

République Algérienne Démocratique et Populaire

Ministère de l’Enseignement Supérieure et de la Recherche

Scientifique

Université Abderrahmane Mira

Faculté de Technologie

Département d’Automatique, Télécommunication et d’Electronique

Projet de Fin d’étude

Pour l’obtention du diplôme de Master

Filière : Télécommunications

Spécialité : Réseaux et Télécommunications

Thème

Préparé par :

CHETTOUH Jugurtha

ABBACI Aissa

Dirigé par : Examiné par :

Mme. MEZZAH Samia Pr: MOKRANI Karim

 Dr: AZNI Mohamed

Année universitaire : 2020/2021

Intelligent Embedded Vision for Summarization of

Multi-View Videos in IoT

Acknowledgements

First of all, praise to God who has allowed us to find unsuspected strengths

within ourselves and who has helped us to overcome difficulties and give color

back to life.

Secondly, we would like to warmly thank Mme MEZZAH Samia, without

whom this work would never have succeeded, a teacher whom we admire so

much, and a supervisor who helped us, inspired and encouraged us, and with

whom we established a relationship of trust. We are proud today to have been

his disciples.

Finally, we would like to thank the members of the jury for the time they took to

examine our work and for their suggestions and pertinent remarks.

Dedication

As a token of my deep gratitude, I dedicate this modest work

To my dearest parents

I would like to express my respect, my eternal love and my

consideration for the sacrifices you have made for my education and

my well-being. I will never thank you enough for having supported

and accompanied me.

To my dear brothers and sisters

I express to you through this work, my feelings of brotherhood,

tenderness and love.

To all my precious Friends who will recognize themselves.

And to all the people who are important to us.

Contents Table

CHAPTER - I - OVERVIEW OF VIDEO ANALYSIS FOR SURVEILLANCE SYSTEMS IN IOT 2

I.1 INTRODUCTION ... 2

I.2 VIDEO SURVEILLANCE SYSTEM .. 2

I.3 INTELLIGENT AUTOMATED VIDEO SURVEILLANCE .. 3

I.4 IOT APPLICATION IN VIDEO SURVEILLANCE .. 4

I.5 VIDEO ANALYTICS .. 4

I.6 VIDEO SUMMARIZATION ... 5

I.6.1 Static Video Summary (SVS) ... 5

I.6.2 Dynamic Video Summary (DVS) ... 6

I.6.3 Single View Video Summarization (SVVS) .. 6

I.6.4 Multi-Views Video Summarization (MVVS) .. 7

1. Pre-processing Multi-View Video (MVV) .. 7

2. Features extraction ... 7

3. Summary generation .. 7

I.7 CONCLUSION .. 7

CHAPTER - II - DEEP LEARNING FOR COMPUTER VISION ... 9

II.1 INTRODUCTION .. 9

II.2 ARTIFICIAL INTELLIGENCE ... 9

II.3 MACHINE LEARNING ... 10

II.3.1 Types of Machine Learning ... 10

II.3.1.a Supervised Learning ... 10

II.3.1.b Unsupervised Learning ... 12

II.3.1.c Reinforcement Learning ... 13

II.3.2 Machine learning applications .. 14

II.4 DEEP LEARNING ... 15

Input layer .. 16

Hidden layers .. 16

Output layer ... 16

II.4.1 Deep Networks types .. 16

II.4.2 Deep Learning Applications ... 16

II.5 CONVOLUTIONAL NEURAL NETWORK (CNN) .. 17

II.5.1 Basic CNN architecture .. 17

II.5.2 Learning Process ... 17

II.6 COMPUTER VISION ... 20

II.6.1 Computer Vision and Image Processing .. 20

II.6.2 Challenges of Computer Vision ... 20

II.6.3 Computer Vision for Video Surveillance .. 20

II.6.3.a Computer Vision tasks .. 21

II.6.3.b Object Detection algorithms .. 22

II.7 EMBEDDED VISION WITH YOLO NETWORK ... 22

II.7.1 Residual blocks .. 23

II.7.2 Bounding box regression ... 24

II.7.3 Intersection over union (IOU) .. 24

II.7.4 Combination of the three techniques .. 25

II.8 CONCLUSION ... 26

CHAPTER - III - INTELLIGENT EMBEDDED VISION BASED MVS SYSTEM DESCRIPTION 28

III.1 INTRODUCTION ... 28

III.2 SYSTEM DESCRIPTION .. 28

III.3 RASPBERRY PLATFORM ... 29

III.3.1 Raspberry Pi boards ... 30

III.3.1.a Raspberry-Pi use cases .. 30

III.3.1.b Raspberry PI models .. 30

Raspberry Pi Model A: .. 31

Raspberry Pi Model B: .. 31

Raspberry Pi Compute: ... 31

Raspberry Pi Zero: .. 31

III.3.1.c Raspberry Pi 4 Specifications ... 32

III.3.2 Raspberry Modules for computer vision .. 38

III.3.3 Raspberry Software development .. 39

III.3.3.a The Operating System ... 40

III.3.3.b The Raspberry-Pi Kernel: ... 40

III.3.3.c Programming on Raspberry Pi: .. 43

III.3.3.d Required Libraries ... 44

III.4 CONCLUSION .. 47

CHAPTER - IV - INTELLIGENT EMBEDDED VISION BASED MVS SYSTEM IMPLEMENTATION 49

IV.1 INTRODUCTION .. 49

IV.2 SYSTEM IMPLEMENTATION ... 50

IV.2.1 Video summarization approaches ... 50

IV.2.2 System Process ... 51

IV.2.2.a Training Object Detection Model (Offline) .. 52

IV.2.2.b IoT Setup Connected to a Router .. 60

IV.2.2.c Targets Detection and Analysis ... 61

IV.2.2.d Multi-view Summary Generation .. 61

IV.3 APPLICATION CODE DESCRIPTION ... 64

IV.3.1 Development Environments ... 64

IV.3.2 Code explanation: .. 64

IV.3.2.a On Raspberry-Pi Client: ... 65

IV.3.2.b On Raspberry-Pi Master: ... 68

IV.4 ADDITIONAL FEATURES... 71

IV.4.1 Remotely check the RPi cameras over HTTP: ... 71

IV.4.2 Securing the Network via VPN: .. 73

IV.5 CONCLUSION ... 76

Table of Figures

Figure I.1: Typical surveillance system components ... 3

Figure I.2: Skim video for drastic reduction in viewing time without loss in content ... 6

Figure II.1: Artificial intelligence example - Amazon Echo .. 10

Figure II.2: Supervised learning process .. 11

Figure II.3: Regression & Classification algorithms ... 12

Figure II.4: Unsupervised learning process ... 12

Figure II.5: Reinforcement learning process .. 14

Figure II.6: Different Machine-Learning applications according to their types... 14

Figure II.7: Artificial intelligence VS Deep learning VS machine learning.. 15

Figure II.8 : Basic Artificial Neural Network structure ... 15

Figure II.9 : Basic CNN structure [6] .. 17

Figure II.10: A presentation of neuron : “wij” weights, “bj” biases, “xn” inputs, and ”yi” output 18

Figure II.11: Back-propagation and forward-propagation process ... 19

Figure II.12: Learning algorithm steps ... 19

Figure II.13: Comparing the (a) classical approach to machine learning using handcrafted fetaures to the (b)

deep learning operating on raw inputs. ... 21

Figure II.13: YOLO Detection System [8] ... 23

Figure II.14: How an input image is divided into grids in YOLO .. 23

Figure II.15: An image shows an example of a bounding box in yollow color .. 24

Figure II.16: An example IOU operation .. 25

Figure II.17: Combination oh the 3 techniques to produce the final detection in YOLO 25

Figure III.1: Sample scenario for IoT connected devices (RPi’s) in smart industries. .. 29

Table III.1: Exhaustive list of different RPi models with their characteristics. .. 32

Figure III.2: The evolution of Raspberry-Pi models ... 32

Figure III.3: Raspberry-Pi4 Board .. 33

Figure III.4: GPIO Connector Pinout .. 35

Figure III.5: Picture from thermal imaging camera and Raspberry Pi 4B .. 37

Figure III.6: Raspberry-Pi with heatsinks attached to it. ... 38

Figure III.7: A Miniature 5V Cooling Fan for raspberry-Pi. ... 38

Figure III.8: A picture of Raspberry Pi Camera Module Rev 1.3 - 5 Megapixel ... 39

Figure III.9: The Linux user and kernel space architectures .. 41

Figure III.10: Command to display cpufreq governor on Raspberry-Pi ... 42

Figure III.11: Enable a specific cpufreq governor on Raspberry-Pi ... 42

Figure III.12: Editing the cpufrequtils file to change the governor permanently. ... 43

Figure IV.1: Overall system with different training steps, data acquisition, objects analysis and summary

generation .. 52

Figure IV.2: Python code shows configuration of number of classes ,max batches and number of filters on YOLO

configuration file .. 54

Figure IV.3 : Python code shows writing YOLO configurations used to train the thermal infrared person model 54

Figure IV.4: Learning curve for the Thermal-Infrared person-dog model using darknet framwork 55

Figure IV.5: Performances of the Thermal Infrared person-dog model on darknet ... 56

Figure IV.6: Python code shows writing YOLO configurations used to train the mask model 56

Figure IV.7: Learning curve for the mask detection model using darknet framwork ... 57

Figure IV.8: Performances of the mask detection model on darknet ... 58

Figure IV.9: Python code shows writing YOLO configurations used to train the hard-hat model, 58

Figure IV.10: Learning curve for the hard-hat detection model using darknet framwork 59

Figure IV.11: Performances of the mask detection model on darknet ... 60

Figure IV.12: Computing entropy (a) and complexity (b) score from a single input frame 62

Figure IV.13: Different Keyframes samples taken from different views ... 63

Table IV.1: Sample video frames from Road dataset videos of different views ... 63

Figure IV.14: A presentation of our code operation ... 65

Figure IV.15: Python code shows instantiation of Object_Detector class .. 65

Figure IV.16: Python code shows compressing frames before sending them to Master RPi 65

Figure IV.17: Python code shows sending frames to Master RPi using ImageZMQ library 66

Figure IV.18: Python code shows configuration of OpenCV instance ... 66

Figure IV.19: Examples of detected frames on Raspberry-Pi Client while using person-vehicule model 66

Figure IV.20: Examples of detected frames on Raspberry-Pi Client while using hard-hat detection model 67

Figure IV.21: Examples of detected frames on Raspberry-Pi Client while using mask-detection model 67

Figure IV.22: Examples of detected frames on Raspberry-Pi Client while using thermal infrared person detection

model ... 67

Figure IV.23: Python code shows Master RPi listning to port 5555 for incoming frames 68

Figure IV.24: Python code shows using multithreading for each client connection ... 68

Figure IV.25: Python code shows handle_connection function .. 69

Figure IV.26: Python code shows calculations of entropy and complexity. ... 69

Figure IV.27: Python code shows generating a video files from received frames. ... 70

Figure IV.28: The final generated files after the MVS process .. 70

Figure IV.29: A set of screenshots indicating the number of generated images and their totaling sizes 71

Figure IV.30: Python code shows running Flask on separate thread on port 4747. .. 72

Figure IV.31: Python output logs shows the execution of the services. ... 72

Figure IV.32: A screenshot shows the web page served by Flask through a web client. 73

Figure IV.33: VPN Process .. 73

Figure IV.34: Subdomain used to access RaspberryPI over internet .. 74

Figure IV.35: VPN Configuration ... 75

Figure IV.36: Raspberry pi firewall configuration .. 75

Figure IV.37: screenshot of smartphone connected to the master RPI's VPN server ... 76

Figure E.1: The output command to show the configuration files located in the /boot directory 84

Figure F.1: The boot sequence of the Raspberry Pi in general ... 85

Figure I.1: Linux command shows root directory. ... 86

Table I.1: Briefly describes the content of each top-level Linux subdirectory .. 87

Figure J.1: Downloading targeted classes from Open-Image-Dataset using OIDv4_Toolkit 88

Figure K.1: Screenshot shows the directory structure for the project ... 89

Table Of Abbreviations

VSS Video Surveillance System

IoT Internet of Things

SVS Static Video Summary

DVS Dynamic Video Summary

SVVS Single View video Summarization

IoT Industrial Internet of Things

LSTM Long and Short-Term Memory

MVVS Multi-Views video Summarization

MVV Multi-Views Video

AI Artificial Intelligence

NLP natural-language processing

M2M machine-to-machine

RAM Random Access Memory

SBC Single-Board Computer

OS Operating System

USB Universal Serial Bus

GPIO General - Purpose Input/Output

HDMI High-Definition Multimedia Interface

SSH Secure Shell-to access

FTP File Transfer Protocol

SVM Support Vector Machines

ANN Artificial Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

GAN Generative Adversarial Network

DBN Deep Belief Network

FC Fully Connected

OCR Optical Character Recognition

SSD Single-Shot MultiBox Detector

SPP Spatial Pyramid Pooling

R-CNN Region-based Convolutional Neural Network

YOLO You Only Look Once

HOG Histogram of Oriented Gradients

SIFT Scale Invariant Features Transform

LBP Local Binary Pattern

LTP Local Ternary Patterns

IOU Intersection Over Union

ML Machine learning

RPi Raspberry Pi

CPU Central Processing Unit

GPU Graphics Processing Unit

AVR Advanced Virtual RISC

PIC Peripheral Interface Controller

UART Universal Asynchronous Receiver Transmitter

I2C Inter-Integrated Circuit, eye-squared-C

SoC System On a Chip

BLE Bluetooth Low Energy

CSI Camera Serial Interface

DSI Display Serial Interface

LAN Local Area Network

PoE Power Over Ethernet

MIPI Mobile Industry Processor Interface

DPI Parallel RGB Display

SPI Serial Peripheral Interface

PCM Pulse Code Modulation

PWM Pulse Width Modulation

GPCLK General Purpose Clock

RGB Red Green Blue

SDIO Secure Digital Input Output,

API Application Programming Interface

ARM Advanced RISC Machine

LXDE Lightweight X11 Desktop Environment

RTOS Real-Time Operating System

UEFI Unified Extensible Firmware Interface

BIOS Basic Input/Output System

SSD Solid-State Drive

SDRAM Synchronous Dynamic Random Access Memory

ROM Read Only Memory

Sh Bourne Shell

GNU GNU is Not Unix

GUI Graphical User Interface

DE Desktop Environment

LKM Loadable Kernel Modules

RTSP Real-time Streaming Protocol

ZMQ ZeroMQ

MPEG Motion Picture Experts Group

FFMPEG Fast Forward MPEG

MQTT MQ Telemetry Transport

AMQP Advanced Message Queuing Protocol

ROS Route Orientation Scheme

Fps Frames Per Second

CI Computationally Intelligent

PNG Portable Network Graphics

OOP Oriented Object Programming

IDE Integrated Development Environment

HTML Hyper Text Markup Language

CSS Cascading Style Sheets

CoDec Coder-Decoder

HTTP Hypertext Transfer Protocol

WSGI Web Server Gateway Interface

mDNS Multicast Domain Name Server

DDNS Dynamic Domain Name Server

VPN Virtual Private Network

TLS Transport Layer Security

SSL Secure Socket Layer

DL Deep Learning

JPEG Joint Photographic Expert Group

TCP Transmission Control Protocol

Introduction

1

Introduction

Over the last few decades and with the increased demand for security, video based

surveillance systems had gained a considerable importance. These systems have moved from

traditional analogue video to digital Internet protocol (IP) video for better efficiency and

reliability. However, the amount of video data makes it a big data problem that demands

continuous development of more video analysis methods to extract the maximum of

information automatically. Moreover, the scopes like prevention and intervention have led to

the development of intelligent video surveillance systems capable of video processing

competencies based on techniques of computer vision and artificial intelligence. Among one

the most important video analytics, we find the video summary. Video Summarizing is very

useful because it allows the extraction of meaningful information from large amounts of video

data in the form of keyframes or video skims.

On the other hand, the emergence of the Internet of Things (IoT) and the computing on the

edge nodes, has led to the appearance of many solutions that propose intelligent distributed

video surveillance systems [1]. Hence, the intelligence of the system is distributed in multiple

nodes, where each one can include a camera and a processing module that performs vision

tasks, such as object detection and tracking activity, before sending the information to the

central framework. For vision tasks. current detection algorithms include Deep Neural

Networks (DNNs). To perform objet detection and classification based on DNNs, a high-end

hardware system with high computing capability and low power consumption is required.

in this context, we propose an Intelligent video-surveillance system bases on embedded

vision using low cost raspberry platform. The developed software use a YOLO light weighted

network that has been selected for detecting objects of interest. This system can be easily

installed and configured to work as a smart camera edge node in a video-surveillance system.

The dissertation is organized as follows. Chapter I present an overview of intelligent video

surveillance systems in IoT environment. In chapter II, we recall principles of machine learning,

Deep Learning and Computer Vision. Chapter III gives the architecture of the proposed

intelligent embedded vision system with the description of the main hardware and software

aspect. In chapter IV, we describe the software implementation of the proposed system for the

generation of the video summary.

Chapter I

Overview of video analysis for surveillance systems

in IoT

Chapter I – Overview of video analysis for surveillance systems in IoT

2

Chapter - I - Overview of Video Analysis for Surveillance

Systems in IoT

I.1 Introduction

Video surveillance involves the act of observing scenes and looking for specific behaviors

that are improper or that may indicate the emergence or the existence of security issues. A

digital video surveillance system is a system capable of capturing images and videos that can

be processed, compressed, stored or sent over communication networks. It can be used for

nearly any environment. In this chapter we present un overview of video surveillance systems

characteristics and methods used for the analysis of generated video and its automation for

efficient information extraction.

I.2 Video surveillance system

Video Surveillance Systems (VSS) provide surveillance capabilities used in the protection

of people, assets, and structures. These systems are often used to support comprehensive

security systems by incorporating video coverage and security alarms for barriers, intrusion

detection, and access control.

VSS uses many connected components with a variety of functions, features, and

specifications to generate, transmit, display, and store video data. this system can be as simple

as a camera connected to a video monitor or a larger complex system operated by professional

security personnel and comprised of a number of components falling into several basic

categories like:

Chapter I – Overview of video analysis for surveillance systems in IoT

3

• Cameras;

• Monitors;

• Switchers and multiplexers;

• Video recorders;

• power and lighting.

Figure I.1 provides typical surveillance system components. Many features exist within each of

these categories that can satisfy an agency’s operational requirements in the most challenging

environments. The most complex surveillance systems may incorporate hundreds of cameras

and sensors integrated into one overall security network [2].

Figure I.1: Typical surveillance system components

Video surveillance technologies continuously undergo feature refinements to improve

performance in areas such as digital equipment options, data storage, component

miniaturization, wireless communications, and automated image analysis. [3] As video

surveillance technology has evolved, video transmission has progressed from analog to digital

transmission. New cameras with Internet protocol (IP) capability transmit compressed video

as digital data. A drawback of IP transmissions is that video places a high demand on a

network’s bandwidth, and the tradeoff may be image quality.

I.3 Intelligent automated video surveillance

Traditional video surveillance systems depend much on human interventions, and they are

restrained to a simple On/Off switch, which results in thousands of hours of unusable video.

This makes effective surveillance nearly impossible. Therefore, automated video surveillance

replaced traditional systems by incorporating video analytics that uses computer algorithms to

Chapter I – Overview of video analysis for surveillance systems in IoT

4

monitor real-time video. Video analytics can help organizations become more efficient by

automating part of the monitoring process and averting the time-consuming and tedious process

of reviewing extensive quantities of stored video. However, with the increase of security

concerns, the need for more effective video analytics approaches had emerge, that’s why

traditional automated surveillance systems had been complemented and even replaced by the

advanced intelligent surveillance systems that enable very high monitoring accuracy by a few

observers. In broad terms, advanced video-based surveillance could be described as an

intelligent video processing technique designed to assist security personnel’s by providing

reliable real-time alerts and to support efficient video analysis for forensic investigations.

I.4 IoT application in video surveillance

Internet of Things (IoT) describes the network of physical object that are embedded with

sensors, software, and other technologies for the purpose of connecting and exchanging data

with other devices and systems over the internet. it is network of smart devices that has its own

computing capability, which are connected to form systems that collect, monitor, exchange and

analyze data at industrial level.

IoT has replaced the traditional sensing of surrounding environments. Hence, intelligent video

surveillance is an IoT based application as it uses Internet for various purposes. The IoT help

to securely and remotely monitor facilities and public spaces in real-time with smart security

and surveillance solutions. Video surveillance systems are a system of one or more intelligent

video cameras capable of image analysis like object-detection and tracking connected on a

network that send the captured video and audio information to a certain place. They are live

monitored or transmitted to a central location for recording and storage. Intelligent video can

provide the following improvements on previous security monitoring services [4]:

 Tracking a moving target;

 Automatic audio and visual detection of suspicious activity, which can trigger alarms

and alert police station and business owners to potential threats;

 High-definition picture quality, as well as night vision technology triggered by motion

sensors, meaning the system isn’t running while nothing is happening at your location;

 Alerts notifying operators or field personnel;

 Ability to count people entering and leaving;

 Camera tampering detection;

 Vehicle license plate recognition.

I.5 Video analytics

Video analytics encompasses mainly the below-mentioned tasks:

Chapter I – Overview of video analysis for surveillance systems in IoT

5

1. Storage optimization: Storage optimization is realized based on the motion detection

or summary generation. The video management systems decide to store the video

when any motion/ interesting object or event is spotted in the observed scene or else

the video is either not stored or is stored at a lower frame rate or a lower resolution

to save storage space. Cameras may capture long durations of inactivity when placed

in buildings when they are locked, staircases, etc. This application helps in reducing

the consumption of storage as compared to continuous recording.

2. Identify threatening events: Video analytics can also be used to identify threatening

events to pro-actively identify any lapse in security incidents, be alert and to stop

them; for example, license plate recognition, perimeter violation, abandoned objects

detection, and people counting.

I.6 Video summarization

Video summarization technologies aim to create a concise and complete summary video by

compressing and selecting the most informative parts of the video content, it is an automatic

technique for extracting significant information from big video data in the form of keyframes

(still images) or video skims (moving images). It investigates the input video for different

events, informative frames, then generates a summary that is representative of the whole video.

Video summarization helps users to navigate through a large sequence of videos and retrieve

ones that are most relevant to the query. Video summarization can be categorized into four

forms:

- Static Video Summary;

- Dynamic Video Summary;

- Single View Summary;

- Multi-View Video Summary.

I.6.1 Static Video Summary (SVS)

Static Video Summary are usually presented as a storyboard; it consists of keyframes that

represent mainly video content. It takes into account the visual information but ignores the

audio message [4]. The advantage of SVS is that the keyframes sets are not restricted by any

timing or synchronization issues, and therefore, they offer much more flexibility in terms of

organization for browsing and navigation purposes, in comparison to a strict sequential display

of video skims.

Chapter I – Overview of video analysis for surveillance systems in IoT

6

I.6.2 Dynamic Video Summary (DVS)

Dynamic Video Summary is a video clip that combines image, audio and text information,

compared to the dynamic video summary, the static video summary is easier to navigate and

reduces the computational complexity for the recovery and analysis of the video, but the

dynamic summary has the option of including audio and movement elements that potentially

enhance both expressiveness and information from abstraction.

Figure I.3 present steps used to generate a video skim from the original video, first, we perform

scene & audio segmentation, then we merge them after select the most informative clips.

Figure I.2: Skim video for drastic reduction in viewing time without loss in content

One advantage of a video skim method over keyframes method, is that it enhances the amount

of information conveyed by the summary. In addition, it’s often more entertaining and

interesting to watch a skim than a slide shows of keyframes.

I.6.3 Single View Video Summarization (SVVS)

SVVS generates summary from a single input video, covering only one view at a time. A single

camera for smart industries in IoT network has a limited coverage that cannot fully exploit the

overall environment synchronously.

Chapter I – Overview of video analysis for surveillance systems in IoT

7

I.6.4 Multi-Views Video Summarization (MVVS)

MVVS generates summary from a multiple input videos, it refers to the problem

of summarizing multi-view videos into informative video summaries, usually presented as

dynamic video shots coming from multi-views, by considering content correlations within

each view and among multiple views.

As opposed to SVVS, MVVS is challenging because it has both inter and intra-view

correlations to be considered while generating summary. Another big challenge in MVVS is

variation of light conditions among different views. Furthermore, synchronization among

different views makes the problem of MVVS a difficult one. The basic flow of MVVS

comprises of three steps: Pre-processing, Features extraction and summary generation [4]:

1. Pre-processing Multi-View Video (MVV)

The first step in MVVS flow suppresses the Multi-View Video through several redundancy

removal techniques such as shots segmentation (uniform or variable length) and video splitting

based on the shots boundary.

2. Features extraction

Which mainly includes objects detection, and tracking, they are considered to be the second

prerequisite step followed by different MVVS methods.

3. Summary generation

Final step of MVVS involves summary generation from the extracted features through various

machine learning or template matching algorithms.

I.7 Conclusion

In this chapter we introduced Video surveillance, then we had a look about some IoT

applications in Video surveillance, after that we explained video summarization along with

analytics. computer vision,

in the next chapter, we will recall Artificial intelligence, machine learning, deep learning then

we will end up with computer vision the most widely used real time object detector YOLO.

Chapter II

Deep learning for computer

vision

Chapter II – Deep learning for computer vision

9

Chapter - II - Deep learning for computer vision

II.1 Introduction

Artificial Intelligence, Machine Learning and, Deep Learning are the latest keywords of this

century. Their wide range of applications has changed the facets of technology in every field,

ranging from Healthcare, Manufacturing, Business, Education, Banking, Information

Technology etc. In this chapter we present Deep learning for computer vision, we first introduce

artificial intelligence, then machine learning and its different types (supervised, unsupervised

and reinforcement learning), after that, we will recall deep learning which is based on Artificial

neural network (ANN), finally we will end up by presenting CNN for embedded vision and the

fastest object detection algorithm (YOLO).

II.2 Artificial Intelligence

Artificial intelligence, commonly referred to as AI, is the process of imparting data,

information, and human intelligence to machines. The main goal of AI is to develop self-reliant

machines that can think and act like humans. These machines can mimic human behavior and

perform tasks by learning. Most of the AI systems simulate natural intelligence to solve

complex problems. Amazon Echo is a good example of Artificial Intelligence (Figure II.1).

Chapter II – Deep learning for computer vision

10

Figure II.1: Artificial intelligence example - Amazon Echo

II.3 Machine Learning

Machine learning is a field of study which allows machines (computers) to learn from data or

experience and make a prediction based on the experience. It enables the computers or the

machines to make data-driven decisions rather than being explicitly programmed for carrying

out a certain task. These programs or algorithms are designed in a way that they learn and

improve over time when are exposed to new data. Machine learning accesses vast amounts of

data (both structured and unstructured) and learns from it to predict outcomes accurately. It

employs various approaches to teach computers in order accomplish tasks where no fully

satisfactory algorithm is available [5].

II.3.1 Types of Machine Learning

Machine learning algorithms are classified into three main categories: Supervised Learning,

Unsupervised Learning and Reinforcement Learning.

II.3.1.a Supervised Learning

Supervised learning category is concentrated on mapping patterns by establishing the

relationship between variables and known outcomes while working with labelled datasets.

Simply saying, it’s like having an input variable (x) and output variable (y) and use an algorithm

to make it learn to establish a mapping function between the input and output.

With supervised learning, the machine already knows the output of the algorithm before it starts

working on it or learning it. This means that if the process goes haywire and the algorithms

come up with results completely different than what should be expected, then the training

dataset will guide the algorithm back towards the right path. Using this method of learning,

Chapter II – Deep learning for computer vision

11

systems can predict future outcomes based on past data. It requires that at least an input variable

be given to the model for it to be trained.

Figure II.2 present a basic supervised learning process. We input Raw Data to the algorithm,

this algorithm will learn then make predictions using a given dataset and is corrected by the

“supervisor”. After generating a trained model, the model can then accept new input data;

process it then give desired outputs according to what it’s trained for.

Figure II.2: Supervised learning process

Supervised learning can further be divided into two types of tasks:

 Regression: Regression problem is when the output variable is continuous and real

value. For example, price, weight, etc.

 Classification: Classification is a problem when the output variable is a category (ex.

mask, no-mask, person, car…etc.) and can be used in applications such as speech

recognition, handwriting recognition, biometric identification, document

classification…etc.

Some examples of supervised learning algorithms include: linear regression, logistic

regression, support vector machines (SVM), Naive Bayes, and decision tree. We can see in

Figure II.3 the list of most widely used Regression and classification algorithms.

Chapter II – Deep learning for computer vision

12

Figure II.3: Regression & Classification algorithms

II.3.1.b Unsupervised Learning

Unsupervised Learning is a machine learning technique in which the users do not need to

supervise the model. Instead, it allows the model to work on its own to discover patterns and

information that was previously undetected. It mainly deals with the unlabelled data (Figure

II.4). The systems are able to identify hidden features from the input data provided

(interpretation). Once the data is more readable, the patterns and similarities become more

evident. After generating a trained model, the model can now cluster any new data accordingly.

Figure II.4: Unsupervised learning process

Chapter II – Deep learning for computer vision

13

Unsupervised learning can further be divided into two types of tasks:

 Clustering: A clustering problem is where you want to discover the inherent

groupings in the data, such as grouping customers by purchasing behavior.

 Association: An association rule learning problem is where you want to discover

rules that describe large portions of your data, such as people that buy X also tend to

buy Y.

Some examples of unsupervised learning algorithms include: k-means clustering, hierarchical

clustering, and anomaly detection.

II.3.1.c Reinforcement Learning

Reinforcement learning, in the context of artificial intelligence, is a type of dynamic

programming that trains algorithms using a system of reward and punishment. A reinforcement

learning algorithm, or agent, learns by interacting with its environment. The agent receives

rewards by performing correctly and penalties for performing incorrectly. The agent learns

without human intervention by maximizing its reward and minimizing its penalty.

Reinforcement learning differs from the supervised learning in a way that in supervised learning

the training data has the answer key with it so the model is trained with the correct answer itself

whereas in reinforcement learning, there is no answer but the reinforcement agent decides what

to do to perform the given task. In the absence of a training dataset, it is bound to learn from its

experience. Figure II.5 shows how reinforcement learning works to train itself with rewards

and penalties according to given policy.

The main points we should consider in Reinforcement learning:

 Input: The input should be an initial state from which the model will start;

 Output: There are many possible output as there are variety of solution to a particular

problem;

 Training: The training is based upon the input, the model will return a state and the

user will decide to reward or punish the model based on its output;

 The model keeps continue to learn;

 The best solution is decided based on the maximum reward.

Chapter II – Deep learning for computer vision

14

Figure II.5: Reinforcement learning process

Examples of reinforcement learning algorithms include: Q-learning and Deep Q-learning

Neural Networks.

II.3.2 Machine learning applications

Figure II.6 shows different applications according to the type of machine learning:

Figure II.6: Different Machine-Learning applications according to their types

Chapter II – Deep learning for computer vision

15

II.4 Deep Learning

Deep learning is a subset of machine learning which itself is a subset of Artificial intelligence

(Figure II.7), it deals with algorithms inspired by the structure and function of the human brain.

Deep learning algorithms work with an enormous amount of both structured or unstructured

data and its core concept lies in artificial neural networks, which enable machines to make

decisions.

Figure II.7: Artificial intelligence VS Deep learning VS machine learning

Artificial neural network (ANN) is the piece of a computing system designed to simulate the

way the human brain analyzes and processes information. It is the foundation of AI and solves

problems that would prove impossible or difficult by human or statistical standards. Figure

II.8 describe a simple artificial neural network structure:

Figure II.8 : Basic Artificial Neural Network structure

Chapter II – Deep learning for computer vision

16

The ANN is constructed from 3 types of layers:

Input layer: initial data for the neural network.

Hidden layers: intermediate layer between input and output layer and place where all the

computation is done.

Output layer: produce the result for given inputs.

II.4.1 Deep Networks types

There are many types of neural networks in deep learning which are used for different

purposes, but 4 of them are considered as major types of deep neural network:

 Convolutional Neural Network (CNN) - CNN is a class of deep neural networks

most commonly used for image analysis.

 Recurrent Neural Network (RNN) - RNN uses sequential information to build a

model. It often works better for models that have to memorize past data.

 Generative Adversarial Network (GAN) - GAN are algorithmic architectures that

use two neural networks to create new, synthetic instances of data that pass for real

data. A GAN trained on photographs can generate new photographs that look at least

superficially authentic to human observers.

 Deep Belief Network (DBN) - DBN is a generative graphical model that is composed

of multiple layers of latent variables called hidden units. Each layer is interconnected,

but the units are not.

II.4.2 Deep Learning Applications

There are many Deep Learning applications, some of them are:

 Caption bot for captioning an image;

 Object detection and face recognition;

 Self-driving cars;

 Voice search and virtual assistants;

 Machine translation;

 Colorization of Black and White Images;

 Game playing AI (Open Ai dota bot, google brain alpha go);

 Real-time object recognition in the image (Google lens).

Chapter II – Deep learning for computer vision

17

II.5 Convolutional Neural Network (CNN)

 A Convolutional Neural Network is a type of artificial neural network used mainly in image

recognition and processing that is specifically designed to process pixel data. CNN is one of

the most popular algorithms for deep learning with images and videos.

II.5.1 Basic CNN architecture

Like other neural networks, a CNN is composed of an input layer, an output layer, and many

hidden layers in between (Figure II.9):

A- Feature Detection Layers: in the basic architecture, these layers perform one of 2 types of

operations on the data: convolution, pooling. Convolution puts the input images through a set

of convolutional filters, each of which activates certain features from the images. Pooling

simplifies the output by performing nonlinear down-sampling, reducing the number of

parameters that the network needs to learn about. These operations are repeated over tens or

hundreds of layers, with each layer learning to detect different features.

B- Classification Layers: After feature detection, the architecture of a CNN shifts to

classification. The next-to-last layer is a fully connected layer (FC) that outputs a vector of K

dimensions where K is the number of classes that the network will be able to predict. This

vector contains the probabilities for each class of any image being classified. The final layer of

the CNN architecture uses the calculated class probabilities to provide the classification output.

Figure II.9 : Basic CNN structure [6]

II.5.2 Learning Process

A neural network is made up of neurons connected to each other at the same time, each

connection of the neural network is associated with a weight that dictates the importance of this

relationship in the neuron when multiplied by the input value as shown in Figure II.10. Each

Chapter II – Deep learning for computer vision

18

neuron has an activation function that defines the output of the neuron. The activation function

is used to introduce non-linearity in the modeling capabilities of the network.

Figure II.10: A presentation of neuron : “wij” weights, “bj” biases, “xn” inputs, and ”yi” output

The most essential element of Deep Learning is learning the values of parameters “wij”. The

learning process in a neural network is an iterative process consisting of two phases (Figure

II.11):

- The first phase of forward propagation occurs when the network is exposed to the

training data and these cross the entire neural network for their predictions (labels) to

be calculated. That is, passing the input data “xn” through the network in such a way

that all the neurons apply their transformation to the information they receive from the

neurons of the previous layer and sending it to the neurons of the next layer. When the

data has crossed all the layers, and all its neurons have made their calculations, the final

layer will be reached with a result of label prediction for those input examples.

- The second phase back propagation is based on the use of a loss function to estimate the

loss (or error) and to compare and measure how good/bad neural prediction result was

in relation to the correct result (label). The error is propagated backwards to all the

neurons in the hidden layer that contribute directly to the output. Therefore, as the

model is being trained, the weights of the interconnections of the neurons will gradually

be adjusted until good predictions are obtained.

Chapter II – Deep learning for computer vision

19

Figure II.11: Back-propagation and forward-propagation process

After performing back-propagation, weights of neurons are adjusted by minimizing errors

with optimizers algorithms (like gradient descent, stochastic gradient descent, momentum,

AdaDelta, Adam…etc.), for case of gradient descent method, it adjusts the weights in small

increments by calculating the derivative (or gradient) of the loss function (Figure II.12). This

is done in general in batches of data in the successive iterations (epochs) of all the dataset that

we pass to the network in each iteration.

Figure II.12: Learning algorithm steps

Chapter II – Deep learning for computer vision

20

II.6 Computer Vision

Computer vision is a field of study focused on the problem of helping computers to see

(interpret images). Typically, this involves developing methods that attempt to reproduce the

capability of human vision by automating the extraction of information from images. Those

Information can be anything from 3D models, camera position, object detection and recognition

to grouping and searching image content [7]. It is a multidisciplinary field that could broadly

be called a subfield of artificial intelligence and machine learning, which may involve the use

of specialized methods and make use of general learning algorithms.

II.6.1 Computer Vision and Image Processing

Computer vision is distinct from image processing. Image processing is the process of creating

a new image from an existing image, typically simplifying or enhancing the content in some

way. It is a type of digital signal processing and is not concerned with understanding the content

of an image. A given computer vision system may require image processing to be applied to

raw input, e.g. pre-processing images.

Examples of image processing include normalizing photometric properties of the image

(brightness or color), cropping the bounds of the image (centering an object in a photograph)

and removing digital noise from an image (digital artifacts from low light levels).

II.6.2 Challenges of Computer Vision

Helping computers to see is such a challenging problem because of the complexity inherent in

the visual world. A given object may be seen from any orientation, in any lighting conditions,

with any type of occlusion from other objects, and so on. A true vision system must be able to

“see” in any of an infinite number of scenes and still extract something meaningful. Computers

work well for tightly constrained problems, not open unbounded problems like visual

perception.

II.6.3 Computer Vision for Video Surveillance

The surveillance industry is one of the early adopters of image processing techniques and

video analytics. Video analytics is a special use case of computer vision that focuses on

processing hours of video footage with the ability to automatically detect and identify

predefined patterns in real world situations with hundreds of use cases.

The first video analytics tools use handcrafted algorithms that identify specific features in

images and videos (Figure II.13). They were accurate in laboratory settings and simulation

environments. However, the performance quickly dropped when the input data, like lighting

Chapter II – Deep learning for computer vision

21

conditions and camera views, deviated from design assumptions witch made them not robust

enough. Handcrafted features such as Histogram of Oriented Gradients (HOG), Scale invariant

Feature Transform (SIFT), Local Binary Pattern (LBP), Local Ternary Patterns (LTP). These

handcrafted features produce high dimensional feature vectors obtained by the aggregation of

small local patches of subsequent video frames for motion and appearance information.

However, these high dimensional feature vectors do not scale well for large scale video

processing in uncontrolled environment.

Figure II.13: Comparing the (a) classical approach to machine learning using handcrafted fetaures

to the (b) deep learning operating on raw inputs.

Recently, Video analytics solutions based on deep learning models like CNN serve as the

foundation for cutting-edge analytics systems used in smart cities and real-time applications.

Despite enormous effort in developing automated systems, current surveillance systems are not

entirely capable of autonomously analyzing complex event from observed scene. To address

this problem, independent work on several areas such as object tracking, behavior

understanding, object classification, summarization and motion segmentation are combined to

form a composite video analytic framework for video surveillance.

II.6.3.a Computer Vision tasks

Many popular computer vision applications involve trying to recognize things in images; for

example:

Chapter II – Deep learning for computer vision

22

 Object Classification: What broad category of object is in this image?

 Object Identification: Which type of a given object is in this image?

 Object Verification: Is the object in the image?

 Object Detection: Where are the objects in the image?

 Object Landmark Detection: What are the key points for the object in the image?

 Object Segmentation: What pixels belong to the object in the image?

 Object Recognition: What objects are in this image and where are they?

II.6.3.b Object Detection algorithms

Object detection is very important tool for video surveillance analytics that involves the

detection of various objects like people, cars, animals, weapons...etc. Well-researched domains

of object detection include face detection and pedestrian detection. Some of widely used object

detection algorithms are:

 Region-based Convolutional Neural Networks (R-CNN);

 Single Shot Detector (SSD);

 Spatial Pyramid Pooling (SPP-net);

 YOLO (You Only Look Once).

II.7 Embedded vision with YOLO Network

YOLO is an abbreviation for the term ‘You Only Look Once’. This is an algorithm that

detects and recognizes various objects in a picture (in real-time). YOLO combines what was

once a multi-step process, using a single neural network to perform both classification and

prediction of bounding boxes for detected objects. As such, it is heavily optimized for detection

performance and can run much faster than running two separate neural networks to detect and

classify objects separately. It does this by repurposing traditional image classifiers to be used

for the regression task of identifying bounding boxes for objects, the algorithm requires only a

single forward propagation through a neural network to detect objects. This means that objects

detection in the entire image is done in a single algorithm run. The CNN is used to predict

various class probabilities and bounding boxes simultaneously.

Processing images with YOLO is simple and straightforward and can be divided into 3 main

steps like shown in Figure II.13:

https://www.section.io/computer-vision-straight-lines/

Chapter II – Deep learning for computer vision

23

Figure II.13: YOLO Detection System [8]

1. Resizes the input image to 448 × 448;

2. Runs a single convolutional network on the image;

3. Thresholds the resulting detections by the model’s confidence.

YOLO is refreshingly simple, a single convolutional network simultaneously predicts multiple

bounding boxes and class probabilities for those boxes. YOLO algorithm works using the

following three techniques:

 Residual blocks;

 Bounding box regression;

 Intersection Over Union (IOU).

II.7.1 Residual blocks

First, the image is divided into various grids (Figure II.14). Each grid has a dimension of S x S.

Figure II.14: How an input image is divided into grids in YOLO

Chapter II – Deep learning for computer vision

24

In Figure II.14, there are many grid cells of equal dimension. Every grid cell will detect objects

that appear within them. For example, if an object center appears within a certain grid cell, then

this cell will be responsible for detecting it.

II.7.2 Bounding box regression

A bounding box is an outline that highlights an object in an image. Every bounding box in the

image consists of the following attributes:

 Width (bw);

 Height (bh);

 Class (for example, person, car, traffic light, etc.)- This is represented by the letter “c”;

 Bounding box center (bx, by).

Figure II.15 shows an example of a bounding box. The bounding box has been represented by

a yellow outline.

Figure II.15: An image shows an example of a bounding box in yollow color

YOLO uses a single bounding box regression to predict the height, width, center, and class of

objects. Figure II.15 presents the probability of an object appearing in the bounding box.

II.7.3 Intersection over union (IOU)

Intersection Over Union is so effective in object detection that describes how boxes overlap.

YOLO uses IOU to provide an output box that surrounds the objects perfectly.

Chapter II – Deep learning for computer vision

25

Each grid cell is responsible for predicting the bounding boxes and their confidence scores. The

IOU is equal to 1 if the predicted bounding box is the same as the real box. This mechanism

eliminates bounding boxes that are not equal to the real box [9].

Figure II.16 provides a simple example of how IOU works. There are two bounding boxes, one

in green and the other one in blue. The blue box is the predicted box while the green box is the

real box. YOLO ensures that the two bounding boxes are equal.

Figure II.16: An example IOU operation

II.7.4 Combination of the three techniques

As we can see in Figure II.17 after combining the 3 techniques to produce the final detection

results.

Figure II.17: Combination oh the 3 techniques to produce the final detection in YOLO

Chapter II – Deep learning for computer vision

26

First, the image is divided into grid cells. Each grid cell forecasts B bounding boxes and

provides their confidence scores. The cells predict the class probabilities to establish the class

of each object. For example, we can notice at least three classes of objects: a car, a dog, and a

bicycle. All the predictions are made simultaneously using a single CNN [9].

IOU ensures that the predicted bounding boxes are equal to the real boxes of the objects. This

phenomenon eliminates unnecessary bounding boxes that do not meet the characteristics of the

objects (like height and width). The final detection will consist of unique bounding boxes that

fit the objects perfectly.

For example, the car is surrounded by the pink bounding box while the bicycle is surrounded

by the yellow bounding box. The dog has been highlighted using the blue bounding box.

II.8 Conclusion

In this chapter, we presented briefly Machine-Learning including and its different types:

supervised, Unsupervised and reinforcement learning, after that we presented Deep learning

with its types and some of its applications. then, we introduced computer vision; finally, we

ended with explanation of YOLO algorithm for object detection.

In the next chapter, we will describe the proposed embedded vision system implementation

which consist in the different hardware & software components that include preparation of the

development environment by setting/tweaking the Linux configurations and installing required

tools and libraries used in this project.

Chapter III

Intelligent Embedded Vision

based MVS System

Description

Chapter III – Intelligent Embedded Vision based MVS System Description

28

Chapter - III - Intelligent Embedded Vision based

MVS System Description

III.1 Introduction

The objective of our project is studying and realizing intelligent components to integrate into

application, then for analyzing surveillance videos to extract relevant information and generate

summary. This component is based on the use of an embedded CNN. Our method uses an IoT

network containing smart clients and master devices with built-in cameras to capture multi-

view video data.

III.2 System Description

Our project approach is inspired from [4] presenting an Intelligent Embedded vision for MVS

in IIoT, however the code is completely rewritten from scratch and enhanced to fits our need.

This project uses an IoT network containing smart devices, Raspberry Pi (clients and master)

with embedded cameras to capture multi-view video (MVV) data. Each client Raspberry Pi

(RPi) detects target in frames via light-weight CNN model, the system detects targeted object

according to a selected YOLO model to generate alert in the IoT network (in case it’s

suspicious). The frames of each client RPi are encoded/encrypted and transmitted to master RPi

for final MVS, the data communication are done through a VPN network for higher security

and can be accessed via any device that support HTTP protocol. Our project can also be used

in industrial environments for various applications such as security and smart transportation

and can be proved beneficial for saving resources.

Chapter III – Intelligent Embedded Vision based MVS System Description

29

The overall scenario of the proposed framework in IoT setup is presented in Figure III.1

Figure III.1: Sample scenario for IoT connected devices (RPi’s) in smart industries.

Each Raspberry-Pi client detects targets (according to the implemented object detection model)

then send the captured keyframes to the master Raspberry-Pi for the final Multi-View

Summarization (MVS) process.

The proposed MVS system is based on single board computers (SBC) components, which are

complete computers built on a single circuit board, with microprocessor, memory, input/output

(I/O) and other features required of a functional computer, they are commonly made as

development or educational systems. For our project, we chose the most used SBC in IoT

applications which is the Raspberry Pi4. Raspberry Pi4 is an ARM-based SBC and a powerful

tool when it comes to AI and ML. Moreover, Raspberry processing capabilities matched with

a small form factor and low power requirements, make it an adapted device for smart robotics

objects and embedded projects which requires significant processing power, energy efficient

and low power consumption at cheap price.

III.3 Raspberry platform

The Industrial Raspberry Pi offers a versatile set of tools for solving almost any automation

challenge and it operates in the open source ecosystem, it runs Linux (a variety of distributions),

and its main supported operating system, Raspbian OS.

Chapter III – Intelligent Embedded Vision based MVS System Description

30

III.3.1 Raspberry Pi boards

The Raspberry Pi (RPi) is a series of single-board computers. They are low-cost, high-

performance and the size of a credit card. It was developed in the UK by the Raspberry Pi

Foundation. The Raspberry Pi Foundation's goal is to "advance the education, particularly in

the field of computers, computer science and related subjects".

The Raspberry Pi has the ability to interact with the outside world, and has been used in a wide

array of digital maker projects and industries, from music machines and parent detectors to

weather stations and embedded vision for intelligent video surveillance.

III.3.1.a Raspberry-Pi use cases

The major components of a Raspberry Pi boards, is the Broadcom System-on-Chip (SoC) that

include a central processing unit (CPU), a graphics processing unit (GPU), memories and

various digital, analogue and mixed signal circuits such as timers, USB controller, PCM/I2S,

SPI/I2C et UART.

The RPi is adapted to projects of high-level software integration and low level electronics. The

major advantage the RPi and other embedded Linux devices have over more traditional

embedded systems, such as the Arduino, PIC, and AVR microcontrollers, is apparent when you

leverage the Linux OS for your projects. Linux provides us with device driver support for many

USB peripherals and adapters, making it possible for us to connect cameras, Wi-Fi adapters,

and other low-cost consumer peripherals directly to our platform without the need for

complex/expensive software driver development.

The RPi is also an excellent device for playing high-definition video and this is due to its

Broadcom BCM2835/6/7 processor that was designed for multimedia applications, moreover,

it has a hardware implementation of H.264/ MPG-4 and MPG-2/VC-1 (via additional license)

decoders and encoders witch make it ideal for Computer Vision applications.

RPi is not an ideal platform for real-time systems applications, however, it can be combined

with real-time service processors to interconnect real-time microcontrollers to the RPi via

electrical buses (e.g., I2C, UART) and Ethernet, this will make the RPi act as the central

processor for a distributed control system [10] [11].

III.3.1.b Raspberry PI models

There are mainly 4 categories or Raspberry-PI:

Chapter III – Intelligent Embedded Vision based MVS System Description

31

Raspberry Pi Model A: Adapted for low-cost project that needs a complete computer with

no networking capabilities and decent I/O support.

Raspberry Pi Model B: This model can be used for a project where price is no object and

the most powerful Pi is needed. This model also contains easy-to-use I/O.

Raspberry Pi Compute: This model is best for industrial applications where many I/O

lines are needed. This model also maintains strong CPU capabilities.

Raspberry Pi Zero: This model is best for an ultra-low-cost & low-power, tiny-space-

constrained project that requires a fully functioning computer and would benefit from wireless

connectivity.

Table III.1 present an exhaustive list of different RPi models [12]:

Product SoC Speed RAM USB Ports Ethernet Wireless
Blueto

oth

Raspberry Pi

Model A+
BCM2835 700MHz 512MB 1 No No No

Raspberry Pi

Model B+
BCM2835 700MHz 512MB 4 100Base-T No No

Raspberry Pi 2

Model B
BCM2836/7 900MHz 1GB 4 100Base-T No No

Raspberry Pi 3

Model B
BCM2837A0 1200MHz 1GB 4 100Base-T 802.11n 4.1

Raspberry Pi 3

Model A+
BCM2837B0 1400MHz 512MB 1 No 802.11ac/n 4.2

Raspberry Pi 3

Model B+
BCM2837B0 1400MHz 1GB 4 1000Base-T 802.11ac/n 4.2

Raspberry Pi 4

Model B
BCM2711 1500MHz 2/4/8GB

2xUSB2,

2xUSB3
1000Base-T 802.11ac/n 5.0

Raspberry Pi

Zero
BCM2835 1000MHz 512MB 1 No No No

Raspberry Pi

Zero W
BCM2835 1000MHz 512MB 1 No 802.11n 4.1

Raspberry Pi

Zero WH
BCM2835 1000MHz 512MB 1 No 802.11n 4.1

Chapter III – Intelligent Embedded Vision based MVS System Description

32

Product SoC Speed RAM USB Ports Ethernet Wireless
Blueto

oth

Raspberry Pi 400 BCM2711 1800MHz 4GB
1xUSB2,

2xUSB3
1000Base-T 802.11ac/n 5.0

Table III.1: Exhaustive list of different RPi models with their characteristics.

Figure III.2 Present the evolution of Raspberry-Pi models over the time.

Figure III.2: The evolution of Raspberry-Pi models

In order to design and build a Raspberry Pi project, some application requirements should be

taken into consideration, to determine the appropriate board to use. Such requirements can

usually be reduced to the following list [13].

 Speed: Processing power/performances of the system (CPU, GPU...etc.);

 Memory: How much RAM and ROM or storage space the system has;

 Size and weight: The physical size and weight of the system;

 Cost: The cost of the system;

 I/O: How much I/O support is available.

III.3.1.c Raspberry Pi 4 Specifications

Pi 4 Model B is the latest product in the Raspberry Pi range of SBC. It offers more capabilities

in terms of processor speed, multimedia performance, memory, and connectivity compared to

Chapter III – Intelligent Embedded Vision based MVS System Description

33

the prior-generation Raspberry Pi 3 Model B+, while retaining backwards compatibility and

similar power consumption. Figure III.3 shows the Raspberry-PI 4 model B board:

Figure III.3: Raspberry-Pi4 Board

Raspberry Pi 4 comes with several improvements across its hardware components like CPU,

GPU, RAM, Networking…etc; witch signifiquently improved the overall performances. The

next section will describe the Hardware specifications of RPi4 model B.

 SoC: Broadcom BCM2711B0 quad-core A72 (ARMv8-A) 64-bit @ 1.5GHz;

 GPU: Broadcom VideoCore VI;

 Networking: 2.4 GHz and 5 GHz 802.11b/g/n/ac wireless LAN;

 RAM: 1GB, 2GB, 4GB or 8GB LPDDR4-2400 SDRAM;

 Bluetooth: Bluetooth 5.0, Bluetooth Low Energy (BLE);

 GPIO: 40-pin GPIO header, populated;

 Storage: microSD;

 Ports: 2 × micro-HDMI 2.0, 3.5 mm analogue audio-video jack, 2 × USB 2.0, 2 × USB 3.0,

Gigabit Ethernet, Camera Serial Interface (CSI), Display Serial Interface (DSI);

 Dimensions : 88 mm × 58 mm × 19.5 mm, 46 g.

For the end user, Raspberry Pi 4 Model B provides desktop performance comparable to entry-

level x86 PC systems (like i3 old generation or Intel atom).

Chapter III – Intelligent Embedded Vision based MVS System Description

34

Since our project is based on Computer Vision, we used the latest version of RPi in our

system, the Raspberry Pi 4 boasts a host of impressive specs, from a more powerful processor,

to the ability to handle dual 4K displays. It does offer a level of performance that could make it

an attractive option for embedded engineers looking to develop consumer-grade IoT products

with AI based projects like our case.

The Raspberry Pi uses a variety of input/output devices based on protocols such as HDMI,

USB, and Ethernet to communicate with the outside world. In the following list present different

interfaces will and protocols used in RPi [14]:

 802.11 b/g/n/ac Wireless LAN;

 Bluetooth 5.0 with BLE;

 1x SD Card;

 2x micro-HDMI ports supporting dual displays up to 4Kp60 resolution;

 2x USB2 ports;

 2x USB3 ports;

 1x Gigabit Ethernet port (supports PoE with add-on PoE HAT);

 1x Raspberry Pi camera port (2-lane MIPI CSI);

 1x Raspberry Pi display port (2-lane MIPI DSI);

 28x user GPIO supporting various interface options:

– Up to 6x UART;

– Up to 6x I2C;

– Up to 5x SPI;

– 1x SDIO interface;

– 1x DPI (Parallel RGB Display);

– 1x PCM;

– Up to 2x PWM channels;

– Up to 3x GPCLK outputs.

When it comes to power requirement, The Pi4 needs an USB-C power supply capable of

delivering 5V at 3A. If attached downstream USB devices consume less than 500mA, a 5V,

2.5A supply may be used.

Chapter III – Intelligent Embedded Vision based MVS System Description

35

GPIO Interface

The Pi4.B makes 28 BCM2711 GPIOs available via a standard Raspberry Pi 40-pin header.

This header is backwards compatible with all previous Raspberry Pi boards with a 40-way

header as shown in Figure III.4.

As well as being able to be used as straightforward software controlled input and output (with

programmable pulls), GPIO pins can be switched (multiplexed) into various other modes

backed by dedicated peripheral blocks such as I2C, UART and SPI.

Figure III.4: GPIO Connector Pinout

In addition to the standard peripheral options found on legacy RPi, extra I2C, UART and SPI

peripherals have been added to the BCM2711 chip and are available as further mux options on

Chapter III – Intelligent Embedded Vision based MVS System Description

36

the Pi4. This gives users much more flexibility when attaching add-on hardware as compared

to older models.

Display Parallel Interface (DPI):

An up-to-24-bit parallel RGB interface is available on all Raspberry Pi boards with the 40-way

header and the Compute Modules. This interface allows parallel RGB displays to be attached

to the Raspberry Pi GPIO.

SD/SDIO Interface:

The Pi4B has a dedicated SD card socket which supports 1.8V, DDR50 mode (at a peak

bandwidth of 50 Megabytes / sec). In addition, a legacy SDIO interface is available on the GPIO

pins.

Camera and Display Interfaces:

The Pi4B has 1x Raspberry Pi 2-lane MIPI CSI Camera and 1x Raspberry Pi 2-lane MIPI DSI

Display connector. These connectors are backwards compatible with legacy Raspberry Pi

boards, and support all of the available Raspberry Pi camera and display peripherals.

USB:

The Pi4B has 2x USB2 and 2x USB3 type-A sockets. Downstream USB current is limited to

approximately 1.1A in aggregate over the four sockets.

HDMI:

The Pi4B has 2x micro-HDMI ports, both of which support CEC and HDMI 2.0 with

resolutions up to 4Kp60.

Audio and Composite (TV Out):

The Pi4B supports near-CD-quality analogue audio output and composite TV-output via a 4-

ring TRS’A/V’ jack. The analog audio output can drive 32 Ohm headphones directly.

Temperature Range and Thermals:

The recommended ambient operating temperature range is 0 to 50°C. To reduce thermal output

when idling or under light load, the Pi4B reduces the CPU clock speed and voltage. During

heavier load the speed and voltage (and hence thermal output) are increased. The internal

Chapter III – Intelligent Embedded Vision based MVS System Description

37

governor will throttle back both the CPU speed and voltage to make sure the CPU temperature

never exceeds 85 degrees C.

Figure III.5 shows that the CPU and controllers are the places where heat accumulate the most,

this is why heatsink and fan cooler are mandatory.

Figure III.5: Picture from thermal imaging camera and Raspberry Pi 4B

The Raspberry Pi 4 will operate perfectly without any extra cooling and is designed for sprint

performance - expecting a light use case on average and ramping up the CPU speed when

needed. However, if a user wishes to load the system continually or operate it at full

performance, then heatsinks are really required (presented on Figure III.6), since we deal with

high computational power project (Computer Vision and Deep Learning) this cause high CPU

& GPU usage which can generate much heat on the surface when it operate at a high

temperature at full performance, so, further cooling may be needed (Cooling-Fan can be used

to cool down the heatsinks like indicated in Figure III.7).

Chapter III – Intelligent Embedded Vision based MVS System Description

38

Figure III.6: Raspberry-Pi with heatsinks attached to it.

Figure III.7: A Miniature 5V Cooling Fan for raspberry-Pi.

III.3.2 Raspberry Modules for computer vision

Since our system is a Computer Vision based project, a vision sensor is required, we chose

Raspberry Pi Camera Module Rev 1.3 - 5 Megapixel in our project (Figure III.8):

Chapter III – Intelligent Embedded Vision based MVS System Description

39

Figure III.8: A picture of Raspberry Pi Camera Module Rev 1.3 - 5 Megapixel

This Camera Module is mandatory for our intelligent surveillance system and it’s considered

as a custom designed add-on for Raspberry Pi. It attaches to Raspberry Pi by way of one of the

two small sockets on the board upper surface. This interface uses the dedicated CSI interface,

which was designed especially for interfacing with cameras.

Specification:

The list of specifications and feature of Raspberry Pi Camera Module Rev 1.3:

 Raspberry Pi Camera supports all revisions of the Raspberry Pi;

 5MP O5647 Camera Module;

 Interface Type: CSI(Camera Serial Interface);

 Still Picture Resolution: 2592 x 1944;

 Video: Supports 1080p @ 30fps, 720p @ 60fps and 640x480p 60/90 Recording.

III.3.3 Raspberry Software development

Raspbian OS has been the most used among the operating systems due to the boost provided

by the Raspberry Pi foundation. It is a Debian based Linux operating system optimized for

Raspberry Pi boards and it comes with built-in APIs and driver support while maintaining the

32bit & 64bit versions. The following list describes briefly some RPi software specifications:

 ARMv8 Instruction Set;

 Mature Linux software stack;

 Actively developed and maintained;

Chapter III – Intelligent Embedded Vision based MVS System Description

40

- Recent Linux kernel support;

- Many drivers up-streamed;

- Stable and well supported Userland;

- Availability of GPU functions using standard APIs.

III.3.3.a The Operating System

To do anything useful with our Raspberry Pi, we need to have an operating system. Raspberry

Pi uses the GNU/Linux OS stored on an SD card. Linux is a free and open-source operating

system, it’s known over the world for its versatility, low power consumption, reliability,

security and ease of use. Because it’s an open project, many different Linux distributions (or

distros) are been made for variety of purposes. Some are made to be feature rich; some are

optimized for performances and others are built specially for a category of embedded systems

(smartphones, TVs, routers, SBCs…) which are called “Embedded Linux”. An embedded

Linux refers to a scenario where an embedded system like Raspberry-PI runs on an operating

system based on the Linux kernel which will be specifically designed for it.

Linux is ideal for embedded systems because it is flexible, low-cost and open source, and it has

already been ported to custom-purpose microprocessors. Compared to proprietary embedded

operating systems, Linux allows for multiple suppliers of software, development and support;

it has a stable kernel; and it facilitates the ability to read, modify and redistribute the source

code. Linux has many supported chip architectures, and so can run on devices as small as

sockets and as large as mainframes [13] [11].

The Raspbian OS includes a GUI called the Lightweight X11 Desktop Environment (LXDE)

and different programming languages preinstalled like Python and C/C++.

III.3.3.b The Raspberry-Pi Kernel:

The RPi kernel is the main component of a Linux operating system (OS), it’s the core interface

between a device’s hardware and its processes and communicates between the 2, managing

resources as efficiently as possible.

Chapter III – Intelligent Embedded Vision based MVS System Description

41

The Linux kernel has full control over the device, it adapts to differences in hardware through

loadable kernel modules (LKMs) that extend the kernel with device-specific code. LKMs

include things like device drivers and file systems.

Kernel Space and User Space:

The Linux kernel runs in an area of system memory called the kernel space, and regular user

applications run in an area of system memory called user space. A hard boundary between

these two spaces prevents user applications from accessing memory and resources required by

the Linux kernel.

This helps prevent the Linux kernel from crashing due to badly written user code, and because

it prevents applications that belong to one user from interfering with applications and resources

that belong to another user, it also provides a degree of security.

The Linux kernel has full access to all of the physical memory and resources on the RPi.

Therefore, we have to make sure that only the most stable and trusted code is permitted to run

in kernel space.

Figure III.9: The Linux user and kernel space architectures

We can see the architectures and interfaces illustrated in Figure III.9, where user applications

use the GNU C Library (glibc) to make calls to the kernel’s system call interface. The kernel

services are then made available to the user space in a controlled way through the use of system

calls.

Chapter III – Intelligent Embedded Vision based MVS System Description

42

Tweaking the RPi CPU Frequency:

The clock frequency of the RPi was adjusted dynamically at run time. The RPi has various

governors that can be used to profile its performance/power usage ratio. For example, for a

battery-powered RPi application that has low processing requirements, we could reduce the

clock frequency to conserve power. But for our case, we clearly need performance governor

since we deal with high performance project (Computer Vision) [10] [11].

In order to tweak our kernel, we first need to install an extra debian package “cpufrequtils”.

Then we need to check our current CPU frequency and used GOVERNOR configured in our

RPi by typing the command shown in Figure III.10:

Figure III.10: Command to display cpufreq governor on Raspberry-Pi

As we can see the output, the RPi4 has four CPU cores (0–3), the pipeline with command grep

will allow us to search the string “The governor” on each core, we have 4 lines as output, which

mean we have 4 cores, each core is configured to be “ondemand”, The different available

cpufreq governors are: conservative, ondemand, userspace, powersave, performance and

schedutil. To enable one of these governors or to explicitly set the clock frequency, we need to

enter the commands shown in Figure III.11:

Figure III.11: Enable a specific cpufreq governor on Raspberry-Pi

Chapter III – Intelligent Embedded Vision based MVS System Description

43

As we can see, after executing the command, the governor is now changed to “performance”.

Finally, as we mentioned already in Appendix(H) and (I), Linux file system directories like

/proc and /sys are just virtual file system, which means they do not actually exist in Hard-Drive,

but they are loaded into the RAM on the fly after booting the RPi, since it’s in the RAM, they

are being deleted after each system reboot (similar to RAM disk).

In order to permanently change the default governor on the RPi to be performance rather than

ondemand like our case, we need to edit the cpufrequtils file in /etc/init.d/ (Figure III.12), this

will load the tweaked configurations at each boot:

Figure III.12: Editing the cpufrequtils file to change the governor permanently.

III.3.3.c Programming on Raspberry Pi:

All programming language that are available under Linux, are also likely to be available for

the RPi. However, choosing a suitable programming language depends on what we intend to

do with the board. Either interfacing to electronics devices/modules or write a device driver for

Chapter III – Intelligent Embedded Vision based MVS System Description

44

Linux where performances are very important. Each of those cases will impact the decision

regarding which language to use.

Performance of Languages on the RPi:

If you ask which language performs the best on the RPi, Well, that is an incredibly emotive

and difficult question to answer. Different languages perform better on different benchmarks

and different tasks. In addition, a program written in a particular language can be optimized for

that language to the point that it is barely recognizable as the original code. Nor is speed of

execution always an important factor; you may be more concerned with memory usage, the

portability of the code, or the ability to quickly apply changes, readability, availability of

libraries...etc. However, when it comes to AI, ML and data science. Python is the adopted

choice.

Python is a high-level, interpreted and general-purpose dynamic programming language that

focuses on code readability while supporting several programming paradigms. It usually

involves imperative and object-oriented functional programming. It has a comprehensive and

large standard library that has automatic memory management and dynamic features.

Python is installed by default on the Raspbian OS image and it is widely used within the RPi

community for very good pedagogical reasons, but as users turn their attention to more

advanced applications, it is difficult to justify the performance deficit since python is an

interpreted programming language. However, we can fix this issue either using the Cython

Implementation, or combining Python with C/C++ to improve the performance [11].

III.3.3.d Required Libraries

Before diving deep into our project, we need to afford some software requirements just like the

case with the Hardware requirements. The required Python libraries are:

OpenCV-Python

OpenCV-Python is a library of Python bindings designed to solve computer vision

problems.Compared to languages like C/C++, Python is slower. That said, Python can be easily

extended with C/C++, which allows us to write computationally intensive code in C/C++ and

create Python wrappers that can be used as Python modules. This gives us two advantages:

first, the code is as fast as the original C/C++ code (since it is the actual C++ code working in

Chapter III – Intelligent Embedded Vision based MVS System Description

45

background) and second, it easier to code in Python than C/C++. OpenCV-Python is a Python

wrapper for the original OpenCV C++ implementation [15].

OpenCV-Python makes use of Numpy, which is a highly optimized library for numerical

operations with a MATLAB-style syntax. All the OpenCV array structures are converted to and

from Numpy arrays. This also makes it easier to integrate with other libraries that use Numpy

such as SciPy and Matplotlib.

ImageZMQ:

When it comes to live video streaming with OpenCV, there are a ton of different options to use.

We can go with the IP camera route. But IP cameras can be a pain to work with. Some IP

cameras don’t even allow us to access the RTSP (Real-time Streaming Protocol) stream. Other

IP cameras simply don’t work with OpenCV’s cv2.VideoCapture function. An IP camera may

be too expensive as well.

In those cases, we are left with using a standard webcam. The issue then becomes; how do we

stream the frames from a webcam using OpenCV.

Using FFMPEG or GStreamer is definitely an option. But both of those can be so difficult to

work with (especially with people who are out of time like us). After a deep research, we found

a solution using message passing libraries, specifically ZMQ and ImageZMQ.

imageZMQ is a set of Python classes that transport OpenCV images from one computer to

another using PyZMQ messaging [16].

imageZMQ is a transport mechanism for a distributed image processing network. For example,

a network of a dozen Raspberry Pis with cameras can send images to a more powerful central

computer. The Raspberry Pis perform image capture and image processing like object-

detection, blurring and motion detection. Then the images are passed via imageZMQ to the

central computer for more complex image processing like image tagging, text extraction,

feature recognition or Video Summarization.

Features of imageZMQ:

 Sends OpenCV images from one device to another using ZMQ.

 Can send JPEG/PNG compressed OpenCV images, to lighten network loads.

 Uses the powerful ZMQ messaging library through PyZMQ bindings.

 Allows a choice of 2 different ZMQ messaging patterns (REQ/REP or PUB/SUB).

https://github.com/jeffbass/imagezmq#id7

Chapter III – Intelligent Embedded Vision based MVS System Description

46

 Enables the image hub to receive and process images from multiple image senders

simultaneously.

The reasons we chose ZMQ and not some other messaging protocol:

There are a number of high quality and well maintained messaging protocols for passing

messages between computers. We looked at MQTT, RabbitMQ, AMQP and ROS as

alternatives. we chose ZMQ and its Python PyZMQ bindings for several reasons:

 ZMQ does not require a message broker. It is a peer to peer protocol that does not need

to pass an image first to a message broker and then to the imagehub. This means fewer

running processes and less “double handling” of images. OpenCV images are large

compared to simple text messages, so the absence of a message broker is important.

 ZMQ is very fast for passing OpenCV images. It enables high throughput between

image senders and image hubs.

 ZMQ and its PyZMQ bindings are easy to install.

imageZMQ has been tested for transporting images from a dozen Raspberry Pi computers

scattered around to linux image hub servers. The RPi's capture and send dozens to thousands of

frames a day. imageZMQ has proved to work very reliably and is very fast [16].

NumPy:
NumPy is the fundamental package for scientific computing in Python. It is a Python library

that provides a multidimensional array object, various derived objects (such as masked arrays

and matrices), and an assortment of routines for fast operations on arrays, including

mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms,

basic linear algebra, basic statistical operations, random simulation and much more.

At the core of the NumPy package, is the ndarray object. This encapsulates n-dimensional

arrays of homogeneous data types, with many operations being performed in compiled code for

performance [17]. There are several important differences between NumPy arrays and the

standard Python sequences:

 NumPy arrays have a fixed size at creation, unlike Python lists (which can grow

dynamically). Changing the size of an ndarray will create a new array and delete the

original.

Chapter III – Intelligent Embedded Vision based MVS System Description

47

 The elements in a NumPy array are all required to be of the same data type, and thus

will be the same size in memory. The exception: one can have arrays of (Python,

including NumPy) objects, thereby allowing for arrays of different sized elements.

 NumPy arrays facilitate advanced mathematical and other types of operations on large

numbers of data. Typically, such operations are executed more efficiently and with less

code than is possible using Python’s built-in sequences.

 A growing plethora of scientific and mathematical Python-based packages are using

NumPy arrays; though these typically support Python-sequence input, they convert such

input to NumPy arrays prior to processing, and they often output NumPy arrays.

Beside to python libraries, we also need a model for real-time object detection to detect targets

in our captured frames from Client RPi. We chose YOLO (as described in previous chapter)

because of its speed and accuracy, which are both important criteria in our project.

III.4 Conclusion

After presenting the Raspberry-Pi 4 specifications and peripherals, we moved into Software

and hardware implementation of our project; this gave us global descriptions of our

requirements. In the Hardware implementation section, we have seen the Raspberry-Pi

Ecosystem and the different hardware component/modules required to build our system. In the

Software implementation section, we introduced the Embedded Linux then we explained the

different steps used to Tweak the configurations of our RPi to fit our application. Finally, we

had a look about the different python library required for our application to work properly.

In the next chapter, we will explain the system architecture and how it performs, then, we

will briefly explain our application code and see its outputs, finally we will close this chapter

with some additional features that made this project more useful.

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

48

Chapter IV

Intelligent Embedded Vision

based MVS System

Implementation

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

49

Chapter - IV - Intelligent Embedded Vision based

MVS System Implementation

IV.1 Introduction

The connectivity of IoT devices creates massive amounts of data. The video data provided

by vision sensors in IoT, namely cameras deployed in industries, meets the criteria of Big Data

and is quickly becoming the primary sensor device for different IoT applications.

A single vision sensor in an IoT with 30 frames per second (fps) generates huge amount of

video data hourly. As IoT is the integration of interconnected smart devices, which shows that

there are multiple cameras installed at different places and yields huge amount video data. The

amount of cameras exponentially lifts up the amount of video data, making it Big Data

repositories. This data requires efficient processing in industries for several purposes such as

employee’s monitoring and salient events detection, suspicious object detection...etc.

The basic requirements of such data in industries include redundancy removal along with

presentation and preservation of only important data in compact form for future use and

analysis.

The mainstream devices connected in IoT are resource constrained with limited computation

power and storage which cannot process such big video data. Thus, the generated data are

possibly transmitted to cloud with unlimited computational power and storage resources for

further analysis. Cloud computing is considered as suitable place to analyze such Big Data

efficiently. However, the issue with cloud-based solutions is that they are offline and lack

reliability. There is always a huge IoT traffic (video data) that should be transmitted over

wireless networks in real time. It is obvious that this cannot be guaranteed via cloud computing.

Furthermore, along with processing such Big Data, storing it for future use is also a big

challenge. It is very difficult in an IoT environment for a resource constrained device to store

108000 frames for a single camera (3600x30fps) and 432000 for a network of four cameras per

hour. It requires huge storage devices, however, that is not feasible in an IoT environment.

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

50

Thus, keeping only important and representative information of whole day lengthy videos is a

better option in terms of limited storage in IoT [4].

IV.2 System Implementation

Our project can be used in industrial environments for various applications such as security and

smart transportation and can be proved beneficial for saving resources. In this section, we will

present the system Implementation and how it performs.

IV.2.1 Video summarization approaches

In this project, we develop an intelligent IoT based framework with embedded vision for

suspicious objects detection, traffic density information sharing, and MVS.

The key features of our system are summarized as follows:

1. MVS processes huge amount of video data generated from distributed video sensors.

Majority of existing MVS techniques receive multi-view videos through wireless network

and generate offline summary. This requires maximum communication bandwidth and

wastes storage capacity. In this project, we present an MVS technique which can generate

online summary, compress the keyframes, and transmit them to smart devices connected

in IoT network for further analysis. Thus, our system saves communication bandwidth

and provides online MVS.

2. It is very hard to install cameras, connect them with computers through wires, and monitor

videos manually for targeted objects in industries. Further, the majority of available MVS

techniques are very expensive in terms of processing time and hardware implementation

which rely only on summary generation. In this framework, we tackle the problem of

hardware implementation by installing an embedded device with camera and for

suspicious object detection problem we investigate light-weight CNNs for efficiency. The

key contribution of our system is installing a single hardware device capable of detecting

and reporting about suspicious objects and traffic density to authorities in industrial setup.

3. The huge amount of video data generated by distributed video sensors need CI algorithms

for efficient processing. To achieve the goal of dealing Big Data with CI algorithms in

IoT precisely, we employ efficient and light-weight CNN to suppress the redundant video

data. Our proposed system reads input video (6-fps) and discards the frames with no

salient objects. The salient objects depend on the selected Objet Detector model, Thus,

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

51

we deal with Big Data in IoT through CI techniques for accurate reduction of data which

assist in further steps and decreases time complexity.

4. The currently employed MVS techniques are intractable to be integrated with IoT and

many other smart devices. The proposed system can be integrated with IoT and the output

can be easily observed via any smart device. If a device is connected to the said wireless

network, it can be accessed anytime and anywhere without sitting in a special surveillance

monitoring room. So, we contribute to MVS literature by presenting a framework that is

adaptable and can be used in any IIoT/IoT environment for summary generation [4].

IV.2.2 System Process

The system process can be divided into 5 different steps like presented in Figure IV.1:

Step 0: An offline step which fine-tunes an existing object detection network for the desired

objects like persons, vehicles, masks, suspicious objects (guns, knives etc.).

Step1: IoT setup with client RPi’s and smart display devices connected to a wireless network

in an industry. The embedded RPi cameras generate video data.

Step 2: It receives the video data, passes each single frame to the trained model which outputs

an annotated frame whose objects are analyzed for traffic density to share with connected IoT

devices/administration suspicious objects, and if there is any, an alert is generated.

Step 3: The alert received from step 2 is shared with the concerned departments and smart

industries in IoT environment (like police station).

Step 4: It receives (n) number of annotated frames that contain dense targets which are encoded

and transmitted to the Master-RPi in the same network for keyframes selection.

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

52

Figure IV.1: Overall system with different training steps, data acquisition, objects analysis and

summary generation

The descriptions of the main steps are explained bellow; the first step is the offline step, which

consist in Object Detection training (using transfer learning):

IV.2.2.a Training Object Detection Model (Offline)

Recently, CNNs showed an outstanding performance for various tasks such as classification,

segmentation, retrieval, and object detection. It has been widely used for many applications

including action and activity recognition, security and many others. Therefore, we used CNNs

for our problem in IoT environment to detect suspicious objects for instant reporting.

The computational complexity of CNNs is a big hurdle to practice CNN based intelligent

algorithms over resource constrained devices. To tackle this challenge, we chose a precise,

light-weight, and efficient CNN model for object detection. We fine-tune an existing object

detection CNN model using transfer learning to detect only the targeted objects that can be

utilized for summary generation and further analysis. In our project, we can switch between

different models of YOLO, we already fine-tuned several models for object detections, some

of them are:

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

53

 Mask detection (tinyYOLO v4);

 Person & vehicle detection (tinyYOLO v4);

 Hard-Hat detection (tinyYOLO v4);

 Thermal infrared person-dog detection (tinyYOLO v4);

 Person, Cycle, Car, Bike, Bus, Train, Truck detection (tinyYOLO v3).

And the interesting part of our project is that it is programmed in scalable way to easily add

new pre-trained models to the list without having to make lot modifications in the code.

We used YOLO v4 tiny object detection model in our proposed framework. It is more than 100

times faster compared to a famous objected detection CNN model Faster-RCNN. As we used

tiny version of YOLO which can process input frames on RPi efficiently. Therefore, we

converted the datasets to 6 fps for the input videos so that RPi can process it easily.

The setup process can be seen in the Appendix(J).

The dataset acquired is useful in monitoring of smart industries, they are already labelled, but

we need to convert the Google CSV file that contains the labelled data into a YOLO data format.

Finally, we inputted the images, modified the YOLO configuration file, and pre-trained weights

on Google colab (since it provide us free GPU resources) to the training function of YOLO that

stores the updated model after every 1000 iterations; we modified the configuration file of tiny

YOLO with our desired number of classes and changed the hyper-parameters according to our

need, we also added some data augmentation technics like angle, blur, zoom, brightness…etc.

this will help us to generalize our model and make robust against environmental effects like

lighting, noise, blur and so on.

The next section presents the different models that we have fine-tuned and show their

performances:

Thermal-Infrared person-dog detection:

This model contains 2 classes (dog and person in thermal view), so we changed the number of

filters to 21 following the formula (num_classes + 5)x3 where num_classes = 2 like show

Figure IV.2:

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

54

Figure IV.2: Python code shows configuration of number of classes ,max batches and number of

filters on YOLO configuration file

Figure IV.3 display the set of YOLO configurations used to train the model, including several

data augmentations (angle, saturation, exposure, HUE, blur…etc.), by default YOLO

recommend resolution of 416x416, but we can use any resolution which is a multiple of 32, for

example, to get 416, we multiplied 13x32, so we can set any other resolutions like 448, 480,

512, 608 and so on. In this model, 416x416 gave us best result.

Figure IV.3 : Python code shows writing YOLO configurations used to train the thermal infrared

person model

We used the default learning rate recommended by YOLO community (0.00261), with a burn-

in on each 1000 iteration, this will let us select the best model at the end according the Mean

Average precision (mAP) of the burned model.

Figure IV.4 shows the learning curve of the Thermal-Infrared person-dog model using darknet

on the Google Colab. This curve has been automatically generated by the darknet framework,

it presents the mAP according to the number of iterations.

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

55

Figure IV.4: Learning curve for the Thermal-Infrared person-dog model using darknet framwork

After training step has been completed, the model has reached a mAP of 95.60% with 77.46%

of IoU (Intersection over Union). We used of dataset of 203 images from public.roboflow.com

which is publicly available.

Performance of our model is shown in Figure IV.5 and seems to be satisfying, however the

number of training images is not enough, so the model might not be as performant as it seems:

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

56

Figure IV.5: Performances of the Thermal Infrared person-dog model on darknet

Where TP stands for True Positive and FP for False Positive, the TP is an outcome where the

model correctly predicts the positive class. Similarly, a True Negative (TN) is an outcome

where the model correctly predicts the negative class.

The FP is an outcome where the model incorrectly predicts the positive class. And a False

Negative (FN) is an outcome where the model incorrectly predicts the negative class.

Mask detection model:

In this model, we have 2 classes (mask & no-mask), so we changed the number of filters

according to the formula (num_classes + 5) x 3 witch gives us 21.

Figure IV.6: Python code shows writing YOLO configurations used to train the mask model

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

57

The set of YOLO configurations used to train this model are shown in Figure IV.6.

Those hyper-parameters have been selected as best choice after several trainings and tests (more

than 7 trainings) for this model, this is due to the leak of the dataset which contains only 149

images, and not just that, the dataset contains mostly Chinese people, which made the model

less generalist, that’s what lead us to use more data augmentation parameters and higher

resolution (608 x 608).

Figure IV.7 shows the learning curve of the mask detection model using darknet on the Google

Colab.

Figure IV.7: Learning curve for the mask detection model using darknet framwork

The model has reached a mAP of 82.93% with 71.16% of IoU, 87.53% of AP (Average

precision) on class “mask” and 78.34% on class “no-mask”, and this is due to the fact that there

is a slight difference between number of mask images and no-mask images in training dataset.

We used a public dataset of 149 images from public.roboflow.com.

The Performances of our model is shown in Figure IV.8, this model might seem not perfect,

but it gives good result in real life implementation.

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

58

Figure IV.8: Performances of the mask detection model on darknet

Hard-Hat detection model:

In this model, we have 3 classes (head, helmet, person), so we again changed the number of

filters according to the formula (num_classes + 5) x3 which gives us 24.

The set of YOLO configurations used to train this model are shown in Figure IV.9.

Figure IV.9: Python code shows writing YOLO configurations used to train the hard-hat model,

Those hyper-parameters have been tested and seem to perform better for this model, we used

the standard learning rate of 0.00261 and increased a little bit the number of subdivisions with

a slight change on data augmentation parameters.

Figure IV.10 shows the learning curve of the hard-hat detection model using darknet on the

Google Colab.

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

59

Figure IV.10: Learning curve for the hard-hat detection model using darknet framwork

This model is practically the most precise one among the 3 models we had trained, even

though it has only 62.47% of mAP with 76% of IoU. This may be strange, but I will explain

to you the reason, the dataset has 7041 images which is huge comparatively to the other models,

however it’s an imbalanced dataset, which means there is much differences between set of

images between classes, in our case, head and helmet classes have enough training images, but

the person class has only few images, that’s why after training we have got:

 Class head has an AP of 84.02% with 4490/309 positive detections;

 Class helmet has an AP of 85.95% with 16354/1231 positive detections;

 Class person has an AP of 15.45 % with 39/20 positive detections.

This mean the model will not detect persons correctly but it will detect the heads and helmets

perfectly. And since we only care about hard-hat detection, we don’t really need our model to

detect person, because if it detected a head or helmet it means it’s already a person.

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

60

We thought of filtering the dataset manually by removing person images, but for 7000 images

it’s not really practical, beside that, we didn’t download the dataset in our local machine,

instead, we transferred it directly to Google Colab since it’s a huge dataset.

The overall Performances of this model is shown in Figure IV.11:

Figure IV.11: Performances of the mask detection model on darknet

IV.2.2.b IoT Setup Connected to a Router

Normally in industries video data from vision sensors is transmitted to cloud for better

understanding and efficient analysis, requiring uploading data to cloud. The data transmission

to cloud yield huge wastage of communication bandwidth, time, and makes real-time response

impossible corresponding to abnormal actions or activities. To overcome these challenges, we

propose a novel resource constrained RPi based system. Vision sensor is attached with each

RPi and is connected to a wireless network in IoT environment for efficient and intelligent

processing of video data.

The client RPis can be installed at locations where multi-view data are important to be captured

in smart industries. There can be a network of (n) number of RPi’s inter-connected to capture

video data individually. Each client RPi captures video data at 6-fps, to make the process online

and efficient. The client RPi then passes a single frame to the object detection model that

annotates it for the specified targets. The detected objects are analyzed, compressed and

encrypted then sent the Master Raspberry-Pi for farther process.

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

61

IV.2.2.c Targets Detection and Analysis

The input frames acquired from sub-section above are processed in this step. The trained model

in the initial step of our framework is used to annotate frame for configured targets like:

vehicles, persons, suspicious objects...etc.

The density of targeted objects (vehicles, persons...) are computed from the annotated frame

and shared with the smart devices connected to the IoT network. Information about traffic in

smart industries helps building up a routine and plays a key role in saving time. If the annotated

frame contains any type of suspicious object such as gun or knife it is considered as an alert.

The alert is shared with the concerned devices in IoT for employee’s safety and also with the

police department for quick preventive actions. The police department can analyze the situation

of alert by watching the camera and if it is not alarming, they can ignore it. After a continuous

detection of suspicious object, an alert is sent again to the police department.

IV.2.2.d Multi-view Summary Generation

The final summary is generated on master RPi. The input to this step is (n) number of frames

from each Client RPi. We select n to be 20. Therefore, we encode 20 frames from each view

having many targets like vehicles and persons. We apply lossless PNG compression on these

frames and send it to the master RPi. The PNG compression has the advantage of saving

communication bandwidth without losing the quality of the image. The master RPi receives

PNG compressed frames in the form of a vector and decodes it to restore the original frames

then process it using OpenCV-python library.

The same process is applied for rest of the frames and after decoding the frames are processed

via two methods: entropy and complexity to compute the information present in frames.

Entropy:

Image entropy indicates the amount of information inside a frame. The higher value of entropy

represents that the frame is rich of information and lower-value of entropy shows that the frame

has less amount of information. The process flow of entropy value computation is given in

Figure IV.12(a).

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

62

Figure IV.12: Computing entropy (a) and complexity (b) score from a single input frame

Complexity:

The complexity of a frame is computed by comparing original size of the frame and its size

after PNG compression [36] is applied. The PNG compression algorithm is applied according

to the human visual system as explained in. High compression rate shows that the frame has

little visually important information and vice versa. Complexity value computation is visualized

in Figure IV.12 (b).

These two methods output a real value between 0 and 1, and the frames with highest value of

sum for complexity and entropy is selected as a keyframe.

The number of keyframes in single chunk of 20 frames depends upon the configured threshold.

For example, if we select single frame preview from the frames extracted from Road dataset in

a single chunk. The total frames in a single chunk are (n * number of client RPi’s), where n is

the number of frames each client RPi’s transmits [4].

Figure IV.13 presents the values of entropy and complexity corresponding to the frames having

high and low information with and without compression. The results are same for the selection

of keyframes indicating no effect of the compression scheme applied over the frames.

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

63

Figure IV.13: Different Keyframes samples taken from different views

Frame Entropy

value

Complexity

value

Sum View

150 0.2997 0.5100 0.8097 2

198 0.2986 0.5002 0.7988 2

1224 0.3013 0.5476 0.8489 3

1236 0.2811 0.5044 0.7855 1

Decoded frames (after applying PNG compression)

150 0.2987 0.5002 0.7989 2

198 0.2975 0.4970 0.7945 2

1224 0.2993 0.5459 0.8452 3

1236 0.2833 0.5035 0.7868 1
Table IV.1: Sample video frames from Road dataset videos of different views

Frame #150: higher entropy and complexity values show high amount of information present

in frame and the objects detected are near to the camera which means they are important and

need to be considered for the final summary.

Frame #198: the complexity and entropy values are lower because of low amount of

information and objects are far from the camera.

Frame #1224: The objects are nearer to the camera and frame contains higher information.

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

64

Frame #1236: Although there are many vehicles in this frame but they are far from camera so

the information noticed is comparatively lower than Frame #1224.

The keyframes before and after applying encoding/compression scheme are the same. The sum

of entropy and complexity for different frames is given in the table where for both the scenarios

(before and after compression and decoding) the two keyframes among the four are the same

(Frame #150 and Frame #1224). Frames with highest sum are made bold and the second highest

sum is made italic and underlined inside the table in Table IV.1.

IV.3 Application code description

In this section, we will explain the general structure of our project, we used the Oriented Object

Programming (OOP) paradigm with Python 3.9 to make our code more scalable and easy to

maintain using the modular architecture.

IV.3.1 Development Environments

We used PyCharm as our main IDE (Integrated Development Environment) during our

development because it’s recommended by most of the professional developers and it has been

considered the best IDE for python developers.

We also used VS Code to code directly from the Raspberry-PI since it supports ARM

(Advanced RISC Machine) architecture.

We implemented the virtualenv tool to create a project-specific isolated virtual environment.

The main purpose of virtual environments is to manage settings and dependencies of a particular

project regardless of other Python projects.

IV.3.2 Code explanation:

In this section we will explain how python scripts perform, Figure IV.14 gives a general

schema on how our application performs on both Client and Master Raspberry-Pi. The

application structure can be seen in the Appendix(K).

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

65

Figure IV.14: A presentation of our code operation

IV.3.2.a On Raspberry-Pi Client:

On the Client Raspberry-Pi, the main_Client_RPi_jugu.py script will attempt to detect the

specified targets (according the chosen model) using the Python class which is inside

object_detector.py called Object_Detector like show Figure IV.15:

Figure IV.15: Python code shows instantiation of Object_Detector class

If a target is detected, then we apply a lossless PNG compression using the encode_image

method from the CoDec class (Figure IV.16), then we send it to the Master RPi.

Figure IV.16: Python code shows compressing frames before sending them to Master RPi

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

66

The Master RPi socket is set while creating the instance of Client_RPi class, like show Figure

IV.17 (we used port 5555 by default):

Figure IV.17: Python code shows sending frames to Master RPi using ImageZMQ library

We also initialized the default resolution of the camera and the FPS (in our case 640x480 with

6fps), Figure IV.18 shows the initialization process inside the constructor.

Figure IV.18: Python code shows configuration of OpenCV instance

If we check the selected frames according to the used object detection model before sending it

to Master raspberry-PI, we will see different results on Figure IV.19, Figure IV.20, Figure IV.21

and Figure IV.22.

The system will send a frame to Master Raspberry-Pi only and only if the targeted object has

been detected (according to the selected model) and bypass a certain threshold (entropy +

complexity).

Figure IV.19: Examples of detected frames on Raspberry-Pi Client while using person-vehicule model

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

67

Figure IV.20: Examples of detected frames on Raspberry-Pi Client while using hard-hat detection

model

Figure IV.21: Examples of detected frames on Raspberry-Pi Client while using mask-detection model

Figure IV.22: Examples of detected frames on Raspberry-Pi Client while using thermal infrared

person detection model

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

68

IV.3.2.b On Raspberry-Pi Master:

On the Master Raspberry-Pi, the script receiver_service.py is the daemon process responsible

of receiving the compressed images from different Client RPi and store them as keyframes for

MVS process.

The Master RPi is continuously listening on port 5555 as shown in Figure IV.23. Ports that are

below 1024 will need root access since they are well-known port.

Figure IV.23: Python code shows Master RPi listning to port 5555 for incoming frames

The script uses Multi-Threading technique to ensure better Clients RPi management; it will try

to create a new thread for each new connection, Figure IV.24 explain the process.

Figure IV.24: Python code shows using multithreading for each client connection

The handle_connection method is executed on separate thread and it responsible of receiving

the encoded image, decode it, the store it as a PNG image (Figure IV.25).

This method is also responsible for decoding the received frames from client Raspberry-Pi

(Line 338), Using Dead-Lock algorithm, we will make sure that the out frames are not

accidentally being read by other processes/threads while trying to update it.

If enabled in configuration, this method will attempt to send an “OK” message to the sender on

each frame to ensure reliability (just like TCP acknowledgment).

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

69

Figure IV.25: Python code shows handle_connection function

While the receiver daemon is busy storing the received frames, the script

main_Master_RPi_jugu.py is processing the Multi-View Summarization step on the stored

images, if no image received, it waits until new images are stored as indicated in line 103 of

Figure IV.26 by just rising an exception and return -1, the output will be interpreted by the

global script, if code error -1 is returned from the calculate_ComplexityEntropy() function, then

it will wait for 2 seconds before next retry. (this will also avoid high CPU stress).

On each image, the script will try performing calculations of Complexity and Entropy, if the

summation between those two reaches a certain threshold, then the frame is considered salient.

Figure IV.26: Python code shows calculations of entropy and complexity.

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

70

The salient frame is then added to the queue list to build a finale highly compressed video, we

can use any video Format supported by OpenCV (it support more than 100 video formats), the

exhaustive list of supported video formats is available on www.fourcc.org/codecs.php. In our

case we chose AVI (Audio Video Interleave) with 5 fps as shown in Line 175 on Figure IV.27.

The VideoWriter will try to automatically save the generated video file in case of unexpected

error, this makes our system fault tolerant.

Figure IV.27: Python code shows generating a video files from received frames.

After the video is written in the storage, we can configure the system to automatically remove

the used keyframes in the videos since we can easily generate again those keyframes from the

stored video.

We tested the system with a video of 2 minutes, and at the end the MVS process, the system

has generated us the following files (Figure IV.28):

Figure IV.28: The final generated files after the MVS process

http://www.fourcc.org/codecs.php

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

71

In Figure IV.29 indicates different screenshots taken to see different generated number images

and videos and their sizes accordingly.

 Number of received frames: 1076 with a size of 484.2 MB: (Screenshot A);

 Number of keyframes after MVS process: 295 with a size of 139.7 MB: (Screenshot B);

 Final generated video: 9 seconds video with 974.1KB: (Screenshot C);

As we can see, the result is really impressive and extremely efficient in storage, we converted

484MB of data into 1MB approximately a ratio of 497% of storage compression.

Figure IV.29: A set of screenshots indicating the number of generated images and their totaling sizes

IV.4 Additional features

Beside to the regular features that we provided above, we added some extra features to make

the project more interesting and useful. Some of the added features are:

IV.4.1 Remotely check the RPi cameras over HTTP:

Using this feature, we are capable to check the received frames in Real-Time via HTTP, this is

possible by just using any web browser from any device (Smartphone, Tablet, PC…etc.).

We used FLASK framework to expose the frame over HTTP and display them in a web

application built with HTML, CSS and JavaScript in frontend, in backend we used Flask, Flask

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

72

is a Python lightweight WISG web application framework used to serve web pages over HTTP,

Figure IV.30 shows instantiation of Flask framework, to avoid using root access and extra

configurations of firewall, we chose to use port 4747 instead of 80/443, this will also slightly

add a layer of security.

Figure IV.30: Python code shows running Flask on separate thread on port 4747.

After connecting to the web server using your Browser of choice, we will get the output as in

Figure IV.31 where it displays the initiation or Flask service then starting the receiver deamon

witch is continuously waiting for new Client Raspberry-Pi connection and receive frames.

Figure IV.31: Python output logs shows the execution of the services.

Figure IV.32 shows the render of the web page after connecting via a web browser to IP address

192.168.55.175:80, We can also connect using the hostname of the Master RPi since mDNS

is already install on Raspberry machine.

https://wsgi.readthedocs.io/

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

73

Figure IV.32: A screenshot shows the web page served by Flask through a web client.

IV.4.2 Securing the Network via VPN:

In order to enhance the security of our IoT based network, Virtual Private Network (VPN)

is considered as right solution for our case, VPN is an encrypted connection over the Internet

from a device to a network. The encrypted connection helps ensure that sensitive data is safely

transmitted. It prevents unauthorized people from eavesdropping on the traffic and allows the

user to access the whole Network from everywhere in the world. The smartphone will connect

to the Raspberry Pi through the Internet and create a secured tunnel between the two devices,

so that we can access any service provided by the IoT based network (Like accessing client-

RPi cameras via Web).

The VPN will secure all transmissions between RPis (client-RPi and master-RPi) even

transmissions between User device (Laptop, Smartphone, tablet…etc) and the master RPi via

HTTP or SSH. Figure IV.33 shows how VPN works.

Figure IV.33: VPN Process

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

74

To setup our VPN system, we need to install OpenVPN Server package on the Master RPi,

OpenVPN is a virtual private network (VPN) system that implements techniques to create

secure point-to-point or site-to-site connections in routed or bridged configurations and remote

access facilities. It implements both client and server applications.

It uses the OpenSSL encryption library extensively, as well as the TLS protocol, and contains

many security and control features. It uses a custom security protocol that utilizes SSL/TLS for

key exchange. It is capable of traversing network address translators (NATs) and firewalls.

We also need Free Dynamic DNS (DDNS) hosting since our internet service provider

doesn’t provide us a static IP address. freedns.afraid.org provides us a free hostname (our case

“jugu-rpi4.mooo.com” like shown in Figure IV.34) that redirects traffic to our IP address, even

after a change. This way, we can configure our VPN client with jugu-rpi4.mooo.com instead

of our dynamic IP address.

Figure IV.34: Subdomain used to access RaspberryPI over internet

During the installation of OpenVPN on the Raspberry-PI, we configured the service to use

Port 1194 on protocol UDP since we need speed while transmitting the keyframes. Figure IV.35

shows one of steps in the installation process.

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

75

Figure IV.35: VPN Configuration

After the installation is completed, there is an extra step left to do, our Raspberry Pi is not

directly accessible via Internet, but it’s located behind a router. So we need to configure this

router to redirect the VPN connections to our Raspberry PIs using port forwarding, this

configuration depends from a router to another.

Finally, we need to configure our Raspberry-PI’s firewall to open port 1194-UDP to allow

incoming connections, this configuration is shown in Figure IV.36:

Figure IV.36: Raspberry pi firewall configuration

Chapter -IV- Intelligent Embedded Vision based MVS System Implementation

76

At the end, we will have a fully functional VPN server where connect to it using any device

like smartphone, tablet, PC…etc. (Figure IV.37):

Figure IV.37: screenshot of smartphone connected to the master RPI's VPN server

IV.5 Conclusion

In this last chapter, we described our system then explained its process steps, after that we

had a look to the programmed application and briefly explained some of its functionalities.

Finally, we closed this chapter with some additional features that can enhance the system

usability.

Conclusion

77

Conclusion

In the modern age, surveillance networks are installed almost everywhere. These networks

generate daily videos 24 hours a day with significant redundancy, this which wastes storage

resources and makes them difficult to analyze. Motivated through these challenges, we

proposed a tool for summarizing multi-video effective views based on light weight CNN.

Our job was to capture multi-view video (MVV) data. Each client Raspberry Pi (RPi) detects

target in frames via light-weight CNN model, analyses these targets, and searches for suspicious

objects (it can be any specific target) to generate alert in the IoT network (like police station).

The frames of each client RPi are encoded and transmitted with to master RPi for final MVS.

The proposed project can be used in industrial environments for various applications such as

security and smart transportation even in smart-homes and can be proved beneficial for saving

resources

Outlook: Although good results have been achieved, the work can be improved:

 We have used YOLO v4 tiny with darknet framework, this can be latter updated with

YOLO v5 tiny with PyTorch.

 Add the possibility to switch between different model in real time without having to

stop the script completely and edit it.

 Add more features and control through web application rendered by Flask.

 Expand the python script with C/C++ to increase the overall performances.

 Add the possibility to rotate the camera through motors and an auto tracking option to

track the concerned target.

 Improve the script performances by adding some optimizations.

References

Bibliography

[1] Antonio Carlos Cob-Parro, «Smart Video Surveillance System Based on Edge Computing,» Sensors, p. 20, 23

April 2021.

[2] Laboratory, CCTV Technology Handbook, Advanced Technology and Assessments Branch éd., North

Charleston, SC 29419-9022, July 2013.

[3] A. Seldon, CCTV Handbook 2021, Technews Publishing (Pty) Ltd, 1st Floor, Stabilitas, 265 Kent Avenue éd.,

Box 385, Pinegowrie 2123, 2021.

[4] Khan Muhammad, "Intelligent Embedded Vision for Summarization of Multiview Videos in IIoT | IEEE Journals

Magazine | IEEE Xplore," Intelligent Embedded Vision for Summarization of Multiview Videos in IIoT, pp. 2592 -

2602, April 2020.

[5] «Discover the Differences Between AI vs. Machine Learning vs. Deep Learning,» Available:

https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/ai-vs-machine-learning-vs-deep-

learning#:~:text=Artificial%20Intelligence%20is%20the%20concept,algorithms%20to%20train%20a%20model.

[6] Mathworks, Introducing Deep Learning with MATLAB, Mathworks éd.

[7] J. Brownlee, «A Gentle Introduction to Computer Vision,» Machine Learning Mastery, Available:

https://machinelearningmastery.com/what-is-computer-vision/.

[8] Joseph Redmon, «You Only Look Once: Unified, Real-Time Object Detection,» 2016.

[9] «Introduction to YOLO Algorithm for Object Detection,» Engineering Education (EngEd) Program | Section,

Available: https://www.section.io/engineering-education/introduction-to-YOLO -algorithm-for-object-detection/.

[10] I. John Wiley & Sons, Exploring Raspberry Pi® Interfacing to the Real World with Embedded Linux®, 10475

Crosspoint Boulevard: Indianapolis, IN 46256, 2016-06-13.

[11] I. John Wiley & Sons, Learning Computer Architecture with Raspberry Pi®, 10475 Crosspoint Boulevard:

Indianapolis, IN 46256, 2016.

[12] " Raspberry Pi Documentation," 6 2021. Available: https://www.raspberrypi.org/documentation/faqs.

[13] John Wiley & Sons, Raspberry Pi® Projects For Dummies®, 111 River Street, Hoboken, NJ 07030: Library of

Congress Control Number: 2015942453, 2015.

References

[14] Raspberrypi.org, «Raspberry Pi Documentation - Raspberry Pi Hardware,» Raspberrypi.org, Available:

https://www.raspberrypi.org/documentation/hardware/raspberrypi/dpi/.

[15] generator, «Introduction to OpenCV-Python Tutorials,» Available:

https://docs.opencv.org/master/d0/de3/tutorial_py_intro.html.

[16] jeffbass, «imageZMQ: Transporting OpenCV images,» 2018. Available:

https://github.com/jeffbass/imagezmq#introduction.

[17] «What is NumPy? — NumPy v1.21 Manual,» Available: https://numpy.org/doc/stable/user/whatisnumpy.html.

[18] «Raspberry Pi Comparison: Which Pi is Right for My Application?,» Available:

https://www.digikey.com/en/maker/blogs/2018/how-to-pick-the-right-raspberry-pi.

[19] «General overview of the Linux file system,» Tldp.org, Available: https://tldp.org/LDP/intro-

linux/html/sect_03_01.html.

Appendices

Appendices

Appendix (A) : Functions of Operating System

A high-level definition of an operating system is that it stands between a computer user and the

computer hardware, enabling the user to use the computer’s various resources without

interfering with other users or with computer operation itself. Its major jobs can be broken down

this way:

■ Process management: The OS launches individual threads of execution for its own needs

and the needs of users. It allocates execution time on the CPU among executing threads. If the

CPU has multiple cores, it distributes processes among the cores.

■ Memory management: The OS allocates memory to running processes, in most cases as

separate memory spaces that are protected from interference by other processes. Through a

technology called virtual memory, the OS allows the computer literally to use more memory

than it actually has, by writing the least-used process memory out to disk when more memory

is needed.

■ File management: The OS maintains one or more file systems, which allocate file storage

space on disks and other mass-storage devices and manage the reading of data from files and

the writing to and deletion of files.

■ Peripheral management: The OS manages access to system peripherals like keyboards,

mice, printers, scanners, graphics coprocessors and (in cooperation with file systems) mass

storage devices. This is generally done through specialized software interfaces called device

drivers.

■ Network management: The OS manages the computer’s access to external networks

through a collection of standard methods called networking protocols. The protocols are

implemented in one or more pieces of software that, taken together, are called the network

stack.

■ User account management: All modern operating systems allow different users to have

their own accounts on the computer. An account includes a unique login, a set of security rules

called privileges and a private file space protected from manipulation by other users.

Appendices

■ Security: Scattered throughout an OS are mechanisms to keep running processes from

interfering with one another and with the OS itself. Much of OS security is done by defining

rules that specify what processes and users can and cannot do. Certain users called

administrators or super users have powers that ordinary users do not have.

■ User interface management: The OS manages user interaction with the computer

through software mechanisms called shells. A shell may be as simple as a text command line

in a terminal window, or it can be a full-blown windowed graphical environment like those

used in Windows, Mac OS X and desktop implementations of Linux, including Raspbian OS

on the Raspberry Pi [10].

Appendix (B) : Embedded Linux

Embedded Linux is used to convey the presence of an embedded system, a concept that can be

loosely explained as some type of computing hardware with integrated software that was

designed to be used for a specific application.

This concept is in contrast to the personal computer (PC), which is a general-purpose computing

device designed to be used for many applications, such as web browsing, word processing, and

game play. The line is blurring between embedded systems and general-purpose computing

devices. For example, the Raspberry Pi (RPi) can be both, and many users will deploy it solely

as a capable general-purpose computing device and/or media player. However, embedded

systems have some distinctive characteristics:

 They tend to have specific and dedicated applications;

 They often have limited processing power, memory availability, and storage

capabilities;

 They are generally part of a larger system that may be linked to external sensors or

actuators;

 They often have a role for which reliability is critical (e.g., controls in cars, airplanes,

and medical equipment);

 They often work in real time, where their outputs are directly related to present inputs

(e.g., control systems).

Appendices

Embedded systems are present everywhere in everyday life. Examples include vending

machines, household appliances, phones/smartphones, manufacturing/ assembly lines, TVs,

games consoles, cars (e.g., power steering and reversing sensors), network switches, routers,

wireless access points, sound systems, medical monitoring equipment, printers, building access

controls, parking meters, smart energy/water meters, watches, building tools, digital cameras,

monitors, tablets, e-readers, anything robotic, smart card payment/access systems, and more

[10].

Appendix (C) : Advantages and Disadvantages of Embedded

Linux:

There are many embedded platform types, each with its own advantages and disadvantages.

Here are some of the reasons why embedded Linux has seen such growth:

 Linux is an efficient and scalable operating system (OS), running on everything from

low-cost consumer-oriented devices to expensive largescale servers.

 A huge number of open source programs and tools have already been developed that

can be readily deployed in an embedded application. If you need a web server for your

embedded application, you can install the same one that you might use on a Linux

server.

 There is excellent open source support for many different peripherals and devices,

from network adapters to displays.

 It is open source and does not require a fee for its use.

 The kernel and application code is running worldwide on so many devices that bugs

are infrequent and are detected quickly.

One downside of embedded Linux is that it is not ideal for real-time applications due to the OS

overhead. Therefore, for high-precision, fast-response applications, such as analog signal

processing, embedded Linux may not be the perfect solution. However, even in real-time

applications, it is often used as the “central intelligence” and control interface for a networked

array of dedicated real-time sensors [18].

In addition, there are constant developments underway in real-time operating systems

(RTOS) Linux that aim to use Linux in a preemptive way, interrupting the OS whenever

required to maintain a real-time process [10].

Appendices

Appendix (D) : Booting the Raspberry Pi:

The first thing we should see when you boot a desktop computer is the Unified Extensible

Firmware Interface (UEFI), which provides legacy support for BIOS (Basic Input/Output

System) services. The boot screen displays system information and invites you to press a key

to alter these settings. UEFI tests the hardware components, such as the memory, and then loads

the OS, typically from the solid-state drive (SSD)/hard drive. Therefore, when a desktop

computer is powered on, the UEFI/BIOS performs the following steps:

1. Takes control of the computer’s processor;

2. Initializes and tests the hardware components;

3. Loads the OS off the SSD/hard drive.

The UEFI/BIOS provides an abstraction layer for the OS to interact with the display and

other input/output peripherals, such as the mouse/keyboard and storage devices. Its settings are

stored in NAND flash and battery-backed memory.

Appendix (E) : The Raspberry Pi Bootloaders:

Like most embedded Linux devices, the RPi does not have a BIOS or battery backed memory

by default.

Instead, it uses a combination of bootloaders. Bootloaders are typically small programs that

perform the critical function of linking the specific hardware of your board to the Linux OS:

 They initialize the controllers (memory, graphics, I/O);

 They prepare and allocate the system memory for the OS;

 They locate the OS and provide the facility for loading it;

 They load the OS and pass control to it.

The bootloader for embedded Linux is a custom program that is tailored for each and every

board type, including the RPi. There are open source Linux bootloaders available, such as Das

U-Boot (“The” Universal Bootloader), Grub2, LILO…etc.; that can be custom built, given

detailed knowledge of the hardware description of the embedded Linux platform.

Appendices

The RPi uses a different approach: It uses efficient but closed-source bootloaders that were

developed specifically for the RPi by Broadcom. These bootloader and configuration files are

located in the /boot directory of the RPi image:

ls -ltr *.bin start.elf *.txt *.img fixup.dat

Figure E.1: The output command to show the configuration files located in the /boot directory

Appendix (F) : The boot sequence of the Raspberry Pi:

1. Stage 1: boot is in the on-chip ROM. Loads Stage 2 in the L2 cache;

2. Stage 2: is bootcode.bin. Enables SDRAM and loads Stage 3;

3. Stage 3: is loader.bin. It knows about the “ .elf ” format and loads start.elf;

4. start.elf loads kernel.img. It then also config.txt, cmdline.txt and bcm2835;

5. kernel.img is then run on the ARM.

Everything is run on the GPU until kernel.img is loaded on the ARM.

Appendices

Figure F.1: The boot sequence of the Raspberry Pi in general

Appendix (G) : Multiple Cores:

Modern CPUs often have more than a single execution core. A core is a separate and almost

entirely independent engine that executes machine instructions. At the time of writing, CPUs

with two, four and eight cores are common in the personal computing world. Each core executes

processes independently, but all cores share system resources like memory. The operating

system controls the use of all cores in a system, just as it controls everything else. The OS

typically runs in one core, and parcels processes out to the other core(s) as needed.

Appendices

Appendix (H) : The Super User:

On Linux systems, the system administrator account has the highest level of security access to

all commands and files. Typically, this account is referred to as the root account or superuser.

Under Raspbian/Debian, this user account has the user name root, but it is typically disabled

by default; however, we can enable it by typing sudo passwd root from a shell that is logged in

with the pi user account (The naming of the user account as “root” is related to the fact that it is the only

user account with permission to alter the top-level root directory “/”.).

Appendix (I) : The Linux Root Directory

Exploring the Linux file system can be mandatory for new Linux users. If we go to the top-

level directory using cd / on the RPi and type ls, you will get the top-level directory structure,

of the following form:

Figure I.1: Linux command shows root directory.

Each of these directories has a role, and if you understand the roles, you can start to get an idea

of where to search for configuration files or the binary files that you need [19].

Directory Content

/bin Common programs, shared by the system, the system administrator and the users.

/boot Contains the files for booting the RPi.

/dev Contains the device nodes (linked to device drivers).

Appendices

Directory Content

/etc Configuration files for the local system.

/home Contains the user’s home directories (/home/pi is the pi user home).

/lib Library files, includes files for all kinds of programs needed by the system and the users.

/lost+found
Every partition has a lost+found in its upper directory. Files that were saved during failures

are here.

/mnt Used typically for mounting temporary file systems.

/media Used for mounting removable media, such as micro-SD cards.

/net Standard mount point for entire remote file systems

/opt Typically contains extra and third party software.

/proc Virtual filesystem providing process and kernel information as files.

/root The home directory of root account under the Raspbian and Debian Linux distributions.

/sbin Contains executables for root user (superuser) system management.

/srv Stores data related to ftp, web servers, rsync, etc.

/tmp Temporary space for use by the system, cleaned upon reboot.

/usr Programs, libraries, documentation etc. for all user-related programs.

/var Storage for all variable files and temporary files created by users, such as log files.

/sys Contains a virtual file system that describes the system.

/run Provides information about the running system since the last boot.

Table I.1: Briefly describes the content of each top-level Linux subdirectory

Appendix (J) : OIDv4_Toolkit setup and usability

In the training process, we first installed a command line program OIDv4_Toolkit that will let

us easily download specific classes from the Google Open Images Dataset.

Figure J.1, shows how OIDv4 download the given class names:

https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Kernel_(computing)
https://github.com/openimages/dataset

Appendices

Figure J.1: Downloading targeted classes from Open-Image-Dataset using OIDv4_Toolkit

Appendix (K) : Application structure:

This section present and explain the directory structure for the project, Figure 52 shows the

output of command “tree”:

 The folder “models”: contains our trained models, each subfolder has class names

(with extension “.names”), the configuration file (with extension “.cfg”) and the

trained model as a binary file.

 The folder “templates”: contains the HTML view file that will be rendered by Flask

framework, this will allow us to remotely monitor the Client RPi camera via HTTP.

 CoDec_jugu.py: Python class responsible of compressing and decompressing the

frames;

 Complexity_jugu.py: Python class witch calculate the complexity of a single frame;

 Entropy_jugu.py: Python class witch calculate the Entropy of a single frame;

 LICENSE: The license file which is Copy-Righted in our case;

 main_Client_RPi_jugu.py: Python script executed on Client RPi and its function is

to apply the Object-Detection process, annotate the frames and send them to Master

RPi;

 main_Master_RPi_jugu.py: Python script that applies MVS on the received salient

frames;

 motion_detector_jugu.py: Optional Python class used to add motion detection to

main_Client_RPi_jugu.py;

Appendices

 object_detector_jugu.py: Python class responsible of object detection using a

specified YOLO model;

 README.md: The readme file which explains different steps to install the system;

 receiver_service_jugu.py: A daemon Python script used to receive frames from

Client RPi and store them as PNG images.

Figure K.1: Screenshot shows the directory structure for the project

