République AlgérienneDémocratique etPopulaire Ministère de l'EnseignementSupérieuret delaRecherche Scientifique Université A. MIRA-Bejaia

Faculté des Sciences de la Nature et de la Vie

Département de Microbiologie Filière : Sciences biologiques

Option : Microbiologie Moléculaire et Médicale

Réf:.....

Mémoire de Fin de Cycle

En vue de l'obtention du diplôme

MASTER

Thème

Prévalence des souches d'entérobactéries productrices de carbapénèmases isolées des infections communautaires et nosocomiales dans l'auestalgérien

Larouci Mahieddine & Benbounegab Zakaria

Soutenu le : 18 -06-2017

Devant le jury composé de:

Mr. BENSAID K. MAA Président

Mr. TOUATI A. Professeur Encadreur

Mme. YAHIAOUI H. MAA Examinatrice

Année universitaire: 2016 / 2017

Remerciements

Nous tenons à remercier le Pr. A. TOUATI et Melle. A. MAIRI qui fut pour nous des encadreurs attentifs et disponibles.

Nous remercions également les membres du jury pour avoir accepter d'examiner notre travail.

Nos remerciements vont aussi au personnel du laboratoire privé d'analyses médicales Dr. Absi de Béchar et tous les membres du laboratoire de l'EPH Isaad Khaled de Mascara.

Dédicaces

A mes très chers parents,

A Mes frères et sœurs, sans exception,

A tout mes amis.

Mahieddine

Dédicaces

Merci à Allah, à qui je dois tout, d'avoir guidé mes pas et de m'avoir donné la volonté pour accomplir ce travail.

Aux deux êtres les chères du monde, mon père et ma mère que dieu les gardes, je suis fière et content de réaliser une partie de ce que vous avez tant espère et attendu de moi. Aucun mot, aucune dédicace ne saurait exprimer à sa juste valeur, pour toutes les souffrances que vous avez endurées. Je vous dis infiniment merci.

A mes sœurs et mon frère, auxquels je souhait beaucoup de réussite.

A mes grands parents maternels, que Allah vous garde et vous accorde longue de vie.

A la mémoire de mes grands parents paternels.

A toutes la famille Ben bounegab, merci pour votre soutien

A touts mes chers amis, particulièrement : Souad, Rafik, Hicham, Abdmalek, je vous souhaite un avenir souriante

A Dr Absi Bachir et leurs équipes, merci de votre soutien afin de réaliser mon travail et je vous souaite que la réussite

SOMMAIRE

Liste des tableaux Liste des figures Liste des abréviations

Introduction	1
Synthèse bibliographique	
I. Les entérobactéries	2
I.1 Généralités	2
I.2 Pouvoir pathogène	2
II. Les β-lactamines	4
II.1. Structure et classification	4
II.1.1. Pénames	5
II.1.2.Céphèmes	5
II.1.3. Monobactames	5
II.1.4. Carbapénèmes	6
III. Résistance aux carabapénèmes chez les entérobactéries Matériel et méthodes	6
I. Echantillonnage	8
III. Isolement	8
III. Identification	9
IV. Etude de la sensibilité des souches aux antibiotiques	9
V. Recherche de la production de carbapénèmases	10
V.1. Détection de la production d'une β-lactamase à spectre étendu	11
Résultats	
I. Souches bactériennes	12
I.1. Sensibilité des souches aux antibiotiques	12
I.2. Répartition des EPC selon la région	16
I.3. Répartition des souches par type de prélèvement	16
I.4. Répartition des EPC par espèces	17 18
I.5. Répartition des EPC selon le sexe I.6. Répartition des EPC selon l'âge	19
II. Recherche des β-lactamases à spectre étendu (BLSE)	20
•	
Discussion et conclusion Référence bibliographiques	21 23
Annexe I	I
Annexe II	III

Liste des figures

Figure 1 : Principales structures des β-lactamines	4
Figure 2 : Test de Hodge	11
Figure 3 : DD-test	11
Figure 4 : Résultat du test Hodge pour la souche d'Escherichia coli 4536UR	12
Figure 5 : Taux de résistance des souches d'EPC aux β-lactamines	15
Figure 6 : Taux de résistance des souches d'EPC aux autres familles	15
d'antibiotiques	
Figure 7 : Répartition totale des EPC isolées par type de prélèvement	16
Figure 8 : Répartition des EPC isolées par prélèvement pour chaque région	17
Figure 9 : Répartition des EPC isolées par espèce	17
Figure 10 : Répartition des EPC isolées par espèces pour chaque région	18
Figure 11 : Répartition des EPC selon l'âge	19
Figure 12 : Répartition des EPC selon l'âge pour chaque région	20
Figure 13 : Image de synergie obtenue dans le DD-test pour la souche 4028pv	20
Liste des tableaux	
Tableau I : Différents tests biochimiques d'identification des souches	9
Γableau II : Antibiotiques testés	10
Cableau III : Résultats de la sensibilité des souches d'EPC isolées aux antibiotique	c 14

Liste des Abréviations

Ak: Amikacine

AMC: Amoxicilline-Clavulanate

AmpC: Céphalosporinases

ATCC: American Type Culture Collection

ATM: Aztréonam

BLSE: β-Lactamases à Spectre Etendu

BMR: Bactérie multirésistante

C1G: Céphalosporines de 1 ère génération

C2G: Céphalosporines de 2 ème génération

C3G: Céphalosporines de 3 ème génération

C4G: Céphalosporines de 4 ème génération

CAZ: Ceftazidime

CLSI: Clininal and laboratory standards institute

CTX: Céfotaxime

CIP: Ciprofloxacine

DD-test: Double disc synergie test

EPC: Entérobactéries Productrices de Carbapénèmases

EUCAST: European Committee on Antimicrobial Susceptibility Testing

FOX: Céfoxitine

IMP: Imipénème

KPC: *Klebsiella pneumoniae* Carbapenemase

MβL: Métallo-β-Lactamases

MER: Méropénème

MH: Mueller Hinton

NDM: New Delhi Metallo-β-lactamases

OXA-48: Oxacillinase-48

RM: Rouge méthyl

SXT: Co-trimoxazole

TE: Tetracycline

VIM: Verona integron-encoded métallo-β-Lactamases

VP: Voges-Proskauer

Les entérobactéries sont des bacilles à Gram négatif présents au sein de la flore intestinale normale des hommes et des animaux. Parmi les bactéries appartenant à cette famille des *Enterobacteriaceae*, on identifie des pathogènes humains responsables d'infections variées (infections urinaires, septicémies, pneumonies, infections hépato-digestives, méningites...). Les entérobactéries sont considérées comme la source principale d'infections communautaires et hospitalières (Dortet, *et al.*, 2013).

Les carbapénèmes sont les β-lactamines ayant le spectre d'activité le plus large. Ils sont limités à un usage hospitalier, prescrits majoritairement dans le cadre du traitement d'infections nosocomiales. Cependant, l'augmentation importante de la prévalence des entérobactéries productrices des β-lactamases à spectre étendu (BLSE) en milieu communautaire fait craindre une augmentation parallèle du nombre de prescriptions des carbapénèmes, non seulement à l'hôpital, mais aussi en ville (Nordmanna *et al.*, 2013).

Les bêta-lactamases ayant une activité de carbapénèmase représentent le mécanisme de résistance le plus efficace aux carbapénèmes. Ces carbapénèmases sont identifiées de façon croissante chez les entérobactéries dans le monde entier. Les entérobactéries productrices de carbapénèmases (EPC) représentent actuellement un problème majeur de santé publique. Les carbapénèmases acquises les plus fréquemment décrites sont les β-lactamases de type KPC, les métallo-β-lactamases de types VIM, IMP et NDM, et les oxacillinases de type OXA-48(Nordmann *et al.*, 2010).

La diffusion des carbapénèmases chez les entérobactéries revêt une importance clinique particulière. En effet, les souches productrices de carbapénèmases résistent à la majorité des β-lactamines et sont souvent résistantes à d'autres familles d'antibiotiques comme les aminosides, quinolones, etc. (Dortet *et al.*, 2013).

De ce fait, l'objectif de ce travail, consiste à déterminer et estimer la prévalence des entérobactéries productrices de carbapénèmases isolées des infections communautaires et nosocomiales dans l'ouest algérien.

Synthèse bibliographique

I. Les entérobactéries

I.1 Généralités

La famille des *Enterobactereacae* est constituée de genres bactériens qui sont rassemblés en raison de caractères bactériologiques communs (Avril *et al*,. 2000). Ce sont des bacilles à Gram négatif mesurant 1 à 6 µm de long et de 0,3 à 1 µm de large, mobiles par une ciliature péritriche ou immobiles et aéro ou anaérobie facultatifs, fermentent le glucose avec ou sans production de gaz, réduisent les nitrates en nitrites et oxydase négative et possèdent un antigène commun appelé antigène de Kunin ou ECA (enterobacterial common antigen) (Delarras, 2014).

Actuellement, les entérobactéries sont classées sur la base de leurs séquences ARN 5S et 16S dans l'un des dix groupes formant les Eubactéries, celui des Protéobactéries. Dans ce groupe elles constituent la sous-classe gamma. (Joly *et al.*, 2000).

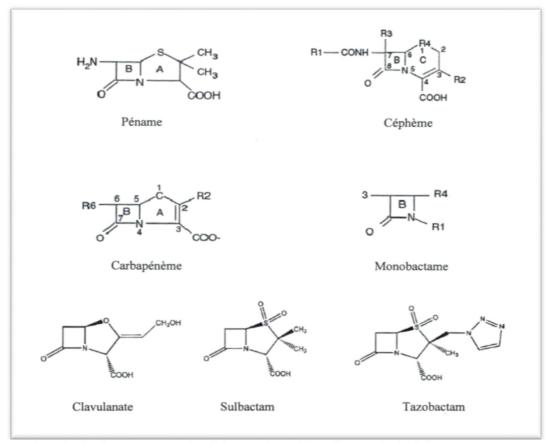
Les *Enterobacteriaceae* poussent aisément sur une gélose ordinaire incubée 18 h à 37°C. Les colonies obtenues : peuvent être sois la forme smooth S (lisses, bombées, brillantes humide et ont 2 à 4 mm de diamètre), rough R (rugueuses, sèches, a contours irréguliers et de teinte mate), colonies muqueuses (leurs aspect est muqueuse et de diamètre peut dépasser 10mm) ou forment des colonies naines (Joly *et al* ,.2000).

I.2 Pouvoir pathogène

Parmi les nombreuses espèces d'entérobactéries certaines sont fréquemment retrouvées dans l'environnement (sol, végétaux...) et dans l'intestin de l'Homme et des animaux. Certaines espèces sont ubiquitaires (*Klebsiella pneumoniae*) et d'autres, ont une niche écologique étroite comme *Salmonella* Typhi. (Joly *et al* ,.2000).

Certains genres d'entérobactéries possèdent une hémolysine (Nauciel et Vildé, 2005) et des toxines (entérotoxine) (Sansonetti,1987). Les entérotoxines sont des protéines extracellulaires ou peptides (exotoxines) qui peuvent exercer leurs actions sur l'épithélium intestinal. L'entérotoxine thermolabile LT, de type A-B dont le mécanisme et la structure sont très similaires de ceux de la toxine cholérique, possède, un pouvoir cytopathogène. L'entérotoxine thermostable ST stimule l'activité guanylate-cyclase des entérocytes qui provoque une fuite hydrique importante. (Avril *et al.*, 2000). Les shiga-toxines produites par

le genre *Escherichia* sont appelées ainsi car elles ont une grande similitude avec la toxine produite par *Shigella dysenteriae* (Delarras, 2014).


La sécrétion d'hémolysines est impliquée dans les infections humaines causées par les entérobactéries pathogènes. Ces hémolysines représentent une famille de protéines acides, immunologiquement apparentées et nécessitant le Ca⁺⁺ et un pH neutre pour une activité optimale. Elles agiraient directement par altération des membranes biologiques, soit sur les cellules parenchymateuses, soit sur les cellules phagocytaires. Elles pourraient aussi agir indirectement comme mécanisme additionnel de captation du fer par lyse érythrocytaire et libération du fer hémique. (Sansonetti,1987).

Nous pouvons rajouter les adhésines comme facteur de pathogénicité, elles peuvent induire une adhésion aux cellules épithéliales et aux globules rouges. (Nauciel etVildé, 2005). Ces adhésines permettent aux bactéries d'adhérer de façon spécifique à la bordure en brosse des entérocytes et de résister au processus d'élimination dû au péristaltisme intestinal. Les deux adhésines les plus fréquemment représentées à la surface des souches humaines sont appelées le CFA (colonisation factor antigen) dont CFAI et CFAII. (Sansonetti, 1987).

II. Les β-lactamines

II.1. Structure et classification

Les β-lactamines constituent la famille d'antibiotiques la plus importante, par le nombre des molécules utilisables que par leurs indications en thérapeutique des infections bactériennes (Handal *et al.*,2000). La famille des β-lactamines se compose de quatre groupes de molécules : les pénames, les céphèmes, les monobactames et les pénèmes, ayant toutes en commun le cycle β-lactame (Bryskier, 1999). La grande variété de leurs modes d'administration, leur large spectre d'activité antibactérien associé à une action bactéricide, une bonne diffusion tissulaire, une bonne tolérance et un faible nombre d'interactions médicamenteuses expliquent leur popularité et l'importance de leur utilisation, seules ou en associations. Acide clavulanique, le sulbactam ou le tazobactam sont ce sont surtout des inhibiteurs de b-lactamases par attachement et formation de complexes covalents irréversibles qui aboutissent à l'inactivation du site actif d'un grand nombre de b-lactamases (Cavallo *et al.*, 2004). Figure (1)

Figure 1: Principales structure des β -lactamines (Cavallo *et al.*, 2004)

II .1.1. Pénames

Ils'agit d'une large classe de molécules ayant en commun le noyau péname, qui est caractérisé par un pentacycle (cycle thiozolidine) saturé fixé sur un cycle β-lactame. Les produits de ce groupe se distinguent par la nature du radial fixé sur le carbone en position 6 (Bryskier, 1999).

La péniciline G et ses dérivés ont une activité identique contre les coccis à Gram négatif et à Gram positif non productrices de pénicillinases, ainsi que contre quelques bacilles à Gram positif comme les corynébactéries et les *Clostridium*. Les pénicillines M sont des pénicillines antistaphylococciques résistantes aux pénicillinases.

Les aminopénicillines sont des pénicillines à large spectre actives sur certains bacilles à Gram négatif non producteurs de céphalosporinases. Les carboxypénicillines et les uréidopénicillines sont des produits à spectre plus étendu sur les bacilles à Gram négatif, englobant en particulier *Pseudomonas aeruginosa* (Cavallo *et al.*, 2004).

II.1.2. Céphèmes

Les céphalosporines sont dérivées de l'acide 7-aminocéphalosporanique et sont traditionnellement classées en première, deuxième, troisième et quatrième génération, (Bryskier, 1999). Les céphalosporines de première génération (C1G : céfalotine, céfalexine) sont plutôt actives sur les bactéries à Gram positif. Les C2G (céfuroxime, céfamandole) ont un spectre étendu vers les bactéries à Gram négatif et les C3G ou oxyimino-céphalosporines (céfixime, céfotaxime, ceftazidime) ont un spectre étendu à la plupart des entérobactéries et sur *P. aeruginosa* pour la ceftazidime. En fin les C4G (céfépime et cefpirome) sont des oxyimino-céphalosporines zwitterionniques relativement stables à l'hydrolyse par les céphalosporinases (Ruppé, 2010).

II.1.3. Monobactames

Ce sont des β-lactamines caractérisées par une structure monocyclique différant du double cycle rencontré dans les pénicillines ou les céphalosporines (Cavallo *et al.* ,2004). Les monobactames naturels sont de faibles agents antibactériens, mais ils se caractérisent par une très bonne stabilité à l'action des

β-lactamases. La seule molécule commercialisée est l'aztréonam, il est réservé aux infections documentées à bactéries à Gram négatif sensibles, en particulier les infections urinaires hautes sévères, les septicémies, les infections intra-abdominales, gynéco-obstétricales (Bryskier, 1999).

II.1.4. Carbapénèmes

Les carbapénèmes sont les β-lactamines ayant le spectre le plus large, ils sont actifs vis-à-vis de très nombreuses espèces de bacilles à Gram négatif dont les entérobactéries (Dortet et *al.*,2013). L'activité de ces carbapénèmes est liée en particulier à la rapidité de leur pénétration à travers la paroi externe des bacilles à Gram négatif et à leur stabilité vis-à-vis de la plupart des β-lactamases naturelles ou acquises (Nordmann *et al.*, 2010). Pour cette raison, ils font partie des antibiotiques utilisés en première ligne au cours du traitement probabiliste des infections nosocomiales sévères. Trois molécules sont commercialisées : l'imipénème, le méropénème et l'ertapénème. Leur spectre in vitro couvre la plupart des bactéries y compris les anaérobies, les exceptions notables étant les staphylocoques résistants à la méticilline, et pour l'ertapénème *P. aeruginosa* (Wolff et *al.*, 2008).

III. Résistance aux carabapénèmes chez les entérobactéries

La résistance aux carbapénèmes peut résulter de mécanismes combinés associant des β-lactamases de type BLSE et AmpC et une diminution de la perméabilité de la membrane externe, ou de la production de carbapénèmases (Nordmann, 2010).

Les carbapénèmases décrites chez les entérobactéries appartiennent aux trois classes connues de β -lactamases (classe A, B, D de la classification d'Ambler). Actuellement, les plus importantes en microbiologie clinique sont les β -lactamases de type KPC (classe A), les métallo-bétalactamases (classe B) de type VIM, IMP et plus récemment NDM, et les oxacillinases (classe D) de type OXA-48(Dortet, et *al.*, 2013).

Les carbapénèmases de type OXA-48 appartiennent à la classe D. Elle n'a été décrite que chez les entérobactéries, tout d'abord chez la souche de *K. pneumoniae* en Turquie (2003) (Nordmann,2010). Et en mars 2012, le gène *bla*_{OXA-48} a été identifié pour la première fois en Algérie dans une souche d'*E. coli* (Agabou *et al.*, 2014). Plus récemment, le gène *bla*_{OXA-48} a été identifié dans de nombreux pays, le plus souvent

Synthèse bibliographique

dans des souches de *K. pneumoniae*. La Turquie, le Moyen-Orient et les pays du Maghreb sont considérés comme étant les principaux réservoirs de souches productrices d'OXA-48. Ces dernières hydrolyse les pénicillines et faiblement les carbapénèmes, très peu les céphalosporines à large spectre et elles sont est résistantes aux inhibiteurs de β-lactamases (Dortet et *al.*, 2013).

Matériel & Méthodes

I. Echantillonnage

Notre étude a été effectuée durant la période du 05 février au 30 Mars 2017 et a porté sur 916 échantillons incluant urine, sperme et perte vaginale (chaque échantillon correspond à un patient). Ces échantillons ont été recueillis au niveau du laboratoire de bactériologie de l'établissement public hospitalier (EPH) Issad Khaled de la ville de Mascara, et du laboratoire d'analyses médicales privé du Dr Absi dans la ville de Béchar.

Des données concernant les patients (sexe, âge, hospitalisation, origine et la date du prélèvement) ont été recueillies.

II. Isolement

Au niveau du laboratoire de bactériologie (laboratoire privé ou EPH), les échantillons ont été ensemencés sur une gélose CHROMagar. Après incubation à 37°C/24h, les colonies caractéristiques des entérobactéries ont été conservées directement sur une gélose de conservation à 4°C pour être analysées ultérieurement au niveau de laboratoire d'écologie microbienne (LEM) de l'université de Bejaïa. Les souches ont été transportées dans une glacière vers le LEM. Elles ont été reisoléés sur gélose MacConkey.

III. Identification

Les souches ont été identifiées par l'emploi d'une galerie biochimique comportent les tests indiqués dans le tableau N°I.

Tableau I:Differents tests biochimiques d'identification des souches.

Test	Principe du test	Lecture	Interprétation
Etude du type fermentaire sur bouillon Clark et Lubs.	Le bouillon Clark et Lubs a été ensemencé par quelques gouttes d'une suspension bactérienne dense. Les tubes ont été incubés à 37°C pendant 24h.	Couleur rouge cerise après l'ajout des réactif VPI et VPII. Coloration rose après l'ajout du réactif RM.	Formation d'acetoine. Formation d'acide mixte.
Recherche d'uréase et production d'indole sur milieu liquide Urée-indole.	Le milieu Urée-indole a été ensemencé avec quelques gouttes d'une suspension bactérienne dense. Les tubes ont été incubés à 37°C pendant 24h.	Couleur rouge Anneau rouge en surface après l'ajout du réactif de Kovacs.	Présence d'uréase. Production d'indole.

IV. Etude de la sensibilité des souches aux antibiotiques

La sensibilité des souches aux antibiotiques a été déterminée par la méthode de l'antibiogramme par diffusion sur gélose Mueller Hinton (MH) selon les recommandations du Comité Européen de l'Antibiogramme EUCAST 2017 (www.eucast.org). Des boites de gélose Mueller Hinton (Liofilchem, Italie) ont été ensemencées par écouvillonnage à partir d'une suspension bactérienne de 10⁸ UFC. Après dépôt des disques d'antibiotiques (OXOID, Angleterre), les boites ont été incubées à 37°C pendant 18 à 24h. Les diamètres d'inhibition ont été mesurés et

interprétés en accord avec les recommandations de l'EUCAST 2017, excepté pour la tétracycline ou nous avons utilisé les recommandations du CLSI 2014(tableauN° II).

Tableau N° II : Antibiotiques testés.

Antibiotique	Abréviation	Charge (µg)	Famille ou classe	cri	mètre tique CAST)
				S	R
Méropénème	MEM	10		>25	<25
Céfoxitine	FOX	30		≥19	<15
Céfotaxime	CTX	5	β-lactamines	≥20	<17
Céftazidime	CAZ	10	- F	≥22	<19
Aztréoneme	ATM	30		≥24	<21
Amoxicilline/acide clavulanique	AMC	20+10		≥19	<19
Amikacine	AK	30	Aminosides	≥16	<13
Ciprofloxacine	CIP	5	Quinolones	≥22	<19
Tetracycline*	TE	30	Cyclines	≥15*	≤11*
Co-trimoxazole	SXT	1 ,25/23,75	Sulfamides	≥16	<13

^{*} Selon les recommandations de CLSI 2014.

V. Recherche de la production de carbapénèmases

Le test de Hodge consiste à déposer un disque d'imipenème (IMP, 10µg) au centre d'une gélose Mueller Hinton préalablement ensemencée avec une souche de référence d'*E coli* ATCC25922 (sensible aux antibiotiques). Ensuite les souches à tester, le témoin positif (*K.pneumoniae* NDM-5) et le témoin négatif (*E.coli* ATCC25922) ont été ensemencées sur la gélose sous forme de stries déposées à partir du disque d'imipenème jusqu'à la périphérie de la boite. Après 24h d'incubation à 37°C, la production d'une carbapénèmase se traduit par une distorsion de la zone d'inhibition autour du disque d'imipenème (figure 2) (Lee *et al.*, 2010).

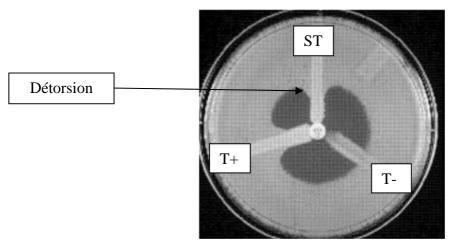


Figure 2: Test de Hodge

T+ : *K.pneumoniae* NDM-5.

T-: *E.coli* ATCC25922.

ST: souche à testé

VI. Détection de la production d'une β-lactamase à spectre étendu

La production d'une BLSE a été recherchée par l'épreuve de synergie (DD-test) qui consiste à placer des disques de céftazidime, céfotaxime et d'aztréonam (30µg) chacun à une distance de 20 mm (centre à centre) d'un disque d'augmentin (amoxicilline /clavulanate) (20/10µg). L'observation d'une image de synergie entre le disque d'augmentin et les disques de ceftazidime, céfotaxime ou d'aztréonam indique la production d'une BLSE (Jarlier *et al* .,1988). (figure3).

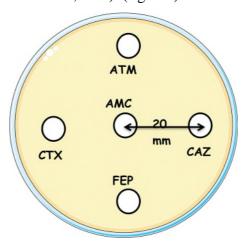


Figure 3: DD-test

Matériel et Méthodes

Résultats

I. Souches bactériennes

Durant notre étude, quatre-vingt douze souches d'entérobactéries ont été isolées et identifiées dont 72 souches isolées au niveau du laboratoire privé de Béchar et 20 souches au niveau de l'EPH de Mascara.

Sur ces 92 souches, un total de 71 souches a été retrouvé résistantes au méropénème. Le test Hodge pratiqué sur ces 71 a été positif pour 64 souches (Figure 4). Ces dernières ont été identifiées comme suit : *Escherichia coli* (36 souches), *Klebsiella oxytoca* (12souches), *Klebsiella pneumoniae* (11souches) et *Enterobacter sp* (5 souches). (Annexe 2)



Figure 4 : Résultat du test de Hodge pour la souche d'Escherichia coli 4536UR

I.1. Sensibilité des souches aux antibiotiques

Les résultats de la sensibilité des 64 souches d'entérobactéries aux antibiotiques testés sont présentés dans le Tableau N°II.

Les Figures 5 et 6 représentent les taux de résistance des souches aux antibiotiques testés. Il est à noter que la majorité des souches sont résistantes à l'amoxicilline/acide clavulanique (71,87%) et plus de la moitié sont résistantes à la céftazidime (60,94%). Concernant les autres familles d'antibiotiques, nous avons enregistré un taux de résistance de 48,44% à la tétracycline et 35,94% au co-trimoxazole. De faible taux de résistance ont été enregistrés pour l'amikacine (18,75%) et pour le ciprofloxacine

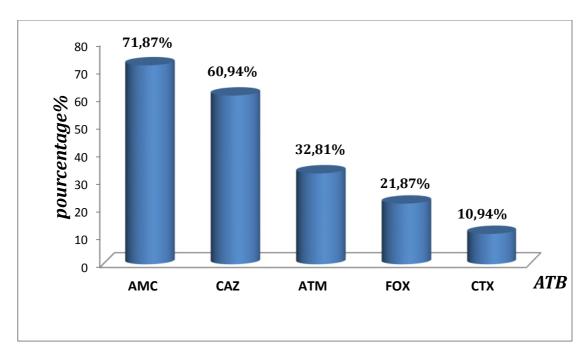
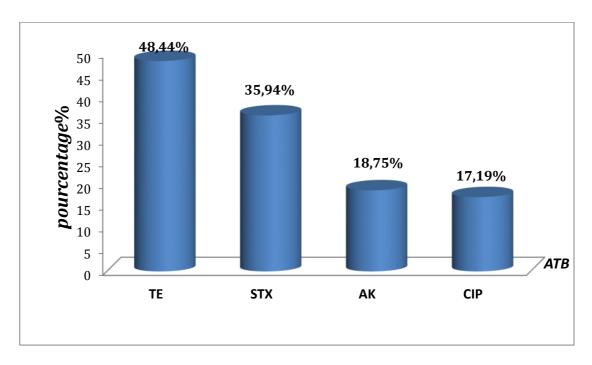

(17, 19%).

Tableau N°III : Résultats de la sensibilité des souches d'EPC isolées aux antibiotiques


Code	Souches	origine	MER	AMC	FOX	CTX	CAZ	ATM	SXT	AK	TE	CIP
1388UR	E.coli	urine	21(R)	16(R)	27(S)	30(S)	30(S)	33(S)	9(R)	20(S)	20(S)	37(S)
2425UV	E.coli	urine	20(R)	14(R)	21(S)	26(S)	22(S)	26(S)	6(R)	15(I)	6(R)	27(S)
2670S	K.oxytoca	sperme	22(R)	20(S)	15(I)	22(S)	16(R)	27(S)	24(S)	16(S)	6(R)	28(S)
3959 UV	K.oxytoca	urine	18(R)	17(R)	19(S)	26(S)	21(I)	26(S)	18(S)	16(S)	20(S)	23(S)
4159UR	E.coli	urine	14(R)	6(R)	15(I)	6(R)	6(R)	6(R)	6(R)	16(S)	6(R)	35(S)
4226UV	K.oxytoca	Urine	24(R)	17(R)	17(I)	28(S)	20(I)	30(S)	22(S)	20(S)	6(R)	20(S)
3945UV	K .pneumoniae	urine	16(R)	18(R)	24(S)	27(S)	21(I)	30(S)	22(S)	20(S)	19(S)	24(S)
1465PR	E.coli	perte	25(R)	20(S)	20(S)	25(S)	23(S)	25(S)	24(S)	16(S)	13(I)	26(S)
3619SR	E.coli	sperme	25(R)	6(R)	21(S)	23(S)	21(I)	22(I)	6(R)	15(I)	6(R)	23(S)
3191UR	E.coli	urine	26(R)	21(S)	23(S)	25(S)	23(S)	27(S)	24(S)	16(S)	13(I)	21(I)
2992SR	E.coli	sperme	26(R)	7(R)	22(S)	27(S)	21(I)	28(S)	23(S)	18(S)	6(R)	24(S)
2263UR	E.coli	perte	25(R)	21(S)	21(S)	26(S)	24(S)	19(R)	16(S)	16(S)	16(S)	24(S)
2670V	K.oxytoca	sperme	25(R)	20(S)	24(S)	25(S)	23(S)	25(S)	25(S)	15(I)	6(R)	25(S)
2425UR	E.coli	urine	19(R)	15(R)	20(S)	25(S)	21(I)	25(S)	6(R)	18(S)	6(R)	9(R)
3956SPV	K.oxytoca	sperme	15(R)	14(R)	6(R)	23(S)	23(S)	28(S)	21(S)	18(S)	18(S)	30(S)
3840UV	K.oxytoca	urine	17(R)	16(R)	15(I)	22(S)	18(R)	24(S)	13(S)	16(S)	10(R)	20(S)
4657UV	K.oxytoca	urine	19(R)	16(R)	18(I)	20(S)	18(R)	26(S)	21(S)	20(S)	15(S)	24(S)
3258PR	E.coli	perte	18(R)	7(R)	21(S)	25(S)	21(I)	25(S)	22(S)	18(S)	17(S)	33(S)
3833UR	K.oxytoca	urine	19(R)	23(S)	22(S)	27(S)	22(S)	28(S)	21(S)	18(S)	19(S)	23(S)
2613UR	E.coli	urine	18(R)	11(R)	20(S)	19(I)	21(I)	24(S)	17(S)	6(R)	6(R)	18(R)
2376UR	E.coli	urine	16(R)	10(R)	22(S)	20(S)	24(S)	25(S)	6(R)	16(S)	6(R)	23(S)
3444UR	K.pneumoiae	urine	16(R)	22(S)	21(S)	24(S)	23(S)	24(S)	25(S)	16(S)	25(S)	25(S)
4176UV	K.pneumoniae	urine	22(R)	19(S)	19(S)	25(S)	17(R)	25(S)	23(S)	17(S)	15(S)	30(S)
4590PV	E.coli	perte	17(R)	7(R)	22(S)	25(S)	20(I)	21(I)	15(S)	17(S)	6(R)	6(R)
4536UR	E.coli	urine	13(R)	9(R)	25(S)	26(S)	23(S)	26(S)	24(S)	16(S)	13(I)	25(S)
3974UV	Enterbacter	urine	13(R)	6(R)	6(R)	14(R)	11(R)	19(R)	6(R)	16(S)	6(R)	20(I)
3495SV	K.oxytoca	sperme	16(R)	15(R)	15(I)	21(S)	19(I)	24(S)	24(S)	16(S)	16(S)	25(S)
2398UV	K.pneumoniae	urine	14(R)	16(R)	20(S)	23(S)	21(I)	26(S)	23(S)	15(S)	16(S)	22(S)
3886SV	K.oxytoca	sperme	22(R)	15(R)	21(S)	27(S)	20(I)	23(I)	25(S)	16(S)	16(S)	25(S)
3603UR	E.coli	urine	15(R)	14(R)	22(S)	25(S)	21(I)	25(S)	6(R)	14(I)	19(S)	25(S)
4248UR	E.coli	urine	20(R)	15(R)	21(S)	24(S)	21(I)	25(S)	19(S)	16(S)	6(R)	6(R)
4605UV	K.pneumoniae	urine	18(R)	9(R)	21(S)	24(S)	21(I)	25(S)	18(S)	17(S)	19(S)	23(S)
3451UV	K.pneumonie	urine	15(R)	17(R)	20(S)	25(S)	22(S)	26(S)	6(R)	16(S)	6(R)	23(S)

4248UR	E.coli	urine	19(R)	16(R)	21(S)	21(S)	20(I)	24(S)	6(R)	18(S)	6(R)	30(S)
3768UV	K.pneumoniae	urine	15(R)	17(R)	20(S)	24(S)	24(S)	27(S)	22(S)	16(S)	15(S)	32(S)
3480UV	K.pneumoniae	urine	26(R)	11(R)	19(S)	9(R)	12(R)	12(R)	6(R)	21(S)	16(S)	7(R)
1465PV	E.coli	perte	21(R)	20(S)	21(S)	21(S)	20(I)	23(I)	22(S)	18(S)	19(S)	30(S)
2338UR	E.coli	urine	21(R)	14(R)	21(S)	27(S)	23(S)	28(S)	6(R)	19(S)	21(S)	27(S)
2195UR	E.coli	urine	20(R)	16(R)	23(S)	27(S)	22(S)	30(S)	6(R)	18(S)	6(R)	9(R)
3866UV	K.oxytoca	urine	18(R)	14(R)	6(R)	21(S)	19(I)	24(S)	24(S)	17(S)	17(S)	25(S)
4520UR	E.coli	urine	19(R)	10(R)	25(S)	25(S)	25(S)	27(S)	25(S)	17(S)	14(I)	26(S)
4028PV	Enterbacter	perte	13(R)	19(S)	10(R)	17(I)	20(I)	12(R)	6(R)	17(S)	14(I)	18(R)
10201	Zitter e diete.	Police	10 (11)	15(0)	10(11)	1, (1)	20(1)	12(11)	0(11)	1,(2)	1 (1)	10(11)
3610UR	E.coli	urine	17(R)	15(R)	23(S)	24(S)	21(I)	27(S)	6(R)	15(I)	16(S)	30(S)
3974PV	Enterbacter	perte	25(R)	9(R)	6(R)	17(I)	6(R)	20(S)	6(R)	19(S)	6(R)	18(R)
3311UV	K.oxytoca	urine	25(R)	12(R)	21(S)	28(S)	19(I)	25(S)	21(S)	18(S)	20(S)	26(S)
2338UV	K.pneumoniae	urine	24(R)	14(R)	24(S)	26(S)	20(I)	22(I)	6(R)	15(I)	16(S)	25(S)
4559UR	E.coli	urine	26(R)	6(R)	23(S)	28(S)	21(I)	29(S)	15(I)	17(S)	17(S)	23(S)
3291UV	Enterbacter	urine	25(R)	17(R)	6(R)	25(S)	20(I)	27(S)	25(S)	18(S)	14(I)	25(S)
3768UR	E.coli	urine	25(R)	14(R)	23(S)	10(R)	9(R)	15(R)	6(R)	16(S)	6(R)	19(I)
2622UR	E.coli	urine	25(R)	12(R)	23(S)	25(S)	18(R)	25(S)	23(S)	15(I)	17(S)	28(S)
3738UV	K.pneumoniae	urine	25(R)	11(R)	15(I)	24(S)	17(R)	26(S)	6(R)	18(S)	6(R)	25(S)
E12/2603	E.coli	urine	21(R)	12(R)	26(S)	26(S)	23(S)	6(R)	12(R)	6(R)	11(R)	29(S)
E9/2803	E.coli	urine	22(R)	20(S)	35(S)	29(S)	25(S)	12(R)	20(S)	25(S)	6(R)	30(S)
P3/2103	E.coli	Perte	20(R)	20(S)	28(S)	29(S)	24(S)	22(I)	20(S)	23(S)	24(S)	27(S)
S1/1903	E.coli	Sperme	23(R)	20(S)	35(S)	30(S)	24(S)	24(S)	20(S)	24(S)	22(S)	29(S)
P1/1903	E.coli	Perte	20(R)	19(S)	28(S)	28(S)	24(S)	22(I)	19(S)	25(S)	18(S)	30(S)
E5/1403	E.coli	urine	21(R)	19(S)	25(S)	28(S)	28(S)	10(R)	19(S)	6(R)	14(I)	30(S)
P2/1903	E.coli	Perte	20(R)	18(R)	28(S)	28(S)	23(S)	30(S)	18(S)	26(S)	16(S)	28(S)
P1/2803	K.pneumoniae	Perte	23(R)	18(R)	35(S)	29(S)	20(I)	6(R)	18(S)	23(S)	6(R)	28(S)
P1/1203	E.coli	Perte	21(R)	21(S)	26(S)	28(S)	25(S)	13(R)	21(S)	6(R)	20(S)	30(S)
E1/2903	E.coli	urine	26(R)	15(R)	18(I)	22(S)	18(R)	11(R)	15(I)	24(S)	6(R)	24(S)
E11/1203	E.coli	urine	22(R)	15(R)	26(S)	24(S)	18(R)	14(R)	15(I)	6(R)	15(S)	26(S)
E9/2603	Enterbacter	urine	21(R)	21(S)	27(S)	28(S)	21(I)	20(R)	21(S)	28(S)	20(S)	30(S)
E11/1903	E.coli	urine	23(R)	19(S)	30(S)	28(S)	24(S)	22(I)	19(S)	29(S)	19(S)	30(S)

(S : sensible ; R : résistant, I : intermédiaire).

Figure 5: Taux de résistance des souches EPC aux β-lactamines

Figure 6: Taux de résistance des souches EPC aux autres familles d'antibiotiques

I.2. Répartition des EPC selon la région

Une proportion de **79,69%** des souches a été obtenue au niveau du laboratoire des analyses médicales privé de Béchar contre **20,31%** au niveau de l'EPH de Mascara. Dans cette dernière, **53,85%** des souches ont été isolées chez les patients admis dans les services de l'hôpital (services des Urgences, gynécologie, néphrologie) contre **46,15%** chez les patients non admis (service des externes).

I.3. Répartition des souches par type de prélèvement

Nous notons d'après la figure 7 que les souches d'entérobactéries ont été le plus souvent isolées des prélèvements urinaires avec un pourcentage de 68,75%.

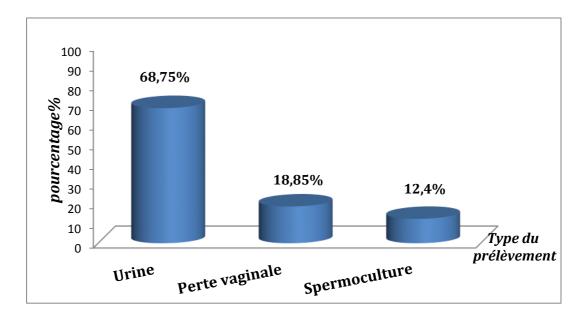
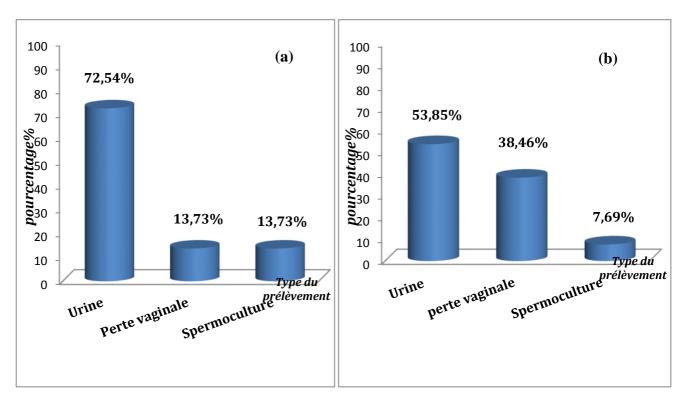



Figure 7: Répartition des EPC isolées par type de prélèvement

D'après la figure 8(a/b) on constate que la majorité des EPC ont été isolées des prélèvements urinaires avec un taux de 72,54% à Bechar et 53,85% à Mascara.

Figure 8: Répartition des EPC isolées par prélèvement pour chaque région (a): Béchar, (b): Mascara

I.4. Répartition des EPC par espèce

D'après la figure (9) nous avons remarqué que l'espèce la plus fréquemment retrouvée est E.coli avec un taux de 56.25%.

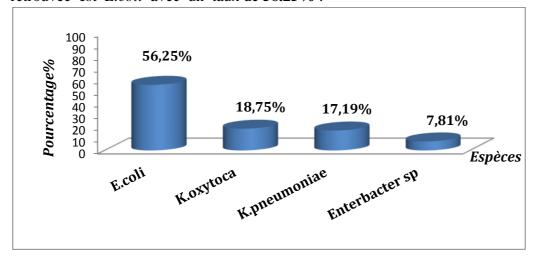


Figure 9 : Répartition des EPC isolées par espèce

Dans la ville de Béchar, la moitié des EPC (**49,02%**) ont été identifiées comme d'*E.coli*. Contrairement à la ville de Mascara, ou cette espèce est dominante (**84,62%**). Figure 10(a/b)

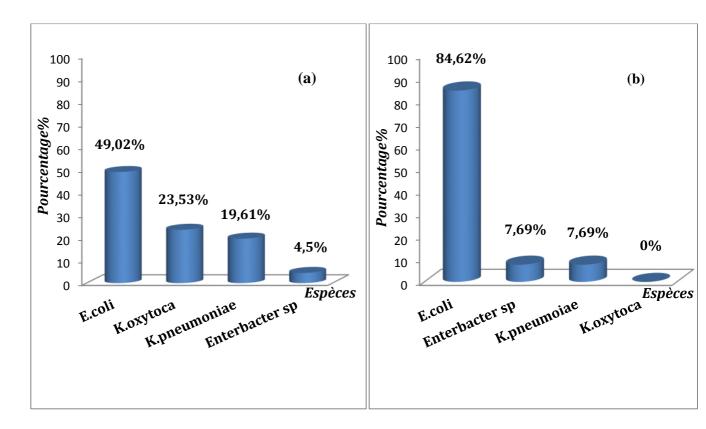


Figure 9 : Répartition des EPC isolées par espèce pour chaque région

(a): Béchar, (b): Mascara

I.5. Répartition des EPC selon le sexe

Un taux de 64% des souches a été observé chez les patients du sexe féminin contre 36% chez les patients du sexe masculin.

À Béchar, le sexe féminin est le plus touché avec un taux de 84,62% contre 58,82% dans la région de Mascara.

I.6. Répartition des EPC selon l'âge

Les taux d'EPC obtenus sont variables chez les différentes catégories d'âge, avec une dominance dans la tranche de 18 ans à 65 ans. (Figure 11)

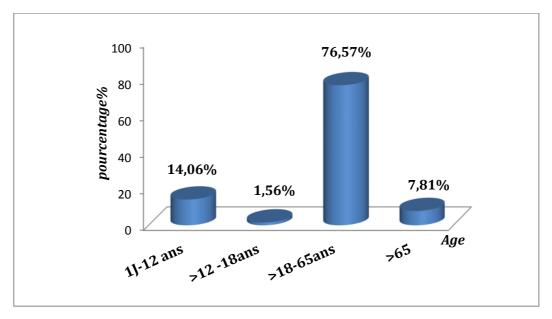


Figure 11: Répartition des EPC selon l'âge

D'après la figure 12(a/b) on constate que la tranche d'âge des patients la plus infectée par les souches EPC est celle de 18 ans à 65 ans dans les deux régions, avec un taux de **84,62%** à Mascara et (**74,51%**) à Béchar.

Résultats

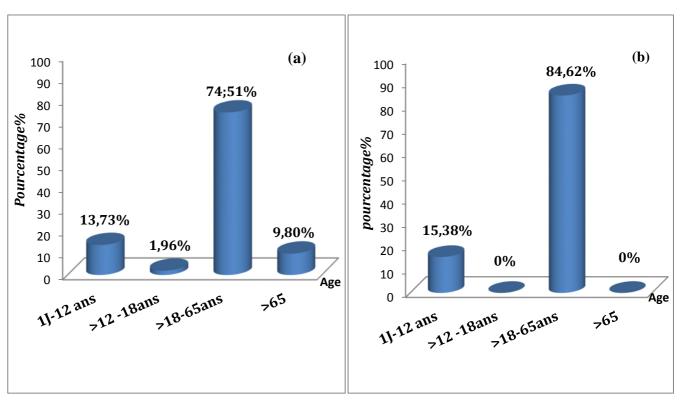
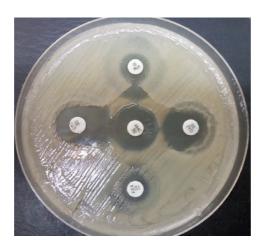



Figure 11 : Répartition des EPC selon l'âge pour chaque région

(a): Béchar, (b): Mascara

II. Recherche des β-lactamases à spectre étendu (BLSE)

Le DD-test a montré une image de synergie pour la souche d'*Enterobacter sp* (4028pv) traduisant ainsi la production probable d'une BLSE (Figure 13)

Figure 13 : Image de synergie obtenue dans le DD-test pour la souche 4028PV

Discussion & Conclusion

Les entérobactéries constituent les pathogènes humains les plus fréquemment isolés dans un laboratoire de bactériologie, en milieu communautaire comme hospitalier. Les entérobactéries productrices de carbapénèmases constituent actuellement un problème majeur de santé publique.

Dans cette étude, nous avons isolé et identifié 92 souches d'entérobactéries, dont 64 souches d'EPC avec une prévalence de 69,56%. Ce résultat est relativement proche de celui rapporté en Chine (74,50%) par Rui *et al.*, 2016 et aux USA par Thaden *et al.*, 2014, (64%).

Parmi les espèces identifiées, *Escherichia coli* est l'espèce fréquemment retrouvée avec une prévalence de 56,25%. Généralement cette espèce est impliquée dans les infections urinaires. Dans notre étude 68,75% de prélèvements sont d'origine urinaire. Il a été récemment suggéré que la propagation mondiale des entérobactéries productrices de carbapénèmases est dominée en milieu hospitalier par *K. pneumoniae* et dans la communauté par *E. coli* (Nordmanna *et al.*, 2013). Nos résultats sont supérieurs à ceux rapportés dans une étude menée sur des souches uropathogènes d'origine communautaire isolées en Inde et qui montre une prévalence de 42.58% (Prakash *et al.*, 2013).

Enfin, l'émergence de souches d'entérobactéries résistantes aux carbapénèmes dans les hôpitaux algériens et dans la communauté pose un sérieux problème thérapeutique. La résistance à ces molécules chez les entérobactéries est peu documentée dans les établissements de soins de notre pays, ainsi que les études moléculaires sur les carbapénémases sont rares et discontinues.

En conclusion, nous avons enregistré une prévalence de 69,56%. Ce résultat est alarmant et peut poser un problème de santé publique, réduisant de manière importante les alternatives thérapeutiques pour le traitement des infections sévères, pouvant entrainer de grandes difficultés de prise en charge pour les patients. Leur détection s'avère délicate au laboratoire de bactériologie et le contrôle des épidémies de souches d'entérobactéries productrices de carbapénemases en communautaires est beaucoup plus difficile que leur contrôle en milieu hospitalier. Pour cela, la résistance de ces souches aux antibiotiques permet de rappeler qu'il est évidemment nécessaire d'être attentif aux divers types de souches qui circulent dans les différents milieux.

Discussion et Conclusion

En perspectives, notre travail reste préliminaire et mérite d'être compléter par :

- Confirmation de l'identité des souches.
- Caractérisation des mécanismes génétiques de cette résistance.

- Agabou, A., Pantel, A., Ouchenane, Z., Lezzar, N., Khemissi, S., Satta, D., ... & Lavigne, J. P. (2014). First description of OXA-48-producing Escherichia coli and the pandemic clone ST131 from patients hospitalised at a military hospital in Algeria. European journal of clinical microbiology & infectious diseases, 33, 1641-1646.
- Avril, JL., H. Dabernat, F. Denis, H. Monteil. (2000). Généralité sur les *Enterobacteriaceae*. Bactériologie clinique. 3^{éme} édition Ellipses, Paris.P 171-172-178
- 3. **Bryskier**, **A. 1999**. Antibiotiques et agents antibactériens : classification et relations structure-activité, p.54-360. A. Bryskier(ed), Antibiotiques, agents antimicrobiens et antifongiques. Ellipses, Paris *In* Antibiothérapie en pratique Clinique. 1999. 2 eme ed. Elsevier Masson, Paris : 66-68.
- 4. Cavallo, J. D., Fabre, R., Jehl, F., Rapp, C., & Garrabé, E. (2004). Bêtalactamines. EMC-Maladies infectieuses, 1, 129-202.
- 5. **Delarras, C.** (2014). Pratique en microbiologie de laboratoire.recherche de bactéries et de levure-moisissures. Edition Lavoisier, Paris, p257 235
- Dortet, L., Poirel, L., & Nordmann, P. (2013). Epidémiologie, détection et identification des entérobacteries productrices de carbapénèmases. Feuillets de Biologie, 312.
- 7. **Handal, T., & Olsen, I**. (2000). Antimicrobial resistance with focus on oral beta-lactamases. European journal of oral sciences, **108**, 163-174.
- 8. **Jarlier, V., Nicolas, M. H., Fournier, G., & Philippon, A.** (1988). Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Review of Infectious Diseases, **10**, 867-878.
- 9. **Joly, B., A. Renaud**. (2002).Les entérobactéries. Entérobactéries systématique et méthode de diagnostic. Edition médicales internationales, Paris, P3-22-24-80.
- 10. Lee, K., Kim, C. K., Yong, D., Jeong, S. H., Yum, J. H., Seo, Y. H., ... & Chong, Y. (2010). Improved performance of the modified Hodge test with MacConkey agar for screening carbapenemase-producing Gram-negative bacilli. Journal of microbiological methods, 83, 149-152.

- 11. **Nauciel, C., JL. Vildé**. (2005). *Escherichia coli*. In Bacteriologie médicale. 2^{éme} édition. Edition Masson, Paris, P 122-125.
- 12. **Nordman** (2010) Résistance aux carbapénèmes chez les bacilles à Gram négatif. médecine/sciences, **26**, 950-959
- 13. **Nordmann, P., & Carrer, A**. (2010). Les carbapénèmases des entérobactéries. Archives de pédiatrie, **17**, S154-S162.
- 14. Nordmanna, P., Dorteta, L., & Poirela, L. (2013). Multirésistance aux antibiotiques: l'émergence des entérobactéries productrices de carbapénèmases. Revue Francophone des Laboratoires, 449(2013), 35-37.
- 15. **Pitout, J. D.** (2012). Extraintestinal pathogenic Escherichia coli: an update on antimicrobial resistance, laboratory diagnosis and treatment. Expert review of anti-infective therapy, **10**, 1165-1176.
- 16. **Prakash**, **D.**, & Saxena, R. S. (2013). Distribution and antimicrobial susceptibility pattern of bacterial pathogens causing urinary tract infection in urban community of Meerut City, India. ISRN microbiology, 2013.
- 17. **Robin, F., Gibold, L., & Bonnet, R**. (2012). Résistances naturelles et acquises aux β-lactamines chez les entérobactéries: comment les identifier en pratique quotidienne?. Revue Francophone des Laboratoires, 2012(445), 47-58.
- Rui, Z., Dehua, L., Hua, N., Yue, F., Yunmin, X., Jianhua, L., & Xueshan,
 X. (2016). Carbapenemase-Producing Enterobacteriaceae in Yunnan Province,
 China. Japanese journal of infectious diseases, 69, 528-530.
- 19. **Ruppé**, **E.** (2010). Épidémiologie des bêta-lactamases à spectre élargi: l'avènement des CTX-M. Antibiotiques, **12**, 3-16.
- 20. Thaden, J. T., Lewis, S. S., Hazen, K. C., Huslage, K., Fowler, V. G., Moehring, R. W., ... & Anderson, D. J. (2014). Rising rates of carbapenem-resistant enterobacteriaceae in community hospitals: a mixed-methods review of epidemiology and microbiology practices in a network of community hospitals in the southeastern United States. Infection Control & Hospital Epidemiology, 35, 978-983.
- 21. **Walsh, T. R.** (2009). Characterization of a new metallo-β-lactamase gene, blaNDM-, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial agents and chemotherapy, **53**, 5046-5054.

- 22. Wolff, M., Joly-Guillou, M. L., & Pajot, O. (2008). Le point sur les carabapénèmes. Réanimation, 17, 242-250.
- 23. <u>WWW.CLSI.Org</u>. The Clinical and laboratory Standards Institute. Recommendations de 2014
- 24. www.eucast.org. The European Committee on Antimicrobial Susceptibility Testing. Recommendations de 2017

Code	Aspect De colonies	Uréase	VP	RM	Indole	Espèce
1388UR	Rose	Neg	Neg	Pos	Neg	E.coli
2425UV	Rose	Neg	Neg	Pos	Pos	E.coli
2670S	Bleu	Neg	Pos	Pos	Pos	K.oxytoca
3959 UV	Bleu violet	Neg	Po	Neg	Pos	K.oxytoca
4159UR	Rose	Neg	Neg	Pos	Pos	E.coli
4226UV	Bleu violet	Neg	Pos	Neg	Pos	K.oxytoca
3945UV	Bleu violet	Neg	Pos	Neg	Neg	K.pneumoniae
1465PR	Rose	Neg	Neg	Pos	Pos	E.coli
3619SR	Rose	Neg	Neg	Pos	Pos	E.coli
3191UR	Rose	Neg	Neg	Pos	Pos	E.coli
2992SR	Rose	Neg	Neg	Pos	Pos	E.coli
2263UR	Rose	Neg	Neg	Pos	Pos	E.coli
2670V	Bleu violet	Neg	Pos	Pos	Pos	K.oxytoca
2425UR	Rose	Neg	Neg	Pos	Pos	E.coli
3956SPV	Bleu violet	Neg	Pos	Neg	Pos	K.oxytoca
3840UV	Bleu violet	Neg	Pos	Neg	Pos	K.oxytoca
4657UV	Bleu violet	Pos	Pos	Neg	Pos	K.oxytoca
3258PR	Rose	Neg	Neg	Pos	Pos	E.coli
3833UR	Bleu violet	Neg	Pos	Pos	Pos	K.oxytoca
2613UR	Rose	Neg	Neg	Pos	Pos	E.coli
2376UR	Rose	Neg	Neg	Pos	Pos	E.coli
3444UR	Bleu violet	Neg	Pos	Neg	Neg	K.pneumoniae
4176UV	Bleu violet	Neg	Pos	Neg	Neg	K.pneumoniae
4590PV	Rose	Neg	Neg	Pos	Pos	E.coli
4536UR	Rose	Neg	Neg	Pos	Pos	E.coli
3974UV	Bleu violet	Neg	Pos	Pos	Neg	Enterobacter
3495SV	Bleu violet	Neg	Pos	Neg	Pos	K.oxytoca
2398UV	Bleu violet	Neg	Pos	Neg	Neg	K.pneumoniae
3886SV	Bleu violet	Neg	Pos	Pos	Pos	K.oxytoca
3603UR	Rose	Neg	Neg	Pos	Pos	E.coli
4248UR	Rose	Neg	Neg	Pos	Pos	E.coli
4605UV	Bleu violet	Neg	Pos	Neg	Neg	K.pneumoniae
3451UV	Bleu violet	Neg	Pos	Neg	Neg	K.pneumoniae
4248UR	Rose	Neg	Pos	Pos	Pos	E.coli
3768UV	Bleu violet	Neg	Pos	Neg	Neg	K.pneumoniae
3480UV	Bleu violet	Neg	Pos	Pos	Neg	K.pneumoniae

1465PV	Rose	Neg	Neg	Pos	Pos	E.coli
2338UR	Rose	Neg	Neg	Pos	Pos	E.coli
2195UR	Rose	Neg	Neg	Pos	Pos	E.coli
3866UV	Bleu violet	Neg	Pos	Neg	Pos	K.oxytoca
4520UR	Rose	Neg	Neg	Pos	Pos	E.coli
4028PV	Bleu violet	Neg	Neg	Pos	Pos	Enterobacter
3610UR	Rose	Neg	Neg	Pos	Pos	E.coli
3974PV	Bleu violet	Neg	Pos	Pos	Neg	Enterobacter
3311UV	Bleu violet	Neg	Pos	Neg	Pos	K.oxytoca
2338UV	Bleu violet	Neg	Pos	Pos	Neg	K.pneumoniae
4559UR	Rose	Neg	Neg	Pos	Pos	E.coli
3291UV	Bleu violet	Neg	Pos	Pos	Neg	Enterobacter
3768UR	Rose	Neg	Neg	Pos	Pos	E.coli
2622UR	Rose	Neg	Neg	Pos	Pos	E.coli
3738UV	Bleu violet	Neg	Pos	Neg	Pos	K.pneumoniae
E12/2603	Rose	Neg	Pos	Neg	Pos	E.coli
E9/2803	Rose	Neg	Pos	Neg	Pos	E.coli
P3/2103	Rose	Neg	Pos	Neg	Pos	E.coli
S1/1903	Rose	Neg	Pos	Neg	Pos	E.coli
P1/1903	Rose	Neg	Pos	Neg	Pos	E.coli
E5/1403	Rose	Neg	Pos	Neg	Neg	E.coli
P2/1903	Rose	Neg	Pos	Neg	Pos	E.coli
P1/2803	Bleu violet	Neg	Neg	Pos	Neg	K.pneumoniae
P1/1203	Rose	Neg	Pos	Neg	Pos	E.coli
E1/2903	Rose	Neg	Pos	Neg	Pos	E.coli
E11/1203	Rose	Neg	Pos	Neg	Pos	E.coli
E9/2603	Bleu violet	Neg	Neg	Pos	Pos	Enterobacter

Neg: négative; Pos: positive

ANNEXE I

Composition des milieux de culture et réactifs (en g/l)

Gélose Mueller Hinton	
Infusion de viande de bœuf300)g
Hydrolysat de caséine	5g
Amidon	5g
Agar1	7g
pH 7,3	
Gélose Trypticase Soja	
Peptone de caséine	7g
Peptone de farine de soja	3g
D-glucose. 2.5	5g
Chlorure de sodium.	5g
Phosphate dipotassique	5g
Chlorure de lithium.	5g
Agar1	5g
pH 7,3	
Bouillon trypticase Soja	
Peptone de caséine	7g
Peptone de farine de soja	3g
D-glucose	5g
Chlorure de sodium.	5g
Phosphate dipotassique	5g
Chlorure de lithium	5g
pH7.3	
Bouillon urée-Indole	
L-tryptophane	3g
Phosphate bipotassique	1g
Chlorure de sodium	5g
TI /	^

Alcool 90°	10ml
Rouge de phénol	
Gélose Mac Conkey	
Peptone de caséine	17g
Peptone de viande	3g
Lactose	10g
Mélange de sels billiares	1,5g
Chlorure de sodium	5g
Rouge neutre	0.03g
Cristal violet	0.001g
Agar	13.5g
pH 7	7,1
Bouillon Clark et Lubs	
Peptone trypsique de viande	5g
Phosphate biotassique	5g
Glucose	6g
pH 7	7,5

Résumé

L'objectif de cette étude est de caractériser des souches d'entérobactéries

productrices de carbapénémases dans les infections communautaires et nosocomiales

dans l'ouest algérien.

Un total de 916 prélèvements a été effectué à partir de différentes produits

pathologiques (urine, sperme et perte). Ces échantillons ont été recueillis au niveau de

laboratoire d'analyses médicale Dr Absi (Béchar) et de l'EPH Isaad Khaled

(Mascara), durant la période du 05février au 30 Mars 2017. Après l'isolement et

l'identification des souches d'entérobactéries, la sensibilité des souches aux

antibiotiques a été déterminée par la méthode de l'antibiogramme standard par

diffusion sur gélose Mueller Hinton. La production de carbapénèmase a été

déterminée par l'utilisation de test phénotypique incluant le test Hodge.

Au total 64 souches d'entérobactéries on été retrouvées productrices de

carbapénèmases avec une prévalence de 69,56%. La majorité des EPC ont été isolées

dans les urines (68,75%), avec l'espèce Escherichia coli est la plus fréquemment

retrouvée (56,25%).

Mots clés: Entérobactéries, Carbapénèmase, Résistance, Infections, ouest algérien

Abstract

The objective of this study is to characterize of carbapenemase-producing *Enterobacreiaceae* strains in community and nosocomial infections in western of Algeria.

A total of 916 specimens were collected from various pathological specimens (urine, sperm and vaginal swab). These samples were collected at the private medical analysis laboratory Dr Absi (Bechar) and the EPH Isaad Khaled (Mascara), during the period from 5th February to 30th March, 2017.

After the isolation and identification of the enterobacterial strains, the sensitivity of strains to antibiotics was determined by the disc diffusion method by diffusion on Mueller Hinton agar. The production of carbapenemase was detected by Hodge test.

A total of 64 strains of enterobacteria strains were screened as carbapenemase producers with a prevalence of 69.56%. The majority of EPCs were isolated from urine (68.75%), with *Escherichia coli* as the most frequently found (56.25%).

Keys words: Enterobacteria, Carbapenemase, Resistance, Infections, western of Algeria