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Abstract. We provide sufficient conditions for the strong stability and the uni-
form ergodicity for the discrete-time waiting process describing the GI/GI/1
single-server queue with general patience time distribution. The rate of con-
vergence to the stationarity and the potential of the chain are derived also.
In addition, we obtain upper bounds of the deviation of the stationary and
transition characteristics under perturbation of patience time distribution. The
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customers which leads to the GI/GI/ 1 system with impatient customers is also
considered.
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1. Introduction

In modelling practical problems, the real system is often generally consid-
ered as a complex system which depends in complicated way on its parameters.
Moreover, the parameters of the complex system are not often known exactly
because they are obtained by statistical methods from empirical data. There-
fore, the analysis of this type of complex systems does not allow us to obtain
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explicitly analytical formula. Also, if we are able to establish analytical results
they are not generally useful in practice.

For this, we try usually to replace the complex system, by another which is
more simpler in structure and/or component, and close to it in some particular
sense. Thus a real complex system can be considered as a simpler one, with
perturbed parameters, which can be considered as an ideal system. However,
in order to justify these approximations and estimate the resultant error, it is
essentially of interest and important to specify the kind and the type of this
perturbation, and so the stability problem arises. In particular, the stability
problem in queueing theory arises to establish the domain within which an ideal
queueing system may be considered as a good approximation, in some sense, to
the real complex queueing system under consideration.

The mentioned approximation must be precise in some sense. For this,
numerous methods to investigate the stability problem are developed such as
the metric method [48], test function method [23], method of the proximity
points [22], renovating events or renewal method [7], weak convergence method
applied to queueing system [42], stability method for continuous-time nonhomo-
geneous countable Markov chain [47], method of the uniform stability applied
to a finite irreducible Markov chain [21] and the strong stability method for
homogeneous Markov chain on a general state space [26]. In particular, we in-
vestigate what would be the effect on the stationary characteristics of Markov
chain under the perturbation of its parameters, with respect to a given norm.
These results are called perturbation bounds and are generally established in
an explicit form. For this, various perturbation bounds of Markov chains are
considered in literature. The first kind of results is devoted to finite Markov
chains and obtained by using matrix analysis, see a nice review by Cho and
Meyer [11] and some recent articles [19,20,27–30,37,40]. The latter results con-
cern the estimate of the deviation of stationary distributions with respect to the
total variation norm and the component-wise perturbation bounds. The second
kind of results is devoted to general state Markov chains where probabilistic
and operator-theoretic methods are used. More precisely, the results of the first
group concern the estimates of the stationary and transition characteristics of
homogeneous and inhomogeneous general state Markov chains with respect to
the total variation norm (see Mitrophanov [33, 34] and Anisimov [3]). Another
group is devoted to the same estimates with respect to a large class of norms (see
Kartashov [24–26], Aı̈ssani and Kartashov [2], Mouhoubi and Aı̈ssani [36, 38]).
These perturbation bounds are derived in terms of the ergodicity coefficients
of the iterated transition kernel [3, 25, 33, 34], the rate of convergence to the
stationarity [34] and the residual kernel [2, 24, 36]. Note that some numerical
methods to compute the stationary distribution are considered by using the
series expansion (see Heidergott and Hordijk [15] and Heidergott et al. [16,17]).

The stability theory of queueing systems is devoted to establishing which
model may be used as a good approximation of the real system under consid-
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eration. A class of queueing systems that is of particular interest are systems
with impatient customers used usually as models which describe some com-
puter systems and telecommunication networks. Some particular systems are
investigated in [4, 5, 8, 9, 13,31,39,43–46].

In this paper, we consider the embedded Markov chain, describing the wait-
ing time in a GI/GI/1 queueing system with general impatient time distribu-
tion. To the best of our knowledge, there exist few papers which are devoted
to investigation of qualitative properties of this process. Thus, Charlot and
Pujolle in [10] consider the sufficient condition under which this process is re-
current in Harris sense. In the same way, Baccelli et al. in [4] have established
a δ-irreducibility (see [32] for the definition of the irreducibility with respect to
a measure), where δ represents the degenerate measure concentrated on zero.
They also derived for the particular M/G/1 system with impatient customers an
integral equation for the virtual waiting time. Moreover, they have established
a relation between actual and virtual waiting-time distribution functions. How-
ever, transition and stationary characteristics of this process are not established
if the impatient distribution function is not exponential and the distributions
of the inter-arrival and service times are not of particular form.

The first purpose of this article is to clarify the sufficient conditions under
which the embedded waiting time Markov chain in GI/GI/1 queueing system
with general impatient time distribution is uniformly ergodic and strongly sta-
ble with respect to a judicious weighted norm. Moreover, we estimate the rate
of convergence to the stationarity and derive the expression for the potential of
the considered chain. Note that the uniform ergodicity is established using a
special criterion, which will be given below, and not by considering the usual
drift condition (see Meyn and Tweedie [32]). Also a straightforward proof is
given to obtain the rate of convergence to the stationarity. The second goal is
to show that under some assumptions, the stationary distribution of the waiting
time in the perturbed GI/GI/1 queueing system with a general impatient time
distribution can be approximated as such in the ideal system under considera-
tion, which has the same structure but a different impatient time distribution.
In some applications, the second model can be considered as the ideal one with
exponential impatient time distribution since, in this case, some characteristics
of the ideal system are well known. Furthermore, after clarifying the approxima-
tion conditions, we establish the uniform ergodicity and strong stability inequal-
ities with exact computation of the constants. Similar estimates are derived for
the approximation of the characteristics of the perturbed GI/GI/1 queueing
system with general impatient time distribution by those of the ideal GI/GI/1
queueing system with ordinary customers. Note that the strong stability esti-
mates for the Lindley waiting process in the GI/GI/1 queueing system with
ordinary customers have been considered by Kartashov [26] and by Mouhoubi
and Aı̈ssani [35].
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The paper is organized as follows. The next section presents a brief descrip-
tion of the model. Section 3 presents basic facts on strong stability method
and some related results. The uniform ergodicity and the strong stability is dis-
cussed in Section 4. Uniform ergodicity estimates and some related properties
are considered in Section 5. In Subsection 6.1, we perturb the patience time dis-
tribution in order to estimate the transient and stationary characteristics of the
queue. The later estimates are also investigated under a structural perturbation
in Subsection 6.2. Finally, some concluding remarks have been done.

2. Description of the model

We consider a general single server queue with impatient customers. That
is, some customers leave the system if their waiting time exceeds a specified
time interval. The description of the waiting time process in this queueing
system is classically known (see Baccelli et al. [4]). Suppose that the customers
arrive to the FIFO GI/GI/1 single-server queue system and the server does
not stop freely the service. The customers are indexed by Z+ = {0, 1, 2, . . .}.
Let us denote by An the inter-arrival time between the (n − 1)-th and the n-
th customer. The 0-th customer arrives at time 0. The n-th customer, for
n ≥ 1, arrives at time Tn =

∑n
i=1Ai. In this case, we can observe that An+1 =

Tn+1−Tn for all n ≥ 0, where T0 = 0. Moreover, let us denote by Bn the service
time of the (n − 1)-th customer and by Cn the patient time of the (n − 1)-th
customer. Assume that the three sequences (An)n, (Bn)n and (Cn)n of the
random variables are independent. Also we assume that each of those sequences
is formed with the independent identically distributed random variables. It is
well known [4] that the embedded Markov chain W = {Wn : n = 0, 1, . . .} of the
waiting time process is given by the following non monotone recursive equation

Wn+1 =

{
(Wn +Bn+1 −An+1)+ if Wn < Cn+1,

(Wn −An+1)+ if Cn+1 ≤Wn.

In the rest of this paper we denote by η and ϑ the probability distribution func-
tions (defined on (R+,BR+

)) of An and Bn respectively, and by γ the probability

distribution function of Cn (defied on (R+,BR+
)). We consider

a = ess. supA1 = inf{t ≥ 0 : η([0, t]) = 1},

b = ess. inf B1 = sup{t ≥ 0 : ϑ([t,+∞]) = 1}.

It is known that the process W is a homogeneous Markov process (see [10]).
Then, in order to ensure the ergodicity of the process, it is sufficient to assume
the following condition (see [4])

P(C1 = +∞)E(B1) < E(A1) and b− a < 0. (2.1)
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In this case, we denote by π the unique invariant probability measure of the
transition kernel P of the chain W . The transition kernel {P (x,Γ), x ∈ R+,Γ ∈
B(R+)} of the Markov chain W is given for all (x,Γ) ∈ R+ ×B(R+) as follows:

P (x,Γ) = (1−γ(x))

∫
R+×R+

1IΓ([x+y−z]+)dϑ(y)dη(z)+γ(x)

∫
R+

1IΓ([x−z]+)dη(z)

where 1IΓ is the indicator function of the measurable set Γ. In the remainder of
this paper, we assume the following Cramér condition:

m = E[ξ1] < 0, ∃β0 > 0 : E(exp (β0ξ1)) <∞ (2.2)

where ξk = Bk − Ak for all k ≥ 0. Note that the condition m = E[ξ1] < 0
implies P(C1 = +∞)E(B1) < E(A1).

3. Preliminaries and notations

Note that all notations used in this paper are introduced in many references
[26,35,38].

Let W = (Wn, n ∈ N) be a homogenous Markov chain, describing the pre-
vious system, taking values in a measurable space E = R+ and defined on
the phase space (R+,B(R+)), where E = B(R+) is the Borel σ-algebra. We
introduce the trial function v : E −→ [1,+∞[ such that v(x) = exp (βx) for
all x ∈ R+ where β is a nonnegative parameter. Furthermore, we provide the
space mE of finite measures on the σ-algebra E with a norm ‖ · ‖β which has
the following form:

‖µ‖β =

+∞∫
0

exp(βx)|µ|(dx),

where |µ| is the full variation of the measure µ.
For the Banach subspace Mβ = {µ ∈ mE : ‖µ‖β < ∞}, we introduce the

dual space Jβ of measurable functions on E. This norm induces a corresponding
norm in the space Jβ (with the finite norm) namely,

‖f‖β = sup
x≥0

exp(−βx)|f(x)| for all f ∈ Jβ (3.1)

as well as a norm in the space Bβ of kernels Q which satisfy MβQ ⊂Mβ (and
with finite norm), namely,

‖Q‖β = sup
x≥0

exp(−βx)

+∞∫
0

|Q|(x, dy) exp(βy). (3.2)
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The action of each transition kernel Q on µ ∈ Mβ and f ∈ Jβ is defined
respectively for all x ∈ E and Γ ∈ E as follows

µQ(Γ) =

+∞∫
0

Q(x,Γ)µ(dx) (3.3)

and

Qf(x) =

+∞∫
0

Q(x, dy)f(y). (3.4)

Moreover, for all µ ∈ Mβ and f ∈ Jβ , the symbols µf and f ⊗ µ denote
respectively the integral and the kernel defined as follows:

µf =

+∞∫
0

f(y)µ(dx), (3.5)

(f ⊗ µ)(x,Γ) = f(x)µ(Γ), for all (x,Γ) ∈ R+ × B(R+). (3.6)

For two kernels Q and K on R+ × B(R+), we define their product QK as the
kernel

QK(x,Γ) =

+∞∫
0

Q(x, dy)K(y,Γ), for all (x,Γ) ∈ R+ × B(R+). (3.7)

When the Markov chain W is ergodic (admits a unique invariant probability),
the stationary projector of the chain, Π, is given by the following identity:
Π = 1⊗π, where π is the invariant probability measure of the transition kernel
P and 1 is the function identically equal to the unit [26].

Let us introduce the concept of the strong stability and the uniform ergod-
icity of the homogeneous Markov chain W .

Definition 3.1. The chain W is said to be strongly stable with respect to the
norm ‖ · ‖β if

1) ‖P‖β <∞.

2) Each transition kernel Q ∈ Bβ in some neighborhood {Q : ‖Q − P‖β <
ε} has a unique invariant probability measure ν = ν(Q) ∈ Mβ with
‖π − ν‖β −→ 0, uniformly in this neighborhood, as ‖Q− P‖β −→ 0.

Definition 3.2. The aperiodic Markov chain W is said to be uniformly ergodic
with respect to the weighted norm ‖ · ‖β if P t −→ Π in the induced operator
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weighted norm. More precisely, this is equivalent to the fact that there exist
nonnegative constants ω and ε such that for all t ≥ 0 we have

‖P t −Π‖β ≤ ζεt.

The parameter ε is called an estimate of the rate of convergence and evaluates
the speed of convergence to stationarity.

Recently, in [41] an asymptotic analysis by a nonlinear diffusion approxima-
tion was established. However, the rate of convergence (uniform ergodicity) and
the sensitivity of the system parameters to small perturbations (strong stability)
were not considered. Moreover, the approximations are obtained under some
restrictions on the hazard rate function of the patience time distribution. For
example, the distributions whose hazard rate tends to infinity on its support
(see assumption 2 in [41]) were avoided. On the other hand, the diffusion ap-
proximation was established without Cramér condition (2.2). However, Cramér
condition (2.2) is appropriate, because the kindness results in this paper (as
compared to [41]) will require this. The same remarks may be done for the
results obtained in [18].

Using our notations, we shall use in the sequel, the following results obtained
for a large class of norms but expressed in this paper with respect to the weighted
norm ‖ · ‖β .

Theorem 3.1 (Theorem 2.3, [26]). Assume that a Markov chain X with the
regular transition operator P has a unique invariant probability measure π that
satisfies the following conditions

(A) ‖P‖β <∞.

(B) There exist a natural n, a nonnegative measure α ∈Mβ and a nonnegative
function h ∈ Jβ such that πh > 0, αh > 0, α1 = 1 and the residual kernel
T = Pn − h⊗ α is nonnegative.

Then the Markov chain X is uniformly ergodic, strongly stable in the norm ‖·‖β
and aperiodic if and only if for some n, α and h from (B), we have

(C) ‖Tm‖β ≤ ρ for some m ≥ 1 and ρ < 1.

Furthermore, the uniform ergodicity and aperiodicity of the chain X under
condition (A) imply that condition (C) is fulfilled for all n, α and h satisfying
condition (B).

Remark 3.1. An other proof of this result is given by Mouhoubi and Aı̈ssani
in [36].

Remark 3.2. Observe that condition (B) is equivalent to the α-irreducibility of
the Markov chain X.
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Theorem 3.2 (Theorem 3.8, [26]). Let conditions (A), (B) and (C) of The-
orem 3.1 be satisfied for m = n = 1 with σ = ‖Π‖β <∞. Then any stochastic
transition kernel Q = P + ∆ from a neighborhood

‖Q− P‖β = ‖∆‖β = ε <
1− ρ

1 + σρ
= ε0

has a unique invariant probability measure ν and

‖ν − π‖β =
‖π‖β
ε0 − ε

ε. (3.8)

Theorem 3.3 (Theorem 6, [38]). Let conditions (A), (B) and (C) of The-
orem 3.1 be satisfied for m = n = 1. Then any transition kernel Q from a
neighborhood

‖Q− P‖β = ‖∆‖β < 1− ρ

has a unique invariant probability measure ν = µ∆/(µ∆1) where the measure
µ∆ is equal to

∑+∞
i=0 α(∆ + T )i. Moreover, we have the following stability

estimate

‖ν − π‖β ≤
‖α‖β

(1− ρ− ‖∆‖β)2

(
1 +
‖α‖β‖1‖β

1− ρ

)
‖∆‖β , (3.9)

where α and T are introduced in Theorem 3.1.

4. Ergodicity and stability analysis

We start our investigation by establishing sufficient conditions of the strong
stability of the Markov process W . Before this, let us give a similar canonical
decomposition of the transition kernel P as stated in Theorem 3.1. For all
(x,Γ) ∈ R+ × B(R+), let us denote h(x) = (1 − γ(x))h1(x) + γ(x)h2(x) where
h1(x) = P(x + B1 − A1 ≤ 0), h2(x) = P(x − A1 ≤ 0) and T (x,Γ) = (1 −
γ(x)) (P(0 < x+ ξ1 ∈ Γ) + γ(x)P(0 < x−A1 ∈ Γ)), where γ(x) = P(C1 ≤ x).
Moreover, W x

n represents the waiting time Wn conditioning W0 = x for all
x ∈ R+ and n ≥ 0.

The following result may be obtained by a simple calculus and so the proof
is omitted.

Lemma 4.1. The transition kernel P admits the following canonical decompo-
sition

P (x,Γ) = T (x,Γ) + h(x)δ(Γ), (4.1)

where δ is the Dirac measure concentrated on zero.

Remark 4.1. It is easy to see that T (x,Γ) = P(0 < W x
1 ∈ Γ) and h(x) =

P(W x
1 = 0) for all (x,Γ) ∈ R+ × B(R+).
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Let us denote by τx = inf{n ≥ 1 : W x
n = 0} the first return time to state 0

where we set by convention inf ∅ = +∞. We have for all t ≥ 0

T t(x,Γ) = P(τx > t,W x
t ∈ Γ)

and
T th(x) = P(τx = t+ 1).

Therefore, we obtain for all t ≥ 1

pt = δT t−1h(x) = T t−1h(0) = P(τ0 = t).

We observe easily that for t ≥ 2, we have

λ(t) = P(W 0
t−1 = 0) =

t−1∑
k=1

P(τ0 = k,W 0
t−1 = 0)

=

t−1∑
k=1

P(τ0 = k)P(W 0
t−1−k = 0) =

t−1∑
k=1

λ(t− k)pk.

Moreover, it is obvious that λ(1) = 1 and λ(t) = 0 for all t ≤ 0. Hence, the
sequence λ(t) = P(W 0

t−1 = 0) satisfies the discrete renewal equation below{
λ(t) =

∑t−1
k=1 λ(k)pt−k if t ≥ 2,

λ(1) = 1, λ(t) = 0 if t ≤ 0.
(4.2)

On the other hand, using the classical decomposition with respect to the first
entrance, from the last exit decomposition [12] we obtain

P t(x,Γ) = P(W x
t ∈ Γ) = P(W x

t ∈ Γ, τx > t) + P(W x
t ∈ Γ, τx ≤ t)

= T t(x,Γ) +

t∑
k=1

P(τx = k,W x
t ∈ Γ)

= T t(x,Γ) +

t∑
k=1

P(τx = k,W 0
t−k ∈ Γ). (4.3)

However, for all s ≥ 1 we get

P(W 0
s ∈ Γ)

=

s∑
k=0

P(W 0
k = 0,W 0

k+1 > 0,W 0
k+2 > 0, . . . ,W 0

s−1 > 0, 0 < W 0
s ∈ Γ)

=

s∑
k=0

P(W 0
k = 0)P(W 0

1 > 0,W 0
2 > 0, . . . ,W 0

s−k−1 > 0, 0 < W 0
s−k ∈ Γ)

=

s∑
k=0

λ(k)δT s−k(Γ).
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This yields the following equality

P t(x,Γ) = T t(x,Γ) +

t∑
k=1

T k−1h(x)

t−k∑
s=0

λ(s)δT t−k−s(Γ).

Finally, we get for all t ≥ 1 the decomposition below

P t = T t +
∑
i,j≥0

i+j≤t−1

λ(t− i− j)T ih⊗ δT j . (4.4)

Remark 4.2. Using a different sketch of proof, the authors have established a
similar decomposition as the identity (4.3) for general Markov chains which
admit the decomposition given in condition (B) [36].

Observe that P(ξ1 ≤ 0) > 0 and so p1 = δh = h(0) = P(ξ1 ≤ 0) > 0. Hence,
we conclude that d = gcd{n : pn > 0} = 1 and consequently the probability
distribution is aperiodic. So from the local renewal Theorem [14] we get

lim
t→+∞

λ(t− i− j) = λ =
1∑

k≥0 kpk
=

1

E[τ0]
= π({0}).

Furthermore, according to Kalashnikov [23], there exist κ ∈ [0, 1[ and M > 0
such that for all t ≥ 0 we have

|λ(t)− λ| ≤Mκt. (4.5)

Finally, we need the following simple result.

Lemma 4.2. Assume that condition (2.1) holds true. Then, we have πh =
π({0}) = λ where π is the unique stationary probability distribution of the
Markov chain W .

Proof. The stationary probability measure π is the unique invariant probability
for the transition operator P , i.e., π verifies the functional equation πP = π.
Using the canonical decomposition (4.1), we deduce that

(πh)δ = π(I − T )

where I is the unit kernel in Bβ , that is for all (x,Γ) ∈ R+ × B(R+), we have
IP (x,Γ) = PI(x,Γ) = P (x,Γ). In particular, we obtain

(πh)δ({0}) = π(I − T )({0}).

Since πI({0}) = π({0}) and T (x, {0}) = P(0 < W x
1 ∈ {0}) = 0, we obtain

πT ({0}) =

∫
E

π(dx)T (x, {0}) = 0.
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Finally, we have
(πh)δ({0}) = πh = π({0})

and the lemma is established. 2

The following result establishes the uniform ergodicity and the strong stability
of the embedded Markov chain W .

Theorem 4.1. Assume that the Cramér condition (2.2) is satisfied. Then,
there exits 0 < l ≤ +∞ such that for all β ∈]0, l[, the process W is aperiodic,
uniformly ergodic and strongly stable with respect to the norm ‖ · ‖β .

Proof. We must verify the assertions of Theorem 3.1.

1) From the expression of the kernel T , it is easy to see that T ≥ 0, i.e., T is
a non negative kernel.

2) We have

Tv(x) = E[eβW
x
1 1I{Wx

1 >0}]

= E[eβ(x+ξ1)1I{C1≥x,Wx
1 >0} + eβ(x−A1)1I{C1<x,Wx

1 >0}]

≤ eβxE[exp (βξ1)] = E[exp (βξ1)]v(x).

Setting ρ(β) = E[exp (βξ1)], we obtain Tv(x) ≤ ρ(β)v(x) for all x ∈ R+

and therefore ‖T‖β ≤ ρ(β). Further, we have ρ(0) = 1 and ρ′(0) = E(ξ1) =
m < 0. However, ρ(β) is a convex function. Then it exists l > 0 such that
ρ(l) = 1 and for all β ∈]0, l[ we get ρ(β) < 1. Hence, the condition (C) is
fulfilled for m = 1.

3) We verify easily that h ∈ J +
β , δ ∈ M+

β , δh = h(0) > 0, δ1 = 1 and
according to Lemma 4.2, we get πh = π({0}) > 0. The Cramér condition
implies that ‖P‖β <∞.

Then from Theorem 3.1 we get the wanted result. 2

5. Uniform ergodicity estimates

We start our investigation by the intermediate following result.

Lemma 5.1. Under the condition (2.2), the stationary projector Π of the chain
W has the following representation

Π = π({0})
∑
i≥0

∑
j≥0

T ih⊗ δT j

where π is the unique probability measure of the chain W, δ and h are introduced
in (4.1).
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Furthermore, the generalized potential R of the chain W coincides with the
following σ-finite kernel

R = (I −Π)RT (I −Π), (5.1)

where RT = (I − T )−1.

Proof. Since π is an invariant measure for the transition operator P , we get
Πf(x) = πf for all f ∈ J + where Π = 1⊗ π. Therefore, we have

πf =
1

E(τ0)
E

[
τ0−1∑
k=0

f(W 0
k )

]
= π({0})E

[
τ0−1∑
k=0

f(W 0
k )

]

= π({0})E

[
+∞∑
k=0

f(W 0
k )1τ0>k

]

= π({0})
+∞∑
k=0

T kf(0).

However, since ∑
i≥0

∑
j≥0

T ih(x) =
∑
i≥0

P(τx = i+ 1) = 1,

we obtain ∑
j≥0

T jf(0) =
∑
j≥0

δT jf

=
(∑
j≥0

δT jf
)

(
∑
i≥0

T ih(x))

=
∑
i≥0

∑
j≥0

T ih(x)δT jf

=
(∑
i≥0

∑
j≥0

T ih⊗ δT j
)

(f)(x).

From relations (5.24) and (5.29) in [26], for n = 1 and C = {0}, we obtain
R − (I − Π)RT (I − Π) = (I − Π)QRqRT (I − Π), where Rq is the potential
of the chain on (C,C ∩ E) = ({0}, {0}) with the transition kernel S(x,A) =
Q(x,A ∩ {0}). Here Q(x,A) = Px(Wτ0 ∈ A) with the Markov moment τ0 =
inf{n ≥ 1 : Wn = 0}. This chain has a unique invariant measure π̃ = δ. Thus,
Rq is equal to zero, since it coincides with the potential of the Markov chain W
at the single-point set C = {0}. The lemma is therefore proved. 2

The following result gives an estimate of ‖P t−Π‖β and the rate of convergence
in the limit uniform ergodicity theorem.
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Theorem 5.1. Assume that conditions of Theorem 4.1 are fulfilled. For all
θ ∈] max(κ, ρ(β)), 1[, β ∈]0, l[ and t ≥ 0, we have

‖P t −Π‖β ≤ ρ(β)t +
θt+2

(θ − ρ(β))2
max{π({0}),Λ(θ)}. (5.2)

In particular, there exist ζ ≥ 1 and ε < 1 such that for all t ≥ 0, we get

‖P t −Π‖β ≤ ζεt, (5.3)

where Λ(θ) = supt≥0 |λ(t)− π({0})| θ−t, l and κ are introduced in Theorem 4.1
and the inequality (4.5) respectively, and λ(t) is defined by the equation (4.2).

Proof. Using Lemma 5.1, we have

‖P t −Π‖β =
∥∥∥T t +

∑
i≥0

∑
j≥0

(λ(t− i− j)− λ) T ih⊗ δT j
∥∥∥
β

≤ ρ(β)t + θt sup
i≥0,j≥0

(
θi+j−t|λ(t− i− j)− π({0})|

)
Ξ

where
Ξ =

∑
i≥0

∑
j≥0

θ−i‖T ih‖β ‖δT j‖β θ−j .

Since ‖T‖β < ρ(β) < 1, ‖δ‖β = 1 and ‖h‖β ≤ 1, we obtain the obvious estima-
tions ∑

i≥0

θ−i‖T ih‖β ≤
1

1− ρ(β)θ−1
, (5.4)

∑
j≥0

θ−j‖δT j‖β ≤
1

1− ρ(β)θ−1
. (5.5)

Let us denote Φt(θ) = θt supi≥0,j≥0[θi+j−t|λ(t− i− j)− π({0})|], then we have

Φt(θ) = θt max
{

sup
i+j<t

H(i, j, t), sup
i+j≥t

H(i, j, t)
}

≤ θt max
{
π({0}), sup

s≥0
θ−s|λ(s)− π({0})|

}
,

with H(i, j, t) = θi+j−t|λ(t− i− j)− π({0})|. Hence, we get

Φt(θ) ≤ θt max
{
π({0}), sup

s≥0
θ−s|λ(s)− π({0})|

}
. (5.6)

Moreover, the quantity Λ(θ) = sups≥0 |λ(s) − π({0})| θ−s is finite. Effectively,
we have from the inequality (4.5)

|λ(s)− π({0})| = |λ(s)− λ| = O(κs).
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However, since % = θ−1κ < 1, we obtain θ−s|λ(s)−λ| = o(%s). From estimations
(5.4)–(5.6), the estimate (5.2) is established. The inequality (5.3) is a simple
consequence of (5.2), where

ζ = 1 +
ε2

(ε− ρ(β)2
max{(π({0})),Λ(ε)} > 1 (5.7)

and ε is any nonnegative real number such that max(κ, ρ(β)) < ε < 1. 2

Remark 5.1. Note that from the proof, the hypothesis κ < θ is a sufficient
condition to ensure the finiteness of the quantity Φt(θ). However, the inequality
holds even if this condition is not satisfied provided that Φt(θ) is finite.

Let us give an estimate for the norm of the invariant stationary measure π and
the generalized potential R.

Theorem 5.2. Under conditions and notations of Theorem 5.1, we have

‖π‖β =

+∞∫
0

eβxπ(dx) ≤ π({0})
1− ρ(β)

(5.8)

and

‖R‖β ≤ min
( ζ

1− ε
,

(1 + π({0})− ρ(β))2

(1− ρ(β))3

)
where ε ∈]κ, 1[ and ζ is given by relation (5.7).

Proof. The identity (4.1) yields the relation π = (πh)δRT and consequently we
obtain

‖π‖β ≤ π({0}) ‖RT ‖β ≤
π({0})

1− ρ(β)
.

The estimate (5.8) is so proved.
From Theorem 1.4 in [26] and using Theorem 4.1, the generalized potential

coincides analytically with the sum of an operator series as follows

R =
∑
t≥0

(P t −Π). (5.9)

Hence, we obtain from the inequality (5.3) the following estimate

‖R‖β ≤
ζ

1− ε
. (5.10)

Moreover, from the identity (5.1), we get

‖R‖β ≤
(1 + ‖π‖β)2

1− ρ(β)
. (5.11)
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Therefore, from estimates (5.8) and (5.11), we conclude that

‖R‖β ≤
(1 + π({0})− ρ(β))2

(1− ρ(β))3
. (5.12)

Finally, combining the estimates (5.10) and (5.12), we complete the proof. 2

The following result gives an estimate of a deviation between some mean of
functionals of the Markov chain over t steps and of the stationary distribution
π.

Theorem 5.3. Assume that conditions of Theorem 4.1 are fulfilled. Then for
all β ∈]0, l[, as t→ +∞, the asymptotic expansion

Ex[f(Wt),Wt ∈ Γ]−
∫
Γ

f(y)π(dy) = O(eβxεt) (5.13)

holds true uniformly with respect to x ≥ 0, Γ ∈ B+ and for all functions f such
that ‖f‖β <∞. More precisely, we get∣∣∣∣Ex[f(Wt),Wt ∈ Γ]−

∫
Γ

f(y)π(dy)

∣∣∣∣ ≤ ζ ‖f‖β εt. (5.14)

In particular, we have for all t ≥ 0∣∣Ex[Wt]− Ex[W∞]
∣∣ ≤ ζ

β e
eβx εt, (5.15)

where ε ∈]κ, 1[ and ζ is given by relation (5.7).

Proof. Observe that for all t ≥ 0, we have

‖P t g −Π g‖β = sup
x∈E

|Ex[f(Wt),Wt ∈ Γ]−
∫
Γ

f(y)π(dy)|

eβx
, (5.16)

where g = f1IΓ. Hence, the inequalities (5.13) and (5.14) follow directly from
inequality (5.3) of Theorem 5.1. Furthermore, if we consider g = IdR+

in the
left hand side of relation (5.16) then using the fact that ‖g‖β = 1/(β e), from
inequality (5.3) of Theorem 5.1, we obtain immediately the estimate (5.15). 2

6. Stability estimates

In this section, we first perturb the patience time distribution and, second,
the structure of the system. In each case, the upper stability bounds are derived
for the stationary and the transient characteristics of the perturbed system.
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6.1. Perturbation of the patience time distribution

The assumption (2.1) implies the existence of the stationary distribution of
the embedded Markov chain W . In this case, there are fairly accurate asymp-
totic formulas for the stationary distribution of the waiting time in the GI/GI/1
system with impatient customers if the impatient time distribution is exponen-
tial. Unfortunately, no analytic or asymptotic expression is available for the
stationary distribution of the waiting time in GI/GI/1 queues with general
impatient time distribution. So, if we suppose that the impatient time distribu-
tion in the GI/GI/1 + G system is close to the exponential distribution, then
we can approximate the GI/GI/1 + G system characteristics by those of the
GI/GI/1 +M with prior estimation of the corresponding approximation error.

In this section we consider some stability estimates for the Markov chain
W related to waiting times in a queueing system GI/GI/1 +G with impatient
customers under the assumption that perturbations of the chain are of the same
structure. More precisely, we obtain estimates with respect to perturbations of
the patient time distribution. In practice, we assume that the patience time
distribution is exponential and general, respectively in the unperturbed and
perturbed systems described by the embedded chain W and W, that is, that the
patience time distribution in the GI/GI/1 +GI is close to the exponential one.
For this, let us consider an other discrete waiting time process W

x
= {W x

n, n =
0, 1, 2, . . .} in the GI/GI/1 queueing system with impatient customers with the
same inter-arrival time An, the service time Bn and with a different impatient
waiting time Cn with the probability distribution γ. Then, the chain W , which
takes values in the same state space E = R+ as the chain W , satisfies the
following recursive relation

Wn+1 =

{
(Wn +Bn+1 −An+1)+ if Wn < Cn+1,

(Wn −An+1)+ if Wn ≥ Cn+1.

We denote by P the transition kernel of the chain W with the invariant prob-
ability measure π. Actually, this process describes the perturbation of the first
one where the perturbation concerns the patience time distribution. Then, in
the following proposition we obtain an estimate of the deviation between the two
corresponding transition kernels, P and P , of the chains W x and W respectively.
For this, we use the proximity measure Ψ = supx∈R+ |γ(x)− γ(x)| = ‖γ − γ‖∞.

Proposition 6.1. Suppose that conditions of Theorem 4.1 are satisfied. Then,
for all β ∈]0, l[, we have

ε(β) = ‖P − P‖β ≤ $(β) Ψ = $(β) ‖γ − γ‖∞ (6.1)

where $(β) = E[exp (βξ1)] + supx∈R+
exp(−βx)P(x ≤ A1 < x + B1) and l is

introduced in Theorem 4.1.
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Proof. First, let us denote h̄(x) = h2(x) − h1(x) = P(x ≤ A1 < x + B1). We
have ∫

R+

P(0 < x+ ξ1 ∈ dy) exp(βy) = E[exp(β(ξ1 + x)), x+ ξ1 > 0]

≤ E[exp(β(ξ1 + x))],∫
R+

P(0 < x−A1 ∈ dy) exp(βy) = E[exp(β(x−A1)), x−A1 > 0]

≤ E[exp(β(x−A1))],∫
R+

P(x+ ξ1 ≤ 0) exp(βy)δ(dy) = P(x+ ξ1 ≤ 0)

and ∫
R+

P(x−A1 ≤ 0) exp(βy)δ(dy) = P(x−A1 ≤ 0).

Consequently, we get

ε(β) ≤ sup
x≥0

e−βx
∫
R+

|γ(x)− γ(x)|

×
∣∣P(0 < x+ ξ1 ∈ dy)− P(0 < x−A1 ∈ dy)− h̄(x)δ(dy)

∣∣eβy
≤ Ψ sup

x≥0
e−βx

(
h̄(x) +

∫
R+

(P(0 < x+ ξ1 ∈ dy)− P(0 < x−A1 ∈ dy) eβy)

)
≤ Ψ sup

x≥0
e−βx

(
E[exp(βξ1 + βx), x+ ξ1 > 0] + h̄(x)

)
≤ Ψ sup

x≥0

(
E[exp(βξ1)] + e−βxh̄(x)

)
= Ψ

(
E[exp(βξ1)] + sup

x≥0
e−βxh̄(x)

)
.

Hence the result is proved. 2

Remark 6.1. We may use an other proximity measure. Indeed, according to the
coupled argument, we have

P(W x
1 ∈ Γ, C1 ∧ C1 ≥ x) = P(W

x

1 ∈ Γ, C1 ∧ C1 ≥ x)

and
P(W x

1 ∈ Γ, C1 ∨ C1 < x) = P(W
x

1 ∈ Γ, C1 ∨ C1 < x).
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Hence, we get

|P (x,Γ)− P (x,Γ)|
= |P((x+ ξ1)+ ∈ Γ, C1 ≤ x ≤ C1)− P((x− Γ1)+ ∈ Γ, C1 ≤ x ≤ C1)|

+ |P((x+ ξ1)+ ∈ Γ, C1 ≤ x ≤ C1)− P((x− Γ1)+ ∈ Γ, C1 ≤ x ≤ C1)|.

Since v : t→ eβt is an increasing function and (x−A1)+ ≤ (x+ ξ1)+, we obtain∫
R+

eβt|P (x, dt)− P (x, dt)|

= E[(eβ(x+ξ1)+ − eβ(x−A1)+)(1C1≤x≤C1
+ 1C1≤x≤C1

)]

= E[eβ(x+ξ1)+ − eβ(x−A1)+ ](γ(x) + γ(x)− γ(x)γ(x))

≤ E[(eβ(x+ξ1) − eβ(x−A1))1x+ξ1≥0](γ(x) + γ(x)− 2γ(x)γ(x))

= {E[eβ(x+ξ1) − eβ(x−A1)]− E[(eβ(x+ξ1) − eβ(x−A1))1x+ξ1<0]}L(x)

≤ {E[eβ(x+ξ1) − eβ(x−A1)] + h1(x)}L(x)

where L(x) = (γ(x)+γ(x)−2γ(x)γ(x)) for all x ∈ R+. This yields the following
inequality :

‖P − P‖β ≤ sup
x∈R+

{(γ(x) + γ(x)− 2γ(x)γ(x))(E[eβξ1 − e−βA1 ] + e−βxh1(x))}.

In order to obtain the deviation between the stationary distributions π and π of
the embedded Markov chains W and W respectively, we need first the following
lemma.

Lemma 6.1. Assume that the conditions put forward in Theorem 4.1 are sat-
isfied. For all β ∈]0, l[ such that the following condition

ε(β) = ‖P − P‖β < 1− ρ(β) (6.2)

holds true, we have the inequality

sup
i≥0
‖P i‖β ≤

1

(1− ρ(β)− ε(β))2
(6.3)

where ρ(β) and l are defined in Theorem 4.1.

Proof. It is obvious that for all i ≥ 0, we have δP
i
h ≤ 1 since h(x) = P(W x

1 =
0) ≤ 1. Let us denote ∆ = P − P , then we can remark that

δP
i

= δP
i−1

(∆ + T ) + (δP
i−1

h)δ for all i ≥ 1.
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Hence, ‖δP i‖β ≤ ‖δP
i−1‖β (ε(β) + ρ(β)) + ‖δ‖β for all i ≥ 1 and by induction

we obtain the estimate

sup
i≥0
‖δP i‖β ≤

1

1− ρ(β)− ε(β)
. (6.4)

Moreover, we observe that

P
i

= P
i − PP i−1

+ (T + h⊗ δ)P i−1
= P

i − PP i−1
+ TP

i−1
+ h⊗ δP i−1

= (∆ + T )P
i−1

+ h⊗ δP i−1

= (∆ + T )P
i−1

+ h⊗ δP i−1
.

Therefore, we obtain

‖P i‖β ≤ ‖P i−1‖β‖∆ + T‖β‖P
i−1‖β + ‖h‖β‖δP

i−1‖β
≤ ‖P i−1‖β‖∆ + T‖β‖P

i−1‖β + ‖δP i−1‖β
and by induction we get

‖P i‖β ≤
i∑
t=1

‖δP t‖β ‖∆ + T‖t−1
v + ‖∆ + T‖iv

≤ sup
t
‖δP t‖β

i∑
t=1

‖∆ + T‖t−1
β + ‖∆ + T‖iv.

Consequently, we have

sup
t
‖P t‖β ≤ sup

t
‖δP t‖β

+∞∑
t=1

‖∆ + T‖t−1
β .

However, the condition (6.2) implies that ‖∆‖β < 1 − ρ(β). Therefore, ‖∆ +
T‖β ≤ ‖∆‖β + ‖T‖β < 1 − ρ(β) + ρ(β) = 1, which implies that the geometric
series

∑
t ‖∆ + T‖t−1

β converges and so,∑
t

‖∆ + T‖t−1
β =

1

1− ‖∆ + T‖β
≤ 1

1− ε(β)− ρ(β)
.

This yields the following estimate

sup
t
‖P t‖β ≤

supt ‖δP
t‖β

1− ‖∆ + T‖β
and therefore

sup
i
‖P i‖β ≤

1

1− ε(β)− ρ(β)
sup
t
‖δP t‖β . (6.5)

Finally, using inequalities (6.4) and (6.5), the result is immediately established.
2
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The following theorem concerns the estimate of the deviation of the transi-
tion probabilities over t steps for the two Markov processes W and W for all
t ∈ Z+.

Theorem 6.1. Assume that the conditions put forward in Theorem 4.1 are
satisfied. For all β ∈]0, l[ such that the inequality (6.2) holds true, we have the
inequality

sup
t≥0
‖P t − P t‖β ≤

H ε(β)

(1− ρ(β)− ε(β))2
. (6.6)

In particular, for all β such that Ψ <
1− ρ(β)

$(β)
, we have:

sup
t≥0
‖P t − P t‖β ≤

H$(β)

(1− ρ(β)−$(β) Ψ)2
Ψ (6.7)

where Ψ, $(β) are defined in Proposition 6.1 and

H = min
( ζ

1− ε
,

(1 + π({0})− ρ(β))2

(1− ρ(β))3

)
.

Proof. Let us denote ∆t = P
t − P t for all t ≥ 0. Then, we have

∆t = P (P
t−1 − P t−1) + (P − P )P t−1 = P∆t−1 + ∆1P

t−1.

Moreover, since ∆Π = 0, we get by induction

∆t = ∆(P t−1 −Π) + . . .+ P
t−2

∆(P −Π) + P
t−1

∆.

This implies that

‖∆t‖β ≤ ‖∆‖β sup
i≥1
‖P i‖β

∞∑
i=0

‖P i −Π‖β .

The inequality (6.6) derives straightly from Lemma 6.1 and Theorem 5.2. The
inequality (6.7) follows from combining together the estimate (6.1) of Proposi-
tion 6.1 and the inequality (6.6). This completes the proof. 2

Remark 6.2. Note that the inequality obtained by N.V. Kartashov for general
state Markov chains in [26, Chap. 3, p. 46], holds only in some small neighbor-
hood {

ε(β) = ‖P − P‖β <
1− ρ(β)

c

}
where c is a family of constants strictly greater than 1 which depend on different
conditions on the perturbation ∆ = P − P . In contrast, the inequality (6.6)
obtained for our particular case is valid in a wide neighborhood of the transition
kernel P defined by {ε(β) = ‖P − P‖β < 1− ρ(β)}.
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The following result gives an estimate of the deviation of the stationary distri-
butions π and π.

Theorem 6.2. Assume that the conditions put forward in Theorem 4.1 are
satisfied. For all β ∈]0, l[ such that the inequality (6.2) is fulfilled, the transition
kernel P of the perturbed Markov chain W admits a unique invariant probability
measure given by the identity µ∆/(µ∆1) = π where ∆ = P − P and µ∆ =∑+∞
i=0 δ(∆ + T )i. Moreover, we have the following stability estimate

‖π − π‖β ≤
ε(β)

(1− ρ(β)− ε(β))2

(2− ρ(β)

1− ρ(β)

)
. (6.8)

More specifically, for all β ∈]0, l[ such that Ψ < (1− ρ(β))/$(β) is fulfilled, we
have:

‖π − π‖β ≤
$(β)

(1− ρ(β)−$(β) Ψ)2

(2− ρ(β)

1− ρ(β)

)
Ψ (6.9)

where Ψ and $(β) are defined in Proposition 6.1 and l is introduced in Theorem
4.1.

Proof. The existence and the unicity of the measure π follows from Theorem
3.3. Furthermore, according to the idendities ‖α‖β = ‖1‖β = 1, the inequality
(3.9) of Theorem 3.3 yields the inequality (6.8). In addition, the inequality (6.9)
follows from combining together the estimate (6.1) of Proposition 6.1 and the
inequality (6.8). The theorem is finally established. 2

Now let us consider a smaller perturbation, with respect to the weighted norm
‖·‖β , than those considered in Theorem 6.2. More exactly, we have the following
theorem.

Theorem 6.3. Assume that the conditions put forward in Theorem 4.1 are
satisfied. For all β ∈]0, l[ such that the inequality

ε(β) <
1− ρ(β)

1 + Θ ρ(β)
(6.10)

holds true, we have the following strong stability estimate

‖π − π‖β ≤ min
{
χ(β),

Θ(1 + Θ ρ(β))

1− ρ(β)− (1 + Θ ρ(β)) ε(β)

}
ε(β). (6.11)

More specifically, for all β ∈]0, l[ such that

Ψ <
1− ρ(β)

$(β) (1 + Θ ρ(β))
(6.12)
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we have

‖π − π‖β ≤ min
{
χ(β),

Θ(1 + Θ ρ(β))

1− ρ(β)(β)− (1 + Θ ρ(β))$(β) Ψ

}
$(β) Ψ (6.13)

where

Θ =
π({0})

1− ρ(β)
, χ(β) =

1

(1− ρ(β)− ε(β))2

(2− ρ(β)

1− ρ(β)

)
and

χ(β) =
1

(1− ρ(β)−$(β) Ψ)2

(2− ρ(β)

1− ρ(β)

)
·

Proof. According to Theorem 5.2, we have ‖π‖β ≤ Θ. Hence, from Theorem
3.1 we get

‖π − π‖β ≤
Θ(1 + Θ ρ(β)) ε(β)

1− ρ(β)− (1 + Θ ρ(β)) ε(β)
· (6.14)

The estimates (6.8), (6.14) and (6.1) imply the inequality (6.11). In the same
manner, from the estimate (6.1), the inequalities (6.12) and (6.14), we derive

‖π − π‖β ≤
Θ(1 + Θ ρ(β))$(β) Ψ

1− ρ(β)− (1 + Θ ρ(β))$(β) Ψ
· (6.15)

Observe that since the inequality (6.12) is satisfied it implies that the following
inequality Ψ < (1 − ρ(β))/$(β) is also fulfilled. It follows that the inequality
(6.9) holds true. Hence, by combining (6.9) and (6.15), we obtain the inequality
(6.13). The proof is completed. 2

Now let us try to estimate some stationary and non stationary characteristics of
the perturbed Markov chain W with respect to the weighted norm ‖·‖β in terms
of the parameter of the unperturbed Markov chain W . For this, we start with
the stationary case. We denote by W∞ and W∞ the generic random variables
which have the probability distribution π and π respectively.

Theorem 6.4. Assume that the conditions put forward in Theorem 4.1 are
satisfied. For all β ∈]0, l[ such that the inequality (6.2) is fulfilled and for all
Γ ∈ E = B(R+), we have

|P(W∞ ∈ Γ)− Px(W∞ ∈ Γ)| = |π − π|(Γ) ≤ χ(β)

υΓ
ε(β). (6.16)

However, if the hypothesis (6.10) holds, then we get

|π − π|(Γ) ≤ 1

υΓ
min

{
χ(β),

Θ(1 + Θ ρ(β))

1− ρ(β)(β)− (1 + Θ ρ(β))ε(β)

}
ε(β) (6.17)

where υΓ = max(kΓ, 2) with kΓ = inf
x∈Γ

ex for all Γ ∈ B(R+).
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Proof. Observe that for all a ∈ R, we have

|(π−π)(Γ)| = |(π−π)1IΓ| = |(π−π)(1IΓ−a1| ≤ ‖π−π‖β sup
x≥0
|1IΓ(x)−a|. (6.18)

But it should be noted that the right hand side of the last inequality must not
depend on the parameter a. Moreover, from the monotonicity property of the
absolute value, the supremum is necessary either |1 − a| or |a|, for all a ∈ R.
However, for a = 1/2, we get |1− a| = |a| = 1/2. Hence, we obtain

|(π − π)(Γ)| ≤ 1

2
‖π − π‖β . (6.19)

Moreover, we have obviously

kΓ|π − π|(Γ) = kΓ

∫
x∈Γ

|π − π|(dx)

≤
∫
x∈Γ

ex |π − π|(dx) ≤
∫

x∈E

ex |π − π|(dx)

= ‖π − π‖β .

(6.20)

Hence, from estimates (6.19)–(6.20), we obtain

|P(W∞ ∈ Γ)− Px(W∞ ∈ Γ)| = |π − π|(Γ) ≤ ‖π − π‖β
υΓ

. (6.21)

Finally, according to estimates (6.8) and (6.21), the inequality (6.16) is estab-
lished. In the same way, the combination of estimates (6.8) and (6.21) leads to
estimate (6.17). The result is established. 2

Now let us extend the measures µ ∈ E = B(R+) to B(R−) by putting µ(Γ) = 0
for all Γ ∈ B(R−).

Corollary 6.1. Assume that the conditions put forward in Theorem 4.1 are
satisfied. For all β ∈]0, l[ such that the inequality (6.2) is fulfilled and for all
x ≥ 0, we have

|P(W∞ ≤ x)−Px(W∞ ≤ x)| = |π(]−∞, x])−π(]−∞, x])| ≤ χ(β)

2
ε(β). (6.22)

Moreover, if the hypothesis (6.10) is satisfied, then we have

|π(]−∞, x])− π(]−∞, x])| (6.23)

≤ 1

2
min

{
χ(β),

Θ(1 + Θ ρ(β))

1− ρ(β)(β)− (1 + Θ ρ(β))ε(β)

}
ε(β).
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Theorem 6.5. Assume that the conditions put forward in Theorem 4.1 are
satisfied. For all β ∈]0, l[ such that the inequality (6.2) is fulfilled, the following
estimate holds true for all t ≥ 0 and x ∈ R+:

sup
Γ∈B(R+)

|Px[Wt ∈ Γ]− Px[W t ∈ Γ]| ≤ eβx

2

H
(1− ρ(β)− ε(β))2

ε(β) (6.24)

where H is explicitly defined in Theorem 6.1.

Proof. Let us put f = 1IΓ for all Γ ∈ B(R+). Then, for all x ∈ E and t ≥ 0,

we have |Px[Wt ∈ Γ]−Ex[W t ∈ Γ]| = |P tf −P tf |(x). However, we can remark

that (P t − P t)1 = 1− 1 = 0 for all t ≥ 0. Therefore, for all a ∈ R we get

‖∆tf‖β = ‖P (f − a1)‖β ≤ ‖∆t‖β‖f − a1‖β .

Following the same sketch to prove (6.19), we can establish finally the estimate

|Px[Wt ∈ Γ]− Px[W t ∈ Γ]| ≤ eβx

2
‖P t − P t‖β .

The result follows according to (6.6). 2

Theorem 6.6. Assume that the conditions put forward in Theorem 4.1 are
satisfied. For all β ∈]0, l[ such that the inequality (6.2) is satisfied, the following
estimate holds true for all t ≥ 0 and x ∈ R+:

sup
t≥0
|Ex[Wt]− Ex[W t]| ≤

eβx

β e

H
(1− ρ(β)− ε(β))2

ε(β). (6.25)

Proof. Note that the function f = IdR+
∈ Jβ and ‖f‖β = 1/β e. Substituting

f in the following evident estimate

∀x ∈ R+ : |Ex[f(Wt)]− Ex[f(W t)]| ≤ eβx ‖f‖β ‖P t − P
t‖β .

and using the inequality (6.6), the wanted result is established. 2

Remark 6.3. Observe that if the following inequality

Ψ <
1− ρ(β)

$(β)

is satisfied, then the estimate (6.2) holds true. So the previous perturbation
bounds established under condition (6.2) are still valid. In this case, we can
obtain explicit estimates by substituting $(β)Ψ instead of ε(β) in the bounds
(6.16), (6.22), (6.24) and (6.25). In the same way, if

Ψ <
1− ρ(β)

$(β) (1 + Θ ρ(β))

holds true, then the estimate (6.10) is also satisfied. In this case, explicit esti-
mates may be established using the same substitution in (6.17) and (6.23).
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Remark 6.4. The stability bounds obtained in Theorems 6.4, 6.5 and Corollary
6.1 are established using a contraction inequality. In another work, we have
established a generalization of this type of inequality and its dual version for
general state Markov chains defined on a general phase space (E, E) with respect
to the weighted variation norms and Lp(ϕ) norms where ϕ is a probability
measure on E . Since these results are not yet published, we have given here a
direct proof for this type of inequalities.

6.2. Structural perturbation

Let us consider the random walk process (classical Lindley process) described
by a chain W̃ satisfying the following recursive relation

W̃n+1 = (W̃n + ξn+1)+, n ≥ 0 (6.26)

which takes values in the same state space E = R+ as the chain W , where for all
n ≥ 1, ξn = Bn−An. Actually, this process describes the waiting process of the
classical GI/GI/1 queue system (with ordinary customers), see [26,35,38] with
the same probability distribution of the inter-arrival time and service time as
those of the stochastic process W . In fact this process describes the waiting time
in the limit of the impatient model since we can consider Cn = +∞ and therefore
we conclude that P(C1 = +∞) = 1. Then, the condition P(C1 = +∞)E(B1) <
E(A1) becomes m = E[ξ1] < 0. It is known from Borovkov [6, Chapter 4]
that the chain W̃ is ergodic and has a unique invariant probability measure π̃
provided that m = E[ξ1] < 0. Let us denote the transition kernel of the chain
W̃ by P̃ which is defined as follows

P̃ (x,Γ) = P(0 < x+ ξ1 ∈ Γ) + P(x+ ξ1 ≤ 0)δ(Γ)

= P(0 < x+ ξ1 ∈ Γ) + h1(x)δ(Γ).

We may consider the process W as the perturbed Lindley process where the
perturbation concerns the structure of the system,i.e., it is the perturbation of
the impatient infinite time in the GI/GI/1 queueing system.

Then, we obtain in the following proposition an estimate of the deviation
between the two corresponding transition kernels, P and P̃ , of the chains W
and W̃ respectively. The proof can be easily established and so is omitted.

Proposition 6.2. Under conditions of Theorem 4.1 for the Markov chain W̃ ,
we have

ε̃(β) = ‖P̃ − P‖β ≤ $(β) sup
x∈R+

|γ(x)| = $(β)‖γ‖∞ (6.27)

where $(β) is defined in Proposition 6.1.

The following theorem evaluates the deviation, with respect to the norm ‖·‖β ,
between the stationary probability measures π and π̃ corresponding respectively
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to the Markov processes W and W̃ . For this, it is of interest to specify that the
approximation must be done in terms of the parameter of the Lindley process W̃
which characterizes the ideal (non perturbed) model. Note that the stationary
distribution of the Markov process W̃ may be computed by numerical methods
investigated by many authors, see [1]. Therefore, the bound of inequalities ob-
tained in this section must depend on the parameters of the chain W̃ . Thus we
have to investigate in the first step the strong stability of the Lindley waiting
process. However, the processes which were defined by the same recursive equa-
tion (6.26) as W̃ are strongly stable with respect to the same norm ‖ · ‖β , under
the same Cramér condition, as it is shown in [26,35,36]. Moreover, we have the
same estimate of the residual operator norm ‖T‖β ≤ ρ(β) = R[exp(βξ1)], where
here ξ1 = B1 −A1.

So the sketch of proofs for the different strong stability estimates are the
same as those given in the previous section. It suffices to substitute, in all
previous inequalities, ε(β) by ε̃(β) or $(β) Ψ by $(β)‖γ‖∞. For example, the
result analogous to Theorem 6.2 is expressed as follows.

Theorem 6.7. Under conditions and notations of Theorem 4.1, and for all
β ∈]0, l[ such that ε̃(β) = ‖P − P̃‖β < 1−ρ(β), we have the following inequality

‖π̃ − π‖β ≤
1

(1− ρ(β)− ε̃(β))2

(2− ρ(β)

2− ρ(β)

)
$(β)‖γ‖∞.

Concluding remarks

In this paper, we have clarified sufficient uniform ergodicity and strong sta-
bility conditions for the waiting process describing the GI/GI/1 queues with
general patience time distribution with respect to the norm ‖ · ‖β . This result
allows us to approximate the stationary and non stationary characteristics of the
perturbed system under a conservative perturbation structure. Thus, it can be
used in practice to estimate the characteristics of the GI/GI/1 queues with gen-
eral patience time distribution by those of the GI/GI/1 queues with the specific
impatient time distribution (eg. exponential) where its characteristics are well
known. This may be done, for example, using the Little formulae and the esti-
mates established in this paper. An estimate for the potential of the chain and
the rate of the uniform convergence of the t-fold power of the transition kernel
to the stationary projector with respect to the norm ‖ · ‖β have been also estab-
lished. Moreover, since the waiting process in the GI/GI/1 queue described by
the Lindley recursion is strongly stable with respect to the same weighted norm,
the stationary and non stationary characteristics of the GI/GI/1 queues with
general impatient time distribution can be approximated by the corresponding
characteristics of the classical GI/GI/1 queue with ordinary customers.

Note that the diffusion approximation established in [18, 41] describes the
fluid limit (convergence mode) and does not give us an estimate of the error of
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approximation to the stationarity such as the bounds obtained in Theorems 5.2
and 5.3 in Section 5. Moreover, in Theorems 5.2 and 5.3 there is no requirement
for the patience time distribution, contrary to the results obtained in [41] where
the approximation is given only under some restrictions on the hazard rate
function of the patience time distribution (eg. distributions whose hazard rate
tends to infinity on its support).

It should be noted that in practice, the results obtained in Section 6 can
be used to approximate the stationary and transition characteristics of some
complex systems such as M/M/1, M/G/1, G/M/1 and GI/GI/1 equipped
with specific policies (vacation service, breakdowns of the server,...) by those of
the systems M/M/1, M/G/1, G/M/1 and GI/GI/1 respectively with impatient
customers provided that the processes have the same state space.

Furthermore, because the arrival rate in the nth system is of order n, a
sample path version of Little’s law known as the snapshot principle suggests
that we can connect the waiting process and the queue-length process (eg., see
formula (3.5) in [41]). This allows us to use the estimates obtained in this
paper to obtain the corresponding estimates for the stationary and transient
characteristics for the queue-length process. However, this is out of scope of
this paper.

Finally, it is worth noting that we are not able to extend the results of
Section 6 to the case m > 0 (without Cramér condition). We conjecture that
for m > 0 the process is not v-strongly stable. That is, the convergence to the
stationarity is not uniform with respect to the weighted variation norm ‖ · ‖β .
That means that the characteristics of the process are very sensitive to a small
perturbation of some parameters of the system. Unfortunately, we are not able
to prove this until now.
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