République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université A.MIRA de **BEJAIA**

Iniversité de Béjaïa

Faculté de Technologie

Département de Génie Electrique

Mémoire de Fin de Cycle

En vue de l'obtention du Diplôme de Master

Filière : Electrotechnique

Option : Energies renouvelables

Thème

Etude et optimisation d'un système

photovoltaïque

Réalisé par

Encadré par

M^r: Messaoud SAOUDI

M^r: Massinissa SALHI

M^{me}: D.REKIOUA

M^{me}: K.TADJINE

Année universitaire: 2016/2017 15 Juin 2017

ନା କୋତ୍ର କାତ୍ର କ

Liste des références

[1] :H.REVEES, mal de terre ; science ouverte ; éditions de seuil, mars 2003.

[2] :L.ZAROUR, étude technique d'un système d'énergie hybride photovoltaïque-éolien hors réseau, thèse de doctorat en électrotechnique de l'université de Constantine, 2010, Algérie.

[3] : F. T. Reis, D. Mencaraglia, S. Oould Saad, I. Séguy, M. Oukachmih, P. Jolinat, P.DestrueL. (Characterization of ITO/CuPc/AI and ITO/ZnPc/Al structures using optical and capacitance spectroscopy), Synthetic Metals, Vol. 138, Iss. 1-2, pp. 33-37, 2003.

[4] :R.KHEZZAR (comparaison entre les déférents modèles électriques et détermination des paramètres de la caractéristique I V d'un module photovoltaïque).revue des énergies renouvelables vol.13N°3.pp379.388.2010.

[5] :S.VIGHTTI, Systèmes photovoltaïques raccordées au réseau :choit et dimensionnement des étages de conversion , thèse doctorat en génie électrique de l'université de Grenoble.2010.France

[6] :S.MOUHADJER, contribution à l'optimisation du rendement des générateursphotovoltaïques et éoliens par l'intégration des systèmes électroniques d'adaptation à commande MPPT, thèse doctorat en énergies renouvelables de l'université de Tlemcen, 2014, Algérie.

[7] :S.AISSOU, M. ZINET (identification et caractéristiques d'un systèmephotovoltaïque), mémoire de master, université AbdArahmane MIRA de Bejaia, 2012, Algérie.

[8] :M.ALINE (Micro capteurmagnétique de mesure de courant et traitement intégrée), thèse institut polytechnique de Grenoble, 2009.

[9]:F.BRAYAN, simulation of grid-tied building Integrated photovoltaic systems. M.S Thesis. Solar energy, laboratory, university of Wisconsin, Madison, 1999.

[10]:W.L.DE SOTO, improvement and validation of a model for photovoltaique array performance M.S Thesissolar energy laboratory. University of Wisconsin. Madison, 2004.

[11]:T.U.TOWNSED (A Method for estimating the long term performance of direct coupled photovoltaic systems) M.S Thesis. Solar energy, laboratory, university of Wisconsin, Madison, 1989.

[12] :M.Miwa, S.Yomanaka, H.Kawamura and H.Ohno(Diagnosis power output lowering of PV array with(-dI/dV)-V Characteristic presented at the photovoltaic energy conversion, conference record of the 2006 IEE 4th word conference on Waikoloa, HI, 2006.

[13] : A. Maroun (Micro capteur magnétique de mesure de courant et traitement integer) these institut polytechnique de gronoble, 2009.

[14] :http:/sine.ni.com/nips/cds/view/p/lang/fr/lind/14128.

[15]:A.Chermetti, O.Boukli-Hacéne, S.Mouhadjer, desion of library of components for autonoms photovoltaic system under matlab/simulink), International journal of computer applications (0975-8887), volume 53-no.14, September 2012.

[16]:F.COTTET, lab VIEW, programmation et application, edition 2001.

[17]: I. Séguy, R. Mamy, P. Destruel, P. Jolinat, H. Bock, « Photoemission study of the ITO/triphenylene/perylene/Al interfaces », Applied Surface Science, Vol. 174, Iss. 3-4, pp. 310- 315, 2001.

[18]: R. Meseenger, J. Ventre, « Photovoltaic systems Engineering », CRC Press, 1999.[19]:http://sine.ni.com/cds/view/p/lang/fr/nid/14128.

Remerciements

Le travail présenté dans ce mémoire a été réalisé au sein du laboratoire L.T.II de l'Université Abderrahmane Mira de Bejaia.

Tout d'abord, nous aimerions remercier dieu le tout puissant, de nous avoir donné la force et la patience de pouvoir mener ce travail à terme.

Nous adressons nos plus sincères remerciements à madame D.REKIOUA, Professeur à l'université de Bejaia d'avoir accepté et pris le temps d'être rapporteur de ce travail.

Nous sommes très sensible à l'ambiance conviviale, à la disponibilité et au soutien que nous avons pu avoir au prés de Melle K.TADJINE et nous tenons à remercier aussi N.MEBARKI ainsi que toute l'équipe du laboratoire L.T.II de l'Université Abderrahmane Mira de Bejaïa.

Nos vifs remerciements aux membres de jury qui ont accepté de juger notre travail, nous sommes très honorés.

Nos sincères gratitudes s'adressent à nos deux chères familles; sans leurs encouragements permanents et leur soutien moral nous n'arriverons pas la ou nous sommes. Qu'ils trouvent dans ce manuscrit toutes nos reconnaissances.

Dédicace

Au nom de Dieu le Miséricordieux

Je dédie ce travail à :

Mes très chers et précieux parents qui m'ont toujours soutenu, et à l'intérêt qu'ils ont

Porté pour mes études, je ne les remercierai jamais

Assez, pour touts ce qu'ils m'ont fait.

Que dieu les protège.

A mes très chers frères

Mon frère ami Nounous

A mes sœurs Dida et Baya et son conjoint

A mon très cher neveu on lui souhaitant bonne naissance

A mes grands parents et leurs soutien et encouragements

A mon oncle et mes cousins (Mouloud, Sadek, Abdelkader)

A toute ma famille

A mes chers amis(es) de prés ou de loin

A tout le personnel du laboratoire de recherche L.T.II

A mon frère binôme Messaoud

Génie électrique de Bejaia

A toute la promotion génie électrique 2016/2017

S.Massinissa

Dédicace

Au nom de Dieu le Miséricordieux

Je dédie ce travail à :

Mes très chers et précieux parents qui m'ont toujours soutenu, et à l'intérêt qu'ils ont

Porté pour mes études, je ne les remercierai jamais

Assez, pour touts ce qu'ils m'ont fait.

Que dieu les protège.

A mes très chers frères

Mon frère ami Layachi

A mes sœurs Ibtissam, Samiha et leurs conjoints

Ames très chères nièces Nourhan et Ilianna

A la mémoire de mes grands parents.

A toute ma famille.

A mes chers amis(es) de prés ou de loin

A mon frère binôme Massi.

A tout le personnel du laboratoire de recherche L.T.II

Génie électrique de Bejaia.

A toute la promotion génie électrique 2016/2017

S.Messaoud

Liste des figures

Liste des figures

Chapitre I

Fig I.1 Réponse spectrale d'une cellule PV	03
Fig I.2 Schéma explicatif de l'effet photovoltaïque	04
Fig I.3 Jonction P-N dans une cellule photovoltaïque	05
Fig I.4 Cellule photovoltaïque en silicium mono-cristallin	06
Fig I.5 Cellule photovoltaïque en silicium poly-cristallin	06
Fig.I.6 Cellule photovoltaïque en silicium amorphe	07
Fig I.7 Caractéristique courant-tension d'une cellule photovoltaïque réelle	
Fig I.8 Caractéristique puissance-tension d'une cellule photovoltaïque réelle	09
Fig I.9 Influence de l'éclairement sur la caractéristique $I_{pv}=f(V_{PV})$	10
Fig I.10 Influence de la l'éclairement sur la caractéristique P_{PV} =f (V_{PV})	11
Fig I.11 Influence de la température sur la caractéristique I_{pv} =f (V_{PV})	11
Fig I.12 Influence de la température sur la caractéristique P_{PV} =f (V_{PV})	12
Fig I.13 Influence de l'ensoleillement et de la température sur la caractérist	ique <i>I_{pv}=</i> f
(V _{PV})	12
Fig I.14 Influence de l'ensoleillement et de la température sur la caractéristi	que $P_{PV}=f$
(V _{PV})	12
Fig I.15 Constitution d'un générateur photovoltaïque	13
Fig I.16 Caractéristique résultante d'un groupement de Ns cellules en série	14
Fig I.17 Caractéristique résultant d'un groupement de Ns cellules en parallèle	15
Fig I.18 : Schéma simplifié d'un module photovoltaïque avec protection [7]	15
Chapitre II	
Fig II.1 Schéma d'une cellule photovoltaïque	19
Fig II.2 Schéma d'une cellule photovoltaïque à une diode	20
Fig II.3 Schéma d'une cellule photovoltaïque à une diode sans résistance shunt	21
Fig II.4 Schéma d'une cellule photovoltaïque à deux diodes	22
Fig II.5 Schéma d'une cellule photovoltaïque à deux diodes sans résistance shunt	22
Fig II.6 Bloc Matlab/Simulink du module photovoltaïque utilisé	25
Fig II.7 Test N°1 sous Matlab/Simulink	
Fig II.8 Test N°2 sous Matlab/Simulink	27
Fig II.9 Test N°3 sous Matlab/Simulink	27

Fig II.10 Schéma représentatif de la méthode voltampère métrique	28
Fig II.11 Test N°1 méthode expérimentale voltampère métrique	29
Fig II.12 Test N°2 méthode expérimentale voltampère métrique	29
Fig II.13 Test N°3 méthode expérimentale voltampère métrique	30
Fig II.14 carte d'acquisition NI-PCI 6259	31
Fig II.15 Ecran d'accueil du LabVIEW	
Fig II.16 Diagramme et interface du LabVIEW	33
Fig II.17 Palettes de commande	35
Fig II.18 La palette d'outils pour le choix de la fonctionnalité de la souris	
Fig II.19 Etape de la construction du diagramme	37
Fig II.20 Aide contextuelle	37
Fig II.21 Assistant DAQ	
Fig II.22 Configuration d'une tache avec l'assistant DAQ	
Fig II.23 Instrument de traitement	
Fig II.24 Filtre de traitement	
Fig II.25 Fichier de mesure	40
Fig II.26 Bloc du système d'acquisition sous LabVIEW	41
Fig II.27 Schéma du diagramme du programme utilisé sous labVIEW	42
Fig II.28 Teste N°1 méthode expérimentale sous labVIEW	43
Fig II.29 Teste N°2 méthode expérimentale sous labVIEW	43
Fig II.30 Teste N°3 méthode expérimentale sous labVIEW	44
Fig II.31 Comparaison test N°1	44
Fig II.32 Comparaison test N°2	45
Fig II.33 Comparaison test N°3	45
Chapitre III	

Fig III.1	Mise en série des cellules photovoltaïques dans un module4	18
Fig. III.2	Exemples de défauts rencontrés dans les générateurs photovoltaïques5	51
Fig.III.3	Exemples de défauts rencontrés dans les boites de jonction	52

Fig III.4 exemples de défauts rencontrés dans le câblage53
Fig.III.5 Caractéristique Ipv-Vpv d'un module « mauvais » et « sain »
Fig.III.6 Influence de la résistance série sur las caractéristiques électrique du module57
Fig.III.7 Module photovoltaïque à l'état sain
Fig.III.8 Résultat des comparaisons des trois tests sous Matlab/Sumilink pour un module
sain
Fig.III.9 Module photovoltaïque ombré à 25% 58
Fig.III.10 Résultat des comparaisons des trois tests sous Matlab/Sumilink pour un module
Fig III 11 Module photovoltaïque ombré à 50%
Fig III 12 Résultat des comparaisons des trois tests sous Matlab/Sumilink pour un module
ombré à 50%
Fig III 13 Modula photovoltaïque ombré à 75%
Fig.III.13 Module photovoltalque onible à 75%
ombré à 75%
Fig III 15 Module photovoltaïque ombré à 100%
Fig.III.15 Module photovoltalque oniore à 100%
ombré à 100%
Fig.III.17 Module photovoltaïque couvert avec feuilles d'arbres 61
Fig.III.18 Résultat des comparaisons des trois tests sous Matlab/Sumilink pour un module
convert avec feuilles d'arbres
Fig.III.19 Module photovoltaïque pollue par le sable 62
Fig.III.20 Résultat des comparaisons des trois tests sous Matlab/Sumilink pour un module
pollue par le sable 62
Chapitre IV
Fig .IV.1 Exemple de défauts de mismatch et d'ombrage64
Fig.IV.2 Banc d'éssai utilisé
Fig. IV.3 Test N°1 sous LabVIEW66
Fig. IV.4 Test N°2 sous LabVIEW66
Fig. IV.5 Test N°3 sous LabVIEW67

Fig.IV.6 Résultats des comparaisons du test N°1 entre Matlab et LabVIEW pour un module
Fig.IV.7 Résultats des comparaisons du test N°1 entre Matlab et LabVIEW pour un module
avec le sable
couvrement avec feuilles d'arbre
Fig.IV.9 Résultats des comparaisons du test N°1 entre Matlab et LabVIEW pour un module
ombré 25%
Fig.IV.10 Résultats des comparaisons du test N°1 entre Matlab et LabVIEW pour un module ombré 50%
Fig.IV.11 Résultats des comparaisons du test N°1 entre Matlab et LabVIEW pour un module
Fig.IV.12 Résultats des comparaisons du test N°1 entre Matlab et LabVIEW pour un module
Fig.IV.13 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module
Fig.IV.14 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module
pollué par le sable70
Fig.IV.15 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module
couvrement avec feuilles d'arbre70
Fig.IV.16 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module ombré 25%
Fig.IV.17 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module ombré 50%
Fig.IV.18 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module
Fig.IV.19 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module
ombré 100%
Fig.IV.20 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module Sain
Fig.IV.21 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module
avec le sable72
Fig.IV.22 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module
couvrement avec feuilles d'arbre

Fig.III.23 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module
ombré 25%
Fig.III.24 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module
ombré 50%
Fig.IV.25 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module
ombré 75%74
Fig.IV.26 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module
ombré 100%74
Fig IV.27 Histogrammes des puissances pour les trois tests sous LabVIEW76
Fig IV.28 Histogrammes des puissances pour les trois tests sous Matlab77
Fig IV.29 Histogrammes des facteurs de formes pour les trois tests sous LabVIEW77
Fig IV.30 Histogrammes des facteurs de formes pour les trois tests sous Matlab78
Fig IV.31 Histogrammes des rendements pour les trois tests sous LabVIEW78
Fig IV.32 Histogrammes des rendements pour les trois tests sous Matlab79
Fig IV.33 Histogrammes des erreurs sur la puissance entre LabVIEW et Matlab79
Fig IV.34 Histogramme des erreurs sur le facteur de forme entre LabVIEW et Matlab80
Fig IV.35 Histogrammes des erreurs sur les rendements entre LabVIEW et Matlab80

Liste des tableaux

Liste des tableaux

Tableau 1.1 Comparaison entre les différents types de cellule photovoltaïque	8
Tableau 1.2 Classification des défauts	18
Tableau II.1 Paramètres du panneau Suntec 80Wc	26
Tableau II.2 Différents tests effectués.	26
Tableau.III.1 Défauts et leurs conséquences dans un générateur PV	51
Tableau III.2 Les défauts dans la boite de jonction	52
Tableau III.3 Les défauts dans le système de câblage	53
Tableau III.4 Les principaux défauts dans le système d'acquisition	54
Tableau III.5 Les principaux défauts dans un système photovoltaïque	54
Tableau III.6 Différents tests effectués	57
Tableau IV.1 Paramètres électrique du module photovoltaïque utilisé	64
Tableau IV.2 Différents tests effectués	65
Tableau IV.3 Tableau récapitulatif des résultats obtenus	76

Nomenclature et abréviation

Liste des symboles

Ppv : Puissance délivré par la cellule. Vpv : Tension délivré par la cellule. Ipv : Courant délivré par la cellule. Pmax : Puissance maximale. Vmp : tension au point de puissance maximal. Imp : courant au point de puissance maximal. Iph : Photo courant. Ish : le courant appelé par la résistance shunt. Es : ensoleillement terrestre. Eref : ensoleillement dans les conditions STC [Eref= 1000W/m2]. ID : Courant de diode. I0 : Courant de saturation de la diode. q : Charge de l'électron (1.6*10-19 coulomb). T : Température de la cellule (Kelvin). Ta : Température ambiante. Tj : Température de jonction. K : Constante de Boltzmann (K=1.38 * 10-23 J/K). A : Facteur de qualité de la diode. Rs : Résistance série. Rsh : Résistance shunt. Isc : Courant en court-circuit. Vco : Tension en circuit ouvert. ΔTc : Représente la variation de la température. Δ Ipv : Représente la variation du courant par rapport à l'insolation et à la température. $\Delta V pv$: Représente la variation de la tension par rapport à l'insolation et à la température. asc et \u00d3co sont appelés coefficient de température. S : Surface du panneau. Π : Rendement. FF : Facteur de forme.

PV : Photovoltaïque.

GPV : Générateur photovoltaïque.

VI : virtuel instrument.

DLDPV: Détection et Localisation de Défaut dans un système Photovoltaïque.

STC : Condition de Test Standard.

MPPT : Maximum Power Point Tracking.

Sommaire

Sommaire

Introduction générale
Chapitre I : Généralités sur les systèmes photovoltaïques
I.1. Introduction
I.2. Rayonnement solaire
I.3 L'énergie solaire photovoltaïque
I.3.1 L'effet photovoltaïque
I.4 La cellule photovoltaïque
I.4.1 Principe de fonctionnement d'une cellule photovoltaïque4
I.4.1.1 La jonction PN
I.4.2 Types des cellules photovoltaïques
I.4.2.1 Les cellules de 1 ^{ère} génération
I.4.2.2 Les cellules de deuxième génération
I.4.2.3 Les cellules de troisième génération
I.4.3 Paramètres de la cellule photovoltaïque
I.4.3.1 Caractéristique courant
I.4.3.2 Caractéristique puissance
I.4.3.3 tension de circuit-ouvert
I.4.3.4 courant de court-circuit
I.4.3.5 Point de puissance max
I.4.3.6 Rendement
I.4.3.7 Facteur de forme
I.5 Caractéristiques d'un module électrique10
I.5.1 Influence de l'éclairement sur les caractéristiques électriques
I.5.2 Influence de la température sur les caractéristiques électrique
I.5.3 Association d'un module photovoltaïque

I.5.3.1 Association d'un module photovoltaïque en série	13
I.5.3.2 Association d'un module photovoltaïque en parallèle	14
I.5.4 Protection classique d'une cellule photovoltaïque	15
I.6 Avantages et inconvénients de l'énergie photovoltaïque	16
I.6.1 Les avantages de l'énergie photovoltaïque	16
I.6.2 Les inconvénients de l'énergie photovoltaïque	16
I.7 Les défauts rencontrés dans un système photovoltaïque	17
I.8 Conclusion	18

Chapitre II: Caractérisation électrique d'un module photovoltaïque

II.1.Introduction
II.2 Modèle d'une cellule photovoltaïque
II.2.1 Modèle d'une cellule photovoltaïque à une diode
II.2.2 Modèle d'une cellule photovoltaïque à une diode sans résistance shunt [10]21
II.2.3 Modèle d'une cellule photovoltaïque à deux diodes
II.2.4 Modèle d'une cellule photovoltaïque à deux diodes sans résistance shunt Erreur !
Signet non défini.
II.2.5 Modèle simplifie du modèle à une diode Erreur ! Signet non défini.
II.2.6 Modèle explicite [11] Erreur ! Signet non défini.
II.3 Caractérisation électrique d'un module PV sous Matlab/simulinkErreur ! Signet non
défini.
II.3.1 Bloc de simulation Matlab/simulink Erreur ! Signet non défini.
II.3.2 Résultat de simulation obtenue sous Matlab/Simulink Erreur ! Signet non défini.
II.4 Caractérisation électrique d'un module PV avec la méthode voltampère métrique Erreur !
Signet non défini.
II.4.1 Résultats expérimentaux obtenus avec la méthode voltampère métrique
II.5 Caractérisation sous LabVIEW

II.5.1.1 Description de la carte d'acquisition	
II.5.1.2 Caractéristique de la carte d'acquisition	
II.5.1.3 Software de la carte d'acquisition Erreur ! Si	gnet non défini.
II.5.1.4 Concept d'instrument virtuel Erreur ! Si	gnet non défini.
II.5.1.5 Différentes étapes de création d'un projet sous LabVIEW Erreur ! Si	gnet non défini.
II.5.1.6 Acquisition des données et communication avec les instruments	
II.5.1.7 Acquisition d'un signal	
II.5.1.8 Système d'analyse et d'enregistrement d'un signal	
II.5.2 Bloc du système d'acquisition	
II.5.3 Unité d'acquisition de données	
II.5.3.1 Programme LabVIEW	
II.5.4 Résultats de caractérisation sous LabVIEW	
II.5.5 Comparaison entre les résultats des trois méthodes Erreur ! Si	gnet non défini.
II.5.5.1 Interprétation des résultats obtenus sous les trois méthodes Erreur ! défini.5	Signet non
II.6 Optimisation d'un module photovoltaique	46
II.6.1 Maximisation de la puissance par MPPT	46
II.6.2 Algorithme perturbation et observation	46
II.6.3 Résultats de simulation	47
II.7 Conclusion	47
Chapitre III : Etude d'un module photovoltaïque d	éfaillant
III.1 Introduction Erreur ! Si	gnet non défini.

III.2 Le système photovoltaïque et ses défauts	Erreur ! Signet non défini.
III.2.1 Description d'un système photovoltaïque	Erreur ! Signet non défini.
III.2.1.1 Générateur photovoltaïque	Erreur ! Signet non défini.
III.2.1.2Câblage et boîte de jonction	Erreur ! Signet non défini.
III.2.1.3 Système de protection	Erreur ! Signet non défini.

III.2.2 Défauts dans un système photovoltaïque [8]
III.2.2.1 Les défauts et les conséquences les plus fréquents rencontrés dans un champ photovoltaïque
III.2.2.1.1 Défauts dans le générateur photovoltaïque [12]
III.2.2.1.2 Défauts dans la boîte de jonction [12] Erreur ! Signet non défini.
III.2.2.1.3 Défauts dans le système de câblage [12] Erreur ! Signet non défini.
III.2.2.1.4 Défauts dans le système d'acquisition Erreur ! Signet non défini.
III.2.2.2 Principaux défauts dans un système photovoltaïque Erreur ! Signet non défini.
III.2.3 Influence de défaut du mismatch et d'ombrage sur un module photovoltaïque . Erreur !
Signet non défini.
III.2.3.1 Modélisation56
III.2.4 Influence de la résistance Rs Erreur ! Signet non défini.
III.3 Caractérisation d'un module photovoltaïque défaillant sous Matlab/Sumilink58
III.3.1 Interprétation des graphes
III.4 Conclusion
Chapitre IV Etude d'un module photovoltaïque défaillant sous LabVIEW
IV.1 Introduction
IV.2 Modélisation électrique des défauts sous LabVIEW
VI.2.1 Description de différents défauts
VI.2.2 Description des travaux expérimentaux
IV.2.3 Les résultats obtenus par LabVIEW
IV.2.4 Comparaison des résultats LabVIEW / Matlab/Simulink
IV.2.4.1 Calculs des rendements, les facteurs de forme et l'indicateur d'erreurs
IV.2.4.2 Interprétation des résultats
IV.3 Conclusion

Introduction générale

Introduction générale

Il y a 2600 ans, l'homme utilisait déjà cette énergie renouvelable pour faire avancer les bateaux, pomper de l'eau ou moudre des grains[16-17] .La transformation en énergie électrique ne débute qu'au 19ieme siècle. Presque toutes les énergies renouvelables sont des dérivées de l'énergie solaire :le vent, le rayonnement solaire, la force de l'eau sont des produits directs ou indirects de l'activité solaire. Seule la géothermie échappe a cet inventaire. Le soleil envoie chaque année à la surface de la terre à peu prés 10 fois plus d'énergie que la planète en consomme. Il est donc légitime d'en tirer profit [18].

A l'arriver de la révolution industrielle, la plus grande partie de l'énergie consommée provient de l'utilisation des combustibles fossiles comme le pétrole, le charbon, le gaz naturel ou encore l'énergie nucléaire. Celles-ci d'après des bilans, s'épuisent, alors que les menaces sur le climat sont pour une grande part dues à leur utilisation en plus, tout le monde est mondialement convaincu par le danger de ce processus sur l'environnement, tout cela a fait prendre conscience de la nécessité de prendre le bon choix.

Les énergies renouvelables, telles que l'énergie photovoltaïque, éolienne ou hydraulique sont des énergies issues du soleil qui se constituent ou se reconstituent plus rapidement qu'elles sont utilisées et peuvent être exploitées de manière autogérées (possibilité d'utilisation aux mêmes lieux de production).Ces dernières représentent une solution de remplacement par excellence et elles sont de plus en plus utilisées dans nos jours. Ce type d'énergie n'est pas seulement gratuite, mais aussi très propre pour l'environnement.

Concernant l'Algérie et sa situation géographique, on préconise le développement et l'utilisation de l'énergie solaire car elle dispose d'un gisement solaire très important, la durée 'ensoleillement dans les majeurs parties du payé dépasse les dix heures par jour et durant plusieurs mois. En développant cette énergie, notre pays pourrait couvrir ses besoins en énergie ainsi que celui de tout le nord africain ce qui engendrait des profits considérables provenant de la revente de cette énergie.

Notre travail concerne l'étude, la modélisation et l'optimisation de puissance d'un système photovoltaïque.

Notre mémoire est en quatre chapitres, les principaux résumés dans ce qui suit :

Le premier chapitre présente une description des généralités sur le photovoltaïque.

Dans le deuxième chapitre, on s'intéressera à la modélisation et la caractérisation d'un module photovoltaïque avec déférentes méthodes, la première étant la simulation sous Matlab-Simulink (model à une diode). La seconde est, une étude expérimentale en utilisant la méthode volt ampérmetrique. La dernière est en temps réel sous le logiciel LabVIEW.

Dans le troisième chapitre, la caractérisation électrique d'un module photovoltaïque défaillant sous Matlab/Simulink est présentée.

Dans le dernier chapitre, la caractérisation électrique d'un module photovoltaïque défaillant sous LabVIEW est présentée ainsi qu'une étude comparative avec les résultats obtenus sous Matlab/simulink.

On termine ce mémoire par une conclusion générale et des perspectives.

Chapitre I

Généralités sur les systèmes photovoltaïques

I.1. Introduction

L'énergie photovoltaïque résulte de la transformation directe de la lumière du soleil en énergie électrique aux moyens des cellules généralement à base de silicium cristallin qui reste la filière la plus avancée sur le plan technologique et industriel, en effet le silicium est l'un des éléments les plus abondants sur terre, il se trouve sous forme de silice non toxique.

I.2. Rayonnement solaire

Malgré la distance considérable qui sépare le soleil de la terre 150.106 Km, la couche terrestre reçoit une quantité d'énergie importante 180.106 GW, c'est pour cela que l'énergie solaire se présente bien comme une alternative aux autres sources d'énergies non-renouvelables.

Cette quantité d'énergie quittera sa surface sous forme de rayonnements électromagnétiques compris dans une longueur variant de 220 à 10000 nm, l'énergie associée à ce rayonnement solaire se décompose approximativement comme suit:

- ✤ 9 % dans la bande des ultraviolets (< à 400 nm).</p>
- ✤ 47 % dans la bande visibles (400 à 800 nm).
- ♦ 44 % dans la bande des infrarouges (> à 800 nm) [1].

Fig I.1 Réponse spectrale d'une cellule photovoltaïque

I.3 L'énergie solaire photovoltaïque

Le terme « photovoltaïque » est un mot latin, « photon » signifie lumière et « VOLTA » en référence au physicien italien (Alessandro VOLTA) qui donne son nom à l'unité de mesure de la tension électrique. L'effet photovoltaïque a été découvert en 1839 par ALEXANDRE

EDMOND BECQUEREL qui a démontré qu'il s'agissait d'une conversion directe de la lumière en énergie électrique. Cependant, à cette époque, il n'y avait pas d'utilisation pratique de cette découverte. En 1905, Albert EINSTEIN a écrit que la lumière pouvait entrer à l'intérieur des atomes et que la collision entre les photons et les atomes peut faire sortir des électrons de leurs orbites et ainsi permettre la création d'un courant électrique. Cette conversion se fait en présence de cellules solaires qui nécessitent étude et compréhension. [2]

I.3.1 L'effet photovoltaïque

Lorsqu'un matériau est exposé à la lumière du soleil, les photons « attaquent » les atomes exposés aux rayonnements. Les électrons des couches électroniques supérieures, appelés aussi électrons de valence ont tendance à être arrachés. Dans les cellules photovoltaïques, une partie des électrons ne revient pas à son état initial et les électrons « arrachés » créent une tension électrique continue et faible.

Fig I.2 Schéma explicatif de l'effet photovoltaïque

I.4 La cellule photovoltaïque

La photopile ou cellule solaire est l'élément de base d'un générateur photovoltaïque. Elle est assimilable à une diode photosensible. Le plus souvent, elle est à base de silicium. Elle est constituée de deux couches minces de semi-conducteur dopées différemment. La couche N a un surplus d'électrons ; la couche P a un déficit d'électrons. Quand les électrons de la couche N captent l'énergie provenant des photons, ils franchissent la barrière de potentiel ; ce qui engendre un courant continu. Ce dernier est recueilli par de électrodes. L'électrode supérieure permet le passage des rayons lumineux. Pour accroître la quantité de photons absorbés, on dépose une couche anti reflet sur cette électrode.

I.4.1 Principe de fonctionnement d'une cellule photovoltaïque

Il existe différentes techniques permettant la conversion directe de la lumière solaire en électricité, la plus connue est la conversion photovoltaïque effectuée à l'aide de cellule solaire

à semi-conducteur qui est un dispositif permettant de débiter un courant électrique dans une charge externe lorsque celui-ci est exposé à la lumière. Son principe de fonctionnement se résume comme suit:

I.4.1.1 La jonction PN

En polarisant électriquement la jonction P-N et en la soumettant à un éclairement solaire, on obtient les caractéristiques semblables a celles représentées par la figure [I.3].Sans éclairement, le comportement d'une cellule PV est semblable à celui d'une mauvaise diode. Ainsi, sous polarisation directe, la barrière de potentiel est abaissée et le courant de porteurs minoritaires (courant de saturation) circule. Ce dernier varie peu avec la tension appliquée tant que cette tension est inferieure à la tension de claquage. Ces courants, directs ou inverses, comme pour des jonctions classiques, sont sensibles à la température de jonction.

Si cette jonction PN est soumise aux rayonnements solaires, alors des paires électronstrous supplémentaires sont créées dans le matériau en fonction du flux lumineux. Ce phénomène, aussi appelé effet photovoltaïque, ne se produit que si l'énergie des photons est supérieure ou égale à l'énergie de la bande interdite du matériau E_g , et la différence de potentiel qui en résulte aux bornes de la structure caractérise l'effet photovoltaïque et se situe, selon les matériaux et la structure de la jonction[3].

Fig I.3 Jonction P-N dans une cellule photovoltaïque

I.4.2 Types des cellules photovoltaïques

I.4.2.1 Les cellules de première génération

Les cellules de 1^{ère} génération sont basées sur une seule jonction P-N et utilisent généralement le silicium sous forme cristallin comme semi-conducteur. On différencie les cellules en silicium mon-cristallin et poly-cristallin.

* Cellule en silicium mono-cristallin

Lors du refroidissement, le silicium fondu se solidifie en ne formant qu'un seul cristal de grande dimension. On découpe ensuite le cristal en fines tranches qui donneront par la suite les cellules. Ces cellules sont en général d'un bleu uniforme, intense et brillant. Elles sont utilisées, mais ne sont pas majoritaires sur la marche de l'énergie photovoltaïque. Le rendement du silicium mono-cristallin est le plus élevé, il est compris entre 12,3 et 20% pour les cellules industrielles. Son coût élevé est aujourd'hui un handicap et le silicium mono-cristallin perd du terrain devant le silicium poly-cristallin [4].

* Cellules en silicium poly-cristallin

Le silicium poly-cristallin est devenu aujourd'hui la technologie la plus utilisée. A elle seule elle représente plus de 50% du marche. Ces cellules sont obtenues par coulage de cristaux de silicium, ce qui rend sa structure hétérogène. Son rendement est légèrement inferieur au silicium mono-cristallin il est compris entre 10 et 14% selon les fabricants. En revanche sa fabrication est beaucoup plus simple, les coûts de production sont donc plus faibles [4].

Fig I.4 Cellule photovoltaïque en silicium mono-cristallin

Fig I.5 Cellule photovoltaïque en silicium poly-cristallin **I.4.2.2 Les cellules de deuxième génération**

✤ Cellule en silicium amorphe

Le silicium absorbe le rayonnement solaire jusqu'à 100 fois mieux qu'en état cristallin ; les cellules sont constituées par des couches très minces.

Fig.I.6 Cellule photovoltaïque en silicium amorphe

I.4.2.3 Les cellules de troisième génération

La troisième génération vise à passer la limite maximale du rendement des cellules actuelles, plusieurs concepts sont envisagés pour atteindre cet objectif :

- Superposition de multiples cellules (utilisant des bandes d'énergies différentes).
- ✤ Cellule à concentration.
- Utilisation de photons à basse énergie qui ne sont habituellement pas abordé par Des cellules.
- Conversion des photons pour ajuster le spectre de la lumière solaire aux Caractéristiques du semi-conducteur [4].

Technologie	Silicium	Poly-cristallin	Mono-cristallin
	amorphe		
Rendement dans les	7 - 8%	11 – 13%	14 – 16%
conditions standard			
Surface du panneau	16	8	7
pour 1 KW crête (m ²)			
Electricité générée en	900 KWh	750KWh/KW crête	750KWh/KW
un an (modules			crête
orientés sud, inclinés à			
30°)			
Energie produite en un	55 - 60	90-95	90-95
an (KWh/m2)			
Emission de CO2	390	325	325
économisée par an			
(Kg/KW crête)			
Emission de CO2	25	40	45
économisée par an			

(Kg/m2)			
Avantages	Bon rendement	Bon rendement, bon	Très bon
	pour faible	rapport qualité-prix	rendement
	éclairement, bon		
	coût		
Inconvénients	Rendement faible	Rendement faible en	Coût élevé
	en plein soleil,	plein soleil, plus	
	plus courte durée	courte durée de vie	
	de vie	Rendement faible	
		pour éclairement	
		faible.	

Tableau 1.1 Comparaison entre les différents types de cellule photovoltaïque.

I.4.3 Paramètres de la cellule photovoltaïque

La cellule solaire est caractérisée par le rendement de conversion, une tension de circuit ouvert V_{CO} , un courant de court-circuit I_{CC} et un facteur de forme FF. Ces paramètres sont déterminés à partir des caractéristiques courant-tension. Leurs déterminations permettent les comparaisons de différentes cellules éclairées sous les mêmes conditions climatiques.

I.4.3.1 Caractéristique courant-tension

La figure I.7 ci-dessous représente la caractéristique photovoltaïque dans les conditions constantes d'irradiation et de température.

Fig I.7 Caractéristique courant-tension d'une cellule photovoltaïque réelle. I.4.3.2 Caractéristique puissance-tension

La puissance délivrée par la cellule a pour expression :

$$P_{PV} = V_{PV} * I_{PV} \tag{I.1}$$

Pour chaque point. On peut calculer la puissance P_{pv} et tracer la courbe $P_{pv}=f(V_{pv})$ qui est représentée sur la figure I.8.

Fig I.8 Caractéristique puissance-tension d'une cellule photovoltaïque réelle.

I.4.3.3 Tension de circuit-ouvert

Elle est fonction des caractéristiques de la jonction électronique et des matériaux. Pour une cellule donnée, elle ne varie presque pas avec l'intensité lumineuse, au moins pour des éclairements supérieurs à 100 W / m2 (ce qui correspond au rayonnement solaire sur terre d'une journée très couverte). On l'obtient en branchant directement un voltmètre aux bornes de la cellule [5]

I.4.3.4 Courant de court-circuit

Il est directement proportionnel à l'énergie rayonnante reçue, c'est-à-dire à l'éclairement G, à la température ambiante T, à la vitesse de circulation de l'air ambiant. Il est également directement fonction de la surface de la cellule. On obtient sa valeur en branchant un ampèremètre aux bornes de la cellule.

I.4.3.5 Point de puissance maximale

Le point (V_{mp}, I_{mp}) où la puissance dissipée dans la charge est maximale :

$$P_{max} = V_{mp} \times I_{mp} \tag{I.2}$$

I.4.3.6 Rendement

Rapport de la puissance électrique optimale à la puissance de radiation incidente.

$$\eta = FF \times \frac{V_{co} \times I_{sc}}{S \times E_s} = \frac{P_e}{s \times E_s}$$

I.4.3.7 Facteur de forme

Rapport entre la puissance optimale Pmp et la puissance maximale que peut avoir la cellule :

$$FF = \frac{V_{mp} \times I_{mp}}{V_{co} \times I_{sc}}$$

I.5 Caractéristiques d'un module électrique

I.5.1 Influence de l'éclairement sur les caractéristiques électriques

Pour une température constante, lorsque l'ensoleillement varie, le courant de courtcircuit I_{cc} varie proportionnellement à l'irradiation tandis que la tension de circuit-ouvert varie très peu. La figure I.9 montre l'influence de l'ensoleillement sur les caractéristiques $I_{pv}=f(V_{PV})$.

Fig I.9 Influence de l'éclairement sur la caractéristique $I_{pv}=f(V_{PV})$.

La puissance générée par un module photovoltaïque est le produit entre la tension et le courant, et vue que le courant est proportionnel à l'éclairement donc il y'aura des variations de la puissance en fonction de l'ensoleillement, ce qui nous permettra de déduire l'influence de l'éclairement sur la caractéristique P_{PV} =f (V_{PV}). La figure I.9 montre l'influence de l'éclairement sur la caractéristique P_{PV} =f (V_{PV}).

Fig I.10 Influence de la l'éclairement sur la caractéristique P_{PV} =f (V_{PV}). **I.5.2 Influence de la température sur les caractéristiques électriques**

La figure I.11 présente les caractéristiques électriques du courant en fonction de la tension pour différentes températures de fonctionnement d'un module photovoltaïque.

Fig I.11 Influence de la température sur la caractéristique I_{pv} =f (V_{PV}).

Vue qu'il y a une variation au niveau de la température forcément, il y aura une variation au niveau de la puissance délivrée, ce qui nous permet de déduire l'influence de la température sur la courbe $P_{PV}=f(V_{PV})$. La figure I.12 montre l'influence de la température sur la caractéristique $P_{PV}=f(V_{PV})$.

Fig I.12 Influence de la température sur la caractéristique P_{PV} =f (V_{PV}).

En résumé, et d'après ce qu'on vient de voir, l'ensoleillement et la température influent sur le courant et la tension générés par un module photovoltaïque suivant les figures (figure I.13 et figure I.14).

Fig I.13 Influence de l'ensoleillement et de la température sur la caractéristique I_{pv} =f (V_{PV}).

Fig I.14 Influence de l'ensoleillement et de la température sur la caractéristique P_{PV} =f (V_{PV}).

I.5.3 Association d'un module photovoltaïque

Un module ou panneaux solaire photovoltaïque est principalement constitué d'un ensemble de cellules solaires reliées entre elles par un ruban métallique fin (cuivre et atomes) connectés, soit en série et/ou en parallèle [6].

Fig I.15 Constitution d'un générateur photovoltaïque

I.5.3.1 Association d'un module photovoltaïque en série

Une association de Ns cellules en série permet d'augmenter la tension du générateur photovoltaïque. Les cellules sont alors traversées par le même courant et la caractéristique résultante du groupement série est obtenue par addition des tensions élémentaires de chaque cellule, figure I.16. L'équation (I-3) résume les caractéristiques électriques d'une association série de Ns cellules.

$$V_{PV}(GPV) = Ns^* V_{CO}(cell)$$

(I-3)

Ce système d'association est généralement le plus communément utilisé pour les modules photovoltaïques du commerce.

Comme la surface des cellules devient de plus en plus importante, le courant produit par une seule cellule augmente régulièrement au fur et à mesure de l'évolution technologique alors que sa tension reste toujours très faible [6].

Fig I.16 Caractéristique résultante d'un groupement de Ns cellules en série

I.5.3.2 Association d'un module photovoltaïque en parallèle

D'autre part, une association parallèle de N_P cellules est possible et permet d'accroitre le courant de sortie du générateur ainsi créée. Dans un groupement de cellules identiques connectées en parallèle, les cellules sont soumises à la même tension et la caractéristique résultante du groupement est obtenue par addition des courants, figure I.17. L'équation (I.4) résume à son tour les caractéristiques électriques d'une association parallèle de Np cellules.

$$I_{PV}(GPV) = N_P * I_{SC}(\text{cell}) \tag{I-4}$$

Pour qu'un générateur photovoltaïque ainsi constitué puisse fonctionner de façon optimale, il faut que les (Ns, N_P) cellules se comportent toutes de façon identique .elles doivent pour cela être issues de la même technologie, du même lot de fabrication et qu'elles soient soumises aux même conditions de fonctionnement (ensoleillement, température, vieillissement et inclinaison).

14

Fig I.17 Caractéristique résultant d'un groupement de Np cellules en parallèle

I.5.4 Protection classique d'une cellule photovoltaïque

Pour garantir une durée de vie importante d'une installation photovoltaïque destinée à produire de l'énergie électrique sur des années, des protections électriques doivent être ajoutées aux modules commerciaux afin d'éviter des pannes destructrices liées à l'association de cellules en séries et en parallèle. Pour cela, deux types de protection classique sont utilisés dans les installations actuelles, figure I.18.

La diode anti-retour empêchant un courant négatif dans les GPV. Ce phénomène peut apparaitre lorsque plusieurs modules sont connectés en parallèle, ou bien quand une charge en connexion directe peut basculer du mode récepteur au mode générateur, par exemple une batterie durant la nuit [6-7].

Les diodes by-pass peuvent isoler un sous-réseau de cellules lorsque l'éclairement n'est pas homogène évitant ainsi l'apparition de points chauds et la destruction des cellules mal éclairées.

Fig I.18 : Schéma simplifié d'un module photovoltaïque avec protection [7]

I.6 Avantages et inconvénients de l'énergie photovoltaïque

I.6.1 Les avantages de l'énergie photovoltaïque

Les avantages de l'électricité solaire photovoltaïque sont multiples :

- ✤ La production de cette électricité renouvelable est propre, n'est pas toxique.
- ✤ Les systèmes photovoltaïques sont extrêmement fiables.
- L'énergie photovoltaïque est particulièrement attractive pour les sites urbains pour sa petite relative taille, et son opération silencieuse.
- La lumière du soleil étant disponible partout, l'énergie photovoltaïque est exploitable aussi bien en montagne dans un village isolé que dans le centre d'une grande ville.
- L'électricité photovoltaïque est produite au plus près de son lieu de consommation, de manière décentralisée, directement chez l'utilisateur.
- Modulaires, ses composants se prêtent à une utilisation innovante et esthétique en matière d'intégration architecturale (implantés sur ou en éléments de toiture ou de façade, sous forme de brise-soleil, en verrière...)
- L'électricité solaire photovoltaïque a pour qualité sa fiabilité, la durée de vie des capteurs supérieure à 25 ans, son autonomie, son faible impact sur l'environnement.
- Technologie encore émergente, son coût lui permet d'être souvent compétitive par rapport aux solutions classiques dans les sites éloignés du réseau électrique ne demandant pas de très grosse quantité d'électricité fournie, ou dans des sites urbains lorsqu'elle évite des coûts de raccordement au réseau électrique public.
- Le coût de fonctionnement des panneaux photovoltaïques est très faible, car leur entretien est très réduit, et ils ne nécessitent ni combustible, ni transport, ni personnel hautement spécialise
- Les systèmes photovoltaïques sont fiables . Les matériaux utilisés (silicium, verre, aluminium), résistent aux conditions météorologiques extrêmes.

I.6.2 Les inconvénients de l'énergie photovoltaïque

- Production d'énergie qui dépend de l'ensoleillement, toujours variable.
- ✤ Le coût d'investissement des panneaux.
- S'il faut stocker l'énergie avec des batteries, le coût de l'installation augmente.
- ✤ Le rendement réel de conversion d'un module est faible.

- ✤ Le rendement électrique diminue avec le temps.
- ✤ Pollution à la fabrication.

Malgré les inconvénients, le marché photovoltaïque ne cesse pas de trouver des applications et de s'agrandir. En plus, la technologie photovoltaïque est dans un procès de maturation dans la quelle les inconvénients pourraient s'attendrir, surtout à ce qui concerne le coût de fabrication.

I.7 Les défauts rencontrés dans un système photovoltaïque

Il existe plusieurs défauts dans un système photovoltaïque qui peuvent intervenir sur la puissance électrique d'un module photovoltaïque. On peut les classé ainsi : [8]

Composant du champ	Nature des défauts	Dénomination de défauts
	Module arraché ou cassé	Défaut de mismatch et
Cellules	Pylônes, cheminée, sable,	d'ombrage
	neige etc.	
	Echauffement des cellules	
	Dégradation des	
	interconnexions	
	Fissure	
	Corrosion des liaisons entre	
	cellules	
	Modules de performances	
	différentes	
	Détérioration des cellules	
	Pénétration de l'humidité	
Groupes de cellules	Destruction des diodes	Défaut de diode de bypass
	Absence de diodes	
	Inversion de la polarité des	
	diodes	
	Diode mal connectée	
	Diode court-circuitée	
 Modules	Modules court-circuités	Défaut de module
	Inversion de polarité du	
	module	
	Modules shuntés	

	Rupture du circuit électrique	
Strings	Destruction de la liaison	Défaut de connectique
	Corrosion des connexions	
	Corrosion des contacts	
	Court-circuit du circuit	
	électrique	
	Module déconnecté	
	Destruction des diodes	
Champ	Absence de diodes	Défaut de diode anti retour
	Inversion de la polarité des	
	diodes	
	Diode mal connectée	
	Diode court-circuitée	

Tableau 1.2 Classification des défauts

I.8 Conclusion

Dans le 1^{er} chapitre, nous avons expliqué le principe de la conversion de l'énergie photovoltaïque du photon lumineux à l'électricité et aussi sur la jonction PN, types des cellules, caractéristiques d'un panneau ...

Des aspects aussi bien technologiques qu'électriques ont été élaborés afin de mieux comprendre le mécanisme de la conversion photovoltaïque.

Le chapitre prochain sera sur la modélisation des cellules photovoltaïque et leurs caractérisation électrique dans des conditions climatiques qui différent.

Chapitre II

Caractérisation électrique d'un module photovoltaïque

II.1.Introduction

L'énergie solaire photovoltaïque (PV) qui est la conversion directe de la lumière en électricité grâce à des cellules solaires. Représente un alternatif intéressant et bien adapté à des besoins limités. Un système photovoltaïque n'est plus concurrentiel lorsque la demande augmente, ainsi une étude assez rigoureuse est nécessaire pour faire le meilleur choix le plus performant au moindre coût possible.

Les performances d'un système photovoltaïque dépend fortement des conditions météorologiques, telle que le rayonnement solaire, la température, la vitesse du vent et l'éclairement. Pour fournir l'énergie continuellement durant toute l'année, un système photovoltaïque doit être correctement dimensionné. Cependant les informations fournies par les constructeurs d'équipements photovoltaïques ne permettent de dimensionner qu'approximativement le système.

La modélisation mathématique des cellules solaires est indispensable pour toute opération d'optimisation du rendement ou de diagnostic du générateur photovoltaïque. Le module photovoltaïque est représenté généralement par un circuit équivalent dont les paramètres sont calculés expérimentalement en utilisant la caractéristique courant-tension. Ces paramètres ne sont pas généralement des quantités mesurables ou inclues dans les données de la fabrication.

Par conséquent, dans ce chapitre on présentera une étude de modélisation et de simulation d'un système photovoltaïque ainsi qu'une application d'une technique de maximation de puissance qui est la méthode de perturbation et d'observation.

II.2 Modèle d'une cellule photovoltaïque

La photopile est un composant semi-conducteur qui délivre un courant en excitant ce dernier par des photons, donc en première approximation on a une source de courant qui est court-circuitée par une diode (car la photopile est une jonction P-N) [9].

Fig II.1 Schéma d'une cellule photovoltaïque

$$Ipv = I_{ph} - I_D \tag{II.1}$$

$$Ipv = I_{ph} - I_0 [e^{\frac{qV_{pv}}{AKT_j}} - 1]$$
(II.2)

*I*_{ph}: Photo courant.

I_D: Courant de diode.

*I*⁰ : Courant de saturation de la diode.

 \mathbf{Q} : Charge de l'électron (1.6*10⁻¹⁹ J/K).

Tj : Température de la cellule (Kelvin).

K : Constante de Boltzmam (K= $1.38*10^{-23}$).

A : Facteur de qualité de la diode.

II.2.1 Modèle d'une cellule photovoltaïque à une diode

Le fonctionnement d'un module photovoltaïque est décrit par le modèle « standard » à une diode, établit par Shokley pour une seule cellule photovoltaïque, est généralisé à un module photovoltaïque en le considérant comme un ensemble de cellules identiques branchées en série ou en parallèle.

Fig II.2 Schéma d'une cellule photovoltaïque à une diode

Le courant fourni par la cellule est donné par la relation (II.3).

$$I = I_{ph} + \frac{V_{pv+R_s lpv}}{R_{sh}} + I_s \left[exp\left\{\frac{q(V_{pv+R_s lpv})}{AKT_J}\right\} - 1 \right]$$
(II.3)

Ipv: courant fourni par la cellule [A].

V_{pv} : Tension à la borne de la cellule [V].

Iph : Photo courant [A], proportionnel à l'irradiante, avec correction selon T.

Is : Courant de saturation de la diode [A], dépendant de la température [A].

 \mathbf{R}_{s} : Résistance série [Ω].

 \mathbf{R}_{sh} : Résistance shunt (ou parallèle) [Ω].

q : Charge de l'électron = 1,602. 10-19 Coulomb.

 \mathbf{k} : Constante de Boltzmann = 1,38. 10-23 J/K.

A : Facteur de qualité de la diode, normalement compris entre 4et 5.

T_I: Température effective de la cellule [Kelvin].

Il faut noter que ces deux résistances sont liées à la technologie d'élaboration des électrodes. Il faut minimiser R_S de telle sorte que R_{Sh} soit très importante.

Le photo-courant I_{Ph} varie avec l'irradiantion, il est déterminé par rapport à des valeurs données aux conditions de référence:

$$I_{ph} = \frac{\phi}{\phi_{ref}} * \left[I_{phref} + \mu_{Ics} * \left(T_J - T_{Jref} \right) \right]$$
(II.4)

 \emptyset et \emptyset_{ref} : Irradiante effective et de référence [W/m²].

 T_I et T_{Iref} : Température effective et de référence [K].

 μ_{Ics} : coefficient de température du photo-courant (ou courant de court-circuit), il est souvent donné par le fabricant, il est en général positif mais très faible.

Le courant de saturation de la diode est supposé variable avec la température selon l'expression :

$$I_{s} = I_{sref} * \left(\frac{T_{J}}{T_{Jref}}\right) * \exp\left[\left(\frac{q * E_{g}}{A * k}\right) * \left(\frac{1}{T_{Jref}}\right) - \left(\frac{1}{T_{J}}\right)\right]$$
(II.5)

 E_g : Energie de Gap de la cellule. (Silicium crystallin $E_g = 1, 12 \text{ eV}$).

Les conditions de référence I_{sref} et T_{Jref} sont les conditions extérieures pour lesquelles sont spécifiées les données de base utilisées pour l'établissement du modèle (V_{co} , I_{co} , V_{mp} , I_{mp}), se sont soit les spécifications du fabricant, toujours données aux références (Standard Test Conditions, 1000 W/m², 25°C, spectre AM1,5), soit des valeurs issues des mesures pratiques.

II.2.2 Modèle d'une cellule photovoltaïque à une diode sans résistance shunt[10]

Fig II.3Schémad'une cellule photovoltaïque à une diode sans résistance shunt

Le courant généré par la cellule PV est donné par la loi des mailles :

$$I_{pv} = I_{ph} - I_D \tag{II.6}$$

$$I_{pv} = I_{ph} - I_0 \left[e^{\frac{q(V_{pv} + R_{s1})}{AKT_J}} - 1 \right]$$
(II.7)

II.2.3 Modèle d'une cellule photovoltaïque à deux diodes

Nous avons, cette fois-ci, deux diodes pour représenter les phénomènes de polarisation de la jonction PN. Ces diodes symbolisent la recombinaison des porteurs minoritaires, d'une part en surface du matériau et d'autre part dans le volume du matériau. Le schéma du générateur photovoltaïque est illustré dans la figure (II.4).

Fig II.4 Schéma d'une cellule photovoltaïque à deux diodes

Le courant fourni par la cellule est donné par la relation (II.8).

$$I_{pv} = I_{ph} - \frac{V_{pv} + R_s I_{pv}}{R_{sh}} + I_{s1} \left[\exp\{\frac{q(V_{pv} + R_s)}{AKT_J}\} - 1 \right] + I_{s2} \left[\exp\{\frac{q(V_{pv} + R_s)}{2AKT_J}\} - 1 \right]$$
(II.8)

II.2.4 Modèle d'une cellule photovoltaïque à deux diodes sans résistance shunt

La cellule photovoltaïque est représentée par le circuit électrique (Figure I.5) qui se compose d'une source de courant modélisant le flux lumineux (éclairement), deux diodes pour la polarisation de la cellule et une résistance série.

Fig II.5 Schéma d'une cellule photovoltaïque à deux diodes sans résistance shunt

Le courant généré par la cellule photovoltaïque est donné par la loi des mailles :

$$I_{pv} = I_{ph} - (I_{D1} + I_{D2})$$
(II.9)
$$q(V_{pv} + R_{S1}) \qquad q(V_{pv} + R_{S1})$$

$$I_{pv} = I_{ph} - I_{01} [e^{\frac{(K-p)(-51)}{AKT_J}} - 1] - I_{02} [e^{\frac{(K-p)(-51)}{AKT_J}}]$$
(II.10)

II.2.5 Modèle simplifié du modèle à une diode

Ce modèle est plus simplifié exigeant peu de paramètres à estimer, c'est un modèle uniquement avec une diode. L'expression du courant photovoltaïque est donnés par

$$I_{pv} = I_{sc} [1 - K_1 e^{(K_2 V_{pv}^{u} - 1)}]$$
(II.11)

Où les coefficients K₁, K₂, K₃, K4 et m des constantes calculées indépendamment à partir des conditions standard météorologique (STC). Ils sont donnés par les formules suivantes :

$$K1 = 0.01175$$
 (II.12)

$$K_2 = \frac{K_4}{V_{oc}^m} \tag{II.13}$$

$$K_{3} = \ln(\frac{(I_{sc}(1+K_{1})-I_{mp})}{K_{1}I_{sc}})$$
(II.14)

$$K_4 = \ln(\frac{1+K_1}{K_1})$$
(II.15)

$$m = \frac{\ln\left(\frac{K_3}{K_4}\right)}{\ln\left(\frac{Vmp}{V_{OC}}\right)}$$
(II.16)

Où :

 I_{mp} : Courant au point de puissance maximale appelé aussi courant optimum (Iopt).

 V_{mp} : Tension au point de puissance maximale appelé aussi tension optimale (Vopt).

Isc : Courant en court-circuit.

V_{co} : Tension en circuit ouvert.

Il est noté que l'équation (II.17) est applicable que pour un niveau d'insolation E et de température particulier, relatif aux conditions standard de fonctionnement. Quand l'insolation

et la température varient, le courant I_{pv} et la tension V_{pv} changent suivant les équations suivantes :

$$\Delta T_c = T_c - T_{Jref} \tag{II.17}$$

$$\Delta I_{pv} = \alpha_{sc} \left(\frac{E_s}{E_{ref}}\right) \Delta T_c + \left(\frac{E_s}{E_{ref}} - 1\right) I_{sc,ref} \tag{II.18}$$

$$\Delta V_{pv} = -\beta_{oc} \Delta T_c - R_s \Delta I_{pv} \tag{II.19}$$

 ΔT_c : Représente la variation de la température.

 ΔI_{pv} : Représente la variation du courant par rapport à l'insolation et à la température.

 ΔV_{pv} : Représente la variation de la tension par rapport à l'insolation et à la température.

 α_{sc} : Représente un coefficient de température, d'incrémentation du courant Ic quand la température de la surface augmente de un degré Celsius (A/°C) (sous les conditions standard de fonctionnement).

 β_{oc} : Représente un coefficient de température, d'incrémentation de la tension Voce quand la température de la surface augmente de un degré Celsius (V/°C) (sous les conditions standard de fonctionnement).

 α_{sc} et β_{oc} sont appelés coefficient de température.

Les nouvelles valeurs de la tension et du courant photovoltaïque sont données par :

$$V_{pv,nouv} = V_{pv} + \Delta V_{pv} \tag{II.20}$$

$$I_{pv,nouv} = I_{pv} + \Delta I_{pv} \tag{II.21}$$

II.2.6 Modèle explicite [11]

Le modèle suivant est développé par Borowy et Salameh en (1996). Ce modèle explicite se caractérise par sa résolution très simple. Il nécessite seulement quatre paramètres (I_{sc} , V_{co} , I_{mp} , V_{mp}).

$$I_{pv} = I'_{pv} + \Delta I_{pv} \tag{II.22}$$

$$I_{pv} = I_{sc} \left[1 - C_1 e^{\left(\frac{n_s V_{mp}}{C_2 V_{oc}}\right) - 1} \right] - \Delta I$$
(II.23)

Avec :

$$C_1 = \left[1 - \frac{l_{mp}}{l_{sc}}\right] e^{\left(\frac{V_{mp}}{C_2 V_{oc}}\right)} \tag{II.24}$$

$$C_2 = \frac{\frac{V_{mp}}{V_{oc}} - 1}{\ln(1 - \frac{I_{mp}}{I_{sc}})}$$
(II.25)

$$\Delta I_{pv} = \alpha_{ref} \left(\frac{E_s}{E_{ref}} \right) \left(T_c - T_{c,ref} \right) + \left(\frac{E_s}{E_{ref}} - 1 \right) I_{sc}$$
(II.26)

$$V = V' + \Delta V \tag{II.27}$$

Avec

$$\Delta V = \beta_{ref} (T_c - T_{C,ref}) - R_s \Delta I_{pv}$$
(II.28)

II.3 Caractérisation électrique d'un module PV sous Matlab/simulink

Nous avons choisi d'utiliser le modèle à une diode avec résistance shunt sous Matlab/simulink afin de visualiser les caractéristiques électriques d'un module photovoltaïque.

II.3.1 Bloc de simulation Matlab/simulink

La figure suivante représente le bloc utilisé pour la simulation sous Matlab/Simulink.

Fig II.6 Bloc Matlab/Simulink du module photovoltaïque utilisé

II.3.2 Résultat de simulation obtenue sous Matlab/Simulink

Dans le bloc (Matlab/Simulink) nous avons simuler un module PV Suntech de puissance PV_{créte}=80Wc (table II.1) sous différents tests (Table II-2)

	valeurs
Puissance maximale du panneau	80Wc
Courant optimal Iop (stc)	4.65A
Tension optimal V _{op} (stc)	17.2V
Courant de court-circuit I _{CC}	5A
Tension en circuit ouvert V _{oc}	21.6V
Coefficient d'incrémentation du courant $I_{cc}(\alpha_{cc})$	3mA
Coefficient d'incrémentation de la tension $V_{oc}(\beta_{oc})$	-150mV
Courant de court-circuit I_{CC} Tension en circuit ouvert V_{oc} Coefficient d'incrémentation du courant $I_{cc}(\alpha_{cc})$ Coefficient d'incrémentation de la tension $V_{oc}(\beta_{oc})$	5A 21.6V 3mA -150mV

Tableau II.1 Paramètres du panneau Suntec 80 Wc

	Ensoleillement	Température
Test N°1	900W/m²	24.5 °C
Test N°2	705W/m²	24.3°C
Test N°3	437W/m ²	24.6°C

Tableau II.2 Différents tests effectués

Fig II.9 Test N°3 sous Matlab/Simulink

II.4 Caractérisation électrique d'un module PV avec la méthode voltampère métrique

Cette méthode consiste à réaliser un circuit électrique constituant d'un générateur photovoltaïque, un ampèremètre en série, une charge variable et un voltmètre en parallèle suivant la figure II.10.

Fig II.10 Schéma représentatif de la méthode voltampère métrique.

En faisant varier la charge, le courant générer par le GPV (générateur photovoltaïque) et la tension à ses bornes variées, ce qui nous permet de tracer la caractéristique courant-tension du module photovoltaïque ainsi que la caractéristique puissance-tension.

II.4.1 Résultats expérimentaux obtenus avec la méthode voltampère métrique

Dans le banc d'essai de la méthode voltampère métrique, nous avons utilisé un module photovoltaïque Suntech de puissance $P_{crête} = 80Wc$, nous avons caractérisé le module dans des conditions météorologiques identiques aux conditions de simulation dans le bloc de Matlab/Simulink.

Fig II.11 Test N°1 méthode expérimentale voltampère métrique.

Fig II.12 Test N°2 méthode expérimentale voltampère métrique.

Fig II.13 Test N°3 méthode expérimentale voltampère métrique.

II.5 Caractérisation sous LabVIEW

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) est un langage de programmation graphique qui utilise des icônes au lieu de lignes de texte pour créer des applications. Contrairement aux langages de programmation textuelle où ce sont les instructions qui déterminent l'ordre d'exécution du programme, LabVIEW utilise la programmation par flux de données ; c'est le flux des données transitant par les nœuds sur le diagramme qui détermine l'ordre d'exécution des VIs et des fonctions. Les VIs ou instruments virtuels sont des programmes LabVIEW qui imitent les instruments physiques.

II.5.1 Description du système de caractérisation

Le système de caractérisation est constitué d'un GPV (générateur photovoltaïque), une charge variable, une carte d'acquisition munie de son propre logiciel interactif d'enregistrement de données. Pour l'acquisition de données, on utilise une carte type PCI référencée NI-6259 et le logiciel LabVIEW [12].

II.5.1.1 Description de la carte d'acquisition

La carte choisie est une **NI-PCI6259** de National Instrument. Cette dernière est une carte d'acquisition de données multifonction haute vitesse de la Série «**M**», optimisée pour une excellente précision aux fréquences d'échantillonnages élevées. «**NI**» représente le nom du constructeur national instrument, «**PCI**» c'est le port de communication avec le microordinateur et «**6259**» est le numéro (classement) de la carte [12].

II.5.1.2 Caractéristique de la carte d'acquisition

Dans cette partie, nous avons décrit les caractéristiques de la carte d'acquisition utilisée au niveau du laboratoire L.T.I.I de l'université de Bejaïa.

- ✤ 32 entrées analogiques 16 bits, 1 Méch/s (multivoie), 1.25 Méch./s (monovoie).
- ◆ 4 sorties analogiques 16 bits, 2.8 Méch/s ; 48 E/S numériques ; compteurs 32 bits.
- Certificat d'étalonnage du NIST (National Institute of Standards and Technology) et plus de 70 options de conditionnement de signaux.
- Technologie d'étalonnage NI-Mcal pour une précision de mesure accrue E/S numérique corrélée (32 voies cadencées, 10MHz) ; déclenchement analogique et numérique.
- Précision de mesure, une résolution et une sensibilité accrue
- Elle est accompagnée par son propre logiciel interactif d'enregistrement de données NI LabVIEW [12].

Fig II.14 carte d'acquisition NI-PCI 6259

II.5.1.3 Software de la carte d'acquisition

Le LabVIEW est un environnement de développement en langage G. Il a été créé en1986, initialement pour Apple Macintosh qui était à l'époque l'un des seuls ordinateurs proposant une interface graphique native. L'histoire de LabVIEW explique un vocabulaire spécifique et explique encore certaines actions. A l'origine, LabVIEW s'exécute sur des écrans noirs et blancs, puis sur des écrans 16 couleurs, 256 couleurs...etc [13]

LabVIEW est un environnement de développement propriétaire développé et vendu parla société National Instrument (NI). Le premier métier de NI est de fabriquer du matérield'acquisition rapidement destiné au marché des microordinateurs. Ainsi la première version de Labview s'attache à offrir un environnement de développement dont le rôle est de permettre simplement à l'utilisateur de créer des instruments virtuels utilisant le matériel

d'acquisition NI pour reproduire sur un microordinateur le comportement d'un instrument personnalisé et personnalisable à volonté.

II.5.1.4 Concept d'instrument virtuel

L'idée de base est d'utiliser une carte d'acquisition ou un périphérique d'acquisition dont le rôle est d'acquérir un signal électrique de l'extérieur, généralement un ou un ensemble de capteurs, effectuer un traitement, un enregistrement dans un fichier ou une base de données, une restitution à l'écran via une interface graphique et éventuellement effectuer un ensemble d'actions sur le monde extérieur à l'aide d'actionneurs. Les variations possibles sont infinies en fonction des besoins et de leurs évolutions. L'avantage de l'instrument virtuel sur l'instrument réel est indéniable puisqu'il est du ressort du programme de l'instrument virtuel (par conséquent, c'est à la l'utilisateur de faire évoluer l'instrument virtuel en fonction des besoins) [13].

II.5.1.5 Différentes étapes de création d'un projet sous LabVIEW

Le logiciel LabVIEW nous permet d'utiliser les données acquises via la carte et les exploiter dans les programmes de calculs afin de créer des projets sous LabVIEW et tracer leurs courbes adéquates. Nous avons suivi les étapes suivantes :

1. Etape I

Lorsqu'on lance LabVIEW, l'écran de démarrage permet de démarrer toutes opérations proposées par cet environnement de développement (voir la figure II.15). Pour créer un nouveau programme, on sélectionnera « VI vide» LabVIEW utile le nom VI (Virtuel Instrument) pour les programmes et sous programmes. Les programmes ou sous-programmes auront l'extension «VI » et seront donc nommées VI .Sur l'écran de démarrage, la partie gauche permet de créer ou d'ouvrir un VI ou un projet, la partie droite nous permet d'accéder à la documentation extrêmement riche, incluant notamment divers tutoriaux.

Fig II.15 Ecran d'accueil du LabVIEW

2. Etape II

Que l'on souhaite créer un programme ou un sous LabVIEW, tout VI est considéré comme un instrument virtuel. La figure suivante représente le diagramme et la face avant d'un programme.

Face avant	Diagramme
Fore-sound de Sans bler 1 Folier (décon Atlichage Popie Extension Outlis Fandter O @ @ B Polies de l'application 35gts • • • • • • • • • • • • • • • • • • •	Despense de Sen Stiff 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Fig II.16 Diagramme et interface du LabVIEW

Sur la face-avant, nous serons donc amenés à place des éléments graphiques (entrées du programme, à l'instar des boutons d'un instrument, sorties à l'instar des éléments affichés sur

un instrument,...), alors que sur le diagramme, nous placerons la logique du programme, en général logique qui relie les entrées aux sorties : comment calculer les sorties à partir des entrées.

3. Etape III

En LabVIEW, toute la programmation se passe de façon graphique, il n'y a pas de syntaxe à connaitre (pas de begin, end, for, etc.). Quand on débute, on commence souvent par créer la face-avant, puis on passe au diagramme pour représenter la logique du programme.

***** Palettes de commande :

Nous verrons par la suite qu'il est souvent plus rapide de faire l'inverse (sauf pour le VI correspondant à ce qui sera montré finalement à l'utilisateur).Commençons donc comme tout débutant par créer l'interface graphique : supposons que le programme prend deux numériques à l'entrée, et calcule un résultat sous forme d'un numérique.

Il nous faudra donc créer deux entrées numériques et une sortie numérique (affichage).

Dans Labview, les entrées s'appellent des commandes et les sorties des indicateurs (toujours par analogie avec un instrument).

Les commandes, indicateurs et décoration sont disponibles à partir de la palette de commandes (voir Figure II.17) de LabVIEW. Il y a plusieurs façons d'afficher la palette de commandes :

Faire un click droit sur la face-avant.

Remarquer la punaise en haut à gauche de la palette qui apparait sous forme d'un menu : en cliquant sur celle-ci, la palette reste affichée sous forme d'une fenêtre

Dans le menu déroulant de la face-avant, cliquer sur « Affichage », puis sélectionner « Palettes des commandes ». Cela a pour effet d'afficher la palette sous forme d'une fenêtre (équivalent à utiliser la punaise).

Remarquer que même si elle est affichée, la palette de commandes devient invisible lorsque la fenêtre de la face-avant n'est pas active.

o the screen	-	- Modern
-Da Controls	Q Search	
Modern		Numeric Boolean String & Path
In the	Tetes P	PERIOD I NON I TRANSPORT
	District.	INTER TO LARGE
Numeric Boolean	String & Path	Array, Matrix List, Table & Graph
*188 *		
		Bing & Enum Containers 1/0
Array, Mathin Lot o Tate	Conten I	9_1 0A1 [31]
Himma (SP)	000	
Rogh Erup Containers	1/0	Variant & Cl., Decorations Refnum
D ¹	OA!	I > Silver
	38	P System
Refrum Variant	Decorationa	P Classie
System		P Dipress
Classes		Control Design & simulation
Express		L Signal Processing
Control Design & Simulation		P Addens
NET & ActiveX		+ User Controls
Addons		Select a Control
Select a Control		-
DSC Hodule		Change Visible Palettes

FigII.17 Palettes de commande

* Palettes d'outils

On fait apparaitre la boite à outils permettant de manipuler les objets graphiques, en suivant la séquence de menu Windows >> Show Tools palette ou bien en ouvrant un menu local dans la fenêtre avec la touche SHIFT enfoncée. Une fois apparue, la boite à outils est toujours visible. On sélectionne l'outil désiré en cliquant dessus. Il est à noter que la touche de tabulation permet une sélection rapide des outils les plus utilisés.

FigII.18 La palette d'outils pour le choix de la fonctionnalité de la souris.

Outil doigt : permet de positionner des éléments des palettes **Contrôles** et **Fonctions** sur la face-avant du diagramme.

- Outil flèche : permet de positionner, redimensionner et sélectionner les objets.
- > Outils texte : permet de modifier du texte et d'en créer.
- > Outil bobine : permet de câbler des objets entre eux dans le diagramme.
- > Outil menu local : fait apparaitre un menu local dans un objet.

- Outil main : fait défiler toute la fenêtre sans avoir recours aux barres de défilement.
- Outil point d'arrêt : permet de définir des points d'arrêt dans les VIs, les fonctions, les séquences et les structures.
- Outil sonde : permet de créer des sondes sur les fils.
- > Outil pipette : copie les couleurs pour les coller à l'aide de l'outil Pinceau.
- Outil pinceau : permet de définir la couleur de l'arrière-plan et du premier plan.

4. Etape IV : Création du diagramme

Supposons que nous souhaitons réaliser un convertisseur d'unité de température de °C vers °F en utilisant la formule F=1,8*C+32.

Il nous faut commencer, pour le convertisseur, à placer les fonctions nécessaires : une addition et une multiplication. Toutes les deux sont dans la palette « **Numérique** » (étape1 de la figure II.19). Ensuite on utilise l'outil bobine pour câbler. L'entrée (la commande) « $^{\circ}$ C » à une entrée de la fonction multiplication (étape 2). Il nous faut alors multiplier cela à la constante (1,8).

Il y a différents moyens de créer une constante, mais le plus simple est de faire un click droit sur l'entrée, puis de choisir « **Créer »** « **Constante** ». Une constante du bon type est alors créée et reliée à cette entrée.

Le diagramme est enfin complété comme à l'étape 3. Pour exécuter le **VI**, il faut cliquer sur le bouton « **Exécuter** ». Certains utiliseront « **Exécuter en continu** » qui a pour effet d'exécuter le VI sans arrêt jusqu'à l'appui sur le bouton « **Abandonner l'exécution** ».

Cependant nous déconseillons de prendre cette habitude : un programme bien fait contient une boucle d'exécution au niveau le plus haut et son propre bouton d'arrêt sur la face avant.

FigII.19 Etape de la construction du diagramme

A partir d'ici, il convient d'utiliser la fenêtre d'aide contextuelle (menu déroulant

« Aide », « Afficher l'aide contextuelle » ou raccourci clavier Ctrl+h) afin d'obtenir des descriptions rapides des fonctions ou bien savoir quel type de données passe sur un fil. La souris. Ainsi, si l'on place la souris sur le nœud « x » de la figure, on obtient l'aide contextuelle donnée sur la figure II.20.

Fig II.20Aide contextuelle

Utilisation avancée :

Nous avons maintenant vu les éléments de base de la programmation LabVIEW. Cette partie propose de voir quelques graphes proposés par LabVIEW, et surtout la façon dont on peut créer une interface graphique.

***** Utilisation de graphe

Les trois principaux types de graphe proposés par LabVIEW sont le graphe dé roulant (*Affiche les courbes point par point*), **le graphe** (*Affiche les courbes à partir du/des tableaux contenant tous les points*), et **le graphe XY** (*courbes paramétriques*).

II.5.7 Acquisition des données et communication avec les instruments

Ce passage présente les **VI** express que vous pouvez utiliser pour acquérir des données et communiquer avec des instruments sous Windows.

II.5.8 Acquisition d'un signal

On peut créer une tache pour mesurer une grandeur physique telle que la tension, un courant ou une température sur une ou plusieurs voies d'un périphérique DAQ, pour cela, on doit suivre les étapes ci-après pour créer et configurer une tache qui lit cette dernière sur un périphérique DAQ.

Ouvrez un nouveau VI vide :

Sur le diagramme, affichez la palette **Fonction** et sélectionnez *<<* **Express***>>*, entrée pour afficher la palette **Entrée**.

Sélectionnez le VI express Assistant DAQ, illustré à gauche, sur la palette entrée et placez-le sur le diagramme. L'Assistant DAQ se lance et la boîte de dialogue Créer un nouvel objet Tâche Express apparaît.

FigII.21 Assistant DAQ

Cliquez sur acquérir des «signaux », entrée analogique pour afficher les options d'entrée analogique.

Sélectionnez Tension pour créer une nouvelle tâche d'acquisition analogique de tension.

La boîte de dialogue affiche la liste des voies sur chaque périphérique DAQ installé. Le nombre de voies affichées dépend du nombre de voies dont dispose votre périphérique DAQ. Dans la liste de **voies physiques supportées**, sélectionner la voie physique à laquelle l'instrument connecte le signal comme, par exemple **ai0** puis cliquer sur le bouton **Terminer**.

L'assistant DAQ ouvre une nouvelle boîte de dialogue représentée par la figure II.22, qui affiche les options de configuration pour la voie que vous avez sélectionnée pour la tâche.

10 04 0 + X	Hangur Tail
e Tietre Express Dagramme des contexione	Contestant 19
Consect da synd d'artise Canada and a sector d'artise Consect da synd d'artise Consect da synd Consect da synd Consec	Book and a second
Des sour e à l'éches Terminin Proventions du colonament Produit contraine Colonations Colonations Colonations Echerchine à lee Tréasesce (H) Echerchine à lee Tréasesce (H) Echerchine à lee	Castance de cas evolus de castancement na sera para contraction cast d'administration (cast d'administration (cast d'administration d'administration d'administration d'activation d'administration d'activation restárication d'activation que la stativa actaviante que la stativa acta

FigII.22 Configuration d'une tache avec l'assistant DAQ

II.5.1.6 Système d'analyse et d'enregistrement d'un signal

LabVIEW contient un ensemble de Vis Express qui facilitent l'analyse de vos signaux. Ce passage vous montre comment utiliser LabVIEW pour effectuer une analyse élémentaire d'un signal et comment enregistrer les données analysées dans un fichier.

Par défaut, le **VI** express simule un signal sinusoïdal. Vous pouvez personnaliser le signal simulé en changeant les options de la boite de dialogue configurer simuler un signal. Si on veut faire la valeur efficace ou la valeur moyenne de ce signal, on peut le faire grâce au bloc qui se nomme mesure d'amplitude et de niveaux (FigII.23) à partir de la bibliothèque traitement du signal. La bibliothèque traitement de signal contient plus de 50modèles de traitement des signaux filtre passe bas, passe-haut (FigII.24).

Fig II.23Instrument de traitement

Fig II.24 Filtre de traitement

Pour enregistrer des informations sur les données générées par un VI, utilisez le VI express écrire dans un fichier de mesure (Fig II.24).

Si vous ne voulez enregistrer que certains points de données, vous pouvez configurer le virtuel instrument express écrire dans un fichier de mesures pour n'enregistrer les valeurs pic à pic que si l'utilisateur appuie sur un bouton.

Fig II.25 Fichier de mesure

II.5.2 Bloc du système d'acquisition

Dans ce qui suit nous avons représenté le bloc du système d'acquisition utilisé permettant la caractérisation électrique d'un module photovoltaïque. Nous avons utilisé deux modules photovoltaïques de marque SUNTECH de puissance $Pcrête=80W_c$ chacun, dans des conditions de rayonnement et de température identiques aux essais effectués dans la caractérisation électrique avec la méthode voltampère métrique, une charge variable et un système d'acquisition et traitement de données.

Fig II.26 Bloc du système d'acquisition sous LabVIEW

II.5.3 Unité d'acquisition de données

Pour le pilotage de la carte d'acquisition et la capture des différents paramètres climatiques et électriques, un programme LabVIEW a été mis en œuvre.

II.5.3.1 Programme LabVIEW

La Figure II.27 représente le programme LabVIEW utilisé pour la caractérisation, il est réparti sur cinq étapes qui sont les suivantes :

Etape 1 : cette étape est mise en place pour envoyer depuis la carte d'acquisition un signal de commande qui représente l'image du courant.

- Etape 2 : après l'envoi du signal de commande, vient l'étape d'acquisition dessignaux par la carte d'acquisition.
- Etape 3 : cette étape on fait le traitement de données acquises par le DAQ. Elle est constituée d'un filtre et d'un instrument mesurant la valeur moyenne.
- Etape 4 : cette étape permet d'afficher les caractéristiques électriques du module PV après acquisition et le filtrage de données.
- Etape 5 : Cette étape nous permet d'enregistrer les mesures sous format Excel.

Fig II.27 Schéma du diagramme du programme utilisé sous LabVIEW

II.5.4 Résultats de caractérisation sous LabVIEW

Nous avons effectué plusieurs tests avec le banc d'essai présenté ci de sur, au niveau du laboratoire L.T.I.I. sous des conditions météorologique identique aux autres tests effectués des tests expérimentaux sous la LabVIEW sont les suivants :

Fig II.28 Test N°1 méthode expérimentale sous LabVIEW

Fig II.29 Test N°2 méthode expérimentale sous LabVIEW

Fig II.30 Test N°3 méthode expérimentale sous LabVIEW

II.5.5 Comparaison entre les résultats des trois méthodes

Nous avons fait la caractérisation électrique d'un module photovoltaïque par les trois méthodes citées précédemment et puis nous avons effectuait des comparaisons entre les trois méthodes sous différentes conditions climatiques.

Fig II.31 Comparaison test N°1

Fig II.32 Comparaison test N°2

Fig II.33 Comparaison test N°3

II.5.5.1 Interprétation des résultats obtenus sous les trois méthodes

D'après les résultats qu'on a obtenus sous des différents ensoleillements et températures effectués au sein du Laboratoire L.T.I.I. à l'université de Bejaia. Et à partir des trois méthodes que nous avons utilisées, nous avons relevé les différents paramètres et caractéristiques électriques du module photovoltaïque à savoir I_{pv}, V_{pv} et P_{pv}.

Les différents paramètres relevés lors des essais effectués montrent que :

L'augmentation de l'ensoleillement et de la température engendrent respectivement l'augmentation du courant de court circuit et la diminution de la tension de circuit ouvert et inversement.

II.6 Optimisation d'un module photovoltaïque

II.6.1 Maximation de la puissance par MPPT

La commande MPPT, 'Maximum Power Point Tracking', est une commande essentielle pour un fonctionnement optimal du système photovoltaïque. Le principe de cette commande est basé sur la variation automatique du rapport cyclique α en l'amenant à la valeur optimale de manière à maximiser la puissance délivrée par le panneau PV. Pour cette raison, on va présenter et étudier par la suite les algorithmes de commande les plus populaires.

II.6.2 Algorithme Perturber et observer, 'P&O'

Le principe de cet algorithme est d'effectuer une perturbation sur la tension du panneau PV tout en agissant sur le rapport cyclique α . En effet, suite à cette perturbation, on calcule la puissance fournie par le panneau PV à l'instant k, puis on la compare à la précédente de l'instant (k - 1).

Si la puissance augmente, on s'approche du point de puissance maximale, 'PMP' et la variation du rapport cyclique est maintenue dans le même sens.

Au contraire, si la puissance diminue, on s'éloigne du point de puissance maximale, 'PMP'. Alors, on doit inverser le sens de la variation du rapport cyclique [19].

Fig II.34 Schéma représentatif du principe de fonctionnement de la méthode(P&O).

Fig.II.35 Résultats de simulation avec MPPT (P&O)

II.7 Conclusion

Dans ce chapitre, on a procédé à la simulation d'un panneau photovoltaïque à l'état sain avec trois méthodes dont la première est la méthode volt-ampérmétrique, la seconde est la simulation avec Matlab/Simulink et la dernière est avec la caractérisation qui est reliée au logiciel LabVIEW.

Nous avons comparé les trois méthodes on conclut que :

- Les résultats obtenus présentent un très bon accord entre les caractéristiques expérimentales et celles simulées, ce qui valide le modèle mathématique utilisé pour la simulation.
- Par contre, nous avons remarqué que les résultats obtenus par la méthode voltampérmétrique reste plus au moins en accord avec les résultats des deux autres méthodes et cela est à cause des erreurs de mesure.
- Les résultats obtenus avec la commande MPPT (P&O) sont meilleur et améliorés.

Dans le chapitre suivant nous allons-nous intéresser aux principaux défauts souvent rencontrés au niveau d'une installation photovoltaïque.

Chapitre III

Etude d'un module photovoltaïque défaillant

III.1 Introduction

Dans ce chapitre, nous allons présenter les principaux défauts rencontrés dans un système photovoltaïque. Dans notre travail on s'est intéressé qu'aux défauts qui peuvent intervenir sur la puissance électrique du module photovoltaïque et spécialement le défaut d'ombrage. Nous présentons l'influence des défauts d'ombrage et de mismatch sur les caractéristiques électriques Ipv(Vpv) et Ppv(Vpv) et les résultats obtenus lors de la caractérisation des défauts d'ombrage avec les logiciels LabVIEW et Matlab/Simulink.

III.2 Le système photovoltaïque et ses défauts

L'objectif de cette partie est d'identifier les principaux défauts. Nous présentons tout d'abord les différents composants d'un système photovoltaïque et les défauts associés à ces composants [14].

III.2.1 Description d'un système photovoltaïque

Nous le décrivons en considérant les différents composants :

- Générateur photovoltaïque : unité de production d'énergie électrique
- Câblage et boîte de jonction.
- Système de protection : y compris la diode de by-pass, diode anti-retour et les autres dispositifs de sectionnement.

III.2.1.1Générateur photovoltaïque

Le générateur photovoltaïque est parmi les unités les plus importantes dans une installation photovoltaïque, car il assure la production d'énergie électrique sous forme de courant continu en convertissant l'énergie solaire en énergie électrique.

a : Module photovoltaïque

La tension et le courant, donc la puissance, d'une cellule ne sont pas adaptés aux applications courantes, il est donc nécessaire de les associer. De plus, les cellules photovoltaïques sont fragiles et sensibles à l'environnement extérieur, elles sont donc munies d'une protection mécanique (l'encapsulation). Pour toutes ces raisons, les cellules sont assemblées en modules photovoltaïques. La mise en série des cellules photovoltaïques permet d'augmenter la tension tandis que le courant reste identique. La tension est multipliée par le nombre de cellules mises en série ce qui permet d'augmenter la puissance. La Figure III.1 montre un module contenant 36 cellules interconnectées en série[15].

b : String PV

Un string photovoltaïque, appelé également chaîne photovoltaïque est un ensemble de modules connecté en série afin de générer une tension de sortie spécifiée.

Fig III.1 Mise en série des cellules photovoltaïques dans un module.

c: Champ PV

Afin d'obtenir des puissances de quelques KW sous une tension convenable, il est nécessaire de regrouper les modules en séries et en parallèle. Ce groupement forme un champ photovoltaïque.

III.2.1.2Câblage et boîte de jonction

Les câbles ont pour rôle d'assurer la transmission du courant généré par les câbles à simple conducteur avec double isolation à la terre ou de court-circuit après l'installation, utilisés pour simplifier la procédure d'installation. Ces connecteurs renforcent la protection contre les risques du choc électrique. Plusieurs strings, une boîte peut contenir des éléments de protection tels que des fusibles, des interrupteurs et des sectionneurs.

III.2.1.3 Système de protection

Il existe plusieurs sortes de protections pour une installation photovoltaïque : protection des intervenants, protection contre la foudre, protection du générateur photovoltaïque. Et vue que notre travail porte uniquement sur les défauts conduisant à une baisse de production, nous nous intéressons donc qu'aux composants servant à la protection du générateur photovoltaïque.

Diode by-pass

Les cellules dans un module photovoltaïque sont associées en plusieurs groupes. Une diode appelée diode de by-pass ou diode de dérivation est ensuite connectée en parallèle avec chaque groupe. Cette diode sert à protéger les cellules les plus faibles contre la polarisation inverse.

Diode anti-retour

Les diodes anti-retour interviennent lors de la mise en parallèle des strings photovoltaïques pour former un champ photovoltaïque, car cela peut engendrer une différence entre les tensions produites par chaque branche. Le courant du string en question pourrait circuler dans les deux sens possibles, le string avec la tension la plus faible peut absorber un courant inverse provenant des autres strings. Cela conduit donc à une baisse de production et les modules du string traversés par le courant inverse pourraient être également susceptible de la défaillance. Pour remédier à ce problème, on installe des diodes anti-retour au bout de chaque string pour empêcher le retour du courant.

III.2.2 Défauts dans un système photovoltaïque [8]

Nous décrivons dans cette partie les différents défauts et anomalies associés à une installation photovoltaïque. Au cours de son fonctionnement, une installation photovoltaïque peut être éventuellement soumise à des différents défauts et conditions de fonctionnement anormal. Les défauts et les anomalies apparus varient d'une installation à une autre en fonction de sa conception, installation, opération et maintenance.

III.2.2.1 Les défauts et les conséquences les plus fréquents rencontrés dans un champ photovoltaïque

Les défauts les plus rencontrés dans une installation photovoltaïque ont été collectés grâce au retour de l'expérience des partenaires du projet [DLDPV] [8].

- > Défauts dans le générateur photovoltaïque.
- Défauts dans le système de câblage.
- Défauts dans la boîte de jonction.
- Défauts dans le système d'acquisition de données.

Dans chaque groupe de défauts, un tableau a été établi reprenant le type de défaut, sa conséquence principale, puis son degré d'impact sur la production du système oucriticité (1 : faible, 2 : moyen, 3 : fort), son occurrence (1 : faible, 2 : moyen, 3 : fort). Ainsi que sa phase d'origine (C : Conception ; I : Installation ; E : Exploitation).

Dans cette partie, quelques exemples de défauts sont également illustrés sous forme d'images.

III.2.2.1.1Défauts dans le générateur photovoltaïque [12]

Les différents défauts qu'on peut rencontrer dans un générateur photovoltaïque sont représentés dans le tableau suivant :

Défauts	Conséquences	Cri.	Occ.	Ori.
Dégradation des modules par	Diminution des performances,	3	2	Е
vandalisme	non fonctionnement de			
	l'installation			
Mauvaise orientation et/ou	Ombrage, diminution des	2	3	C,I
inclinaison des modules	performances			
Module mal ou pas ventilé	Echauffement	2	2	I,C
Module mal fixé	Déplacement du module,	2	2	I,C
	diminution des performances			
Modules mal câblée	Perte d'étanchéité, détérioration	2	2	I,C
	des cellules, diminution du shunt, diminution des performances			
Corrosion du cadre des modules	Perte d'étanchéité, détérioration des cellules	3	1	Е
Foudre	Détérioration des modules	3	1	Е
Tempête	Module arraché, cassé	3	1	Е
Pénétration de l'humidité	Hot spot, augmentation du courant de fuite, corrosion, perte d'adhérence et d'isolation, diminution de la résistance de CC à la terre	3	1	E
Foudre sur l'installation	Destruction des modules	3	1	Е
Modules de performances différentes	Diminution des performances du champ	1	3	I,C
Ombrage partiel (feuilles d'arbre, déjections)	Hot spot, détérioration de cellules	2	1	Е
Inclinaison des modules trop faible	Stagnation d'eau, dépôt de terre, Prolifération de champignons, problème d'étanchéité	2	1	C,I
Important courant de fuite	Echauffement	2	1	Е

Echauffement des modules par la boîte de connexion	Décollement du Tedlar, diminution des performances	2	1	C,I
Nid d'insectes sur les modules	Diminution des performances	2	1	Е
Panneaux inaccessibles	Nettoyage impossible	1	2	C,I
Module produisant moins que prévu	Diminution des performances	1	1	E
Apparition de bulles à la surface des modules	Diminution des performances	1	1	Е

Fig. III.2Exemples de défauts rencontrés dans les générateurs photovoltaïques.

III.2.2.1.2 Défauts dans la boîte de jonction [12]

Le tableau suivant représente les défauts rencontrés dans la boîte de jonction :

Défauts	Conséquence	Cri.	Occ.	Ori.
Absence de parafoudre ou protection foudre inadaptée	Destruction en cas de foudre	3	2	C,I
Presse-étoupe mal serré	Corrosion des contacts, rupture du circuit électrique	2	3	Ι
Liaison de mise à la terre non fixée ou sectionnée	Pas de mise à la terre	2	2	Ι

Chapitre	III:	Etude d	'un	module	photov	voltaïque	défaillant
1					1	1	

Boîte de jonction sans presse- étoupe	Pas d'étanchéité, corrosion des contacts, rupture du circuit électrique	2	2	Ι
Presse-étoupe en caoutchouc	Corrosion des contacts, rupture du circuit électrique	2	2	C,I
Infiltration d'eau par les vis de fixation	Corrosion des contacts, rupture du circuit électrique	2	2	Ι
Boîte de jonction non repérée	Problème pour contrôle et maintenance	1	3	Ι
Déconnexion des soudures	Arc électrique, incendie, diminution des performances	2	1	E,I
Liaison sans protection	Destruction de la liaison	2	1	C,I
Pénétration de l'eau ou de l'humidité	Corrosion des connexions, des diodes, des bornes, incendie	2	1	Ι

Tableau III.2 Les défauts dans la boite de jonction.

Fig.III.3 Exemples de défauts rencontrés dans les boites de jonction.

III.2.2.1.3Défauts dans le système de câblage [12]

Un récapitulatif de défauts rencontré dans le système de câblage est donné dans le tableau suivant :

Défauts	Conséquences	Cri.	Occ.	Ori.
Mauvais dimensionnement des Câbles	Chute de tension> 3%, échauffement	2	3	С
Connexion desserrée ou cassée	Arc électrique, incendie, destruction de la boîte de jonction, destruction de diodes	2	3	I,E
Principe de câblage en goutte d'eau non respecté	Mauvais câblage	2	3	I
Câbles non fixés	Boucle de câblage, circuit ouvert	2	2	Ι
Mauvais câblage	Court-circuit, claquage des diodes anti-retour, destruction des	2	2	Ι

	connecteurs (circuit ouvert),			
	aléas de			
	fonctionnement sur disjoncteur			
Toron	Boucle électromagnétique	2	2	Ι
Câbles d'arrivée des sous champs	Mauvais câblage, faux contacts,	2	2	Ι
entamés lors du dénudage	circuit ouvert, arc électrique			
Câble mal dénudé	Mauvais câblage, faux contacts,	2	2	Ι
	circuit ouvert, arc électrique			
Absence de graisse de silicone	Humidité	2	2	Ι
Bornes rouillées	Faux contacts, circuit ouvert, arc	2	2	Е
	électrique			
Câbles non fixés	Boucle de câblage, circuit ouvert	2	2	Ι
Boîte de connexion décollée	Connexion des cellules en série	2	1	E
	endommagée			

Tableau III.3 Les défauts dans le système de câblage.

Fig III.4 exemples de défauts rencontrés dans le câblage

III.2.2.1.4 Défauts dans le système d'acquisition

Le tableau suivant donne les défauts rencontré dans le système d'acquisition :

Défauts	Conséquences	Cri.	Occ.	Ori.
Coupure de courant	Perte de données	1	3	Е
Sonde d'ensoleillement non câblée	Mesure impossible	1	3	Ι
Défaut de paramétrage	Enregistrement de fausses données	1	3	Ι
Mauvais câblage des shunts de mesure	Mesure impossible ou erronée	1	3	Ι
Carte électronique mal positionnée	Touches inactives, défaut de commande	1	2	Ι

Non configuré pour l'acquisition des données	Pas de donnée enregistrée	1	2	Ι
Armoire fermée par le service de maintenance ou présence d'un code	Lecture des données par l'exploitant impossible	1	2	E,I
Bornier de mesures et de sonde de température trop proches	Câblage difficile, risque de court circuit	1	2	C,I
Acquisition de données vierge	Aucune information enregistrée	1	1	E
Mesure de données non nulles alors que système PV à l'arrêt	Fiabilité des données	1	1	E

Tableau III.4 Les principaux défauts dans le système d'acquisition.

III.2.2.2 Principaux défauts dans un système photovoltaïque

Nous ne retenons que les défauts principaux. Le critère de sélection de ces défauts repose sur le produit entre la criticité et l'occurrence. Suite au retour d'expérience de Transe énergie, des défauts avec un score supérieur ou égal à **3** ont été retenus et sont listés dans le Tableau ci dessous. C'est pour le moment, une simple liste de défauts issue du critère que nous avons retenu. Nous n'allons pas chercher à complètement discriminer ces défauts. Le tableau suivant résume ces principaux défauts rencontrés dans un système PV :

Eléments du générateur photovoltaïque	Origine des défauts et des anomalies
Générateur photovoltaïque	-
Boîte de jonction	-Rupture du circuit électrique -Court-circuit du circuit électrique -Destruction de la liaison -Corrosion des connexions
Câblage et connecteurs	-Circuit ouvert -Court-circuit -Mauvais câblage (module inversé) -Corrosion des contacts
Diodes de protection (diodes de by-pass et diodes anti- retour)	 -Destruction des diodes -Absence ou non fonctionnement de diodes - Inversion de la polarité des diodes au montage, diode mal connectée

Tableau III.5 Les principaux défauts dans un système photovoltaïque.

III.2.3 Influence de défaut du mismatch et d'ombrage sur un module photovoltaïque

III.2.3.1Modélisation [16]

Nous avons vu dans la partie précédente la démarche de modélisation d'un module Photovoltaïque en fonctionnement sain en partant de la caractéristique Ipv-Vpv de la cellule. Cette démarche est un cas particulier de celle proposée pour modéliser un champ Photovoltaïque en fonctionnement défaillant.

Le défaut de mismatch et d'ombrage peut être modélisé par la variation des différents paramètres de la cellule. Lors de la mise en série des composants, la tension produite par chaque composant n'est plus égale pour un même courant. Et lors de la mise en parallèle des composants, le courant fourni par chaque composant n'est plus identique pour une même tension.

Etape 1 : Détermination de la caractéristique de la cellule :

Pour déterminer la caractéristique Ipv-Vpv d'une cellule, on prend la procédure proposée dans le chapitre II.

L'équation (III.2) donne la relation du courant et de la tension de la ieme cellule d'un groupe.

$$I_{cellule} = I_{imposé}$$
 (III.1)

I cellule
$$f(I cellule, V cellule)=0$$
 V cellule, i (III.2)

Dans le cas du mismatch, pour un courant donné, la tension produite par les cellules n'est pas forcément identique car leurs paramètres ne sont pas les mêmes.

Etape 2 : Détermination de la caractéristique du groupe :

Dans le cas d'un groupe de cellules, la somme des tensions de toutes les cellules dans le groupe peut être négative. Ceci provient du fait qu'une où des cellules dans le groupe produisent une tension négative lorsqu'elles sont traversées par un courant supérieur à leur courant de court-circuit. C'est dans cette situation que la diode de by-pass joue son rôle devenant passante quand la somme totale de la tension des cellules devient négative et en dérivant ainsi le courant en excès pour la cellule ombrée. Les trois équations (III.3, III.4 et III.5) donnent les relations du courant et de la tension du jeme groupe de cellules d'un module.

$$I_{groupe} = I_{cellule} + I_{by-pass}$$
(III.3)

$$V_{\text{groupe,j}} = \sum_{i=1}^{N_{cellule,i}} V_{cellule,i} \text{si } \sum_{i=1}^{N_{cellule,1}} V_{cellule,i} \ge 0$$
(III.4)

 $V_{cellule,j=0 si \sum_{i=1}^{N_{cellule,i}} V_{cellule,i}} > 0$ (III.5)

> Etape 3 : Détermination de la caractéristique du module:

L'équation (III.7) donne la relation du courant et de la tension du k^{eme} module d'un string.

$$I_{\text{module}} = I_{\text{groupe}}$$
(III.6)

$$V_{\text{module},k} = \sum_{i=1}^{N_{cellule,i}} V_{cellule,i}$$
(III.7)

La caractéristique d'un module qui contient un groupe de cellules «défaillant» est montré dans la Fig.III.5.a.Et l'allure du module « sain » est montrée dans la Fig.III.5.b.

Fig.III.5 Caractéristique Ipv-Vpv d'un module « mauvais » et « sain ».

Etape 4 : Détermination de la caractéristique du string :

L'équation (III-9) donne la relation du courant et de la tension du $Z^{\acute{e}m\acute{e}}$ string du champ.

$$I_{\text{string}} = I_{\text{module}}$$
 (III.8)

$$V_{\text{string}} = \sum_{k=1}^{N_{modulr}} V_{modulr,k}$$
(III.9)

III.2.4 Influence de la résistance Rs

Il faut dire que la dispersion de la résistance série est un cas de défaut de mismatch. Dans la figure III.6, on remarque qu'à chaque fois la résistance série augmente, la puissance fournie par le module photovoltaïque diminue et inversement. Pour un courant donné, la perte en puissance augmente à chaque fois qu'on augmente la résistance Rs. En augmentant la

résistance série pour atteindre une certaine limite, la perte en tension sera suffisamment grande et elle engendre une tension négative du groupe pour ensuite rendre la diode de bypass passante.

Fig.III.6 Influence de la résistance série sur les caractéristiques électriques du module.

III.3 Caractérisation d'un module photovoltaïque défaillant sous Matlab/Simulink

Le tableau III.6 représente les différentes conditions météorologiques dans lesquelles nous avons réalisé les tests sous Matlab/simulink.

	Ensoleillement	Température
Test N°1	802.69	30.74
Test N°2	476	30
Test N°3	291.77	27.12

Tableau III.6 Différents tests effectués

Nous avons considéré un module SUNTEC de 80 Wc ayant (4x9=36) cellules (Fig III-7).

Fig III.7 Module photovoltaïque à l'état sain

Nous avons en premier considéré un module à l'état sain puis nous avons effectué des ombrages partiels de 25%, 50% et 75 %. Aussi nous avons vu le cas d'un ombrage complet (100 %). Les résultats obtenus sous Matlab/simulink sont les suivants :

Fig III.8 Résultats des comparaisons des trois tests sous Matlab/Sumilink pour un module

sain

Fig III.9 Module photovoltaïque ombré à 25%

Fig III.10 Résultats des comparaisons des trois tests sous Matlab/Sumilink pour un module ombré à 25%

Fig III.11 Module photovoltaïque ombré à 50%

Fig III.12.Résultats des comparaisons des trois tests sous Matlab/Sumilink pour un module ombré à 50%

Fig III.13 Module photovoltaïque ombré à 75%

Fig III.14 Résultats des comparaisons des trois tests sous Matlab/Sumilink pour un module ombré à 75%

Fig III.15 Module photovoltaïque ombré à 100%

Fig III.16 Résultats des comparaisons des trois tests sous Matlab/Sumilink pour un module ombré à 100%

Aussi, il était intéressant de considérer le cas d'ombrage par des feuilles d'arbres, ainsi que la pollution par le sable sur le module photovoltaïque. Les résultats obtenus sous Matlab/simulink sont les suivants :

Fig III.17 Module photovoltaïque couvert avec feuilles d'arbres

Fig III.18 Résultats des comparaisons des trois tests sous Matlab/Sumilink pour un module couvert avec feuilles d'arbres

Fig III.19 Module photovoltaïque pollué par le sable

Fig III.20 Résultats des comparaisons des trois tests sous Matlab/Sumilink pour un module pollué par le sable

III.3.1 Interprétation des graphes

Les figures montrent des caractéristiques d'un module photovoltaïque lors de différents scenarios (sain, pollué, couvert avec feuilles d'arbres et ombré).Le classement des valeurs de courant et de puissance est décroissant selon les conditions météorologiques fort ; moyen et faible (par ordre). Les bosses remarquées dans les figures III.10 et III.12 sont dues au fait qu'une ou plusieurs diodes by-pass se mettent en conduction. Selon le pourcentage d'ombrage de la cellule, la diode de by-pass se met en conduction à différents niveaux de courant de fonctionnement. Il est à remarquer également que la petite variation de tension est en fonction du nombre de diodes by-pass en conduction.

III.4 Conclusion

Dans le troisième chapitre, le contexte de l'étude a été d'abord présenté et toutes les problématiques autour de la productivité d'une installation photovoltaïque ont été discutées. Les expériences sur les installations photovoltaïques opérationnelles ont montré qu'un système de monitoring classique est un atout dans l'amélioration de leurs productivité, alors un système de détection et de localisation est donc indispensable.

Une description sur les différentes méthodes de diagnostic des défauts dans un module photovoltaïque a été établie.

Un traçage des courbes a été fait pour les différents défauts sur Matlab/Simulink.

Dans le quatrième chapitre, nous allons faire une étude comparative entre les résultats de simulation sous Matlab/Simulik avec ceux obtenus avec le logiciel LabVIEW.

Chapitre IV Etude d'un module photovoltaïque défaillant sous LabVIEW

IV.1 Introduction

Dans ce dernier chapitre, nous allons modéliser les défauts (mismatch et ombrage) sous LabVIEW suivie d'une description générale des travaux expérimentauxréalisés au niveau du laboratoire de recherche L T II.

Les résultats pratiques obtenus lors de la caractérisation seront présentés.

Nous avons fait aussi une étude comparative entre LabVIEW et Matlab pour les trois déférents tests sous les conditions suivantes : pollué avec du sable, état sain, divers ombrages).

IV.2 Modélisation électrique des défauts sous LabVIEW

IV.2.1Description de différents défauts

Lorsqu'on parle de cellules formant un module ou un string qui ont des caractéristiques électriques non-identiques, on parle de défaut de mismatch. Il faut dire que l'ombrage est un cas particulier du défaut de mismatch, car sa présence conduit à une réduction de l'ensoleillement reçu par les cellules ombrées.

Dans notre travail on s'est intéressé qu'aux défauts qui peuvent intervenir sur la puissance électrique du module photovoltaïque et spécialement le défaut d'ombrage. Nous avons effectué plusieurs essais sur un module photovoltaïque sain et ombré (25%, 50%, 75%, 100% et ombré par des feuilles d'arbre) ainsi que sur un module sous pluie et pollué. Les figures suivantes montrent les différentes conditions d'ombrage sur lesquelles nous avons effectué les essais :

Fig. IV.1 Exemple de défauts de mismatch et d'ombrage.

VI.2.2 Description des travaux expérimentaux

En pratique, le système étudié est constitué d'un module photovoltaïque type Suntech STP080S-12/Bb, une charge variable ainsi qu'un ordinateur avec un système d'acquisition de données (LabVIEW). Nous avons effectué trois tests pour plusieurs ensoleillements et températures sur un module photovoltaïque dans plusieurs états (sain, ombré) dans le but de visualiser les caractéristiques électriques $I_{pv}(V_{pv})$ et $P_{pv}(V_{pv})$ en temps réel sous l'effet de l'ombrage. Les paramètres du module utilisé sont :

P _{max} (W)	I _{mpp} (A)	V _{mpp}	I _{cc}	V _{co}	α _{cc}	β _{co}	T _{stc}	
		(V)	(A)	(V)	(mA)	(mV)	(°C)	
80	4.65	17.2	5	21.6	3	-150	25	

Tableau IV.1 Paramètres électrique du module photovoltaïque utilisé.

La figure suivante représente le bloc que nous avons utilisé pour la caractérisation électrique avec les défauts.

FigIV.2 Banc d'essai utilisé.

Le tableau suivant représente les différentes conditions météorologiques dans lesquelles nous avons réalisé les tests :

	Ensoleillement (W/m ²)	Température (°C)
Test N°1	802.69	30.74
Test N°2	476	30
Test N°3	291.77	27.12

Tableau VI.2 Différents tests effectués

IV.2.3 Les résultats obtenus par LabVIEW

Les figures suivantes représentent les caractéristiques électriques obtenues sous LabVIEW sous les différents tests effectués.

Fig. IV.4 Test N°2 sous LabVIEW.

Fig IV.5 Test N°3 sous LabVIEW.

IV .2.4 Comparaison des résultats LabVIEW / Matlab/Simulink

Nous avons effectué une comparaison entre les résultats expérimentaux obtenus sous LabVIEW et ceux modéliser sur Matlab/Simulink pour les trois tests cités et on a obtenu les résultats suivants :

Teste N°1

Fig.IV.6 Résultats des comparaisons du test N°1 entre Matlab et LabVIEW pour un module

sain

Fig.IV.7 Résultats des comparaisons du test N°1 entre Matlab et LabVIEW pour un module avec le sable

Fig.IV.8 Résultats des comparaisons du test N°1 entre Matlab et LabVIEW pour un module couvrement avec feuilles d'arbre

Fig.IV.9 Résultats des comparaisons du test N°1 entre Matlab et LabVIEW pour un module ombré 25%

FigIV.10 Résultats des comparaisons du test N°1 entre Matlab et LabVIEW pour un module ombré 50%

Fig.IV.11 Résultats des comparaisons du test N°1 entre Matlab et LabVIEW pour un module ombré 75%

FigIV.12 Résultats des comparaisons du test N°1 entre Matlab et LabVIEW pour un module ombré 100%

Teste N°2

Fig.IV.13 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module sain

Fig.IV.14 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module pollué par le sable

Fig.IV.15 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module couvrement avec feuilles d'arbre

Fig.IV.16 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module ombré 25%

Fig.IV.17 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module ombré 50%

Fig.IV.18 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module ombré 75%

Fig.IV.19 Résultats des comparaisons du test N°2 entre Matlab et LabVIEW pour un module ombré 100%

Fig.IV.20 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module

Fig.IV.21 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module avec le sable

Fig.IV.22 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module couvrement avec feuilles d'arbre

Fig.IV.23 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module

ombré 25%

Fig.IV.24 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module ombré 50%

Fig.IV.25 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module ombré 75%

Fig.IV.26 Résultats des comparaisons du test N°3 entre Matlab et LabVIEW pour un module ombré 100%

IV.2.4.1 Calculs des rendements, les facteurs de forme et l'indicateur d'erreurs

Dans le tableau qui suit nous avons calculé les différents rendements, les facteurs de forme, et les l'indicateurs d'erreurs pour les trois tests effectués expérimentalement sous LabVIEW et la simulation sous Matlab/Simulink.

La surf ace du module $S = 0,646495m^2$.

Pour les calculs des rendements, FF et l'erreur, nous avons utilisé les équationssuivantes

$$\eta = \frac{P_{max}}{E_s * S} (III.10) FF = \frac{P_{max}}{V_{co} * I_{cc}} (III.11)$$

 $E_x = E_x \text{ mesuré} - E_x \text{ simulé}$ (III.12)

:

Tests] exp	Résultat ériment	S allx	Résultats sous Matlab			Erreurs		
		P _{max}	FF	η%	P _{max}	FF	η%	E	E	E
Tost1	Modulo soin	64.1	74.16	16 72	61 56	74.08	16 057	P_{max}	FF	Π%
16211	Widdule sam	04.1	/4.10	10.72	01.30	/4.00	10.037	2.34	0.00	0.303
	Ombrage	25.1	30.49	6.55	25.04	29.6	6.53	0.06	0.89	0.02
	25%									
	Ombrage 50%	22.7	32.82	5.92	22.11	32.35	5.76	0.59	0.47	0.16
	Ombrage	6.6	91.16	1.72	6.2	85.83	1.62	0.4	5.33	0.1
	75%									
	Ombrage	4.8	90.39	1.25	4.76	89.6	1.24	0.04	0.75	0.147
	100%									
	Pollué par	61.8	74.99	16.12	61.4	74.9	16.015	0.4	0.09	0.105
	le sable									
	Couvrement	44.7	80.76	11.7	44.38	80.63	11.57	0.32	0.13	0.13
	Par les									
	feuilles									
	d'arbres									
Test2	Module sain	43.4	78.89	13.3	42.57	75.3	13.04	0.83	3.59	0.26
	Ombrage	18.4	36.29	6.26	16.46	32.64	5.04	1.94	3.64	1.21
	Ombrage	133	38.96	49	13 28	36 65	4 07	0.02	2 31	0.83
	50%	13.5	50.70	ч.у	13.20	50.05	4.07	0.02	2.31	0.05
	Ombrage	8.7	78.58	3.08	8.56	77.13	2.62	0.14	1.45	0.46
	75%									
	Ombrage	4.6	64.24	1.7	4.58	63.38	1.4	0.02	0.86	0.3
	100%									
	Pollué par le sable	32.9	82.66	12.7	32.8	81.07	10.05	0.1	1.59	2.65
	Couvrement	20.4	86.73	8.4	20.1	86.7	6.15	0.3	0.03	2.25
	Par les									

	feuilles									
	d'arbres									
Test3	Module sain	24.4	81.74	13.4	22.35	76.16	12.27	2.05	5.58	1.13
	Ombrage	10.4	47.8	6.17	10.39	44.9	5.7	0.01	2.97	0.47
	25%									
	Ombrage	7.7	46.76	4.19	7.63	43.07	3.09	0.07	3.69	1.1
	50%									
	Ombrage	2.4	67.41	0.9	1.3	62.84	1.26	1.1	4.57	0.04
	75%									
	Ombrage	0.5	30.86	0.3	0.4	25.65	0.22	0.1	5.21	0.08
	100%									
	Pollué par	20.4	86.37	11.77	20.2	85.25	11.09	0.2	1.12	0.68
	le sable									
	Couvrement	18.2	86.73	10.79	18.14	85.8	9.96	0.06	0.93	0.83
	Par les									
	feuilles									
	d'arbres									

Tableau.IV.3 Tableau récapitulatif des résultats obtenus.

Les histogrammes suivants résument les résultats du tableau précédent.

FigIV.27 Histogrammes des puissances pour les trois tests sous LabVIEW

FigIV.28 Histogrammes des puissances pour les trois tests sous Matlab

FigIV.29 Histogrammes des facteurs de formes pour les trois tests sous LabVIEW

FigIV.30 Histogrammes des facteurs de formes pour les trois tests sous Matlab

FigIV.31 Histogrammes des rendements pour les trois tests sous LabVIEW

FigIV.32 Histogrammes des rendements pour les trois tests sous Matlab

FigIV.33 Histogrammes des erreurs sur la puissance entre LabVIEW et Matlab.

FigIV.34 Histogramme des erreurs sur le facteur de forme entre LabVIEW et Matlab.

FigVI.35 Histogrammes des erreurs sur les rendements entre LabVIEW et Matlab

IV.2.4.2 Interprétation des résultats

Les résultats que nous avons obtenus à partir de la caractérisation électrique sous LabVIEW d'un module photovoltaïque, lors des trois tests effectués avec différents ensoleillements et températures, montrent que la caractéristique électrique d'un module photovoltaïque prend plusieurs allures suivant l'ombrage imposé.

Le pourcentage d'ombrage influe inversement sur le courant de court-circuit (la diminution du courant de court-circuit est relative à l'augmentation du pourcentage d'ombrage) d'où une diminution de puissance récupérée. Par contre la tension de circuit

ouvert est légèrement influencée par l'ombrage. Mais cette dernière reste constante pour le cas d'un champ photovoltaïque même s'il est défaillant.

Le nombre de cellules ombrées et non ombrées créent des bosses dans certaines caractéristiques Ipv(Vpv) et Ppv(Vpv), cela se justifie par la conduction des diodes by-pass et la non conduction suivant le pourcentage d'ombrage du module photovoltaïque.

La résistance série influe sur la caractéristique électrique du module photovoltaïque, nous avons déduit que lorsque la résistance série augmente plus le courant de court-circuit diminue c'est-à-dire une diminution de puissance fournie.

A partir des trois tests effectués nous avons remarqué une légère diminution de courant de court-circuit pour les deux cas pollué avec du sable et couvrement avec feuilles d'arbres se qui induit a une perte en puissance récupérée.

Finalement, nous avons validé les résultats expérimentaux en faisant une comparaison avec les résultats obtenue sur Matlab-Simulink.

IV.3 Conclusion

Dans ce chapitre, nous avons mis un module solaire type Suntech STP0080S-12/Bb, sous déférents états, sain, ombré (25%, 50%, 75%, 100%, feuilles d'arbres) et même pour l'état pollué, pour voir l'influence de chacun de ces paramètres sur les caractéristiques électriques de ce module photovoltaïque et nous avons conclu que :

- Le pourcentage d'ombrage et de la pollution influe sur le courant de courtcircuit donc sur la puissance récupérée.
- Nous avons remarqué que les résultats du LabVIEW sont un peutplus meilleurs par rapport à Matlab-Sumilink.

Pour l'amélioration de la productivité des installations photovoltaïques, un système de détection et de localisation est donc indispensable.

Conclusion générale

Conclusion générale

Les travaux présentés dans ce projet et qui ont été réalisé au laboratoire LTII de Bejaia portent sur l'étude des caractéristiques d'un système photovoltaïque sous déférents états (sain et défaillant).

Nous avons entamé ce mémoire par des généralités sur les énergies renouvelables qui se présentent comme une solution idéalremédié au réchauffement climatique. Dans cette même partie nous avons vu que l'énergie solaire photovoltaïque se présente comme une énergie prometteuse pour l'avenir, car elle est disponible partout, nous nous sommes aussi intéresser au mode de production d'électricité à partir du soleil, en utilisant une cellule photovoltaïque qui est fabriquée a partir des matériaux semi-conducteur (silicium).On a terminé ces généralités par les modes de connexions possibles entre la source photovoltaïque et la charge.

Dans le deuxième chapitre, on a donné la modélisation de la cellule photovoltaïque puis nous avons présenté le logiciel a temps réel LabVIEW, et on a fait la caractérisation d'un module photovoltaïque par trois méthodes (Matlab, LabVIEW et la méthode voltampermetrique)sous trois conditions climatiques déférentes, puis nous avons effectué une comparaison entre les trois méthodes.

Une description générale des défauts qu'on peut rencontrer dans un système photovoltaïque, et quelques méthodes de diagnostic de ce dernier ont été présentés.

Pour valider les résultats de simulation nous avons effectué des expérimentations sous différentes conditions, puis présenter la maquette avec laquelle on fait des tests au niveau du laboratoire, ensuite nous sommes passées au logiciel LabVIEW qui fait à la fois l'acquisition des données et calcul le point de puissance maximaleen temps réel. Les résultats obtenus ont permis de trouver une concordance entre les résultats de simulation et ceux obtenus en expérimentale ont permis de valider l'étude.

Les perspectives envisagées dans le cadre de ce travail sont :

- Poursuivre le travail avec différentes méthodes d'optimisation sur la puissance (logique floue, perturbation et observation...etc).
- ✤ Faire une application au pompage photovoltaïque.

Références bibliographiques

Liste des références

[1] :H.REVEES, mal de terre ; science ouverte ; éditions de seuil, mars 2003.

[2] :L.ZAROUR, étude technique d'un système d'énergie hybride photovoltaïque-éolien hors réseau, thèse de doctorat en électrotechnique de l'université de Constantine, 2010, Algérie.

[3] : F. T. Reis, D. Mencaraglia, S. Oould Saad, I. Séguy, M. Oukachmih, P. Jolinat, P.DestrueL. (Characterization of ITO/CuPc/AI and ITO/ZnPc/Al structures using optical and capacitance spectroscopy), Synthetic Metals, Vol. 138, Iss. 1-2, pp. 33-37, 2003.

[4] :R.KHEZZAR (comparaison entre les déférents modèles électriques et détermination des paramètres de la caractéristique I V d'un module photovoltaïque).revue des énergies renouvelables vol.13N°3.pp379.388.2010.

[5] :S.VIGHTTI, Systèmes photovoltaïques raccordées au réseau :choit et dimensionnement des étages de conversion , thèse doctorat en génie électrique de l'université de Grenoble.2010.France

[6] :S.MOUHADJER, contribution à l'optimisation du rendement des générateursphotovoltaïques et éoliens par l'intégration des systèmes électroniques d'adaptation à commande MPPT, thèse doctorat en énergies renouvelables de l'université de Tlemcen, 2014, Algérie.

[7] :S.AISSOU, M. ZINET (identification et caractéristiques d'un systèmephotovoltaïque), mémoire de master, université AbdArahmane MIRA de Bejaia, 2012, Algérie.

[8] :M.ALINE (Micro capteurmagnétique de mesure de courant et traitement intégrée), thèse institut polytechnique de Grenoble, 2009.

[9]:F.BRAYAN, simulation of grid-tied building Integrated photovoltaic systems. M.S Thesis. Solar energy, laboratory, university of Wisconsin, Madison, 1999.

[10]:W.L.DE SOTO, improvement and validation of a model for photovoltaique array performance M.S Thesissolar energy laboratory. University of Wisconsin. Madison, 2004.

[11]:T.U.TOWNSED (A Method for estimating the long term performance of direct coupled photovoltaic systems) M.S Thesis. Solar energy, laboratory, university of Wisconsin, Madison, 1989.

[12] :M.Miwa, S.Yomanaka, H.Kawamura and H.Ohno(Diagnosis power output lowering of PV array with(-dI/dV)-V Characteristic presented at the photovoltaic energy conversion, conference record of the 2006 IEE 4th word conference on Waikoloa, HI, 2006.

[13] : A. Maroun (Micro capteur magnétique de mesure de courant et traitement integer) these institut polytechnique de gronoble, 2009.

[14] :http://sine.ni.com/nips/cds/view/p/lang/fr/lind/14128.

[15]:A.Chermetti, O.Boukli-Hacéne, S.Mouhadjer, desion of library of components for autonoms photovoltaic system under matlab/simulink), International journal of computer applications (0975-8887), volume 53-no.14, September 2012.

[16]:F.COTTET, lab VIEW, programmation et application, edition 2001.

[17]: I. Séguy, R. Mamy, P. Destruel, P. Jolinat, H. Bock, « Photoemission study of the ITO/triphenylene/perylene/Al interfaces », Applied Surface Science, Vol. 174, Iss. 3-4, pp. 310- 315, 2001.

[18]: R. Meseenger, J. Ventre, « Photovoltaic systems Engineering », CRC Press, 1999.[19]:http://sine.ni.com/cds/view/p/lang/fr/nid/14128.

Annexes

Model Number	1 level	STP080S-12/Rh
Rated Maximum Power	(Pmax)	80W
Current at Pmax	(Imp)	4.654
Voltage at Pmax	(Vmp)	17.2V
Short -Circuit Current	(lsc)	54
Open-Circuit Voltage	(Voc)	21 6V
Nominal Operating Cell Temp.	(TNOCT)	500
Weight Dimension Maximum System Voltage Maximum Series Fuse Rating Cell Technology	8Kg 1195×5 715V 8A Mono-5	541×30(mm) Si
All technical data at standard test AM=1.5 E=1000W/m ² Ta	condition=25°C	n
IEC ISO	4	(6