompes hélico-centrifuges.

V.3. Classification des pompes centrifuges

- Quand a la forme de la roue, on distingue :
 - Pompes centrifuges radiales;
 - Pompes centrifuges semi-axiales;
 - Pompes centrifuges axiales.

- Quand a la forme du corps de la pompe, on distingue :
 - Pompes à volute ou colimaçon;
 - Pompes à diffuseur circulaire ou du type turbine.
- En ce qui concerne le nombre de roues, on distingue :
 - Pompes monocellulaires, lorsque il n'y a qu'une seule roue ;
 - Pompes multicellulaires, lorsque il y a plus d'une roue.
- Quand à la position de l'axe, on distingue :
 - Pompes à axe horizontal;
 - Pompes à axe vertical.
- ➤ En ce qui concerne le sens de rotation, les pompes peuvent être classées en pompes à sens directe et pompes à sens inverse.


Les pompes centrifuges sont caractérisées par :

- ♣ Le débit (Q),
- ♣ La hauteur d'élévation (HMT) ;
- ♣ La charge absolue (NPSH);
- ♣ La puissance (Pa) et le rendement (%);
- ♣ La vitesse de rotation (n) et la vitesse spécifique (n_s).

V.4. Constitution d'une pompe centrifuge

D'une façon générale une pompe comporte :

- ➤ Un organe mobile : la roue, appelé aussi, turbine;
- Des organes fixes : un diffuseur ou stator et des canaux de retour.

Figure (V.1): Constitution d'une pompe centrifuge

V.5. Choix du nombre de pompe

Le choix du nombre de pompes est fonction des critères suivants :

- Rechercher l'investissement minimal par limitation du nombre de pompe sans perdre la sécurité de fonctionnement ;
- Assurer la hauteur et le débit calculés ;
- ➤ Assurer le rendement maximal des pompes ;
- > Présenter le minimum d'encombrement ;
- La disponibilité, surtout sur le marché notionnel.

L'ensemble de ces pompes dans la station, peut présenter l'un des deux modes de couplage suivants ou les deux à la fois :

V.5.1. Couplage en série

Deux pompes sont couplées en série, c'est-à-dire les débits qui les traversent sont les mêmes et les hauteurs qu'elles fournissent à l'eau s'additionnent

V.5.2. Couplage en parallèle

Deux pompes sont couplées en parallèle, c'est-à-dire les hauteurs qui les traversent sont généralement les mêmes et les débits qu'elles fournissent à l'eau s'additionnent.

V.6.Choix de la pompe

Le choix de la pompe doit tenir compte de certains paramètres, à savoir :

- Le débit à refouler ;
- ➤ La hauteur manométrique totale ;
- La puissance absorbée et le rendement ;
- La vitesse de rotation ;
- Le cout et le type de la pompe.

Pour la station de pompage, on choisira les pompes centrifuges à axe horizontal pour les avantages suivants :

- Elles constituent des groupes légers, peu encombrant ;
- Elles sont peu couteuses, et avec un très bon rendement ;
- Elles assurent le refoulement des débits à des hauteurs importantes.

V.7. Les courbes caractéristiques d'une pompe

Ces courbes servent à caractériser les pompes centrifuges et à exprimer ses performances. Pour une vitesse de rotation donnée, on distingue trois types de courbes

V.7.1. La courbe hauteur-débit $\{H = f(Q)\}$

Elle exprime les variations des différentes hauteurs en fonction du débit.

V.7.2. La courbe du rendement-débit $\{\eta = f(Q)\}$

Elles présentent la valeur du rendement en fonction du débit. Cette courbe présente un maximum pour une certaine valeur du débit.

V.7.3. La courbe des puissances absorbées-débit $\{Pa = f(Q)\}$

Elles représentent la variation de la puissance absorbée par la pompe en fonction du débit.

Le point d'intersection de la courbe (Q, H) avec l'axe des ordonnés s'appelle le point de barbotage ou encoure on l'appelle point à vanne fermée.

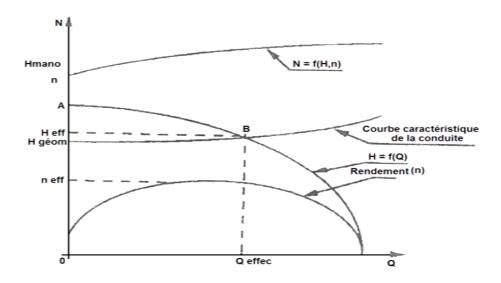


Figure (V.2): La courbe caractéristique d'une pompe centrifuge

V.8. Caractéristiques de la conduite

La courbe caractéristique de la conduite « Hc = f(Q) » est définit comme suit :

$$\mathbf{H} = \mathbf{H}\mathbf{g} + \mathbf{R} \times \mathbf{Q}^2$$

Avec:

- H : hauteur manométrique totale en (m) ;
- Hg: hauteur géométrique en (m);
- R : coefficient qui caractérise la résistance de la conduite ;
- RQ²: la valeur de la perte de charge au point considéré.

V.9. Puissance absorbée (Pa)

C'est la puissance mécanique, absorbée au niveau de l'arbre de la pompe. Elle s'exprime comme suit :

$$Pa = 9.81 \times ((Q \times H) \quad \eta)$$

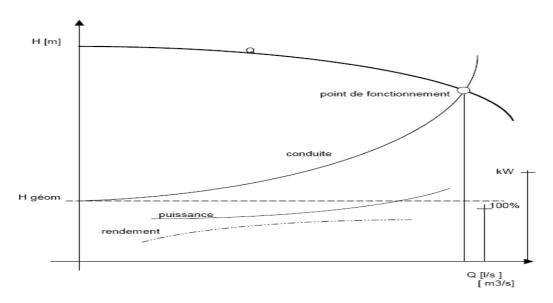
Avec:

- Pa: puissance absorbée en (KW);
- Q : débit a refoulé en (m³/s) ;
- H: hauteur manométrique totale en (m);
- η : rendement de la pompe (%).

V.10. Hauteur manométrique totale (HMT)

C'est l'indication d'un manomètre différentiel placé entre les brides d'entrée et de sortie de la pompe (augmentation de pression que la pompe peut communiquer au fluide). Elle est calculée comme suit :

$$HMT = Ha + Hr + Ja + Jr$$


Avec:

- Ha : hauteur géométrique d'aspiration ;
- Hr : hauteur géométrique de refoulement ;
- Ja : perte de charge d'aspiration ;
- Jr : perte de charge de refoulement.

V.11. Le point de fonctionnement de la pompe

La conduite de refoulement ayant été déterminée par des conditions économiques (le diamètre et la longueur sont connues), on peut tracer sa courbe caractéristique.

En portant sur le même graphe la courbe caractéristique du réseau et celle de la pompe, le point d'intersection des deux courbes est le point de fonctionnement de l'ensemble (P). Ce point détermine donc un débit Q et une hauteur H.

Figure (V.3): *Point de fonctionnement d'une pompe.*

Dans le cas ou le point de fonctionnement ainsi obtenu, ne coïncide pas avec le point désiré, alors on procèdera à la modification de l'un des paramètres du fonctionnement de la pompe dans le but de ramener le point de fonctionnement au point désiré, et ça suivant quatre variantes :

V.11.1. Réduction ou augmentation du temps de pompage

Cette solution est plus simple à réaliser que les autres solutions, à condition d'avoir le débit refoulé supérieur au débit demande.

Dans cette variante on accepte le point de fonctionnement P et on va chercher le nouveau temps de pompage, à l'aide de l'équation de la conservation du volume suivante :

$$QT = constante$$

Dans notre cas le temps de pompage est de 22 h, le volume entrant dans le réservoir est :

$$V = 22Q_1$$

On aura le même volume après refoulement d'un débit Q pendant un temps t Le nouveau temps de fonctionnement sera obtenu par l'égalité suivante :

$$t=20\frac{Q_1}{Q}$$

La puissance absorbée dans ce cas sera :

$$P = \frac{g Q H_1}{\eta_1}$$

V.11.2.Rognage de la roue

Il est basé sur la modification du diamètre de la roue, il est valable que si le débit demandé est inférieur au débit du point de fonctionnement, et il faux aussi que le pourcentage de rognage ne dépasse pas 10%.

La solution apportée, a pour but de ramener les deux points de fonctionnement (celui de la pompe et celui désiré) à la même position.

Le rognage est déterminé par la formule suivante :

$$m = \left(\frac{Q}{Q_1}\right)^{\frac{1}{2}} = \left(\frac{H}{H_1}\right)^{\frac{1}{2}} = \frac{D}{D_1}$$

Avec:

- m : Coefficient de rognage
- D et D_1 sont respectivement les diamètres de la roue avant et après le rognage.
- r: Pourcentage de rognage : r = 1-m (%)

La puissance absorbée sera :

$$P = \frac{g \ H_1 \ Q_1}{\eta_1} \tag{KW}$$

Inconvénient:

Très difficile à réaliser le rognage de la roue, elle demande une très grande précision.

V.11.3. Variation de la vitesse de rotation

On agira sur la vitesse de rotation N de la pompe. En diminuant cette dernière, entraînera la diminution du débit, ce qui engendrera la diminution de la puissance fournie à la pompe.

En utilisant les lois de similitude, on aura :

$$N_i=N.\frac{Q}{Q_i}$$
 (Tr/min)

V.11.4.Régulation par étouffement (vannage)

Afin de ramener le point de fonctionnement au point désiré, nous procédons au vannage c'est-à-dire, on ferme d'une manière à changer la caractéristique du réseau jusqu'à ce que le point de fonctionnent soit celui désiré, dans ce cas la puissance absorbée sera :

$$P = \frac{gQ_1H}{\eta_1} \quad \text{avec} : \mathbf{H} = \mathbf{H_1} + \mathbf{h}$$

h : Perte de charge engendrée par vannage, elle représente la distance entre le point de fonctionnement désiré et l'intersection de la verticale passant par ce même point avec la caractéristique de la pompe.

V.12. Étude de la cavitation

La cavitation est un phénomène d'évaporation du liquide contenu dans la pompe, créant ainsi des poches d'air dans la zone de faible pression à l'entrée de la roue, elles sont transportées dans les zones de fortes pressions ou se produit leur condensation.

Des implosions se produisent alors à des fréquences élevées et créent des surpressions locales très élevées.

La cavitation est un phénomène absolument à éviter, car il entraine de graves conséquences :

- ➤ Érosion du matériau pouvant aller jusqu'au perçage des aubes de turbine des pompes centrifuges ;
- Augmentation du bruit et des vibrations générés par la pompe,
- Diminution de la hauteur manométrique totale, du débit et du rendement.

Pour que la pompe fonctionne normalement, il faut que la pression Pa à son entrée soit supérieure à la tension de vapeur de l'eau d'une quantité minimale représentée par le charge nette requise à l'aspiration.

$$NPSH_d > NPSH_r$$

- NPSH_d: charge nette disponible d'aspiration, calculé par l'utilisateur.
- NPSH_r: charge requise à l'aspiration fournit par le constructeur.

4 NPSH
$$_d = \frac{p_0}{\rho g} + H_a - (J_a + h_v)$$
 (m) (pour une aspiration en charge).

♣
$$NPSH_d = \frac{p_0}{\rho g} - (H_a + J_a + h_v)$$
 (m) (pour une aspiration en dépression).

Avec:

- ➤ H_a: Hauteur d'aspiration (m)
- ➤ J_a: Perte de charge à l'aspiration (m)
- $ightharpoonup \frac{p_0}{\rho g}$: Pression du plan d'aspiration
- ➤ H_v: Tension de vapeur de l'eau.

Tableau (V-01): Tension de vapeur de l'eau en fonction de la température.

T°C	0	4	10	20	30	40	50	60	70	80	100
$\mathbf{H}_{\mathbf{v}}$	0,006	0,083	0,125	0,24	0,43	0,75	1,26	2,03	4,1	4,80	10,30

V.13. Types de pompe à adopter

A / forage AB7

Les caractéristiques du tronçon (F/AB7-STR) sont représentées dans le tableau suivant :

Tableau (V-02): Les caractéristiques du tronçon (F/AB7-STR)

caractéristiques	Débit (l/s)	Hg (m)	ΔH (m)	Hmt (m)
F/AB7-STR	40	51.51	0,49	52, 3

D'après le catalogue des pompes CAPRARI, on opte pour un groupe électropompe immergé de type :

(E12S50/2DE+MC840) dont les caractéristique sont les suivantes :

- N=2900 tr/min
- $\eta = 74,4\%$
- P=27,4Kw
- NPSHr =4,99m
- Le point de fonctionnement P (401/s, 52,3m)
- Le point désiré P1 (40l/s, 52,3m)

Le point de fonctionnement de la pompe coïncide avec le point désiré, donc la pompe répond aux caractéristiques requises et elle ne nécessite aucune modification.

La figure suivante montre les courbes caractéristiques de la pompe et de la conduite :

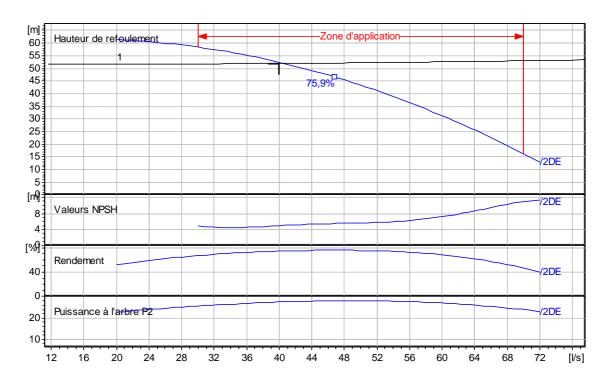


Figure (V-4) : courbe caractéristiques de la pompe (F/AB7-STR).

♣ Vérification de la cavitation

Par mesure de sécurité, les pompes immergées sont toujours placées à 0,5m au dessous du niveau dynamique, donc la non cavitation est vérifiée.

B / forage AB6

Les caractéristiques du tronçon (F/AB6-STR) sont représentées dans le tableau suivant :

Tableau (V-03) : Les caractéristiques du tronçon (F/AB7-STR)

caractéristiques	Débit (l/s)	Hg (m)	ΔH (m)	Hmt (m)
F/AB6-STR	31	82	0,01	82,01

D'après le catalogue des pompes CAPRARI, on opte pour un groupe électropompe immergé de type :

(E9S55/4A+MC850) dont les caractéristiques sont les suivantes :

- N=2900 tr/min
- $\eta = 79\%$
- P=31.5Kw
- NPSHr =4,98m
- Le point de fonctionnement P(31 l/s, 82m)
- Le point désiré P1(31 l/s, 82m)

Le point de fonctionnement de la pompe coïncide avec le point désiré, donc la pompe répond aux caractéristiques requises et elle ne nécessite aucune modification.

La figure suivante montre les courbes caractéristiques de la pompe et de la conduite :

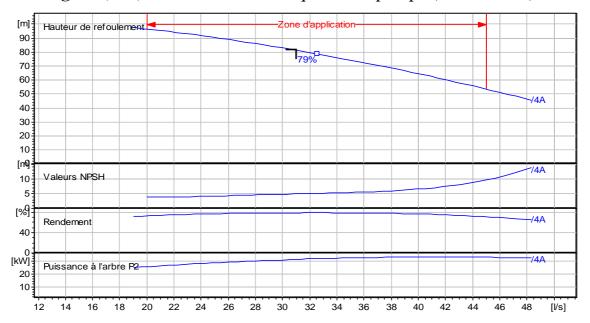


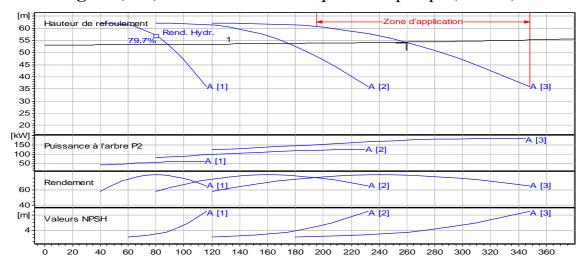
Figure (V-5): courbe caractéristiques de la pompe (F/AB6-STR).

♣ Vérification de la cavitation

Par mesure de sécurité, les pompes immergées sont toujours placées à 0,5m au dessous du niveau dynamique, donc la non cavitation est vérifiée.

C / Le tronçon STR-R

Les caractéristiques du tronçon (STR-R) sont représentées dans le tableau suivant :


Tableau (V-04): Les caractéristiques du tronçon (STR-R)

caractéristiques	Débit (l/s)	Hg (m)	ΔH (m)	Hmt (m)
STR-R	260	53,2	1,1	54,3

D'après le catalogue des pompes CAPRARI, on opte pour trois pompes identiques de type **(PM 150/2A)** dont les caractéristiques sont les suivantes :

- N= 1450 tr/min
- $\eta = 79,2\%$
- P=58,2Kw
- NPSHr =3,49 m
- Le point de fonctionnement P (260l/s, 54,3 m)
- Le point désiré P1 (260l/s, 54,3 m)

Le point de fonctionnement de la pompe coïncide avec le point désiré, donc la pompe répond aux caractéristiques requises et elle ne nécessite aucune modification.La figure suivante montre les courbes caractéristiques de la pompe et de la conduite :

Figure (V-6) : Courbe caractéristiques de la pompe (STR-R).

Vérification de la cavitation

- La cote du plan d'aspiration : Ca= 703,98m
- La hauteur d'aspiration Ha=1m
- Ja=0m

On a la pompe en charge, donc :

$$NPSH_d = \frac{p_0}{\rho g} + H_a - (J_a + h_v)$$

 $P_0=10, 33-0, 0016x703, 98=9,2m$

$$NPSH_d= 9, 2+1-(0+0, 24) = 9,96m$$

On a:
$$NPSH_d > NPSH_r$$

Donc le groupe est en dehors de la zone de cavitation.

V.14 .Conclusion

Après avoir choisis les types de pompes pour les forages et la station de pompage, on remarque que ces pompes correspondent aux conditions de fonctionnement du réseau, donc ne nécessite aucune modification.

Le tableau suivant représente nos choix des pompes pour assurer l'eau d'adduction dans les réservoirs dans notre région d'étude :

 $\textbf{Tableau (V-05):} \ \textit{tableau r\'ecapitulatif du choix des pompes et leurs caract\'eristiques:} \\$

Station de pompage		Forage AB7	Forage AB6	Station de reprise	
	refoule	Vers la station de reprise	Vers la station de reprise	Vers le réservoir	
Groupe de pompe		Groupe électropompe immergé	Groupe électropompe immergé	Pompes centrifuge à axes horizontal monocellulaire	
Typ	pe de pompe	E12S50/2DE+MC840	E9S55/4A+MC850	PM 150/2A	
dne	Puissance (kw)	• P=27,4Kw	• P=31,5Kw	• P=58,2Kw	
éristi	Rendement (%)	• η= 74,4%	• η= 79%	• η= 79,2%	
caractéristiqu	La vitesse de rotation (tr/min)	• N=2900tr/min	• N=2900tr/min	• N=1450tr/min	
N	ombre de pompe	1	1	3+1	

Chapitre VI distribution

VI-1- Introduction

Le réseau de distribution doit être conçu de façon à satisfaire l'alimentation en eau des abonnées d'une manière équitable, il est constitué d'une conduite maîtresse à partir de laquelle prennent issues des conduites secondaires, alimentant des conduites tertiaires et ainsi de suite. L'ensemble de toutes ces conduites constitue un réseau de distribution répondant aux conditions suivantes :

- Les canalisations devront en conséquence présenter un diamètre suffisant, de façon à assurer le débit maximal avec une pression au sol compatible avec la hauteur des immeubles :
- La vitesse de l'eau dans le réseau sera de l'ordre de 0,5 à 2 m/s.

Le réseau de distribution projeté sur la commun de Ain Bessam sera en PEHD PN 10 vu les avantages qu'il présente, notamment sa facilité de pose et de piquage ainsi sa disponibilité dans différent diamètres.

VI.2. Topologie des réseaux de distribution

Les différents types des réseaux utilisés pour l'alimentation des villes en eau potable sont les suivants :

- 1- Réseau ramifié:
- 2- Réseau maillé;
- 3- Réseau combiné;
- 4- Réseau étagé;
- 5- Réseau à alimentation distincte;

Le réseau ramifié

Caractérisé par une alimentation à sens unique, il présente l'avantage d'être économique mais manque de sécurité et de souplesse en cas de rupture.

Le réseau maillé

Permet une alimentation en retour, une simple manœuvre de robinet permet l'isolement du tronçon et la poursuite de l'alimentation en aval. Il est plus coûteux, mais préférable au réseau ramifié, pour la commodité et la sécurité qu'il procure.

Chapitre VI distribution

4 Le réseau étagé

Il est constitué de réseaux indépendants, permet d'éviter les hautes pressions en cas de reliefs accidentés et des dénivelés importantes.

Le réseau à alimentation distincte

Constitué généralement de deux réseaux, l'un pour la distribution de l'eu potable destinée à tous les besoins domestiques, et l'autre pour la distribution de l'eau non potable réservée aux usagés industriels, lavage des rues et arrosages des plantations. Ce réseau ne se justifie que dans les installations extrêmement importantes.

Le réseau mixte

Un réseau est dit mixte (maillé-ramifié), lorsque ce dernier est constitué d'une partie ramifiée et une autre maillée.

Le réseau de notre zone d'étude est un réseau maillé. Il est constitué de plusieurs conduites disposées de telle manière qu'il est possible de décrire un polygone fermé, on appelle ce polygone une maille. Malgré qu'il soit coûteux il reste préférable, car dans le cas d'une fuite dans une conduite on peut la réparer sans faire couper l'alimentation de la ville complètement, et c'est le cas le plus fréquent dans le réseau ramifié.

Avec une simple fermeture des deux vannes de la conduite à isoler (vanne d'entrée et vanne de sortie) on peut supposer qu'on a un nouveau réseau avec l'élimination du réseau qui est en panne.

.

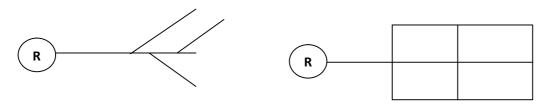


Fig. (VI.1): Réseau ramifié

Fig. (VI.2): Réseau maillé

Chapitre VI distribution

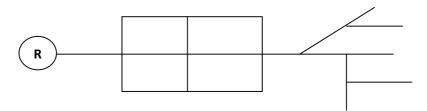


Fig. (VI.3): Réseau combiné

VI.3. Présentation du logiciel *EPANET*

VI.3.1.Historique

Le logiciel *EPANET* est né suite à une initiative du Congrès des États–Unis qui visait à protéger les ressources naturelles du pays. Dès lors, l'EPA (US Environnemental Protection Agency) a été chargée de développer des techniques permettant de mieux appréhender les écoulements et les transformations de l'eau dans un réseau d'adduction d'eau potable. Depuis 1993, le logiciel est disponible gratuitement pour tous les bureaux d'études qui souhaitent l'utiliser.

Afin d'augmenter la convivialité du logiciel pour les sociétés francophones, la Compagnie Générale des Eaux a financé la version française sur laquelle nous avons travaillé. Enfin, le logiciel a connu des améliorations depuis sa création. La dernière version date de l'année 2001.

VI.3.2. Capacités pour la modélisation hydraulique

Le logiciel *EPANET* est un outil de simulation du comportement hydraulique et qualitatif de l'eau dans les réseaux d'eau potable. Un réseau d'eau potable sur un logiciel se définit par des tuyaux (tronçons sur le logiciel), des nœuds (intersection des tuyaux et extrémité d'une antenne) mais également d'autres organes (réservoirs, pompes, clapets, différents types de vannes,...).

Il permet de calculer le débit dans chaque tuyau, la pression à chaque nœud, mais également le niveau de l'eau à n'importe quel moment de la journée (ou de simulation). Le moteur de calcul hydraulique intégré permet de traiter des réseaux de taille illimitée.

Il dispose de trois formules de calcul de pertes de charges (Hazen – Williams, Darcy – Weisbach et Chezy – Manning), il inclut les différentes pertes de charge singulières et il modélise les pompes à vitesse fixe et variable. Il rempli, également, d'autres objectifs :

- Détection des zones de fonctionnement déficitaire.
- Dimensionnement de réseaux.
- Amélioration de la gestion des équipements d'eau.

VI.3.3.Capacités pour la modélisation de la qualité de l'eau

En plus de la simulation hydraulique le logiciel présente un module de modélisation de qualité qui permet de calculer les concentrations en substances chimiques, les temps de séjour de l'eau dans différentes parties du réseau, le suivi de l'origine de l'eau. L'utilisation de ce module qualité nécessite un calage hydraulique préalable.

VI.4. Calcul hydraulique du réseau de distribution

VI.4.1. Détermination du débit de calcul

Le débit de calcul du réseau de distribution est le débit de pointe. Le débit de pointe pour le cas de notre projet est lus dans le tableau (II-10) dans le chapitre estimation des besoins

On a donc dans la commun d'Ain bessem:

 $Qmax-j=19762.04m^3/j$

Qp=p%*Qmax-j

Qp=5.85*19 762.04/100

 $Qp=1.156.08m^3/h$

Qp=321,131/s

P%: résidu maximum dans le réservoir en (%);

Qmax-j: consommation maximal journalière en (m³/j);

VI-4-2- Détermination du débit en route

C'est le débit circulant à travers un tronçon et supposé être consommé d'une façon uniforme sur tout la longueur de ce dernier.

$$Q_r = q_s * Lt$$

D'où:

• Qr : Débit en route du tronçon (t) 1/s ;

• q_s : Débit spécifique l/s/m;

• Lt: Longueur du tronçon (t) m.

VI-4-3- Détermination du débit spécifique

Il est défini comme étant le volume d'eau transitant dans un mètre de canalisation pendant une seconde.

$$q_s = \frac{Q_p}{\sum L}$$

Avec:

• Q_p : Débit de pointe (l/s);

ullet $\sum L$: Somme des longueurs des tronçons du réseau concerné par le débit en route.

VI-4-4- Débit au nœud

Le débit soutiré ou bien on l'appelle le débit nodal c'est le débit qui sort au niveau de chaque nœud pour alimenter la population qui se trouve au tour de ce nœud. On détermine le débit au nœud par la formule suivante :

$$Q_N = \frac{1}{2} \sum q_{tr} + Q_c$$

Avec:

- q_{tr} : Débit de tronçon « i ».

- q_s : Débit spécifique (l/s/m).

- L_i : Longueur du tronçon (m).

- Q_C: Débit concentré au niveau du nœud.

Q_N: Débit au nœud.

VI-4-5- Calcul des diamètres des conduites

Le diamètre de chaque conduite est déterminé en fonction du débit correspondant. On utilisera un programme Excel en première approche puis on procédera au fur et à mesure à des ajustements à l'aide du logiciel Epanet 2.0, en respectant les conditions de vitesse (0,5 à 2 m/s), et de pressions requises au sol (1 à 6 bars).

VI-4-6- Calcul des pertes de charge

La formule de Darcy-Weisbach est théoriquement la plus correcte et la plus largement utilisée. Elle s'applique à tous les régimes d'écoulement et à tous les liquides [9].

$$H_L = f \frac{L * V^2}{d * 2g} = 0.0827 f \frac{L}{d^5} Q^2$$

Avec:

-H_L: Pertes de charges (distance);

- g : Accélération de la pesanteur (distance/temps) ;

-L: Longueur du tuyau (distance);

-d : Diamètre du tuyau (distance) ;

- v : Vitesse d'écoulement (distance/temps) ;

- -f : Facteur de friction (sans dimensions);
- Q : Débit (distance/temps).

Le facteur de friction est fonction de la rugosité relative (k/ d) et du nombre de Reynolds Re = (vd/v).

VI-5- Étude de la distribution

VI-5-1-Distribution à partir du réservoir R vers AIN BESSEM

Les données de base sont :

- La cote du radier du réservoir est de 752.02 m
- ➤ La longueur totale du réseau de distribution est de 30 578 m
- La consommation atteint un maximum de 1156.08 m³/h aux heures de pointes
- $P = Q_p = 1156.08 \text{m}^3/\text{h}$; soit 321.13 l/s
- > Le Débit spécifique : $q_s = \frac{Q_p}{\sum L} \frac{1}{s/m}$
- $ightharpoonup q_s=321.13/32444=0.0099 1/s/m$

 $> q_s = 0.0099 1/s/m$

VI-5-2- Calcul des débits aux nœuds

Tableau (VI.1): les débits aux nœuds.

Nœud	Tronçon	Longueur (m)	Q spécifique (I/s/m)	Q routes (I/s)	0,5 Q route (I/s)	Q nœud (I/s)	Cote (m)
2	1_2	3997		0	0	00	725.35
	2_3	20		0,198	0,099		
3	2_3	150		1,485	0,7425	0,84150	725.93
	4_3	38	_	0,3762	0,1881		
	29_3	146		1,4454	0,7227		
4	3_4	42		0,4158	0,2079	1,27710	727.54
	5_4	70	.0099	0,693	0,3465		
	30_4	60	9	0,594	0,297		
5	4_5	76	9	0,7524	0,3762	2,37600	730.08
	6_5	30		0,297	0,1485		
	25_5	104		1,0296	0,5148		

		ı	1	1			
6	5_6	98		0,9702	0,4851	3,52440	734.01
	7_6	100		0,99	0,495		
7	6_7	100		0,99	0,495	2,38590	735.73
	8_7	100		0,99	0,495		
	11_7	100		0,99	0,495		
8	9_8	100		0,99	0,495	0,81180	735.33
	7_8	100		0,99	0,495		
	19_8	98		0,9702	0,4851		
9	8_9	36		0,3564	0,1782	1,24740	735
	10_9	40		0,396	0,198		
10	9_10	40		0,396	0,198	1,42560	733.37
	11_10	156		1,5444	0,7722		
	14_10	128		1,2672	0,6336	-	
11	7_11	46		0,4554	0,2277	1,23750	734.63
	12_11	142	-	1,4058	0,7029	-	
	10_11	46		0,4554	0,2277		
12	11_12	160		1,584	0,792	1,30680	734.51
	13_12	46		0,4554	0,2277		
13	12_13	180		1,782	0,891	2,03940	732.16
	14_13	46		0,4554	0,2277		
	27_13	3997]	0	0		
14	13_14	20		0,198	0,099	1,67310	732.64
	10_14	150		1,485	0,7425		
	15_14	38		0,3762	0,1881		
	24_14	146		1,4454	0,7227		
15	14_15	42		0,4158	0,2079	1,88100	733.46
	16_15	70		0,693	0,3465		
	23_15	60]	0,594	0,297		
16	15_16	76		0,7524	0,3762	1,78200	
	17_16	30		0,297	0,1485		
	22_16	104		1,0296	0,5148		733,57
17	16_17	98	-	0,9702	0,4851	1,69290	
	_	100		0,99	0,495		
	18_17	100		0,99	0,495		724.62
	21_17	100		0,99	0,495		734,42
18	17_18	100		0,99	0,495	1,62360	734,43
	19_18	100	0.0099	0,99	0,495		, , , , , ,
	20_18	100		0,99	0,495		
19	18_19	98	9	0,9702	0,4851	1,46520	735,13
	8_19	36	9	0,3564	0,1782		, -

	20_19	40		0,396	0,198		
20	19_20	40		0,396	0,198	3,41550	
	21_20	156		1,5444	0,7722		734,62
	18_20	128		1,2672	0,6336		734,02
	25_20	46		0,4554	0,2277		
21	20_21	142		1,4058	0,7029	1,15830	734,71
	17_21	46		0,4554	0,2277		,
	22_21	160		1,584	0,792		
22	21_22	46		0,4554	0,2277	1,24740	
	16_22	180		1,782	0,891		732,31
	23_22	46		0,4554	0,2277		,
23	22_23	3997		0	0	1,34640	734,43
	15_23	20		0,198	0,099		70 1, 10
	24_23	150		1,485	0,7425		
24	23_24	38		0,3762	0,1881	1,75230	734,43
	14_24	146		1,4454	0,7227		734,43
	26_24	42		0,4158	0,2079		
25	26_25	70		0,693	0,3465	2,45520	729,84
	20_25	60		0,594	0,297		7 = 0,0 :
	5_25	76		0,7524	0,3762		
26	24_26	30		0,297	0,1485	1,43550	
	27_26	104		1,0296	0,5148		730
	30_26	98		0,9702	0,4851		
	25_26	100		0,99	0,495		
27	26_27	100		0,99	0,495	1,17810	
	28_27	100		0,99	0,495		731,55
	13_27	100		0,99	0,495		,
28	27_28	100		0,99	0,495	0,66330	
	29_28	100		0,99	0,495		731,12
29	3_29	98		0,9702	0,4851	1,41570	729,2
	30_29	36		0,3564	0,1782		723,2
	28_29	40		0,396	0,198		
30	29_30	40		0,396	0,198	1,05930	
	26_30	156		1,5444	0,7722		731,65
	4_30	128		1,2672	0,6336		
31	2_31	46		0,4554	0,2277	3,05910	<u></u>
	82_31	142		1,4058	0,7029		723,89
	32_31	46		0,4554	0,2277		<u> </u>
32	31_32	198		1,9602	0,9801	2,39580	729,43
	33_32	110	0.0099	1,089	0,5445		
	53_32	214		2,1186	1,0593		
33	32_33	50	Ŏ	0,495	0,2475	2,05920	730,17
	42_33	100	9	0,99	0,495		
	34_33	148	9	1,4652	0,7326		
34	33_34	104		1,0296	0,5148	2,59380	731,89

	36_34	20		0,198	0,099		
	35_34	100]	0,99	0,495		
35	34_35	362]	3,5838	1,7919	1,59390	734,34
	36_35	350]	3,465	1,7325		
	47_35	360		3,564	1,782		
36	34_36	236		2,3364	1,1682	1,03950	732,25
	35_36	340		3,366	1,683		
	37_36	32		0,3168	0,1584		
37	36_37	46		0,4554	0,2277	1,27710	732,58
	47_37	20]	0,198	0,099		
	38_37	74		0,7326	0,3663		
38	37_38	38		0,3762	0,1881	1,31670	732,62
	45_37	120		1,188	0,594		
	39_38	48		0,4752	0,2376		
39	42_39	216		2,1384	1,0692	0,88110	732,52
	38_39	58		0,5742	0,2871	-	
	43_39	42		0,4158	0,2079		
40	41_40	44		0,4356	0,2178	0,97020	732,28
	51_40	28		0,2772	0,1386		-
	52_40	120		1,188	0,594		
41	42_41	48		0,4752	0,2376	1,14840	733
	43_41	120		1,188	0,594		
	40_41	44		0,4356	0,2178	-	
42	39_42	120		1,188	0,594	0,69300	732,58
	33_42	54		0,5346	0,2673		
	41_42	120		1,188	0,594		
43	39_43	40		0,396	0,198	1,52460	734,17
	41_43	162		1,6038	0,8019		
	44_43	102		1,0098	0,5049	-	
44	43_44	56		0,5544	0,2772	1,04940	734,51
	50_44	48		0,4752	0,2376	-	
	45_44	48		0,4752	0,2376		
45	44_45	48		0,4752	0,2376	1,88100	734,7
	46_45	162		1,6038	0,8019	-	
	49_45	70	1	0,693	0,3465		
	38_45	114	-	1,1286	0,5643	-	
46	45_46	138		1,3662	0,6831	1,05930	735,36
	46_46	338	1	3,3462	1,6731	<u> </u>	,
	48_46	144	1	1,4256	0,7128	-	
47	46_47	480	1	4,752	2,376	1,34640	735,28
-	35_47	210	1	2,079	1,0395	,	/
	37_47	186	1	1,8414	0,9207	1	
48	46_48	84	1	0,8316	0,4158	1,95030	736,01
=	49_48	90	1	0,891	0,4455	,	,
	52_48			,	,		
49	45_49	60	1	0,594	0,297	1,08900	734,62
	50_49	434	1	4,2966	2,1483]	
	48_49	70		0,693	0,3465		
50	49_50	72		0,7128	0,3564	1,01970	734,62

	44_50	66		0,6534	0,3267		
	51_50	156		1,5444	0,7722		
51	50_51	204		2,0196	1,0098	0,95040	732,41
	40_51	258		2,5542	1,2771		-
	43_51	192		1,9008	0,9504		
52	40_52	90		0,891	0,4455	1,30680	732,99
	48_52	82		0,8118	0,4059		-
53	32_53	64		0,6336	0,3168	4,12830	730,84
	54_53	120		1,188	0,594		
	55_53	44		0,4356	0,2178		
54	53_54	212		2,0988	1,0494	4,75200	730,78
55	56_55	42		0,4158	0,2079	3,23730	733,3
	53_55	42		0,4158	0,2079	ĺ	,
	63_55	42	-	0,4158	0,2079	•	
	62_55	330	1	3,267	1,6335		
56	55_56	50	1	0,495	0,2475	1,45530	733,77
	62_56	268	-	2,6532	1,3266		100,11
	57_56	238	-	2,3562	1,1781		
57	56_57	258	-	2,5542	1,2771	1,71270	734
37	58_57	118	-	1,1682	0,5841	1,71270	734
			-			-	
58	61_57 57_58	106 84	-	1,0494	0,5247 0,4158	3,77190	733,6
30		94	-	0,8316		3,77190	755,0
	60_58		-	0,9306	0,4653	-	
59	59_58	128 32	-	1,2672	0,6336	2,44530	721,74
33	58_59	90	-	0,3168	0,1584	2,44550	721,74
60	60_59 58_60	40	-	0,891 0,396	0,4455 0,198	2,01960	724,4
80	59_60	140	-	1,386	0,198	2,01900	724,4
	61_60	68	-	0,6732	0,033		
61	60_61	44	-	0,4356	0,3300	1,87110	727,82
01	57_61	42	-	0,4330	0,2178	1,87110	727,82
	62_61	210	-	2,079	1,0395	-	
62	61_62	202	-	1,9998	0,9999	2,10870	731,58
02	56_62	186	-	1,8414	0,9207	2,10070	731,30
	55_62	24	-	0,2376	0,1188		
63	55_63	98	-	0,9702	0,4851	1,92060	734,61
03	72_63	50	-	0,495	0,4851	1,92000	754,61
	64_63	72	-	0,493	0,2473	-	
	_		1	-		1 40500	726.44
64	63_64	50	-	0,495	0,2475	1,40580	736,44
	65_64	86		0,8514	0,4257		
	66_64	114		1,1286	0,5643		
65	64_65	100		0,99	0,495		736,84
66	64_66	186		1,8414	0,9207	1,31670	736,24
	67_66	50	1	0,495	0,2475]	
	68_66	126	1	1,2474	0,6237	1	
67	66_67	82	1	0,8118	0,4059	0,79200	733,79
	71_67	136	1	1,3464	0,6732	1 '	•

68	66_68	22		0,2178	0,1089	1,24740	736,68
	70_68						
	69_68	92		0,9108	0,4554		
69	68_69	94		0,9306	0,4653	0,89100	734,79
	70_69	52	1	0,5148	0,2574		
70	68_70	94	1	0,9306	0,4653	0,98010	735,29
	69_70	52		0,5148	0,2574		
	71_70	140		1,386	0,693		
71	70_71	52		0,5148	0,2574	0,60390	733,19
	67_71	90		0,891	0,4455		
72	63_72	50		0,495	0,2475	1,90080	736,48
	73_72	100		0,99	0,495		
	76_72	160		1,584	0,792		
73	74_73	68		0,6732	0,3366	1,30680	735,79
	75_73	100		0,99	0,495		
	72_73	100]	0,99	0,495		
74	73_74	100		0,99	0,495	0,91080	732,92
	75_74	90		0,891	0,4455		
75	74_75	140		1,386	0,693	1,39590	735,38
	73_75	80		0,792	0,396		-
	75_75	140		1,386	0,693		
76	75_76	80		0,792	0,396	2,80170	732,47
	72_76	90		0,891	0,4455		
	81_76	80		0,792	0,396		
	77_76	88		0,8712	0,4356		
77	76_77	38		0,3762	0,1881	2,75220	731,61
	81_77	80		0,792	0,396		
78	77_78	40	1	0,396	0,198	3,15810	730,77
	79_78	120		1,188	0,594		
	80_78	140		1,386	0,693		
79	78_79	140]	1,386	0,693	1,84140	727,47
	80_79	70		0,693	0,3465		
80	79_80	36]	0,3564	0,1782	1,69290	728,65
	78_80	70		0,693	0,3465		
	81_80	88		0,8712	0,4356		
81	80_81	70		0,693	0,3465	1,59390	728,94
	77_81	140		1,386	0,693		
	76_81	70		0,693	0,3465		
82	31_82	72		0,7128	0,3564	1,60380	723,61
	83_82	76		0,7524	0,3762		
	87_82	76		0,7524	0,3762		
83	82_83	100		0,99	0,495	2,96010	725,17
	85_83	60]	0,594	0,297	1	
	84_83	100		0,99	0,495		
84	83_84	100		0,99	0,495	0,99990	725,38
85	83_85	94		0,9306	0,4653	1,96020	723,47
	95_85	86		0,8514	0,4257		

	00.05	22		0.2160	0.1504		
0.0	96_85	32	-	0,3168	0,1584	4 22760	722.20
86	95_86	460	1	4,554	2,277	1,22760	722,38
	87_86	100	-	0,99	0,495	-	
	93_86	140	1	1,386	0,693		
87	82_87	124	1	1,2276	0,6138	1,39590	722,25
	92_87	94	1	0,9306	0,4653	-	
	86_87	140		1,386	0,693		
90	92_90	30		0,297	0,1485	1,43550	718,12
	104_90	30		0,297	0,1485		
	102_90	52		0,5148	0,2574		
	123_90	100		0,99	0,495		
92	87_92	116		1,1484	0,5742	1,49490	719,44
	93_92	52		0,5148	0,2574		
	90_92	58		0,5742	0,2871		
93	92_93	160		1,584	0,792	1,16820	720,62
	86_93	48		0,4752	0,2376		
	94_93	94		0,9306	0,4653		
94	93_94	90		0,891	0,4455	2,01960	721,29
	95_94	52	1	0,5148	0,2574		
	97_94	90	1	0,891	0,4455		
95	94_95	20		0,198	0,099	1,16820	722,99
	85_95	100		0,99	0,495		
	86_95	48		0,4752	0,2376		
96	97_96	48		0,4752	0,2376	1,57410	722,55
	85_96	140		1,386	0,693	-	-
	98_96	48		0,4752	0,2376	-	
97	94_97	100	0.0099	0,99	0,495	1,27710	722,16
	96_97	40		0,396	0,198		
	99_97	314		3,1086	1,5543	-	
98	99_98	94	9	0,9306	0,4653	1,04940	722,41
	96_98	82	9	0,8118	0,4059	-	
	114_98	40		0,396	0,198	-	
99	98_99	88		0,8712	0,4356	1,24740	721,67
	97_99	76	1	0,7524	0,3762	<u> </u>	,
	113_99	100	-	0,99	0,495	-	
	100 99	70	-	0,693	0,3465	-	
100	99_100	100	-	0,99	0,495	1,02960	721,25
	101_100	100	1	0,99	0,495	_,,	,
	110_100	70	-	0,693	0,3465	-	
101	100_101	100	-	0,99	0,495	1,89090	720,3
- 	94_101	80	1	0,792	0,396		- = -,-
	102_101	100	-	0,99	0,495	-	
	109_101	80	1	0,792	0,396	1	
102	101_102	100	1	0,99	0,495	1,15830	716,83
-0-	90_102	72	1	0,7128	0,3564		, _0,00
	103_102	100	1	0,99	0,495	-	
103	104_103	100	1	0,99	0,495	1,66320	719,59
103	102_103	72	1	0,7128	0,3564	1,00320	, 13,33
			-		+	-	
	107_103	100		0,99	0,495		

	109_103	80		0,792	0,396		
104	90_104	50		0,495	0,2475	1,22760	716,83
	103_104	82		0,8118	0,4059		
	105_104	86		0,8514	0,4257		
105	104_105	28		0,2772	0,1386	1,81170	715,59
	94_105	112	=	1,1088	0,5544	-	
	120_105	140		1,386	0,693	-	
	107_105	186		1,8414	0,9207	-	
107	108_107	170		1,683	0,8415	1,28700	715,12
	105_107	130	=	1,287	0,6435	-	
	103_107	44		0,4356	0,2178	-	
108	107_108	90		0,891	0,4455	1,76220	717,65
	118_108	350		3,465	1,7325		
	109_108	248		2,4552	1,2276		
109	103_109	134		1,3266	0,6633	1,71270	716,72
	101_109	276		2,7324	1,3662		
	108_109	202		1,9998	0,9999		
	110_109	32		0,3168	0,1584		
110	109_110	40		0,396	0,198	1,73250	721,02
	111_110	40		0,396	0,198		
	100_110	456		4,5144	2,2572		
	113_110	40		0,396	0,198		
111	110_111	40		0,396	0,198	1,33650	719,34
	112_111	40		0,396	0,198		
	108_111	32	1	0,3168	0,1584		
112	115_112	140		1,386	0,693	1,77210	719,94
	117_112	416		4,1184	2,0592		
	113_112	416		4,1184	2,0592		
	111_112	416		4,1184	2,0592	=	
113	110_113	310		3,069	1,5345	1,74240	721,41
	112_113	370	0.0099	3,663	1,8315		
	99_113	18	9	0,1782	0,0891		
	114_113	218		2,1582	1,0791		
114	98_114	250		2,475	1,2375	1,24740	722,07
	115_114	20		0,198	0,099		
	113_114	210		2,079	1,0395		
115	114_115	100		0,99	0,495	1,29690	722,95
	112_115	100		0,99	0,495		
	116_115	272		2,6928	1,3464		
116	115_116	26		0,2574	0,1287	2,39580	719,77
	117_116	280		2,772	1,386	<u> </u>	
	160_116	126	-	1,2474	0,6237		
117	116_117	126	-	1,2474	0,6237	2,51460	719,26
	112_117	190		1,881	0,9405]	
	118_117	160		1,584	0,792	_	
	160_117	292		2,8908	1,4454		
118	117_118	150	1	1,485	0,7425	1,20780	717,81
	119_118	100		0,99	0,495		

	108_118	40	0,396	0,198		
119	118_119	100	0,99	0,495	1,38600	719,68
	162_119	68	0,6732	0,3366		
	120_119	48	0,4752	0,2376		
120	119_120	90	0,891	0,4455	2,57400	713,39
	105_120	48	0,4752	0,2376		
	133_120	116	1,1484	0,5742		
121	122_121	48	0,4752	0,2376	0,70290	726.9
	164_121	30	0,297	0,1485		
122	123_122	198	1,9602	0,9801		726.55
	121_122	110	1,089	0,5445	1,39590	
	168_122	214	2,1186	1,0593		
123	124_123	50	0,495	0,2475		726.62
	174_123	100	0,99	0,495	2,37600	
	90_123	148	1,4652	0,7326		
	122_123					
		104	1,0296	0,5148		
124	125_124	20	0,198	0,099		726.06
	105_124	100	0,99	0,495	0,89100	
	123_124	362	3,5838	1,7919		
	185_124	350	3,465	1,7325		
125	196_125	360	3,564	1,782	0,96030	225.81
	124_125	236	2,3364	1,1682		
	198_125	340	3,366	1,683		
126	201_126	32	0,3168	0,1584	0,69300	728,36
	127_126	46	0,4554	0,2277		
127	126_127	20	0,198	0,099	0,93060	728,01
	128_127	74	0,7326	0,3663		
	200_127	38	0,3762	0,1881		
128	127_128	120	1,188	0,594	0,83160	726,63
	132_128	48	0,4752	0,2376		
	129_128	216	2,1384	1,0692		
129	128_129	58	0,5742	0,2871	0,80190	726,72
	197_129	42	0,4158	0,2079		
	130_129	44	0,4356	0,2178		
130	129_130	28	0,2772	0,1386	0,99000	724,79
	193_130	120	1,188	0,594		
	131_130	48	0,4752	0,2376		
131	130_131	120	1,188	0,594	1,51470	724,89
	198_131	44	0,4356	0,2178		•
	197_131	120	1,188	0,594		
	196_131	54	0,5346	0,2673]	
132	128_132	120	1,188	0,594	0,99000	722,93
133	120_133	40	0,396	0,198	3,24720	713,8
	149_133	162	1,6038	0,8019	1	,-
	134_133	102	1,0098	0,5049	1	
134	133_134	56	0,5544	0,2772	3,36600	718,91

	135_134	48		0,4752	0,2376		
135	134_135	48		0,4752	0,2376	1,92060	722,41
	136_135	48		0,4752	0,2376		
	137_135	162		1,6038	0,8019		
136	135_136	70		0,693	0,3465	1,62360	721,69
	139_136	114		1,1286	0,5643		
	140_136	138		1,3662	0,6831		
137	135_137	338		3,3462	1,6731	2,31660	721,4
	138_137	144		1,4256	0,7128		
138	137_138	480		4,752	2,376	3,61350	718,77
	139_138	210		2,079	1,0395		
	148_138	186		1,8414	0,9207		
139	138_139	84		0,8316	0,4158	2,48490	718,88
	136_139	90		0,891	0,4455		
	141_139	60		0,594	0,297		
140	136_140	434		4,2966	2,1483	0,99000	722,6
	141_140	70		0,693	0,3465		
141	140_141	72		0,7128	0,3564	1,97010	716,52
	139_141	66		0,6534	0,3267		
	142_141	156		1,5444	0,7722		
142	141_142	204		2,0196	1,0098	2,45520	716,48
	143_142						
	146_142	258		2,5542	1,2771		
143	142_143	192		1,9008	0,9504	2,35620	711,94
	144_143	90		0,891	0,4455		
	146_143	82		0,8118	0,4059		
144	143_144	64		0,6336	0,3168	1,58400	712,15
145	143_145	120		1,188	0,594	1,24740	711,28
	146_145	44		0,4356	0,2178		
146	145_146	212		2,0988	1,0494	3,45510	711,28
	142_146	42		0,4158	0,2079		
	147_146	42		0,4158	0,2079		
147	146_147	42		0,4158	0,2079	1,44540	695,11
148	138_148	330		3,267	1,6335	2,27700	714,39
149	150_194	50		0,495	0,2475	1,00980	712,51
	154_194	268		2,6532	1,3266]	
	133_194	238		2,3562	1,1781		
150	151_150	258		2,5542	1,2771	0,00064	714,2
	156_150	118	1	1,1682	0,5841	1	
151	152_151	106	1	1,0494	0,5247	2,45520	715,13
	157_151	84]	0,8316	0,4158		
152	153_152	94	1	0,9306	0,4653	2,45520	716,64
	158_152	128	1	1,2672	0,6336		
153	158_153	32	1	0,3168	0,1584	2,45520	718,05
	 152_153	90	1	0,891	0,4455	1	
154	160_154	40	1	0,396	0,198	2,72250	720
	149_154	140	1	1,386	0,693	1	

	155_154	68		0,6732	0,3366		
155	154_155	44		0,4356	0,2178	2,52450	713,34
	159_155	42	1	0,4158	0,2079		
	156_155	210		2,079	1,0395		
156	155_156	202		1,9998	0,9999	2,41560	713,75
	150_156	186		1,8414	0,9207		
	157_156	24		0,2376	0,1188		
157	156_157	98		0,9702	0,4851	2,45520	715,55
	158_157	50		0,495	0,2475		
	151_157	72		0,7128	0,3564		
158	157_158	50		0,495	0,2475	4,51440	717,65
	153_158	86	1	0,8514	0,4257		
	152_158	114]	1,1286	0,5643		
159	155_159	100		0,99	0,495	1,99980	713,76
160	117_160	186	-	1,8414	0,9207	3,62340	721,83
	116_160	50		0,495	0,2475		
161	162_161	126		1,2474	0,6237	0,84150	719,09
162	119_162	82	-	0,8118	0,4059	2,45520	717,48
	163_162	136		1,3464	0,6732		
	161_162	22		0,2178	0,1089		
163	162_163	92		0,9108	0,4554	0,92070	719,09
164	121_164	94	-	0,9306	0,4653	0,96030	725,83
	168_164	52		0,5148	0,2574		
	165_164	94		0,9306	0,4653		
165	164_165	52		0,5148	0,2574	1,05930	725,75
	169_165	140		1,386	0,693		
	166_165	52	1	0,5148	0,2574		
166	165_166	90		0,891	0,4455	1,62360	724,68
	171_166	50		0,495	0,2475		
	167_166	100		0,99	0,495		
167	166_167	160		1,584	0,792	0,49500	722,48
168	164_168	68		0,6732	0,3366	1,65330	725,96
	122_168	100		0,99	0,495		
	169_168	100		0,99	0,495		
169	170_169	100		0,99	0,495	0,97020	725,38
	165_169	90		0,891	0,4455		
	168_169	140]	1,386	0,693		
170	169_170	80	1	0,792	0,396	1,18800	725,39
	 175_170	140	1	1,386	0,693]	•
		80	1	0,792	0,396]	
171	170_171	90]	0,891	0,4455	1,78200	724,65
	172_171	80		0,792	0,396		
	166_171	88	1	0,8712	0,4356]	
172	171_172	38	1	0,3762	0,1881	1,43550	724,19
		80	1	0,792	0,396]	
	176_172	40	1	0,396	0,198]	

173							
1,3	172_173	120		1,188	0,594	0,49500	721,81
174	168_174	140		1,386	0,693	1,18800	726,38
[123_174	140		1,386	0,693		-
[175_174	70		0,693	0,3465		
175	170_175	36		0,3564	0,1782	1,79190	726,18
	 180_175	70		0,693	0,3465	,	,
[174_175	88		0,8712	0,4356		
[176_175	70		0,693	0,3465		
176	175_176	140		1,386	0,693	1,98000	725,08
ı	172_176	70		0,693	0,3465		
	181_176	72		0,7128	0,3564		
	177_176	76		0,7524	0,3762		
177	176_177	76		0,7524	0,3762	1,03950	724,17
	182_177	100		0,99	0,495		
	 178_177	60		0,594	0,297		
178	183_178	100		0,99	0,495	1,18800	715,7
	 177_178	100		0,99	0,495	,	•
		94		0,9306	0,4653		
179	 178_179	86		0,8514	0,4257	0,59400	723,8
173	170_175	80		0,8314	0,4237	0,33400	723,6
180	185_180	32		0,3168	0,1584	1,43550	726,16
	175_180	460		4,554	2,277		
	181_180	100		0,99	0,495		
181	180_181	140		1,386	0,693	1,87110	726,16
	186_181	124		1,2276	0,6138		
	176_181	94		0,9306	0,4653		
	182_181	140		1,386	0,693		
182	181_182	30		0,297	0,1485	1,36620	725,43
	187_182	30		0,297	0,1485		
	177_182	52		0,5148	0,2574		
	183_182	100		0,99	0,495		
183	182_183	116		1,1484	0,5742	1,62360	725,8
	188_183	52		0,5148	0,2574		
	178_183	58		0,5742	0,2871		
	184_183	160		1,584	0,792		
184	183_184	48		0,4752	0,2376	1,38600	724,17
185	195_185	94		0,9306	0,4653	1,68300	726,36
	180_185	90		0,891	0,4455		
	124_185	52		0,5148	0,2574		
	186_185	90		0,891	0,4455		
186	 185_186	20		0,198	0,099	1,94040	724,69
	192 <u>_</u> 186	100		0,99	0,495		
	181_1861	48		0,4752	0,2376		
	187_186	48		0,4752	0,2376]	
187	186_187	140		1,386	0,693	0,96030	724,72
	 182_187	48		0,4752	0,2376]	•
1			1				
<u> </u>	188_187	100		0,99	0,495		

	183_188	314		3,1086	1,5543		
	191_188	94		0,9306	0,4653		
	189_188	82]	0,8118	0,4059		
189	188_189	40		0,396	0,198	1,38600	721,98
190	191_190	88		0,8712	0,4356	0,99000	719,49
191	190_191	76		0,7524	0,3762	2,26710	724,17
	194_191	100		0,99	0,495		
	188_191	70]	0,693	0,3465		
	192_191	100]	0,99	0,495		
192	191_192	100		0,99	0,495	1,77210	724,21
	186_192	70		0,693	0,3465		
	193_192	100		0,99	0,495		
193	192_193	80]	0,792	0,396	1,12860	725,88
	130_193	100		0,99	0,495		
	195_193	80		0,792	0,396		
194	191_194	100		0,99	0,495	1,38600	723,59
195	193_195	72		0,7128	0,3564	0,55440	725,92
	196_195	100]	0,99	0,495		
	185_195	100]	0,99	0,495		
196	195_196	72		0,7128	0,3564	1,06920	725,98
	125_196	100		0,99	0,495		
	131_196	80]	0,792	0,396		
197	129_197	50		0,495	0,2475	0,94050	726,49
	199_197	82		0,8118	0,4059		
	131_197	86		0,8514	0,4257	=	
198	131_198	28		0,2772	0,1386	1,25730	724,98
	199_198	112		1,1088	0,5544		
	125_198	140		1,386	0,693		
199	198_199	186	1	1,8414	0,9207	1,01970	726,36
	200_199	170]	1,683	0,8415		
	197_199	130		1,287	0,6435		
200	199_200	44]	0,4356	0,2178	1,02960	727,89
	201_200	90		0,891	0,4455		
	127_200	350		3,465	1,7325		
201	200_201	248		2,4552	1,2276	0,69300	728,54
	126_201	134]	1,3266	0,6633]	

VI.5.3. État du réseau après la simulation

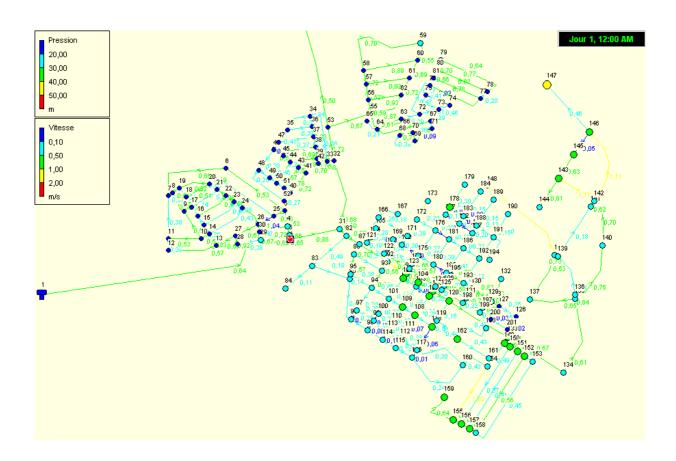


Figure (VI-4) : État du réseau après la simulation

VI-5-4- État des nœuds du réseau après la simulation

Tableau (VI-2): État des nœuds du réseau après simulation:

ID Nœud	Demande de base(LPS)	Pression(m)	ID Nœud	Demande de base(LPS)	Pression(m)
Nœud 2	0	24,25	Nœud 46	1,0593	12,38
Nœud 3	0,8415	23,64	Nœud 47	1,3464	12,46
Nœud 4	1,2771	21,97	Nœud 48	1,9503	11,5
Nœud 5	2,376	19,34	Nœud 49	1,089	12,7
Nœud 6	3,5244	14,62	Nœud 50	1,0757	12,59
Nœud 7	2,3859	10,58	Nœud 51	0,9504	14,27
Nœud 8	0,8118	10,9	Nœud 52	1,3068	13,5
Nœud 9	1,2474	12,13	Nœud 53	4,1283	18,06
Nœud 10	1,4256	14,42	Nœud 54	4,752	16,94
Nœud 11	1,2935	12,62	Nœud 55	3,2373	15,34
Nœud 12	1,3068	12,27	Nœud 56	1,4553	14,7
Nœud 13	2,0394	16,36	Nœud 57	1,7127	14,35
Nœud 14	1,6731	15,28	Nœud 58	3,7719	14,42
Nœud 15	1,881	14,24	Nœud 59	2,4453	21,25
Nœud 16	1,782	14,07	Nœud 60	2,0196	19,04
Nœud 17	1,6929	13,37	Nœud 61	1,8711	16,63
Nœud 18	1,6236	12	Nœud 62	2,1087	13,89
Nœud 19	1,4652	10,8	Nœud 63	1,9206	13,8
Nœud 20	3,4715	13,87	Nœud 64	1,4058	11,37
Nœud 21	1,1583	13,26	Nœud 65	0,4158	10,85
Nœud 22	1,2474	16,4	Nœud 66	1,3167	11,24
Nœud 23	1,3464	14,41	Nœud 67	0,792	12,22
Nœud 24	1,7523	16,75	Nœud 68	1,2474	10,48
Nœud 25	2,4552	19,23	Nœud 69	0,891	11,06
Noeud 26	1,4355	19,06	Nœud 70	0,9801	10,7
Nœud 27	1,1781	17,15	Nœud 71	0,6039	12,74
Nœud 28	0,6633	17,99	Nœud 72	1,9008	11,88
Nœud 29	1,4157	20,03	Noeud 73	1,3068	12,49
Nœud 30	1,1153	17,43	Noeud 74	0,9108	15,01
Nœud 31	3,0591	25,51	Nœud 75	1,3959	12,57
Nœud 32	2,3958	19,66	Nœud 76	2,8017	15,67
Nœud 33	2,0592	18,82	Nœud 77	2,7522	12,79
Nœud 34	2,5938	16,65	Nœud 78	3,1581	13,57
Nœud 35	1,5939	13,72	Nœud 79	1,8414	20,15
Nœud 36	1,0395	16,09	Nœud 80	1,6929	19,27
Nœud 37	1,2771	16,01	Nœud 81	1,5939	19,15
Nœud 38	1,3167	16,06	Nœud 82	1,6038	25,77
Nœud 39	0,8811	16,28	Nœud 83	2,9601	23,9
Nœud 40	1,0262	14,27	Nœud 84	0,9999	23,66
Nœud 41	1,1484	15,03	Nœud 85	1,9602	25,57
Nœud 42	0,693	16,32	Nœud 86	1,2276	26,81
Nœud 43	1,5246	14,19	Nœud 87	1,3959	27,05
Nœud 44	1,0494	13,66	Nœud 90	1,4355	30,86
Nœud 45	1,881	13,28	Nœud 92	1,4949	29,72

ID Nœud	Demande de base(LPS)	Pression(m)	ID Nœud	Demande de base(LPS)	Pression(m)
Nœud 93	1,1682	28,47	Nœud 148	2,277	18,66
Nœud 94	2,0196	27,65	Nœud 149	1,0098	35,11
Nœud 95	1,1682	26,06	Nœud 150	0,912	33,36
Nœud 96	1,5741	26,33	Nœud 156	2,4156	32,22
Nœud 97	1,2771	26,71	Nœud 157	2,4552	30,07
Nœud 98	1,0494	26,42	Nœud 158	4,5144	27,16
Nœud 99	1,2474	27,16	Nœud 159	1,9998	30,79
Nœud 100	1,0296	27,58	Nœud 160	3,6234	26,77
Nœud 101	1,8909	28,56	Nœud 161	0,8415	28,53
Nœud 102	1,1583	32,1	Nœud 162	2,4552	30,97
Nœud 103	1,6632	29,25	Nœud 163	0,9207	28,3
Nœud 104	1,2276	32,02	Nœud 164	0,9603	22,69
Nœud 105	1,8117	33,15	Nœud 165	1,0593	22,74
Nœud 107	1,287	33,7	Nœud 166	1,6236	23,77
Nœud 108	1,7622	31,15	Nœud 167	0,495	25,78
Nœud 109	1,7127	32,11	Nœud 168	1,6533	22,58
Nœud 110	1,7325	27,79	Nœud 169	0,9702	23,11
Nœud 111	1,3365	29,45	Nœud 170	1,188	23,08
Nœud 112	1,7721	28,83	Nœud 171	1,782	23,76
Nœud 113	1,7424	27,39	Nœud 172	1,4355	24,12
Nœud 114	1,2474	26,72	Nœud 173	0,495	21,2
Nœud 115	1,2969	25,81	Nœud 174	1,188	22,23
Nœud 116	2,3958	28,94	Nœud 175	1,7919	22,3
Nœud 117	2,5146	29,45	Nœud 176	1,98	23,18
Nœud 118	1,2078	30,92	Nœud 177	1,0395	24,07
Nœud 119	1,386	29,04	Nœud 178	1,188	32,53
Nœud 120	2,574	35,25	Nœud 179	0,594	24,11
Nœud 126	0,693	17,83	Nœud 180	1,4355	22,22
Nœud 127	0,9306	18,32	Nœud 181	1,8711	22,08
Nœud 128	0,8316	20,48	Nœud 182	1,3662	22,79
Nœud 129	0,8019	20,56	Nœud 183	1,6236	22,41
Nœud 130	0,99	23,32	Nœud 184	1,386	24,01
Nœud 131	1,5147	23,23	Nœud 185	1,683	22,03
Nœud 132	0,99	23,53	Nœud 186	1,9404	23,55
Nœud 133	3,2472	33,89	Nœud 187	0,9603	23,49
Nœud 134	3,366	28,31	Nœud 188	1,683	24,83
Nœud 135	1,9206	24,34	Nœud 189	1,386	26,18
Nœud 136	1,6236	25,01	Nœud 190	0,99	28,67
Nœud 137	2,3166	23,13	Nœud 191	2,2671	24,01
Nœud 138	3,6135	27,53	Nœud 192	1,7721	24
Nœud 139	2,4849	27,51	Nœud 193	1,1286	22,35
Nœud 140	0,99	23,78	Nœud 194	1,386	24,55
Nœud 141	1,9701	29,58	Nœud 195	0,5544	22,45
Nœud 142	2,4552	29,56	Nœud 196	1,0692	22,46
Nœud 143	2,3562	30,71	Nœud 197	0,9405	20,96
Nœud 144	1,584	28,1	Nœud 121	0,7029	21,63
Nœud 145	1,2474	30,16	Nœud 122	1,3959	22,02
Nœud 146	3,4551	30,2	Nœud 123	2,376	22,24

ID Nœud	Demande de base(LPS)	Pression(m)	ID Nœud	Demande de base(LPS)	Pression(m)
Nœud 147	1,4454	45,15	-	-	-

Remarque:

Les pressions dans la majorité des nœuds sont acceptables, elles varient entre 1et 4,5 bar.

VI.5 .5 État des Arcs du réseau après la simulation

Tableau (VI-3) : État des Arcs du réseau

ID Arc	Diamètre (mm)	Débit(LPS)	Vitesse (m/s)	Perte de charge unit (m/km)
Tuyau 1	800	321,41	0,64	0,35
Tuyau 2	300	45,89	0,65	1,16
Tuyau 3	160	12,53	0,62	2,27
Tuyau 4	110	6,4	0,67	4,11
Tuyau 5	160	14,56	0,72	2,97
Tuyau 6	250	32,52	0,66	1,48
Tuyau 7	200	16,68	0,53	1,29
Tuyau 8	110	7,84	0,83	5,93
Tuyau 9	40	0,05	0,04	0,08
Tuyau 10	250	19,85	0,4	0,61
Tuyau 11	125	8,23	0,67	3,49
Tuyau 12	160	11,1	0,55	1,82
Tuyau 13	110	7,93	0,83	6,01
Tuyau 14	75	1,61	0,36	2,2
Tuyau 15	75	0,71	0,16	0,52
Tuyau 16	25	0,07	0,14	1,48
Tuyau 17	50	1,5	0,76	13,61
Tuyau 18	25	0,13	0,26	5,02
Tuyau 23	25	0,26	0,52	16,4
Tuyau 24	25	0,25	0,51	16,07
Tuyau 25	50	1,35	0,69	11,33
Tuyau 26	110	3,26	0,34	1,23
Tuyau 27	63	3,07	0,98	16,1
Tuyau 28	50	1	0,51	6,65
Tuyau 29	110	5,32	0,56	2,95
Tuyau 30	50	0,98	0,5	6,37
Tuyau 31	160	7,64	0,38	0,93
Tuyau 32	50	0,84	0,43	4,9
Tuyau 33	160	10,24	0,51	1,57
Tuyau 34	50	1,12	0,57	8,1
Tuyau 35	25	0,19	0,38	9,37
Tuyau 36	63	1,66	0,53	5,39
Tuyau 37	75	2,41	0,54	4,5

Tuyau 38	50	1,16	0,59	8,59
Tuyau 39	50	0,73	0,37	3,82
Tuyau 40	25	0,19	0,38	9,44
Tuyau 41	75	2,93	0,66	6,41
Tuyau 42	125	6,46	0,53	2,26
Tuyau 43	125	5,33	0,43	1,6
Tuyau 44	630	275,52	0,88	0,85
Tuyau 45	400	85,69	0,68	0,9
Tuyau 46	200	26,86	0,86	3,14
Tuyau 47	200	21,4	0,68	2,03
Tuyau 48	160	19,32	0,96	4,97
Tuyau 49	50	1,38	0,7	11,76
Tuyau 50	50	1,18	0,6	8,89
Tuyau 51	50	1,42	0,72	12,27
Tuyau 52	75	1,18	0,27	1,28
Tuyau 53	25	0,12	0,25	4,72
Tuyau 54	40	0,37	0,29	3,26
Tuyau 55	32	0,18	0,22	2,7
Tuyau 56	25	0,21	0,44	12,12
Tuyau 57	50	0,79	0,4	4,38
Tuyau 58	50	1,53	0,78	14,06
Tuyau 59	75	2,28	0,52	4,08
Tuyau 60	50	1,11	0,57	7,99
Tuyau 61	25	0,12	0,24	4,2
Tuyau 62	50	0,9	0,46	5,5
Tuyau 63	90	3,9	0,61	4,44
Tuyau 64	90	2,44	0,38	1,92
Tuyau 65	90	0,4	0,06	0,08
Tuyau 66	110	6,57	0,69	4,31
Tuyau 67	110	6,51	0,69	4,24
Tuyau 68	160	11,93	0,59	2,07
Tuyau 69	110	4,04	0,43	1,81
Tuyau 70	75	2,63	0,6	5,29
Tuyau 71	25	0,12	0,24	4,17
Tuyau 72	25	0,13	0,27	5,27
Tuyau 73	50	0,81	0,41	4,58
Tuyau 74	75	1,71	0,39	2,45
Tuyau 75	50	0,7	0,35	3,48
Tuyau 76	110	3,4	0,36	1,33
Tuyau 77	315	56,43	0,72	1,34
Tuyau 78	110	4,75	0,5	2,45
Tuyau 79	300	47,55	0,67	1,22
Tuyau 80	50	1,7	0,87	17,03
Tuyau 81	50	1,41	0,72	12,16
Tuyau 82	50	1,35	0,69	11,28
Tuyau 83	50	1,07	0,55	7,49
Tuyau 84	50	1,37	0,7	11,6
Tuyau 85	110	6,89	0,72	4,69
Tuyau 86	160	10,41	0,52	1,62
Tuyau 87	160	13,68	0,68	2,66

Tuyau 88 50 1,82 0,93 19,19 Tuyau 89 50 1,81 0,92 19,11 Tuyau 90 50 1,74 0,89 17,77 Tuyau 91 250 28,93 0,59 1,19 Tuyau 92 250 19,35 0,39 0,58 Tuyau 93 110 2,82 0,3 0,59 1,19 Tuyau 94 50 0,89 0,46 5,43 Tuyau 95 25 0,02 0,03 0,12 Tuyau 95 25 0,02 0,03 0,12 Tuyau 96 50 0,8 0,41 4,4 Tuyau 97 200 14,64 0,47 1,02 Tuyau 98 160 9,52 0,47 1,38 Tuyau 99 110 6,31 0,66 4,01 Tuyau 100 75 3,1 0,7 7,08 Tuyau 101 50 1,26 0,64 9,94 Tuyau 102 50 0,38 0,2 1,23 Tuyau 103 50 1,52 0,78 13,97 Tuyau 104 50 1,51 0,82 15,48 Tuyau 105 50 1,52 1,38 Tuyau 106 50 1,52 0,77 13,87 Tuyau 107 110 7,65 0,81 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,51 3,48 Tuyau 107 110 5,83 0,51 3,48 Tuyau 110 50 1,37 0,7 1,54 Tuyau 110 50 1,37 0,7 1,54 Tuyau 107 110 7,65 0,81 3,48 Tuyau 108 50 0,42 0,21 1,42 Tuyau 110 50 1,37 0,7 1,54 Tuyau 110 50 1,37 0,7 1,54 Tuyau 107 110 7,65 0,81 3,48 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 50 1,37 0,7 1,54 Tuyau 101 50 0,58 0,29 2,5 Tuyau 110 50 1,37 0,7 1,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,36 3,57 Tuyau 116 75 3,15 0,71 7,26 Tuyau 117 630 186,78 0,6 0,49 1,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 120 200 15,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 124 500 17,55 0,38 0,99 0,24 Tuyau 125 100 17,55 0,38 0,99 0,24 Tuyau 126 200 17,57 0,57 1,45 Tuyau 131 60 7,56 0,38 0,99 0,24 Tuyau 131 60 7,56 0,38 0,99 0,24 Tuyau 131 60 7,56 0,38 0,99 0,24 Tuyau 132 200 10,55 0,34 0,57 1,45 Tuyau 134 160 5,31 0,08 0,09 0,09 0,71 Tuyau 135 200 22,04 0,7 2,14 Tuyau 131 60 0,14 0,08 0,09 0,09 0,09 0,09 0,09 0,09 0,09					
Tuyau 90 50 1,74 0,89 17,77 Tuyau 91 2550 28,93 0,59 1,19 Tuyau 92 250 19,35 0,39 0,58 Tuyau 93 110 2,82 0,3 0,95 Tuyau 94 50 0,89 0,46 5,43 Tuyau 95 25 0,02 0,03 0,12 Tuyau 97 200 14,64 0,47 1,02 Tuyau 98 160 9,52 0,47 1,38 Tuyau 99 110 6,31 0,66 4,01 Tuyau 100 75 3,1 0,7 7,08 Tuyau 101 50 1,26 0,64 9,94 Tuyau 102 50 0,38 0,2 1,23 Tuyau 103 50 1,52 0,78 13,97 Tuyau 104 50 1,61 0,82 15,48 Tuyau 105 50 1,52 1,73 Tuyau 106 50 1,61 0,82 15,48 Tuyau 107 110 7,65 0,81 5,83 Tuyau 108 50 0,42 0,21 1,42 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 101 50 1,37 0,7 11,54 Tuyau 102 50 0,38 0,2 1,52 Tuyau 105 50 1,52 0,77 13,87 Tuyau 106 50 0,62 0,31 2,82 Tuyau 107 110 7,65 0,81 3,68 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 110 50 1,37 0,7 11,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 0,36 3,57 Tuyau 117 630 186,78 0,69 0,79 0,71 Tuyau 118 160 9,8 0,49 1,45 Tuyau 129 110 1 1 0,11 0,15 Tuyau 131 63 0,88 0,99 0,24 Tuyau 141 15 0,98 0,98 0,49 1,45 Tuyau 121 150 0,58 0,29 0,57 1,45 Tuyau 131 60 0,58 0,09 0,09 0,71 Tuyau 141 25 0,19 0,38 9,4 Tuyau 142 200 1,77 0,57 1,45 Tuyau 143 160 9,8 0,49 1,45 Tuyau 144 55 0,19 0,38 0,49 1,45 Tuyau 145 150 1,75 0,77 1,727 Tuyau 148 160 9,8 0,49 1,45 Tuyau 129 110 1 1 0,11 0,15 Tuyau 121 150 0,58 0,29 0,09 0,24 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 12,92 0,7 2,12 Tuyau 124 500 17,53 0,89 1,14 Tuyau 129 200 4,45 0,14 0,82 Tuyau 130 60 0,60 0,61 Tuyau 131 60 0,75 0,98 1,14 Tuyau 132 200 1,55 0,34 0,57 Tuyau 133 60 0,26 0,49 1,49 Tuyau 134 60 0,89 Tuyau 135 60 0,60 0,60 0,60 0,60 0,60 0,60 0,60	Tuyau 88	50	1,82	0,93	19,19
Tuyau 91 250 28,93 0,59 1,19 Tuyau 92 250 19,35 0,39 0,58 Tuyau 93 110 2,82 0,3 0,95 Tuyau 94 50 0,89 0,46 5,43 Tuyau 95 25 0,02 0,03 0,12 Tuyau 96 50 0,8 0,41 4,4 Tuyau 97 200 14,64 0,47 1,02 Tuyau 98 160 9,52 0,47 1,38 Tuyau 99 110 6,31 0,66 4,01 Tuyau 100 75 3,1 0,7 7,08 Tuyau 101 50 1,26 0,64 9,94 Tuyau 102 50 0,38 0,2 1,23 Tuyau 104 50 1,61 0,82 15,48 Tuyau 105 50 1,52 0,77 13,87 Tuyau 106 50 0,62 0,31 2,82 Tuyau 107 110 7,65 0,81 5,68 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 109 110 5,83 0,61 3,48 Tuyau 109 110 7,65 0,81 5,68 Tuyau 109 110 7,65 0,81 5,68 Tuyau 109 110 5,83 0,61 3,48 Tuyau 109 110 5,83 0,61 3,48 Tuyau 110 50 1,37 0,7 11,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 7,26 Tuyau 114 25 0,19 0,38 0,49 1,45 Tuyau 115 50 1,71 0,36 3,57 Tuyau 116 75 3,15 0,71 7,26 Tuyau 117 630 186,78 0,6 0,49 1,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,15 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 0,49 1,45 Tuyau 115 50 1,71 0,36 3,57 Tuyau 116 75 3,15 0,71 7,26 Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,15 Tuyau 119 110 1 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,66 0,45 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 17,57 0,57 1,45 Tuyau 124 500 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,99 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 6,09 0,24 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 60 0,29 0,24 Tuyau 134 160 5,51 0,29 0,09 0,24 Tuyau 135 60 0,29 0,20 0,20 0,20 0,20 0,20 0,20 0,2	Tuyau 89	50	1,81	0,92	19,11
Tuyau 92 250 19,35 0,39 0,58 Tuyau 93 110 2,82 0,3 0,95 Tuyau 94 50 0,89 0,46 5,43 Tuyau 95 25 0,02 0,03 0,12 Tuyau 96 50 0,8 0,41 4,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	Tuyau 90	50	1,74	0,89	17,77
Tuyau 93 110 2,82 0,3 0,95 Tuyau 94 50 0,89 0,46 5,43 Tuyau 95 25 0,02 0,03 0,12 Tuyau 96 50 0,8 0,8 0,41 4,4 Tuyau 97 200 14,64 0,47 1,02 Tuyau 98 160 9,52 0,47 1,38 Tuyau 99 110 6,31 0,66 4,01 Tuyau 100 75 3,1 0,7 7,08 Tuyau 101 50 1,26 0,64 9,94 Tuyau 102 50 0,38 0,2 1,23 Tuyau 103 50 1,52 0,78 13,97 Tuyau 104 50 1,61 0,82 15,48 Tuyau 105 50 1,52 0,77 13,87 Tuyau 106 50 0,62 0,31 2,28 Tuyau 107 110 7,65 0,81 5,68 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 109 110 5,83 0,61 3,48 Tuyau 110 50 1,37 0,7 11,54 Tuyau 110 50 1,37 0,7 11,54 Tuyau 110 50 1,37 0,7 11,54 Tuyau 110 50 1,38 0,61 3,48 Tuyau 110 50 1,58 0,42 0,21 1,42 Tuyau 110 50 1,58 0,42 0,21 1,42 Tuyau 110 50 1,58 0,42 0,21 1,42 Tuyau 110 50 1,37 0,7 11,54 Tuyau 110 50 1,38 0,61 3,48 Tuyau 110 50 1,37 0,7 11,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,77 Tuyau 117 630 186,78 0,6 0,49 Tuyau 118 160 9,8 0,49 1,45 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 1,90 1,77 0,57 1,45 Tuyau 123 200 17,77 0,57 1,45 Tuyau 124 500 17,52 0,38 0,99 1,14 Tuyau 125 1,90 1,77 0,57 1,45 Tuyau 127 1,90 1,92 0,09 0,20 Tuyau 128 1,60 7,56 0,38 0,99 1,14 Tuyau 129 200 17,77 0,57 1,45 Tuyau 120 1,92 0,09 0,09 0,77 Tuyau 121 1,90 1,92 0,09 0,20 Tuyau 122 1,90 1,70 0,57 1,45 Tuyau 123 200 17,52 0,56 1,42 Tuyau 124 500 17,52 0,56 1,42 Tuyau 127 1,94 1,94 1,94 1,94 1,94 1,94 1,94 1,94	Tuyau 91	250	28,93	0,59	1,19
Tuyau 93 1110 2,82 0,3 0,95 Tuyau 94 50 0,89 0,46 5,43 Tuyau 95 25 0,02 0,03 0,12 Tuyau 96 50 0,8 0,8 0,41 4,4 Tuyau 97 200 14,64 0,47 1,02 Tuyau 98 160 9,52 0,47 1,38 Tuyau 100 75 3,1 0,7 7,08 Tuyau 101 50 1,26 0,64 9,94 Tuyau 102 50 0,38 0,2 1,23 Tuyau 103 50 1,52 0,78 13,97 Tuyau 104 50 1,61 0,82 15,48 Tuyau 105 50 1,52 0,77 13,87 Tuyau 106 50 0,62 0,31 2,28 Tuyau 107 110 7,65 0,81 5,68 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 107 110 7,65 0,81 5,68 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 110 50 1,37 0,7 11,54 Tuyau 110 50 1,37 0,7 11,54 Tuyau 110 50 1,37 0,7 11,54 Tuyau 110 50 1,38 0,61 3,48 Tuyau 110 50 1,39 0,99 0,71 Tuyau 110 50 1,37 0,7 11,54 Tuyau 110 50 1,38 0,61 3,48 Tuyau 110 50 1,37 0,7 11,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,77 Tuyau 117 10 10 1,77 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,15 Tuyau 120 1,45 Tuyau 121 1,50 4,58 0,26 0,51 Tuyau 121 1,50 4,58 0,26 0,51 Tuyau 122 1,50 0,79 0,77 1,45 Tuyau 123 1,50 0,71 7,77 Tuyau 124 500 1,77 0,57 1,45 Tuyau 125 1,00 1,77 0,57 1,45 Tuyau 127 1,00 1,55 0,38 0,99 1,14 Tuyau 128 1,60 7,56 0,38 0,99 1,14 Tuyau 129 1,00 1,75 0,57 1,45 Tuyau 120 1,77 0,57 1,45 Tuyau 121 1,50 1,50 0,58 0,29 1,14 Tuyau 122 200 1,777 0,57 1,45 Tuyau 123 200 1,75,37 0,89 1,14 Tuyau 124 500 1,75,50 0,38 0,99 1,14 Tuyau 127 1,720 1,928 0,61 1,48 Tuyau 128 1,60 7,56 0,38 0,99 1,14 Tuyau 129 200 4,45 0,44 0,17 Tuyau 130 200 1,291 0,41 0,82 Tuyau 131 60 5,31 0,26 0,49 Tuyau 132 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	Tuyau 92	250	19,35	0,39	0,58
Tuyau 94 50 0,89 0,46 5,43 Tuyau 95 25 0,02 0,03 0,12 Tuyau 96 50 0,8 0,41 4,4 Tuyau 97 200 114,64 0,47 1,02 Tuyau 98 160 9,52 0,47 1,38 Tuyau 99 110 6,31 0,66 4,01 Tuyau 100 75 3,1 0,7 7,08 Tuyau 101 50 1,26 0,64 9,94 Tuyau 102 50 0,38 0,2 1,23 Tuyau 103 50 1,52 0,78 13,97 Tuyau 104 50 1,52 0,77 13,87 Tuyau 105 50 1,52 0,77 13,87 Tuyau 106 50 0,62 0,31 2,82 Tuyau 107 110 7,65 0,81 5,68 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 109 110 5,83 0,61 3,48 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,27 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,42 0,11 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,58 0,58 0,29 2,5 Tuyau 110 50 1,37 0,7 11,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,58 0,29 2,5 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 120 200 1,77 0,57 1,45 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 150 4,58 0,26 0,51 Tuyau 123 200 17,77 0,57 1,45 Tuyau 124 500 175,37 0,89 1,14 Tuyau 125 1,92 0,7 2,12 Tuyau 126 200 1,77 0,57 1,45 Tuyau 127 200 1,92 0,7 2,12 Tuyau 128 160 7,56 0,38 0,99 Tuyau 129 100 17,77 0,57 1,45 Tuyau 120 200 1,777 0,57 1,45 Tuyau 120 1,50 0,58 0,09 0,24 Tuyau 120 1,55 0,34 0,57 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,38 0,99 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 139 1,60 1,91 Tuyau 140 160 6 0,3 0,61	Tuyau 93	110		0,3	0,95
Tuyau 95					
Tuyau 97 200 14,64 0,47 1,02 Tuyau 98 160 9,52 0,47 1,38 Tuyau 99 110 6,31 0,66 4,01 Tuyau 99 110 6,31 0,66 4,01 Tuyau 100 75 3,1 0,7 7,08 Tuyau 101 50 1,26 0,64 9,94 Tuyau 102 50 0,38 0,2 1,23 Tuyau 103 50 1,52 0,78 13,97 Tuyau 104 50 1,61 0,82 15,48 Tuyau 105 50 1,52 0,77 13,87 Tuyau 106 50 0,62 0,31 2,82 Tuyau 107 110 7,65 0,81 5,68 Tuyau 107 110 7,65 0,81 5,68 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 109 110 5,83 0,61 3,48 Tuyau 111 50 0,58 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,36 3,57 Tuyau 116 7,65 0,81 7,7 0,7 11,54 Tuyau 117 630 18,67 0,07 17,1 7,27 Tuyau 118 160 9,8 0,29 1,45 Tuyau 119 10 1,45 Tuyau 119 1,46 Tuyau 119 1,47 0,7 1,47 1,48 1,48 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,49	-	25			
Tuyau 97 200 14,64 0,47 1,02 Tuyau 98 160 9,52 0,47 1,38 Tuyau 99 110 6,31 0,66 4,01 Tuyau 100 75 3,1 0,7 7,08 Tuyau 101 50 1,26 0,64 9,94 Tuyau 102 50 0,38 0,2 1,23 Tuyau 103 50 1,52 0,78 13,97 Tuyau 104 50 1,61 0,82 15,48 Tuyau 105 50 0,62 0,31 2,82 Tuyau 106 50 0,62 0,31 2,82 Tuyau 107 110 7,65 0,81 5,68 Tuyau 107 110 7,65 0,81 5,68 Tuyau 109 110 5,83 0,61 3,48 Tuyau 110 50 1,37 0,7 11,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 75 3,15 0,71 7,27 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,11 0,15 Tuyau 120 200 17,77 0,57 1,45 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 100 17,77 0,57 1,45 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 100 17,52 0,56 1,42 Tuyau 123 200 12,92 0,7 2,12 Tuyau 124 500 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,69 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 120 Tuyau 121 150 4,58 0,26 0,51 Tuyau 121 Tuyau 122 100 17,57 0,57 1,45 Tuyau 123 200 12,92 0,7 2,12 Tuyau 124 500 17,52 0,56 1,42 Tuyau 127 129 100 10,55 0,38 0,99 Tuyau 139 160 13,04 1,06 1,98 Tuyau 130 0,061		50			
Tuyau 199	Tuyau 97	200	14,64	0,47	1,02
Tuyau 199		160	9,52	0,47	1,38
Tuyau 101 50 1,26 0,64 9,94 Tuyau 102 50 0,38 0,2 1,23 Tuyau 103 50 1,52 0,78 13,97 Tuyau 104 50 1,61 0,82 15,48 Tuyau 105 50 1,52 0,77 13,87 Tuyau 106 50 0,62 0,31 2,82 Tuyau 107 110 7,65 0,81 5,68 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 109 110 5,83 0,61 3,48 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,43 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,11 Tuyau 120 200 5,84 0,19 0,2 Tuyau 119 110 1 0,11 0,15 Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 19,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 150 4,58 0,26 0,51 Tuyau 124 500 17,77 0,57 1,45 Tuyau 127 17,20 17,57 0,57 1,45 Tuyau 128 160 7,56 0,38 0,69 1,14 Tuyau 129 200 17,77 0,57 1,45 Tuyau 120 200 19,28 0,61 1,68 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 124 500 175,37 0,89 1,14 Tuyau 125 200 19,28 0,61 1,68 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 129 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 131 63 0,28 0,09 0,24 Tuyau 131 60 5,31 0,26 0,49 Tuyau 132 140 160 5 0,3 0,61	Tuyau 99	110	6,31	0,66	4,01
Tuyau 101 50 1,26 0,64 9,94 Tuyau 102 50 0,38 0,2 1,23 Tuyau 103 50 1,52 0,78 13,97 Tuyau 104 50 1,61 0,82 15,48 Tuyau 105 50 1,52 0,77 13,87 Tuyau 106 50 0,62 0,31 2,82 Tuyau 107 110 7,65 0,81 5,68 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 110 50 1,37 0,7 11,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 111 50 0,58 0,71 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,43 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 119 110 1 0,11 0,15 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 150 4,58 0,26 0,51 Tuyau 124 500 17,77 0,57 1,45 Tuyau 125 1,92 0,7 2,12 Tuyau 127 1,93 0,94 0,99 1,14 Tuyau 128 160 7,56 0,38 0,29 Tuyau 129 200 1,7,77 0,57 1,45 Tuyau 129 200 1,7,50 0,99 1,14 Tuyau 129 200 1,7,50 0,99 1,14 Tuyau 129 200 1,7,50 0,99 0,24 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 1,2,91 0,41 0,12 Tuyau 133 200 1,2,91 0,41 0,12 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 135 200 1,2,91 0,41 0,15 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 6 0,3 0,61		75			
Tuyau 103		50		0,64	9,94
Tuyau 104 50 1,61 0,82 15,48 Tuyau 105 50 1,52 0,77 13,87 Tuyau 106 50 0,62 0,31 2,82 Tuyau 107 110 7,65 0,81 5,68 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 110 50 1,37 0,7 11,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,45 Tuyau 119 110 1 0,11 0,15 Tuyau 119 110 1 1 0,11 0,15 Tuyau 119 110 1 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 150 4,58 0,26 0,51 Tuyau 123 200 17,77 0,57 1,45 Tuyau 124 500 175,37 0,89 1,14 Tuyau 128 160 7,56 0,38 0,29 1,14 Tuyau 129 100 17,77 0,57 1,45 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,66 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 128 160 7,56 0,38 0,92 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 128 160 7,56 0,38 0,99 Tuyau 129 200 12,91 0,41 0,82 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 12,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 102	50	0,38	0,2	1,23
Tuyau 105 50 1,52 0,77 13,87 Tuyau 106 50 0,62 0,31 2,82 Tuyau 107 110 7,65 0,81 5,68 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 110 50 1,37 0,7 11,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,93 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,49 1,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 1,7,77 0,57 1,45 Tuyau 124 500 17,52 0,56 1,42 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,26 Tuyau 129 200 1,7,77 0,57 1,45 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 1,7,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 17,537 0,89 1,14 Tuyau 126 200 1,7,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,99 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 133 200 14,28 0,09 0,24 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 14,28 0,09 0,24 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 103	50	1,52	0,78	13,97
Tuyau 105 50 1,52 0,77 13,87 Tuyau 106 50 0,62 0,31 2,82 Tuyau 107 110 7,65 0,81 5,68 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 110 50 1,37 0,7 11,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,93 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,49 1,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 0,2 1,45 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 1,7,77 0,57 1,45 Tuyau 124 500 17,77 0,57 1,45 Tuyau 124 500 17,52 0,56 1,42 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,26 0,51 Tuyau 129 200 17,52 0,56 1,42 Tuyau 129 120 200 17,52 0,56 1,42 Tuyau 129 200 14,45 Tuyau 120 200 17,52 0,56 1,42 Tuyau 120 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,19 0,41 0,82 Tuyau 129 200 12,91 0,41 0,82 Tuyau 129 200 14,28 0,09 0,24 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 136 160 6 0,3 0,61	-	50	·		
Tuyau 106 50 0,62 0,31 2,82 Tuyau 107 110 7,65 0,81 5,68 Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 1110 5,83 0,61 3,48 Tuyau 110 50 1,37 0,7 11,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,92 1,71 0,87 17,26 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 150 4,58 0,26 0,51 Tuyau 123 200 17,77 0,57 1,45 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 175,37 0,89 1,14 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,31 Tuyau 129 170 170,27 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 150 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 129 200 4,45 0,14 0,12 Tuyau 129 200 4,45 0,14 0,12 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61				·	· ·
Tuyau 107					1
Tuyau 108 50 0,42 0,21 1,42 Tuyau 109 110 5,83 0,61 3,48 Tuyau 111 50 1,37 0,7 11,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 155 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 175,37 0,89 1,14 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 120 200 19,28 0,61 1,68 Tuyau 121 150 4,58 0,66 1,42 Tuyau 122 100 17,52 0,56 1,42 Tuyau 124 500 175,37 0,89 1,14 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 139 160 3,11 0,15 0,19 Tuyau 139 160 3,11 0,15 0,19	Tuyau 107	110	7,65	0,81	5,68
Tuyau 110 50 1,37 0,7 11,54 Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 129 200 4,45 0,14 0,12 Tuyau 129 200 12,91 0,41 0,82 Tuyau 129 200 12,91 0,41 0,82 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 12,91 0,41 0,82 Tuyau 133 200 14,28 0,61 1,68 Tuyau 134 160 5,31 0,26 0,98 Tuyau 135 200 12,91 0,41 0,82 Tuyau 138 160 5,31 0,26 0,49 Tuyau 139 160 3,11 0,15 0,19		50	0,42	0,21	1,42
Tuyau 111 50 0,58 0,29 2,5 Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 120 200 5,84 0,19 0,2 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 125 200 17,52 0,56 1,42 Tuyau 127 200 <td>Tuyau 109</td> <td>110</td> <td>5,83</td> <td>0,61</td> <td>3,48</td>	Tuyau 109	110	5,83	0,61	3,48
Tuyau 112 20 0,03 0,09 0,71 Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 </td <td>Tuyau 110</td> <td>50</td> <td>1,37</td> <td>0,7</td> <td>11,54</td>	Tuyau 110	50	1,37	0,7	11,54
Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 130 200<	Tuyau 111	50	0,58	0,29	2,5
Tuyau 113 50 0,71 0,36 3,57 Tuyau 114 25 0,19 0,38 9,4 Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 130 200<		20		0,09	
Tuyau 115 50 1,71 0,87 17,26 Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131	Tuyau 113	50	0,71	0,36	3,57
Tuyau 116 75 3,15 0,71 7,27 Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 123 200 17,52 0,56 1,42 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 <td< td=""><td>Tuyau 114</td><td>25</td><td>0,19</td><td>0,38</td><td>9,4</td></td<>	Tuyau 114	25	0,19	0,38	9,4
Tuyau 117 630 186,78 0,6 0,45 Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 <td< td=""><td>Tuyau 115</td><td>50</td><td>1,71</td><td>0,87</td><td>17,26</td></td<>	Tuyau 115	50	1,71	0,87	17,26
Tuyau 118 160 9,8 0,49 1,45 Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 <td< td=""><td>Tuyau 116</td><td>75</td><td>3,15</td><td>0,71</td><td>7,27</td></td<>	Tuyau 116	75	3,15	0,71	7,27
Tuyau 119 110 1 0,11 0,15 Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 136 <t< td=""><td>Tuyau 117</td><td>630</td><td>186,78</td><td>0,6</td><td>0,45</td></t<>	Tuyau 117	630	186,78	0,6	0,45
Tuyau 120 200 5,84 0,19 0,2 Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136	Tuyau 118	160	9,8	0,49	1,45
Tuyau 121 150 4,58 0,26 0,51 Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139	Tuyau 119	110	1	0,11	0,15
Tuyau 122 200 17,77 0,57 1,45 Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140	Tuyau 120	200	5,84	0,19	0,2
Tuyau 123 200 21,92 0,7 2,12 Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 121	150	4,58	0,26	0,51
Tuyau 124 500 175,37 0,89 1,14 Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 122	200	17,77	0,57	1,45
Tuyau 126 200 17,52 0,56 1,42 Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 123	200	21,92	0,7	2,12
Tuyau 127 200 19,28 0,61 1,68 Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 124	500	175,37	0,89	1,14
Tuyau 128 160 7,56 0,38 0,92 Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 126	200	17,52	0,56	1,42
Tuyau 129 200 4,45 0,14 0,12 Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 127	200	19,28	0,61	1,68
Tuyau 130 200 12,91 0,41 0,82 Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 128	160	7,56	0,38	0,92
Tuyau 131 63 0,28 0,09 0,24 Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 129	200	4,45	0,14	0,12
Tuyau 132 200 10,55 0,34 0,57 Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 130	200	12,91	0,41	0,82
Tuyau 133 200 14,28 0,45 0,98 Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 131	63	0,28	0,09	0,24
Tuyau 134 160 5,31 0,26 0,49 Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 132	200	10,55	0,34	0,57
Tuyau 135 200 22,04 0,7 2,14 Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61		200		·	0,98
Tuyau 136 400 133,04 1,06 1,98 Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61	Tuyau 134	160	5,31		0,49
Tuyau 139 160 3,11 0,15 0,19 Tuyau 140 160 6 0,3 0,61		200		· ·	
Tuyau 140 160 6 0,3 0,61		400	133,04		
	•	160	·		0,19
Tuyau 141 110 0,74 0,08 0,09				· ·	·
	Tuyau 141	110	0,74	0,08	0,09

Tuyau 142	160	6,93	0,34	0,78
Tuyau 143	160	5,56	0,28	0,53
Tuyau 146	160	13,25	0,66	2,51
Tuyau 147	160	1,99	0,1	0,09
Tuyau 148	160	5,21	0,26	0,47
Tuyau 149	160	6,02	0,3	0,61
Tuyau 150	160	3,57	0,18	0,24
Tuyau 151	160	5,69	0,28	0,55
Tuyau 152	50	0,5	0,25	1,92
Tuyau 153	160	7,81	0,39	0,97
Tuyau 154	25	0,5	1,01	53,01
Tuyau 155	160	5,88	0,29	0,58
Tuyau 156	50	0,44	0,22	1,56
Tuyau 157	160	9,02	0,45	1,25
Tuyau 158	160	7,76	0,39	0,96
Tuyau 159	75	0,41	0,09	0,21
Tuyau 160	160	3,92	0,2	0,28
Tuyau 161	75	0,42	0,09	0,21
Tuyau 162	160	4,01	0,2	0,3
Tuyau 163	160	2,43	0,12	0,12
Tuyau 164	90	0,68	0,11	0,21
Tuyau 165	160	2,46	0,12	0,13
Tuyau 166	50	0,59	0,3	2,64
Tuyau 167	110	1,39	0,15	0,27
Tuyau 168	110	1,39	0,15	0,27
Tuyau 169	40	0,1	0,08	0,27
Tuyau 170	160	4,08	0,2	0,31
Tuyau 171	90	0,63	0,1	0,18
Tuyau 172	160	4,41	0,22	0,35
Tuyau 173	160	2,29	0,11	0,11
Tuyau 174	160	8,22	0,41	1,06
Tuyau 175	63	0,17	0,05	0,1
Tuyau 178	315	61,69	0,79	1,55
Tuyau 179	315	63,68	0,82	1,64
Tuyau 180	200	15,57	0,5	1,14
Tuyau 181	110	0,77	0,08	0,09
Tuyau 182	200	9,41	0,3	0,46
Tuyau 183	160	6,73	0,33	0,74
Tuyau 184	110	2,93	0,31	1,02
Tuyau 185	110	1,11	0,12	0,18
Tuyau 189	110	0,99	0,1	0,15
Tuyau 190	110	1,39	0,15	0,27
Tuyau 191	160	3,53	0,18	0,24
Tuyau 192	160	4,16	0,21	0,32
Tuyau 193	110	1,15	0,12	0,2
Tuyau 194	110	6,66	0,7	4,42
Tuyau 195	160	6,01	0,3	0,61
Tuyau 196	75	1,21	0,27	1,33
Tuyau 199	75	1,82	0,41	2,73
Tuyau 200	63	0,2	0,06	0,14
Tuyau 201	110	4,39	0,46	2,09
,		-,	-,	=,

Tuyau 206	50	1,07	0,54	7,44
Tuyau 207	50	0,67	0,34	3,29
Tuyau 208	75	3,6	0,82	9,27
Tuyau 209	75	3,47	0,79	8,68
Tuyau 210	50	0,99	0,5	6,49
Tuyau 211	50	1,65	0,84	16,14
Tuyau 216	50	0,7	0,36	3,55
Tuyau 217	250	48,24	0,98	3,03
Tuyau 218	315	50,52	0,65	1,08
Tuyau 219	200	9,55	0,3	0,48
Tuyau 220	20	0,01	0,02	0
Tuyau 221	200	7,97	0,25	0,34
Tuyau 222	200	9,73	0,31	0,49
Tuyau 223	200	5,27	0,17	0,17
Tuyau 224	200	8,35	0,27	0,37
Tuyau 225	125	1,39	0,11	0,15
Tuyau 226	125	0,82	0,07	0,06
Tuyau 227	200	6,63	0,21	0,25
Tuyau 228	200	4,93	0,16	0,15
Tuyau 229	200	6,97	0,22	0,27
Tuyau 230	200	-0,03	0,11	0
Tuyau 231	200	8,35	0,27	0,37
Tuyau 232	200	3,54	0,11	0,08
Tuyau 233	200	8,98	0,29	0,42
Tuyau 234	200	6,11	0,19	0,21
Tuyau 235	125	1,47	0,12	0,17
Tuyau 236	200	9,85	0,31	0,5
Tuyau 237	125	1,17	0,1	0,11
Tuyau 238	200	9,93	0,32	0,51
Tuyau 239	200	0,08	0,12	0
Tuyau 240	200	11,06	0,35	0,62
Tuyau 241	160	7,17	0,36	0,83
Tuyau 242	200	5,89	0,19	0,2
Tuyau 243	50	0,29	0,15	0,74
Tuyau 244	110	4,22	0,44	1,95
Tuyau 245	50	0,92	0,47	5,71
Tuyau 246	50	0,84	0,43	4,87
Tuyau 247	40	0,07	0,06	0,12
Tuyau 248	20	0	0,01	0,07
Tuyau 249	200	10,03	0,32	0,52
Tuyau 250	200	7,63	0,24	0,32
Tuyau 251	200	9,4	0,3	0,46
Tuyau 252	200	13,41	0,43	0,87
Tuyau 253	110	9,72	1,02	8,76
Tuyau 254	63	2	0,64	7,48
Tuyau 255	110	5,2	0,55	2,83
Tuyau 256	75	3,52	0,8	8,88
Tuyau 257	50	1,87	0,95	20,16
Tuyau 258	50	0,89	0,45	5,32
Tuyau 259	110	3,34	0,35	1,28
Tuyau 260	110	7,24	0,76	5,14
<u> </u>		·	· · · · · · · · · · · · · · · · · · ·	·

Tuyau 261	160	10,19	0,51	1,56
Tuyau 262	160	11,83	0,59	2,04
Tuyau 263	50	0,96	0,49	6,13
Tuyau 264	50	0,73	0,37	3,81
Tuyau 265	50	0,81	0,41	4,52
Tuyau 266	63	1,76	0,56	5,96
Tuyau 267	250	33,11	0,67	1,53
Tuyau 268	250	29,74	0,61	1,26
Tuyau 269	200	26,54	0,84	3,01
Tuyau 270	50	1,28	0,65	10,2
Tuyau 271	50	1,04	0,53	7,08
Tuyau 272	110	6,93	0,73	4,75
Tuyau 273	160	9,77	0,49	1,45
Tuyau 274	160	15,15	0,75	3,19
Tuyau 275	160	14,16	0,7	2,82
Tuyau 276	50	0,36	0,18	1,09
Tuyau 277	160	12,54	0,62	2,27
Tuyau 278	75	4,92	1,11	16,26
Tuyau 279	20	0,02	0,05	0,33
Tuyau 280	50	1,23	0,63	9,58
Tuyau 281	75	5,17	1,17	17,84
Tuyau 282	50	1,58	0,81	14,99
Tuyau 283	63	1,45	0,46	4,19
Tuyau 19	125	4,71	0,38	1,28
Tuyau 20	75	4,05	0,92	11,44
Tuyau 21	50	1,08	0,55	7,59
Tuyau 22	110	5,5	0,58	3,13
Tuyau 186	200	11,84	0,38	0,7
Tuyau 187	160	11,88	0,59	2,06
Tuyau 188	50	2,28	1,16	28,81
Tuyau 198	160	16,08	0,8	3,56
Tuyau 203	500	152,06	0,77	0,86
Tuyau 204	160	6,14	0,31	0,63
Tuyau 205	160	4,55	0,23	0,37
Tuyau 212	160	3,85	0,19	0,27
Tuyau 213	160	12,09	0,6	2,12
Tuyau 214	160	19,99	0,99	5,29
Tuyau 215	300	45,89	0,65	1,14
Tuyau 284	160	11,43	0,57	1,92
Tuyau 285	25	0,01	0,02	0,09
Tuyau 286	50	0,68	0,35	3,37
Tuyau 287	25	0,02	0,03	0,16
Tuyau 288	50	1,7	0,86	16,94
Tuyau 289	75	0,54	0,12	0,33
Tuyau 290	75	3,26	0,74	7,75
Tuyau 291	75	0,97	0,22	0,9
Tuyau 292	110	5,49	0,58	3,12
Tuyau 293	110	4,1	0,43	1,85
Tuyau 294	160	10,54	0,52	1,66

Remarque

• On a utilisé dans notre simulation des diamètres allons de 20 à 630mm en PEHD (PN10), et pour le premier tronçon on a adopté un diamètre de 800mm en fente pour diminuer les pertes de charge.

• La majorité des vitesses dans les tuyaux sont comprises entre 0,5 et 1,5 m/s, pour les vitesses inférieures à 0,5 c'est à cause des faibles débits.

VI.6.Conclusion

Après la simulation, on constate que notre réseau de la distribution fonctionne d'une façon normale telle que les pressions de services sont assurées au niveau des nœuds, ce qui permet l'arrivée de l'eau au niveau des minages.

VII.1. Introduction

L'automatisation des installations d'un service d'eau est devenue une nécessité vue ses multiples avantages que l'on peut citer comme suit :

- ➤ Pour que les opérations s'effectuent en minimum du temps pour réussir un rendement plus apprécie
- L'automatisation c'est la traduction d'un signal reçu en un appareil de façon a effectuer des manœuvres suivant une programmation établie d'avance.

VII.2. Les différentes opérations qu'il faut automatiser

Les opérations qu'il faut automatisés sont :

- L'arrêt de pompage.
 - Quand le réservoir est plein.
 - Lorsque le niveau du plan d'aspiration s'abaisse.
- La reprise du pompage.

L'utilisation d'une commande automatique est devenue inévitable pour assurer un bon déroulement des différentes manœuvres, on examinera les modes de réalisation des liaisons aspiration -moteur et moteur-réservoir.

VII.2.1.Liaison aspiration -moteur

Elle peut être réalisée par l'installation dans la bâche d'aspiration ou dans le forage avec un flotteur en liaison avec un interrupteur, lui-même raccordé au contacteur de protection du moteur.

Le dispositif doit être réglé afin d'éviter à la pompe toute marche à vide.

VII.2.2. Liaison moteur -réservoir

Le but de cette liaison est de commander l'arrêt de pompage une fois que le réservoir est plein et son redémarrage dès que le niveau dans le réservoir atteint une certaine valeur minimale.

Cette liaison peut-être effectuée avec ou sans ligne pilote.

VII.2.3.Commande par ligne pilote

Utilisée généralement pour une adduction courte, elle est constituée d'un interrupteur à flotteur disposé à la partie supérieure du réservoir.

Il est relié au contacteur du moteur par un câble électrique enterré, il enclenche le moteur lors du niveau d'eau minimal et la déclenche pour un niveau d'eau maximal.

Cette commande est la plus recommandée pour les installations de petites importances, et surtout pour les adductions courtes.

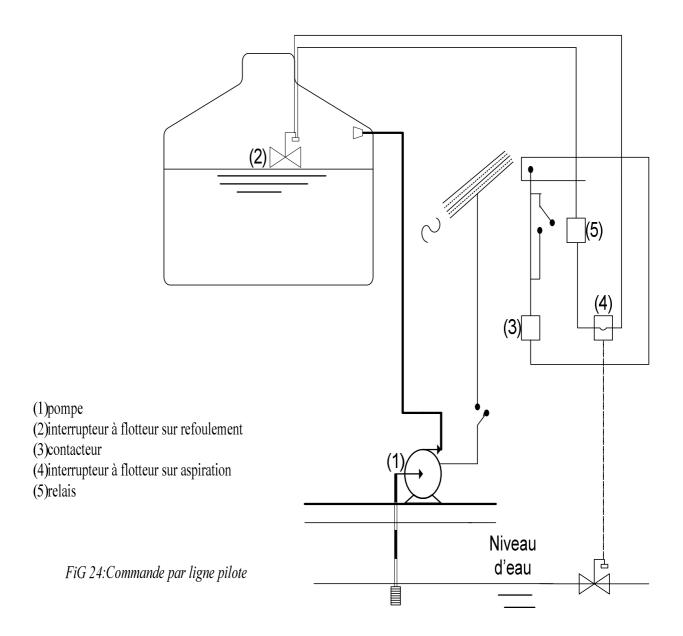


Figure (VII.1): commande par ligne pilote

VII.2.4.Commande sans ligne pilote

On l'envisage quand la distance entre la station de pompage et le réservoir est importante. Comme c'est le cas dans notre d'étude.

Le principe consiste à disposer un robinet flotteur au réservoir qui fermera l'extrémité aval de la conduite de refoulement dès que le réservoir sera plein.

L'écoulement est arrêté mais la pompe continue de fonctionner, pour cela on prévoit à la station un système d'arête du moteur.

On y installe alors un manostat différentiel en relation avec le diaphragme situe à l'aval de la pompe sur le refoulement.

Le manostat déclenchera le moteur dès que le niveau tombe au dessous d'une valeur minimale.

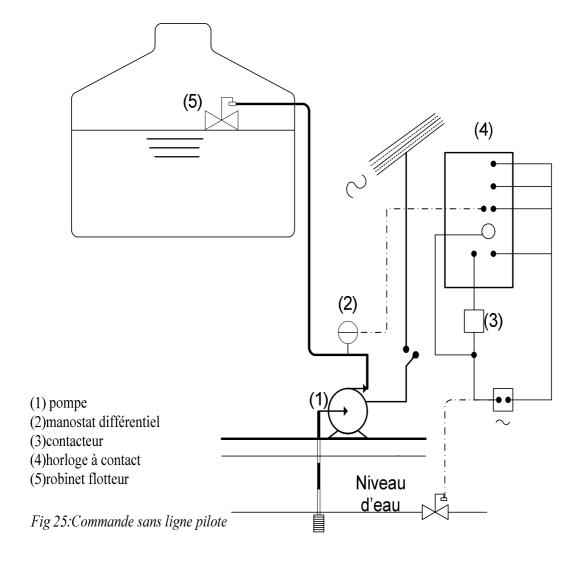
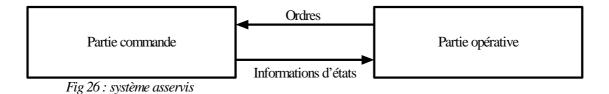


Figure (VII.2): commande sans ligne pilote

NB: Dans le cas notre étude, on optera pour la commande sans ligne pilote vue les distances importantes entre les stations de pompage et les réservoirs.

VII.3. les types d'automatisations

- Les automatismes simples à horloge ou manostat.
- Les automatismes séquentiels.
- > Les asservissements.
- Les automates programmables.
- Les centrales d'alarmes.


VII.4. les éléments qui composent un système d'automatisation

- La machine ou processus.
- Le capteur.
- L'information.
- L'actionneur.
- > Commande de puissance.
- Unité de traitement.
 L'information de commande.

VII.5. Présentations des systèmes asservis

Les systèmes automatisés sont à l'image de l'homme :

- > une partie commande d'analyse et de réflexion : le cerveau
- > une partie opérative comportant des capteurs et des actionneurs : les sens et les muscles

Figure(VII.3): système asservis

Le cerveau selon les informations d'états qu'il reçoit à partir de différents capteurs sensoriels et qui sont véhiculés par les fibres de son système nerveux, fournit après réflexion consciente ou inconsciente les ordres qui vont déclencher des actions.

Les systèmes automatisés ont le schéma fonctionnel général suivant :

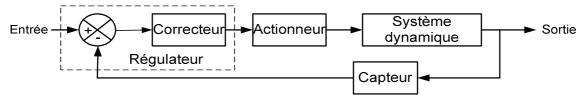
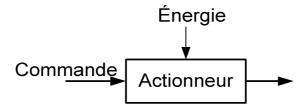
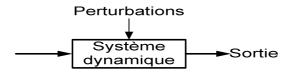


Fig 27 : schéma fonctionnel général des systèmes automatisés

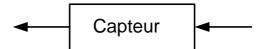

Figure (VII.4): schéma fonctionnel général des systèmes automatisent.

Un système asservi comporte en plus de la chaîne de commande avec amplification de puissance une chaîne de retour et outil de comparaison.

La modélisation précédente sous forme de schéma bloc montre que le système est en boucle. Chaque bloc fonctionnel joue un rôle différent :


VII.5.1.L'actionneur

C'est un organe électromécanique permettant d'agir sur les grandeurs à régler sans l'intervention de la force humaine. Sur la chaîne d'action, il joue le rôle d'amplificateur selon la commande qui lui est appliquée et délivre la puissance nécessaire à la réalisation de l'action.


VII.5.2.Le système dynamique (processus)

C'est un système qui suit les lois physiques qui dépendent de l'énergie transmise par l'actionneur et des éventuelles perturbations extérieures.

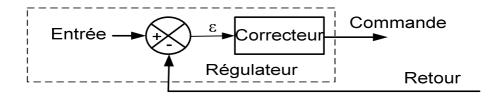
VII.5.3.Le capteur

C'est un organe qui décrit l'état de la machine, c'est à dire délivre l'information image de la grandeur physique de sortie qui doit être réglée ou asservie à l'instruction. Sa précision joue un rôle essentiel si l'on veut concevoir un système bouclé performant.

Le choix des types de capteurs se fait en fonction de la nature de l'information produite. Dans notre cas on mesure le niveau de l'eau ou la pression.Pour ces deux types d'informations on peut trouver les capteurs suivants selon la nature de l'information à détecter:

VII.5.3.1.Capteur de pression

- ➤ Manostat (pression)
- Vaccuostat (dépression)


VII.5.3.2.Capteur de niveau d'un liquide

- > Sonde conductrice
- ➤ Interrupteur de contrôle de niveau à flotteur
- > Combinateur à cannes actionnées par un flotteur
- > Détecteur capacitif
- > Détecteur à sondes acoustiques

VII.5.4.Le régulateur

Son rôle est essentiel, c'est l'organe intelligent du système asservi, il réalise la comparaison entre la grandeur de consigne et la grandeur de retour et délivre la grandeur de commande adéquate. Le signal ϵ représente l'erreur ou l'écart :

Si cette erreur ou écart est nul en permanence, le système n'à plus aucun intérêt, cela signifierait que le système physique piloté n'est soumis à aucune perturbation et sa commande est toujours la même. Cependant ϵ doit être le plus faible possible pour que le fonctionnement du système asservi soit de qualité.

Conclusion

La réalisation de notre projet a nécessité la prise en compte des caractéristiques hydrauliques des deux communes et des données démographiques projetées à partir des données existantes et du taux d'accroissement de la population qui est de 2,5 %.

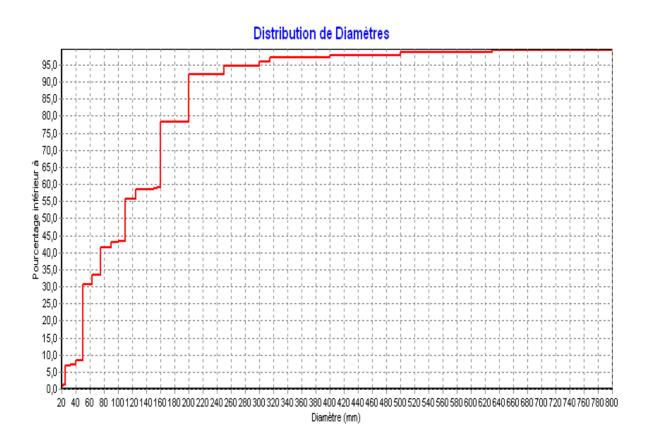
Après avoir estimé les différents besoins en eau aux divers horizons, nous avons constaté que ces besoins à long terme sont de 22 464 m³/j soit 260 l/s, ils ne seront pas satisfaits par le débit journalier fourni par les deux forages existant qui est de 71 l/s ce qui est nous oblige a faire un renforcement avec un piquage à partir d'une conduite d'un barrage de Coudiat-Asserdoun.

Afin d'assurer l'alimentation en eau potable de la zone d'étude, et son acheminement par refoulement et gravitairement, nous avons projeté deux réservoirs d'une capacité, de 1200 m³, de 2000 m³.

Pour le dimensionnement de la conduite d'adduction, nous avons choisi les diamètres les plus économiques avec des vitesses acceptables, Concernant le choix du type du matériau des conduites, nous avons opté pour la fonte pour les avantages qu'elle présente, à savoir : la durée de vie, la légèreté, la résistance aux contraintes, bonnes caractéristiques hydrauliques...etc.

Le choix des pompes a été porté sur les pompes centrifuges à axe horizontal et des pompes immergé. Ce choix a été réalisé par le logiciel CAPRARI.

La dernière étape de la conception du projet est la distribution, le choix du réseau maille s'avère le plus adéquat vu le relief de la commun. Son dimensionnement à été établi seulement pour le cas du débit de pointe, les diamètres des canalisations du réseau varient entre **20 mm** et **800mm** pour lesquels les vitesses d'écoulement sont dans les limites souhaitées.


Cette étude nous à permis de mettre en pratique, certaines connaissances que nous avons acquises durant notre cycle de formation.

Bibliographie

- 1- AIT BESSAI. H et LAHDIRI.L : « Alimentation en eau potable de la commune de Béni Djellil à partir du barrage Tichy-Haff ».Mémoire de fin d'études, DEUA, université de Bejaia, 2010.
- 2- AYAT A .DJEROUITI S : « étude AEP de la localités de Karfala et Takatiout Commun de Kadiria de la wilaya de Bouira'». Mémoire de fin d'études, Ingénieur d'état, université de Bejaia, 2011.
- 3- Catalogue CAPRARI. « Choix des pompes »
- 4- CARLIER,M « Hydraulique générale et appliqué ». Edition Eyrolles Paris 1972.
- 5- DUPONT, A. « Hydraulique urbaine, Tome II : Ouvrage de transport, élévation et distribution des eaux », Edition EYROLLE, 1979, Paris.
- 6- J. BONNIN « Hydraulique Urbaine appliquée aux agglomérations de petites et moyenne importance », Edition EYROLLE, 1982, Paris.

7-ROUSSMAN, Lewis A. « Manuel d'utilisation d'Epanet 2.0 ».

Anexes(8): distributions des diamètres.

ANNEXE (7): la distribution de pression

Annexe (1): Régime de la consommation des agglomérations

	Régime de la consommation des agglomérations											
Heure du jour	1.20	1.25	1.30	1.35	1.40	1.45	1.50	1.70	1.80	1.90	2.00	2.50
0 - 1	3.50	3.35	3.20	3.00	2.50	2.00	1.50	1.00	0.90	0.85	0.75	0.60
1 - 2	3.45	3.25	3.25	3.20	2.65	2.10	1.50	1.00	0.90	0.85	0.75	0.60
2 - 3	3.45	3.30	2.90	2.50	2.20	1.85	1.50	1.00	0.90	0.85	1.00	1.20
3 - 4	3.40	3.20	2.90	2.60	2.25	1.90	1.50	1.00	1.00	1.00	1.00	2.00
4 - 5	3.40	3.25	3.35	3.50	3.20	2.85	2.50	2.00	1.35	2.70	3.00	3.50
5 - 6	3.55	3.40	3.75	4.10	3.90	3.70	3.50	3.00	3.85	4.70	5.50	3.50
6 - 7	4.00	3.85	4.15	4.50	4.50	4.50	4.50	5.00	5.20	5.35	5.50	4.50
7 - 8	4.40	4.45	4.65	4.90	5.10	5.30	5.50	6.50	6.20	5.85	5.50	10.20
8 - 9	5.00	5.20	5.05	4.90	5.35	5.80	6.25	6.50	5.50	4.50	3.50	8.80
9 - 10	4.80	5.05	5.40	5.60	5.85	6.05	6.25	5.50	5.85	4.20	3.50	6.50
10 - 11	4.70	4.85	4.85	4.90	5.35	5.80	6.25	4.50	5.00	5.50	6.00	4.10
11 - 12	4.55	4.60	4.60	4.70	5.25	5.70	6.25	5.50	6.50	7.50	8.50	4.10
12 - 13	4.55	4.60	4.50	4.40	4.60	4.80	5.00	7.00	7.50	7.90	8.50	3.50
13 - 14	4.45	4.55	4.30	4.10	4.40	4.70	5.00	7.00	6.70	6.35	6.00	3.50
14 - 15	4.60	4.75	4.40	4.10	4.60	5.05	5.50	5.50	5.35	5.20	5.00	4.70
15 - 16	4.60	4.70	4.55	4.40	4.60	5.30	6.00	4.50	4.65	4.80	5.00	6.20
16 - 17	4.60	4.65	4.50	4.30	4.90	5.45	6.00	5.00	4.50	4.00	3.50	10.40
17 - 18	4.30	4.35	4.25	4.10	4.60	5.05	5.50	6.50	5.50	4.50	3.50	9.40
18 - 19	4.35	4.40	4.45	4.50	4.70	4.85	5.00	6.50	6.30	6.20	6.00	7.30
19 - 20	4.25	4.30	4.40	4.50	4.50	4.50	4.50	5.00	5.35	5.70	6.00	1.60
20 - 21	4.25	4.30	4.40	4.50	4.40	4.20	4.00	4.50	5.00	5.50	6.00	1.60
21 - 22	4.15	4.20	4.50	4.80	4.20	3.60	3.00	3.00	3.00	3.00	3.00	1.00
22 - 23	3.90	3.75	4.20	4.60	3.70	2.85	2.00	2.00	2.00	2.00	2.00	0.60
23 – 24	3.80	3.70	3.50	3.30	2.70	2.10	1.50	1.00	1.00	1.00	1.00	0.60

Annexe(11) de diagramme de MOODY

