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  الإهــــــــداء
  

 

 

 

  ھــــــداءا

  أھدي ھذا العمل المتواضع:

 جميعا رحمھم الله نبيل الغالي امي الغالية وروح اخي وروحابي العزيز  إلى روح
  .و اسكنھم فسيح جنانه

الإرادة  بـزادك في الوجود زوجتي الغالية نھاد التي أمدتني ـلـا أمـز مـأع إلى
  .والعـزيمــة وسبــل النـجــاح

  .)حبيبة( العزيزة يتخا) و فضي .عمار .موسى( اخوتي إلى 

  .واية بومدينو ايناس وابناءھم زينة وزوجتـه ،العزيز براھيمأخي  روح إلى 

 الى اسراء تسنيم و اسلام ابناء اختي الغالية صليحة

 .سليمة والدي نھاد وحماتي سعيد عميالى 

 ي على تخطـي الصعـاب.ـنشجع كـل من إلى

    .رامــذة الكــاتـع الأسـلائي وجميـــزمإلى 

  .رفـدان الشـوا في ميـطـن سقـذيـال الوطني واجبـداء الـشھ إلى

  .الابرار لشھدائنا والخلودالمجد  رــــزائــالجتحيا                               

 

) اقْرأَْ وَربَُّكَ الأَْكْرمَُ 2) خلََقَ الإْنِْسَانَ مِنْ عَلَقٍ (1اقْرأَْ باِسْمِ ربَِّكَ الَّذِي خلََقَ (    
صدق االله العظيم  ") 5) عَلَّمَ الإْنِْسَانَ مَا لَمْ يَعْلَمْ (4) الَّذِي عَلَّمَ باِلْقَـلَمِ (3(   

 بسِْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ 
) 27) واَحْلُلْ عُقْدَةً مِنْ لِسَانِي (26) وَيَسِّرْ لِي أمَْريِ (25 اشْرَحْ لِي صَدْريِ (قـاَلَ رَبِّ 

)28يَفْقهَُوا قوَْلِي (  
 صدق االله العظيم
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Chapter I: General introduction 
 

 

  

The objective related to the study of rotating flows lies, among other things, in the prediction of 

instabilities that occur during their development from the stable laminar state to the developed 

turbulent state. Therefore, a satisfactory explanation of the phenomena of instability and an overall 

understanding of their evolution would make it possible to establish a theory capable of predicting 

most secondary movements in connection with the emergence of chaos and the onset of turbulence. 

This is the major concern of physical hydrodynamics to date. In addition, the development of new 

calculation codes has led, in recent decades, to the advent of computational power-based numerical 

simulations to address physical processes with increasingly complex characters. Therefore, with the 

use of calculation codes, it is possible to choose simple prototype situations to draw the different 

properties and thus a better understanding of the physical phenomena involved. Examples include 

flat flow, flow between parallel walls, flow in circular or rectangular pipe, flow around cylinder, 

sphere or disk, etc.... 

On the other hand, the examination of flows between two coaxial cylinders, between coaxial 

spheres, between coaxial cones or combination between them remain difficult to understand 

because of the three-dimensional and unsteady nature of the transition process, which is 

phenomenologically more complex than the simple geometries mentioned above. Further, this  flow 

problem occupies a privileged place because of the importance and role played in the conditions of 

instability and the gradual degradation of order towards the disorder in hydrodynamics of chaos. 

Furthermore, the study of rotating flows is currently the subject of several works and constitutes a 

great phenomenological wealth, particularly in the analysis of fundamental physical processes; 

laminar-turbulent transition. Moreover, Rotating flows occur in many technical systems and in 

nature, such as rotating tube heat exchangers, chemical mixing filtration, bearing chambers, 

flotation cells and extractors, pumps for the oil and water industries as well as in the drilling of oil 

wells, where mud flows between the drilling rod and the well casing, to remove the cuttings and 

wastewater treatment. Among the most widely used rotating flow systems, the device known as 

Taylor-Couette, fluid evolving in an annular gap between two rotating bodies, which is most 

famous for its role in the development of hydrodynamic stability theory and for the wide variety of 

flow regimes that it can exhibit depending on the Reynolds or Taylor number. Moreover, it is this 

type of flow system that has been adopted to model natural phenomena in atmospheric physics 
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(meteorology), citing the example of Hadley circulation cell (Fig. I.1) and in astrophysics to study 

the atmospheric dynamics of planets, an example of the great red spot of Jupiter (Fig. I.2). Also, in 

Geophysics, as part of the study of the dynamo effect governing the Earth's mantle (Fig. I.3).  

On the industrial side, the Taylor-Couette system plays an important role because of its many and 

diversified links with technology and engineering applications. There are many applications, 

including the technology using turbines that are integrated into alternators in power plants, turbines 

found in turboreactor engines in Avionics (Fig. I.4) and centrifugal pumps used in the chemical and 

pharmaceutical industries (Fig. I.5). Another area of great importance is the systematic use in 

tribology to establish optimal lubrication conditions for gearbox bearings in the automotive, 

aerospace and power generation industries (Fig. I.6). It is also used in filtration systems to purify 

wastewater or body fluids such as blood (Fig. I.7). Recently, this flow system has been used in an 

important research area like biomedical, a Paracorporeal Respiratory Assist Lung (PRAL), to treat a 

prevalent lung disease, Chronic Obstructive Pulmonary Disease (COPD). The PRAL is comprised 

of an annular hollow fiber membrane bundle that is rotated to increase the gas exchange efficiency 

of the device and pump blood. Thus, the proprieties of Taylor-Couette flow is utilized to provide 

CO2 removal at a low blood flow rate for the treatment of respiratory failure, particularly acute 

exacerbations of Chronic Obstructive Pulmonary Disease (Fig. I.8). It is also a subject of 

widespread practical interest owing to its direct connection with engineering applications including, 

rheology of blood (hemorheological) (Fig. I.9), cooling of electric motors (Fig. I.10), and as a 

crystallization separate process system (Fig. I.11). Furthermore, the Taylor– Couette flow reactor is 

employed as a new method to produce a single- or few-layer graphene oxide from bulk graphite 

with high yields in a significantly shortened reaction time (Fig.I.12).  

The main objective of our study is to numerically simulate the fluid flow between two concentric 

bodies, the inner element rotates and the outer one is kept stationary. In general, works on the 

Taylor-Couette flow are carried out in complex situations with a geometric modification or with a 

superposition of another type of flow. Studies carried out with geometric modifications belong to 

the class of confined flows. The flow patterns and the instabilities between rotating bodies and 

combinations of them are investigated. These can be regarded as part of the large domain of the 

flows in rotating systems. Special emphasis is placed on the first onset and the further development 

of instabilities. For a better understanding of these different flow structures we have striven to 

illuminate the situation by the use of simple models. For these we have varied the geometry but 

retained certain boundary conditions to provide a suitable basis of comparison. All the bodies 

tested, cylinders, spheres, and cones are bodies of revolutions with symmetry about the axis of 
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rotation. Therefore, the aim of this research is to provide further details on the flow features in the 

annulus between different coaxial bodies. 

This thesis is organized into seven chapters as follow:  

Chapter one is the introductory chapter and is intended to summarize the background and the 

motivation for which this research study was carried out, the aims and objectives of this present 

research as well as an outline of the structure of the thesis.  

Chapter two provides a concise literature review of the available research to date on the flow 

behaviour  as well as documentation on the theories of fluid instability in concentric rotating bodies. 

We also propose to perform an analysis of the effect of different parameters on the occurrence of 

various instabilities in order to derive some physically interesting properties. Thus, we discuss the 

thermal, rheological, dynamic and geometric effects influencing the evolution of the laminar-

turbulent transition in the Taylor-Couette flow. Thereafter, we propose to carry out a synthesis of 

previous works on the appearance of different hydrodynamic instabilities in modified Taylor-

Couette flows (by a variation of the cylindrical geometry to spherical, conical and ellipsoid 

configuration) in order to analyze and clarify the existing analogies between the different rotating 

flow systems. 

Chapter three gives an overview of current CFD modeling techniques including the basic principles 

of CFD. The numerical methodology, including the numerical scheme, the governing equations 

(continuity and momentum equations), and convergence criteria employed for this study are 

discussed. 

Chapter four describes the CFD modeling of the effect of the cylinders-spheres combinations on the 

onset of different instabilities of a fluid confined between two concentric bodies. The modeling strategy 

was developed by studying three types of flow configurations: cylindrical Taylor-Couette flow (with 

fixed endcaps), flow between two concentric cylinders with hemispheres on the lower end wall, and 

flow between two coaxial spherocylinders (cylinders with hemispheres on the upper and lower end 

surfaces). Thus, chapter details the CFD geometry and problem formulation, the mesh generation, the 

discretization scheme for the pressure and the moment equations, the boundary conditions, the 

convergence criteria as well as the discussion of the obtained results from the CFD predictions. The 

work presented in Chapter IV has been published in the European Physical Journal Plus. 

Chapter five discusses, the influence of the working fluids confined inside an infinite aspect ratio 

Taylor-Couette system on the onset of cellular pattern. The main goal of this work is to show how the 

change in cellular pattern operates when changing the working fluid by simulating and comparing four 

different liquids namely hydrogen, helium, lithium and water. The work presented in Chapter V has 

been published in the Journal of the Brazilian Society of Mechanical Sciences and Engineering. 
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Chapter six concerns the numerical investigation of the fluid motion in an annulus between cylinder-

cone combinations. The transitional phenomena occurring in this flow are discussed under the effect of 

opening angles of the outer cylinder. The main goal it is to show how operates the change in the 

structure of the movement when changing the geometry of the flow through angular deviation, i.e., from 

coaxial rotating cylinders to an inner cylinder rotating in a conical container. The work presented in 

Chapter VI has been published in the European Physical Journal Applied Physics. 

Chapter seven presents a three-dimensional computational fluid dynamic of the flow of an electrically 

conducting fluid, liquid sodium, in an annulus between two concentric rotating spheres subjected to a 

dipolar magnetic field. The work presented in Chapter IV has been published in Topical Problems of 

Fluid Mechanics. 

Finally, conclusions are drawn on the research work in this thesis, specifically, the different modelling 

strategy has been exposed. From the conclusions, recommendations for further work are made. 

 

 

 

 

 

Figure I.1: Hadley circulation cell. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure II.2: (a) Picture of Jupiter showing its three White Ovals and its great Red spot . 

(b) Zoom on the great Red spot and a White Oval. 

(c) Development of the great Red spot. 

                    a)                                                                 b)                                                       c) 
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Figure II.3: Dynamo effect governing the Earth's mantle 

 

 

 

 

 

 

  

 
      a) Schematic of a turboreactor               b) Turboreactor Rolls-Royce           c) Lab-scale prototype of a turboreactor 

Figure I.4: Turboreactor (stator-rotor).  

 

 

 

 

 

 

 

 

 

Figure I.5: Centrifugal pumps used in the chemical and pharmaceutical industries. 

 

 

 

 

 

 

 

              a) Bearing consisting of two concentric cylinders          b) Bearing consisting of two eccentric cylinders  

Figure I.6: Tribology of gear transmission bearings in rotating machines. 
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Figure I.7: Filtration system using Taylor-Couette flow reactor with porous inner cylinder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure I.8: Paracorporeal Respiratory Assist Lung (PRAL): A Paracorporeal Respiratory Assist Lung is configured 

with an annular cylindrical hollow fiber membrane (fiber bundle) that is rotated at rapidly varying speeds. Blood is 

introduced to the center of the device and is passed radially through the fiber bundle. The bundle is rotated at rapidly 

changing velocities with a rotational actuator. The rotation of the fiber bundle provides centrifugal kinetic energy to the 

fluid giving the device pumping capabilities and may create Taylor vortices to increase mass transfer. Rotation of the 

fiber bundle increases the relative velocity between the fluid and the hollow fibers and increases the mass transfer. The 

porosity of the fiber bundle may be varied to enhance gas exchange with the blood.   
 

 

 

 

 

 

 

 

 

 

 
 

Figure I.9: Experimental set up for hemorheological studies (Schematic, device of Taylor-Couette system and Taylor 

vortices for blood).  Bands of dark and light red are distinguishable.  Dark red regions have high concentration of red 

blood cells. Distance between two dark red regions equals gap width. 
 
 
 
 
 
 

       a) Schematic of  PRAL                       b) PRAL prototype        c) Schematic of  PRAL connected to patient 
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Figure I.10: Cooling of electric motors.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure I.11: Continuous Crystallization Separate Process System” known as Taylor-Couette Crystallizer”. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure I.12: Oxidation reaction of graphite flakes in the Taylor-Couette flow reactor. 
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Literature Review 
 

 

 
 
 
 

 

 

               « Its seems doubtful whether we can expect to understand 
fully the instability of fluid low without obtaining a mathematical 
representation of the motion of a fluid in some particular case in which 
instability can actually be observed, so that a detailed comparison can 
be made between the results of analysis and those of experiment. » 
  
                                                                       Geoffrey. Ingram. Taylor  
 

 

 
 
 
 



 Chapter II:  Literature review                                                                 University	A.	Mira	of	Bejaia 

 

8 

 

 

CHAPTER II : LITERATURE REVIEW 

 

 

II.1 Introduction 

People have been investigating the hydrodynamic stability of rotating fluids between two 

cylinders, both experimentally and analytically, for more than one hundred years. Why did 

such an apparently “simple problem” become so popular? In fact, investigators were amazed 

to see the wealthy variety of flow patterns that occur, for example, when the speed of the 

inner cylinder is increased and the outer cylinder is at rest. One attractive feature of these 

patterns is their degree of symmetries, both spatially and temporally. For example, the circular 

Couette flow (CCF) and Taylor vortex flow (TVF) are axisymmetric along the axis of the 

cylinders and are time-independent when the speed of the inner cylinder is low. However, as 

the angular velocity of inner cylinder increases, the flow pattern becomes more and more 

complicated, breaking more and more symmetries both spatially and temporally. With the 

increase of the inner cylinder speed, the Taylor vortex flow is replaced by wavy vortex flow 

(WVF), which is non-axisymmetric and time-dependent. Eventually the flow becomes 

turbulent, containing large-scale structures with many degrees of symmetry. This model 

problem then appears as an ideal example of a system that progressively approaches 

turbulence, which is still one of the challenging problems in the field of fluids. 

II.2 Historical investigations of the Taylor-Couette flow 

The history of Taylor-Couette flow is a long and storied one. The literature concerning pattern 

forming bifurcations driven by inner and/or outer cylinder rotation and their role in the 

supercritical transition to turbulence is extensive (see, e.g., the book by Koschmieder [1], the 

bibliography compiled by Tagg [2], the review articles by Tagg [3] and by Di Prima and 

Swinney [4], and the expansive study by Andereck et al. [5]).  

The first theoretical discussion of the flow between concentric cylinders is attributed to 

Newton in 1687 [6]. In 1848, Stokes [7] investigated the flow between two rotating cylinders. 

He showed that the azimuthal velocity vθ as a function of the radial position r is given by:  

(II.1)                                                                   ,)(
r

B
Arrv   
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R1 and R2 are the radii of the inner and outer cylinders, respectively, Ω1 and Ω2 are their 

angular frequencies of rotation, µ= Ω1/ Ω2, and η = R1/R2. The axial and radial components of 

velocity vz and vr are zero. Today, this flow is known as circular Couette flow (CCF). 

The final two decades of the 19th century saw a great number of researchers turning their 

attention to the study of flows between concentric cylinders. In 1881, Margules derived a 

formula that allowed the measurement of fluid viscosity by measuring the torque exerted by 

the fluid on one of the cylinders in a Taylor-Couette configuration as the other was rotated at 

constant speed [8]. Later, Couette and Mallock conducted experiments in apparatus driven by 

electric motors publishing their initial results in 1888. Mallock's paper is mostly concerned 

with measurements of the viscosity of water, which he measured by rotating the outer cylinder 

and measuring the torque on the inner cylinder [9]. In this paper, Mallock notes the presence 

of a secondary flow due to the finite size of his apparatus. In 1896, Mallock discussed the 

effect of inner vs. outer cylinder rotation and system size on his viscosity measurements, as 

well as his efforts to minimize end wall effects [10].  

Couette [11] described a series of experiments in which he measured the viscosities of water 

and air using a concentric cylinder apparatus of his own design in which the outer cylinder 

was driven by an electric motor.  

Motivated by meteorological considerations, Lord Rayleigh [12]derived a general criterion for 

the stability of rotating, inviscid flows. Rayleigh's argument proceed as follows: A rotating 

fluid in equilibrium will flow in such a way that the centrifugal force is balanced by the radial 

pressure gradient, i.e. ∂p/∂r=ρv(r)2/r. Suppose that a fluid element originally at r = R1 is 

moved outward to a new radial position R2. The flow will be stable if the fluid element 

experiences a restoring force that tends to move it back toward its original position. For an 

incompressible fluid this requires that v(R2)2/ R2 > v(R1)2/ R1 for all R2 > R1. Mathematically, 

this can be expressed in terms of the angular velocities (Ω=v/r) as: 

(II.3)                                                      0  )(
)( 22

2

 r
dr

d

dr

rvd

 

Rayleigh applied this criterion to the inviscid flow between concentric cylinders and arrived at 

the conclusion that such flows are always unstable when the inner cylinder rotates and the 

outer cylinder is stationary and always stable when the outer cylinder rotates and the inner 

cylinder is stationary. The more general case can be evaluated by inserting the velocity profile 

derived by Stokes (Equation II.1) into Equation II.3, resulting in the constraint that when the 

flow is stable. 
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If we denote that μ = Ω2/ Ω1 and η = R1/R2, this relation can be illustrated with the stability 

diagram in Figure II.1. Here it can be seen that the Taylor-Couette flow of an inviscid fluid 

will be unstable for all counter-rotating flows or whenever the ratio of the angular velocity of 

the outer cylinder to that of the inner cylinder is less than the square of the radius ratio 

 

 

 

 

 

Figure II.1: Rayleigh's stability criterion for inviscid Taylor-Couette flow. Adapted from ref. [5]. 

In 1921 Geoffrey Ingram Taylor, inspired by the theoretical work of Lord Rayleigh and 

others, began work on a concentric cylinder apparatus [13, 14]. He successfully applied linear 

stability theory to the viscous flow between concentric cylinders and was able to calculate the 

critical condition for instability in terms of the rotation rates of the cylinders, their radii, and 

the fluid viscosity in the narrow gap approximation, i.e. as the radius ratio η=1. Taylor 

concluded that viscosity played a stabilizing role in some flows that would otherwise be 

unstable according to Rayleigh's criterion (Equation II.4). Taylor predicted that flows where 

the outer cylinder rotation dominates (i.e., when the cylinders co-rotate and the angular 

velocity of the outer cylinder is greater than that of the inner cylinder, so that µ > +1, or when 

the inner cylinder is held fixed, so that µ= ±∞) should be linearly stable at all rotation rates 

and derived more detailed stability criteria for general co- and counter-rotating flows. Taylor's 

results are summarized in Figure II.2. 

 

 

 

 

 

 

 

 

 

 

                       

Figure II.2: Stability diagram for Taylor-Couette flow. Open circles correspond to the theoretically predicted 

stability boundary. Closed circles correspond to the experimentally observed stability boundary. Adapted from 

ref. [14]. 

Ω1

Ω2 



 Chapter II:  Literature review                                                                 University	A.	Mira	of	Bejaia 

 

11 

 

Wendt [15] reported the first measurements of the velocity and pressure distributions inside 

the gap, as well as measurements of the torque transferred between the cylinders for a range 

of aspect and radius ratios. 

The understanding of Taylor's flow remained at the same stage for several decades until 

Chandrasekhar's work in 1954 [16]. He presented the solution of the stability problem for any 

value of the rotational rate (µ=Ω2/Ω1) assuming a small annular space between cylinders. A 

few years later, in 1958, Chandrasekhar [17] presented the first study of the problem of 

stability between two rotating cylinders for a large annular space (η=0.5). In 1965,  Coles [18] 

at Caltech was beginning what would become a monumental, decade-long study of flow 

transitions in Taylor-Couette flows. Coles's study was originally inspired by the lack of 

experimental data on the transition to turbulence in the absence of the Taylor instability. His 

initial experiments were carried out in a large apparatus and used air as the working fluid. 

Coles performed detailed hot wire measurements for cases where one cylinder rotated and the 

other was at rest, as well as cases where both cylinders rotated. Coles reported that the 

transition to turbulence dominated by centrifugal instability was governed by the emergence 

of a series of progressively more complicated patterns, which were reflected by the hot wire 

spectra. He called this route to turbulence "transition by spectral evolution".  Moreover, his 

extensive study showed that for a given Rei above the linear stability boundary as many as 26 

states with differing azimuthal and axial wave numbers could be observed. These states are 

now collectively known as wavy Taylor vortices (WVF) and (along with other supercritical 

flow regimes of Taylor-Couette flow) have been the subject of intense study in the decades 

since Coles's pioneering work. 

Gollub and Swinney [19] and Fenstermacher et al. [20] studied the temporal properties of the 

flow field for increasing Reynolds numbers beyond the first critical Reynolds number by 

using an optical heterodyne technique to measure the time dependence of the radial 

component of velocity at a fixed point. Furthermore, Andereck et al. [5] conducted an 

experimental investigation in which both cylinders were rotated in different directions and 

both cylinders were rotated in the same direction. They observed several flow regimes, 

including Taylor vortex flow, wavy vortex flow, Modulated Wavy Vortex Flow (MWVF), 

Laminar Spirals Flow (LSF), interpenetrating spirals, spiral turbulence, turbulent Taylor 

vortex flow, and various combinations of these flows. These flow regimes are shown in 

Figure II.3.  
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Figure II.3: Flow regimes between independently rotating concentric cylinders. Adapted from ref. [5]. 

In addition, Lathrop et al. [21] examined the behaviour of the Taylor -Couette system over the 

Reynolds number range 800 ≤ Re ≤ 1.23 x 106 using high-precision torque measurements, 

local wall shear stress measurements, and flow visualization. They found that, above a non-

hysteretic transition Reynolds number, Re = 1.3 x 104, the closed system behaves like open 

wall-bounded shear flows (pipe flow, duct flow and flow over a flat plate) at high Reynolds 

numbers. Czarny et al. [22] performed a direct numerical simulation using a three-

dimensional spectral method of a short finite-length annular flow (η=0.75 and Γ=6) driven by 

counter-rotating cylinders. The numerical model predicted two different flow regimes, wavy 

vortices and interpenetrating spirals. Moreover, Heise et al. [23] and Abshagen et al. [24] 

studied the nonlinear dynamics of Taylor vortex flow (TVF) and wavy vortex flow (WVF) in 

an attempt to understand several bifurcation processes exhibited in the TCF for the wide gap 

problem. Manneville and Czarny [25] studied the aspect ratio dependency of Taylor vortices 

for the wide gap problem. Abshagen et al. [26] also carried out experimental investigation on 

the multiplicity of states in Taylor-Couette flow, which appeared due to the axial localization 

of the azimuthal traveling wave for wide gap problems. This led López et al. [27] to conduct a 

numerical analysis in an attempt to better understand the multiplicity of states found in 

Abshagen et al. [26]. In the work of Martinand et al. (28), stability analysis had been used in 

the Taylor vortex flow and the wavy vortex flow for radius ratio 0.55 and Re ranging between 

69 and 210. This study had reported that the cause of the transition between Taylor vortex 

flow and wavy vortex flow is not the same in the narrow gap and wide gap problems. More 

Stable 

Rei

Re
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recently, Razzak et al. [29] investigated the possible sources of nonaxisymmetric disturbances 

and their propagation mechanism in Taylor-Couette flow for wide gap problems using a direct 

numerical simulation with a radius ratio of 0.5 and the Reynolds number (Re) ranging from 

60 to 650. Their results show that an axisymmetric Taylor-vortex flow occurs when Re is 

between 68 and 425. Above Re = 425, transition from axisymmetric to non-axisymmetric 

flow is observed up to Re = 575 before the emergence of wavy-vortex flow, as illustrated in 

Figure II.4. 

 

 

 

 

 

 

Figure II.4: The azimuthal vorticity (ωθ) contour around 360○ at the mid annulus location: (a) ωθ contours in the 

TVF, (b) ωθ contours in the transition of TVF into WVF, and (c) ωθ contours in the WVF. Adapted from Ref. 

[29]. 

II.3 Theories of fluid instability in concentric cylinders  

In this section, some of the known theories of fluid instability in concentric cylinders are 

reviewed. Since the work of Rayleigh and Taylor on instability, theories predicting the growth 

of the Taylor vortices and the mechanism of flow instability with further increase of speed 

were proposed by many investigators. These theories include: (II.3.1) Rayleigh criterion 

(II.3.2) The linear stability theory, (II.3.3) The energy method, (II.3.4) The weak nonlinear 

stability theory, and (II.3.5) Non-linear theory.  

 II.3.1 Rayleigh criterion for instability  

The first hydrodynamic stability criterion for inviscid fluids was derived by Rayleigh in 1917 

[12] who formulated a stability criterion for the mean viscous flow between two concentric 

rotating cylinders which was based on the inviscid perturbation equations. Rayleigh 

considered a basic swirling flow of an inviscid fluid which moves with angular velocity Ω 

about the axis of rotation. The equations of motion allow Ω to be an arbitrary function of the 

distance r from the axis, provided the velocities in the radial and axial directions are zero. 

Rayleigh did not establish his criterion for stability by an analytical discussion of the relevant 

perturbation equations but by a simple physical argument.  

The kinetic energy of the fluid contained in two elemental rings with r = R1, and r = R2, with 

equal volumes dV can be expressed as: 

                
(II.5)                                        dVRΓRΓ )(
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 where Г (= ruθ) is the angular momentum of a fluid element per unit mass.  

Assuming the fluids contained in the two elementary rings are interchanged, as the angular 

momentum of an element of the inviscid fluid is constant, the resulting kinetic energy is: 

(II.6)                                                         dVRΓRΓ )(
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The change in the kinetic energy as a result of the interchange is: 
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The change in the kinetic energy is therefore proportional to 

(II.8)                                                               RRΓΓ ))(( 2
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   

Suppose that R2 > R1, then the change in kinetic energy is negative provided Γ2
2 > Γ1

2 and 

positive if Γ2
2 < Γ1

2 . Thus, if Г2 decreases with r anywhere, this would increase the kinetic 

energy and would imply instability. On the other hand, if Г2 increases with r, this would lower 

the kinetic energy and would imply stability. This is simply Rayleigh's criterion which states 

that the necessary and sufficient condition for a distribution of angular velocity Ω(r) to be 

stable (to axisymmetric disturbances) is when the condition 

           
(II.9)                                                                  0r

dr

d
 22 )(  

is satisfied everywhere in the flow field and that the distribution of angular velocity Ω(r) is 

unstable if (r2Ω)2 decreases with increasing r anywhere inside the flow field.  

This can be expressed as the stability criterion:  

           
(II.10)                                                         RR )()( 1

2
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2

2   

However, Rayleigh's stability criterion can only be applied to the case of inviscid flow or 

when the effect of viscosity is assumed not to affect the onset of instability. In addition, 

Rayleigh's physical arguments were based on axisymmetric disturbances to the flow. At a low 

rotational speed, viscosity damps the perturbations, thereby preventing the formation of 

vortices. For such a case, the flow develops as a basic Couette flow for the case of a fluid 

between two concentric rotating cylinders. This implies that another theory is needed to deal 

with viscous fluid flow. This gives rise (drove) to the development of a linear instability 

theory where transition to instability is governed by the critical Taylor number, depending on 

the radius ratio of the cylinders and on the rotational speeds.  

II.3.2 Linear theory of instability  

Taylor [14] was the first to successfully apply linear stability theory to a specific 

incompressible fluid dynamic problem and succeeded in obtaining quantitative agreement 

between theory and experimental results for the onset of the flow instability between two 
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concentric rotating cylinders. In contrast to Rayleigh's analysis, Taylor considered an 

incompressible viscous fluid in steady motion between two infinitely long concentric 

cylinders, which are rotated about a common axis with constant angular velocity Ω1 at r = R1 

and Ω2 at r = R2 where R2 > R1. One of the aims was to determine the velocity distribution 

within the annulus. Taylor assumed a Bessel function series solution for the streamwise 

velocity perturbation u1 as: 

(II.11)                                                      rkBa u
1m

mm1 




 )(1
 

where B1(kmr) is a Bessel function of order 1 and km is the mth wavenumber. This satisfies the 

conditions u1 = 0 at R1 and R2. Taylor substituted the solution of Equation II.11 into the 

momentum perturbation equations to obtain the complete solution for v1 and w1. 

A system of linear homogenous equations in am, 1 ≤ m ≤ ∞, was obtained by Taylor after the 

application of the boundary conditions u1 = v1 = w1 = 0 at r = R1 and r = R2 Taylor was able 

to eliminate all the unknowns from the equations of disturbed motion since the number of the 

unknowns is the same as that of the equations. The resulting equation takes the form of an 

infinite determinant equating to zero, which can be regarded as an equation to determine the 

growth rate q of a given initial harmonic type disturbance. Taylor used the solution as a 

criterion for the stability of a given initial disturbance and concluded that if the value of q is 

real, then the motion is stable or unstable according as whether q is negative or positive. 

Similarly, if q is complex, the motion is unstable, if the real part of q is positive. The motion 

is then an oscillation of increasing amplitude. 

Taylor theoretically expressed the threshold at which the flow in coaxially rotating cylinders 

becomes unstable as: 
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In equation II.12, the term 0.652d/R1 is a correction factor due to the fact that d, the distance 

between the cylinders, is not negligible compared with R1. This correction allows neglecting 

higher-order terms of the ratio d/R1 and may be expected to hold until d/R1 exceeds one third. 

This resulting value of 1706 in equation II.12 is now referred to as the first critical Taylor 

number Tac1 at which the first transition occurs from circular Couette Flow (CCF) to Taylor 

Vortex Flow (TVF). Taylor established that, below the first critical Taylor number, the flow is 

stable with no vortical structure. When the Taylor number (Ta) of the flow exceeds the first 

critical Taylor number (Ta > Tac), the flow is unstable and forms axisymmetric toroidal 

vortices.  
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The mathematical description of the vortex instability by Taylor is based on the assumption 

that the distance between the inner and the outer cylinder is small compared to the inner 

cylinder radius, R1, so that η→1. 

  After Taylors first success in the calculation of the critical Taylor number by using linear 

stability theory, many authors such as Jeffreys [30], Chandrasekhar [16, 31], Di Prima [32], 

and Di Prima and Swinney [4], have made significant improvements to the linear stability 

theory both analytically and numerically. Jeffreys [30] was the first to propose an alternative 

solution approach for the linear perturbation model by Taylor. He reduced the equations of 

linear theory of Taylor instability to a single sixth-order differential equation for the case of a 

narrow gap d/R1. He showed the value of the first critical Taylor number to be approximately 

equal 1709 for the case Ω2/Ω1 →1, where Ω2/Ω1 is the ratio of the rotation rates of the outer 

and inner cylinders. Moreover, Chandrasekhar [16] and Di Prima [32] derived another 

expression for the first critical Taylor number as a function of the gap width d and the inner 

cylinder radius R1, when d is much smaller than R. This expression is given as: 

(II.13)                                   )
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Chandrasekhar [31] obtained two simple equations for the computation of the critical Taylor 

number depending on the value of µ as: 
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where Taco = 1182 and µ = Ω2/Ω1.  

The case of wide gaps (η < 1) when Ω2 = 0 was studied numerically by Roberts [33] who 

found the critical Taylor number to vary with the gap d as: 

               
(II.16)                                           6895.210087-Tac   24931  

II.3.3 Energy theory of instability  

The energy theory method helps to understand the physical processes that lead from a linear 

instability to a non-linear instability in flows. The energy theory method has been used in the 

study of flow instabilities by Schmid and Henningson [34], Betchov and Criminale (Jr) [35], 

Lin [36], Joseph [37], and Drazin and Reid [38]. This method involves observing the rate of 

increment of the disturbance energy of the flow system with time. The critical condition is 

determined by the maximum Reynolds number at which the disturbance energy in the system 

monotonically decreases with time. Dou [39] observed that the critical Reynolds number 
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obtained using the energy method by Betchov and Criminale (Jr) [35], Schmid and 

Henningson [34], and Drazin and Reid [38] is much lower than that obtained in experiment.  

In the flow system, it is considered that turbulent shear stresses interact with the velocity 

gradient and a flow disturbance gets energy from mean flow in such a way. Thus, a small flow 

disturbance can be amplified by the large energy gradient. When disturbances are amplified, 

they suppress the mean flow energy, when disturbances are decaying, the mean flow internal 

energy increases.  

Although it is possible to understand the transition process from the energy theory method, 

the mechanism is still not fully understood and the agreement with the experimental data is 

still not satisfying. As such, Dou [39] proposed another mechanism for flow instability and 

transition to turbulence in wall-bounded shear flows (which include the plane Poiseuille flow, 

the pipe Poiseuille flow, and the plane Couette flow). This mechanism suggests that the 

energy gradient in the transverse direction plays a role in the amplification of a disturbance, 

whereas the energy loss in streamline direction serves the function of damping the 

disturbance. The related analysis obtains consistent agreement with the experimental data at 

the critical condition for wall-bounded shear flows.  

Recently, Dou et al. [40] utilized the new energy gradient theory mechanism to study the 

instability of Taylor-Couette flow between concentric cylinders. The aim of their 

investigation was to demonstrate that the mechanism of instability in the Taylor-Couette flow 

can be explained via the energy gradient concept. They gave detailed derivation for the 

calculation of the energy gradient parameter in the flow between concentric rotating cylinders. 

Their calculated results for the critical condition of primary instability (with semi-empirical 

treatment) are found to be in very good agreement with the experiments in the literature. Their 

results also show that a mechanism of spiral turbulence generation observed for counter-

rotation of two cylinders can be explained using the energy gradient theory and that the 

energy gradient theory can serve to relate the condition of transition in Taylor-Couette flow to 

that in plane Couette flow. 

II.3.4 Weakly non-linear theory  

The linear theory only considered the infinitesimal disturbances in the flow. As such, only the 

initial growth of the disturbance can be determined. The linear theory of hydrodynamic 

stability can easily predict correctly the critical Taylor number, but it cannot predict the 

establishment of a new equilibrium flow, the Taylor vortex flow, above the critical Taylor 

number. The exponential growth of the disturbances considered in linear theory cannot be 

sustained long in time and, in a real flow, the growth rate is suppressed by viscous effects. 

Therefore, it is necessary to solve the nonlinear equations, which means that the higher order 
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terms cannot be neglected, as suggested by Deng [41]. Stuart [42] extended the linear theory 

to larger amplitude disturbances by studying the mechanics of disturbance growth taking the 

non-linearity of the hydrodynamic system into account. Davey [43] made use of a weakly 

non-linear approach to obtain a Landau-type equation that describes the time evolution of the 

vortex velocity field. A good agreement was found between Davey's result and the one 

obtained by Donnelly [44] over the range of the Taylor numbers above the critical value for 

which the perturbation theory is expected to be valid.  

II.3.5 Non-linear theory  

Jones [45] proposed an approach that is valid near the stability boundary for the onset of wavy 

vortex flow for two radius ratios, η = 0.8757 and η → 1 at a large Taylor numbers. They 

employed the Galerkin method for the solution of the partial differential equations in two 

spatial variables with prescribed boundary values. In the Galerkin method, the stability 

problem is solved by finding the eigen-values of the matrices related to the differential 

equations. They applied their techniques only for the case where the inner cylinder is rotating 

and the outer cylinder is at rest. The results obtained using their method show agreement with 

the results of Zarti and Mobbs [46]. 

II.4 The main flow regimes in Taylor-Couette flow  

The understanding of the flow regime prevailing in an annular enclosure in which the inner 

and outer cylinders co-rotate or counter-rotate, as well as the scenario of one rotating while 

the other is stationary is reasonably well established in the literature. As the inner cylinder 

rotates, it induces a centrifugal force that moves the fluid radially outward. This motion is 

resisted by the radial pressure gradient due to the stationary outer cylinder wall. At 

equilibrium, when the angular speed of the inner cylinder is moderate, the centrifugal force is 

balanced by the radial pressure gradient and the resulting swirling flow pattern between the 

two concentric rotating cylinders is the laminar two-dimensional flow known as the circular 

Couette Flow (CCF). If the inner cylinder is rotated fast enough, the centrifugal forces 

overcome the radial pressure gradient and the system makes a transition from the two-

dimensional flow regime to more complex flow regime. This section gives a concise review 

of the most common flow regimes in concentric rotating cylinders and their characteristics as 

identified by various researchers. This review is limited to the cases in which the inner 

cylinder is rotating while the outer cylinder is stationary. Based on the three parameters (η, Γ, 

and Ta or Re), several flow regimes that exist in an incompressible fluid between two 

concentric rotating cylinders have been identified. These parameters have a crucial influence 

on the nature of the flow dynamics and scaling of the system as well as the transition 
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threshold. The main parameters influencing the formation of different transition regimes of 

Taylor-Couette flow are: 

- The radius ratio η = R1/R2.  

- The aspect ratio Γ = H/(R2 – R1) = H/d, where H is the length or height of the cylinders.  

- The Taylor number or Reynolds number defined as: 

(II.18)                                   
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Stuart  [42] defined the Taylor number as follow:  
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II.4.1 Circular Couette Flow (CCF)  

For low rotation rates, fluid elements in Taylor-Couette flows simply follow circular paths as 

would be expected from symmetry considerations. This featureless flow is called circular 

Couette flow (CCF). This is the perfectly azimuthal, undisturbed laminar base flow. The 

velocity profile is approximately linear in r for narrow gaps. From the Navier-Stokes 

equations we can describe the velocity fields. The following simplifying assumptions can be 

assumed: 

- Stationary, axisymmetric and invariant problem according to cylinder height, i. e.  
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And the conservation equations, after simplification from the above assumptions, are written: 

 Continuity:  0V


                                                                                            (II.21) 

 Navier-stokes equation according to r :        
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 Navier-stokes equation according to θ : (II.23)  
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 Navier-stokes equation according to z : (II.24)     
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Interpretation: 

 Equation (II.22) expresses the balance of the centrifugal force - pressure gradient. The 

pressure gradient tends to push the fluid inwards (r decreasing), while the centrifugal 

force drives the fluid outwards. 
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 Equation (II.23) translates the conservation of the kinetic moment. From this equation, 

the azimuth velocity field can be determined. 

 Equation (II.24) reflects the equilibrium of axial pressure - axial viscous diffusion. It 

gives us the axial component of velocity. 

It is possible to determine the analytical solution of such a flow from the azimuthal 

component of the velocity, i.e. from Equation (II.23) 
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Finally, the velocity is of the form:     (II.25)                                                  
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 and with the boundary conditions we find: (II.26)               
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The velocity expression shows that the centrifugal force F=ρV2/r is higher on the side close to 

the inner cylinder r =R1, and therefore when the rotational speed Ω1 of the inner cylinder 

exceeds a certain critical value Ω1c, the laminar flow becomes unstable. 

 

 

 

 

 

 

 

 

                                                        (a)                                                  (b) 

Figure II.5: Circular Couette flow. (a) Experimental visualization and (b) Numerical simulations.  

II.4.2 Taylor Vortex Flow (TVF)  

The Taylor vortex flow is a steady axisymmetric vortex flow, in which toroidal vortices 

encircle the inner cylinder and are stacked in the axial direction. The boundaries between 

neighboring vortices are flat and perpendicular to the cylinder axis. The flow pattern is shown 

by the flow visualization and numerical simulation in Figure II.6(b and c). The axial 

wavelength which corresponds to the height of a pair of rollers is approximately equal to 

twice the gap (Λ=2d), as shown in Figure II.6(a). The vortical motion of the TVF grows as the 

Taylor/ Reynolds number increases. The upper limit of the TVF regime is marked by the 

appearance of azimuthal travelling waves on these vortices. 
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                              (b)                                                                    (c) 

Figure II.6: Taylor vortex flow. (b) Numerical simulations and (c) Experimental visualization [91]. 

II.4.3 Wavy Vortex Flow (WVF)  

At larger Taylor and Reynolds numbers, the axisymmetric time-independent Taylor vortex 

flow that is developed in the annular region of concentric cylinders changes to that of non-

axisymmetric unsteady time-dependent wavy Taylor vortices. This wavy vortex flow is 

characterized by travelling azimuthal waves that are superimposed on the Taylor vortices. The 

azimuthal waves rotate around the inner cylinder at some wave speed as shown in Figure II.7. 

The wavy vortices have a defined azimuthal wavenumber and move with a finite wave 

velocity in the azimuthal direction. The waves travel around the annulus at a speed that is 

30% to 50% of the surface speed of the inner cylinder, depending on the Taylor number and 

other conditions. Davey et al. [47] have shown that the Taylor number at which the onset of 

wavy vortex occurs is between 8% to 20% above the Taylor number at which the Taylor 

vortex flow first appears.  

 

 

 

 

 

 

 

 

                                           (a)                                                    (b) 

Figure II.7: Wavy vortex flow. (a) Numerical simulation and (b) Experimental visualization [1] .  

II.4.4 Modulated Wavy Vortex Flow (MWVF)  

At higher Taylor numbers, the wavy vortices transition to rotating waves that appear to be 

modulated, as shown in Figure II.8. This type of flow is termed quasi-periodic because it has 

(a) 

R1 R2 

Λ=2d 

Axisymmetric toroidal rolls

Travelling azimuthal waves 
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approximated but not exact recurrence [19]. As Re is increased still further, the amplitude of 

the azimuthal waves begins to vary with time, giving rise to quasi-periodic regimes known as 

modulated wavy vortex flow (MWVF) and chaotic wavy flow (CWF) [48]. The latter flow 

regimes are distinguished by the absence or presence, respectively, of a broad peak in the 

velocity power spectra. When the flow changes to MWVF, the flow pattern changes from the 

S-shape to a slight flattening of the wavy vortex outflow boundary. All the waves in the axial 

direction are modulated in phase, while, in the azimuthal direction, the wave modulation can 

have the same phase, or the modulation phase can vary with angle (Gorman and Swinney 

[49]). In MWVF, there are two rotating waves superimposed on the Taylor vortices with 

different frequencies and in general, different azimuthal wave-numbers. 

 

 

 

 

 

 

 

 

 

                                             (a)                                                                                    (b) 

Figure II.8: Modulated wavy vortex flow (MWVF). (a) Experimental visualization and (b) Numerical 

simulations. 

II.4.5 Turbulent Taylor Vortex Flow (TTVF)  

Upon further increasing Taylor number, azimuthal waves disappear altogether, marking the 

onset of “weakly turbulent” or “soft turbulent” flow, although the axial periodicity associated 

with the Taylor vortices remains. This turbulent Taylor vortex flow (TTVF) becomes 

increasingly complex as the Taylor number ratio increases beyond 5 x 105 until the vortex 

structures themselves eventually become indiscernible. Koschmieder [1] stated that order 

emerges from chaotic flow that leads to turbulent flow when Ta ≈ 1000Tac. In the case of the 

inner cylinder rotating and the outer cylinder fixed, increasing the Taylor number above the 

critical Taylor number results in higher instabilities than in the case of the outer cylinder 

rotating. In this flow, the vortical structure is retained, but the vortices are modified. Figure 

II.9 shows the turbulent Taylor flow pattern. 
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                                                  (a)                                                      (b) 

Figure II.9: Turbulent Taylor Vortex Flow (TTVF).  (a) Experimental visualization [1] and (b) Numerical 

simulations. 

II.5 Factors influencing the Taylor-Couette flow 

In this part, we propose to perform review and analysis of the influence of different 

parameters on the occurrence of instabilities in order to derive some physically interesting 

properties. Thus, we discuss the thermal, rheological, dynamic and geometric effects 

influencing the flow patterns and the laminar-turbulent transition in Taylor-Couette flow. 

II.5.1 Thermal effect  

The non-isothermal flow of a fluid within a rotating cylindrical device occurs in many 

industrial applications, including the cooling of rotating machines, such as turbines. 

Cylindrical and rotating heat exchangers have been introduced in the chemical, automotive 

and nuclear industries. This type of flow is also present in geophysical and astrophysical 

models explaining the circulation of fluids in the Earth's mantle, the formation of stars, and 

especially in electric motors. Indeed, different studies on the heat transfer of electric motors 

have demonstrated the importance of convective heat transfer within the cylindrical gap (area 

separating the rotor from the stator). In fact, the rotor is the locus for large-scale dissipations 

of electromagnetic origin, and its cooling is ensured principally by the air flow of the 

cylindrical gap. Two main families of rotating electric machines may be distinguished; closed 

machines (rotor rotation without axial air flow: Taylor-Couette flow), and open machines 

(axial flow combined with rotor rotation: Taylor-Couette-Poiseuille flow).  

The study of the effect of a temperature gradient began with the work of Yih in 1961 [50] by 

imposing a negative temperature gradient (the inner cylinder being heated) this author showed 

that this has the effect of stabilizing the flow. On the other hand, a positive temperature 

gradient produces an opposite effect that can destabilize the flow. In 1964, Snyder et al. [51] 

experimentally studied the effect of a radial temperature gradient on the stability of the 

Taylor-Couette flow. In 1990, Chen et al. [52] considered the effect of a small radial 
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temperature gradient on the linear stability of the Taylor-Couette flow and observed that the 

critical Taylor number depends on the working fluid and the temperature difference. Ball et 

al. [53] studied the different flow transitions as a function of control parameters in a small 

aspect ratio system. Their experience has made it possible to measure the relative importance 

of rotation and thermal effects. Thus, they observed that these become predominant and 

vortices similar to those observed in natural convection, when the radial temperature gradient 

is increased. These results are confirmed in numerical simulations by Kuo and Ball [54]. 

Mutabazi et al [55] studied the influence of a radial temperature gradient on the stability of 

the Taylor-Couette flow. The authors made a particular effort to understand the mechanism of 

instability due to low temperature gradients (ΔT = 3°C). They showed that the combination of 

the rotation of the inner cylinder and the temperature gradient leads to the transition to an 

oscillatory spiral flow in the axial direction. Ball et al. [56] classified the different flow 

regimes obtained by flow visualizations using the Richardson number Ri = Gr/Re2 (Gr and Re 

are the Grashof and Reynolds numbers respectively), which is the ratio between the buoyancy 

and inertia forces. For Ri < 0.01, rotation is dominant over the buoyancy, whereas for Ri ∈ 

[0.01; 10], both effects play an important role in the transition process. For Ri > 10, the flow 

is destabilized by the buoyancy only. Further, Ali and Weidman [57] performed a linear 

stability analysis for non-axisymmetric perturbations for a wide range of the global flow 

parameters. Liu et al. [58] investigated the stability of Taylor-Couette flows with radial 

temperature gradient by digital PIV for four different outer cylinders, smooth or with different 

number of slits (η = 0.825, Γ = 48). Moreover, Lepiller et al. [59] studied the influence of a 

radial temperature gradient on the stability of circular Couette flows in the non-rotating case. 

It is found to destabilize the flow leading to a pattern of traveling helicoidal vortices occurring 

only near the bottom of the system, and invade progressively the whole cavity by increasing 

the Taylor number Ta, as shown in Figure II.10. Recently, Yoshikawa et al. [60] performed a 

linear stability analysis for given values of Pr and η. A small stabilization zone is obtained 

near the isothermal situation. By studying the perturbation kinetic energy, they proposed 

different values of the Richardson number compared to Ball et al. [56] to distinguish the three 

flow regimes: Ri < 0.002 (rotation dominates), Ri ∈ [0.01; 10] (both effects coexist) and Ri > 

3.75 (buoyancy dominates). 
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Figure II.10: Variation of the critical Taylor number vs. the Grashof number. The symbols � and × correspond 

respectively to the value of the Taylor number at the threshold and to that for which the spiral vortex flow fills 

the whole annulus. Adapted from ref. [59] 

II.5.2 Rheological effect 

The flows of non-Newtonian fluids, such as viscoelastic and viscoplastic, can behave in very 

different ways from the flows observed for Newtonian fluids. The study of the flow stability 

of the non-Newtonian fluids began in 1960s by Rubin and Elata [61] which used the Taylor - 

Couette flow system as a model hydrodynamic to investigate the behavior of liquids 

viscoelastic. After pioneering study in the sixties [61], there has been great interest in 

viscoelastic instabilities in the Taylor-Couette system [62-64]. Theoretical studies are 

nowadays complemented by numerical calculations using viscoelastic models, like the upper-

convected-Maxwell fluid model [65] or the Oldroyd-B model [66] and also finite extensible 

nonlinear elastic (FENE) dumbbell models [67-69]. These studies were able to reproduce 

many flow properties observed in experiments, such as solitary steady states (diwhirls). 

The study by Larson et al. [70] on Taylor- Couette flow for highly viscoelastic liquids (fluids 

of Bӧger) revealed purely elastic instabilities, which can destabilize a flow at relatively low 

velocities. These instabilities can lead to the elastic turbulence regime, where a viscoelastic 

flow exhibits turbulent behaviour under conditions for which a Newtonian fluid of 

comparable viscosity would flow in a laminar manner. 

Halfway between the inertial instabilities, observed for Newtonian fluids, and the purely 

elastic instabilities are located the so-called inertio-elastic regimes, for which the observed 

modes of instabilities present a different nature from that observed for Newtonian fluids while 

being governed by inertial forces. Among the previous experimental results on the stability of 

Taylor-Couette flow in inertio-elastic regime include the observation by Groisman and 

Steinberg [71] of a mode of instability propagating both axially and radially, called Radial 

Waves (RW). In addition, Beavers and Joseph [72] used a viscoelastic solution for the Taylor-

Couette system. They confirmed that the nature of the fluid does not influence the occurrence 

of the first instability, which occurs at a Taylor number almost identical to that observed for a 

Newtonian fluid. However, this influences the shape and behaviour of cells. They noticed that 
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as they increase Ta, the cells expand and decrease in number. More recently, Martinez-Arias 

and Peixinho [73] carried out an experimental study of Taylor-Couette flow using mixtures of 

water, PEG (Poly Ethylene Glycol), PEO (Poly Ethylene Oxyde) and IPA (IsoPropyl 

Alcohol) as working fluids. They reported that, for large concentrations, six different numbers 

of steady solitary pairs of vortices, called diwhirls, were observed, as shown in Figure II.11. 

 

 

 

 

 

 

 

 

 

 

Figure II.11: Flow patterns for different working fluids (a) Newtonian fluid containing 30 Taylor vortices. The  

others are for mixtures containing 1000 ppm of PEO dissolved in 7% PEG aqueous solution and present: (b) 

inertio-elastically turbulent flow, (c-h) flows containing 1 to 6 diwhirls, from left to right, respectively. Adapted 

from Ref. [73] 

II.5.3 Dynamic effect 

II.5.3.a Axial flow effect 

Taylor-Couette flow coupled with a Poiseuille flow in the axial direction, often called Taylor-

Couette-Poiseuille flow (T.C.P.F), has a wide application in the field of cooling of 

turbomachines, chemical reactors and ultrafiltration devices. Several authors have 

investigated the coupling of Taylor-Couette flow with axial flow under a constant pressure 

gradient. This type of flow is generally governed by the ratio Ta / Rez where Ta is the Taylor 

number and Rez= Reaxial=Ud/ν is the Reynolds number related to the Poiseuille flow. In 1961, 

Chandrasekhar [31] studied flow stability using linear theory. He showed that for low Rez 

values, the flow is dominated by rotation and after the first instability (TVF) occurs, the cells 

move in the axial direction. He showed that the distance between the position of appearance 

of the cells and the entry of the Poiseuille flow increases with Rez and decreases with Ta. For 

intermediate Rez values, the Taylor cell structure is transformed into a spiral flow. For high 

Rez values, the flow becomes unstable due to the instability of the Poiseuille flow.  

Stockert and Lueptow [74] investigated this flow problem with the PIV technique (Particle 

Image Velocimetry). Leuptow [75] also studied the stability of the Taylor-Couette flow under 

the simultaneous effects of axial and radial flow. Radial flow is achieved by using porous 

cylinders. He noted that the axial flow stabilizes the Taylor-Couette flow, however the radial 
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flow displaces the centers of the cells towards the porous cylinder. It seems to favor the 

stability of the Taylor-Couette motion which is subjected to the axial flow effect.  

Di Prima [32] showed theoretically that the appearance of the first instability is delayed: from 

Tac= 40 for Rez = 0, to Tac = 80 for Rez = 60. Furthermore, Astill [76] observed that: 

  The onset of instability is manifested by undulations of the fluid near the rotating inner 

cylinder, which transforms into Taylor rolls as the axial flow evolves towards the lower 

side of the cylinder.  

 By keeping the axial flow constant and increasing Ta, the transition point moves up the 

axial flow (and vice versa). 

 By keeping Ta constant and increasing Rez, the transition point moves the axial current 

down the cylinder (and vice versa). 

 The speed at which the transition point moves in the direction of the current increases 

with Rez. 

From a certain value Rez, the rolls lose their horizontality to turn, in some cases, into spirals 

with a precise inclination. According to Piva et al. [77], these rings or spirals move at a speed 

of about 1.1U to 1.2U, U being the average axial velocity. Increasing Rez results in 

overlapping rolls (unless d/Ri<0.4). Then, beyond a certain flow rate, there is disintegration of 

the rolls. Gu and Fahidy [78] concluded that the inclination of the rolls would be due to the 

struggle between two forces: the axial dynamic pressure force, due to the axial flow, moves 

the rolls away from their original position and the centrifugal force. As the flow rate 

increases, Gu and Fahidy [79], summarized the observed evolutions as follow: 

 Rez = 30: Tilt of the rolls (from 5 to 6°) that start to overlap, 

 Rez = 35: Increasingly important overlap area, 

 Rez = 45: Broken rolls to give disordered structures. There are vertical bands linking 

the adjacent rolls, 

 Rez = 50: Increasingly dominant bands and the rolls become difficult to distinguish, 

 Rez = 75: The bands are dominant within the flow which then becomes essentially 

parallel to the axial flow. There is complete disintegration of Taylor rolls.  

Figure II.12 shows the evolution of the Taylor number as a function of the axial Reynolds 

number obtained by different authors. 
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Figure II.12: Evolution of the first critical Taylor number as a function of the axial Reynolds number. 

 

More recently, Lancial et al. [80] investigated, both experimentally and numerically, the 

Taylor-Couette-Poiseuille flow in an annular channel of a slotted rotating inner cylinder, 

corresponding to a salient pole hydrogenerator. They noted four different flow regimes, 

summarized in Figure II.13. 

 Regime I: Laminar (0 ≤ Rez ≤ 779, 0 ≤ Rei ≤ 972), 

 Regime II: Laminar with vortices (0 ≤ Rez ≤ 779, 972 ≤ Rei), 

 Regime III: Turbulent (3115 ≤ Rez ≤ 6235, 0 ≤ Rei ≤ 1940); (6235 ≤ Rez, 0 ≤ Rei ≤ 

9710), 

 Regime IV: Turbulent with vortices (3115≤ Rez ≤ 6235, 1940 ≤ Rei); (6235 ≤ Rez, 

9710 ≤ Rei). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.13: Demarcation lines of the different flow regimes. Adapted from ref.[80]. 
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II.5.3.b Magnetic effect 

When studying the effect of magnetic field on the Ferro-fluidic Taylor-Couette Flow, as one 

example of magnetic flow dynamics, in terms of instability, bifurcation, and properties, one 

quickly finds out the additional challenges magnetic fluids introduce compared to the 

investigation of “classical”, “ordinary” shear flows without any kind of particles. As a result, 

the classical Navier–Stokes equations become modified to the more complex ferro-

hydrodynamical equation of motion, incorporating magnetic field and magnetization of the 

fluid itself, which typically makes numerical simulations expensive and challenging. 

Moreover, a rotating ferro-fluidic system, known as magneto-hydrodynamic (MHD) Taylor-

Couette flows represent one example of magnetic particles with a variety of applications, 

ranging from liquid seals in rotating systems, their use in computer hard drives, as well as in 

laboratory experiments, to study geophysical flows. Indeed, in astrophysics and geophysics, 

the magneto-hydrodynamic (MHD) Taylor-Couette flow is usually considered as a 

prototypical flow to simulate the accretion disc and dynamo, namely, the study of magneto-

rotational instability (MRI) and dynamo action [81-83]. 

Taylor-Couette flow under the influence of an applied magnetic field was first studied by 

Chandrasekhar in 1961 [31] and Donnelly and Ozima in 1962 [84]. Later in 1964, Roberts 

[85] developed calculations on the stability of non-axisymmetric perturbations. When the 

inner cylinder is the only one to rotate, it is noted that the critical value for the beginning of 

the non-axisymetric movement is just above the critical value in the hydrodynamic case. 

Singh and Bajaj [86] studied numerically the instability of a viscous and incompressible ferro-

fluid in Taylor-Couette flow with the presence of an axial magnetic field. The effects of the 

magnetic field can be summarized as an overall stabilization of the Taylor-Couette flow. 

Further, Kaneda et al. [87], studied numerically the MHD Taylor-Couette flow to determine 

the motor torque applied to the inner cylinder as a function of rotational speed and the axial 

magnetic field characterized by the Hartmann number (Ha). When the Reynolds number is 

less than its critical value (Rec ~70), they found that the magnetic field increases the motor 

torque for the given value of Re. On the other hand, for values Re greater than the critical 

value, it is found that a moderate magnetic field lowers the motor torque. Beyond Re > Rec 

and for high values of Ha  (Ha ≥ 50), the cell mode decreases by 4 to 2 cells as shown in 

Figure II.14. This change in the meridian flow plane reduces the motor torque by almost 25% 

for Re=300. For Re > Rec and higher values of Ha , the two-cell mode is due to the fact that 

the Lorentz force tends to suppress azimuthal flow. 
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Figure II.14: Effect of the magnetic field on Taylor vortices. Adapted from ref. [87]. 

Moreover, Aberkane et al. [88] examined analytically and numerically the effects of an 

external axial magnetic field applied to the forced convection flow of an electrically 

conducting fluid between two horizontal concentric cylinders, considering the effects of 

viscous heat dissipation in the fluid. Recently, Kamış and Atalık [89] conducted a stability 

analysis for the non-isothermal Taylor-Couette flow of a non-conductive ferro-fluid under the 

action of an azimuthal magnetic field. They observed a significant stabilization under strong 

magnetic fields for all cases. More recently, Leng et al. [90] studied, by the direct numerical 

simulation, the effect of an axial homogeneous magnetic field on the turbulence in the Taylor-

Couette flow confined between two infinitely long conducting cylinders. They employed two 

Reynolds numbers 4000 and 8000 with several Hartmann numbers varying from 0 to 120. 

Their results show that the mean radial induced electrical current, resulting from the 

interaction of axial magnetic field with the mean flow, leads to the transformation of the mean 

flow and the modification of the turbulent structure. The effect of turbulence suppression is 

dominating at a strong magnetic field, for which the flow becomes laminar (flow 

relaminarization), as illustrated in Figure II.15.  

 

 

 

 

 

 

 

 

Figure II.15: Instantaneous contours of azimuthal velocity in the meridional plane at Re = 4000 with 

variation of the Hartmann number: (a) Ha = 0, (b) Ha = 10, (c) Ha = 20, (d) Ha = 40, (e) Ha = 60, (f) Ha = 80, 

and (g) Ha = 120. On the plot in this figure, the left side denotes the inner rotating cylinder and the right side 

denotes the outer cylinder at rest. Adapted from ref. [90]. 
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II.5.3.c Inclination effect 

Adnane et al. [91] conducted an experimental study of the Laminar-turbulent transition in a 

tilted Taylor-Couette system. The effect of the inclination angle was investigated on the 

different flow regimes occurring at fully and/ or partially filled space between two rotating 

cylinders.  Their most significant result concerns the relaminarization of the flow when the 

aspect ratio is decreased and inclination angle is increased for a given value of Taylor 

number. They also noted that for a system partially filled, the experimental study showed up 

the coexistence of three flow modes in the Taylor-Couette system, as shown in Figure II.16. 

 

 

 

 

 

 

 

 

 

 

   

Figure II.16: Coexistence of three flow modes. Adapted from ref. [91]. 

 

II.5.3.d Acceleration effect 

The transition from one flow state to another later state depends on the geometrical conditions 

and the speed-up protocol. Therefore, the flow may exhibit a character of non-uniqueness of 

solution for a given angular velocity of the inner cylinder. This behavior is first reported by 

Coles [18] who discovered the existence of 20 to 25 different flow states with distinct axial 

and/or azimuthal wavelengths for a given Reynolds number. He found that flow states depend 

not only on the initial conditions, but also on how the inner cylinder is accelerated. This 

phenomenon is confirmed by Snyder [92] and may result in the existence of several possible 

flow structures for the same Taylor number. The change from one state (k, n) to another 

depends strongly on the operating protocol and particularly on the value of dRe /dt 

(acceleration rate). Thus, Andereck et al. [5] found that the final states of Taylor-Couette flow 

are unique for an adiabatic protocol, i.e., for a quasi-static variation in velocity. Also, new 

types of spiral flows were observed by Lorenzen and Mulin [166] according to the different 

experimental protocols implemented, namely, the initial kinematic conditions and the 
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variation rate of the angular velocity. In an experimental study, Lim et al. [94] showed that 

rapid increases in velocity significantly modify the flow structure, in particular, the size of the 

cells and probably the number of azimuthal waves; in particular the wavy vortex flow (WVF) 

can switch to the first instability (TVF) but with a shorter axial wavelength. Further, 

Koschmieder [95] used two inner cylinder acceleration procedures (regular and abrupt 

acceleration) to examine the effect of acceleration on the axial wavelength. He found that, 

before the onset of the wavy mode, the axial wavelength obtained by the abrupt start is 

identical to that obtained by regular acceleration of the inner cylinder. However, when 

vortices begin to undulate, their axial wavelength is sensitive to changes in the initial 

conditions. Furthermore, Bielek et al. [96] experimentally examined the effect of the 

acceleration of the rotating inner cylinder on the onset of Taylor vortices in finite geometry. 

However, the authors could not find an explicit relationship between the appearance of the 

vortices and the acceleration rate imposed on the rotating inner cylinder. Furukuwa et al. [97] 

studied the effect of acceleration for a given aspect ratio Γ and Re.  

II.5.3.e Free surface effect  

The first study of Taylor-Couette flow with free surface is examined by Snyder [98] in 1969. 

This study determined a critical threshold of Γc=H/d=10 for the aspect ratio, beyond which 

negligible end effects can be considered. Mahamdia and Bouabdallah [99] examined Taylor-

Couette flow subjected to free surface effect and the variation of filling ratio. Recently, 

Watanabe and Toya [100] and Watanabe et al. [101] have investigated, both numerically and 

experimentally, the effect of the free surface on the occurrence of the Taylor vortices in the 

annulus between to coaxial rotating cylinders. They showed that anomalous modes with outer 

flow near the bottom end wall or inner flow at the free surface appear in some conditions. 

They also determine transition diagrams between the normal three-cell mode (N3) and the 

normal one-cell mode (N1) and between the normal five-cell mode (N5) and the normal three-

cell mode (N3), as shown in Figure II.17. 

 

 

 

 

 

 

 

 

Figure II.17: Bifurcation diagrams found in the asymmetric system with the free surface at the top. (a) 

Bifurcation between N3 and N1. (b) Bifurcation between N5 and N3. Adapted from ref. [101]. 
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II.5.4 Geometric effects 

II.5.4.a Eccentricity effect 

Flow between two eccentric cylinders found in the hydrodynamic bearing process, as 

illustrated in Figure II.18. When the bearing transmits a load, the shaft and bearing are no 

longer coaxial, the flow obeys a different evolution and a study of the flow stability between 

two eccentric cylinders is required in order to find a criterion marking the end of the laminar 

regime. Tests show that, in this type of flow, the coexistence of several types of movement for 

a given inner cylinder rotation speed. Moreover, stability problem of fluid between two 

eccentric cylinders or a journal bearing is receiving more and more attention. The reason is 

that there is a trend in modern technology toward increasingly higher operational speed of 

journal bearings and toward the use of low viscosity fluids for lubrication, which results in 

situations where the fluid in a bearing film becomes unstable. 

Wilcock in 1950 [102] and Smith and Fuller in 1956 [103] were the pioneers to recognize that 

flow transition occurs between eccentric cylinders in journal bearings. Indeed, Di Prima 

in1963 [104] was the first one to establish a stability criterion of fluid between two eccentric 

cylinders, which is also called local theory of hydrodynamic stability. To account for the 

disagreement between the local theory and some experimental data, Di Prima and Stuart [105] 

established their nonlocal theory. Di Prima’s local theory and Di Prima and Stuart’s nonlocal 

theory define the threshold for the onset of fluid instability, which usually appears in the form 

of Taylor vortices in eccentric cylinders. With the further increase of inner cylinder speed, the 

flow becomes wavy vortices and eventually becomes fully developed turbulent. 

Constantinescu [106], Ng and Pan [107], and Hirs [108] established their own turbulence 

theories, which govern the fully developed “turbulence” in journal bearings. 

In addition, Dris and Shaqfeh [109] examined, both theoretically and experimentally, the 

stability of a viscoelastic flow between two eccentric cylinders. In the relative analysis of their 

theoretical study of local linear stability, they used the Oldroyd-B fluid and suggested that the 

flow is unstable for all eccentric systems. Their experimental visualization of the flow showed 

the transition from circular Couette flow  to Taylor vortex flow, as shown in Figure II.19.  

Three-dimensional simulations of eccentric Taylor-Couette flow were presented by Shu et al. 

[110]. They conclude that the eccentricity stabilizes the onset of Taylor vortices. At a constant 

Taylor number the strength of the Taylor vortices decreases when eccentricity increases. The 

flow pattern of the Taylor vortex flow is distorted by the existence of separation at 

supercritical eccentricities. The recirculation area enlarges in axial, azimuthal and radial 

directions in the same time as eccentricity increases. On axial planes which are near the vortex 

center, the separation flow is closed, but on other axial planes, separation flow is opened with 
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a certain regulation. The strength of the Taylor vortices is different at different positions in 

azimuthal direction. The strongest Taylor vortex exists in the region between 45◦ and 90◦ 

downstream of the widest gap of cylinders, while the weakest one roughly appears at 45◦ 

downstream of the narrowest gap, as illustrated in Figure II.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.18: Schematic of journal bearing. 

 

Figure II.19: Flow visualization of eccentric Taylor-Couette flow for the kerosene Boger fluid over various 

eccentricities (ε): (a) ε=0; (b) ε =0.1; (c) ε =0.2; (d) ε =0.3; (e) ε =0.5. Adapted from ref. [109]. 

 

 

 

 

 

 

 

 

 

Figure II.20: Streamlines contour of an eccentric Taylor-Couette flow at Re = 50. Adapted from ref. [110]. 
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II.5.4 b Surface roughness effect 

The surface condition of the bearings is a very important factor influencing the effectiveness 

of lubrication. Therefore, the presence of roughness leads to changes the flow regime of 

lubricant film. Indeed, roughness in a Taylor-Couette geometry has been studied in various 

ways: Cadot et al. [111] and Van den Berg et al. [112] used obstacle roughness, in the form of 

axial riblets, to study the scaling of the angular momentum transport with the driving strength. 

Wang and Tsai [113] investigated the effect of roughness using two rough concentric 

cylinders separated by a viscous fluid. When the inner cylinder rotates, torque and unstable 

forces can occur. Torque and forces depend on the gap and radial ratio, the amplitude of the 

roughness, and particularly the numbers characterizing the roughness of the inner and outer 

cylinders n and m respectively. They conclude that to avoid any unstable torque, n must be 

different from m. The stable (regular) torque can be minimized by increasing n or decreasing 

m. Furthermore, Zhu et al. [114, 115] examined the influence of grooves for large Taylor 

number, and found that at the tips of the grooves, plumes are preferentially ejected. Very 

recently, Berghout et al. [116] studied the influence of sandgrain roughness in Taylor-Couette 

flow, and found similarity of the roughness function with the same type of roughness in pipe 

flow. In a more recent work, Bakhuis et al. [117] investigated, both experimentally and 

numerically, turbulent Taylor-Couette flow with spanwise-varying roughness, as illustrated in 

Figure II.21, to determine the effects of the spacing and spanwise width of the spanwise-

varying roughness on the total drag and on the flow structures. They applied sandgrain 

roughness, in the form of alternating rough and smooth bands to the inner cylinder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.21:  Left: schematic of the Twente Turbulent Taylor–Couette (T3C) facility showing the sandpaper 

roughness on the inner cylinder in red. Right: numerical domain (Computational is carried out using direct 

numerical simulations with an immersed boundary method). 
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II.5.4 c Endwalls effect  

End-wall effects have been identified as one of the major factors affecting the type of flow 

regime in concentric rotating cylinders. The effects of the endwalls on the flow are avoided 

theoretically by assuming infinitely long cylinders, experimentally by using long cylinders 

(compared to the gap between the cylinders), and computationally by using periodic boundary 

conditions at the axial extrema of the computational domain.  

Depending on the nature of the endwall boundary condition, the boundary-driven flow at the 

endwall can be considered either a Bödewadt flow, where the endwall is fixed and the fluid is 

rotating, or an Ekman flow, where the endwall and fluid are rotating at different angular 

velocities. Indeed, Taylor [14] in his original work recognized the important role end-walls 

play in his experiments. The presence of endwalls destroys the translation invariance 

characteristic of the infinite length H model. For short cylinders, the transition to non wavy 

vortical flow occurs at a slightly lower rotational speed, Cole [118] presumably because of the 

perturbation by the endwall vortices.  Furthermore, the subsequent transition to wavy vortical 

flow occurs at a higher rotational speed than in the case of infinitely long cylinders, most 

likely because the endwall vortices related to the endwall boundary layers alter the vortical 

structure to minimize the tendency toward waviness. 

In their paper on the anomalous modes in the Taylor experiment, Benjamin and Mullin [119] 

outlined the importance of endwall effects. The discontinuous nature of the boundary 

conditions, where the inner cylinder meets the endwalls, generates weak circulation cells 

adjacent to the endwalls. As the Reynolds number is increased, the cellular pattern propagates 

towards the centre of the apparatus until it fills the column. They concluded that the transition 

to Taylor vortex flow is not the result of a bifurcation but of a continuous process. 

Furthermore, Czarny et al. [22] investigated the interaction between the endwall Ekman layers 

and the Taylor vortices near transition from non vortical to vortical flow via direct numerical 

simulation. To analyze the nature of the interaction between the vortices and the endwall 

layers, they considered three endwall boundary conditions: fixed endwalls, endwalls rotating 

with the inner cylinder, and stress-free endwalls. They found that, below the critical Taylor 

number, endwall vortices for rotating endwalls are more than twice the strength of the vortices 

for fixed endwalls. Stress-free endwalls result in endwall vortices that are similar in strength 

to those for rotating endwalls above the critical Taylor number. Kageyama et al. [120] 

considered both experimentally and numerically the flow in a small aspect ratio Taylor-

Couette apparatus for η = 0.256 and Γ = 0.45. For such parameters, the vertical boundaries 

have a dynamical role on the secondary flow, that is why these authors proposed a novel 

approach to increase control over the velocity profile by increasing the number of endcap 
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boundary conditions. At lower Taylor numbers, Sobolik et al. [121] investigated the effect of 

a confining ring on the onset of Ekman vortices for Γ = 4.93 and η = 0.91 and showed that 

they appear below the critical rotation rate for the onset of Taylor vortices in an infinite 

system. 

II.5.4 d Radius ratio effect   

Studies on the influence of radius ratio η = R1/ R2 highlight the role of this parameter on the 

conditions of occurrence of the first two instabilities. Sparrow et al. [122] reported an 

experimental curve indicating the critical Taylor number Tac1 as a function of the radius ratio, 

as illustrated in Figure II.22, in the case of a system where only the inner cylinder rotates and 

the outer one is kept fixed. 

 

 

 

 

 

 

 

 

 

 

 

Figure II.22: Evolution of first critical Taylor number vs. radius ratio (Sparrow et al. [122]). 

Chandrasekhar [16] obtained more general solution for instability for the entire range of 

rotational ratio of the cylinders for both narrow as well as wide gaps. The validity of 

Chandrasekhar’s analysis was confirmed by Donnelly [44] by measuring torque for η= 0.95 

and 0.5 with aspect ratio of 50 and 5, respectively. The case of wide gaps was also addressed 

by Roberts [33] and he found the critical Taylor number to vary with the gap according to the 

following relationship: 

Tac= 4931η2-10087η+6895.2 

Moreover, Xiao et al. [123] conducted an investigation on the effects of radius ratio on the 

“Second Taylor Vortex Flow” in concentric rotating cylinders when the inner cylinder is 

subject to some critical acceleration. They described their “Second Taylor Vortex Flow” as a 

special type of flow regime in which Taylor vortices are axisymmetric and do not display any 

wavy motion, even though the regime is located inside the wavy flow regime under quasi-

steady condition. They concluded from their results that the “Second Taylor Vortex Flow” is 

sensitive to the gap size between the two cylinders and does not exist for some radius ratio. 
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Biage and Campos [124] proposed a classification of the systems depending on the value of 

their radius ratio η as follows:  

 narrow-gap cavities for η > 0.67,  

 middle-gap cavities for 0.33 < η < 0.67, 

 wide-gap cavities for η < 0.33. 

II.5.4 e Aspect ratio effect 

Multiplicity of Taylor- Couette flow is one of the most attractive features in studying the 

hydrodynamic stability of rotating fluids between two cylinders. Both analytically and 

experimentally, Benjamin [125, 126] examined the problem of bifurcation phenomena in 

steady flows of a viscous fluid between two rotating short cylinders. He concluded that the 

flow strongly depended on two parameters, one the Taylor number (Ta) and the aspect ratio 

(Г=H/d). For a given value of Г, a unique mode with an even number of Taylor cells emerges 

as the primary mode as the speed of the inner cylinder is gradually increased to a given value 

from rest. The other mode is also existed as the secondary mode, which appears with sudden 

increase of the inner cylinder's speed to the desired value. He also noted that for an aspect 

ratio Γ between 3.6 and 3.72 and when the Taylor number increases, the primary flow is 

destabilized in favour of another cellular mode.  

The experiments of Cole [118] showed that the appearance of the wavy vortex flow regime is 

delayed as Γ decreases. In contrast, the critical value of the first Taylor number (Tac1) for the 

onset of Taylor vortex flow regime varies little with the aspect ratio Γ. In addition, Benjamin 

and Mullin [119] observed 15 different stable steady flows under the same geometrical and 

dynamical boundary conditions (η = 0.6, Г = 12.61, and Re = 359). Furthermore, 

Blennerhassett and Hall [127] investigated the stability of Taylor-Couette flow in a finite-

length cylindrical annulus by using linear theory. Their results showed that the instability 

changed from a two-cell to a four-cell primary flow at Г ≈ 1.3. This analytical work is close to 

Benjamin’s [126] experimental observation that the primary flow changed from a two-cell to a 

four-cell mode when Г ≈ 1.85.  Ohmura et al. [128] concluded that vorticity played an 

important role on the transition between steady solutions. For the case of η = 0.615, Г = 3.0 

and end wall boundaries, they. found that higher acceleration rates of inner cylinder speed 

produce such strong vorticity for the Taylor cells on the end walls that a pair of cells is 

induced toward the center and four cells are formed, while lower acceleration rates promote 

diffusion of vorticity into the center of the annulus and two cells are formed. Douaya [129], 

experimentally studied the effect of the aspect ratio Γ on the conditions of appearance of wavy 

vortex flow regime. Walgraef et al. [130] investigated the effects of finite geometry on the 

selection of flow structures. They showed that the transition between the first and second 
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instability is described by an amplitude equation. They also showed that the second critical 

Taylor number Tac2, characterizing the second instability (WVF), increases as the aspect ratio 

decreases. Bontoux et al. [131] studied, in the case of rigid axial limitations, the effect of the 

aspect ratio on Taylor-Couette flow stability. For large aspect ratios, two complex regimes 

(azimuthal waves and spiral shapes) appear within the flow. They found that axial limitations 

appear to dampen and stabilize flow as the aspect ratio decreases. 

II.5.4 f Cylinders oscillations effect 

The stability of the flow between two coaxial cylinders subjected to periodic oscillation over 

time has been the subject of much research. Donnelly [132] was the first who investigated, 

experimentally, the modulation of inner cylinder rotation in the Taylor–Couette system. He 

reported that the appearance of instability in Taylor-Couette flow can be inhibited by the 

modulate rotating of the inner cylinder. Hall [133], examined the case where the outer 

cylinder is at rest and the inner one rotates with a modulated angular velocity of the type: 

Ω(1+ ε cosωt ). Further, Marques and Lopez [134] used a sinusoidal axial movement of the 

inner cylinder in the Taylor-Couette flow system to delay the transition from stable laminar 

flow to disturbed laminar flow by using a visualizing fluid. Using Floquet theory, Lopez and 

Marques [135, 136] studied the outer cylinder angular velocity effect, varying harmonically, 

on the onset of spiral modes. Aouidef et al. [137] investigated the pulsed flow effect on Taylor 

vortices structures with both cylinders rotating at the same angular velocity Ω(t) = Ω0 cos (ωt). 

Furthermore, Barenghi and Jones [138] studied the temporally modulated angular velocity 

effect of Taylor–Couette flow on the onset of different instabilities. By comparing their results 

to experiment previous works of Walsh and Donnelly and Walsh [139, 140], they argued that 

the transient vortices, at low frequency, are the source of the large flow destabilization. 

Feugaing et al. [141] characterized the sinusoidal modulate inner cylinder rotating effect on 

the flow behaviour. From the spectral analysis, they showed that the modulating frequency 

pattern is independent of the Taylor number. Sinha [142] studied the effect of harmonic axial 

oscillations of the inner cylinder and noticed that this axial force causes asymmetry of the 

system and leads to an increase in axial waves with the number of azimuthal waves 

unchanged. Recently, Oualli et al. [143] investigated the flow behavior, affected by the cross 

section oscillation of the inner or outer cylinder. They reported that the onset of the first 

instability can be delayed or advanced by applying this radial oscillation strategy. More 

recently, Lalaoua and Bouabdallah [144] studied the Taylor vortices structures with the inner 

rotating cylinder when the outer cylinder is held stationary and oscillating radially. They 

found that the first instability mode of transition is retarded from Tac1 = 41.33, corresponding 
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to the first critical Taylor number value, to Tac1 = 70 when the deforming amplitude is equal 

to 12.5% the external cylinder diameter value.  

II.6 Modified Taylor-Couette Flow 

The existence of instabilities is not limited to the flow between straight rotating circular 

cylinders. They may also occur for other geometries, different from the cylindrical Taylor-

Couette system. Instabilities and various flow modes can be detected for instance between 

rotating spheres, between rotating conical cylinders and between rotating ellipsoids. The 

flows and the instabilities occurring between rotating bodies can be regarded as part of the 

large domain of the flows in rotating systems. Hence, a rich variety of flow patterns and 

structures can be observed for unstable flows between these rotating bodies. In this section, 

literature which discusses the flow between different rotating bodies and the effects that they 

have will be reviewed. 

II.6.1 Flow between rotating spheres: Spherical Couette flow 

Spherical Couette flow (SCF) is the flow induced in a fluid-filled spherical shell by the 

rotation of either one or both spheres.  SCF can generate an enormous variety of flow patterns 

and transitions. Generally, a SCF can be considered as a combination of parallel disks in the 

pole region and a cylindrical annulus near the equator, hence SCF resembles cylindrical 

Taylor-Couette flow near the equator and the flow between two rotating disks in the vicinity 

of the poles. Moreover, in SCF the basic flows are fully three dimensional. The centrifugal 

forces are a function of the latitude, so that different flow patterns can be expected at different 

latitudes. However, we have the advantage that no awkward boundary effects exist like those 

caused by the finite length of the cylinders. 

Khlebutin [145] was the first to experimentally discover Taylor vortices in the gap between 

coaxial rotating spheres. Nakabayashi et al. [146] divided the gap width into four regimes, 

namely, narrow (β < 0.13), intermediate (0.13 < β <0.17), medium (0.17 < β < 0.3), and wide 

(β > 0.3). For the narrow-gap regime, the cylinder-type disturbances such as spiral Taylor- 

Görtler vortices and traveling waves on Taylor-Görtler vortices play an important role. For 

the intermediate-gap regime, the velocity fluctuations caused by the cylinder-type 

disturbances disappear with increasing Reynolds number (reverse Hopf bifurcation or 

relaminarization). For the medium-gap regime, relaminarization does not occur, i.e., spiral 

Taylor-Görtler vortices and traveling waves on Taylor-Görtler vortices continue to exist. In 

addition, disk-type disturbances such as Stuart vortices and shear waves occur at high 

Reynolds numbers. For the wide-gap regime, the first instability is spiral vortices or waves 

rather than Taylor vortices. This flow problem has been extensively studied and has charmed 

many researchers to determine a general map of the laminar-turbulent transition. So far, an 
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abundance of theoretical, experimental and numerical results on the spherical Taylor-Couette 

flow is available in the literature. Among these are Refs. [147–153]. 

II.6.2 Flow between two rotating cones: Conical Taylor-Couette flow 

Modifying classical Taylor-Couette flow by replacing right cylinders by conical cylinders, 

which may be known as Conical Taylor-Couette flow (CTCF), produces a complex flow 

pattern. In general, the structure of Conical Taylor-Couette flow is a lot more complicated 

than classical Taylor-Couette flow, being dependent on gap width, cylinder height, rate of 

rotation, angle of conic, and rate of acceleration, with many different flows possible at the 

same angular velocities, as reported by many authors [ 154-158]. 

Since the radius changes linearly with the length of the cylinder, a linear distribution of the 

centrifugal forces in the gap is obtained. The imbalance of the centrifugal forces causes the 

three-dimensional flow field even in the subcritical state. The fluid is centrifuged at the largest 

radius, moves in spirals towards the smaller radius in the vicinity of the stationary cone and 

flows back to the larger radius near the rotating cone, still in spirals. They join and form a 

closed flow, as it is illustrated in Figure. II.23. 

 

 

 

 

 

 

 

 

 

 

Figure II.23: Three-dimensional basic flow 

The three-dimensional basic flow and especially the meridional component of the flow has a 

crucial influence on the Taylor vortices. Taylor vortices appear first at the largest radius in the 

upper part, whilst in the lower part - at the smaller radius - the undisturbed basic flow is still 

preserved. Hence, regions with subcritical and supercritical flows in the gap can be obtained, 

similar to the situation between rotating spheres. The still weak vortices at the beginning are 

most influenced by the three-dimensional flow and are floating upwards with the meridional 

flows, as shown in Figure. II.24. 
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Figure II.24: Sketch and photo of sub- and supercritical regions. Toroidal vortices travel upwards. Adapted 

from Wimmer [157]. 

 

The occurrence of travelling closed toroidal vortex cells is astonishing. The travelling can 

only happen, if the upper cells are compressed to such an extent that one of them vanishes, 

while the two neighboring vortices join together, forming one large cell. The adjacent vortex 

pair follows up. At the same time, in the lower part a new pair is generated and the periodic 

process starts again. It is worthy to note that Taylor vortices appear as pairs of counter-

rotating cells with alternately big and small vortex cells in the gap between conical cylinders, 

as displayed in Figure. 25. 

 

 

 

 

 

 

 

 

 

Figure II.25: Sketch and photo of the steady state with five vortex pairs. Adapted from Wimmer [157]. 

II.6.3 Flow between two rotating ellipsoids 

Another variation of the classical Taylor-Couette geometry is the flow between rotating 

coaxial ellipsoids. This variant geometry is represented by two ellipsoids rotating about their 

shorter or longer axes to give oblate or prolate rotating ellipsoids, respectively. Indeed, the 

basic flow field between rotating ellipsoids is fully three-dimensional. However, it is more 

Ω1

Ω1
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complex than that between concentric rotating spheres because of the different curvature of 

the ellipsoids in circumferential and meridional direction. 

The transition regimes present in the case of oblate ellipsoids resemble those existing in 

spherical geometry and inter-disc flows, hence the coexistence of two or more types of 

instabilities (Taylor vortex and spiral waves), as illustrated in Figure II.26.  

 

 

 

 

 

 

Figure II.26: Flow between oblate ellipsoids with rotating inner element and outer one at rest. a) Two Taylor 

vortices on each hemisphere, b) spiral instability around the pole. Adapted from Wimmer [157]. 

On the other hand, the prolate ellipsoids represent the transition from the spheres to the 

cylinders [157]. For small gap sizes between the prolate ellipsoids the analogy to the coaxial 

cylinders matches nearly ideally. For larger gap sizes the wavelength of the vortices becomes 

larger. The angle of inclination of the axes of the vortices grows with the gap size, and the 

occurrence of the Taylor vortices resembles more those between spheres rather than those 

between cylinders. For even larger gap widths the number of vortices diminishes and they are 

limited to a region near the equator. For these gap sizes and high Reynolds numbers a spiral 

instability around the poles appears, like for the rotating spheres, as shown in Figure II.27. 

 

 

 

 

 

 

 

 

 

 

 

Figure II.27: Flow between prolate ellipsoids with rotating inner element and outer one at rest. From left to right 

and top to bottom: a) Taylor vortices for narrow gap sizes, b) broader Taylor vortices for broader gap sizes, c) 

wavy Taylor vortices, d) Taylor vortices near the equator and spirals around the poles; inbetween both systems 

overlap each other. Adapted from Wimmer [157]. 



 Chapter II:  Literature review                                                                 University	A.	Mira	of	Bejaia 

 

44 

 

II.7 Conclusion 

After reviewing and analyzing the literature specific to the study of Taylor-Couette 

flow, it appears that despite the existence of numerous theoretical, numerical and experimental 

studies, they raise more questions than they provide answers on the fundamental phenomena 

governing the conditions under which instabilities occur, and the onset of various flow 

regimes. Moreover, literature reviewed in this section has shown that in this relatively simple 

setting, there are many interesting Flow phenomena. It has been established that classical 

Taylor-Couette flow is relatively sensitive to geometric, kinematic, dynamic and rheological 

effect. The main effect is to delay or advance the onset of different instabilities, which can 

cause a major disadvantage in terms of heat and mass transfer processes in the flow system 

under consideration.  

In addition, by a variation of the cylindrical geometry to spherical, conical and ellipsoid 

configuration we can study the influence of geometric parameters very clearly. The effect of 

the three-dimensional basic flow on the instabilities depends on the ratio of the strength 

between the basic flow and the vortices. The varying centrifugal forces in the gap produce 

sub- and supercritical regions existing side by side. This fact allows to study the gradual 

spatial transition from sub- to supercritical flows.  For certain geometries it is possible to have 

simultaneously two different types of instability in the gap, e.g. counter-rotating Taylor 

vortices and unidirectional-rotating cross-flow vortices. They are either separated or they 

influence and overlap each other, forming this way own, not clearly defined flow patterns. It 

has also been shown that a change from one instability system into another is possible by 

gradually changing the geometry. Therefore, by varying the geometry one can learn a lot 

about the onset of instabilities and the further development of vortex configurations and 

pattern forming systems. 
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« Whenever a theory appears to you as the only possible one, take this 
as a sign that you have neither understood the theory, nor the problem 
which it was intended to solve. » 
 
                                                                                       Karl Popper 
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CHAPTER III: COMPUTATIONAL FLUID DYNAMIC TECHNIQUE 

 

III.1 Introduction 

Numerical computation, known as Computational Fluid Dynamics (CFD), is a tool that allows 

the numerical resolution of conservation equations written in a local form. These are, 

generally, partial differential equations (PDE) whose solution depends on two to four 

variables: the time variable with one to three spatial coordinates. This system of equations 

rarely has an analytical solution. Therefore, it is necessary to resolve them by a numerical 

method. 

Numerical simulation software of flows can be considered true "numerical experiments" when 

done carefully. The advantage of "numerical methods" is that all the physical quantities 

related to the flow (velocity field, pressure field, stresses, etc.), are immediately available at 

any point in the flow. In an experiment, obtaining these physical quantities at any point in the 

field is often impossible or very difficult to put into practice. 

III.2 Basic principles of CFD 

There are three main elements in a CFD simulation. These are: (1) pre-processing (geometry 

and meshing), (2) processing (solver), and (3) post-processing (treatment of results). 

The pre-processing comprises of the definition and discretization of the geometry to be 

analyzed. Specifically, the geometry or flow domain is divided up into a number of discrete 

elements by a grid or mesh. The geometry describes the shape of the problem to be analyzed. 

There are various ways of creating the geometry, depending on the complexity of the flow 

domain. In this thesis we have used ANSYS Workbench, which is a mesh generator that is 

part of the ANSYS Fluent software package. 

The design and construction of a good quality grid is crucial to the success of the CFD 

analysis. The computational cells within the flow domain define an assembly of unit control 

volumes. The flow problem is solved in each cell. The cell shape and size have a significant 

impact on the rate of convergence, solution accuracy, and the CPU time required. Many 

different cell elements and grid types are available. A mesh can be coarse, medium, or fine. 

The appropriate choice of the mesh depends on complexity of the geometry on flow field, and 

on the cell types that are supported by the solver. Triangular and quadrilateral cells are 

commonly used for two-dimensional (2D) problems, in which the flow depends only on two 

spatial coordinates. Tetrahedral, prismatic or pyramidal cells are used in three-dimensional 

(3D). It is noteworthy that the pre-processing aspect is important, as over 50% of the time 
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spent in industry on a CFD project is devoted to the definition of the domain geometry and 

grid generation. 

In our case, the generation of the mesh is an important phase as the precision and accuracy 

of the numerical results depends on it. Greater detail of the individual meshes used will be 

given in each chapter. Under ANSYS Workbench, the following three types of mesh can be 

chosen: 

III.2.1. Structured mesh (Quadra/Hexa)  

It is easy to generate using multi-block geometry and has the following advantages: 

 Economical in terms of number of elements with a lower number of meshes compared 

to an equivalent unstructured mesh. 

 Reduces the numerical error rate because the flow is aligned with the mesh. 

Disadvantages: 

 Difficult to generate in the case of complex geometry. 

 Mesh quality not always satisfactory for complex geometries. 

III.2.2. Unstructured mesh (Tri/Tetra) 

The elements of this type of mesh are generated arbitrarily without any constraint as to their 

layout. 

Advantage: 

 Can be generated on complex geometry while maintaining good element quality. 

 The algorithms for generating this type of mesh (sorting/tetra) are highly automated. 

Disadvantages: 

 Very greedy in number of meshes compared to the structured mesh. 

 Generally, generates greater numerical errors (false diffusion) compared to structured 

meshes. 

III.2.3. Hybrid mesh 

It is a mesh generated by a mixture of elements of different types, triangular or quadrilateral 

in 2D, tetrahedral, prismatic or pyramidal in 3D. This mesh is characterized by the 

combination of the advantages of structured and unstructured mesh (Figure III.1). 

 

 

 

 

 

 

Figure III.1: Structured and unstructured meshes. 
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III.2.4. Mesh generation techniques 

The generation of a very good mesh quality is essential for obtaining an accurate and 

meaningful calculation result. In practice, there is no standard rule for the creation of a valid 

mesh, however, different approaches can be used to obtain an acceptable mesh grid. We can 

summarize these rules as follows: 

 Maintain a good Quality of the elements, 

 Ensure good Resolution in areas with high gradients, 

 Ensure a good Smoothing in the transition areas between fine and coarse mesh parts, 

 Minimize the number of Total Elements (reasonable calculation time). 

These rules can be remembered by using the mnemonic formulation QRST. 

The processing stage (solver) involves the selection of an appropriate physical model for the 

flow that needs to be modeled, the specification of the fluid properties inside the domain, the 

definition of appropriate boundary and operating conditions as well as of thermodynamic 

properties of the flow. This stage involves the discretization of the governing equation 

(Navier-Stokes equations) of the system so that they can be solved iteratively. There are four 

major numerical solution techniques commonly used for discretized problems in commercial 

CFD. These solution techniques are: (1) the finite difference method, (2) the finite element 

method, (3) the finite volume method, and (4) the spectral method. In this work, the finite 

volume approach is followed. The advantages of finite volume method over all other 

techniques as outlined in ANSYS Fluent user's guide include:  

 Flexibility in terms of its usage on either a structured or unstructured mesh.  

 Its economical use of computer memory and speed for very large problems, higher 

speed flows, turbulent flows, and source term dominated flows.  

 Easy programming in terms of CFD code development.  

Post-processing is the process of displaying and visualizing the CFD results through the 

manipulation of the numerical output. In ANSYS Fluent, some post-processing tools are 

incorporated into the academic license package to visualize the flow, extract, and manipulate 

CFD data. Flow properties such as the dynamic pressure, velocity magnitude, wall shear 

stress, and velocity vectors are computed and plotted from the flow state output of the flow 

solver. An adequate analysis of the variation of the flow properties at any point in the medium 

can be performed using ANSYS Fluent's graphical interface. Several other features like 2D 

and 3D surface plots, streamlines, Power Spectral Density (PSD), particle tracking, view 

manipulations (translation, rotation and scaling) and color postscript output can be displayed. 

A key functionality of the post-processing software is the ability to visualize complex flows. 

In the ANSYS Fluent software, it is possible to export the geometry and the flow data to other 
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post-processing software, such as CFD Post and Tecplot. Tecplot offers a greater level of 

sophistication in the geometry and flow rendering tool, aiding the visualization and the 

interpretation of the predicted flow pattern.  

III.3 Numerical modeling  

There are three fundamental principles that govern physical aspects of any continuous flow, 

including turbulent ones. These three fundamental principles are:  

 The conservation of mass. 

 Newton's second law for the conservation of momentum.  

 The first law of thermodynamics for the conservation of energy. 

III.3.1 The governing equations  

The above three fundamental principles can be expressed in terms of basic mathematical 

equations, the continuity equation, the momentum equations, and the energy equation which, 

in their most general form, are either integral or partial differential equations. These 

governing equations are solved subject to boundary conditions describing the physical state of 

the flow at the computational domain boundaries. The behaviour of the fluid properties is 

generally described in terms of macroscopic intensive properties such as velocity, pressure, 

density, temperature, and specific energy. We note that there are three important principles 

that are helpful for obtaining the basic equations of fluid motion as:  

 Choosing of appropriate set from any of the law of physics described earlier. 

  Application of this set to a suitable model of the flow.  

  Obtaining an equation which represents the set.  

In this study, all the CFD simulations assume an isothermal, viscous, and incompressible fluid 

condition. For an incompressible flow, the density is constant. As such the energy equation 

becomes uncoupled from the continuity and momentum equations. Therefore, all the 

discussions in this study will only focus on the continuity and momentum (Navier-Stokes) 

equations. The summary of these equations is presented in this thesis, while the detailed 

derivations of these equations can be found in Ansys Fluent and in other fluid mechanics text 

books. 

III.3.1.a The continuity equation  

The law of conservation of mass can be applied to any fluid flow in a control volume, so that 

the change of mass in the control volume is equal to the mass that enters through its faces 

minus the total mass leaving its faces. The unsteady, three-dimensional continuity equation 

can be written in conservative form as: 

 
0)( 


 ρv

t


                           (III.1)
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The first term on the left-hand side of equation III.1 is the rate of change in time of the density 

(mass per unit volume). The second term describes the net mass flux across the boundaries of 

an element control volume and it is called the convective term. 
 

For an incompressible flow, the density, ρ is constant, hence the continuity equation III.1 

simplifies to: 

             
(III.2)                                          v 0. 

                               
III.3.1.b The momentum or Navier-Stokes equations  

When Newton's second law of motion is applied to the fluid flow in a moving control volume, 

the rate of change of momentum of a fluid particle equals to the sum of the forces acting on 

the particle (F = ma). There are two types of forces acting on a fluid particle, namely, surface 

forces and body forces. Surface forces act directly on the surface of the fluid element. They 

are due to only two forces: (a) the thermodynamic pressure distribution acting on the surface, 

imposed by the outside fluid surrounding the fluid element, and (b) the shear and normal 

viscous stresses acting on the surface, also imposed by the outside fluid “tugging” or 

“pushing” on the surface by means of friction. The body forces act directly on the volumetric 

mass of the fluid element. These forces "act at a distance". Examples are gravitational, 

centrifugal, Coriolis, and electromagnetic forces.  

The Navier-Stokes equations applied to a fixed control volume are represented in vector form 

by: 

μΔvp)vρ(v.
t

vρ 



                           (III.3) 

Where (U, V, W) are the physical components of the velocity v. P, ρ, t, and µ denote 

pressure, density, time and dynamic viscosity of the fluid, respectively. 

This vector equation involves four basic quantities: Local acceleration, convective 

acceleration, the pressure gradient and viscous forces. The viscous forces are the normal and 

shear stress distributions acting on the surface. These are modeled in equation III.3 assuming 

a Newtonian fluid. In the momentum equation, it is a common practice to highlight the 

contribution due to the surface forces as separate terms and to include the effects of the body 

forces as source terms. Therefore, the conservative form of the linear vector momentum 

equation III.3 expressed in terms of surface (pressure and viscous stresses) and including the 

body forces is given as: 

Sτp)vρ(v.
t

vρ 



                             (III.4) 

Neglecting the effects of the body forces as source terms, equation III.4 becomes 
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τpρvv .
t

vρ 



                                           (III.5) 

The continuity equation III.2 and momentum equation III.3 can be re-cast into an integral 

form by integrating them over an arbitrary volume V bounded by a close surface S. This 

gives:
 

(III.6)                                                                           vdV
V

0. 
 

(III.7)                     dV ΔvμdV pdV vv.ρdV 
dt

dvρ
VVVV

   

By the application of the Gauss divergence theorem, these become: 

           
(III.8)                                                            dS v.

S

0
 

(III.9)                 dS . vμpI.dSdS . vvρdV v
dt

dρ
SSSV

   

where I is the identity unit diagonal matrix.  

In flows of simple geometry, the continuity and Navier-Stokes equations can be solved 

analytically, while more complex flows can be tackled numerically with CFD techniques, 

such as the finite volume method, without additional approximations at low and moderate 

Reynolds numbers. The ease with which solutions can be obtained and the complexity of the 

resulting flows often depend on which quantities are important for a given flow. 

III.3.2 Numerical scheme  

The CFD software package ANSYS Fluent used in this research work is a finite volume code. 

The computational domain is divided into unit control volumes. To solve the flow governing 

equations numerically in each control volume, they have to be transformed into algebraic 

expressions. The process of transforming these equations into solvable algebraic expressions 

is known as discretization. The finite volume approach in ANSYS Fluent involves the 

integration of the flow governing differential equations over all the control volumes of the 

solution domain to yield a volume averaged estimate of the flow state at each cell. The 

discretization using the finite volume method involves the substitution of piece-wise constant 

approximations for the terms in the integral equation representing flow processes such as 

convection, diffusion, and sources terms. This converts the integral equations into a system of 

linear algebraic equations. These linear algebraic equations are solved iteratively over the 

control volumes to compute the flow state until convergence. The accuracy of a converged 

solution is dependent on the physical models, on the grid resolution, as well as on the problem 

setup.  

There are two numerical solution techniques provided by ANSYS Fluent. These are:  
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 A pressure-based solver (segregated and coupled algorithms).  

 A density-based solver.  

In both methods, the velocity field is obtained from the momentum equations. The integral 

form of the governing equations for the conservation of mass and momentum are solved using 

either method. Both methods use a control-volume-based technique and the discretization 

process for the two numerical methods is the finite-volume one. The two methods differ in the 

approach used to linearize and solve the discretized equations.  

The pressure-based solver is formulated either as a segregated or a coupled algorithm. In this 

thesis, the pressure based segregated solver has been used. In this solver, each discrete 

governing equation is linearized implicitly with respect to the conservative variable of that 

equation. That is, the conservative variables in the governing flow equations are solved 

implicitly by considering all cells one after another in a sequential manner. This results in a 

system of linear equations with one equation for each cell in the domain. The reason for 

selecting the pressure based segregated solver is that this is computer memory efficient, since 

the discretized equations need only be stored in the memory one at a time. The pressure based 

segregated solver requires about 1.5 to 2.0 times less computer memory than the pressure 

based coupled solver. The general solution procedure for the pressure based segregated and 

coupled algorithms as well as the density-based solvers is fully described in ANSYS Fluent. 

III.3.2.a Spatial discretization  

In all CFD simulations involving finite volume method, the computational domain is divided 

into a finite number of elements or cells. The cell is the control volume into which the 

physical domain is broken down by the regular and irregular arrangement of nodes to 

construct the mesh. The flow problem is solved in the cell that is defined around grid points or 

nodes. The cell averaged flow state is determined at these nodes, so that the flow can be 

described mathematically by specifying the cell averaged flow state at all grid points in space 

and time. The accuracy and stability of the numerical computation is dependent on the quality 

of the mesh. The attributes associated with mesh quality outlined in ANSYS Fluent are the 

node point distribution, the smoothers, the cell skewness and the cell aspect ratio.  

 The node point distribution determines the degree to which shear layers, separated 

regions, shock waves, and boundary layers are resolved. Poor node density and node 

distribution in critical regions leads to poor resolution, which adversely affects the flow 

predictions. To achieve a good resolution of the boundary layer for a laminar flow, the grid 

adjacent to the wall should satisfy the condition 
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(III.10)                                                              
x

u
y p 1




 

where yp is the distance to the wall from the adjacent cell centroid, u∞ is the free stream 

velocity, ρ is density of the fluid, µ is the dynamic viscosity of the fluid, and x is the distance 

along the wall from the starting point of the boundary layer. Equation III.10 places the first 

grid point within the lower quarter of the boundary layer thickness. The resolution of the 

laminar boundary layer plays a significant role in the accuracy of the computed wall shear 

stress.  

The numerical results for the turbulent flows tend to be more susceptible to grid dependency 

than those for a laminar flow, due to the interaction of the mean flow and turbulence. The 

mesh resolution required at the near-wall region depends on the turbulence closure model 

being used. 

 Smoothness in the computational mesh reduces the truncation error of the numerical 

solution. The smoothness of the mesh can be improved by refining the mesh based on the 

change in cell volume or the gradient of the cell volumes along computational mesh lines.  

 The cell skewness is the difference between the shape of the cell and the shape of an 

equilateral cell of equivalent volume. Highly skewed cells can decrease the solution 

accuracy and de-stabilize the solution procedure. For a good unstructured mesh, the 

skewness should always be below 0.98.  

 The cell aspect ratio is a measure of the stretching of the cell. It is defined as the ratio of 

the maximum distance between the cell centroid and face centroid to the minimum 

distance between the nodes of the cell. A general rule of thumb is to avoid aspect ratios in 

excess of 5:1. 

The three major types of mesh that are generally used in CFD simulation are the single-block 

structured, single-block unstructured, and multi-block structured meshes. The choice of the 

type of mesh depends on the problem and the solver capabilities.  

A structured mesh is typically restricted to topologically rectangular computational domains 

and is hexahedral in shape. This type of mesh is preferred for analysis of rectangular shapes 

and of simple cuboid geometries. An unstructured mesh, on the other hand, is typically a 

mesh with irregular spacing between grid points that are joined to form a tetrahedral mesh. 

This type of mesh is designed for more complex geometries as nodes can be placed within the 

computational domain depending on the shape of the body. In other word, the grid can acquire 

a shape more closely matching a body surface.  

Multi-block structured meshes combine the lower computing cost associated with a 

structured mesh and the flexibility associated with an unstructured mesh. In this type of mesh, 
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the computational domain is subdivided into different blocks that can be structured meshed. 

Note that, a structured mesh has been used for all flow configurations presented in this study.  

III.3.2.b Equation discretization  

There is the need to solve the integral form of the governing partial differential equations 

III.6 and III.7 by the CFD solver. The flow governing equations are solved for each control 

volume iteratively in discrete form. The discretization process results in a set of algebraic 

equations that resolve the variables using a pseudo-time integration method at a specified 

finite number of points within the control volumes. The flow field within the whole domain is 

then obtained. The semi-discrete form of the governing equations is given by: 

(III.11)                                                                      S . v
N

i

0
1


  

12) (III.                    ΔS .vSpΔSΔ . vvv
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Where                                       


V

vdVv
 

and ΔS is the ith facet of each control volume V, which is fully enclosed by N facets. The 

equations solved by ANSYS Fluent are defined at the control volumes generated by the 

unstructured computational grid. The discrete variable values such as pressure, velocities and 

specific turbulent kinetic energy are calculated and stored at the cell centers by ANSYS 

Fluent. Using the finite volume method, the integral conservation laws are approximately 

satisfied over the control volume. That is, the net flux through the control volume boundary is 

the sum of integrals over the different control volume faces as the control volumes do not 

overlap. At the control volume faces, the values of the integrand are required for the 

convection terms of the turbulence closure model. This can only be determined by 

interpolation from the cell-averaged flow state. This is accomplished by using an upwind 

scheme to determine the values at the faces. The up-winding is the process of deriving the cell 

face values of the state variables from quantities in the cell upstream, relative to the direction 

of the mean velocity.  

* First-order upwind scheme  

This is the simplest numerical scheme available in ANSYS Fluent. In this scheme, quantities 

at the cell faces are determined by assuming that, for any variable throughout the entire cell, 

the face values are identical to the cell average. Hence, when the first-order upwind scheme is 

selected, the face value of a variable is set equal to the cell average value of the variable in the 

upstream cell.  
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The main advantages of this scheme are:  

 Easy to implement resulting in very stable calculations.  

  Can yield better convergence.  

 Can be applied without any significant loss of accuracy when the flow is aligned with 

the grid, especially for a quadrilateral or hexahedral grid, so that numerical diffusion is 

naturally low.  

 Can be used as a starter to perform first a few iterations for any numerical simulation 

that involves complex flows.  

The disadvantage is that this scheme is prone to numerical discretization errors (numerical 

diffusion) in a tetrahedral mesh and it will yield less accurate results than on a hexahedral 

mesh.  

* Second-order upwind scheme  

This scheme is more appropriate than a first order scheme for triangular and tetrahedral grids 

where the flow is never aligned with the grid. The scheme is more accurate than the first-

upwind scheme because it applies a reconstruction of the state variable gradient inside each 

cell. In this scheme, quantities at cell faces are computed using a multidimensional linear 

reconstruction approach, whereby higher-order accuracy is achieved at cell faces through a 

Taylor series expansion of the cell-centred solution about the cell centroid. Hence the face 

value of a variable is computed by averaging the cell values in the two cells adjacent to the 

face using a gradient method. The main disadvantage of this scheme is that it can result in 

face values that are outside of the range of cell values in regions with strong gradients. In such 

case, it is then necessary to apply limiters to the predicted face values to achieve accuracy and 

stability. The Green-Gauss node-based method is applied as the limiter for the computation of 

the gradients in the cell centers. The Green-Gauss node-based method computes the 

arithmetic average of the nodal values on the face. The nodal values are computed from the 

weighted average of the cell values surrounding the nodes of the face. 

There are, also, other discretization schemes such as: 

*   QUICK (Quadratic Upwind Interpolation for Convective Kinetics) scheme 

This scheme provides better accuracy than the second-order scheme for rotational and 

swirling flows with a regular mesh size. However, it is not recommended for a triangular 

mesh. 

*   Power Law scheme 

 It is more precise than the "First Order Upwind Scheme" for very low Reynolds number 

flows (<5). 
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* Third-Order MUSCL scheme (Monotone Upstream-Centered Schemes for 

Conservation Laws): Unlike the QUICK scheme, which is applicable to structured hex 

meshes only, the MUSCL scheme is applicable to arbitrary meshes. Compared to the second-

order upwind scheme, the third-order MUSCL has a potential to improve spatial accuracy for 

all types of meshes by reducing numerical diffusion, most significantly for complex three-

dimensional flows, and it is available for all transport equations. In addition, it gives more 

precision than the other schemes. 

The different interpolation schemes for precision orders 1, 2 and 3 available in the ANSYS 

Fluent code are summarized in Figure III. 2: 

 

  

 

 

 

 

 

 

 

Figure III.2: Different discretization schemes. 

III.3.2.c Numerical scheme for pressure 

The conservative variables in the vector momentum equation are stated in the form of 

convection-diffusion terms, except for pressure. Pressure appears as a source term in the 

integral momentum equation III.7, thus, the pressure field needs to be calculated at the 

computational cell boundaries in order to solve these equations. Therefore, an interpolation 

scheme is required to compute the face values of pressure from the cell values.  

ANSYS Fluent offers the following options for interpolating the pressure values at the faces. 

By default, the Second Order scheme is used except in the case of mixture or VOF (Volume 

Of Fluid) multiphase simulations in which case PRESTO! is the default. 

 The Linear scheme computes the face pressure as the average of the pressure values in 

the adjacent cells. 

 The Standard scheme interpolates the pressure values at the faces using momentum 

equation coefficients. 

 The Second Order scheme reconstructs the face pressure using a central differencing 

scheme. The Second Order scheme is not applicable for the VOF or mixture model 
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for multiphase flow. This scheme may provide improved accuracy over 

the Standard and Linear schemes.  

 The Body Force Weighted scheme computes the face pressure by assuming that the 

normal gradient of the difference between pressure and body forces is constant. This 

works well if the body forces are known a priori in the momentum equations (for 

example, buoyancy and axisymmetric swirl calculations). 

 The PRESTO! (PREssure STaggering Option) scheme uses the discrete continuity 

balance for a “staggered” control volume about the face to compute the “staggered” 

(that is, face) pressure. This procedure is similar in spirit to the staggered-grid schemes 

used with structured meshes. Note that for triangular, tetrahedral, hybrid, and 

polyhedral meshes, comparable accuracy is obtained using a similar algorithm. The 

PRESTO! scheme is available for all meshes. 

The various face pressure interpolation schemes available in the Ansys Fluent code are 

summarized in Figure III.3: 

 

 

 

 

 

 

 

Figure III.3: Different numerical schemes for pressure. 

III.3.2.d Pressure-velocity coupling  

In an incompressible flow model, the density is constant and hence it is not linked to pressure. 

As there is no governing partial differential equation for pressure, a constraint is therefore 

introduced in the coupling between pressure and velocity on the solution of the flow field. 

The continuity equation can only be satisfied for the velocity field if the correct pressure field 

is applied to the momentum equations. To achieve this, a pressure-velocity coupling 

algorithm adds a correction factor to the face flux, so that the corrected face flux satisfies the 

continuity equation.  ANSYS Fluent provides the option to choose among five pressure-

velocity coupling algorithms: SIMPLE, SIMPLEC, PISO, Coupled, and (for unsteady 

flows using the Non-Iterative Time Advancement scheme (NITA)) Fractional Step (FSM). 

All the aforementioned schemes, except the “coupled” scheme, are based on the predictor-

corrector approach. 

Numerical schemes for 

pressure
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 The SIMPLE algorithm (The Semi-Implicit Method for Pressure Linked Equations) 

uses a relationship between velocity and pressure corrections to enforce mass 

conservation and to obtain the pressure field. This algorithm substitutes the flux 

correction equations into the discrete continuity equation to obtain a discrete equation 

for the pressure correction in the cell. The SIMPLE algorithm is recommended for 

steady-state calculations. 

 The SIMPLEC (SIMPLE-Consistent) procedure is similar to the SIMPLE procedure 

outlined above. The only difference lies in the expression used for the face flux 

correction. 

 The Pressure-Implicit with Splitting of Operators (PISO) pressure-velocity coupling 

scheme, part of the SIMPLE family of algorithms, is based on the higher degree of 

the approximate relation between the corrections for pressure and velocity. One of the 

limitations of the SIMPLE and SIMPLEC algorithms is that new velocities and 

corresponding fluxes do not satisfy the momentum balance after the pressure-

correction equation is solved. As a result, the calculation must be repeated until the 

balance is satisfied. To improve the efficiency of this calculation, the PISO algorithm 

performs two additional corrections: neighbor correction and skewness correction. 

Furthermore, the main idea of the PISO algorithm is to move the repeated calculations 

required by SIMPLE and SIMPLEC inside the solution stage of the pressure-

correction equation. After one or more additional PISO loops, the corrected velocities 

satisfy the continuity and momentum equations more closely. This iterative process is 

called a momentum correction or "neighbor correction". The PISO algorithm takes a 

little more CPU time per solver iteration, but it can dramatically decrease the number 

of iterations required for convergence, especially for transient problems. 

III.3.3 Interpolation methods of gradients 

The gradients are needed to evaluate diffusive flows, velocity derivatives and for high-order 

discretization schemes. The gradients of the variables at the centres of the mesh faces are 

computed in ANSYS Fluent according to the following methods: 

 Green-Gauss Cell-Based: Default method and the solution can lead to false diffusion. 

 Green-Gauss Node-Based: More accurate method and minimizes the value of false 

diffusion. It is recommended for tri- and tetradimensional meshes. 

 Least-Squares Cell-Based: This method is recommended for polyhedral meshes. 

The gradients of the variables on the faces of the meshes are calculated using a 

Multidimensional Taylor series. 
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III.3.4 Convergence criteria  

In all CFD simulations, the governing equations must be transformed to algebraic expressions 

that are solved iteratively. To obtain a solution, there is the need to specify the information 

that is required to control the numerical solution algorithm. During the process of CFD 

simulation, there are integration errors in the discretized equations, summed over all control 

volumes, which may lead to inaccuracy in the flow solution. The solution to the numerical 

equations can be used to evaluate such errors. These measures of error, which are generally 

known as residual errors or residuals, can be used as a guide to see if a solution process is 

converging or not. The residual is the imbalance of the conservation equation for either mass 

or momentum summed over all the computational cells. The residual of the solutions can also 

be used to monitor the performance of a simulation. Progress towards a converged solution 

can be greatly assisted by the careful selection of the settings of various under-relaxation 

factors. Each Under-Relaxation Factor (URF) is adjusted ad hoc for its respective 

conservative variable in order to improve the convergence rate. As the solution process 

progresses from iteration to iteration, the residual errors from each equation should reduce. 

Low residuals suggest a solution that converges and the simulation can be considered stable if 

the residuals keep decreasing in magnitude monotonically with further iterations. That is, 

solutions of CFD problems are considered to converge when the flow field and the scalar 

fields are no longer changing.  

In many applications, the momentum and continuity residuals are monitored to measure 

the error in the solution. When the value of each residual is between three to four orders of 

magnitude below its initial value, the solution is said to achieve convergence to an acceptable 

level, depending on the level of accuracy required. At the completion of every flow solver 

iteration, the sum of the residual squared of each conserved variable is computed and stored to 

a data file or displayed on terminal screen, where the convergence history is visualized. This 

enables a quick check on the progress of the solution to be made. Low residuals do not 

however guarantee that the converged solution is correct. Additional reports of integrated 

quantities at surfaces and boundaries are often used to judge convergence. A physical variable 

of the solution flow field therefore needs to be monitored to ensure the convergence of the 

computation to a physically correct solution. This convergence is reached when the physical 

variable remains constant for a sufficient number of iterations and the residuals have reached 

a pre-determined reduction. Mass imbalance is also often used to monitor convergence. This 

is a report of the mass flow rates at the inlet and outlet flow boundaries, which should add to zero 

for a converged solution. 
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   « Everything should be made as simple as possible, but not simpler »  
                                        
                                                                                       Albert Einstein 
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Results and discussion 

 

Chapter IV: Numerical investigation of the onset of axisymmetric and wavy 

Taylor-Couette flows between combinations of cylinders and spherocylinders 

IV.1 Introduction 

The Taylor-Couette flow system consisting of fluid in an annular gap between two concentric 

rotating bodies has been a paradigm for the study of the pattern-formation phenomena and the 

transition to turbulence following a progression of instabilities. Moreover, fluid motion in 

cylindrical or spherical annulus is among the most fundamental problems in fluid dynamics, and 

presents a great interest in hydrodynamic stability theory. Furthermore, these canonical flow 

geometries generate an enormous variety of flow regimes and bifurcations. Such flow systems 

appear over a range of scales in technology and nature. For example, on a small scale in filtration 

systems, the fabrication of Nano-sensors, emulsion polymerization devices, centrifuges used in the 

chemical and pharmaceutical industries, the cultivation of cells, blood detoxification, reaction 

vessels viscometry, cooling of rotating electrical machinery, and particularly on a large scale in the 

fields of  geophysics, astrophysics, oceanography, meteorology, and dynamics of planetary 

atmospheres.  

In cylindrical Taylor-Couette configuration there exists a large variety of flow regimes, as the flow 

evolves from laminar flow to fully turbulent. Over one hundred years ago, Mallock [10] and 

Couette [11] conducted independent experiments using concentric rotating cylinders. Their 

experiment results started the academic research on the flow instability in concentric rotating 

cylinders, however, neither Couette nor Mallock established a criterion for the hydrodynamic 

stability of the flow problem. Later, Rayleigh [12] was the first to publish a criterion for the 

hydrodynamic stability of inviscid fluid between two concentric rotating cylinders. Taylor [14] 

examined viscous incompressible flow in a cylindrical annulus, and found that if the angular 

velocity of the inner cylinder is greater than a critical value, the laminar Couette flow (LCF) 

becomes unstable to axisymmetric perturbations (TVF). Taylor’s work is considered as the first 

case of a stability calculation quantitatively matching experimental values. Coles [14] observed 

experimentally 26 states with differing azimuthal and axial wave numbers, known as wavy vortex 

flow (WVF). Since the pioneering work of Taylor [14], and with the interplay between 

experimental, numerical, and analytical works, a wide range of flow regimes has been observed by 
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numerous researchers for different boundary conditions (Chandrasekhar [17], Fenstermacher et al. 

[20],  Diprima and Swinney [4], Donnelly [8], Marcus [159], Koschmieder [1], Czarny et al. [22], 

Avila et al. [160], Martinez-Arias et al. [73], Adnane et al.[91], Griffini  et al. [161], Froitzheim et 

al. [162], Brauckmann et al. [163], Chouippe  et al. [164], Grossmann et al. [165], Lalaoua and 

Bouabdallah [144], Mullin et al. [166]). These authors and other concluded that depending on the 

radius ratio, the aspect ratio, acceleration rate and Reynolds number, the cylindrical Taylor-Couette 

flow can produce a large number of flow patterns and instabilities. 

Whereas the majority of the pioneering works were focused on the flow between two coaxial 

rotating cylinders, later researches were extended to the flow between two concentric spheres where 

the Taylor vortices could appear. This flow problem has been studied extensively and has charmed 

many researchers to determine a general map of the laminar-turbulent transition. So far, an 

abundance of theoretical, experimental and numerical results on the spherical Taylor Couette flow 

is available in the literature. Among these are Khlebutin [145], Yavorskaya et al. [167], 

Nakabayashi [168], Marcus and Tuckerman [169, 147], Bühler [149], Egbers and Rath [150], 

Hollerbach [170], Peralta et al. [171], Bühler [172], Yuan [151], Tigrine et al. [152], lalaoua and 

Bouabdallah [153]. 

On the other hand, many modifications can be made to Taylor-Couette flow, which can result in 

much more complex flow structures, by either geometrical changes, or by combining different 

system (Wimmer [148, 173, 174], Abboud [175], Ning et al. [176], Denne and Wimmer [177], 

Sprague et al. [178]. Furthermore, Wimmer [157] conducted an extensive experimental study of the 

occurrence of different instabilities in the gap between differently shaped rotating bodies, prolate 

and oblate rotating ellipsoids. He found that a change from one instability system into another is 

possible by combining different geometries.  

While the appearance of various flow modes in cylindrical and spherical annuli is deeply 

investigated in the past and substantial experimental and numerical works have been published for 

the regime transitions and the flow behavior in rotating bodies with a shape between cylinder and 

sphere have not yet been investigated; and to our knowledge, this computational investigation is the 

first for these flow configurations. The present numerical study focuses on the occurrence of 

different hydrodynamic instabilities in combined Taylor-Couette geometries. Three flow geometries 

are considered in which three flow regimes are studied, namely laminar Couette flow (LCF), Taylor 

vortex flow (TVF) or Taylor vortices, and wavy vortex flow (WVF). 

IV.2 Flow configurations and CFD modelling  

In this work, we consider the motion of a viscous incompressible Newtonian fluid contained in an 

annulus between two concentric bodies. Three types of flow configurations were numerically 



Chapter IV                                                                                                  University	A.	Mira	of	Bejaia 

 

61 
 

simulated, namely flow between two concentric cylinders with fixed end-caps (Type 1), flow 

between two concentric cylinders with hemispheres on the lower end wall (Type 2), and flow 

between two spherocylinders, i.e, cylinders with hemispheres on the upper and lower end surfaces 

(Type 3). The outer element is stationary while the inner one rotates freely about a vertical axis 

through its center, which is taken to be the origin of the coordinate system. The plate end-caps in 

Type 1 and Type 2 configurations are kept fixed. All the flow geometries investigated in this study, 

are bodies of revolutions with symmetry about the axis of rotation, as shown in Figure IV.1.  The 

flow fields are characterized by the Reynolds number Re= (Ω1R1d)/ ν, which is used to describe the 

ratio of inertial to viscous forces, where R1 and R2 are the radii of the inner and outer elements, 

respectively, d is the gap width, Ω1 is the angular velocity of the inner element and ν is the 

kinematic viscosity. The working fluid used in this study is water. The flow features are described 

by the following dimensionless parameters: 

- The aspect ratio: Γ1=H1/d=20, Γ2=H2/d=30 and Γ3=H3/d=40 for the flow configurations type 

1, type 2 and type 3 respectively. 

- Radius ratio: η= R1/R2=0.909 

- Gap width: β=(R2-R1)/R1=0.1 

The Reynolds number was increased stepwise by a quasi-static increase of the angular velocity of 

the inner element with a rate of increase ∆Ω1/Ω1 ≤ 5% (∆Ω1 is the velocity increasing), and the final 

flow field of the last step was used as the initial condition for obtaining the flow at the next step. 

The continuity and momentum equations for an incompressible viscous flow are written as follows: 

                                  0div v                                                                        (IV.1) 

                              vpvv
v



 μ).ρ(

t
ρ                                                    (IV.2) 

With (U, V, W) are the physical components of the velocity v. Time and pressure are denoted by t 

and p, respectively.  

The 3D geometries were meshed with structured hexahedral cells. Grid resolution studies for the 

different flow modes showed that 450000, 760000 and 1200000 cells were needed for each type of 

flow configuration, respectively. The grid spacing was refined in both the axial and radial directions 

to improve resolution near the walls where there are a high shear (due to steep gradients near these 

boundaries), and more complex flow features are expected. The grid resolution was increased until 

further increases in resolution did not improve the solutions (mesh dependence).  

The numerical results are obtained using the simulation code Ansys Fluent based on the finite 

volume method for the discretization of the equations of the problem. The discretization scheme 

chosen for the pressure is the second order model. The second order upwind scheme was used for 

the moment equations. The velocity-pressure coupling is solved using the PISO algorithm. 
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Gradients were evaluated using a node cell-based method. Convergence of the solution was 

monitored by checking the absolute residuals of the continuity equation and three velocity 

components until they all fell below 10-4. No-slip boundary conditions for the velocity are applied at 

all surfaces. In addition, all the variables are set to zero at the walls except for the tangential 

velocity W, which is set to Ω1R1 on the inner rotating element and zero on the outer stationary 

element. 

Note that the flow was assumed to be steady state and isothermal for LCF and TVF, therefore for 

the calculations steady-state solver was used, while for WVF, which is time-dependent, the flow 

was assumed to be unsteady and isothermal, hence a transient solver was employed. 

As there is no experimental works available for the flow geometries type 2 and 3, our computational 

results are compared and validated against experimental works of Adnane et al. [91] and Parker and 

Merati [179] for a similar flow geometry (type 1).  A good agreement is found between the two 

approaches, within 3%. 

 

 

 

 

 

 

 

 

 

 

 

                         

                         Type 1                                  Type 2                                  Type 3 

Figure IV.1: Sketch of the Taylor-Couette flow system at different geometries/ Possible combinations of cylinders and 

spheres. 

IV.3 Main numerical results 

The flow behaviors of a viscous incompressible Newtonian fluid confined in the annular gap 

between two concentric bodies (type1, type2 and type 3) are presented in terms of wall shear stress 

and skin friction coefficient for three flow regimes defined as laminar Couette flow, Taylor vortex 

flow and Wavy vortex flow, respectively, as shown in Figure IV.2 and Figure IV.3. As the angular 

velocity of the inner element is increased, the flow systems exhibit a series of instabilities. For very 

low Reynolds number the flow is laminar with the absence of any disturbance. As we gradually 
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increased the Reynolds number, two vortices appeared for flow configuration type 1, one on each 

side of the endplates, known as Ekman vortices. It is worth mentioning that the presence of Ekman 

effects is restricted to the two cells closest to the end-caps. For the flow configuration type 2, only 

one cell occurs at the top endplate, whereas no Ekman cells are observed for the flow configuration 

type 3, as illustrated in Figure IV.2(a) and Figure IV.3(a). 

When the angular velocity of the inner element is increased, the flow undergoes centrifugal-driven 

instability from laminar Couette flow, in which the only non-zero velocity component is in the 

azimuthal direction, to Taylor vortex flow, which consists of pairs of toroidal vortices wrapped 

around the inner element and filling the annular gap, as shown in Figure IV.2(b) and Figure IV.3 

(b). This first transition from LCF to TVF is a continuous process and not an instability. 

For the flow configuration type 1, the fluid is confined radially between the cylinders, and axially 

by endplates. The Ekman cells induce Taylor vortices, that build up gradually from the top and 

bottom end plates. The angular momentum decreases outwards from r2Ω1 to 0 due to the no-slip 

boundary conditions. It is noteworthy that, for the flow configuration type 2 and 3, no appearance of 

Ekman's vortices is observed when we replace the end plates of the cylinders by hemispheres. 

For all three flow configurations investigated here, it is seen that TVF is periodic in the axial 

direction and has full rotational symmetry in the azimuthal direction. 

Unlike the flow between two concentric cylinders, which is one-dimensional, the flow between two 

concentric spherocylinders is fully three dimensional, where the centrifugal force is a function of 

the latitude, but no end walls effects exist like those caused by the end-walls of the cylinders.  

As the Reynolds number is further increased, TVF becomes unstable to non-axisymmetric 

perturbations, and azimuthal waves are formed which rotate around the inner element. 

Wavy vortex flow is characterized by azimuthally wavy deformation of the vortices both axially 

and radially, i.e., the axial motion of the vortex centers decreases monotonically, while the radial 

motion of the vortex centers has a maximum. Furthermore, elongated vortices at the ends (upper 

and bottom endplates) and compressed vortices at the centre can be observed clearly for flow 

geometry type 1, as shown in Figure IV.2(c) and Figure IV.3(c).  

The values of the Reynolds number for the different flow configurations at which appeared the 

various flow modes are presented in table 1. The transition from LCF to TVF and then to WVF in 

the combined flow systems (type 2 and 3) is substantially delayed with respect to the classical 

Taylor-Couette flow system (type1), therefore the combination of cylinders and spheres has a 

stabilizing effect on this flow problem.  
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Table IV.1: Reynolds number values for different flow configurations 

           Flow configurations 

 

Flow regimes 

Type 1 

 

Γ1=20 

Type 2 

 

Γ2=30 

Type 3 

 

Γ3=40 

LCF Re=15 Re=37 Re=70 

TVF Rec1=133 Rec1=142 Rec1=158 

WVF Rec2=164 Rec2=177 Rec2=210 
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c) Wavy vortex flow 

Figure IV.2: Various flow regimes in different geometries/ Wall shear stress on the outer element. 

Figure IV.3 shows the Evolution of the skin friction coefficient (Cf) as a function of the axial 

position for various flow regimes and at different flow configuration. The Cf is the ratio of the shear 

stress at the outer wall and the dynamic pressure.  

From Figure IV.3 (a), it can be seen that two weak peaks are formed on the curve at the end 

surfaces of the cylinders. The appearance of these double weak peaks is due to the creation of 

Ekman's cells. For the flow configuration type 2, only one peak is observed at the top end surface. 

Whereas, no peaks are observed on the curve of the flow configuration type 3; criterion of the 

absence of Ekman's cells. In addition, a noticeable increase of the skin friction coefficient values 

can be observed in Figure IV. 3 (b) and (c). The Cf, for TVF and WVF, is intensified by a factor of 

nearly 258 and 2400 for the flow configuration type 3, compared to the flow configuration type 1. 
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b)  Taylor vortex flow 

 

 

 

 

 

 

 

c)  Wavy vortex flow 

Figure IV.3: Evolution of the skin friction coefficient for various flow regimes. 

IV.4 Conclusion 

In this study, the transition from purely circumferential flow (LCF) to Taylor vortex flow (TVF) 

and wavy vortex flow (WVF) has been successfully predicted by CFD simulations for different 

flow configurations. Three flow configurations are investigated when only the inner element rotates 

and the outer one is held at rest. The Reynolds number values at which axisymmetric Taylor vortex 

flow and wavy vortex flow appear have been determined for the different flow geometries. By 

combining different geometries one can learn a lot about the onset of various hydrodynamics 

instabilities and the pattern forming systems. 

The study of these instabilities has led to a better understanding of the regime transitions in different 

combined flow systems. Low angular velocity of the inner element generates laminar Couette flow. 

As Reynolds number is increased a new flow pattern (Taylor vortex flow) develops, which is 

characterized by a system of axisymmetric vortices superimposed on the basic laminar Couette flow 

along the column of fluid. As Reynolds number is further increased, TVF gives way to wavy vortex 

flow (WVF), which is characterized by travelling azimuthal waves superimposed on the inflow and 

outflow boundaries of the Taylor vortices. The transition from LCF to TVF and then to WVF in the 

combined flow systems (type 2 and 3) is substantially retarded compared to the cylindrical Taylor 

Couette flow system (type1), therefore the combination of cylinders and spheres has a stabilizing 

effect on this flow problem.  
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          « Whereof one cannot speak, thereof one must be silent» 
                                                                   
                                                                              Ludwig Wittgenstein 
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Results and discussion 

 

CHAPTER V: Numerical investigation of the effect of different working fluids 

on the pattern formation in a narrow rotating annulus 

V.1 Introduction 

Nowadays, the global energy consumption is rapidly increasing, while the primarily energy sources, 

fossil fuels, are rapidly depleting. Moreover, the climate change and pollution represent undesirable 

side effects and major challenges for international community. For this reason, it is appropriate to 

look for other sources of clean energy such as hydrogen, helium, lithium, biofuels, etc., which are 

currently being explored worldwide. These liquids are widely recognized as alternative energy 

carriers, which can be used in many applications. For example, liquid hydrogen (LH2) is a common 

liquid rocket fuel, and it is also used as a propellant for nuclear powered rockets, and as the fuel for 

internal combustion chamber or fuel cell. Liquid helium is known as an excellent cooler when it is 

in contact with another body. Some applications of liquid helium in engineering are: cooling 

samples in solid state physics, cooling infrared detectors in astrophysics, cooling superconducting 

magnets in hospitals and particle physics accelerators. The physical and chemical features of liquid 

lithium: low melting point, high boiling point, low vapour pressure, low density, high heat capacity, 

high thermal conductivity and low viscosity, allow it to be used as a primary coolant for nuclear 

fusion reactors (Tokomak-type devices) and space power systems. Hence, what happens if the 

liquid contained in the annular gap between two concentric cylinders is hydrogen, helium or lithium 

instead of an ordinary conventional liquid such as water?  

Little is known on the flow behaviour and pattern formation of these liquids in Taylor-Couette 

system compared to the vast literature existing on other conventional liquids. 

On the other hand, the flow evolving in the cylindrical annulus has been studied extensively for 

more than a century, and has long been regarded as one of the fundamental problems in fluid 

mechanics. This flow problem is useful in many research areas, and is also a subject of widespread 

practical interest owing to its direct connection with engineering applications including, the drilling 

of oil wells, turbo machinery, combustion, electric motors, chemical mixing filtration, bearing 

chambers, pumps for the oil and water industries, rotating tube heat exchangers, emulsion 

polymerization, flocculation reactors, desalination, rheology, liquid-liquid extraction, and 

biomedical. Mallock [10] and Couette [11] were the first who measured experimentally the torque 
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on the inner cylinder to determine the viscosity of water in an annular gap between two concentric 

cylinders. Later, Taylor [14] used a linear stability theory and built an experiment to predict a 

stability threshold for flow between two rotating concentric cylinders. He obtained an excellent 

quantitative agreement between analytical and experimental results. This flow system has been used 

as a benchmark for fluid mechanics since Taylor’s [14] pioneering work to investigate the transition 

from laminar to turbulent flow. Moreover, a large number of flow regimes existing in this system 

has been widely investigated by numerous researchers focusing on different aspects of the flow, and 

a sizable literature now exists dealing with this flow system (Chandrasekhar [31], Fenstermacher et 

al. [20], Diprima et al. [180], Donnelly [8], Marcus [159], Cole [118], Andereck et al. [5], Avila et 

al. [160], Martinez-Arias et al. [73], Adnane et al. [91], Tokgoz et al. [181], Froitzheim et al. [162], 

Brauckmann et al. [163], Viazzo and Poncet [182], Grossmann et al. [165], Lalaoua and 

Bouabdallah [144], Mullin et al. [166], Avgousti and Beris [183], Batra and Das [184], Baumert and 

Muller [185], Groisman, and Steinberg [186], Khayat [187]). These researchers and other concluded 

that the fluid dynamics behaviour and the transition between different flow states strongly depend 

of different flow control parameters such as the radius ratio, rate of acceleration, the aspect ratio and 

the Taylor number. In addition, the Taylor-Couette system has been used to understand the behavior 

of non-classical fluids such as liquid helium. Kaptiza [188] was the first who performed 

experiments on helium between concentric cylinders. The first attempt to calculate the 

hydrodynamic stability of the flow of liquid helium in the Taylor Couette system was made by 

Chandrasekhar & Donnelly [189]. Subsequently, some experimental and theoretical studies have 

been conducted on helium Taylor-Couette flow to examine various aspects of the flow from the first 

appearance of quantized vortices to turbulent flow (Donnelly [190], Donnelly and Lamar [191], 

Barenghi and Jones [192], Swanson and Donnelly [193], Barenghi [194], Henderson and Barenghi 

[195], Henderson et al. [196], Henderson and Barenghi [197], Donnelly and  Barenghi [198], 

Henderson and Barenghi [199], Henderson and Barenghi [200], Henderson and  Barenghi [201]). It 

is interesting to mention that the physical properties of helium liquid vary dramatically with 

temperature. Helium is a gas at ordinary room temperatures. To transform helium into a liquid it is 

necessary to cool it to about - 269.15 °C. If the temperature T is reduced further, at the critical value 

Tλ ≈ -271.15 °C (Lambda point transition or critical triple points), a phase transition takes place, 

quantum effects become important and liquid helium acquires the remarkable property of 

superfluidity. Helium II is considered to be made up of two completely mixed components: the 

normal fluid and the superfluid (Barenghi and Jones [192], Henderson and Barenghi [200]). The 

former is similar to a classical Navier–Stokes viscous fluid, whereas the latter is similar to a 

classical Euler inviscid fluid. In this numerical study, we only concerned with higher temperature 

liquid phase, which occurs for T> Tλ (known as helium I), and neglect the lower temperature liquid 
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phase (known as helium II), which exists in the range -273.15 °C < T < Tλ. It is worthy emphasizing 

that progress in the non-classical fluids problem has been slower than for classical fluids, which 

may be due to flow visualisation problems at such low or high temperatures, hence, we have much 

less information available than in the vast classical Taylor-Couette literature. 

Moreover, the appearance threshold of the Taylor vortex flow in the cylindrical annulus has been, 

and still is, widely studied whether from a numerical or experimental point of view. Indeed, the 

triggering threshold of this instability, as well as the cellular patterns formation, are strongly 

dependent on the geometry of problem, but also on the nature of the fluid used. While a large 

number of studies are focused on the influence of geometric or dynamic parameters on the flow 

behaviour between two coaxial cylinders, our interest focuses on the effect of the working fluids on 

the onset of Taylor vortices, when the inner cylinder rotates and the outer one is stationary. The 

working fluids used for numerical calculations are water, hydrogen, helium, and lithium, which are 

taken in their liquid states. To our knowledge this numerical investigation provides some new 

results on behaviour of liquids (in particular hydrogen and lithium) and the formation of patterns in 

a narrow rotating annulus that are not so extensively studied in the open literature. A proper 

understanding of Taylor-Couette flow using different working fluids strengthens our understanding 

of the appearance of different instabilities as well as the laminar-turbulent flow transition. 

V.2 CFD modelling 

V.2.1 Fluid proprieties, flow configuration and control parameters  

The flow system sketched in Figure V.1 is composed of two coaxial cylinders. The inner cylinder 

rotates at constant angular velocity Ω1 and the outer cylinder and the top and bottom plates are 

stationary. The fluid motion is mainly governed by three flow control parameters: The radius ratio η 

= R1/R2=0.909, its aspect ratio Γ = H/d=30, and the Taylor number which is used to describe the 

ratio of inertial to viscous forces and this is commonly defined  as Ta = (Ω1R1d/ ν ) (d/R1)1/2, where 

H, d, R1, R2 and ν are the height of the of the fluid column, the gap width, the inner and outer radii, 

and the kinematic viscosity, respectively. Noteworthy that the rotation rate of the inner cylinder was 

increased quasi-steadily, from rest up to the onset of Taylor vortex flow. The physical properties of 

the working fluids used in this study are given in table V.1. 

Table V.1: Properties of the working fluids (taken in liquid state) 

                Proprieties          

    Liquids 

ρ (kg/m3) ν (m2/s) T (°C) 

 

Pressure 

(atm) 

Water 998.2 10-6 25°C 1 

Hydrogene [202, 203] 70.85 0.188 10-5 -253°C 1 

Helium [204, 205] 124.74 0.0253 10-6 -269.5 °C 1 

Lithium [206, 207, 208] 516 1.25 10-6 180.54°C 1 
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Figure V.1: Sketch of the Taylor-Couette system. 

V.2.2 Governing equations, meshing and numerical schemes 

The equations of the continuity and momentum for an incompressible viscous flow are written as: 

                                         0div v                                                   (V.1) 

                                                       vpvv
v
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 μ).ρ(

t
ρ                               (V.2) 

Where (U, V, W) are the physical components of the velocity v in cylindrical coordinates (r, θ, z). 

P, ρ, t, and ν denote pressure, density, time and kinematic viscosity of the fluid, respectively. For 

the flow system, all the variables are set to zero at the walls except for the tangential velocity V, 

which is set to Ω1R1 on the inner rotating cylinder and zero on the outer stationary cylinder. A 

linear profile for the mean tangential velocity component is imposed at the inlet as the aspect ratio 

of the cavity is quite weak. Therefore, V varies linearly from Ω1R1 on the inner wall up to zero on 

the outer wall. In addition, no-slip boundary conditions for the velocity are applied at all surfaces. 

The boundary conditions used in this study are summarized as follow:  

 For the cylinders (inner and outer): 

1. V = R 1 Ω 1 and    U = W =0 at r = R1 

2. V = U = W =0 at r = R2,    

 For the end-caps (top and bottom plates):  U = V = W =0    at   Z= 0, Z=H 
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  The cylindrical annulus is divided into equally spaced intervals in the azimuthal (Nθ = 252) and 

axial (Nz = 252) directions respectively, while the mesh is clustred in the radial direction with a 

number of cells Nr = 32. It is important to note that the grid sizes near the inner and outer cylinder 

walls have been refined because there is a high shear. Furthermore, several calculations have been 

carried out to verify the influence of the grid density on the numerical results, i.e, increasing the 

grid resolution until further increases in resolution did not improve the solutions (mesh 

dependence). The converged solution from the coarse mesh was employed as an initial solution for 

the medium mesh, and likewise the converged solution of the medium mesh was used as an initial 

solution for the finer mesh.  

The numerical simulations were performed using the CFD code Ansys Fluent based on the finite 

volume method. The pressure has been discretized with the second order scheme. The second order 

upwind scheme was applied for the momentum equations. The velocity-pressure coupling was 

linked via the PISO algorithm (Pressure Implicit with Splitting of Operator). In addition, the 

relaxation factors have been carefully adjusted to ensure the convergence criteria which are based 

on the residual values. The solution is assumed converged when all standardized residuals are less 

than 10-4.  Note that the obtained numerical results, concerning the onset of Taylor vortices for an 

ordinary fluid, are carefully validated and compared against experimental work of Adnane et al. 

[91] for the same flow control settings. A good agreement was found between CFD results and the 

experimental data, as shown in Figure V.2. The computed critical Taylor number in the current 

study, for an ordinary liquid, agrees quite well with experimental work of Ref. [91]. 

 

 

 

 

 

 

 

 

 

 

                      Present numerical simulation (Tac1=42.4)                Experimental work of Ref. [91] (Tac1=42) 

Figure V.2: Comparison between our computational result and the experimental work of Adnane et al. [91] for the 

onset of Taylor vortices for a classical fluid. 
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V.3 Results and discussion 

The fluid dynamic behaviour between two concentric cylinders, for different working fluids, is 

presented in terms of distributions of wall shear stress and skin friction coefficient, as illustrated in 

Figure V.3 and V.4.  The shear stress w at the wall of the outer cylinder is defined as: 

 

 

When the angular velocity of the inner cylinder is increased quasi-statically from the rest, the flow 

system makes a transition from laminar Couette flow to Taylor vortex flow. For low Taylor number 

the flow is laminar, the viscous force dissipates the centrifugal force induced by the rotation of the 

inner cylinder. With increasing further, the angular velocity of the inner cylinder, the driving force 

overcomes the viscous force resulting the onset of the first instability, which is known as Taylor 

vortex flow. More accurately, it is the no-slip condition at the walls of the cylinder that provides the 

driving force by producing a shear stress on the fluid between the cylinders. The Taylor vortex flow 

is a steady axisymmetric flow and has full rotational symmetry in the azimuthal direction, in which 

periodic toroidal rolls are piled in the axial direction along the outer cylinder. It is worth noticing 

that for water and helium, 13 axisymmetric toroidal rolls are appeared in the Taylor Couette system, 

whereas 12 and 14 axisymmetric toroidal rolls are observed for hydrogen and lithium, respectively, 

as shown in Figure V.3.  

On the other hand, the flow behaviors for different working fluids are characterized by the skin 

friction coefficient which is a dimensionless parameter defined as a ratio of shear stress at the wall 

of the outer cylinder and the dynamic pressure according to the following relationship:   

                                                               

For all working fluids treated here, the Cf has an axial symmetrical distribution with respect to the 

center of cylinder. Furthermore, for hydrogen, helium and water the maximum of Cf occurs in the 

vicinity of the end-walls and in the central region of the outer cylinder, while it is minimum (close 

to 0) at the end-walls. However, the bahaviour of lithium is completely different, i.e., the maximum 

of Cf is observed at the end-caps, and the minimum is in central zone of the outer cylinder. In 

addition, the magnitude of skin friction coefficient increases drastically for the case of lithium 

compared to the other working fluids. The amplitude of Cf for lithium is doubled with respect to 

water. The Cf for lithium is also intensified by factors of nearly 112 and 36 compared to hydrogen 

and helium, respectively, as shown in figure V.4. It is important to note that the flow control 

parameters were the same for all simulation. In addition, we found that the critical Taylor number is 

the same for the four cases (Tac1=42.4), however, the critical angular velocity of the inner cylinder 
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varies from one fluid to another, which is due to the variation of the kinematic viscosity and 

density. 
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                             Lithium                                                       Water 

 

Figure V.3: Axisymmetric Taylor vortex flow in a cylindrical annulus for different working fluids/ wall shear stress on 

the outer cylinder for Tac1=42.4. 

 

 

 

                    

 

 

 

 

 

                   

 

 

 

 

Figure V.4: Evolution of the skin friction coefficient for different working fluids at Tac1=42.4. 
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Figure V.5 shows the flow pattern in the annular gap between two coaxial cylinders represented by 

the streamlines in (r, z) plane for different working fluids. In order to understand the formation 

mechanism of the cellular patterns in the Taylor-Couette flow for different working fluids, our 

calculations begin with a low rotation rate of the inner cylinder until the appearance of the first 

instability. The flow system is terminated axially by two rigid, non-rotating plates forming a large 

cell at each end of the flow system, termed as Ekman's cell. The presence of fixed end walls induces 

an Ekman circulation in which the fluid moves radially inward near the upper and lower ends of the 

flow system and moves radially outward in the middle. This effect is caused by the no-slip 

boundary conditions; the centrifugal force pushes the fluid outwards at the centreline, where the 

braking effect of the end plates is least, hence, the fluid near the end plates moves inwards to 

conserve mass. By increasing further the Taylor number, the Ekman's cells induce Taylor vortices 

that build up gradually from the end plates and piled axially in the fluid column. Due to the effects 

of the fixed endplates, the Ekman's cells at the top and bottom of the flow system are elongated 

more than the Taylor vortices in the central region. Note that the formation mechanism of Taylor 

vortices for hydrogen, helium and lithium is the same as that of ordinary fluid such as water.  

Moreover, the cellular patterns in the central region are flat and perpendicular to the cylinder axis, 

and each pair of counter-rotating vortices forms a wave. For water and helium, there are 24 Taylor 

vortices (12 waves), while for hydrogen the number of vortices decreases to 22 (11 waves), and for 

lithium the number of vortices increases to 26 (13 waves). 

In addition, the numerical results obtained here show significant topological changes on the shape 

of the Ekman cell. For hydrogen liquid, the Ekman vortices are substantially elongated to about 

1.6d and the Taylor vortices are also elongated, so that their height is 1.2d (λ=2.4d) where λ is the 

wavelength of the vortex cell pair in units of the gap width d, which is substantially superior to the 

height of 1.001d (λ =2d) for the case of water and helium. However, for lithium liquid, the Ekman 

cells are compressed to about 1.1d thereby compressing the Taylor vortices, their wavelength 

decreases up to λ = 1.6d. 

In the axial direction the pattern is characterized by the dimensionless wave number k = 2πd/λ, and 

the dimensional k = 2π/λ. In the case of water, the critical value of the dimensionless axial 

wavenumber is kc ≈π, hence, each individual Taylor cell is approximately square, i.e. the extension 

in the axial direction is equal to the size of the gap. In the case of helium liquid, we found that 

kc→π, as in water, which it is in good agreement with the study of Barenghi and Jones [275]. 

However, for hydrogen and lithium the dimensionless axial wavenumber changes significantly, 

with kc ≈2.66 for hydrogen and kc ≈3.92 for lithium. 

A noticeable feature of the streamlines in Figure V.5 is the mixing and exchange of momentum at 

the meeting point of two adjacent vortices. It is can be seen from Figure V.5 that there is significant 
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flow mixing between adjacent vortices, with each vortex adding to the mixing region at the centre 

of a vortex pair, close to the inner cylinder and then receiving fluid from this mixing region, close to 

the outer cylinder. A similar mixing process occurs at the inflow region, between neighbouring 

vortex pairs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.5: contour plots of streamlines in (r, z) plane for different working fluids (Tac1=42.4) 
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Figure V.6 shows the flow patterns in an enclosed annulus represented by the contour plots of axial 

velocity, radial velocity and tangential velocity in the meridional plane (r, z) for different working 

fluids. 

The rotation of the inner cylinder induces a centrifugal force that moves the fluid radially outward. 

This motion is resisted by the radial pressure gradient due to the stationary outer cylinder.  When 

the Taylor number reached its critical value, the centrifugal force overpowers the radial pressure 

gradient and the system makes a transition from the laminar Couette flow regime to Taylor vortices 

regime. The first instability develops into axisymmetric cells of alternating positive and negative 

circulation, stacked axially in the fluid column, well known as a Taylor vortex flow state. 

The minima and maxima of the radial velocity (U) appear in the radial inward and outward flow 

regions, respectively. The radial velocity minima near the bottom end-surface at Z=0 is lower than 

the corresponding values in the central region which may be due to the non-slip boundary 

conditions. The tangential velocity (V) is maximum near the inner cylinder in agreement with the 

direction of rotation of the inner cylinder that drives the flow by rotating at constant angular speed 

Ω1R1, while the tangential velocity is minimum near the wall of the stationary outer cylinder. The 

angular momentum fluid is transported by the Taylor vortices from near the inner rotating cylinder 

outwardly toward the stationary outer cylinder, i.e., from Ω1R1
2 to 0.  The contour of axial velocity 

(W) shows the formation of an alternating pattern of maxima and minima in the annulus along the 

axial direction.  
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                                        Lithium                                                                  Water 

Figure V.6: Contours of the velocity components in (r, z) plane for the axisymmetric Taylor vortices obtained at 

Tac1=42.4 for different working fluids.  U (radial), V (azimuthal), and W (axial) where the red (blue) colours 

represent high (low) values of the fields. 

 

V.4 Conclusion 

This study is especially devoted to investigate the effect of working fluid on the flow behavior and 

instabilities that occur in an annular gap between two rotating concentric cylinders. The fluid 

motion was simulated using a three-dimensional CFD for incompressible viscous flow. Four fluids 

were used in the computations namely water, hydrogen, helium, and lithium. For all working fluid, 

when Taylor number increases from laminar Couette flow, Eckman's vortices develop at the end 

plates of the cylinders. These end-walls have a local effect and strongly elongate the two cells close 

to the ends. It is also found that the critical Taylor number, characterizing the onset of Taylor vortex 

flow, for the four working fluids is the same, Tac1=42.4. Furthermore, the number of toroidal rolls 

and the number of vortices for water and helium are the same, however for hydrogen and lithium 

are completely different to water and helium, which may be caused by the kinematic viscosity and 

the density of different working fluids. Therefore, we concluded that the physical properties of 

fluids play an important role on the stability of flow.   The number of vortices occurring in the 

annulus and their wavelength are varied from one fluid to another. Water and helium have the same 

behaviour, while for hydrogen and lithium show significant changes on the number and shape of 

cellular patterns. For hydrogen liquid, the Ekman cells and the Taylor vortices are substantially 

elongated. However, for lithium liquid, the Ekman cells and the Taylor vortices are compressed. 

Since there are no studies, in the previous literature, on the stability of Taylor-Couette flow using 
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lithium or hydrogen as a working fluid, this numerical study requires a deep experimental 

investigation to examine in detail the behavior of lithium and hydrogen in an annulus between two 

concentric cylinders. Thus, much more research effort is needed to broaden and deepen the 

knowledge on the flow behavior and the onset of different instabilities in the Taylor-Couette system 

using non classical fluids such as hydrogen, helium and lithium. Taylor-Couette flow will be an 

important test bed for studying the dynamics of lithium and hydrogen in much the same way as it 

has served in the study of classical fluid dynamics. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

CHAPTER VI 

 

Transition to Taylor vortex flow 
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« Scientists work from models acquired through education and through 
subsequent exposure to the literature often without quite knowing or 
needing to know what characteristics have given these models the status 
of community paradigms». 
                                                                                    
                                                                                       Thomas Kuhn 
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Results and discussion 

 

Chapter VI: Transition to Taylor vortex flow between combinations of circular 

and conical cylinders 

VI.1  Introduction 

The instability and transition of fluid flows in an annulus between two coaxial rotating bodies such 

as cylinders, spheres and cones, which is known as Taylor-Couette flow (TCF), presents a paradigm 

for experimental, theoretical and numerical studies of hydrodynamic stability as well as for the 

transition to turbulence. Further, this seeming simplicity of the Taylor-Couette system has 

tremendous interests for various applications. It is used in many area of technology such as 

filtration, tribology, wastewater treatment, biomedical, mixing processes, liquid- liquid extraction, 

rheology and bio-reaction. 

Many researchers have extensively investigated the various flow regimes existing between the 

laminar and turbulent flow and the bifurcations in the circular Couette flow (CCF) for more than a 

century. Ever since the earliest work of Couette [11], Mallock [10] and Taylor [14], the formation 

of Taylor vortices between two rotating cylinders, with either or both of them rotating, has been the 

subject of numerous investigations, which several studies have been presented with different 

geometric parameters (aspect ratio and radii ratio) in order to understand the flow behavior and 

determine a general map of the laminar-turbulent transition (Chandrasekhar [31], Coles [18], 

DiPrima et al. [180], Donnelly [8], Marcus [159], Koschmieder [1], Avila et al. [160], Lalaoua and 

Bouabdallah [144], Adnane et al. [91]). These authors and others have concluded that, when the 

inner cylinder rotates and the outer one is stationary, the onset of Taylor vortices depends on the 

radii ratio and aspect ratio of the flow system.  

In contrast, if the gap width is no longer constant, as fluid flow in the annulus between 

combinations of circular and conical cylinders, a rich variety of interesting flow modes can be 

obtained. This type of flow has the advantage that the Taylor number changes when the radii vary 

axially which may therefore produce more complex flow structures and profoundly affect the flow 

patterns. So far, the behavior of flow and the selection of the wave number for a variety of 

inner/outer non-circular cylinder arrangements have been previously explored by many authors 

(Ahlers et al. [209], Dominguez-Lerma et al.[210], Abboud [175], Paap and Riecke [211], Wimmer 

[148], Wimmer [157]). Furthermore, Cannel et al. [212] and Ning et al. [176] have presented 

experimental results on the wave number selection in a Taylor-Couette system where a section of 
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the gap was tapered from a supercritical Reynolds number to a subcritical Reynolds number. They 

found that a sufficiently slow ramp connecting the supercritical region to the subcritical region 

resulted in the selection of a unique wavelength. They also shown that even very small opening 

angle of the outer cylinder wall could lead to a multiplicity of state selections. 

In addition, Noui-Mehidi et al. [213] presented numerical results of the effect of miss-alignment of 

the outer cylinder wall on the flow instability in a finite Taylor-Couette geometry. This study 

revealed that the bifurcation from a particular mode to another one occurs in a range of specific 

values of the opening angle of outer cylinder. 

In two relatively recent articles, Sprague et al. [178, 214] have used numerical and physical 

experiments to investigate the stability of circular Couette flow when only the geometry of the inner 

cylinder is modified or else the inner and outer radii varied axially. They have shown that the onset 

of Taylor vortices of different wavelengths can be produced simultaneously. Hence, a steady and 

unsteady vortex flows also may occur for different modifications of the circular Couette geometry.  

Savin and Kornaeva [215] have presented a mathematical model of the fluid flow in the annular 

space between inner rotating cylinder and outer stationary cone. 

More recently, Raju [216] has presented a numerical computation of the occurrence of Taylor 

vortices in a stepped cylinder configuration. He has shown that if one of the cylinders has a step 

change in radius, there can be even or odd number of vortices in the wide and narrow gap regions. 

While the flows between two rotating cylinders are examined and detailed very well both 

numerically and experimentally, the issue of the existence and nature of Taylor vortices as well as 

the wave number selection processes in the flow between combinations of circular and conical 

cylinders remain still unexplored. The main objective of the present study is to investigate, using 

CFD simulations, the effect of cylinder wall alignment on the flow behavior by opening the outer 

fixed cylinder with different angles with respect to the vertical axis. Special attention has been paid 

to the onset of Taylor vortices and the structures shape as well as the impact of the geometrical 

modification on the process of the wave number selection in order to reveal the mechanism at the 

origin of the observed structures. 

VI.2 Flow configuration and parameters 

 We consider a viscous incompressible flow between cylinder–cone combinations. The inner 

cylinder rotates with a constant angular velocity Ω1 around the vertical z-axis while the outer 

element is held stationary. The bottom and the upper surfaces are kept fixed, as illustrated in Figure 

VI.1. The opening angles of the outer cylinder are increased stepwise such that the configuration 

changed from two rotating coaxial circular cylinders toward a rotating cylinder in a stationary cone. 

The outer fixed cylinder is opened with different angles ranging from 0 until 12°, resulting in a gap 

width not perfectly parallel. 
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We note that the annular gap increases from the upper base downward when the apex angle is non-

zero. Therefore, the definition of the geometrical parameters for all cases studied above is related to 

the gap defined at the upper base, z=H, which is the same for all configurations with d0= R2-R1=5 

mm. The flow features are described by the following dimensionless parameters:  

 Aspect ratio: Γ=H/d0=20; 

 Radius ratio: η=R1/R2=0.909;                                         

 Ratio of the gap to the radius of the inner cylinder: δ=d0/R1=0.1; 

 Apex angle: 0≤ α ≤12°; 

 The Taylor number is defined at the upper base of the flow system by: 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.1: Schematic of the combined Taylor-Couette geometry. 

The flow field is presented in an axisymmetric concentric annulus configuration. The equations of 

the continuity and momentum for an incompressible viscous flow are the following: 

 

 

 

 Let (U, V, W) the physical components of the velocity u in cylindrical coordinates (r,, z). Time and 

pressure are denoted by t and p, respectively. The boundary conditions used in this study are:  

 For the cylinders: 

   V = R 1 Ω 1 and U = W = 0 if  r = R1;  

   U = V = W = 0 if r = R2;  

 For the bottom and upper surfaces: 

 U = V = W =0    if    Z = 0 and H 

The working fluid used during the numerical calculations is water, which has a density of 998.2 kg/m3 

and viscosity of 100.3×10-5 kg/m.s at temperature of 25 °C. The angular velocity of the inner cylinder 
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is increased quasi-steadily, from rest up to the occurrence of the Taylor vortices. The boundary 

condition on the solid wall is no slip condition.  

VI.3 Numerical modeling 

The 3D geometries are meshed with hexahedral cells (structured mesh). The mesh size is uniform in 

the axial and azimuthal directions. The grid is stretched near both walls in the radial direction where 

there is a high shear.   

The Navier-Stokes equations have been solved using the CFD code, Ansys Fluent, based on the 

finite volume formulation. The discretization scheme chosen for the pressure is the second order 

model and the momentum equations have been discretized with Third order MUSCL scheme, while 

the Pressure-Implicit with Splitting of Operators, PISO algorithm, pressure-velocity coupling 

scheme has been used for the calculations. The convergence criteria used to terminate the 

simulations was 10−6 for continuity and three velocity components.  

In order to validate our numerical calculations as well as verifying the correctness of CFD code, we 

have firstly examined the classical Taylor Couette flow (α=0). The critical Taylor number computed 

for this study is 41.6, which is close to the value of 41.2 reported by Fenstermacher et al.[20] for the 

same geometrical parameters, as illustrated in Figure VI.2. Therefore, the obtained numerical results 

agree very well, both qualitatively and quantitatively, with the experimental result within 1%. 

 

 

 

 

 

 

                                      a)                                                           b) 

Figure VI.2. Time-Independent Taylor vortex flow/ Classical case (α=0) with: (a) Our computed result (Γ=20 and 

η=0.9) and (b) Experimental result of Fenstermacher et al. [20] (Γ=20 and η=0.877). 

 

VI.4 Main numerical results 

VI.4.1 Evolution of the critical Taylor number 

Figure VI.3 shows the variation of the Taylor number versus the opening angle of the outer 

cylinder. It is noteworthy that the critical Taylor number, characterizing the occurrence of Taylor 

vortices, decreases when the apex angle increases. For the classical case, α=0, Tac1=41.6 and when 

the value of α reaches 12° the Tac1 decreases rapidly up to 20.3. Thus, the onset of Taylor vortex 

flow is substantially advanced with respect to nominal case. We note that the decreasing of Taylor 

Axisymmetric toroidal 

rolls 



Chapter VI                                                                                                                     University	A.	Mira	of	Bejaia 

 

83 
 

number is observed for the entire range of the α from 20’ to 12°. Therefore, the opening angles of 

the outer cylinder have a destabilizing effect on the appearance of the first instability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.3: Critical Taylor number versus apex angle 

 

VI.4.2 Flow patterns 

Figure VI.4 shows the Taylor vortices structures represented by streamlines in (r, z) plane for 

several α. 

At α= 0, when the Taylor number reaches the critical value, a series of periodic vortices are 

developed between the concentric cylinders and are stacked in the axial direction, known as Taylor 

vortices. For this case, there are 20 cells of equal size and intensity inside the annulus, each vortex 

rotating in the opposite direction with the adjacent vortices. Thus, the constant gap guarantees the 

same centrifugal forces at every point in the z-direction. 

For α≠0, it is observed that, when the apex angle increases, the number of cells decreases from 20 

up to 8 at α=12°. The number of vortices filling the entire gap is inversely proportional to the 

opening angle of the outer fixed cylinder. For α= 0 (CCF), 20 vortices are established, whereas 18, 

16, 14, 12, 10 and 8 vortices are observed for α=20', 2, 4°, 6°, 8°, 10° and 12°, respectively. 

Furthermore, the Taylor vortices are deformed, having larger differences in their axial extension. 

These vortices are distinct from those found in a classical Taylor-Couette system (CCF) in two 

respects. First, the vortices translate in the direction of increasing gap width. Second, neighboring 

clockwise and counterclockwise vortices are not reflectively symmetric: vortices in the wide gap, 

which have a large-scale circulation, are stronger and larger than those in the narrow gap. The 

variation of the vortices size may be due to the non-constant annular gap, i.e. the centrifugal force is 

stronger in the larger than in the smaller part of the gap, as can be seen Figure VI.5 showing the 
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 0    20’    2°          4°                  6°                      8°                          10°                              12°      

variation of axial wavelength λ (distance between two cells) versus apex angles. The size of the 

bottom vortex is greater than the upper vortex. The effect of the growing bottom vortex could be 

seen clearer in the case of higher values of α. It should be mentioned that the wavelength and the 

number of the vortices between the inner rotating cylinder and the fixed outer conical cylinder can 

be changed by changing the angles of conic. Therefore, the development and the behavior of the 

Taylor vortex flow strongly depend on the opening angle of the outer cylinder. This result could 

provide useful guidance for the design and optimization of semi-batch Taylor-Couette devices. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.4. Taylor vortices for different apex angle / Streamlines in (r,z) plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.5: Variation of axial wavelength versus apex angle. 
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VI.4.3 Formation mechanism of Taylor vortices  

For =0, the classical Taylor-Couette flow system, the formation mechanism of Taylor vortices was 

well known (Czarny et al. [22]). As Ta increases from the laminar Couette flow, Ekman’s cells 

develop at the ends of the cylinders. A further increase in angular velocity leads to the beginning of 

the onset of Taylor vortices. Then these vortices rapidly join at the center of the cylinder at Tac1 = 

41.32.  At steady state, there are 20 cells of equal size and intensity inside the annulus, each vortex 

rotating in the opposite direction with respect to the adjacent vortex (counter-rotating). 

Modifying Taylor-Couette flow by replacing right outer cylinder by conical cylinder, ≠0, a large 

vortex near the bottom wall and one circulation cell are established within the gap for subcritical 

Taylor number at Ta=3.5. As the angular velocity is further increased, we observe the development 

of a pinch within the large vortex at Ta=7.6. The circulation in the closed streamlines of the pinch 

always has the same sign as that in the large basic vortex. Although the pinch has a strong radial 

flow, the closed streamlines in the pinch are not separated from the large basic vortex by a radial 

inflow or outflow boundary. Regions with and without vortices may be observed within a gap for 

Ta=13.4. With a further increase of the Taylor number more vortices, with variable sizes, will be 

added in the direction of the smaller gap. It is interestingly worth noticing that the Taylor vortices 

can only appear through the process of pinch-detachment, as it is demonstrated by figure VI.6 for 

=12°. This flow pattern is caused by the different centrifugal forces, which are at a constant radius 

stronger in the larger than in the smaller part of the gap. Therefore, it is found numerically that the 

size of the vortices is depending on the opening angle of the outer conical cylinder. The result of 

this is that the gap width varies in height, and the Taylor vortices then vary in size, being large 

where the gap is wide and small where the gap is narrow. 
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Figure VI.6: Formation mechanism of Taylor vortices for an apex angle =12°. 

 

VI.4.4 Tangential velocity distribution 

Figure VI.7 shows the axial distribution of the tangential velocity plotted in dimensionless form for 

different apex angles. These quantities are calculated along a middle line from the midpoint of the 

bottom end cap to the midpoint of the top endplate in the (r, z) plane. 

It is clearly shown that, when the apex angle increases, the magnitude of tangential velocity 

increases at the larger than at the smaller part of the gap. In the larger part of the gap the fluid 

moves outwards, then down along the conical shell and finally back towards the straight rotating 

cylinder. The constant radius of the inner cylinder guarantees the same tangential velocity at every 

point of its surface (=0). However, the non-constant gap width leads to the variation of tangential 

velocity, which has a large radial extension at the wider than at the narrower part of the gap, as 

illustrates in, figure VI.7 for ≠0. The size of the cells is not uniform over the whole axial length 

and increases with  from one angle to another. 

These flow patterns may be due to the interaction between the boundary layer formed on the inner 

cylinder surface and the axisymmetric toroidal rolls; toroidal Taylor vortices. The vortices induced 

by the boundary layer will cause the stretching of toroidal Taylor vortices along the axial direction. 

Therefore, the toroidal Taylor vortices are elongated in the axial direction so that the number of 

vortices is reduced. The axial profile of the tangential velocity along the midline of the gap width 

decreases with increasing axial coordinate.  
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                                           α=10°                                                                 α=12° 

Figure VI.7: Evolution of the tangential velocity for different apex angles.       outflow and          inflow. In each figure, 

the left presents the dimensionless tangential velocity distribution, and the right illustrates its contour in (r,z) plane. 

 

VI.5 Conclusion 

In this paper, we have presented numerical calculations of Taylor-Couette flow where the inner 

cylinder is a regular straight cylinder, but the outer cylinder has a tilted, conical shape. The 

calculations are carried out with a CFD code, Ansys Fluent, when the inner cylinder rotates with a 

constant angular velocity while the conical outer cylinder is stationary. The apex angle between the 

inner cylinder and the outer cone is varied between 0 and 12 degrees. Computations for the onset of 

Taylor vortex flow in the classical configuration with straight cylinders show good agreement with 

experimental data. For the case of a conical outer cylinder, numerical results show a decrease in the 

critical Taylor number for the onset of the first instability along with the number of vortices with 

the apex angle. Measurements of the axial extension of the vortices show linear decrease with 

decreasing width of the gap for which the gap width varies in height, and the Taylor vortices then 

vary in size, being large where the gap is wide and small where the gap is narrow. 
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Stability of a conducting fluid contained 

between two rotating spheres subjected 

to a dipolar magnetic field 
 

 

 

               «Half of science is asking the right questions» 
                                                                                  
                                                                                        Roger Bacon 
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Results and discussion 

 

Chapter VII: Stability of a conducting fluid contained between two rotating 

spheres subjected to a dipolar magnetic field 

 

VII.1 Introduction 

The  flow  behaviour in an annulus between two  concentric  rotating  spheres, termed spherical 

Couette flow (SFC), has a major  interest  in  many branches  of  physics  and  technology  where  

centrifugal force  plays  a  dominant  role. This flow configuration generates a various flow patterns 

during the transition to turbulence, the study of which is an important part of hydrodynamic 

stability theory. This flow geometry can be considered as a combination of a cylindrical Taylor 

Couette system near the equator and two parallel disks in the pole region. A rich variety of flow 

patterns and instability mechanisms occurred during the laminar-turbulent transition as the 

Reynolds number is increased quasi-statically. Numerous investigations, either numerically and/or 

experimentally, have been carried out on spherical Couette flow, for different ranges of Reynolds 

number and gap widths, in order to understand the flow behaviour and determine a general map of 

the laminar-turbulent transition. Thus, a large variety of interesting flow modes has been identified 

by several authors ( Wimmer [217], Marcus and Tuckerman [169], Nakabayashi et al. [146], Bühler 

[172], Yuan [151], Lalaoua and Bouabdallah [153]). 

On the other hand, applying a magnetic field on this flow problem, termed MHD spherical Couette 

flow, crucially affects the flow structures and the occurrence of instabilities, which can radically 

alter the flow patterns. Furthermore, the transitional phenomena encountered in magnetized 

spherical Couette flow are of fundamental relevance for the understanding of global processes in the 

planetary atmospheres, accretion discs and oceanic circulations as well as in astrophysical and 

geophysical motions.  

The rotating spherical Couette flow under an imposed magnetic field has been studied, numerically, 

for the first time by Hollerbach [170]. He showed that the insulating surfaces give a shear layer, but 

conducting walls yield a super rotating jet, i.e., a zone of fluid rotating faster than either boundary. 

Later, many researchers have extensively studied this problem for a variety of imposed magnetic 

fields (axial and/or dipolar) and different boundary conditions, i.e., insulating or conducting walls. 
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Among these are Hollerbach [218], Hollerbach and Skinner [219], Schmitt et al. [220], Nataf et al. 

[221], Travnikov et al. [222], Gissinger et al. [223], Kaplan [224], Lalaoua and Bouabdallah [225]. 

Numerical studies of Dormy et al. [226] and Hollerbach et al. [227] highlight the nature and 

structure of the flow that appear when the magnetic field lines are not parallel to the rotation axis. In 

addition, the MHD spherical Couette system has also been proposed as a model to produce a 

dynamo (Cardin et al. [228], Kelley et al. [229], Sisan et al. [230]). 

The main purpose of this paper is to investigate numerically the effect of an imposed dipolar 

magnetic field on the behaviour of spherical Couette flow, when the inner sphere rotates freely 

about a vertical axis passing through its centre and the outer one is kept stationary, and where liquid 

sodium is used as conducting fluid. The calculations are done with a CFD software package, Ansys 

Fluent, for a wide range of Hartmann number (Ha), and a fixed Reynolds number characterizing the 

first instability. This flow problem has relevant applications in geophysical and astrophysical, where 

configurations similar to MHD spherical Couette flow are often encountered. 

VII.2 Numerical modeling 

Here, we consider the flow of an electrically conducting fluid confined in an annular gap between 

two concentric spheres of inner radius R1 and outer radius R2, in a dipolar magnetic field. The inner 

sphere rotates while the outer one is at rest. Liquid sodium of kinematic viscosity υ=7.4×10-7 m2/s, 

density =927 kg/m3 and electrical conductivity σ= ()-1 =107 Ohm/s. m (where η and  are, 

respectively, the magnetic diffusivity and magnetic permeability) was used as working fluid, as 

shown in figure VII.1(b). Hereafter we assume that ρ, ν,  and  are constant.  The geometry is 

fully determined by the gap width β = (R2-R1)/R1 which has been kept constant and equal to 0.18 

throughout this study. Both outer and inner spheres are considered insulating. There are two 

dimensionless numbers that completely determine the flow behaviour: the Reynolds number and 

Hartmann number defined as follow: 

 

                                               

                                   

 

                                                          

 Points in the domain are defined by the spherical coordinates (r, θ, φ) with: 

 Radial position : ]R,R[r 21  with 21 RrR   

 Meridional Position :    ,0  with  0  

 Circumferential position :   2,0  with  20   
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The equations governing incompressible hydromagnetic flow are given as follow      

  

       

 

        

   Let (u, v, w) the physical components of the velocity V in cylindrical coordinates (r,, z). Time 

and pressure are denoted by t and P, respectively. B is the magnetic field, which contains the 

imposed dipolar magnetic field Bd defined as: 

 

 

 

B0 is the intensity of the field at the equator on the outer surface of the fluid (r = R2). 

The boundary conditions used in this study are:                                                              

 

                                                           

 

 

 

 

 

No-slip boundary conditions for the velocity are applied at all surfaces, hence, u =v= w = 0 applied 

at the boundaries r = R1 and r = R2. Therefore, all the near-wall regions are explicitly computed.  

The spherical annulus is divided into equally spaced intervals in the meridional (θ) and 

circumferential (φ) directions, and is clustered in the radial (r) direction in order to refine the grids 

near the walls of the spheres where there is a high shear, as shown in Figure VII.1(a). In this study, 

several calculations have been performed, to see the impact of the grid density on the numerical 

results (mesh dependence). The converged solution from the coarse mesh was interpolated for use 

as an initial solution for the medium mesh, and likewise the converged solution of the medium 

mesh was used as an initial solution for the finer mesh.  
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          a) Grid discretizing the computational domain           b) Spherical Couette geometry 

FigureVII.1: Sketch of spherical Couette flow system. 

The numerical results are obtained using the simulation code, Ansys Fluent, based on the finite 

volume method. The discretization scheme chosen for the pressure is the second order model. The 

third order MUSCL scheme was used for the moment equations. The velocity-pressure coupling 

was linked using the PISO algorithm (Pressure Implicit with Splitting of Operator). In addition, the 

time step, the maximum number of iterations per time step, and the relaxation factors need to be 

carefully adjusted to ensure the convergence criteria which are based on the residual values. The 

solution is assumed converged when all standardized residuals less than 10-4.  

The validation of our calculations for the onset of Taylor vortices, first instability, was made with 

the experimental and theoretical work of Bühler [149] for the same geometrical parameters. A good 

agreement between our numerical simulation and the study of Bühler [149]has been found, as 

illustrated in figure VII.2. 

 

 

 

 

 

 

 

 

 

 

a) Experiment work of Bühler [149]                                     b) Our numerical result 

Figure VII.2: First instability in nonmagnetic spherical Couette flow/ Wall shear stress on the outer sphere. 
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    Ha=0                                                Ha =25                                                Ha= 60      

   Ha=180                                                 Ha= 410                                         Ha=600          

VII.3 Main Results  

 VII.3.1 Flow patterns 

Figure VII.3 shows the contours of the pressure field on the outer sphere for several Hartmann 

number and for a fixed critical Reynolds number, Rec1=980. We have firstly simulated spherical 

Couette flow without an imposed magnetic field, Ha=0, in order to highlight the first instability. For 

this case, the Reynolds number was gradually increased, from rest until the appearance of Taylor 

vortices. At low Reynolds numbers, the laminar basic flow is a steady axisymmetric, unique and 

equatorially symmetric yielding a homogeneous movement throughout the fluid in the absence of 

any disturbance. As the angular velocity of the inner sphere is increased further, two steady rolls 

occur, one on each side of the equator representing the first stage of laminar-turbulent transition at 

Rec1=980. However, when the rotational Reynolds number of the inner sphere is fixed and a 

magnetic field is applied to this hydrodynamical state, additional magnetohydrodynamic effects are 

generated. As illustrated in figure below, the inhibiting role of the magnetic field; the rolls at the 

equator move toward the pole when the Hartmann number is further increased.  This flow mode is 

strongly damped by the applied field.  
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     Ha=1280                                         Ha =1800                                          Ha= 2200             

        Ha=2800                                           Ha=4100                                      Ha= 5000                    

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

Figure VII.3: Flow patterns for different Hartmann number at fixed Reynolds number/ Pressure field. 

VII.3.2 Tangential velocity distribution 

Figure VII.4 shows the tangential velocity distribution at a fixed Reynolds number Re=980, and 

Hartmann number increasing from 0 up to 4600. The velocity profiles are plotted in dimensionless 

form in which the tangential velocity is divided by the surface speed, and the radial distance from 

the wall of the inner sphere is divided by the annular gap (gap width=(r-R1)/d, where d is annular 

space between the coaxial spheres). The salient features of the numerical profiles are summarized as 

follow: 

 For the case without imposed magnetic field, Ha =0 and Re=980, the profile is 

monotonically decreasing and it is analogous to the laminar profile in classical Taylor–

Couette flow. The tangential velocity is stronger near the inner rotating sphere than at the 

outer sphere that is stationary. 

 At low Hartmann number, Ha=25, the profile is still monotonic but slightly deformed near 

the outer sphere. 

 As the intensity of the magnetic field is further increased, it is observed that the velocity 

profiles are completely deformed, having negative values in the whole annular gap. Note 

also that the tangential velocity becomes zero at the outer sphere. 
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Figure VII.4: Dimensionless Tangential velocity distributions versus Hartmann number plotted at the equator (z=0, 

θ=0 and φ=90°. 

VII.4 Conclusion 

In this work, we have presented numerical calculations of the flow behavior of an electrically 

conducting fluid in an annular gap between two rotating concentric spheres subjected to a dipolar 

magnetic field. The calculations are carried out with a CFD code, Ansys Fluent, when the inner 

sphere rotates with a constant angular velocity while the outer one is stationary. The specific case 

considered is that with a medium gap width β = 0.18 and a wide range of Hartmann number, 

ranging from 0 up to 5000. Computations for the onset of Taylor vortices in the nonmagnetic 
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spherical Couette flow, without an imposed magnetic field, show good agreement with 

experimental data.  In the case of magnetic spherical Couette flow, we have increased the Hartmann 

number for a fixed Reynolds number, and studied the resulting balance and competition between 

magnetic and inertial effects. We found that increasing the Hartmann number stabilizes the flow 

and delayed the occurrence of the Taylor vortices at the equator. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

General conclusion  
 

 

 
 
 

« Research is to see what everybody else sees, and think what nobody 
else has thought» 
 
 
 
                                                                       Albert Szent-Györgyi  
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General conclusion 

 

 

  

The study of rotating flows is currently the subject of several works and constitutes a great 

phenomenological wealth, particularly in the occurrence of different instabilities, flow structures as 

well as the successive transitions to turbulence. Moreover, seldom does a physical system, 

particularly one as apparently simple as the flow between two concentric rotating bodies, known as 

Taylor-Couette flow, retain the interest of scientists, applied mathematicians and engineers for very 

long. This flow system can be regarded as part of the large domain of the flows in rotating systems. 

Indeed, the Taylor-Couette system shows a rich variety of interesting features and allows 

quantitative experimental, theoretical as well as numerical studies. Extensions of Taylor's 

fundamental work as combination of different geometries, effect of the working fluids, additional 

forces (imposed magnetic field, imposed axial flow and oscillation of inner or outer element of flow 

system) have discovered new flow patterns and different laminar-turbulent transition scenarios. 

However, the examination of these flows remains difficult to understand because of the three-

dimensional and unsteady nature of the transition process. 

In this thesis, the flow features and the instabilities between rotating bodies and combinations of 

them are investigated numerically using the simulation code Ansys-Fluent for three-dimensional 

and incompressible flows. Special emphasis is placed on the first onset and the further development 

of instabilities.   All the bodies tested, cylinders, spheres, and cones and combination between them 

are bodies of revolutions with symmetry about the axis of rotation.  

The modeling strategy has been developed in this thesis by studying 4 different fluid flow settings: 

 Flow between two rotating sphero-cylinders (cylinders-spheres combination). 

 Effect of the working fluid confined between two rotating cylinders on the onset of Taylor 

vortices.  

 Flow between two rotating conical cylinders (cylinders-cones combination). 

 Effect of imposed dipolar magnetic field on the stability of a conducting fluid contained 

between two rotating spheres. 

Most of the results obtained can be summarized as follows: 

The first part of the results is devoted to the effect of the cylinders-spheres combinations on the 

onset of different instabilities of a fluid confined between two concentric bodies. Particular attention 

was paid to the effects of axial confinement (end caps) on the onset of axisymmetric and wavy 

vortex flows between combinations of cylinders and sphero-cylinders by the study of the interaction 
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between terminal boundaries and centrifugal instability. Our results have shown how the end walls 

significantly modify the laminar-turbulent transition scenario predicted experimentally and 

numerically in the case of infinitely long cylinders. We have shown that the different combinations 

deeply affect the flow behaviour and the appearance of the instabilities. The transition from laminar 

Couette flow to Taylor vortex flow and then to wavy vortex flow in the combined flow systems is 

substantially retarded compared to the cylindrical Taylor-Couette flow system. 

The second part of the results concerns the study of the influence of the working fluids confined 

inside an infinite aspect ratio Taylor-Couette system on the onset of cellular pattern. Four fluids have 

been used in the computations namely water, hydrogen, helium, and lithium. It is found that the number 

of toroidal rolls and the number of vortices for water and helium are the same, however for 

hydrogen and lithium are completely different to water and helium. Thus, we concluded that the 

physical properties of fluids play an important role on the stability of flow. The number of vortices 

occurring in the annulus and their wavelength are varied from one fluid to another. Water and 

helium have the same behaviour, while for hydrogen and lithium show significant changes on the 

number and shape of cellular patterns. For hydrogen liquid, the Ekman cells and the Taylor vortices 

are substantially elongated. However, for lithium liquid, the Ekman cells and the Taylor vortices are 

compressed. 

In the third part of the results, we have presented the fluid motion in an annulus between cylinder-

cone combinations. The transitional phenomena occurring in this flow are discussed under the effect 

of opening angles of the outer cylinder α ranging from 0 (classical case) up to 12°. We found that 

the first critical Taylor number, characterizing the occurrence of Taylor vortices in the flow, 

decreases drastically; the first instability mode of transition changes from Tac1=41.6, corresponding 

to the classical case to Tac1=20.3 when the apex angle reaches 12°. In addition, we shown a linear 

decrease of axial wavelength of vortices with decreasing width of the gap for which the gap width 

varies in height, and the Taylor vortices then vary in size, being large where the gap is wide and 

small where the gap is narrow.  

Finally, the fourth part of results focuses on the flow behaviour and stability of an electrically 

conducting fluid confined between two concentric rotating spheres with an imposed dipolar 

magnetic field. We found that the imposed magnetic field radically alters the flow structures leading 

to significant topological changes on the flow patterns. 

It was clear that even though great progress has been made in understanding some of the basic 

instabilities and resulting flow patterns in the Taylor-Couette system, there remains a great deal of 

work to be done. 

This study has shown that the flow regime in the annular region of concentric bodies depends on the 

end-wall conditions, working fluids, geometry of flow problem and imposed extern forces . As 
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such, it was practically impossible to cover the full parameter space in this research work. Open 

questions, and what needs to be investigated further in future are detailed as follows: 

 Is fully developed turbulence universal, or is it special in this system? 

 What is the general relationship of the Taylor-Couette system to open flows, as well as to 

flows near rotating bodies (flow around or within cylinder, sphere and cone). 

 Are the stability properties of the flow are modified if the two body axes do not coincide 

(axisymmetry of the flow system is broken)? 

 What happens if a cylinder rotates in a conical container or a cone in a cylindrical shell? 

somewhat more complicated is the case of a rotating cone in a cylinder, where neither the 

radius nor the width of the gap remains constant. 

 The present CFD work could be extended to: 

(1) A time-dependent simulation (second and third instabilities) and fully developed turbulent 

mode, 

(2) The onset of the various instabilities between different rotating bodies (cylinder, sphere and 

cone) and combinations of them, 

(3) The effect of oscillation motion on the onset of various flow modes in different rotating bodies, 

(4) The influence of boundary conditions (lobed, grooved, tailored and ramped Taylor-Couette 

system), 

(5) Flows between co and counter-rotating bodies,  

(6) Effect of the working fluids on the pattern formation and stability in a Taylor-Couette system 

using non-Newtonian fluids, 

(7) Taylor-Couette flows with axial and/or radial flow, 

(8) Flow patterns at different geometries (between two rotating pentagons, hexagons and octagons)  

(9) Transport phenomena in magnetic fluids in cylindrical, conical and spherical geometries,  

(10) Thermal convective motions in spherical Couette flow,  

(11) Superfluid Taylor-Couette flows, 

(12) Hydrodynamic behaviour of granular flow in Taylor-Couette system, 

(13) Effect of eccentricity on the stability of the Taylor-Couette flow: application to oil drilling, 

(14) Compressible Taylor-Couette flow 
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« If we are uncritical we shall always find what we want: we shall 
look for, and find, confirmations, and we shall look away from, and 
not see, whatever might be dangerous to our pet theories.» 
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Résumé 

L'étude des écoulements rotatifs fait actuellement l'objet de plusieurs travaux et constitue une grande richesse 
phénoménologique, notamment dans l'apparition des différentes instabilités, des motifs d'écoulement ainsi que de la transition 
laminaire-turbulent. Parmi les systèmes d'écoulement rotatif les plus largement utilisés, le dispositif connu sous le nom de 
Taylor-Couette, fluide évoluant dans un espace annulaire entre deux corps rotatifs, qui est surtout connu pour son rôle dans le 
développement de la théorie de la stabilité hydrodynamique. En effet, l'examen des écoulements entre deux corps coaxiaux 
rotatifs tels que cylindres, sphères, cônes ou combinaison entre eux reste difficile à appréhender en raison du caractère 
tridimensionnel et instable du processus de transition. 
Dans ce travail, les structures d'écoulement et l'apparition des différentes instabilités entre deux corps rotatifs (cylindres, 
sphères, cônes) et les combinaisons entre eux sont étudiés numériquement à l'aide du code de simulation Ansys-Fluent pour 
des écoulements tridimensionnels et incompressibles. Un accent particulier est mis sur la première apparition et le 
développement ultérieur des instabilités.  Le but de l'étude dans cette thèse est de fournir plus de détails sur les caractéristiques 
d'écoulement dans l'anneau entre les différents corps coaxiaux. Tous les corps testés, cylindres, sphères et cônes et combinaison 
entre eux sont des corps de révolutions symétriques autour de l'axe de rotation. 

La stratégie de modélisation a été développée dans ce travail en étudiant 4 paramètres d'écoulement de fluide différents : 

 Écoulement entre deux sphéro-cylindres rotatifs (combinaison cylindres-sphères). 

 Écoulement entre deux cylindres coniques rotatifs (combinaison cylindres-cônes). 

 Effet du fluide de travail confiné entre deux cylindres en rotation sur l'apparition des tourbillons de Taylor. 

 Effet du champ magnétique dipolaire sur la stabilité d'un fluide conducteur contenu entre deux sphères en rotation. 

Abstract 

The study of rotating flows is currently the subject of several works and constitutes a great phenomenological wealth, 
particularly in the occurrence of different instabilities, flow patterns as well as the laminar-turbulent transition. Among the 
most widely used rotating flow systems, the device known as Taylor-Couette, fluid evolving in an annular gap between two 
rotating bodies, which is most famous for its role in the development of hydrodynamic stability theory.  Indeed, the examination 
of flows between two rotating coaxial bodies such as cylinders, spheres, cones or combination between them remain difficult 
to understand because of the three-dimensional and unsteady nature of the transition process. 
In this work, the flow patterns and the onset of various instabilities between two rotating bodies and combinations between 
them are investigated numerically using the simulation code Ansys-Fluent for three-dimensional and incompressible flows. 
Special emphasis is placed on the first onset and the further development of instabilities. The aim of the study in this thesis is 
to provide further details on the flow features in the annulus between different coaxial bodies. All the bodies tested, cylinders, 
spheres, and cones and combination between them are bodies of revolutions with symmetry about the axis of rotation.  

The modeling strategy has been developed in this work by studying 4 different fluid flow settings: 

 Flow between two rotating sphero-cylinders (cylinders-spheres combination). 

 Flow between two rotating conical cylinders (cylinders-cones combination). 

 Effect of the working fluid confined between two rotating cylinders on the onset of Taylor vortices.  

 Effect of dipolar magnetic field on the stability of a conducting fluid contained between two rotating spheres. 

 ملخـــص

ستقرار وأنماط التدفق وكذلك تعد دراسة التدفقات الدوارة حالياً موضوعًا للعديد من الأعمال وتشكل ثروة ظاھرية كبيرة ، لا سيما في ظھور العديد من حالات عدم الا
في ، وھو سائل يتحرك في فراغ حلقي بين جسمين  Taylor-Couetteالانتقال المضطرب. من بين أنظمة التدفق الدوراني الأكثر استخدامًا ، الجھاز المعروف باسم 

سطوانات ، والذي اشتھر بدوره في تطوير نظرية الاستقرار. في الواقع ، لا يزال من الصعب فھم فحص التدفقات بين جسمين محوريين دائريين مثل الأحالة الدوران 
في ھذا العمل ، تمت دراسة طبيعة التدفق وظھور حالات عدم  .وغير المستقرة لعملية الانتقالد بسبب الطبيعة ثلاثية الأبعا الجمع بينھماأو  مخاريطأو الكرات أو ال

للتدفقات ثلاثية الأبعاد  Ansys-Fluent(أسطوانات ، كرات ، مخاريط) والتوليفات بينھما باستخدام برنامج محاكاة الدوران  في حالة استقرار مختلفة بين جسمين
 عدم الاستقرار.حالة لتركيز بشكل خاص على الظھور الأول والتطور اللاحق ليتم ا وغير القابلة للضغط.

جسام والأسطوانات الھدف من الدراسة في ھذه الأطروحة ھو تقديم مزيد من التفاصيل حول خصائص التدفق في الحلقة بين الأجسام المحورية المختلفة. جميع الأ 
 بينھا عبارة عن أجسام متناظرة حول محور الدوران.المختبرة والجمع  المخاريط والأشكال الكروية و

 :نماذج مختلفة لتدفق السوائل 4في ھذا العمل من خلال دراسة المحاكاة  إستراتيجيةتم تطوير 

  (تركيبة كروية أسطوانية).في حالة الدوران التدفق بين أسطوانتين كرويتين 

  ة أسطوانة مخروطية).(تركيبفي حالة الدوران التدفق بين أسطوانتين مخروطيتين 

  على ظھور دوامات تايلور.في حالة الدوران تأثير سائل العمل المحصور بين أسطوانتين 

  في حالة الدورانتأثير المجال المغناطيسي ثنائي القطب على ثبات مائع موصل محصور بين كرتين. 


