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We study a nonlinear multiple objective fractional programming with inequality constraints where each component of functions
occurring in the problem is considered semidifferentiable along its own direction instead of the same direction. New Fritz John
type necessary and Karush-Kuhn-Tucker type necessary and sufficient efficiency conditions are obtained for a feasible point to be
weakly efficient or efficient. Furthermore, a general Mond-Weir dual is formulated and weak and strong duality results are proved
using concepts of generalized semilocally V-type I-preinvex functions. This contribution extends earlier results of Preda (2003),
Mishra et al. (2005), Niculescu (2007), and Mishra and Rautela (2009), and generalizes results obtained in the literature on this
topic.

1. Introduction

Because of many practical optimization problems where the
objective functions are quotients of two functions, multiob-
jective fractional programming has received much interest
and has grown significantly in different directions in the
setting of efficiency conditions and duality theory these
later years. The field of multiobjective fractional optimiza-
tion has been naturally enriched by the introductions and
applications of various types of convexity theory, with and
without differentiability assumptions, and in the framework
of symmetric duality, variational problems, minimax pro-
gramming, continuous time programming, and so forth.
More specifically, works in the area of nonsmooth setting can
be found in Chen [1], Kim et al. [2], Kuk et al. [3], Mishra and
Rautela [4], Mishra et al. [5], Niculescu [6], Preda [7], and
Soleimani-damaneh [8]. Efficiency conditions and duality
models for multiobjective fractional subset programming
problems are studied by Preda et al. [9], Verma [10], and
Zalmai [11–13]. Higher order duality in multiobjective frac-
tional programming is discussed in Gulati andGeeta [14] and
Suneja et al. [15]. Solving nonlinear multiobjective fractional
programming problems by a modified objective function

method is the subject matter of Antczak [16]. Further works
on multiobjective fractional programming are established
by Chinchuluun et al. [17], J.-C. Liu and C.-Y. Liu [18],
Mishra et al. [19], Verma [20], Zhang andWu [21], and others.

The common point in all of these developments is the
convexity theory that does not stop extending itself in differ-
ent directions with new variants of generalized convexity and
various applications to nonlinear programming problems
in different settings. The concept of invexity introduced
by Hanson [22] is a generalization of convexity which has
received much interest these later years, and many advances
in the theory and practice have been established using this
concept and its extensions. In practice, recently Dinuzzo et al.
[23] have obtained some kernel function inmachine learning
which is not quasiconvex (and hence also neither convex nor
pseudoconvex), but it is invex. Nickisch and Seeger [24] have
studied a multiple kernel learning problem and have used the
invexity to deal with the optimization which is nonconvex.
The concept of semilocally convex functions was introduced
by Ewing [25] and was further extended to semilocally
quasiconvex, semilocally pseudoconvex functions by Kaul
and Kaur [26, 27]. Other generalizations of semilocally
convex functions and their properties were investigated in
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Mishra and Rautela [4],Mishra et al. [5], Niculescu [6], Preda
[7, 28], Preda and Stancu-Minasian [29], Preda et al. [30], and
Stancu-Minasian [31].

In Preda [7], necessary and sufficient efficiency condi-
tions for a nonlinear fractional multiple objective program-
ming problem are obtained involving 𝜂-semidifferentiable
functions. Furthermore, a general dual was formulated and
duality results were proved using concepts of generalized
semilocally preinvex functions. Thus, results of Preda [28],
Preda and Stancu-Minasian [29], and Preda et al. [30] were
generalized. Mishra et al. [5] extended the issues of Preda
[7] to the case of semilocally type I and related functions,
generalizing results of Preda [7] and Stancu-Minasian [31].
Niculescu [6] extended the work of Mishra et al. [5] by
using concepts of generalized 𝜌-semilocally type I-preinvex
functions. Mishra and Rautela [4] extended the works of
Mishra et al. [5] and Preda [7] to the case of semilocally type
I univex and related functions.

By considering the invexity with respect to different
(𝜂
𝑖
)
𝑖
(each function occurring in the studied problem is

considered with respect to its own function 𝜂
𝑖
instead of

the same function 𝜂), Slimani and Radjef [32–34] have
obtained necessary and sufficient optimality/efficiency con-
ditions and duality results for nonlinear scalar and (non-
differentiable) multiobjective problems. Ahmad [35] has
considered a nondifferentiable multiobjective problem and,
by using generalized univexity with respect to different (𝜂

𝑖
)
𝑖
,

he has obtained efficiency conditions and duality results.
Arana-Jiménez et al. [36] have used the concept of semidi-
rectionally differentiable functions introduced in [34] to
derive characterizations of solutions and duality results by
means of generalized pseudoinvexity for nondifferentiable
multiobjective programming.

In this paper,motivated by thework of Slimani andRadjef
[34], we define semilocally vector-type I problems, where
each component of the objective and constraint functions
is semidifferentiable along its own direction instead of the
same direction. Then we consider necessary and sufficient
efficiency conditions for a nonlinear fractional multiple
objective programming problem involving semidifferentiable
functions. Furthermore, we formulate a general Mond-Weir
dual and prove duality results using concepts of generalized
semilocally V-type I-preinvex and related functions.Thus, we
extend the works of Mishra and Rautela [4], Mishra et al. [5],
Niculescu [6], and Preda [7] and generalize results obtained
in the literature on this topic.

2. Preliminaries and Definitions

The following conventions for equalities and inequalities will
be used. If 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
) and 𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
) ∈ R𝑛, then

𝑥 = 𝑦 ⇔ 𝑥
𝑖
= 𝑦
𝑖
, 𝑖 = 1, . . . , 𝑛; 𝑥 < 𝑦 ⇔ 𝑥

𝑖
< 𝑦
𝑖
, 𝑖 = 1, . . . , 𝑛;

𝑥 ≦ 𝑦 ⇔ 𝑥
𝑖
≦ 𝑦
𝑖
, 𝑖 = 1, . . . , 𝑛; 𝑥 ≤ 𝑦 ⇔ 𝑥 ≦ 𝑦 and 𝑥 ̸= 𝑦.

We also denote by R𝑞
≧
(resp., R𝑞

≥
or R𝑞
>
) the set of vectors

𝑦 ∈ R𝑞 with 𝑦 ≧ 0 (resp., 𝑦 ≥ 0 or 𝑦 > 0).
Let 𝐷 ⊆ R𝑛 be a set and 𝜂 : 𝐷 × 𝐷 → R𝑛 a vector

application. We say that 𝐷 is 𝜂-invex at 𝑥
0

∈ 𝐷 if 𝑥
0
+

𝜆𝜂(𝑥, 𝑥
0
) ∈ 𝐷 for any 𝑥 ∈ 𝐷 and 𝜆 ∈ [0, 1]. We say that

the set𝐷 is 𝜂-invex if𝐷 is 𝜂-invex at any 𝑥
0
∈ 𝐷.

Definition 1 (see [7]). We say that the set 𝐷 ⊆ R𝑛 is an 𝜂-
locally star-shaped set at 𝑥

0
, 𝑥
0
∈ 𝐷, if, for any 𝑥 ∈ 𝐷, there

exists 0 < 𝑎
𝜂
(𝑥, 𝑥
0
) ≦ 1 such that 𝑥

0
+ 𝜆𝜂(𝑥, 𝑥

0
) ∈ 𝐷 for any

𝜆 ∈ [0, 𝑎
𝜂
(𝑥, 𝑥
0
)].

Definition 2 (see [7]). Let 𝑓 : 𝐷 → R𝑁 be a function, where
𝐷 ⊆ R𝑛 is an 𝜂-locally star-shaped set at 𝑥

0
∈ 𝐷. We say that

𝑓 is 𝜂-semidifferentiable at 𝑥
0
if (𝑑𝑓)

+
(𝑥
0
, 𝜂(𝑥, 𝑥

0
)) exists for

each 𝑥 ∈ 𝐷, where

(𝑑𝑓)
+
(𝑥
0
, 𝜂 (𝑥, 𝑥

0
))

= lim
𝜆→0

+

1

𝜆
[𝑓 (𝑥
0
+ 𝜆𝜂 (𝑥, 𝑥

0
)) − 𝑓 (𝑥

0
)]

(1)

(the right derivative of 𝑓 at 𝑥
0
along the direction 𝜂(𝑥, 𝑥

0
)).

If 𝑓 is 𝜂-semidifferentiable at any 𝑥
0
∈ 𝐷, then 𝑓 is said to be

𝜂-semidifferentiable on𝐷.

Note that a function which is 𝜂-semidifferentiable at 𝑥
0

is not necessarily directionally differentiable at this point (see
[34]). Slimani and Radjef [34] have considered the functions
whose directional derivatives exist and are finite in some
directions (not necessarily in all directions) and they called
them semidirectionally differentiable functions. This class of
functions, where no assumptions on continuity are needed, is
an extension of locally Lipschitz functions.

Definition 3 (see [37]). A function 𝑓 : 𝐷 → R𝑁 is a convex-
like function if, for any 𝑥, 𝑦 ∈ 𝐷 and 0 ≦ 𝜆 ≦ 1, there exists
𝑧 ∈ 𝐷 such that

𝑓 (𝑧) ≦ 𝜆𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦) . (2)

We consider the following multiobjective fractional opti-
mization problem:

(VFP) Minimize
𝑓 (𝑥)

𝑔 (𝑥)
= (

𝑓
1 (𝑥)

𝑔
1 (𝑥)

, . . . ,
𝑓
𝑁 (𝑥)

𝑔
𝑁 (𝑥)

) ,

subject to ℎ
𝑗 (𝑥) ≦ 0, 𝑗 = 1, 2, . . . , 𝑘,

(3)

where 𝑓
𝑖
, 𝑔
𝑖
, ℎ
𝑗

: 𝐷 → R, 𝑖 ∈ N = {1, 2, . . . , 𝑁}, 𝑗 ∈

𝐾 = {1, 2, . . . , 𝑘} with 𝐷 is a nonempty subset of R𝑛, and
𝑓
𝑖
(𝑥) ≧ 0, 𝑔

𝑖
(𝑥) > 0 for all 𝑥 ∈ 𝐷 and each 𝑖 ∈ N. Let

𝑓 = (𝑓
1
, . . . , 𝑓

𝑁
), 𝑔 = (𝑔

1
, . . . , 𝑔

𝑁
), and ℎ = (ℎ

1
, . . . , ℎ

𝑘
).

We put 𝑋 = {𝑥 ∈ D : ℎ(𝑥) ≦ 0} as the set of all feasible
solutions of VFP. For 𝑥

0
∈ 𝐷, we denote by 𝐽(𝑥

0
) the set

{𝑗 ∈ 𝐾 : ℎ
𝑗
(𝑥
0
) = 0}, where 𝐽 = |𝐽(𝑥

0
)| is the cardinal of

set 𝐽(𝑥
0
), and by 𝐽(𝑥

0
) (resp., 𝐽(𝑥

0
)) the set {𝑗 ∈ 𝐾 : ℎ

𝑗
(𝑥
0
) <

0 (resp., ℎ
𝑗
(𝑥
0
) > 0) }. We have 𝐽(𝑥

0
) ∪ 𝐽(𝑥

0
) ∪ 𝐽(𝑥

0
) = 𝐾

and if 𝑥
0
∈ 𝑋, 𝐽(𝑥

0
) = 0.

For such optimization problems, minimization means
obtaining (weakly) efficient solutions in the following sense.
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Definition 4. A point 𝑥
0
∈ 𝑋 is said to be a weakly efficient

solution of the problem VFP, if there exists no 𝑥 ∈ 𝑋 such
that

𝑓
𝑖 (𝑥)

𝑔
𝑖 (𝑥)

<
𝑓
𝑖
(𝑥
0
)

𝑔
𝑖
(𝑥
0
)
, ∀𝑖 ∈ N. (4)

Definition 5. A point 𝑥
0
∈ 𝑋 is said to be an efficient solution

of the problem VFP, if there exists no 𝑥 ∈ 𝑋 such that for
some 𝑝 ∈ N

𝑓
𝑝 (𝑥)

𝑔
𝑝 (𝑥)

<
𝑓
𝑝
(𝑥
0
)

𝑔
𝑝
(𝑥
0
)
,

𝑓
𝑖 (𝑥)

𝑔
𝑖 (𝑥)

≦
𝑓
𝑖
(𝑥
0
)

𝑔
𝑖
(𝑥
0
)
, ∀𝑖 ∈ N, 𝑖 ̸= 𝑝.

(5)

Slimani and Radjef [34] considered semidirectionally
differentiable functions and extended the 𝑑-invexity of Ye
[38] by introducing new concepts of generalized 𝑑

𝐼
-invexity

in which each component of the objective and constraint
functions is directionally differentiable in its own direction
𝑑
𝑖
instead of the same direction 𝑑. In the same way, we define

semilocally vector-type I problems, where each component
of the objective and constraint functions is semidifferentiable
along its own direction 𝜂

𝑖
, 𝜃
𝑖
, or 𝛿

𝑗
instead of the same

direction 𝜂.

Definition 6. Let 𝜂
𝑖
: 𝑋×𝐷 → R𝑛, 𝜃

𝑖
: 𝑋×𝐷 → R𝑛, 𝑖 ∈ N,

and 𝜙
𝑗
: 𝑋×𝐷 → R𝑛, 𝑗 ∈ 𝐾, be vector functions.We say that

the problem VFP is semilocally V-type I-preinvex at 𝑥
0
∈ 𝐷

with respect to (𝜂
𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, and (𝜙

𝑗
)
𝑗∈𝐾

, if, for all 𝑥 ∈ 𝑋,
we have

𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
0
) ≧ (𝑑𝑓

𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) , ∀𝑖 ∈ N, (6)

𝑔
𝑖 (𝑥) − 𝑔

𝑖
(𝑥
0
) ≦ (𝑑𝑔

𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
)) , ∀𝑖 ∈ N, (7)

−ℎ
𝑗
(𝑥
0
) ≧ (𝑑ℎ

𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) , ∀𝑗 ∈ 𝐾. (8)

If the inequalities in (6) are strict (whenever 𝑥 ̸= 𝑥
0
), we say

thatVFP is semistrictly semilocallyV-type I-preinvex at𝑥
0
with

respect to (𝜂
𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, and (𝜙

𝑗
)
𝑗∈𝐾

.

Definition 7. Let 𝜂
𝑖
: 𝑋×𝐷 → R𝑛, 𝜃

𝑖
: 𝑋×𝐷 → R𝑛, 𝑖 ∈ N,

and 𝜙
𝑗
: 𝑋×𝐷 → Rn

, 𝑗 ∈ 𝐾, be vector functions.We say that
the problemVFP is semilocally pseudo quasi-V-type I-preinvex
at 𝑥
0
∈ 𝐷 with respect to (𝜂

𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, and (𝜙

𝑗
)
𝑗∈𝐾

, if, for
some vectors 𝜇 ∈ R𝑁

≧
, 𝜆 ∈ R𝑁

≧
, and 𝛿 ∈ R𝑘

≧
, we have

𝑁

∑

𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
))

−𝜆
𝑖
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
))] ≧ 0

󳨐⇒

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖 (𝑥) − 𝜆

𝑖
𝑔
𝑖 (𝑥)]

≧

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖
(𝑥
0
) − 𝜆
𝑖
𝑔
𝑖
(𝑥
0
)] , ∀𝑥 ∈ 𝑋,

(9)

𝑘

∑

𝑗=1

𝛿
𝑗
ℎ
𝑗
(𝑥
0
) ≧ 0 󳨐⇒

𝑘

∑

𝑗=1

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≦ 0,

∀𝑥 ∈ 𝑋.

(10)

If the second (implied) inequality in (9) is strict (𝑥 ̸= 𝑥
0
),

we say that VFP is semilocally strictly pseudo quasi-V-type I-
preinvex at 𝑥

0
with respect to (𝜂

𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, and (𝜙

𝑗
)
𝑗∈𝐾

.

Definition 8. Let 𝜂
𝑖
: 𝑋×𝐷 → R𝑛, 𝜃

𝑖
: 𝑋×𝐷 → R𝑛, 𝑖 ∈ N,

and 𝜙
𝑗
: 𝑋×𝐷 → R𝑛, 𝑗 ∈ 𝐾, be vector functions.We say that

the problemVFP is semilocally quasi pseudo-V-type I-preinvex
at 𝑥
0
∈ 𝐷 with respect to (𝜂

𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, and (𝜙

𝑗
)
𝑗∈𝐾

, if, for
some vectors 𝜇 ∈ R𝑁

≧
, 𝜆 ∈ R𝑁

≧
, and 𝛿 ∈ R𝑘

≧
, we have

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖 (𝑥) − 𝜆

𝑖
𝑔
𝑖 (𝑥)]

≦

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖
(𝑥
0
) − 𝜆
𝑖
𝑔
𝑖
(𝑥
0
)]

󳨐⇒

𝑁

∑

𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
))

−𝜆
𝑖
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
))] ≦ 0, ∀𝑥 ∈ 𝑋,

(11)
𝑘

∑

𝑗=1

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≧ 0 󳨐⇒

𝑘

∑

𝑗=1

𝛿
𝑗
ℎ
𝑗
(𝑥
0
) ≦ 0,

∀𝑥 ∈ 𝑋.

(12)

If the second (implied) inequality in (12) is strict (𝑥 ̸= 𝑥
0
),

we say that VFP is semilocally quasi strictly pseudo-V-type I-
preinvex at 𝑥

0
with respect to (𝜂

𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, and (𝜙

𝑗
)
𝑗∈𝐾

.

Definition 9. Let 𝜂
𝑖
: 𝑋×𝐷 → R𝑛, 𝜃

𝑖
: 𝑋×𝐷 → R𝑛, 𝑖 ∈ N,

and 𝜙
𝑗

: 𝑋 × 𝐷 → R𝑛, 𝑗 ∈ 𝐾, be vector functions. We
say that the problem VFP is semilocally extendedly pseudo
partially quasi-V-type I-preinvex at 𝑥

0
∈ 𝐷 with respect to

{(𝜂
𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐽
0

} and {(𝜙
𝑗
)
𝑗∈𝐽
𝑠

, 𝑠 = 1, 2, . . . , 𝛼} such
that 𝛼 ≧ 1, 𝐽

𝑠
∩ 𝐽
𝑡
= 0 for 𝑠 ̸= 𝑡 and ⋃

𝛼

𝑠=0
𝐽
𝑠
= 𝐾, if, for some

vectors 𝜇 ∈ R𝑁
≧
, 𝜆 ∈ R𝑁

≧
, and 𝛿 ∈ R𝑘

≧
, we have

𝑁

∑

𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) − 𝜆

𝑖
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
))]

+ ∑

𝑗∈𝐽
0

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≧ 0

󳨐⇒

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖 (𝑥) − 𝜆

𝑖
𝑔
𝑖 (𝑥)] + ∑

𝑗∈𝐽
0

𝛿
𝑗
ℎ
𝑗 (𝑥)

≧

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖
(𝑥
0
) − 𝜆
𝑖
𝑔
𝑖
(𝑥
0
)] + ∑

𝑗∈𝐽
0

𝛿
𝑗
ℎ
𝑗
(𝑥
0
) ,

∀𝑥 ∈ 𝑋,

(13)
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∑

𝑗∈𝐽
𝑠

𝛿
𝑗
ℎ
𝑗
(𝑥
0
) ≧ 0 󳨐⇒ ∑

𝑗∈𝐽
𝑠

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≦ 0,

∀𝑥 ∈ 𝑋, 𝑠 = 1, 2, . . . , 𝛼.

(14)

If the second (implied) inequality in (13) is strict (𝑥 ̸= 𝑥
0
),

we say that VFP is semilocally strictly extendedly pseudo
partially quasi-V-type I-preinvex at 𝑥

0
with respect to {(𝜂

𝑖
)
𝑖∈N,

(𝜃
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐽
0

} and {(𝜙
𝑗
)
𝑗∈𝐽
𝑠

, 𝑠 = 1, 2, . . . , 𝛼}. If, for all 𝑖 ∈

N, 𝜃
𝑖
= 𝜂
𝑖
, we say that VFP is semilocally (strictly) extendedly

pseudo partially quasi-V-type I-preinvex at 𝑥
0
with respect to

{(𝜂
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐽
0

} and {(𝜙
𝑗
)
𝑗∈𝐽
𝑠

, 𝑠 = 1, 2, . . . , 𝛼}.

Remark 10. In Definition 9 if 𝐽
0

= 0 and 𝛼 = 1,
then the concept of semilocally (strictly) extendedly pseudo
partially quasi-V-type I-preinvexity reduces to the concept of
semilocally (strictly) pseudo quasi-V-type I-preinvexity given
in Definition 7.

Definition 11. Let 𝜂
𝑖
: 𝑋 × 𝐷 → R𝑛, 𝜃

𝑖
: 𝑋 × 𝐷 → R𝑛, 𝑖 ∈

N, and 𝜙
𝑗
: 𝑋×𝐷 → R𝑛, 𝑗 ∈ 𝐾, be vector functions. We say

that the problem VFP is semilocally extendedly quasi partially
pseudo-V-type I-preinvex at 𝑥

0
∈ 𝐷 with respect to {(𝜂

𝑖
)
𝑖∈N,

(𝜃
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐽
0

} and {(𝜙
𝑗
)
𝑗∈𝐽
𝑠

, 𝑠 = 1, 2, . . . , 𝛼} such that 𝛼 ≧

1, 𝐽
𝑠
∩ 𝐽
𝑡
= 0 for 𝑠 ̸= 𝑡 and ⋃

𝛼

𝑠=0
𝐽
𝑠
= 𝐾, if, for some vectors

𝜇 ∈ R𝑁
≧
, 𝜆 ∈ R𝑁

≧
, and 𝛿 ∈ R𝑘

≧
, we have

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖 (𝑥) − 𝜆

𝑖
𝑔
𝑖 (𝑥)] + ∑

𝑗∈𝐽
0

𝛿
𝑗
ℎ
𝑗 (𝑥)

≦

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖
(𝑥
0
) − 𝜆
𝑖
𝑔
𝑖
(𝑥
0
)] + ∑

𝑗∈𝐽
0

𝛿
𝑗
ℎ
𝑗
(𝑥
0
)

󳨐⇒

𝑁

∑

𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) − 𝜆

𝑖
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
))]

+ ∑

𝑗∈𝐽
0

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≦ 0, ∀𝑥 ∈ 𝑋,

(15)

∑

𝑗∈𝐽
𝑠

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≧ 0 󳨐⇒ ∑

𝑗∈𝐽
𝑠

𝛿
𝑗
ℎ
𝑗
(𝑥
0
) ≦ 0,

∀𝑥 ∈ 𝑋, 𝑠 = 1, 2, . . . , 𝛼.

(16)

If the second (implied) inequality in (16) is strict (𝑥 ̸= 𝑥
0
),

we say that VFP is semilocally extendedly quasi strictly par-
tially pseudo-V-type I-preinvex at 𝑥

0
with respect to {(𝜂

𝑖
)
𝑖∈N,

(𝜃
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐽
0

} and {(𝜙
𝑗
)
𝑗∈𝐽
𝑠

, 𝑠 = 1, 2, . . . , 𝛼}. If, for all 𝑖 ∈

N, 𝜃
𝑖
= 𝜂
𝑖
, we say that VFP is semilocally extendedly quasi

(strictly) partially pseudo-V-type I-preinvex at 𝑥
0
with respect

to {(𝜂
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐽
0

} and {(𝜙
𝑗
)
𝑗∈𝐽
𝑠

, 𝑠 = 1, 2, . . . , 𝛼}.

Remark 12. In Definition 11 if 𝐽
0

= 0 and 𝛼 = 1,
then the concept of semilocally extendedly quasi (strictly)
partially pseudo-V-type I-preinvexity reduces to the concept
of semilocally quasi (strictly) pseudo-V-type I-preinvexity
given in Definition 8.

3. Necessary Efficiency Conditions

To prove necessary conditions for VFP, we need to prove the
following lemma.

Lemma 13. Suppose that

(i) 𝑥
0
is a (local) weakly efficient solution for VFP;

(ii) ℎ
𝑗
is continuous at 𝑥

0
for 𝑗 ∈ 𝐽(𝑥

0
) and there exist

vector functions 𝜂
𝑖
: 𝑋 × 𝐷 → R𝑛, 𝜃

𝑖
: 𝑋 × 𝐷 →

R𝑛, 𝑖 ∈ N, and 𝜙
𝑗
: 𝑋 × 𝐷 → R𝑛, 𝑗 ∈ 𝐽(𝑥

0
), which

satisfy at 𝑥
0
with respect to 𝜂 : 𝑋 × 𝐷 → R𝑛 the

following inequalities:

(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂 (𝑥, 𝑥

0
)) ≦ (𝑑𝑓

𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) ,

∀𝑥 ∈ 𝑋, ∀𝑖 ∈ N,

(17)

(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜂 (𝑥, 𝑥

0
)) ≧ (𝑑𝑔

𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
)) ,

∀𝑥 ∈ 𝑋, ∀𝑖 ∈ N,

(18)

(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜂 (𝑥, 𝑥

0
)) ≦ (𝑑ℎ

𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ,

∀𝑥 ∈ 𝑋, ∀𝑗 ∈ 𝐽 (𝑥
0
) .

(19)

Then the system of inequalities

(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) < 0, 𝑖 ∈ N, (20)

(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
)) > 0, 𝑖 ∈ N, (21)

(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) < 0, 𝑗 ∈ 𝐽 (𝑥

0
) , (22)

has no solution 𝑥 ∈ 𝑋.

Proof. Let 𝑥
0
∈ 𝑋 be a local weakly efficient solution for VFP

and suppose there exists 𝑥 ∈ 𝑋 such that inequalities (20)–
(22) are true.

For 𝑖 ∈ N, let 𝜑
𝑓
𝑖

(𝑥
0
, 𝑥, 𝜏) = 𝑓

𝑖
(𝑥
0
+ 𝜏𝜂(𝑥, 𝑥

0
)) − 𝑓

𝑖
(𝑥
0
).

We observe that this function vanishes at
𝜏 = 0 and lim

𝜏→0
+𝜏
−1
[𝜑
𝑓
𝑖

(𝑥
0
, 𝑥, 𝜏) − 𝜑

𝑓
𝑖

(𝑥
0
, 𝑥, 0)]

= lim
𝜏→0

+𝜏
−1
[𝑓
𝑖
(𝑥
0

+ 𝜏𝜂(𝑥, 𝑥
0
)) − 𝑓

𝑖
(𝑥
0
)] =

(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂(𝑥, 𝑥

0
)) ≦ (𝑑𝑓

𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) < 0 using

(17) and (20).
It follows that, for all 𝑖 ∈ N, 𝜑

𝑓
𝑖

(𝑥
0
, 𝑥, 𝜏) < 0 if 𝜏 is in

some open interval (0, 𝛿
𝑓
𝑖

), 𝛿
𝑓
𝑖

> 0. Thus, for all 𝑖 ∈ N,

𝑓
𝑖
(𝑥
0
+ 𝜏𝜂 (𝑥, 𝑥

0
)) < 𝑓

𝑖
(𝑥
0
) , 𝜏 ∈ (0, 𝛿

𝑓
𝑖

) . (23)

Similarly, by using (18) with (21) and (19) with (22), we get

𝑔
𝑖
(𝑥
0
+ 𝜏𝜂 (𝑥, 𝑥

0
)) > 𝑔

𝑖
(𝑥
0
) , 𝜏 ∈ (0, 𝛿

𝑔
𝑖

) , ∀𝑖 ∈ N,

ℎ
𝑗
(𝑥
0
+ 𝜏𝜂 (𝑥, 𝑥

0
)) < ℎ

𝑗
(𝑥
0
) = 0,

𝜏 ∈ (0, 𝛿
ℎ
𝑗

) , ∀𝑗 ∈ 𝐽 (𝑥
0
) ,

(24)

where, for all 𝑖 ∈ N, 𝛿
𝑔
𝑖

> 0 and, for all 𝑗 ∈ 𝐽(𝑥
0
), 𝛿
ℎ
𝑗

> 0.
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Now, since, for 𝑗 ∈ 𝐽(𝑥
0
), ℎ
𝑗
(𝑥
0
) < 0 and ℎ

𝑗
is continuous

at 𝑥
0
, then there exists 𝛿

𝑗
> 0 such that

ℎ
𝑗
(𝑥
0
+ 𝜏𝜂 (𝑥, 𝑥

0
)) < 0, 𝜏 ∈ (0, 𝛿

𝑗
) , ∀𝑗 ∈ 𝐽 (𝑥

0
) . (25)

Let 𝛿
0

= min{𝛿
𝑓
𝑖

, 𝑖 ∈ N, 𝛿
𝑔
𝑖

, 𝑖 ∈ N, 𝛿
ℎ
𝑗

, 𝑗 ∈ 𝐽(𝑥
0
), 𝛿
𝑗
, 𝑗 ∈

𝐽(𝑥
0
)}. Then

(𝑥
0
+ 𝜏𝜂 (𝑥, 𝑥

0
)) ∈ 𝑁

𝛿
0

(𝑥
0
) , 𝜏 ∈ (0, 𝛿

0
) , (26)

where 𝑁
𝛿
0

(𝑥
0
) is a neighborhood of 𝑥

0
. Now, for all 𝜏 ∈

(0, 𝛿
0
), we have

𝑓
𝑖
(𝑥
0
+ 𝜏𝜂 (𝑥, 𝑥

0
)) < 𝑓

𝑖
(𝑥
0
) , 𝑖 ∈ N, (27)

𝑔
𝑖
(𝑥
0
+ 𝜏𝜂 (𝑥, 𝑥

0
)) > 𝑔

𝑖
(𝑥
0
) , 𝑖 ∈ N, (28)

ℎ
𝑗
(𝑥
0
+ 𝜏𝜂 (𝑥, 𝑥

0
)) < 0, 𝑗 ∈ 𝐾. (29)

By (26) and (29), we get (𝑥
0
+ 𝜏𝜂(𝑥, 𝑥

0
)) ∈ 𝑁

𝛿
0

(𝑥
0
) ∩ 𝑋, for

all 𝜏 ∈ (0, 𝛿
0
).

Using (27) and (28), for 𝑅(𝑥) = (𝑓
1
(𝑥)/𝑔
1
(𝑥), . . .,

𝑓
𝑁
(𝑥)/𝑔
𝑁
(𝑥)), we get

𝑅 (𝑥
0
+ 𝜏𝜂 (𝑥, 𝑥

0
)) < 𝑅 (𝑥

0
) , (30)

which contradicts the assumption that 𝑥
0
is a (local) weakly

efficient solution for VFP. Hence, there exists no 𝑥 ∈ 𝑋 satis-
fying the system (20)–(22). Thus the lemma is proved.

The following lemma given by Hayashi and Komiya [39]
will be used.

Lemma 14. Let 𝑆 be a nonempty set inR𝑛 and let𝜓 : 𝑆 → R𝑚

be a convex-like function. Then either

𝜓 (𝑥) < 0 ℎ𝑎𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥 ∈ 𝑆 (31)

or

𝑝
𝑇
𝜓 (𝑥) ≧ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑆, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑝 ∈ R

𝑚

≥
, (32)

but both alternatives are never true (here the symbol 𝑇 denotes
the transpose of matrix).

Preda [7],Mishra et al. [5], Niculescu [6], andMishra and
Rautela [4] have given necessary conditions for 𝑥

0
∈ 𝑋 to be

a weakly efficient solution for VFP by taking the functions
𝑓
𝑖
, 𝑔
𝑖
, 𝑖 ∈ N, and ℎ

𝑗
, 𝑗 ∈ 𝐽(𝑥

0
), semidifferentiable along

the same direction 𝜂(𝑥, 𝑥
0
). Now we give necessary efficiency

criteria by considering each function 𝑓
𝑖
, 𝑔
𝑖
, 𝑖 ∈ N (resp.,

ℎ
𝑗
, 𝑗 ∈ 𝐽(𝑥

0
)) semidifferentiable along its own direction

𝜂
𝑖
(𝑥, 𝑥
0
), 𝜃
𝑖
(𝑥, 𝑥
0
), 𝑖 ∈ N (resp., 𝜙

𝑗
(𝑥, 𝑥
0
), 𝑗 ∈ 𝐽(𝑥

0
)).

In the next theorem, we obtain Fritz John type necessary
efficiency conditions.

Theorem 15 (Fritz John type necessary efficiency conditions).
Suppose that

(i) 𝑥
0
is a (local) weakly efficient solution for VFP;

(ii) ℎ
𝑗
is continuous at 𝑥

0
for 𝑗 ∈ 𝐽(𝑥

0
) and there exist

vector functions 𝜂
𝑖
: 𝑋 × 𝐷 → R𝑛, 𝜃

𝑖
: 𝑋 × 𝐷 →

R𝑛, 𝑖 ∈ N, and 𝜙
𝑗

: 𝑋 × 𝐷 → R𝑛, 𝑗 ∈ 𝐽(𝑥
0
),

which satisfy at 𝑥
0
with respect to 𝜂 : 𝑋 × 𝐷 → R𝑛

inequalities (17)–(19);
(iii) for all 𝑖 ∈ N, 𝑓

𝑖
, 𝑔
𝑖
(for all 𝑗 ∈ 𝐽(𝑥

0
), ℎ
𝑗
)

is semidifferentiable at 𝑥
0

along the direction
𝜂
𝑖
, 𝜃
𝑖
(𝜙
𝑗
) and let 𝐿(𝑥) = [(𝑑𝑓

𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)),

−(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
)), 𝑖 ∈ N, (𝑑ℎ

𝑗
)
+
(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)),

𝑗 ∈ 𝐽(𝑥
0
)] ∈ R2𝑁+𝐽 be a convex-like function of 𝑥 on

𝑋.

Then there exists (𝜇, 𝜆, 𝛿) ∈ R2𝑁+𝐽
≥

such that (𝑥
0
, 𝜇, 𝜆, 𝛿)

satisfies

𝑁

∑

𝑖=1

𝜇
𝑖
(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) −

𝑁

∑

𝑖=1

𝜆
𝑖
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
))

+ ∑

𝑗∈𝐽(𝑥0)

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≧ 0, ∀𝑥 ∈ 𝑋.

(33)

Proof. If the conditions (i) and (ii) are satisfied, then, by
Lemma 13, system (20)–(22) has no solution for 𝑥 ∈ 𝑋.
Since, by hypothesis (iii), 𝐿(𝑥) = [(𝑑𝑓

𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)),

−(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
)), 𝑖 ∈ N, (𝑑ℎ

𝑗
)
+
(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)), 𝑗 ∈

𝐽(𝑥
0
)] ∈ R2𝑁+𝐽 is a convex-like function of 𝑥 on𝑋, therefore,

by Lemma 14, there exists 𝑝 = (𝜇, 𝜆, 𝛿) ∈ R2𝑁+𝐽
≥

such that
relation (33) is satisfied.

Remark 16. As particular case of Theorem 15, if 𝜂
𝑖
= 𝜃
𝑖
= 𝜂,

∀𝑖 ∈ N, 𝜙
𝑗

= 𝜂, and ∀𝑗 ∈ 𝐽(𝑥
0
) (i.e., if we consider that

all of the functions 𝑓
𝑖
, 𝑔
𝑖
, 𝑖 ∈ N, and ℎ

𝑗
, 𝑗 ∈ 𝐽(𝑥

0
), are

semidifferentiable at𝑥
0
along the samedirection 𝜂), we obtain

Theorem 14 of Preda [7], Lemma 5 ofMishra et al. [5], Lemma
5 of Niculescu [6], and Lemma 2.5 of Mishra and Rautela [4].

Now, we define a constraint qualification given as follows.

Definition 17. Let 𝑥
0
be a feasible point of 𝑉𝐹𝑃 and let 𝜃

𝑖
:

𝑋 × 𝑋 → R𝑛, 𝑖 ∈ N, 𝜙
𝑗
: 𝑋 × 𝑋 → R𝑛, 𝑗 ∈ 𝐽(𝑥

0
) be vector

functions.

(i) The function ℎ is said to satisfy the semiconstraint
qualification at 𝑥

0
∈ 𝑋 with respect to (𝜙

𝑗
)
𝑗∈𝐽(𝑥

0
)
, if

there exist 𝑥 ∈ 𝑋 such that

(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) < 0, ∀𝑗 ∈ 𝐽 (𝑥

0
) . (34)

(ii) The function ℎ is said to satisfy the semicon-
straint qualification at 𝑥

0
∈ 𝑋 with respect to

((𝑔
𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐽(𝑥

0
)
), if there exist 𝑥 ∈ 𝑋 such

that

(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
)) > 0, ∀𝑖 ∈ N,

(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) < 0, ∀𝑗 ∈ 𝐽 (𝑥

0
) .

(35)

To prove Karush-Kuhn-Tucker type necessary efficiency
conditions for VFP, we need to prove the following result.
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Theorem 18. Suppose that
(i) 𝑥
0
is a (local) weakly efficient solution for the following

problem:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝜑
1 (𝑥) , . . . , 𝜑𝑁 (𝑥)) ,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ
𝑗 (𝑥) ≦ 0, 𝑗 = 1, 2, . . . , 𝑘,

(36)

where 𝜑 = (𝜑
1
, . . . , 𝜑

𝑁
) : 𝐷 → R𝑁;

(ii) ℎ
𝑗
is continuous at 𝑥

0
for 𝑗 ∈ 𝐽(𝑥

0
) and there exist

vector functions 𝜂
𝑖

: 𝑋 × 𝐷 → R𝑛, 𝑖 ∈ N, and
𝜙
𝑗
: 𝑋 × 𝐷 → R𝑛, 𝑗 ∈ 𝐽(𝑥

0
), which satisfy at 𝑥

0
with

respect to 𝜂 : 𝑋 × 𝐷 → R𝑛 the following inequalities:

(𝑑𝜑
𝑖
)
+
(𝑥
0
, 𝜂 (𝑥, 𝑥

0
)) ≦ (𝑑𝜑

𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) ,

∀𝑥 ∈ 𝑋, ∀𝑖 ∈ N,

(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜂 (𝑥, 𝑥

0
)) ≦ (𝑑ℎ

𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ,

∀𝑥 ∈ 𝑋, ∀𝑗 ∈ 𝐽 (𝑥
0
) ;

(37)

(iii) for all 𝑖 ∈ N, 𝜑
𝑖
(for all 𝑗 ∈ 𝐽(𝑥

0
), ℎ
𝑗
)

is semidifferentiable at 𝑥
0

along the direction 𝜂
𝑖

(𝜙
𝑗
) and let 𝐿

1
(𝑥) = [(𝑑𝜑

𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)), 𝑖 ∈

N, (𝑑ℎ
𝑗
)
+
(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)), 𝑗 ∈ 𝐽(𝑥

0
)] ∈ R𝑁+𝐽 be a

convex-like function of 𝑥 on𝑋;
(iv) the function ℎ satisfies the semiconstraint qualification

at 𝑥
0
∈ 𝑋 with respect to (𝜙

𝑗
)
𝑗∈𝐽(𝑥

0
)
.

Then there exist𝜇 ∈ R𝑁
≥
and𝛿 ∈ R𝐽

≧
such that (𝑥

0
, 𝜇, 𝛿)

satisfies
𝑁

∑

𝑖=1

𝜇
𝑖
(𝑑𝜑
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
))

+ ∑

𝑗∈𝐽(𝑥0)

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≧ 0, ∀𝑥 ∈ 𝑋.

(38)

Proof. In the same line as in the proof of Theorem 15, we
prove that there exists 𝑝 = (𝜇, 𝛿) ∈ R𝑁+𝐽

≥
such that relation

(38) is satisfied. Now it is enough to prove that 𝜇 ̸= 0. We
proceed by contradiction. If 𝜇 = 0, then 𝛿 ̸= 0 and (38) takes
the following form:

∑

𝑗∈𝐽(𝑥
0
)

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≧ 0, ∀𝑥 ∈ 𝑋, (39)

which contradicts semiconstraint qualification (34). Hence
𝜇 ̸= 0.

For each 𝜆 = (𝜆
1
, . . . , 𝜆

𝑁
) ∈ R𝑁

+
, where R𝑁

+
denotes the

positive orthant of R𝑁, we consider

(VFP
𝜆
) Minimize (𝑓

1 (𝑥) − 𝜆
1
𝑔
1 (𝑥) , . . . ,

𝑓
𝑁 (𝑥) − 𝜆

𝑁
𝑔
𝑁 (𝑥)) ,

subject to ℎ
𝑗 (𝑥) ≦ 0, 𝑗 = 1, 2, . . . , 𝑘.

(40)

The following lemma can be proved without difficulty.

Lemma 19 (see [7]). If 𝑥
0
is a (local) weakly efficient solution

for VFP, then 𝑥
0
is a (local) weakly efficient solution for

(VFP
𝜆
0 ), where 𝜆0

𝑖
= 𝑓
𝑖
(𝑥
0
)/𝑔
𝑖
(𝑥
0
), 𝑖 ∈ N.

Using this lemma andTheorem 18, we can derive Karush-
Kuhn-Tucker type necessary efficiency conditions for the
problem VFP.

Theorem 20 (Karush-Kuhn-Tucker type necessary efficiency
conditions). Suppose that

(i) 𝑥
0
is a (local) weakly efficient solution for VFP;

(ii) ℎ
𝑗
is continuous at 𝑥

0
for 𝑗 ∈ 𝐽(𝑥

0
) and there exist

vector functions 𝜂
𝑖

: 𝑋 × 𝐷 → R𝑛, 𝑖 ∈ N, and
𝜙
𝑗

: 𝑋 × 𝐷 → R𝑛, 𝑗 ∈ 𝐽(𝑥
0
), which satisfy at 𝑥

0

with respect to 𝜂 : 𝑋 × 𝐷 → R𝑛 inequalities (17) and
(19) with

(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜂 (𝑥, 𝑥

0
)) ≧ (𝑑𝑔

𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) ,

∀𝑥 ∈ 𝑋, ∀𝑖 ∈ N;

(41)

(iii) for all 𝑖 ∈ N, 𝑓
𝑖
, 𝑔
𝑖
(for all 𝑗 ∈ 𝐽(𝑥

0
), ℎ
𝑗
) is semidiffer-

entiable at 𝑥
0
along the direction 𝜂

𝑖
(𝜙
𝑗
) and let 𝐿

2
(𝑥) =

[[(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) − 𝜆

0

𝑗
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
))], 𝑖 ∈

N, (𝑑ℎ
𝑗
)
+
(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)), 𝑗 ∈ 𝐽(𝑥

0
)] ∈ R𝑁+𝐽 be

a convex-like function of 𝑥 on 𝑋, where 𝜆
0

=

(𝜆
0

1
, . . . , 𝜆

0

𝑁
), 𝜆
0

𝑖
= 𝑓
𝑖
(𝑥
0
)/𝑔
𝑖
(𝑥
0
), 𝑖 ∈ N;

(iv) the function ℎ satisfies the semiconstraint qualification
at 𝑥
0
∈ 𝑋 with respect to (𝜙

𝑗
)
𝑗∈𝐽(𝑥

0
)
.

Then there exist 𝜇 ∈ R𝑁
≥

and 𝛿 ∈ R𝐽
≧
such that

(𝑥
0
, 𝜇, 𝜆
0
, 𝛿) satisfies

𝑁

∑

𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) − 𝜆

0

𝑖
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
))]

+ ∑

𝑗∈𝐽(𝑥0)

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≧ 0, ∀𝑥 ∈ 𝑋.

(42)

Proof. Let 𝑥
0
be a (local) weakly efficient solution for VFP.

According to Lemma 19 we have that 𝑥
0
is a (local) weakly

efficient solution for (VFP
𝜆
0). Now applying Theorem 18 to

problem (VFP
𝜆
0), we get that there exist 𝜇 ∈ R𝑁

≥
and 𝛿 ∈ R𝐽

≧

such that relation (42) is satisfied, and the theorem is proved.

In the Karush-Kuhn-Tucker type necessary efficiency
condition (42) of Theorem 20, the functions 𝑓

𝑖
and 𝑔

𝑖
are

considered semidifferentiable at 𝑥
0
along the same direction

𝜂
𝑖
, 𝑖 ∈ N. To obtain a necessary condition with different

directions 𝜂
𝑖
and 𝜃
𝑖
, we need to use the second variant of the

semiconstraint qualification given in Definition 17.

Theorem 21 (Karush-Kuhn-Tucker type necessary efficiency
conditions). Suppose that the hypotheses (𝑖), (𝑖𝑖), and (𝑖𝑖𝑖)

of Theorem 15 are satisfied and the function ℎ satisfies the
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semiconstraint qualification at 𝑥
0

∈ 𝑋 with respect to
((𝑔
𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐽(𝑥

0
)
). Then there exist 𝜇 ∈ R𝑁

≥
, 𝜆 ∈

R𝑁
≧
, and 𝛿 ∈ R𝐽

≧
such that (𝑥

0
, 𝜇, 𝜆, 𝛿) satisfies relation (33).

Proof. Based on Theorem 15, we obtain the existence of
(𝜇, 𝜆, 𝛿) ∈ R2𝑁+𝐽

≥
such that (𝑥

0
, 𝜇, 𝜆, 𝛿) satisfies relation

(33). Now it is enough to prove that 𝜇 ̸= 0. We proceed by
contradiction. If 𝜇 = 0, then (𝜆, 𝛿) ̸= 0 and (33) takes the
following form:

−

𝑁

∑

𝑖=1

𝜆
𝑖
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
))

+ ∑

𝑗∈𝐽(𝑥
0
)

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≧ 0, ∀𝑥 ∈ 𝑋,

(43)

which contradicts the semiconstraint qualification (ii) of
Definition 17. Hence 𝜇 ̸= 0.

4. Sufficient Efficiency Criteria

In this section, we present some Karush-Kuhn-Tucker type
sufficient efficiency conditions for a feasible solution to be
efficient or weakly efficient for VFP under various types of
generalized semilocally V-type I-preinvex assumptions.

Theorem 22. Let 𝑥
0
∈ 𝑋 and suppose that there exist (2𝑁+𝐽)

vector functions 𝜂
𝑖
: 𝑋 ×𝐷 → R𝑛, 𝜃

𝑖
: 𝑋 ×𝐷 → R𝑛, 𝑖 ∈ N

and 𝜙
𝑗
: 𝑋×𝐷 → R𝑛, 𝑗 ∈ 𝐽(𝑥

0
), such that VFP is semilocally

V-type I-preinvex at 𝑥
0
with respect to (𝜂

𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, and

(𝜙
𝑗
)
𝑗∈𝐽(𝑥

0
)
. If there exist vectors 𝜇 ∈ R𝑁

≥
, 𝜆 ∈ R𝑁

≧
, and 𝛿 ∈ R𝐽

≧

such that

𝑁

∑

𝑖=1

𝜇
𝑖
(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
))

+ ∑

𝑗∈𝐽(𝑥0)

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≧ 0, ∀𝑥 ∈ 𝑋,

(44)

(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
)) ≦ 0, ∀𝑥 ∈ 𝑋, ∀𝑖 ∈ N, (45)

then 𝑥
0
is a weakly efficient solution for VFP.

Proof. Suppose that 𝑥
0
is not a weakly efficient solution of

VFP. Then there exists a feasible solution 𝑥 ∈ 𝑋 of VFP such
that

𝑓
𝑖 (𝑥)

𝑔
𝑖 (𝑥)

<
𝑓
𝑖
(𝑥
0
)

𝑔
𝑖
(𝑥
0
)
, ∀𝑖 ∈ N. (46)

Since VFP is semilocally V-type I-preinvex at 𝑥
0
with respect

to (𝜂
𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, and (𝜙

𝑗
)
𝑗∈𝐽(𝑥

0
)
, we get that inequalities (6),

(7), and (8) are true for 𝑥 = 𝑥.

Multiplying (6) by 𝜇
𝑖
, 𝑖 ∈ N, and (8) by 𝛿

𝑗
, 𝑗 ∈ 𝐽(𝑥

0
),

then summing the obtained relation and using (44), we get

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
0
)] − ∑

𝑗∈𝐽(𝑥0)

𝛿
𝑗
ℎ
𝑗
(𝑥
0
)

≧

𝑁

∑

𝑖=1

𝜇
𝑖
(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
))

+ ∑

𝑗∈𝐽(𝑥0)

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≧ 0.

(47)

From the above inequality and the fact that ℎ
𝑗
(𝑥
0
) = 0, ∀𝑗 ∈

𝐽(𝑥
0
), it follows that

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
0
)] ≧ 0. (48)

Since 𝜇 ≥ 0, from (48) we obtain that there exists 𝑖
0
∈ N such

that

𝑓
𝑖
0

(𝑥) ≧ 𝑓
𝑖
0

(𝑥
0
) . (49)

By (45) and (7) it follows that

𝑔
𝑖 (𝑥) ≦ 𝑔

𝑖
(𝑥
0
) , ∀𝑖 ∈ N. (50)

Now using (49), (50), and 𝑓 ≧ 0, 𝑔 > 0, we obtain

𝑓
𝑖
0

(𝑥)

𝑔
𝑖
0

(𝑥)
≧

𝑓
𝑖
0

(𝑥
0
)

𝑔
𝑖
0

(𝑥
0
)
, (51)

which is a contradiction to (46). Thus 𝑥
0
is a weakly efficient

solution for VFP and the theorem is proved.

Remark 23. As particular case of Theorem 22, if 𝜂
𝑖
= 𝜃
𝑖
=

𝜂, ∀𝑖 ∈ N, and 𝜙
𝑗
= 𝜂, ∀𝑗 ∈ 𝐽(𝑥

0
), we obtain Theorem 1 of

Mishra et al. [5].

Theorem 24. Let 𝑥
0
∈ 𝑋 and suppose that there exist (2𝑁+𝐽)

vector functions 𝜂
𝑖
: 𝑋×𝐷 → R𝑛, 𝜃

𝑖
: 𝑋×𝐷 → R𝑛, 𝑖 ∈ N,

and 𝜙
𝑗
: 𝑋×𝐷 → R𝑛, 𝑗 ∈ 𝐽(𝑥

0
), such that VFP is semilocally

V-type I-preinvex at 𝑥
0
with respect to (𝜂

𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, and

(𝜙
𝑗
)
𝑗∈𝐽(𝑥

0
)
. If there exist vectors 𝜇 ∈ R𝑁

≥
, 𝜆 ∈ R𝑁

≧
(𝜆
𝑖

=

𝑓
𝑖
(𝑥
0
)/𝑔
𝑖
(𝑥
0
), 𝑖 ∈ N), and 𝛿 ∈ R𝐽

≧
such that

𝑁

∑

𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
))

−𝜆
𝑖
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
))]

+ ∑

𝑗∈𝐽(𝑥0)

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≧ 0, ∀𝑥 ∈ 𝑋,

(52)

then 𝑥
0
is a weakly efficient solution for VFP.
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Proof. Suppose that 𝑥
0
is not a weakly efficient solution of

VFP. Then there exists a feasible solution 𝑥 ∈ 𝑋 of VFP such
that

𝑓
𝑖 (𝑥)

𝑔
𝑖 (𝑥)

<
𝑓
𝑖
(𝑥
0
)

𝑔
𝑖
(𝑥
0
)
, ∀𝑖 ∈ N, (53)

that is, 𝑓
𝑖 (𝑥) < 𝜆

𝑖
𝑔
𝑖 (𝑥) , ∀𝑖 ∈ N. (54)

Since VFP is semilocally V-type I-preinvex at 𝑥
0
with respect

to (𝜂
𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, and (𝜙

𝑗
)
𝑗∈𝐽(𝑥

0
)
, we get that inequalities (6),

(7), and (8) are true for 𝑥 = 𝑥.
Using these inequalities, 𝜇 ≥ 0, 𝜆 ≧ 0, 𝛿 ≧ 0, and (52),

we get

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖 (𝑥) − 𝑓

𝑖
(𝑥
0
)] −

𝑁

∑

𝑖=1

𝜇
𝑖
𝜆
𝑖
[𝑔
𝑖 (𝑥) − 𝑔

𝑖
(𝑥
0
)]

− ∑

𝑗∈𝐽(𝑥0)

𝛿
𝑗
ℎ
𝑗
(𝑥
0
)

≧

𝑁

∑

𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
))

−𝜆
𝑖
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
))]

+ ∑

𝑗∈𝐽(𝑥0)

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≧ 0.

(55)

Therefore,
𝑁

∑

𝑖=1

𝜇
𝑖
[(𝑓
𝑖 (𝑥) − 𝜆

𝑖
𝑔
𝑖 (𝑥)) − (𝑓

𝑖
(𝑥
0
) − 𝜆
𝑖
𝑔
𝑖
(𝑥
0
))]

− ∑

𝑗∈𝐽(𝑥0)

𝛿
𝑗
ℎ
𝑗
(𝑥
0
) ≧ 0.

(56)

Since 𝜆
𝑖
= 𝑓
𝑖
(𝑥
0
)/𝑔
𝑖
(𝑥
0
), 𝑖 ∈ N, and ℎ

𝑗
(𝑥
0
) = 0, ∀𝑗 ∈ 𝐽(𝑥

0
),

we obtain
𝑁

∑

𝑖=1

𝜇
𝑖
(𝑓
𝑖 (𝑥) − 𝜆

𝑖
𝑔
𝑖 (𝑥)) ≧ 0. (57)

Since 𝜇 ≥ 0, from (57) we obtain that there exists 𝑖
0
∈ N such

that

𝑓
𝑖
0

(𝑥) − 𝜆
𝑖
0

𝑔
𝑖
0

(𝑥) ≧ 0, (58)

that is,

𝑓
𝑖
0

(𝑥)

𝑔
𝑖
0

(𝑥)
≧

𝑓
𝑖
0

(𝑥
0
)

𝑔
𝑖
0

(𝑥
0
)
, (59)

which is a contradiction to (53). Thus 𝑥
0
is a weakly efficient

solution for VFP and the theorem is proved.

Remark 25. It is easy to see that, in Theorem 24, if the
problem VFP is semistrictly semilocally V-type I-preinvex at
𝑥
0
with respect to (𝜂

𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, and (𝜙

𝑗
)
𝑗∈𝐽(𝑥

0
)
(instead of

semilocally V-type I-preinvex), the point 𝑥
0
will be efficient

for VFP.

Remark 26. As a particular case of Theorem 24, if 𝜂
𝑖
= 𝜃
𝑖
=

𝜂, ∀𝑖 ∈ N, and 𝜙
𝑗
= 𝜂, ∀𝑗 ∈ 𝐽(𝑥

0
), we obtain Theorem 2 of

Mishra et al. [5].

Preda [7],Mishra et al. [5], Niculescu [6], andMishra and
Rautela [4] have given sufficient efficiency conditions for a
feasible solution to be weakly efficient under various types
of (generalized) 𝜂-semilocally (type I-) preinvex (univex)
assumptions. In the following theorem, we give sufficient
efficiency conditions for a feasible solution to be efficient
involving generalized semilocally V-type I-preinvex func-
tions.

Theorem 27. Let 𝑥
0
∈ 𝑋 and suppose that there exist (2𝑁+𝐽)

vector functions 𝜂
𝑖

: 𝑋 × 𝐷 → R𝑛, 𝜃
𝑖

: 𝑋 × 𝐷 →

R𝑛, 𝑖 ∈ N, 𝜙
𝑗

: 𝑋 × 𝐷 → R𝑛, 𝑗 ∈ 𝐽(𝑥
0
), and vectors

𝜇 ∈ R𝑁
≥
, 𝜆 ∈ R𝑁

≧
(𝜆
𝑖
= 𝑓
𝑖
(𝑥
0
)/𝑔
𝑖
(𝑥
0
), 𝑖 ∈ N), and 𝛿 ∈ R𝐽

≧

such that relation (52) is satisfied. If any one of the following
conditions holds,

(a) VFP is semilocally strictly pseudo quasi-V-type I-
preinvex at 𝑥

0
with respect to (𝜂

𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, and

(𝜙
𝑗
)
𝑗∈𝐽(𝑥

0
)
and for 𝜇, 𝜆, and 𝛿;

(b) VFP is semilocally quasi strictly pseudo-V-type I-
preinvex at 𝑥

0
with respect to (𝜂

𝑖
)
𝑖∈N, (𝜃

𝑖
)
𝑖∈N, and

(𝜙
𝑗
)
𝑗∈𝐽(𝑥

0
)
and for 𝜇, 𝜆, and 𝛿,

then 𝑥
0
is an efficient solution for VFP.

Proof. Suppose that 𝑥
0
is not an efficient solution of VFP.

Then there exists a feasible solution 𝑥 ∈ 𝑋 of VFP such that
for some 𝑝 ∈ N

𝑓
𝑝 (𝑥)

𝑔
𝑝 (𝑥)

<
𝑓
𝑝
(𝑥
0
)

𝑔
𝑝
(𝑥
0
)
,

𝑓
𝑖 (𝑥)

𝑔
𝑖 (𝑥)

≦
𝑓
𝑖
(𝑥
0
)

𝑔
𝑖
(𝑥
0
)
, ∀𝑖 ∈ N, 𝑖 ̸= 𝑝,

that is, 𝑓
𝑝 (𝑥) < 𝜆

𝑝
𝑔
𝑝 (𝑥) , 𝑓

𝑖 (𝑥) ≦ 𝜆
𝑖
𝑔
𝑖 (𝑥) ,

∀𝑖 ∈ N, 𝑖 ̸= 𝑝,

(60)

which is equivalent to

𝑓
𝑝 (𝑥) − 𝜆

𝑝
𝑔
𝑝 (𝑥) < 𝑓

𝑝
(𝑥
0
) − 𝜆
𝑝
𝑔
𝑝
(𝑥
0
) , (61)

𝑓
𝑖 (𝑥) − 𝜆

𝑖
𝑔
𝑖 (𝑥) ≦ 𝑓

𝑖
(𝑥
0
) − 𝜆
𝑖
𝑔
𝑖
(𝑥
0
) ,

∀𝑖 ∈ N, 𝑖 ̸= 𝑝.

(62)

Since 𝜇 ≥ 0, from (61) and (62) we obtain

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖 (𝑥) − 𝜆

𝑖
𝑔
𝑖 (𝑥)] ≦

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖
(𝑥
0
) − 𝜆
𝑖
𝑔
𝑖
(𝑥
0
)] . (63)

With condition (a), by using the reverse implication in (9) (in
view of Definition 7), we deduce that

𝑁

∑

𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) − 𝜆

𝑖
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
))] < 0.

(64)
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From ℎ
𝑗
(𝑥
0
) = 0, 𝛿

𝑗
≧ 0, ∀𝑗 ∈ 𝐽(𝑥

0
) (in view ofDefinition 7),

we get

∑

𝑗∈𝐽(𝑥0)

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≦ 0. (65)

Now, by (64) and (65), we obtain

𝑁

∑

𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) − 𝜆

𝑖
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜃
𝑖
(𝑥, 𝑥
0
))]

+ ∑

𝑗∈𝐽(𝑥0)

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) < 0,

(66)

which is a contradiction to (52).
The proof of part (b) is very similar to the proof of part

(a), except that, for this case, by using the implication in (11)
in view of Definition 8, inequality (64) becomes not strict (≦)
and, by using the reverse implication in (12), inequality (65)
becomes strict (<). Thus we get the contradiction again, and
the theorem will be proved.

Remark 28. InTheorems 24 and 27, we do not need to require
that 𝑓 ≧ 0. Thus, in Example 29 that uses Theorem 27, it is
sufficient to have 𝑔 > 0.

In order to illustrate the obtained results, we will give an
example ofmultiobjective fractional optimization problem in
which the efficient solutionwill be obtained by the application
of Theorem 27, whereas it will be impossible to apply for this
purpose the sufficient efficiency conditions devoted to locally
Lipschitz functions or to 𝜂-semidifferentiable functions (with
the same 𝜂). In particular, the sufficient efficiency conditions
given in Mishra and Rautela [4], Mishra et al. [5], Niculescu
[6], and Preda [7] are not applicable.

Example 29. We consider the following multiobjective frac-
tional optimization problem:

Minimize
𝑓 (𝑥)

𝑔 (𝑥)
= (

𝑓
1 (𝑥)

𝑔
1 (𝑥)

,
𝑓
2 (𝑥)

𝑔
2 (𝑥)

,
𝑓
3 (𝑥)

𝑔
3 (𝑥)

) ,

subject to ℎ (𝑥) ≦ 0,

(67)

where 𝐷 = (] − √2,√2[)
2
⊂ R2, 𝑓, 𝑔 : 𝐷 → R3, and ℎ :

𝐷 → R defined by

𝑓
1
(𝑥
1
, 𝑥
2
) = {

0, if 𝑥
1
= 0 or 𝑥

2
= 0;

−1 + 𝑥
2

1
, otherwise,

𝑓
2
(𝑥
1
, 𝑥
2
) =

{{

{{

{

−1 + 𝑥
3

1
, if 𝑥

1
̸= 0 and 𝑥

2
= 0;

−1 + 𝑥
4

2
, if 𝑥

1
= 0 and 𝑥

2
̸= 0;

0, otherwise,

𝑓
3
(𝑥
1
, 𝑥
2
) = {

2, if 𝑥
1
= 0 and 𝑥

2
= 0;

2 + 𝑥
2

1
+ 𝑥
2

2
, otherwise,

𝑔
1
(𝑥
1
, 𝑥
2
) = {

1, if 𝑥
1
= 0 or 𝑥

2
= 0;

2 − 𝑥
2

2
, otherwise,

𝑔
2
(𝑥
1
, 𝑥
2
) =

{{

{{

{

2 − 𝑥
2

1
, if 𝑥

1
̸= 0 and 𝑥

2
= 0;

2 − 𝑥
2

2
, if 𝑥

1
= 0 and 𝑥

2
̸= 0;

1, otherwise,

𝑔
3
(𝑥
1
, 𝑥
2
) = 1, ∀𝑥 ∈ R

2
,

ℎ (𝑥
1
, 𝑥
2
) = {

0, if 𝑥
1
= 0 or 𝑥

2
= 0;

−1 + 𝑥
2

2
, otherwise.

(68)

The set 𝑋 of feasible solutions of problem is nonempty.
Observe that 𝑓

1
, 𝑓
2
, 𝑔
1
, 𝑔
2
, and ℎ are not continuous at 𝑥

0
=

(0, 0) ∈ 𝑋, and, consequently, they are not locally Lipschitz
at this point. In addition, clearly, the functions 𝑓

1
, 𝑓
2
, 𝑔
1
, 𝑔
2
,

and ℎ are not differentiable at 𝑥
0
but only semidifferentiable

functions at that point.
There exists no function 𝜂 : R2 × R2 → R2, 𝜂 ̸≡ (0, 0),

𝜇 ∈ R3
≥
, 𝜆 ∈ R3

≧
, and 𝛿 ∈ R

≧
such that

3

∑

𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂 (𝑥, 𝑥

0
)) − 𝜆

𝑖
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜂 (𝑥, 𝑥

0
))]

+ 𝛿(𝑑ℎ)
+
(𝑥
0
, 𝜂 (𝑥, 𝑥

0
)) ≧ 0, ∀𝑥 ∈ 𝑋.

(69)

Then, the sufficient efficiency conditions given in Mishra
and Rautela [4], Mishra et al. [5], Niculescu [6], and Preda
[7] are not applicable. However, there exist vector functions
𝜂
1
(𝑥, 𝑥
0
) = (1 + 𝑥

2

1
, 0), 𝜂

2
(𝑥, 𝑥
0
) = (1 + 𝑥

2

1
, 1 + 𝑥

2

2
),

𝜂
3
(𝑥, 𝑥
0
) = (𝑥

1
, 𝑥
2
), 𝜃
1
(𝑥, x
0
) = (1 + 𝑥

2

2
, 0), 𝜃

2
(𝑥, 𝑥
0
) =

(1 + 𝑥
2

2
, 1 + 𝑥

2

1
), 𝜃
3
(𝑥, 𝑥
0
) = (𝑥

2
, 𝑥
1
), 𝜙(𝑥, 𝑥

0
) = (0, 1 +

𝑥
2

2
) and scalars 𝜇

1
= 𝜇
2

= 0, 𝜇
3

= 1, 𝜆
1

= 𝜆
2

=

0, 𝜆
3

= 2, 𝛿 = 1 such that relation (52) is satisfied and
problem (67) is semilocally strictly pseudo quasi-V-type I-
preinvex at 𝑥

0
with respect to (𝜂

𝑖
)
𝑖=1,2,3

, (𝜃
𝑖
)
𝑖=1,2,3

, and 𝜙

and for 𝜇 = (𝜇
1
, 𝜇
2
, 𝜇
3
), 𝜆 = (𝜆

1
, 𝜆
2
, 𝜆
3
), and 𝛿. It follows

that, by Theorem 27, 𝑥
0
is an efficient solution for the given

multiobjective fractional optimization problem.

5. General Mond-Weir Type Duality

We associate, for VFP, a general Mond-Weir dual GMWD
given as follows:

(GMWD) Maximize 𝜓(𝑦, 𝜇, 𝜆, 𝛿, (𝜂
𝑖
)
𝑖∈N

, (𝜙
𝑗
)
𝑗∈𝐾

)

= 𝜆 = (𝜆
1
, . . . , 𝜆

𝑁
) ,

subject to
(70)

𝑁

∑

𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑦, 𝜂
𝑖
(𝑥, 𝑦)) − 𝜆

𝑖
(𝑑𝑔
𝑖
)
+
(𝑦, 𝜂
𝑖
(𝑥, 𝑦))]

+

𝑘

∑

𝑗=1

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑦, 𝜙
𝑗
(𝑥, 𝑦)) ≧ 0, ∀𝑥 ∈ 𝑋,

(71)

𝑓
𝑖
(𝑦) − 𝜆

𝑖
𝑔
𝑖
(𝑦) + 𝛿

𝑇

𝐽
0

ℎ
𝐽
0

(𝑦) ≧ 0, 𝑖 ∈ N, (72)
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𝛿
𝑇

𝐽
𝑠

ℎ
𝐽
𝑠

(𝑦) ≧ 0, 𝑠 = 1, 2, . . . , 𝛼, (73)

𝜇
𝑇
𝑒 = 1, 𝜇 ∈ R

𝑁

≥
, (74)

𝜆 ∈ R
𝑁

≧
, 𝛿 ∈ R

𝑘

≧
, 𝑦 ∈ 𝐷, (75)

𝜂
𝑖
: 𝑋 × 𝐷 󳨀→ R

𝑛
, 𝑖 ∈ N,

𝜙
𝑗
: 𝑋 × 𝐷 󳨀→ R

𝑛
, 𝑗 ∈ 𝐾,

(76)

where 𝛼 ≧ 1, 𝐽
𝑠
∩ 𝐽
𝑡
= 0 for 𝑠 ̸= 𝑡 and ⋃

𝛼

𝑠=0
𝐽
𝑠
= 𝐾. Here

𝛿
𝐽
𝑠

= (𝛿
𝑗
)
𝑗∈𝐽
𝑠

, ℎ
𝐽
𝑠

= (ℎ
𝑗
)
𝑗∈𝐽
𝑠

. Let 𝑌 be the set of all feasible
solutions of problem GMWD.

Now,we establish certain duality results betweenVFP and
GMWD by considering that, for all 𝑖 ∈ N, 𝑓

𝑖
, 𝑔
𝑖
(for all 𝑗 ∈

𝐽(𝑥
0
), ℎ
𝑗
) is semidifferentiable on 𝐷 along its own direction

𝜂
𝑖
(𝜙
𝑗
) instead of the same direction 𝜂.

Theorem 30 (weak duality). Assume that, for all feasible 𝑥 for
VFP and all feasible (𝑦, 𝜇, 𝜆, 𝛿, (𝜂

𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐾

) for GMWD,
any of the following holds:

(a) the problem VFP is semilocally extendedly pseudo
partially quasi-V-type I-preinvex at 𝑦 with respect to
{(𝜂
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐽
0

} and {(𝜙
𝑗
)
𝑗∈𝐽
𝑠

, 𝑠 = 1, 2, . . . , 𝛼} and
for 𝜇, 𝜆, and 𝛿 with 𝜇 > 0;

(b) the problem VFP is semilocally strictly extendedly
pseudo partially quasi-V-type I-preinvex at 𝑦 with
respect to {(𝜂

𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐽
0

} and {(𝜙
𝑗
)
𝑗∈𝐽
𝑠

, 𝑠 =

1, 2, . . . , 𝛼} and for 𝜇, 𝜆, and 𝛿;

(c) the problemVFP is semilocally extendedly quasi strictly
partially pseudo-V-type I-preinvex at 𝑦 with respect to
{(𝜂
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐽
0

} and {(𝜙
𝑗
)
𝑗∈𝐽
𝑠

, 𝑠 = 1, 2, . . . , 𝛼} and
for 𝜇, 𝜆, and 𝛿.

Then the following cannot hold:

𝑓
𝑖 (𝑥) − 𝜆

𝑖
𝑔
𝑖 (𝑥) ≦ 0 𝑓𝑜𝑟𝑒𝑎𝑐ℎ 𝑖 ∈ N, (77)

𝑓
𝑖
0

(𝑥) − 𝜆
𝑖
0

𝑔
𝑖
0

(𝑥) < 0 𝑓𝑜𝑟𝑠𝑜𝑚𝑒 𝑖
0
∈ N. (78)

Proof. By condition (a), since the problemVFP is semilocally
extendedly pseudo partially quasi-V-type I-preinvex at 𝑦with
respect to {(𝜂

𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐽
0

} and {(𝜙
𝑗
)
𝑗∈𝐽
𝑠

, 𝑠 = 1, 2, . . . , 𝛼} and
for 𝜇, 𝜆, and 𝛿, then

𝑁

∑

𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑦, 𝜂
𝑖
(𝑥, 𝑦)) − 𝜆

𝑖
(𝑑𝑔
𝑖
)
+
(𝑦, 𝜂
𝑖
(𝑥, 𝑦))]

+ ∑

𝑗∈𝐽
0

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑦, 𝜙
𝑗
(𝑥, 𝑦)) ≧ 0

󳨐⇒

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖 (𝑥) − 𝜆

𝑖
𝑔
𝑖 (𝑥)] + ∑

𝑗∈𝐽
0

𝛿
𝑗
ℎ
𝑗 (𝑥)

≧

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖
(𝑦) − 𝜆

𝑖
𝑔
𝑖
(𝑦)] + ∑

𝑗∈𝐽
0

𝛿
𝑗
ℎ
𝑗
(𝑦) ,

(79)

∑

𝑗∈𝐽
𝑠

𝛿
𝑗
ℎ
𝑗
(𝑦) ≧ 0 󳨐⇒ ∑

𝑗∈𝐽
𝑠

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑦, 𝜙
𝑗
(𝑥, 𝑦)) ≦ 0,

𝑠 = 1, 2, . . . , 𝛼.

(80)

From (73) and (80), we get

∑

𝑗∈𝐽
𝑠

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑦, 𝜙
𝑗
(𝑥, 𝑦)) ≦ 0, 𝑠 = 1, 2, . . . , 𝛼. (81)

Now we suppose contrary to the result of the theorem that
(77) and (78) hold. Hence if (77) and (78) hold for some
feasible 𝑥 for VFP and (𝑦, 𝜇, 𝜆, 𝛿, (𝜂

𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐾

) feasible for
GMWD, we obtain

𝑓
𝑖 (𝑥) − 𝜆

𝑖
𝑔
𝑖 (𝑥) ≦ 0 for each 𝑖 ∈ N, (82)

𝑓
𝑖
0

(𝑥) − 𝜆
𝑖
0

𝑔
𝑖
0

(𝑥) < 0 for some 𝑖
0
∈ N. (83)

According to (75) and the feasibility of 𝑥 for VFP, we have

𝛿
𝑇

𝐽
0

ℎ
𝐽
0

(𝑥) ≦ 0. (84)

Combining (82), (83), (84), and (72), we get

𝑓
𝑖 (𝑥) − 𝜆

𝑖
𝑔
𝑖 (𝑥) + 𝛿

𝑇

𝐽
0

ℎ
𝐽
0

(𝑥)

≦ 𝑓
𝑖
(𝑦) − 𝜆

𝑖
𝑔
𝑖
(𝑦) + 𝛿

𝑇

𝐽
0

ℎ
𝐽
0

(𝑦) for each 𝑖 ∈ N,

(85)

𝑓
𝑖
0

(𝑥) − 𝜆
𝑖
0

𝑔
𝑖
0

(𝑥) + 𝛿
𝑇

𝐽
0

ℎ
𝐽
0

(𝑥)

< 𝑓
𝑖
0

(𝑦) − 𝜆
𝑖
0

𝑔
𝑖
0

(𝑦) + 𝛿
𝑇

𝐽
0

ℎ
𝐽
0

(𝑦) for some 𝑖
0
∈ N.

(86)

Since 𝜇
𝑖
> 0 for any 𝑖 ∈ N, by (85), (86) and (74), we obtain

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖 (𝑥) − 𝜆

𝑖
𝑔
𝑖 (𝑥)] + ∑

𝑗∈𝐽
0

𝛿
𝑗
ℎ
𝑗 (𝑥)

<

𝑁

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑖
(𝑦) − 𝜆

𝑖
𝑔
𝑖
(𝑦)] + ∑

𝑗∈𝐽
0

𝛿
𝑗
ℎ
𝑗
(𝑦) ,

(87)

where by using the reverse implication in (79) it follows that

𝑁

∑
𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑦, 𝜂
𝑖
(𝑥, 𝑦)) − 𝜆

𝑖
(𝑑𝑔
𝑖
)
+
(𝑦, 𝜂
𝑖
(𝑥, 𝑦))]

+ ∑
𝑗∈𝐽
0

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑦, 𝜙
𝑗
(𝑥, 𝑦)) < 0.

(88)

Now, from (88) and (71) we obtain
𝛼

∑

𝑠=1

∑

𝑗∈𝐽
𝑠

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑦, 𝜙
𝑗
(𝑥, 𝑦)) > 0, (89)

which is a contradiction to (81).
The proofs of parts (b) and (c) are very similar to the

proof of part (a), except that, for part (b), since 𝜇 ≥ 0,
then inequality (87) becomes nonstrict (≦) and it follows that
inequalities (88) and (89) remain true and strict (<) and (>),
respectively.
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For part (c), inequality (81) becomes strict (<). Since 𝜇 ≥

0, then inequality (87) becomes nonstrict (≦) and it follows
that the inequalities (88) and (89) become nonstrict (≦) and
(≧), respectively. In the two cases, inequalities (89) and (81)
contradict each other always. This completes the proof of the
theorem.

Now we establish the following strong duality result
between VFP and GMWD.

Theorem 31 (strong duality). Let 𝑥
0
be a weakly efficient

solution for VFP and suppose that conditions (𝑖𝑖) and (𝑖𝑖𝑖)

of Theorem 20 are satisfied. Assume also that the function ℎ

satisfies the semiconstraint qualification at 𝑥
0
with respect to

(𝜙
𝑗
)
𝑗∈𝐽(𝑥

0
)
. Then there exist 𝜇 ∈ R𝑁

≥
, 𝜆
0
∈ R𝑁
≧
, and 𝛿 ∈ R𝑘

≧

such that (𝑥
0
, 𝜇, 𝜆
0
, 𝛿, (𝜂
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐾

) ∈ 𝑌 and the objective
functions of VFP and GMWD have the same values at 𝑥

0
and

(𝑥
0
, 𝜇, 𝜆
0
, 𝛿, (𝜂
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐾

), respectively. If, further, the weak
duality between VFP and GMWD in Theorem 30 holds, then
(𝑥
0
, 𝜇, 𝜆
0
, 𝛿, (𝜂
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐾

) ∈ 𝑌 is an efficient solution of
GMWD.

Proof. By Theorem 20, there exist 𝜇 ∈ R𝑁
≥
, 𝜆
0

∈ R𝑁
≧
, and

𝛿 ∈ R𝐽
≧
such that

𝑁

∑

𝑖=1

𝜇
𝑖
[(𝑑𝑓
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
)) − 𝜆

0

𝑖
(𝑑𝑔
𝑖
)
+
(𝑥
0
, 𝜂
𝑖
(𝑥, 𝑥
0
))]

+ ∑

𝑗∈𝐽(𝑥0)

𝛿
𝑗
(𝑑ℎ
𝑗
)
+

(𝑥
0
, 𝜙
𝑗
(𝑥, 𝑥
0
)) ≧ 0, ∀𝑥 ∈ 𝑋,

(90)

with 𝜆
0

𝑖
= 𝑓
𝑖
(𝑥
0
)/𝑔
𝑖
(𝑥
0
), 𝑖 ∈ N. The vector 𝜇 may be

normalized according to 𝜇𝑒 = 1, 𝜇 ≥ 0. By setting for all
𝑗 ∈ 𝐾 − 𝐽(𝑥

0
), 𝛿
𝑗
= 0 and 𝜙

𝑗
≡ 0, we obtain 𝛿

𝑗
ℎ
𝑗
(𝑥
0
) = 0 for

all 𝑗 ∈ 𝐾 and it follows that (𝑥
0
, 𝜇, 𝜆
0
, 𝛿, (𝜂
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐾

) ∈

𝑌. Clearly the objective functions of VFP and GMWD
have the same values at 𝑥

0
and (𝑥

0
, 𝜇, 𝜆
0
, 𝛿, (𝜂
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐾

),
respectively.

Next, suppose that (𝑥
0
, 𝜇, 𝜆
0
, 𝛿, (𝜂
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐾

) ∈ 𝑌

is not an efficient solution of GMWD. Then there
exists (𝑦, 𝜇, 𝜆, 𝛿, (𝜂

𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐾

) ∈ 𝑌 such that 𝜆
0

=

(𝑓
1
(𝑥
0
)/𝑔
1
(𝑥
0
), . . . , 𝑓

𝑁
(𝑥
0
)/𝑔
𝑁
(𝑥
0
)) ≤ 𝜆 = (𝜆

1
, . . . , 𝜆

𝑁
),

which contradicts the weak duality Theorem 30. Hence
(𝑥
0
, 𝜇, 𝜆
0
, 𝛿, (𝜂
𝑖
)
𝑖∈N, (𝜙

𝑗
)
𝑗∈𝐾

) ∈ 𝑌 is indeed an efficient
solution of GMWD.

6. Conclusion

In this paper, we have defined new concepts of semilocally
V-type I-preinvex functions to study efficiency and duality
for constrained fractional multiobjective programming. New
Fritz John type necessary and Karush-Kuhn-Tucker type
necessary and sufficient efficiency conditions are obtained
for a feasible point to be weakly efficient or efficient under
various types of generalized semilocally V-type I-preinvex
requirements. Furthermore, a general Mond-Weir dual is
formulated and weak and strong duality results are proved.

The results obtained in this paper generalize and extend
previously known results in this area.
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153–165, 1997.

[30] V. Preda, I. M. Stancu-Minasian, and A. Batatorescu, “Optimal-
ity and duality in nonlinear programming involving semilocally
preinvex and related functions,” Journal of Information &
Optimization Sciences, vol. 17, no. 3, pp. 585–596, 1996.

[31] I. M. Stancu-Minasian, “Optimality conditions and duality in
fractional programming involving semilocally preinvex and
related functions,” Journal of Information & Optimization Sci-
ences, vol. 23, no. 1, pp. 185–201, 2002.

[32] H. Slimani and M. S. Radjef, “Duality for nonlinear program-
ming under generalized Kuhn-Tucker condition,” International
Journal of Optimization: Theory Methods and Applications, vol.
1, no. 1, pp. 75–86, 2009.

[33] H. Slimani andM. S. Radjef,Multiobjective Programming under
Generalized Invexity: Optimality, Duality, Applications, LAP
Lambert Academic Publishing, Saarbrücken, Germany, 2010.

[34] H. Slimani and M. S. Radjef, “Nondifferentiable multiobjective
programming under generalized 𝑑

𝐼
-invexity,” European Journal

of Operational Research, vol. 202, no. 1, pp. 32–41, 2010.
[35] I. Ahmad, “Efficiency and duality in nondifferentiable multiob-

jective programming involving directional derivative,” Applied
Mathematics, vol. 2, no. 4, pp. 452–460, 2011.
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