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Introduction 

Over the last few decades and with the increased demand for security, video based 

surveillance systems had gained a considerable importance. These systems have moved from 

traditional analogue video to digital Internet protocol (IP) video for better efficiency and 

reliability. However, the amount of video data makes it a big data problem that demands 

continuous development of more video analysis methods to extract the maximum of 

information automatically. Moreover, the scopes like prevention and intervention have led to 

the development of intelligent video surveillance systems capable of video processing 

competencies based on techniques of computer vision and artificial intelligence. Among one 

the most important video analytics, we find the video summary. Video Summarizing is very 

useful because it allows the extraction of meaningful information from large amounts of video 

data in the form of keyframes or video skims. 

On the other hand, the emergence of the Internet of Things (IoT) and the computing on the 

edge nodes, has led to the appearance of many solutions that propose intelligent distributed 

video surveillance systems [1]. Hence, the intelligence of the system is distributed in multiple 

nodes, where each one can include a camera and a processing module that performs vision 

tasks, such as object detection and tracking activity, before sending the information to the 

central framework. For vision tasks.  current detection algorithms include Deep Neural 

Networks (DNNs). To perform objet detection and classification based on DNNs, a high-end 

hardware system with high computing capability and low power consumption is required. 

in this context, we propose an Intelligent video-surveillance system bases on embedded 

vision using low cost raspberry platform. The developed software use a YOLO light weighted 

network that has been selected for detecting objects of interest. This system can be easily 

installed and configured to work as a smart camera edge node in a video-surveillance system.  

The dissertation is organized as follows.  Chapter I present an overview of intelligent video 

surveillance systems in IoT environment. In chapter II, we recall principles of machine learning, 

Deep Learning and Computer Vision. Chapter III gives the architecture of the proposed 

intelligent embedded vision system with the description of the main hardware and software 

aspect. In chapter IV, we describe the software implementation of the proposed system for the 

generation of the video summary. 



 

 

 

 

 

 

 

Chapter I 

 

Overview of video analysis for surveillance systems 

in IoT 
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Chapter - I - Overview of Video Analysis for Surveillance 

Systems in IoT 

 

I.1 Introduction 

Video surveillance involves the act of observing scenes and looking for specific behaviors 

that are improper or that may indicate the emergence or the existence of security issues. A 

digital video surveillance system is a system capable of capturing images and videos that can 

be processed, compressed, stored or sent over communication networks. It can be used for 

nearly any environment. In this chapter we present un overview of video surveillance systems 

characteristics and methods used for the analysis of generated video and its automation for 

efficient information extraction. 

I.2 Video surveillance system  

Video Surveillance Systems (VSS) provide surveillance capabilities used in the protection 

of people, assets, and structures. These systems are often used to support comprehensive 

security systems by incorporating video coverage and security alarms for barriers, intrusion 

detection, and access control.   

VSS uses many connected components with a variety of functions, features, and 

specifications to generate, transmit, display, and store video data.  this system can be as simple 

as a camera connected to a video monitor or a larger complex system operated by professional 

security personnel and comprised of a number of components falling into several basic 

categories like:  
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• Cameras; 

• Monitors; 

• Switchers and multiplexers;  

• Video recorders; 

• power and lighting. 

Figure I.1 provides typical surveillance system components. Many features exist within each of 

these categories that can satisfy an agency’s operational requirements in the most challenging 

environments.  The most complex surveillance systems may incorporate hundreds of cameras 

and sensors integrated into one overall security network [2]. 

 

Figure I.1: Typical surveillance system components  

 

Video surveillance technologies continuously undergo feature refinements to improve 

performance in areas such as digital equipment options, data storage, component 

miniaturization, wireless communications, and automated image analysis. [3] As video 

surveillance technology has evolved, video transmission has progressed from analog to digital 

transmission.  New cameras with Internet protocol (IP) capability transmit compressed video 

as digital data.  A drawback of IP transmissions is that video places a high demand on a 

network’s bandwidth, and the tradeoff may be image quality. 

I.3 Intelligent automated video surveillance  

Traditional video surveillance systems depend much on human interventions, and they are 

restrained to a simple On/Off switch, which results in thousands of hours of unusable video. 

This makes effective surveillance nearly impossible. Therefore, automated video surveillance 

replaced traditional systems by incorporating video analytics that uses computer algorithms to 
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monitor real-time video. Video analytics can help organizations become more efficient by 

automating part of the monitoring process and averting the time-consuming and tedious process 

of reviewing extensive quantities of stored video.  However, with the increase of security 

concerns, the need for more effective video analytics approaches had emerge, that’s why 

traditional automated surveillance systems had been complemented and even replaced by the 

advanced intelligent surveillance systems that enable very high monitoring accuracy by a few 

observers. In broad terms, advanced video-based surveillance could be described as an 

intelligent video processing technique designed to assist security personnel’s by providing 

reliable real-time alerts and to support efficient video analysis for forensic investigations. 

I.4 IoT application in video surveillance 

Internet of Things (IoT) describes the network of physical object that are embedded with 

sensors, software, and other technologies for the purpose of connecting and exchanging data 

with other devices and systems over the internet. it is network of smart devices that has its own 

computing capability, which are connected to form systems that collect, monitor, exchange and 

analyze data at industrial level. 

IoT has replaced the traditional sensing of surrounding environments. Hence, intelligent video 

surveillance is an IoT based application as it uses Internet for various purposes. The IoT help 

to securely and remotely monitor facilities and public spaces in real-time with smart security 

and surveillance solutions. Video surveillance systems are a system of one or more intelligent 

video cameras capable of image analysis like object-detection and tracking connected on a 

network that send the captured video and audio information to a certain place. They are live 

monitored or transmitted to a central location for recording and storage. Intelligent video can 

provide the following improvements on previous security monitoring services [4]: 

 Tracking a moving target; 

 Automatic audio and visual detection of suspicious activity, which can trigger alarms 

and alert police station and business owners to potential threats; 

 High-definition picture quality, as well as night vision technology triggered by motion 

sensors, meaning the system isn’t running while nothing is happening at your location; 

 Alerts notifying operators or field personnel; 

 Ability to count people entering and leaving; 

 Camera tampering detection; 

 Vehicle license plate recognition. 

I.5 Video analytics 

Video analytics encompasses mainly the below-mentioned tasks: 
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1. Storage optimization: Storage optimization is realized based on the motion detection 

or summary generation. The video management systems decide to store the video 

when any motion/ interesting object or event is spotted in the observed scene or else 

the video is either not stored or is stored at a lower frame rate or a lower resolution 

to save storage space. Cameras may capture long durations of inactivity when placed 

in buildings when they are locked, staircases, etc. This application helps in reducing 

the consumption of storage as compared to continuous recording. 

2. Identify threatening events: Video analytics can also be used to identify threatening 

events to pro-actively identify any lapse in security incidents, be alert and to stop 

them; for example, license plate recognition, perimeter violation, abandoned objects 

detection, and people counting. 

I.6 Video summarization 

Video summarization technologies aim to create a concise and complete summary video by 

compressing and selecting the most informative parts of the video content, it is an automatic 

technique for extracting significant information from big video data in the form of keyframes 

(still images) or video skims (moving images). It investigates the input video for different 

events, informative frames, then generates a summary that is representative of the whole video.  

Video summarization helps users to navigate through a large sequence of videos and retrieve 

ones that are most relevant to the query. Video summarization can be categorized into four 

forms:  

- Static Video Summary; 

- Dynamic Video Summary; 

- Single View Summary; 

- Multi-View Video Summary. 

I.6.1 Static Video Summary (SVS)  

Static Video Summary are usually presented as a storyboard; it consists of keyframes that 

represent mainly video content. It takes into account the visual information but ignores the 

audio message [4]. The advantage of SVS is that the keyframes sets are not restricted by any 

timing or synchronization issues, and therefore, they offer much more flexibility in terms of 

organization for browsing and navigation purposes, in comparison to a strict sequential display 

of video skims. 
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I.6.2 Dynamic Video Summary (DVS)  

Dynamic Video Summary is a video clip that combines image, audio and text information, 

compared to the dynamic video summary, the static video summary is easier to navigate and 

reduces the computational complexity for the recovery and analysis of the video, but the 

dynamic summary has the option of including audio and movement elements that potentially 

enhance both expressiveness and information from abstraction. 

Figure I.3 present steps used to generate a video skim from the original video, first, we perform 

scene & audio segmentation, then we merge them after select the most informative clips. 

 

Figure I.2: Skim video for drastic reduction in viewing time without loss in content 

 

One advantage of a video skim method over keyframes method, is that it enhances the amount 

of information conveyed by the summary. In addition, it’s often more entertaining and 

interesting to watch a skim than a slide shows of keyframes. 

I.6.3 Single View Video Summarization (SVVS) 

SVVS generates summary from a single input video, covering only one view at a time. A single 

camera for smart industries in IoT network has a limited coverage that cannot fully exploit the 

overall environment synchronously. 
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I.6.4 Multi-Views Video Summarization (MVVS) 

MVVS generates summary from a multiple input videos, it refers to the problem 

of summarizing multi-view videos into informative video summaries, usually presented as 

dynamic video shots coming from multi-views, by considering content correlations within 

each view and among multiple views. 

As opposed to SVVS, MVVS is challenging because it has both inter and intra-view 

correlations to be considered while generating summary. Another big challenge in MVVS is 

variation of light conditions among different views. Furthermore, synchronization among 

different views makes the problem of MVVS a difficult one. The basic flow of MVVS 

comprises of three steps: Pre-processing, Features extraction and summary generation [4]: 

1. Pre-processing Multi-View Video (MVV) 

The first step in MVVS flow suppresses the Multi-View Video through several redundancy 

removal techniques such as shots segmentation (uniform or variable length) and video splitting 

based on the shots boundary. 

2. Features extraction 

Which mainly includes objects detection, and tracking, they are considered to be the second 

prerequisite step followed by different MVVS methods. 

3. Summary generation 

Final step of MVVS involves summary generation from the extracted features through various 

machine learning or template matching algorithms. 

I.7 Conclusion 

In this chapter we introduced Video surveillance, then we had a look about some IoT 

applications in Video surveillance, after that we explained video summarization along with 

analytics. computer vision,  

in the next chapter, we will recall Artificial intelligence, machine learning, deep learning then 

we will end up with computer vision the most widely used real time object detector YOLO. 
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Chapter - II - Deep learning for computer vision 

II.1 Introduction 

Artificial Intelligence, Machine Learning and, Deep Learning are the latest keywords of this 

century. Their wide range of applications has changed the facets of technology in every field, 

ranging from Healthcare, Manufacturing, Business, Education, Banking, Information 

Technology etc. In this chapter we present Deep learning for computer vision, we first introduce 

artificial intelligence, then machine learning and its different types (supervised, unsupervised 

and reinforcement learning), after that, we will recall deep learning which is based on Artificial 

neural network (ANN), finally we will end up by presenting CNN for embedded vision and the 

fastest object detection algorithm (YOLO). 

II.2 Artificial Intelligence 

Artificial intelligence, commonly referred to as AI, is the process of imparting data, 

information, and human intelligence to machines. The main goal of AI is to develop self-reliant 

machines that can think and act like humans. These machines can mimic human behavior and 

perform tasks by learning. Most of the AI systems simulate natural intelligence to solve 

complex problems. Amazon Echo is a good example of Artificial Intelligence (Figure II.1). 
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Figure II.1: Artificial intelligence example - Amazon Echo 

II.3 Machine Learning 

Machine learning is a field of study which allows machines (computers) to learn from data or 

experience and make a prediction based on the experience. It enables the computers or the 

machines to make data-driven decisions rather than being explicitly programmed for carrying 

out a certain task. These programs or algorithms are designed in a way that they learn and 

improve over time when are exposed to new data. Machine learning accesses vast amounts of 

data (both structured and unstructured) and learns from it to predict outcomes accurately. It 

employs various approaches to teach computers in order accomplish tasks where no fully 

satisfactory algorithm is available [5].  

II.3.1 Types of Machine Learning 

Machine learning algorithms are classified into three main categories: Supervised Learning, 

Unsupervised Learning and Reinforcement Learning.  

II.3.1.a Supervised Learning 

Supervised learning category is concentrated on mapping patterns by establishing the 

relationship between variables and known outcomes while working with labelled datasets. 

Simply saying, it’s like having an input variable (x) and output variable (y) and use an algorithm 

to make it learn to establish a mapping function between the input and output. 

With supervised learning, the machine already knows the output of the algorithm before it starts 

working on it or learning it. This means that if the process goes haywire and the algorithms 

come up with results completely different than what should be expected, then the training 

dataset will guide the algorithm back towards the right path. Using this method of learning, 
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systems can predict future outcomes based on past data. It requires that at least an input variable 

be given to the model for it to be trained. 

Figure II.2 present a basic supervised learning process. We input Raw Data to the algorithm, 

this algorithm will learn then make predictions using a given dataset and is corrected by the 

“supervisor”. After generating a trained model, the model can then accept new input data; 

process it then give desired outputs according to what it’s trained for. 

 

Figure II.2: Supervised learning process 

 

Supervised learning can further be divided into two types of tasks: 

 Regression:  Regression problem is when the output variable is continuous and real 

value. For example, price, weight, etc. 

 Classification: Classification is a problem when the output variable is a category (ex. 

mask, no-mask, person, car…etc.) and can be used in applications such as speech 

recognition, handwriting recognition, biometric identification, document 

classification…etc. 

Some examples of supervised learning algorithms include:  linear regression, logistic 

regression, support vector machines (SVM), Naive Bayes, and decision tree. We can see in 

Figure II.3 the list of most widely used Regression and classification algorithms.  
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Figure II.3: Regression & Classification algorithms 

II.3.1.b Unsupervised Learning 

Unsupervised Learning is a machine learning technique in which the users do not need to 

supervise the model. Instead, it allows the model to work on its own to discover patterns and 

information that was previously undetected. It mainly deals with the unlabelled data (Figure 

II.4). The systems are able to identify hidden features from the input data provided 

(interpretation). Once the data is more readable, the patterns and similarities become more 

evident. After generating a trained model, the model can now cluster any new data accordingly. 

 

 

Figure II.4: Unsupervised learning process 
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Unsupervised learning can further be divided into two types of tasks: 

 Clustering: A clustering problem is where you want to discover the inherent 

groupings in the data, such as grouping customers by purchasing behavior. 

 Association: An association rule learning problem is where you want to discover 

rules that describe large portions of your data, such as people that buy X also tend to 

buy Y. 

Some examples of unsupervised learning algorithms include:  k-means clustering, hierarchical 

clustering, and anomaly detection. 

II.3.1.c Reinforcement Learning 

Reinforcement learning, in the context of artificial intelligence, is a type of dynamic 

programming that trains algorithms using a system of reward and punishment. A reinforcement 

learning algorithm, or agent, learns by interacting with its environment. The agent receives 

rewards by performing correctly and penalties for performing incorrectly. The agent learns 

without human intervention by maximizing its reward and minimizing its penalty. 

Reinforcement learning differs from the supervised learning in a way that in supervised learning 

the training data has the answer key with it so the model is trained with the correct answer itself 

whereas in reinforcement learning, there is no answer but the reinforcement agent decides what 

to do to perform the given task. In the absence of a training dataset, it is bound to learn from its 

experience. Figure II.5 shows how reinforcement learning works to train itself with rewards 

and penalties according to given policy. 

 

The main points we should consider in Reinforcement learning: 

 Input: The input should be an initial state from which the model will start; 

 Output: There are many possible output as there are variety of solution to a particular 

problem; 

 Training: The training is based upon the input, the model will return a state and the 

user will decide to reward or punish the model based on its output; 

 The model keeps continue to learn; 

 The best solution is decided based on the maximum reward. 
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Figure II.5:  Reinforcement learning process 

 

Examples of reinforcement learning algorithms include: Q-learning and Deep Q-learning 

Neural Networks. 

II.3.2 Machine learning applications 

Figure II.6 shows different applications according to the type of machine learning:  

 

Figure II.6: Different Machine-Learning applications according to their types 
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II.4 Deep Learning 

Deep learning is a subset of machine learning which itself is a subset of Artificial intelligence 

(Figure II.7), it deals with algorithms inspired by the structure and function of the human brain. 

Deep learning algorithms work with an enormous amount of both structured or unstructured 

data and its core concept lies in artificial neural networks, which enable machines to make 

decisions.  

 

Figure II.7: Artificial intelligence VS Deep learning VS machine learning 

 

Artificial neural network (ANN) is the piece of a computing system designed to simulate the 

way the human brain analyzes and processes information. It is the foundation of AI and solves 

problems that would prove impossible or difficult by human or statistical standards. Figure 

II.8 describe a simple artificial neural network structure: 

 

Figure II.8 : Basic Artificial Neural Network structure 
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The ANN is constructed from 3 types of layers: 

Input layer: initial data for the neural network. 

Hidden layers: intermediate layer between input and output layer and place where all the 

computation is done. 

Output layer: produce the result for given inputs. 

II.4.1 Deep Networks types  

There are many types of neural networks in deep learning which are used for different 

purposes, but 4 of them are considered as major types of deep neural network: 

 Convolutional Neural Network (CNN) - CNN is a class of deep neural networks 

most commonly used for image analysis. 

 Recurrent Neural Network (RNN) - RNN uses sequential information to build a 

model. It often works better for models that have to memorize past data. 

 Generative Adversarial Network (GAN) - GAN are algorithmic architectures that 

use two neural networks to create new, synthetic instances of data that pass for real 

data. A GAN trained on photographs can generate new photographs that look at least 

superficially authentic to human observers. 

 Deep Belief Network (DBN) - DBN is a generative graphical model that is composed 

of multiple layers of latent variables called hidden units. Each layer is interconnected, 

but the units are not. 

II.4.2 Deep Learning Applications 

There are many Deep Learning applications, some of them are: 

 Caption bot for captioning an image; 

 Object detection and face recognition; 

 Self-driving cars; 

 Voice search and virtual assistants; 

 Machine translation; 

 Colorization of Black and White Images; 

 Game playing AI (Open Ai dota bot, google brain alpha go); 

 Real-time object recognition in the image (Google lens). 
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II.5 Convolutional Neural Network (CNN) 

     A Convolutional Neural Network is a type of artificial neural network used mainly in image 

recognition and processing that is specifically designed to process pixel data. CNN is one of 

the most popular algorithms for deep learning with images and videos.  

II.5.1 Basic CNN architecture  

Like other neural networks, a CNN is composed of an input layer, an output layer, and many 

hidden layers in between (Figure II.9): 

A- Feature Detection Layers: in the basic architecture, these layers perform one of 2 types of 

operations on the data: convolution, pooling. Convolution puts the input images through a set 

of convolutional filters, each of which activates certain features from the images. Pooling 

simplifies the output by performing nonlinear down-sampling, reducing the number of 

parameters that the network needs to learn about. These operations are repeated over tens or 

hundreds of layers, with each layer learning to detect different features. 

B- Classification Layers: After feature detection, the architecture of a CNN shifts to 

classification. The next-to-last layer is a fully connected layer (FC) that outputs a vector of K 

dimensions where K is the number of classes that the network will be able to predict. This 

vector contains the probabilities for each class of any image being classified. The final layer of 

the CNN architecture uses the calculated class probabilities to provide the classification output. 

 

Figure II.9 : Basic CNN structure [6] 

II.5.2 Learning Process 

A neural network is made up of neurons connected to each other at the same time, each 

connection of the neural network is associated with a weight that dictates the importance of this 

relationship in the neuron when multiplied by the input value as shown in Figure II.10. Each 
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neuron has an activation function that defines the output of the neuron. The activation function 

is used to introduce non-linearity in the modeling capabilities of the network.  

 

Figure II.10: A presentation of neuron : “wij” weights, “bj” biases, “xn” inputs, and ”yi” output 

 

The most essential element of Deep Learning is learning the values of parameters “wij”. The 

learning process in a neural network is an iterative process consisting of two phases (Figure 

II.11):  

- The first phase of forward propagation occurs when the network is exposed to the 

training data and these cross the entire neural network for their predictions (labels) to 

be calculated. That is, passing the input data “xn” through the network in such a way 

that all the neurons apply their transformation to the information they receive from the 

neurons of the previous layer and sending it to the neurons of the next layer. When the 

data has crossed all the layers, and all its neurons have made their calculations, the final 

layer will be reached with a result of label prediction for those input examples. 

- The second phase back propagation is based on the use of a loss function to estimate the 

loss (or error) and to compare and measure how good/bad neural prediction result was 

in relation to the correct result (label). The error is propagated backwards to all the 

neurons in the hidden layer that contribute directly to the output.  Therefore, as the 

model is being trained, the weights of the interconnections of the neurons will gradually 

be adjusted until good predictions are obtained. 
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Figure II.11: Back-propagation and forward-propagation process 

 

After performing back-propagation, weights of neurons are adjusted by minimizing errors 

with optimizers algorithms (like gradient descent, stochastic gradient descent, momentum, 

AdaDelta, Adam…etc.), for case of gradient descent method, it adjusts the weights in small 

increments by calculating the derivative (or gradient) of the loss function (Figure II.12).  This 

is done in general in batches of data in the successive iterations (epochs) of all the dataset that 

we pass to the network in each iteration. 

 
Figure II.12: Learning algorithm steps 
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II.6 Computer Vision 

Computer vision is a field of study focused on the problem of helping computers to see 

(interpret images). Typically, this involves developing methods that attempt to reproduce the 

capability of human vision by automating the extraction of information from images. Those 

Information can be anything from 3D models, camera position, object detection and recognition 

to grouping and searching image content [7]. It is a multidisciplinary field that could broadly 

be called a subfield of artificial intelligence and machine learning, which may involve the use 

of specialized methods and make use of general learning algorithms. 

II.6.1 Computer Vision and Image Processing 

Computer vision is distinct from image processing. Image processing is the process of creating 

a new image from an existing image, typically simplifying or enhancing the content in some 

way. It is a type of digital signal processing and is not concerned with understanding the content 

of an image. A given computer vision system may require image processing to be applied to 

raw input, e.g. pre-processing images.  

Examples of image processing include normalizing photometric properties of the image 

(brightness or color), cropping the bounds of the image (centering an object in a photograph) 

and removing digital noise from an image (digital artifacts from low light levels). 

II.6.2 Challenges of Computer Vision 

Helping computers to see is such a challenging problem because of the complexity inherent in 

the visual world. A given object may be seen from any orientation, in any lighting conditions, 

with any type of occlusion from other objects, and so on. A true vision system must be able to 

“see” in any of an infinite number of scenes and still extract something meaningful. Computers 

work well for tightly constrained problems, not open unbounded problems like visual 

perception. 

II.6.3 Computer Vision for Video Surveillance 

The surveillance industry is one of the early adopters of image processing techniques and 

video analytics. Video analytics is a special use case of computer vision that focuses on 

processing hours of video footage with the ability to automatically detect and identify 

predefined patterns in real world situations with hundreds of use cases. 

The first video analytics tools use handcrafted algorithms that identify specific features in 

images and videos (Figure II.13). They were accurate in laboratory settings and simulation 

environments. However, the performance quickly dropped when the input data, like lighting 
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conditions and camera views, deviated from design assumptions witch made them not robust 

enough. Handcrafted features such as Histogram of Oriented Gradients (HOG), Scale invariant 

Feature Transform (SIFT), Local Binary Pattern (LBP), Local Ternary Patterns (LTP). These 

handcrafted features produce high dimensional feature vectors obtained by the aggregation of 

small local patches of subsequent video frames for motion and appearance information. 

However, these high dimensional feature vectors do not scale well for large scale video 

processing in uncontrolled environment. 

 

Figure II.13: Comparing the (a) classical approach to machine learning using handcrafted fetaures 

to the (b) deep learning operating on raw inputs. 

 

Recently, Video analytics solutions based on deep learning models like CNN serve as the 

foundation for cutting-edge analytics systems used in smart cities and real-time applications. 

Despite enormous effort in developing automated systems, current surveillance systems are not 

entirely capable of autonomously analyzing complex event from observed scene. To address 

this problem, independent work on several areas such as object tracking, behavior 

understanding, object classification, summarization and motion segmentation are combined to 

form a composite video analytic framework for video surveillance. 

II.6.3.a Computer Vision tasks 

Many popular computer vision applications involve trying to recognize things in images; for 

example: 
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 Object Classification: What broad category of object is in this image? 

 Object Identification: Which type of a given object is in this image? 

 Object Verification: Is the object in the image? 

 Object Detection: Where are the objects in the image? 

 Object Landmark Detection: What are the key points for the object in the image? 

 Object Segmentation: What pixels belong to the object in the image? 

 Object Recognition: What objects are in this image and where are they? 

II.6.3.b Object Detection algorithms 

Object detection is very important tool for video surveillance analytics that involves the 

detection of various objects like people, cars, animals, weapons...etc. Well-researched domains 

of object detection include face detection and pedestrian detection. Some of widely used object 

detection algorithms are:  

 Region-based Convolutional Neural Networks (R-CNN); 

 Single Shot Detector (SSD); 

 Spatial Pyramid Pooling (SPP-net); 

 YOLO (You Only Look Once). 

 

II.7 Embedded vision with YOLO Network 

YOLO is an abbreviation for the term ‘You Only Look Once’. This is an algorithm that 

detects and recognizes various objects in a picture (in real-time). YOLO combines what was 

once a multi-step process, using a single neural network to perform both classification and 

prediction of bounding boxes for detected objects. As such, it is heavily optimized for detection 

performance and can run much faster than running two separate neural networks to detect and 

classify objects separately. It does this by repurposing traditional image classifiers to be used 

for the regression task of identifying bounding boxes for objects, the algorithm requires only a 

single forward propagation through a neural network to detect objects. This means that objects 

detection in the entire image is done in a single algorithm run. The CNN is used to predict 

various class probabilities and bounding boxes simultaneously.  

 

Processing images with YOLO is simple and straightforward and can be divided into 3 main 

steps like shown in Figure II.13: 

 

https://www.section.io/computer-vision-straight-lines/
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Figure II.13: YOLO Detection System [8] 

1. Resizes the input image to 448 × 448; 

2. Runs a single convolutional network on the image; 

3. Thresholds the resulting detections by the model’s confidence.  

YOLO is refreshingly simple, a single convolutional network simultaneously predicts multiple 

bounding boxes and class probabilities for those boxes. YOLO algorithm works using the 

following three techniques: 

 Residual blocks; 

 Bounding box regression; 

 Intersection Over Union (IOU). 

II.7.1 Residual blocks 

First, the image is divided into various grids (Figure II.14). Each grid has a dimension of S x S.  

 

Figure II.14: How an input image is divided into grids in YOLO  
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In Figure II.14, there are many grid cells of equal dimension. Every grid cell will detect objects 

that appear within them. For example, if an object center appears within a certain grid cell, then 

this cell will be responsible for detecting it. 

II.7.2 Bounding box regression 

A bounding box is an outline that highlights an object in an image. Every bounding box in the 

image consists of the following attributes: 

 Width (bw); 

 Height (bh); 

 Class (for example, person, car, traffic light, etc.)- This is represented by the letter “c”; 

 Bounding box center (bx, by). 

 

Figure II.15 shows an example of a bounding box. The bounding box has been represented by 

a yellow outline. 

 

Figure II.15: An image shows an example of a bounding box in yollow color 

 

YOLO uses a single bounding box regression to predict the height, width, center, and class of 

objects. Figure II.15 presents the probability of an object appearing in the bounding box. 

II.7.3 Intersection over union (IOU) 

Intersection Over Union is so effective in object detection that describes how boxes overlap. 

YOLO uses IOU to provide an output box that surrounds the objects perfectly. 
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Each grid cell is responsible for predicting the bounding boxes and their confidence scores. The 

IOU is equal to 1 if the predicted bounding box is the same as the real box. This mechanism 

eliminates bounding boxes that are not equal to the real box [9]. 

Figure II.16 provides a simple example of how IOU works. There are two bounding boxes, one 

in green and the other one in blue. The blue box is the predicted box while the green box is the 

real box. YOLO ensures that the two bounding boxes are equal. 

 

Figure II.16: An example IOU operation 

II.7.4 Combination of the three techniques 

As we can see in Figure II.17 after combining the 3 techniques to produce the final detection 

results. 

 

Figure II.17: Combination oh the 3 techniques to produce the final detection in YOLO  
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First, the image is divided into grid cells. Each grid cell forecasts B bounding boxes and 

provides their confidence scores. The cells predict the class probabilities to establish the class 

of each object. For example, we can notice at least three classes of objects: a car, a dog, and a 

bicycle. All the predictions are made simultaneously using a single CNN [9]. 

IOU ensures that the predicted bounding boxes are equal to the real boxes of the objects. This 

phenomenon eliminates unnecessary bounding boxes that do not meet the characteristics of the 

objects (like height and width). The final detection will consist of unique bounding boxes that 

fit the objects perfectly. 

For example, the car is surrounded by the pink bounding box while the bicycle is surrounded 

by the yellow bounding box. The dog has been highlighted using the blue bounding box. 

 

II.8 Conclusion 

In this chapter, we presented briefly Machine-Learning including and its different types: 

supervised, Unsupervised and reinforcement learning, after that we presented Deep learning 

with its types and some of its applications. then, we introduced computer vision; finally, we 

ended with explanation of YOLO algorithm for object detection.  

In the next chapter, we will describe the proposed embedded vision system implementation 

which consist in the different hardware & software components that include preparation of the 

development environment by setting/tweaking the Linux configurations and installing required 

tools and libraries used in this project. 
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Chapter - III - Intelligent Embedded Vision based 

MVS System Description 

 

III.1 Introduction 

The objective of our project is studying and realizing intelligent components to integrate into 

application, then for analyzing surveillance videos to extract relevant information and generate 

summary. This component is based on the use of an embedded CNN. Our method uses an IoT 

network containing smart clients and master devices with built-in cameras to capture multi-

view video data.  

III.2 System Description 

Our project approach is inspired from [4] presenting an Intelligent Embedded vision for MVS 

in IIoT, however the code is completely rewritten from scratch and enhanced to fits our need. 

This project uses an IoT network containing smart devices, Raspberry Pi (clients and master) 

with embedded cameras to capture multi-view video (MVV) data. Each client Raspberry Pi 

(RPi) detects target in frames via light-weight CNN model, the system detects targeted object 

according to a selected YOLO model to generate alert in the IoT network (in case it’s 

suspicious). The frames of each client RPi are encoded/encrypted and transmitted to master RPi 

for final MVS, the data communication are done through a VPN network for higher security 

and can be accessed via any device that support HTTP protocol. Our project can also be used 

in industrial environments for various applications such as security and smart transportation 

and can be proved beneficial for saving resources. 
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The overall scenario of the proposed framework in IoT setup is presented in Figure III.1

 

Figure III.1: Sample scenario for IoT connected devices (RPi’s) in smart industries. 

 

Each Raspberry-Pi client detects targets (according to the implemented object detection model) 

then send the captured keyframes to the master Raspberry-Pi for the final Multi-View 

Summarization (MVS) process.  

The proposed MVS system is based on single board computers (SBC) components, which are 

complete computers built on a single circuit board, with microprocessor, memory, input/output 

(I/O) and other features required of a functional computer, they are commonly made as 

development or educational systems. For our project, we chose the most used SBC in IoT 

applications which is the Raspberry Pi4. Raspberry Pi4 is an ARM-based SBC and a powerful 

tool when it comes to AI and ML. Moreover, Raspberry processing capabilities matched with 

a small form factor and low power requirements, make it an adapted device for smart robotics 

objects and embedded projects which requires significant processing power, energy efficient 

and low power consumption at cheap price. 

III.3 Raspberry platform 

The Industrial Raspberry Pi offers a versatile set of tools for solving almost any automation 

challenge and it operates in the open source ecosystem, it runs Linux (a variety of distributions), 

and its main supported operating system, Raspbian OS. 
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III.3.1 Raspberry Pi boards 

The Raspberry Pi (RPi) is a series of single-board computers. They are low-cost, high-

performance and the size of a credit card. It was developed in the UK by the Raspberry Pi 

Foundation. The Raspberry Pi Foundation's goal is to "advance the education, particularly in 

the field of computers, computer science and related subjects".  

The Raspberry Pi has the ability to interact with the outside world, and has been used in a wide 

array of digital maker projects and industries, from music machines and parent detectors to 

weather stations and embedded vision for intelligent video surveillance.  

III.3.1.a Raspberry-Pi use cases 

The major components of a Raspberry Pi boards, is the Broadcom System-on-Chip (SoC) that 

include a central processing unit (CPU), a graphics processing unit (GPU), memories and 

various digital, analogue and mixed signal circuits such as timers, USB controller, PCM/I2S, 

SPI/I2C et UART. 

The RPi is adapted to projects of high-level software integration and low level electronics. The 

major advantage the RPi and other embedded Linux devices have over more traditional 

embedded systems, such as the Arduino, PIC, and AVR microcontrollers, is apparent when you 

leverage the Linux OS for your projects. Linux provides us with device driver support for many 

USB peripherals and adapters, making it possible for us to connect cameras, Wi-Fi adapters, 

and other low-cost consumer peripherals directly to our platform without the need for 

complex/expensive software driver development.  

The RPi is also an excellent device for playing high-definition video and this is due to its 

Broadcom BCM2835/6/7 processor that was designed for multimedia applications, moreover, 

it has a hardware implementation of H.264/ MPG-4 and MPG-2/VC-1 (via additional license) 

decoders and encoders witch make it ideal for Computer Vision applications. 

RPi is not an ideal platform for real-time systems applications, however, it can be combined 

with real-time service processors to interconnect real-time microcontrollers to the RPi via 

electrical buses (e.g., I2C, UART) and Ethernet, this will make the RPi act as the central 

processor for a distributed control system [10] [11].  

III.3.1.b Raspberry PI models 

There are mainly 4 categories or Raspberry-PI: 
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Raspberry Pi Model A: Adapted for low-cost project that needs a complete computer with 

no networking capabilities and decent I/O support. 

Raspberry Pi Model B: This model can be used for a project where price is no object and 

the most powerful Pi is needed. This model also contains easy-to-use I/O. 

Raspberry Pi Compute: This model is best for industrial applications where many I/O 

lines are needed. This model also maintains strong CPU capabilities. 

Raspberry Pi Zero: This model is best for an ultra-low-cost & low-power, tiny-space-

constrained project that requires a fully functioning computer and would benefit from wireless 

connectivity. 

Table III.1 present an exhaustive list of different RPi models [12]: 

Product SoC Speed RAM USB Ports Ethernet Wireless 
Blueto

oth 

Raspberry Pi 

Model A+ 
BCM2835 700MHz 512MB 1 No No No 

Raspberry Pi 

Model B+ 
BCM2835 700MHz 512MB 4 100Base-T No No 

Raspberry Pi 2 

Model B 
BCM2836/7 900MHz 1GB 4 100Base-T No No 

Raspberry Pi 3 

Model B 
BCM2837A0 1200MHz 1GB 4 100Base-T 802.11n 4.1 

Raspberry Pi 3 

Model A+ 
BCM2837B0 1400MHz 512MB 1 No 802.11ac/n 4.2 

Raspberry Pi 3 

Model B+ 
BCM2837B0 1400MHz 1GB 4 1000Base-T 802.11ac/n 4.2 

Raspberry Pi 4 

Model B 
BCM2711 1500MHz 2/4/8GB 

2xUSB2, 

2xUSB3 
1000Base-T 802.11ac/n 5.0 

Raspberry Pi 

Zero 
BCM2835 1000MHz 512MB 1 No No No 

Raspberry Pi 

Zero W 
BCM2835 1000MHz 512MB 1 No 802.11n 4.1 

Raspberry Pi 

Zero WH 
BCM2835 1000MHz 512MB 1 No 802.11n 4.1 
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Product SoC Speed RAM USB Ports Ethernet Wireless 
Blueto

oth 

Raspberry Pi 400 BCM2711 1800MHz 4GB 
1xUSB2, 

2xUSB3 
1000Base-T 802.11ac/n 5.0 

Table III.1: Exhaustive list of different RPi models with their characteristics. 

 

Figure III.2 Present the evolution of Raspberry-Pi models over the time. 

 

Figure III.2: The evolution of Raspberry-Pi models 

 

In order to design and build a Raspberry Pi project, some application requirements should be 

taken into consideration, to determine the appropriate board to use. Such requirements can 

usually be reduced to the following list [13]. 

 Speed: Processing power/performances of the system (CPU, GPU...etc.); 

 Memory: How much RAM and ROM or storage space the system has; 

 Size and weight: The physical size and weight of the system; 

 Cost: The cost of the system; 

 I/O: How much I/O support is available. 

III.3.1.c Raspberry Pi 4 Specifications 

Pi 4 Model B is the latest product in the Raspberry Pi range of SBC. It offers more capabilities 

in terms of processor speed, multimedia performance, memory, and connectivity compared to 
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the prior-generation Raspberry Pi 3 Model B+, while retaining backwards compatibility and 

similar power consumption.  Figure III.3 shows the Raspberry-PI 4 model B board: 

 

Figure III.3: Raspberry-Pi4 Board 

 

Raspberry Pi 4 comes with several improvements across its hardware components like CPU, 

GPU, RAM, Networking…etc; witch signifiquently improved the overall performances. The 

next section will describe the Hardware specifications of RPi4 model B. 

 SoC: Broadcom BCM2711B0 quad-core A72 (ARMv8-A) 64-bit @ 1.5GHz; 

 GPU: Broadcom VideoCore VI; 

 Networking: 2.4 GHz and 5 GHz 802.11b/g/n/ac wireless LAN; 

 RAM: 1GB, 2GB, 4GB or 8GB LPDDR4-2400 SDRAM; 

 Bluetooth: Bluetooth 5.0, Bluetooth Low Energy (BLE); 

 GPIO: 40-pin GPIO header, populated; 

 Storage: microSD; 

 Ports: 2 × micro-HDMI 2.0, 3.5 mm analogue audio-video jack, 2 × USB 2.0, 2 × USB 3.0, 

Gigabit Ethernet, Camera Serial Interface (CSI), Display Serial Interface (DSI); 

 Dimensions : 88 mm × 58 mm × 19.5 mm, 46 g. 

For the end user, Raspberry Pi 4 Model B provides desktop performance comparable to entry-

level x86 PC systems (like i3 old generation or Intel atom). 
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Since our project is based on Computer Vision, we used the latest version of RPi in our 

system, the Raspberry Pi 4 boasts a host of impressive specs, from a more powerful processor, 

to the ability to handle dual 4K displays. It does offer a level of performance that could make it 

an attractive option for embedded engineers looking to develop consumer-grade IoT products 

with AI based projects like our case. 

The Raspberry Pi uses a variety of input/output devices based on protocols such as HDMI, 

USB, and Ethernet to communicate with the outside world. In the following list present different 

interfaces will and protocols used in RPi [14]: 

 802.11 b/g/n/ac Wireless LAN; 

 Bluetooth 5.0 with BLE; 

 1x SD Card; 

 2x micro-HDMI ports supporting dual displays up to 4Kp60 resolution; 

 2x USB2 ports; 

 2x USB3 ports; 

 1x Gigabit Ethernet port (supports PoE with add-on PoE HAT); 

 1x Raspberry Pi camera port (2-lane MIPI CSI); 

 1x Raspberry Pi display port (2-lane MIPI DSI); 

 28x user GPIO supporting various interface options: 

– Up to 6x UART; 

– Up to 6x I2C; 

– Up to 5x SPI; 

– 1x SDIO interface; 

– 1x DPI (Parallel RGB Display); 

– 1x PCM; 

– Up to 2x PWM channels; 

– Up to 3x GPCLK outputs. 

When it comes to power requirement, The Pi4 needs an USB-C power supply capable of 

delivering 5V at 3A. If attached downstream USB devices consume less than 500mA, a 5V, 

2.5A supply may be used. 
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GPIO Interface 

The Pi4.B makes 28 BCM2711 GPIOs available via a standard Raspberry Pi 40-pin header. 

This header is backwards compatible with all previous Raspberry Pi boards with a 40-way 

header as shown in Figure III.4. 

As well as being able to be used as straightforward software controlled input and output (with 

programmable pulls), GPIO pins can be switched (multiplexed) into various other modes 

backed by dedicated peripheral blocks such as I2C, UART and SPI.  

 

 

 

Figure III.4: GPIO Connector Pinout 

 

In addition to the standard peripheral options found on legacy RPi, extra I2C, UART and SPI 

peripherals have been added to the BCM2711 chip and are available as further mux options on 
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the Pi4. This gives users much more flexibility when attaching add-on hardware as compared 

to older models. 

Display Parallel Interface (DPI): 

An up-to-24-bit parallel RGB interface is available on all Raspberry Pi boards with the 40-way 

header and the Compute Modules. This interface allows parallel RGB displays to be attached 

to the Raspberry Pi GPIO. 

SD/SDIO Interface: 

The Pi4B has a dedicated SD card socket which supports 1.8V, DDR50 mode (at a peak 

bandwidth of 50 Megabytes / sec). In addition, a legacy SDIO interface is available on the GPIO 

pins. 

Camera and Display Interfaces: 

The Pi4B has 1x Raspberry Pi 2-lane MIPI CSI Camera and 1x Raspberry Pi 2-lane MIPI DSI 

Display connector. These connectors are backwards compatible with legacy Raspberry Pi 

boards, and support all of the available Raspberry Pi camera and display peripherals.  

USB: 

The Pi4B has 2x USB2 and 2x USB3 type-A sockets. Downstream USB current is limited to 

approximately 1.1A in aggregate over the four sockets. 

HDMI: 

The Pi4B has 2x micro-HDMI ports, both of which support CEC and HDMI 2.0 with 

resolutions up to 4Kp60. 

Audio and Composite (TV Out): 

The Pi4B supports near-CD-quality analogue audio output and composite TV-output via a 4-

ring TRS’A/V’ jack. The analog audio output can drive 32 Ohm headphones directly. 

Temperature Range and Thermals: 

The recommended ambient operating temperature range is 0 to 50°C. To reduce thermal output 

when idling or under light load, the Pi4B reduces the CPU clock speed and voltage. During 

heavier load the speed and voltage (and hence thermal output) are increased. The internal 
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governor will throttle back both the CPU speed and voltage to make sure the CPU temperature 

never exceeds 85 degrees C. 

Figure III.5 shows that the CPU and controllers are the places where heat accumulate the most, 

this is why heatsink and fan cooler are mandatory.   

 

Figure III.5: Picture from thermal imaging camera and Raspberry Pi 4B 

 

The Raspberry Pi 4 will operate perfectly without any extra cooling and is designed for sprint 

performance - expecting a light use case on average and ramping up the CPU speed when 

needed. However, if a user wishes to load the system continually or operate it at full 

performance, then heatsinks are really required (presented on Figure III.6), since we deal with 

high computational power project (Computer Vision and Deep Learning) this cause high CPU 

& GPU usage which can generate much heat on the surface when it operate at a high 

temperature at full performance, so, further cooling may be needed (Cooling-Fan can be used 

to cool down the heatsinks like indicated in Figure III.7). 
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Figure III.6: Raspberry-Pi with heatsinks attached to it. 

 

Figure III.7: A Miniature 5V Cooling Fan  for raspberry-Pi. 

III.3.2 Raspberry Modules for computer vision 

Since our system is a Computer Vision based project, a vision sensor is required, we chose 

Raspberry Pi Camera Module Rev 1.3 - 5 Megapixel in our project (Figure III.8): 
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Figure III.8: A picture of Raspberry Pi Camera Module Rev 1.3 - 5 Megapixel 

 

This Camera Module is mandatory for our intelligent surveillance system and it’s considered 

as a custom designed add-on for Raspberry Pi. It attaches to Raspberry Pi by way of one of the 

two small sockets on the board upper surface. This interface uses the dedicated CSI interface, 

which was designed especially for interfacing with cameras. 

Specification: 

The list of specifications and feature of Raspberry Pi Camera Module Rev 1.3: 

 Raspberry Pi Camera supports all revisions of the Raspberry Pi; 

 5MP O5647 Camera Module; 

 Interface Type: CSI(Camera Serial Interface); 

 Still Picture Resolution: 2592 x 1944; 

 Video: Supports 1080p @ 30fps, 720p @ 60fps and 640x480p 60/90 Recording. 

III.3.3 Raspberry Software development 

Raspbian OS has been the most used among the operating systems due to the boost provided 

by the Raspberry Pi foundation. It is a Debian based Linux operating system optimized for 

Raspberry Pi boards and it comes with built-in APIs and driver support while maintaining the 

32bit & 64bit versions. The following list describes briefly some RPi software specifications: 

 ARMv8 Instruction Set; 

 Mature Linux software stack; 

 Actively developed and maintained; 
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- Recent Linux kernel support; 

- Many drivers up-streamed; 

- Stable and well supported Userland; 

- Availability of GPU functions using standard APIs. 

 

III.3.3.a The Operating System 

To do anything useful with our Raspberry Pi, we need to have an operating system. Raspberry 

Pi uses the GNU/Linux OS stored on an SD card. Linux is a free and open-source operating 

system, it’s known over the world for its versatility, low power consumption, reliability, 

security and ease of use. Because it’s an open project, many different Linux distributions (or 

distros) are been made for variety of purposes. Some are made to be feature rich; some are 

optimized for performances and others are built specially for a category of embedded systems 

(smartphones, TVs, routers, SBCs…) which are called “Embedded Linux”. An embedded 

Linux refers to a scenario where an embedded system like Raspberry-PI runs on an operating 

system based on the Linux kernel which will be specifically designed for it. 

 

Linux is ideal for embedded systems because it is flexible, low-cost and open source, and it has 

already been ported to custom-purpose microprocessors. Compared to proprietary embedded 

operating systems, Linux allows for multiple suppliers of software, development and support; 

it has a stable kernel; and it facilitates the ability to read, modify and redistribute the source 

code. Linux has many supported chip architectures, and so can run on devices as small as 

sockets and as large as mainframes [13] [11]. 

The Raspbian OS includes a GUI called the Lightweight X11 Desktop Environment (LXDE) 

and different programming languages preinstalled like Python and C/C++. 

III.3.3.b The Raspberry-Pi Kernel: 

The RPi kernel is the main component of a Linux operating system (OS), it’s the core interface 

between a device’s hardware and its processes and communicates between the 2, managing 

resources as efficiently as possible. 



Chapter III – Intelligent Embedded Vision based MVS System Description 

 

 

41 

 

 

The Linux kernel has full control over the device, it adapts to differences in hardware through 

loadable kernel modules (LKMs) that extend the kernel with device-specific code. LKMs 

include things like device drivers and file systems.  

Kernel Space and User Space: 

The Linux kernel runs in an area of system memory called the kernel space, and regular user 

applications run in an area of system memory called user space. A hard boundary between 

these two spaces prevents user applications from accessing memory and resources required by 

the Linux kernel.  

This helps prevent the Linux kernel from crashing due to badly written user code, and because 

it prevents applications that belong to one user from interfering with applications and resources 

that belong to another user, it also provides a degree of security.  

The Linux kernel has full access to all of the physical memory and resources on the RPi. 

Therefore, we have to make sure that only the most stable and trusted code is permitted to run 

in kernel space. 

  

Figure III.9: The Linux user and kernel space architectures 

We can see the architectures and interfaces illustrated in Figure III.9, where user applications 

use the GNU C Library (glibc) to make calls to the kernel’s system call interface. The kernel 

services are then made available to the user space in a controlled way through the use of system 

calls. 
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Tweaking the RPi CPU Frequency: 

The clock frequency of the RPi was adjusted dynamically at run time. The RPi has various 

governors that can be used to profile its performance/power usage ratio. For example, for a 

battery-powered RPi application that has low processing requirements, we could reduce the 

clock frequency to conserve power. But for our case, we clearly need performance governor 

since we deal with high performance project (Computer Vision) [10] [11]. 

In order to tweak our kernel, we first need to install an extra debian package “cpufrequtils”. 

Then we need to check our current CPU frequency and used GOVERNOR configured in our 

RPi by typing the command shown in Figure III.10: 

 

 

Figure III.10: Command to display cpufreq governor on Raspberry-Pi 

 

As we can see the output, the RPi4 has four CPU cores (0–3), the pipeline with command grep 

will allow us to search the string “The governor” on each core, we have 4 lines as output, which 

mean we have 4 cores, each core is configured to be “ondemand”, The different available 

cpufreq governors are: conservative, ondemand, userspace, powersave, performance and 

schedutil. To enable one of these governors or to explicitly set the clock frequency, we need to 

enter the commands shown in Figure III.11: 

 

Figure III.11: Enable a specific cpufreq governor on Raspberry-Pi 
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As we can see, after executing the command, the governor is now changed to “performance”. 

Finally, as we mentioned already in Appendix(H) and (I), Linux file system directories like 

/proc and /sys are just virtual file system, which means they do not actually exist in Hard-Drive, 

but they are loaded into the RAM on the fly after booting the RPi, since it’s in the RAM, they 

are being deleted after each system reboot (similar to RAM disk). 

In order to permanently change the default governor on the RPi to be performance rather than 

ondemand like our case, we need to edit the cpufrequtils file in /etc/init.d/  (Figure III.12), this 

will load the tweaked configurations at each boot:  

 

Figure III.12: Editing the cpufrequtils file to change the governor permanently. 

III.3.3.c Programming on Raspberry Pi: 

All programming language that are available under Linux, are also likely to be available for 

the RPi. However, choosing a suitable programming language depends on what we intend to 

do with the board. Either interfacing to electronics devices/modules or write a device driver for 
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Linux where performances are very important. Each of those cases will impact the decision 

regarding which language to use. 

Performance of Languages on the RPi: 

If you ask which language performs the best on the RPi, Well, that is an incredibly emotive 

and difficult question to answer. Different languages perform better on different benchmarks 

and different tasks. In addition, a program written in a particular language can be optimized for 

that language to the point that it is barely recognizable as the original code. Nor is speed of 

execution always an important factor; you may be more concerned with memory usage, the 

portability of the code, or the ability to quickly apply changes, readability, availability of 

libraries...etc. However, when it comes to AI, ML and data science. Python is the adopted 

choice. 

Python is a high-level, interpreted and general-purpose dynamic programming language that 

focuses on code readability while supporting several programming paradigms. It usually 

involves imperative and object-oriented functional programming. It has a comprehensive and 

large standard library that has automatic memory management and dynamic features. 

Python is installed by default on the Raspbian OS image and it is widely used within the RPi 

community for very good pedagogical reasons, but as users turn their attention to more 

advanced applications, it is difficult to justify the performance deficit since python is an 

interpreted programming language. However, we can fix this issue either using the Cython 

Implementation, or combining Python with C/C++ to improve the performance [11]. 

III.3.3.d Required Libraries 

Before diving deep into our project, we need to afford some software requirements just like the 

case with the Hardware requirements. The required Python libraries are: 

OpenCV-Python 

OpenCV-Python is a library of Python bindings designed to solve computer vision 

problems.Compared to languages like C/C++, Python is slower. That said, Python can be easily 

extended with C/C++, which allows us to write computationally intensive code in C/C++ and 

create Python wrappers that can be used as Python modules. This gives us two advantages: 

first, the code is as fast as the original C/C++ code (since it is the actual C++ code working in 
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background) and second, it easier to code in Python than C/C++. OpenCV-Python is a Python 

wrapper for the original OpenCV C++ implementation [15]. 

OpenCV-Python makes use of Numpy, which is a highly optimized library for numerical 

operations with a MATLAB-style syntax. All the OpenCV array structures are converted to and 

from Numpy arrays. This also makes it easier to integrate with other libraries that use Numpy 

such as SciPy and Matplotlib. 

ImageZMQ:  

When it comes to live video streaming with OpenCV, there are a ton of different options to use. 

We can go with the IP camera route. But IP cameras can be a pain to work with. Some IP 

cameras don’t even allow us to access the RTSP (Real-time Streaming Protocol) stream. Other 

IP cameras simply don’t work with OpenCV’s cv2.VideoCapture function. An IP camera may 

be too expensive as well. 

In those cases, we are left with using a standard webcam. The issue then becomes; how do we 

stream the frames from a webcam using OpenCV. 

Using FFMPEG or GStreamer is definitely an option. But both of those can be so difficult to 

work with (especially with people who are out of time like us). After a deep research, we found 

a solution using message passing libraries, specifically ZMQ and ImageZMQ. 

imageZMQ is a set of Python classes that transport OpenCV images from one computer to 

another using PyZMQ messaging [16].  

 

imageZMQ is a transport mechanism for a distributed image processing network. For example, 

a network of a dozen Raspberry Pis with cameras can send images to a more powerful central 

computer. The Raspberry Pis perform image capture and image processing like object-

detection, blurring and motion detection. Then the images are passed via imageZMQ to the 

central computer for more complex image processing like image tagging, text extraction, 

feature recognition or Video Summarization.  

Features of imageZMQ: 

 Sends OpenCV images from one device to another using ZMQ. 

 Can send JPEG/PNG compressed OpenCV images, to lighten network loads. 

 Uses the powerful ZMQ messaging library through PyZMQ bindings. 

 Allows a choice of 2 different ZMQ messaging patterns (REQ/REP or PUB/SUB). 

https://github.com/jeffbass/imagezmq#id7
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 Enables the image hub to receive and process images from multiple image senders 

simultaneously. 

The reasons we chose ZMQ and not some other messaging protocol: 

There are a number of high quality and well maintained messaging protocols for passing 

messages between computers. We looked at MQTT, RabbitMQ, AMQP and ROS as 

alternatives. we chose ZMQ and its Python PyZMQ bindings for several reasons: 

 ZMQ does not require a message broker. It is a peer to peer protocol that does not need 

to pass an image first to a message broker and then to the imagehub. This means fewer 

running processes and less “double handling” of images. OpenCV images are large 

compared to simple text messages, so the absence of a message broker is important. 

 ZMQ is very fast for passing OpenCV images. It enables high throughput between 

image senders and image hubs. 

 ZMQ and its PyZMQ bindings are easy to install. 

imageZMQ has been tested for transporting images from a dozen Raspberry Pi computers 

scattered around to linux image hub servers. The RPi's capture and send dozens to thousands of 

frames a day. imageZMQ has proved to work very reliably and is very fast [16].  

NumPy: 
NumPy is the fundamental package for scientific computing in Python. It is a Python library 

that provides a multidimensional array object, various derived objects (such as masked arrays 

and matrices), and an assortment of routines for fast operations on arrays, including 

mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, 

basic linear algebra, basic statistical operations, random simulation and much more. 

At the core of the NumPy package, is the ndarray object. This encapsulates n-dimensional 

arrays of homogeneous data types, with many operations being performed in compiled code for 

performance [17]. There are several important differences between NumPy arrays and the 

standard Python sequences: 

 NumPy arrays have a fixed size at creation, unlike Python lists (which can grow 

dynamically). Changing the size of an ndarray will create a new array and delete the 

original. 
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 The elements in a NumPy array are all required to be of the same data type, and thus 

will be the same size in memory. The exception: one can have arrays of (Python, 

including NumPy) objects, thereby allowing for arrays of different sized elements. 

 NumPy arrays facilitate advanced mathematical and other types of operations on large 

numbers of data. Typically, such operations are executed more efficiently and with less 

code than is possible using Python’s built-in sequences. 

 A growing plethora of scientific and mathematical Python-based packages are using 

NumPy arrays; though these typically support Python-sequence input, they convert such 

input to NumPy arrays prior to processing, and they often output NumPy arrays. 

Beside to python libraries, we also need a model for real-time object detection to detect targets 

in our captured frames from Client RPi. We chose YOLO (as described in previous chapter) 

because of its speed and accuracy, which are both important criteria in our project. 

III.4 Conclusion 

After presenting the Raspberry-Pi 4 specifications and peripherals, we moved into Software 

and hardware implementation of our project; this gave us global descriptions of our 

requirements. In the Hardware implementation section, we have seen the Raspberry-Pi 

Ecosystem and the different hardware component/modules required to build our system. In the 

Software implementation section, we introduced the Embedded Linux then we explained the 

different steps used to Tweak the configurations of our RPi to fit our application. Finally, we 

had a look about the different python library required for our application to work properly. 

 

In the next chapter, we will explain the system architecture and how it performs, then, we 

will briefly explain our application code and see its outputs, finally we will close this chapter 

with some additional features that made this project more useful.  
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Chapter - IV - Intelligent Embedded Vision based 

MVS System Implementation 

IV.1 Introduction  

The connectivity of IoT devices creates massive amounts of data. The video data provided 

by vision sensors in IoT, namely cameras deployed in industries, meets the criteria of Big Data 

and is quickly becoming the primary sensor device for different IoT applications. 

 

A single vision sensor in an IoT with 30 frames per second (fps) generates huge amount of 

video data hourly. As IoT is the integration of interconnected smart devices, which shows that 

there are multiple cameras installed at different places and yields huge amount video data. The 

amount of cameras exponentially lifts up the amount of video data, making it Big Data 

repositories. This data requires efficient processing in industries for several purposes such as 

employee’s monitoring and salient events detection, suspicious object detection...etc. 

The basic requirements of such data in industries include redundancy removal along with 

presentation and preservation of only important data in compact form for future use and 

analysis. 

The mainstream devices connected in IoT are resource constrained with limited computation 

power and storage which cannot process such big video data. Thus, the generated data are 

possibly transmitted to cloud with unlimited computational power and storage resources for 

further analysis. Cloud computing is considered as suitable place to analyze such Big Data 

efficiently. However, the issue with cloud-based solutions is that they are offline and lack 

reliability. There is always a huge IoT traffic (video data) that should be transmitted over 

wireless networks in real time. It is obvious that this cannot be guaranteed via cloud computing. 

Furthermore, along with processing such Big Data, storing it for future use is also a big 

challenge. It is very difficult in an IoT environment for a resource constrained device to store 

108000 frames for a single camera (3600x30fps) and 432000 for a network of four cameras per 

hour. It requires huge storage devices, however, that is not feasible in an IoT environment. 
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Thus, keeping only important and representative information of whole day lengthy videos is a 

better option in terms of limited storage in IoT [4].  

IV.2 System Implementation 

Our project can be used in industrial environments for various applications such as security and 

smart transportation and can be proved beneficial for saving resources. In this section, we will 

present the system Implementation and how it performs. 

IV.2.1 Video summarization approaches 

In this project, we develop an intelligent IoT based framework with embedded vision for 

suspicious objects detection, traffic density information sharing, and MVS.  

The key features of our system are summarized as follows: 

1. MVS processes huge amount of video data generated from distributed video sensors. 

Majority of existing MVS techniques receive multi-view videos through wireless network 

and generate offline summary. This requires maximum communication bandwidth and 

wastes storage capacity. In this project, we present an MVS technique which can generate 

online summary, compress the keyframes, and transmit them to smart devices connected 

in IoT network for further analysis. Thus, our system saves communication bandwidth 

and provides online MVS. 

2. It is very hard to install cameras, connect them with computers through wires, and monitor 

videos manually for targeted objects in industries. Further, the majority of available MVS 

techniques are very expensive in terms of processing time and hardware implementation 

which rely only on summary generation. In this framework, we tackle the problem of 

hardware implementation by installing an embedded device with camera and for 

suspicious object detection problem we investigate light-weight CNNs for efficiency. The 

key contribution of our system is installing a single hardware device capable of detecting 

and reporting about suspicious objects and traffic density to authorities in industrial setup. 

3. The huge amount of video data generated by distributed video sensors need CI algorithms 

for efficient processing. To achieve the goal of dealing Big Data with CI algorithms in 

IoT precisely, we employ efficient and light-weight CNN to suppress the redundant video 

data. Our proposed system reads input video (6-fps) and discards the frames with no 

salient objects. The salient objects depend on the selected Objet Detector model, Thus, 
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we deal with Big Data in IoT through CI techniques for accurate reduction of data which 

assist in further steps and decreases time complexity. 

4. The currently employed MVS techniques are intractable to be integrated with IoT and 

many other smart devices. The proposed system can be integrated with IoT and the output 

can be easily observed via any smart device. If a device is connected to the said wireless 

network, it can be accessed anytime and anywhere without sitting in a special surveillance 

monitoring room. So, we contribute to MVS literature by presenting a framework that is 

adaptable and can be used in any IIoT/IoT environment for summary generation [4]. 

IV.2.2 System Process 

The system process can be divided into 5 different steps like presented in Figure IV.1: 

Step 0: An offline step which fine-tunes an existing object detection network for the desired 

objects like persons, vehicles, masks, suspicious objects (guns, knives etc.).  

Step1: IoT setup with client RPi’s and smart display devices connected to a wireless network 

in an industry. The embedded RPi cameras generate video data.  

Step 2: It receives the video data, passes each single frame to the trained model which outputs 

an annotated frame whose objects are analyzed for traffic density to share with connected IoT 

devices/administration suspicious objects, and if there is any, an alert is generated.  

Step 3: The alert received from step 2 is shared with the concerned departments and smart 

industries in IoT environment (like police station).  

Step 4: It receives (n) number of annotated frames that contain dense targets which are encoded 

and transmitted to the Master-RPi in the same network for keyframes selection. 
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Figure IV.1: Overall system with different training steps, data acquisition, objects analysis and 

summary generation 

 

The descriptions of the main steps are explained bellow; the first step is the offline step, which 

consist in Object Detection training (using transfer learning): 

IV.2.2.a Training Object Detection Model (Offline) 

Recently, CNNs showed an outstanding performance for various tasks such as classification, 

segmentation, retrieval, and object detection. It has been widely used for many applications 

including action and activity recognition, security and many others. Therefore, we used CNNs 

for our problem in IoT environment to detect suspicious objects for instant reporting.  

 

The computational complexity of CNNs is a big hurdle to practice CNN based intelligent 

algorithms over resource constrained devices. To tackle this challenge, we chose a precise, 

light-weight, and efficient CNN model for object detection. We fine-tune an existing object 

detection CNN model using transfer learning to detect only the targeted objects that can be 

utilized for summary generation and further analysis. In our project, we can switch between 

different models of YOLO, we already fine-tuned several models for object detections, some 

of them are:  
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 Mask detection (tinyYOLO v4); 

 Person & vehicle detection (tinyYOLO v4); 

 Hard-Hat detection (tinyYOLO v4); 

 Thermal infrared person-dog detection (tinyYOLO v4); 

 Person, Cycle, Car, Bike, Bus, Train, Truck detection (tinyYOLO v3). 

 

And the interesting part of our project is that it is programmed in scalable way to easily add 

new pre-trained models to the list without having to make lot modifications in the code. 

We used YOLO v4 tiny object detection model in our proposed framework. It is more than 100 

times faster compared to a famous objected detection CNN model Faster-RCNN. As we used 

tiny version of YOLO which can process input frames on RPi efficiently. Therefore, we 

converted the datasets to 6 fps for the input videos so that RPi can process it easily.  

The setup process can be seen in the Appendix(J). 

The dataset acquired is useful in monitoring of smart industries, they are already labelled, but 

we need to convert the Google CSV file that contains the labelled data into a YOLO data format. 

Finally, we inputted the images, modified the YOLO configuration file, and pre-trained weights 

on Google colab (since it provide us free GPU resources) to the training function of YOLO that 

stores the updated model after every 1000 iterations; we modified the configuration file of tiny 

YOLO with our desired number of classes and changed the hyper-parameters according to our 

need, we also added some data augmentation technics like angle, blur, zoom, brightness…etc. 

this will help us to generalize our model and make robust against environmental effects like 

lighting, noise, blur and so on. 

The next section presents the different models that we have fine-tuned and show their 

performances: 

Thermal-Infrared person-dog detection: 

This model contains 2 classes (dog and person in thermal view), so we changed the number of 

filters to 21 following the formula (num_classes + 5)x3 where num_classes = 2 like show 

Figure IV.2: 
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Figure IV.2: Python code shows configuration of number of classes ,max batches and number of 

filters on YOLO configuration file 

 

Figure IV.3 display the set of YOLO configurations used to train the model, including several 

data augmentations (angle, saturation, exposure, HUE, blur…etc.), by default YOLO 

recommend resolution of 416x416, but we can use any resolution which is a multiple of 32, for 

example, to get 416, we multiplied 13x32, so we can set any other resolutions like 448, 480, 

512, 608 and so on. In this model, 416x416 gave us best result. 

 

Figure IV.3 : Python code shows writing YOLO configurations used to train the thermal infrared 

person model 

 

We used the default learning rate recommended by YOLO community (0.00261), with a burn-

in on each 1000 iteration, this will let us select the best model at the end according the Mean 

Average precision (mAP) of the burned model. 

Figure IV.4 shows the learning curve of the Thermal-Infrared person-dog model using darknet 

on the Google Colab. This curve has been automatically generated by the darknet framework, 

it presents the mAP according to the number of iterations.  
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Figure IV.4: Learning curve for the Thermal-Infrared person-dog model using darknet framwork 

 

After training step has been completed, the model has reached a mAP of 95.60% with 77.46% 

of IoU (Intersection over Union). We used of dataset of 203 images from public.roboflow.com 

which is publicly available. 

Performance of our model is shown in Figure IV.5 and seems to be satisfying, however the 

number of training images is not enough, so the model might not be as performant as it seems: 
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Figure IV.5: Performances of the Thermal Infrared person-dog model on darknet 

Where TP stands for True Positive and FP for False Positive, the TP is an outcome where the 

model correctly predicts the positive class. Similarly, a True Negative (TN) is an outcome 

where the model correctly predicts the negative class. 

The FP is an outcome where the model incorrectly predicts the positive class. And a False 

Negative (FN) is an outcome where the model incorrectly predicts the negative class. 

 

Mask detection model: 

In this model, we have 2 classes (mask & no-mask), so we changed the number of filters 

according to the formula (num_classes + 5) x 3 witch gives us 21. 

 

Figure IV.6: Python code shows writing YOLO configurations used to train the mask model 
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The set of YOLO configurations used to train this model are shown in Figure IV.6. 

Those hyper-parameters have been selected as best choice after several trainings and tests (more 

than 7 trainings) for this model, this is due to the leak of the dataset which contains only 149 

images, and not just that, the dataset contains mostly Chinese people, which made the model 

less generalist, that’s what lead us to use more data augmentation parameters and higher 

resolution (608 x 608). 

Figure IV.7 shows the learning curve of the mask detection model using darknet on the Google 

Colab. 

 

Figure IV.7: Learning curve for the mask detection model using darknet framwork 

 

The model has reached a mAP of 82.93% with 71.16% of IoU, 87.53% of AP (Average 

precision) on class “mask” and 78.34% on class “no-mask”, and this is due to the fact that there 

is a slight difference between number of mask images and no-mask images in training dataset. 

We used a public dataset of 149 images from public.roboflow.com. 

The Performances of our model is shown in Figure IV.8, this model might seem not perfect, 

but it gives good result in real life implementation. 
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Figure IV.8: Performances of the mask detection model on darknet 

 

Hard-Hat detection model: 

In this model, we have 3 classes (head, helmet, person), so we again changed the number of 

filters according to the formula (num_classes + 5) x3 which gives us 24. 

The set of YOLO configurations used to train this model are shown in Figure IV.9. 

 

Figure IV.9: Python code shows writing YOLO configurations used to train the hard-hat model, 

 

Those hyper-parameters have been tested and seem to perform better for this model, we used 

the standard learning rate of 0.00261 and increased a little bit the number of subdivisions with 

a slight change on data augmentation parameters.  

Figure IV.10 shows the learning curve of the hard-hat detection model using darknet on the 

Google Colab. 
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Figure IV.10: Learning curve for the hard-hat detection model using darknet framwork 

 

This model is practically the most precise one among the 3 models we had trained, even 

though it has only 62.47% of mAP with 76% of IoU. This may be strange, but I will explain 

to you the reason, the dataset has 7041 images which is huge comparatively to the other models, 

however it’s an imbalanced dataset, which means there is much differences between set of 

images between classes, in our case, head and helmet classes have enough training images, but 

the person class has only few images, that’s why after training we have got: 

 Class head has an AP of 84.02% with 4490/309 positive detections; 

 Class helmet has an AP of 85.95% with 16354/1231 positive detections; 

 Class person has an AP of 15.45 % with 39/20 positive detections. 

This mean the model will not detect persons correctly but it will detect the heads and helmets 

perfectly. And since we only care about hard-hat detection, we don’t really need our model to 

detect person, because if it detected a head or helmet it means it’s already a person. 
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We thought of filtering the dataset manually by removing person images, but for 7000 images 

it’s not really practical, beside that, we didn’t download the dataset in our local machine, 

instead, we transferred it directly to Google Colab since it’s a huge dataset. 

 

The overall Performances of this model is shown in Figure IV.11: 

 

Figure IV.11: Performances of the mask detection model on darknet 

 

IV.2.2.b IoT Setup Connected to a Router 

Normally in industries video data from vision sensors is transmitted to cloud for better 

understanding and efficient analysis, requiring uploading data to cloud. The data transmission 

to cloud yield huge wastage of communication bandwidth, time, and makes real-time response 

impossible corresponding to abnormal actions or activities. To overcome these challenges, we 

propose a novel resource constrained RPi based system. Vision sensor is attached with each 

RPi and is connected to a wireless network in IoT environment for efficient and intelligent 

processing of video data.  

The client RPis can be installed at locations where multi-view data are important to be captured 

in smart industries. There can be a network of (n) number of RPi’s inter-connected to capture 

video data individually. Each client RPi captures video data at 6-fps, to make the process online 

and efficient. The client RPi then passes a single frame to the object detection model that 

annotates it for the specified targets. The detected objects are analyzed, compressed and 

encrypted then sent the Master Raspberry-Pi for farther process. 
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IV.2.2.c Targets Detection and Analysis 

The input frames acquired from sub-section above are processed in this step. The trained model 

in the initial step of our framework is used to annotate frame for configured targets like: 

vehicles, persons, suspicious objects...etc. 

The density of targeted objects (vehicles, persons...) are computed from the annotated frame 

and shared with the smart devices connected to the IoT network. Information about traffic in 

smart industries helps building up a routine and plays a key role in saving time. If the annotated 

frame contains any type of suspicious object such as gun or knife it is considered as an alert.  

The alert is shared with the concerned devices in IoT for employee’s safety and also with the 

police department for quick preventive actions. The police department can analyze the situation 

of alert by watching the camera and if it is not alarming, they can ignore it. After a continuous 

detection of suspicious object, an alert is sent again to the police department. 

IV.2.2.d Multi-view Summary Generation 

The final summary is generated on master RPi. The input to this step is (n) number of frames 

from each Client RPi. We select n to be 20. Therefore, we encode 20 frames from each view 

having many targets like vehicles and persons. We apply lossless PNG compression on these 

frames and send it to the master RPi. The PNG compression has the advantage of saving 

communication bandwidth without losing the quality of the image. The master RPi receives 

PNG compressed frames in the form of a vector and decodes it to restore the original frames 

then process it using OpenCV-python library.  

The same process is applied for rest of the frames and after decoding the frames are processed 

via two methods: entropy and complexity to compute the information present in frames.  

Entropy: 

Image entropy indicates the amount of information inside a frame. The higher value of entropy 

represents that the frame is rich of information and lower-value of entropy shows that the frame 

has less amount of information. The process flow of entropy value computation is given in 

Figure IV.12(a). 
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Figure IV.12: Computing entropy (a) and complexity (b) score from a single input frame 

 

Complexity: 

The complexity of a frame is computed by comparing original size of the frame and its size 

after PNG compression [36] is applied. The PNG compression algorithm is applied according 

to the human visual system as explained in. High compression rate shows that the frame has 

little visually important information and vice versa. Complexity value computation is visualized 

in Figure IV.12 (b).  

 

These two methods output a real value between 0 and 1, and the frames with highest value of 

sum for complexity and entropy is selected as a keyframe. 

The number of keyframes in single chunk of 20 frames depends upon the configured threshold. 

For example, if we select single frame preview from the frames extracted from Road dataset in 

a single chunk. The total frames in a single chunk are (n * number of client RPi’s), where n is 

the number of frames each client RPi’s transmits [4].  

Figure IV.13 presents the values of entropy and complexity corresponding to the frames having 

high and low information with and without compression. The results are same for the selection 

of keyframes indicating no effect of the compression scheme applied over the frames. 
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Figure IV.13: Different Keyframes samples taken from different views 

 

Frame Entropy 

value 

Complexity 

value 

Sum View 

150 0.2997 0.5100 0.8097 2 

198 0.2986 0.5002 0.7988 2 

1224 0.3013 0.5476 0.8489 3 

1236 0.2811 0.5044 0.7855 1 

Decoded frames ( after applying PNG compression) 

150 0.2987 0.5002 0.7989 2 

198 0.2975 0.4970 0.7945 2 

1224 0.2993 0.5459 0.8452 3  

1236 0.2833 0.5035 0.7868 1 
Table IV.1: Sample video frames from Road dataset videos of different views 

 

Frame #150: higher entropy and complexity values show high amount of information present 

in frame and the objects detected are near to the camera which means they are important and 

need to be considered for the final summary.  

Frame #198: the complexity and entropy values are lower because of low amount of 

information and objects are far from the camera.  

Frame #1224: The objects are nearer to the camera and frame contains higher information.  
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Frame #1236: Although there are many vehicles in this frame but they are far from camera so 

the information noticed is comparatively lower than Frame #1224.  

The keyframes before and after applying encoding/compression scheme are the same. The sum 

of entropy and complexity for different frames is given in the table where for both the scenarios 

(before and after compression and decoding) the two keyframes among the four are the same 

(Frame #150 and Frame #1224). Frames with highest sum are made bold and the second highest 

sum is made italic and underlined inside the table in Table IV.1. 

IV.3 Application code description 

In this section, we will explain the general structure of our project, we used the Oriented Object 

Programming (OOP) paradigm with Python 3.9 to make our code more scalable and easy to 

maintain using the modular architecture. 

IV.3.1 Development Environments 

We used PyCharm as our main IDE (Integrated Development Environment) during our 

development because it’s recommended by most of the professional developers and it has been 

considered the best IDE for python developers. 

We also used VS Code to code directly from the Raspberry-PI since it supports ARM 

(Advanced RISC Machine) architecture. 

We implemented the virtualenv tool to create a project-specific isolated virtual environment. 

The main purpose of virtual environments is to manage settings and dependencies of a particular 

project regardless of other Python projects. 

IV.3.2 Code explanation: 

In this section we will explain how python scripts perform, Figure IV.14 gives a general 

schema on how our application performs on both Client and Master Raspberry-Pi. The 

application structure can be seen in the Appendix(K). 
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Figure IV.14: A presentation of our code operation 

 

IV.3.2.a On Raspberry-Pi Client: 

On the Client Raspberry-Pi, the main_Client_RPi_jugu.py script will attempt to detect the 

specified targets (according the chosen model) using the Python class which is inside 

object_detector.py called Object_Detector like show Figure IV.15: 

 

Figure IV.15: Python code shows instantiation of Object_Detector class 

 

If a target is detected, then we apply a lossless PNG compression using the encode_image 

method from the CoDec class (Figure IV.16), then we send it to the Master RPi. 

 

Figure IV.16: Python code shows compressing frames before sending them to Master RPi 
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The Master RPi socket is set while creating the instance of Client_RPi class, like show Figure 

IV.17 (we used port 5555 by default): 

 

Figure IV.17: Python code shows sending frames to Master RPi using ImageZMQ library 

 

We also initialized the default resolution of the camera and the FPS (in our case 640x480 with 

6fps), Figure IV.18 shows the initialization process inside the constructor. 

 

Figure IV.18: Python code shows configuration of OpenCV instance 

 

If we check the selected frames according to the used object detection model before sending it 

to Master raspberry-PI, we will see different results on Figure IV.19, Figure IV.20, Figure IV.21 

and Figure IV.22. 

The system will send a frame to Master Raspberry-Pi only and only if the targeted object has 

been detected (according to the selected model) and bypass a certain threshold (entropy + 

complexity). 

 

Figure IV.19: Examples of detected frames on Raspberry-Pi Client while using person-vehicule model 
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Figure IV.20: Examples of detected frames on Raspberry-Pi Client while using hard-hat detection 

model 

 

Figure IV.21: Examples of detected frames on Raspberry-Pi Client while using mask-detection model 

 

Figure IV.22: Examples of detected frames on Raspberry-Pi Client while using thermal infrared 

person detection model 
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IV.3.2.b On Raspberry-Pi Master: 

On the Master Raspberry-Pi, the script receiver_service.py is the daemon process responsible 

of receiving the compressed images from different Client RPi and store them as keyframes for 

MVS process.  

The Master RPi is continuously listening on port 5555 as shown in Figure IV.23. Ports that are 

below 1024 will need root access since they are well-known port. 

 

Figure IV.23: Python code shows Master RPi listning to port 5555 for incoming frames 

 

The script uses Multi-Threading technique to ensure better Clients RPi management; it will try 

to create a new thread for each new connection, Figure IV.24 explain the process. 

 

Figure IV.24: Python code shows using multithreading for each client connection 

The handle_connection method is executed on separate thread and it responsible of receiving 

the encoded image, decode it, the store it as a PNG image (Figure IV.25). 

 

This method is also responsible for decoding the received frames from client Raspberry-Pi 

(Line 338), Using Dead-Lock algorithm, we will make sure that the out frames are not 

accidentally being read by other processes/threads while trying to update it. 

If enabled in configuration, this method will attempt to send an “OK” message to the sender on 

each frame to ensure reliability (just like TCP acknowledgment). 
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Figure IV.25: Python code shows handle_connection function 

 

While the receiver daemon is busy storing the received frames, the script 

main_Master_RPi_jugu.py is processing the Multi-View Summarization step on the stored 

images, if no image received, it waits until new images are stored as indicated in line 103 of 

Figure IV.26 by just rising an exception and return -1, the output will be interpreted by the 

global script, if code error -1 is returned from the calculate_ComplexityEntropy() function, then 

it will wait for 2 seconds before next retry. (this will also avoid high CPU stress). 

 

On each image, the script will try performing calculations of Complexity and Entropy, if the 

summation between those two reaches a certain threshold, then the frame is considered salient. 

 

Figure IV.26:  Python code shows calculations of entropy and complexity. 
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The salient frame is then added to the queue list to build a finale highly compressed video, we 

can use any video Format supported by OpenCV (it support more than 100 video formats), the 

exhaustive list of supported video formats is available on  www.fourcc.org/codecs.php. In our 

case we chose AVI (Audio Video Interleave) with 5 fps as shown in Line 175 on Figure IV.27. 

The VideoWriter will try to automatically save the generated video file in case of unexpected 

error, this makes our system fault tolerant. 

 

Figure IV.27: Python code shows generating a video files from received frames. 

 

After the video is written in the storage, we can configure the system to automatically remove 

the used keyframes in the videos since we can easily generate again those keyframes from the 

stored video.  

 

We tested the system with a video of 2 minutes, and at the end the MVS process, the system 

has generated us the following files (Figure IV.28): 

 

Figure IV.28: The final generated files after the MVS process 

 

http://www.fourcc.org/codecs.php
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In Figure IV.29 indicates different screenshots taken to see different generated number images 

and videos and their sizes accordingly. 

 Number of received frames: 1076 with a size of 484.2 MB: (Screenshot A); 

 Number of keyframes after MVS process: 295 with a size of 139.7 MB: (Screenshot B); 

 Final generated video: 9 seconds video with 974.1KB: (Screenshot C); 

As we can see, the result is really impressive and extremely efficient in storage, we converted 

484MB of data into 1MB approximately a ratio of 497% of storage compression. 

 

Figure IV.29: A set of screenshots indicating the number of generated images and their totaling sizes 

 

IV.4 Additional features 

Beside to the regular features that we provided above, we added some extra features to make 

the project more interesting and useful. Some of the added features are: 

IV.4.1 Remotely check the RPi cameras over HTTP: 

Using this feature, we are capable to check the received frames in Real-Time via HTTP, this is 

possible by just using any web browser from any device (Smartphone, Tablet, PC…etc.). 

We used FLASK framework to expose the frame over HTTP and display them in a web 

application built with HTML, CSS and JavaScript in frontend, in backend we used Flask, Flask 
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is a Python lightweight WISG web application framework used to serve web pages over HTTP, 

Figure IV.30 shows instantiation of Flask framework, to avoid using root access and extra 

configurations of firewall, we chose to use port 4747 instead of 80/443, this will also slightly 

add a layer of security. 

 

Figure IV.30: Python code shows  running Flask on separate thread on port 4747. 

 

After connecting to the web server using your Browser of choice, we will get the output as in 

Figure IV.31 where it displays the initiation or Flask service then starting the receiver deamon 

witch is continuously waiting for new Client Raspberry-Pi connection and receive frames. 

 

 

Figure IV.31: Python output logs shows the execution of the services. 

 

Figure IV.32 shows the render of the web page after connecting via a web browser to IP address 

192.168.55.175:80, We can also connect using the hostname of the Master RPi since   mDNS 

is already install on Raspberry machine. 

https://wsgi.readthedocs.io/
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Figure IV.32: A screenshot shows the web page served by Flask through a web client. 

 

IV.4.2 Securing the Network via VPN: 

In order to enhance the security of our IoT based network, Virtual Private Network (VPN) 

is considered as right solution for our case, VPN is an encrypted connection over the Internet 

from a device to a network. The encrypted connection helps ensure that sensitive data is safely 

transmitted. It prevents unauthorized people from eavesdropping on the traffic and allows the 

user to access the whole Network from everywhere in the world. The smartphone will connect 

to the Raspberry Pi through the Internet and create a secured tunnel between the two devices, 

so that we can access any service provided by the IoT based network (Like accessing client-

RPi cameras via Web). 

The VPN will secure all transmissions between RPis (client-RPi and master-RPi) even 

transmissions between User device (Laptop, Smartphone, tablet…etc) and the master RPi via 

HTTP or SSH. Figure IV.33 shows how VPN works. 

 
Figure IV.33:  VPN Process 
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To setup our VPN system, we need to install OpenVPN Server package on the Master RPi, 

OpenVPN is a virtual private network (VPN) system that implements techniques to create 

secure point-to-point or site-to-site connections in routed or bridged configurations and remote 

access facilities. It implements both client and server applications. 

It uses the OpenSSL encryption library extensively, as well as the TLS protocol, and contains 

many security and control features. It uses a custom security protocol that utilizes SSL/TLS for 

key exchange. It is capable of traversing network address translators (NATs) and firewalls. 

We also need Free Dynamic DNS (DDNS) hosting since our internet service provider 

doesn’t provide us a static IP address. freedns.afraid.org provides us a free hostname (our case 

“jugu-rpi4.mooo.com” like shown in Figure IV.34) that redirects traffic to our IP address, even 

after a change. This way, we can configure our VPN client with jugu-rpi4.mooo.com instead 

of our dynamic IP address. 

 
Figure IV.34: Subdomain used to access RaspberryPI over internet 

 

During the installation of OpenVPN on the Raspberry-PI, we configured the service to use 

Port 1194 on protocol UDP since we need speed while transmitting the keyframes. Figure IV.35 

shows one of steps in the installation process. 
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Figure IV.35: VPN Configuration 

After the installation is completed, there is an extra step left to do, our Raspberry Pi is not 

directly accessible via Internet, but it’s located behind a router. So we need to configure this 

router to redirect the VPN connections to our Raspberry PIs using port forwarding, this 

configuration depends from a router to another. 

Finally, we need to configure our Raspberry-PI’s firewall to open port 1194-UDP to allow 

incoming connections, this configuration is shown in Figure IV.36: 

 

Figure IV.36: Raspberry pi firewall configuration 
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At the end, we will have a fully functional VPN server where connect to it using any device 

like smartphone, tablet, PC…etc. (Figure IV.37): 

 

Figure IV.37: screenshot of smartphone connected to the master RPI's VPN server 

IV.5 Conclusion 

In this last chapter, we described our system then explained its process steps, after that we 

had a look to the programmed application and briefly explained some of its functionalities. 

Finally, we closed this chapter with some additional features that can enhance the system 

usability. 
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Conclusion 

 

In the modern age, surveillance networks are installed almost everywhere. These networks 

generate daily videos 24 hours a day with significant redundancy, this which wastes storage 

resources and makes them difficult to analyze. Motivated through these challenges, we 

proposed a tool for summarizing multi-video effective views based on light weight CNN. 

Our job was to capture multi-view video (MVV) data. Each client Raspberry Pi (RPi) detects 

target in frames via light-weight CNN model, analyses these targets, and searches for suspicious 

objects (it can be any specific target) to generate alert in the IoT network (like police station). 

The frames of each client RPi are encoded and transmitted with to master RPi for final MVS. 

The proposed project can be used in industrial environments for various applications such as 

security and smart transportation even in smart-homes and can be proved beneficial for saving 

resources 

Outlook: Although good results have been achieved, the work can be improved: 

 We have used YOLO v4 tiny with darknet framework, this can be latter updated with 

YOLO v5 tiny with PyTorch. 

 Add the possibility to switch between different model in real time without having to 

stop the script completely and edit it. 

 Add more features and control through web application rendered by Flask. 

 Expand the python script with C/C++ to increase the overall performances. 

 Add the possibility to rotate the camera through motors and an auto tracking option to 

track the concerned target. 

 Improve the script performances by adding some optimizations. 
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Appendix (A) :  Functions of Operating System 

A high-level definition of an operating system is that it stands between a computer user and the 

computer hardware, enabling the user to use the computer’s various resources without 

interfering with other users or with computer operation itself. Its major jobs can be broken down 

this way: 

■ Process management: The OS launches individual threads of execution for its own needs 

and the needs of users. It allocates execution time on the CPU among executing threads. If the 

CPU has multiple cores, it distributes processes among the cores.  

■ Memory management: The OS allocates memory to running processes, in most cases as 

separate memory spaces that are protected from interference by other processes. Through a 

technology called virtual memory, the OS allows the computer literally to use more memory 

than it actually has, by writing the least-used process memory out to disk when more memory 

is needed.  

■ File management: The OS maintains one or more file systems, which allocate file storage 

space on disks and other mass-storage devices and manage the reading of data from files and 

the writing to and deletion of files.  

■ Peripheral management: The OS manages access to system peripherals like keyboards, 

mice, printers, scanners, graphics coprocessors and (in cooperation with file systems) mass 

storage devices. This is generally done through specialized software interfaces called device 

drivers. 

■ Network management: The OS manages the computer’s access to external networks 

through a collection of standard methods called networking protocols. The protocols are 

implemented in one or more pieces of software that, taken together, are called the network 

stack.  

■ User account management: All modern operating systems allow different users to have 

their own accounts on the computer. An account includes a unique login, a set of security rules 

called privileges and a private file space protected from manipulation by other users.  
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■ Security: Scattered throughout an OS are mechanisms to keep running processes from 

interfering with one another and with the OS itself. Much of OS security is done by defining 

rules that specify what processes and users can and cannot do. Certain users called 

administrators or super users have powers that ordinary users do not have. 

■ User interface management: The OS manages user interaction with the computer 

through software mechanisms called shells. A shell may be as simple as a text command line 

in a terminal window, or it can be a full-blown windowed graphical environment like those 

used in Windows, Mac OS X and desktop implementations of Linux, including Raspbian OS 

on the Raspberry Pi [10]. 

 

Appendix (B) :  Embedded Linux 

Embedded Linux is used to convey the presence of an embedded system, a concept that can be 

loosely explained as some type of computing hardware with integrated software that was 

designed to be used for a specific application.  

This concept is in contrast to the personal computer (PC), which is a general-purpose computing 

device designed to be used for many applications, such as web browsing, word processing, and 

game play. The line is blurring between embedded systems and general-purpose computing 

devices. For example, the Raspberry Pi (RPi) can be both, and many users will deploy it solely 

as a capable general-purpose computing device and/or media player. However, embedded 

systems have some distinctive characteristics:  

 They tend to have specific and dedicated applications; 

 They often have limited processing power, memory availability, and storage 

capabilities; 

 They are generally part of a larger system that may be linked to external sensors or 

actuators; 

 They often have a role for which reliability is critical (e.g., controls in cars, airplanes, 

and medical equipment); 

 They often work in real time, where their outputs are directly related to present inputs 

(e.g., control systems). 
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Embedded systems are present everywhere in everyday life. Examples include vending 

machines, household appliances, phones/smartphones, manufacturing/ assembly lines, TVs, 

games consoles, cars (e.g., power steering and reversing sensors), network switches, routers, 

wireless access points, sound systems, medical monitoring equipment, printers, building access 

controls, parking meters, smart energy/water meters, watches, building tools, digital cameras, 

monitors, tablets, e-readers, anything robotic, smart card payment/access systems, and more 

[10]. 

 

 

Appendix (C) :  Advantages and Disadvantages of Embedded 

Linux:   

There are many embedded platform types, each with its own advantages and disadvantages.  

Here are some of the reasons why embedded Linux has seen such growth:  

 Linux is an efficient and scalable operating system (OS), running on everything from 

low-cost consumer-oriented devices to expensive largescale servers. 

 A huge number of open source programs and tools have already been developed that 

can be readily deployed in an embedded application. If you need a web server for your 

embedded application, you can install the same one that you might use on a Linux 

server.  

 There is excellent open source support for many different peripherals and devices, 

from network adapters to displays.  

 It is open source and does not require a fee for its use. 

 The kernel and application code is running worldwide on so many devices that bugs 

are infrequent and are detected quickly.  

 

One downside of embedded Linux is that it is not ideal for real-time applications due to the OS 

overhead. Therefore, for high-precision, fast-response applications, such as analog signal 

processing, embedded Linux may not be the perfect solution. However, even in real-time 

applications, it is often used as the “central intelligence” and control interface for a networked 

array of dedicated real-time sensors [18].  

In addition, there are constant developments underway in real-time operating systems 

(RTOS) Linux that aim to use Linux in a preemptive way, interrupting the OS whenever 

required to maintain a real-time process [10]. 
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Appendix (D) :  Booting the Raspberry Pi: 

The first thing we should see when you boot a desktop computer is the Unified Extensible 

Firmware Interface (UEFI), which provides legacy support for BIOS (Basic Input/Output 

System) services. The boot screen displays system information and invites you to press a key 

to alter these settings. UEFI tests the hardware components, such as the memory, and then loads 

the OS, typically from the solid-state drive (SSD)/hard drive. Therefore, when a desktop 

computer is powered on, the UEFI/BIOS performs the following steps:  

1. Takes control of the computer’s processor; 

2. Initializes and tests the hardware components; 

3. Loads the OS off the SSD/hard drive. 

 

The UEFI/BIOS provides an abstraction layer for the OS to interact with the display and 

other input/output peripherals, such as the mouse/keyboard and storage devices. Its settings are 

stored in NAND flash and battery-backed memory. 

 

 

Appendix (E) :  The Raspberry Pi Bootloaders: 

Like most embedded Linux devices, the RPi does not have a BIOS or battery backed memory 

by default.  

Instead, it uses a combination of bootloaders. Bootloaders are typically small programs that 

perform the critical function of linking the specific hardware of your board to the Linux OS:  

 They initialize the controllers (memory, graphics, I/O); 

 They prepare and allocate the system memory for the OS; 

 They locate the OS and provide the facility for loading it; 

 They load the OS and pass control to it.  

 

The bootloader for embedded Linux is a custom program that is tailored for each and every 

board type, including the RPi. There are open source Linux bootloaders available, such as Das 

U-Boot (“The” Universal Bootloader), Grub2, LILO…etc.; that can be custom built, given 

detailed knowledge of the hardware description of the embedded Linux platform. 



Appendices 

 

 

The RPi uses a different approach: It uses efficient but closed-source bootloaders that were 

developed specifically for the RPi by Broadcom. These bootloader and configuration files are 

located in the /boot directory of the RPi image: 

ls -ltr *.bin start.elf *.txt *.img fixup.dat 

 

Figure E.1: The output command to show the configuration files located in the /boot directory 

 

Appendix (F) :  The boot sequence of the Raspberry Pi: 

1. Stage 1:  boot is in the on-chip ROM. Loads Stage 2 in the L2 cache; 

2. Stage 2:  is bootcode.bin. Enables SDRAM and loads Stage 3; 

3. Stage 3:  is loader.bin. It knows about the “ .elf ” format and loads start.elf; 

4. start.elf loads kernel.img. It then also config.txt, cmdline.txt and bcm2835; 

5. kernel.img is then run on the ARM. 

Everything is run on the GPU until kernel.img is loaded on the ARM. 
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Figure F.1: The boot sequence of the Raspberry Pi in general 

 

Appendix (G) :  Multiple Cores: 

Modern CPUs often have more than a single execution core. A core is a separate and almost 

entirely independent engine that executes machine instructions. At the time of writing, CPUs 

with two, four and eight cores are common in the personal computing world. Each core executes 

processes independently, but all cores share system resources like memory. The operating 

system controls the use of all cores in a system, just as it controls everything else. The OS 

typically runs in one core, and parcels processes out to the other core(s) as needed. 
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Appendix (H) :  The Super User: 

On Linux systems, the system administrator account has the highest level of security access to 

all commands and files. Typically, this account is referred to as the root account or superuser. 

Under Raspbian/Debian, this user account has the user name root, but it is typically disabled 

by default; however, we can enable it by typing sudo passwd root from a shell that is logged in 

with the pi user account (The naming of the user account as “root” is related to the fact that it is the only 

user account with permission to alter the top-level root directory “/”.). 

 

 

Appendix (I) :  The Linux Root Directory 

Exploring the Linux file system can be mandatory for new Linux users. If we go to the top-

level directory using cd / on the RPi and type ls, you will get the top-level directory structure, 

of the following form:  

 

Figure I.1: Linux command shows root directory. 

 

Each of these directories has a role, and if you understand the roles, you can start to get an idea 

of where to search for configuration files or the binary files that you need [19]. 

 

Directory Content 

/bin Common programs, shared by the system, the system administrator and the users. 

/boot Contains the files for booting the RPi. 

/dev Contains the device nodes (linked to device drivers). 
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Directory Content 

/etc Configuration files for the local system. 

/home Contains the user’s home directories ( /home/pi is the pi user home). 

/lib Library files, includes files for all kinds of programs needed by the system and the users. 

/lost+found 
Every partition has a lost+found in its upper directory. Files that were saved during failures 

are here. 

/mnt Used typically for mounting temporary file systems. 

/media Used for mounting removable media, such as micro-SD cards. 

/net Standard mount point for entire remote file systems 

/opt Typically contains extra and third party software. 

/proc Virtual filesystem providing process and kernel information as files.  

/root The home directory of root account under the Raspbian and Debian Linux distributions. 

/sbin Contains executables for root user (superuser) system management. 

/srv Stores data related to ftp, web servers, rsync, etc. 

/tmp Temporary space for use by the system, cleaned upon reboot. 

/usr Programs, libraries, documentation etc. for all user-related programs. 

/var Storage for all variable files and temporary files created by users, such as log files. 

/sys Contains a virtual file system that describes the system. 

/run Provides information about the running system since the last boot. 

Table I.1: Briefly describes the content of each top-level Linux subdirectory 

 

 

Appendix (J) :  OIDv4_Toolkit setup and usability 

In the training process, we first installed a command line program OIDv4_Toolkit that will let 

us easily download specific classes from the Google Open Images Dataset. 

Figure J.1, shows how OIDv4 download the given class names: 

https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Kernel_(computing)
https://github.com/openimages/dataset
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Figure J.1: Downloading targeted classes from Open-Image-Dataset using OIDv4_Toolkit 

 

Appendix (K) :  Application structure: 

This section present and explain the directory structure for the project, Figure 52 shows the 

output of command “tree”: 

 The folder “models”: contains our trained models, each subfolder has class names 

(with extension “.names”), the configuration file (with extension “.cfg”) and the 

trained model as a binary file. 

 The folder “templates”: contains the HTML view file that will be rendered by Flask 

framework, this will allow us to remotely monitor the Client RPi camera via HTTP.  

 CoDec_jugu.py: Python class responsible of compressing and decompressing the 

frames; 

 Complexity_jugu.py: Python class witch calculate the complexity of a single frame; 

 Entropy_jugu.py: Python class witch calculate the Entropy of a single frame; 

 LICENSE: The license file which is Copy-Righted in our case; 

 main_Client_RPi_jugu.py: Python script executed on Client RPi and its function is 

to apply the Object-Detection process, annotate the frames and send them to Master 

RPi; 

 main_Master_RPi_jugu.py: Python script that applies MVS on the received salient 

frames; 

 motion_detector_jugu.py: Optional Python class used to add motion detection to 

main_Client_RPi_jugu.py; 
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 object_detector_jugu.py: Python class responsible of object detection using a 

specified YOLO model; 

 README.md: The readme file which explains different steps to install the system; 

 receiver_service_jugu.py: A daemon Python script used to receive frames from 

Client RPi and store them as PNG images. 

 

 

Figure K.1:  Screenshot shows the directory structure for the project 

 

 

 

 

 

 

 

 

 

 

 


