REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université A. MIRA-Bejaia Faculté de Technologie Département de Génie Civil

Mémoire de fin d'étude

En vue de l'obtention du diplôme Master en Génie Civil Option : Construction Métallique

Thème

ETUDE D'UN HANGAR INDUSTRIEL AVEC UN PONT ROULANT.

Présenté par :

OUATAH Djaouad

OUSID Lounas

<u>Encadré par :</u> Mr : LARABET ZIANE Ahmed.

<u>Membres de jury :</u>

Mr : RAMDANI. LMr : BANOUNE. B

Promotion juin 2016.

REMERCIEMENTS

Au terme de ce modeste travail, nous rendons louange à Dieu le tout puissant de nous avoir donné le courage et la volonté de l'avoir accompli.

Comme nous tendons à adresser nos vífs remerciements à :

A nos famílles : Quí nous ont toujours encouragés et soutenus durant toutes nos études.

A *M^{er} Z. LARABET* : Notre promoteur, pour avoir accepté de nous guider sur le bon chemin du travail.

Aux membres de jury : Pour avoir accepté de juger notre travail.

Et à tous ceux qui ont contribué de près ou de loin à la concrétisation de ce travail.

Djaouid et Lounes.

Dédicace

Je dédie ce modeste travaille

A mes très chers parents pour tous leurs sacrifices depuis ma naissance à ce jour et pour les encouragements que j'ai eus de leu part.

A toutes la famille sans exception

ACHOUR, ALLAOUA, HANAFI, IDIR, SALIM, NOURIA, NABAOUEYA, KAHINA, SAMIRA, FAYEZ, IKRAM, INES, LINA, SARA, SELYAN, ALICIA, à ma très chère fíancé SALIMA en partículier et sa famille.

A mes amis sans exception

Mon binôme LOUNES est sa famille et à toute la promo Construction Métallique 2016 en particulier HAREB, BOUSSAD et tous mes amis de proche ou de loin.

A notre promoteur M^{er} Z. LARABET pour accepter de nous guíder sur le bon chemín du travaíl.

ous mes enseignants du primaire jusqu'à ce jour.

Djaouid.

<u>Dédicace</u>

Je dédie ce modeste travail à A mes parents qui me sont les plus chers, qui m'ont soutenu tout au long de mon parcours scolaire, que Dieu les garde et les protège A ma chère sœur Daouia ; Mes chers frères abderrezak et mourad A toute ma famille (grand-père, grand-mère, oncle, tante, cousins, cousines, ...) et tous ce qui sont cher pour moi. A mon binôme Mr OUATAH Djaouad et sa famille. Une spéciale dédicace à notre promoteur Mr Z.LARABAT pour sa disponibilité et sa précieuse collaboration. A tous mes amis sans exception en particulier HAREB et Boussad. A toute la promotion de Génie Civil 2016, en propre mes collègues et mes amis étudiants de la spécialité Construction métallique.

LOUNAS

INTRODUCTION GENERALE :	1
CHAPITRE I : PRESENTATION DE PROJET.	
I.1. Introduction :	2
I.2. Caractéristiques géométriques de l'ouvrage :	2
I.2.1. Géométrie de l'ouvrage :	2
I.2.2. Pont Roulant :	3
I.2.3. Etude de sol :	3
I.3. Caractéristiques structurales :	3
I.3.1 Les Couvertures :	3
I.3.2. Ossature de la structure :	3
I.4. Matériaux Utilises :	3
I.4.1. Acier :	3
I.4.2. Propriété de l'acier :	4
I.4.3. Béton :	4
I.5. Règlements techniques :	5
CHAPITRE II : ETUDE CLIMATIQUE.	
II.1 ETUDE AU VENT	6
II.2. DIRECTION DU VENT	6
II.3. DETERMINATION DE LA PRESSION DYNAMIQUE DE POINTE	7
II.3.1. la pression dynamique de référence :	7
II.3.2. Hauteur de référence Z_{e} :	8
II.3.3. Coefficient d'exposition Ce :	9
II.3.3.1. coefficient de topographie (Ct) :	9
II.3.3.2. le coefficient de rugosité Cr :	10
II.3.3.3. L'intensité de la turbulence <i>Iv(z) :</i>	11
II.4. DETERMINATION DE LA PRESSION AERODYNAMIQUE	12
II.4.1. Détermination des coefficients de pression extérieure Cpe	12
II.4.1.1. Cas de vent perpendiculaire au pignon (sens V1) :	13
II.4.1.2. Cas de vent perpendiculaire au long pan (sens V2) :	15
II.4.2. Détermination des coefficients de pression intérieure Cpi	19
II.4.2.1. Cas de vent perpendiculaire au pignon (sens V1) :	19
II.4.2.2. Cas de vent perpendiculaire au long pan (sens V2) :	20
II.4.3 calcul de la pression aérodynamique	22
II.4.3.1 Vent perpendiculaire au pignon (sens V1) :	22

SOMMAIRE

11.4.3.2. Vent perpendiculaire au long pan :	25
I.4.3.3. Évaluation des cas les plus défavorables	28
II.5. ACTION D'ENSEMBLE :	29
II.5.1. cas de direction du vent vers le pignon (V1):	30
II.5.1.1. détermination de la force extérieure F _{w,e} :	30
II.5.1.2. détermination de la force intérieure F _{w,i} :	31
II.5.1.3. détermination de la force de frottement :	31
II.5.2. cas de direction du vent vers long pan (V2) :	33
II.5.2.1. détermination de la force extérieure F _{w,e} :	33
II.5.2.2. détermination de la force intérieure F _{w,i} :	34
II.5.2.3. détermination de la force de frottement :	35
II.6. ÉTUDE A LA NEIGE :	36
II.6.1. But :	36
II.6.2. Domaine d'application :	36
II.6.3. La charge de la neige sur le sol (Sk) :	36
II.6.4. Coefficient de forme de la toiture :	37
II.6.5. Calcul des charges de la neige sur la toiture :	37
CHAPITRE III : PRE DIMENSIONNEMENT DES ELEMENTS.	
	20
III.1 Dimensionnement des panneaux de couverture et de bardage :	39
III.1 Dimensionnement des panneaux de couverture et de bardage : III.1.1. panneau sandwich	39 39
III.1 Dimensionnement des panneaux de couverture et de bardage : III.1.1. panneau sandwich III.1.2. Panneaux couverture :	39 39 39
III .1 Dimensionnement des panneaux de couverture et de bardage : III .1.1. panneau sandwich III .1.2. Panneaux couverture : III .1.2.1. Détermination de poids propre de la couverture :	39 39 39 40
 III .1 Dimensionnement des panneaux de couverture et de bardage : III .1.1. panneau sandwich III .1.2. Panneaux couverture : III .1.2.1. Détermination de poids propre de la couverture : III .1.2.2. Détermination de la portée maximale : 	39 39 39 40 40
 III .1 Dimensionnement des panneaux de couverture et de bardage : III .1.1. panneau sandwich III .1.2. Panneaux couverture : III .1.2.1. Détermination de poids propre de la couverture : III .1.2.2. Détermination de la portée maximale : III .1.3. Panneaux bardage : 	39 39 39 40 40 41
 III .1 Dimensionnement des panneaux de couverture et de bardage : III .1.1. panneau sandwich III .1.2. Panneaux couverture : III .1.2.1. Détermination de poids propre de la couverture : III .1.2.2. Détermination de la portée maximale : III .1.3. Panneaux bardage : III .1.3.1. Détermination de poids propre de bardage : 	39 39 39 40 40 41 41
 III .1 Dimensionnement des panneaux de couverture et de bardage : III .1.1. panneau sandwich. III .1.2. Panneaux couverture : III .1.2.1. Détermination de poids propre de la couverture : III .1.2.2. Détermination de la portée maximale : III .1.3. Panneaux bardage : III .1.3.1. Détermination de poids propre de bardage : III .1.3.2. Détermination de poids propre de bardage : 	39 39 39 40 40 41 41 42
 III .1 Dimensionnement des panneaux de couverture et de bardage : III .1.1. panneau sandwich III .1.2. Panneaux couverture : III .1.2.1. Détermination de poids propre de la couverture : III .1.2.2. Détermination de la portée maximale : III .1.3. Panneaux bardage : III .1.3.1. Détermination de poids propre de bardage : III .1.3.2. Détermination de poids propre de bardage : III .1.3.2. Détermination de poids propre de bardage : III .1.3.2. Détermination de la portée maximale pour le bardage: III.2.2. Calcul des pannes : 	39 39 39 40 40 41 41 42 42
 III .1 Dimensionnement des panneaux de couverture et de bardage : III .1.1. panneau sandwich. III .1.2. Panneaux couverture : III .1.2.1. Détermination de poids propre de la couverture : III .1.2.2. Détermination de la portée maximale : III .1.3. Panneaux bardage : III .1.3.1. Détermination de poids propre de bardage : III .1.3.2. Détermination de poids propre de bardage : III .1.3.2. Détermination de poids propre de bardage : III .1.3.2. Détermination de poids propre de bardage : III .1.3.2. Détermination de la portée maximale pour le bardage: III .1.3.2. Détermination de la portée maximale pour le bardage: III.2.1. Détermination des sollicitations : 	39 39 39 40 40 41 41 42 42 42 43
 III .1 Dimensionnement des panneaux de couverture et de bardage : III .1.1. panneau sandwich. III .1.2. Panneaux couverture : III .1.2.1. Détermination de poids propre de la couverture : III .1.2.2. Détermination de la portée maximale : III .1.3. Panneaux bardage : III .1.3.1. Détermination de poids propre de bardage : III .1.3.2. Détermination de la portée maximale pour le bardage: III .1.3.2. Détermination de la portée maximale pour le bardage: III .1.3.2. Détermination de la portée maximale pour le bardage: III .1.3.2. Détermination de la portée maximale pour le bardage: III .1.3.2. Détermination de la portée maximale pour le bardage: III.2.1. Détermination des sollicitations : III.2.1. Détermination des charges et surcharges : 	39 39 39 40 40 41 41 42 42 42 43 43
 III .1 Dimensionnement des panneaux de couverture et de bardage : III .1.1. panneau sandwich. III .1.2. Panneaux couverture : III .1.2.1. Détermination de poids propre de la couverture : III .1.2.2. Détermination de la portée maximale : III .1.3. Panneaux bardage : III .1.3.1. Détermination de poids propre de bardage : III .1.3.2. Détermination de la portée maximale pour le bardage: III .1.3.2. Détermination de la portée maximale pour le bardage: III .1.3.2. Détermination de la portée maximale pour le bardage: III.2.1. Détermination des sollicitations : III.2.1.1. Evaluation des charges et surcharges : III.2.1.2. Les charges et surcharges appliquées : 	39 39 39 40 40 41 41 42 42 43 43 45
 III .1 Dimensionnement des panneaux de couverture et de bardage :	39 39 39 40 40 41 41 42 42 43 43 45 45
 III .1 Dimensionnement des panneaux de couverture et de bardage : III .1.1. panneau sandwich. III .1.2. Panneaux couverture : III .1.2.1. Détermination de poids propre de la couverture : III .1.2.2. Détermination de la portée maximale : III .1.3. Panneaux bardage : III .1.3.1. Détermination de poids propre de bardage : III .1.3.2. Détermination de la portée maximale pour le bardage: III. 2.1. Détermination de la portée maximale pour le bardage: III.2.1. Détermination de sollicitations : III.2.1. Détermination des charges et surcharges : III.2.1.3. Les combinaisons d'actions : III.2.2. Pré-dimensionnement : 	39 39 39 40 40 41 41 41 42 42 43 43 45 45 46
 III .1 Dimensionnement des panneaux de couverture et de bardage :	39 39 39 40 40 41 41 41 42 42 43 43 45 45 45 46 47
 III .1 Dimensionnement des panneaux de couverture et de bardage :	39 39 39 40 40 41 41 41 42 42 43 43 45 45 45 45 45 45 47 47
 III .1 Dimensionnement des panneaux de couverture et de bardage :	39 39 39 40 40 41 41 42 42 42 43 43 45 45 45 45 45 45 47 47 48

III.3.1. Evaluation des charges :	. 53
III.3.2. Dimensionnement des liernes sous l'effort de la traction	. 54
III.3.3. vérification au flambement :	. 54
III.4. Calcul de l'échantignolle :	. 55
III.4.1. Calcul de réaction :	. 55
III.4.2 Calcul du moment de renversement :	. 56
III.4.3. Epaisseur de l'échantignolle :	. 56
III.5. Lisses de bardages :	. 56
III.5.1.Lisse de bardage de long pan	. 56
III.5.1.1.Evaluation des charges :	. 56
III.5.1.2. Condition de la flèche :	. 57
III.5.1.3. Condition de la résistance (ELU) :	. 58
III.5.1.4. dimensionnement des suspentes :	. 61
III.5.2. dimensionnement des lisses de pignon	. 62
III.5.2.1. Evaluation des charges :	. 62
III.5.2.2. Condition de la flèche :	. 63
II.5.2.3. Condition de la résistance (ELU) :	. 64
III.6. Les potelets :	. 67
III.6.1. La condition de la flèche :	. 67
III.6.2. Evaluation des charges :	. 67
III.6.3 Vérification de la stabilité de potelet :	. 68
III.6.3.1 Vérification de l'effort axial :	. 68
III.6.3.2 Vérification de l'effort tranchant :	. 68
III.6.3.3 Vérification de la stabilité au flambement flexion :	. 69
III.6.3.4. Vérification au diversement sous N_{ysd} et M_{ysd} :	. 72
III.7. Conclusion	. 74
CHAPITRE IV : ETUDE DE CHEMIN DE ROULEMENT DU PONT ROULEMENT.	
IV.1. Introduction	. 75
IV.2. Règlement utilisé :	. 75
IV.3. Caractéristique de pont roulant mono poutre posé:	. 76
IV.3.1. Caractéristique géométrique de pont roulant :	. 76
IV.3.2. Caractéristique mécanique de pont roulant :	. 77
IV.4.Classification des actions :	. 78
IV.5. Effet dynamique de pont roulant :	. 78
IV.6. Charge verticales :	. 79
IV.6.1. Avec masse à lever (en charge) Q _h = 20KN	. 79

IV.6.2.Sans masse à lever (à vide) :82	L
IV.7. Force horizontales :	3
IV.7.1. Forces horizontales longitudinales (H _{Li}) :	3
IV.7.2.Forces horizontales transversales (H_{Ti}) :	1
IV.7.3.Force horizontale de tamponnement H _{B,2} liées au déplacement du chariot :	5
IV.7.4.Forces longitudinales ($H_{L,i}$) et forces transversales ($H_{T,i}$) dues à la marche en crabe de l'appareil de levage :	5
IV.8. Pré-dimensionnement de la poutre de roulement:)
IV.8.1. Choix du rail :)
IV.8.2. Les charges totales supportant par la PHR :90)
IV.9. Vérification aux états limites de service :)
IV.9.1. Vérification de la flèche verticale pour HEA280 :)
IV.9.2. Vérification de la flèche horizontale pour la PDR : $(H_{S,2,1,T} = 6.16 \text{KN})$	L
IV.10. Vérification aux états limites ultimes de la poutre de roulement :	L
IV.10.1. Vérification sous charge verticale :92	L
IV.10.2. Vérification sous charge horizontale :	2
IV.10.3.Vérification sous charge horizontale et verticale (flexion bi axiale) :	3
IV.10.4. Résistance de l'âme aux charges des galets :	3
IV.10.5.Résistance au voilement (EC3page187)94	1
IV.10.6. Résistance au déversement :	1
IV.11. La fatigue :	5
IV.11.1. Exigence relative à l'évaluation de la fatigue	5
IV.11.2. Vérification à la fatigue :	5
IV.11.3. Verification de section transversal	õ
IV.11.3.1. Contrainte normal à la semelle supérieure:96	õ
IV.11.3.2. Contrainte normal à la semelle inférieure :	3
IV.11.3.3. Vérification de l'âme	3
IV.11.3.4. Contraintes locales provoquées dans l'âme par l'excentrement des charges des galets appliquées par l'intermédiaire d'un rail	Ð
IV.11.3.5. Interaction entre effort tranchant et la contrainte dans l'ame :)
IV.12. pré-dimensionnement du support du chemin de roulement)
IV.12.1. Vérification à l'effort tranchant :	L
CHAPITRE V : ETUDE DE CONTREVENTEMENT.	
V.1 Introduction :	2
V.2 Calcul de la poutre au vent en pignon :	2

V.2.1.2. Calcul de la section brute A de la diagonale :	V. 2.1.1 Calcul des efforts de traction dans les diagonales :	105
V.2.1.3 Vérification à la résistance ultime de la section : 106 V.2.2 Vérification des montants de la poutre au vent : 106 V.2.2.1 Vérification de la panne montante : 106 V.3.2 Calcul de la poutre sabilère : 113 V.3.1 Pré dimensionnement : 114 V.3.2. Vérification de la résistance de la poutre sabilère : 114 V.3.2.1 Vérification aux instabilités : 114 V.3.2.2. Vérification à l'effort normal : 115 V. 4 Contreventement vertical du long-pan : 116 V.4.1. Dimensionnement de palée de stabilité : 116 V.4.1. Calcul de la section nette : 117 V.4.2.2 Calcul de la section nette : 117 V.4.2.3 Vérification à la résistance ultime de la section : 117 V.4.2.4 Calcul de la section nette : 119 V.5.1.3 Vérification à la compression des barres : 119 V.5.1 Vérification a la résistance : 120 V.5.2.1 Vérification aux instabilités : 120 <	V.2.1.2. Calcul de la section brute A de la diagonale :	106
V.2.2 Vérification des montants de la poutre au vent : 106 V.2.2.1 Vérification de la panne montante : 106 IV.3 Calcul de la poutre sabilère : 113 V.3.1 Pré dimensionnement : 114 V.3.2. Vérification de la résistance de la poutre sabilère : 114 V.3.2. Vérification aux instabilités : 114 V.3.2.1 Vérification aux instabilités : 114 V.3.2.2 Vérification à l'effort normal : 115 V.4.1 Dimensionnement de palée de stabilité : 116 V.4.1. Dimensionnement de palée de stabilité : 116 V.4.1.1. Calcul de la section nette : 117 V.4.2 Calcul de la section nette : 117 V.4.3. Vérification à la résistance ultime de la section : 117 V.4.3. Vérification à la compression des barres : 119 V.5. Pré-dimensionnement : 120 V.5.2.1. Vérification de la résistance : 120 V.5.2.1. Vérification aux instabilités : 120 V.5.2.1. V	V.2.1.3 Vérification à la résistance ultime de la section :	106
V.2.2.1 Vérification de la panne montante : 106 IV. 3 Calcul de la poutre sablière : 113 V. 3.1 Pré dimensionnement : 114 V. 3.2. Vérification de la résistance de la poutre sablière : 114 V. 3.2. Vérification aux instabilités : 114 V. 3.2.1. Vérification aux instabilités : 114 V. 3.2.2. Vérification à l'effort normal : 115 V. 4 Contreventement vertical du long-pan : 116 V. 4.1. Dimensionnement de palée de stabilité : 116 V. 4.1.1. Calcul de la section brute A : 117 V.4.1.2 Calcul de la section nette : 117 V.4.1.3 Vérification à la résistance ultime de la section : 117 V.4.2. Vérification à la compression des barres : 119 V.5. Pré-dimensionnement : 120 V. 5.2. Vérification de la poutre de contreventement verticale : 119 V. 5.2. Vérification aux instabilités : 120 V. 5.2. Vérification aux instabilités : 120 V. 5.2. Vérification aux instabilités : 121 VI.1. Introduction : 121 VI.2. Portique de projet : 122 VI.3. 1. Les charges permanentes (G): 122 VI.3.1. Les charges permane	V.2.2 Vérification des montants de la poutre au vent :	106
IV. 3 Calcul de la poutre sablière : 113 V. 3.1 Pré dimensionnement : 114 V. 3.2. Vérification de la résistance de la poutre sablière : 114 V. 3.2.1. Vérification aux instabilités : 114 V. 3.2.2. Vérification à l'effort normal : 115 V. 4 Contreventement vertical du long-pan : 116 V. 4.1. Dimensionnement de palée de stabilité : 116 V. 4.1. Dimensionnement de palée de stabilité : 116 V. 4.1. Calcul de la section brute A : 117 V.4.1.2 Calcul de la section nette : 117 V.4.1.3 Vérification à la résistance ultime de la section : 117 V.4.2. Vérification de flambement : 118 V.4.3. vérification à la compression des barres : 119 V.5. Pré-dimensionnement de la poutre de contreventement verticale : 119 V.5. Pré-dimensionnement : 120 V.5.2. Vérification aux instabilités : 120 V.5.2. Vérification aux instabilités : 120 V.5.2. Vérification aux instabilités : 121 VI.1. Introduction : 121 VI.2. Portique de projet : 122 VI.3.1. Les charges permanentes (G): 122 VI.3.1. Le ontique (P):	V.2.2.1 Vérification de la panne montante :	106
V. 3.1 Pré dimensionnement : 114 V. 3.2. Vérification de la résistance de la poutre sablière : 114 V. 3.2. Vérification aux instabilités : 114 V. 3.2. Vérification à l'effort normal : 115 V. 4 Contreventement vertical du long-pan : 116 V. 4.1. Dimensionnement de palée de stabilité : 116 V. 4.1. Dimensionnement de palée de stabilité : 116 V. 4.1. Calcul de la section brute A : 117 V. 4.1.2 Calcul de la section nette : 117 V.4.1.3 Vérification à la résistance ultime de la section : 117 V.4.1.4 VA.1.3 Vérification de flambement : 118 V.4.3. vérification à la compression des barres : 119 V.5. Pré-dimensionnement de la poutre de contreventement verticale : 119 V. 5.2. Vérification de la résistance : 120 V. 5.2. Vérification aux instabilités : 120 V. 5.2. Vérification aux instabilités : 120 V.5.2. Vérification aux instabilités : 120 V. 5.2. Vérification aux instabilités : 120 V. 5.2. Vérification de la résistance : 121 VI.1. Introduction : 121 VI.2. Portique de projet : 122 VI.	IV. 3 Calcul de la poutre sablière :	113
V. 3.2. Vérification de la résistance de la poutre sablière : 114 V. 3.2.1. Vérification à l'effort normal : 114 V. 3.2.2. Vérification à l'effort normal : 115 V. 4 Contreventement vertical du long-pan : 116 V. 4.1. Dimensionnement de palée de stabilité : 116 V. 4.1. Dimensionnement de palée de stabilité : 116 V. 4.1. Calcul de la section brute A : 117 V.4.1.2 Calcul de la section nette : 117 V.4.1.3 Vérification à la résistance ultime de la section : 117 V.4.1.3 Vérification de flambement : 118 V.4.3. vérification à la compression des barres : 119 V.5. Pré-dimensionnement de la poutre de contreventement verticale : 119 V. 5.2. Vérification de la résistance : 120 V. 5.2. Vérification aux instabilités : 120 V. 5.2. Vérification aux instabilités : 120 V. 5.2. Vérification aux instabilités : 120 V.5.2. Vérification aux instabilités : 120 V.5.2. Vérification aux instabilités : 120 V.5.2. Vérification aux instabilités : 120 V.1.1. Introduction : 121 VI.2. Portique de projet : 121	V. 3.1 Pré dimensionnement :	114
V. 3.2.1. Vérification aux instabilités : 114 V. 3.2.2. Vérification à l'effort normal : 115 V. 4 Contreventement vertical du long-pan : 116 V. 4.1. Dimensionnement de palée de stabilité : 116 V. 4.1. Dimensionnement de palée de stabilité : 116 V. 4.1. Dimensionnement de palée de stabilité : 117 V. 4.1. Calcul de la section brute A : 117 V. 4.1.2. Calcul de la section nette : 117 V.4.1.3. Vérification à la résistance ultime de la section : 117 V.4.2. Vérification de flambement : 118 V.4.3. vérification à la compression des barres : 119 V.5. Pré-dimensionnement de la poutre de contreventement verticale : 119 V. 5.2.1. Vérification aux instabilités : 120 VI.2. Portique de projet : 121 VI.2. Portique de projet : 121 VI.2.1. Le portique le plus sollicité : 122 VI.3.1.2. La Neige (N): 122 VI.3.1.2. La Neige (N): 122 VI.3.1.4. Le vent (W): <td>V. 3.2. Vérification de la résistance de la poutre sablière :</td> <td> 114</td>	V. 3.2. Vérification de la résistance de la poutre sablière :	114
V. 3.2.2. Vérification à l'effort normal :	V. 3.2.1. Vérification aux instabilités :	114
V. 4 Contreventement vertical du long-pan : 116 V. 4.1. Dimensionnement de palée de stabilité : 116 V. 4.1. Dimensionnement de palée de stabilité : 117 V.4.1.2 Calcul de la section brute A : 117 V.4.1.3 Vérification à la résistance ultime de la section : 117 V.4.2. Vérification de flambement : 117 V.4.2. Vérification à la compression des barres : 118 V.4.3. vérification à la compression des barres : 119 V.5. Pré-dimensionnement de la poutre de contreventement verticale : 119 V. 5.2. Vérification de la résistance : 120 V. 5.2. Vérification aux instabilités : 120 V. 5.2. Vérification e la résistance : 121 VI.2. Portique de projet : 121 VI.2. Portique de projet : 121 VI.2. Portique le plus sollicité : 122 VI.3.1. Les charges permanentes (G): 122 VI.3.1.2. La Neige (N): 122 VI.3.1.3. Le pont roulant (P): 122 VI.3.1.4. Le vent (W):	V. 3.2.2. Vérification à l'effort normal :	115
V. 4.1. Dimensionnement de palée de stabilité :	V. 4 Contreventement vertical du long-pan :	116
V.4.1.1. Calcul de la section brute A :	V. 4.1. Dimensionnement de palée de stabilité :	116
V.4.1.2 Calcul de la section nette :	V.4.1.1. Calcul de la section brute A :	117
V.4.1.3 Vérification à la résistance ultime de la section : 117 V.4.2. Vérification de flambement : 118 V.4.3. vérification à la compression des barres : 119 V.5. Pré-dimensionnement de la poutre de contreventement verticale : 119 V. 5.1 Pré dimensionnement : 120 V. 5.2. Vérification de la résistance : 120 V. 5.2. Vérification aux instabilités : 120 V. 5.2.1. Vérification aux instabilités : 120 VI.1. Introduction : 121 VI.2. Portique de projet : 121 VI.2. Portique le plus sollicité : 122 VI.3.1. Le portique le plus sollicité : 122 VI.3.1. Définir les cas de chargement : 122 VI.3.1.1. Les charges permanentes (G): 122 VI.3.1.3. Le pont roulant (P): 122 VI.3.1.4. Le vent (W): 122 VI.3.1.5. Les combinaisons : 125 <tr< td=""><td>V.4.1.2 Calcul de la section nette :</td><td> 117</td></tr<>	V.4.1.2 Calcul de la section nette :	117
V.4.2. Vérification de flambement :118V.4.3. vérification à la compression des barres :119V.5. Pré-dimensionnement de la poutre de contreventement verticale :119V. 5.1 Pré dimensionnement :120V. 5.2. Vérification de la résistance :120V. 5.2.1. Vérification aux instabilités :120CHAPITRE VI : ETUDE DE PORTIQUE.121VI.1. Introduction :121VI.2. Portique de projet :121VI.2. Le portique le plus sollicité :122VI.3.1. Définir les cas de chargement :122VI.3.1. Définir les cas de chargement :122VI.3.1.3. Le pont roulant (P):122VI.3.14. Le vent (W):122VI.3.14. Le vent (W):122VI.3.14. Le vent (W):122VI.3.14. Le vent (W):122VI.3.14. Le vent (W):125VI.4.17. Pré dimensionnement (Poteau, traverse)128VI.4.1.19 ré dimensionnement :128VI.4.12. Incidence de l'effort normal :128VI.4.12. Incidence de l'effort normal :128	V.4.1.3 Vérification à la résistance ultime de la section :	117
V.4.3. vérification à la compression des barres :	V.4.2. Vérification de flambement :	118
V.5. Pré-dimensionnement de la poutre de contreventement verticale : 119 V. 5.1 Pré dimensionnement : 120 V. 5.2. Vérification de la résistance : 120 V. 5.2.1. Vérification aux instabilités : 120 CHAPITRE VI : ETUDE DE PORTIQUE. 120 VI.1. Introduction : 121 VI.2. Portique de projet : 121 VI.2.1. Le portique le plus sollicité : 122 VI.3.1.2. Le portique le plus sollicité : 122 VI.3.1.1. Les charges permanentes (G): 122 VI.3.1.2. La Neige (N): 122 VI.3.1.3. Le pont roulant (P): 122 VI.3.1.4. Le vent (W): 122 VI.3.1.5. Les combinaisons : 125 VI.4.1. Poteau : 128 VI.4.1.1. Pré dimensionnement : 128 VI.4.1.2. Incidence de l'effort normal : 128	V.4.3. vérification à la compression des barres :	119
V. 5.1 Pré dimensionnement :120V. 5.2. Vérification de la résistance :120V. 5.2.1. Vérification aux instabilités :120CHAPITRE VI : ETUDE DE PORTIQUE.VI.1. Introduction :121VI.2. Portique de projet :121VI.2. Portique de projet :122VI.3. Le portique le plus sollicité :122VI.3.1. Définir les cas de chargement :122VI.3.1.1. Les charges permanentes (G):122VI.3.1.2. La Neige (N):122VI.3.1.3. Le pont roulant (P):122VI.3.1.4. Le vent (W):122VI.3.2. Les combinaisons :125VI.4.1. Pré dimensionnement :128VI.4.1. Pré dimensionnement :128VI.4.1.2. Incidence de l'effort normal :128	V.5. Pré-dimensionnement de la poutre de contreventement verticale :	119
V. 5.2. Vérification de la résistance :120V. 5.2.1. Vérification aux instabilités :120CHAPITRE VI : ETUDE DE PORTIQUE.VI.1. Introduction :121VI.2. Portique de projet :121VI.2.1. Le portique le plus sollicité :122VI.3. Cas de chargement :122VI.3.1. Définir les cas de chargement :122VI.3.1.1. Les charges permanentes (G):122VI.3.1.2. La Neige (N):122VI.3.1.3. Le pont roulant (P):122VI.3.1.4. Le vent (W):122VI.3.1.5. La combinaisons :125VI.4. Pré dimensionnement (Poteau, traverse)128VI.4.1. Pré dimensionnement :128VI.4.1.2. Incidence de l'effort normal :128	V. 5.1 Pré dimensionnement :	120
V. 5.2.1. Vérification aux instabilités :120CHAPITRE VI : ETUDE DE PORTIQUE.VI.1. Introduction :121VI.2. Portique de projet :121VI.2. Portique le plus sollicité :122VI.3. Cas de chargement :122VI.3. 1. Définir les cas de chargement :122VI.3.1.1. Les charges permanentes (G):122VI.3.1.2. La Neige (N):122VI.3.1.3. Le pont roulant (P):122VI.3.1.4. Le vent (W):122VI.3.2. Les combinaisons :125VI.4. Pré dimensionnement (Poteau, traverse)128VI.4.1.1. Pré dimensionnement :128VI.4.1.2. Incidence de l'effort normal :128	V. 5.2. Vérification de la résistance :	120
CHAPITRE VI : ETUDE DE PORTIQUE.VI.1. Introduction :121VI.2. Portique de projet :121VI.2.1. Le portique le plus sollicité :122VI.3. Cas de chargement :122VI.3.1. Définir les cas de chargement :122VI.3.1.1. Les charges permanentes (G):122VI.3.1.2. La Neige (N):122VI.3.1.3. Le pont roulant (P):122VI.3.1.4. Le vent (W):122VI.3.2. Les combinaisons :125VI.4. Pré dimensionnement (Poteau, traverse)128VI.4.1. Pré dimensionnement :128VI.4.1.2. Incidence de l'effort normal :128	V. 5.2.1. Vérification aux instabilités :	120
VI.1. Introduction :121VI.2. Portique de projet :121VI.2.1. Le portique le plus sollicité :122VI.3. Cas de chargement :122VI.3.1. Définir les cas de chargement :122VI.3.1.1. Les charges permanentes (G):122VI.3.1.2. La Neige (N):122VI.3.1.3. Le pont roulant (P):122VI.3.1.4. Le vent (W):122VI.3.2. Les combinaisons :125VI.4. Pré dimensionnement (Poteau, traverse)128VI.4.1.1. Pré dimensionnement :128VI.4.1.2. Incidence de l'effort normal :128	CHAPITRE VI : ETUDE DE PORTIQUE.	
VI.2. Portique de projet : 121 VI.2.1. Le portique le plus sollicité : 122 VI.3. Cas de chargement : 122 VI.3.1. Définir les cas de chargement : 122 VI.3.1.1. Les charges permanentes (G): 122 VI.3.1.2. La Neige (N): 122 VI.3.1.3. Le pont roulant (P): 122 VI.3.1.4. Le vent (W): 122 VI.3.2. Les combinaisons : 125 VI.4. Pré dimensionnement (Poteau, traverse) 128 VI.4.1. Pré dimensionnement : 128 VI.4.1.2. Incidence de l'effort normal : 128	VI.1. Introduction :	121
VI.2.1. Le portique le plus sollicité :	VI.2. Portique de projet :	121
VI.3. Cas de chargement : 122 VI.3.1. Définir les cas de chargement : 122 VI.3.1.1. Les charges permanentes (G): 122 VI.3.1.2. La Neige (N): 122 VI.3.1.3. Le pont roulant (P): 122 VI.3.1.4. Le vent (W): 122 VI.3. 2. Les combinaisons : 125 VI.4. Pré dimensionnement (Poteau, traverse) 128 VI.4.1. Pré dimensionnement : 128 VI.4.1.2. Incidence de l'effort normal : 128	VI.2.1. Le portique le plus sollicité :	122
VI.3.1. Définir les cas de chargement : 122 VI.3.1.1. Les charges permanentes (G): 122 VI.3.1.2. La Neige (N): 122 VI.3.1.3. Le pont roulant (P): 122 VI.3.1.4. Le vent (W): 122 VI.3.2. Les combinaisons : 125 VI.4. Pré dimensionnement (Poteau, traverse) 128 VI.4.1. Poteau : 128 VI.4.1.2. Incidence de l'effort normal : 128	VI.3. Cas de chargement :	122
VI.3.1.1. Les charges permanentes (G): 122 VI.3.1.2. La Neige (N): 122 VI.3.1.3. Le pont roulant (P): 122 VI.3.1.4. Le vent (W): 122 VI.3. 2. Les combinaisons : 125 VI.4. Pré dimensionnement (Poteau, traverse) 128 VI.4.1. Poteau : 128 VI.4.1.1. Pré dimensionnement : 128 VI.4.1.2. Incidence de l'effort normal : 128	VI.3.1. Définir les cas de chargement :	122
VI.3.1.2. La Neige (N): 122 VI.3.1.3. Le pont roulant (P): 122 VI.3.1.4. Le vent (W): 122 VI.3. 2. Les combinaisons : 125 VI.4. Pré dimensionnement (Poteau, traverse) 128 VI.4.1. Poteau : 128 VI.4.1.1. Pré dimensionnement : 128 VI.4.1.2. Incidence de l'effort normal : 128	VI.3.1.1. Les charges permanentes (G):	122
VI.3.1.3. Le pont roulant (P): 122 VI.3.1.4. Le vent (W): 122 VI.3. 2. Les combinaisons : 125 VI.4. Pré dimensionnement (Poteau, traverse) 128 VI.4.1. Poteau : 128 VI.4.1.1. Pré dimensionnement : 128 VI.4.1.2. Incidence de l'effort normal : 128	VI.3.1.2. La Neige (N):	122
VI.3.1.4. Le vent (W):122VI.3. 2. Les combinaisons :125VI.4. Pré dimensionnement (Poteau, traverse)128VI.4.1. Poteau :128VI.4.1.1. Pré dimensionnement :128VI.4.1.2. Incidence de l'effort normal :128	VI.3.1.3. Le pont roulant (P):	122
VI.3. 2. Les combinaisons :125VI.4. Pré dimensionnement (Poteau, traverse)128VI.4.1. Poteau :128VI.4.1.1. Pré dimensionnement :128VI.4.1.2. Incidence de l'effort normal :128	VI.3.1.4. Le vent (W):	122
 VI.4. Pré dimensionnement (Poteau, traverse) VI.4.1. Poteau : VI.4.1.1. Pré dimensionnement : VI.4.1.2. Incidence de l'effort normal : 	VI.3. 2. Les combinaisons :	125
VI.4.1. Poteau :	VI.4. Pré dimensionnement (Poteau, traverse)	128
VI.4.1.1. Pré dimensionnement :	VI.4.1. Poteau :	128
VI.4.1.2. Incidence de l'effort normal :	VI.4.1.1. Pré dimensionnement :	128
	VI.4.1.2. Incidence de l'effort normal :	128

VI.4.1.3. Vérification à l'effort tranchant :	128
VI.4.2. traverse:	128
VI.4.2.1. Pré dimensionnement :	128
VI.4.2.2. Vérification de la traverse :	128
VI.4.2.3.Vérification à l'effort tranchant :	128
VI.4.2.4. Incidence de l'effort normal :	128
VI.4.2.5. Vérification la condition de moment fléchissant et l'effort axial :	129
VI.5. Calcul du jarret :	129
VI.5.1. côté de traverse :	129
VI.5.2. côté de poteau :	130
VI.6.Conclusion :	130
CHAPITRE VII : ETUDE SISMIQUE.	
VII.1 Introduction :	131
VII.2 Analyse de la structure :	131
VII.2.1 Type d'analyse :	131
VII.2.2 Méthodes de calcul :	131
VII.3. La méthode statique équivalente :	131
VII.3.1 Principe de la méthode :	132
VII.3.2. Calcul de la force sismique totale :	132
VII.3.3. La force sismique totale :	134
VII.4. Méthode dynamique modale spectrale :	134
VII.4.1. Principe de la méthode spectrale :	134
VII.4.2. Spectre de réponse de calcul :	134
VII.4.3.Nombre de modes de vibrations à considérer :	134
VII.4.4.Résultat de l'analyse :	135
VII.4.4.1 Analyse N°1 :	135
VII.4.4.2. Analyse N°2 :	136
VII.4.4.3. Schématisation du spectre de réponse suivant X et Y :	137
VII.4.4.4. Pourcentage de la participation de masse :	137
VII.4.4.5.Les réponses modales de la structure :	138
VII.4.4.6. Vérification de péroide fondamentale de la structure :	140
VII.5. Analyse des résultats :	140
VII.5.1. Les combinaisons de calcul :	140
VII.5.2. Résultantes des forces sismiques de calcul :	141
VII.5.3. Vérification des déplacements :	142
VII.5.4. Effet de deuxième ordre :	143

CHAPITRE VIII : VERIFICATION DES ELEMENTS.

VIII.1 Introduction :	145
VIII.2. Vérification des traverses :	145
VIII.2.1. Vérification de la section à la résistance :	145
VIII.2.2. Vérification de l'élément aux instabilités :	147
VIII.3. Vérification des poteaux :	150
VIII.3.1. Vérification à la résistance :	151
VIII.3.2. Vérification de l'élément aux instabilités :	152
VIII.4 Vérification des diagonales des contreventements :	155
VIII.4.1 Vérification de la poutre au vent PIGNON :	155
VIII.5. Vérification des palées de stabilités de long pan (2×CEA13×12) :	156
VIII.6.Résumé des résultats obtenus :	157
CHAPITRE IX : CALCUL DES ASSEMBLAGES.	
IX.1. Introduction :	159
IX.1.2. Fonctionnement des assemblages :	159
IX.1.3. Rôle des assemblages :	160
IX.2. Assemblage Poteau-Traverse :	161
IX.2.1. les composants de l'assemblage :	161
IX.2.2. Efforts sollicitant :	161
IX.2.3. disposition géométrique des boulons :	161
IX.2.4. Détermination des efforts dans les boulons :	162
IX.2.4.1. Effort de cisaillement :	162
IX.2.4.2. Effort de traction :	162
IX.2.5. Pré dimensionnement des boulons :	163
IX.2.6. Vérification vis-à-vis au cisaillement :	163
IX.2.7. Vérification d'un boulon à l'interaction traction cisaillement :	163
IX.2.8. Vérification au poinçonnement :	163
IX.2.9. Vérification à la résistance de l'âme du poteau dans la zone tendue :	164
IX.2.10. Vérification à la résistance de l'âme du poteau dans la zone comprimée :	164
IX.2.11. Vérification à la résistance de l'âme du poteau dans la zone cisaillé :	164
IX.2.12. Assemblage platine traverse :	164
IX.2.12.1. Distribution des efforts sur les différents cordons :	165
IX.2.12.2. vérification :	165
IX.3. Assemblage traverse – traverse :	166
IX.3.1.Sollicitations :	166

IX.3.2. Disposition géométrique :	166
IX.3.3. Pré dimensionnement des boulons:	166
IX.3.4.Vérification vis-à-vis le moment résistant de l'assemblage :	166
IX.3.5. Vérification vis-à-vis au cisaillement + traction de chaque boulon :	166
IX.3.6.Vérification au risque de poinçonnement lors de serrage :	167
IX.3.7. Dimensionnement de la soudure patine-traverse	167
IX.3.7.1. Distribution des efforts sur les différents cordons :	168
IX.3.7.2. vérification :	168
IX.4. Assemblage poteau-poutre sablière :	168
IX.4.1. Sollicitations :	168
IX.4.2. Dimensionnement des boulons:	168
IX.4.3. Disposition des boulons :	168
IX.4.4. Vérification a la traction :	168
IX.4.5. Vérification au cisaillement :	168
IX.4.6. Vérification cisaillement + traction :	169
IX.4.7.Vérification à la pression diamétrale :	169
IX.4.8. Calcul d'Assemblage platine-poutre sablière:	169
IX.4.8.1. Distribution sur efforts sur les différents cordons :	169
IX.4.8.2. vérification :	170
IX.5.La poutre au vent :	170
IX.5.1.Dimensionnement du gousset :	170
IX.5.2.Distrubution de l'effort normal sur les boulons :	170
IX.5.3. Pré dimensionnement des boulons :	170
IX.5.4. disposition géométrique :	171
IX.5.5 Vérification :	171
IX.5.5.1. Vérification à la pression diamétrale :	171
IX.5.5.2. Vérification à la résistance ultime de la section nette :	171
IX.5.5.3 Vérification vis-à-vis des assemblages trop longs	172
IX.5.5.4. Dimensionnement de l'assemblage des diagonales avec la traverse :	172
IX.6. contreventement vertical :	173
IX.6.1.Distrubution de l'effort normal sur les boulons :	174
IX.6.2 Pré dimensionnement des boulons :	174
IX.6.3. disposition géométrique :	174
IX.6.4. Vérification :	175
IX.6.4.1. Vérification à la pression diamétrale :	175
IX.6.4.2. Vérification à la résistance ultime de la section nette :	175

IX.6.4.3. Vérification vis-à-vis des assemblages trop longs	175
IX.6.4.4. Dimensionnement des cordons de soudure gousset-poutre :	175
IX.6.5. Dimensionnement des cordons de soudure gousset-poteau :	. 176
IX.7. assemblage d'échantignole :	. 177
IX.7.1 Assemblage de la panne sur l'échantignolle	177
IX.7.2. Assemblage de l'échantignolle sur la traverse :	178
IX.8. Assemblage poteau _ support de chemin de roulement :	178
IX.8.1. Efforts sollicitant :	178
IX.8.2. disposition géométrique des boulons :	179
IX.8.3. Effort de traction :	179
IX.8.4. Pré dimensionnement des boulons :	180
IX.8.5 Vérification vis-à-vis au cisaillement :	180
IX.8.6. Vérification d'un boulon à l'interaction traction cisaillement :	. 181
IX.8.7. Vérification au poinçonnement :	. 187
IX.8.8. Vérification à la pression diamétrale :	181
IX.8.9. Assemblage platine corbeau:	. 181
IX.8.10. Distribution sur efforts sur les différents cordons :	182
IX.8.11. vérification :	182
IX.9. Assemblage des poutres de roulement :	182
IX.9.1. dimensionnement de l'assemblage	183
IX.9.2. Vérification des boulons a la traction :	183
IX.9.3. disposition géométrique des boulons :	183
IX.9.4. Vérification à la pression diamétrale :	183
IX.10. Calcul des pieds de poteaux :	. 184
IX.10.1 Introduction :	184
IX.10.2 dimensionnement des tiges d'ancrages :	184
IX.10.3.Vérification de la tige d'ancrage :	185
IX.10.4. vérification des contraintes dans le béton et l'acier :	186
IX.10.5.Contraintes dans le béton :	. 186
IX.10.6.Dimensionnement de l'épaisseur de la platine :	186
IX.11. Les pieds de potelets :	188
IX.11.1.Vérification de la tige d'ancrage:	. 188
IX.11.2.Vérification de la contrainte de compression sur la semelle de fondation:	189
IX.11.3.Dimensionnement de l'épaisseur de la platine :	189
CHAPITRE X : ETUDE DE L'INFRASTRUCTURE.	
X.1. Introduction :	190

X.2. Calcul des fondations sous les poteaux :	190
X.2.1. Détermination des sollicitations :	190
X.2.2. Pré-dimensionnement de la semelle du poteau :	191
X.2.3. Dimensionnement de la semelle :	192
X.2.4. Vérification des contraintes :	193
X.2.5. Vérification de la stabilité au renversement :	194
X.2.6. La condition de non fragilité :	197
X.2.7. La disposition constructive :	197
X.3. Les fondations sous potelets :	198
X.3.1.Dimensionnement de la semelle à la compression simple :	198
X.3.2. Calcul de poids propre de la semelle et l'amorce de potelet :	198
X.3.3. La condition de non fragilité :	199
X.3.4. La disposition constructive :	199
X.4. Calcul des longrines :	199
X.4.1. Pré- dimensionnement :	200
X.4.2. Ferraillage de longrine :	200
X.4.3. Calcul des armatures :	200
X.4.4. Le ferraillage minimal :	201
X.4.5. Condition de non fragilité :	201
X.4.6. Vérification de la flèche :	201
X.4.7. Armatures transversales :	201
X.5. Calcul des futs :	202
X.5.1. Armatures transversales :	203
X.6. Conclusion :	204

CHAPITRE XI : VERIFICATION D'ENSEMBLE.

XI.1. Introduction :	205
XI.2. détermination des moments renversants :	205
XI.2.1. cas du vent :	205
XI.2.1.1. Vent perpendiculaire au pignon (V1):	205
XI.2.1.2. Vent perpendiculaire au long pan (Sens V2):	207
XI.2.2. cas du séisme :	209
XI.3.Calcul des moments résistant (stabilisateurs) :	209
XI.4. vérification au renversement :	209
XI.4.1. cas du vent :	209
XI.4.2. cas du séisme :	209

XI.5. Conclusion :	. 209
CONCLUSION GENERALE :	. 210
Références bibliographiques :	. 211

ANNEXE

ANNEXE1	212
ANNEXE2	213
ANNEXE3	214
ANNEXE4	217
ANNEXE5	232
ANNEXE6	236
ANNEXE7	239
ANNEXE8	240
Plans de facade	241

Liste des figures

Figure I.1 : Vue en 3D de la structure	2
Figure I.2 : Panneau sandwich	3
Figure I.3 : Diagramme contrainte-déformation de l'acier (essai de traction)	4
Figure II.1. : Les directions principales du vent	7
Figure II.2 : Hauteur de référence Ze et profil correspondant de la pression dynamique	8
FigureII.3:Paramètres pour la détermination de Ct(z) aux alentours des falaises et escarpements	9
Figure II.4: la répartition de la pression dynamique de pointe sur la hauteur Ze	12
Figure II.5: vue en plan des zones de pression sur les parois verticales sens V1	13
Figure II.6 : les valeurs de Cpe correspondant à chaque zone des parois verticales sens V1	14
Figure II.7 : La répartition des zones de pression sur la toiture sens V1	14
Figure II.8: vue en plan des zones de pression sur les parois verticales sens V2	16
Figure II.9 : les valeurs de Cpe correspondant à chaque zone des parois verticales sens V2	17
Figure II.10 : La répartition des zones de pression sur la toiture dans le sens V2	18
Figure II.11 : coefficient de pression intérieure Cpi des bâtiments sans face dominante,(figure 4.14 de RNVA2013)	19
Figure II.12 : la répartition de la pression aérodynamique sur les parois verticales, cas de la surpression	22
Figure II.13 : la répartition de la pression aérodynamique sur la toiture, cas de la surpression	23
Figure II.14 : la répartition de la pression aérodynamique sur les parois verticales, cas de la dépression	24
Figure II.15 : la répartition de la pression aérodynamique sur la toiture, cas de la dépression	25
Figure II.16 : la répartition de la pression aérodynamique sur les parois verticales, cas de la surpression	25
Figure II.17 : la répartition de la pression aérodynamique sur la toiture, cas de la surpression	26
Figure II.18 : la répartition de la pression aérodynamique sur les parois verticales, cas de la dépression	27
Figure II.19 : la répartition de la pression aérodynamique sur la toiture, cas de la dépression	28
Figure II.20 : les forces de frottements sur la toiture et les parois verticales cas de vent sur le pignon (sens V1)	33
Figure II.21 : représentation des charges statique de neige sur la toiture et sur le sol	38
Figure III .1: détail de panneau sandwich (couverture)	40
Figure III .2: détail de panneau sandwich (bardage)	42
Figure III.3 : Dispositions des pannes sur la toiture avec l'entraxe e	44
Figure III.4 : Schéma statique des surcharges d'entretien sur les pannes	45
Figure III.5 : Charge du vent sur les pannes	45
Figure III.6 : Charge de la neige sur les pannes	46
Figure III.7 : Dispositions des liernes	53

Figure III.8 : Schème statique de la panne avec lierne	54
Figure III.9 : les liernes de toiture	55
Figure III.10 : échantignolle	56
Figure III .11: la répartition des charges sur les lisses de long pan	58
Figure III .12 : Schéma statique de la lisse avec suspente	59
Figure III .13 : Schéma statique de la lisse avec suspente	62
Figure III .14 : les suspentes	63
Figure III .15 : la répartition des charges sur les lisses de pignon	64
Figure III .16 : Disposition des potelets et les lisses sur le pignon	64
Figure III .17 : Schéma statique de la lisse avec suspente	66
Figure III .18 : les suspentes des lisses de pignon	66
Figure IV-1: Schéma 3D du pont roulant mono poutre posé	76
Figure IV-2: Schéma 2D du pont roulant	76
Figure IV-3: présentation de pont roulant sur le portique.	76
Figure IV.4 : la position du chariot à la charge maximale	79
Figure IV.5 : la position du chariot à la charge minimale	
Figure IV.6 : Dispositions des charges induites par les forces horizontales longitudinales et transversales pr l'accélération et décélérations	oduit par 83
Figure IV.7 : Charges horizontales longitudinales HL,i	
Figure IV.8 : Charges horizontales transversales H _{T,3}	
Figure IV.9 : Forces dues à la marche en crabe	
Figure IV.10 : Disposition des charges des galets sur la PDR	
Figure IV.11. : Section transversal de HEA	90
Figure IV.12 : la position de moment max cas de deux charges roulantes égale	91
Figure IV.13: Disposition de la charge horizontale	
Figure IV14 : langueur chargée efficace	
Figure.IV15 : torsion de la semelle supérieure	100
Figure IV.16 : le console	
Figure IV.17 : le moment maximal dans le console	
Figure V.1 : Vue en plan de la poutre au vent	
Figure V. 2 : Schéma statique de la poutre au vent	103
Figure V. 3 : Schéma des Fi sur pignon	104
Figure V. 4 : valeurs des forces et réaction	105
Figure V. 5 : Isolation du nœud 1	105

Figure V. 6 : Présentation des efforts sur nœud 2	106
Figure V.7 : schéma statique de la poutre sablière	114
Figure V.8 : schéma statique de la palée de stabilité sur long pan	117
Figure V.9 : schéma indiquant la poutre de contreventement verticale	120
Figure VI.1 : vue de portique en 2D	122
Figure VI.2 : la répartition des charges du vent sur le portique le plus sollicité en KN/ml le cas de W1surpression	123
Figure VI.3 : la répartition des charges du vent sur le portique le plus sollicité en KN/ml le cas de W1dépression	124
Figure VI.4 : la répartition des charges du vent sur le portique le plus sollicité en KN/ml le cas de W2surpression	125
Figure VI.5 : la répartition des charges du vent sur le portique le plus sollicité en KN/ml le cas de W2dépression	125
Figure VI.6 : la répartition de moment M _{ymax} sur le portique	129
Figure VI.7 : schéma statique du jarret de la traverse	130
Figure VI.8 : schéma statique du jarret de la traverse coté de poteau	130
Figure VII.1 : les déformations dans les trois premières modes, cas de pont roulant au milieu.	136
Figure VII.2 : les déformations dans les trois premières modes, cas de pont roulant à l'extrémité de la structure	136
FigureVII.3 : Schéma du spectre de réponse suivant X	137
FigureVII.4 : Schéma du spectre de réponse suivant Y	138
FigureVII.5 : Mode de déformation (1)	139
FigureVII.6. : Mode de déformation (2)	139
FigureVII.7. : Mode de déformation (3)	140
Figure VIII.1 Illustration de la traverse la plus sollicité.	145
Figure VIII.2 Illustration de poteau le plus sollicité.	151
Figure VIII.3 : Illustration de la diagonale la plus sollicité	155
Figure VIII.4 : Illustration de la barre la plus sollicité	157
Figure IX.1 assemblage poteau-traverse	162
Figure IX.2 distribution des efforts sur les boulons tendus.	162
Figure IX.3 : vue 3D pour l'assemblage poteau-traverse.	166
Figure IX.4 : Vue 3D pour l'assemblage traverse-traverse.	167
Figure IX.5 : la disposition géométrique des boulons des contreventements horizontaux	171
Figure IX.6 : vue 3D d'assemblage des diagonales de contreventement horizontale.	172
Figure IX.7 : Exemple d'assemblage des diagonales de poutre au vent avec la traverse.	173
Figure IX.8 : assemblage des diagonales de palée de stabilité vertical	174

Figure IX.9 : cordons de soudure gousset de la poutre HEB120	
Figure IX.10 : Assemblage gousset-poteau	
Figure IX.11: Vue perspective de l'échantignole	
Figure IX.12 assemblage poteau-corbeau	
Figure IX.13 distribution des efforts sur les boulons tendus	
Figure IX.14 déplacement dû à un moment fléchissant	
Figure IX.15 assemblage bout à bout des poutres de roulement	
Figure IX.16 : tige d'ancrage de pied de poteau	
Figure IX.17 : Dispositions constructives	
Figure IX.18 : Vue 3D de la disposition des tiges ancrages	
Figure IX.19 : vérification de la section 1-1	
Figure IX.20 : Vue 3D de la disposition des tiges ancrages de potelet	
Figure X.1 : les dimensionne de la semelle sous le poteau	
FigureX.2 : schéma de ferraillage de la semelle au-dessous de poteau	198
FigureX.3 : schéma de ferraillage de la semelle au-dessous de potelet	199
FigureX.4 : schéma de ferraillage des longrines	202
Figure X.5 : la section de fut à ferrailler	202
FigureX.6 : Schéma de ferraillage des futs	204
Figure XI.1 : les composants de l'action du vent sur le pignon	207
Figure XI.2 : les composants d'action du vent sur long pan V2	208

Liste des tableaux

Tableau II.1 : Les valeurs de coefficient de rugosité Cr en fonction de Z.	10
Tableau II.2 : Les valeurs de Coefficient d'exposition Ce en fonction de Z	11
Tableau II.3 : Les valeurs de pression dynamique de pointe q_p (z_e)	11
Tableau II.4 : les surfaces des zones chargée pour les parois verticales (S en m ²)	13
Tableau II.5 : les valeurs de Cpe correspondant à chaque zone des parois verticales sens V1	13
Tableau II.6 : les surfaces des zones chargée pour la toiture (S en m ²)	15
Tableau II.7 : les valeurs de Cpe correspondant à chaque zone de toiture, cas de vent dans le sens V1	15
Tableau II.8 : les surfaces des zones chargées pour les parois verticales cas de vent dans le sens V2.	16
Tableau II.9 : les valeurs de Cpe correspondant à chaque zone des parois verticales cas de vent dans le sens V2	16
Tableau II.10 : les surfaces des zones chargées pour la toiture cas de vent dans le sens V2	18
Tableau II.11 : les valeurs de Cpe correspondant à chaque zone de toiture cas de vent dans le sens V2	19
Tableau II.12 : les valeurs de coefficient de pression intérieure les plus défavorable	21
Tableau II.13 : valeurs de la pression aérodynamique sur les parois verticales cas de la surpression.	22
Tableau II.14 : valeurs de la pression aérodynamique sur la toiture, cas de la surpression	23
Tableau II.15 : valeurs de la pression aérodynamique sur les parois verticales cas de la dépression	23
Tableau II.16 : valeurs de la pression aérodynamique sur la toiture cas de la dépression.	24
Tableau II.17 : valeurs de la pression aérodynamique sur les parois verticales cas de la surpression.	25
Tableau II.18 : valeurs de la pression aérodynamique sur la toiture, cas de la surpression	26
Tableau II.19 : valeurs de la pression aérodynamique sur les parois verticales cas de la dépression.	26
Tableau II.20 : valeurs de la pression aérodynamique sur la toiture cas de la dépression	27
Tableau II.21 : récapitulation des valeurs de la pression maximale pour deux cas de surpression et dépression pour direction du vent sur le pignon	ur la 28
Tableau II.22 : récapitulation des valeurs de la pression maximale pour deux cas de surpression et dépression pour direction du vent sur long pan.	ur la 29
Tableau II.23 : les résultants de calcul de pression extérieure We, correspondant à chaque zone	30
Tableau II.24 : les résultants de calcul de force extérieure Fwe, correspondant à chaque zone	30
Tableau II.25 : les résultants de calcul de pression intérieure Wi, correspondant à chaque zone	31
Tableau II.26 : les résultants de calcul de force intérieure Fwi , correspondant à chaque zone	31
Tableau II.27 : les résultants de calcul de la force aérodynamique résultante Fw, cas de vent sur le pignon (sens V1)	33
Tableau II.28 : les résultants de calcul de pression extérieure We, correspondant à chaque zone cas la direction de ven le long pan (sens V2).	t sur 33
Tableau II.29 : les résultants de calcul de force extérieure Fwe , correspondant à chaque zone cas la direction de vent s long pan (sens V2).	ur le 34

Tableau II.30 : les résultants de calcul de pression intérieure Wi, correspondant à chaque zone cas la direction le long pan (sens V2)	de vent sur 34
Tableau II.31 : les résultants de calcul de force intérieure Fwi , correspondant à chaque zone cas la direction de long pan (sens V2)	e vent sur le 35
Tableau II.32 : les résultants de calcul de la force aérodynamique résultante Fw, cas la direction de vent sur le lo V2)	1g pan (sens 36
Tableau II.33 : coefficient de forme – toiture à deux versants	
Tableau III .1: le poids propre e panneau correspondante à chaque épaisseur	40
Tableau III .2: les charges maximales admissibles en daN/m² en fonction des portées	40
Tableau III .3: le poids propre e panneau correspondante à chaque épaisseur	41
Tableau III .4: Charges maximales admissibles en daN/m2 en fonction des portées d'utilisation	42
Tableau III.5 : Caractéristiques de l'IPE 160	
Tableau III.6 : Caractéristiques de l'UPE 120	62
Tableau III.7 : Caractéristiques de l'UPE 180	67
Tableau IV-1: les mesures de pont roulant	77
Tableau IV-2 : les charges et les vitesses caractérisé par le pont	77
Tableau IV.3 : les actions générer par le pont roulant	78
Tableau IV.4 : coefficients dynamiques ϕ_i pour les charges verticales	78
Tableau IV.5: résumée des charges verticales sur la poutre de roulement	82
Tableau IV.6 : Système de guidage assuré par les flasques de galets	86
Tableau IV.7 : Les carctéristiques de profilé HEA280	89
Tableau IV-8 certains catégories de détails avec leurs description	
Tableau V. 1 : Les résultats de Fi	
Tableau V.2 : schéma statique de la palée de stabilité sur long pan	117
Tableau VI.1 : les coefficients de $arphi_i$ en fonction des charges	
TableauVII.1 : Pourcentage de participation de masse.	138
Tableau VII.2 : les coefficients de $arphi_i$ en fonction des charges	141
TableauVII.3 : Combinaisons de calcul	
TableauVII.4 : Vérification de l'effort tranchant à la base	
TableauVII.5 : Déplacement max en situation durable dans la partie droite	142
TableauVII.6 : Déplacement relatif des niveaux dans la partie droite	143
TableauVII.7 : Effet P-Δ suivant X-X dans la partie droite	144
TableauVII.8 : Effet P-Δ suivant Y-Y dans la partie droite	144
Tableau VIII. 1 : liste des éléments et de leurs sections choisies	

Tableau IX.1: Caractéristique mécanique des boulons selon leur classe d'acier	
Tableau IX.2 : Valeur du coefficient de frottement μ selon la surface	160
Tableau IX.3: Principales caractéristiques géométrique	160
Tableau IX.4 : épaisseur du gousset en fonction de l'effort appliqué	170
Tableau X.1 : les sollicitations à la base des poteaux HEA340	191
Tableau X.2. : Les sollicitations à la base de la semelle HEA340	193
Tableau X.3. : Les résultants de calcul des contraintes	194
Tableau X.4 : le ferraillage choisis pour la semelle au-dessous de poteau	197
TableauX.5 : le ferraillage choisis pour la semelle au-dessous de potelet	
Tableau XI.1 : les forces extérieures cas de v1	206
Tableau XI.2 : les forces intérieures cas de V1	206
Tableau XI.3 : la force Fw résultante cas de V1	206
Tableau XI.4 : les forces extérieures cas de v2	207
Tableau XI.5. : Les forces intérieures cas de V2	208
Tableau XI.6. : la force Fw résultante cas de V2	208
Tableau XI.7.: Réaction à la base due aux effets sismiques	209
Tableau XI.8.: vérification au reversement sous l'effet du vent	209
Tableau XI.9.: vérification au reversement sous l'effet du séisme	210

Sollicitation-Contrainte-Déformation :

q_P : Pression dynamique de pointe **q**_{réf}: pression dynamique moyen de référence W : pression aérodynamique **Fw** : force aérodynamique résultante S: charge caractéristique de la neige Sk: charge de la neige sur le sol **G** : action permanente **Q** : action d'exploitation g : Charge permanente uniformément répartie q : Charge d'exploitation uniformément répartie **Q**_{r,max} :est la charge maximales par galet de l'appareil de levage en charge. $Q_{r,(max)}$:est la charge d'accompagnement par galet de l'appareil de levage en charge **Qh** : masse à lever de pont roulant H_{Li} : force horizontales longitudinales H_{Ti}: force horizontales transversales $\Delta \sigma_c$: Valeur de référence de la résistance à la fatigue NC : nombre de cycle $\Delta \sigma_{\rm E2}$: Contrainte normal à la semelle supérieure σ_{zEd} : Contraintes de compression locales exercées dans l'âme Tsd : les efforts locaux dans l'âme à la flexion $\sigma_{T.Ed}$: Contrainte de flexion provoque l'âme *E* : Module d'élasticité longitudinale de l'acier (*E* = 210 000 MPa) G : Module d'élasticité transversale de l'acier *F*_p : Effort de précontrainte dans un boulon M : Moment sollicitant, en général *M*_{cr} : Moment critique élastique *M_{eff}*: Montent efficace (section de classe 4) Mel : Moment élastique *M_N* : Moment résistant plastique réduit du fait de l'effort axial *M*_{pl} : Moment plastique **M**_R : Moment résistant N_R: Effort normal résistant $N_{PL}\colon \text{Effort normal de plastification}$ Nu: Effort normal ultime V: Effort tranchant sollicitant **V**_{PL}: Effort tranchant de plastification N_K : Effort normal critique d'Euler N_{pl} : Effort normal de plastification *N_u* : Effort normal ultime V_u : Effort tranchant ultime $f(\text{ou } \delta)$: Flèche d'une poutre *fub* : Contrainte de rupture d'un boulon *f*_{*u*} : Contrainte de rupture d'une pièce f_Y : Limite d'élasticité d'un acier *fred* : Limite d'élasticité réduite pour l'aire de cisaillement $f_{red} = (1-\rho)$. *f*_Y ε (epsilon) : Déformation linéaire unitaire ε_{Y} : Déformation correspondant à la limite d'élasticité **σ**:(sigma) Contrainte normale σ_K : Contrainte critique d'Euler τ :(tau) Contrainte tangentielle ou de cisaillement

Caractéristique Géométriques :

A : Section brute d'une pièce (cm²). Anet : Section nette d'une pièce (cm²). Av: Aire de cisaillement (cm²). Aw: Section de l'âme d'une pièce (cm²). As: Section résistante de la tige d'un boulon en fond de filet (cm²). I_T: Moment d'inertie de torsion (cm⁴). Iw: Facteur de gauchissement d'une section (cm⁴). I_Y : Moment d'inertie de flexion maximal (cm⁴). Iz: Moment d'inertie de flexion minimal (cm⁴). WEL: Module de résistance élastique (cm³). W_{PL} : Module de résistance plastique (cm³). **a** : Epaisseur utile (ou gorge) d'un cordon de soudure (**mm**). **b** : Largeur d'une semelle de poutre (**cm**). do : Diamètre nominal des tiges des boulons (cm). h : Hauteur d'une piéce en général (mm,cm). i : Rayon de giration d'une section (mm,cm). l : Longueur en général ou portée d'une poutre (mm,cm,m). l_f: Longueur de flambement (**mm,cm,m**). l_d : Longueur de déversement d'une poutre (mm,cm,m). **I**_K : Longueur de flambement d'une poutre **(mm,cm,m)**. **R** : Rigidité d'une barre (cm³). t : Epaisseur d'une piéce ou d'une tole (mm,cm). **t**_f : Epaisseur d'une semelle de poutre (**mm,cm**). tw: Epaisseur d'une ame de poutre (mm,cm). \emptyset : Diamètre d'une section transversale (cm², mm²).

Coefficients et Grandeurs sans Dimensions :

Cpe : coefficient de pression extérieur
Cpi : coefficient de pression intérieur *K* : Coefficient d'encastrement ou de rigidité poteau/poutre *ks* : Coefficient de dimension des trous perçage pour boulons

 k_v et k_z : Coefficients de flambement flexion

 k_{τ} : Coefficient de voilement par cisaillement

 $n = N / N_{pl}$: ou nombre de boulons

 β_M : Facteur de moment uniforme équivalent (flambement)

 β_w : Facteur de corrélation (soudures)

ε:(epsilon) Coefficient de réduction élastique de l'acier

 η :(eta) Facteur de distribution de rigidités (flambement)

 λ :(lambda) Elancement

 $\lambda_{cr}: \text{Elancement critique d'Euler}$

 λ_k : Élancement eulérien

 $\overline{\lambda}$: Elancement réduit

 $\overline{\lambda}_{IT}$: Élancement de déversement

 λ_w : Élancement de l'âme d'un poutre

µ:(mu) Coefficient de frottement

ρ:(rho) Rendement d'une section

x : (chi) Coefficient de réduction de flambement

XLT : Coefficient de réduction de déversement

 $\boldsymbol{\psi}$: Coefficient de distribution de contraintes (psi)

 γ_G :(gamma) Coefficient partiel de sécurité

 γ_Q :(gamma) Coefficient partiel de sécurité

INTRODUCTION GENERALE :

Une construction, qu'elle que soit sa destination (habitation, usage industriel, collectivité, spectacle ...) et son principe constructif (matériau, type de structure), doit être capable de résister aux efforts qui sont appliqués. Ce rôle de \ll résistance \gg est assuré par l'ossature ou structure en acier constituant le \ll squelette \gg de la construction.

L'acier utilisé en construction métallique à des caractéristiques garanties. C'est un matériau isotrope et homogène ayant un comportement idéal vis-à-vis de la théorie de l'élasticité, base des lois de la résistance des matériaux. Il est ductile, propriété nécessaire à la bonne répartition des efforts dans les assemblages. Il est soudable, sous réserve de respecter les dispositions prescrites au projet, c'est le matériau d'usage courant en construction qui présente les caractéristiques les plus élevées pour le poids le plus faible.

La structure assure principalement le cheminement des efforts extérieurs appliqués jusqu'aux bases solides, les fondations. La connaissance de ce cheminement est essentielle particulièrement vis-à-vis de l'étude des éléments constitutifs de la structure ainsi que leurs liaisons (attaches). La structure est stable si cette transmission s'effectue sans désordre. Les ossatures métalliques sont généralement « souples » et constituées de barres « élancées » ou d'éléments minces. Ces caractères spécifiques sont à garder présents à l'esprit lors des études, les problèmes de flexibilité, voilement, déversement de poutres fléchies et flambement d'éléments comprimés étant déterminants dans la justification et le dimensionnement des structures métalliques.

CHAPITRE I : Présentation De L'ouvrage

PRESENTATION DE L'OUVRAGE

I.1. Introduction :

La présente étude consiste à dimensionner par calcul et vérification, la stabilité d'un Hangar industriel en Construction Métallique avec un pont roulant, dont l'ossature est formée par un système de barres constitué essentiellement de, poteaux et traverses.

L'ouvrage sera implanté à Akbou (w) Bejaia qui est classée selon le règlement parasismique Algérien (RPA99 version 2003) comme zone moyenne sismicité (IIa).

Figure I.1 : Vue en 3D de la structure.

I.2. Caractéristiques géométriques de l'ouvrage :

I.2.1. Géométrie de l'ouvrage :

- ♦ Longueur total = 60.00m.
- ♦ Largeur total = 27.50m.
- ♦ Hauteur total = 13.65m.
- ♦ Hauteur des poteaux = 12.00m.
- ♦ Entraxe entre portiques =6m

Université de Bejaia/Génie civil/CM/2015-2016

I.2.2. Pont Roulant :

Le pont roulant utilisé dans ce projet est de type mono-poutre à utilisation régulière en service intermittent avec soulèvement de charge variant de zéro à la charge nominale.

- \diamond Masse à lever = 2tonnes.
- ♦ Porté de pont roulant L_p = 26.5m.
- ♦ Le poids du pont 6tonnes.

I.2.3. Etude de sol :

Les études faites sur le sol ou le projet sera implanté nous renseignement sur :

- ↔ La contrainte admissible du sol tirée de la portance : $σ_{adm}$ = 2 bar.
- ♦ La description des couches du sol nous montre que le terrain est d'agressivité chimique nulle (absence de sulfates).
- ♦ Un système de fondation en semelles superficiel a une profondeur d'ancrage de 2.00m.

I.3. Caractéristiques structurales :

I.3.1 Les Couvertures :

La couverture sera réalisée par des panneaux sandwich, ils sont constitués :

- ♦ De deux tôles de parement intérieur et extérieur.
- ♦ D'une âme en mousse isolante.
- ♦ De profils latéraux destinés à protéger l'isolant et réaliser des assemblages aisés.

Les panneaux sandwich nous offrent plusieurs avantages on citera :

- ↔ Le par vapeur.
- ♦ L'isolation et l'étanchéité.
- ♦ Une bonne capacité portante.
- ♦ Un gain de temps appréciable au montage.
 Toutes fois elles présentent un point faible

qui réside dans l'étanchéité des joints.

Figure I.2 : Panneau sandwich.

I.3.2. Ossature de la structure :

L'ossature de l'ouvrage sera constituée par des portiques métalliques auto-stables qui assurent la stabilité verticale et horizontale.

I.4. Matériaux Utilises :

I.4.1. Acier :

L'acier est un matériau constitué essentiellement de fer et un faible taux de carbone, qui est extraits de matières premières naturelles tirées du sous – sol (mines de fer et de charbon). Le carbone n'intervient dans la composition, que pour une très faible part (généralement inférieur à 1%).

Outre le fer et le Carbonne, l'acier peut comporter d'autres éléments qui leur sont associés :

- Soit involontairement : phosphore, soufre...qui sont des impuretés et qui altèrent les propriétés des aciers.
- Volontairement : ce sont notamment le silicium, le manganèse, le nickel, le chrome, le tungstène, le vanadium, etc. qui ont pour propriété d'améliorer les caractéristiques

mécaniques des aciers (résistance à la rupture, dureté, limite d'élasticité, ductilité, résilience, soudabilité, corrosion...).

On parle, dans ces cas, d'acier allié.

I.4.2. Propriété de l'acier :

♦ Résistance :

Les nuances d'acier courantes et leurs résistances limites sont données par règlement (Eurocode 03).

La nuance choisie pour la réalisation de cet ouvrage est l'acier S235.

♦ Ductilité :

L'acier de construction choisi doit satisfaire les conditions suivantes :

- Le rapport $f_u/f_y > 1,2$.
- La déformation ultime doit être supérieure à 20 fois la déformation élastique (εu≥20εy).
- A la rupture l'allongement relatif ultime ɛu doit être supérieure ou égal à 15%.
- ♦ Coefficient de calcul de l'acier : (§ 3.2.3 CCM97) :
- Masse volumique : $\rho = 7850 \text{Kg/m}^3$.
- Module d'élasticité longitudinal : **E = 21000 MPa**.
- Module d'élasticité transversale : G=E/2(1+µ) ≈ 0.4E.
- Coefficient de poisson $\mu = 0,3$
- Coefficient de dilatation thermique : $\alpha = 12.10^{-6}/{}^{0}C$.

Figure I.3 : Diagramme contrainte-déformation de l'acier (essai de traction).

I.4.3. Béton :

- Le béton est un matériau économique qui résiste bien à la compression.
- Le béton utilisé pour les fondations est dosé à 350kg/m³ de ciment ordinaire **CPA 325** dont les caractéristiques physique et mécanique sont :
- Masse volumique $\rho = 2.5 \text{ t} / \text{m}^3$.
- La résistance à la compression à 28 jours : $f_{c28} = 25MPa$.
- La résistance à la traction à 28 jours : $f_{t28} = 2.1 MPa$.
- Coefficient de retrait $\varepsilon = 4.10^{-6}$.

I.5. Règlements techniques :

Les règlements techniques utilisés dans cette étude sont :

CCM97 : Règle de calcul des constructions en acier.

Eurocode 03

RPA99 : Règle Parasismique Algériennes version 2003.

RNVA 2013 : Règle définissant les effets de la neige et du vent.

BAEL 91 : Béton armé aux états limites.

DTR C2.2 : Charges et structure.

Eurocode 1 partie 3 : Actions induites par les appareils de levage et les machines.

Eurocode 0 : basse de calcul des structures.

CHAPITRE II : Etude Climatique

ETUDE CLIMATIQUE

II.1 ETUDE AU VENT

Introduction

Un ouvrage en construction métallique doit résister aux différents actions horizontales et verticales notamment le vent est souvent prépondérant dans ce cas. L'action du vent est supposée perpendiculaire aux surfaces exposées (parois verticales, toiture) et représentée soit comme une pression soit comme une force.

L'influence des effets du vent sur une construction métallique est couramment engendre non négligeable, par conséquent une étude bien précisée doit être effectuée. La réglementation neige & vent (RNVA version 2013), présent document technique réglementaire (DTR) fournit les procédures et principes généraux pour la détermination des actions du vent sur l'ensemble des bâtiments et constructions y compris composants et éléments de façade.

II.2. DIRECTION DU VENT

Le calcul doit être effectué séparément pour chaque des directions perpendiculaire aux différentes parois de la construction.

Notre projet présent un hangar à deux versants de forme rectangulaire et symétrique. <u>Les caractères géométriques de hangar :</u>

La langueur *l*=60m. La larguer *b*= 27.5m La hauteur des parois vertical *h*= 12 m. La hauteur totale *H*=13.65m. La pente des deux versants est égale à 12%.

Les deux directions principales du vent : -(Sens V1) : le vent perpendiculaire au pignon. -(Sens V2) : le vent perpendiculaire au long pan.

Université de Bejaia/Génie civil/CM/2015-2016.

CHAPITRE II

Figure II.1. : Les directions principales du vent.

II.3. DETERMINATION DE LA PRESSION DYNAMIQUE DE POINTE

Pression dynamique de pointe $q_p(z_e)$, à la hauteur de référence z_e est donnée par :

 $q_p(z_e) = q_{ref} \times C_e(z_e)$ [N/m²] (Chap 2 RNVA 2013 Formule 2.1)

 $q_{réf}$ (en N/m²) est la pression dynamique de référence donnée par le tableau 2.2 de RNVA2013 en fonction de la zone de vent.

 C_e est le coefficient d'exposition au vent.

Z_e (en m) est la hauteur de référence.

II.3.1. la pression dynamique de référence :

C'est en fonction de la zone de vent. Notre projet situé à la commune d'Akbou de wilaya de Bejaia, d'après RNVA 2013 la wilaya de bejaia classé en (zone I) de la carte climatique de vent, Et suivant le tableau 2.2 RNVA 2013 : $q_{réf}$: 375N/m².

II.3.2. Hauteur de référence Ze :

 Pour les murs au vent des bâtiments à parois verticales, Z_e est déterminé comme indiqué par la figure 2.1 de RNVA 2013 ;

Figure II.2 : Hauteur de référence Ze et profil correspondant de la pression dynamique.

Comme notre cas la hauteur des parois h=12m, Et la largeur b=27.5m \implies **h** \leq **b**; \implies Ze=h=12m;

• Pour les toitures, Ze est pris égal à la hauteur maximale des bâtiments ; (Selon RNVA 2013 Chap 2 article 2.3.2). \Rightarrow Ze=H=13.65m.

II.3.3. Coefficient d'exposition Ce :

Le coefficient d'exposition au vent Ce(z) tient compte des effets de la rugosité du terrain, de la topographie du site et de la hauteur au-dessus du sol. En outre, il tient compte de la nature turbulente du vent.

 $Ce(z) = C_t^2(z) \times C_r^2(z) \times [1+7 \times I_v(z)];$ (Selon RNVA 2013 Chap 2, formule 2.2);

- Ct est le coefficient de topographie.
- Cr est le coefficient de rugosité.
- Iv(z) est l'intenté de la turbulence.
- Z(en m) est la hauteur considérée.

II.3.3.1. coefficient de topographie (Ct) :

Le coefficient de topographie Ct(z) prend en compte l'accroissement de la vitesse du vent lorsque celui-ci souffle sur des obstacles tels que les collines, les dénivellations isolées, etc.

 $\begin{array}{ll} Ct = 1 & pour \quad \emptyset < 0.05 \\ \{ Ct = 1 + Smax \times (1 - \frac{|x|}{Kred \times L}) \times e^{-\alpha(\frac{z}{L})} & pour \quad \emptyset \ge 0.05 \end{array} \}; (\text{Selon RNVA 2013 Chap2, formule 2.4}).$

- \emptyset est la pente du versant au vent $\emptyset = H/Lu$;
- *H*(en m) est la hauteur du versant ;
- Lu est la langueur du versant sous le vent ;

Figure II.3:Paramètres pour la détermination de Ct(z) aux alentours des falaises et escarpements (RNVA 2013 Chap2, figure 2.3).

<u>Calcul de Ø :</u>

Comme notre structure sera implantée dans un site totalement plan, (H=0m) pour toutes les directions du vent. $\Rightarrow \phi = 0/Lu = 0 \Rightarrow \phi = 0 \Rightarrow \phi < 0.05 \Rightarrow Ct=1$.

II.3.3.2. le coefficient de rugosité Cr :

Le coefficient de rugosité Cr (z) traduit l'influence de la rugosité et de la hauteur sur la vitesse moyenne du vent. Il est donné par la relation suivante :

 $C_{r}(z) = K_{T} \times \ln \frac{Z}{Z0} \quad \text{pour} \quad Z_{\min} \le Z \le 200 \text{m};$ $C_{r}(z) = K_{T} \times \ln \frac{Zmin}{Z0} \quad \text{pour} \quad Z < Z_{\min};$ Avec:

(Selon RNVA 2013, Chap 2, formule 2.3).

- K_T : Facteur de terrain ;
- Z₀ (en m) le paramètre de rugosité ;
- Z_{min} (en m) la hauteur minimale ;
- Z (en m) la hauteur considérée ;

On Utilise le tableau (2.4) de RNVA 2013 pour définir les valeurs de Kt ; Z_0 et Zmin :

La structure sera implantée dans une zone à couverture végétale régulière ou des bâtiments,

Le terrain est de Catégories III d'où :

- Facteur de terrain K_T =0.215 ;
- le paramètre de rugosité Z₀=0.3m ;
- la hauteur minimale Z_{min}=5m ;
- a) Calcul de Cr pour les parois verticales (Z=12m) \implies $Z_{min} \le$ Z \le 200m ;

 $C_{\rm r}(z) = K_{\rm T} \times \ln \frac{z}{z_0} \implies C_{\rm r}(z=12m) = 0.215 \times \ln \frac{12}{0.3} \implies C_{\rm r}(z=12m) = 0.793.$

b) Calcul de Cr pour la toiture (Z=13.65m) \implies $Z_{min} \le Z \le 200m$;

 $C_r(z) = K_T \times \ln \frac{Z}{Z0} \implies C_r(z=13.65m) = 0.215 \times \ln \frac{13.65}{0.3} \implies C_r(z=13.65m) = 0.82.$

niveau	Z(m)	Z _{min} (m)	Les formules	Cr(z)
Parois verticales	12	5	$Z_{min} \le Z \le 200m$	0,793
toiture	13.65	5	$Z_{min} \le Z \le 200m$	0.820

Tableau II.1 : Les valeurs de coefficient de rugosité Cr en fonction de Z.
II.3.3.3. L'intensité de la turbulence *Iv(z)* :

Est définie comme étant type de la turbulence divisée par la vitesse moyenne du vent et est donnée par l'équation :

$$Iv(z) = \frac{1}{Ct(z) \times ln(\frac{z}{z_0})} \quad \text{pour } Z > Zmin \quad (a)$$

$$Iv(z) = \frac{1}{Ct(z) \times ln(\frac{zmin}{z_0})} \quad \text{pour } Z < Zmin \quad (b) \quad (RNVA 2013 Chap2, formule 2.5)$$

a) Calcul de Iv(z) pour les parois verticales (Z=12m) \Rightarrow Z > Zmin :

$$Iv(z) = \frac{1}{Ct(z) \times ln(\frac{z}{z_0})} \implies Iv(z) = \frac{1}{1 \times ln(\frac{12}{0.3})} \implies Iv(z) = 0.271$$

b) Calcul de Iv(z) pour la toiture (Z=13.65m) \Rightarrow Z > Zmin :

$$Iv(z) = \frac{1}{Ct(z) \times ln(\frac{z}{z0})} \implies Iv(z) = \frac{1}{1 \times ln(\frac{13.65}{0.3})} \implies Iv(z) = 0.262$$

♦ Calcul de Coefficient d'exposition Ce :

 $Ce(z) = Ct^{2}(z) \times Cr^{2}(z) \times [1+7 \times I_{v}(z)];$ (RNVA 2013 Chap 2, formule 2.2);

Niveau	Ct (z)	Cr(z)	I _v (z)]	Ce(z)
Parois vertical : (Z=12m)	1	0.793	0.271	1.821
Toiture : (Z=13.65m)	1	0.82	0.262	1.905

Tableau II.2 : Les valeurs de Coefficient d'exposition Ce en fonction de Z.

♦ Calcul de la pression dynamique de pointe :

 $[N/m^2]$

 $q_p(z_e) = q_{réf} \times C_e(z_e)$

(Chap 2 RNVA 2013 Formule 2.1) ;

Niveau	$q_{ m réf}$ [N/m ²]	Ce(z)	$q_p\left(z_e\right)\left[\mathrm{N}/\mathrm{m}^2 ight]$
Parois vertical : (Ze=12m)	375	1.821	682.875
Toiture : (Ze=13.65m)	375	1.905	714.375

Tableau II.3 : Les valeurs de pression dynamique de pointe $q_p(z_e)$.

Université de Bejaia/Génie civil/CM/2015-2016.

Figure II.4: la répartition de la pression dynamique de pointe sur la hauteur Ze.

II.4. DETERMINATION DE LA PRESSION AERODYNAMIQUE

La pression aérodynamique $W(z_j)$ agissant sur une paroi est obtenue à l'aide de la formule suivant :

- Si une face de la paroi est intérieure à la construction, l'autre extérieure :

 $W(z_j) = q_p(z_e) [\times [Cpe-Cpi] [N/m^2]$ (D'après RNVA2013 Chap 2, formule 2.6)

- q_p (z_e) (en N/m²) est la pression dynamique de pointe.
- Cpe : coefficient de pression extérieure.
- Cpi : coefficient de pression intérieure.

II.4.1. Détermination des coefficients de pression extérieure Cpe

Les coefficients de pression extérieure Cpe des constructions base rectangulaire et de leurs éléments constitutifs dépendent de la dimension de la surface chargée. Ils sont des surfaces chargées de 1m², auxquelles correspondant les coefficients de pression notés respectivement Cpe,1 et Cpe,10.

Cpe,1 s'obtient à partir des formule suivants :

Cpe= Cpe,1	si : S≤ 1m²
Cpe= Cpe,1+(Cpe,10-Cpe,1)×log(S)	si : 1m ² < S<10m ²
Cpe= Cpe,10	si : S $\ge 10m^2$

Où S (en m²) désigne la surface chargée de la paroi considérée. (Selon RNVA 2013 chap5 article 5.1.1)

II.4.1.1. Cas de vent perpendiculaire au pignon (sens V1) :

a) Calcul de Cpe pour les parois verticales :

D'après la figure 5.1 de RNVA 2013 on divise les parois comme suit :

Pour le sens V1 : d=60m ; b=27.5m; h=12m et e=min [b ; 2h] \Rightarrow e=min [27.5 ; 24] \Rightarrow e=24m et d>e \Rightarrow e/5=4.8m

Figure II.5: vue en plan des zones de pression sur les parois verticales sens V1.

• Calcul des surfaces pour chaque zone :

zone	А	В	С	D	Е
Surface	4.8*12	19.20*12	36*12	(27.5*12)+ (1.65*13.75)	E=D
(en m ²)	=57.60	=230.4	=432	=352.68	=352.68

 Tableau II.4 : les surfaces des zones chargée pour les parois verticales (S en m²)

On remarque que toutes les surfaces supérieure à 10m², donc Cpe= Cpe,10 pour chaque zone. Suivant le tableau 5.1 de RNVA 2013 on déterminer les valeurs de Cpe correspondent :

Zone	А	В	С	D	Е
Cpe	-1	-0.8	-0.5	+0.8	-0.3

Tableau II.5 : les valeurs de Cpe correspondant à chaque zone des parois verticales sens V1.

Figure II.6 : les valeurs de Cpe correspondant à chaque zone des parois verticales sens V1.

b) Calcul de Cpe pour la toiture :

La direction du vent est définie par angle θ , notre cas le vent perpendiculaire au pignon le (sens V1) et parallèle au génératrices donc $\theta = 90^{\circ}$. (Selon RNVA 2013 Chap5, article 5.1.5.1). Et dans notre cas aussi la toiture est à deux versants avec une pente de 12% ce qui nous donne un angle de $\alpha = 6.84^{\circ}$; comme la figure 5.4 de RNVA 2013 pour $\theta = 90^{\circ}$ on définir les différentes zones de pression F, G, H et I sont représentées sur la figure suivante :

h=13.65m; b=27.5m; d=60m; e=min [b; 2h]=min [27.5; 27.3] \implies e=27.3m $\implies \frac{e}{4}$ = 6.825m

Figure II.7 : La répartition des zones de pression sur la toiture sens V1

Université de Bejaia/Génie civil/CM/2015-2016.

• Calcul des surfaces pour chaque zone :

zone	F	G	Н	Ι
Surface	6.825*2.73	6.925*2.73	10.92*27.5/2	46.35*27.5/2
(en m ²)	=18.632	=18.905	=150.15	=637.312

Tableau II.6 : les surfaces des zones chargée pour la toiture (S en m²)

On remarque aussi que toutes les surfaces des zones de pression de la toiture sont supérieure à 10m², donc Cpe= Cpe,¹⁰ pour chaque zone.

»Les valeurs de C_{pe} sont déterminées par une interpolation linéaire entre les deux valeurs de même signe pour α =5° et α =15° tirées du (tableau 5.4 RNVA2013) (θ =90°).

$$f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} \times (x - x_0)$$
 [La formule de l'interpolation]

Zone F : S= 18.632m² > 10m²

Cpe=Cpe,10=-1.6+
$$\frac{-1.3-(-1.6)}{15-5}$$
 × (6.842-5) \implies Cpe = -1.544.

La même procédure pour calculer les coefficients d'autres zones, les résultants sont comme suit :

zone	F	G	Н	Ι
Сре	-1.544	-1.3	-0.681	-0.581

Tableau II.7 : les valeurs de Cpe correspondant à chaque zone de toiture, cas de vent dans le sens V1.

II.4.1.2. Cas de vent perpendiculaire au long pan (sens V2) :

a) Calcul de Cpe pour les parois verticales :

D'après la figure 5.1 de RNVA 2013 on divise les parois comme suit :

Pour le sens V2 :

d=27.5m;

b=60m;

h=12m;

 $e=min [b; 2h] \implies e=min [60; 24] \implies e=24 m \implies d > e; e/5=4.8 m.$

Figure II.8: vue en plan des zones de pression sur les parois verticales sens V2.

• Calcul des surfaces pour chaque zone :

zone	А	В	С	D	Е
Surface	4.8*12	19.2*12	3.5*12	60*12	60*12
(en m ²)	=57.60	=230.4	=42	=720	=720

Tableau II.8 : les surfaces des zones chargées pour les parois verticales cas de vent dans le sens V2.

on voit que toutes les surfaces supérieure à 10m², donc Cpe= Cpe,¹⁰ pour chaque zone. Suivant le tableau 5.1 de RNVA 2013 on déterminer les valeurs de Cpe correspondent :

Zone	А	В	С	D	Е
Cpe	-1	-0.8	-0.5	+0.8	-0.3

Tableau II.9 : les valeurs de Cpe correspondant à chaque zone des parois verticales cas de vent dans le sens V2.

Figure II.9 : les valeurs de Cpe correspondant à chaque zone des parois verticales sens V2.

b) Calcul de Cpe pour la toiture cas de sens V2 :

La direction du vent est définie par angle θ , notre cas le vent perpendiculaire au long pan le (sens V2) et perpendiculaire aussi au génératrices donc $\theta = 0^{\circ}$. (Selon RNVA 2013 Chap5, article 5.1.5.1).

Et notre toiture elle est à deux versants avec une pente de 12% ce qui nous donne un angle de $\alpha = 6.84^\circ$; comme la figure 5.4 de RNVA 2013 pour $\theta = 0^\circ$ on définir les différentes zones de pression F, G, H, I et J sont représentées sur la figure suivante :

Avec : h=13.65m; b=60m; d=27.5m; e=min [b; 2h]=min [60; 27.3]
$$\Rightarrow$$
 e=27.3m $\Rightarrow \frac{e}{4}$ = 6.825m

Figure II.10 : La répartition des zones de pression sur la toiture dans le sens V2.

• Calcul des surfaces et des coefficients Cpe correspondent à chaque zone :

zone	F	G	Н	J	Ι
Surface	6.825*2.73	46.35*2.73	11.02*60	2.73*60	11.02*60
(en m²)	=18.632	=126.535	=661.2	=163.8	=661.2

Tableau II.10 : les surfaces des zones chargées pour la toiture cas de vent dans le sens V2.

On voit bien que toutes les surfaces des zones de pression de la toiture sont supérieure à 10m², donc Cpe= Cpe,¹⁰ pour chaque zone.

»Les valeurs de C_{pe} sont déterminées par une interpolation linéaire entre les deux valeurs de même signe pour α =5° et α =15° tirées du (tableau 5.4 RNVA2013) (θ =0°).

$$f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} \times (x - x_0)$$
 [La formule de l'interpolation]

Zone F : $S = 18.632m^2 > 10m^2$

Cpe=Cpe,10=-1.7+
$$\frac{-0.9-(-1.7)}{15-5}$$
 × (6.842-5) \implies Cpe = -1.542.

Université de Bejaia/Génie civil/CM/2015-2016.

Zone G : S= 140.185 m² > 10m²

Cpe=Cpe,10=-1.2+
$$\frac{-0.8-(-1.2)}{15-5}$$
 × (6.842-5) \implies Cpe = -1.126.

La même procédure pour calculer les coefficients d'autres zones, les résultants sont comme suit :

zone	F	G	Н	J	Ι
Сре	-1.552	-1.126	-0.544	0.1448	-0.563

Tableau II.11 : les valeurs de Cpe correspondant à chaque zone de toiture cas de vent dans le sens V2.

II.4.2. Détermination des coefficients de pression intérieure Cpi

II.4.2.1. Cas de vent perpendiculaire au pignon (sens V1) :

pour les bâtiments sans face dominante, le coefficient de pression intérieure Cpi est déterminé à partir de la figure 5.14 de RNVA 2013 avec (h) la hauteur du bâtiment, (d) sa profondeur et μp l'indice de perméabilité donné par :

$$\mu p = \frac{\sum \text{des surface des ouvertures où Cpe } \le 0}{\sum \text{des surfaces de toutes les oouvertures}}$$

Figure II.11 : coefficient de pression intérieure Cpi des bâtiments sans face dominante, (figure 4.14 de RNVA2013).

Université de Bejaia/Génie civil/CM/2015-2016.

Notre structure elle compose de plusieurs ouvertures :

 $\[\]$ Portail pour chaque pignon de dimensionne (5×5) m².

 \Box Huit (08) fenêtres pour chaque long pan de dimensionne (2×4) m².

Dans ce cas le vent perpendiculaire au pignon le rapport $h/d= 13.65/60 = 0.227 \implies h/d \le 0.25$ on utilise les valeurs de Cpi correspondant à ($h/d\le 0.25$) de la figure 5.14 de RNVA 2013

a) Cas de surpression intérieure :

Lorsque le portail face au vent ouvert et autres ouvertures fermées ; dans ce cas l'aire va s'engouffrer vert l'intérieure et ne peut pas ressortir par les fenêtres.

 $\Rightarrow \mu p = \frac{0}{5 \times 5} \Rightarrow \mu p = 0$; dans ce cas on ne peut pas définir la valeur de Cpi dans la figure II.10.

Seconde possibilité :

Si le portail face au vent ouvert et deux fenêtres parallèle au vent ouvertes et le restes fermées :

$$\Rightarrow \mu p = \frac{(2 \times 4) \times 2}{(5 \times 5) + (2 \times 4) \times 2} \qquad \Rightarrow \mu p = 0.39;$$

D'après la figure II.10 \Rightarrow Cpi= +0.25 (cas la plus défavorable pour la surpression intérieure)

b) Cas de dépression intérieure :

Lorsque toutes les ouvertures sont totalement ouvertes ; l'air rentre à l'intérieure par le portail face au vent et ressort par les fenêtres et le deuxième portail sous le vent.

$$\Rightarrow \mu p = \frac{[(2 \times 4) \times 8] \times 2 + (5 \times 5)}{(5 \times 5) \times 2 + [(2 \times 4) \times 8] \times 2} \Rightarrow \mu p = 0.859 ;$$

D'après la figure II.10
$$\Rightarrow Cpi = -0.26 ;$$

Seconde possibilité :

Si le portail face au vent fermé et les autres ouvertures ouvertes :

$$\implies \mu p = \frac{[(2 \times 4) \times 8] \times 2 + (5 \times 5)}{[(2 \times 4) \times 8] \times 2 + (5 \times 5)} \implies \mu p = 1;$$

D'après la figure II.10 \Rightarrow Cpi= -0.30 (cas la plus défavorable pour la dépression intérieure).

II.4.2.2. Cas de vent perpendiculaire au long pan (sens V2) :

Dans ce cas le vent perpendiculaire au long pan le rapport $h/d=13.65/27.5=0.49 \implies$ le rapport (h/d) comprise entre (h/d=0.25) et (h/d=1) on utilise l'interpolation linéaire pour déterminer les valeurs de Cpi selon la Note de figure 5.14 de RNVA 2013.

a) Cas de surpression intérieure :

Lorsque les fenêtres face au vent ouvertes et autres ouvertures fermées ; dans ce cas l'aire va s'engouffrer vert l'intérieure et ne peut pas ressortir par les fenêtres.

 $\Rightarrow \mu p = \frac{0}{(5 \times 5) \times 2 + [(2 \times 4) \times 8]} \Rightarrow \mu p = 0 \text{ ; on ne peut pas définir la valeur de Cpi dans la figure II.10.}$ Seconde possibilité :

Si sept (07) fenêtres face au vent ouvertes et un seul portail parallèle au vent ouvert :

 $\Longrightarrow \mu p = \frac{(5 \times 5)}{(5 \times 5) + [(2 \times 4) \times 7]} \implies \mu p = 0.308 ;$

D'après la figure II.10 \implies Cpi= +0.35 (cas la plus défavorable pour la surpression intérieure)

b) Cas de dépression intérieure :

Lorsque toutes les ouvertures sont totalement ouvertes ; l'air rentre à l'intérieure par les fenêtres face au vent et ressort par les fenêtres sous le vent et les deux portails parallèle au vent.

 $\Longrightarrow \mu p = \frac{[(2\times4)\times8] + (5\times5)\times2}{(5\times5)\times2 + [(2\times4)\times8]\times2} \implies \mu p = 0.64 ;$

Avec une interpolation linéaire on utilise la formule suivant :

$$f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} \times (x - x_0)$$

 μp est comprise entre 0.6 et 0.7 ; \Rightarrow Cpi comprise entre -0.1 et -0.065

$$\Rightarrow \text{Cpe}=-0.65 + \frac{(-0.1)-(-0.065)}{0.7-0.6} \times (0.64 - 0.6) \Rightarrow \text{Cpe}=-0.664$$

Seconde possibilité :

Si les fenêtres face au vent fermé et les autres ouvertures ouvertes :

$$\implies \mu p = \frac{[(2 \times 4) \times 8] + (5 \times 5) \times 2}{[(2 \times 4) \times 8] + (5 \times 5) \times 2} \implies \mu p = 1;$$

 μ p est comprise entre 0.90 ; 0.95 et 1 ; \Rightarrow Cpi comprise entre -0.3 et -0.5

$$\Rightarrow \text{Cpe}=-0.3 + \frac{(-0.5)-(-0.3)}{1-0.9} \times (1 - 0.95) \Rightarrow \text{Cpe}=-0.4$$

(-0.4 le Cas la plus défavorable pour la dépression intérieure).

Coefficients de pression	Le vent perpendiculaire au	Le vent perpendiculaire au
intérieure Cpi	pignon (Sens V1)	long pan (Sens V2)
Cas de surpression	+0.25	+0.35
Cas de dépression	-0.30	-0.40

Tableau II.12 : les valeurs de coefficient de pression intérieure les plus défavorable.

II.4.3 calcul de la pression aérodynamique

La pression aérodynamique $W(z_j)$ agissant sur une paroi est obtenue à l'aide de la formule suivant :

- Si une face de la paroi est intérieure à la construction, l'autre extérieure :

 $W(z_j) = q_p (z_e) [\times [C_{pe-}C_{pi}] [N/m^2]$ (RNVA2013 Chap 2, formule 2.6)

II.4.3.1 Vent perpendiculaire au pignon (sens V1) :

<u>1^{ér} cas : surpression intérieure Cpi=+0.25</u>

a) Parois verticales

ZONE	q _p (z _e)	Cpe	Cpi	$W(z_j) [N/m^2]$
А	682.875	-1	0.25	-853.59
В	682.875	-0.8	0.25	-717.01
С	682.875	-0.5	0.25	-512.15
D	682.875	+0.8	0.25	375.58
Е	682.875	-0.3	0.25	-375.58

Tableau II.13 : valeurs de la pression aérodynamique sur les parois verticales cas de la surpression.

Figure II.12 : la répartition de la pression aérodynamique sur les parois verticales, cas de la surpression.

b) Toiture

ZONE	$q_p(z_e)$	C_{pe}	C_{pi}	W(z _j) [N/m ²]
F	714.375	-1.544	0.25	-1281.58
G	714.375	-1.3	0.25	-1107.28
Н	714.375	-0.681	0.25	-665.08
Ι	714.375	-0.581	0.25	-593.64

Tableau II.14 : valeurs de la pression aérodynamique sur la toiture, cas de la surpression.

Figure II.13 : la répartition de la pression aérodynamique sur la toiture, cas de la surpression.

2^{éme} cas : dépression intérieure Cpi=-0.30

a) parois verticales :

ZONE	$q_p(z_e)$	Cpe	Cpi	W(z _j) $[N/m^2]$
А	682.875	-1	-0.3	-478.01
В	682.875	-0.8	-0.3	-341.43
С	682.875	-0.5	-0.3	-136.57
D	682.875	+0.8	-0.3	751.16
E	682.875	-0.3	-0.3	0

Tableau II.15 : valeurs de la pression aérodynamique sur les parois verticales cas de la dépression.

Université de Bejaia/Génie civil/CM/2015-2016.

Figure II.14 : la répartition de la pression aérodynamique sur les parois verticales, cas de la dépression.

b) toiture :

ZONE	$q_p(z_e)$	C _{pe}	C _{pi}	W(zj) $[N/m^2]$
F	714.375	-1.544	-0.3	-888.68
G	714.375	-1.3	-0.3	-714.375
Н	714.375	-0.681	-0.3	-272.17
Ι	714.375	-0.581	-0.3	-200.73

Tableau II.16 : valeurs de la pression aérodynamique sur la toiture cas de la dépression.

Figure II.15 : la répartition de la pression aérodynamique sur la toiture, cas de la dépression.

Université de Bejaia/Génie civil/CM/2015-2016.

II.4.3.2. Vent perpendiculaire au long pan :

<u>1^{ér} cas : surpression intérieure Cpi=+0.35</u>

a) Parois verticales

ZONE	$q_p(z_e)$	Cpe	C _{pi}	W(zj) $[N/m^2]$
А	682.875	-1	0.35	-921.881
В	682.875	-0.8	0.35	-785.306
С	682.875	-0.5	0.35	-580.443
D	682.875	+0.8	0.35	+307.293
Е	682.875	-0.3	0.35	-443.868

Tableau II.17 : valeurs de la pression aérodynamique sur les parois verticales cas de la surpression.

Figure II.16 : la répartition de la pression aérodynamique sur les parois verticales, cas de la surpression.

b) Toiture

ZONE	$q_p(z_e)$	Cpe	Cpi	$W(z_j) [N/m^2]$
F	714.375	-1.552	+0.35	-1358.741
G	714.375	-1.126	+0.35	-1054.417
Н	714.375	-0.544	+0.35	-638.651
Ι	714.375	-0.563	+0.35	-652.224
J	714.375	+0.144	+0.35	-147.161

Tableau II.18 : valeurs de la pression aérodynamique sur la toiture, cas de la surpression.

Figure II.17 : la répartition de la pression aérodynamique sur la toiture, cas de la surpression.

2^{éme} cas : dépression intérieure Cpi=-0.40

a) parois verticales :

ZONE	$q_p(z_e)$	Cpe	Cpi	W(zj) $[N/m^2]$
А	682.875	-1	-0.4	-409.724
В	682.875	-0.8	-0.4	-273.15
С	682.875	-0.5	-0.4	-68.287
D	682.875	+0.8	-0.4	819.45
E	682.875	-0.3	-0.4	68.287

Tableau II.19 : valeurs de la pression aérodynamique sur les parois verticales cas de la dépression.

Université de Bejaia/Génie civil/CM/2015-2016.

Figure II.18 : la répartition de la pression aérodynamique sur les parois verticales, cas de la dépression.

b) toiture :

ZONE	q _p (z _e)	C_{pe}	Cpi	$W(z_j) [N/m^2]$
F	714.375	-1.552	-0.4	-822.96
G	714.375	-1.126	-0.4	-518.636
Н	714.375	-0.544	-0.4	-102.87
Ι	714.375	-0.563	-0.4	-116.443
J	714.375	+0.144	-0.4	388.62

Tableau II.20 : valeurs de la pression aérodynamique sur la toiture cas de la dépression.

Figure II.19 : la répartition de la pression aérodynamique sur la toiture, cas de la dépression.

I.4.3.3. Évaluation des cas les plus défavorables

Nous pouvons récapituler sur le tableau ci-dessous les valeurs maximales des pressions aérodynamiques les plus défavorables avec leur Cpi, correspondant pour le cas du vent sur **pignon** :

ZONE	$q_p(z_e)$	C_{pe}	C _{pi}	W(z _j) $[N/m^2]$
A	682.875	-1	0.25	-853.59
В	682.875	-0.8	0.25	-717.01
С	682.875	-0.5	0.25	-512.15
D	682.875	+0.8	-0.3	751.16
E	682.875	-0.3	0.25	-375.58
F	714.375	-1.544	0.25	-1281.58
G	714.375	-1.3	0.25	-1107.28
Н	714.375	-0.681	0.25	-665.08
Ι	714.375	-0.581	0.25	-593.64

Tableau II.21 : récapitulation des valeurs de la pression maximale pour deux cas de surpression et dépression pour
la direction du vent sur le pignon.

Université de Bejaia/Génie civil/CM/2015-2016.

Plus que nous pouvons résumer sur le tableau un autre ci-dessous les valeurs maximales des pressions aérodynamiques les plus défavorables avec leur Cpi, correspondant pour le cas du vent sur **long pan** :

ZONE	$q_p(z_e)$	C _{pe}	C _{pi}	W(zj) $[N/m^2]$
А	682.875	-1	0.35	-921.881
В	682.875	-0.8	0.35	-785.306
С	682.875	-0.5	0.35	-580.443
D	682.875	+0.8	-0.4	819.450
Е	682.875	-0.3	0.35	-443.868
F	714.375	-1.552	0.35	-1358.741
G	714.375	-1.126	0.35	-1054.417
Н	714.375	-0.544	0.35	-638.651
Ι	714.375	-0.563	0.35	-652.224
J	714.375	0.1448	0.35	388.620

Tableau II.22 : récapitulation des valeurs de la pression maximale pour deux cas de surpression et dépression pourla direction du vent sur long pan.

II.5. ACTION D'ENSEMBLE :

La force exercée par le vent Fw agissant sur une construction ou un élément de construction peut être déterminée par la sommation vectorielle des forces Fw,e ; Fw,i et Ffr respectivement données par :

-	Forces extérieures :	$F_{w,e} = Cd \times \Sigma We \times A_{réf}$
	I of cos chicorreal co i	

- Forces intérieures : $F_{w,i} = \sum Wi \times A_{réf}$
- Force de frottement : $F_{fr} = C_{fr} \times q_p(ze) \times A_{fr}$

0ù :

- We est la pression extérieure exercée sur la surface élémentaire de la hauteur Ze donnée par l'expression ;

We=
$$q_p(z_e) \times Cpe$$

- Wi est la pression intérieure exercée sur la surface élémentaire de la hauteur Zi donnée par l'expression ;

Wi=
$$q_p(z_i) \times Cpi$$

- Aréf : est l'aire de référence de la surface élémentaire ;
- C_{fr}: est le coefficient de frottement ;
- Afr: est l'aire de la surface extérieure parallèle au vent ;
- Ze ; Zi respectivement les hauteurs de référence des pressions extérieures. Et intérieures ;

(Selon le RNVA 2013, Chapitre 2, Article 2.6.2).

•

II.5.1. cas de direction du vent vers le pignon (V1):

II.5.1.1. détermination de la force extérieure F_{w,e} :

 $F_{w,e} = Cd \times \sum We \times A_{réf}$; Cd=1; Avec $We=q_p(z_e) \times Cpe$;

Calcul de la pression extérieure We :

ZONE	$q_p(z_e)$	Сре	We [KN/m ²]
	$[N/m^2]$		
D	682.875	+0.8	+0.546
E	682.875	-0.3	-0.204
F	714.375	-1.544	-1.103
G	714.375	-1.3	-0.928
Н	714.375	-0.681	-0.486
Ι	714.375	-0.581	-0.415

Tableau II.23 : les résultants de calcul de pression extérieure We, correspondant à chaque zone.

• Calcul de la force extérieure F_{w,e}:

Elément	ZONE	Cd	We [KN	I/m²]	A _{réf} [m ²]	Composantes horizontales de	Composantes verticales de
						Fw,e[[KN]	Fw,e [KN]
Parois .V	D	1	+0.546		352.68	+192.56	0
Parois .V	E	1	-0.2	04	352.68	-71.94	0
Toiture	F	1	-1.1	-1.103		0	-20.55
Toiture	G	1	-0.92	28	18.905	0	-17.54
Toiture	Н	1	-0.48	86	150.15	0	-72.97
Toiture	Ι	1	-0.4	15	637.312	0	-264.48
				F _{w,e} (résultante)	400.40	
					[KN]	+120.62	-375.54

Tableau II.24 : les résultants de calcul de force extérieure Fwe, correspondant à chaque zone.

•

II.5.1.2. détermination de la force intérieure Fw,i:

 $F_{w,i} = \sum Wi \times A_{ref}$; ; Avec $Wi = q_p(z_i) \times Cpi$;

• Calcul de la pression intérieure Wi :

ZONE	q _p (z _e) [N/m ²]	Срі	Wi [KN/m ²]
D	682.875	-0.3	-0.204
E	682.875	0.25	+0.170
F	714.375	0.25	+0.178
G	714.375	0.25	+0.178
Н	714.375	0.25	+0.178
Ι	714.375	0.25	+0.178

Tableau II.25 : les résultants de calcul de pression intérieure Wi, correspondant à chaque zone.

Elément	ZONE	Wi [KN/m ²]		Aréf [m ²]	Composantes horizontales de Fwe[[KN]	Composantes verticales de Fwe [KN]
Parois .V	D	-0.	204	352.68	-71.94	0
Parois .V	Е	+0.	170	352.68	+59.95	0
Toiture	F	+0.	178	18.632	0	+3.316
Toiture	G	+0.	178	18.905	0	+3.365
Toiture	Н	+0.	178	150.15	0	+26.72
Toiture	Ι	+0.	178	637.312	0	+113.44
			Fw,i(r [ésultante) [KN]	-11.99	+146.841

Calcul de force intérieure F_{w,i}:

Tableau II.26 : les résultants de calcul de force intérieure Fwi, correspondant à chaque zone.

II.5.1.3. détermination de la force de frottement :

Les effets de frottement du vent sur la surface peuvent être **négligés.** Lorsque l'aire totale de toutes les surfaces parallèles au vent (ou faiblement inclinées par rapport à la direction du vent) est inférieure ou égale à 4 fois l'aire totales de toutes les surfaces extérieure perpendiculaires au vent (au sous le vent). (Selon RNVA 2013, Chapitre 2, Article 3.6.3).

✤ Dans ce cas la direction du vent elle est perpendiculaire au pignon :

Calcul des surfaces parallèles au vent :

Les parois verticales de long pan = [(12*60)*2] = 1440m². La toiture qui est faiblement inclinée par rapport de la direction du vent : = $[(\frac{1.65}{\sin 6.842})*2*60]$ = (13.85*2*60) = 1662 m².

 \Rightarrow Total des surfaces parallèle au vent = 1440+1662 = 3102 m².

Calcul des surfaces perpendiculaire au vent (et sous le vent):

Les surfaces des deux pignons :

 $= [(12*27.5) + (1.65*13.75)]*2 = 705.375 m^{2}.$

♦ Vérification de la condition (article 2.6.3 RNVA2013) :

L'aire total des surfaces parallèle au vent ≤4×(l'aire totale des surfaces perpendiculaire au vent)

3102 m²≤4*705.375=2821.5 m² !!! N'est pas vérifier.

\Rightarrow Donc on ne doit pas négligé l'effet de frottement cas de vent perpendiculaire au pignon

 $F_{fr} = C_{fr} \times q_p(ze) \times A_{fr};$

Cfr : coefficient de frottement donné par le tableau 2.8 de RNVA 2013 ;

Dans notre cas, nous avons une couverture en toiture dont les ondulations sont perpendiculaires à la direction du vent et un bardage de parois verticales dont les ondulations sont aussi perpendiculaires à la direction du vent.

 $Donc: C_{fr(toiture)} = C_{fr(parois verticales)} = 0.04;$

<u>Pour la toiture</u>: Ze=13.65m \Rightarrow q_p(13.65)=714.375 N/m²; A_{f r}= [($\frac{1.65}{\sin 6.842}$)*2*60]= 1662 m²; F_{fr(toiture)} = 0.04 × 714.375 × 1662 = 47491.65 N \Rightarrow F_{fr(toiture)} = 47.491 KN.

<u>Pour une seul paroi verticale :</u> Ze=12m ⇒ $q_p(12)$ = 682.875 N/m²; A_{fr} = 12*60= 720m²; F_{fr(toiture)} = 0.04 × 682.875 × 720 = 19666.8 N⇒ F_{fr(paroi verticale)} = **19.666 KN**.

La force de frottement total :

 $F_{fr} = F_{fr(toiture)} + [2 \times F_{fr(paroi verticale)}] = 47.491 + (2*19.666) \implies F_{fr} = 86.823 \text{ KN.}$

Figure II.20 : les forces de frottements sur la toiture et les parois verticales cas de vent sur le pignon (sens V1).

♦ Calcul de Fw:

La force résultante Fw agissant sur une construction, égale à la sommation vectorielle des forces Fw,e ; Fw,i et Ffr respectivement données par :

- Forces extérieures : $F_{w,e} = Cd \times \sum We \times A_{ref}$
- Forces intérieures : $F_{w,i} = \sum Wi \times A_{réf}$
- Force de frottement : $F_{fr} = C_{fr} \times q_p(ze) \times A_{fr}$

Force	Composantes horizontales [KN]	Composantes verticales [KN]
Forces extérieure (F _{w,e})	+120.62	-375.54
Forces intérieure (F _{w,i})	-11.99	+146.841
Force de frottement (F _{fr})	+86.823	0
La force résultante (Fw)	+195.453	-228.699

Tableau II.27 : les résultants de calcul de la force aérodynamique résultante Fw, cas de vent sur le pignon (sens V1).

II.5.2. cas de direction du vent vers long pan (V2) :

II.5.2.1. détermination de la force extérieure Fw,e:

 $F_{w,e} = Cd \times \sum We \times A_{réf}$; Cd=1; Avec $We=q_p(z_e) \times Cpe$;

· Calcul de la pression extérieure We :

ZONE	$q_p(z_e)$	Сре	We [KN/m ²]
	$[N/m^2]$		
D	682.875	+0.8	+0.546
E	682.875	-0.3	-0.204
F	714.375	-1.552	-1.1087
G	714.375	-1.126	-0.804
Н	714.375	-0.544	-0.388
Ι	714.375	-0.563	-0.402
j	714.375	0.1448	+0.103

Tableau II.28 : les résultants de calcul de pression extérieure We, correspondant à chaque zone cas la
direction de vent sur le long pan (sens V2).

Université de Bejaia/Génie civil/CM/2015-2016.

•

•

٠

Elément	ZONE	Cd	We [KN/	′m²]	$A_{réf}[m^2]$	Composantes	Composantes
			Γ,	-		horizontales de	verticales de
						Fw,e[[KN]	Fw,e [KN]
Parois .V	D	1	+0.546		720	+393.12	0
Parois .V	Е	1	-0.204	1	720	-146.88	0
Toiture	F	1	-1.108	-1.1087		0	-167.537
Toiture	G	1	-0.804	1	126.535	0	-101.734
Toiture	Н	1	-0.388	-0.388		0	-256.545
Toiture	Ι	1	-0.402	2	661.2	0	-265.802
Toiture	j	1	+0.103	3	163.8	0	+16.874
				Fw,e(résultante)		
				[[KN]	+246.24	-774.744

Calcul de la force extérieure F_{w,e}:

Tableau II.29 : les résultants de calcul de force extérieure Fwe, correspondant à chaque zone cas la directionde vent sur le long pan (sens V2).

II.5.2.2. détermination de la force intérieure Fw,i:

 $F_{w,i} = \sum Wi \times A_{réf}$; ; Avec $Wi = q_p(z_i) \times Cpi$;

Calcul de la pression intérieure Wi :

ZONE	$q_p(z_e)$	Срі	Wi [KN/m ²]
	$[N/m^2]$		
D	682.875	-0.4	-0.273
E	682.875	0.35	+0.239
F	714.375	0.35	+0.250
G	714.375	0.35	+0.250
Н	714.375	0.35	+0.250
Ι	714.375	0.35	+0.250
J	714.375	0.35	+0.250

Tableau II.30 : les résultants de calcul de pression intérieure Wi, correspondant à chaque zone cas la
direction de vent sur le long pan (sens V2).

Calcul de force intérieure F_{w,i}:

Elément	ZONE	Wi [KN/m ²]	Aréf [m ²]	Composantes horizontales de	Composantes verticales de
				F _{w,e} [[KN]	F _{w,e} [KN]
Parois .V	D	-0.273	720	-196.56	0
Parois .V	Е	+0.239	720	+172.08	0
Toiture	F	+0.250	18.632	0	+3.658
Toiture	G	+0.250	126.535	0	+31.633
Toiture	Н	+0.250	661.2	0	+165.3
Toiture	Ι	+0.250	661.2	0	+165.3
Toiture	J	+0.250	163.8	0	+40.95
		F _{w,i} (résultante)		
			[KN]	-24.48	+406.841

Tableau II.31 : les résultants de calcul de force intérieure Fwi, correspondant à chaque zone cas la directionde vent sur le long pan (sens V2).

II.5.2.3. détermination de la force de frottement :

Les effets de frottement du vent sur la surface peuvent être **négligés.** Lorsque l'aire totale de toutes les surfaces parallèles au vent (ou faiblement inclinées par rapport à la direction du vent) est inférieure ou égale à 4 fois l'aire totales de toutes les surfaces extérieure perpendiculaires au vent (au sous le vent). (Selon RNVA 2013, Chapitre 2, Article 3.6.3).

✤ Dans ce cas la direction du vent elle est perpendiculaire au long pan :

Calcul des surfaces parallèles au vent :

Les surfaces des deux pignons :

 $= [(12*27.5) + (1.65*13.75)]*2 = 705.375 m^{2}.$ La toiture qui est faiblement inclinée par rapport de la direction du vent : $= [(\frac{1.65}{\sin 6.842})*2*60] = (13.85*2*60) = 1662 m^{2}.$

 \Rightarrow Total des surfaces parallèle au vent = 705.375+1662 = 2367.375 m².

<u>Calcul des surfaces perpendiculaire au vent (et sous le vent):</u>

Les surfaces des deux longs pans :

 $= [(12*60)]*2 = 1440 \text{ m}^2.$

♦ Vérification de la condition (article 2.6.3 RNVA2013) :
 L'aire total des surfaces parallèle au vent ≤4×(l'aire totale des surfaces perpendiculaire au vent)

2367.375 m²≤4*1440=5760 m² C'est vérifier.

⇒ Donc on doit négliger l'effet de frottement cas de vent perpendiculaire au long pan.

Université de Bejaia/Génie civil/CM/2015-2016.

♦ <u>Calcul de Fw:</u>

La force résultante Fw agissant sur une construction, égale à la sommation vectorielle des forces Fw,e ; Fw,i et Ffr respectivement données par :

- Forces extérieures : $F_{w,e} = Cd \times \sum We \times A_{ref}$
- Forces intérieures : $F_{w,i} = \sum Wi \times A_{réf}$
- Force de frottement : $F_{fr} = C_{fr} \times q_p(ze) \times A_{fr}$

Force	Composantes horizontales [KN]	Composantes verticales [KN]
Forces extérieure (F _{w,e})	+246.24	-774.744
Forces intérieure (F _{w,i})	-24.48	+406.841
Force de frottement (F _{fr})	0	0
La force résultante (Fw)	+221.76	-367.903

Tableau II.32 : les résultants de calcul de la force aérodynamique résultante **Fw**, cas la direction de vent sur le
long pan (sens V2).

II.6. ÉTUDE A LA NEIGE :

II.6.1. But :

Le but principal de cette étude est de définir les valeurs représentatives de la charge statique de la neige sur toute la surface située au-dessous du sol et soumise à l'accumulation de la neige notamment sur la toiture.

II.6.2. Domaine d'application :

Le présent règlement s'applique à l'ensemble des constructions en Algérie situées à une altitude inférieure ou égale à 2000m. (Selon RNVA 2013 partie I, Article 2.2)

II.6.3. La charge de la neige sur le sol (Sk) :

La charge caractéristique de neige sur le sol S_K par unité de surface est fonction de la localisation géographique et de l'altitude du lieu considéré.

Dans notre cas :

Université de Bejaia/Génie civil/CM/2015-2016.

- Le projet est implanté à la commune D'Akbou de la wilaya de Bejaia qui est classé en **zone A** selon la classification de RNVA2013.
- L'altitude du projet est d'environ **300m.**

Donc : S_K est donnée par la formule suivante : (RNVA2013).

$$S_k = \frac{0.07*H+15}{100}$$
 [KN/m²].

Avec :

H : altitude du site par rapport au niveau de la mer : H = 300m

✓ Application numérique : $S_k = \frac{(0.07*300)+15}{100} = 0.36 \text{KN/m}^2$

II.6.4. Coefficient de forme de la toiture :

Il est fonction de la forme de la toiture.

Dans notre cas le hangar a une toiture à deux versants avec une pente α = 6.84°;

D'où
$$0 \le \alpha = 6.84^\circ \le 30^\circ$$

On adopte pour le coefficient
$$\mu_1 = 0.8$$

(Selon le tableau 2 et la figure 7, RNVA2013).

 (α) angle du versant par rapport à l'horizontale (en°) 	$0 \le \alpha \le 30^{\circ}$	$30^\circ \le \alpha \le 60^\circ$	α ≤ 60°
Coefficient μ_1	0.8	$0.8.(\frac{60-\alpha}{30})$	0.0

Tableau II.33 : coefficient de forme – toiture à deux versants.

II.6.5. Calcul des charges de la neige sur la toiture :

La charge caractéristique de la neige **S** par unité de surface en projection horizontale de la toiture soumise à l'accumulation de la neige s'obtient par la formule suivante :

$$\mathbf{S} = \boldsymbol{\mu} . \mathbf{S}_{\mathbf{K}} \qquad [\mathrm{KN}/\mathrm{m}^2]$$

✓ Application numérique :

 $S = 0.8 \times 0.36 = 0.288 \text{ KN/m}^2$

Figure II.21 : représentation des charges statique de neige sur la toiture et sur le sol.

Université de Bejaia/Génie civil/CM/2015-2016.

CHAPITRE III : Pré-dimensionnement des éléments

PRE-DIMENSIONNEMENT DES ELEMENTS

III .1 Dimensionnement des panneaux de couverture et de bardage :

III .1.1.Panneau sandwich :

Le panneau sandwich d'enveloppe de bâtiment, est un produit composite, fabriqué industriellement en continu, comportant un parement extérieur métallique, une âme isolante et un parement intérieur métallique solidarisés par adhérence à l'âme isolante. Ces composants travaillent ensemble et ne constituent ainsi qu'un seul élément autoportant présentant différents niveaux de résistance mécanique, de réaction et de résistance au feu, d'isolation thermique et acoustique, d'étanchéité à l'air, à l'eau et à la vapeur d'eau et d'esthétique architecturale.

III .1.2. Panneaux couverture :

Pour choisi le panneau couverture convient à notre structure, on doit savoir la charge du vent maximale sollicité la toiture, et nombre d'appuis de séquelle le panneau de couverture sera appuyé ainsi que l'épaisseur de la couverture.

Dans notre cas, la charge maximale du vent est égale à **w=-1358.741N/m²**.

Suivant une fiche technique **(Annexe5)** on va choisi l'épaisseur de panneau couverture pour déterminer leur entraxe maximal et le poids propre m^2 :

Université de Bejaia/Génie civil/CM/2015-2016

III .1.2.1. Détermination de poids propre de la couverture :

D'après ce tableau ci-dessous on fait choisit un panneau de couverture de 30mm d'épaisseur ce qui donne un poids de **12.5kg/m**² (voir fiche technique Annexe5).

CADACTE		Epaisseurs nominales de l'âme (mm)										
CANACIE	30	40	50	60	80	100	120					
	Epaisseur parement extérieur (mm)			0,50	- 0,63 - (0,75						
	Epaisseur parement intérieur (mm)	0,50 - 0,63										
	Largeur utile	1000 mm										
DIMENSIONNELLES	Largeur hors tout			1	080 mn	n						
	Longueur maximale hors tout	16000 mm										
	Débord en extrémité		50) -100 - 1	50 - 200) - 300 m	ım					
PONDERALES (kg/m ²)	Ex. en épaisseurs 0,63 et 0,63 mm	(12,5)	12,9	13,3	13,7	14,5	15,3	16,1				

Tableau III .1: le poids propre e panneau correspondante à chaque épaisseur.

III .1.2.2. Détermination de la portée maximale :

Dans notre cas la charge du vent maximale sur la toiture **w= -135.8741 daN/m**²(dépression)

On suppose que le panneau de couverture soit repose sur plusieurs appuis (pannes), à l'aide de tableau ci-dessus on déterminera la portée maximale entre les pannes :

2 APPUIS										3 APF	PUIS					
	Epaisseurs nominales de l'âme							PORTÉE	ÉE Epaisseurs nominales de l'âme							
	120	100	80	60	50	40	30	(m)	30	40	50	60	80	100	120	
PRESSION						330	270	2.00								PRESSION
DEPRESSION						240	240	2,00								DEPRESSION
PRESSION					280	260	210	2.25								PRESSION
DEPRESSION					220	220	220	2,25								DEPRESSION
PRESSION			290	290	230	200	150	2.50	240	275						PRESSION
DEPRESSION			220	190	190	190	190	2,50	190	190						DEPRESSION
PRESSION			260	260	215	170	140	2.75	195	225	260					PRESSION
DEPRESSION			205	170	170	170	170	2,75	170	170	170					DEPRESSION
PRESSION	220	220	220	220	185	140	115	2.00	165	190	225	250	250			PRESSION
DEPRESSION	190	190	190	155	155	155	155	3,00	155	155	155	155	190			DEPRESSION
PRESSION	195	195	195	195	155	120	100	2.25	140	165	190	220	220	220	220	PRESSION
DEPRESSION	175	175	175	140	140	140	140	3,25	140	140	140	140	175	175	175	DEPRESSION
PRESSION	170	170	170	170	130	100	75	2.50	120	140	165	200	200	200	200	PRESSION
DEPRESSION	160	160	160	130	130	130	130	3,50	130	130	130	130	160	160	160	DEPRESSION
PRESSION	150	150	150	150	110	85	70		105	125	145	180	180	180	180	PRESSION
DEPRESSION	150	150	150	115	115	115	115	3,75	115	115	115	115	150	150	150	DEPRESSION
PRESSION	130	130	130	130	95	70	60	4.00	90	110	125	160	160	160	160	PRESSION
DEPRESSION	140	140	140	105	105	105	105	4,00	105	105	105	105	140	140	140	DEPRESSION

Tableau III.2: les charges maximales admissibles en daN/m^2 en fonction des portées.

D'après le tableau :

 \Rightarrow On prend l'entraxe entre les pannes **e=1.5m**.

III .1.3. Panneaux bardage :

Figure III .2: détail de panneau sandwich (bardage).

III .1.3.1. Détermination de poids propre de bardage :

D'après ce tableau ci-dessous on fait choisit un panneau de bardage de 30mm d'épaisseur ce qui donne un poids de 12.5kg/m².

САРАСТЕ	Epaisseurs nominales de l'âme (mm)												
CARACTER	30	40	50	60	80	100	120						
	Epaisseur parement extérieur (mm) 0,50 - 0,63 - 0,75												
DIMENSIONNELLES	Epaisseur parement intérieur (mm)	0,50 - 0,63											
	Largeur utile 1000 mm												
	Largeur hors tout 1080 mm												
	Longueur maximale hors tout 16000 mm												
	Débord en extrémité	50 - 100 - 200 - 300 mm											
PONDERALES (kg/m ²)	Ex. en épaisseurs 0,63 et 0,63 mm	12,5	12,9	13,3	13,7	14,5	15,3	16,1					

Tableau III .3: le poids propre e panneau correspondante à chaque épaisseur.

III .1.3.2. Détermination de la portée maximale pour le bardage:

Dans notre cas la charge du vent maximale sur les parois verticales **w** =92.188 daN/m² (une dépression).

On suppose que le panneau de bardage soit repose sur plusieurs appuis (lisses), à l'aide de tableau ci-dessous de l'Annexe5 on déterminera la portée maximale entre les lisses :

	2 APPUIS							3 APPUIS								
	Epaisseurs nominales de l'âme							PORTÉE								
8	120	100	80	60	50	40	30	(m)	30	40	50	60	80	100	120	
PRESSION		о — з		8 N	141	119	101	2.62	149						-	PRESSION
DEPRESSION		6 6		156	142	128	96	3,00	109	132	148				1	DEPRESSION
PRESSION				142	123	103	84		130	150	160					PRESSION
DEPRESSION		0 0	151	139	124	109	84	3,20	97	119	133	148			1	DEPRESSION
PRESSION			145	127	109	90	71		115	132	153	160				PRESSION
DEPRESSION	158	158	133	124	109	94	74	3,40	86	107	120	132	127			DEPRESSION
PRESSION	148	148	131	114	97	79	60		102	117	137	157	160			PRESSION
DEPRESSION	135	135	120	111	96	81	66	3,60	78	97	108	119	121	123	123	DEPRESSION
PRESSION	134	134	119	103	87	70	52	3,80	91	104	123	142	160	160	160	PRESSION
DEPRESSION	131	131	109	99	85	71	59		72	88	98	108	115	122	122	DEPRESSION

Tableau III.4: Charges maximales admissibles en daN/m2 en fonction des portées d'utilisation

w =92.188 daN/m² Cette valeur elle est vérifiée pour une charge utile 109 daN/m² ce qui correspondant à entraxe maximal de **300cm** avec une épaisseur de 30mm ; cas de panneau repose sur plusieurs appuis.

 \Rightarrow On prend l'entraxe entre les lisses **e=1.2m**.

III.2 Calcul des pannes :

Les pannes sont des poutres destinées à supporter la couverture et de transmettre les charges et surcharges s'appliquant sur cette dernière à la traverse ou bien à la ferme. Elles sont disposées parallèlement à la ligne de faitage, et elles sont calculées en flexion déviée, sous l'effet des charges permanentes, d'exploitations et climatiques.

Elles sont réalisées soit en profilés formés à chaud en **(I)**, ou bien en **(U)**, soit en profilés formés à froid en **(Z)**, **(U)**, **(\Sigma)** ou en treillis pour les portées supérieures à **6m**.

Dans notre structure nous utiliserons des formé à chaud en (I).

On étudie la panne la plus sollicitée qui est la panne intermédiaire de portée **L=6m**, incliné d'un angle $\alpha = 6.84^{\circ}$ et dans l'entraxe « e » égale à **1.50m**.

Figure III.3 : Dispositions des pannes sur la toiture avec l'entraxe e.

III.2.1. Détermination des sollicitations :

III.2.1.1. Evaluation des charges et surcharges :

- **a)** Les charges permanentes (G) :
 - Poids propre de la couverture (panneaux sandwichs)......12.5Kg/m².
 - Poids propre d'accessoire d'attache.....1.5Kg/m².
 - Poids propre de la panne (estimé).....12Kg/ml.

G = (P couverture + P accessoire) * e + P panne

e : espacement entre les pannes (e= 1.5m) G = (12.5 + 1.5) * 1.5+ (12) = 33 Kg/ml G = 0.33 KN/ml.

b) Surcharges d'entretien (P) :

Dans le cas des toitures inaccessible on considéré uniquement dans le calcul une charge d'entretien qui est égale au poids d'un ouvrier et de son assistant et qui est équivalente à Deux charges concentrées de 100Kg chacune située à (1/3) et (2/3) de la portée de la panne. Afin de vérifier la flèche sous les charges (charges permanentes) et les surcharges (charges d'exploitations), on cherche la charge uniformément répartie équivalente (Peq) qui nous donne le même moment trouvé par les deux charges concentrées.

La charge uniformément répartie (Peq) due à la surcharge d'entretien est obtenue en égalisant le moment maximal au moment maximal du aux charges ponctuelles (P).

Figure III.4 : Schéma statique des surcharges d'entretien sur les pannes.

$$M_{\text{max}} = \frac{P'l}{3} = \frac{Pl^2}{8} \Longrightarrow P = \frac{8 \times P'}{3 \times l} = \frac{8 \times 100}{3 \times 6} = 44,44 \text{Kg} / \text{ml} \Rightarrow \text{Peq=0,444KN/ml}.$$

c) Surcharges climatiques :

c01) Surcharge du vent (W):

La sollicitation extrême est dans le cas du vent sur long pan avec surpression intérieure **Cpi = +0.35** zone (F) :

 $W = -1.358 \text{ KN}/\text{m}^2$;

La charge linéaire du vent est égal à :

W = -1.358 × 1.5 = 2.037 KN/ml

W = -2.037 KN/ml

Figure III.5 : Charge du vent sur les pannes.

co2) Surcharge de la neige (S) :

La surcharge de la neige est en fonction de l'implantation du site de construction (région, altitude) et de la forme de la toiture (inclinaison, possibilité d'accumulation).

S : charge de la neige.

Sur la toiture : $S = 0.288 \text{ KN}/\text{m}^2$

La charge linéaire de la neige sur la toiture est égal à :

Université de Bejaia/Génie civil/CM/2015-2016

 $S = 0.288 \times 1.5 \Rightarrow S = 0.432 \text{ KN/ml.}$

Figure III.6 : Charge de la neige sur les pannes

III.2.1.2. Les charges et surcharges appliquées :

G = 0.33 KN/ml. Q = 0.444 KN/ml. W = -2.037 KN/ml. S = 0.432 KN/ml.

Décomposition des charges :

Suivant l'axe Z-Z :	Suivant l'axe Y-Y :
$G_{ZZ} = G \cos \alpha = 0.327 \text{ KN/ml.}$	$G_{YY} = G \sin \alpha = 0.039 \text{ KN/ml.}$
$Q_{ZZ} = Q \cos \alpha = 0.440 \text{KN/ml}.$	$Q_{YY} = Q \sin \alpha = 0.052 \text{ KN/ml.}$
$W_{ZZ} = W = -2.037 \text{ KN/ml.}$	$W_{YY} = 0 \text{ KN/ml.}$
$S_{ZZ} = S \cos \alpha = 0.428 \text{ KN/ml.}$	$S_{YY} = S \sin \alpha = 0.051 \text{ KN/ml.}$

III.2.1.3. Les combinaisons d'actions :

a) L'état limite ultime (ELU) :

 $\begin{array}{l} \underline{1\acute{er}\ cas: le\ vent\ agit\ seul}} \\ \mathbf{q_{uz}} = & \mathsf{Gz} + 1.5 \mathsf{Wz} = 0.327 + 1.5^* (-2.037) = -2.728 \ \mathsf{KN/ml}. \\ \mathbf{q_{uy}} = & 1.35 \mathsf{Gy} + 1.5 \mathsf{Wy} = 1.35^* 0.039 + 0 = 0.052 \mathsf{KN/ml}. \end{array}$

 $\begin{array}{l} \underline{2\acute{eme}\ cas: la\ neige\ agit\ seul}} \\ \mathbf{q_{uz}} = 1.35\ \mathrm{Gz} + 1.5\ \mathrm{Sz} = 1.35^{*}0.327 + 1.5^{*}0.428 = 1.083 \mathrm{KN/ml}. \\ \mathbf{q_{uy}} = 1.35\ \mathrm{Gy} + 1.5\ \mathrm{Sy} = 1.35^{*}0.039 + 1.5^{*}0.051 = 0.129 \mathrm{KN/ml}. \end{array}$
<u> 3éme cas : la surcharge d'entretien</u>

q_{uz} =1.35 Gz+1.5 Qz = 1.35*0.372+1.5*0.440= 1.101KN/ml. **q**_{uy} =1.35 Gy+1.5 Qy = 1.35*0.039+1.5*0.052= 0.130 KN/ml.

On remarque que la 1^{ére} combinaison est la plus défavorable et le risque de déversement de la semelle inferieure doit être vérifié pour cette combinaison ou le vent agit seul.

Selon les deux axes y et z, les charges maximales à l'**ELU** revenant à la panne la plus sollicitée en tenant compte de la continuité :

 $\mathbf{q}_{uz} = 1.25 \times (-2.728) = -3.41 \text{ KN/ml.}$ $\mathbf{q}_{uy} = 1.25 \times (0.130) = 0.162 \text{ KN/ml.}$

b) L'état limite de service (ELS):

On considérera dans ce cas juste les combinaisons les plus défavorables :

 q_{sz} =Gz+ Wz = 0.327+ (-2.037)= -1.71 KN/ml.

q_{sy} =Gy+ Qy =0.039+0.052= 0.091 KN/ml.

Selon les deux axes Y et Z les charges maximales à l'**ELS** revenant à la panne la plus sollicitée en tenant compte de la continuité :

 $q_{sz} = 1.25^{*}(-1.71) = -2.137 \text{ KN/ml.}$ $q_{sy} = 1.25^{*}0.091 = 0.113 \text{ KN/ml.}$

III.2.2. Pré-dimensionnement :

Les pannes sont sollicitées à flexion déviées (flexion bi axiale).

Elles doivent satisfaire les deux conditions suivantes :

- ✓ Condition de la flèche (l'ELS).
- ✓ Condition de la résistance (l'ELU).

Généralement, on fait le pré-dimensionnement des pannes par l'utilisation de la condition de flèche, puis on fait la vérification de la condition de résistance.

Vérification à l'ELS :

La flèche à l'état limite de service se fait avec les charges et surcharges de service (non pondérée) : $f \leq f_{adm}$.

> Pour une poutre sur deux appuis uniformément chargée (axe Z-Z) :

$$fz \leq \frac{l}{200} \ avec \ fz = \frac{5 \times q_{sz} \times l^4}{384 \ E \ I_y}; \ et \ \frac{l}{200} = \frac{600}{200} = 3cm.$$
$$\implies I_y \geq \frac{5 \times q_{sz} \times l^4}{384 \times E \times 3} \implies I_y \geq \frac{5 \times 2.137 \times 10^{-2} \times 600^4}{384 \times 21000 \times 3} \implies I_y \geq 572.41 \ \text{cm}^4$$

Ce qui correspondant à un IPE160 avec $I_y = 869 \text{ cm}^4$; $I_z = 68.3 \text{ cm}^4$ et leur poids propre P=15.8Kg/m.

On recalcule la condition de la flèche avec poids réel :

Le poids propre réel G devient :

 $G = (P_{couverture} + A_{ccessoire}) * e + P_{panne}$

G = (12.5+1.5) * 1.5 +15.8 = 36.8Kg/ml

G = 0.368 KN/ml

 $G_{zz} = 0.368 * \cos 6.84^{\circ} = 0.365 \text{ KN/ml}$ $G_{yy} = 0.368 * \sin 6.84^{\circ} = 0.043 \text{ KN/ml}$

La combinaison les plus défavorables devinent :

A L'ELU:

 $\mathbf{q}_{uz} = (Gz+1.5Wz)*1.25 = [0.365+1.5*(-2.037)]*1.25 = -3.363 \text{ KN/ml}.$ $\mathbf{q}_{uy} = (1.35 \text{ Gy}+1.5 \text{ Qy})*1.25 = [1.35*0.043+1.5*0.052]*1.25 = 0.170 \text{ KN/ml}.$

A L'ELS:

 $\mathbf{q}_{sz} = (Gz + Wz)^{*}125 = [0.365 + (-2.037)]^{*}1.25 = -2.09 \text{ KN/ml}.$ $\mathbf{q}_{sy} = (Gy + Qy)^{*}125 = [0.043 + 0.052]^{*}1.25 = 0.118 \text{ KN/ml}.$

III.2.3 Dimensionnement des pannes :

III.2.3.1 Condition de la flèche :

a) Vérification de la flèche suivant l'axe Z-Z :

 $fz \le f_{adm} = \frac{l}{200} \ avec \ fz = \frac{5 \times q_{SZ} \times l^4}{384 \ E \ l_y}; \ et \ \frac{l}{200} = \frac{600}{200} = 3cm.$ $\implies fz = \frac{5 \times 2.09 \times 10^{-2} \times 600^4}{384 \times 21000 \times 869} \implies fz = 1.93 \text{cm} \implies fz = 1.93 \text{cm} \le \text{fadm} = 3\text{cm}.$

La condition de la flèche suivant l'axe zz elle est vérifiée.

b) Vérification de la flèche suivant l'axe Y-Y :

$$fy \le f_{adm} = \frac{l}{200} \ avec \ fy = \frac{5 \times q_{sy} \times l^4}{384 \ E \ I_z}; \ et \ \frac{l}{200} = \frac{600}{200} = 3cm.$$
$$\implies fy = \frac{5 \times 0.118 \times 10^{-2} \times 600^4}{384 \times 21000 \times 68.3} \implies fy = 1.38cm \implies fy = 1.38cm \le fadm = 3cm.$$

La condition de la flèche suivant l'axe yy elle est vérifiée.

La flèche est vérifiée sur les deux axes alors on adopte un IPE 160.

Profilé	h (mm)	b (mm)	t _w (mm)	t _f (mm)	r (mm)	d (mm)	P (Kg/m)
	160	82	5.0	7.4	9.0	127.2	15.8
IPE 160	A (cm ₂)	I _y (cm ⁴)	iy (cm)	W_{ply} (cm ³)	I_z (cm ⁴)	i _z (cm)	W_{plz} (cm ³)
	20.1	869	6.58	124	68.3	1.84	26.1

Tableau III.5 : Caractéristiques de l'IPE 160.

III.2.3.2 Condition de la résistance (ELU) :

Dans la condition de résistance à l'ELU il faut faire les vérifications suivantes :

a) Vérification à la flexion déviée :

Détermination de la classe de profile :

• <u>Ame :</u>

d/t_w = 127.2/5 =25.44 ≤ 72ε = 72 →Ame de classe 1 Et : ε = $\sqrt{235/\text{fy}} = \sqrt{235/235} = 1 \Rightarrow ε = 1$

• <u>Semelle</u>:

 $\frac{c}{t_f} = \frac{b/2}{t_f} = \frac{41}{7.4} = 5.54 \le 10\varepsilon = 10 \qquad \rightarrow \text{Semelle de classe 1}$

Donc la section est de classe 1 $\Rightarrow \Upsilon_{m0} = 1$

 \rightarrow Tan que la section elle est de classe 1 on utilise le calcul pastique pour la vérification vis-àvis à la flexion déviée (bi-axiale) comme la condition suivante :

$$\left(\frac{M_y}{M_{p\ell,y}}\right)^{\alpha} + \left(\frac{M_z}{M_{p\ell,z}}\right)^{\beta} \le 1.$$
 [EC03 5.4.8.11(11)]

Avec : $\alpha = 2$, pour les profile en I. $\beta = 5n \ge 1$, $n = \frac{N}{Nnl} = 0 \Rightarrow \beta = 1$ (puisque N=0 pas d'effort normal)

$$Et: M_{sd} = \frac{q \times l^2}{8} ;$$

Tel que :

Axe zz :

 $M_{y,sd} = \frac{q_z \times l^2}{8} = \frac{3.363 \times 6^2}{8} = 15.133 \text{ KN.m}$

Axe yy :

$$M_{z,sd} = \frac{q_y \times l^2}{8} = \frac{0.170 \times 6^2}{8} = 0.765 \text{ KN.m}$$

et : $M_{pl} = W_{pl} f_y / \Upsilon_{m0}$ et pour le Υ_{m0} on doit déterminer la classe du profile.

$$\begin{split} M_{\text{pl},\text{y,rd}} &= W_{\text{ply}} \text{ . fy } / \Upsilon_{\text{m0}} = 124 * 23.5 * 10^{-2} / 1 = 29.14 \text{ KN.m} \\ M_{\text{pl},\text{z,rd}} &= W_{\text{plz}} \text{ . fy } / \Upsilon_{\text{m0}} = 26.1 * 23.5 * 10^{-2} / 1 = 6.133 \text{ KN.m} \end{split}$$

Et la condition sera :

$$\left(\frac{M_y}{M_{ply}}\right)^{\alpha} + \left(\frac{M_z}{M_{plz}}\right)^{\beta} = \left(\frac{15.133}{29.14}\right)^2 + \left(\frac{0.765}{6.133}\right)^1 = 0.39 < 1$$

 \rightarrow Donc la flexion bi-axiale est vérifiée.

b) Vérification au cisaillement :

Pour cette vérification on utilise la condition suivante : [EC .3 p158]

 $V_{z,sd} \leq V_{pl,z.rd} \text{ et } V_{y,sd} \leq V_{pl,y.rd}$

•
$$V_{z,sd} = \frac{q_{uz} \times l}{2} = \frac{3.363 \times 6}{2} = 10.089 \text{ KN}$$

•
$$V_{\text{pl.z.rd}} = \frac{Avz \times fy}{\sqrt{3}.\Upsilon m0}$$

•
$$A_{vz} = A - 2bt_f + (t_w + 2r)t_f$$

= 20.1 - (2 × 8.2 × 0.74) + (0.5 + 2 × 0.9) × 0.7 = 9.574 cm².

•
$$V_{pl,z.rd} = \frac{9.574 \times 23.5}{\sqrt{3} \times 1} = 129.897 \text{ KN}$$

•
$$V_{y,sd} = \frac{q_{uy} \times l}{2} = \frac{0.17 \times 6}{2} = 0.51 \text{ KN}$$

•
$$V_{\text{pl.y.rd}} = \frac{Avy \times fy}{\sqrt{3}.Ym0}$$

•
$$A_{vy} = A - A_{vz} = 20.1 - 9.574 = 10.526 \text{ cm}^2$$
.

•
$$V_{pl,z.rd} = \frac{10.526 \times 23.5}{\sqrt{3} \times 1} = 142.81 \text{KN}$$

On voit bien que $V_{z,sd} < V_{pl,z.rd} \mbox{ et } V_{ysd} < V_{pl,y.rd}$

Donc la résistance de la panne au cisaillement est vérifiée.

c) Vérification au déversement :

Déversement = Flambement latéral + Rotation de la section transversale.

<u>Semelle supérieure :</u>

La semelle supérieure qui est comprimée sous l'action des charges verticales descendantes est susceptible de déverser. Vu quelle est fixée à la toiture il n'y a donc pas risque de déversement.

Semelle inférieure :

La semelle inférieure qui est comprimée sous l'action du vent de soulèvement est susceptible de déverser du moment qu'elle est libre tout au long de sa portée.

La formule de vérification est la suivante :

 $My,sd \le Mb,rd$;

♦ Calcul du moment ultime :

Qzsd= Gcos α -1.5V ↑ (soulèvement)

Qzsd=3.363KN/ml

 $M_{y,sd} = \frac{q_z \times l^2}{8} = \frac{3.363 \times 6^2}{8} = 15.133 \text{ KN.m}$

Calcul du moment résistant au déversement :

Mb,rd= X_{LT} . $\beta_w \frac{W_{pl,y} \times f_y}{\gamma_{M1}}$;

Avec :

 $\beta_{\rm w} = 1 \implies Section \ de \ classe \ 1$

 $\chi_{\rm lt}$: coefficient de réduction en fonction de $\overline{\lambda_{\rm LT}}$.

$$\overline{\lambda_{LT}} = \sqrt{\frac{\beta_{w} \times W_{pl,y} \times f_{y}}{M_{cr}}} = \left[\frac{\lambda_{LT}}{\lambda_{1}}\right] (\beta_{\omega})^{0},$$

 M_{cr} : est le moment critique de déversement.

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_w} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right) \right\} \text{EC3 Art F.1.2 (1)}$$

G = 0.4E; It = 3.6 cm⁴; Iw = 3960 cm⁶. Iz=68.3 cm⁴ (IPE600).

G: module d'élasticité transversale

E = 210000 MPA : module d'élasticité longitudinal

It : moment d'inertie de torsion

 $I_w\colon moment \; d'inertie \; de \; gauchissement$

 $I_z\colon moment$ d'inertie de flexion suivant l'axe de faible inertie

K et K_w : les facteurs de longueur effective avec :

K=1 appui simple (tableau F.1.2 EC03)

K_w=1 (pas d'encastrement aux extrémités) ; L = 6m

C₁, C₂, C₃ : facteurs dépendant des conditions de charge et d'encastrement (K=1).

 $C_1 = 1.132$ $C_2 = 0.459$ (tableau F.1.2 EC03)

L=longueur de maintien latéral =600 cm.

$Z_g = Z_a - Z_s$

 z_g : est la distance du point d'application de la charge au centre de torsion de la section (z_g est positif ssi la charge agit vers le centre de torsion et négatif dans le cas contraire) z_g : Coordonnée du point d'application de la charge

 z_s : Coordonnée du centre de cisaillement

 $\int Z_a = -8cm \quad \text{sous l'action du vent.}$

 $Z_s = 0$ section doublement symétrique EC3 figure F.1.1

$$Z_j = 0$$
 section doublement symétrique EC3 Art F.1.1

 $Z_g = Z_a - Z_s = \mp 8 cm.$

$$\Rightarrow M_{cr} = 1.132 \frac{\pi^2 \times 2.1 \times 10^4 \times 68.3}{(1 \times 600)^2} \left\{ \left[\left(\frac{1}{1}\right)^2 \cdot \frac{3960}{68.3} + \frac{(1 \times 600)^2 \times 0.4 \times 3.6_t}{\pi^2 \times 68.3} + (0.459 \times 8.)^2 \right]^{\frac{1}{2}} - 0.459 \times (-8) \right\}$$

Donc:
$$M_{cr} = 12.86$$
KN.m $\Rightarrow \lambda_{LT} = \sqrt{\frac{M_{ply}}{M_{CR}}} = \sqrt{\frac{2914}{1286}} = 1.50$

 $\overline{\lambda_{LT}} = 1.20 > 0.4$ donc il ya risque de diverseme**h**

Profilé laminé ; $\alpha = 0,21$; Courbe(a) $\rightarrow \chi_{LT}$

On tire χ_{LT} à partir du tableau 5.5.2 de L'EC03:

 $\overline{\lambda_{LT}} = 1,20 \longrightarrow \chi_{LT} = 0.3724$

 $M_{sdv} = 15.133 KN.m$

Mb,rd=
$$X_{\text{LT}}$$
. $\beta_w \frac{W_{pl,y} \times f_y}{\gamma_{M1}} = 0.3724 \times 1 \times \frac{124 \times 23.5}{1.1} \Rightarrow \text{Mb,rd} = 9.86 \text{KN.m}$

⇒ My,sd> Mb,rd; donc la stabilité au déversement des pannes avec IPE160 n'est pas vérifiée.

La solution :

 \rightarrow Dans ce cas, pour réduire le risque de déversement des pannes on adopte des liernes pour empêcher le déversement de la semelle inférieure des pannes, (voir figure III.7) :

Figure III.7 : Dispositions des liernes.

 \rightarrow Cette solution permettre de réduire la longueur de maintien latéral de déversement (L=600/2=300cm):

♦ Calcul de moment critique pour L=300cm :

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_w} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right) \right\} \text{EC3 Art F.1.2 (1)}$$
$$M_{cr} = 1.132 \frac{\pi^2 \times 2.1 \times 10^4 \times 68.3}{(1 \times 300)^2} \left\{ \left[\left(\frac{1}{1} \right)^2 \cdot \frac{3960}{68.3} + \frac{(1 \times 300)^2 \times 0.4 \times 3.6_t}{\pi^2 \times 68.3} + (0.459 \times 8.)^2 \right]^{\frac{1}{2}} - 0.459 \times (-8) \right\}$$

Mcr=31.296 KN.m.

$$\bar{\lambda}_{LT} = \sqrt{\frac{M_{ply}}{M_{CR}}} = \sqrt{\frac{2914}{31296}} = 0.964$$

 $\overline{\lambda_{LT}} = 0.964 \succ 0.4$ donc il ya risque de diverseme**n**

Profilé laminé ; $\alpha = 0,21$; Courbe(a) $\rightarrow \chi_{LT}$

On tire \mathcal{X}_{LT} à partir du tableau 5.5.2 de L'EC03:

 $\overline{\lambda_{LT}} = 0.964 \longrightarrow \chi_{LT} = 0.699$

M_{sdv} =15.133KN.m

 $Mb,rd=X_{LT}.\beta_{w}\frac{W_{pl,y} \times f_{y}}{\gamma_{M1}} = 0.699 \times 1 \times \frac{124 \times 23.5}{1.1} \Rightarrow Mb,rd=18.51KN.m$

 \rightarrow La stabilité au déversement des pannes est vérifiée avec IPE 160 en tenant des liernes à mi-travée.

III.3. calcul des liernes :

Dans notre cas les liernes sont des tirants qui fonctionnent en traction. Elles sont généralement formées de barres rondes ou de petites cornières. Leur rôle principal est d'éviter la déformation latérale des pannes. Compte tenu de la faible inertie transversale des pannes, l'effet de la charge Qy (perpendiculaire à l'âme de la panne) devient préjudiciable et conduit à des sections des pannes importantes, donc onéreuses.

III.3.1. Evaluation des charges :

 \rightarrow Pour notre cas la combinaison de la surcharge d'entretien avec le poids propre de la panne elle est plus défavorable que la neige avec la panne.

La combinaison les plus défavorables devinent :

A L'ELU:

 $q_{uy} = 1.35G_Y + 1.5Q_y$

G = [(12.5+1.5) × 1.5] + 15.8 = 36.8Kg/ml

G = 0.368 KN/ml

 $G_y = 0.368 \sin 6.84^\circ = 0.0438 \text{ KN/ml}$

 $q_{uy} = (1.35 \times 0.0438) + (1.5 \times 0.052) = 0.137 \text{ KN/ml}$

q_{uy} = 0.137 KN /ml.

Figure III.8 : Schème statique de la panne avec lierne.

III.3.2. Dimensionnement des liernes sous l'effort de la traction

Calcul de l'effort de traction sollicité chaque liernes :

Avec **R** la réaction d'une seule lierne :

R = 1.25. q_{uy}.
$$\frac{l}{2}$$
 = 1.25. 0.137× 3 = 0.513KN

 T_n : la somme des réactions à mi- travée :

$$T_n = (2n-1) \cdot \frac{R}{2}$$

n : est nombre de lierne

Calcul la réaction dans la lierne L8

$$T_8 = (2 \times 8 - 1) \cdot \frac{0.513}{2} = 3.847 \text{ KN}$$

L'effort max dans les bretelles :

2. T9.sin
$$\Theta$$
 = T₈ = 3.847KN

Avec :
$$\theta$$
 = arctg ($\frac{1.5}{6/2}$) = 26.56°

 $T_9 = \frac{3.847}{2sin26.56} = 4.30KN$

Calcul de la section de lierne

Le tronçon le plus sollicité est L9 : $A = \frac{Tmax}{fy} = \frac{4.30}{23.5} = 18.30 \text{mm}^2$ Et : $\emptyset = \sqrt{\frac{4 \times A}{\pi}} = \sqrt{\frac{4 \times \frac{16.68}{\pi}}{\pi}} = 4.82 \text{mm}$

Donc on adopta des ronds avec Ø = 10mm

III.4. Calcul de l'échantignolle :

L'échantignolle est un dispositif de fixation Permettent d'attacher les pannes aux fermes ou aux traverses des portiques.

Le principal effort de résistance de l'échantignolle est le moment de déversement dû au chargement (surtout sous l'action de soulèvement du vent).

Figure III.9 : les liernes de toiture

Figure III.10 : échantignolle.

L'excentrement t est limité par la condition suivante :

$$2 \times \left(\frac{b}{2}\right) \le t \le 3 \times \left(\frac{b}{2}\right)$$

Pour un IPE160 : b= 8.2cm ; h=16cm ; 4.1cm≤ t ≤12.3cm, On adopte t=9cm Sous la combinaison Gz+1.5Wz (soulèvement du vent) :

 $\mathbf{q}_{uz} = (Gz+1.5Wz) = [0.365+1.5*(-2.037)] = -2.690 \text{ KN/ml.}$ $\mathbf{q}_{uy} = (1.35Gy+1.5Wz) = (1.35*0.043+1.5*0) = 0.058 \text{KN/ml.}$

III.4.1. Calcul de réaction :

L'effort R revenant à l'échantignolle n'est rien que la réaction d'appui des pannes. On prendra l'effort maximal correspondant à l'échantignolle intermédiaire (et non l'échantignolle de rive).

 $R = \times q_{uz} \times l = (3.362) \times 6 \implies R = 20.172 \text{ KN}$

III.4.2 Calcul du moment de renversement :

L'effort **R** risque de provoquer le pliage de l'échantignolle. Pour prévenir ce risque, il faut vérifier que le moment de renversement M_r ne dépasse pas le moment de pliage M_{pliage} .

$$M_r \le M_{pliage}$$

$$Mr = (R \times t) + q_y \times \left(\frac{h}{2}\right) = (20.172 \times 9) + 0.058 \times \left(\frac{16}{2}\right) \Rightarrow Mr = 182.012KN.cm$$

M_{pliage} : est le moment résistant au pliage de l'échantignolle. Généralement les échantignolles sont des éléments formés à froid. La classe de la section est au moins de classe 3. Avec le calcul élastique on aura :

$$M_{\text{pliage}} = \frac{w_{ely \times fy}}{\gamma_{m0}} \ge M_{\text{r}};$$
$$w_{ely} \ge \frac{M_r \times \gamma_{m0}}{f_y} = \frac{227.515 \times 1}{23.5} = 7.74 \text{cm}^4$$

III.4.3. Epaisseur de l'échantignolle :

Pour une section rectangulaire : $W_{ely} = \left(\frac{b \times e^2}{6}\right)$;

 \rightarrow La largeur de l'échantignolle « b » est calculée après avoir dimensionné la traverse. On prend b=20cm

$$w_{ely} = \left(\frac{20 \times e^2}{6}\right) \Rightarrow e = \sqrt{\frac{w_{ely} \times 6}{20}} = \sqrt{\frac{7.74 \times 6}{20}} = 1.52 \text{cm}.$$

 \rightarrow On adopte une échantignolle de 16 mm d'épaisseur.

On voit bien que l'épaisseur de l'échantignolle elle est importante, dans la pratique est préférable d'utilisé une épaisseur mois que 16mm pour faciliter le pliage de la tôle de l'échantignolle à froid. La solution est de mettre un raidisseur pour renforcer l'échantignolle et diminuer leur épaisseur jusqu'à 10mm.

III.5. Lisses de bardages :

Les lisses sont des éléments en profilé laminé qui sont formées de poutrelles en U, ils sont disposés horizontalement, ils portent sur le poteaux de portique ou éventuellement sur des potelets intermédiaires, ils sont destinés à reprendre les efforts du vent sur les bardages et ils sont calculés pour pouvoir résister au poids de la couverture, leur poids propre et les surcharges climatiques.

III.5.1.Lisse de bardage de long pan

III.5.1.1.Evaluation des charges :

a) Charges permanentes :

Poids propre de bardage (panneaux sandwichs)	12.5Kg/m ² .
Poids propre d'accessoire d'attache	3Kg/m ² .
Poids propre de l'UPE (estimé)	14.5Kg/ml.

G = (P couverture + P accessoire) * e + P lisse

e : espacement entre les lisses (e= 1.2m) G = (12.5 + 3) * 1.2+ (14.5) = 33.1 Kg/ml

- G = 0.331 KN/m
- **b)** Charge due au vent maximale sur les parois verticales W (dépression interne) : $W = -81.94 \times 1.2 = -98.328 \text{ daN/ml}.$

Les lisses de long pan sont appuyées sur deux poteaux de 6m de portée, soumises à la flexion bi axiale

♦ L'état limite service (ELS) :

Sur l'axe z-z : $q_{sz} = 98.328^{*}10^{-2} = 0.983$ KN/ml. Sur l'axe y-y : $q_{sy} = 0.323^{*}10^{-2} = 0.331$ KN/ml

Figure III .11: la répartition des charges sur les lisses de long pan.

III.5.1.2. Condition de la flèche :

La vérification à l'état limite de service se fait avec les charges et surcharges de service (non pondérée) : $f \leq f a dm$.

Pour une poutre sur deux appuis uniformément chargée (axe Z-Z) :

$$fz \leq \frac{l}{200} \ avec \ fz = \frac{5 \times q_{SZ} \times l^4}{384 \ E \ I_y}; \ et \ \frac{l}{200} = \frac{600}{200} = 3cm.$$
$$\implies I_y \geq \frac{5 \times q_{SZ} \times l^4}{384 \times E \times 3} \implies I_y \geq \frac{5 \times 0.983 \times 10^{-2} \times 600^4}{384 \times 21000 \times 3} \implies I_y \geq 263.3 \ \text{cm}^4$$

D'après le tableau des profils des UPE on adopte UPE 120 avec I_y = 364cm⁴ Et leur poids propre /ml = 12.1da N

$$G = (12.5 + 3) * 1.2 + (12.1) = 30.7 \text{ Kg/ml}$$

 $q_{sv} = = 0.307 \text{ KN/ml}.$

Vérification de la condition de la flèche :

a) Vérification de la flèche suivant l'axe Z-Z :

$$fz = \frac{5 \times q_z \times l^4}{384 \ E \ l_y} = \frac{5 \times 0.983 \times 10^{-2} \times 600^4}{384 \times 21000 \times 364} = 2.17 \text{cm} \le \text{fadm} = \frac{l}{200} = \frac{600}{200} = 3 \text{cm}$$

b) Vérification de la flèche suivant l'axe Y-Y :

$$fy = \frac{5 \times qy \times l^4}{384 \ E \ I_z} = \frac{5 \times 0.307 \times 10^{-2} \times 600^4}{384 \times 21000 \times 55.5} = 4.44 \text{ cm} > \text{fad}m = \frac{l}{200} = \frac{600}{200} = 3 \text{ cm}$$

La condition de flèche n'est pas vérifier suivant /yy

On utilise les suspentes à mi- travée de la lisse pour réduire la flèche.

$$fy = \frac{5 \times qy \times l^4}{384 \ E \ I_z} = \frac{5 \times 0.307 \times 10^{-2} \times \left(\frac{600}{2}\right)^4}{384 \times 21000 \times 55.5} = 0.277 \text{ cm} \ll \text{fad}m = \frac{l}{200} = \frac{600/2}{200} = 1.5 \text{ cm}$$

La flèche elle est vérifiée suivant l'axe yy.

Figure III .12 : Schéma statique de la lisse avec suspente.

III.5.1.3. Condition de la résistance (ELU) :

Sur l'axe z-z : $q_{uz} = 1.5W = 1.5 \times 0.983 = 1.474$ KN/ml. Sur l'axe y-y : $q_{uy} = 1.35$ G = $1.35 \times 0.307 = 0.414$ KN/ml.

a) Vérification de la résistance (ELU) :

Sur l'axe z-z :

$$M_{y,sd} = \frac{q_{zxl}^{u}^{2}}{8} = \frac{1.474 \times 6^{2}}{8} = 6.633 \text{KN/m}$$

Université de Bejaia/Génie civil/CM/2015-2016

Sur l'axe y-y :

$$M_{z,sd} = \frac{q^{a}}{\frac{y \times \left(\frac{l}{2}\right)^2}{8}} = \frac{0.414 \times 3^2}{8} = 0.465 \text{ KN/m}$$

Et pour déterminer Υ_{M0} on doit déterminer la classe du profile.

b) Détermination de la classe des profilés : Ame : $\frac{d}{tw} = \frac{80}{5} = 16 \le 72\varepsilon = 72;$ \Rightarrow Ame de classe 1 Semelle : $\frac{c}{tf} = \frac{b/2}{tf} = \frac{30}{8} = 3.75 \le 10\varepsilon = 10$ \Rightarrow Semelle de classe 1

Avec $\varepsilon = \sqrt{235/\text{fy}} = \sqrt{235/235} = 1 \implies \varepsilon = 1$

Donc la section est de classe 1

 $\Rightarrow \Upsilon_{M0} = 1$

 $M_{pl.y.rd} = \frac{W_{ply.fy}}{\gamma_{m0}} = \frac{70.3 \times 23.5 \times 10^{-2}}{1} = 16.52 \text{KN.m}$ $W_{plz.fy} = \frac{25.3 \times 23.5 \times 10^{-2}}{1} = 0.45 \text{KN.m}$

 $M_{pl.z.rd} = \frac{Wplz.fy}{\gamma_{m0}} = \frac{25.3 \times 23.5 \times 10^{-2}}{1} = 5.945 \text{KN.m}$

Et la condition sera : $\left(\frac{M_y}{M_{pl,y}}\right)^{\alpha} + \left(\frac{M_z}{M_{pl,z}}\right)^{\beta}$;

$$(\frac{6.625}{16.52})^2 + (\frac{0.465}{5.945})^1 = 0.24 < 1$$

⇒ La flexion bi axiale est vérifié

c) Vérification au cisaillement :

Pour cette vérification on utilise la condition suivante[CCM97]

 $V_{z.sd} \leq V_{pl.rd}$

$$\begin{split} V_{z.sd} &= \frac{q_{z\,l}^u}{2} = \frac{1.474 \times 6}{2} = 4.422 \text{KN} \\ V_{pl.rd} &= A_V \cdot \frac{fy}{YM0 \cdot \sqrt{3}} \quad \text{et} \quad A_V = A - 2 \text{ b } t_f + (t_w + r \text{) } t_f = 15.4 - 2^*(6^*0.8) + (0.5 + 1.2)^*0.8 \\ &\Rightarrow A_V = 4.44 \text{cm}^2 \\ V_{pl.rd} &= 4.44^* \frac{23.5}{1 \cdot \sqrt{3}} = 60.24 \text{KN} \\ \text{D'où} : \\ V_{z.sd} &= 4.422 \text{KN} < V_{pl.rd} = 60.24 \text{KN} \\ \text{Donc la résistance des lisses (UPE120) au cisaillement est vérifiée.} \end{split}$$

d) Vérification au déversement :

La formule de vérification est la suivante :

 $My,sd \le Mb,rd$;

♦ Calcul du moment sollicité :

$$M_{y,sd} = \frac{q_{z\times l^2}^u}{8} = \frac{1.474 \times 6^2}{8} = 6.633 \text{KN/m}$$

♦ Calcul du moment résistant au déversement :

Mb,rd=
$$X_{LT}$$
. $\beta_w \frac{W_{pl,y} \times f_y}{\gamma_{M1}}$;

 $\beta_{\rm w} = 1 \implies Section \ de \ classe \ 1$

 $\chi_{\rm lt}$: coefficient de réduction en fonction de $\overline{\lambda_{\rm LT}}$.

$$\overline{\lambda_{LT}} = \sqrt{\frac{\beta_{w} \times W_{pl,y} \times f_{y}}{M_{cr}}} = \left[\frac{\lambda_{LT}}{\lambda_{1}}\right] (\beta_{\omega})^{0.5}$$

 M_{cr} : est le moment critique de déversement.

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_W} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right) \right\} \text{EC3 Art F.1.2 (1)}$$

G = 0.4E; It = 2.9 cm⁴; Iw = 1120 cm⁶. Iz=55.5cm⁴ (correspondent UPE160)

G: module d'élasticité transversale

E = 210000 MPA : module d'élasticité longitudinal

It : moment d'inertie de torsion

Iw: moment d'inertie de gauchissement

Iz : moment d'inertie de flexion suivant l'axe de faible inertie

 $K \mbox{ et } K_w$: les facteurs de longueur effective avec :

K=1 appui simple (tableau F.1.2 EC03)

K_w=1 (pas d'encastrement aux extrémités) ; L = 6m

C₁, C₂, C₃ : facteurs dépendant des conditions de charge et d'encastrement (K=1).

 $C_1 = 1.132$ $C_2 = 0.459$ (tableau F.1.2 EC03)

L=longueur de maintien latéral =600 cm.

 $Z_g = Z_a - Z_s$

 z_g : est la distance du point d'application de la charge au centre de torsion de la section (z_g est positif ssi la charge agit vers le centre de torsion et négatif dans le cas contraire)

 z_a : Coordonnée du point d'application de la charge

 z_s : Coordonnée du centre de cisaillement

Z_a = -6cm sous l'action du vent

 $Z_s = 0$

 $Z_{j} = 0$

 $Z_g = Z_a - Z_s = -6 \text{ cm}.$

⇒

$$M_{cr} = 1.132 \frac{\pi^2 \times 2.1 \times 10^4 \times 55.5}{(1 \times 600)^2} \left\{ \left[\left(\frac{1}{1}\right)^2 \cdot \frac{1120}{55.5} + \frac{(1 \times 600)^2 \times 0.4 \times .2.9_t}{\pi^2 \times 55.5} + (0.459 \times 6.)^2 \right]^{\frac{1}{2}} - 0.459 \times (-6) \right\}$$

Donc : M_{cr} = 11.15KN.m

$$\Rightarrow \quad \overline{\lambda}_{LT} = \sqrt{\frac{M_{ply}}{M_{CR}}} = \sqrt{\frac{1652}{1019}} = 1.20$$

 $\overline{\lambda_{LT}} = 1.20 \succ 0.4$ doncil ya risquede diversement

Profilé laminé ; $\alpha = 0,21$; Courbe(a) $\rightarrow \chi_{LT} \simeq 0.53$

On tire χ_{LT} à partir du tableau 5.5.2 de L'EC03:

 $M_{sdv} = 6.633 KN.m$

Mb,rd= X_{LT} . $\beta_w \frac{W_{pl,y} \times f_y}{\gamma_{M1}} = 0.53 \times 1 \times \frac{70.3 \times 23.5}{1.1} \Rightarrow$ Mb,rd=7.95 KN

⇒ My,sd =6.633KN.m < Mb,rd; donc la condition au déversement est vérifiée avec UPE120.

III.5.1.4. dimensionnement des suspentes :

Soit q_{vu} la charge verticale ultime (pondérée) due au poids propre/ml de l'UPE120 et du bardage, telle que :

 $q_{vu}=1.35* q_{sy}=1.35*[(12.5 + 3) * 1.2+ (12.1)]*10^{-2}=0.414$ KN/ml.

R est la réaction à mi- travée d'une seule suspente.

Soit Tn est la somme des réactions à mi- travée des suspentes.

Soit T_h l'effort interne normal de traction dans la suspente attachée à la haute de poteau (voir la figure III .14)

Figure III .13 : Schéma statique de la lisse avec suspente

Calcul de R :

$$R=R_{i}=1.25*q_{uy}*\left(\frac{l}{2}\right)=1.25*0.414*6/2=1.552KN$$

Calcul de T_n:

$$T_n = R_8 = (2n-1) \cdot \frac{R}{2} = (2 \times 8 - 1) \frac{1.552}{2} = 11.64 \text{KN}$$

Calcl de Th:

 $2T_h*\sin\theta=Tn$

Avec
$$\theta = \arctan(\frac{1.2}{6/2}) = 21.80^{\circ}$$

Figure III .14: les suspentes.

 $\Rightarrow T_{h} = Tn/2*\sin\theta$

= 11.64/2sin(21.80)=15.67KN

Calcul la section de la suspente :

L'effort maximum se trouve dans la bretelle :

 $T_{max}=T_h \le A^* fy / \gamma_{m0}$;

 $A \ge \frac{Tmax \times \gamma_{m0}}{f_V} = \frac{15.67 \times 1 \times 10^3}{235} = 66.68 \text{ mm}^2$

 $A = \frac{\pi \times \emptyset^2}{4} \Rightarrow \emptyset \ge \sqrt{\frac{4 \times 66.68}{\pi}} \Rightarrow \emptyset \ge 9.21 \text{mm}$

On optera donc pour une tige de \emptyset =10mm

dont A=78.5mm²

Les caractéristiques de l'UPE 120 :

G(kg)	h(cm)	b(cm)	tw(cm)	tf(cm)	r(cm)	A(cm ²)	d(cm)
12.1	12	6	0.5	0.8	1.2	15.4	8
Iy(cm ⁴)	Wely(cm ³)	Wply(cm ³)	Iz(cm ⁴)	Welz(cm ³)	Wplz(cm ³)	It(cm ⁴)	Iw(cm ⁶)
364	60.6	70.3	55.5	13.8	25.3	2.9	1200

Tableau III.6 : Caractéristiques de l'UPE 120.

III.5.2. dimensionnement des lisses de pignon

III.5.2.1. Evaluation des charges :

a) Charges permanentes :

Poids propre de bardage (panneaux sandwichs)	.12.5Kg/m ² .
Poids propre d'accessoire d'attache	3Kg/m².
Poids propre de lisse(estimé)	14.5Kg/ml.

Les lisses de pignon les plus sollicités sont appuyées sur un poteau et un potelet espace entre eux est de 7.62m, elles sont soumises à la flexion bi axiale(voir la figure III.16).

 $G = (P_{converture} + P_{accessoire}) * e + P_{lisse}$

e : espacement entre les lisses (e= 1.2m) G = (12.5 + 3) * 1.2+ (14.5) = 33.1 Kg/ml G = 0.331 KN/m

b) Charge due au vent maximal sur le pignon W :

 $W = -85.359 \times 1.2 = -102.43 \text{ daN/m}.$

♦ L'état limite ultime (ELU) :

Sur l'axe z-z : $q_{uz} = 1.5 * w = 1.5 \times 102.43 * 10^{-2} = -1.536 \text{ KN/ml}$. Sur l'axe y-y : $q_{uy} = 1.35 * \text{G} = 1.35 \times 33.1 * 10^{-2} = 0.446 \text{ KN/ml}$

♦ L'état limite service (ELS) :

Sur l'axe z-z : $q_{sz} = w = -102.43*10^{-2}=1.024$ KN/ml. Sur l'axe y-y : $q_{sy} = G = 32.30*10^{-2}=0.331$ KN/ml.

Figure III .15 : la répartition des charges sur les lisses de pignon.

Figure III.16 : Disposition des potelets et les lisses sur le pignon.

III.5.2.2. Condition de la flèche :

La vérification à l'état limite de service se fait avec les charges et surcharges de service (non pondérée) : $f \leq f a dm$.

Pour une poutre sur deux appuis uniformément chargée (axe Z-Z) :

$$fz \leq \frac{l}{200} \ avec \ fz = \frac{5 \times q_{sz} \times l^4}{384 \ E \ l_y}; \ et \ \frac{l}{200} = \frac{762}{200} = 3.81 cm.$$

$$\implies I_y \ge \frac{5 \times q_{SZ} \times l^4}{384 \times E \times 3} \implies I_y \ge \frac{5 \times 1.024 \times 10^{-2} \times 762^4}{384 \times 21000 \times 3.81} \implies I_y \ge 561.84 \text{ cm}^4$$

D'après le tableau des profils des UPE on adopte un UPE180 avec I_v = 1350cm4

et leur poids propre /ml = 19.7kg/ml alors :

G = (12.5 + 3) * 1.2 + (19.7) = 38.3 Kg/ml $q_{sy} = 0.383 \text{ KN/ml}.$ $q_{sz} = 1.024 \text{ KN/ml}.$ $q_{uy} = 1.35q_{sy} = 0.517 \text{ KN/ml}.$ $q_{uz} = 1.5^*q_{sz} = 1.536 \text{ KN/ml}.$

Vérification de la flèche pour l'UPE180 avec L=762cm :

a) Vérification de la flèche suivant l'axe Z-Z :

$$fz = \frac{5 \times q_z \times l^4}{384 \ E \ l_y} = \frac{5 \times 1.024 \times 10^{-2} \times 762^4}{384 \times 21000 \times 1350} = 1.58 \text{cm} \le \text{fadm} = \frac{l}{200} = \frac{762}{200} = 3.81 \text{cm}$$

La flèche selon l'axe zz elle est vérifiée.

b) Vérification de la flèche suivant l'axe Y-Y :

$$fy = \frac{5 \times qy \times l^4}{384 \ E \ I_z} = \frac{5 \times 0.383 \times 10^{-2} \times 762^4}{384 \times 21000 \times 144} = 5.56 \text{ cm} > \int adm = \frac{l}{200} = \frac{762}{200} = 3.81 \text{ cm}$$

La condition de flèche est non vérifiée suivant l'axe yy.

On utilise les suspentes à mi- travée de la lisse pour réduire la flèche.

 $fy = \frac{5 \times qy \times l^4}{384 \ E \ I_z} = \frac{5 \times 0.383 \times 10^{-2} \times \left(\frac{762}{2}\right)^4}{384 \times 21000 \times 144} = 0.347 \text{ cm} \ll \text{fad}m = \frac{l}{200} = \frac{762/2}{200} = 1.9 \text{ cm}$

II.5.2.3. Condition de la résistance (ELU) :

Sur l'axe z-z : $q_{uz} = 1.5 \times 102.43 = -153.64 \text{ daN/ml}$. Sur l'axe y-y : $q_{uy} = 1.35 \times G = 1.35 \times 38.3 = 51.70 \text{ daN/ml}$.

a) Vérification de la résistance (ELU) :

Sur l'axe z-z :

$$M_{y,sd} = \frac{q_{z \times l^2}^u}{8} = \frac{1.536 \times 7.62^2}{8} = 11.14 \text{KN/m}$$

Sur l'axe y-y :

$$M_{z,sd} = \frac{q_{y \times l}^{u}}{8} = \frac{0.517 \times 7.62^{2}}{8} = 3.75 \text{ KN/m}$$

Détermination de la classe des profilés :

Ame:
$$\frac{d}{tw} = \frac{135}{5} = 27 \le 72\varepsilon = 72;$$

 \Rightarrow Ame de classe 1
Semelle: $\frac{c}{tf} = \frac{b/2}{tf} = \frac{37.5}{12} = 3.125 \le 10\varepsilon = 10$
 \Rightarrow Semelle de classe 1

Avec
$$\varepsilon = \sqrt{235/\text{fy}} = \sqrt{235/235} = 1 \implies \varepsilon = 1$$

Donc la section est de classe 1

Le profilé est de classe1 donc Υ_{M0} =1.

$$M_{pl.y.rd} = \frac{W_{ply.fy}}{\gamma_{m0}} = \frac{173 \times 23.5 \times 10^{-2}}{1} = 40.655 \text{KN.m}$$

$$M_{pl.z.rd} = \frac{W_{plz.fy}}{\gamma_{m0}} = \frac{52.3 \times 23.5 \times 10^{-2}}{1} = 12.29 \text{KN.m}$$

$$\left(\frac{M_y}{M_{pl.y}}\right)^{\alpha} + \left(\frac{M_z}{M_{pl.z}}\right)^{\beta} \Longrightarrow \left(\frac{11.14}{40.65}\right)^2 + \left(\frac{3.75}{12.29}\right)^1 = 0.38 < 1$$

⇒ Condition de flexion bi axiale elle est vérifiée pour les lisses de pignon.

b) Vérification au cisaillement :

 $V_{z.sd} \leq V_{pl.rd}$

 $V_{z.sd} = \frac{q_{zl}^u}{2} = \frac{1.536 \times 7.62}{2} = 5.85 \text{KN}$ $V_{pl.rd} = A_V \cdot \frac{f_V}{\gamma_{M0} \cdot \sqrt{3}} \quad \text{et} \quad A_V = A - 2 \text{ b } t_f + (t_w + r) t_f = 25.1 - 2^* (7.5^* 1.2) + (0.55 + 1.2)^* 1.2$

 $\Rightarrow A_V = 5 cm^2$

 $V_{pl.rd} = 5* \frac{23.5}{1.\sqrt{3}} = 67.83$ KN D'où : $V_{z.sd} = 5.85$ KN < $V_{pl.rd} = 67.83$ KN

Donc la résistance des lisses (UPE180) au cisaillement est vérifiée.

c) Vérification au déversement :

La formule de vérification est la suivante : My,sd ≤ Mb,rd ;

♦ Calcul du moment sollicité :

 $M_{y,sd} = \frac{q_{zxl^2}^u}{8} = \frac{1.536 \times 7.62^2}{8} = 11.14 \text{KN/m}$

♦ Calcul du moment résistant au déversement :

Mb,rd= X_{LT} . $\beta_w \frac{W_{pl,y} \times f_y}{\gamma_{vu}}$; $\beta_{\rm w} = 1 \implies Section \ de \ classe 1$ $\chi_{\rm lt}$: coefficient de réduction en fonction de $\overline{\lambda_{\rm LT}}$. $\overline{\lambda_{LT}} = \sqrt{\frac{\beta_{w} \times W_{pl,y} \times f_{y}}{M_{\perp}}} = \left\lceil \frac{\lambda_{LT}}{\lambda} \right\rceil (\beta_{\omega})^{0.5}$ M_{cr} : est le moment critique de déversement. ♦ Calcul de moment critique : $M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_w} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right) \right\} \text{ EC3 Art F.1.2 (1)}$ Pour L=630cm de UPE180 avec : c1=1.132; E=210000Mpa; K=Kw=1; Iw=6810cm⁶; It=6.99cm⁴ Iz=144cm⁴; G=0.4*E; C2=0.459; Zg=-h/2=-9cm $M_{cr} = 1.132 \frac{\pi^2 \times 2.1 \times 10^4 \times 144}{(1 \times 630)^2} \left\{ \left[\left(\frac{1}{1}\right)^2 \cdot \frac{6810}{144} + \frac{(1 \times 630)^2 \times 0.4 \times 6.99_t}{\pi^2 \times 144} + \left(0.459 \times 9\right)^2 \right]^{\frac{1}{2}} - 0.459 \times (-9) \right\}$ → M_{cr}=28.24 KN.m $\bar{\lambda}_{LT} = \sqrt{\frac{M_{ply}}{M_{CR}}} = \sqrt{\frac{4065}{2824}} = 1.2$ Et Mply= $\frac{Wply.fy}{\gamma_{m0}} = \frac{173 \times 23.5}{1} = 40.65$ KN.m \rightarrow Profilé laminé ; $\alpha = 0,21$; \rightarrow Courbe(a) $\rightarrow \chi_{LT} = 0.53$

 $Mb,rd=X_{LT}.\beta_{w}\frac{W_{pl,y} \times f_{y}}{\gamma_{M1}} = 0.53 \times 1 \times \frac{173 \times 23.5}{1.1} \Rightarrow Mb,rd=19.58 \text{ KN}$

⇒ My,sd =11.14 KN.m < Mb,rd ; donc la stabilité au déversement est vérifiée avec UPE180.

➡ Toutes les conditions de la stabilité d'UPE180 elles sont vérifiées, alors on adopta l'UPE180 comme une lisse de pignon.

G(kg)	h(cm)	b(cm)	tw(cm)	tf(cm)	r(cm)	A(cm ²)	d(cm)
19.7	18	7.5	0.55	1.2	1.2	25.1	13.5
ly(cm ⁴)	Wely(cm ³)	Wply(cm ³)	Iz(cm ⁴)	Welz(cm ³)	Wplz(cm ³)	It(cm ⁴)	Iw(cm ⁶)
1350	150	173	144	28.6	52.3	6.99	6810

Les prospérités de l'UPE 180 :

Tableau III.7 : Caractéristiques de l'UPE 180.

III.5.2.4. dimensionnement des suspentes :

Soit q_{vu} la charge verticale ultime (pondérée) due au poids propre/ml de l'UPE180 et du bardage, telle que :

qvu=0.517KN/ml.

R est la réaction à mi- travée d'une seule suspente.

Soit Tn est la somme des réactions à mi- travée des suspentes.

Soit T_h l'effort interne normal de traction dans la suspente attachée à la haute de poteau (voir la figure III .18)

Figure III .17 : Schéma statique de la lisse avec suspente

Calcul de R :

 $R=R_{i}=1.25^{*}q_{uy}^{*}(\frac{l}{2})=1.25^{*}0.517^{*}7.62/2=2.46KN$

Calcul de T_n:

$$T_n = R_i = R_9 = (2n-1) \cdot \frac{R}{2} = (2 \times 9 - 1) \cdot \frac{2.46}{2} = 19.68 \text{KN}$$

Calcl de Th:

 $2T_h * \sin\theta = Tn$

Avec
$$\theta$$
 = arctg $(\frac{1.2}{6/2})$ = 21.80°

 \Rightarrow T_h = Tn/2*sin θ

= 19.68/2sin(21.80)=26.5KN

Calcul la section de la suspente :

L'effort maximum se trouve dans la bretelle :

$$T_{\max} = T_{h} \le A^{*} fy / \gamma_{m0} ;$$

$$A \ge \frac{T_{\max} \times \gamma_{m0}}{fy} = \frac{26.5 \times 1 \times 10^{3}}{235} = 112.75 \text{ mm}^{2}$$

$$A = \frac{\pi \times \emptyset^{2}}{4} \Rightarrow \emptyset \ge \sqrt{\frac{4 \times 112.75}{\pi}} \Rightarrow \emptyset \ge 11.98 \text{ mm}$$

On optera donc pour une tige de Ø**=14mm**

Figure III .18: les suspentes des lisses de pignon

dont A=153.86mm²

III.6. Les potelets :

Le potelet est un élément en profile laminé en I ou en H, qui est le rôle de supporter les lisse de bardage et leur poids permanente, est également destiné pour transmettre le vent longitudinal à la poutre au vent. En général le potelet n'est pas destiné à supporter des actions verticales transmises par le portique de rive (particulièrement la neige).

III.6.1. La condition de la flèche :

La condition de la flèche se fait sous vent normal W_n :

W = -853.59N/m² (la charge du vent (dépression) la plus défavorable lorsque le vent frappe **le pignon**)

 $W_n = W \times e$

Avec e=la largueur de la surface solliciter le potelet le plus élancé

e = 6.13m

 $W_n = 0.853 \times 6.13 \times 1.25 = 5.73$ KN/m (on tenant on compte la continuité)

Qw = 6.536 KN/m

Les potelets étant articulés en tête et pied. La flèche maximale à mi- travées vaut :

$$f = \frac{5 \times Wn \times H^4}{384 \times E \times I_y}$$
$$fadm = \frac{L}{200} = \frac{1365}{200} = 6.825 \text{ cm}$$

Avec :

H : et la hauteur maximal de potelet le plus le plus sollicité.

H = 13.65m

 $I_y \ge \frac{5 \times 6.536 \times 10^{-2} \times 1365^4}{384 \times 2.1 \times 10^4 \times 6.825} \Rightarrow I_y \ge 20613.86 \text{cm}^4$

 \Rightarrow D'après le tableau des profils on adopte un HEA320 avec $I_{\gamma} = 22930 \text{ cm}^4$

et le poids propre/ml =97.6.3Kg/ml

III.6.2. Evaluation des charges :

a) Les charges variables du vent :

 $Q_w = 6.536$ KN/ml

b) charge permanentes :

Poids de bardages	G1= 12.5daN/m ²
Poids de la lisse(UPE180)	G2=19.7×11=216.7daN/m
Poids de potelet(HEA320)	G3= 97.6daN/m

 $\begin{aligned} & G = (12.5 \times 6.13 \times 13.65) + (216.7 \times 6.13) + (13.65 \times 97.6) \\ & G = 3706.54 \\ & daN \Rightarrow G = 37.065 \\ & KN \end{aligned}$

III.6.3 Vérification de la stabilité de potelet :

III.6.3.1 Vérification de l'effort axial :

Les potelets sont sollicités à la flexion due vent et à compression due au poids des potelets, et de bardage et des lisses. Ils sont assujettis au portique par appuis glissants.

Allos les potelets sont comprimés et fléchis. On vérifie la formule suivante :

Si N_{sd} \leq min (0.25N_{pl,Rd}; 0.5 $\frac{Aw \times fy}{YM0}$) N_{sd} = 1.35G , N_{pl,Rd} = $\frac{A \times fy}{YM0}$ Aw = A - 2btf N_{sd} = 1.35 × 37.065 = 50.03KN N_{pl,Rd} = $\frac{124.4 \times 23.5}{1}$ = 2923.4KN \Rightarrow 0.25N_{pl,Rd} = 730.85KN $\frac{Aw \times fy}{YM0} = \frac{(A - 2btf) \times fy}{YM0} = \frac{(124.4 - 2 \times 30 \times 1.55) \times 23.5}{1} = 737.9KN$

$$\Rightarrow 0.5 \frac{Aw \times fy}{\gamma M0} = 368.95 \text{KN}$$

Donc :

$$N_{sd} = 50.03$$
KN < min (0.25 $N_{pl,Rd} = 730.85$ KN, 0.5 $\frac{Aw \times fy}{YM0} = 368.95$ KN)

 \Rightarrow Donc la condition est vérifiée.

III.6.3.2 Vérification de l'effort tranchant :

Pour cette vérification on utilise la condition suivante :

 $V_{sd,max} \leq Vplrd$

$$V_{sd,max} = V_{sdz} = \frac{q_{Zl}^u}{2} = \frac{1.5Qw \times L}{2} = \frac{1.5 \times 6.536 \times 13.65}{2}$$

Université de Bejaia/Génie civil/CM/2015-2016

$$\Rightarrow$$
 V_{sd,max} = 66.91KN

 $V_{pl,rd} = A_v \cdot \frac{fy}{YM0\sqrt{3}} = 41.13 \times \frac{23.5}{1.\sqrt{3}} = 558.04 \text{KN}$

$$\Rightarrow$$
 V_{sdz} = 66.91KN < Vplrd = 558.04KN

⇒ Donc la condition au cisaillement est vérifiée.

III.6.3.3 Vérification de la stabilité au flambement flexion :

Pour cette vérification on utilise la formule suivante :

$$\frac{N_{sd}}{\chi_{min}} + \frac{K_y \cdot M_{y.sd}}{W_{pl.y} \cdot \left(\frac{f_y}{\gamma_{MI}}\right)} + \frac{K_z \cdot M_{z.sd}}{W_{pl.z} \cdot \left(\frac{f_y}{\gamma_{MI}}\right)} \le 1$$

Avec

N_{y,sd}= 50.03KN M_{ysd} = $1.5 \cdot \frac{Qw \times l^2}{8} = 1.5 \cdot \frac{6.536 \times 13.65^2}{8} = 228.33$ KN.m

 $M_{zsd} = 0$

a) Calculons la longueur de flambement :

Autour de l'axe y-y (dans le plan de l'âme) : le potelet risque de flamber sur toute sa hauteur.

Donc la longueur de flambement $l_{Ky} = 13.65m$ Autour de l'axe faible inertie z-z (dans le plan perpendiculaire de l'âme), le potelet est empêché de flamber sur toute sa hauteur par les lisses de bardage. Donc la longueur de flambement $l_{Kz} = 1.2m$

Pour HEA320, les rayons de giration sont : i_y = 13.58cm ; i_z = 7.49cm

b) Calcule les élancements :

$$\begin{bmatrix}
\lambda_y = \frac{l_{ky}}{i_y} = \frac{1365}{13.58} = 100.51 \\
\lambda_z = \frac{l_{kz}}{i_z} = \frac{120}{7.49} = 16.02
\end{bmatrix}$$

c) Calcule les élancements critiques :

Acier S235

$$\varepsilon = \left(\frac{235}{fy}\right)^{0.5} = 1$$

Donc

 $\lambda_{cr} = 93.9\varepsilon = 93.9 \times 1 = 93.9$

d) Classe de la section :

Classe de la semelle : (comprimée)

$$\frac{c}{t_f} = \frac{b}{2t_f} \le 10\varepsilon \Rightarrow \frac{300}{2 \times 15.5} = 9.67 < 10 \times 1 \Rightarrow \text{Semelle de classe 1}$$

Classe de l'âme : (Flexion composée)

$$\alpha = \frac{1}{d} \left(\frac{d + d_c}{2} \right) \le 1$$

d_c = $\frac{Nsd}{tw \times fy} = \frac{50.03}{0.9 \times 23.5} = 2.36$ cm ; d=22.5cm

$$\alpha = \frac{1}{22.5} \left[\frac{22.5 + 2.63}{2} \right] = 0.558 < 1 \qquad \text{avec } \alpha > 0.5$$
Pour la section de classe 1 :

$$\frac{d}{tw} \le \frac{396 \varepsilon}{(13 \alpha - 1)}$$
$$\frac{d}{tw} = \frac{22.5}{0.9} = 25 \quad \text{et} \frac{396 \varepsilon}{(13 \ast \alpha - 1)} = \frac{396 \times 1}{(13 \times 0.558 - 1)} = 63.31$$

Donc :

 $\frac{d}{tw} \le \frac{396 \varepsilon}{(13 \alpha - 1)} \implies \text{Ame de classe 1}$ La section HEA320 est de classe 1.

e) Calcule les élancements réduits :

L'HEA320 est de classe 1 $\rightarrow \beta_w=1$

$$\overline{\lambda_y} = \frac{\lambda_y}{\lambda_{cr}} \times \sqrt{\beta_w} = \frac{100.51}{93.9} \times \sqrt{1} = 1.07 > 0.2 \quad \text{il y}$$

il y a un risque de flambement

$$\lambda_z = \frac{\lambda_z}{\lambda_{cr}} \times \sqrt{\beta_w} = \frac{16.02}{93.9} \times \sqrt{1} = 0.17 < 0.2$$
 il y a pas risque de flambement

f) Calcul le coefficient de réduction Xmin :

$$\chi_{\min} = \min(\chi_{y},\chi_{z})$$

Choix de la courbe de flambement d'après le tableau 5.5.3 Eurocode 3 :

Pour HEA320: h=310mm, b=300mm, t_f =15.5mm.

Donc: $\frac{h}{b} = \frac{310}{300} = 1.03 < 1.2$ et t_f = 15.5mm < 100mm

Axe de flambement	Courbe de flambement	Facteur de d'imperfection α
у-у	b	$\alpha_y = 0.34$
Z-Z	С	$\alpha_z = 0.49$

Tableau III.7 : Coefficient de flambement correspondant à la section HEA320

$$\chi_{y} = \frac{1}{\varphi_{y} + [\varphi_{y}^{2} - \overline{\lambda}_{y}^{2}]^{0.5}} \qquad \text{Avec} : \chi_{y} \le 1$$

$$\varphi_{y} = 0.5 [1 + \alpha_{y} (\overline{\lambda}_{y} - 0.2) + \overline{\lambda}_{y}^{2}]$$

$$\Phi_{y} = 0.5 [1 + 0.34 (1.07 - 0.2) + 1.07^{2}] = 1.22 \Rightarrow \chi_{y} = 0.55$$

$$\chi_{z} = \frac{1}{\varphi_{z} + [\varphi_{z}^{2} - \overline{\lambda}_{z}^{2}]^{0.5}} \qquad \text{Avec} : \chi_{z} \le 1$$

$$\varphi_{z} = 0.5 \times [1 + \alpha_{z} (\overline{\lambda}_{z} - 0.2) + \overline{\lambda}_{z}^{2}]$$

$$\Phi_{z} = 0.5 [1 + 0.49 (0.17 - 0.2) + 0.17^{2}] = 0.507 \Rightarrow \chi_{z} = 1.015$$

$$X_{\min} = \min (1.015; 0.55)$$

 $\texttt{Donc} \Rightarrow X_{min} = 0.55$

♦ Calcul de facture d'amplification KLT:

$$\begin{split} K_{LT} &= 1 - \frac{\mu_{LT} \times N}{X_Z \times A \times F_Y} \\ \mu_{LT} &= 0.15 \times \overline{\lambda}_Z \times \beta_{MLT} - 0.15 \quad mais \ \mu_{LT} \leq 0.9 \\ avec \beta_{MLT} &= 1.3 \\ \mu_{LT} &= (0.15^* 0.17^* 1.3) - 0.15 = -0.1168 \end{split}$$

$$K_{LT} = 1 - \frac{(-0.1168) \times 50.03}{0.55 \times 124.4 \times 23.5} = 1.0036$$
; avec Xz=0.55

♦ Vérification de la condition de flambement :

$$\frac{N_{sd}}{\chi_{min} \cdot \begin{pmatrix} A.f_{y} \\ \gamma_{MI} \end{pmatrix}} + \frac{K_{y}.M_{y.sd}}{W_{pl.y}.\begin{pmatrix} f_{y} \\ \gamma_{MI} \end{pmatrix}} + \frac{K_{z}.M_{z.sd}}{W_{pl.z}.\begin{pmatrix} f_{y} \\ \gamma_{MI} \end{pmatrix}} \leq 1$$

Avec M_{zsd}=0

$$M_{ysd} = 1.5. \frac{Qw \times l^2}{8} = 1.5. \frac{6.536 \times 13.65^2}{8} = 228.33 \text{KN.m} = 22833 \text{KN.cm}$$

 N_{ysd} =50.03KN

 $\frac{50.03}{0.55 \times (124.4 * 23.5 / 1.1)} + \frac{1.0036 \times 22833}{1628 \times (23.5 / 1.1)} = 0.034 + 0.65 = 0.684 < 1000$

⇒ La stabilité au flambement de potelet HEA320 est vérifiée.

III.6.3.4. Vérification au diversement sous Nysd et Mysd :

On doit vérifier cette condition :

$$\frac{Nsd}{X\min \times Nply} + \frac{K_{LT} \times M_{y.sd}}{X_{LT} \times Mply} \prec 1$$

a) Calculons l'élancement réduit λ_{LT} :

 $\beta_{\rm w} = 1 \implies Section \ de \ classe \ 1$

 $\chi_{\rm lt}$: coefficient de réduction en fonction de $\overline{\lambda_{\rm LT}}$.

$$\overline{\lambda_{LT}} = \sqrt{\frac{\beta_{w} \times W_{pl.y} \times f_{y}}{M_{cr}}} = \left[\frac{\lambda_{LT}}{\lambda_{1}}\right] (\beta_{\omega})^{0.5}$$

 M_{cr} : est le moment critique de déversement.

♦ Calcul de moment critique :

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_W} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right) \right\} \text{EC3 Art F.1.2(1)}$$

D'après les tableaux F.1.2 de l'EC03

Notre potelet considéré comme bi articulée à ses extrémités on a :

C1, C2, facteurs dépendant des conditions de charge et d'encastrement.

C1 = 0.972 C2 = 0.304

K et Kw : les facteurs de longueur effective avec : K=0.5 appui Kw = 0.5

 $Z_a = \frac{h}{2} = \frac{-310}{2} = -15.5$ cm sous le vent (-) puisque l'orientation de repert est vers la semelle comprimé $z_s = 0$ section doublement symétrique EC3 figure F.1.1

$$Z_G = Z_a - Z_s = -15.5 cm$$

$$Lt = 108 cm^4$$
 $G = 0.4.E$; $E=21000 KN/cm^2$

 $Iw = 1512000 cm^6 \ \ L = 13.65 m \ \ \ I_z = 6985 cm^4 \ \ I_t = 108 cm^4$

Donc

$$M_{cr} = \left(0.972 \frac{\pi^2 \times 2.1 \times 10^4 \times 6985}{(0.5 \times 1365)^2}\right) \left\{ \left[\left(\frac{0.5}{0.5}\right)^2 \cdot \frac{1512000}{6985} + \frac{(0.5 \times 1365)^2 \times 0.4 \times 108_t}{\pi^2 \times 6985} + (0.304 \times 15.5)^2 \right]^{\frac{1}{2}} + (-0.304) \times (-15.5)^{\frac{1}{2}} \right\} \right\}$$

$$M_{cr} = 837.53 \text{KN.m} \quad \text{avec} \quad M_{ply} = W_{ply} \times \frac{Fy}{\gamma_{mo}} = 1628 \times \frac{235 \times 10^{-3}}{1} = 382.58 \text{KN.m}$$
$$\Rightarrow \ \lambda_{\text{LT}} = \sqrt{\frac{Mply}{Mcr}} = \sqrt{\frac{382.58}{837.53}} = 0.675$$

 λ_{LT} = 0.675 > 0.4 donc il ya risque de diversemen

Profilé laminé ; $\alpha = 0.34$; Courbe(b) $\rightarrow \chi_{LT} = 0.79$

On tire χ_{LT} à partir du tableau 5.5.2 de L'EC03.

♦ Vérification de la condition de déversement :

$$\frac{Nsd}{X\min \times Nply} + \frac{K_{LT} \times M_{y.sd}}{X_{LT} \times Mply} \prec 1$$

⇒ La stabilité au déversement de potelet **HEA320** est vérifiée.

III.7. Conclusion

L'étude que nous avons effectuée nous a permis de déterminer le type des profilés des éléments secondaires qui sont capables de résister à leurs poids propres et à tous les efforts extrêmes de vent. Les profilés retenus après vérification pour différents éléments secondaires sont :

Les pannes : IPE160 des liernes ronds D=10mm

Les lisses de long pan : UPE120 avec des suspentes rond D=10mm

Les lisses de pignon UPE180. avec des suspentes rond D=14mm

Les potelets : HEA320.

CHAPITRE IV : Etude de chemin de roulement du pont roulant

ETUDE DE CHEMIN DE ROULEMENT DU PONT ROULANT

IV.1. Introduction

La manutention d'objets lourds dans un hall industriel nécessite souvent l'emploi d'engins spéciaux appelés engins de manutention ou de levage, parmi les plus courants on trouve les ponts roulants, qui ont des caractéristiques fixes fournies par le constructeur.

Les ponts roulants permettent la manutention de la charge dans tout l'espace de ces halls. Ils sont installés en hauteur et circulent sur des rails fixés sur des poutres de roulement, en encorbellement ou reposant sur des poteaux.

Ce chapitre consiste à représenter le calcul de chemin de roulement support un pont roulant d'une portée de 26.5m (distance entre axe des poutres de roulement) avec une capacité de levage 2 tonne.

Les chemins de roulement sont des poutres de 6m de travée qui s'appuient sur des consoles assemblées aux poteaux des portiques.

Le chemin de roulement : est la structure porteuse de l'engin de levage, constituée de deux poutres de roulement et ses supports, les deux poutres parallèles surmontées d'un rail spécial et sur lesquelles circule le pont roulant.

Poutres de roulement : est l'élément porteur longitudinal de la voie, sur lesquelles le pont déplace elles sont généralement prévues en profilés laminés à chaud I ou H, vois des PRS en cas de portée et charges importantes, les poutres de roulement sont des poutres simples ou continues, Leurs appuis sont constitués par corbeaux fixés sur les poteaux de la halle.

IV.2. Règlement utilisé :

Eurocode 1 partie 3 : Actions induites par les appareils de levage et les machines. Eurocode 3 partie 6 : Chemins de roulement. Eurocode 3 partie 9 : Fatigue.

IV.3. Caractéristique de pont roulant mono poutre posé:

Un pont mono poutre est utilisé pour une capacité de levage moins grande et pour une portée plus importante. C'est le type de construction le plus léger donc plus avantageux pour le bâtiment et les fondations, ce qui accorde pour notre cas.

Figure IV-1: Schéma 3D du pont roulant mono poutre posé.

Figure IV-2: Schéma 2D du pont roulant

IV.3.1. Caractéristique géométrique de pont roulant :

Université de Bejaia/Génie civil/CM/2015-2016

La poutre principale du pont roulant supporte un chariot et une charge maximale de 2 tonnes, les caractéristiques du pont roulant obtenue à partir d'une fiche technique (annexe 6).

Puissance	L(m)	emin(m)	b(m)	c(m)	a(m)
N(t)					
2	26.5	0.76	0.25	0.435	4

Tableau IV-1: les mesures de pont roulant.

IV.3.2. Caractéristique mécanique de pont roulant : à partir d'une fiche technique (anexe6).

ice(t)	e(m)	Vitesses (m/min)			Poid	ls(t)	
Puissar	Portée	le levage	ction	lation	Pont	Chariot	Total
N	L	Vitesse o	Dire	Trans	Qc1	Qc2	Qc1+ Qc2
2	26.5	10	30	40	6.215	0.34	6.325

 Tableau IV-2 : les charges et les vitesses caractérisé par le pont.

IV.4.Classification des actions :

Actions variable		
Verticale	Actions accidentelles	
 Poids propre (Q_c) Masse à lever (Q_h) 	 Force d'entrainement Marche en crabe Accélérations et décélérations du chariot (H_{T3}) 	 Forces de tamponnement (H_{B,2})

 Tableau IV.3 : les actions générer par le pont roulant.

IV.5. Effet dynamique de pont roulant :

La voie de roulement d'un pont roulant et soumise, en plus les actions des galets, à des effets dynamiques dont les causes sont les suivantes :

Translations de pont roulant, Accélération et freinage du pont roulant,

Choc lors du levage et du balancement de la charge levée.

Ces effets sont pris en compte en majorant les charges verticales et les forces horizontal par un coefficient dynamique ϕ donnée par le tableau suivant :(selon EC1 P3).

Coefficients	Effets à prendre en compte	A appliquer à
dynamiques		
φ1	Poids propre de l'appareil de levage	φ1= 1.1
φ1	Masse à lever	φ2=
		$\varphi_{2\min}$ +(β_2 ×v _h)
φ4	Poids propre de l'appareil de levage	φ4 =1
φ5	Force d'entrainement (k)	φ ₅ = 1.5
	dont la vitesse est réalisée par un convertisseur de	
	fréquence.	

Tableau IV.4 : coefficients dynamiques φ_i pour les charges verticales

IV.6. Charge verticales :

Les charges qui sollicitent les poutres de roulement ont les valeurs qui varient selon la charge levée Q_h, selon le poids propre du pont roulant est selon la position de chariot sur le pont roulant.

Les valeurs caractéristiques les charges variables $Q_{r,max}$ et $Q_{r,min}$ sont correspondant aux deux cas de charges suivant :

- a) Poids propre et charge nominale levée au crochet, chariot dans la position la plus proche de la poutre de roulement considérée.
- b) Poids propre et crochet non chargé, chariot dans la position la plus éloignée de la poutre de roulement considérée.

On les calculer on utilisant comme cas de charges ceux donnée à la figure ci-dessous :

IV.6.1. Avec masse à lever (en charge) Q_h = 20KN

Figure IV.4 : la position du chariot à la charge maximale.

Tel que :

 $\mathbf{Q}_{r,max}$ est la charge maximales par galet de l'appareil de levage en charge ;

Q_{r,(max)} est la charge d'accompagnement par galet de l'appareil de levage en charge ;

 $\sum \mathbf{Qr}$, max est la somme des charges maximales $\mathbf{Q}_{r,max}$ par poutre de roulement de l'appareil de levage en charge ;

 $\sum Qr$, (max) est la somme des charges d'accompagnement $Q_{r,(max)}$ par poutre de roulement de l'appareil de levage en charge ;

<u>a) Groupe 1 :</u>

```
Q<sub>h</sub> : est la masse à lever (20KN)
```

Donc on a :

L = 26.5m

a = 4m

$$e_{min} = 0.76m$$

Masse à lever : Q_h = 20KN

Poids propre du pont : Qc1 = 62.15KN

Poids propre du chariot : Qc2 = 3.4KN

Classe de levage : HC3 (appareil de levage d'atelier classe S₃) (annexe B. ENV1991-5) Valeur de β_2 et $\phi_{2,min}$

Classe de levage de	β2	Φ 2,min
l'appareil		
НСЗ	0.51	1.15

$$\phi_1 = 1.1$$

$$\varphi_{2} = \varphi_{2,\min} + (\beta_{2} \times V_{h}) = 1.15 + (0.51 \times \frac{10}{60}) = 1.235$$

$$\sum \mathbf{Qr}, \mathbf{max} = \varphi_{1} \left[\frac{Q_{c1}}{2} + Q_{c2} \left(\frac{L - e_{min}}{L} \right) \right] + \varphi_{2} \times \mathrm{Qh} \left(\frac{L - e_{min}}{L} \right)$$

$$= 1.1 \left[\frac{62.15}{2} + 3.4 \left(\frac{26.5 - 0.76}{26.5} \right) \right] + 1.235 \times 20 \left(\frac{26.5 - 0.76}{26.5} \right)$$

Université de Bejaia/Génie civil/CM/2015-2016

 $\sum \mathbf{Qr}, \mathbf{max} = 61.80 \text{KN}$ $\sum \mathbf{Qr}, (\mathbf{max}) = \varphi_1 \left[\frac{Q_{c1}}{2} + Q_{c2} \left(\frac{e_{min}}{L} \right) \right] + \varphi_2 \times Qh \left(\frac{e_{min}}{L} \right)$ $= 1.1 \left[\frac{62.15}{2} + 3.4 \left(\frac{0.76}{26.5} \right) \right] + 1.235 \times 20 \left(\frac{0.76}{26.5} \right)$ $\sum \mathbf{Qr}, (\mathbf{max}) = 35.07 \text{KN}$ $\mathbf{Qr}, \mathbf{max} = \frac{\sum Q_{r,max}}{2} = \frac{61.80}{2} = 30.9 \text{KN}$ $\mathbf{Qr}, (\mathbf{max}) = \frac{\sum Q_{r,(max)}}{2} = \frac{35.07}{2} = 17.537 \text{KN}$ $\mathbf{b}) \text{ Groupe 4, 5 et 6 :}$

On doit recalculée les actions verticales avec le coefficient ϕ_4 =1

$$\sum \mathbf{Qr}, \mathbf{max} = \varphi_4 \left[\frac{Q_{c1}}{2} + Q_{c2} \left(\frac{L - e_{min}}{L} \right) \right] + \varphi_4 \times Qh \left(\frac{L - e_{min}}{L} \right)$$

$$= 1 \left[\frac{62.15}{2} + 3.4 \left(\frac{26.5 - 0.76}{26.5} \right) \right] + 1 \times 20 \left(\frac{26.5 - 0.76}{26.5} \right)$$

$$\sum \mathbf{Qr}, \mathbf{max} = 53.80 \text{KN}$$

$$\sum \mathbf{Qr}, (\mathbf{max}) = \varphi_4 \left[\frac{Q_{c1}}{2} + Q_{c2} \left(\frac{e_{min}}{L} \right) \right] + \varphi_4 \times Qh \left(\frac{e_{min}}{L} \right)$$

$$= 1 \left[\frac{62.15}{2} + 3.4 \left(\frac{0.76}{26.5} \right) \right] + 1 \times 20 \left(\frac{0.76}{26.5} \right)$$

$$\sum \mathbf{Qr}, (\mathbf{max}) = 31.73 \text{KN}$$

$$\mathbf{Qr}, \mathbf{max} = \frac{\sum Q_{r,max}}{2} = \frac{53.80}{2} = 26.9 \text{KN}$$

$$\mathbf{Q}_{\mathbf{r},(\max)} = \frac{\sum Q_{r,(\max)}}{2} = \frac{31.74}{2} = 15.87$$
KN

IV.6.2.Sans masse à lever (à vide) :

Figure IV.5 : la position du chariot à la charge minimale

Tel que :

 $\mathbf{Q}_{r,min}$ est la charge minimales par galet de l'appareil de levage à vide;

 $\mathbf{Q}_{r,(min)}$ est la charge d'accompagnement par galet de l'appareil de levage à vide;
\sum Qr, min est la somme des charges minimales $\mathbf{Q}_{r,min}$ par poutre de roulement de l'appareil de levage à vide;

 \sum **Qr**, (**min**) est la somme des charges d'accompagnement **Q**_{r,(**min**)} par poutre de roulement de l'appareil de levage en vide;

Donc on a : L = 26.5m $e_{min} = 0.76m$ Poids propre du pont : Qc1 = 62.15KN Poids propre du chariot : Q_{c2} = 3.4KN Groupe 1 : $\phi_1 = 1.1$ $\sum Qr, (min) = \varphi_1 \left[\frac{Q_{c1}}{2} + Q_{c2} \left(\frac{L - e_{min}}{L} \right) \right] = 1.1 \left[\frac{62.15}{2} + 3.4 \left(\frac{26.5 - 0.76}{26.5} \right) \right]$ $\sum Qr$, (min) = 37.81KN $\sum Qr, \min = \varphi_1 \left[\frac{Q_{c1}}{2} + Q_{c2} \left(\frac{e_{min}}{L} \right) \right] = 1.1 \left[\frac{62.15}{2} + 3.4 \left(\frac{0.76}{26.5} \right) \right]$ Σ Qr, min = 34.28KN $Q_{r,min} = \frac{\sum Qr, min}{2} = \frac{34.28}{2} = 17.14$ KN $Q_{r,(min)} = \frac{\sum Q_{r,(min)}}{2} = \frac{37.81}{2} = 18.905 \text{KN}$ Groupe 4, 5 et 6: (avec $\varphi_{4=1}$): $\sum \mathbf{Qr}, (\mathbf{min}) = \varphi_4 \left[\frac{Q_{c1}}{2} + Q_{c2} \left(\frac{L - e_{min}}{L} \right) \right] = 1 \left[\frac{62.15}{2} + 3.4 \left(\frac{26.5 - 0.76}{26.5} \right) \right]$ $\sum Qr_{i}(min) = 34.37 KN$ $\sum \operatorname{Qr}, \min = \varphi_4 \left[\frac{Q_{c1}}{2} + \operatorname{Qc2} \left(\frac{e_{\min}}{L} \right) \right]$ $\sum Qr$, min = 1 [$\frac{62.15}{2}$ + 3.4 ($\frac{0.76}{265}$)] Σ Qr, min = 31.17KN $Q_{r,min} = \frac{\sum Qr, min}{2} = \frac{31.17}{2} = 15.58 \text{KN}$ $Q_{r,(min)} = \frac{\sum Q_{r,(min)}}{2} = \frac{34.37}{2} = 17.18$ KN

Université de Bejaia/Génie civil/CM/2015-2016

Evaluation des charges verticales :

			Groupe de charges		
Groupe de cl	narges	1	4, 5 et 6		
Coefficients	dynamiques co	φ1 = 1.1	$\phi 4 = 1$		
pour chaque	pour chaque groupe				
	En charge	\sum Qr, (max)	35.07	31.74	
icales (KN)		Qr,(max)	17.53	15.87	
		Q r, max	61.80	53.80	
		Qr,max	30.9	26.9	
: vert	A vide	$\sum \mathbf{Qr}, (\mathbf{min})$	37.81	34.37	
harges		Qr,(min)	18.905	17.18	
O O		∑Qr, min	34.28	31.17	
		Qr,min	17.14	15.58	

Tableau IV.5: résumée des charges verticales sur la poutre de roulement.

IV.7. Force horizontales :

Introduction :

IL convient de tenir compte des types suivants des forces horizontales induites par le pont roulant :

- a) Forces horizontales longitudinales produites par les accélérations ou d'accélérations de l'appareil de levage lors de ses déplacements.
- **b)** Forces horizontales transversales produites par les accélérations ou d'accélérations du chariot lors de ses déplacements sur la poutre de pont.
- **c)** Forces horizontales produites par la marche en crabe de l'appareil de levage.
- **d)** Forces tamponnements liées aux déplacements de l'appareil de levage.
- e) Force de tamponnements liés aux déplacements du chariot.

Figure IV.6 : Dispositions des charges induites par les forces horizontales longitudinales et transversales produit par l'accélération et décélérations

IV.7.1. Forces horizontales longitudinales (H_{Li}) :

Les charges longitudinales H_{Li} produites par les accélérations et les décélérations des structures des appareils de levage résultent de la force d'entrainement au niveau de la surface de contact de rail avec le galet entrainé.

Figure IV.7 : Charges horizontales longitudinales H_{L,i}

Les charges longitudinales H_{Li} appliquées sur une poutre de roulement peuvent être calculées de la manière suivante : $H_{L,1} = H_{L,2} = \phi_5 \times \frac{K}{n_r}$

Tel que : n_r : nombre de poutre de roulement $\rightarrow n_r = 2$ φ_5 : coefficient d'amplification dynamique $\Rightarrow \varphi_5 = 1.5$ (dont la vitesse est réalisée par un convertisseur de fréquence) K : force d'entrainement $\mathbf{K} = \mathbf{K}_1 + \mathbf{K}_2 = \mu \cdot \sum Q_{r.min}^*$ Tel que : Coefficient de frottement : $\mu = 0.2$ (pour acier sur acier) $\sum Q_{r,min}^* = m_w \cdot Q_{r,min}$ (pour un système aves galets entrainés individuellement, où m_w est le nombre de galet entrainé) $m_w = 2$ (nombre de galets d'entrainement) $\sum Q_{r.min}^* = 2*15.58 = 31.16$ KN K = $\mu \sum Q_{r.min}^* = 0.2 \times 31.16 = 6.232$ KN D'où : $H_{L,1} = H_{L,2} = \varphi_5 \times \frac{K}{n_r} = 1.5 \times \frac{6.232}{2}$ $H_{L,1} = H_{L,2} = 4.674 \text{KN}$

IV.7.2.Forces horizontales transversales (H_{Ti}) :

Ces forces qui sont transmises par les galets de pont roulant à la poutre de roulement, ont pour cause :

- Le freinage du chariot.
- Les irrégularités de la voie de roulement.
- Le levage oblique.

Le moment M résultant de la force d'entrainement qu'il convient d'appliquer au centre de la masse est : Contrebalancée (équilibre) par les charges horizontales transversales $H_{T,1}$ et $H_{T,2}$.

Figure IV.8 : Charges horizontales transversales H_{T,3}.

Les charges horizontales peuvent être obtenues de la façon suivante :

 $H_{T,1} = φ_5 × ξ_2 × \frac{M}{a} H_{T,2} = φ_5 × ξ_1 × \frac{M}{a}$ Tel que : a = 4m $ξ_2 = 1 - ξ_1 ext{et} ξ_1 = \frac{Σ Qr, max}{Σ Qr}$ Σ Qr = Σ Qr, max + Σ Qr, (max) Σ Qr = 61.80 + 35.07 Σ Qr = 96.87 KN $⇔ ξ_1 = \frac{Σ Qr, max}{Σ Qr} = \frac{61.80}{96.87} = 0.637$ $ξ_2 = 1 - 0.637 = 0.363$ M = K.Ls $M = K.(ξ_1 - 0.5).L$ = 6.232 × (0.637 - 0.5).26.5 riangle M = 22.625 KN.mD'où : $H_{T,1} = φ_5 × ξ_2 × \frac{M}{a} riangle H_{T,1} = 1.5 × 0.363 × \frac{22.625}{4} riangle H_{T,1} = 3.07 KN$ $H_{T,2} = φ_5 × ξ_1 × \frac{M}{a} riangle H_{T,2} = 1.5 × 0.637 × \frac{22.625}{4} riangle H_{T,2} = 5.40 KN$

IV.7.3.Force horizontale de tamponnement HB,2 liées au déplacement du chariot :

La charge horizontale tamponnement H_{T3} liées au déplacement du chariot peut être prise égale à 10% de la somme de la masse à lever et du poids du chariot, à condition que la charge utile soit libre de se balancer.

 $\begin{array}{l} H_{B.2}=10\%(Q_{c2}+Q_{h})\\ H_{B,2}=10\%(3.4+20) \twoheadrightarrow H_{T3}=2.34KN. \end{array}$

IV.7.4.Forces longitudinales $(H_{L,i})$ et forces transversales $(H_{T,i})$ dues à la marche en crabe de l'appareil de levage :

Définition de la marche en crabe :

Un déplacement oblique du pont roulant peut également induite des charges horizontales, et lorsqu'il à se déplacer obliquement jusqu'à ce que le dispositif de guidage vienne en contact avec le bord du rail.

La force latérale sur le côté du rail augmente jusqu'à atteindre une valeur de pointe et c'est sous l'action de cette dernière que le pont revient à une marche normale, du moins temporairement. Les forces résultantes de la marche en crabe se décomposent en forces longitudinales et transversales. Ces charges s'appliquent au niveau de chaque galet $(H_{S,i,j,K})$ et une force de guidage (appelée aussi effort de pilotage) agit sur le système.

Forces de guidage :

 $S = f \times \lambda_{s,j} \times \sum Qr$

 $f = 0.3 \times (1 - \exp(-250 \times \alpha))$

H_{S,1,J,L} = f × λ s, 1, j, 1 × \sum Qr

Hs,2,J,L = f $\times \lambda$ s,2,j,1 $\times \sum \mathbf{Qr}$

H_{S,1,J,T} = f × λ s,1,j,T × \sum **Qr**

Hs,2,J,T = f × λ s,2,j,T × $\sum \mathbf{Qr}$

L'ongle α est déterminer en fonction de :

- L'espace entre le dispositif de guidage et le rail (x).
- Une variation dimensionnelle (raisonnable) (α_0 ; a_{ext})
- L'usure des galets et des rails (y).
 - $\alpha = \alpha_F + \alpha_V + \alpha_0 \le 0.015 rad$

Tableau de définition de : α_F , α_V , α_0

Angle α _i	Valeurs minimales α _i
$\alpha_{\rm F} = \frac{0.75 \times x}{\alpha_{ext}}$	0.75≥10mm pour des flasques de galets porteurs

Tableau IV.6 : Système de guidage assuré par les flasques de galets.

Figure IV.9 : Forces dues à la marche en crabe.

0u :

 α_{ext} : est la distance longitudinale entre les disposition de guidage extérieur ou les flasque de galet porteurs sur le rail de.

b : est le gabarit entre le rail et le dispositif de guidage (glissement latéral).

y : est l'usure du rail et le dispositif de guidage.

 α_0 : est la tolérance angulaire entre la direction du rail et celle des galets.

Donc :

 $\alpha_{\rm F} = \frac{1.75 \times x}{\alpha_{\rm ext}} = \frac{10}{4000} = 0.0025 \text{ rad}$ $\alpha_{\rm V} = \frac{y}{\alpha_{ext}} = \frac{0.10 \times 55}{4000} = 0.0013 \text{ rad}$ $\alpha_{0} = 0.001 \text{ rad}$ $\alpha = \alpha_{\rm F} + \alpha_{\rm V} + \alpha_{0} = 0.0025 + 0.0013 + 0.001$ $\alpha = 0.0048 \text{ rad} \le 0.015 \text{ rad} \dots \text{ verifiée.}$ $f = 0.3 \times (1 - \exp(-250 \times \alpha))$ $f = 0.3 \times (1 - \exp(-1.2) = 0.20 \le 0.3 \dots \text{ vérifiée.}$ Distance h :

Combinaison des paires de galetshcouplés (c)indépendants (i)hFixe/fixefrice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>frice<math>fricefrice<math>frice<math>frice<math>fr

Ou :

h : est la distance entre le centre instantané de rotation et le dispositif de guidage concerné. m : est le nombre de paires de galets couplés (m=0 pour des paires de galets indépendants. ξ_1 : est la distance entre le centre instantané de rotation et le rail 1.

 ξ_2 l : est la distance entre le centre instantané de rotation et le rail 2.

L : est la portée de l'appareil.

e_j : est la distance entre la paire de galets j et le dispositif de guidage concerné.

$$h = \frac{m \times \xi_1 \times \xi_2 \times l^2 \times \sum_{ej} 2}{\sum ej}$$

e₁ = 0 (1 axe cofondes ?).....? e₂ = 4.00m

m = 0 (pour des paires de galets indépendants).

h =
$$\frac{m \times \xi 1 \times \xi 2 \times l^2 \times \sum_{ej} 2}{\sum_{ej} e_j} = \frac{4^2}{4} = 4.00 \text{m}$$

Coefficients de force λ

Système	λ _{s,j}	$\lambda_{s,1,L}$	λ _{s,1,j,T}	$\lambda_{s,2,j,L}$	$\lambda_{s,2,j,L}$
IFF	$1-\frac{\sum e_j}{nh}$	0	$\frac{\xi_2}{n} \left(1 - \frac{e_j}{h}\right)$	0	$\frac{\xi_1}{n} = (1 - \frac{e_j}{h})$

0u :

n : est nombre de paires de galets

h : est la distance entre le centre instantané de rotation et le dispositif de guidage concerné.

 ξ_1 l : est la distance entre le centre instantané de rotation et le rail 1.

 ξ_2 l : est la distance entre le centre instantané de rotation et le rail 2.

Paire de galet 1 :

 $\lambda_{s,1,1,T} = \frac{\xi_2}{n} \times \left(1 - \frac{e_1}{h}\right) = \frac{0.363}{2} \times \left(1 - \frac{0}{4}\right) = 0.1815$ $\lambda_{s,2,1,T} = \frac{\xi_1}{n} \times \left(1 - \frac{e_1}{h}\right) = \frac{0.637}{2} \times \left(1 - \frac{0}{4}\right) = 0.318$ Paire de galet 2 : $\lambda_{s,1,2,T} = \frac{\xi_2}{n} \times \left(1 - \frac{e_2}{h}\right) = \frac{0.363}{2} \times \left(1 - \frac{4}{4}\right) = 0$ $\lambda_{s,2,2,T} = \frac{\xi_1}{n} \times \left(1 - \frac{e_2}{h}\right) = \frac{0.637}{2} \times \left(1 - \frac{4}{4}\right) = 0$ $\lambda_{s,1,L} = \mathbf{0}$ $\lambda_{s,2,j,L} = \mathbf{0}$ $\lambda_{s,j} = 1 - \frac{\Sigma e_j}{nh} = 0.5$

Résultants de Calcul des forces horizontal (longitudinale H_L et transversale H_T) :

$$\begin{split} H_{S,1,J,L} &= f \times \lambda_{s,1,J,L} \times \sum \mathbf{Qr} = 0.20 \times 0 \times 96.87 = 0 \text{KN} \\ H_{S,2,J,L} &= f \times \lambda_{s,2,j,L} \times \sum \mathbf{Qr} = 0.20 \times 0 \times 96.87 = 0 \text{KN} \\ H_{S,1,1,T} &= f \times \lambda_{s,1,1,T} \times \sum \mathbf{Qr} = 0.20 \times 0.1815 \times 96.87 = 3.51 \text{KN} \\ H_{S,1,2,T} &= f \times \lambda_{s,1,2,T} \times \sum \mathbf{Qr} = 0.20 \times 0 \times 96.87 = 0 \text{KN} \\ H_{S,2,1,T} &= f \times \lambda_{s,2,1,T} \times \sum \mathbf{Qr} = 0.20 \times 0.318 \times 96.87 = 6.16 \text{KN} \\ H_{S,2,2,T} &= f \times \lambda_{s,2,2,T} \times \sum \mathbf{Qr} = 0.20 \times 0 \times 97.87 = 0 \text{KN} \\ \mathbf{S} &= \mathbf{f} \times \lambda_{s,j} \times \sum \mathbf{Qr} = 3.51 + 6.16 = 9.67 \text{KN} \end{split}$$

IV.8. Pré-dimensionnement de la poutre de roulement :

La flèche admissible est obtenue quand les deux charges sont en position symétrie par rapport au milieu la poutre.

- Travée de l = 6m (sur deux appuis simple).
- Distance entre galets a = 4m

Figure IV.10 : Disposition des charges des galets sur la PDR.

La flèche admissible : $f_{adm} = \frac{l}{600} = 1$ cm la flèche maximale : f_V

Avec:
$$f_{adm} \ge f_{v}$$

 $f_{v} = \frac{Q_{r,max \times (L)^{3}}}{24 \times E \times I_{y}} \times \left(\frac{3 \times a}{L} - \frac{4 \times a^{3}}{L^{3}}\right) \le \frac{L}{600}$
 $I_{y} \ge \frac{Q_{r,max \times (L)^{2}}}{24 \times E} \times \left(\frac{3 \times a}{L} - \frac{4 \times a^{3}}{L^{3}}\right)$
 $I_{y} \ge \frac{30.9 \times 10^{3} \times 6000^{2} \times 600}{24 \times 2.1 \times 10^{5}} \times \left(\frac{3 \times 4000}{6000} - \frac{4 \times 4000^{3}}{6000^{3}}\right)$

 $I_{\rm y} \geq 10790.47 \rm cm^4$

D'après le tableau des profilés on adopte un profilé **HEA280**

Les caractéristiques de profilé HEA280 dans le tableau suivant :

HEA280	Iy	Iz	W_{ely}	W_{elz}	t _f	А	Р	h	b	tw
	cm^4	cm^4	cm ³	cm ³	cm	cm ²	Kg/m	cm	cm	cm
	13670	4763	1013	340.2	1.3	97.3	76.4	2.7	28	0.8
	W_{ply}	W_{plz}	iz	lt	Iw	r	d	Ss	iy	Az
	Cm ³	Cm ³	Cm	Cm^4	Cm ⁶	Ст	Cm	Cm	Cm	mm ²
	1112	518.1	0.7	62.1	785400	2.4	19.6	6.212	1.186	31.74

Tableau IV.7: Les caractéristiques de profilé HEA280

Figure IV.11. : Section transversal de HEA

IV.8.1. Choix du rail :

Pour les ponts roulants et engins de levage, on choisit des RAIL A55 (annexe 7)

h _r (mm)	P (kg/m)	I _y (cm ⁴)	A (cm ²)	W _{ely} (cm ³)	I _z (cm ³)	W _{elz} (cm ³)
65	31.8	178	40.5	68.5	337	44.9

IV.8.2. Les charges totales supportant par la PHR :

Poids propre de la PDR : HEA280 $G_{prd} = 76.4 daN/m$ Poids de rail A55 $G_r = 31.8 daN/m$ Dévers $G_1 = 10\% G_{prd} du \text{ profil HEA280} = \frac{10 \times 76.4}{100} = 7.64 da \text{N/m}$ $G_{tot} = G_{prd} + G_r + G_1 = 76.4 + 31.8 + 7.64 = 115.84 da \text{N/m}$ $G_{tot} = 115.84 da \text{N/m}$

IV.9. Vérification aux états limites de service :

La vérification de la flèche est faite suivant les deux directions verticales et horizontales.

IV.9.1. Vérification de la flèche verticale pour HEA280 :

a) Charge répartie :

 $f_{\text{lmax}} = \frac{5 \times G_{tot \times L^4}}{384 \times E \times I_y} = \frac{5 \times 1.158 \times 10^{-2} \times (600)^4}{384 \times 2.1 \times 10^4 \times 13670} \Rightarrow f_{\text{lmax}} = 0.68 \text{mm}$

$f_{1\text{max}} = 0.68\text{mm}$

b) Charge roulante : $f2max = \frac{Q_{r,max \times L^3}}{24 \times E \times I_y} \times \left(\frac{3 \times a}{L} - \frac{4 \times a^3}{L^3}\right)$ $f2max = \frac{Q_{r,max \times a}}{24 \times I_y} \times (3 \times L^2 - 4 \times L^2)$ $= \frac{30.9 \times 10^3 \times 4000}{24 \times 21 \times 10^4 \times 13670 \times 10^4} \times (3 \times 6000^2 - 4 \times 4000^2) = 7.893mm$ f2max = 7.893mm fmax = f1max + f2max = 0.68 + 7.893 = 8.57mm $fmax = 8.57mm \le fadm = \frac{L}{600} = \frac{6000}{600} = 10mm$OK

IV.9.2. Vérification de la flèche horizontale pour la PDR : (H_{S,2,1,T} = 6.16KN)

 $fmax = \frac{HS, 2, 1, T \times (L)^3}{48 \times E \times I_{z,s}} \text{ avec } I_{z,s} = \frac{t_f \times b^3}{12} = \frac{13 \times (280)^3}{12} = 2378.13 \text{ cm}^4 \text{ (inertie de la semelle supérieur)}$ $fmax = \frac{6.16 \times 10^3 \times (6000)^3}{48 \times 21 \times 10^4 \times 2378.13 \times 10^4} = 5.55 \text{ mm} < 10 \text{ mm c'est vérifiée.}$

IV.10. Vérification aux états limites ultimes de la poutre de roulement :

IV.10.1. Vérification sous charge verticale : a) Vérification à l'état limite ultime (flexion) : IL faut vérifier que : $M_{sd} < M_{ely,rd}$ $M_{ely,rd} = W_{ely} \times f_y / \Upsilon m_0 = 1013 \times 10^3 \times 235 / 1.1 = 238.055 \text{KN.m}$ $M_{ely,rd} = 238.055 \text{KN.m}$

Moment maximal du a (Qr,max) :

Pour notre cas la poutre de roulement supporte un pont roulant posé sur deux galets espacés de 4m dont la charge maximale par galet Qr,max =30.9 KN , le théorème de Barré n'est pas applicable car (a=4m > 0.586L=3.516m).

Donc le moment max ce trouve lorsque l'une des charge de galet ou milieu de la poutre de roulement voir figure V.11.

Figure IV.12 : la position de moment max cas de deux charges roulantes égale.

Le moment fléchissent maximal : $M_{max} = \frac{PL}{4} \rightarrow M_{f1,max} = \frac{30.9 \times 6}{4} = 46.35 \text{KN.m}$ Moment maximal du au poids propre (PDR+RAIL) : $G_{tot} = 115.84 \text{daN/m}$ $M_{f2,Max} = \frac{\text{Gtot} \times l^2}{8} = \frac{115.84 \times 6^2}{8} = 521.28 \text{daN.m}$ Le moment Max pondéré soit : $M_{fv,Max} = 1.35.M_{f2,Max} + 1.5M_{f1,Max}$ $M_{fv,Max} = 1.35(5.21) + 1.5(46.35) = 76.55 \text{daN.m}$ $M_{fv,Max} = 76.55 \text{KN.m} \le M_{ely,rd} = 238.055 \text{KN.m}......vérifié.$

b. Vérification de l'effort tranchant :

La résistance ultime au cisaillement est donnée par : $V_{pl,rd} = \frac{A_v \times f_y}{\gamma m0 \times \sqrt{3}}$ avec $A_{v,s} = A - 2b \times t_f + (t_w + 2r) t_f = 2054.8mm^2$ Donc : $V_{pl,rd} = 278.78KN$ On calcul Vsd,max: On a : $V_{sd1,max} = Q_{r,max} + \frac{Q_{r,max} \times 2}{L}$; $V_{sd1,max} = 30.9 + \frac{30.9 \times 2}{6} = 41.2KN$ Et : $V_{sd2,max} = \frac{G_{tot} \times 6}{2} = 3.47KN$ D'où : $V_{sd,max} = 1.35 V_{sd2,max} + 1.5 V_{sd1,max}$ = 1.35(3.47) + 1.5(41.2) = 66.484KN $V_{sd,max} = 66.484KN < V_{pl,rd} = 278.78KN$OK

IV.10.2. Vérification sous charge horizontale : a) Vérification à l'état limite ultime (flexion) :

Il faut vérifier que : $M_{z,sd} \le M_{elz}$ $M_{elz} = \frac{W_{elz} \times f_y}{\gamma m 1} = \frac{169.86 \times 10^3 \times 235}{1.1} = 36.28 \text{KN.m}$ (tel que : $W_{els} = \frac{I_{s,z}}{V_z} = \frac{2378.13 \times 10^4}{140} = 169.86 \text{cm}^3$) $M_{elz} = 36.28 \text{KN.m}$

Moment maximal du à Hs, 2, 1, T:

Figure IV.13: Disposition de la charge horizontale.

 $M_{z,max} = \frac{\text{HS } 2,1T \times L^2}{8} = \frac{6.16 \times 6^2}{8} = 27.72 \text{KN.m}$ $M_{z,max} = 27.72 \text{KN.m} \le M_{elz} = 36.28 \text{KN.m}....OK$

b) Vérification de l'effort tranchant :

La résistance ultime au cisaillement est donnée par :

 $V_{pl,rd} = \frac{A_{vz} \times f_{y}}{\gamma m 0 \times \sqrt{3}} \text{ avec } A_{vz} = b \times t_{f} = 280 \times 13 = 36.40 \text{ cm}^{2}$ $V_{pl,rd} = \frac{3640 \times 235}{1 \times \sqrt{3}} = 493.86 \text{KN}$ Donc: $V_{pl,rd} = 493.86 \text{KN}$ On calcul $V_{sd,max}$:
On a: $V_{sd1,max} = \text{Hs}_{,2,1,T} + \frac{\text{HS}_{,2,1,T} \times (\text{L-a})}{L}$ $= 6.16 + \frac{6.16 \times 2}{6} = 8.21 \text{KN}$ $V_{sd2,max} = \frac{G_{tot} \times 6}{2} = 3.47 \text{KN}$ D'ou: $V_{sd,max} = 1.35 V_{sd2,max} + 1.5 V_{sd1,max}$ = 1.35(3.47) + 1.5(8.21) $V_{sd,max} = 17 \text{KN} < V_{pl,rd} = 493.86 \text{KN}$ OK

IV.10.3.Vérification sous charge horizontale et verticale (flexion bi axiale) :

 $\frac{Msdy}{Mely.Rd} + \frac{Msdz}{Melz.Rd} \le 1$ $\left(\frac{76.55}{238.055}\right)^2 + \left(\frac{27.72}{36.28}\right) = 0.86 \le 1$

D'où la flexion bi-axiale provoquée par les actions verticales et les actions horizontales latérales est vérifié.

Université de Bejaia/Génie civil/CM/2015-2016

IV.10.4. Résistance de l'âme aux charges des galets : a) La résistance à l'écrasement : (EC03 .partie 1-1article 5.7.3) On a : $R_{y,Rd} = \frac{Sy \times tw \times fy,w}{\gamma m_0}$ $S_y = 2(h_R + t_f) [1 - (\gamma m_0 \times \sigma_{f,ed} / f_{yf})^2]^{0.5}$ h_R : la hauteur de rail = 65mm $t_f = 13mm$ Avec $\sigma_{f,ed}$: la contrainte longitudinale dans la semelle. $\sigma_{f,ed} = \frac{M_{ysd}}{W_{ely}} = \frac{76.55 \times 10^3}{10515.38} = 7.28N/mm^2$ $S_y = 2(65 + 13)[1 - (1.1 \times 7.28/235)^2]^{0.5}$ $S_y = 155.91mm$ $R_{y,Rd} = \frac{155.91 \times 8 \times 235}{1.1} = 266.46KN$ $R_{y,Rd} = 266.46KN > M_{sdy} = 73.80KN.m$OK

b) La résistance à l'enfoncement local (EC03 .partie 1-1article 5.7.4)

la résistence de calcul R_{a,rd} l'enfoncement local d'un ame de section I H U est detérminée par la formule:

 $\begin{aligned} & \text{R}_{\text{ard}} = 0.5 \times t_{w}^{2} \, [\text{E} \times f_{yw}]^{0.5} \times [(t_{f}/t_{w})^{0.5} + 3(t_{w}/t_{f}) \, (\text{S}_{s}/d)] / \, \gamma \text{m}_{1} \\ & \text{Avec}: \, \text{S}_{s} = 62.12 \text{mm} \\ & \text{R}_{\text{ard}} = 0.5 \times 8^{2} \, [21.10^{4} \times 235]^{0.5} \times [(13/8)^{0.5} + 3(8/13) \, (62.12/196)] / 1.1 \\ & \text{R}_{\text{ard}} = 38008.79 \text{daN} \\ & \text{On a}: \, M_{\text{sd}} = \frac{R \times L^{2}}{8} = \frac{30.9 \times 6^{2}}{8} = 13905 \text{daN.m} \\ & \text{Et } \, M_{\text{ply,Rd}} = \text{W}_{\text{ely}} \times f_{y} / \, \gamma \text{m}_{0} = 10515.38 \times 235 / 1.1 = 22464.67 \text{daN.m} \\ & \text{Donc:} \\ & 1) \, \text{Fsd} = \text{H}_{\text{Tmax}} = 616 \text{daN} < \text{R}_{\text{ard}} = 38008.79 \text{daN} \\ & \text{OK} \\ & 2) \, M_{\text{sd}} = 13905 \text{daN.m} < M_{\text{pl,Rd}} = 22464.67 \text{daN.m} \\ & \text{OK} \\ & 3) \, \frac{F_{sd}}{R_{a,Rd}} + \frac{M_{sd}}{M_{c,Rd}} = \frac{616}{30407.03} + \frac{13905}{22464.67} = 0.64 < 1.5 \dots \text{OK} \end{aligned}$

IV.10.5.Résistance au voilement (EC3page187)

Il faut vérifier que si : $\frac{d}{t_w} > 69\varepsilon$ (risque de déversement) Avec $\varepsilon = \sqrt{\frac{235}{Fy}} = \sqrt{\frac{235}{235}} = 1$ D'où : $\frac{d}{t_w} = \frac{196}{8} = 24.5 < 69$ \Rightarrow Pas de risque de voilement de l'âme.

IV.10.6. Résistance au déversement :

Le moment résistant de déversement est donné par :

$$\mathbf{M}_{\mathbf{b},\mathbf{rd}} = X_{\mathrm{LT}} \beta_{w} \frac{W_{pl,y} \times f_{y}}{\gamma_{M1}} ;$$

 X_{LT} : est le facteur de réduction pour le déversement obtenue par le tableau 5.5.2 EC3

Avec : $\lambda = \lambda_{LT}$ et $X = X_{LT}$ $\beta_w = 1 \implies Section \, de \, classe \, 1$ χ_{It} : coefficient de réduction en fonction de $\overline{\lambda_{LT}}$. $\overline{\lambda_{LT}} = \sqrt{\frac{\beta_w \times W_{_{pl,y}} \times f_y}{M_{_{cr}}}} = \left[\frac{\lambda_{_{LT}}}{\lambda_1}\right] (\beta_\omega)^{0.5}$

 M_{cr} : est le moment critique de déversement.

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_w} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right)^2 \left[1.046, C_2 = 0.43, \text{ (cas de deux labeled of the second sec$$

charge concentrée,).....tableau F.1.2 EC03

K = 1, K_w = 1(pour une poutre appuyée aux des extrémités).....tableau F.1.2 EC03

 $Z_g = Z_a - Z_s = \frac{h}{2} - 0 = -13.5$ cm, L=6m

 $I_w = 785400 \text{cm}^6$, $G = 0.4\text{E} = 0.4 \times 2.1 \times 10^5 = 84000 \text{N/mm}^2$.

Avec Z_g est la distance de point d'application de la charge au centre de cisaillement M_{cr} = **732.63KN.m**;

 $M_{ply} = W_{ply} \times fy / \gamma_{m0} = 1112 \times 23.5 / 1 = 261.32 \text{KN.m}$

$$\overline{\lambda_{LT}} = \sqrt{\frac{M_{\text{ply}}}{M_{CR}}} \qquad \Longrightarrow \overline{\lambda_{LT}} = \sqrt{\frac{261.32}{732.63}} = 0.6$$

 $\lambda_{LT}^{-} = 0.6 \succ 0.4$ doncil ya risquede diversement

Courbe(a)
$$\rightarrow \chi_{LT} = 0.89$$

On tire χ_{LT} à partir du tableau 5.5.2 de L'EC03.

Profilé laminé $\beta_{w}=1$; Mb,rd= X_{LT} . $\beta_{w} \frac{W_{pl,y} \times f_{y}}{\gamma_{M1}} = 0.89 \times 1 \times \frac{1112 \times 23.5}{1.1} \Rightarrow Mb,rd=237.56 KN.m$ $M_{sdy} = \frac{R \times L^{2}}{8} = \frac{3090 \times 6^{2}}{8} = 139.05 KN.m$

 \Rightarrow M_{sdy} =139.05KN.m < Mb,rd=237.56KN.m

⇒ La stabilité au diversement de la poutre de roulement est vérifier.

IV.11. La fatigue :

IV.11.1. Exigence relative à l'évaluation de la fatigue

(1) Il convient d'effectuer une évaluation à la fatigue conforme à l'EN 1993-1-9 pour toutes les zones critiques.

(2) Il n'est pas nécessaire d'effectuer une évaluation à la fatigue pour les chemins de roulement si le nombre de cycles à plus de 50 % de la pleine charge utile n'excède pas *C*0.

NOTE La valeur numérique de C0 peut être définie dans l'Annexe Nationale. La valeur recommandée est 10^4 .

(3) Une évaluation à la fatigue n'est généralement requise que pour les composants du chemin de roulement qui sont soumis à des variations de contrainte dues aux charges verticales de pont roulant.

NOTE Les variations de contrainte par rapport aux charges de pont roulant horizontales sont généralement négligeables.

Toutefois, dans certains cas, les dispositifs d'appui horizontaux peuvent être soumis à une fatigue provoquée par les charges de pont roulant latérales. De même, pour certains types de chemins de roulement et de fonctionnement du pont roulant, la fatigue peut être le résultat d'actions d'accélération et de freinage multiples.

IV.11.2. Vérification à la fatigue :

On doit vérifier la condition de [l'EC3 P9 :(8.3)] :

$$\left(\frac{\gamma_{Ff} \Delta \sigma_{E,2}}{\Delta \sigma_C / \gamma_{Mf}}\right)^3 + \left(\frac{\gamma_{Ff} \Delta \tau_{E,2}}{\Delta \tau_C / \gamma_{Mf}}\right)^5 \le 1,0$$

Avec :

$$\gamma_{\rm Ff} \Delta \sigma_{\rm E2} \leq \frac{\Delta \sigma_{\rm c}}{\gamma_{\rm Mf}} \qquad (EC3-P9:8(2))$$

$$\Delta \sigma_{\rm E2} = \lambda \cdot \Phi_{\rm fat} \cdot \Delta \sigma_{\rm P} \qquad (EC3-P6:9.3(1))$$

$$\gamma_{\rm Ff} = 1.0 \qquad (EC3-P9: Tableau 3.1)$$

Les valeurs λ peuvent être prises dans le (Tableau 2.12 de l'EC1 P3) selon la classification de l'appareil de levage, notre cas le pont roulant est classifié dans la classe S₃.

 $\lambda = 0.397$ pour les contraintes normales

 λ = 0.575 pour les contraintes de cisaillement

Le coefficient d'impact dynamique équivalent de détérioration φ_{fat} dans des conditions normales peut être pris

Égal à : φ_{fat} =1.1 (EC1-P3 : 2.12.1(7))

(4) La charge de fatigue peut être spécifiée comme suit :

 $Q_{\text{ei}} = \varphi_{\text{fat}} \times \lambda i \times Q_{\text{max,i}} \dots$ (EC1-P3: (2.16)) où :

 $Q_{\max,i}$ est la valeur maximale de la charge caractéristique verticale du galet *i* ;

- Pour contraintes normal $Q_{ei} = 1.1 \times 0.397 \times 30.9 = 13.49$ KN
- Pour contraintes de cisaillement
- $Q_{\rm ei} = 1.1 \times 0.575 \times 30.9 = 19.54 \,\rm KN$

IV.11.3. Verification de section transversal

a) le moment sollicitant sous G_{tot} :

$$M_{y,G} = \frac{Gtot \times l^2}{8} = \frac{115.84 \times 6^2}{8} = 5.21$$
KN.m

Université de Bejaia/Génie civil/CM/2015-2016

b) moment max et min sollicitant sous la charge roulant :

 $M_{y,max} = \frac{PL}{4} \rightarrow M_{y,max} = \frac{30.9 \times 6}{4} = 46.35 \text{KN.m}$ $M_{y,min} = 0 \text{KN.m}$

IV.11.3.1. Contrainte normal à la semelle supérieure :

Catégorie de détail 80mpA $\Delta \sigma_{E2} = max \sigma_x - min \sigma_x$ $max \sigma_x = \frac{Mymax + My,G}{Wely} = \frac{46.35 + 5.21}{1013} = 5.089 \text{KN/cm}^2$ $min \sigma_x = \frac{Mymin + My,G}{Wely} = \frac{0 + 5.21}{1013} = 0.514 \text{KN/cm}^2$ $\Delta \sigma_{E2} = 5.089 - 0.514 = 4.57 \text{KN/cm}^2$ On la condition suivant :

$$\gamma_{Ff} * \Delta \sigma_{E2} \leq \frac{\Delta \sigma_C}{\gamma_{Mf}} \Rightarrow \Delta \sigma_C \geq \gamma_{Ff} * \Delta \sigma_{E2} * \gamma_{Mf}$$
$$\Rightarrow \Delta \sigma_C \geq 1 * 4.57 * 1.15 = 5.255 \text{KN/cm}^2$$

 $\Delta \sigma_C$ Valeur de référence de la résistance à la fatigue à *NC* = 2 millions de cycles Les Tableaux 8.1 à 8.9 de l'EC3 Partie1-9 demandent pour certains détails que les étendues de contrainte soient basées sur les contraintes principales.

Catégorie de détail :

La désignation numérique attribuée à un détail constructif particulier pour une direction donnée de contraintes afin d'indiquer la courbe de résistance à la fatigue à appliquer pour évaluer sa résistance (ce nombre correspond à la résistance de référence à la fatigue $\Delta \sigma C$ en N/mm2)

Calcul de $\Delta \sigma_C$: Avec $\Delta \sigma_C = \frac{8}{1.15} = 6.95 \text{KN/cm}^2$ $\Rightarrow \Delta \sigma_C = 6.95 \text{KN/cm}^2 > 5.255 \text{KN/cm}^2$ c'est vérifiée.

catégorie	détail constructif		Description	Exigences	
160	NOTE La courbe de résistance à la fatigue associée à la catégorie 160 est la plus haute. Aucun détail ne peut atteindre une meilleure résistance quelque soit le nombre de cycles.	Produits I 1) Pla 2) Pro 3) Tut rectangula	aminés et extrudés : ques et larges plats. filés laminés. ses sans soudure, soit aires soit circulaires.	Détails 1) à 3). Arêtes vives, défauts de surface et de laminage améliorés par meulage jusqu'à élimination et réalisation d'une transition régulière.	
80	12	•	 Assemblages recouvrement avec calibrés. Assemblages recouvrement avec précontraints injectés 	à simple 12) section nette à simple 12) section boulons non nette	
160		1) Sec H.	tions laminées en l ou	1) Etendue de contrainte verticale de compression $\Delta \sigma_{vert}$ dans l'âme due aux charges roulantes.	
100		6) et 7) : Produits comme le	laminés et extrudés, es details 1), 2), 3).	Détails 6) et 7) : $\Delta \tau$ calculé à partir de : $\tau = \frac{VS(t)}{It}$	
125		Soudures longitudinales continues : 1) Soudure automatique pleine pénétration exécutée des deux côtés ; 2) Soudure d'angle automatique; extrémités des plats de renfort vérifiées selon le détail 6) ou 7) du Tableau 8.5.		Détails 1) et 2) : Aucun arrêt/reprise n'est admis sauf si la réparation est exécutée par un spécialiste et l'exécution correcte de la réparation contrôlée par inspection.	

Tableau IV-8 certains catégories de détails avec leurs description

IV.11.3.2. Contrainte normal à la semelle inférieure :

Catégorie de détail 125mpA

$$\begin{split} &\Delta\sigma_{E2} = max\sigma_{x} - min\sigma_{x} \\ &max\sigma_{x} = \frac{Mymax + My,G}{Wely} = \frac{46.35 + 5.21}{1013} = 5.089 \text{KN/cm}^{2} \\ &min\sigma_{x} = \frac{Mymin + My,G}{Wely} = \frac{0 + 5.21}{1013} = 0.514 \text{KN/cm}^{2} \\ &\Delta\sigma_{E2} = 5.089 - 0.514 = 4.57 \text{KN/cm}^{2} \\ &\text{On la condition suivant :} \\ &\gamma_{Ff} * \Delta\sigma_{E2} \leq \frac{\Delta\sigma_{C}}{\gamma_{Mf}} \Rightarrow \Delta\sigma_{C} \geq \gamma_{Ff} * \Delta\sigma_{E2} * \gamma_{Mf} \\ & \Rightarrow \Delta\sigma_{C} \geq 1 * 4.57 * 1.15 = 5.255 \text{KN/cm}^{2} \end{split}$$

 $\frac{\text{Calcul de }\Delta\sigma_{C}:}{\text{Avec }\Delta\sigma_{C} = \frac{12.5}{1.15} = 10.86\text{KN/cm}^{2}$ $\Rightarrow \Delta\sigma_{C} = 10.86\text{KN/cm}^{2} > 5.255\text{KN/cm}^{2} \text{ c'est vérifiée.}$ IV.11.3.3. Vérification de l'âme a) Cisaillement de l'âme :Sous le poids propre : $V_{sdz} = \frac{G_{tot} \times 6}{2} = 3.47\text{KN}$ $\tau_{xz} \approx 0\text{KN/cm}^{2}$ Sous la charge roulante : $\max V_{z} = Q_{r,\max} + \frac{Q_{r,\max} \times 2}{L}$ $= 30.9 + \frac{30.9 \times 2}{6} = 41.2\text{KN}$ $\min V_{z} = -4 * \frac{Q_{r,\max}}{L} = -20.6\text{KN}$ $\max \tau_{xz} = \frac{\max V_{z}}{A_{w}} = \frac{\max V_{z}}{d_{w} \times t_{w}}} = \frac{41.2}{19.6 \times 0.8} = 2.62\text{KN/cm}^{2}$

$$\min \tau_{xz} = \frac{\min Vz}{Aw} = \frac{-20.6}{19.6 \times 0.8} = -1.31 \text{KN/cm}^2$$

 $\sigma_{zEd} = \frac{F_{zd}}{l_{eff} \times t_w}$ (EC3.P6:5.4.2) Irf =Ir + If.eff; If.eff = $\frac{tf^3 \times b_{eff}}{12}$; beff = bfr + dr;

Figure IV14 : langueur chargée efficace

 $d_r = h_{rail} + t_f + r = 65 + 13 + 24 = 102 mm$

b_{eff}=b_{rail}+d_r=150+102=252mm<b=280mm

If.eff =
$$\frac{tf^3 \times b_{eff}}{12} = \frac{1.3^3 \times 25.2}{12} = 4.613 \text{ cm}^4$$

 I_r : Moment d'inertie de flexion du rail de pont roulant selon son axe neutre horizontal, en prenant l'usure en compte, comme indiqué en article **5.3.3(3).EC3P6** \implies $I_r = I_r -25\%$ (I_r) =133.5cm⁴

 $I_{rf} = I_r + I_{f.eff} = 133.5 + 4.613 = 138.113 cm^4$

 $I_{eff} = 3,25. [I_{rf} / t_w]^{1/3}$ $I_{eff} = 3,25. [138.113 / 1.3]^{1/3} = 15.39 \text{ cm}$ $\sigma_{\perp} = \frac{F_{zd}}{l_{eff} \times t_w} \frac{19.54}{15.39 \times 1.3} = 0.98 \frac{KN}{cm^2} \qquad (EC3 - P6: 7.5.2 (1))$ $\sigma_{\parallel} = 0.2. \sigma_{\perp} = 0.2^* 0.98 = 0.196 \frac{KN}{cm^2}$ $\max \tau_{\parallel} = 2.62 + 0.196 = 2.81 \frac{KN}{cm^2}$ $\min \tau_{\parallel} = -1.31 - 0.196 = -1.506 \frac{KN}{cm^2}$ $\Delta \tau_{E2} = 2.81 - (-1.506) = 4.316 \frac{KN}{cm^2}$ $\frac{Calcul de \Delta \tau_{C.i}}{\Delta \tau_c}$ $\Delta \tau_c \text{ Valeur de référence de la résistance à la fatigue à NC = 2 millions de cycles$ $\operatorname{Avec} \Delta \tau_c = \frac{10}{1.15} = 8.69 \text{ KN/cm}^2$ $\Rightarrow \Delta \sigma_c = 8.69 \text{ N/cm}^2 > \Delta \tau_{E2} = 4.316 \text{ KN/cm}^2 \text{ c'est vérifiée.}$

IV.11.3.4. Contraintes locales provoquées dans l'âme par l'excentrement des charges des galets appliquées par l'intermédiaire d'un rail

(1) Pour une évaluation de la fatigue, il convient de déterminer la contrainte de flexion provoquée dans une âme raidie par l'excentrement des charges des galets appliquées par l'intermédiaire d'un rail (voir Figure 5). Il peut être tenu compte de la torsion de la semelle supérieure entre raidisseurs d'âme transversaux (EC3P6 :5.6.3).

Figure.IV15 : torsion de la semelle supérieure

Les efforts locaux dans l'âme à la flexion :

 $T_{sd} = F_{sd} = F_{z,d} \cdot e_y \quad (EC3P6 : 5.6.3. (2)).$ $e_y = 0.25 \times b_r; \qquad \text{Mais } e_y \ge 0.5t_w = 0.5 \times 13 = 6.5 \text{mm}$ $O\dot{u}:$ br largeur du boudin du rail ; tw épaisseur de l'âme de la poutre. $e_y = 0.25 \times b_r = 0.25 \times 55 = 13.75 \text{mm} = 0.01375 \text{mm}$ $T_{sd} = F_{sd} = F_{z,d} \cdot e_y = 0.01375 \times 19.54 = 0.268 \text{KN.m}$ $Contrainte de flexion provoque dans l'âme \sigma_{T,Ed}:$ $\sigma_{T,Ed} = \frac{6T_{sd}}{at_w^2} \cdot \eta \cdot \tanh(\eta) \qquad (EC)$

(EC – P 6 : 5.6.3 (4))

Université de Bejaia/Génie civil/CM/2015-2016

$$\eta = \left[\frac{0.75 \, a \, t_w^3}{I_t} \cdot \frac{\sinh^2(\pi d_w/a)}{\sinh(2 \pi d_w/a) - 2 \pi d_w/a}\right]^{0.5}$$
a = 600 cm
dw = 28-2*1.8=24.4 cm
tw=0.8 cm
It = $\frac{1}{3}$ * 28 * 1.3³ = 20.50 cm⁴
 $\eta = \left[\frac{0.75 \times 600 \times 0.8^3}{20.50} \times \frac{\sinh^2(\pi \times \frac{24.4}{600})}{\sinh(2 \times \pi \times \frac{24.4}{600}) - 2 \times \pi \times 24.4/600}\right]^{0.5} = 7.74$
 $\sigma_{T,Ed} = \frac{6T_{sd}}{at_w^2} \cdot \eta \cdot \tanh(\eta)$
 $\sigma_{T,Ed} = \frac{6 \times 0.268 \times 100}{600 \times 0.8^2} \cdot 7.74 \cdot \tanh(7.74) = 3.241 \frac{KN}{cm^2}$
 $\sigma_{T,Ed max} = 3.241 + 3.241 = 6.482 \frac{KN}{cm^2}$
 $\sigma_{T,Ed min} = 3.241 - 3.241 = 0 \frac{KN}{cm^2}$
 $\Rightarrow \max \Delta \sigma_{TE} = 6.482 \frac{KN}{cm^2}$
 $\Delta \sigma_c = \frac{16.0}{1.25} = 12.5 \frac{KN}{cm^2}$

IV.11.3.5. Interaction entre effort tranchant et la contrainte dans l'ame :

$$\left[\frac{\underline{\gamma_{Ff}} \cdot \Delta \sigma_{E2}}{\underline{\Delta \sigma_{e}}}_{\underline{\gamma_{Mf}}}\right]^{3} + \left[\frac{\underline{\gamma_{Ff}} \cdot \Delta \tau_{E2}}{\underline{\Delta \tau_{e}}}_{\underline{\gamma_{Mf}}}\right]^{5} \le 1,0$$

$$\left(\frac{1 \times 6.482}{\frac{16}{1.15}}\right)^3 + \left(\frac{1 \times 4.316}{\frac{10}{1.15}}\right)^5 = 0.131 < 1$$

IV.12. pré-dimensionnement du support du chemin de roulement

Le chemin de roulement est supporté par une console qui est sollicitée par les Efforts suivant :

- Le poids propre de la poutre de roulement et du rail
- Le ponds propre de pont roulant
- · Les actions verticales des galets du pont roulant

La console est pré dimensionnée en vérifiant la condition de résistance suivante : $Msdy \leq Mrdy = Wely \times f_y / \gamma_{m0} \Longrightarrow Wely \geq \frac{Msdy \times \gamma_{m0}}{f_y}$

0ù :

D'où :

Msdy : moment qui sollicite la console. Msdy =1.35(F×0.4) F : l'effort tranchant sur la console obtenue lorsque l'un des galets est au voisinage de l'appui. F= V_{sdmax}= 66.486KN \Rightarrow Mysd= 1.35×66.486×0.4=35.90KN.m

Figure IV.16 : le console

Figure IV.17 : le moment maximal.

IV.12.1. Vérification à l'effort tranchant :

Wely $\geq \frac{\text{Msdy} \times \gamma_{m0}}{\text{fy}} = \frac{26.6 \times 1.1 \times 10^2}{23.5}$

Du chemin de roulement.

Wely ≥ 168.05 cm³

La condition à vérifier **Vsd<Vrd** et **Vsd<Vrd** ×0.5 Vsd= 66.486KN ;

On adapte HEA160 comme une console (corbeau)

$$V_{rd} = \frac{A_{vz} \times f_y}{\gamma m 0 \times \sqrt{3}} \text{ avec } A_{vz} = 13.21 \text{cm}^2$$
$$V_{rd} = \frac{13.21 \times 23.5}{1 \times \sqrt{3}} = 179.22 \text{KN}$$

Vsd= 66.486KN < V_{rd}= 179.22KN Vsd= 66.486KN < 0.5* V_{rd}=89.61KN

HEA160 est vérifiée vis-à-vis l'effort tranchant

Conclusion:

Les Chemins de roulement sont sollicités par des charges fortes, généralement mobiles. Le profile **HEA280** résiste aux différentes charges roulantes verticales, et les charges horizontales, donc on l'adopte HEA280 comme poutre de roulement, et **HEA160** comme un support du chemin de roulement.

CHAPITRE V : Etude des contreventements

V.1 Introduction :

Un système de contreventement est normalement destiné à transmettre les charges horizontales aux fondations et à empêcher, ou au moins à limiter, les déplacements latéraux dans les ossatures à un ou plusieurs étages. Il pout également avoir pour rôle de fournir des appuis nécessaires à la stabilisation d'éléments porteurs en réduisant les risques de flambement et de déversement, ainsi que il possèdent un rôle important dans les problèmes de vibration de la construction, dans son ensemble ou dans des éléments élancés de cette construction et ce, en modifiant la période fondamentale. Ce qui permet d'éviter le phénomène de résonnance.

Les treillis verticaux, les murs de cisaillement (en maçonnerie ou en béton) et les noyaux centraux en béton (abritant cages d'escaliers et d'ascenseurs), combinés avec des dalles ou des treillis horizontaux, constituent des systèmes de contreventement courants.

V.2 Calcul de la poutre au vent en pignon :

La transmission des efforts sur le pignon passe successivement du bardage aux lisses, aux potelets puis à la traverse du portique, cette dernière n'est pas rigide transversalement, il est nécessaire de la stabiliser en construisant un dispositif dans le plan de la toiture.

La poutre contreventée sera calculée comme une poutre en treillis reposant sur deux appuis et soumise aux réactions horizontales des potelets ; auxquels on adjoint les efforts d'entrainement.

Figure V. 2 : Schéma statique de la poutre au vent

Ona :

- ✓ W_i: Vent extrême suivant le pignon w_i = -0.853KN/m²
- \checkmark **F**_{fr} : Force de frottement sur la toiture.
- ✓ Comme on a indiqué dans l'étude climatique nous avons de force de frottement.

F_{fr}: 47.491KN

- ✓ S_i : La surface sous le vent.
- ✓ n = 6: Nombre de nœuds au niveau de toiture

$$F_i = 1.25 \times [1.5 \times [W_i.S_i] + \frac{F_{fr}}{n}]]$$

 $\frac{F_{fr}}{n} = \frac{47.491}{6} = 7.915$ KN

Les résultats de Fi sont résumés dans le tableau si dessous :

Nooud	1	2	3
Nœuu	1	4	5
h _i (m)	12	12.89	13.65
Li (m)	3.81	6.875	6.13
S _i (m ²)	23.71	47.12	42.84
W.Si (KN)	20.20	40.19	36.54
$\frac{F \times_{fr}}{n}$ (KN)	7.91	7.91	7.91
Fi (KN)	38.24	85.25	78.40

Tableau V. 1 : Les résultats de F_i

Université de Bejaia/Génie civil/CM/2015-2016

Figure V. 3 : Schéma des F_i sur pignon.

V. 2.1. Calcul des réactions :

$$R_A = R_B = F_1 + F_2 + \frac{F_3}{2} = 38.24 + 85.25 + \frac{78.40}{2} = 162.69 \text{KN}$$

Les valeurs des réactions et de forces exercées sur la poutre au vent sont présentées sur la figure suivante.

Figure V. 4 : valeurs des forces et réaction.

IV. 2.1.1 Calcul des efforts de traction dans les diagonales :

On ne fait travailler que les diagonales tendues et on considère que les diagonales comprimées ne reprennent aucun effort.

La diagonale la plus sollicitée en traction est celle proche de l'appui A.

Figure V. 5 : Isolation du nœud 1

✓ Nœud (1) $\tan \alpha = \frac{7.5}{6} = 1.25 \Rightarrow \alpha = 51.34^{\circ}$ $\sum F_x = 0 \Rightarrow F_{13} = 0KN$ $\sum F_y = 0 \Rightarrow F_{12} + R_A = 0 \Rightarrow -F_{12} + 162.69 = 0$ $\Rightarrow F_{12} = 162.69KN$ ✓ Nœud (2) $\sum F_x = 0 \Rightarrow -F_{24} + F_{23} \sin 51.34^{\circ} = 0$ $F_{24} = F_{23} \sin 51.34^{\circ}$ $\sum F_y = 0 \Rightarrow -F_1 - F_{12} - F_{23} \cos 51.34^{\circ} = 0$ $-F_{23} \cos 45^{\circ} = F_1 + F_{12}$ $\Rightarrow -F_{23} = \frac{F_1 + F_{12}}{\cos 51.34^{\circ}}$ $-F_{23} = \frac{38.24 + 162.69}{\cos 51.34^{\circ}}$ $F_{23} = -321.64KN$ $F_{24} = -251.15KN$

On voit bien que la diagonale située à côté de la rive haute est la plus sollicitée avec

 $N_{t.sd} = 321.64KN$ pour le dimensionnement on adopte $N_{t.sd} = 321.64KN$

• L'effort de traction max : Nt.sd = 321.64KN

V.2.1.2. Calcul de la section brute A de la diagonale :

$$N_{sd} \le N_{pl.Rd} = \frac{A \times f_y}{\gamma m0}$$
$$A \ge \frac{N_{sd \times \gamma m0}}{f_y} = \frac{321.64 \times 1}{23.5} = 13.68 \text{cm}^2$$

4...

A ≥ 13.68cm²

On adopte une double cornière : $2 \times L (75 \times 75 \times 7) \Rightarrow A = 20.20 \text{ cm}^2$

V.2.1.3 Vérification à la résistance ultime de la section :

 $N_{sd} \leq N_{u.Rd}$

 $N_{u.Rd} = \frac{0.9 \times A_{net \times F_u}}{\gamma m2}$ $N_{u.Rd} = \frac{0.9 \times 15.13 \times 36}{1.25} = 392.25 \text{KN}$

 $N_{sd} = 321.64 \text{KN} < N_{u.Rd} = 392.25 \text{KN}$

 \Rightarrow La condition est vérifier donc les doubles cornières 2×L (75×75×7) convient pour les diagonales de la poutre au vent.

V.2.2. Vérification des montants de la poutre au vent :

V.2.2.1 Vérification de la panne montante :

Vérification de la résistance :

Les montants de la poutre au vent sont des pannes IPE160 qui travaillent à la flexion déviée sous l'action de charge verticale, et à la compression sous F on doit donc vérifier la panne à la flexion composée.

La formule de vérification est comme suit :

$$\left(\frac{N_{sd}}{N_{pl.rd}}\right) + \left(\frac{M_{y.sd}}{M_{pl.y.rd}}\right) + \left(\frac{M_{z.sd}}{M_{pl.z.rd}}\right) \le 1$$

Donc :

Le poids propre réel G de vient :

 $G = [(P_{couverture} + P_{accessoire})^*d] + P_{panne}$

G = [(12.5 + 1.5)*1.5] + 15.8 = 36.8 kg/ml

G = 0.368KN/ml

 $Gz = 0.368 \text{*}\cos 6.84^{\circ} = 0.365 \text{KN/ml}$

Gy = 0.368*sin6.84° = 0.043 KN/ml

La combinaison la plus défavorable à L'ELU et L'ELS devient :

L'ELU

Selon les deux axes y et z, les charges maximales à L'ELU revenant à la panne sollicitée en tenant compte de la continuité est :

Psz = 1.25*(0.365+1.5*(-2.037)) = -3.363KN/ml Psy = 1.25*(1.35*0.043) + (1.5*0.052)) = 0.170KN/ml L'ELS :

Selon les deux axes y et z, les charges maximales à L'ELU revenant à la panne sollicitée en tenant compte de la continuité est : $V = W = -2.037 \text{KN/ml} \times \text{vent}$ de soulèvement » Psz = 1.25*(0.365+(-2.037)) = -2.09 KN/ml

Psy = 1.25*(0.043) + (0.052)) = 0.118KN/ml

Donc

Axe zz :

 $M_{y,sd} = \frac{q_z \times l^2}{8} = \frac{3.363 \times 6^2}{8} = 15.133 \text{ KN.m}$

Axe yy :

 $M_{z,sd} = \frac{q_y \times (\frac{l}{2})^2}{8} = \frac{0.170 \times 3^2}{8} = 0.191 \text{ KN.m}$ (Présence des liernes).

 $N_{sd} = F_2 = 85.25KN$

 $N_{pl.rd} = \frac{20.1 \times 23.5}{1} = 472.35 \text{KN}$

 $M_{pl,y,rd} = W_{ply}$. f_y / $\Upsilon_{m0} = 124 * 23.5 * 10^{-2}$ / 1 =29.14 KN.m

 $M_{pl,z,rd}$ = W_{plz} . f_y / Υ_{m0} = 26.1 * 23.5 * 10^{-2} / 1 = 6.133 KN.m

Donc :

 $\frac{85.25}{472.35} + \frac{15.133}{29.14} + \frac{0.191}{6.133} = 0.73 < 1 \Rightarrow \text{c'est vérifier.}$

Vérification de la panne montante au déversement :

a) Semelle supérieure :

La semelle supérieure qui est comprimée sous l'action des charges verticales descendantes de déverser. Vu qu'elle est fixée à la couverture il n'y a pas donc le risque de déversement.

b) Semelle inferieure :

La semelle inférieure qui est comprimée sous l'action du vent du soulèvement est susceptible de déverser de moment quelle est libre tout au long de sa portée.

Combinaison à L'ELU :

G-1.5w

 $Q_{z.sd} = G \cos \alpha - 1.5 w$

 $\begin{array}{l} Q_{y.sd} = 1.35 \text{G} \sin \alpha \\ N_{sd} = F_2 = 85.25 \text{KN} \\ \text{Avec}: \\ \text{G} = 36.8 \text{daN/ml} \qquad \ \ \text{charge permanente } \\ \text{V} = \text{W} = \ \ 2.037 \text{KN/ml} \ \ \text{vent de soulèvement } \\ \text{N}_{sd} = F_2 = 85.25 \text{KN} \qquad \ \ \ \text{w charge de compression revenant à la panne intermédiaire } \end{array}$

Charge de flexion :

$$Q_{z.sd} = G \cos \alpha - 1.5 w = 36.8 \cos 6.84^{\circ} - 1.5 (203.7) = -269.011 daN/ml$$

$$Q_{y.sd} = 1.35G \sin \alpha = 36.8 \text{*sin} 6.84^\circ = 4.38 \text{daN/ml}$$

$$M_{y} = \frac{q_{z} \times l^{2}}{8} = \frac{269.011 \times 6^{2}}{8} = 1210.549 \text{ daN.ml}$$
$$M_{z} = \frac{q_{y} \times (\frac{l}{2})^{2}}{8} = \frac{4.38 \times 3^{2}}{8} = 4.927 \text{ daN.ml}$$

Charge de compression :

 $N_{sd} = F_2 = 85.25 KN$

La formule de déversement aux instabilités est la suivante :

Flexion déviée composée avec risque de déversement :

$$\frac{N}{X_{\min} \times Nply} + \frac{K_{LT} \times My}{X_{LT} \times Mply} + \frac{Kz \times Mz}{Mplz} \le 1,0$$

On a:

$$N_{pl.rd} = \frac{20.1 \times 23.5}{1} = 472.35 \text{KN}$$

$$M_{pl,y,rd} = W_{ply} \cdot f_y / \Upsilon_{m0} = 124 * 23.5 * 10^{-2} / 1 = 29.14 \text{ KN.m}$$

$$M_{pl,z,rd} = W_{plz} \cdot f_y / \Upsilon_{m0} = 26.1 * 23.5 * 10^{-2} / 1 = 6.133 \text{ KN.m}$$

Calcul de coefficient de réduction χ_{min} :

 $\boldsymbol{\chi}_{\min} = \min(\boldsymbol{\chi}_{y} ; \boldsymbol{\chi}_{z})$

Flambement par rapport à l'axe fort y-y :

$$\chi_{y} = \frac{1}{\phi_{y} + \left[\phi^{2}_{y} + \overline{\lambda}^{2}_{y}\right]^{0.5}} \quad \text{Mais } \chi_{LT} \leq 1$$

Ou $\varphi_{y} = 0.5 \left[1 + \alpha_{y} \left(\overline{\lambda}_{y} - 0.2\right) + \overline{\lambda}_{y}^{2}\right]$

$$\overline{\lambda y} = \left(\frac{\lambda y}{\lambda_1}\right) [\beta_A]^{0.5}$$

 α : Facteur d'imperfection correspondant à la courbe de flambement appropriée, donné par le tableau 5.5.1 de L'Eurocode 3.

Flambement par rapport à l'axe faible z-z :

$$\chi_{y} = \frac{1}{\phi_{y} + \left[\phi^{2}_{y} + \overline{\lambda}^{2}_{y}\right]^{0.5}} \quad \text{Mais } \chi_{LT} \leq 1$$

Ou $\varphi_{y} = 0.5 \left[1 + \alpha_{y} \left(\overline{\lambda}_{y} - 0.2\right) + \overline{\lambda}_{y}^{2}\right]$

$$\overline{\lambda y} = \left(\frac{\lambda y}{\lambda_1}\right) [\beta_A]^{0.5}$$

Avec : $\beta_A = 1$ pour la classe 1

 $\lambda 1 = 93.9\epsilon$ avec $\epsilon = \sqrt{\frac{235}{f_y}} = 1$ avec $f_y = 235$ Mpa

D'où $\lambda_1 = 93.9$

$$\lambda_{y} = \frac{l_{ky}}{i_{y}} = \frac{600}{6.58} = 91.185$$

$$\begin{cases} \lambda_{z} = \frac{l_{kz}}{i_{z}} = \frac{300}{1.84} = 163.043 \\ \lambda_{z} = \frac{\lambda_{y}}{\lambda_{cr}} \times \sqrt{\beta_{a}} = \frac{91.185}{93.9} \sqrt{1} = 0.971 \\ \overline{\lambda}_{z} = \frac{\lambda_{z}}{\lambda_{cr}} \times \sqrt{\beta_{a}} = \frac{163.043}{93.9} \sqrt{1} = 1.736 \end{cases}$$

 $\overline{\lambda}$ max = 1.736 > 0.2 Donc il y a eu lieu de tenir compte du risque de flambement.

Courbe de flambement :

$$\frac{h}{b} = \frac{160}{82} = 1.951 > 1.2$$
Axe de flambement y-y ______ courbe de flambement « a » _____ $\alpha_y = 0.21$
Axe de flambement z-z _____ courbe de flambement « b » _____ $\alpha_z = 0.34$

$$\chi_y = \frac{1}{\varphi_y + [\varphi_y^2 - \overline{\lambda}_y^2]^{0.5}}$$
Avec : $\chi_y \le 1$

$$\varphi_{y} = 0.5 [1 + \alpha_{y} (\overline{\lambda}_{y} - 0.2) + \overline{\lambda}_{y}^{2}]$$

$$\varphi_{y} = 0.5 [1 + 0.21 (0.971 - 0.2) + 0.971^{2}] = 1.052. \longrightarrow \chi_{y} = 0.682$$

$$\chi_{z} = \frac{1}{\varphi_{z} + [\varphi_{z}^{2} - \overline{\lambda}_{z}^{2}]^{0.5}} \quad \text{Avec} : \chi_{z} \le 1$$

$$\varphi_{z} = 0.5 \times [1 + \alpha_{z} (\overline{\lambda}_{z} - 0.2) + \overline{\lambda}_{z}^{2}]$$

$$\varphi_{z} = 0.5 [1 + 0.34 (1.736 - 0.2) + 1.736^{2}] = 2.267 \longrightarrow \chi_{z} = 0.29$$

$$\chi_{\min} = \min(0.682; 0.29)$$
Donc: $\chi_{\min} = 0.29$

Calcul de coefficient de réduction pour le déversement :

♦ Calcul de moment critique pour L=300cm :

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_w} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right) \right\} \text{EC3 Art F.1.2 (1)}$$
$$M_{cr} = 1.132 \frac{\pi^2 \times 2.1 \times 10^4 \times 68.3}{(1 \times 300)^2} \left\{ \left[\left(\frac{1}{1} \right)^2 \cdot \frac{3960}{68.3} + \frac{(1 \times 300)^2 \times 0.4 \times 3.6_t}{\pi^2 \times 68.3} + (0.459 \times 8.)^2 \right]^{\frac{1}{2}} - 0.459 \times (-8) \right\}$$

Mcr=31.296 KN.m.

$$\lambda_{LT}^{-} = \sqrt{\frac{M_{ply}}{M_{CR}}} = \sqrt{\frac{2914}{31296}} = 0.964$$

 $\overline{\lambda}_{LT}$ = 0.964 > 0.4 donc il y a risque de déversement.

Profilé laminé ; $\alpha = 0,21$; Courbe(a) $\rightarrow \chi_{LT}$

On tire χ_{LT} à partir du tableau 5.5.2 de L'EC03:

 $\overline{\lambda_{LT}} = 0.964 \longrightarrow \chi_{LT} = 0.699$

Calcul des coefficients K et KLT :

$$\mu_{LT} = 0.15 \times \overline{\lambda}_Z \times \beta_{MLT} - 0.15 \qquad mais \ \mu_{LT} \le 0.9$$

Avec :

 $\beta_{\scriptscriptstyle MLT}$: est facteur de moment uniforme équivalent pour le déversement.

 $\beta_{_{MLT}}$ = 1.3 : pour une poutre simplement appuyée avec une charge repartie Donc : μ_{LT} = 0.188 < 0.9

$$K_{LT} = 1 - \frac{\mu_{LT} \times N}{X_Z \times A \times F_Y} = 1 - \frac{0.188 \times 85.25}{0.29 \times 20.1 \times 23.50} = 0.88$$

$$\mu_{y} = \overline{\lambda y} (2 \times \beta_{MY} - 4) + \frac{Wply - Wely}{Wely} = 0.971(2 \times 1.3 - 4) + \frac{124 - 109}{109} = -1.221 \le 0.99$$

$$\mu z = \overline{\lambda z} (2 \times \beta_{MY} - 4) + \frac{W p l y - W e l y}{W e l y} = 1.736(2 \times 1.3 - 4) + \frac{26.1 - 16.7}{16.7} = -1.86 \le 0.9$$

$$K_{z} = 1 - \frac{\mu_{z} \times N}{X_{z} \times A \times f_{y}} = 1 - \frac{-1.867 \times 8525}{0.268 \times 20.1 \times 2350} = 2.25 \implies 2.25 > 1.5$$

On prend $K_z = 1.5$.

Vérification de condition :

$$\frac{N}{X_{\min} \times Nply} + \frac{K_{LT} \times My}{X_{LT} \times Mply} + \frac{Kz \times Mz}{Mplz} \le 1,0$$

 $\frac{8525}{0.29 \times 47235} + \frac{0.88 \times 1513.3}{0.699 \times 2914} + \frac{1.5 \times 19.1}{613.3} = 1.32 > 1$

La stabilité au flambement avec risque de déversement de la panne montante n'est pas vérifiée avec IPE160.

On doit augmenter la section des pannes montantes.

Pour que toutes les pannes aient une même hauteur on fait choisi HEB160.

$$\begin{split} N_{pl.rd} &= \frac{54.3 \times 23.5}{1.1} = 1160.04 \text{KN} \\ M_{pl,y,rd} &= W_{ply} \text{ . } \text{f}_{y} \ / \ \Upsilon_{m1} = 354 * 23.5 * 10^{-2} \ / \ 1.1 = 75.62 \text{ KN.m} \\ M_{pl,z,rd} &= W_{plz} \text{ . } \text{f}_{y} \ / \ \Upsilon_{m1} = 170 * 23.5 * 10^{-2} \ / \ 1.1 = 36.31 \text{ KN.m} \end{split}$$

Calcul de coefficient de réduction χ_{min} :

 $\chi_{\min} = \min(\chi_y; \chi_z)$

$$\lambda_{y} = \frac{l_{ky}}{i_{y}} = \frac{600}{6.78} = 88.49$$

$$\lambda_{z} = \frac{l_{kz}}{i_{z}} = \frac{300}{4.05} = 74.07$$

$$\begin{cases} \overline{\lambda}_{y} = \frac{\lambda_{y}}{\lambda_{cr}} \times \sqrt{\beta_{a}} = \frac{88.49}{93.9} \sqrt{1} = 0.94 \\\\ \overline{\lambda}_{z} = \frac{\lambda_{z}}{\lambda_{cr}} \times \sqrt{\beta_{a}} = \frac{74.07}{93.9} \sqrt{1} = 0.78 \end{cases}$$

 $\overline{\lambda}_{max}$ =0..94 > 0.2 Donc il y a eu lieu de tenir compte du risque de flambement.

Courbe de flambement :

 $\frac{h}{b} = \frac{160}{160} = 1 < 1.2$ tw=8mm<100mm Axe de flambement y-y \longrightarrow courbe de flambement « b » \longrightarrow $\alpha_y = 0.34$ Axe de flambement z-z \longrightarrow courbe de flambement « c » \longrightarrow $\alpha_z = 0.49$ $\chi_y = \frac{1}{\varphi_y + [\varphi_y^2 - \overline{\lambda}_y^2]^{0.5}}$ Avec : $\chi_y \le 1$ $\varphi_y = 0.5[1 + \alpha_y(\overline{\lambda}_y - 0.2) + \overline{\lambda}_y^2]$ $\varphi_y = 0.5[1 + 0.34(0.94 - 0.2) + 0.94^2] = 1.06.$ \longrightarrow $\chi_y = 0.64$ $\varphi_z = 0.5[1 + 0.49(0.78 - 0.2) + 0.78^2] = 0.94$ \longrightarrow $\chi_z = 0.68$

Donc: $\chi_{\min} = 0.64$

Calcul de coefficient de réduction pour le déversement :

♦ Calcul de moment critique pour L=300cm de HEB160 :

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_w} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right) \right\} \text{ EC3 Art F.1.2 (1)}$$
$$M_{cr} = 1.132 \frac{\pi^2 \times 2.1 \times 10^4 \times 889.2}{(1 \times 300)^2} \left\{ \left[\left(\frac{1}{1} \right)^2 \cdot \frac{47940}{889.2} + \frac{(1 \times 300)^2 \times 0.4 \times 31.24_t}{\pi^2 \times 889.2} + (0.459 \times 8.)^2 \right]^{\frac{1}{2}} - 0.459 \times (-8) \right\}$$

Mcr=587.16 KN.m.

$$\bar{\lambda}_{LT} = \sqrt{\frac{M_{ply}}{M_{CR}}} = \sqrt{\frac{7562}{58716}} = 0.35$$

 $\overline{\lambda}_{LT}$ = 0.964 > 0.4 donc il y a risque de déversement.

Profilé laminé ; α = 0,21 ;

Courbe(a)
$$\rightarrow \chi_{LT}$$

On tire χ_{LT} à partir du tableau 5.5.2 de L'EC03:
 $\overline{\lambda_{LT}} = 0.35 \longrightarrow \chi_{LT} = 0.96$

Calcul des coefficients K et K_{LT} :

$$\mu_{LT} = 0.15 \times \overline{\lambda}_Z \times \beta_{MLT} - 0.15 \quad mais \ \mu_{LT} \le 0.9$$

Donc: $\mu_{LT} = 0.15^* 0.68^* 1.3 - 0.15 = -0.0174 < 0.9$
 $K_{LT} = 1 - \frac{\mu_{LT} \times N}{X_Z \times A \times F_Y} = 1 - \frac{-0.0174 \times 85.25}{0.68 \times 54.3 \times 23.50} = 1.00$
 $\mu_y = \overline{\lambda}y (2 \times \beta_{MY} - 4) + \frac{Wply - Wely}{Wely} = 0.78(2 \times 1.3 - 4) + \frac{354 - 311.5}{311.5} = -1.18 \le 0.9$
 $\mu_Z = \overline{\lambda}z (2 \times \beta_{MY} - 4) + \frac{Wply - Wely}{Wely} = 0.78(2 \times 1.3 - 4) + \frac{354 - 311.5}{311.5} = -0.95 \le 0.9$

$$K_{z} = 1 - \frac{\mu_{z} \times N}{X_{z} \times A \times f_{y}} = 1 - \frac{-0.95 \times 8525}{0.68 \times 54.3 \times 2350} = 1.09 \Rightarrow 1.09 < 1.5$$

Vérification de condition :

$$\frac{N}{X_{\min} \times Nply} + \frac{K_{LT} \times My}{X_{LT} \times Mply} + \frac{Kz \times Mz}{Mplz} \le 1,0$$

 $\frac{85.25}{0.64 \times 1160} + \frac{1 \times 1513.3}{0.96 \times 7562} + \frac{1.09 \times 19.1}{3631} = 0.32 < 1 \text{ (c'est vérifié)}$

 \Rightarrow Donc **HEB160** convient comme une poutre montante.

IV. 3 Calcul de la poutre sablière :

Les poutres sablières assurent la liaison entre déférents portique transversaux, leurs évitant un important déplacement longitudinal notamment en cas de séisme.

La poutre sablière est considérée comme une barre de contreventement verticale, donc elle est soumise à un effort horizontal et son poids propre, d'où la vérification va se faire en flexion composée.

Figure V.7 : schéma statique de la poutre sablière

La poutre sablière du portique longitudinal intermédiaire reçoit deux réactions de la poutre au vent de pignon calculé précédemment.

R_A=162.69KN

V. 3.1 Pré dimensionnement :

$$A \ge \frac{N_{st} \times \gamma m0}{F_y}$$
$$A \ge \frac{162.69 \times 1}{23.5} = 6.92 \text{ cm}^2$$

On adopte : HEB160 avec A = 54.3 cm², P = 43kg/ml.

V. 3.2. Vérification de la résistance de la poutre sablière :

V. 3.2.1. Vérification aux instabilités :

a) vérification au flambement :

$$\begin{cases} \lambda_{y} = \frac{l_{ky}}{i_{y}} = \frac{600}{6.78} = 88.49\\ \lambda_{z} = \frac{l_{kz}}{i_{z}} = \frac{600}{4.05} = 148.41 \end{cases}$$
$$\begin{cases} \overline{\lambda}_{y} = \frac{\lambda_{y}}{\lambda_{cr}} \times \sqrt{\beta_{a}} = \frac{88.49}{93.9} \sqrt{1} = 0.94\\ \overline{\lambda}_{z} = \frac{\lambda_{z}}{\lambda_{cr}} \times \sqrt{\beta_{a}} = \frac{148.41}{93.9} \sqrt{1} = 1.58 \end{cases}$$

 $\overline{\lambda}_{max}$ =1.58 > 0.2 Donc il y a eu lieu de tenir compte du risque de flambement.

h/b=1<1.2
t_f=13mm<100mm
Axe ZZ

$$\Rightarrow \chi_{min} = 0.28$$

courbe de flambement (c)
 $\alpha = 0.49$

 N_{RD} = 0.28×54.3×23.5/1.1= 324.81KN

 N_{Sd} = 162.69KN \implies N_{Sd} < N_{RD} (c'est vérifiée).

V. 3.2.2. Vérification à l'effort normal :

On doit vérifier si :

 $N_{Sd} \le min[0.25 N_{Pl}; 0.5 \times t_w. h_w. fy]$

Tel que

N_{Pl}=A.fy=54.3×23.5=1276.05KN

0.25×1276.05=319KN

 $0.5 \times t_w$. h_w. fy= $0.5 \times 0.8 \times 10.4 \times 23.5 = 97.76$ KN

N_{sd}= 162.69KN > 0.5× t_w. h_w. fy =97.76KN \Rightarrow la condition n'est pas vérifiée.

Alors il faut tenir en compte l'incidence de l'effort normal sur le moment résistant plastique de l'axe yy. (d'après l'EC3P1 : 6.2.9.1(4))

 $M_{N,y,Rd} = M_{pl,y,Rd} (1-n)/(1-0.5a)$

 $n = N_{Sd} / N_{PIRd} = 162.69 / 1276.05 = 0.127$

 $a=(A-2b.t_f)/A=(54.3-2\times16\times1.3)/54.3=0.23$

 $M_{pl,y,Rd} = W_{pl,y} \times fy / \gamma_{m1} = 354*23.5 / 1.1 = 75.62 \text{KN.m}$

 $M_{N,y,Rd} = 75.62 (1-0.127)/(1-0.5(0.23)) = 74.59 \text{KN.m}$

Et tant que $a > n \rightarrow M_{N,y,Rd} = M_{N,z,Rd}$

 \Rightarrow M_{N,z,Rd}= M_{pl,z,Rd} (1-n)/(1-0.5a)

 $M_{pl,yzRd} = W_{pl,z} \times fy / \gamma_{m1} = 170 * 23.5 / 1.1 = 36.31 KN.m$

 $M_{N,z,Rd}$ = 36.31×(1-0.127)/(1-0.5(0.23))=35.81KN.m

• Calcul de moment sollicitant Msdy sous le ponds propre G de HEB160 :

 $M_{Sdy} = 1.35 \times \frac{G \times l^2}{8} = 1.35 \times \frac{0.43 \times 6^2}{8} = 1.935 \text{KN.m}$

- Calcul de moment sollicitant M_{Sdz} sous la surpression interne du vent w=-922N/m²

W=e.w= 1.2×922=1106.4N/ml

$$M_{Sdz} = 1.5 \times \frac{W \times l^2}{12} = M_{Sdz} = 1.5 \times \frac{1.106 \times 6^2}{12} = 7.47 \text{KN.m}$$
$(M_{Sdz}=7.47 KN.m < M_{N,z,Rd}=35.81 KN.m)$

 M_{Sdz} =1.935KN.m < $M_{N,y,Rd}$ =74.59KN.m

Donc la stabilité à la flexion composée est vérifiée avec la poutre sablière **HEB160**.

V. 4 Contreventement vertical du long-pan :

Les palées de stabilités vertical sont destinées à assurer la stabilité des parois ou files d'ossature, vis-à-vis des efforts horizontaux longitudinaux dus à la réaction de la poutre au vent du pignon et les réactions dus au freinage du pont roulant produites par les accélérations et les décélérations des structures des appareils de levage et transmettre aux fondations:

V. 4.1. Dimensionnement de palée de stabilité :

Le dimensionnement s'effectue avec les diagonales tendues, et vérifier les diagonales comprimées en admettant qu'elles sont flambent,

R_A=162.69KN : réaction de la poutre au vent

VA et VB : réaction des appuis

H_L =4.67KN: réaction induite par le pont roulant

Figure V.8 : schéma statique de la palée de stabilité sur long pan.

Barres Numéro :	Effort (-) traction (+) compression [KN]
1	+166.07
2	-3.59
3	0
4	-140.18
5	+79.62
6	-79.46
7	+143.40
8	0
9	-108.17
10	-221.86
11	+223.87
12	+126.65

Les efforts dans les barres tendues et comprimées obtenus à partir de la méthode des nœuds :

Tableau V.2 : schéma statique de la palée de stabilité sur long pan.

On doit dimensionnée les diagonales avec un effort de traction le plus défavorable dans la barre N° 10.

$N_{t,sd} = -221.86KN$

V.4.1.1 Calcul de la section brute A :

 $N_{tsd} \le N_{pl.Rd} = \frac{A \times F_y}{\gamma m0}$ $A \ge \frac{Ntsd.\gamma m0}{F_y} = \frac{221.86 \times 1}{23.5} = 9.44 \text{ cm}^2$

A ≥ 9.44cm²

On adopte une double cornière: $2 \times L$ ($60 \times 60 \times 6$) \Rightarrow A = 13.82cm²

V.4.1.2 Calcul de la section nette :

$$A_{net} = A_1 + \xi .A_2$$

$$A_1 = (6 \times 0.6) - (1.6 \times 0.6) = 5.28 \text{ cm}^2$$

$$A_2 = (6 - 0.6) \times 0.6 = 6.48 \text{ cm}^2$$

$$\xi = \frac{3 \times A_1}{3 \times A_1 + A_2} = 0.709$$

 $A_{net} = 5.28 + (0.709 \times 6.48) = 9.87 \text{ cm}^2$

V.4.1.3 Vérification à la résistance ultime de la section :

$N_{sd} \leq N_{u.Rd}$

 $N_{u.Rd} = \frac{0.9 \times A_{net} \times F_u}{\gamma m 0}$ $N_{u.Rd} = \frac{0.9 \times 9.87 \times 36}{1.25} = 255.94 \text{KN} > N_{tsd} = 221.86 \text{KN} \implies \text{Vérifiée.}$

Les doubles cornières $2 \times L$ ($60 \times 60 \times 6$) convient pour les diagonales de la palée de stabilité.

V.4.2. Vérification de flambement :

L'élément le plus sollicité par l'effort de compression et le plus long est la diagonale N°11 caractérisé par :

L=8.54m; $F_{cSd}=223.87KN$

On doit vérifier $F_{cSd} < F_{RD} = \chi \times A. Fy/\gamma_{m0}$

$$\lambda_{y} = \frac{l_{ky}}{i_{y}} = \frac{854}{1.82} = 469.23 = \lambda_{z} = \frac{l_{kz}}{i_{z}} = \frac{854}{1.82} = 469.23$$
$$\overline{\lambda}_{y} = \overline{\lambda}_{z} = \frac{469.23}{93.9} = 5.02$$

 $\overline{\lambda}_{y} = \overline{\lambda}z = 5.02 > 0.2$ Donc il y a eu lieu de tenir compte du risque de flambement.

$$\chi_{y} = \chi_{z} = \frac{1}{\phi_{y} + [\phi^{2}_{y} + \overline{\lambda}^{2}_{y}]^{0.5}} \text{ Mais } \chi_{LT} \leq 1$$

Ou $\varphi_{y} = 0.5 [1 + \alpha_{y} (\overline{\lambda}_{y} - 0.2) + \overline{\lambda}_{y}^{2}]$
 $\varphi_{y} = \varphi_{z} = 0.5 [1 + 0.34 (5.02 - 0.2) + 5.02^{2}] = 13.91$

$$\chi = \frac{1}{13.91 + [13.91^2 + 5.02^2]^{0.5}} = 0.034$$

N_{RD}= 0.0.34×13.82×23.5/1.1= 11.31KN

 $F_{cSd}=223.87KN \implies F_{cSd}>N_{RD}$ (non vérifiée).

On vois bien que la résistance au flambement de la diagonale comprimée n'est pas vérifiée.

Donc on augmente la section des cornières jusqu'à 2L (130x130x13) A = 64.6cm².

$$\lambda_{y} = \frac{l_{ky}}{i_{y}} = \frac{854}{3.96} = 215.65 = \lambda_{z} = \frac{l_{kz}}{i_{z}} = \frac{854}{3.96} = 215.65$$
$$\overline{\lambda}_{y} = \overline{\lambda}z = \frac{215.65}{93.9} = 2.29$$

Université de Bejaia/Génie civil/CM/2015-2016

 $\overline{\lambda}_{v} = \overline{\lambda}z = 5.02 > 0.2$ Donc il y a eu lieu de tenir compte du risque de flambement.

$$\chi_{y} = \chi_{z} = \frac{1}{\phi_{y} + [\phi^{2}_{y} - \overline{\lambda}^{2}_{y}]^{0.5}} \text{ Mais } \chi_{LT} \leq 1$$

Ou $\varphi_{y} = 0.5 [1 + \alpha_{y} (\overline{\lambda}_{y} - 0.2) + \overline{\lambda}_{y}^{2}]$
 $\varphi_{y} = \varphi_{z} = 0.5 [1 + 0.34 (2.29 - 0.2) + 2.29^{2}] = 3.47$
 $\chi = \frac{1}{3.47 + [3.47^{2} - 2.29^{2}]^{0.5}} = 0.164$

N_{RD}= 0.164×64.6×23.5/1.1= 227.09KN

F_{cSd}=223.87KN < N_{RD}=227.09 (c'est vérifiée).

V.4.3. vérification à la compression des barres :

La barre la plus sollicitée en compression est la barre N°11, avec un effort N = 223.87KN. Condition de résistance :

$$\sigma_{sd} \le \sigma_{rd} \Longrightarrow \frac{N}{s} \le \frac{fy}{\gamma m0}$$

$$\frac{223.87}{64.6} = 3.46 \text{KN/cm}^2 \le \frac{23.5}{1.1} = 21.36 \text{KN/m}^2$$

$$= 3,46 \text{KN/cm}^2 < = 21,36 \text{ KN/cm}^2 \text{ (Vérifiée)}.$$

D'où on adopte des cornières de 2L (130x130x13) pour les palées de stabilité.

V.5. Pré-dimensionnement de la poutre de contreventement verticale :

La poutre de contreventement verticale assurent la transmettions des efforts entre les diagonales de contreventement,

Figure V.9 : schéma indiquant la poutre de contreventement verticale.

La poutre reçoit un effort de compression F_{cSd} = 79.62KN

V. 5.1 Pré dimensionnement :

$$A \ge \frac{N_{st} \times \gamma m0}{F_y}$$
$$A \ge \frac{79.62 \times 1}{23.5} = 3.38 \text{ cm}^2$$

On adopte : HEB120 avec A = 34cm², P = 26.7kg/ml.

V. 5.2. Vérification de la résistance :

V. 5.2.1. Vérification aux instabilités :

a) vérification au flambement :

$$\begin{cases} \lambda_{y} = \frac{l_{ky}}{i_{y}} = \frac{600}{5.04} = 119.04 \\ \lambda_{z} = \frac{l_{kz}}{i_{z}} = \frac{600}{3.06} = 196.07 \\ \hline \lambda_{y} = \frac{\lambda_{y}}{\lambda_{cr}} \times \sqrt{\beta_{a}} = \frac{119.04}{93.9} \sqrt{1} = 1.26 \\ \hline \lambda_{z} = \frac{\lambda_{z}}{\lambda_{cr}} \times \sqrt{\beta_{a}} = \frac{119.04}{93.9} \sqrt{1} = 2.08 \end{cases}$$

 $\overline{\lambda}_{max}$ =2.08 > 0.2 Donc il y a eu lieu de tenir compte du risque de flambement.

h/b=1<1.2 t_f=11mm<100mm Axe ZZ $\Rightarrow \chi_{min} = 0.18$ courbe de flambement (c) $\alpha = 0.49$

 N_{RD} = 0.18×34×23.5/1.1= 130.74KN

 N_{Sd} = 79.62KN \implies N_{Sd} < N_{RD} (c'est vérifiée).

On adapte **HEB120** comme une poutre de contreventement verticale.

CHAPITRE VI : Etude de portique

ETUDE DE PORTIQUE

VI.1. Introduction :

Les portiques, qui constituent l'ossature principale des bâtiments, sont composée de traverses (ou fermes), qui supportent les pannes, et de poteaux, qui supportent les traverses.

Leur conception varie en fonction :

 - de leur portée : on utilise les profils laminés à sections constantes pour des petites portées (jusqu' à 40 m), des PRS à sections variables pour des longues portées (entre 40 et 80m), et des portiques à treillis pour les très longues portées (par exemple : hangars aéronautiques entre 80 et 140 m)

- du schéma statique de la structure en général et du portique en particulier. Ce schéma statique dépend aussi de la nature du sol, de l'existence ou non de ponts roulants, de la nature des équipements utilisés (machines vibrantes ou non, etc...)

- du procédés technologique utilisé par le constructeur.

VI.2. Portique de projet :

Le portique de notre projet présent les dimensionnes suivantes :

- La hauteur des poteaux égale à 12m
- La hauteur de faitage égale à 13.65m
- La portée entre les poteaux 27.5m
- La longueur des traverses 13.85m
- La position des supports de la poutre de roulement à niveau h=+8m

Figure VI.1 : vue de portique en 2D.

Université de Bejaia/Génie civil/CM/2015-2016

VI.2.1. Le portique le plus sollicité :

Le portique le plus sollicité par les différant charges soit permanentes ou variables c'est le portique intermédiaire le plus chargé par le vent et autres charges par rapport le portique de rive.

VI.3. Cas de chargement :

Le portique peut être soumise à des à des actions soit permanentes, soit variables, Lorsque ces actions agissent simultanément, on dit que cette structure est soumise à des combinaisons d'actions Lors de cet événement d'action simultanées, une action peut agir en intensité plus qu'une autre. Ceci est pris en charge par les coefficients partiels de sécurité définis par les règlements dans lesquels des formules relatives aux combinaisons d'actions ont été établies.

VI.3.1. Définir les cas de chargement :

Pour dimensionner un portique, dans le cadre des actions définies initialement (tels que le poids propre, le vent, la neige, le pont roulant,), il faut définir tous les cas de chargements possibles inclus dans une action.

VI.3.1.1. Les charges permanentes (G):

Le portique intermédiaire support plusieurs charges permanente tan que :

Les traverses supportent une charge/ml de Poids propre des pannes et la couverture :

 $= (G_{IPE160}/e) \times 6 + (poids_{couverture} \times 6) = (15.8/1.5) \times 6 + (14 \times 6) = 147.2 daN/ml = 1.472 KN/ml.$

Les poteaux supports des charges concentrés de poids propre des lisses avec le bardage :

 $= (G_{UPE120} \times 6) + (poids_{bardage} \times 6 \times e) = (12.1 \times 6) + (15.5 \times 6 \times 1.2) = 1.842 \text{ KN/ml}.$

VI.3.1.2. La Neige (N):

D'après l'étude climatique on a déterminé que N=0.288KN/m²

La charge/ml de la neige sur la traverse égale à 0.288 ×6=1.728KN/ml.

VI.3.1.3. Le pont roulant (P):

La poutre de roulement avec le pont roulant en charge générer des charges verticales et horizontales transversale concentrées sur les deux corbeaux.

Charges verticales :

Qr,max =61.80 KN

Qr,(max)=35.7KN

Charges horizontales :

 $H_{T,2} = -5.40$ KN et $H_{T,1} = 3.07$ KN

VI.3.1.4. Le vent (W):

Le vent représente une action regroupant sur la structure ou bien le portique suivant deux directions différant tel que :

1ér cas de chargement(W₁s) : le vent sur long pan avec une surpression interne.

2émme cas de chargement(W1d) : le vent sur long pan avec une dépression interne.

3émme cas de chargement(W_{2s}) : le vent sur pignon avec une surpression interne.

4émme cas de chargement(W2d) : le vent sur pignon avec une dépression interne.

1ér cas de chargement(W1Surpression) :

Dans ce cas répartition des charges du vent sur le portique intermédiaire le plus sollicité comme suit :

Figure VI.2 : la répartition des charges du vent sur le portique le plus sollicité en KN/ml le cas de W1surpression.

2émme cas de chargement(W1dépression) :

Dans ce cas répartition des charges du vent sur le portique intermédiaire le plus sollicité comme suit :

Figure VI.3 : la répartition des charges du vent sur le portique le plus sollicité en KN/ml le cas de W1dépression.

3émme cas de chargement (W2 surpression) :

Dans ce cas répartition des charges du vent sur le portique intermédiaire le plus sollicité comme suit :

Figure VI.4 : la répartition des charges du vent sur le portique le plus sollicité en KN/ml le cas de W2surpression.

4émme cas de chargement (W2 dépression) :

Dans ce cas répartition des charges du vent sur le portique intermédiaire le plus sollicité comme suit :

Figure VI.5 : la répartition des charges du vent sur le portique le plus sollicité en KN/ml le cas de W2dépression

VI.3. 2. Les combinaisons :

On utilise la combinaison à l'ELU de l'EC 0 suivant :

$$\sum \gamma_G G + \gamma_Q Q + \sum \gamma_Q \Psi_i Q_i;$$

D'où : γ_{G} =1.35 ; γ_{G} =1.5 ;

les charges	ψ_0	ψ_1	ψ_2
W	0.67	0.2	0
Ν	0.67	0.15 pour h≤500m	0
Р	0.87	1	0

Tableau VI.1 : les coefficients de Ψ_i en fonction des charges.

Ceci est pris en charge par ses coefficients partiels de sécurité définis par les règlements dans lesquels des formules relatives aux combinaisons d'actions ont été établies (l'ECO).

Les combinaisons possibles sont dans le tableau suivant :

Cas de	Numéro	Combinaison	Résultant
chargement			
G et N	ELU1	1.35G+1.5N	1.35G+1.5N
G et P	ELU2	1.35G+1.5P	1.35G+1.5P
G et W	ELU3	1.35G+1.5W	1.35G+1.5W
	ELU4	G+1.5W	G+1.5W
G ; N et P	ELU5	$1.35G+1.5N+1.5\psi_0P$	1.35G+1.5N+1.305P
	ELU6	1.35G+1.5P+1.5 ψ_0 N	1.35G+1.5P+1.005N
G ; N et W	ELU7	$1.35G+1.5N+1.5\psi_0W$	1.35G+1.5N+1.005W
	ELU8	1.35G+1.5W+1.5 ψ_0 N	1.35G+1.5W+1.005N
G ; W et P	ELU9	1.35G+1.5W+1.5 ψ_0 P	1.35G+1.5W+1.305P
	ELU10	$1.35G+1.5P+1.5\psi_0W$	1.35G+1.5P+1.005W
G ; W ; N et P	ELU11	$1.35G+1.5N+1.5\psi_0W+1.5\psi_1P$	1.35G+1.5N+1.005W+1.5P
	ELU12	$1.35G+1.5W+1.5\psi_0N+1.5\psi_1P$	1.35G+1.5W+1.005N+1.5P
	ELU13	$1.35G+1.5P+1.5\psi_0N+1.5\psi_1W$	1.35G+1.5P+1.005N+0.3W

Ces combinaisons sont nombreuses, il en ressort un temps de calcul élevé. Ce qui justifie le recours aux logiciels de calculs numériques sur ordinateur.

D'après les résultats obtenus à l'aide de logiciels ROBOT Structural on a déterminé les sollicitations maximal correspondant à chaque élément de portique (poteau et traverse) :

✓ 1^{er} cas le vent perpendiculaire au long pan avec une surpression interne (W1s) :

élément	traverse	Poteau
Combinaison	ELU1	ELU1
M _{sd max} (KN.m)	291.75	291.75
Combinaison	ELU5	ELU6
N _{sd max} (KN)	48.6	46.37
Combinaison	ELU1	ELU4
Vsd max (KN)	77.5	207.12

élément	traverse	Poteau	
Combinaison	ELU1	ELU1	
M _{sd max} (KN.m)	291.75	291.75	
Combinaison	ELU11	ELU13	
Nsd max (KN)	55.99	63.92	
Combinaison	ELU1	ELU4	
V _{sd max} (KN)	77.59	212.47	

✓ 2^{éme} cas le vent perpendiculaire au long pan avec une dépression interne (W_{1d}) :

✓ 3^{éme} cas le vent perpendiculaire au pignon avec une surpression interne (W₂s) :

élément	traverse	Poteau	
Combinaison	ELU1	ELU1	
M _{sd max} (KN.m)	291.75	291.75	
Combinaison	ELU5	ELU6	
Nsd max (KN)	48.6	50.20	
Combinaison	ELU1	ELU4	
Vsd max (KN)	77.55	207.12	

✓ 4^{eme} cas le vent perpendiculaire au pignon avec une surpression interne (W2d) :

élément	traverse	Poteau
Combinaison	ELU1	ELU1
M _{sd max} (KN.m)	291.75	291.75
Combinaison	ELU5	ELU13
N _{sd max} (KN)	48.6	52.90
Combinaison	ELU1	ELU13
Vsd max (KN)	77.5	212.31

Le cas la plus défavorable lorsque le vent perpendiculaire au long-pan avec une dépression intérieure (W_{1d}) comme :

Elément	Traverse	Poteau
M _{sd max} (KN.m)	291.75	291.75
N _{sd max} (KN)	55.99	63.92
V _{sd max} (KN)	77.59	212.47

VI.4. Pré dimensionnement (Poteau, traverse)

VI.4.1. Poteau :

VI.4.1.1. Pré dimensionnement :

 $M_{sdy} \le M_{ply} = \frac{W_{ply} \times f_y}{\gamma_{m1}} \Rightarrow W_{ply} \ge \frac{M_{sd} \times \gamma_{m1}}{f_y} = \frac{291.75 \times 100 \times 1.1}{23.5} = 1365.64 \text{cm}^3$

 $W_{ply \ge 1365.64 \text{ cm}^3}$; on opte pour un HEA340 avec $W_{ply} = 1850 \text{ cm}^3$

VI.4.1.2. Incidence de l'effort normal :

 $N_{sd} = 63.92 \text{KN}$

 $N_{plRd} = \frac{A \times f_y}{\gamma_{m1}} = \frac{133.5 \times 23.5}{1.1} = 2852.04 \text{KN}$

 $N_{sd} = 63.92 \text{KN} < N_{plRd} = 2852.04 \text{KN}$

Et N_{sd}= 63.92KN < 0.25 N_{plRd}= 713.01KN

→ L'incidence sur le moment résistant peut être négligée.

VI.4.1.3. Vérification à l'effort tranchant :

Vsd max=212.47KN

$$V_{pl,rd} = A_v \cdot \frac{fy}{\gamma M0\sqrt{3}} = 44.95 \times \frac{23.5}{1.\sqrt{3}} = 609.89 \text{KN} \Rightarrow \frac{1}{2} \times \text{Vplrd} = 304.93 \text{KN}$$

 $\Rightarrow V_{sdz} = 212.47 \text{KN} < \frac{1}{2} \times \text{Vplrd} = 304.93 \text{KN} \text{ (verifiée)}$

VI.4.1.4. Vérification la condition de moment fléchissant et l'effort axial :

 $\frac{Msd}{MplRd} + \left(\frac{Nsd}{NplRd}\right)^2 < 1$ $\frac{291.95}{395.22} + \left(\frac{63.92}{2852.04}\right)^2 = 0.74 < 1 \quad \text{la condition est vérifiée.}$

VI.4.2. traverse:

VI.4.2.1. Pré dimensionnement :

 $M_{sd} \le M_{ply} = \frac{W_{ply} \times F_y}{Y_{m0}} = 291.75 \text{ KN.m} \Rightarrow W_{ply} \ge \frac{M_{sd} \times Ym0}{F_y} = \frac{291.75 \times 10^2 \times 1.1}{23.5} = 1365.63 \text{ cm}^3$ D'après le tableau des profils on adopte un IPE450 avec $W_{ply} = 1702 \text{ cm}^3$ et G = 77.6Kg/m

VI.4.2.2. Vérification de la traverse :

VI.4.2.3.Vérification à l'effort tranchant :

V_{sd,max} = 77.59KN

On doit vérifier la formule suivante : $V_{sd,max} \leq V_{PL} = Av. \frac{F_y}{\sqrt{3} \times Y_{max}}$

Avec
$$A_v = A-2.b.t_f + (t_w + 2r)$$
. $t_f \Rightarrow A_v = 98.82 - (2 \times 19 \times 1.46) + (0.94 + 2 \times 2.1) \times 1.46$

→
$$A_v = 50.84 \text{ cm}^2$$

Donc :
$$V_{PL} = 50.84$$
. $\frac{23.5}{5} = 627.07$ KN

 $V_{sd,max} = 77.59 \le V_{PL} = 627.07 \text{KN}$ (vérifiée)

VI.4.2.4. Incidence de l'effort normal :

 $N_{sd,max} = 55.99KN$ $N_{pl,Rd} = \frac{A \times F_y}{Y_{m0}} = \frac{98.82 \times 23.5}{1.1} = 2111.15KN$ $N_{sd,max} = 55.90KN < 0.25 N_{sd} = 527$

 $N_{sd,max} = 55.99 \text{KN} < 0.25 \text{ N}_{pl,Rd} = 527.68 \text{KN}$

VI.4.2.5. Vérification la condition de moment fléchissant et l'effort axial :

 $\frac{Msd}{MplRd} + (\frac{Nsd}{NplRd})^2 < 1$

 $\frac{291.95}{399.97} + (\frac{55.99}{2111.15})^2 = 0.73 < 1$ la condition est vérifiée.

VI.5. Calcul du jarret :

Les jarrets de portique seront dimensionnés avec les sollicitations due moments My les plus défavorables,

Figure VI.6 : *la répartition de moment M_{ymax} sur le portique.*

VI.5.1. côté de traverse :

La forme de la courbe moment My sur la traverse est parabolique, de la forme $Y=Ax^2$

Avec Mb : moment a la zone nodal ;
Mc : moment au faitage ;
Mb=291.75KN.m ; Mc=217.02KN.m
à x=0
$$\Rightarrow$$
 y=0
et à x=s =13.85m \Rightarrow y=Mc+Mb=a.s²
 \Rightarrow a= $\frac{Mc+Mb}{s^2}$ \Rightarrow a=3.65
a l'amorce du jarret, x=xj telle que
c+Mel_{IPE450} = a xj²+M_c
 \Rightarrow xj² = $\frac{Mc+MelIPE450}{a}$
 \Rightarrow xj= $\left(\frac{Mc+MelIPE450}{a}\right)^{1/2}$
 \Rightarrow xj= $\left(\frac{217.02+352.5}{3.65}\right)^{1/2}$ =12.49m
 \Rightarrow Lj traverse =13.85-12.49=1.35m
On adopte Lj traverse=1.80m

Figure VI.7 : schéma statique du jarret de la traverse

VI.5.2. côté de poteau :

La hauteur de poteau h=12m, la courbe des moments est droit passent par l'origine du repère Sont équation M=a.z ; tel que pour (z=0 \Rightarrow M=0)

et (z=h \Rightarrow M=12.a=Ma+Mb= 208.9+291.75 \Rightarrow a= $\frac{Ma+Mb}{12}$ =47.72; \Rightarrow M=47.72.z

A l'amorce du jarret z=zj et M=Mj=Ma+Mel_{IPE450}=208.9+352.5=561.4KN.m

 $\Rightarrow zj = \frac{561.4}{a} = \frac{561.4}{47.72} = 11.76m$ $\Rightarrow Hj \text{ poteau} = h - zj = 0.23m$ On adopte Hj poteau = 33cm

Figure VI.8 : schéma statique du jarret de la traverse coté de poteau.

VI.6.Conclusion :

Le pré-dimensionnement de portique nous a permis de déterminer toutes les sollicitations agissantes sur notre structure portique, dont on a utilisé dans le calcul des éléments porteuses.

Après le pré-dimensionnement on a obtient des sections suivants :

- ✓ Le profilé IPE450 et admis pour la traverse.
- ✓ Le profilé HEA340 admis pour le poteau.
- ✓ Jarret : L=180cm et H=33cm.

CHAPITRE VII : Etude Sismique

ETUDE SISMIQUE

VII.1 Introduction :

Les actions sismiques sur un bâtiment sont des actions dynamiques complexes. Elles se manifestent par des mouvements essentiellement horizontaux imposés aux fondations. Les constructions résistent à ces mouvements par des forces d'inertie dues à leur masse qui s'opposent aux mouvements. Ce qui entraine bien entendu des efforts dans la structure. L'objectif visé dans ce chapitre est la détermination des efforts sismiques susceptibles à solliciter notre structure et la vérification de la structure aux recommandations d'RPA (règlement parasismique Algérien version 99/2003).

VII.2 Analyse de la structure :

VII.2.1 Type d'analyse :

L'analyse élastique globale, peut être statique ou dynamique, selon la satisfaction des conditions posées par les règlements en vigueur, sur les cas de chargement.

VII.2.2 Méthodes de calcul :

En Algérie, la conception parasismique des structures est régie par un règlement en vigueur à savoir « RPA99 version 2003 ». Ce dernier propose trois méthodes de calcul dont les conditions d'applications différentes et cela selon le type de structure à étudier, le choix des méthodes de calcul et la modélisation de la structure doivent avoir pour objectif de reproduire au mieux le comportement réel de l'ouvrage. Ces méthodes sont suivantes :

- 1. La méthode statique équivalente.
- 2. La méthode d'analyse modale spectrale.
- 3. La méthode d'analyse dynamique par accélérogramme.

VII.3. La méthode statique équivalente :

Les codes parasismiques modernes autorisent à conduire l'analyse de ces ouvrages sous les actions sismiques par des méthodes simplifiées ne prenants en compte fondamental de vibration dans deux **directions perpendiculaires successives**.

La forme de ces modes fondamentaux peut être soit spécifiée forfaitairement dans les codes, soit calculée de manière approchée.La méthode statique équivalente permet d'avoir des résultats **conservatifs** (pour les efforts, les contraintes ou les déplacements) par le fait que la masse totale en vibration est intégrée dans le **mode fondamental**.

On appelle **mode fondamental** de la structure (ou premier mode) le mode correspondant à la fréquence la plus basse.

VII.3.1 Principe de la méthode :

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de force statique fictive dont les efforts sont considérés équivalents à ceux de l'action sismique.

VII.3.2. Calcul de la force sismique totale :

D'après l'article 4.2.3 de RPA99 version 2003, la force sismique totale V qui s'applique à la base de la structure, doit être calculée successivement dans deux directions horizontales orthogonales selon la formule :

$$\mathbf{V} = \frac{A \times D \times Q}{R} \times W$$

A : coefficient d'accélération de zone, donné par le tableau (4.1) de RPA99 version 2003 en fonction de la zone sismique et du groupe d'usage du bâtiment. Dans notre cas, on est dans la zone IIa et un groupe d'usage (H = 13.65m<17m)

Nous trouverons : **A = 0.15**

D : facteur d'amplification dynamique, il est en fonction de la catégorie de site, facteur de correction d'amortissement (η) et de la période fondamental de la structure (T) :

T₂ : Période caractéristique associée à la catégorie de site donnée par (le tableau 4.7 page 49 RPA99)

$$\Rightarrow$$
 (T₂ = 0.5)

٢

Le facteur de correction d'amortissement est donné par la formule :

$$\eta = \sqrt{\frac{7}{(2+\zeta)}} \ge 0.7$$
formule 4.3 page 38 RPA99V2003

 $\boldsymbol{\xi}$: le pourcentage d'amortissement critique, il est en fonction de du matériau constructif, de type de structure et de l'importance de remplissage. Ses valeurs sont données par le tableau 4.2 page 38

Dans notre cas : portique en acier de remplissage léger, $\xi = 4\% \rightarrow \eta = 1,08$

Avec :

 h_N : hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau

 c_{τ} : coefficient, il est en fonction du système de contreventement et du type de remplissage,

Donné par le Tableau4.6 (C_T = 0.085), portique auto stable ductile en acier sans remplissage en maçonnerie.

 $T = 0.085 .(13.65)^{\frac{3}{4}} = 0.60$

D'après le tableau 4.7 du RPA99 : T₂ = 0.5s, donc : T₂ \leq T \leq 3s \Rightarrow **D=2.39**

R : coefficient de comportement global de la structure donné par le tableau 4.3 page42 RPA99 :

Dans le sens longitudinal et transversal :

L'ossature est contreventée par palées triangulées en V: (R=3).

En cas d'utilisation de systèmes de contreventement différents dans les deux directions considérées il y a lieu d'adopter pour le coefficient **R** la valeur la plus petite. D'après le RPA

Q : facteur de qualité, il est fonction de :

La redondance et la géométrie des éléments constituants

La régularité en plan et en élévation

La qualité du contrôle de la construction, elle est déterminée par la formule suivante :

 $Q = 1 + \sum_{1}^{5} P_q$ Tableau 4.4 page 43 RPA99 Avec :

Pq : pénalité à retenir selon le critère q (satisfaite ou non)

q : critère de qualité.

Les critères de qualité à vérifier sont :

Les critères	Pq
Condition minimale sur les files de contreventement	$P_q = 0.05$
La redondance en plan, observée	$P_q = 0.05$
La régularité en plan	P _q =0
Régularité en élévation	Pq=0
Contrôle de qualité des matériaux	P _q =0.
Contrôle qualité de l'exécution	Pq =0.1
$Q=1+\sum p_q$	1+(0.2)=1.20

W : poids total de la structure.

 $W = \sum W_i$, avec : $W_i = W_{Gi} + \beta W_{Qi}$ Tableau 4.5 page 45 RPA99

Avec :

W_{Gi} : poids du aux charges permanentes.

W_{Qi} : poids du aux charges d'exploitation.

β : coefficient de pondération donné par le tableau 4.5 page 45 RPA : **(β=0.5)**

Les poids estimés des différents éléments de la structure sont présentés comme suit :

 $W_G=2000.48KN$ et $W_Q=20KN$

avec : $W_i = W_{Gi} + \beta W_{Qi} \rightarrow W_T = 2020.48 \text{KN}$

VII.3.3. La force sismique totale :

L'effort tranchant à la basse est :

$$V = \frac{A \times D \times Q}{R_{x,y}} \times W_T = \frac{0.15 \times 2.39 \times 1.2}{3} \times 2020.48 = 289.73 \text{KN}$$

VII.4. Méthode dynamique modale spectrale :

VII.4.1. Principe de la méthode spectrale :

Par cette méthode, il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

VII.4.2. Spectre de réponse de calcul :

L'action sismique est représentée par le spectre de calcul RPA 99 V2003 :

$$\frac{S_a}{g} = \begin{cases} 1.25 \text{ A} \left(1 + \frac{T}{T_1} \left(2.5\eta \frac{Q}{R} - 1 \right) \right) & 0 \le T \le T_1 \\ 2.5\eta (1.25 \text{ A}) \frac{Q}{R} & T_1 \le T \le T_2 \\ 2.5\eta (1.25 \text{ A}) \frac{Q}{R} \left(\frac{T_2}{T} \right)^{2/3} & T_2 \le T \le 0.3s \\ 2.5\eta (1.25 \text{ A}) \frac{Q}{R} \left(\frac{T_2}{3} \right)^{2/3} \left(\frac{3}{T} \right)^{5/3} & T \ge 0.3s \end{cases}$$

Avec les coefficients A, η , R, T1, T2, Q : sont déjà déterminés.

Qx 1.2; A = 0,15; η = 1,08; T1 = 0,15s; T2 = 0,5s;

VII.4.3.Nombre de modes de vibrations à considérer :

Selon le RPA99/V2003, Le nombre de modes de vibration à retenir doit être tel que :

- La somme des masses modales effectives pour les modes retenus soit égale à 90 % au moins de la masse totale de la structure.
- Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure.

Le minimum de modes à retenir est de trois (03) dans chaque direction considérée.

- Dans le cas où les conditions décrites ci-dessus ne peuvent pas être satisfaites à cause de l'influence importante des modes de torsion, le nombre minimal de modes (K) à retenir doit être tel que :

$K \ge 3 \times \sqrt{N}$ et $T_K \le 0,2$ sec **RPA99/2003 (4.14.Art.4.3.3)**

Ou:N est le nombre de niveau au-dessus du sol et T_{K} la période du mode K.

VII.4.4.Résultat de l'analyse :

VII.4.4.1 Analyse N°1 :

A la présence la masse mobile (pont roulant) dans notre structure, on divise l'analyse en deux parties :

a) 1^{er} cas : position du pont roulant au milieu de la structure :

Figure VII.1 : les déformations dans les trois premières modes, cas de pont roulant au milieu.

Université de Bejaia/Génie civil/CM/2015-2016

Type de déformation :

Mode 1 : translation suivant l'axe xx, Avec T=0.88s

- Mode 2 : une torsion, Avec T=0.83s
- Mode 3 : rotation autour l'axe zz, Avec T=0.79s

b) 2^{eme} cas : position du pont roulant à l'extrémité de la structure :

Figure VII.2 : les déformations dans les trois premières modes, cas de pont roulant à l'extrémité de la structure.

Type de déformation :

Mode 1 : translation suivant l'axe xx, Avec T=0.88s

Mode 2 : une torsion, Avec T=0.84s

Mode 3 : rotation autour l'axe zz, Avec T=0.79s

La structure comporta mal vis-à-vis l'action sismique, pour éviter la torsion de la deuxième mode générer par le pont roulant on doit contreventer le sens transversal (pignon).

VII.4.4.2. Analyse N°2 :

Dans ce cas, la structure contreventée dans le sens transversal les résultants de l'analyse comme suite :

VII.4.4.3. Schématisation du spectre de réponse suivant X et Y :

FigureVII.3 : Schéma du spectre de réponse suivant X.

FigureVII.4 : Schéma du spectre de réponse suivant Y.

Université de Bejaia/Génie civil/CM/2015-2016

VII.4.4.4. Pourcentage de la participation de masse :

Cas/Mode		Fréquence [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masses Cumulées UZ [%]	Masse Modale UX [%]	Masse Modale UY [%]
6/	1	2,08	0,48	58,45	0,00	-1,#J	58,45	0,00
6/	2	3,02	0,33	58,45	63,49	-1,#J	0,00	63,49
6/	3	3,23	0,31	58,77	63,49	-1,#J	0,31	0,00
6/	4	3,63	0,28	59,33	63,60	-1,#J	0,57	0,11
6/	5	3.64	0.27	60.40	64.01	-1.#J	1.07	0.41
6/	6	3.74	0.27	60.44	64.88	-1,#J	0,04	0.88
6/	7	3.92	0.26	61.70	65.07	-1.#J	1.26	0.19
6/	8	4 18	0.24	61 77	65.08	-1#1	0.07	0.00
6/	9	4 25	0.24	62.04	65.09	-1#1	0.27	0.01
6/	10	4.37	0.23	82.03	65.28	-1#1	19.99	0.19
6/	11	4.81	0.21	82,00	68.85	-1#1	0.12	3.57
6/	42	5.23	0.19	82.16	69.05	-1,#3	0,00	0.21
6/	42	5.26	0,19	82.16	69.13	-1,#3	0,00	0.07
6/	44	5.28	0,13	82.16	70.42	-1,#3	0,00	1 30
6/	45	5.38	0,13	82,10	70,42	-1,#3	0,56	0.00
6/	10	5,50	0,13	82.71	70,42	-1,#3	0,00	0.28
6/	47	5,04	0,10	82.71	70,70	-1,#5	0,00	0,20
0/	1/	5,71	0,10	02,71	70,07	-1,#5	0,00	0,10
0/	10	6,00	0,17	02,00	71,31	-1,#J	0,03	0,45
0/	19	6.20	0,10	02,00	71,31	-1,#3	0,00	5,00
6/	20	6,30	0,10	02,00	76,95	-1,#J	0,00	5,04
6/	21	0,74	0,15	02,00	70,97	-1,#J	0,00	0,02
6/	22	7,01	0,14	82,86	77,45	-1,#J	0,05	0,48
6/	23	7,06	0,14	82,86	11,45	-1,#J	0,01	0,00
6/	24	1,22	0,14	82,86	82,71	-1,#J	0,00	5,26
6/	25	7,53	0,13	82,86	83,55	-1,#J	0,00	0,84
6/	26	7,61	0,13	82,93	83,55	-1,#J	0,07	0,00
6/	27	7,62	0,13	83,05	83,55	-1,#J	0,11	0,00
6/	28	7,73	0,13	83,11	83,55	-1,#J	0,06	0,00
6/	29	8,16	0,12	83,11	83,57	-1,#J	0,00	0,02
6/	30	8,18	0,12	83,12	83,65	-1,#J	0,01	0,08
6/	31	8,32	0,12	83,16	85,83	-1,#J	0,03	2,18
6/	32	8,35	0,12	83,93	87,76	-1,#J	0,78	1,93
6/	33	8,35	0,12	86,74	87,99	-1,#J	2,81	0,23
6/	34	0,00	0,12	00,02	87.00	-1,#J	0,08	0,00
6/	20	8.84	0,11	86.83	07,99	-1,#J	0,00	2.94
6/	37	8.94	0,11	86.84	91.07	-1,#3	0.01	0.13
6/	38	9,10	0,11	86.84	91.53	-1.#J	0.00	0,46
6/	39	9,15	0,11	86,87	91,57	-1,#J	0,04	0,04
6/	40	9,41	0,11	86,88	91,87	-1,#J	0,01	0,30
6/	41	9,43	0,11	86,88	91,90	-1,#J	0,00	0,03
6/	42	9,50	0,11	86,88	91,91	-1,#J	0,00	0,01
6/	43	9,61	0,10	86,88	91,91	-1,#J	0,00	0,00
6/	44	9,64	0,10	86,89	91,97	-1,#J	0,01	0,06
6/	45	9,74	0,10	86,89	91,99	-1,#J	0,00	0,02
6/	46	9,87	0,10	86,89	92,04	-1,#J	0,00	0,04
6/	47	10,89	0,09	89,15	92,19	-1,#J	2,26	0,16
6/	48	10,95	0,09	89,67	93,36	-1,#J	0,52	1,17
6/	49	11,38	0,09	89,70	93,36	-1,#J	0,04	0,00
6/	50	11,99	0,08	09,72	93,36	-1,#J	0,02	0,00
6/	51	12,07	0,08	09,75	94,05	-1,#J	1.00	0,69
6/	52	12,30	0,00	90,03	54,05	-1,#J	1,09	0,00

TableauVII.1 : Pourcentage de participation de masse.

Le pourcentage de participation de masse est supérieur à 90[%] suivant la direction yy à partir de mode 36,et dans le mode 52 pour la direction xx mieux représenter le comportement de la structure, dans les trois premiers modes on a :

- -Translation suivant (X) pour le premier mode.
- -Translation suivant (Y) pour le deuxième mode.
- -Rotation pour le troisième mode.

VII.4.4.5.Les réponses modales de la structure :

La déformation de la structure suivant les modes de vibration les plus prépondérants est illustrés par les figures suivantes :

- ♦ Déformation modale
- **Mode 1 :** Translation suivant X-X, période T =0,48s, taux de participation de la masse 58.45%

FigureVII.5 : Mode de déformation (1).

• **Mode2 :** translation suivant Y-Y, période T =0.33s, , taux de participation de la masse 63.49%

FigureVII.6. : Mode de déformation (2).

• Mode 3 : Rotation autour l'axe Z-Z, période T =0,31s,

FigureVII.7. : Mode de déformation (3).

VII.4.4.6. Vérification de péroide fondamentale de la structure :

La valeur de T, calculée par le logiciel Robot cette période ne doit pas dépasser celle estimée à partir de la formule empirique appropriée de plus de 30%.(RPA99V2003 4.2.4.4) La période fondamentale obtenu par logiciel : T = 0.48s.

 $T = 0.085 . (13.65)^{\frac{3}{4}} = 0.60s$

T+30%T=0.78s >0.48s La condition est vérifiée.

VII.5. Analyse des résultats :

Il y a lieu de constater que la structure présente des translations suivant les deux directions horizontales et une rotation autour l'axe vertical.

VII.5.1. Les combinaisons de calcul :

✓ Notation :

G : Poids propre.

N : Action de la neige.

P : action du pont roulant.

W: Action du vent.

- **W1** : Vent sur le long pan.
- **W2** : Vent sur le pignon.

E : Action sismique.

Ceci est pris en charge par ses coefficients partiels de sécurité définis par les règlements dans lesquels des formules relatives aux combinaisons d'actions ont été établies (l'ECO).

 $\sum \gamma_G G + \gamma_Q Q + \sum \gamma_Q \Psi_i Q_i; \quad \text{D'où:} \ \gamma_G = 1.35; \gamma_G = 1.5;$

les charges	ψ_0	ψ_1	ψ_2
W	0.67	0.2	0
Ν	0.67	0.15 pour h≤500m	0
Р	0.87	1	0

Tableau VII.2 : les coefficients de Ψ_i en fonction des charges.

La neige n'est pas combinée avec le vent car elle joue un rôle favorable.

Les combinaisons possibles sont dans le tableau suivant :

Combinaison (ELU)	Combinaison (ELS)	Combinaison (ACC)
Etat limite ultime	Etat limite de service	Accidentelle
1.35G+1.5N	G+N	0.8G+Ex
1.35G+1.5P	G+P	0.8G-Ex
G+1.5W1	G+W1	0.8G+E _Y
G+1.5W1	G+W2	0.8G-Ey
1.35G+1.5N+1.305P	G+N	G+P+1.2E _x
1.35G+1.5P+1.005N	G+P+0.67N	G+P+Ey
1.35G+1.5P+1.005W1	G+P+0.67W1	
1.35G+1.5P+1.005W2	G+P+0.67W2	
1.35G+1.5W1+1.305P	G+W1+0.87P	
1.35G+1.5W2+1.3005P	G+W2+0.87P	
1.35G+1.5W1+1.005N+1.5P	G+W1+0.67N+P	
1.35G+1.5W2+1.005N+1.5P	G+W2+0.67N+P	
1.35G+1.5N+1.005W1+1.5P	G+N+0.67W1+P	
1.35G+1.5N+1.005W2+1.5P	G+N+0.67W1+P	

TableauVII.3 : Combinaisons de calcul.

VII.5.2. Résultantes des forces sismiques de calcul :

Selon l'article 4.3.6 du RPA 99, la résultante des forces sismiques à la base obtenue par la combinaison des valeurs modales doit être supérieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente.

Sens XX :
$$V_x = \frac{A \times D \times Q}{R_{x,y}} \times W_T = \frac{0.15 \times 2.39 \times 1.2}{4} \times 2020.48 = 217.30$$
KN
Sens YY : $V_y = \frac{A \times D \times Q}{R_{x,y}} \times W_T = \frac{0.15 \times 2.39 \times 1.2}{3} \times 2020.48 = 289.73$ KN

Forces	V statique	0.8Vstatique	V dynamique	Observation
sismiques	(KN)	(KN)	(KN)	
Sens xx	217.30	173.84	190.183	Vérifiée
Sens yy	289.73	231.784	265.304	Vérifiée

TableauVII.4 : Vérification de l'effort tranchant à la base.

VII.5.3. Vérification des déplacements :

1^{èr} Cas : situation durable

Le CCM97 préconise de limiter les déplacements d'un bâtiment industriel à :

Déplacement horizontal :

 $\frac{H}{150}$ Sans charge du vent

 $\frac{H}{125}$ Avec charge du vent

Où H : hauteur du poteau

Déplacement vertical :

 $\frac{L}{200}$; L: longueur de la traverse

	Combinaisons		Déplacements max (cm)		
	Avec le vent	Sans le vent	Avec le vent	Sans le vent	
Suivant X	G+1.5W1	1.35G+1.5N	3.6	3.8	
Suivant Y	G+1.5W1	1,35G+1.5N	6.8	1.5	
Suivant Z	G+1.5W1	1,35G+1.5N	6.8	0.1	

TableauVII.5 : Déplacement max en situation durable dans la partie droite.

 $\frac{H}{150} = \frac{1200}{150} = 8$ cm ; $\frac{H}{150} = \frac{1200}{125} = 9.6$ cm ; $\frac{L}{200} = \frac{1385}{200} = 6.925$ cm.

On constate que les déplacements suivant les trois directions sont inférieurs aux déplacements admissibles, donc Les déplacements sont vérifiés.

2^{ème} Cas : situation accidentelle :

Le D.T.R RPA 99 V2003 précise que le déplacement horizontal est calculé sous les forces sismique seul (art 4.4.3) et préconise de limiter les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacent à 1% de la hauteur d'étage (art 5.10).

Le déplacement horizontal à chaque niveau k de la structure est calculé comme suite :

$$\delta_k = R.\delta_{ek}$$

 $\delta_{\scriptscriptstyle ek}$: Déplacement dû aux forces sismiques.

R : coefficient de comportement R=3

Il s'agit de vérifier le point le plus haut de la toiture par rapport au sol.

Direction	Combinaisons	Déplacement (cm)		
Suivant XX	AAC5 : G+P+1.2EX	6.4		
Suivant YY	ACC6 : G+P+EY	3.5		

 TableauVII.6 : Déplacement relatif des niveaux dans la partie droite.

$$H_{100} = \frac{1365}{100} = 13.65 \text{ cm}$$

Tous les déplacements sont inférieurs à 13.65 cm, donc ils sont vérifiés.

VII.5.4. Effet de deuxième ordre :

Les effets de seconde ordre (ou effet P- Δ) peuvent être négligés si la condition suivante est satisfaite :

$$\theta = \frac{P_k . \Delta_k}{V_k . h_k} \le 0,10$$

Avec: $P_k = \sum_{i=1}^n W_{Gi} + \beta Q_i$

- Pk : poids total de la structure et des charges d'exploitations associées au-dessus du niveau « k ».
- Vk : effort tranchant d'étage au niveau « k ».
- Δk : déplacement relatif du niveau « k » par rapport au niveau « k-1 ».
- hk : hauteur de l'étage « k ».

- Si $0,1 < \theta_k \le 0,2$ les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculés au moyen d'une analyse élastique du 1° ordre par le facteur : $\frac{1}{1-\theta_k}$
- Si $\theta_k > 0,20$, la structure est potentiellement instable et doit être redimensionnée.

♦ Sens X-X :

Niveau (cm)	Δ_k (cm)	P_k (KN)	<i>V_k</i> (KN)	<i>h</i> _{<i>k</i>} (cm)	$\frac{\Delta_k}{\mathbf{h}\mathbf{r}}$	$oldsymbol{ heta}_k$
1385	10.9	2020.48	173.84	1385	7.87*10 ⁻³	0,091

 $\theta_k < 0,1$ donc les effets P- Δ peuvent être négligés.

♦ Sens Y-Y:

Niveau (cm)	Δ_k (cm)	P_k (KN)	V_k (KN)	<i>h</i> _{<i>k</i>} (cm)	$\frac{\Delta_k}{\mathbf{h_e}}$	θ_k
1385	2	2020.48	289.73	1385	1.44*10 ⁻³	0,010

TableauVII.8 : Effet P-Δ suivant Y-Y dans la partie droite.

 $\theta_{\scriptscriptstyle k} <$ 0,1 donc les effets P- Δ peuvent être négligés.

CHAPITRE VIII : Vérification des éléments

VIII.1 Introduction :

Après un pré dimensionnement des éléments effectué au chapitre III et l'étude de portique de chapitre VI avec la modélisation de la structure en 3D par Robot au chapitre précédent, on se rapproche ainsi du cas réel avec les vraies sollicitations, on passe alors aux différentes vérifications (traction, flambement...etc.) des différents éléments dans les cas les plus défavorables tirés directement du logiciel Robot.

VIII.2. Vérification des traverses :

La vérification se fait pour la traverse la plus sollicitée ; dans notre cas ; la traverse la plus sollicitée est la $N^{\circ}168$ et de longueur L = 13.85 m ; comme illustré en rouge sur la figure suivante :

Figure VIII.1 Illustration de la traverse la plus sollicité.

VIII.2.1. Vérification de la section à la résistance :

a) Bilan des efforts :

La vérification à faire est de vérifier l'élément le plus sollicité (barre N°168) sous la combinaison ELU1 (1.35G+1.5N)

$$\begin{split} M_{ysd} &= 297.368 \text{KN.m} \\ N_{sd} &= 55.941 \text{KN} \\ V_{zsd} &= -82.098 \text{KN} \\ \frac{c}{tf} &= \frac{b}{2} \\ \frac{c}{tf} &\leq 10\epsilon \implies \frac{19}{2} \\ \frac{1.46}{1.46} &= 6.50 < 11\epsilon \\ \implies \text{ Semelle de classe } 2 \end{split}$$

Г

Г

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1$$

• Classe de l'âme : (Flexion composée)

$$\alpha = \frac{1}{d} \left(\frac{d+d_c}{2}\right) \le 1$$
Tableau 5.3.1 (feuille1) page 139 l'ECO3

$$d_c = \left(\frac{N_{sd}}{t_w \times f_y}\right) = \frac{55.941}{0.94 \times 23.5} = 2.53$$

$$\alpha = \frac{1}{37.88} \left(\frac{37.88 + 2.53}{2}\right) = 0.53 \le 1$$
Pour les sections de classe 1 :

$$\frac{d}{t_w} \le \frac{396\varepsilon}{(13\alpha - 1)}$$

$$\frac{d}{t_w} = \frac{37.88}{0.94} = 40.29$$

$$\frac{396\varepsilon}{(13\alpha - 1)} = \frac{396}{(13x053-1)} = 67.23$$

(13 α -1) (13×0.53-1) Donc : $\frac{d}{t_w} \le \frac{396\varepsilon}{(13\alpha-1)} \Longrightarrow$ classe 01

La section de **IPE450** est de **classe 01** Donc : on adopte un IPE500 pour les traverse

b) Incidence de l'effort tranchant :

On doit vérifier que : $V_{sd} \leq 0, 5V_{plRd}$

V_{zsd}= -84.439 KN

$$W_{\text{plrd}} = \frac{A_{\text{vz}} \times f_{\text{y}}}{\sqrt{3} \times \gamma_{\text{M0}}} = \frac{50.9 \times 23.5}{\sqrt{3} \times 1} = 690.59 \text{KN}$$

 $\frac{V_{zsd}}{V_{plrd}} = \frac{82.098}{690.59} = 0.11 < 0.5 \rightarrow \text{Pas de réduction du moment plastique.}$

Alors ; l'incidence de l'effort tranchant sur le moment résistant peut être négligée.

c) Incidence de l'effort normal :

Si $Nsd \prec Min(0, 25N_{pl,Rd}, 0, 5A_w f_y / \gamma_{m0})$: il n'y a pas d'interaction entre le moment résistant et l'effort normal. $N_{sd} = 55.941$ KN $N_{pl,rd} = \frac{A \times f_y}{\gamma_{m0}} = \frac{98.8 \times 23.5}{1} = 2321.8$ KN $0.25 \times N_{pl,rd} = 580.45$ KN $A_w = A - 2 \times b \times t_f = 98.8 \cdot 2 \times 19 \times 1.46 = 43.32$ cm² $0.5 \times \frac{A_w \times f_y}{\gamma_{m0}} = 925.47$ KN $N_{sd} < min(0.25 N_{plrd}, 0.5 \times \frac{A_w \times f_y}{\gamma_{m0}})$ $\Rightarrow N_{sd} < Min(580.45 KN; 925.47 KN)$ $\Rightarrow N_{sd} = 55.941KN < 580.45$ KN OK

Alors, l'incidence de l'effort normal sur le moment résistant peut être négligée.

VIII.2.2. Vérification de l'élément aux instabilités :

Flexion plane composée avec risque de flambement :
 On doit vérifier que :

$$\frac{N_{sd}}{\chi_{\min}.N_{pl,Rd}} + \frac{k_y.M_{ySd}}{M_{ply,Rd}} \le 1$$

Flexion plane composée avec risque de déversement :

On doit vérifier que :

$$\frac{N_{sd}}{\chi_z.N_{pl,Rd}} + \frac{k_{LT}.M_{ySd}}{\chi_{LT}.M_{ply,Rd}} \le 1$$

> Calcul du coefficient de réduction pour le flambement χ_{min} :

 $\chi_{\min} = Min(\chi_y; \chi_z)$

> Flambement par rapport à l'axe fort y-y (dans le plan du portique) :

Longueur de flambement :

 l_{y} = 1385 cm (Longueur total de la traverse)

L'élancement :

 $\lambda_y = \frac{l_y}{i_y} = \frac{1385}{18.5} = 74.86$

L'élancement réduit :

$$\overline{\lambda}_{y} = \left(\frac{\lambda_{y}}{\lambda_{1}}\right) \times [B_{A}]^{0.5}$$

Avec : $B_A = 1$ pour les sections de classe 1,2 et 3

$$\lambda_1 = \pi \left[\frac{E}{f_y} \right]^{0.5} = 3.14 \times \left[\frac{2.1 \times 10^6}{2350} \right]^{0.5} = 93.9$$

$$\overline{\lambda}_y = \left(\frac{74.86}{93.9} \right) = 0.79$$

Courbe de flambement : $\frac{h}{b} = \frac{450}{190} = 2.36 > 1.2$

Axe de flambement y-y \rightarrow courbe de flambement a $\rightarrow \alpha_y = 0,21$

$$\phi_{y} = 0.5 \left[1 + \alpha(\overline{\lambda}_{y} - 0.2) + \overline{\lambda}_{y}^{2}\right]$$

$$\phi_{v} = 0.5[1 + 0.21(0.79 - 0.2) + 0.79^{2}] = 0.874$$

$$\chi_{y} = \frac{1}{\phi_{y} + (\phi_{y}^{2} - \overline{\lambda_{y}}^{2})^{0.5}} = \frac{1}{0.874 + (0.874^{2} - 0.79^{2})^{0.5}} = 0.80$$

> Flambement par rapport à l'axe faible z-z (hors plan du portique) :

Longueur de flambement :

Autour de l'axe faible Z-Z (dans le plan perpendiculaire de l'âme), la traverse est empêchée de flamber sur toute sa longueur par les pannes.

Donc la longueur de flambement l_z =150 cm L'élancement :

$$\lambda_z = \frac{l_z}{i_z} = \frac{150}{4.12} = 36.40$$

L'élancement réduit :

$$\bar{\lambda}_z = \left(\frac{36.40}{93.9}\right) = 0.38$$
 Courbe de flambement : $\frac{h}{b} = \frac{450}{190} = 2.36 > 1.2$

Axe de flambement z-z \rightarrow courbe de flambement b $\rightarrow \alpha_z = 0,34$

$$\phi_z = 0.5 \left[1 + \alpha(\bar{\lambda}_z - 0.2) + \bar{\lambda}_z^2\right]$$

$$\phi_z = 0.5 \left[1 + 0.34(0.38 - 0.2) + 0.38^2\right] = 0.60$$

$$\chi_z = \frac{1}{\phi_z + (\phi_z^2 - \bar{\lambda}_z^2)^{0.5}} = \frac{1}{0.60 + (0.60^2 - 0.38^2)^{0.5}} = 0.78$$

 $\mathsf{Donc}: \aleph_{\min} = \min\left(\aleph_{y_z} \aleph_z\right) = \min\left(0.80\,, 0.78\right) = 0.78$

Calcul du coefficient de réduction pour le déversement \mathcal{X}_{LT} :

$$\chi_{LT} = \frac{1}{\phi_{LT} + \left[\phi_{LT}^{2} - \overline{\lambda_{LT}}^{2}\right]^{0.5}} \le 1$$
$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0.2\right) + \overline{\lambda_{LT}}^{2}\right]$$

Avec :

 $lpha_{\!LT}$: Facteur d'imperfection pour le déversement.

 α_{LT} =0,21 pour les sections laminées. (C'est notre cas)

 α_{LT} =0,49 pour les sections soudées.

$$\overline{\lambda_{LT}} = \left[\frac{\lambda_{LT}}{\lambda_1}\right] \cdot \left[\beta_w\right]^{0.5} : L'élancement réduit pour le déversement.$$

$$Avec : \lambda_1 = \pi \sqrt{\frac{E}{f_v}} = 93,9$$

 λ_{LT} : Élancement de l'élément vis-à-vis du déversement Pour les profilés laminés en I ou en H :

$$\lambda_{LT} = \frac{L/i_z}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L/i_z}{h/t_f} \right)^2 \right]^{0.25}}$$

IPE450: iz=4.12cm, h=45cm, tf= 1.46cm

L =150 cm : Maintien par les pannes reliées à la poutre au vent.

M_{min} =238.983KN.*m* et *M_{max}* = -297.368KN.*m*

(Résultats obtenus à partir du logiciel ROBOT sous la combinaison ELU1(1.35G+1.5N)).

 $\Psi = \frac{238.983}{-297.368} = -0.80$ $\implies c1 = 1.88 - 1.4(\Psi) + 0.52(\Psi)^2$

Université de Bejaia/Génie civil/CM/2015-2016
$\Rightarrow c_1 = 1.88 - 1.4 (-0.80) + 0.52 (-0.80)^2 = 2.58$

$$\lambda_{LT} = \frac{\frac{150}{4.12}}{(2.58)^{0.5} \left[1 + \frac{1}{20} \left(\frac{\frac{150}{4.12}}{\frac{45}{1.46}}\right)\right]^{0.25}} = 22.46$$

Donc :

$$\overline{\lambda}_{LT} = \left(\frac{\lambda_{LT}}{\lambda_1}\right) \sqrt{\beta_w} = 0.23$$

$$\varphi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - 0.2 \right) + \overline{\lambda}_{LT}^{2} \right]$$

$$\varphi_{LT} = 0.5 \left[1 + 0.21 (0.23 - 0.2) + 0.23^{2} \right] = 0.52$$

$$\chi_{LT} = \frac{1}{\phi_{LT} + \left[\phi^{2}_{LT} + \overline{\lambda}^{2}_{LT} \right]^{0.5}}$$

$$\Rightarrow \chi_{LT} = \frac{1}{0.52 + \left[0.52^{2} + 0.23^{2} \right]^{0.5}} = 0.92$$

 $\chi_{LT} = 0.92 < 1 \rightarrow 0K$ **a) Calcul des coefficients k**: $k = 1 - \frac{\mu_{LT} \times N_{sd}}{2}$ et $k_{LT} \le 1$

$$\begin{aligned} \kappa_{LT} &= 1 \quad \chi_{LT} \times A \times f_y \\ \mu_{LT} &= 0.15 \overline{\lambda}_Z \beta_{MLT} - 0.15 \quad et \quad \mu_{LT} \le 0.9 \\ \beta_{MLT} &= 1.8 - 0.7 \psi : \text{Facteur de moment uniforme équivalent pour le déversement.} \end{aligned}$$

Application numérique :

$$\begin{split} \beta_{MLT} &= 1.8 - 0.7 \ (-0.80) = 2.36 \\ \mu_{LT} &= 0.15 \times 0.38 \times 2.36 - 0.15 = -0.015 < 0.9 \\ k_{LT} &= 1 - \frac{-0.015 \times 55.941}{0.92 \times 98.8 \times 23.5} = 1.00 \end{split}$$

Calcul du facteur de moment uniforme équivalent pour le flambement par flexion suivant y-y.

D'après la figure 5.5.3 de l'Eurocode3:

$$\begin{aligned} k_{y} &= 1 - \frac{\mu_{y} \times N_{sd}}{\chi_{y} \times A \times f_{y}} \quad avec \quad k_{y} \leq 1,5 \\ \mu_{y} &= \overline{\lambda}_{y} \left(2\beta_{My} - 4 \right) + \frac{W_{ply} - W_{ely}}{W_{ely}} \quad avec \quad \mu_{y} \leq 0,9 \\ \beta_{M} &= \beta_{M\psi} + \frac{MQ}{\Delta M} \left(\beta_{M,Q} - \beta_{M\psi} \right) \\ \beta_{M\psi} &= 1,8 - 0,7\psi \end{aligned}$$

Université de Bejaia/Génie civil/CM/2015-2016

CHAPITRE VIII

 $\Psi = \frac{238.983}{-297.368} = -0.80 \Longrightarrow \beta_{M\Psi} = 1.8 - 0.7 (-0.80) = 2.36$ $MQ = |\max M| = 297.368 \text{KN.m}$ $\Delta M = |\max M| + |\min M| = |-297.368| + |238.983| = 536.351 \text{KN.m}$ $\beta_{MQ} = 1,3 \text{ Cas d'une charge uniformément répartie.}$ $\beta_{My} = 2.36 + \frac{297.368}{536.351} \times (1.3 - 2.36) = 1.77$ $\text{Donc}: \mu_{y} = 0.38 \times (2 \times 1.77 - 4) + \frac{1702 - 1500}{1500} = -0.040 < 0.9$ $k_{y} = 1 - \frac{(-0.040) \times 55.941}{0.80 \times 98.8 \times 23.5} = 1 \le 1.5$ $\blacktriangleright \text{ Vérification au flambement flexion :}$

$$\frac{N_{sd}}{\chi_{\min}.N_{pl,Rd}} + \frac{k_y.M_{y.Sd}}{M_{ply,Rd}} \le 1$$

Application numérique :

 $\frac{55.941}{0.78 \times 2321.8} + \frac{1 \times 297.368}{363.63} = 0.84 < 1 \text{ avec } M_{\text{pl,Rd}} = \frac{W_{ply} \times f_y}{\gamma m 1} = \frac{1702 \times 23.5}{1.1} = 363.63 \text{KN.m}$

Vérification au déversement :

Déversement = Flambement latéral de la partie comprimée + Rotation de la section transversale.

$$\frac{N_{sd}}{\chi_{LT}.N_{pl.Rd}} + \frac{k_{LT}.M_{y.Sd}}{\chi_{LT}.M_{ply.Rd}} \le 1$$

Application numérique :

 $\frac{55.941}{0.92 \times 2321.8} + \frac{1 \times 297.368}{0.92 \times 363.63} = 0.91 < 1$

Conclusion :

Le profilé choisi IPE450 est adéquat comme traverse.

VIII.3. Vérification des poteaux :

La vérification se fait pour le poteau le plus sollicité et dans notre cas : le poteau le plus sollicité est le N°**167**de hauteur **H=12m** ; comme illustré en rouge sur la figure suivante :

Figure VIII.2 Illustration de poteau le plus sollicité.

Les sollicitations les plus défavorables tirés à partir du logiciel ROBOT sont :

Combinaison	h(m)	Nsd (KN)	M _y (KN.m)	M _z (KN.m)	Vz (KN)
ELU5+	12	111.295	-173.955(min)	-26.445(min)	155.231
1.35G+1.5N+1.305P			296.828 (max)	27.91 (max)	

VIII.3.1. Vérification à la résistance :

a) Classe de la section :

- Classe de la semelle : (comprimée)
 - $C \ / \ t_f = b_f / 2.t_f \le 10 \ \epsilon \ \Rightarrow 300 / 2.16.5 \ = 9.09 < 10 \ \epsilon \ \Rightarrow Semelle \ de \ classe1$
- Âme (flexion composée)

$$\alpha = \frac{1}{d} \left(\frac{d+d_c}{2} \right) \le 1$$

$$d_c = \left(\frac{N_{sd}}{t_w \times f_y} \right) = \frac{111.295}{0.95 \times 23.5} = 4.98$$

$$\alpha = \frac{1}{243} \left(\frac{243+4.98}{2} \right) = 0.51 \le 1$$

$$\frac{d}{t_w} \le \frac{396\varepsilon}{(13\alpha - 1)}$$

$$\frac{d}{t_w} = \frac{243}{9.5} = 25.57$$

$$\frac{396\varepsilon}{(13\alpha - 1)} = \frac{396}{(13 \times 0.51 - 1)} = 70.33$$

 $\operatorname{Donc}: \frac{d}{t_w} \leq \frac{396\varepsilon}{(13\alpha - 1)} \Longrightarrow \textbf{classe 01}$

b) Vérification de l'effort tranchant :

ll faut vérifier que : *Vsd* ≤*V_{plRd}*

 $V_{sd} = 201.455KN$ (Note de calcule sur la pièce **167** du Robot sous la combinaison **ELU5+** (1.35G+1.5N+1.305P)

 $\mathbf{V_{plRd}} = \frac{A_{vz} \cdot f_y}{\sqrt{3} \cdot \gamma_{M_0}} = \frac{23.5 X \ 44.95}{\sqrt{3}X \ 1.0} = 609.869 \text{KN} > \text{V}_{\text{sd}} = 155.231 \text{KN}$

 V_{sd} < 0.5 V_{plRd} = 304.93KN \rightarrow Pas de réduction du moment plastique.

c) Vérification à l'effort normal :

Il faut vérifier que : $Nsd \leq N_{plRd}$

N_{sd}= 113.409KN

 $N_{pl,rd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{133.5 \times 23.5}{1.1} = 2852.04KN$ Nsd<NpiRd \rightarrow **ok**

d) Vérification au moment fléchissant :

ll faut vérifier que : *Msd* ≤ *M_{plRd}*

 $M_{sd} = 260.287 KN.m$ (Note de calcule sur la pièce **167**du Robot sous la combinaison **ELU5+**(1.35G+1.5N+1.305P)

 $M_{ply,rd} = \frac{W_{ply} \times f_y}{\gamma_{M0}} = \frac{10^{-2} \times 23.5 \times 1850}{1.0} = 434.75$ KN. m

M_{sd}=296.828KN.m<M_{plRd}=434.75KN.m → ok

VIII.3.2. Vérification de l'élément aux instabilités :

La vérification aux instabilités est donnée par les formules suivantes :

> Flexion composée avec risque de flambement

$$\frac{N_{sd}}{\chi_{\min}.N_{plRd}} + \frac{k_y.M_{ysd}}{M_{plyRd}} + \frac{k_z.M_{zsd}}{M_{plzRd}} \le 1$$

Les mêmes sollicitations les plus défavorables tirés à partir du logiciel ROBOT sont :

Combinaison	h(m)	Nsd (KN)	M _y (KN.m)	M _z (KN.m)	Vz (KN)
ELU5+	12	111.295	-173.955(min)	-26.445(min)	155.231
1.35G+1.5N+1.305P			296.828 (max)	27.91 (max)	

> Flexion composée avec risque de déversement

$$\frac{N_{sd}}{\chi_z N_{pl Rd}} + \frac{K_z K_{LT} M_{y.sd}}{\chi_{LT} M_{ply.Rd}} \le 1$$

a) Calcul du coefficient de réduction χ_{\min}

$$\chi_{\min} = \min(\chi_y, \chi_z)$$

Flambement par rapport à l'axe fort y-y (dans le plan du portique) :

 α : facteur d'imperfection correspondant a' la courbe de flambement appropriée, donne par le tableau 5.5.1 de l'Eurocode 3.

- Suivant l'axe y-y: $\lambda_y = \frac{0.5l_{Ky}}{i_y}$ $\frac{\lambda_y}{a_y} = \frac{0.5 \times 1200}{14.40} = 41.66$ $\lambda_y = \frac{41.66}{93.9} \times 1 = 0.44 > 0.2$ (Il y a le risque de flambement) Le choix de la courbe de flambement $\frac{h}{b} = \frac{330}{300} = 1.1 > 1.2$ $t_f = 16.5 \text{ mm} < 40 \text{ mm}$ Axe de flambement y-y \Rightarrow courbe de flambement a ; $\alpha = 0.21$ (tableau3) $X_y = 0.83$

Suivant l'axe faible z-z : (hors du plan du portique)

 $\lambda_{z} = I_{Kz} / i_{z} = 0.5. \ 120 / \ 7.46 = 16.08$ $\overline{\lambda_{z}} = \frac{\lambda_{z}}{\lambda_{1}} (\beta_{A})^{0.5} = 0.17 < 0.2$ (II y a pas le risque de flambement)

Le choix de la courbe de flambement :

h/b= 330/300=1.1 < 1.2

t_f= 16.5mm< 40mm

Axe de flambement $z-z \longrightarrow$ courbe de flambement b ; α =0.34 (tableau 3). $X_z = 1$

Donc : **xmin= 0.83**

b) Calcul de l'élancement réduit vis-à-vis de déversement λ_{LT} axe z-z :

$$\lambda_{LT} = \frac{\frac{1}{i_z}}{C_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L/t_f}{L}\right)^2\right]^{0.25}}$$
$$\lambda_{LT} = \frac{\frac{120}{7.46}}{(1.132)^{0.5} \left[1 + \frac{1}{20} \left(\frac{120/1.65}{7.46}\right)^2\right]^{0.25}} = 12.70$$

$$\overline{\lambda}_{LT} = \left(\frac{\lambda_{LT}}{\lambda_1}\right) \times [B_A]^{0.5} = 0.13$$

 $\overline{\lambda}_{LT}$ = 0.13 < 0.4 Il n'y a pas de risque de déversement

c) Calcul de coefficient Ky Kz :

$$\mu_{y} = \overline{\lambda_{y}} \left(2 \beta_{My} - 4 \right) + \frac{W_{ply} - W_{ely}}{W_{ely}}$$
$$\mu_{z} = \overline{\lambda_{z}} \left(2 \beta_{Mz} - 4 \right) + \frac{W_{plz} - W_{elz}}{W_{elz}}$$

♦ Calcul des coefficients réducteurs :
Suivant l'axe (Y-Y) : $\Psi = \frac{M_{min}}{M_{max}} = -\frac{173.955}{296.828} = -0.58$

Université de Bejaia/Génie civil/CM/2015-2016

 $\beta = 1.8 - 0.7 (-0.58) = 2.206$ $\mu_y = 0.44 (2(2.206) - 4) + \frac{1850 - 1678}{1678} = 0.28 \quad avec \ \mu_z = 0.28 < 0.9$ $\chi_y = 0.83$ $K_y = 1 - \frac{\mu_y \cdot N}{\chi_y \cdot Af_y} = 1 - \frac{0.28 \times 111.295}{0.83 \times 235 \times 133.5 \times 10^2} = 1 \ avec \ K_y = 1 < 1.5$ Suivant l'axe (Z-Z): $\Psi = \frac{M_{min}}{M_{max}} = -\frac{26.445}{27.91} = -0.94$ $\beta = 1.8 - 0.7 (-0.94) = 2.45$ $\mu_z = 0.17 (2(2.45) - 4) + \frac{1850 - 1678}{1678} = 0.25 \quad avec \ \mu_z = 0.25 < 0.9$ $\chi_z = 1$ $K_z = 1 - \frac{\mu_z \times N}{\chi_z \times Af_y} = 1 - \frac{0.26 \times 111.295}{1 \times 235 \times 133.5 \times 10^2} = 1 \ avec \ K_z = 1 < 1.5$

> Vérification au flambement :

$$\frac{N_{sd}}{\chi_{\min}.N_{plRd}} + \frac{k_y.M_{ysd}}{M_{plyRd}} + \frac{k_z.M_{zsd}}{M_{plzRd}} \le 1$$

$$\frac{111.295}{0.83 \times 2852.04} + \frac{1 \times 296.828}{434.75} + \frac{1 \times 27.91}{177.651} = 0.87 < 1$$
Toutes les conditions sont vérifiées
Vérification avec le logiciel robot :

Ī	Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas
	167 POTEAU	📧 HEA 340	S 235	58.32	16.08	0.87	30 1.35G+1.5N+1.3P

Conclusion :

Dans le calcul et dans le modèle robot on a opté pour un **HEA340** qui vérifie les calculs, le logiciel Robot à son tour nous propose un **HEA340** avec la combinaison la plus défavorable. ELU5 (la neige et les actions générer par le pont roulant) Le profilé choisi **HEA340** est adéquat comme poteau.

VIII.4 Vérification des diagonales des contreventements :

VIII.4.1 Vérification de la poutre au vent PIGNON :

La vérification à faire est de vérifier la diagonale la plus sollicité (barre $N^{\circ}62$)

Figure VIII.3 : Illustration de la diagonale la plus sollicité.

Ľ	offort	danc	15	harro	noutro	211	vont	ni	TNON	oct	
Ы	enort	ualis	Id	Dalle	poure	au	vent	μış	gnon	esi	•

^		
Sollicitation	Combinaison	Nsd [KN]
Compression	ELU3 : G+1.5W1	51.090
Traction	ELU4 : G+1.5W2	-28.863

$$\begin{split} &\mathsf{N}_{sd}^{\mathsf{MAX}} = 51.090 \text{ (compression)} \\ &\mathbf{a} \text{). Vérification à la traction :} \\ &\mathsf{L'effort de traction N_{sd}} = -28.863 \text{KN} \\ &\mathsf{N}_{sd} \leq \mathsf{N}_{rd} = \frac{A \cdot f_y}{\mathsf{Y}_{m0}} \\ &\mathsf{On a: A} = 10.1 \text{cm}^2 (2\text{CAE75} \times 75 \times 7) \\ &\mathsf{N}_{rd} = \frac{10.1 \times 23.5}{1} = 237.35 \text{KN} \\ &\mathsf{N}_{sd} = 28.863 \text{KN} < \mathsf{N}_{rd} = 237.35 \text{KN} \\ &\mathsf{N}_{sd} = 28.863 \text{KN} < \mathsf{N}_{rd} = 237.35 \text{KN} \\ &\Rightarrow \mathsf{Vérification au flambement :} \\ &\lambda_y = \lambda_z = 480/2.28 = 210.52 \quad \text{(ona une symétrie des diagonales)} \\ &\lambda_y = \lambda_z = \lambda / \lambda_l = 210.52 / 93.9 = 2.24 \\ &\lambda_l = 2.24 \rightarrow \qquad \text{Courbe } \mathbf{c} \rightarrow \qquad \chi = 0.1425 \end{split}$$

Université de Bejaia/Génie civil/CM/2015-2016

$$\begin{split} N_{b,Rd} &= \chi \,.\, A \,.\beta_w \,.f_y \,/\, \gamma_{m0} = 0.1425 \; x \; 10.1x \; 1 \; x \; 23.5 \;/\; 1.0 = 33.82 \text{KN} \\ N_{sd} &= 51.09 \text{KN} > N_{b,Rd} = 33.82 \text{KN} \; \Rightarrow \text{Non Vérifiée avec 2CEA75.75.7} \\ \text{Vérification avec le logiciel ROBOT :} \end{split}$$

Pièce		Profil	Matériau	Lay	Laz	Ratio	Cas
62	!	2 CAE 75x7	S 235	210.41	32.24	0.79	11 G+1.5W1

Cornière instable, Y'a un risque de flambement.

On va augmenter la section de la diagonale jusqu'à CEA 90×9 avec A=15.5cm² Vérification au flambement :

$$\begin{split} \lambda_y &= \lambda_z = 480/2.73 = 175.82 \quad (\text{on a une symétrie des diagonales}) \\ \overline{\lambda_y} &= \overline{\lambda_z} = \lambda \ / \ \lambda_l = 175.82 \ / \ 93.9 = 1.87 \\ \overline{\lambda} &= 1.87 \rightarrow \qquad \text{Courbe } \mathbf{c} \rightarrow \qquad \chi = 0.23 \\ N_{b,Rd} &= \chi \ . \ A \ . \beta_w \ . f_y \ / \ y_{m0} = 0.23 \ x \ 15.5 x \ 1 \ x \ 23.5 \ / \ 1.0 = 83.77 \text{KN} \\ N_{sd} &= 51.09 \text{KN} < N_{b,Rd} = 83.77 \text{KN} \qquad \Rightarrow \mathbf{c'est Vérifiée avec CEA90 \times 9} \end{split}$$

Vérification avec le logiciel ROBOT :

Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas
Famille : 1 1						
	CAE 90x7		174.64	36.37	1.29	
62	CAE 90x9	S 235	175.81	36.61	0.77	11 G+1.5W1
	L CAE 100x7	1	156.78	32.65	0.97	

Conclusion :

Le cornière **CAE9** × **9** est adéquate comme diagonale de la poutre au vent.

VIII.5. Vérification des palées de stabilités de long pan (2×CEA13×12) :

La vérification à faire est de vérifier l'élément le plus sollicité (barre $N^{\circ}814$) avec $l_k = l_0 = 8.54m = 854cm$ sous les combinaisons suivant :

Combinaisons	EFFORT	VALEUR [KN
ACC4 : 0.8G - E _y	COMPRESSION	89.05
ELU4 : G+1.5W2	TRACTION	-76.128

Figure VIII.4 : Illustration de la barre la plus sollicité.

L'effort dans la Palées de stabilités est : N_{sd}^{max}=-76.128KN (traction) a). Vérification à la traction : L'effort de traction N_{sd} = 93.425KN $N_{sd} \le N_{rd} = \frac{A \cdot f_y}{\gamma_{m0}}$ On a: $A = 60 \text{ cm}^2$ $N_{rd} = \frac{60 \times 23.5}{1} = 1410 KN$ $N_{sd} = 76.12 \text{KN} < N_{rd} = 1410 \text{KN}$ ⇒ Vérifiée b). Vérification au flambement : $\lambda_y = \lambda_z = 854/3.97 = 215.11$ $\overline{\lambda_y} = \overline{\lambda_z} = \lambda / \lambda_l = 215.11 / 93.9 = 2.29$ $\overline{\lambda_y} = \overline{\lambda_z} = 2.29$ \rightarrow Courbe c $\rightarrow \chi = 0.10$ $N_{b,Rd} = \chi \cdot A \cdot \beta_w \cdot f_y / \chi_{m0} = 0.10 \times 60 \times 1 \times 23.5 / 1.0 = 141 \text{KN}$ $N_{sd} = 93.425 \text{KN} > N_{b,Rd} = 141 \text{KN}$ ⇒ c'est Vérifiée

Vérification avec le logiciel ROBOT :

Pièce	Pièce Profil		Lay	Laz	Ratio	Cas
814 CONTRE-V v	CAE 130x12	S 235	172.20	126.92	0.31	51 ACC4

Conclusion :

La cornière **2CAE 130**× **12** est adéquate comme diagonale pour palées de stabilités.

VIII.6.Résumé des résultats obtenus :

Tous les profilés choisis pour assurer la résistance et la stabilité de la structure sont admis.

Les profilés adoptés pour tous les éléments sont récapitulés dans le tableau suivant :

Eléments	Section
POTEAUX	HEA340
TRAVERSES	IPE450
CONTREVENTEMENT VERTICAL	2CAE 130×130×12
CONTREVENTEMENT HORIZONTAL	CAE 90×9
POUTRE SABLERE	HEB160
PANNE	IPE160
PANNE MONTANTE	HEB160
POTELET	HEA320
LISSE DE BARDAGE (LONG PAN)	UPE120
LISSE DE BARDAGE PIGNON	UPE180
POUTRE DE ROULEMENT	HEA280
SUPPORT DU CHEMIN DE ROULEMENT	HEA160

Tableau VIII. 1 : liste des éléments et de leurs sections choisies.

CHAPITRE IX : Calcul Des Assemblages

CALCUL DES ASSEMBLAGES

IX.1. Introduction :

La conception et le calcul des assemblages ont une importance équivalente à celle du dimensionnement des pièces constituant la structure. En effet, les assemblages constituent un dispositif qui permet de réunir et de solidariser les pièces entres-elles, en assurant la transmission et la répartition des diverses sollicitations régnant dans les différents composants structurels, en cas de défaillance d'un assemblage, c'est bien le fonctionnement global de la structure qui est remis en cause.

IX.1.2. Fonctionnement des assemblages :

Les principaux modes d'assemblages sont :

a) Le boulonnage :

Le boulonnage est le moyen d'assemblage le plus utilisé en construction métallique du fait de sa facilité de mise en œuvre et des possibilités de réglage qu'il offre sur site. Dans notre cas, le choix a été porté sur le boulon de haute résistance (HR) il comprend une vis à tige filetée, une tête hexagonale ou carrée et un écrou en acier à très haute résistance :

Classe	4.6	4.8	5.6	5.8	6.6	6.8	8.8	10.9
$f_{yb}(N/mm^2)$	240	320	300	400	360	480	640	900
$f_{Ub}(N/mm^2)$	400	400	500	500	600	600	800	1000

 Tableau IX.1: Caractéristique mécanique des boulons selon leur classe d'acier.

b) Le soudage :

En charpente soudée les assemblages sont plus rigides, cela a pour effet un encastrement partiel des éléments constructifs. Les soudages à la flamme oxyacéthylénique et le soudage à l'arc électrique sont des moyens de chauffages qui permettent d'élever à la température de fusion brilles des pièces de métal à assembler.

c) Fonctionnement par adhérence

Dans ce cas, la transmission des efforts s'opère par adhérence des surfaces des pièces en contact. Cela concerne le soudage, le collage, le boulonnage par boulons HR. **d) Coefficients partiels de sécurité_(chap.6.1.2 –eurocode3)**

- - Résistance des boulons au cisaillement : γ_{MB} = 1,25
 - Résistance des boulons à traction : $\gamma_{MB} = 1,50$

e) Coefficient de frottement :

Un bon assemblage par boulons HR exige que des précautions élémentaires soient prises, notamment :

Le coefficient de frottement μ doit correspondre à sa valeur de calcul. Cela nécessite une préparation des surfaces, par brossage ou grenaillage, pour éliminer toute trace de rouille ou de calamine ; de graissage, etc.

Surface de classe A	$\mu = 0.5$	Pour surfaces grenaillées ou sablées
Surface de classe B	$\mu = 0.4$	Pour surfaces grenaillées, sablées et peintes.
Surface de classe C	$\mu = 0.3$	Pour surfaces brossées
Surface de classe D	$\mu = 0.2$	Pour surfaces non traitées

Tableau IX.2 : Valeur du coefficient de frottement μ selon la surface.

IX.1.3. Rôle des assemblages :

Pour réaliser une structure métallique ; on dispose de pièces individuelles, qu'il convient d'assembler :

-Soit bout à bout (éclissage, rabotages).

-Soit concourantes (attaches poutre/poteau, treillis et systèmes réticulés).

Pour conduire les calculs selon les schémas classiques de la résistance des matériaux, il y a lieu de distinguer, parmi les assemblages :

- Les assemblages articulés : qui transmettront uniquement les efforts normaux et tranchants.

- Les assemblages rigides : qui transmettront en outre les divers moments.

Désignation	M8	M10	M12	M14	M16	M18	M20	M22	M24	M27	M30
d (mm)	8	10	12	14	16	18	20	22	24	27	30
d ₀ (mm)	9	11	13	15	18	20	22	24	26	30	33
A (mm2)	50,3	78,5	113	154	201	254	314	380	452	573	707
A _s (mm2)	36,6	58	84,3	115	157	192	245	303	353	459	561
ϕ rondelle	16	20	24	27	30	34	36	40	44	50	52
(mm)											
ϕ clé (mm)	21	27	31	51	51	51	58	58	58	58	58
Tôle usuelle	2	3	4	5	6	7	8	10,14	>14	-	-
(mm)											
Cornière	30	35	40	50	60	70	80	120	>120	-	-
usuelle											
(mm)											

Tableau IX.3: Principales caractéristiques géométrique.

d : diamètre de la partie non filetée de la vis.

do : diamètre nominal du trou.

- A : section nominale du boulon.
- As : section résistante de la partie filetée.

IX.2. Assemblage Poteau-Traverse :

Le principe de l'assemblage est de souder une platine en bout de traverse, elle est percée symétriquement de part et d'autre de la poutre. Les mêmes perçages qui sont effectuées sur l'aile du poteau, permettent de solidariser les deux _éléments assembles. Le jarret qui figure sous la traverse permet d'obtenir un bras de levier assez important, pour pouvoir développer une meilleure résistance, vis-à-vis du moment de flexion, qui est très fréquemment la sollicitation prédominante.

IX.2.1. les composants de l'assemblage :

Poreau HEA340 ; traverse IPE450 Jarret : Morceau de IPE450 avec L=180cm et H=33cm

IX.2.2. Efforts sollicitant :

La combinaison la plus défavorable ELU1 (1.35G+1.5N).

Un moment fléchissant : M_{max}= 238.977KN.m Effort de cisaillement : V_{max}= 82.092KN

Effort normal :Nmax= 55.942KN

IX.2.3. disposition géométrique des boulons :

On suppose des boulons de dimension M20 avec : $d_0=20mm$ Selon l'EC3 P1-8 tableau3.3 on détermine les pinces et les pas : $1.2d_0 \le e_1 \le 8t$ $24mm \le e_1 \le 160$ $2.2d_0 \le p_1 \le 14t$ d'où : $<math>44mm \le p_1 \le 112$

2.200-pi=1 it	u ou .	I IIIIII=PI=IIZ
1.2d₀≤e₂≤8t		24mm≤e₂≤160
2.4d₀≤P₂≤14t		50mm≤P₂≤112

On prend : P1=90mm et p2=90mm Pince longitudinale (e_1 =70mm) pour la traverse Pince longitudinale (e_1 =60mm) pour le jarret Pince transversale (e_2 =55mm)

On adopte alors deux colonnes et 4 rangées de boulon Nombre de boulons N=8 (voir figureIX.1)

Figure IX.1 assemblage poteau-traverse.

IX.2.4. Détermination des efforts dans les boulons : IX.2.4.1. Effort de cisaillement :

 $Fvsd = \frac{V_{max}}{N}$; $V_{max} = 82.092KN$

Fvsd : l'effort de cisaillement pour un seul boulon Fvsd= $\frac{V_{max}}{N} = \frac{82.092}{16} = 5.13$ KN; avec N (Nb de boulons)

IX.2.4.2. Effort de traction :

La distribution de moment Mmax sur les rangées de boulons ce qui générer la traction des boulons, le moment est appliqué par rapport au centre de gravité de la traverse on supposera que seul les deux rangée supérieur sont tendus. Ce moment est équivalant à deux forces N1 et N2 appliqué au niveau des deux rangées supérieur.

Figure IX.2 distribution des efforts sur les boulons tendus.

Avec Mmax=N1×d1+N2×d2;

d1=68.27cm et d2=59.27cm

Université de Bejaia/Génie civil/CM/2015-2016

Et $\frac{N_1}{d_1} = \frac{N_2}{d_2}$; \Rightarrow N1= $\frac{Mmax \times d_1}{(d_1^2 + d_2^2)} = \frac{238.977 \times 0.682}{0.682^2 + 0.592^2} = 199.83$ KN Donc F_{Tsd} = $\frac{N_1}{2} = 99.91$ KN

 $F_{\mbox{\scriptsize Tsd}}$: l'effort de traction maximal pour un seul boulon.

IX.2.5. Pré dimensionnement des boulons :

Le dimensionnement des boulons se fait en vérifiant le décollement des platines avec : $Fp \ge F_{Tsd}$; Fp : la force précontrainte d'un seul boulon. $Fp=0.7 \times As \times fub$;

fub : contrainte ultime de rupture (on choisit la classe8.8 fub=800Mpa)

0.7×As×fub ≥ F_{Tsd} → As ≥ $\frac{Ftsd}{0.7*80}$ =1.78cm² On adopte un boulon M20 avec As=2.45cm²

IX.2.6. Vérification vis-à-vis au cisaillement :

On doit vérifier la condition suivant :

Fvsd ≤ Fs,Rd

Fs,Rd: la résistance de calcul au cisaillement par boulon

Fs,Rd= $\frac{k_s \times n \times \mu}{\gamma_{Ms}} \times$ Fp,cd

Fp,cd: précontrainte de calcul

Fp,cd=0.7×As×fub =0.7×2.45×80=137.2KN

Ks=1 ; coefficient qui est en fonction de la dimension des trous de perçage pour les trous à tolérance normale.

n : nombre d'interfaces de frottement n= 1

 μ : coefficient de frottement qui est pris égale à 0.3

 $\gamma_{Ms} = 1.25$

Fs,Rd= $\frac{k_s \times n \times \mu}{\gamma_{Ms}}$ ×Fp,cd → Fs,Rd= $\frac{1 \times 1 \times 0.3}{1.25}$ ×137.2 → Fs,Rd=32.92KN

On à trouver déjà Fvsd=5.13KN donc Fvsd < Fs,Rd=32.92KN c'est vérifiée.

IX.2.7. Vérification d'un boulon à l'interaction traction cisaillement :

On doit vérifier la condition suivant :

 $Fvsd \leq Fs, Rd = \frac{k_s \times n \times \mu}{\gamma_{Ms}} \times (Fp, cd-0.8Ftsd)$ $Fs, Rd = \frac{1 \times 1 \times 0.3}{1.25} \times (137.2 - 0.8 \times 99.91) = 13.74KN$ Fvsd = 5.13KN < Fs, Rd = 13.74KN

La résistance de boulon à l'interaction cisaillement traction elle est vérifiée.

IX.2.8. Vérification au poinçonnement :

Il faut vérifier que : B_{prd} ≥ Ftsd=99.91KN

 $B_{\mbox{\scriptsize prd}}$: la résistance de calcul au cisaillement par poinçonnement

B_{prd} = $0.6 \times \pi \times dm \times tp \times \frac{fu}{\gamma mb}$; dm : diamètre moyen de boulon M20 (dm=3.24cm) tp : l'épaisseur de la plaque sous la tête de la vis ou de l'écrou (tp=2+1.65=3.65cm) S235 → fu=360Mpa B_{prd} = $0.6 \times 3.14 \times 3.24 \times 3.65 \times \frac{36}{1.25}$ = 641.66KN > Ftsd=99.91KN (c'est vérifiée)

IX.2.9. Vérification à la résistance de l'âme du poteau dans la zone tendue :

Il faut vérifier que : Fv \leq Ftrd Avec : Ftrd=tw.b_{eff}. $\frac{fy}{\gamma m0}$ EC03. Où : Ftrd : la résistance de l'âme de poteau a la traction tw : l'épaisseur de l'âme de poteau tw=0.95cm beff =P : entraxe des rangées de boulons P=9cm Donc : Ftrd=0.95×9× $\frac{23.5}{1.1}$ =182.65KN L'effort de cisaillement vaut : Fv= $\frac{Msd}{h-tf}$ EC03-1-8 art 6.2.6.7 Fv= $\frac{238.977}{0.33-0.0165}$ =762.28KN > Ftrd=182.65KN (non vérifiée)

D'où la nécessité d'un raidissage :(raidisseur d'épaisseur e=16mm)

IX.2.10. Vérification à la résistance de l'âme du poteau dans la zone comprimée :

On doit vérifier que : Fvsd=762.28KN \leq Fcrd= $\frac{fy \times tw \times beff}{\gamma m0}$EC03 Beff=tf+2tw+5(tp+r)=16.5+2*9.5+5(20+27)=270.5mm Fcrd= $\frac{fy \times tw \times beff}{\gamma m0}$ = Fcrd= $\frac{23.5*27.05}{1.1}$ =577.88KN Ecrd=577.88KN \leq Fvsd=762.28KN (non vérifién) La résistance de l'âme de poi

Fcrd=577.88KN < Fvsd=762.28KN (non vérifiée) La résistance de l'âme de poteau en compression n'est pas vérifiée, il faut donc prévoir un raidisseur de (e=16mm)

IX.2.11. Vérification à la résistance de l'âme du poteau dans la zone cisaillé :

On doit vérifier alors : Fvsd=762.28KN \leq Fvrd L'effort résiste au cisaillement de l'âme : Fvrd=0.58×fy×h×tw/ γ_{m0} =0.58×23.5×33×0.95/1.1=388.544KN Nécessité de poser une fourrure d'âme de chaque côté (épaisseur de 7mm) D'où: tw=9.5+7*2=23.5mm Et : Fvrd=0.58×23.5×33×2.35/1.1=960.915KN Fvsd=792.28KN < Fvrd=960.915KN (vérifiée)

IX.2.12. Assemblage platine traverse :

Ce type d'assemblage opérer avec des cordons de soudure Epaisseur de la platine e=20mm

- ♦ gorge assemblant l'âme-platine (aw) :
 Épaisseur la plus mince entre l'âme et la platine :
 t_{min}=min (tw ; e)=min (9.4 ; 20)=9.4mm
- ⇒ 3mm ≤ aw ≤7.5mm
 On adopte pour aw=5mm
 Selon l'abaque (annexe8).
- gorge assemblant semelle-platine (af):
 Épaisseur la plus mince entre l'âme et la platine:
 t_{min}=min (tf; e)=min (14.6; 20)=14mm
- ⇒ 3.2mm ≤ aw ≤11mm
 On adopte pour af=11mm
 Selon l'abaque (annexe8).

IX.2.12.1. Distribution des efforts sur les différents cordons :

a) cordon âme platine :

Chaque cordon reprend V/2=82.092/2=41.046KN

Lw=h-tf-r=450-14.6-21=414.4mm

b) cordon semelle platine :

Lf=2b-tw=2*190-9.4=370.6mm

N=Msd/L=238.977/0.3706=644.83KN

IX.2.12.2. vérification :

a) cordon âme platine :

Fwrd=
$$a.l.\frac{fu}{\sqrt{3}}\frac{1}{\beta_w \gamma_{Mw}}$$
; Avec : S235 \Rightarrow fu=360Mpa ; β_w =0.8 ; γ_{Mw} =1.25

Fwrd=
$$0.5 \times 41.44 \times \frac{36}{\sqrt{3}} \cdot \frac{1}{0.8 \times 1.25} = 430.65$$
KN

Fwrd =430.65KN > Fwsd =41.046KN (c'est vérifiée)

a) cordon semelle platine :

Fwrd= $1.1 \times 37.06 \times \frac{36}{\sqrt{3}} \cdot \frac{1}{0.8 \times 1.25} = 847.30$ KN

Fwrd =847.30KN > Fwsd =792.28KN (c'est vérifiée)

Figure IX.3 : vue 3D pour l'assemblage poteau-traverse.

IX.3. Assemblage traverse - traverse :

IX.3.1.Sollicitations :

La combinaison la plus défavorable ELU1 (1.35G+1.5N).

 $M_{max} = 293.496 \text{KN.m}$ $N_{max} = 48.541 \text{KN}$ $V_{sd,max} = 4.3 \text{KN}$

IX.3.2. Disposition géométrique :

On adopte pour les boulons M16 de classe 8.8, chaque rangée est composée de 2 boulons avec 8 rangées (traverse - traverse) avec $d_0 = 22mm$

	$e_1 \ge 1.2 \times d_0$	$e_2 \ge 1.5 \times d_0$	$p_1 \ge 2.2 \times d_0$	$p_2 \ge 3 \times d_0$
_	$e_1 \le 12 \times t_{max}$ —	$e_2 \le 12 \times t_{max}$	$p_1 \le 14 \times t_{max}$	$p_2 \le 14 \times t_{max}$
	e₁ ≤ 150mm	e₂ ≤ 150mm	p1 ≤ 200mm	p₂ ≤ 200mm
	On prend $e_1 = 50$; e_2	$= 50; p_1 = 110; p_2 =$	= 100	

On prend en compte juste les 2 premières rangées de boulon sollicité à la traction due au moment de flexion.

 $d_{1} = 82.27 \text{ cm} \qquad d_{2} = 73.27 \text{ cm}$ $N_{1} = \frac{M_{sd} \times d_{1}}{\sum d_{i}} = \frac{293.496 \times 0.822}{0.822^{2} + 0.732^{2}} \implies N_{1} = 199.13 \text{ KN}$ $N_{2} = \frac{M_{sd} \times d_{2}}{\sum d_{i}} = \frac{293.496 \times 0.732}{0.822^{2} + 0.732^{2}} \implies N_{2} = 177.33 \text{ KN}$

IX.3.3. Pré dimensionnement des boulons:

Le dimensionnement des boulons se fait en vérifications le décollement des platines avec :

 $N_1 \le n.F_p$; où :

n : nombre de rangés de boulon avec n = 2 $F_p = 0.7 \times A_s \times F_{ub}$ avec $f_{ub} = 800$ MPa (classe 8.8) $A_s \ge \frac{199.13 \times 1000}{2 \times 0.7 \times 800}$ → $A_s \ge 177.79$ mm² On adopte des boulons M18 avec $A_s = 192$ mm²

IX.3.4.Vérification vis-à-vis le moment résistant de l'assemblage :

$$\begin{split} N_{trd} &= 0.7 \times n \times A_S \times F_{ub} \\ N_{trd} &= 0.7 \times 2 \times 192 \times 800 = 215.04 \text{KN} \\ M_{rd} &= \frac{N_{trd} \times \sum d_i^2}{d_1} = \frac{215.04 (0.822^2 + 0.732^2)}{0.822} = 316.93 \text{KN.m} \\ M_{st} &= 293.496 \text{KN.m} \le M_{rd} = 316.93 \text{KN.m} \quad (vérifiée). \end{split}$$

IX.3.5. Vérification vis-à-vis au cisaillement + traction de chaque boulon :

Il faut vérifier que $F_{vsd} \le F_{vrd}$

Université de Bejaia/Génie civil/CM/2015-2016

 $F_{vrd} = \frac{K_S \times n \times \mu \times (F_p - 0.8F_{tsd})}{\gamma_{mb}}$ $F_{vsd} = \frac{N_1}{2} = \frac{199.13}{2} = 99.56 \text{KN}$ $F_{vrd} = \frac{1 \times 1 \times 0.3(177.79 - 99.56 \times 0.8)}{1.25} = 23.55 \text{KN}$ $F_{vsd} = \frac{V}{2} = 2.15 \text{KN} < F_{vrd} = 23.55 \text{KN} \text{ (vérifiée).}$

IX.3.6.Vérification au risque de poinçonnement lors de serrage :

On doit vérifier que : $F_p \le B_{prd}$ $F_p = 0.7 \times A_s \times F_{ub} = 177.79 \text{KN}$ $B_{prd} = 0.6 \times \pi \times d_m \times t \times \frac{F_u}{\gamma_{mb}}$ d_m : diamètre moyen du boulon $d_m = 29.1 \text{mm}$ t : épaisseur des pièces à boulonnées t = 20 mm $B_{prd} = \frac{0.6 \times \pi \times 2.91 \times 2 \times 36}{1.25} = 315.78 \text{KN}$ $F_p = 177.79 \text{KN} \le B_{prd} = 315.78 \text{KN}$ (pas de risque poinçonnement lors de serrage).

Figure IX.4 : Vue 3D pour l'assemblage traverse-traverse.

IX.3.7. Dimensionnement de la soudure patine-traverse

Ce type d'assemblage opérer avec des cordons de soudure Epaisseur de la platine e=10mm

- ♦ gorge assemblant l'âme-platine (aw) :
 Épaisseur la plus mince entre l'âme et la platine :
 t_{min}=min (tw ; e)=min (9.4 ;10)=9.4mm
- ⇒ 3mm ≤ aw ≤7.5mm
 On adopte pour aw=5mm
 Selon abaque (annexe8).
- ♦ gorge assemblant semelle-platine (af) :
 Épaisseur la plus mince entre l'âme et la platine :
 t_{min}=min (tf; e)=min (14.6; 10)=10mm
- ⇒ 3.2mm ≤ aw ≤11mm
 On adopte pour af=9mm

Université de Bejaia/Génie civil/CM/2015-2016

Selon abaque (annexe8). IX.3.7.1. Distribution des efforts sur les différents cordons : a) cordon âme platine : Chaque cordon reprend V/2=4.3/2=2.15KN Lw=h-tf-r=920-14.6-21=884.4mm b) cordon semelle platine : Lf=2b-tw=2*190-9.4=370.6mm

N=Msd/L=293.496/0.8844=331.85KN

IX.3.7.2. vérification : a) cordon âme platine :

Fwrd= $a.l.\frac{fu}{\sqrt{3}}\frac{1}{\beta_w \gamma_{Mw}}$; Avec: S235 \Rightarrow fu=360Mpa; β_w =0.8; γ_{Mw} =1.25 Fwrd= $0.5 \times 88.44 \times \frac{36}{\sqrt{3}} \frac{1}{0.8 \times 1.25}$ =919.09KN Fwrd=919.09KN > Fwsd=2.15KN (c'est vérifiée) **a) cordon semelle platine :** Fwrd= $0.9 \times 37.06 \times \frac{36}{\sqrt{3}} \frac{1}{0.8 \times 1.25}$ =693.24KN Fwrd=693.24KN > Fwsd=2.15KN (c'est vérifiée)

IX.4. Assemblage poteau-poutre sablière :

IX.4.1. Sollicitations :

$$\begin{split} N_{sd} &= 10.022 \text{KN} \\ V_{sd} &= 0.265 \text{KN} \end{split}$$

IX.4.2. Dimensionnement des boulons :

 $F_{tsd} = \frac{N_t}{2} = \frac{10.022}{2} = 5.011 \text{KN}$ $A_s \ge \frac{F_{tsd} \times Y_{mb}}{0.9 \times F_{ub}} = 17.39 \text{mm}^2$

On choisit des boulons de type M8 de classe 4.6 avec A_s = 36.6mm²

IX.4.3. Disposition des boulons :

$e_1 \ge 1.2 \times d_0$	$e_2 \ge 1.5 \times d_0$	$p_1 \ge 2.2 \times d_0$	$p_2 \ge 3 \times d_0$
$e_1 \le 12 \times t_{max}$	$e_2 \le 12 \times t_{max}$	$p_1 \le 14 \times t_{max}$	$p_2 \le 14 \times t_{max}$
e1 ≤ 150mm	e₂ ≤ 150mm	p1 ≤ 200mm	p₂ ≤ 200mm

 $e_1 \le 3d_0 = 3 \times 9 = 27$ mm $\rightarrow e_1 = 25$ mm; $e_2 = 25$ mm; $p_1 = 70$ mm; $p_2 = 70$ mm. On prend une platine d'épaisseur 8mm.

IX.4.4. Vérification a la traction :

 $F_{tsd} = \frac{N_t}{2} = \frac{10.022}{2} = 5.011 \text{KN} \le F_{trd} = \frac{0.9 \times f_{ub} \times A_s}{\gamma_{mb}} = 10.54 \text{KN} \quad (vérifiée)$

IX.4.5. Vérification au cisaillement :

Il faut vérifier que : $F_{vsd} \le F_{vrd}$ $F_{vrd} = \frac{0.6 \times F_{ub} \times A_s}{\gamma_{mb}}$ avec $F_{ub} = 400$ MPa $F_{vrd} = \frac{0.6 \times 400 \times 36.6}{1.25} = 7.027$ KN Donc : $F_{vsd} = \frac{V_{sd}}{2} = \frac{0.265}{2} = 0.132$ KN $< F_{vrd} = 7.027$ KN (vérifiée)

IX.4.6. Vérification cisaillement + traction :

 $V_{sd} = 0.265 \text{KN}$ Il faut vérifier que : $\frac{F_{tsd}}{1.4 \times F_{trd}} + \frac{F_{vsd}}{F_{vrd}} \le 1$ **A.N :** $\frac{5.011}{1.4 \times 10.54} + \frac{0.132}{7.027} = 0.35 \le 1$ (vérifiée)

IX.4.7.Vérification à la pression diamétrale :

Nous devons vérifier la condition suivante :

$$F_{sd} \le F_{brd} = \frac{2.5\alpha \times F_u \times d \times t}{\gamma_{mb}} \quad \text{avec } \alpha = \min \left(\frac{e_1}{3 \times d_0} ; \frac{P_1}{3 \times d_0} - 0.25 ; \frac{f_{ub}}{F_u} ; 1 \right)$$

d : diamètre des trous.

t : épaisseur de la platine la plus mince.

On prend : $e_1 = 30mm$; $e_2 = 30mm$; $p_1 = 60mm$; $p_2 = 60mm$ $\alpha = min (1.11; 1.97; 1.11; 1) \rightarrow \alpha = 1; d = 8mm; t = 8mm$ $F_{sd} = 0.132KN < F_{brd} = 46.08KN$ (vérifiée)

IX.4.8. Calcul d'Assemblage platine-poutre sablière:

Ce type d'assemblage opérer avec des cordons de soudure Epaisseur de la platine e=8mm

- gorge assemblant l'âme-platine (aw) :
 Épaisseur la plus mince entre l'âme et la platine :
 t_{min}=min (tw ; e)=min (8 ; 8)=8mm
- ⇒ 3mm ≤ aw ≤7.5mm
 On adopte pour aw=5mm
 Selon l'abaque (annexe8).
- ♦ gorge assemblant semelle-platine (af) :
 Épaisseur la plus mince entre l'âme et la platine :
 t_{min}=min (tf; e)=min (13; 8)=8mm
- ⇒ 3.2mm ≤ aw ≤11mm
 On adopte pour af=9mm
 Selon l'abaque (annexe8).

IX.4.8.1. Distribution sur efforts sur les différents cordons :

a) cordon âme platine :

Chaque cordon reprend V/2=0.265/2=0.132KN

Lw=h-tf-r=160-13-15=132mm **b)** cordon semelle platine : Lf=2b-tw=2*160-8=312mm \Rightarrow N=Msd/L=3.041/0.312=9.746KN **IX.4.8.2. vérification : a)** cordon âme platine : Fwrd= $a.l.\frac{fu}{\sqrt{3}}\frac{1}{\beta_w \gamma_{Mw}}$; Avec : S235 \Rightarrow fu=360Mpa ; β_w =0.8 ; γ_{Mw} =1.25 Fwrd= $0.5 \times 13.2 \times \frac{36}{\sqrt{3}} \frac{1}{0.8 \times 1.25}$ =137.17KN Fwrd =137.17KN > Fwsd =0.132KN (c'est vérifiée) **b)** cordon semelle platine : Fwrd= $0.9 \times 31.2 \times \frac{36}{\sqrt{3}} \frac{1}{0.8 \times 1.25}$ =583.63KN Fwrd =583.63KN > Fwsd =9.746KN (c'est vérifiée)

IX.5.La poutre au vent :

IX.5.1.Dimensionnement du gousset :

L'épaisseur du gousset dépend essentiellement de l'effort appliqué, il est donné par le tableau suivant :

F(KN)	≤200	200-450	450-750	750-1150	1150-1650
e(mm)	8	10	12	14	16

Tableau IX.4 : épaisseur du gousset en fonction de l'effort appliqué

L'assemblage dimensionné avec l'élément le plus sollicité avec un effort de traction : Nt.sd=117.554KN

D'où : épaisseur de gousset t=8mm

L'assemblage est réalisé avec des boulons ordinaires de classe 6.6 dont une contrainte ultime de rupture fub=600Mpa.

IX.5.2.Distrubution de l'effort normal sur les boulons :

 $Fvsd = \frac{Ftsd}{n.P}$; avec n : nombre de boulons pris par une seule cornière n=3. P : nombre de plan cisaillement p=1

Fvsd : effort de cisaillement pour un seul boulon

 $Fvsd = \frac{117.554}{3} = 39.18KN$

IX.5.3. Pré dimensionnement des boulons :

Avec la condition $Fvsd \leq Fvrd$

Fvrd : la résistance au cisaillement de calcul pour un seul boulon

$$Fvrd = \frac{0.5 \times As \times fub}{\gamma_{Mb}} ; \quad \gamma_{Mb} = 1.25 \quad (CCM97 \text{ Tableau 65.3})$$
$$Donc : \frac{0.5 \times As \times fu}{\gamma_{Mb}} \ge Fvrd \Longrightarrow As \geq \frac{\gamma_{Mb} \times Fvsd}{0.5 \times fub} = \frac{1.25 \times 39.18}{0.5 \times 60} \Longrightarrow As \geq 163.26 \text{mm}^2$$

Université de Bejaia/Génie civil/CM/2015-2016

On adopte des boulons de type M18 As=192mm² et d_0 =20mm

IX.5.4. disposition géométrique :

Figure IX.5 : la disposition géométrique des boulons des contreventements horizontaux.

IX.5.5 Vérification :

IX.5.5.1. Vérification à la pression diamétrale :

Il faut vérifier que : $Fvsd \leq Fbrd$

Fbrd : la résistance de calcul à la pression diamétrale

Fbrd=2.5 α ×fu×d .t/ γ_{mb}

$$\alpha = \min\left(\frac{e1}{3d0}; \frac{P1}{3d0} - 0.25; \frac{fub}{fu}; 1\right) = \min\left(\frac{50}{39}; \frac{70}{66} - 0.25; \frac{600}{360}; 1\right) \Rightarrow \alpha = 1$$

t : l'épaisseur la plus mince entre le gousset la crinière t=tp=0.8cm d : diamètre de boulon d=1.2cm

Fbrd=2.5×1×36×2×0.8/ 1.25=115.2KN > Fvsd=39.18KN (vérifiée)

IX.5.5.2. Vérification à la résistance ultime de la section nette :

 $N_{tsd} \leq N_{u.Rd}$

Figure IX.6 : vue 3D d'assemblage des diagonales de contreventement horizontale.

IX.5.5.3 Vérification vis-à-vis des assemblages trop longs

L= (n-1) P= (3-1).7 =14cm L<15.d=15.2=30cm Donc : L'assemblage n'est pas long.

IX.5.5.4. Dimensionnement de l'assemblage des diagonales avec la traverse :

Ce type d'assemblage réalisé à l'aide d'un gousset relié entre la traverse et les diagonales de la poutre au vent, et le gousset soudé directement avec la traverse.

Figure IX.7 : Exemple d'assemblage des diagonales de poutre au vent avec la traverse.

L'assemblage sollicité par le même effort de traction Ntsd=117.554KN, donc on garde le même type d'assemblage précédent les cornières avec le gousset, on dimensionne juste la soudure relié entre la traverse et le gousset d'où:

Fw.sd=2×Ftsd=235.08KN

La gorge de soudure doit vérifier les critères de mise en œuvre, elle est donnée par la condition suivante:

 $3mm \le a \le t_{min}$

Avec :

tmin: épaisseur plus mince des pièces assemblées.

tmin = min(t=8mm (épaisseur du gousset); tf=14.6mm(traverse IPE450))

 $3mm \le a \le 8mm$

On choisit a=5mm

♦ Calcul de longueur de cordon l :

 $Fwsd \le (a \times l) \times \frac{fu}{\sqrt{3}} \times \frac{1}{\beta_w \times \gamma_{Mw}} \Longrightarrow \qquad l \ge \frac{Fwsd \times \sqrt{3} \times \beta_w \times \gamma_{Mw}}{a \times fu}$

 $l \ge \frac{235.08 \times \sqrt{3} \times 0.8 \times 1.25}{0.5 \times 36} \implies l \ge 22.62 \text{ cm} \rightarrow \text{ on adopte pour } l = 24 \text{ cm}$

IX.6. contreventement vertical :

Notre cas, le palée de stabilité vertical est de type V inversé, composé de :

Deux diagonales de section (2CEA 130×12) reliant avec une poutre HEB120. L'une des diagonale soumise à un effort maximal de traction Ntsd=89.05KN

D'après le tableau IX.1 on détermine l'épaisseur de gousset assemblé entre les deux diagonale avec la poutre (t=8mm).

Figure IX.8 : assemblage des diagonales de palée de stabilité vertical.

L'assemblage est réalisé avec des boulons ordinaires de classe 6.6 dont une contrainte ultime de rupture fub=600Mpa.

IX.6.1.Distrubution de l'effort normal sur les boulons :

 $Fvsd = \frac{Ftsd}{n.P}$; avec n : nombre de boulons pris par une seule cornière n=4.

P : nombre de plan cisaillement (contacte) p=2

Fvsd : effort de cisaillement pour un seul boulon

 $Fvsd = \frac{89.05}{4*2} = 11.13KN$

IX.6.2 Pré dimensionnement des boulons :

Avec la condition Fvsd ≤ Fvrd

Fvrd : la résistance au cisaillement de calcul pour un seul boulon

 $Fvrd = \frac{0.5 \times As \times fub}{\gamma_{Mb}} ; \quad \gamma_{Mb} = 1.25 \quad (CCM97 \text{ Tableau 65.3})$ Donc : $\frac{0.5 \times As \times fu}{\gamma_{Mb}} \ge Fvrd \Longrightarrow As \ge \frac{\gamma_{Mb} \times Fvsd}{0.5 \times fub} = \frac{1.25 \times 11.13}{0.5 \times 60} \Longrightarrow As \ge 46.40 \text{ mm}^2$

On adopte des boulons de type M10 As= $58mm^2$ et d₀=11mm

IX.6.3. disposition géométrique :

Cornière L CAE90.9 av	vec t=8mm	
Selon l'EC3 P1-8 table	au3.3 on déter	mine les pinces et les pas :
1.2d₀≤e₁≤8t		13.2mm≤e₁≤64
2.2d₀≤p1≤14t	d'où :	24.2mm≤p1≤112
1.2d₀≤e₂≤8t		13.2mm≤e₂≤64
Soit $e_1=4cm$; $P_1=3cm$; e2=5.5cm	

IX.6.4. Vérification :

IX.6.4.1. Vérification à la pression diamétrale :

Il faut vérifier que : Fvsd ≤ Fbrd

Fbrd : la résistance de calcul à la pression diamétrale

Fbrd=2.5 α ×fu×d .t/ γ_{mb}

 $\alpha = \min\left(\frac{e1}{3d0}; \frac{P1}{3d0} - 0.25; \frac{fub}{fu}; 1\right) = \min\left(\frac{40}{33}; \frac{30}{33} - 0.25; \frac{600}{360}; 1\right) \Rightarrow \alpha = 0.66$

t : l'épaisseur la plus mince entre le gousset la crinière t=tp=0.8cm d : diamètre de boulon M10 d=1cm Fbrd=2.5×0.6×36×1×0.8/ 1.25=34.56KN > Fvsd=11.13KN (vérifiée)

IX.6.4.2. Vérification à la résistance ultime de la section nette :

$$\begin{split} &\mathsf{N}_{tsd} \leq \mathsf{N}_{u.Rd} \\ &\mathsf{N}_{u.Rd} = \frac{0.9 \times A_{net} \times F_u}{\gamma m 2} ; \\ &\mathsf{Calcul de la section nette :} \\ &\mathsf{A}_{net} = \mathsf{A}_1 + \xi . \mathsf{A}_2 \\ &\mathsf{A}_{net} = \mathsf{A}_1 + \xi . \mathsf{A}_2; \\ &\mathsf{A}_{1} = (\mathsf{l} - \mathsf{d}_0) \; \mathsf{e}; \\ &\mathsf{A}_2 = \mathsf{A}_{tot} - (\mathsf{d}_0 \times \mathsf{e}) - \mathsf{A}_1; \\ &\mathsf{E} = \frac{3 \times A_1}{3 \times A_1 + A_2} \\ &\mathsf{A}_1 = (\mathsf{l} - \mathsf{d}_0) \; \mathsf{e} = (130 - 11)^* 12 = 1428 \mathsf{mm}^2 \\ &\mathsf{A}_2 = 3000 - (11^* 12) - 1428 = 1440 \mathsf{mm}^2 \\ &\mathsf{E} = \frac{3 \times A_1}{3 \times A_1 + A_2} = 0.74 \\ &\mathsf{A}_{net} = 1428 + (0.74 \times 1440) = 2493.6 \mathsf{mm}^2 \\ &\mathsf{Calcul de l'effort résistant de la section nette} \\ &\mathsf{N}_{u.Rd} = \frac{0.9 \times 24.93 \times 36}{1.25} = 646.34\mathsf{KN} \\ &\mathsf{N}_{sd} = 89.05\mathsf{KN} < \mathsf{N}_{u.Rd} = 646.24\mathsf{KN} \; (\mathsf{c'est vérifiée}) \end{split}$$

IX.6.4.3. Vérification vis-à-vis des assemblages trop longs

L= (n-1) P= (4-1).3 =9cm L<15.d=15.1=15cm Donc : L'assemblage n'est pas long

IX.6.4.4. Dimensionnement des cordons de soudure gousset-poutre :

La gorge de soudure doit vérifier vis-à-vis l'effort de traction et de compression des diagonales :

Ona F_t = 85.126KN et F_c = 51.62KN la résultante de deux charges : R = $\sqrt{F_t^2 + F_c^2 \times cos\alpha}$

$$→ R = \sqrt{85.62^2 + 51.62^2 \times cos45^\circ} = 95.55 \text{KN}.$$

 $3mm \le a \le t_{min}$

Avec :

tmin: épaisseur plus mince des pièces assemblées (poutre ; gousset).

t_{min} = min(tp=8mm ; tf (HEB120) =11mm).

$3mm \le a \le 8mm \implies 0n$ choisit a=5mm

Figure IX.9 : cordons de soudure gousset de la poutre HEB120.

♦ Calcul de longueur de cordon l1 :
Fwsd1≤ (a×l₁) × $\frac{fu}{\sqrt{3}}$ × $\frac{1}{\beta_W × \gamma_{M_W}}$ ⇒ $l_1 \ge \frac{Fwsd1 × \sqrt{3} × \beta_W × \gamma_{M_W}}{a × fu}$ $l_1 \ge \frac{178.1 × \sqrt{3} × 0.8 × 1.25}{0.5 × 36}$ ⇒ $l_1 \ge 17.13$ cm → on adopte pour $l_1 = 20$ cm

IX.6.5. Dimensionnement des cordons de soudure gousset-poteau :

La gorge de soudure doit vérifier les critères de mise en œuvre, elle est donnée par la condition suivante:

 $3mm \le a \le t_{min}$ Avec : tmin = min(t=8mm (épaisseur du gousset); tw=9.5mm(poteau HEA340)) tmin = 8mm (épaisseur du gousset) $3mm \le a \le 8mm$ On choisit a=5mm \diamond Calcul de longueur de cordon l1 : $Fwsd=89.05 \le (a \times l) \times \frac{fu}{\sqrt{3}} \times \frac{1}{\beta_w \times \gamma_{Mw}} \Longrightarrow \qquad l \ge \frac{Fwsd1 \times \sqrt{3} \times \beta_w \times \gamma_{Mw}}{a \times fu}$ $l \ge \frac{89.05 \times \sqrt{3} \times 0.8 \times 1.25}{0.5 \times 36} \Longrightarrow \qquad l \ge 8.56 \text{ cm} \rightarrow \text{ on adopte pour } l=12 \text{ cm}$

IX.7. assemblage d'échantignole :

IX.7.1 Assemblage de la panne sur l'échantignolle

Les pannes sont assemblées aux traverses ou aux fermes par boulonnage. Sur les toitures inclinées, pour éviter le glissement et le renversement à la pose, les pannes sont fixées à l'aide d'échantignolles. On dimensionnera le boulon au cisaillement avec Rvz / 2 (chaque boulon reprend une seul panne).

Figure IX.11: Vue perspective de l'échantignole.

On vérifiera l'assemblage pour un boulon ordinaire afin de réaliser une articulation.

Rvz max = 25.215KN et celui due au soulèvement de vent (voire chapitre III prédimensionnement calcul de L'échantignolle), dans ce cas y'à risque de cisaillement des deux boulons.

♦ Calcul de l'effort de cisaillement revenant pour un seul boulon :

 $Fvsd = \frac{Rvzmzx}{n.P} = \frac{25.215}{2 \times 1} = 12.61KN$

♦ Dimensionnement des boulons :

Pour ce type assemblage on choisit des boulons ordinaire de classe 6.6 avec une contrainte ultime de rupture fub=600Mpa

Fvrd : la résistance au cisaillement de calcul pour un seul boulon

$$Fvrd = \frac{0.5 \times As \times fub}{\gamma_{Mb}} ; \quad \gamma_{Mb} = 1.25 \quad (CCM97 \text{ Tableau 65.3})$$

On doit vérifier la condition de résistance suivant : $Fvrd \ge Fvrd = \frac{0.5 \times As \times fub}{\gamma_{Mb}} \implies As \ge \frac{\gamma_{Mb} \times Fvsd}{0.5 \times fub} = \frac{1.25 \times 12.61}{0.5 \times 60} \implies As \ge 52.54 \text{mm}^2$ On adopte des boulons de type M10 As=58mm² et do=11mm $Fvrd = \frac{0.5 \times 0.58 \times 60}{1.25} = 13.92 \text{KN} > Fvsd = 12.61 \text{KN}$ (c'est vérifiée)

IX.7.2. Assemblage de l'échantignolle sur la traverse :

Dans ce type d'assemblage en pratique est la liaison entre l'échantignolle et la traverse ce fait avec des cordons de soudure, l'objectif est de tenir une bonne résistance ; économique et afin d'évité le perçage de la traverse ce qui permis de gardé leur résistance.

Les sollicitations :

Rz= 25.215KN (due au soulèvement de vent) Qy= q_{uy}.6 =0.315KN (due au poids propre des pannes et de bardage) Donc : Fw.sd= Rz+Qy=25.53KN

Dimensionnement de la soudure :

Sous la combinaison : $1.35Q_y + 1.5R_z$

La gorge de soudure doit vérifier les critères de mise en œuvre, elle est donnée par la condition suivante: $3mm \le a \le t_{min}$

Simil $\leq a \leq t_{min}$ Avec : tmin: épaisseur plus mince des pièces assemblées. tmin = min(t=15mm (épaisseur de l'échantignolle); tf=14.6mm(traverse IPE450)) 3mm $\leq a \leq 15$ mm On choisit a=5mm \Leftrightarrow Calcul de longueur de cordon l : Fwsd $\leq (a \times l) \times \frac{fu}{\sqrt{3}} \times \frac{1}{\beta_w \times \gamma_{Mw}} \implies l \geq \frac{Fwsd \times \sqrt{3} \times \beta_w \times \gamma_{Mw}}{a \times fu}$ $l \geq \frac{25.53 \times \sqrt{3} \times 0.8 \times 1.25}{0.5 \times 36} \implies l \geq 2.45$ cm \rightarrow on adopte pour l=7cm

IX.8. Assemblage poteau _ support de chemin de roulement :

IX.8.1. Efforts sollicitant :

Un moment fléchissant : M_{max}= 4.163KN.m

Effort de cisaillement : V_{max}= 10.080KN

IX.8.2. disposition géométrique des boulons :

On suppose une platine de 15mm avec des boulons de dimension M8 (d_0 =9mm) Selon l'EC3 P1-8 tableau3.3 on détermine les pinces et les pas :

1.2d₀≤e₁≤8t		21.6mm≤e₁≤120
2.2d₀≤p1≤14t	d'où :	39.6mm≤p1≤210
1.2d₀≤e₂≤8t		21.6mm≤e₂≤120
2.4d₀≤P₂≤14t		43.2mm≤P₂≤210

On prend : P1=60mm et p2=60mm Pince longitudinale (e1=60mm) Pince transversale (e2=60mm)

On adopte alors deux colonnes et 4 rangées de boulon Nombre de boulons N=4 (voir figureIX.1)

Figure IX.12 assemblage poteau-corbeau.

IX.8.3. Effort de traction :

La distribution de moment Mmax sur les rangées de boulons ce qui générer la traction des boulons, le moment est appliqué par rapport au centre de gravité de la traverse on supposera que seul les deux rangée supérieur sont tendus. Ce moment est équivalant à une force N1.

Figure IX.13 distribution des efforts sur les boulons tendus.

Avec Mmax=N1×d1; d1=11cm

Et $\frac{N_1}{d_1} = \frac{N_2}{d_2}$; \Rightarrow N1= $\frac{Mmax}{d_1} = \frac{4.163}{0.11} = 37.84$ KN Donc F_{Tsd} = $\frac{N_1}{2} = 18.92$ KN

 $F_{\mbox{\scriptsize Tsd}}$: l'effort de traction maximal pour un seul boulon.

IX.8.4. Pré dimensionnement des boulons :

On doit vérifier la condition de résistance suivant : $Fp \ge F_{Tsd}$; Fp : la force précontrainte d'un seul boulon. $Fp=0.7 \times As \times fub$; fub : contrainte ultime de rupture (on choisit la classe8.8 fub=800Mpa) $0.7 \times As \times fub \ge F_{Tsd} \Rightarrow As \ge \frac{Ftsd}{0.7 \times 800} = 33.79 mm^2$ On adopte un boulon M10 avec As=58mm²

IX.8.5 Vérification vis-à-vis au cisaillement :

On doit vérifier la condition suivant : Fvsd \leq Fs,Rd ; avec : Fvsd= V_{max}/4= 2.52KN Fs,Rd: la résistance de calcul au cisaillement par boulon Fs,Rd= $\frac{k_s \times n \times \mu}{\gamma_{Ms}} \times$ Fp,cd Fp,cd: précontrainte de calcul Fp,cd=0.7×As×fub =0.7×58×800=32.48KN Ks=1 ; coefficient qui est en fonction de la dimension des trous de perçage pour les trous à tolérance normale.

n : nombre d'interfaces de frottement n= 1

 μ : coefficient de frottement qui est pris égale à 0.3

 $Fs,Rd = \frac{k_s \times n \times \mu}{\gamma_{M_s}} \times Fp,cd \rightarrow Fs,Rd = \frac{1 \times 1 \times 0.3}{1.25} \times 32.48 \rightarrow Fs,Rd = 7.79KN$

donc Fvsd=2.52KN < Fs,Rd=7.79KN c'est vérifiée.

IX.8.6. Vérification d'un boulon à l'interaction traction cisaillement :

On doit vérifier la condition suivant :

 $Fvsd \le Fs, Rd = \frac{k_s \times n \times \mu}{\gamma_{Ms}} \times (Fp, cd-0.8Ftsd)$

Fs,Rd= $\frac{1 \times 1 \times 0.3}{1.25}$ ×(32.48-0.8×18.92)=4.16KN

Fvsd=2.52KN < Fs,Rd=4.16KN

La résistance de boulon à l'interaction cisaillement traction elle est vérifiée.

IX.8.7. Vérification au poinçonnement :

Il faut vérifier que : $B_{prd} \ge Ftsd=18.92KN$ B_{prd} : la résistance de calcul au cisaillement par poinçonnement

 $B_{prd} = 0.6 \times \pi \times dm \times tp \times \frac{fu}{\gamma mb}$;

dm : diamètre moyen de boulon M10 (dm=1.83cm)

tp : l'épaisseur de la plaque sous la tête de la vis ou de l'écrou (tp=1.5+1.65=3.15cm) S235 ➔ fu=360Mpa

 $B_{prd} = 0.6 \times 3.14 \times 1.83 \times 3.15 \times \frac{36}{1.25} = 312.77 \text{KN} > \text{Ftsd} = 18.92 \text{KN} \text{ (c'est vérifiée)}$

IX.8.8. Vérification à la pression diamétrale :

Il faut vérifier que : Fvsd \leq Fbrd Fbrd : la résistance de calcul à la pression diamétrale Fbrd=2.5 α ×fu×d .t/ γ_{mb} α =min $\left(\frac{e1}{3d0}; \frac{P1}{3d0} - 0.25; \frac{fub}{fu}; 1\right)$ =min $\left(\frac{60}{33}; \frac{60}{33} - 0.25; \frac{800}{360}; 1\right) \rightarrow \alpha$ =1 t : l'épaisseur minimal entre tf de poteau et épaisseur de la platine t=tf=1.65cm

d : diamètre de boulon d=1cm

Fbrd=2.5×1×36×1×1.65/ 1.25=118.8KN > Fvsd=2.52KN (vérifiée) Y'a pas de risque de rupture par pression diamétrale.

IX.8.9. Assemblage platine corbeau:

Ce type d'assemblage réalisé avec des cordons de soudure Epaisseur de la platine e=15mm

 gorge assemblant l'âme-platine (aw) :
 Épaisseur la plus mince entre l'âme et la platine :
 t_{min}=min (tw ; e)=min (10.2 ; 15)=10.2mm

- ⇒ 3mm ≤ aw ≤7.5mm
 On adopte pour aw=5mm
- ♦ gorge assemblant semelle-platine (af) :
 Épaisseur la plus mince entre l'âme et la platine :
 t_{min}=min (tf; e)=min (16; 15)=15mm
- $\Rightarrow 3.2 \text{mm} \le \text{aw} \le 11 \text{mm}$ On adopte pour af=9 mm

IX.8.10. Distribution sur efforts sur les différents cordons : a) cordon âme platine :

Chaque cordon reprend V/2=66.486/2=33.243KN

Lw=h-tf-r=152-9-15=128mm

b) cordon semelle platine :

Lf=2b-tw=2*160-6=314mm N=Msd/L=136.413/0.314=434.43KN

IX.8.11. vérification :

a) cordon âme platine :

Fwrd= $a.l.\frac{fu}{\sqrt{3}}\frac{1}{\beta_w \gamma_{Mw}}$; Avec: S235 \Rightarrow fu=360Mpa; β_w =0.8; γ_{Mw} =1.25 Fwrd= $0.5 \times 12.8 \times \frac{36}{\sqrt{3}} \frac{1}{0.8 \times 1.25}$ =133.02KN Fwrd=133.02KN > Fwsd=33.24KN (c'est vérifiée) **a) cordon semelle platine**: Fwrd= $0.9 \times 31.4 \times \frac{36}{\sqrt{3}} \frac{1}{0.8 \times 1.25}$ =587.37KN

Fwrd =587.37KN > Fwsd =434.43KN (c'est vérifiée)

IX.9. Assemblage des poutres de roulement :

L'assemblage de deux poutres de roulement fait avec une liaison bout à bout dans le plan de leur âme par des boulons et couvre-joints.

Les sollicitations transmettre aux poutres de roulement est un moment fléchissant porté par l'axe yy, le moment relatif des deux poutres est une rotation autour de l'axe yy. Glissement du couvre-joint \Rightarrow cisaillement des boulons

ent du couvre-joint \Rightarrow cisaillement des boulons

Figure IX.14 déplacement dû à un moment fléchissant.

IX.9.1. dimensionnement de l'assemblage

Les boulons sollicité par un effort de cisaillement Vsd= Qrmax=34.985KN On utilise des boulons ordinaire avec trous au blons de classe 8.8 avec fub=800Mpa Ftsd=Vsd=34.985KN

Ft,Rd: la résistance d'un seul boulon a la traction.

$$Ft,sd \le Ft,Rd = \frac{0.9 \times A_s \times f_{ub}}{\gamma_{Mb}} \Rightarrow A_s \ge \frac{0.9 \times F_{ub}}{\gamma_{mb} \times F_{tsd}} \Rightarrow A_s \ge \frac{34.985 \times 10^3 \times 1.5}{0.9 \times 800} \Rightarrow A_s \ge 72.88 mm^2$$

On adopte des boulons M12 avec $A_s = 84.3 mm^2$

IX.9.2. Vérification des boulons a la traction :

→ $F_{t,Rd} = \frac{0.9 \times 800 \times 84.3}{1.25} = 48.55 \text{KN}$ donc Ftsd=34.98 KN < Ft,Rd=48.55 KN c'est vérifiée.

IX.9.3. disposition géométrique des boulons :

On choisit deux couvre-joints épaisseur de 10 mm : (M12 ; d_0 =13mm)

2.2d₀≤p≤14t	d'où :	48.4mm≤p≤140
1.2d₀≤e≤8t		26.4mm≤e≤80

On prend (p=60mm et e=35mm), les dimensionnes du couvre-joint sont (130×70mm²)

Figure IX.15 assemblage bout à bout des poutres de roulement.

IX.9.4. Vérification à la pression diamétrale :

Il faut vérifier que : Fvsd \leq Fbrd

Fbrd : la résistance de calcul à la pression diamétrale

Fbrd=2.5 α ×fu×d .t/ γ_{mb}

 $\alpha = \min\left(\frac{e}{3d0}; \frac{P}{3d0} - 0.25; \frac{fub}{fu}; 1\right) = \min\left(\frac{35}{66}; \frac{60}{66} - 0.25; \frac{800}{360}; 1\right) \Rightarrow \alpha = 0.53$

t : l'épaisseur minimal entre tw de la poutre de roulement et épaisseur de tp de la couvre-joint.

 $t=\min(tw;tp)=\min(8;10) \Longrightarrow t=8mm$

d : diamètre de boulon d=12mm

Fbrd=2.5×0.53×36×1.2×0.8/ 1.25=36.63KN > Fvsd=34.985KN (vérifiée)

Y'a pas de risque de rupture par la pression diamétrale.
IX.10. Calcul des pieds de poteaux :

IX.10.1 Introduction :

Les poteaux sont élargis à leur base par les platines soudées, les toutes reposes sur le sol par l'intermédiaire d'un massif en béton, auquel il est ancré par des boulons de scellement, le but est de transmettre les sollicitations appliquées à la construction, aux fondations.

IX.10.2 dimensionnement des tiges d'ancrages :

La tige d'ancrage sera dimensionnée avec l'effort de traction le plus défavorable :

Figure IX.16 : tige d'ancrage de pied de poteau.

La longueur de la platine est donnée comme suit : b = H +2C Ou :

H : la hauteur de la section HEA340 → H = 330mm

B : la base de la section HEA340 \rightarrow B = 300mm

C = le débord, donnée par : C = (100/150)

Soit C = 100mm

 $D'o\dot{u}: a = 300 + 2(100) = 500mm$

Largeur de la platine :

 $b = H + 2C \rightarrow b = 330 + 2(100) = 530 mm$

Figure IX.17 : Dispositions constructives.

Les tiges d'ancrages se dimensionnent à la traction simple, sous un effort de traction (Na).

$$N_{st} = \frac{N_t}{n}$$

n : nombre de tiges. N_t : effort sollicitant de traction.

L'ancrage est réalisé par 6 tiges :

$$\frac{N_t}{6} \le \frac{\pi \cdot \emptyset^2}{4} f_y \Rightarrow \emptyset \ge \sqrt{\frac{2N_t}{3 \cdot \pi \cdot f_y}}$$
$$\emptyset \ge \sqrt{\frac{2 \times 130.562}{3 \cdot 14 \cdot 3 \cdot 23.5}} = 1.08 \ cm$$

Figure IX.18 : Vue 3D de la disposition des tiges ancrages.

Donc on prend : $\phi = 2.5$ cm Soit des tiges d'ancrages de **25 mm** de diamètre.

IX.10.3.Vérification de la tige d'ancrage :

L'effort admissible par scellement est fixé par la règle suivant :

$$N_a = 0.1 \cdot \left(1 + \frac{7.g_c}{1000}\right) \cdot \frac{\phi}{\left(1 + \frac{\phi}{d_1}\right)} \cdot \left(l_1 + 6.4.r + 3.5.l_2\right)$$
(CCM97)

 N_a : effort normal résistant d'une tige.

$$r = 3\emptyset, \quad l1 = 20\emptyset, \quad l2 = 2\emptyset$$

g_c: Le dosage en ciment = 350 Kg/m³

 $r = 1.25 \ cm$; $l_1 = 50 \ cm$; $l_2 = 5 \ cm$; $d_1 = 10 \ cm$

 $N_a = 82.32KN > \frac{N_t}{6} = 21.76KN$ (Vérifiée)

IX.10.4. vérification des contraintes dans le béton et l'acier :

Donc le centre de poussée se trouve hors de tiers central de la section, et la platine est soulevée à gauche (les boulons de gauche étant sollicités en traction).

 $e = \frac{M_{sd}}{N_{sd}} = \frac{122.369}{130.562} = 0.93 \text{m} \text{ avec } M_{sd} = 122.369 \text{KN.m}$ $A = 3 \times \Pi \times \mathbf{R}^2 = 14.71 \text{cm}^2 \quad (\text{A}: \text{aire de la section de } \mathbf{3} \text{ tiges à gauche du poteau})$ L = e + h/2 + c/2 = 124.5 cm $h = h_p + d_1 + d_1/2 = 68 \text{cm}$ $b = 2d_1 + h_p = 63 \text{cm}$ $n = \frac{E_a}{E_b} = 15$

$$h^{13} + 3.(l-h).h^{12} + 90A\frac{l}{b}.h' - 90A\frac{l}{b}.h = 0 \Rightarrow h' = 24.29 \text{ cm}$$

IX.10.5.Contraintes dans le béton :

$$\sigma_{\rm b} = \frac{2NL}{bh'(h-\frac{h}{3})} \le f_{\rm ub}$$

$$\sigma_{\rm b} = \frac{2 \times 130.562 \times 124.5}{63 \times 24.29(86-\frac{24.29}{3})} = 3.5 \text{MPa}$$

Avec $f_{\rm ub} = \frac{0.85 \times 25}{1.5} = 14.2 \text{MPa}$

 $\sigma_{\rm b}$ = 3.5MPa < f_{ub} = 14.2MPa c'est vérifiée

* Contrainte dans l'acier :

$$\sigma_{a} = \frac{130.562}{14.71} \times \frac{124.5 - 68 + \frac{24.29}{3}}{68 - \frac{24.29}{3}} = 71.71 \text{MPa} < f_{y} = 235 \text{MPa} \quad \text{vérifiée}$$

IX.10.6.Dimensionnement de l'épaisseur de la platine :

a) Vérification de la section 1-1 :

Le moment dans la section 1-1 grâce au diagramme trapézoïdale des contraintes située à droite de la section, que l'on peut décomposer en un diagramme rectangulaire (1) et un diagramme triangulaire (2).

Les moments correspondants, pour une bande unité b = 1m et d'épaisseur t.

$$M_{1} = \sigma_{b} \times b \times \frac{U^{2}}{2} \Rightarrow M_{1} = 0.35 \times 63 \times \frac{10^{2}}{2} = 11.02 \text{KN.m}$$

$$M_{2} = (10 \times \frac{0.95}{2}) \times \frac{2 \times 10}{3} \times 10^{-1} = 3.16 \text{KN.m}$$

$$M = M_{1} - M_{2} = 7.86 \text{KN.m}$$

$$\frac{I}{V} = \frac{\frac{b \times t^{3}}{12}}{\frac{t}{2}} = \frac{b \times t^{2}}{6}$$

La contrainte de flexion dans la section

$$\frac{M}{W_{el}} \le f_y \ t \ge \sqrt{\frac{786 \times 6}{63 \times 23.5}} \rightarrow t \ge 1.78 \text{cm}$$

b) Vérification de la section 2-2 :

Le même raisonnement on aura le moment maximal :

$$M = M_1 = 11.02 \text{KN.m}$$
$$\frac{M}{W_{el}} \le f_y \ t \ge \sqrt{\frac{1102 \times 6}{63 \times 23.5}} \Rightarrow t \ge 2.11 \text{cm}$$

c) Vérification de la section 3-3 :

Du coté tendu, la platine est soumise à un moment : M = 0.1T

T =
$$\sigma_a \times A = 7.17 \times 4.9 = 35.13$$
KN
W = $\frac{b \times t^2}{6}$
M = 0.1×35.13 = 3.51KN.m

On adopte une platine d'épaisseur t = 2.5cm

d) Vérification de la bèche :

On doit vérifier la bèche au cisaillement : $V_{st} \le V_{Rd} = \frac{A_{vz} \times f_y}{\sqrt{3}} \times \frac{1}{\gamma m 0}$

e) Dimensionnement de la bèche :

$$A_{vz} \ge \frac{V_{st} \times \sqrt{3} \times \gamma_{m0}}{F_y} \twoheadrightarrow A_{vz} \ge \frac{155.231 \times \sqrt{3} \times 1.1 \times 10^3}{235} \twoheadrightarrow A_{vz} \ge 12.58 \text{cm}^2$$

On adopte un IPE200 avec A_{vz} = 14.0cm²

Il faut vérifier que V_{st} = 155.231KN $\leq V_{Rd} = \frac{14 \times 10^2 \times 235}{\sqrt{3} \times 1.1} = 172.68$ KN c'est vérifier.

IX.11. Les pieds de potelets :

Université de Bejaia/Génie civil/CM/2015-2016

Figure IX.19 : vérification de la section 1-1

Il suffit de calculer la base uniquement pour le potelet le plus sollicité (potelet central) et d'adopter la même base pour tous les autres potelets. Le potelet travaille en compression simple sous le poids propre N_{sd} = 37.032KN

Le pied de potelets sont articulé

Figure IX.20 : Vue 3D de la disposition des tiges ancrages de potelet.

h : la hauteur de la section HEA320 → H =310mm

c : le débord, donné par : c(100/150)mm

on prend c = 100mm

d'où : a = h + 2c = 310+2(100) = 510mm

b = b + 2c = 300 + 2(100) = 500mm

L'ancrage est réalisé par deux tiges.

$$\frac{N_t}{2} = \frac{\pi \times \phi^2}{4} \times f_y \Rightarrow \phi \ge \sqrt{\frac{2 \times N_t}{\pi \times f_y}} \qquad \phi \ge \sqrt{\frac{2 \times 37.032}{3.14 \times 23.5}} = 1.001 \text{cm}$$

Donc on choisit pour les tiges le diamètre ϕ = 2.5cm

IX.11.1. Vérification de la tige d'ancrage :

L'effort admissible par scellement est par la règle suivante :

$$N_a = 0.1 \cdot \left(1 + \frac{7.g_c}{1000}\right) \cdot \frac{\phi}{\left(1 + \frac{\phi}{d_1}\right)} \cdot \left(l_1 + 6.4.r + 3.5.l_2\right) \quad \text{(CCM97)}$$

Na : effort normal résistant d'une tige.

$$r = 3\emptyset, \quad l1 = 20\emptyset, \quad l2 = 2\emptyset$$

 $l_1 = 50 \ cm$

 $l_2 = 5 \ cm$

 $d_1 = 10 cm$

 $N_a = 79.69KN > \frac{N_t}{2} = 18.51KN$ (Vérifiée)

IX.11.2. Vérification de la contrainte de compression sur la semelle de la fondation :

L_p = 510mm (longueur de la platine).

B_p = 500mm (largeur de la platine).

$$\sigma = \frac{N_t}{L_p \times B_p} = \frac{37.032 \times 10^3}{510 \times 500} = 0.14 \text{MPa} < f_{\text{ub}} = 14.2 \text{MPa}$$

IX.11.3. Détermination de l'épaisseur de la platine :

Il faut vérifier que :

$$\sigma \times b \times \frac{\mu^2}{2} \le f_y \times \frac{b \times t^2}{6} \text{ soit } t \ge \mu \times \sqrt{\frac{3 \times \sigma}{f_y}}$$
$$t \ge 100 \times \sqrt{\frac{3 \times 0.14}{235}} = 0.17 \text{mm on prend } t = 2.5 \text{cm}$$

CHAPITRE X : Etude d'infrastructure

ETUDE D'INFRASTRUCTURE

X.1. Introduction :

Un ouvrage quelle que soit sa forme et sa destination, prend toujours appui sur un sol d'assisse. Les éléments qui jouent le rôle d'interface et le sol s'appelle fondations. Le dimensionnement de la fondation est conditionné par le site d'implantation.

• Choix du type de fondations :

Le choix du type de fondation se fait suivant trois paramètres :

-La nature et le poids de la superstructure.

-La qualité et la quantité des charges appliquées sur la construction.

-La qualité du sol de fondation.

La contrainte admissible de notre sol site S2 est : σ_{sol} = 2bars

La profondeur d'ancrage : **D = 2m**

X.2. Calcul des fondations sous les poteaux :

X.2.1. Détermination des sollicitations : Pour le dimensionnement des fondations superficielles, les sollicitations sont déterminées selon les combinaisons suivantes :

$$G + Q + E$$

$$0.8G \pm E$$
(Art 10.4.1. RPA/2003)

Ainsi que les combinaisons citées par le BAEL 91.

Compte tenu de l'application à la résistance ultime du sol q_u d'un coefficient de sécurité de 2. Les coefficients les plus défavorables sont donnés dans le tableau ci-dessous :

ituation cidentelle G+ P + Ey	ELU	ELS
G+ P + E _Y		
	1.35G+1.5N+1.005Wd+1.5P	G+N+0.67W _d +P
240.71	269.216	189.766
2.839	-4.756	-3.248
-0.047	-0.163	-0.114
36.468	-23.687	-16.641
2.416	-4.674	-3.274
-	240.71 2.839 -0.047 36.468 2.416	240.71 269.216 2.839 -4.756 -0.047 -0.163 36.468 -23.687 2.416 -4.674

Tableau X.1 : les sollicitations à la base des poteaux HEA340

X.2.2. Pré-dimensionnement de la semelle du poteau :

Les dimensions de la semelle sont choisies de manière qu'elles soient homothétiques avec celle du pied de poteau.

$$\frac{H}{B} = \frac{h}{b}$$

h et b : dimension de la platine au-dessous de poteau.

Les poteaux sont des HEA340 est prise (80×60) cm

h = 0.8m et b = 0.6m

H et B : dimension de la semelle.

Donc H = $1.33 \times B$

h₁ : la hauteur totale de la semelle.

h₁: d+c ; avec c=5cm. (Béton de propreté)

d : hauteur utile de la semelle est donné par la condition (BAEL 91 - Ch 15.III - Art 1.2)

$$d = \max\left(\frac{B-b}{4}; \frac{H-h}{4}\right)$$

a) Critère de non poinçonnement :

- $\sigma_{M} < 2 \sigma_{sol}$: Situation accidentelle
- $\sigma_{M} < 1.33 \sigma_{sol}$: Situation durable

 σ_{M} : Contrainte maximale dans la semelle donnée par la formule suivante :

Avec $e_0 = \frac{M_y}{N_{max}}$

Figure X.1 : les dimensionne de la semelle sous le poteau.

Université de Bejaia/Génie civil/CM/2015-2016

X.2.3. Dimensionnement de la semelle :

♦ Situation accidentelle : $\sigma_M < 2 \sigma_{sol}$

$$e_{0} = \frac{2.839}{240.71} = 0.011m$$

$$\frac{N}{H \times B} \left(1 + \frac{6 \times e_{0}}{B}\right) \le 2 \sigma_{sol} \Rightarrow \frac{N}{1.33 \times B^{2}} \left(1 + \frac{6 \times e_{0}}{B}\right) \le 2 \sigma_{sol}$$

$$\frac{2.66 \times \sigma_{sol}}{N} \times B^{3} - B - (6 \times e_{0}) \ge 0 \Rightarrow B \ge 67cm$$

$$\Leftrightarrow \text{ Situation durable : } \sigma_{M} < 1.33 \sigma_{sol}$$

$$e_{0} = \frac{4.756}{269.216} = 0.017m$$

$$\frac{N}{H \times B} \left(1 + \frac{6 \times e_{0}}{B}\right) \le 1.33 \sigma_{sol} \Rightarrow \frac{N}{1.33 \times B^{2}} \left(1 + \frac{6 \times e_{0}}{B}\right) \le 1.33 \sigma_{sol}$$

$$\frac{1.76 \times \sigma_{sol}}{N} \times B^{3} - B - (6 \times e_{0}) \ge 0 \Rightarrow B \ge 90cm$$

 $B \ge max (67 cm; 90 cm) \rightarrow B = 90 cm$

Donc on choisit pour toutes les semelles

B = 140cm → H = 190cm

d = max ($\frac{140-60}{4}$; $\frac{190-80}{4}$) → d = 27.5cm → h_i = 32.5cm

 l_i : la hauteur de l'amorce de poteau avec :

 $l_i = D - h_i = 2 - 0.325$ $\rightarrow l_i = 1.675m$

♦ Calcul de poids propre de la semelle et l'amorce de poteau :

 $P = ((H \times B \times h_i) + (h \times b \times l_i) \times P_b = 43.5 KN$

♦ Le moment à la base :

 $M_{by} = M_y + (V_z \times D)$ $M_{bz} = M_z + (V_y \times D)$

		Situation dura	ıble
Sollicitation	Situation accidentelle	ELU	ELS
	G+ P + E _Y	1.35G+1.5N+1.005Wd+1.5P	G+N+0.67W _d +P
N ^{max} (KN)	284.21	327.941	233.266
M _{by} (KN.m)	7.671	-14.104	-9.796
M _{bz} (KN.m)	72.889	-47.537	-33.396
Vy (KN)	36.468	-23.687	-16.641
Vz (KN)	2.416	-4.674	-3.274

Tableau X.2. : Les sollicitations à la base de la semelle HEA340.

X.2.4. Vérification des contraintes :

Les contraintes dans les semelles excentrées sont données par les expressions suivantes :

Pour les semelles de calcul entièrement comprimée ona :

$$\sigma_{\text{moy}} = \frac{3\sigma_{\text{max}} + \sigma_{\text{min}}}{4} \le \sigma_{\text{sol}}$$

Cas de chargement	Sens	e ₀ (m)	σ _{max} (bar)	σ _{min} (bar)	σ _{moy} (bar)
ELU	Sens H	14.49	1.79 < 2.66	0.668	1.50
	Sens B	4.30	1.46 < 2.66	1.005	1.34
ELS	Sens H	14.31	1.27 < 2.66	0.48	1.07
	Sens B	4.19	1.03 < 2.66	0.719	0.95
Accidentelle	Sens H	25	1.91 < 2.66	0.208	1.48
	Sens B	2.69	1.19 < 2.66	0.944	1.12

Les résultats de calcul des contraintes sont regroupés dans le tableau suivant :

Tableau X.3. : Les résultants de calcul des contraintes

X.2.5. Vérification de la stabilité au renversement :

♦ Dans le cas accidentel : il faut vérifier que

e₀ ≤
$$\begin{bmatrix} \frac{H}{4} = 47.5 \text{ cm} \Rightarrow \text{ sens H} \\ \frac{B}{4} = 35 \text{ cm} \Rightarrow \text{ sens B} \end{bmatrix}$$

Sens H \rightarrow e₀ = 25cm \leq 47.5cm \rightarrow vérifier

Sens B → $e_0 = 2.69$ cm ≤ 35 cm → vérifier

Donc la vérification au renversement est vérifiée.

Détermination des armatures de la semelle :

La première condition
$$\begin{cases} e_0 \le \frac{h}{6} \Rightarrow \text{ sens H} \\ e_0 \le \frac{b}{6} \Rightarrow \text{ sens B} \end{cases}$$

La deuxième condition
$$\begin{cases} e_0 \le \frac{H}{24} \Rightarrow \text{ sens H} \\ e_0 \le \frac{B}{24} \Rightarrow \text{ sens B} \end{cases}$$

Si les deux conditions sont vérifiées, les armatures seront calculées sous effort normal fictif N' avec :

N' = N ×
$$(1 + \frac{3 \times e_0}{H})$$
 → sens H

N' = N × $(1 + \frac{3 \times e_0}{B})$ → sens B

Si l'une des deux conditions est non vérifier, les armatures seront calculées sous un moment M_1 :

M₁ = (4H+0.3h-9×e₀) ×
$$(\frac{\frac{H}{2}-0.35h}{\frac{H}{2}-e_0})^2 \times \frac{N}{27}$$
 → sens H
M₁ = (4B+0.3b-9×e₀) × $(\frac{\frac{B}{2}-0.35b}{\frac{B}{2}-e_0})^2 \times \frac{N}{27}$ → sens B

♦ Situation accidentelle :

Armatures parallèles à H = 1.9m

 $e_0 = 25 \text{ cm} > \frac{h}{6} = 13.33 \text{ cm}$ $e_0 = 25 \text{ cm} > \frac{H}{24} = 7.91 \text{ cm}$ Donc on va calculer M₁

$$M_1 = (4 \times 1.9 + 0.3 \times 0.8 - 9 \times 0.25) \times (\frac{\frac{1.9}{2} - 0.35 \times 0.8}{\frac{1.9}{2} - 0.25})^2 \times \frac{248.21}{27}$$

 $M_1 = 53.90 KN.m$

Ona :

$$A_S = \frac{M_1}{Z \times f_{st}}$$
 avec $z = 0.9 \times d$

Donc

$$A_{\rm s} = \frac{53.90}{0.9 \times 0.275 \times 348 \times 10^3} = 6.25 \,\rm{cm}^2$$

Armatures parallèles à B = 1.4m

$$e_{0} = 2.69 \text{ cm} < \frac{b}{6} = 10 \text{ cm}$$

$$e_{0} = 2.69 \text{ cm} < \frac{B}{24} = 5.83 \text{ cm} \quad \text{Donc on va calculer N'}$$

$$N' = N \times (1 + \frac{3 \times e_{0}}{B}) \Rightarrow \text{sens B}$$

$$N' = 284.21 \times (1 + \frac{3 \times 0.0269}{1.4}) = 300.59 \text{ KN}$$

$$A_{s} = \frac{N' \times (B-b)}{8 \times d \times f_{st}} = \frac{300.59 \times (1.4-0.6)}{8 \times 0.275 \times 348 \times 10^{3}} = 3.14 \text{ cm}^{2}$$

$$Done A_{s} = 2.14 \text{ cm}^{2}$$

Donc $A_s = 3.14$ cm²

Université de Bejaia/Génie civil/CM/2015-2016

♦ Situation durable :

ELU:

Armatures parallèles à H = 1.9m

 $e_0 = 14.49 \text{ cm} > \frac{h}{6} = 13.33 \text{ cm}$

 $e_0 = 14.49$ cm > $\frac{H}{24} = 7.91$ cm Donc on va calculer M₁

 $M_1 = (4 \times 1.9 + 0.3 \times 0.8 - 9 \times 0.14) \times (\frac{\frac{1.9}{2} - 0.35 \times 0.8}{\frac{1.9}{2} - 0.14})^2 \times \frac{327.941}{27} = 70.05 \text{KN.m}$

Donc : M1 = 70.05KN.m

Ona :

$$A_S = \frac{M_1}{Z \times f_{st}}$$
 avec $z = 0.9 \times d$

Donc

 $A_s = \frac{70.05}{0.9 \times 0.275 \times 348 \times 10^3} = 8.13 \text{ cm}^2$

Armatures parallèles à B = 1.4m

$$e_{0} = 4.30 \text{ cm} < \frac{b}{6} = 10 \text{ cm}$$

$$e_{0} = 4.30 \text{ cm} < \frac{B}{24} = 5.83 \text{ cm} \quad \text{Donc on va calculer N'}$$

$$N' = 327.941 \times \left(1 + \frac{3 \times 0.043}{1.4}\right) = 358.15 \text{ KN}$$

$$A_{s} = \frac{N' \times (B-b)}{8 \times d \times f_{st}} = \frac{358.15 \times (1.4-0.6)}{8 \times 0.275 \times 348 \times 10^{3}} = 3.74 \text{ cm}^{2}$$

ELS :

Armatures parallèles à H = 1.9m

$$e_0 = 14.31 \text{ cm} > \frac{h}{6} = 13.33 \text{ cm}$$

 $e_0 = 14.31 \text{ m} > \frac{H}{24} = 7.91 \text{ cm}$ Donc on va calculer M₁

$$M_1 = (4 \times 1.9 + 0.3 \times 0.8 - 9 \times 0.14) \times (\frac{\frac{1.9}{2} - 0.35 \times 0.8}{\frac{1.9}{2} - 0.14})^2 \times \frac{233.266}{27} = 38.89 \text{KN.m}$$

Ona :

$$A_{\rm S} = \frac{M_1}{Z \times f_{\rm st}}$$
 avec $z = 0.9 \times d$

Donc

$$A_{s} = \frac{38.89}{0.9 \times 0.275 \times 348 \times 10^{3}} = 4.51 \text{ cm}^{2}$$

Université de Bejaia/Génie civil/CM/2015-2016

Armatures parallèles à B = 1.4m

$$e_{0} = 4.19 \text{ cm} < \frac{b}{6} = 10 \text{ cm}$$

$$e_{0} = 4.19 \text{ cm} < \frac{B}{24} = 5.83 \text{ cm} \quad \text{Donc on va calculer N'}$$

$$N' = 233.266 \times (1 + \frac{3 \times 0.041}{1.4}) = 253.76 \text{ KN}$$

$$A_{s} = \frac{N' \times (B-b)}{8 \times d \times f_{st}} = \frac{253.76 \times (1.4-0.6)}{8 \times 0.275 \times 348 \times 10^{3}} = 2.65 \text{ cm}^{2}$$

X.2.6. La condition de non fragilité :

Sens
$$\mathbf{H} \Rightarrow A_{\min}^{H} = 0.23 \times \frac{f_{t_{28}}}{f_e} \times \mathbf{H} \times \mathbf{h}_t \Rightarrow A_{\min}^{H} = 7.45 \text{ cm}^2$$

Sens $\mathbf{B} \Rightarrow A_{\min}^{B} = 0.23 \times \frac{f_{t_{28}}}{f_e} \times \mathbf{B} \times \mathbf{h}_t \Rightarrow A_{\min}^{B} = 5.49 \text{ cm}^2$

X.2.7. La disposition constructive :

Les armatures seront munies des crochets si la longueur de scellement l_s est :

$$L_{s} > \frac{H}{4} \implies \text{sens } H$$
$$L_{s} > \frac{B}{4} \implies \text{sens } B$$

Avec :

 $L_{s} = \frac{\phi \times f_{e}}{4 \times 0.6 \times \Psi_{s}^{2} \times f_{c28}} \quad \text{avec } \Psi_{s} = 1.5 \text{ pour les armatures HA}$

♦ Suivant le sens H ona :

 $L_{s} = \frac{1.4 \times 400}{4 \times 0.6 \times 1.5^{2} \times 2.1} = 49.38 \text{cm} > \frac{190}{4} = 47.5 \text{cm}$

♦ Suivant le sens B ona :

 $L_{s} = \frac{1.2 \times 400}{4 \times 0.6 \times 1.5^{2} \times 2.1} = 42.32 \text{ cm} > \frac{190}{4} = 35 \text{ cm}$

Les armatures doivent comporter des crochets.

Les résultats sont regroupés dans le tableau suivant :

Sens	A _s (cm ²)	A _{min} (cm ²)	Nombre de	A _s (cm ²)	Ls(cm)	S _t (cm)
			Darre			
Н	8.13	7.45	4HA14+3HA12	9.55	47.5	27
В	3.74	5.49	6HA12	6.79	35	23.33

 Tableau X.4 : le ferraillage choisis pour la semelle au-dessous de poteau.

FigureX.2 : schéma de ferraillage de la semelle au-dessous de poteau.

X.3. Les fondations sous potelets :

Les sollicitations à la base de potelet sont :

N_u = 162.774KN à l'ELU: 1.35G+1.5N+1.30P

Ns = 116.967KN à l'ELS: G+N+P

Les potelets sont des HEA320 pour cela la platine a la base est prise (65 ; 55) cm

Donc h = 0.65m b = 0.55cm

X.3.1.Dimensionnement de la semelle à la compression simple :

Les dimensionnes de la semelle sont choisis de maniéré qu'elles soient homothétiques avec celles du pied de potelet :

$$\frac{H}{B} = \frac{h}{b} \rightarrow H = 1.20B$$

Ona:

H× B ≥ $\frac{N_u}{\sigma_{sol}}$ → B ≥ $\sqrt{\frac{N_u}{1.2 \times \sigma_{sol}}}$ = 82.35cm

Donc on choisit pour toutes les semelles

B = 100cm H = 120cm
d = max
$$\left(\frac{100-55}{4}; \frac{120-65}{4}\right) \rightarrow d = 13.75cm \rightarrow h_i = 18.75cm$$

 $h_t = D - h_i \rightarrow l_i = 1.81cm$

X.3.2. Calcul de poids propre de la semelle et l'amorce de potelet :

 $P = ((H \times B \times h_i) + (h \times b \times l_i) \times P_b = 16.40 \text{KN}$

 $N_u = 162.774 + (1.35 \times 16.40) = 180.914$ KN à L'ELU

Ns = 116.967+16.40 = 133.367KN à l'ELS

♦ Calcul des armatures de la semelle :

Sens H
$$\rightarrow$$
 A_s = $\frac{N_u \times (H-h)}{8 \times d \times f_{st}}$ = 2.60cm²

Sens B \rightarrow A_s = $\frac{N_s \times (B-b)}{8 \times d \times f_{st}}$ = 1.57cm²

X.3.3. La condition de non fragilité :

Sens
$$H \rightarrow A_{\min}^{H} = 0.23 \times \frac{f_{t_{28}}}{f_e} \times H \times h_t \rightarrow A_{\min}^{H} = 2.71 \text{ cm}^2$$

Sens B \rightarrow A_{min}^B = 0.23× $\frac{t_{t28}}{fe}$ × B × h_t \rightarrow A_{min}^B = 2.26cm²

X.3.4. La disposition constructive :

♦ Suivant le sens H ona :

$$L_{s} = \frac{1.2 \times 400}{4 \times 0.6 \times 1.5^{2} \times 2.1} = 42.33 \text{ cm} > \frac{120}{4} = 30 \text{ cm}$$

♦ Suivant le sens B ona :

$$L_{s} = \frac{1.2 \times 400}{4 \times 0.6 \times 1.5^{2} \times 2.1} = 42.32 \text{ cm} > \frac{100}{4} = 25 \text{ cm}$$

Les armatures doivent comporter des crochets.

Les résultats sont regroupés dans le tableau suivant :

Sens	A _s (cm ²)	A _{min} (cm ²)	Nombre	A _s (cm ²)	Ls(cm)	S _t (cm)
			de barre			
H	2.60	2.71	4HA12	4.52	30	30
В	1.57	2.26	4HA12	4.52	20	25

TableauX.5 : le ferraillage choisis pour la semelle au-dessous de potelet.

FigureX.3 : schéma de ferraillage de la semelle au-dessous de potelet.

X.4. Calcul des longrines :

Les longrines sont des liaisons qui sont situées à l'intérieur du périmètre de la structure.

Elles jouent un rôle de chainage dans les deux directions, et elles sont calculées sous un effort axial de traction comme défini dans RPA99.

X.4.1. Pré- dimensionnement :

Les dimensions minimales transversales des longrines sont :

 (25×30) cm² sites de catégorie S₂ et S₃ (RPA99 Version 2003).

Pour notre cas on optera pour les longrines

 $(H \times B) = (35 \times 35) \text{ cm}^2$

X.4.2. Ferraillage de longrine :

Les longrines doivent être calculées pour résister à l'action d'une force de traction qui est égale :

$$N_t = (\frac{N}{\alpha}) \ge 20 \text{KN}$$
 (RPA99 Version 2003).

Avec :

N : égale à la valeur maximale des charges verticales de gravité apportées par les poids d'appui solidarisées, donc en prend les efforts normaux du poteau le plus sollicité.

$$N_U = 269.216 KN (ELU)$$

Ns= 189.766KN (ELS)

 α : Coefficient fonction de la zone sismique et de catégorie du site considérée donc :

 α = 12 (zone sismique IIa et le site S₃)

ELU
$$\rightarrow$$
 Nt = $\frac{269.216}{12}$ = 22.43KN \ge 20KN

ELS \rightarrow Nt = $\frac{189.216}{12}$ = 15.81KN \leq 20KN (c'est pas verifiée)

X.4.3. Calcul des armatures :

Ona :

$$A_{s} = \frac{N_{t}}{f_{st}}$$

ELU
$$\rightarrow A_{\rm S} = \frac{22.43}{348} = 0.64 \rm cm^2$$

ELS \rightarrow As = $\frac{15.81}{348}$ = 0.45cm²

X.4.4. Le ferraillage minimal :

Le ferraillage minimum doit être de 0.6% de la section :

$$A_{\min} = 0.6\% (H \times B) = \frac{0.6}{100} \times (35 \times 35) = 7.35 \text{ cm}^2$$

Donc en ferraille avec Amin :

Soit : 4HA14+2HA12 avec As = 6.16 + 2.26 = 8.42cm²

X.4.5. Condition de non fragilité :

La vérification à faire est comme suit :

 $A_{s} \geq \frac{(H \times B) \times f_{t28}}{f_{e}} = \frac{(35 \times 35) \times 2.1}{400}$

 $A_s = 8.42 \text{ cm}^2 ≥ 6.43 \text{ cm}^2$ → vérifiée.

X.4.6. Vérification de la flèche :

La vérification à faire est comme suit :

$$\mathbf{f} = \frac{5 \times \mathbf{q}_{\mathsf{s}} \times \mathbf{L}^4}{384 \times \mathbf{E} \times \mathbf{I}} \leq \mathbf{f} = \frac{\mathbf{L}}{200}$$

L : est la plus grande portée avec l = 6m

$$q_s = \frac{189.216}{6} = 31.53$$
 KN/ml

I : le moment d'inertie de la section transversale.

 $f = \frac{5 \times 31.53 \times 600^4 \times 10^{-1}}{384 \times 21000 \times 125052.08} = 2.02 \text{ cm} \le f = \frac{600}{200} = 3 \text{ cm} \implies \text{vérifiée.}$

X.4.7. Armatures transversales :

Soit des cadres de diamètre 8mm dont l'espacement est inférieur à : min (20cm, 15¢)

 $S_t < min (20 cm, 15 \times 0.8) = 12 cm$

Université de Bejaia/Génie civil/CM/2015-2016

Les cadres sont espacés de 15cm en travée et de 10cm en zone nodale.

FigureX.4 : schéma de ferraillage des longrines.

X.5. Calcul des futs :

Les fondations sont ancrées à D = 2m ; l'assemblage platine massif doit être au-dessous du sol ; donc on prévoit un poteau en BA (fut) de dimension (90×60) cm².

Le fut est soumis à un effort normal, un effort tranchant et un moment fléchissant. Le ferraillage de la section sera calculé en flexion composé.

On calculera uniquement le fut le plus sollicité ; par les efforts (M, N, T).

Figure X.5 : la section de fut à ferrailler.

On a:

 $N_u = 269.216$ KN $M_u = 4.756$ KN.m $V_u = 23.687$ KN

 $e = \frac{M_u}{N_u} = 1.76 \text{ cm} < \frac{90}{6} = 15 \text{ cm}$ $e < \frac{h}{6}$ > la section est entièrement comprimée. $M_{uA} = M_u + N_u (d - \frac{h}{2}) = 4.756 + 269.216 (0.85 - \frac{0.9}{2}) = 112.44 \text{KN.m}$ $N_u (d - d') - M_{uA} = 269.216 (0.85 - 0.05) - 112.44 = 102.93 KN.m$ **(I)** $(0.337 \times d - 0.81 \times d') \times b \times h \times f_{ub} = 1885.94$ KN.m (II) ∩d =85cm - d' =5cm ∟h =90cm $(I) < (II) \rightarrow A = 0$ $\mu_{\text{bu}} = \frac{M_{\text{uA}}}{\text{bd}^2 \times f_{\text{bu}}} = \frac{112.44 \times 10^{-3}}{0.6 \times 0.85^2 \times 14.2} = 0.018$ $\mu_{bu} < \mu_1 = 0.392 \rightarrow A' = 0$ $A_1 = \frac{M_{uA}}{z_{efr}} = \frac{112.44 \times 10^{-3}}{0.841 \times 348} = 3.84 \text{ cm}^2$ Avec $\alpha = 1.25 (1 - \sqrt{1 - 2\mu b}) = 1.25 (1 - \sqrt{1 - 2(0.018)})$ $z = d(1-0.4\alpha) \rightarrow z = 0.85(1-0.4(0.025)) \rightarrow z = 0.841$

On revient à la flexion composée :

A = A₁ +
$$\frac{N_u}{f_{st}}$$
 = 3.84 + ($\frac{269.216 \times 10^{-3}}{384}$ × 10⁴) = 10.85cm²

la section minimale d'armature longitudinale est :

$$A_{min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 60 \times 85 \times \frac{2.1}{400} = 6.16 \text{ cm}^2$$

Donc on ferraille avec A

Soit 12HA12 = 13.57cm²

X.5.1. Armatures transversales :

Soit deux cadres de diamètre $\phi 8$ dont l'espacement max est donné par le RPA comme suit :

Dans la zone nodale : $S_t \leq 10 cm$ on prend S_t = 10 cm

Dans la zone courante : $S_t \le \min(\frac{b}{2}; \frac{h}{2}; 10\phi) \le 20$ cm

Avec ϕ est le diamètre minimal des armatures longitudinales

On prend St = 15cm

FigureX.6 : Schéma de ferraillage des futs.

X.6. Conclusion :

Pour les semelles des poteaux :

Sens H → 4HA12+3HA12

Sens B → 6HA12

Pour les semelles des potelets :

Sens $H \rightarrow 4HA12$ Sens $B \rightarrow 4HA12$

Pour les longrines : 4HA14+2HA12 Pour les futs : 12HA12

CHAPITRE XI : Vérification d'ensemble

VERIFICATION D'ENSEMBLE

XI.1. Introduction :

Après avoir dimensionné et vérifier les éléments de la structure à la résistance, et la stabilité, on doit aussi s'assurer de la stabilité globale de la construction, sous les effets du vent et du séisme.

L'instabilité d'ensemble d'une structure quand :

 \sum Moments stabilisateurs (**M**_{st}) < \sum Moments renversants (**M**_r)

Moments stabilisateurs dépend le poids propre de la structure.

Moment renversant résultat des actions agissants sur la structure (vent ; séisme ...etc.)

XI.2. détermination des moments renversants :

XI.2.1. cas du vent :

La force exercée par le vent Fw agissant sur une construction ou un élément de construction peut être déterminée par la sommation vectorielle des forces $F_{w,e}$; $F_{w,i}$ et F_{fr} .

XI.2.1.1. Vent perpendiculaire au pignon (V1):

	Composantes		Cordonnés	du point d'ap	plication
Zone	horizontales de Fw,e (KN)	Composantes verticales de Fw,e (KN) Cor 0 0 -0 0 -20,55 - -20,55 - -17,54 - -17,54 - -72,97 - -264,48 - -264,48 0	Х	Y	Z
D	192,56	0	0	13,75	6
Е	-71,94	0	60	13,75	6
F1	0	-20,55	1,365	3,41	12,4
F2	0	-20,55	1,365	23,987	12,4
G1	0	-17,54	1,365	10,287	13,12
G2	0	-17,54	1,365	17,212	12,81
H1	0	-72,97	13,19	6,825	12,81
H2	0	-72,97	13,19	20,675	12,81
I1	0	-264,48	36,825	6,825	12,81
I2	0	-264,48	36,825	20,675	12,81
Fwe H (résultante)	120,62	0	-35,78	13,75	6
Fwe V (résultante)	0	-751,08	28,635	13,747	12,794

♦ Calcul de la force extérieure : $F_{w,e} = Cd \times \sum We \times A_{réf}$:

Tableau XI.1 : les forces extérieures cas de v1.

	Composantes	Composantes			plication
Zone	horizontales de Fw,e (KN)	Composantes verticales de Fw,e (KN) Corde 0 0 0 0 60 0 0 3.316 0 0 3.365 0 0 3.365 0 0 26.72 0 0 113.44 3	Х	Y	Z
D	-71.94	0	0	13,75	6
Е	59.95	60	60	13,75	6
F1	0	3.316	1,365	3,41	12,4
F2	0	3.316	1,365	23,987	12,4
G1	0	3.365	1,365	10,287	13,12
G2	0	3.365	1,365	17,212	12,81
H1	0	26.72	13,19	6,825	12,81
H2	0	62.72	13,19	20,675	12,81
I1	0	113.44	36,825	6,825	12,81
12	0	113.44	36,825	20,675	12,81
Fwi H (résultante)	-11.99	0	-300	13.75	6
Fwi V (résultante)	0	329.682	28.97	14.50	12.80

♦ Calcul de la force intérieure : $F_{w,i} = \sum Wi \times A_{réf}$

 Tableau XI.2 : les forces intérieures cas de V1.

♦ Calcul des composants de Fw (F_{WH} ; F_{WV})

	Action	Action	Cordonné	s du point d'aj	oplication
	horizontale	verticale	Х	Y	Z
F _{w,e}	120,62	0	-35,78	13,75	6
F _{w,e}	0	-751,03	28,63	13,75	12,8
F _{w,i}	-12	0	-300	13,75	6
F _{w,i}	0	392,682	28,97	14,5	12,8
Ffr(y=0) parois verticale	19,666	0	30	0	6
Ffr(y=27.5) parois verticale	19,666	0	30	27,5	6
F _{fr} (toiture)	47,491	0	30	13,75	13,65
Résultante F w	195,443	0	9,66474317	13,75	7,85888546
Résultante $\mathbf{F}_{\mathbf{w}}$	0	-358,348	28,257424	12,9281411	12,8

 Tableau XI.3 : la force Fw résultante cas de V1.

Calcul de moment renversant cas de V1:

Figure XI.1 : les composants de l'action du vent sur le pignon.

Mr/A= Fw_H ×7.85+ Fw_V × (60-28.25) =**12911.77KN**

XI.2.1.2. Vent perpendiculaire au long pan (Sens V2):

	Composantes	Cordonnés du point d	du point d'ap	plication	
Zone	horizontales de Fw,e (KN)	Composantes verticales de Fw,e (KN)	Х	Y	Z
D	393,12	0	0	30	6
Е	-146,88	0	27,5	30	6
F1	0	-167,537	1,365	3,412	12,16
F2	0	-167,537	1,365	56,587	12,16
G	0	-101,734	1,365	30	12,16
Н	0	-256,545	8,24	30	12,66
Ι	0	-265,802	19.26	30	12,66
J	0	16,874	15,115	30	12,16
Fwe H (résultante)	246,24	0	-16,403508	30	6
Fwe V (résultante)	0	-924.281	8.03	29,999592	12,43

♦ Calcul de la force extérieure : $F_{w,e} = Cd \times \sum We \times A_{réf}$:

 Tableau XI.4 : les forces extérieures cas de v2.

	Composantes		Cordonnés	du point d'ap	plication
Zone	horizontales de Fw,e (KN)	Solution Composantes verticales X Y 16,56 0 0 30 16,56 0 0 30 16,56 0 0 30 16,56 0 0 30 16,56 0 0 30 16,56 0 27,5 30 0 3,658 1,365 3,412 0 3,658 1,365 56,587 0 31,633 1,365 30 0 165,3 8,24 30 0 165,3 19.26 30 0 40,95 15,115 30 24,48 0 -193,30882 30	Z		
D	-196,56	0	0	30	6
E	172,08	0	27,5	30	6
F1	0	3,658	1,365	3,412	12,16
F2	0	3,658	1,365	56,587	12,16
G	0	31,633	1,365	30	12,16
Н	0	165,3	8,24	30	12,66
Ι	0	165,3	19.26	30	12,66
J	0	40,95	15,115	30	12,16
Fwi H	-24.48	0	-103 30882	30	6
(résultante)	-21,10	0	-175,50002	50	0
Fwi V	0	410,499	12,73	29,99999	12,56268
(resultante)					

♦ Calcul de la force intérieure : $F_{w,i} = \sum Wi \times A_{réf}$

Tableau XI.5. : Les forces intérieures cas de V2.

♦ Calcul des composants de Fw (F_{WH} ; F_{WV})

	Action	Action	Cordonné	s du point d'a	pplication
	horizontale	verticale	Х	Y	Z
F _{w,e}	246,24	0	-16,4	30	6
F _{w,e}	0	-976,03	7,05	30	12,427
F _{w,i}	-24,48	0	-193,3	30	6
F _{w,i}	0	410,5	10,89	30	12,56
Résultante $\mathbf{F}_{\mathbf{w}}$	221,76	0	3,12792208	30	6
Résultante ${f F}_{f w}$	0	-513.781	4,27266776	30	12,3304596

Tableau XI.6. : la force Fw résultante cas de V2.

Calcul de moment renversant cas de V2 :

Figure XI.2 : les composants d'action du vent sur long pan V2

Mr/A= Fw_H×6+ Fw_V × (27.5-4.27) =13265.69KN

XI.2.2. cas du séisme :

Le moment de renversement qui peut être par l'action causé par l'action sismique doit être calculé par rapport au niveau de contacte sol –fondation.

Réaction	à	la	base	1
----------	---	----	------	---

Le mode	Réactions					
	Fx(KN)	Fy(KN)	Fz(KN)	Mxx(KN.m)	Myy(KN.m)	
CQC	30.664	36.746	240.683	4.769	110.092	

Tableau XI.7.: Réaction à la base due aux effets sismiques.

CQC : combinaison quadratique complète.

 $M_R/xx=Mxx+Fzz \times Y_G$

 $M_R/yy = Myy + Fzz \times X_G$

 Y_G ; X_G coordonnée de centre de gravité de la structure avec la prise en compte des masses statiques globales. G=(13.77;30;9.162)

M_R/xx=4.769+ (240.683×30)= 7225.259KN.m M_R/yy=110.092+ (240.683×13.77)= 3424.29KN.m

XI.3.Calcul des moments résistant (stabilisateurs) :

$$\begin{split} M_{ST}/xx &= \sum Pi \times Yi = P_T \times Y_G \\ M_{ST}/yy &= \sum Pi \times Xi = P_T \times X_G \\ Avec P_T : poids total de la structure P_T = 2020.48 KN \\ M_{ST}/xx &= 2020.48 \times 30 = 60614.4 KN \\ M_{ST}/yy &= 2020.48 \times 13.77 = 27822.00 KN \end{split}$$

XI.4. vérification au renversement :

XI.4.1. cas du vent :

	Sens V1	Sens V2
Moment stabilisateur M sr (KN.m)	60614.4/xx	27822/уу
Moment renversant M_R (KN.m)	12911.77 _{/xx}	13265.69/уу
Résultat	Vérifié	Vérifié

Tableau XI.8.: vérification au reversement sous l'effet du vent

XI.4.2. cas du séisme :

Cas d	M _R (KN.m)		М <i>s</i> т (КN.m)		0.8 М sт (KN.m)	
	Par	Par	Par	Par	Par	Par
	rapport	rapport	rapport	rapport	rapport	rapport
	l'axe xx	l'axe yy	l'axe xx	l'axe yy	l'axe xx	l'axe yy
	7225.259	3424.29	60614.4	27822	48491.52	22257.6

Tableau XI.9.: vérification au reversement sous l'effet du séisme

XI.5. conclusion :

Tous les moments de renversements sont inférieurs aux moments résistants de la structure, donc la stabilité d'ensemble vis-à-vis du vent et du séisme est vérifiée.

Conclusion général

CONCLUSION GENERALE :

Notre projet de fin d'étude Consistait à réaliser l'étude d'un bâtiment industriel de maintenance en charpente métallique comportant un pont roulant, Ce travail nous a permis d'approfondir nos connaissances en analyse et en calcul de structure, à la fois pour le calcul nécessitant des logiciels, mais aussi pour les vérifications et les dimensionnements manuels. Ce qui nous a donné l'occasion de nous habituer avec les différents outils informatiques (Robot, AutoCAD, Excel), ainsi que les différents règlements régissant les principes de conception et de calcul d'ouvrages dans le domaine du bâtiment, cas de bien utilisé le nouvel règlement algérien neige et vent version2013.

A la fin de l'étude effectuée on déduit que :

- Les actions climatiques (Neige et vent) sont les plus défavorables dans les constructions métalliques par rapport à l'action sismique pour leur flexibilité.
- La présence de pont roulant générer un mauvais comportement avec la structure vis-àvis le séisme.

La précision et la rigueur dans les calculs et la vérification d'une part et la définition exacte des différents détails de la construction sont requises, les causes des désordres en construction métallique sont multiple et leurs conséquences de portées très variables. Il faut retenir que tous les intervenant concernés (conception, calculs, dessins, fabrication et réalisation,...) sont impliqués et responsables à leurs niveaux respectifs d'intervention et que la prudence doit rester de rigueur pour tous.

Ce travail nous a permis d'appliquer ce que nous avons appris durant toute la période de formation Surtout d'élargir nos connaissances et les appliquer sur un projet réel.

Références bibliographiques :

- D.T.R C 2-4.7 ; Règlement Neige et Vent« RNVA 2013 ».
- D.T.R B C 2.44 ; Règles de Conception et de Calcul des Structures en Acier « CCM97 ».
- D.T.R B C 2 48 ; Règles Parasismiques Algériennes RPA99/Version 2003, Centre de Recherche Appliquée en Génie Parasismique, Alger.
- D.T.R B C 2.2 ; Charge Permanentes et Charges d'exploitation, Centre de Recherche Appliquée en Génie Parasismique, Alger.
- EUROCODE 3 ; Calcul des éléments résistants d'une construction métallique. Office des publications universitaires, 2009.
- EUROCODE 1 partie 3 : Actions induites par les appareils de levage et les machines.
- EUROCODE 0 : basse de calcul des structures.
- Cours de première et deuxième année master.
- B.A.E.L 91 : Béton Armé aux Etats Limites, troisième tirage, Eyrolles, 1997.
- Projets de fin d'étude (université de Bejaïa).
- Calcul des Structures Métalliques selon l'Eurocode 3. Jean Morel. Eyrolles Paris, 2008

ANNEXES

ANNEXE1

10 20 40 Φ (mm) 5 6 8 12 14 16 25 32 0,28 1 0,20 0,50 0,79 1,13 1,54 2,01 3,14 4,91 8,04 12,57 2 0,39 0,57 1,01 1,57 2,26 3,08 4,02 9,82 16,08 25,13 6,28 3 0,59 0,85 1,51 2,36 3,39 4,62 9,42 14,73 24,13 37,7 6,03 4 0,79 1,13 2.01 3,14 4,52 6,16 8.04 12,57 19,64 32.17 50,27 0,98 5 1,41 3,93 5,65 7,72 15,71 24,54 2,51 10,05 40,21 62,83 6 1,18 1,70 3,02 4,71 6,79 9,24 12,06 18,85 29,45 48,25 75,40 7 1,37 1,98 3,52 5,50 7,92 10,78 14,07 21,99 34,36 56,30 87,96 1,57 2,26 12,32 25,13 39,27 64,34 8 4,02 6,28 9,05 16,08 100,53 2,54 9 1,77 4,52 7,07 10,18 13,85 18,10 28,27 44,18 72,38 113,10 49,09 10 1,96 2,83 5,03 7,85 11,31 15,39 20,11 31,42 80,42 125,66 2,16 3,11 5,53 12,44 16,93 22,12 34,56 54,00 88,47 138,23 11 8,64 2,36 3,39 6,03 9,42 13,57 18,47 24,13 37,70 58,91 12 96,51 150,80 13 2,55 3,68 6,53 10,21 14,70 20,01 26,14 40,84 63,81 104,55 163,36 2,75 3,96 7,04 15,38 21,55 43,98 14 11,00 28,15 68,72 112,59 175,93 15 2,95 4,24 7,54 11,78 16,96 23,09 30,16 47,12 73,63 120,64 188,50 3,14 4,52 8,04 12,57 18,10 24,63 32,17 50,27 78,54 128,68 201,06 16 3,34 4,81 8,55 13,35 19,23 26,17 34,18 53,41 83,45 136,72 213,63 17 3,53 5,09 9,05 14,14 20,36 27,71 56,55 88,36 144,76 226,20 18 36,19 3,73 5,37 9,55 14,92 21,49 29,25 59,69 93,27 238,76 19 38,20 152,81 3.93 5,65 10,05 15,71 22,62 30,79 40,21 98,17 251,33 20 62,83 160,85

Tableau des armatures (1)

Section en cm² de N armatures de diamètre Φ (mm)

ANNEXE2

Valeur de χ en fonction de $\overline{\lambda}$

Coefficients de réduction						
$\overline{\lambda}$	Valeurs de χ pour la courbe de flambement					
	а	В	С	d		
0,2	1,0000	1,0000	1,0000	1,0000		
0,3	0,9775	0,9641	0,9491	0,9235		
0,4	0,9528	0,9261	0,8973	0,8504		
0,5	0,9243	0,8842	0,8430	0,7793		
0,6	0,8900	0,8371	0,7854	0,7100		
0,7	0,8477	0,7837	0,7247	0,6431		
0,8	0,7957	0,7245	0,6622	0,5797		
0,9	0,7339	0,6612	0,5998	0,5208		
1,0	0,6656	0,5970	0,5399	0,4671		
1,1	0,5960	0,5352	0,4842	0,4189		
1,2	0,5300	0,4781	0,4338	0,3762		
1,3	0,4703	0,4269	0,3888	0,3385		
1,4	0,4179	0,3817	0,3492	0,3055		
1,5	0,3724	0,3422	0,3145	0,2766		
1,6	0,3332	0,3079	0,2842	0,2512		
1,7	0,2994	0,2781	0,2577	0,2289		
1,8	0,2702	0,2521	0,2345	0,2093		
1,9	0,2449	0,2294	0,2141	0,1920		
2,0	0,2229	0,2095	0,1962	0,1766		
2,1	0,2036	0,1920	0,1803	0,1630		
2,2	0,1867	0,1765	0,1662	0,1508		
2,3	0,1717	0,1628	0,1537	0,1399		
2,4	0,1585	0,1506	0,1425	0,1302		
2,5	0,1467	0,1397	0,1325	0,1214		
2,6	0,1362	0,1299	0,1234	0,1134		
2,7	0,1267	0,1211	0,1153	0,1062		
2,8	0,1182	0,1132	0,1079	0,0997		
2,9	0,1105	0,1060	0,1012	0,0937		
3,0	0,1036	0,0994	0,0951	0,0882		

r

ANNEXE3

Type de Section	limites	axe de	courbe de
Sections en l'Iaminées		tiampement	nampement
Sections en Flammees	h/h > 12		
te	$t_{t} < 40 \text{ mm}$	V - V	а
	q = 40 mm	}	b
			~
T jí	40 mm < t < 100 mm	v - v	Ь
	40 min < 4 3 100 min	z - z	С
h y y			
	$h/b \le 1.2$:		
	$t_{\rm f} \leq 100 \rm mm$	V - V	b
Z	1 -1	y - y	c
b		Z - Z	Ŭ
	tr > 100 mm		Ь
		y-y	d
Soctions on L soudées		2-2	
	$t_{\rm f} < 40 \rm mm$	V-V	h
	4 - 10	}	c
r r			Ū
yyyy	$t_c > 40 \text{ mm}$	y - y	с
	4 - 1 0 mm	Z - Z	d
Sections creuses	laminées à chaud	quel qu'il soit	a
		quei qu'il sole	<u>a</u>
	formées à froid	auel au'il soit	Ь
	- en utilisant fue *)	quoi qu'i con	~
	Si Sanoan yo '		
	formées à froid	quel qu'il soit	С
	- en utilisant f _{va} *)		
	d'une manière générale	quel qu'il soit	h
Caissons soudés	(sauf ci-dessous)		~
z, . ^t f	Soudures épaisses et		
····· ································			
	b / t _f < 30	v - v	С
" y y	$h/t_{\rm m} < 30$	Z - Z	с
→			
zl			
Sections en U, L, T et sections pleines			
	quel qu'il soit	С	
Ľ_ <u>+Ľ</u> == ¥ ™			
			L

Tableau F.1.2Coefficients C1, C2 et C3, pour différentes valeurs de k, dans le cas de charges transversales							
Chargement et	Diagramme de	Valeur de	Coefficients				
conditions d'appuis	moment de flexion	k	C ₁	C ₂	C ₃		
W		1,0	1,132	0,459	0,525		
		0,5	0,972	0,304	0,980		
W		1,0	1,285	1,562	0,753		
		0,5	0,712	0,652	1,070		
F		1,0	1,365	0,553	1,730		
		0,5	1,070	0,432	3,050		
F		1,0	1,565	1,267	2,640		
		0,5	0,938	0,715	4,800		
E -		1,0	1,046	0,430	1,120		
		0,5	1,010	0,410	1,890		
x ··· x ··· x ··· x							
Diagramme des moments	Facteur de moment uniforme équivalent β_M						
--	---						
Moments d'extrémité $M_1 \qquad \psi M_1$ $-1 \le \psi \le 1$	$\beta_{M,\psi} = 1,8-0,7\psi$						
Moment crée par des forces latérales dans le plan	$\beta_{M,Q} = 1,3$						
M _Q	$\beta_{M,Q} = 1,4$						
Moment créé par des forces latérales dans le plan et des moments d'extrémité							
MQ MI	$\beta_{\mathbf{M}} = \beta_{\mathbf{m}}, \psi + \frac{M_{\mathbf{Q}}}{\Delta \mathbf{M}} (\beta_{\mathbf{M},\mathbf{Q}} - \beta_{\mathbf{M}}, \psi)$						
MQ AM	$M_Q = MaxM $ dû aux charges transversales seulement						
	max M pour diagrammes de moment sans						
M AM	$\Delta M = \begin{cases} changement de signe \\ max M + min M pour diagrammes \\ de moment avec \end{cases}$						
<u>መ</u> ወ <u>ጉ</u>	changement de signe						

Facteurs de moment uniforme équivalent βM

TABLEAUX DES PROFILETS

Dèsigna Designa Bezeichi	ition ition nung		A	Dimension brnessung	s en				Dimensk Dimens Kons	ans de cons sions for di truktionsm	struction etailing naße		Sur Ober	face fläche
	G	ħ	b	t,	ťč	Ê.	Α	h	ď	ø	Pret	Prov	A	Ac
	ko/m	mm	mm.	mmi	mm	mm	mm ²	mm	mm		mm	mm	m²/m	m ² /t
	19						x10 ²						- 82	8
	10	TD	AE.	77	13	50	6.34	505	ED.C				355.0	et et
PEAK BU	9,7	70	40	-44	454	2,0	0,31	09,0	29,0	1			0,373	00,02
INC A BUT	0,0	75	40	3,3	14	5,0	0,38	69,0	59,0		-		0,375	54,50
IPE 80*	<i>e</i> /0	80	46	3,8	5,2	5,0	7,64	09,0	29'9				0,378	24,64
IPE AA 100*	6,7	97,6	55	3,6	4,5	7,0	8,56	88,6	74,6	~	7.		0,396	58,93
IPE A 100-/*	6,9	98	55	3,6	4,7	7,0	8,8	88,6	74,6	12 2	-	5	0,397	57,57
IPE 100*	8,1	100	55	4,1	5,7	7,0	10,3	88,6	74,6	1	1	(e)	0,400	49,33
IPE AA 120*	8.4	117	64	3.8	4,8	7.0	10.7	107.4	93.4	- 3	2	1	0.470	56.26
IPEA 120-	8,7	117,6	64	3,8	5,1	7.0	11.0	107,4	93,4	- 2	- 2		0,472	54,47
IPE 120	10,4	120	64	4,4	6,3	7,0	13,2	107,4	93,4			-	0,475	45,82
mr 4 4 4 404	10.1	170.0		2.6		7.0	150	-					arte	P 1 10
IPEAA TAUE	10,1	130,0	14	BIE	5,2	1,0	12,8	120,2	112,2	-			0,546	59,20
REA 190+	10,5	137,4	73	7,8	0,0	7,0	13,0	125,2	112,2			÷.,	0,54/	57,05
IPE 140	12,9	140	14	9,7	0,9	τ,Ω	10'a	120,2	112,2	Ĩ	1	-	1000	44,1U
IPEAA 160*	12,1	156,4	82	4,0	5,6	7,0	15,4	145,2	131,2		÷	e	0,621	50,40
IPEA 160-	12,7	157	82	4,0	5,9	90	16,2	145,2	177,2	2	÷.,	÷.	0,619	48,70
IPE 160	15,8	160	82	5,0	7,4	9,0	20,1	145,2	127,2	2	2	2	0,623	39,47
IPE AA 180*	14.9	176,4	91	43	6,7	9.0	19,0	164,0	146,0	M 10	48	48	0.693	46.37
IFE & 180-	15,4	177	91	43	6.5	9.0	19.6	164,0	146.0	M 10	49	48	0.694	45,15
IPE 180	18,8	180	91	5,3	8,0	9,0	23,9	164,0	146,0	M 10	48	48	0,698	37,13
IPE O 180+	21,3	182	97	6,0	9,0	9,0	27,1	164,0	146,0	M 10	50	50	0,705	33,12
IPE AA 2009	18.0	195.4	105	45	117	120	72.9	1870	159.0	M 10	64	50	0.761	42.53
IPE & 200-	19.4	107	100	45	70	120	235	192.0	150.0	M 10	5.6	50	0.754	41.40
IPE 200	72.4	700	100	5.5	25	120	28.5	103,0	150.0	Min	5.8	50	0.760	36 45
IPE 0 200+	25,1	202	102	6,2	9,5	12,0	32,0	183,0	159,0	M 10	56	50	0,779	31,05
Contraction of the second s				in with a			1011		Constant A					- F. M. 2402
IPE AA 220*	21,2	216,4	110	4,7	7,4	12,0	27,0	201,6	177,6	M 12	60	62	0,843	39,78
IPC A 220-	22,2	11/	110	5,0	14	12,0	29,3	201,6	177,6	M 12	60	67	0.842	38,07
DF 220	26,2	220	110	5,9	9,2	12,0	33,4	201,6	177,6	M 12	60	62	0,848	32,36
PE 0 1104	19,4	111	114	6,6	10,2	12,9	11,4	101/6	1// 0	W 10	79	00	0,858	19/14

and a state of the second s	11-2	an an an an Arthur an	Galifacia (ni ja	Valeurs	statique	es / Sec	tion pro	perties	/ Statise	the Kenr	werte			1.	0	lasst	icatio	ŋ				Π
Désignat Designat Bezelchn	ion ion ung		axe stroi	e fort y- ng axis y e Achse	y -y y-y		sc	ake fal weak a	ble z-z ixis z-z Actise z	-1				be	EN 19 Pura nding y	993-	1-1: co	2005 Puni mpress	ion	- 7: 2004	-4:2004	1002151
	G kg/m	ų	Wey	Wat.+	i,	Ar	1	We	W.+	i.	\$	T	U	13			0.54			025	025	023
	kg/m	mm ⁴ x10 ⁴	mm ¹ x10 ²	mm ³ x10 ³	ពាក x10	mm ³ x10 ³	mm ^e x10 ⁴	mm ³ x10 ²	mm ¹ x10 ²	ளை x10	пт	mm ^e x10 ^e	mm ^e x10 ⁴	5235	SSES	S 460	SESS	5355	S460	EN 10	EN 10	EN I
IPEAA 80	4.9	64,1	16,4	18,9	3,19	3,00	6,85	2,98	47	1,04	17,5	0,40	0,09	1	1	13	1	1		V		
PEA BO	5,0	64,4	16,5	19,0	7,18	3,07	6,85	2,98	47	1.04	17,5	0,42	0,09	1	1		1	1		1	-	
PE 80	6,0	80,1	20,0	23,2	3,24	3,58	8,49	3,69	5,8	1,05	20,1	0,70	0,12	1	1	12	1	1	12	¥		
PEAA 100	6,7	136	27,9	31,9	3,98	4,40	12,6	457	7,2	1,21	20,8	0,73	0,27	1	1		1	1		¥		-
PEA 100	6.9	141	28,8	33,0	4,01	4,44	1,67	4,77	7,5	1,22	21,2	0,77	0,28	.1	1		1	1		1		1
IPE 100	B,1	171	34,2	39,4	4,07	5,08	15,9	5,79	9,2	1,24	23,7	1,20	0,35	1	1	14	1	1	÷.	¥.		
PEAA 120	8.4	244	41.7	47.5	479	5.36	21.1	6.59	10,4	1,41	21.6	0.95	0.66	1	1	-	1	1		V		
PEA 120	8.7	257	43.8	49,9	4.83	5,41	22.4	7.00	11.0	1.42	22.2	1.04	0,71	1	1		1	1		V		T
IPE 120	10,4	318	53,0	60,7	4,90	6,31	22,7	8,65	13,6	1,45	25,2	1,74	0,89	3	1	3	Ð	1	1	K		
PEAA 140	10.1	407	597	67.6	5.64	6.14	33.8	9.77	145	1.63	77.4	1.19	1.45	1	1	1	1	2	-	1		
PEA 140	10.5	435	61.1	71.6	570	6.71	36.4	10.0	15.5	1.65	73.7	1.36	1.58	1	ł.	1	1	5	4	V	4	1
IPE 140	12,9	561	77,3	88,3	5,74	7,64	44,9	12,3	19,3	1,65	26,7	2,45	1,98	1	1	1	1	1	2	Y	4	1
IPEAA 160	12,1	646	82,6	93,3	6.47	7.24	51.6	12,6	19,6	1,83	23,4	1.57	7.93	1	1	1	1	3	-	¥.		
PEA 160	12.7	689	87.8	99.1	6.53	7.80	54.4	13.3	20.7	1.83	26.3	1.95	3.09	1	1	1	1	3	4	1	4	¥
IPE 160	15,8	869	109	124	6,58	9,66	6B,3	16,7	26,1	1,84	30,3	3,60	3,96	1	1	1	1	1	2	1	1	1
PEAA 180	14,9	1020	116	131	7,32	9,13	78,1	17,2	26,7	2,03	27,2	2,48	5,64	1	1	14	2	З	-	¥.	-	-
PEA 180	15,4	1063	120	135	7,37	9,20	81,9	18,0	28,0	2,05	27,N	2,70	5,93	1	1	1	2	3	4	¥.	4	d.
FE 190	18,8	1317	146	166	7,42	11,3	101	22,2	34,6	2,05	31,8	4,79	7,43	1	1	1	1	2	3	v	4	1
PE 0 180	21,3	1505	165	189	7,45	12,7	117	25,5	39,9	7.08	34,5	6,76	8,74	1	1	1	1	1	2	V.	¥	4
PEAA 200	19,0	1533	156	176	8,19	11,4	112	22,4	35,0	7,21	32,0	3,84	10,1	1	1		ž	4		4		
PEA 200	18,4	1591	162	182	8,23	11,5	117	23,4	36,5	2,23	32,6	4,11	10,5	1	1	1	2	4	4	Ý	4	1
IPE 200	22,4	1943	194	221	B,26	14,0	142	28,5	44,5	2,24	36,7	6,98	11,0	1	1	1	1	2	3	¥.	1	X
IPE 0 200	25,1	2211	219	249	8,32	15,5	169	33,1	51,9	2,30	39,3	9,45	15,6	1	1	1	1	1	2	Y	4	1
PEAA 220	21,2	2219	205	230	9,07	12,8	165	29,9	46,5	2,47	33,6	5,02	17,9	1	1	10%	2	4	÷.	¥.		
IPEA 220	22,2	2317	214	740	9,05	13,6	171	31,2	48,5	2,46	34,5	5,69	18,7	1	1	1	2	4	4	Ý	V	1
IPE 220	26,2	2/72	252	785	9,11	15,9	205	37,3	58,1	2,49	38,4	9,07	22,7	1	1	1	1	2	4	Ý	4	1
IPE O 220	29,4	3134	282	321	9,16	17,7	240	42,8	66.9	2,53	41,1	12,3	26,8	1	1	1	1	2	2	V.	4	1

Notations pages 205-209 / Bezeichnungen Seiten 205-209

Dèsigna Designa Bezeichi	ition ition nung		I Al	Dimensions bimessunge	s en				Dimension Dimension Kons	ins de cons sions for de truktionsn	struction stalling naße		Sun Ober	face Ràche
	G kg/m	h mm	b mm	ц mm	t mm	T MM	A mm ² x10 ²	h mm	d mm	ø	Pran mm	p _{na} mm	A; m²/m	Ac m²/t
PE AA 240*	24.9	236.4	120	4.8	8.0	15.0	317	220.4	190.4	M 12	64	68	0.917	36.86
PEA 240-	26.2	237	120	5.7	83	15.0	333	220.4	190.4	M 12	64	68	0.918	35.10
PE 240	30.7	240	120	6.7	98	15.0	391	220.4	190.4	M 12	66	68	0.922	30.02
PEO 240+	34,3	247	122	7,0	10,8	15,0	43,7	220,4	190,4	M 12	56	70	0,932	27,17
IPE A 270+	30,7	267	135	5,5	8,7	15,0	39,7	249,6	219,6	M 16	70	72	1,037	33,75
IPE 270	36,1	270	135	6.6	10,2	15.0	45.9	249,6	219.6	M16	72	72	1,041	28.85
PE 0 270+	42,3	274	136	7,5	12,2	15,0	53,8	749,5	219,6	M 16	72	72	1,051	74,88
IFEA 300+	36.5	797	150	6.1	9.2	15.0	46.5	779.5	248.6	M 16	72	86	1.156	31.65
IPE 300	42.2	300	150	7.1	10.7	15.0	53.8	278.6	248.6	M 16	72	86	1,160	27.46
IPE O 3009	49,3	304	157	8,0	12,7	15,0	62,8	77B,6	248,6	M 16	74	88	1,174	23,81
IPEA 330+	430	117	160	6.5	100	18.0	54.7	307.0	271.0	M16	78	30	1,250	29.09
IPE 330	49,1	330	160	7.5	115	18.0	62.6	307.0	271.0	M16	78	96	1,254	25.52
PE O 3304	57,0	334	162	8,5	13,5	18,0	72,6	307,0	271,0	M 16	.90	98	1,268	22,24
PEA 360+	50,2	357,6	170	6.6	11.5	18.0	64,0	334,6	298.6	M 22	86	89	1,351	26,91
IPE 360	57.1	360	170	8.0	12.7	18.0	727	334.6	298.6	M 22	88	88	1,353	23,70
IPE O 360+	66,0	364	172	9,2	14,7	18,0	B4,1	334,6	298,6	M 22	90	90	1,367	20,69
IPEA 400-	57,4	397	180	7.0	17.0	21.0	73.1	373.9	331.0	M 22	94	98	1,464	25.51
IPE 400	66,3	400	180	8,6	13.5	21,0	84,5	373,0	331,0	M 22	96	98	1,467	22,12
IPE O 400+	75,7	404	182	9,7	15,5	21,0	96,4	373,0	331,0	M 22	96	100	1,401	19,57
IPE A 450-	67.2	447	190	7.6	13.1	21.0	85.6	420.8	378.8	M 24	100	102	1.603	23.87
IPE 450	77.6	450	190	9.4	14.6	21.0	98.8	420.8	378.8	M 24	100	102	1,605	20.69
IPE Q 450+	92,4	456	192	11,0	17,5	21,0	118	470,8	378,8	M 24	102	104	1,672	17,56
IPE A 500+	79,4	497	200	8,4	14.5	21,0	101	468,0	426,0	M 24	100	112.	1,741	21,94
IPE 500	90,7	500	200	10,2	16,0	21,0	116	468,0	426,0	M 24	102	112	1,744	19,23
IPE O 500+	107	506	202	12.0	19.0	21.0	137	468.0	426.0	M 74	104	114	1,760	16.4

Notations pages 205-209 / Bazelchnungen Seiten 205-209

Distant	NALL STREET		1	Valeurs	statique	es / Sec	tion pro	perties	/ Statisc	the Kenr	twerte					lassi	icatio	0		24	24	Γ
Designa Designat Bezelchn	bon tion ung		axe stror starke	e fort y- ig axis y e Achse	y 1-y y-y		sc	axe fal weak a hwache	ble z - z oxis z - z Achse z	-1				b	EN 1 Pum anting	993- 1-1	1-1:	2005 Fuse mpress	an	1-2: 2004	1-4: 2004	252001
	G kg/m	y mme	W _{ey} mm ³	W _{µy} • mm ³	ہ mm	A, mm ³	t, mm ⁴	W _{siz} mm ³	Wµr∳ mm3	k mm	s, mm	k mm ^a	L, mm ¹	5535	\$355	S460	3535	S355	S460	EN 10025	EN10025	EN 1023
		x10 ⁴	x10 ³	x10 ³	x10	x10 ²	x105	x10 ¹	x10 ²	x10		x10 ⁴	x10°		12	-	27.0		23	_		
PFAA 240	749	354	267	298	997	15.7	221	3.80	60.0	270	184	7.77	30.1	1	1		1	4		1		
PEA 240	76.2	129()	778	312	994	16.3	240	40.0	67.4	7.68	39.6	A 75	31.3	1	1	1	5	A	4	100	V	1
PE 240	307	1897	374	367	9.97	191	784	47.1	739	2.69	47.4	129	37.4	1	1	1	Ŧ	7	4	2	4	1
PE 0 240	34,3	4369	361	410	10,0	21,4	179	53,9	84,4	2,74	46,2	17,2	43,7	1	1	1	1	2	3	1	Y	4
PEA 270	30,7	4917	368	413	11,2	18,8	358	53,0	82,3	3,02	40,5	10,3	59,5	11	1	3	3	14	4	1	¥.	×
IPE 270	36,1	5790	429	484	11,2	22,1	420	62,2	97,0	3,02	44,6	15,9	70,6	1	1	1	2	3	4	X	1	V
PE 0 270	42,3	6947	507	575	11,4	25,7	514	75,5	118	90,E	49,5	24,9	87,5	1	1	1	1	2	1	6	4	ť
PEA 300	36,5	7173	483	542	12/4	22,3	519	69;2	107	3,34	42,1	13/4	107	1	ţ.	1	3	4	4	1	¥.	¥
IPE 300	42,2	8356	557	628	12,5	25,7	604	80,5	125	3,35	46,1	20,1	126	1	1	1	2	4	4	¥.	4	1
IPE O 300	49,3	9994	658	744	12,5	29,1	746	98,1	153	3,45	51,0	31,1	158	1	1	1	1	4	4	1	¥	4
IPEA 330	43	10230	626	702	13,7	27,0	685	85,6	133	3,54	47,6	19,6	172	1	1	.1	3.	4	4	Ý	¥	¥
IPE 330	49,1	11770	713	804	13,7	30,8	788	98,5	154	3,55	51,6	28,2	199	1	1	1	2	4	4	Ý	4	1
IPE O 330	57	13910	833	943	13,8	34,9	960	119	185	3,64	56,6	47,2	246	1	1	1	1	3	4	V.	4	4
IPEA 360	50,2	14520	R12	907	15,1	29,8	944	111	177	3,84	50,7	26,5	282	1	1	1	4	4	4	ł.	¥.	×
IPE 360	57,1	16270	904	1019	15,0	35,1	1043	123	191	3,79	54,5	37,3	314	1	1	1	2	4	4	*	4	4
IPE O 360	66	19050	1047	1186	15,1	40,2	1251	146	227	3,86	59,7	55,8	380	1	ţ.	1	10	3	4	¥.	4	X
IPEA 400	57,4	20290	1022	1144	167	35,8	1171	130	202	4,00	55,6	34,8	432	1	1	1	4	4	4	7	¥	¥
IPE 400	66,3	23130	1160	1307	16,6	42,7	1318	145	229	3,95	60,2	51,1	490	1	1	1	3	4	4	¥.	1	1
PE O 400	75,7	26750	1224	1502	167	48,0	1564	172	269	4,03	65,3	73,1	588,	đ	1	3	2	3	4	ť,	Ý	¥
PEA 450	1 7,2	29760	1231	1494	187	42,3	1502	158	246	4,19	58,4	45,7	705	1	1	1	4	4	4	V.	4	¥
PE 450	77,6	33740	1500	1702	18,5	50,9	1676	176	276	4,12	63,2	66,9	791	1	1	1	3	4	4	X	1	¥
IPE 0 450	92,4	40920	1795	2046	18,7	59,4	2085	217	341	4,21	70,8	109	998	1	1	1	2	4	4	¥,	Ý	ł.
PEA 500	79,4	42930	1728	1946	20,6	50,4	1939	194	302	4,38	67,0	62,8	1125	1	t	1	4	4	4	1	¥.	1
IPE 500	90,7	48200	1930	2194	20,4	59,9	2142	214	336	4,31	66,8	89,3	1249	1	1	1	3	4	4	¥.	1	X
PE O 500	107	57780	2784	2613	20,6	70,2	2672	260	409	4,38	74,6	144	1548	1	1	1	2	4	4	Y	4	4

Dēsigna Designa Bezeichr	ition ition nung		A	Dimension brnessungi	s en				Dimensi Dimer Kon	ions de cons islons for di struktionsn	struction stailing naße		Sur Ober	face flàche
	G kg/m	h mm	b mm	t, mm	t, mm	r mm	A mm ² x10 ²	h mm	d mm	ø	Pr= mm	P⇔ mm	A, m²/m	Ac m²/t
HE 100 AA*	12,2	91	100	4,2	5,5	12	15,5	80	56	M 10	54	58	0,553	45,17
HE 100 A	16,7	96	100	5	8	12	21,2	BO	56	M 10	54	58	0,561	33,68
HE 100 B	20,4	100	100	6	10	12	26,0	80	56	M 10	56	58	0,567	27,76
HE 100 C*	9,06	110	103	9	15	12	39,3	BO	56	M 10	59	61	0,593	19,23
HE 100 M	41,8	120	106	12	20	12	53,2	80	56	M 10	62	64	0,619	14,82
HE 120 AA*	14,6	109	120	4,2	5,5	12	18,6	98	74	M 12	58	68	0,669	45,94
HE 120 A	19,9	114	120	5	.0	12	25,3	98	74	M 12	58	68	0,677	34,05
HE 120 B	26,7	120	120	6,5	11	12	34,0	98	74	M12	60	68	0,686	25,71
HE 120 C*	39,2	130	123	9,5	16	12	49.9	98	74	M 12	51	72	0,712	78,19
HE 120 M	52,1	140	126	12,5	21	12	66,4	98	74	M 12	66	74	0,738	14,16
HE 140 AA*	18,1	128	140	43	6	12	23.0	115	92	M 16	64	76	0.787	43.53
HE 140 A	74.7	133	140	5.5	8.5	12	31.4	116	92	M 16	64	76	0,794	32.21
HE 140 B	33,7	140	140	1	12	12	43,0	116	92	M 16	66	76	0,805	23,88
HE 140 C*	48,7	150	143	10	17	12	61.5	115	92	M 16	69	79	0,831	17.22
HE 140 M	63,2	160	146	13	22	12	80,6	116	92	M 16	72	82	0,857	13,56
HE 160 AA*	23.8	149	160	4.5	7	15	30.4	134	104	M 20	76	84	0.901	37.81
HE 160 A	30,4	152	160	5	9	15	38.8	134	104	M 20	78	84	0,906	29,78
HE 160 B	42,6	160	160	8	13	15	54,3	134	104	M 20	80	84	0,918	21,56
HE 160 C*	59,2	170	163	11	18	15	75,4	134	104	M 20	84	88	0,944	15,95
HE 160 M	76,2	180	166	14	23	15	97,1	134	104	M 20	86	90	0,970	12,74
HE 180 AA *	28,7	167	180	5	7,5	15	36,5	152	122	M.24	84	92	1,018	35,51
HE 180 A	35,5	171	180	Ĩ.	9,5	15	45,3	152	122	M 24	BG	92	1,024	28,83
HE 180 B	51,2	180	180	8,5	14	15	65,3	152	122	M 24	88	92	1,037	20,25
HE 180 C*	69,B	190	183	11,5	19	15	89,0	152	122	M 27	92	96	1,063	15,22
HE 180 M	88,9	200	186	14,5	24	15	113,3	152	122	M 24	94	98	1,089	12,25
HE 200 AA*	34,6	186	200	5,5	В	18	44,1	170	134	M 27	96	100	1,130	37,67
HE 200 A	42,3	190	200	6,5	10	18	53,8	170	134	M 27	98	100	1,136	26,89
HE 200 B	61,3	200	200	9	15	18	78,1	170	134	M 27	100	100	1,151	18,78
HE 200 C*	81,9	210	203	12	20	18	104,4	170	134	M 27	104	104	1,177	14,36
HE 200 M	103	220	206	15	25	18	131,3	170	134	M 27	105	106	1,203	11.67

Désigna	tion			Valeurs s	tatique	s / Secti	on prop	erties / 1	Statische	e Kennv	verte				0	assit	icati	NI NOC	1	4		
Designa Bezeichr	tion		axe	forty-y g axis y-	y			axe fal weak a	ble z-z XIS z-z					P	Pura	33-	1-1.	Pure	9	2; 200	4: 200	5:2001
	2	- 4	starke	Achse y	-y		SC	hwache	Achse z	-2			1141	Der	nang	¥-¥	007	npros	aon	25-	-50	225
	G	1	Way	w _m •	1	2	[8 ₉	Wat	Wgg	Ś.	3	1		un.	UR.	0	19	12	8	100	100	N1C
	kg/m	mm*	mm1	mm1	mm	LIND1	mm*	mm,	LINU ₃	mm	mm	mm*	mme	\$2	ES	S4	52	ES	54	S	S	
		x10 ^r	x103	x103	x10	X10 ²	x10 ⁴	x10 ³	x10 ³	x10		x10 ¹	x10 ²		Ě	100	E.	Ľ,	165			
HE 100 AA	12,2	236,5	51,98	58,36	3,89	6,15	92,05	18,41	28,44	2,43	79,26	2,51	1,68	1	1	2	1	1	2	X	V	V
HE 100 A	15,7	349,2	12,76	#1,01	4,06	7,56	133,8	26,76	41,14	251	35,06	5,24	2,58	1	1	1	1	1	1	1	1	7
HE 100 B	20,4	449,5	89,91	104,2	4,16	9,04	167,3	33,45	51,42	2,53	40,05	9,25	3,38	1	1	1	1	1	1	Y	1	1
HE100 C	30,9	758,7	137,9	165,8	4,39	13,39	274,4	53,28	82,08	2,64	53,06	29,30	6,16	1	1		1	1	-	4		1000
HE 100 M	41,8	1143	190,4	235,8	4,63	18,04	399,2	75,31	116,3	2,74	66,06	68,21	9,93	1	1	1	1	1	1	1	×	¥
HE 120 AA	146	412.4	75.05	04.17	477	6.00	150.0	76 17	40.62	7.01	70.75	2.70	1.71	+	2	2	.*	3	3	4	1	14
HE 120 A	10.0	606.3	1061	110.5	4.00	9.45	2200	20,40	58.95	3.07	35 (16	5.00	6.47		-	1	1	1	1	1	1	
HE 120 B	767	864.4	144.1	165.7	5.04	1095	3175	57.92	80.97	305	42.56	17.94	9.41		1	1	ŝ	4	9	2	2	V
HE 120 C	39.7	1300	2116	757.9	577	15.91	4977	80.97	124.7	115	55.56	40.95	16.17	1	1	2	1	1		1	15161	10.00
HE 120 M	52.1	2018	288.2	350.6	5.51	71.15	707 R	151.6	1716	1.25	ER SE	91.66	2479	1	1	4	1	1	3	V	V	V
The same set	2411		e conte	anala	outract.	A GOA	Inela	a a state			and a re-	1.1.1.1.1.1.1.1	english.								14	
HE140 AA	18,1	719,5	112,4	123,8	5,59	7,92	274,B	39,26	59,93	3,45	30,36	3,54	10,21	2	3	З	2	З	3	¥	4	1
HE 140 A	24,7	1033	155,4	173,5	573	10,12	389,3	55,62	84,85	3,52	36,56	8,13	15,06	1	1	2	1	1	2	Ŷ	¥	V
HE 140 B	33,7	1509	215,6	245,4	5,93	13,08	549,7	78,52	119,8	3,58	45,06	20,05	22,48	1	1	1	1	1	1	1	Y	V
HE140 C	48,2	2330	310,6	363,8	6,16	18,67	830,3	115,1	177,7	3,68	58,06	55,6B	36,64	1.	1		1	1		V		
HE 140 M	63,2	3291	411,4	493,8	6,39	24,45	1144	156,8	240,5	3,77	71,06	120,0	54,33	t	1	1	1	1	1	V.	¥	¥
HE 16D AA	955	1202	177.4	105.4	650	10.20	870.7	50.04	01.76	107	35.07	677	1275	÷	5	2	4	7	7	1	2	2
HE \$60.6	30.4	1673	220.1	745.1	557	12.21	635.6	76.95	1176	192	41.57	12:19	31.41	1	1	5	-	1	1	9	ŝ.	2
HE 160 B	42.6	7497	311.5	354.0	678	17.59	889.7	111.2	1700	4.05	51.57	71.74	4794	1	1	1	1	1	1	V	V	V
HE 160 C	59.7	3704	425 R	507.6	7.01	24.05	1307	159.0	744.9	415	54.57	79.71	75.04	1	1		1	1	14	4		1
HE 160 M	76,2	5098	566,5	674,6	7,25	30,81	1759	211,9	325,5	4,26	77,57	162,4	108,1	1	1	1	1	1	1	Y	4	1
HE100 MA	29.7	1057	775.6	260.2	7.74	1246	720.0	01.11	137.6	1.17	37.57	0.32	AE 76	3	2	3	2	-2	2	1	~	
HE 190 A	75.5	2510	3595	774.0	7.85	14.47	3400	102.7	1565	457	4757	14 80	60.71		1	1	1	1	1	2	5	2
HE 190 B	51.2	1685	425.7	dRt d	7.66	20.24	1363	151.4	221.0	457	5407	47.16	9775	1	1	1	+	1	1	V	4	V
HE 180 C	60.8	5543	5825	675.0	7.99	37.30	1044	7175	174.9	1.65	67.07	1021	141.0	1		1	1	1		v		
HE 180 M	88.9	7483	748.3	883.4	8,13	34.65	2580	277.4	425.2	4.77	B0.07	203.3	199.3	1	1	1	1	1	1	1	1	1
	10000		1/157670	C. C	0.000	1.1877		a that the	7877740	-330.00	D-SWEYS	ncontra	85557									7.00
HE 200 AA	34,6	2944	316,6	347,1	8,17	15,45	1068	106,8	163,2	4,92	42,59	12,69	84,49	2	3	3	2	З	3	1	V	W.
HE 200 A	42,3	3692	388,6	429,5	8,28	18,08	1336	133,5	203,8	4,98	47,59	20,98	109,0	1	7	3	T	7	3	1	1	Y
HE 200 B	61,3	5696	569,6	642,5	8,54	24,83	2003	200,3	305,8	5,07	50,09	59,28	171,1	1	1	1	1	1	1	*	V	V
HE 200 C	81,9	8029	764,7	880,6	8,77	32,78	2794	275,3	421,0	5,17	73,09	135,1	251,7	1	1	+	1	1	1	Q.		
HE 200 M	103	10640	967,4	1135	9,00	41,03	3651	354,5	543,2	5,27	85,09	259,4	346,3	1	1	1	1	1	1	×	V	V

Notations pages 205-209 / Butelchnungen Selten 205-209

Désigna Designa Bezeichi	tion tion nung		A	Dimension bmessung	s en				Dimensi Dimen Kon	ions de con islons for d struktionsr	struction etailing naße		Sur Ober	face fläche
	G kg/m	h mm	b mm	t, mm	t, mm	nm T	A mm ³ x10 ²	ի mm	d mm	ø	P∞ mm	Pr⊒ mm	A, m²/m	A; m²/t
HE 220 AA*	40,4	205	220	6	8,5	18	51,5	188	152	M 27	98	118	1,247	30,87
HE 220 A	50,5	210	220	1	11	18	64,2	188	157	M 27	98	118	1,255	24,85
HE 220 B	71,5	220	220	9,5	16	18	91,0	188	152	M-27	100	118	1,270	17,77
HE 220 C*	94,1	230	223	12,5	21	18	119,9	188	152	M 27	104	122	1,296	13,77
HE 220 M	117	240	226	15,5	26	18	149,4	188	152	M 27	108	124	1,322	11,27
HE 240 AA *	47,4	224	240	6,5	9	21	60,4	206	164	M 27	104	138	1,359	28,67
HE 240 A	60,3	230	240	7,5	12	21	76,8	206	164	M-27	104	138	1,369	22,70
HE 240 B	83,2	240	240	10	17	21	106,0	206	164	M 27	108	138	1,384	16,63
HE 240 C*	119	255	244	14	24,5	23	152,2	206	164	M 27	112	142	1,422	11,90
HE 240 M	157	270	248	18	32	21	199,6	206	164	M.27	115	146	1,460	9,318
HE 260 AA'	54,1	244	260	6,5	9,5	24	69,0	225	177	M.27	110	158	1,474	27,22
HE 260 A	68,2	250	260	7,5	12,5	74	86,8	225	177	M 27	110	158	1,484	21,77
HE 260 B	93,0	260	260	10	17,5	24	118,4	225	177	M.27	114	158	1,499	16,12
HE 260 C*	132	275	264	14	25	24	168,4	225	177	M.27	118	162	1,537	11,63
HE 260 M	172	290	768	18	32,5	24	219,6	225	177	M 27	122	166	1,575	9,133
HE 280 AA *	61,2	264	280	7	10	24	78,0	244	196	M.27	110	178	1,593	26,01
HE 280 A	76,4	270	780	8	13	74	97,3	244	196	M 27	112	178	1,603	20,99
HE 280 B	103	280	280	10,5	18	24	131,4	244	196	M 27	114	178	1,618	15,69
HE 280 C*	145	295	284	14,5	75,5	24	185,2	244	196	M 77	118	182	1,656	11,39
HE 280 M	189	310	288	18,5	33	24	240,2	244	196	M 27	122	186	1,694	8,984
HE BOO AA .	69,8	283	300	7,5	10,5	27	88,9	262	208	M 27	116	198	1,705	24,42
HE BOOA	88,3	790	300	85	14	27	112,5	262	208	M. 27	118	198	1,717	19,43
HE 300 B	117	300	300	11	19	27	149,1	262	208	M 27	120	198	1,732	14,80
HE 300 C*	177	320	305	16	29	27	225,1	762	208	M.27	126	204	1,782	10,09
HE 300 M	238	340	310	21	39	27	303,1	267	208	M 27	132	208	1,832	7,699
HE 320 AA*	74,2	301	300	8	11	27	94,6	279//	225	M.27	118	198	1,740	23,43
HE 320A	97,6	310	300	9	15,5	27	524,4	279	225	M 27	118	198	1,756	17,98
HE 320 B	127	320	300	11,5	20,5	27	161,3	279	225	M-27	122	198	1,771	13,98
HE 320 C*	186	340	305	16	30,5	27	236,9	279	225	M 27	126	204	1,822	9,796
HE 320 M	245	359	309	21	40	27	312.0	279	225	M.27	132	204	1,866	7,616

Notations (tangs 205, 206.	/ Reizolchrium/auto	Saltan 205, 200
1001440/57514	conditions of a second of a second of	C AND AND AND A MARK PARKS	PROPERTY AND IN A PROPERTY.

Dèsigna	tion	an an Arran		Valeurs s	tatique:	s / Secti	on prope	erties / !	Statische	e Kennv	verte			E	CI N 19	assif 93-	icati 1-1	200	15	04	đ	
Designa Bezeichr	tion tung		stron starke	g axis y- Achse y	у -у		scl	weak a wache	ole z-z XIS z-z Achse z	-7.				ber	Puru nding	14	m	Pure ripres	san	5-2: 200	5-4: 204	25:2001
	G kg/m	لې ۳۳* 10*	W _{aγ} mm ³ x10 ²	W ₇₄ ♦ mm ³ x10 ²	} mm x10	A, mm ³ x10 ²	1 mm ⁴ x10 ⁴	W _{siz} mm ³ x10 ¹	Wµu∳ mm³ x103	l, mm x10	۶ mm	k mm ^e x10 ^c	لي mm ^c x10 ¹	S235	S355	5.460	5235	SSES	S.460	EN 1002	EN 1002	EN 102
HE 220 AA	40,4	4170	406,9	445,5	9,00	17,63	1510	137,3	209,3	5,42	44,09	15,93	145,6	3	Э	4	3	3	4	¥	4	A
HE 220 A	50,5	5410	515.2	568,5	9,17	20,67	1955	177,7	270,5	551	50,09	28,46	193,3	1	ż	à	1	2	3	1	1	1
HE 220 B	71,5	8091	735,5	827,0	9,43	27,92	2843	258,5	393,9	5,59	62,59	76,57	295,4	đ.	1	1	1	1	1	V	4	1
HE 220 C	94,1	11180	977,2	1114	9,65	36,47	3888	348,7	532,4	5,69	75,59	168,2	423,9	1	1		1	1		×.		
HE 220 M	117	14600	1217	1419	9,89	45,31	5012	443,5	678,6	5,79	88,59	315,3	572,7	1	1	4	1	1		Y	1	1
HE 240 AA	47 <i>,</i> A	5835	521,0	570,6	9,83	21,54	2077	173,1	264,4	5,87	49,10	22,98	239,6	3	3	4	3	3	.4	4	V	×
HE 240 A	60,3	7763	675,1	744,5	10,05	25,18	2769	230,7	351,7	6,00	56,10	41,55	328,5	1	2	З	1	2	з	×.	×	4
HE 240 B	83,2	11260	93B,3	1053	10,31	33,23	3923	326,9	498,4	6,08	6B,60	102,7	486,9	1	1	1	1	1	1	1	1	*
HE 240 C	119	17330	1359	1564	10,67	46,35	5947	487,1	743,8	6,25	B7,60	788,7	787,9	1	1	-	1	1	3	×		
HE 240 M	157	24290	1799	2117	11,03	60,07	8153	657,5	1005	6,39	106,6	627,9	1152	1	1		1	1	1	4	Å.	A)
HE 260 AA	54,1	7981	654,1	714,5	10,76	24,75	27BB	214,5	327,7	6,36	53,67	30,31	382,6	3	3	4	1	З	4	¥	4	¥
HE 260 A	68,2	10450	836,4	919,8	10,97	28,76	3668	282,1	430,7	6,50	60,62	52,37	516,4	1	Е	Э	1	1	З	Ľ	H	H
HE 260 B	93,0	14920	114B	1283	11,22	37,59	5135	395,0	602,2	6,58	73,12	123,8	753,7	1	1	1	1	1	1	1	н	HI
HE 260 C	132	72590	1643	1880	11,58	51,94	7680	581,8	888,3	6,75	92,12	336,4	1198	1	1	1	t	1	1	4		
HE 260 M	172	31310	2159	2524	11,94	66,89	10450	779,7	1192	6,90	111,1	719,0	1728	1	1	3	1	1	1	4	H	H
HE 280 AA	61,2	10560	799,8	873,1	11,63	27,52	3664	261,7	399,4	6,85	55,12	36,22	590,1	3	3	4	3	3	4	¥	1	¥
HE 380 A	76,4	13670	1013	1112	11,86	31,74	4763	340,2	518,1	7,00	62,12	67,10	785,4	1	3	3	1	E.	3	×	H	H
HE 280 B	103	19270	1376	1534	12,11	41,09	6595	471,0	717,6	7,09	74,62	143,7	1130	3	1	1	1	1	1	Y	н	Ħ
HE 2BD C	145	28810	1953	2225	12,47	56,26	9750	686,6	1047	7,26	93,67	382,5	1768	1	1		1	1	3	1		
HE 280 M	189	39550	2551	2966	12,83	72,03	13160	914,1	1397	7,40	112,6	807,3	2520	1	1	1	1	1	1	4	M	用
HE 300 AA	69,8	13800	975,6	1065	12,46	32,37	4734	315,6	482,1	7,30	60,13	49,35	877,2	3	3	4	3	3	4	×	1	1
HE 300 A	88,3	18260	1260	1383	12,74	37,28	6310	420,6	641,2	7,49	68,13	85,17	1200	1	7	Э	t	3	3	4	推	15
HE 300 B	117	25170	1678	1869	12,99	47,43	8563	570,9	870,1	7,58	80,63	185,0	1688	4	1	1	1	1	4	V	H	H
HE 300 C	177	40950	2559	2927	13,49	68,48	12736	900,7	1374	7,81	105,6	598,3	2903	1	1		1	1		×		
HE 300 M	238	59200	3482	4078	13,98	90,53	19400	1757	1913	B,00	130,5	1408	4386	1	1	1	1	1	1	¥	н	H
HE 320 AA	74,2	16450	1093	1196	13,19	35,40	4959	330,6	505,7	7,24	61,63	55,87	1041	3	3	4	3	з	4	v	V.	¥
HE 220 A	97,6	22930	1479	1628	13,58	41,13	6985	465,7	709,7	7,49	71,53	108,0	1512	1	2	3	1	2	3	1	H	Ħ
HE 320 B	127	30820	1926	2149	13,82	51,77	9739	615,9	939,1	7,57	84,13	225,1	2069	1	1	1	1	1	1	*	HI	佣
HE 320 C	186	48710	2865	3274	14,34	72,25	14445	947	1445	7,81	108,6	679,1	3454	1	1	-	1	1	-	¥.		
HE 320 M	245	68130	3796	4435	14,78	94,85	19710	1276	1951	7,95	132,6	1501	5004	1	1	1	1	1	1	4	н	Ħ

Désignat Designat Bezeichni	lon Ion Ing		A	Dimension bimessung	s				Dimensi Dimer Kon	ions de con Islons for d struktionsr	struction etailing naße		Sur Ober	face Räche
	G	h	b	i,	t,	r	A	h	d	ø	Pre	p _{na}	A	A:
	kri/m	mm	mm	mm	mm	mm	mm ³	mm	mm		mm	mm	m ³ /m	milit
	sgrin	2000		11011			v102	(and a second	2276		LTR !!		in fin	100
					-		AIU							
HE 340 AA*	78,9	320	300	8,5	11,5	27	100,5	297	243	M 27	118	198	1,777	22,52
HE 340 A	105	330	300	9,5	16,5	27	133,5	297	243	M-27	118	198	1,795	17,12
HE 340 B	134	340	300	12	21,5	27	170,9	297	243	M 27	122	198	1,810	13,49
HE 340 M	248	377	309	21	40	27	315,8	297	243	M 27	132	204	1,902	7,670
HE 360 AA *	83,7	339	300	9	12	77	106,6	315	261	M 27	118	198	1,814	21,67
HE 360 A	112	350	300	10	17,5	27	142,8	315	261	M 27	120	198	1,834	16,36
HE 360 B	142	360	300	12,5	22,5	27	180,5	315	261	M.27	122.	198	1,849	13,04
HE 360 M	250	395	308	21	40	27	318,8	315	261	M 27	132	204	1,934	7,730
		and a										400	1001	
HE 400 AA*	92,4	31.8	300	9,5	14	21	117,7	352	798	M.27	118	198	1,891	20,46
HE 400 A	125	290	DOE	11	19	27	159,0	357	299	M 27	120	198	1,912	15,32
HE 400 B	155	400	300	13,5	24	27	197,8	352	298	M 27	124	198	1,927	12,41
HE 400 M	756	4.4.2	307	(20)	40	27	325,8	352	298	M 27	1.32	202	2,004	7,835
HE 450 AA	99,7	425	300	10	13,5	27	127,1	398	344	M 27	120	198	1,984	19,89
HE 450A	140	440	300	11,5	21	27	178,0	398	344	M.27	122	198	2,011	14,39
HE 450 B	171	450	300	14	26	27	218,0	398	344	M 27	124	198	2,026	11,84
HE 450 M	263	478	307	21	40	27	335,4	398	344	M 27	132	202	2,096	7,959
UT T-00 4 4 -	107	1.00	100	101		1.7	132.0		200		155	100	2.011	40.33
THE SUURA .	107	472	ODE	10,5	16	11	136,9	444	390	MI	1.40	198	2,017	19,33
HE SUGA	155	490	006	14	24	21	19/,5 550 C	444	390	M 21	122	191	2,110	13,60
HE SOLU	187	500	200	19,0	28		238,0	444	390	M 23	124	198	2,123	11,39
THE SUUM		324	AUL	.21	/40-	11.	399,1	444	390	M 27	132	202	2,184	8,079
HE 550 AA	120	522	300	11,5	15	27	157,8	492	438	M 27	122	198	2,175	18,13
HE 550A	166	540	300	12,5	24	27	211,8	492	438	M 27	122	198	2,209	13,29
HE 550 9	199	.550	300	15:	29	27	254,1	492	438	M 77	124	198	2,224	11,15
HE 550 M	278	572	306	21	40	27	354,4	492	438	M 27	132	202	2,280	8,195
UE 000 4 4-	100		100	12	AP.P.		1541		40.0	14.77	122	100	3.323	47.04
HE GOODA"	129	2/1	001	12	15,5	11	164,1	540	980	M 21	122	198	1,111	17,64
HE BUCA	1/8	590	00E	11	10	11	126,5	540	486	M 27	122	191	1,108	12,98
HE 600 B	212	600	300	15,5	30	21	270,0	\$40	486	M 27	126	198	2,323	10,96
HE GOD M	285	620	305	2)	40	2)	363,7	540	486	M 27	142	200	1,312	8,308
HE 600 X 337*	337	632	310	25,5	46	11	429,7	540	486	M 27	138	202	2,407	7,144
HF 200 X 388.	399	648	345	30	54	17	508,5	540	486	M-27	142	208	2,450	6,137

Désignati	on		200	Valeurs s	statiques	s / Secti	on prope	erties / l	Statischi ble zz	e Kennv	verte			E	N 19	assi 93-	1-1:	on 200	15	04	54	
Bezelchnu	ng		stron	g axis y- Achse y	у -у		sci	weak a	xis z - z Achse z	-2				te	Purp	14		Puse	san	5-2: 20	5-4: 20	25:200
	G kg/m	ly mm ⁴	W _{riy} mm ³	W _{itk} ♦ mm ³	ý mm	A,	k mm ^e	W _{riz} mm ³	W _µ ∳ mm ³	i, mm	s, mm	l, mm ^e	l. mm ^c	235	355	460	235	355	460	N.1002	SN1002	EN102
	WG157-	x10 ^t	x10 ¹	x10 ¹	x10	x10 ²	x10 ⁴	x10 ³	x10 ²	x10	1	x10 ⁴	x10 [‡]	UN	N	0	47	S	S			
HE 340 AA	78,9	19550	1222	1341	13,95	38,69	5185	345,6	529,3	7,18	63,13	63,07	1231	3	3	4	3	Э	4	¥	Ý	¥
HE340A	105	27690	1678	1850	14,40	44,95	7436	495,7	755,9	7,45	74,13	127,2	1874	1	1	3	1	1	È	V	H	H
HE 340 B	134	36660	2156	2408	14,65	56,09	9690	646,0	985,7	7,53	86,63	257,2	2454	1Ē	1	1	4	1	1	¥.	H	H
HE 340 M	248	76370	4052	4718	15,55	98,63	19710	1276	1953	7,90	132,6	1506	5584	1	Į.	1	1	1	3	×	H	H
HE 360 AA	83,7	23040	1359	1495	14,70	42,17	5410	360,7	553,0	7,12	64,63	70,99	1444	z	Ŧ	з	2	â	3	v	v	v.
HE 360 A	112	33090	1891	208B	15,22	48,96	7887	525,B	802,3	7,43	76,63	148,8	2177	1	1	2	1	1	2	V.	H	н
HE 360 B	142	43190	2400	2683	15,46	50,50	10140	676,1	1032	7,49	89,13	292,5	2883	1	1	1	1	1	1	×	н	ы
HE 360 M	250	84870	4797	4989	16,32	102,4	19520	1268	1942	7,83	132,6	1507	6137	1	1	1	1	1	1	~	H	H
HE 400 AA	92,4	31250	1654	1824	16,30	47,95	5861	390,8	599,7	7,05	67,13	84,69	1948	2	3	3	2	Э	4	*	×	4
HE 400 A	125	45070	2311	2567	16,84	57,33	8564	570,9	872,9	7,34	80,63	189,0	2942	1	1	1	1	7	2	V	H	H
HE 400 B	155	57680	2884	3737	17,08	69,98	10820	721,3	1104	7,40	93,13	355,7	3817	1	1	1	t	1	1	4	H	H
HE 400 M	256	104100	4820	5571	17,88	110,2	19340	1260	1934	7,70	132,6	1515	7410	1	I.	1	1	1	J.	×	H	Ħ.
HE 450 AA	99,7	41890	1971	2183	18,16	54,70	6088	405,8	.624,4	5,92	68,63	95,61	2572	1	1	3	2	4	4	ų.	¥.	¥
HE 450 A	140	63720	2896	3216	18,92	65,78	9465	631,0	965,5	7,29	B5,13	243,8	4148	Ľ	1	1	1	2	3	¥	Ħ	H
HE 450 B	171	79890	3551	3987	19,14	79,66	11720	781,4	1198	7,33	97,63	440,5	5258	1	1	1	1	1	2	1	н	Н
HE 450 M	263	131500	5501	6331	19,80	119,8	19340	1260	1939	7,59	132,6	1529	9751	1	1	1	1	1	1	×	H	H
HE SOO AA	107	54640	2315	2576	19,98	61,91	6314	420,9	649,3	6,79	70,13	107,7	3304	1	3	3	2	4	4	×	V	v
HE 500 A	155	86970	3550	2949	20,98	74,72	10370	691,1	1059	7,24	89,63	309,3	5643	1	1	1	1	T	4	w	Н	Н
HE 500 B	187	107200	4287	4815	21,19	89,82	12620	841,5	1292	7,27	102,1	538,4	7018	1	1	1	t	2	2	¥.	H	H
HE 500 M	270	161900	6180	7094	21,69	129,5	19150	1252	1932	7,46	132,6	1539	11190	1	t	1	£.	1	Ť	X	н	Н
HE 550 AA	120	72870	2792	3178	21,84	72,66	6767	451,1	698,6	5,63	73,13	133,7	4338	1	ź	з	a,	4	4	v	Ŷ	¥
HE 550 A	166	111900	4146	4622	22,99	83,72	10820	721,3	1107	7,15	92,13	351,5	7189	1	1	1	2	4	4	V	H	H
HE 550 B	199	136700	4971	5591	23,20	100,1	13080	871,8	1341	7,17	1045	600,3	8856	1	1	1	1	2	3	×	H	Ы
HE 550 M	278	198000	6923	7933	73,64	139,6	19160	1257	1937	7,35	132,6	1554	13520	1	1	1	1	1	1	×	H	H
HE 600 AA	129	91900	3218	3623	23,66	81,29	6993	466,2	724,5	6,53	74,63	149,8	5381	1	2	3	3	4	4	×	V	v
HE 600 A	178	141200	4787	5350	24,97	93,71	11270	751,4	1156	7,05	94,63	397,8	8978	1	1	1	2	4	4	w	H	Н
HE 600 B	212	171000	5701	6425	25,17	110,8	13530	902,0	1391	7,08	107,1	667,2	10970	1	1	1	1	З	4	¥	H	HI
HE GOO M	285	237400	7660	8772	75,55	149,7	18980	1244	1930	7,22	132,6	1564	15910	1	1	1	1	1	1	¥	Н	Ы
HE 600 x 337	337	283200	8961	10380	25,69	180,5	72940	1490	2310	7,31	149,1	2451	19610	1	1	1	1	1	1	*	H	
HE 600 x 399	399	344600	10640	12460	26,03	213,6	28280	1795	2814	7,46	169,6	3966.	24810	1	1	1	1	1	1	1	H	

Notations pages 205-2097 Batelchnungen Seiten 205-209

Désign Design Bezelci	ation ation hnung		A	Dimension binessung	s				Dimensi Dimen Kon	ions de cons istons for di struktionsn	struction etailing naße		Sur Ober	face fläche
	G kg/m	h mm	b mm	t, mm	t, mm	r mm	A mm ² x10 ²	h, mm	d mm	ø	e _{rer} mm	e _{ran} mm	A. m²/m	Ac m?/t
UPE 80*	7,90	BO	50	4,0	7,0	10	10,1	66	46	1	3	3	0,343	43,45
UPE 100*	9,87	100	55	4,5	7,5	10	12,5	85	65	M 12	35	36	0,402	41,00
UPE 120*	12,1	120	60	5,0	8,0	12	15,4;	104	80	M 12	35	41	0,460	37,98
UPE 140*	14,5	140	65	5,0	9,0	12	18,4	122	98	M 16	35	38	0,520	35,95
UPE 160*	17,0	160	70	5,5	9,5	12	21,7	141	117	M 16	36	43	0,579	34,01
UPE 180*	19,7	180	75	5,5	10,5	12	25,1	159	135	M 16	36	48	0,639	32,40
UPE 200*	22,8	200	BO	6,0	11,0	13	29,0	178	152	M 20	46	47	0,697	30,60
UPE 220*	26,6	220	85	6,5	12,0	13	33,9	196	170	M 22	47	49	0,756	78,43
UPE 240*	30,2	240	90	7,0	12,5	15	38,5	215	185	M 24	47	51	0,813	26,89
UPT: 270*	35,2	270	95	7,5	13,5	15	44,8	243	213	M 27	48	50	0,897	25,34
UPE 300*	44,4	300	100	9,5	15,0	15	56,6	270	240	M 27	50	55	0,968	21,78
UPE 330*	53,2	330	105	11,0	16,0	18	67,E	298	262	M 27	54	60	1,043	19,60
UPE 360*	61,2	360	110	12,0	17,0	18	77,9	326	290	M 27	55	65	1,121	18,32
UPE 400*	72,2	400	115	13,5	18,0	18	91,9	364	328	M.27	57	70	1,218	16,87

Notations pages 205-209 / Batelchnutigen Selten 205-209

Distantion			Val	eurs st	atiques	/ Secti	on prop	perties	/ Statis	che Ke	nnwert	e			TH.	Classif	icatio	n Mar	4	*	
Designation Bezeichnung	-	axi stroi stario	e forty- ng axis y e Achse	-y y-y y-y		sch	axe fai weak a wache	ble z-z xis z-z Achse	I-Z						EN 1 Pl bendi	udit-h Tui Taara-	P comp	unu rension	5-2: 2004	5-4; 2004	
G	4	Way	W _{py}	4	A:	Ŀ	W _e	W _{ptr}	4	S,	1	4	y,	y=	35	25	35	22	10025	11002	1000
kg/m	x10 ⁴	mm ⁴ x10 ²	mm ² x10 ³	mm x10	mm ² x10 ²	x10 ^t	mm ² x10 ²	mm ² x10 ²	mm x10	mm	x10 ⁴	x10°	mm. x10	mm x10	ŝ	G	52	EX.	B	6	

UPE 80	7,90	107	26,8	31,2	3,26	4,05	25,5	B,0	14,3	1,59	16,9	1,47	0,22	1,82	3,71	1	1	1	3.	*	
UPE 100	9,82	207	41,4	48,0	4,07	5,34	38,3	10,6	19,3	1,75	17,9	2,01	0,53	1,91	3,93	1	1	1	1	Ŷ	
UPE 120	12,1	364	60,6	70,3	4,86	7,18	55,5	13,8	25,3	1,90	20,0	2,90	1,12	1,98	4,12	(3)	1	3	1	×	
LIPE 140	14,5	600	B5,6	98,8	5,71	B,25	7B;8	18,2	33,2	2,07	21,0	4,05	2,20	2,17	4,54	1	1	1	1	4	
UPE 160	17,0	911	114	132	6,48	10,0	107	22,6	41,5	2,22	27,0	5,70	3,96	2,27	4,76	1	1	1	1	×	
UPE 180	19,7	1350	150	173	7,34	11,2	144	28,6	52,3	2,39	23,0	6,99	6,81	2,47	5,19	1	1	1	1	4	
UPE 200	22,8	1910	191	220	B,11	13,5	187	34,5	63,3	2,54	24,6	8,89	11,0	2,56	5,41	1	1	1	1	¥	
UPE 220	26,6	2680	244	281	8,90	15,8	247	42,5	78,2	2,70	26,5	12,1	17,6	7,70	5,70	1	1	1	1	1	
UPE 240	30,7	3600	300	347	9,67	18,8	311	50,1	92,2	2,84	28,3	15,1	26,4	2,79	5,91	1	1	1	1	V	
UPE 270	35,2	5250	389	451	10,8	22,2	401	60,7	112	2,99	29,8	19,9	43,6	2,89	6,14	1	1	1	2	×	
UPE 300	44,4	7820	522	613	11,8	30,3	538	75,6	137	3,08	33,3	31,5	72,7	2,89	6,03	11	11	1	1	¥	T
UPE 330	53,2	11010.	667	792	12,7	38,8	681	89,7	156	3,17	37,5	45,7	112	2,90	6,00	1	1	1	1	1	
UPE 360	61,2	14830	824	982	13,8	45,6	担44	105	178	3,79	39,5	58,5	166	2,97	6,12	1	1	1	1	4	
UPE 400	72,2	20980	1050	1260	15,1	56,2	1045	123	191	3,37	47,0	79,1	259	2,98	6,06	1	1	1	1	4	

Désignation Designation Bezelchnun	1 9		Dimer	nsions sungen				Position Position Lage de	des axes 1 of axes r Achsen		Sur	face fläche
	G kg/m	h-b mm	t mm	tı mm	ta mm	A mm²	z _e y, mm	v mm	ur. mm	u _t mm	A, m²/m	Ac m²/t
						x10 ²	x10	x10	x10	x10		
170×70×5	6.78	70	6	0	15	017	107	4.05	2.72	345	0.223	47.69
170× 10× 0	7.20	10	7	-	91-2	0.40	1,07	4.05	7 70	3.47	0.777	76.01
170×70×0*/	0.35	70	0	10	5.0	307	1,9/	4.05	7,75	2,91	0.272	10,91
TON TON D	9,47 0.33	10	0	0	3,5	10,1	2,01	4,55	2,04	210	0,211	30,30
LTUXTUX9	5,52	10	3	3	4,2	11,2	2,03	4,90	2,80	2,30	Warz.	28,20
75x75x4*	4,65	75	4	9	4,5	591	1,96	5,30	2,76	2,63	0,292	67,82
L75x75x5	5.76	75	5	9	4.5	7.34	2.01	5.30	2.84	2.63	0.292	50.75
175×75×6	6.85	75	6	9	45	8.73	2.05	5.30	2.90	2.64	0.292	42.66
75×75×7	7.93	75	7	9	45	10.1	2.10	5.30	2.96	2.65	0.292	36.88
175x75x8	8.99	75	8	9	45	11.4	214	530	102	2.65	0.797	32.53
L75x75x10*	11.1	75	10	9	45	14.1	2.72	5.30	3.13	2.69	0.292	26.43
				-	1.194					. star	of a second	and in
LBOX BOX 5	6,17	80	5	10	5,0	7,86	2,12	5,66	3,00	2,81	0,311	50,49
L 80x 80x 6*/*	7,34	80	6	10	5,0	9,35	2,17	5,66	3,07	2,81	0,311	42,44
180x80x7*	8,49	80	7	10	5,0	10,8	2,21	5,66	2,13	2,82	0,311	36,67
L BOX BOX B	9,63	80	1	10	5.0	17.3	2.76	5.66	2.19	7.93	0.311	37.34
L 80 X 80 X 10	11,9	80	10	10	5,0	15,1	2,34	5,66	3,30	7,85	0,311	26,26
	200				0.00	18.3	1.11	1. A.		100	2000	1
L90x90x6**	8,28	90	6	10	5,0	10,5	2,42	6,36	3,42	3,16	0,351	42,44
L90x90x7	9,61	90	7	11	5,5	12,2	2,45	6,36	3,47	3,16	0,351	36,48
L 90x 90x 8	10,9	90	8	11	5,5	13,9	2,50	6,36	3,53	3,17	0,351	32,15
L90x90x9	12,2	90	.9	11	5,5	15,5	7,54	6,36	3,59	3,18	0,351	28,77
L90x 90x 10	13,4	90	10	11	5,5	17,1	2,58	6,36	3,65	3,19	0,351	26,07
L90x90x11"	14,7	90	11	11	5,5	18,7	2,62	6,36	3,70	3,21	0,351	23,86
	190						110 -	Altre -	2.112	2.25	-	1.10
100 x 100 x 8*/*	9,26	100	6	12	6,0	11,8	2,64	7,07	2,74	3,51	0,390	47,09
L 100x 100x 7	10,7	100	7	12	6,0	13,7	2,69	7,07	3,81	3,51	0,390	36,33
L 100 x 100 x 8**	12,2	100	8	12	6,0	15,5	2,74	7,07	3,87	3,52	0,390	32,00
L 100x 100x 10*	15,0	100	10	12	5,0	19,2	2,82	7,07	3,99	3,54	0,390	25,97
100 x 100 x 12*	17,8	100	12	12	6.0	72,7	2,90	7,07	4,11	3,57	0,390	21,86
	1.42				2302	CONTRACT OF	1.41.5	0000	C data	estati.	a series a s	C vernis
110x110x8*/*	13,4	110	8	17.	6,0	17.1	7,99	7,78	4,22	3,87	0,430	31,98
L 110x 110x 10***	16.6	110	10	13	6.5	21.2	3,06	7,78	4,33	3,88	0,429	25,79
L110x 110x 17	197	110	12	13	65	25.1	3,15	7.78	4.45	3.91	0.479	21.71

Date			Valeur	s statiques	/ Section pro	operties / St	tatische Kenn	werte		Class	fication	3	83	
Designatik Bezeichnu	n ng	a a) Ach	xe y-y / axe z ds y-y / axis z se y-y / Achse	-Z -Z -Z-Z	axe axis Achs	ย-ย ม-ม ย.บ-ม	axe axis Achs	v-v v-v ev-v		EN 1993 F	-1-1:2005 tura pression	5-2: 2004	5-4: 2004	25/2001
	G	ţ- l	$W_{dy}{=}W_{dz}$	lj− l;	ł	łį	4	k.	ķ	19	12	1002	10025	V 102
	kg/m	mm ¹ x10 ⁴	mm ² x10 ³	mm v10	mm ⁴	mm x10	mm ⁴	mm x10	mm ⁴	52	e s	B	B	ά
		0.15	017	914	114		aiv	ais	A.H.				-	
1.70x 70x 6	6,38	36,88	7,27	2,13	58,60	2,69	15,16	1,37	-21,72	2	3	V.		
170x70x7	7,38	42,30	8,41	2,52	67,19	2,67	17,41	1,36	-24,89	1	2	¥		
L70x70x8	8,37	47,27	9,46	2,10	75,01	2,65	19,52	1,35	-27,75	1	1	V		
L70x70x9	9,32	52,47	10,60	2,10	83,18	2,65	21,76	1,35	-30,71	(1)	1	ł,		
1.75x75x4	4.65	31.43	5.67	2.30	49.85	2.90	13.01	1.48	-18.42	4	e	7		
L 75x75x5	5.76	38.77	7.05	2.30	61.59	2.90	15.96	1.47	-72.82	3	3	1		
1.75x75x6	6.85	45.83	-8.41	2.29	72.84	2.89	18.82	1.47	-27.01	2	3	1		
1.75x75x7	7.93	52.61	9.74	2.28	83.60	2.88	21.52	1.46	-30.99	1	3	8		
L75x75x8	8.99	59.13	11.03	2.27	93.91	2.86	24.35	1.46	-34.78	1	1	1		
1.75x75x10	11,1	71,43	13,52	2,25	113,2	2,83	29,68	1,45	-41,75	1	1	1		
10040045	617	A7 1A	9.07	7.45	74.83	3.09	10.45	157	-77.69	1	Å	2		
LBOXBOXE	7.34	55.82	9.57	7.44	88.69	1.08	22.96	1.57	-32.87	1	1	1		
1.80×80×7	8.49	64.19	11.09	2.44	107.0	3.07	26.38	1.56	-37.81	1	-	1		
1.00 x 00 x 0	9.53	72.75	1750	2.43	114.9	105	29.77	155	-47.57		-	10		
L80x80x10	11,9	87,50	15,45	2,41	138,8	3,03	36,24	1,55	-51,27	1	1	v		
19079375	878	90.72	12.26	777	1787	7.49	31.65	1.77	-4757	7	Å	2		
L90x90x7	9.61	92.55	14.13	2.75	147.1	3.47	38.03	1.76	-54.57		1	1		
19019018	10.9	104.4	16.05	2.74	165.9	1.46	42.89	176	-61.50	1	3	V		
L 90 x 90 x 9	12,2	115,8	17,93	2,73	184,0	3,44	47,65	175	-68.19	1	2	1		
L90x90x10	13,4	126,9	19,77	2,72	201.5	3,43	52,33	175	-74.59	1	1	¥		
£90x90x11	14,7	137,6	21,57	2,71	218,3	3,42	56,94	174	-80,70	- 14	1	¥.		
1.100 x 100 x 6	9.76	111.1	15.09	3.07	1763	187	45.80	1.97	-65.25	1	4	7		
L100x100x7	10.7	128.2	1754	3.06	2037	3.86	52.72	1.96	-75.48	3	3	V.		
L100 x 100 x 8	12,2	144.8	19,94	3.06	230.2	3,85	59,49	1,96	-85:35	2	3	V.		
L100 x 100 x 10	15.0	176.7	24,62	3.04	280,7	3.83	72,66	1,95	-104.0	1	2	1		
L 100 x 100 x 12	17,8	206,7	29,12	3,02	377,9	3,80	85,44	1,94	-121,3	1	1	100		
1 110 x 110 x 8	13.4	195.3	74.37	3.30	310.5	4.76	80.11	2.16	-115.7	1	3	0		
L110x110x10	15.5	238.0	29.99	3.35	379.7	4.73	97.74	2.15	-140.7	1	1	2		
L110x 110x 12	19.7	279.1	35.54	3,33	443.2	4,20	115.0	2.14	-164.1	1	1	V		

Notations pages 205-209 / Bezelchnungen Salten 205-209

Désignation Designation Bezeichnung]		Dimer Abmes	nsions sungen				Position Position Lage de	des axes of axes Achsen		Sur Ober	face fläche
	G	h-b	t	Į,	Ð	A	Ley	V	<u>Ut</u>	ų,	Ą.	A:
	ka/m	mm.	mm	mm	mm	mm ²	mm	mm	m	mm	m²/m	m²/t
	- - - - - -		11597.1	2003		x10 ²	x10	x10	x10	x10	1.41.4782	0.000435
L 120x 120x 8*/*/	147	120	8	13	6.5	18.7	3.23	8,49	4,56	4.72	0.469	31,87
L120x 120x 10 th	18.2	120	10	1	65	23.2	3.31	8.49	4.69	4.74	0.469	25.76
L120x120x11**	19.9	120	11	13	6.5	25.4	3.36	8,49	4.75	4.25	0.469	23.54
120x 120x 12 ³	21.6	120	12	13	65	27.5	3,40	8.49	4,80	4.26	0.459	21,69
L 120x 120x 13"	23.3	120	13	13	6.5	29.7	3.44	8,49	4,86	4,28	0,469	20.12
120x 120x 15**	26,6.	120	15	13	6,5	33,9	3,51	8,49	4.97	4,31	0,469	17,60
L 120x 120x 16 ^{**}	28,3	120	16	13	6,5	36,0	3,55	8,49	5,02	4,32	0,469	16,58
L 130 x 130 x 10*	19,8	130	10	14	7,0	25,2	3,55	9,19	5,03	4,58	0,508	25,67
L 130x 130x 12*/	23,5	130	12	14	7,0	30,0	3,64	9,19	5,15	4,60	0,500	21,59
L130x 130x 13	25,4	130	13	14	7,0	32,3	3,68	9,19	5,20	4,62	0,508	20,02
L130x 130x 14",*	27,2	130	14	14	7,0	34,7	3,72	9,19	5,26	4,63	0,508	18,68
L 130x 130x 16	30,8	130	16	14	7,0	39,3	3,80	9,19	5,37	4,65	0,508	16,49
L 150x 150x 10 ^{4/8}	23,0	150	10	16	8,0	29,3	4,03	10,61	5,71	5,28	0,586	25,51
L150x 150x 12 ^{1/A}	77,2	150	17	16	8,0	34,8	4,12	10,61	5,83	5,29	0,596	21,44
L150x 150x 13 th	29,5	150	13	16	B,0	37,6	4,17	10,61	5,89	5,30	0,586	19,87
150x 150x 14 ⁽¹⁴⁾	31,6	150	14	16	8,0	40,3	4,21	10,61	5,95	5,32	0,586	19,53
L 150x 150x 15""	33,8	150	15	16	8,0	43,0	4,25	10,61	6,01	5,33	0,586	17,36
150x 150x 16 ¹⁹	39,9	150	16	16.	6,0	45,7	4,29	10,61	6,06	5,34	0,596	16,34
L 150x 150x 18-#	40,1	150	18	16	8,0	51,0	4,37	10,61	6,17	5,37	0,586	14,63
150x 150x 20 ¹⁴	44,2	150	20	16	8/0	96,3	4,44	10,61	6,28	5,41	0,586	13,77
160 x 160 x 14	33,9	160	14	17	8,5	43,2	4,45	11,31	6,79	5,66	0,625	18,46
L 160x 160x 15"	36,2	160	15	17	8,5	46,1	4,49	11,31	6,35	5,67	0,625	17,30
L160x 160x 161	38,4	160	16	.17	8,5	(19,0	4,53	11,31	6,41	5,69	0,625	16,28
L 160x 160x 17"*	40,7	160	17	17	8,5	51,8	4,57	11,31	6,46	5,70	0,625	15,37

Meinstings man	0/15 207 10	/ Bowichnumon Colton 205, 200	
NUMBER DAY	10 TN3-DUI)	/ depaid Funder Parter 5/10-5/24	

Dr			Valeurs	s statiques	Section pro	perties / St	atische Kenn	werte		G	assificati	on:	241	215	
Designatio Bezeichnur	n n Q	a ai Ach	xe y-y / axe z- kis y-y / axis z se y-y / Achse	-Z -2 -2-Z	axe axis Achs	u-u u-u e u-u	axe axis Achs	V-V V-V 2V-V		EN 19	93-1-1 Pure compressio	2005	5-2: 2004	5-4: 2004	252001
	G	<u>}</u> −1,	Wey War	5-6	l,	1	Ļ	ł	4	35	\$	60	11002	1002	SN 102
	kg/m	mm* x10 ⁴	mm ²	mm x10	mm* x104	mm x10	mm [.] x10 ²	mm x10	mm*	S	ß	S4	6	6	3
			1 - 305 - 1	1,075			1.1.1025		1-005	-					
L120x 120x 8	14,7	255,4	29,11	3,69	406,0	4,65	104,8	2,37	-150,6	3	4	4	4	Ý	4
L120x 120x 10	18,2	212,9	36,03	3,57	497,6	4,63	128,3	2,75	-184,6	2	È	1	1	V	¥
L120x120x11	19,9	340,6	39,41	3,66	541,5	4,62	139,8	2,35	-200,9	1	3	ä	1	V	V
L 120x 120x 12	21,6	367,7	42,73	2,65	584,3	4,61	151,1	2,34	-216,6	1	2	3	Ý	Ý	¥.
L120x120x13	23,3	394,0	45,01	3,64	625,8	4,59	167,2	2,34	-231,8	1	1	3	1	Ý	1
L120x120x15	26,6	444,9	52,43	3,62	705,6	4,58	184,2	2,33	-260,7	1	1	1	1	V.	V.
L 120X 120X 16	28,3	469,4	55,57	3,61	743,8	4,54	195,0	2,33	-274,4	1	3	Ŧ.	×	K	X
L 130x 130x 10	19,8	401,1	42,47	3,99	637,8	5,03	164,5	2,55	-236,7	3	3		¥		
L 130x 130x 12	23,5	472,2	50,44	3,97	750,6	5,00	193,7	2,54	278,4	1	3		V.		
L130x130x13	25,4	506,5	54,35	3,96	804,9	4,99	208,1	2,54	-298,4	1	2		1		
L 130x 130x 14	27,2	540,1	58,70	3,95	857,8	4,98	222,3	2,53	-217,8	1	1		1		
L 130 x 130 x 16	30,8	605,0	65,75	3,93	959,7	4,94	250,3	2,53	-354,7	1	1		¥.		
L 150x 150x 10	23,0	624,0	56,91	4,62	992,0	5,82	256,1	2,96	-368,0	1	4	4	8	¥.	Ŷ
L150x150x12	27,3	736,9	67,75	4,60	1172	5,80	307,1	2,94	-434,9	1	3	3	1	1	4
L150x150x13	29,5	791,7	73,07	4,59	1259	5,79	324,6	2,94	-467,1	2	3	3	V	K	X
L150x150x14	31,6	845,4	78,33	4,58	1344	5,77	346,9	2,93	-498,5	1	з	3	×.	ł,	¥.
L150x150x15	33,8	898,1	83,52	4,57	1427	5,76	369,0	2,93	-529,1	1	2	1	1	Ý	¥
L150x150x16	35,9	949,7	88,65	4,5G	1509	5,74	390,8	7,92	-558,9	1	2	3	1	V	1
L150x150x18	40,1	1050	98,74	4,54	1666	5,71	433,8	7,92	-616,1	1	1	2	1	Ý	V
L 150 X 150 X 20	44,2	1146	108,6	4,51	1817	5,68	475,7	7,91	-670,2	1	1	1	¥	Y	¥
L 160 x 160 x 14	33,9	1034	89,50	4,89	1644	б,17	423,9	3,13	-609,9	2	3		¥.,		
L160x160x15	36,2	1099	95,47	4,88	1747	6,16	450,9	3,13	-647,9	1	3		1		
L160x160x16	38,4	1163	101,4	4,97	1848	6,14	477,7	3,12	-685,0	1	ż		1		
L160x160x17	40,7	1225	107,2	4,86	1947	6,13	504,2	3,12	-721,2	1	2		V		

Mousse de Polyuréthane sans HCHC

TABLEAU D'UTILISATION

			1	2.10	PUS						3.40	IUIS .	l			4
	-					The second		PORTÉE		T:						
	111		1000	10.730	11.1	1		(110)	573	1			1000	1	1000	
PRESSION -	=3		0	c = c		330	270	Sec			0.000	(=)				PRESSION
DEPOESSION			1.5	(-1)		340	240	4.64								DEPRESSION.
PRESSON					300	260	210									PRESSION
DEPRESSION	1.1.1				770	1720	730	1.0	1.11			1.1			1	DEPRESSION
RIESSION			290	250	750	200	130	19.00	240	375		8 8			5	PRESSION
DEPUESSION.			330	190	190	190	190	1.30	190	190						DEPRESSION
PRESSION			250	260	715	170	140	(and the second	195	725	260					PRESSION
DEPRESSON	1.23	1.11	-705	170	1/0	170	1.70	4,13	170	170	170	2.29	0.0953	_	1	DEPRESSION
PIESSON	720	230	730	220	105	140	2.15	1000	165	190	375	250	250			PIESSION
OFFRESSION.	190	190	1990	155	155	155	135	3,60	195	155	155	355	150	2011	Sec	DEPRESSION.
RESOL	195	125	1995	125	155	129	100	10.000	140	165	190	220	770	729	220	PRESSION
DEPRESSION	115	175.	125	140	140	140	140	1,13	140	140	140	340	105	175	-125	DEPRESSION
MESSION	172	170	170	170	130	100	75.	1000	120	140	165	300	200	200	200	PRESSION
DEPRESSION	160	160	-760	130	130	130	130	2,20	130	130	130	120	160	160	160	DEPRESSION
PRESSION	150	150.	750	150	110	- 55	70		105	125	145	390	100	180	180	PRESSION
DEPRESSON	150	150	150	115	105	115	1.75	3,75	115	115	135	325	150	150	150	DEPERSION.
PRESSON .	130	130	130	130	15	- 20	60	12.5	:00	110	125	360	160	160	100	PRESSION
DEPESSION	140	140	340	105	105	105	105	4,99	105	105	105	325	140	140	340	DEPRESSION
RESSON	110	110	130	110	-00-	55	-		75	- 15	110	250	150	155	150	PRESSION
DEPRESSION	130	130	130	29	- 15	- 55-		4,23	.95	- 15	.95	25	130	130	130	DEPRESSION
PRESSION	195-	25	25	-90	45				65	15	100	130	130	130	130	PRESSION
DEPRESSION	120	120	120	- 90	30		1	4,20	- 90	10	20	90	120	120	130	DEPIESSION
PRESSION	100	60	60	180	55				60	75.1	- 90	130	170	120	130	PRESSION
DEPRESSION	115	115	145	65	- 80	1.1		2165	80	80	180	- 80	115	115	115	DEPRESSION
RESSON	70	. 70	.70	70	1.1.1.1	1200		(managed)	53	65	50	105	105	105	168	PRESSION
DEPRESSION	110	330	130	75				5,00	- 75	- 25	25.	5	110	110	110	DEPERSION
PIESSION :	60	60	-60	60				Sec.		- 55	70	18	14	12	2	PIESSION
DEPRESSION	105	105	365	-65				5,25	- 1	65	65	65	105	105	105	DEPRESSION
PRESSION	-	-	1000					CONTRACTOR OF		30	65	98	18	B	85	PRESSION
DEPRESSION			1.5					2,30	_	66	60	60	100	100	100	DEPRESSION
PRESSION	-1		1		_	1		1.10			.55	75	75	- 75 -	75	PRESSION
DEFRESSION			1	5			2.1	3,13			50	- 50	50	10	20	DEPRESSION

(fes patimeaus sont fixés à chaque sommet de netvune et sur tous les appuis)

FILM DE FROTECTION

Un film polyiolity/one adhead do protection est applique on usine sur les paraments polizqués outériour et intériour de paraments. Calui-d doves iten enlevé au fur et à mesure de la pose et au plus faire à mois après la més à deposition de la manchendise en usine.

PERCAGES ET DECOUPES

Dans la mesare de popultie, éviter toute découpe sur site.

Afin de limiter les rèques de décelitarisation mousse-mital lors d'une optiation de découpe, il est consellé de poser le parmaie sur des appuis de telle sorte que les paraments estérieur et intérieur solent maintenus de part et d'autre de la découpe (matériel consellé sole sadouse).

Los d'une opération de découpe, protégier la zone environnante afin d'éléter de déféritont le revélument des partneaux. Agrès toute opération de découpe ou perçage, il conviendra de traisportiminétationnent les partneaux afin d'élétiene toutes lenailles ou copeaux.

CALEFINAGE.

Avail to de commande, welliker apporter une attention particulière au calephrage qui seu grant d'une mise en nueve connecte al sapite. Un bon de commande se trouve à la fin de cette documentation alln de vous applier dans cette d'amarche.

7			iuw	<i>i</i> ch/	ies On	de dat	DO nem	1104	1ge 40 B
rdage vertical pour lo cations apparentes	caux de faible à forte bygromètrie	ŧ			ſ	T	Í		
Numer d'arier	List State Million Scop (D) Million Toxic Colvarial Nillion Toxic Fraction Fraction Scop (D) Million Toxic Galvarial Fraction Scop (D) Million Toxic	Embolie	mant	1					
nde de chant ressue polyéthyléne	Largeur utile : 1000	0 H ²³	De	ibased [
18 30	- A8 / / /			- 1. C		6 I. P. W.	N		
J	largeur bass tout : 1000 mm			Epster	911 500T			erst talk	
	largeurhoos tout : 1080 mm			Epoleon	SE SE		Tépalso nomin official	nuno 1400	120
CARMET	Legeurhees tost : 1000 mm		1 20	Epoleon 49	w1 501		Epain pomir citoruu aci	mut nik nimo	120
CARMOT	largeurhoss tout : 1000 mm stratticules DVI PANHEAU Epsisseur parament extérieur (mm) Epsisseur parament intérieur (mm)		38	Epolour 40	413 Foot 50		6 (Secure and 3 - 0,75	mut nak	120
C.I.M.C.I.	largeurises tout : 1000 mm enstructies tou examinant Epsisseur parement extérieur (mm) Epsisseur parement intérieur (mm) Largeur utile		38	Epsiloar 49	uri foor Se		6 (Secure 10 (Secure 13 - 0,75 13 11	nun 196	170
	Largeur hoos tout : 1000 mm austricidues DO Frankleall Epsitseur parament extérieur (mm) Epsitseur parament intérieur (mm) Largeur utile Largeur utile		38	Fpalcar 49	art bott 56 4		7 Fipalito Dennis 12 Final 13 - 0,75 13 11 11 11	nim) 198	120
	Legeurhees tost : 1000 mm Enstances tost : 1000 mm Epsilseur parement exbilitiour (mm) Epsilseur parement intérieur (mm) Largeur utile Largeur bon tout Longueur maximale hors tout		34	Epshow 49	91 bon 30	e: 0,50 - 0,6 0,50 - 0,6 1000 mr 16000 m	Type nonir nonir 10 13 1 1 1	mak niko 1995	170
CANACT	largeuritees tout : 1000 mm Enstancies DV Paramenti Epaisseur parement extérieur (mm) Epaisseur parement intérieur (mm) Largeur utile Largeur tion tout Longueur maximale hors tout Débort en extrémité		30	Epuloue 440	91 50m		Fipalio Toma Toma a	mini 196	120
	Largeur hoos tout : 1000 mm Epailsseur parament extérieur (mm) Epailsseur parament extérieur (mm) Epailsseur parament intérieur (mm) Largeur utile Largeur toin tout Longueur maximale hors tout Débord en extrémité Ex en épailsseurs 0,63 et 0,63 mm bedeneart destreurs 0,63 et 0,63 mm		30	Fp:10	50-100 13,3		Tepairo normin 13-0,75 3 10 10 145	mak (1100) 1000	120
CAMOR CHMENSIONNELLES PONDERALES (kg/m²) Acoustiones	Legeurbeoi tout : 1000 mm Epaisseur parament extérieur (mm) Epaisseur parament intérieur (mm) Largeur utile Largeur bon tout Longueur maximale hors tout Débord en extrémité Ex. en épaitseurs 0,63 et 0,63 mm Isolement : indice d'affaiblitsement (6)		300 12,5 Rose	Epotess 407 12,9 25 daja	41 foot 30 4 50 - 100 13,3 Result : 2	1000 m 1000 m 1000 m 1000 m 1-200 - 1 13,7 2d8A - 8	Teprino pomir 3-0,75 3 7 7 7 7 7 7 7 7 7 7 7 7 7	15,3 21(-5,3)	120
CAMACE DIMENSIONNELLES PONDERALES (kg/m ²) ACOUSTIQUES REACTION AU FEB	Legeurhees tost : 1000 mm Epaisseur parement extérieur (mm) Epaisseur parement intérieur (mm) Largeur utile Largeur duite Largeur don tout Longueur maximale hors tout Débord en extrémité Ex. en épaitseurs 0,63 et 0,63 mm Isolement : Indice d'affaibilisement (61 Euroclasses selon NF EN 13501-1		12,5 Rose:	Epolese 441 12,9 12,3 dB(4) D-63, dD	50 - 100 13,3 Result: 13 chants x2 dis-	1000 m 1000 m 1000 m 1080 m 10	Tepairo pornir 1000 mm 14,5 14,5 1000 mm	15,3 100 15,3	120 15,1 1
CAMON DIMENSIONNELLES PONDERALES (kg/m²) ACOUSTIDUES REACTION AU FED	Ingeurieses tout : 1000 mm Epsitseur parement extériour (mm) Epsitseur parement extériour (mm) Epsitseur parement intérieur (mm) Largeur utile Largeur bon tout Longueur maximale hors tout Débord en extrémité Ex. en épsitseurs 0,63 et 0,63 mm Isolement : Indice d'affaiblissement (6 Euroclasses selon NF EN 13501-1	0mmi 43 11 9ptiors	33 12,5 Bose Penil 0,85	Ep: 12.9 12.9 25-8(4) D-13, 00 D-11H1 8 0.45	50-100 13,3 Route :2 chants <3,60 to 0,54	0.50 - 0.6 0.50 - 0.6 1000 mi 1080 mi	Tepairo ponsir 3 - 0,75 3 m m m 200 mm 14,5 x (Cos): 3 (a)Cepairo 1 (a)Cepairo 3 (a	International In	120 15,1 15,1 10,73
CANACI CHMENSIGNINELLES PONDERALES (kg/m²) ACOUSTIQUES REACTION AU FEB	Largeur hors tout : 1000 mm Epsilsseur parament extérieur (mm) Epsilsseur parament extérieur (mm) Epsilsseur parament intérieur (mm) Largeur utile Largeur dons tout Longueur maximale hors tout Débord en extrémité Ex en épsilsseurs 0,63 et 0,63 mm Isolement : Indice d'affaibilissement (6 Euroclasses selon NF EN 13501-1 Transmission therméque Uc (W/m-8)	Ommu 13 11 Yndioi13 Indioi13	12,5 Rose: Penii 0,85 0.75	F(12) 447 12,9 12,9 12,9 12,9 12,4 14 14 14 14 14 14 14 14 14 14 14 14 14	50-100 133 133 134 134 134 134 134 134 104 134 1047	0,50 - 0,6 0,50 - 0,6 1000 mi 1080 mi	Tepairo Tepairo Territo Ter	15,3 15,3 12,3 14,3 15,3 15,3 10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2	120 15,1 15,1 1 1,23 1,20
CANACI DIMENSIONNELLES PONDERALES (kg/m²) ACOUSTIQUES REACTION AU FEU	Legeurhees tout : 1000 mm Epsitseur parement extérieur (mm) Epsitseur parement extérieur (mm) Epsitseur parement intérieur (mm) Largeur utile Largeur ton tout Longueur maximale hors tout Débort en extrémité Ex. en épsitseurs 0,63 et 0,63 mm Isolement :indice d'affaiblissement (6 Euroclasses selon NF EN 13501-1 Transmission theimèque Uc (W/m/3) Dépendition linéleure @ (W/m/3)	Ommu 13 10 10 10 10 10 10 10 10 10 10 10 10 10	125 125 Rose: Penti 0,85 0,75 0,010	Epsilos 443 12,9 23-844 0-63, d0 0-11114 B 0,66 0,58 0,008	50 - 100 13,3 Route : 2 chants s3, 60 n 0,54 0,005	0,50 - 0,6 0,50 - 0,6 1000 mi 1080 mi	Epsilon Epsilon 100000 100000 33-0,75 3 10 100000 14,5 4000000 14,5 400000 0,34 0,380 0,0005 0,0005	15,3 7,15,3,4 7,15,4,15,4 7,15,15,15,15,15,15,15,15,15,15,15,15,15,	1200 15,1 5 10,23 0,200 0,0004
CARACT DIMENSIONNELLES PONDERALES (kg/m ²) ACOUSTIQUES REACTION AU FEB TREINMERCES	Legeurhees tost : 1000 mm Epaisseur parement extériour (mm) Epaisseur parement extériour (mm) Largeur utile Largeur hon tout Longueur maximale hors tout Débord en extrémité Ex en épaitseurs 0,63 et 0,63 mm Bolement : Indice d'affaibilisement (64 Euroclasses solon NF EN 13501-1 Transmission theiméque Uc (W/m-8) Dépendition linékgue § (W/m-8) Longfeendemenseur tresteur roye Up Uc est le Up = Uc + U(+) + mex A est sol	Ommu 13 11 10dol13 indical indication coefficient to coefficient do longueur do coefficient do longueur do coefficient do	12,5 Bose 0,85 0,75 0,010 wereigner diperditions altere diperditions	12,9 12,9 12,9 13, dB 0,66 0,58 0,08 0,08 0,08 0,08 0,08 0,08 0,08	50 - 100 13,3 7,50 - 100 13,3 Resulte : 3 0,54 0,47 0,005 minute per service de services services services services	Convert C	Fpains ponsi ponsi 3 - 0,75 3 7 3 7	15,3 15,3 25,5,3,4 25,5,5,3,4 25,5,3,4 25,5,3,4 25,5,3,4 25,5,3,4 25,5,3,4 25,5,3,4 25,5,3,4 25,5,3,4 25,5,3,4 25,5,3,4 25,5,5,3,4 25,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	120 15,1 8 0,23 0,20 0,004
CAMACT CAMACT DIMENSIONNELLES PONDERALES (kg/m²) ACOUSTIQUES REACTION AD FED THERMADUES	Impourboos tout : 1000 mm Epsisseur parament extériour (mm) Epsisseur parament extériour (mm) Epsisseur parament extériour (mm) Largeur utile Largeur tons tout Longueur maximale hors tout Débord en extrémité Ex en épsitseurs 0,63 et 0,63 mm isolement : indice d'affaiblissement (si Euroclasses solon NF EN 13501-1 Transmission thermèque Uc (W/m:R) Dépendition linékque q (W/m:R) Ur efficient drivensieur thereisper royer Up: Quartition linékque q (W/m:R) Ur efficient drivensieur thereisper royer Up: Quartition linékque q (W/m:R) Ur efficient drivensieur thereisper royer Up: Quart le up et to A et to 40 kg/m² (± 5 kg/m²)	Ommu 13 11 100013 indicat.1 indicat.1 kot inte calcula ionguese de ionguese de ionguese de ionguese de ionguese de la	12,5 Rose: Peter 0,85 0,75 0,010 millio te s origonalità espectation catore dipendità espectation	12,9 25 dB(k) 0,66 0,58 0,08 0,08 0,08 0,08 0,08 0,08 0,08	50 - 100 13,3 Result : 2 chants <3, 60 n 0,54 0,54 0,005 minute de accessos actessos actessos	0,50 - 0,6 1000 m 1000 m 10	Fipation The second s	Intro 1998 1998 1998 1998 1998 1998 1998 199	120 15,1 15,1 1,20 0,23 0,20 0,004 etc. mou
CANACI CANACI DIMENSIONNELLES PONDERALES (kg/m²) ACOUSTIONES REACTION AU FEU THERMADUES REACTION AU FEU	Impourbooktoot : 1000 mm Epailsseur parement extérieur (mm) Epailsseur parement extérieur (mm) Epailsseur parement extérieur (mm) Largeur toin tout Longueur maximale hors tout Débord en extrémité Ex en épaitsseurs 0,63 et 0,63 mm Bolement : indice d'affaiblitsement (6 Euroclasses solon NF EN 13501-1 Transmission thermique Uc (W/m-8) Dépendition linékque @ (W/m.8) Dépendition linékque @ (W/m.8) Linefficient drimmission thermique royer lips Vip = Uic + #Linit = ne to A 40 kg/m² (± 5 kg/m²) Mousse de Polyuréthané	Demmu 13 13 101 101 101 101 101 101 101 101 1	12.5 Rose: Peter 0,85 0,75 0,010 alte locs atomication atomication atomication atomication atomication	12.9 23 dbj4) D-03, dD D-144 B- 0,66 0,58 0,008 aprite of an itraiga ant entrop m port tar	50 - 100 13,3 Roode : 2 chants 	control of the second sec	Epsilon 1 </td <td>Intro 1965 1965 1965 1965 1965 1965 1965 1965</td> <td>12.00 15,1 15,1 0,23 0,20 0,004 misures</td>	Intro 1965 1965 1965 1965 1965 1965 1965 1965	12.00 15,1 15,1 0,23 0,20 0,004 misures

Ar	/0				Ρ	an	ne	au	x s	an	ıdv	vic	he (es (Ond	de Iatl	bardo herm 10
TABLEAU D'U' Charges maxir	TILISA naksa	TION (dmiss)	bles er	n daN/	m² en t	fonctio	n des	portées c	futilis	ation (p	pour éj	pakset	ırs de j	Saferre	ants Q	50-0,50mm)
			2.AP	PUIS								3 89	UIS			
		Condition	A	A	ilan da	Flores				Centle				Firms		
	11.100	chero:					19100	PORTEE:		cpans and				1.00	10.13.03	
	1.20	1000	89	60	20	100	20	and a	20	-90	20	80	80	100	120	DECCION
PRESSUR				102	141	119	00	3,00	149	122	1.49					Inconcourse
DECOM				140	172	102	-0.4		120	150	140					PERSON
DEPDESSION			151	120	124	100	84	3,20	07	110	133	1.40				DEPERSION
PRESSION			145	177	109	00	71		115	132	153	160				PRESSION
DEPDESSION	158	158	133	174	109		74	3,40	86	107	120	122	127			DEPOESSION
PRESSION	148	148	131	114	97	70	60		102	117	137	157	160			PRESSION
DEPRESSION	135	135	120	111	96	81	66	3,60	78	97	108	110	121	123	123	DEPRESSION
PRESSION	134	134	119	103	87	70	52		91	104	173	142	160	160	160	PRESSION
DEPRESSION	131	131	109	99	85	71	59	3,60	72	88	98	108	115	172	172	DEPRESSION
PRESSION	120	120	107	93	78	63	45		81	93	111	170	160	160	160	PRESSION
DEPRESSION	117	117	97	90	76	63	54	4,00	66	79	89	00	110	120	120	DEPRESSION
PRESSION	108	108	97	85	71	56			73	83	100	118	157	160	160	PRESSION
DEPRESSION	105	105	88	81	69	56		4,20	61	72	81	00	105	119	119	DEPRESSION
PRESSION	98	98	88	78	64	51			67	75	91	108	144	160	160	PRESSION
DEPRESSION	- 94	94	79	74	62	50		4,40	55	65	74	83	100	117	117	DEPRESSION
PRESSION	89	89	80	71	59	46			61	68	84	99	126	153	153	PRESSION
DEPRESSION	85	85	72	68	56	45		4,60	48	60	68	77	96	115	115	DEPRESSION
PRESSION	81	81	-74	66	- 54				-56	62	77	92	111	131	131	PRESSION
DEPRESSION	78	78	66	62	51			4,60	42	-55	63	71	85	100	100	DEPRESSION
PRESSION	74	74	68	61	50				51	57	71	85	99	112	112	PRESSION
DEPRESSION	71	71	60	57	47			3,00	37	50	58	65	76	86	86	DEPRESSION
PRESSION	69	69	62	- 56	46			5,745	47	52	66	80	88	97	97	PRESSION
DEPRESSION	65	65	55	53	43			3,20	32	46	53	60	68	75	75	DEPRESSION
PRESSION	63	63	58	-52				5.40		48	61	75	81	88	88	PRESSION
DEPRESSION	60	60	51	49				24.000		43	49	56	62	68	68	DEPRESSION
PRESSION	59	59	- 54	49				5.60			57	70	76	82	82	PRESSION
DEPRESSION	55	55	47	46							46	52	57	63	63	DEPRESSION
PRESSION	- 54	- 54	50	46				5,60			53	66	71	77	77	PRESSION
DEPRESSION	-51	51	44	43							43	49	53	58	-58	DEPRESSION
PRESSION	51	51	47					6.00			.50	62	67	72	72	PRESSION
								and the second se								

(les parmeaux sont fixés à chaque sommet de nervure et sur tous les appuis).

FILM DE PROTECTION

Un film polyéthylène adhésif de protection est appliqué en usine sur les parements prélaqués estérieur et intérieur des panneaux. Celui-ci devra être enlevé au fur et à mesure de la pose et au plus tard 3 mois après la mise à disposition en usine de la marchandise.

PERÇAGES ET DECOUPES

Dans la mesure du possible, éviter toute découpe sur site.

Afn de limiter les risques de désolidarisation mousse-métal lors d'une opération de découpe, il est conseillé de poser le panneau sur des appuis de telle sorte que les parements extérieur et intérieur soient maintenus de part et d'autre de la découpe (matériel conseillé : soie sauteuse). Lors d'une opération de découpe, protéger la zone environnante afin d'éviter de détériorer le revêtement des panneaux. Après toute opération de découpe ou parçage, il conviendre de baleger immédiatement les panneaux afin d'éliminer toutes limitées ou copeaux.

CALEPINAGE

Avantitouie commande, veuillez apporter une attention particulière au calepinage qui sera garant d'une mise en œuvre correcte et rapide. Un bon de commande se trouve à la fin de celte documentation afin de vous assister dans cette démarche.

-

5/20

0.05/0.2

2040

15

"einrillig" 1/1, 2/1, 4/1 "single-grooved" 1/1, 2/1, 4/1 "à simple enroulement" 1/1, 2/1, 4/1 Seilzüge SH SH Wire Rope Hoists Palans à câble SH

	ISO																			
山		G_							-J-U-											
		ー HW ふし	(50 Hz (60 Hz)									Spurweite/Track gauge/Empattement [mm] *			-					
[Kg]		Q.	ESR/ Typ					*1	0				1250	1400	1800	2240	2800	3150	4000	-
		_	▼ m/min	ASR	Туре		F/V/		kg	► ? ◄	kg	kg ►?◄				kg				▶?◀
1250	M5	24	3,3/20	-	SH 4012-20	L2	0,7/4,5	H42	185	1/54	370	1/60	-	- 1	-	-	-	-	-	-
	M5	12	0,2512,5	18,8	SHF 3006-25	L2	2,9	4HS3	137	1/53	257	1/61	287	292	-	317	-	-	-	1/70
	M5	20	(0,315) 0,420	30	2/1 SHF 3006-40	L3 L2	(3,5)	4HS3	147	1/53	272	1/61	- 287	302 292	-	327	-	-	-	1/70
	M5	20	(0,4824)	30	2/1 SHE 4012-20	L3	(5,4)	4HS3	147 173	1/54	272	1/60	-	302	-	327	-	-	-	_
	1110	40	(0,4824)	00	1/1 *2	L3	(5,4)	1100	188	1/01	383	1,00	-	-	-	-	-	-	-	
1600	M5	12 20	1,6/10 (2/12)	-	SH 3008-20 2/1	L2 L3	0,4/2,9 (0,5/3,5)	H33	145 155	1/53	265 280	1/61	295	300 310	-	325 335	-	-	-	1/70
	M5	12 20	2,6/16 (3,1/19)	-	SH 3008-32 2/1	L2 L3	0,7/4,5 (0,9/5,4)	H42	149 159	1/53	269 284	1/61	299	304 314	-	329 339	-	-	-	1/70
	M6	12 20	2/12,5 (2,5/15)	-	SH 4008-25 2/1	L2 L3	0,5/3,6 (0,7/4,3)	H42	190 205	1/54	305 332	1/62	340 -	345 365	- 380	375 395	-	-	-	1/71
	M6	12 20	3,3/20 (4/24)	-	SH 4008-40 2/1	L2 L3	1,0/6,0 (1,2/7,2)	H62	214 229	1/54	329 356	1/62	364 -	369 389	- 404	399 419	-	-	-	1/71
	M4	24	2,6/16	-	SH 4016-16 1/1 *2	L2	0,7/4,5	H42	185	1/54	370	1/60	-	-	-	-	-	-	-	-
	M6	24	3,3/20	-	SH 5016-20	L2	1,0/6,0	H71	465	1/55	565	1/60	-	-	-	-	-	-	-	-
		40 80	(4/24)		1/1 *2	L3 L4	(1,2/7,2)		470 530		605 723		-	-	-	-	-	-	-	
	M5	12 20	0,210 (0,2412)	15	SHF 3008-20 2/1	L2 L3	2,9 (3,5)	4HS3	137 147	1/53	257 272	1/61	287 -	292 302	-	317 327		-	-	1/70
	M5	12 20	0,3216	24	SHF 3008-32 2/1	L2	4,5	4HS3	137 147	1/53	257 272	1/61	287	292 302	-	317 327	-	-	-	1/70
	M6	12 20	0,2512,5	18,8	SHF 4008-25 2/1	L2	3,6 (4,3)	4HS3	178 193	1/54	293 320	1/62	328	333 353	- 368	363 383	-	-	-	1/71
	M4	24	0,3216	24	SHF 4016-16 1/1 *2	L2	4,5	4HS3	173	1/54	358	1/60	-	-	-	-	-	-	-	-
	M6	24	0,420	30	SHF 5016-20	L2	6,0	4HS5	443	1/55	543	1/60	-	-	-	-	-	-	-	-
		40 80	(0,4824)		1/1 *2	L3 L4	(7,2)		448 508		583 701		-	-	-	-	-	-	-	
2000	M6	6 10	1/6,3 (1,2/7,5)	-	SH 3005-25 4/1	L2 L3	0,35/2,4 (0,4/2,9)	H33	160 170	1/53	280 295	1/61	310 -	315 325	-	340 350	-	-	-	1/70
	M6	6 10	1,6/10 (2/12)	-	SH 3005-40 4/1	L2 L3	0,5/3,6 (0,7/4,3)	H42	164 174	1/53	284 299	1/61	314 -	319 329	-	344 354	-	-	-	1/70
	M5	12 20	2/12,5	-	SH 4010-25 2/1	L2 L3	0,7/4,5 (0.9/5.4)	H42	190 205	1/54	305 332	1/62	340	345 365	- 380	375 395	-	-	-	1/71
	M5	12 20	3,3/20 (4/24)	-	SH 4010-40 2/1	L2	1,2/7,5	H62	214 229	1/54	329 356	1/62	364	369 389	- 404	399 419	-	-	-	1/71
	M5	24	3,3/20	-	SH 5020-20	L2	1,2/7,5	H71	465	1/55	565	1/60	-	-	-	-	-	-	-	-
		40 80	(4/24)		1/1 ~2	L3 L4	(1,4/9,0)		530		723		-	-	-	-	-	-	-	
	M6	6 10	0,136,3 (0,157,5)	9,5	SHF 3005-25 4/1	L2 L3	2,4 (2,9)	4HS3	152 162	1/53	272 287	1/61	302	307 317	-	332 342	-	-	-	1/70
	M6	6 10	0,210 (0,2412)	15	SHF 3005-40 4/1	L2 L3	3,6 (4,3)	4HS3	152 162	1/53	272 287	1/61	302	307 317	-	332 342	-	-	-	1/70
	M5	12 20	0,2512,5 (0,315)	18,8	SHF 4010-25 2/1	L2 L3	4,5 (5,4)	4HS3	178 193	1/54	293 320	1/62	328 -	333 353	- 368	363 383	-	-	-	1/71
	M5	24 40	0,420	30	SHF 5020-20 1/1 *2	L2 L3	7,5 (9,0)	4HS5	443 448	1/55	543 583	1/60	-	-	-	-	-	-	-	-
0505	N AF	80	1/0.0			L4	0.4/0.0	1100	508	1/50	701	1/04	-	-	-	-	-	-	-	1/70
2500	1/15	10	1/6,3 (1,2/7,5)	-	SH 3006-25 4/1	L2 L3	0,4/2,9 (0,5/3,5)	H33	160	1/53	280 295	1/67	310	315	-	340 350	-	-	-	1/70
	M5	6 10	1,6/10 (2/12)	-	SH 3006-40 4/1	L2 L3	0,7/4,5 (0,9/5,4)	H42	164 174	1/53	284 299	1/61	314	319 329	-	344 354	-	-	-	1/70
	M5	12 20	1,6/10 (2/12)	-	SH 4012-20 2/1	L2 L3	0,7/4,5 (0,9/5,4)	H42	190 205	1/54	305 332	1/62	340	345 365	- 380	375 395	-	-	-	1/71

Crane Rails

Standard European Profiles

The DIN "A" type rails (standard European profile) are rolled based on the DIN 536/1991 Specification.

A-Rail (A45-A150)*

The "A" rails, with their wide base, low center of gravity and wide web, are ideal for high side thrusts.

They are available in several sizes from A45 to A150, where the numbers represent the width of the head in mm. In the past these rails were offered in two types of steel: 700 and 900.

Recently, due to a progressive increase of the vertical loads of cranes on some special projects, the requirements for a rail with a greater hardening surface was required. These rails are rolled in 1100 steel whose chemical composition and mechanical properties are not governed

Chemical Composition (%)

Tppeof t≤		Eel ents			
	С	Mn	Si (max)	P (max)	S (max)
700 or 70 grade	0.40 - 0.60	0.80 - 1.20	0.35	0.045	0.045
900 or 90 grade	0.60 - 0.80	0.80 - 1.30	0.50	0.045	0.045

Mechanical Properties

Tneisel tSergnth (N/mm²)	A pp xomite Birenll aHdrenss
m ni690	m ni204
m ni880	m ni261
m ni 1080	m ni319
	T neisel tSerghth (N/mm*) m ni690 m ni880 m ni1080

Technical Data

by the DIN 536/1991 Specification.

Profile	Area of Inertia	Moment Head	Sec. Modulus Base	Sec. Modulus
	('c m)* (c m ,)	(cnà
A45	28.2	90.0	41.5	27.0
A55	40.5	178.0	68.6	45.6
A65	54.9	319.0	105.4	71.3
A75	71.6	531.0	153.6	105.3
A100	94.7	856.0	203.4	161.8
A120	127.4	1361.0	289.1	235.0
A150	191.4	4373.0	601.5	565.7

P ofi el	We	We gi th		aBesP)(He gi thH≬		eHdaB)(W beS)(
	lbs/yd	kg/m	inches	mm	inches	mm	inches	mm	inches	mm	
A45	44.55	22.1	4.92	125	2.17	55	1.77	45	0.94	24	
A55	64.11	31.8	5.91	150	2.56	65	2.17	55	1.22	31	
A65	86.89	43.1	6.89	175	2.95	75	2.56	65	1.50	38	
A75	113.29	56.2	7.87	200	3.35	85	2.95	75	1.77	45	
A100	149.78	74.3	7.87	200	3.74	95	3.94	100	2.36	60	
A120	201.59	100.0	8.66	220	4.13	105	4.72	120	2.83	72	
A150	302.99	150.3	8.66	220	5.91	150	5.91	150	3.15	80	

* Consult Gantrex for clips and pad selection.

TOLL FREE: 800 2 GANTREX

0 2 GANTREX (800) 242-6873

© GANTREX, 2008 PRINTED in U.S.A. Rev. 10/11

Web site: www.gantrex.com · Email: sales@gantrex.com

PLAN DE FACADE

