RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Université Abderrahmane Mira Bejaïa Faculté de la Technologie Département de Génie des Procédés

MÉMOIRE

Présenté par

M^{me} HERROUDJ née HAMOUR Noura

En vue de l'obtention du diplôme de

MAGISTER

En Génie des Procédés Option : Génie des Polymères

ÉTUDE DE L'INTRODUCTION DES FIBRES D'ALFA DE TAILLES DIFFERENTES DANS UNE MATRICE POLYCHLORURE DE VINYLE EN VUE D'AMELIORER SES PROPRIETES PHYSICO- MECANIQUE

Soutenu le12/07/2010

Devant la Commission d'Examen

Président : H. DJIDJELLI, Professeur à l'Université A. Mira de Bejaïa.

Examinateurs : F.REZGUI, Maître de conférences à l'Université A. Mira de Bejaïa.

R. DOUFNOUNE, Maître de conférences à l'Université Ferhat ABBAS de Sétif.

Rapporteur : A. BOUKERROU, Maître de conférences à l'Université A. Mira de Bejaïa.

REMERCIEMENTS

Ce travail a été réalisé au sein du laboratoire des Matériaux Organiques « LMO » de l'Université A. MIRA de Bejaïa. Je tiens à en remercier son Directeur, le Professeur **T. SADOUN**, pour m'avoir accueilli dans son laboratoire.

Je tiens tout d'abord à exprimer ma gratitude et mes profonds remerciements à mon directeur de mémoire Monsieur **A. BOUKERROU**. Sa disponibilité et ses encouragements n'ont jamais fait défaut.

Je tiens à remercier Monsieur **H. DJIDJELLI**, Professeur à l'université A. Mira de Béjaïa de m'avoir fait l'honneur de présider le jury. Mes remerciements vont également à Monsieur **F.REZGUI**, Maître de conférences à l'université A. Mira de Béjaïa, à Mme **R.DOUFNOUNE**, Maître de conférences à l'Université Farhat ABBAS de Sétif, pour l'honneur qu'ils m'ont fait en acceptant de juger ce travail.

Je tiens également à remercier l'ensemble du personnel des entreprises **CABEL**, **CATEL** à Alger pour leur accueil et leur aide précieuse.

J'exprime bien entendu mes remerciements les plus sincères aux membres du laboratoire des Matériaux Organiques pour leurs contributions à une ambiance plus que favorable.

DEDICACES

Mes pensées vont finalement à mon mari pour son amour, sa confiance et son soutien m'ont aidé à surmonter bien des obstacles. Je pense naturellement à mes parents si précieux. Ils m'ont toujours aidé et encouragé. Je les remercie pour leur réconfort dans les moments de doute et pour leurs prières incessantes à Dieu Tout Puissant. Ils m'ont donné la force intérieure d'aller au bout de ce parcours. Ces quelques mots ne suffiront jamais à exprimer tout ce que je leur dois. Je voudrais témoigner également toute mon affection à mes frères, Allal, Fatah, Mohamed et ma sœur Wahiba pour l'appui moral déterminant. Son oublier leurs enfant Ahmed, Nour elhouda, Elina, Yasmine et ma belle mère Baya.

Liste des abréviations

PP: Polypropylène **PEHD**: Polyéthylène haute densité **PVC :** Polychlorure de vinyle **PS** : polystyrène FA : Fibre d'Alfa **DRX:** Diffraction des rayons X **IRTF:** Infrarouge à Transformée de Fourrier **MEB:** Microscopie électonique à balayage **WPCs:** Wood plastics composites **DP:** Degré de polymérisation AM : Anhydride maléique **PP-g-MA :** Anhydride maléique greffé sur le PP **PE-g-MA** : Anhydride maléique greffé sur le PE **VTAS :** Vinyltriacétoxysilane **FB** : Farine de bois m-TMI-g-PP: diméthylbenzylique-isocyanate greffé sur le PP m-TMI : Diméthylbenzylique-isocyanate **DCP**: Dicumylperoxide **PMPPIC :** Poly [méthylène poly (phényl isocyanate **FL** : Fibre de luffa **CIG** : Chromatographie en phase gazeuse inverse **EBAGMA** : Ethylène-butyl acrylate-glycidyl méthacrylate

GMA : Glycidyl méthacrylate
ATG: Analyse thermogravimétrique
MS : Matière sèche
TH : Taux d'humidité
MM : Matère minérale
MG : Matière grasse
MO : Matière organique
F0 : Formulation PVC vierge
F160, F200 et F250 et F315 :
Formulations des composites à
différentes tailles de la FA
F10, F15 et F30 : Formulations
des composites à différents taux de
charge de la FA

Liste des tableaux

Tableau.1 : Les principales caractéristiques des matrices polymère thermodurcissables et thermoplastiques

Tableau.2 : Exemple de fibres végétales et leurs compositions

Tableau.3: Propriétés de polychlorure de vinyle de type SE-1200

Tableau.4: Propriétés de di-2-éthylhexylphtalate-(DOP)

Tableau.5: Propriétés de REAPAK B-CV/3037 (Ca/Zn)

Tableau.6: Les compositions massiques des différentes formulations PVC/FA

Tableau.7 : Composition chimique de la fibre d'Alfa

Liste des schémas et figures

- Schéma. 1 : Structure moléculaire de la cellulose
- Schéma. 2 : Structure moléculaire de la lignine
- Schéma. 3 : Structure moléculaire de l'hémicellulose

- Figure. 1 : Production mondiale des composites par pays en 2007
- Figure. 2 : Production mondiale de polychlorure de vinyle en 2008
- Figure. 4 : Evolution de la production mondiale des fibres végétales
- Figure. 5 : Micrographie en MEB de la surface des fibres d'Alfa
- Figure. 6 : L'Alfa dans les régions arides de l'Algérie
- *Figure. 7:* Mélangeur type TG6HK
- Figure. 8: Poudres du polychlorure de vinyle et de la fibre d'Alfa tamisé
- Figure. 9 : Mode de préparation des filmes de composites par calandrage
- Figure. 10: Moulage par compression
- Figure. 11: Plaque du PVC vierge après compression
- Figure. 12 : Forme des haltères
- Figure. 13 : Duromètre Shore D
- Figure. 14 : Densimètre
- Figure. 15 : Absorption d'eau
- Figure. 16 : Machine de traction Zwick/Rowell
- Figure. 17 : Courbe de traction

Figure. 18 : Micrographie en MEB de la surface fracturée du PVC vierge avec un grossissement de 300

Figure. 19 : Micrographie en MEB de la surface fracturée du PVC/F₁₅160 avec un grossissement de 300

Figure. 20 : Micrographie en MEB de la surface fracturée du PVC/F₁₅200 avec grossissement de 300

Figure. 21 : Micrographie en MEB de la surface fracturée du PVC/F15250 avec un grossissement de 300

Figure. 22 : Micrographie en MEB de la surface fracturée du PVC/ F_{15} 315 avec un grossissement de 300

Figure. 23 : Évolution de la dureté des composites PVC/FA en fonction du taux de FA

Figure. 24 : Évolution de la dureté des composites PVC/FA en fonction de la taille des FA

Figure. 25 : Évolution de la densité des composites PVC/FA en fonction du taux de FA

Figure. 26 : Évolution de la densité des composite PVC/FA en fonction de la taille des FA

Figure. 27 : Évolution du taux d'absorption d'eau des composites PVC/F160 en fonction du taux de FA

Figure. 28 : Évolution du taux d'absorption d'eau des composites PVC/F200 en fonction du taux de FA

Figure. 29 : Évolution du taux d'absorption d'eau des composites PVC/F250 en fonction du taux de FA

Figure. 30 : Évolution du taux d'absorption d'eau des composites PVC/F 315 en fonction du taux de FA

Figure. 31 : Évolution du module d'Young des composites PVC/FA en fonction du taux de FA

Figure. 32 : Évolution du module d'Young des composites PVC/FA en fonction de la taille des FA

Figure. 33 : Évolution de l'allongement à la rupture des composites PVC/FA en fonction du taux de FA

Figure. 34 : Évolution de l'allongement à la rupture des composites PVC/FA en fonction de la taille des FA

Figure. 35 : Évolution de la contrainte à la rupture des composites PVC/FA en fonction du taux de FA

Figure. 36 : Évolution de la contrainte à la rupture des composites PVC/FA en fonction de la taille des FA

Figure. 37 : Thermogrammes TG et DTG de polychlorure de vinyle (PVC) vierge

Figure. 38 : Thermogrammes TG des composites PVC/F160

Figure. 39 : Thermogrammes TG des composites PVC/F315

Figure. 40 : Thermogrammes TG des composites PVC/F160

Figure. 41 : Thermogrammes TG des composites PVC/F315

Figure. 42: Thermogrammes TG des composites $PVC/F_{10}315$ et $F_{10}160$

Figure. 43 : Thermogrammes TG des composites $PVC/F_{15}315$ et $F_{15}160$

Figure. 44 : Thermogrammes TG des composites $PVC/F_{20}315$ et $F_{20}160$

Figure. 45 : Thermogrammes DTG des composites $PVC/F_{10}315$ et $F_{10}160$

Figure. 46 : Thermogrammes DTG des composites $PVC/F_{15}315$ et $F_{15}160$

Figure. 47: Thermogrammes DTG des composites $PVC/F_{20}315$ et $F_{20}160$

Sommaire

Sommaire

Introduction	
	1

Partie théorique

Chapitre I : Étude bibliographique

I-1 Généralités sur les matériaux composites	.3
I-1-2 Matrices	.6
I-1-2-1 Polychlorure de vinyle	.7
I-1-2-1-1 Mode de synthèse du polychlorure de vinyle	.9
I-1-2-1-2 Propriétés physiques et chimiques du PVC	.11
I-1-2-1-3 Les avantages du polychlorure de vinyle	.12
I-1-3 Renfort	.12
I-1-3-1 Fibres végétales	.12
I-1-3-2 Utilisation des fibres végétales	.19
I-1-3-3 Les fibres d'Alfa	.20
I-2 Adhésion des composites polychlorure de vinyle/ charge cellulosique	.22
I-3 Propriétés des composites PVC/charges cellulosiques	.26
I-3-1 Propriétés mécaniques	.26
I-3-2 Propriétés Thermiques et Physiques	.28

Partie expérimentale

Chapitre II : matériaux utilisés et techniques expérimentales

II-1 Présentation des produits utilisés	35
II-1-1 Polychlorure de vinyle	35
II-1-2 Plastifiant di-2-Ethylhexylphtalate-(DOP)	
II-1-3 Stabilisant REAPAK B-CV/3037	
II-1-4 Fibre d'Alfa	37

II-1-4-1 Caractérisation de la fibre d'Alfa	7
---	---

41
45
45
46
47
48
49
49
49

Chapitre III : Résultats et discutions

III-1 Caractérisation physico-chimique de la fibre d'Alfa	53
III-2 Caractérisation des composites	54
III-2-1Caractérisation morphologique (MEB)	54
III-2-2 Caractérisation physique	58
III-2-2-1Test de la dureté Shore D	58
III-2-2-2Teste de densité	60
III-2-2-3 Absorption d'eau	61
III-2-3 Caractérisation mécanique	64
III-2-3-1 Module d'Young	65
III-2-3-2 Allongement à la rupture	66
III-2-3-3 Résistance à la rupture	68
III-2-4 Etude de stabilité des composites ATG/DTG	70
III-2-4-1 Comportement thermique de la matrice PVC	70
III-2-4-1 Comportement thermique des composites PVC/FA	73
Conclusions	82

Introduction

Introduction générale

La mise en œuvre des matériaux n'est pas un concept nouveau car la nature en propose et de très performants (exemple le bois). L'idée, proposée à travers cette étude part du fait que notre environnement est envahi de matériaux utilisés quotidiennement (par exemple les matériaux d'emballage) qui ne se dégradent pas ou mettent des années pour se détruire.

Depuis quelques années, des recherches sont menées de part le monde pour trouver des solutions à la pollution due à ces emballages plastiques [1,2].

C'est dans ce contexte que l'étude trouve son intérêt. On se propose d'utiliser des matières issues du végétale pour préparer des matériaux du futur de telle sorte qu'après leurs utilisations, ils se dégradent rapidement naturellement. Ces matériaux doivent entre autre posséder des propriétés indispensables pour les applications auxquelles ils sont destinés [1, 2,3].

Néanmoins, l'utilisation de ces charges dans les matériaux composites, présente un inconvénient majeur qui se rapporte à la mauvaise adhésion de celle-ci à la matrice polymérique, en particulier thermoplastique telle que le polychlorure de vinyle. Ceci en raison de leurs caractères antagonistes. Cependant cette adhésion peut être améliorée par un traitement de la charge, ou par l'ajout d'un agent comptabilisant, ce qui se traduit, éventuellement, par de bonnes propriétés physiques et mécaniques [2,3].

Actuellement, avec l'augmentation importante de l'utilisation des composites renforcés par des fibres végétales tel que l'alfa, que nous visons à mettre en valeur dans l'élaboration des composites à matrice PVC [4]. Comme il s'agit d'une ressource renouvelable avec de bonne propriétés spécifiques, sa valorisation requière une grande importance vue l'opportunité qu'elle présente dans le domaine de l'emploie, la protection de l'environnement et réduction du prix des matériaux. Malgré tous ces avantages de ces fibres végétales soulèvent un désagrément majeur, sa tailles affecte

les propriétés physico-mécaniques lorsqu'on les associe avec les matières plastiques en particulier les polyoléfines (tel que : le polychlorure de vinyle) [5].

Malgré la littérature abondante ont été réalisées sur les composites à base de fibres végétales, mais sont très peu celles qui ont été menées sur l'effet de la taille des fibres sur les propriétés physico mécaniques et thermiques, des composites à matrice thermoplastique, des ambiguïtés demeurent présentes quant à son comportement en présence de matériaux cellulosiques. C'est dans ce contexte que rentre notre présent travail qui a pour objectif, l'étude de l'effet de la taille des fibres d'Alfa sur les propriétés physico-mécaniques du composite à base d'une matrice polychlorure de vinyle. De ce fait, cette étude aura un double intérêt, scientifique et économique.

Pour mener à bien cette étude, ce mémoire est structuré en trois chapitres.

Le premier chapitre est consacré à un état de l'art dans le domaine des composites, avec une présentation générale de l'évolution des matières plastiques ainsi qu'une synthèse bibliographique sur les matériaux composites en particulier à matrice polychlorure de vinyle : composition, propriétés et application.

Le deuxième chapitre, comporte la présentation des matériaux utilisés, le mode de préparation des échantillons, ainsi que la description des techniques expérimentales utilisées dans la caractérisation.

Le troisième chapitre présente les résultats et leur discussion à partir des différents tests effectués.

Enfin, dans la conclusion, nous ferons le bilan des acquis de ce travail et nous tracerons quelques perspectives.

Partie théorique

Chapitre I Synthèse bibliographique

Ce premier chapitre est consacré à une présentation générale de l'évolution des matières plastiques ainsi qu'à une synthèse bibliographique sur les matériaux composites en particulier à matrice polychlorure de vinyle : composition, propriétés et application.

I-1 Généralités sur les matériaux composites

L'utilisation des matériaux composites devient de plus en plus fréquente de nos jours. On assiste à une forte demande des marchés pour des produits plus respectueux de l'environnement. C'est ainsi que des recherches sont menées dans plusieurs parties du monde. Des fonds colossaux sont débloqués dans ce sens pour satisfaire la demande. Des matériaux aux appellations diverses (biodégradable, biocompatible, etc....) ont ainsi vu le jour.

L'importance économique des matériaux composites est maintenant notoire et les prévisions laissent à penser que celle-ci sera en augmentation constante dans les années qui viennent. Une grande diversité de fabrication est concernée, depuis les produits composites dits «à grande diffusion» jusqu'aux composants aérospatiaux à hautes performances mécaniques et thermomécaniques [1,2].

Historiquement, le concept de renforcement à base de fibres est très ancien ; il a été utilisé par les Egyptiens dans la construction, par l'introduction de la paille dans de l'argile. En 1942, le premier bateau à base de fibres de verre a vu le jour, et les plastiques renforcés ont fait leur apparition dans les applications aéronautiques et les composants électriques. Les fibres de carbone et de bore à haute résistance étaient introduites au début des années 60, et ont été utilisées dans les composites à hautes performances en 1968. Quant aux composites à matrices métalliques, tels que le bore/aluminium, ils ont été

Chapitre I

introduits dans les années 70. Par la suite, il y'a eu le développement des fibres de kevlar (aramide) en 1973. A la fin des années 70, les applications des matériaux composites ont pris de plus en plus d'ampleur, et ont touché les constructions aéronautiques et automobile, les équipements sportifs et l'industrie biomédicale.

Les années 80 par contre, ont été marquées par une augmentation spectaculaire de l'utilisation des fibres à hautes performances. Actuellement, l'accent est mis sur le développement des composites destinés aux applications à hautes températures, tels que les composites à matrice thermoplastique [6].

Par définition un matériau composite, est constitué de deux ou de plusieurs éléments distincts et non miscibles, dont les caractéristiques se combinent pour donner un matériau hétérogène possédant des performances globales améliorées et ayant, des propriétés particulières en réponse à un besoin spécifié.

L'une des grandes familles de matériaux composites, regroupe ceux constitués de deux phases : un matériau fibreux, jouant le rôle de renfort (armature, squelette...), et il assure la tenue mécanique (résistance à la traction et rigidité), souvent de nature filamentaire (fibres organiques ou inorganiques) et un matériau résineux appelé matrice, qui lie les fibres renforts, répartit les efforts (contraintes mécaniques) et assure une bonne protection chimique du matériau.

Ce qui fait l'originalité de ces matériaux, est leur constitution de base, qui est une association de propriétés mécaniques de différents constituants (matrice et renfort) dans une même structure. Les matériaux composites sont très variés. Ils peuvent être classés en fonction de la constitution de la matrice (organique, métallique, minérale, etc.) et de la nature du renfort (fibres végétales). Le type d'association matrice /renfort, dépend principalement de l'application pour laquelle le composite est destiné. Dans les domaines aéronautique et spatial par exemple, la préoccupation majeure des constructeurs, est l'augmentation des performances des pièces par 1'amélioration de leurs propriétés caractéristiques (gain de masse, tenue en fatigue, tenue en température, résistance à la corrosion, etc.), [6] ce qui explique la grande utilisation des composites (voir figure.2).

Figure.1: Production mondiale des composites par pays en 2007 [6]

Le comportement des composites et la prévision de leurs propriétés, font intervenir les caractéristiques de la matrice, celles des fibres, les problèmes d'interface et les conditions de fabrication. En effet, les propriétés mécaniques des composites sont très dépendantes des fibres employées : nature, répartition, orientation, taux ou fraction volumique, longueurs et diamètres ou facteur de forme, ensimages...et de la matrice (en particulier, les températures de transition et de fusion pour les thermoplastiques).

Ces matériaux peuvent, par un assemblage judicieux de leurs composants, acquérir un ensemble de propriétés mécaniques intéressantes : bonne tenue en fatigue, absence de corrosion, et avant tout, une faible masse, une résistance et une rigidité spécifique élevée. Ces deux dernières propriétés, présentent notamment un grand intérêt dans l'industrie, d'autant plus performantes qu'elles sont légères et résistantes d'un point de vue mécanique. Ceci peut être obtenu en utilisant une matrice polymérique dont la masse volumique est faible, contenant par exemple des fibres de carbone de faible densité également, mais surtout possédant une résistance mécanique très élevée. Toutefois, une bonne connaissance des composites doit être fondée sur celle des renforts et des matrices [6].

I-1-2 Les matrices

Les matrices ont essentiellement pour rôle de transférer les contraintes apportées sur le matériau aux fibres, de les protéger contre les agressions extérieures et donnent la forme du matériau. Elles doivent être en outre assez déformables et présenter une certaine compatibilité avec le renfort. Ainsi, pour pouvoir apporter aux matériaux composites des propriétés mécaniques élevées, les résines doivent posséder des masses volumiques faibles. Il existe plusieurs types de résines classées en deux grandes familles :

Les thermodurcissables [7], qui sont des solides infusibles et insolubles qui forment un réseau tridimensionnel à partir des segments moléculaires liés entre eux par une densité élevée de liaisons covalentes. Les thermodurcissables sont mis en forme de façon irréversible par des réactions chimiques entre la résine et le durcisseur, ce dernier assure la création de liaisons pontales entre les différentes chaînes moléculaires du polymère. Compte tenu de leur faible viscosité avant durcissement, les thermodurcissables sont largement employés comme matrice dans les matériaux composites [7]. On peut citer, les polyesters insaturés (vinyle ester, les dérivés allyliques, les polyesters condensés, etc.), les résines époxydes, les résines de condensation (les phénoliques, les aminoplastes, les furaniques, etc.).

Ce qui concerne les thermoplastiques sont des dérivés de monomères linéaires ou légèrement ramifiés qui forment le motif de base d'une chaîne où ils sont maintes fois répétés. Sous l'action de la chaleur, le thermoplastique se ramollit conduisant à l'apparition de mouvement à longue portée dans les chaînes moléculaires. Les thermoplastiques peuvent alors être solidifiés par refroidissement en prenant la forme souhaitée. Ce processus de ramollissement par excitation thermique et durcissement par refroidissement peut être répété indéfiniment car, contrairement aux résines thermodurcissables, quasiment aucune modification chimique ne vient altérer les thermoplastiques. Il s'agit plutôt d'une modification de l'agencement intermoléculaire. Cette aptitude confère aux déchets thermoplastiques des propriétés de recyclage très intéressantes [8].

Tableau.1 : Les principales caractéristiques des matrices polymère thermodurcissables et thermoplastiques [8].

Matrice thermo durcie	Matrice thermoplastique						
Amorphe	Amorphe ou semi cristalline						
Résistance aux températures élevées	Résistance à l'impact						
Viscosité basse pendant la mise en	Fabrication difficile en raison de la						
Forme	viscosité						
	très élevée du polymère fondu						
Fragiles	Thermostable						
Cycle de fabrication long	Possibilités de réparation						
Recyclage des déchets impossibles	Recyclage très aisé						

Dans notre travail nous nous sommes intéressés à l'étude d'une matrice à base du polychlorure de vinyle ou PVC car c'est un polymère très présent dans notre vie quotidienne. Il couvre tous les secteurs d'activité économiques. C'est aussi l'un des plus utilisés ces dernières années, avec une consommation mondiale de plus de 20 milliards de tonnes, ceci est dû à l'ensemble de ses propriétés mécaniques et physiques et son aptitude à être modifié [7,8].

I-1-2-1 Le polychlorure de vinyle

Le polychlorure de vinyle ou chlorure de polyvinyle est un polymère thermoplastique de grande consommation, amorphe ou faiblement cristallin, connu généralement sous le sigle PVC (de l'anglais polyvinyle chloride).

Chapitre I

De formule – $(CH_2 - CHCl)_n$ –, il est obtenu par polymérisation radicalaire du monomère chlorure de vinyle, $CH_2 = CHCl$ [9].

PVC fut inventé en 1938. Il est produit à grande échelle depuis les années soixante et est la matière plastique la plus étudiée au monde, après le polyéthylène et le polypropène. Chaque année, environ 23 millions de tonnes, dont 1/3 pour l'Europe, trouvent ainsi des applications diverses dans les secteurs de la construction, de l'emballage, de la médecine et bien d'autres encore. En Europe, près de 34% de la production globale de chlore sont utilisés pour la production de PVC [9].

L'excellent rapport qualité/prix du PVC explique son utilisation croissante en Europe (progression de 1 à 2% l'an), aux Etats-Unis (progression de 3,5 à 4% l'an) et surtout dans les pays émergents comme en Amérique latine et en Asie du Sud-Est (jusqu'à 10% par an). L'écart entre les pourcentages de croissance démontre que le niveau de consommation atteint à ce jour est le plus élevé en Europe et aux USA.

Figure.2 : Production mondiale de polychlorure de vinyle en 2008 (En millions de tonnes) [9]

Le PVC est constitué de 43% d'éthylène, un dérivé du pétrole brut, et de 57% de chlore. La matière première de base du chlore étant le sel, disponible en quantité

quasiment illimitée, on peut dire que le PVC fait un usage efficace des ressources naturelles de notre planète [9].

I-1-2-1-1 Mode de synthèse du polychlorure de vinyle

Le chlorure de vinyle (CV) est à la base du polychlorure de vinyle (PVC). Sa production se déroule en deux étapes:

1. L'éthylène et le chlore ou l'acide chlorhydrique sont liés sous forme de dichloroéthane;

2. le dichloroéthane est ensuite décomposé par craquage en chlorure de vinyle et en acide chlorhydrique [10].

Le chlorure de vinyle (CV) est mis en suspension en milieu aqueux, dans un réacteur chimique, et est polymérisé ensuite en PVC sous des pressions et de la chaleur, la synthèse est réalisée par voie radicalaire qui se déroule en trois étapes :

a- Initiation

Par effet de rayonnements UV, de la chaleur ou d'un amorceur chimique on a la formation des radicaux de chlorure de vinyle monomère selon les réaction (1,2):

b- Propagation

Les radicaux issus de la rupture homolytique vont suivre une réaction en chaîne aboutissant à la formation de chaîne macroradicalaire selon le schéma de la réaction (3):

c- Terminaison

En fin de réaction, lorsque la quasi totalité du CV est consommé, on assiste soit :

1. à des réactions de terminaison par couplage :

C'est la rencontre de radicaux selon la réaction (4) :

2. à des réactions de dismutation :

Un atome d'hydrogène migre d'un macroradical pour stabiliser un autre avec formation d'une double liaison sur le site de départ selon la réaction (5):

I-1-2-1-2 Propriétés physiques et chimiques du PVC

Parmi les propriétés physiques, le PVC de couleur naturelle transparente (cristal), il est amorphe dans la majorité des cas, on note la présence de la phase cristalline qui varie de 5 à 15 % en masse, à température ambiante 23 à 25 °C, la phase amorphe est rigide, avec la température de transition vitreuse (Tg) qui se situe vers les 75 °C et 80 °C, c'est-àdire qu'il est rigide à température ambiante, et qu'au -dessus de 90°C, il est caoutchouteux (faible résistance, grande déformation) [9].

Pour les propriétés mécaniques le PVC résiste à l'abrasion et aux chocs encore plus à basse température < à 10 °C, et de bonne résistance à la rigidité jusqu'au voisinage de sa température de transition vitreuse, l'addition des plastifiants permet de diminuer la Tg. Et selon la proportion de plastifiant, on distingue le PVC souple et le PVC rigide.

Le PVC présente de bonnes propriétés isolantes mais les pertes électriques dans le matériau sont suffisamment importantes pour permettre le soudage par hautes fréquences, comme il présente aussi une bonne stabilité dimensionnelle et un retrait faible dûe à sa structure amorphe [9].

En ce qui concerne les propriétés chimiques du PVC non plastifié appelé aussi PVC rigide, il résiste jusqu'à 60°C aux acides et bases ainsi qu'aux huiles, alcools et

hydrocarbures aliphatiques. Par contre il est sensible aux hydrocarbures aromatiques et chlorés, aux esters et cétones qui occasionnent un gonflement. Le PVC souple est sensible aux agents atmosphériques et à la lumière solaire. Il peut poser des problèmes de migration de plastifiants.

I-1-2-1-3 Les avantages du polychlorure de vinyle

Il s'agit d'un plastique dur et solide résistant à l'eau, à la combustion et aux UV, auquel on ajoute souvent des plastifiants pour améliorer sa souplesse. Ce matériau se caractérise également par une très bonne résistance chimique aux acides, mais par une faible résistance à de nombreux solvants (éthers, cétones). A moins d'être modifié, il peut être utilisé à des températures comprises entre 5°C et 50°C. Le polychlorure de vinyle ne doit pas être brûlé avec d'autres déchets en plein air car il dégage de l'acide chlorhydrique en présence de la vapeur d'eau contenue dans l'atmosphère [10].

I-1-3 Renfort

Le but des renforts dans les matériaux composites est essentiellement d'accroître leurs propriétés mécaniques (rigidité, résistance à la rupture, dureté, etc.) et d'améliorer les propriétés physiques, tels les comportements au feu et à l'abrasion, la tenue en température (conservation des caractéristiques mécaniques à haute température) ou les propriétés électriques. Outre les propriétés mécaniques élevées qu'ils procurent, les caractéristiques recherchées dans les renforts sont une masse volumique faible, une compatibilité avec les matrices et une facilité de mise en œuvre. Les renforts peuvent provenir d'origines diverses (animale, végétale, synthétique, etc.). Dans cette présente étude, nous nous sommes focalisés sur les renforts végétaux [11].

I-1-3-1 Les fibres végétales

La synthèse végétale produit une énorme variété de molécules, renouvelables grâces à l'énergie solaire, couvrant une myriade de structures et de tailles qui obéissent aux fonctions qu'elles doivent remplir pour l'espèce qui les contient [12]. Il s'agit de petites molécules avec des architectures des groupements très spécifiques, d'oligomères et de macromolécules plus ou moins organisées.

Parmi cette multitude de dérivés, la cellulose constitue, dans l'ordre, le composant de loin le plus répandu et abondant de la biomasse [13]. Les chaînes de cellulose sont organisées sous forme de microfibrilles qui constituent l'armature de la paroi et présentent une très grande résistance aux tensions [12]. Les microfibrilles de cellulose représentent environ 20 à 30% de la masse de matière sèche pariétale, et occupent environ 15% du volume de la paroi. Dans les cellules différenciées ayant synthétisé une paroi secondaire, la proportion de cellulose atteint de 40 à 90% de la masse pariétale [12]. La disposition relative des microfibrilles est importante car elle permet de conférer une plus ou moins grande capacité de la paroi à se déformer, ainsi que la direction dans laquelle se fera cette déformation (voir figure .3).

Figure. 3 : Organisation des microfibrilles de cellulose au sein de la paroi végétale [12]

De nombreuses recherches ont été consacrées à la structure de cellulose, les premiers travaux de Braconnot concernant l'hydrolyse acide de la substance constitutive des cellules végétales remontent au début du XIXème siècle [14], c'est à Anselme Payen [15] que revient le mérite d'avoir établit que la partie fibreuse de toutes les cellules de plante avait une composition chimique unique. C'est également dans le sillon des travaux de Payen que nait et apparait pour la première fois, le mot cellulose [16]. Il faudra cependant attendre plus de cinquante ans, pour que la formule brute exacte de la cellulose soit établit par Weillstätter et Zechmeister [17], et que le volume de la maille cristalline élémentaire soit évalué par Polany en 1921. Le concept même de chaine macromoléculaire fut tout d'abord vivement controversé car l'idée communément admise était que les mailles cristallines correspondaient exactement au volume occupé par une molécule ou par un nombre restreint de molécules. Ce n'est que grâce à la contribution et au soutient de Staudinger [18] que la nature macromoléculaire de la cellulose fut finalement reconnue et acceptée.

L'ensemble de ces travaux a conduit à l'établissement de la structure primaire de la cellulose, qui est donc un homopolymère linéaire formé d'unités de D-glucose réunies par des liaisons β -(1-4) (voir schéma.1). La masse molaire de la chaine de cellulose varie beaucoup (50,000<M<2,5x10⁶) en fonction du lignocellulosique d'origine et du traitement d'extraction utilisé. Etant donné que la cellulose est un homopolymère linéaire, la grandeur de la chaine moléculaire est habituellement caractérisée par le degré de polymérisation (DP), celui-ci exprime le nombre de monomères présents dans la chaine de cellulose [12].

Schéma. 1 : Structure moléculaire de la cellulose

Dans la phase finale de la différentiation cellulaire, d'autres polymères pariétaux, les lignines sont incorporées dans l'espace autour des éléments polysaccharidiques fibrillaires pour former des complexes lignine-polysaccharides, notamment dans la lamelle mitoyenne de la paroi primaire. Les Lignines constituent de 10 à 30% de la matière sèche du bois, ce qui les place quantitativement au deuxième rang après la cellulose. Elles contribuent au renforcement mécanique des parois végétales, à leur défense contre les agents pathogènes. Elles jouent un rôle d'hydrophobation sur les parois végétales, particulièrement au niveau de la conduction des solutés et de l'équilibre des teneurs en eau [19].

La structure de base est néanmoins commune à toute les lignines, il s'agit de macromolécules ramifiées (en effet réticulées) contenant des groupements phénoliques, plus au moins substitués par des fonctions méthoxys, attachés à des motifs aliphatiques, comportant généralement trois atomes de carbone, qui peuvent à leur tour porter diverses fonctions, telles que OH, C=O, CH₂OH, C-O-C,... (4,7). Le schéma.2 illustre ces

Chapitre I

considérations générales en donnant un aperçu de la structure typique d'un ensemble macromoléculaire de lignine [20].

Schéma. 2 : Structure moléculaire de la lignine

Les lignines ont été largement étudiées dans le domaine des matériaux thermoplastiques concerne leurs composites avec des fibres lingnocellulosiques. R.M Rowell et R.A.Young [21] ont montré en effet que l'addition de lignine, à des taux allant jusqu'à 5%, améliorent la qualité de l'interface polyoléfine/fibre et produit par conséquent une augmentation des modules de traction et de flexion. Il semble logique d'attribuer cette amélioration à une compatibilisation des deux surface moyennant une orientation des macromolécules de lignine avec leurs parties polaires pointées vers les fibres et leurs parties nom polaires allant vers la matrice de types alcane.

Comme dans presque tout autre assemblage de ce genre, un troisième composant intervient aussi pour assurer une bonne compatibilisations interfaciale entre fibre et matrice. Dans les végétaux, il s'agit d'hémicelluloses qui s'interposent avec les liens chimiques et physico-chimiques à l'interface cellulose/lignine. Les hémicelluloses sont constituées par un très grand nombre de molécules polysaccharidiques différentes, qui forment une variable matrice autour des microfibrilles de cellulose. Les interactions s'établissent par l'intermédiaire de liaisons intermoléculaires de type liaisons hydrogène et liaisons de Van der Waals. Les hémicelluloses pourraient également avoir d'autres fonctions telles que la structuration de la paroi, de messagers ou précurseurs de messagers intercellulaires, de réserve. Les xyloglucanes, composantes majoritaires des hémicelluloses représentent dans ce cas 20% de la masse de matière sèche pariétale de la paroi primaire [22]. Les xyloglucanes, de même que les xylanes, sont étroitement associés aux microfibrilles de cellulose par l'intermédiaire de liaisons hydrogène [23].

Schéma. 3 : Structure moléculaire de l'hémicellulose

Les propriétés de cellulose, de lignines et d'hémicelluloses et leur composition varient selon la nature de la fibre végétale. Le tableau.2 résume quelque composition et propriété [24].

Tableau.2 : E	Exemple de	fibres	végétales	et leurs	compositions	[24]
	- F		0		r r r r r r r	L J

Plante	Alfa	Coton	Lin	Chanvre	Ramie	Sisal	Abaca	Jute
Organe	Tige	Feuille	Graine	Graine	Graine	Tige	Tige	Graine
utilisé								
Densité	1.4	1.51	1.4	1.48	1.4	1.2-1.4	1.5	1.46
(g/cm ³)								
Longueur	0.6-	25	33	22	120	3	3-11	2.5
(mm)	14							
Diamètre	5-10	19	19	25	40	18	16-32	20
(micron)								
Cellulose	50-54	92-95	62-71	67-75	68-76	66-73	63-68	59-71
(%)								
Hémicellulose	27-32	5.7	16-18	16-18	13-14	12-13	19-20	12-13
(%)								
Lignine	17-19	0	2.0-2.5	2.9-3.3	0.6-0.7	9.9	5.1-5.5	11-13
(%)								
Pectine	1-2	1.2	1.8-2.0	0.8	1.9-2.1	0.8	0.5	0.2-4.4
(%)								
Cire	0.5	0.6	1.5	0.7	0.3	0.3	0.3	0.5
(%)								
Absorption	12	8-25	7	8	12-17	11	-	12
Humidité(%)								

Chapitre I

I-1-3-2 Utilisations des fibres végétales

La connaissance des propriétés caractéristiques des fibres est indispensable en vue de leur utilisation dans des composites. Les fibres végétales présentent en général de bonnes propriétés mécaniques, mais leur utilisation est limitée par leur caractère hydrophile et leur faible stabilité thermique. De même, la comptabilité fibres matrice va dépendre non seulement de la nature des fibres mais également de la nature de la matrice de polymère. La grande diversité des fibres végétales et le large domaine d'applications des matériaux composites, sont à l'origine du grand nombre de travaux concernant le développement des matériaux composites à renforts fibres végétales [25].

Les travaux concernant l'utilisation des fibres naturelles comme alternative aux fibres de verre utilisées traditionnellement dans des matrices polymères thermoplastiques hydrophobes (comme les polyoléfines) ont permis de réaliser des composites «facilement» recyclables [26]. La limitation de l'utilisation des fibres végétales dans ce type de composite reste le manque de compatibilité entre les fibres et la matrice. La nature hydrophile des fibres est à l'origine de cette incompatibilité et de la mauvaise dispersion des fibres au sein de la matrice. Le plus souvent, différent traitement des fibres sont utilisés afin d'améliorer leur adhésion avec la matrice. Il s'agit de traitements thermiques (rectification), physiques (modifications surfaciques) ou chimiques (greffage, traitements alcalins) [27,28].

Figure. 4 : Evolution de la production mondiale des fibres végétales (En millions de tonnes) [27]

I-1-3-3 Les fibres d'Alfa

Alfa (de l'arabe Halfa) est une plante herbacée vivace de la famille des graminacées, originaire des régions arides de l'ouest du bassin de la méditerranée [4,29]. Les grands foyers s'étendent sur les grands plateaux Algéro-Marocains, au delà elle déborde sur le Maroc occidental, le Portugal méridional, l'Espagne orientale et méridional [4]. C'est dans les zones les plus sèches de la région méditerranéenne qu'on trouve l'Alfa. Au sud sa limite naturelle est déterminée par la sécheresse. Au nord et à l'ouest c'est l'humidité croissante du climat qui élimine la flore.

Cette graminée est indifférente à la structure et la nature chimique du sol, les milieux humides ou hydromorphes lui sont défavorables. Son développement est optimale si le taux d'argile dans le sol ne dépasse pas 10 à 12% et si le terrain est bien drainé et filtrant. Elle ne supporte pas la salinité du milieu et se développe mieux sur des sols neutres ou légèrement basiques. Elle joue un rôle essentiel dans la lutte contre l'érosion [29].

La production alfatière dépend étroitement du climat. Ainsi on peut noter des productions de 6 à 700.000 hectares si l'année est sèche. Le coefficient d'utilisation est de 50% [29].

L'Alfa était utilisé pour la fabrication des nattes, rideaux, tapis, paniers, corbeilles, plateaux, chaussures, gargoulettes, ficelles et liens divers. A la fin du 19^{éme} siècle et début du 20éme siècle est apparu le papier d'Alfa, un papier de qualité qui allait donner une grande importance économique à cette plante [5].

La plante d'Alfa est composée approximativement de 50 à 54 % cellulose, 27 à 32% Hémicellulose, 17 à 19% lignin, 0.5% cire et 2% cendre. La plante est cylindrique, approximativement 1 m de longueur. Sa structure est formée par plusieurs paquets de filaments, approximativement circulaire, aligné le long de la longueur de la plante (Fig. (a) et (b)) [30].

Les filaments de cellulose sont rendus compacts à l'intérieur de ces paquets, en liaison avec la lignine, pour former un composite unidirectionnel aligné le long de la longueur de la plante. Les filaments de la cellulose ont un diamètre de 5–10 μ m et de dimension qui varie de 2 à 5mm [30].

Figure.6 : L'Alfa dans les régions arides de l'Algérie [30]
I-2 Adhésion des composites polychlorures de vinyle/ charge cellulosique

La nature chimique de la matrice polychlorure de vinyle (hydrophobe) et de la charge cellulosique (hydrophile) a fait qu'ils présentent un caractère antagoniste. Ce comportement de l'un vis-à- vis de l'autre interdit tout lien entre ces deux éléments ce qui augmente davantage leur incompatibilité.

La faible adhésion et dispersion de la charge dans la matrice sont la cause de baisse dans les propriétés mécaniques du produit mais également de sa stabilité thermique. En effet, les interactions fibre-fibre aussi bien que les interactions fibre-matrice jouent un rôle important dans le transfert de contraintes de la matrice vers la fibre. Compte tenu de cela, il est apparu nécessaire de mettre au point des solutions palliatives pour améliorer la qualité de cette interphase [31,32].

L'augmentation de l'adhésion interfaciale des composites contenants des charges naturelles, est assurée par une modification des surfaces des matrices ou des charges, avec des traitements physiques ou chimiques ou l'ajout d'additifs [33, 34, 35, 36]. Diverses techniques de modification de surface ont été rapportées pour améliorer l'affinité entre les fibres naturelles et les plastiques en facilitant la dispersion des fibres naturelles dans la matrice polymère et induire la formation de liaison entre la fibre naturelle et la matrice [37].

Ces modifications chimiques font appel aux agents d'interface. En effet, l'interface joue un rôle prépondérant dans la tenue du composite lorsqu'il soumit à des contraintes. L'agent d'interface assure la compatibilité renfort/matrice en transmettant les contraintes de part et d'autre de l'interface, sans déplacement relatif. Plusieurs rôles essentiels sont attribués aux interfaces pour un bon comportement du composite :

- assurer la continuité physique d'un constituant à l'autre à travers tous les matériaux, en empêchant, par exemple la formation de porosité [38].

- transmettre les efforts. En effet, la matrice réparti et transmet les efforts aux fibres par l'intermédiaire des interfaces [38].

Plusieurs travaux ont fait l'objet de modification de l'adhésion interfaciale par le traitement par l'anhydride maléique (MA) [39, 40,41], l'anhydride acétique (AA), le glycédyle méthacrylate (GMA) [42] ou des silanes [43,44] ou par l'ajout d'agent comptabilisant. On cite à titre d'exemple : le polyéthylène ou polypropylène, greffé par l'anhydride maléique (PP-g-MA, PE-g-MA) [43,44,45] et le PP greffé par le vinyltriéthoxysilane (PPVTES) [46].

Ces travaux ont montré l'efficacité d'une modification de l'interphase charge/matrice, soit par traitement de la surface de la charge ou de la matrice, ou bien par incorporation d'un agent compatibilisant, pour améliorer les interactions entre ces deux constituants.

M.N.Inchazo et al [47] ont montré que l'utilisation d'un agent compatibilisant le PP-g-MA est plus efficace en termes d'amélioration des propriétés d'un traitement sodique de la surface de la farine de bois, avec le NaOH. Cependant, ces deux traitements améliorent la dispersion et la morphologie des composites à des degrés différents.

S.Nachtigall et al [46] ont comparé de leur coté l'influence de la nature de l'agent compatibilisant sur la qualité de l'adhésion de composites PP/Farine de bois et l'effet de ceci sur les propriétés mécaniques et thermiques. Deux agents de couplage ont été testés, le vinyltriéthoxysilane appartenant à la famille des alkoxysilanes, et l'anhydride maléique, les deux modifiant le PP. Ils ont constaté une grande amélioration de l'interphase par les deux agents. Ce comportement s'explique par l'augmentation de la compatibilité entre les différents constituants, du fait de l'établissement d'interactions entre les groupements OH de la fibre de bois et l'agent compatibilisant ainsi que la partie apolaire qui interagit avec la matrice. Par ailleurs, ils ont constaté que l'utilisation du PPVTES améliore beaucoup

mieux les propriétés mécaniques que le PP-g-MA. Dans cette même étude, ils ont mis en évidence l'importance de l'optimisation de la qualité utilisé des agents compatibilisants laquelle assure une adhésion optimale et par conséquence, de meilleures propriétés.

L'étude réalisée par *M.Kaci et al* [2], a montré l'efficacité du terpolymère de l'éthylène butyle acrylate glycidyle méthacrylate à améliorer l'adhésion de composites PP/Farine de bois, en comparaison avec le PP-g-MA. Ils ont constaté une meilleure dispersion de la charge dans la matrice PP, qu'ils ont attribué aux fortes interactions entre la charge et la matrice. Ce ci en conséquence, amélioré les propriétés mécaniques à la rupture (contrainte et allongement). Mais également une nette amélioration de l'absorption de l'humidité et la stabilité thermique des composites.

V.Hristove et al **[48]** ont étudié l'effet du taux de greffage de l'anhydride maléique dans le PP-g-MA sur les mécanismes de déformation et de rupture, et les propriétés mécaniques du composite PP/Farine de bois.

La résistance à la traction, l'allongement à la rupture et la résistance au choc sont remarquablement améliorés avec l'addition de modifiant interfaciale de telle sorte que les valeurs maximales des propriétés mécaniques examinées sont détectés, lorsque la concentration de l'anhydride maléique dans le comptabilisant est de l'ordre de 1%.

Pour explorer la microstructure et le mécanisme de déformation, le microscope électronique à balayage a été employé. Il a été trouvé qu'une faible concentration en anhydride maléique jusqu'à 1% conduit à la création d'une fine et irrégulière couche de polymère confirmée par la conformation d'une zone de déformation fibrillaire du plastique autour des particules de bois, tandis que la matrice de PP présente des vides et des fracture légères. Les concentrations élevées de l'anhydride maléique produisent des fortes interactions entre le polypropylène et la farine de bois, c'est la raison de la fracture croissante légère et de la réduction de la ductilité.

Le comportement au choc du composite durant le test est aussi étudié en rapport avec la force de liaison interfaciale.

T.H.S.Costa et al [49], se sont basés sur le taux de fibres (10 et 30%), le taux d'agent de couplage (PP-g-AM : 2 et 10) et enfin le type de matrice (PP ou PP-g-AM) le rôle de la proportion de fibre est prépondérant dans cette étude, mais ne dépasse pas les 30%. Et cela du à l'intimité du mélange et la faiblesse des liens mécaniques dont l'augmentation de la quantité de bois s'avère bénéfique si elle est accompagné d'une amélioration de l'adhésion. Ceci explique la faiblesse de l'interaction PP-g-AM/taux de fibres alors que le PP-g-AM est moins apparent dans les matériaux composites.

C. Panayiotou et al [50] ont réalisé une étude de modification chimique en utilisant l'anhydride acétique et l'anhydride propionique sur différentes charges végétales à savoir la farine de bois, le chanvre, le lin. L'effet de la réaction d'estérification entre les groupements acétyle, propionyle et les groupements hydroxyles des fibres a été examiné par l'analyse infrarouge à transformée de fourrier (IRTF) pour confirmer l'existence des groupements ester sur la structure moléculaire des fibres. La diffraction aux rayons X et la microscopie électronique à balayage (MEB) ont été employées pour caractériser la cristallinité et la morphologie des fibres traitées et non traitées

Il a été montré que la surface des fibres traitées est devenue plus lisse après le traitement, ce qui a été attribué à l'élimination des cires. Aussi, ils ont rapporté que le taux de cristallinité des fibres a légèrement diminué après ce traitement, ce qui est dû à l'augmentation de la proportion de la phase amorphe. La réaction d'estérification a apportée des changements considérables dans toutes les interactions entre la farine de bois et d'autres substances ayant pour résultat une diminution considérable de l'absorption de l'eau, qui est l'objectif principal de cette modification.

L'étude menée par *H.Djidjelli et al* [10] ont effectué la benzylation avec le chlorure de benzyle dans une solution aqueuse de NaOH, ils ont étudié les propriétés thermiques, diélectriques et mécaniques des composites PVC/FGO. Après avoir effectué la caractérisation des différentes formulations, Les résultats d'analyse spectroscopique

infrarouge indiquent clairement que la monosubstitution des ions sodium par les groupements benzylique est survenue dans la structure de farine de grignon d'olive. L'incorporation de FGNOT conduit à une diminution dans l'allongement à la rupture et la résistance à la rupture, ce qui est due à la mauvaise dispersion des fibres dans la matrice PVC et aux faibles interactions entre PVC/FGO, à l'inverse de la FGOT par benzylation, cette modification converti la FGO en un matériau thermoplastique et permet d'acquérir des aptitudes au thermoformage et par conséquence des composites dont les propriétés mécaniques élevées. L'analyse thermogravimétrique sur l'effet de la température de début de décomposition a montré un gain de 12° C qui a été enregistré pour F25B/F25. D'autre part cette échantillon F25B enregistre moins de perte diélectrique et peut être utilisé dans l'isolation électrique.

I-3 Propriétés de composite polychlorure de vinyle/charge cellulosique

Les nouvelles technologies nécessitent des matériaux nouveaux à hautes performances, capables de remplacer les matériaux classiques. En effet, les matériaux composites permettent de concevoir et de réaliser des structures améliorées possédant de bonnes propriétés mécaniques alliées à un poids minimal.

I-3-1 Propriétés mécaniques

De nombreuses études ont montré l'intérêt de l'incorporation de charges ou de fibres cellulosiques sur l'amélioration des propriétés mécaniques des composites. La majorité de ces auteurs ont constaté une augmentation de la rigidité des composites accompagnée d'une hausse du module d'Young à cause de l'utilisation d'une charge rigide. En contre partie, la déformation à la rupture a diminué en raison de l'amélioration de l'adhésion interfaciale entre la charge et la matrice.

H.S.Yang et al [51] ont montré l'influence du procédé de transformation sur la dispersion, en conséquence sur les propriétés mécaniques de composites PP/Farine de cosse de riz et celles du PP/Farine de bois. Ils ont retrouvé que les propriétés mécaniques en

traction des composites préparés par une extrudeuse à double vis sont meilleures que celles de composites préparés par une mono vis. Ceci est explique par l'amélioration de la dispersion des charges dans la matrice. La résistance en traction et le module des composites ont montré une amélioration même en absence de l'agent modifiant. Avec l'incorporation de cet agent, ce progrès est beaucoup plus important pour les composites obtenus avec une double vis. Ces conclusions, ont confirmé l'étude réalisée ultérieurement par *A.K.Bledzki* [46] et qui ont trouvé aussi des propriétés mécaniques intéressantes de composites PP/Fibre de bois préparés par une extrudeuse à double vis, par rapport à celles de composites obtenus par des mélangeurs internes à différents taux de cisaillement.

Dans leur étude, *M.Zampaloni et al* [52] ont comparé entre les propriétés mécaniques en traction et en flexion de composites PP chargés par différents fibres (lin, kenaf, chanvre, sisal et coco). Ils ont constaté que l'utilisation de composites à 40% de kenaf donne une résistance similaire en traction et en flexion que ceux chargés de lin ou de chanvre. Par contre ces propriétés ont doublé en comparaison aux composites avec le coco ou le sisal. En plus, ils ont démontré que les composites basés sur les fibres de kenaf présentent de meilleurs modules spécifiques (en flexion et en traction) par rapport aux autre fibres testés mais également un bon rapport module/coût.

S.J.Kim et al [53] ont réalisé une étude comparative sur les propriétés mécaniques de composites Farine de bois/Polypropylène FB/PP et Fibre de coton/Polypropylène FC/PP. Ils ont remarqué que la résistance en traction de composites FB/PP est conditionnée par la qualité de l'interface. Cette résistance est meilleure pour de fortes interactions qui permettent un meilleur transfert des efforts à la matrice à travers l'interface. A l'inverse, les composites FC/PP exhibent un comportement différent indépendant de la qualité de l'interface. Selon ces auteurs, ceci démontre que la résistance en traction des composites ne dépend pas seulement de l'adhésion interfaciale, mais peut dépendre aussi, de la taille des charge, de leur nature hydrophile et notamment de la nature chimique. D'un autre coté, ils ont pu montrer que la résistance en flexion de ces composites dépend, en plus, du grade de

la matrice utilisée. Il s'est avéré que pour avoir de bonnes propriétés en flexion, il est préférable d'opter pour des polypropylènes à bas poids moléculaire dans le cas de composites à base de farine de bois.

J.W.Kim et al [54] ont étudié le comportement mécanique de diverses farines de bois obtenus d'arbres d'espèces différentes (cerisier, cèdre rouge, orangé, pin, érable, chêne...). Les différents composites obtenus par injection, ont montré une légère différence, mais statiquement significative, de la résistance en traction et du module d'Young, obtenu pour les divers composites. Les auteurs ont suggéré que différentes espèces peuvent être utilisées pour la fabrication de composites. Mais le choix de l'espèce peut affecter les propriétés mécaniques. Ils rejoignent dans leurs conclusion l'étude précédente dans le fait que les différences existantes entre chaque espèce influent sur la morphologie et la chimie de' surface du composite.

I-3-2 Propriétés Thermiques et Physiques

En plus de l'amélioration des propriétés mécaniques des composites avec l'incorporation de charges cellulosiques, il est souhaitable d'avoir également un compromis de bonnes propriétés physique et thermique, entre autres, une bonne stabilité thermique et dimensionnelle. Ceci est possible par une bonne dispersion des charges cellulosiques dans la matrice donc par une meilleure adhésion [55].

Selon *M.Pracella et al* [42] l'incorporation de fibres de chanvre dans la matrice polypropylène déplace la température de la cristallisation vers les hautes températures, ce qui est directement lié à l'effet nucléophile des fibres utilisées. Ceci par suite, va augmenter la vitesse de cristallisation dans la matrice polyoléfine. D'un autre coté, ils ont constaté que l'ajout des fibres cellulosiques n'a pas d'effet sur la structure cristalline de la matrice PP. En ce qui concerne la stabilité thermique des composites étudiés, ils ont remarqué une amélioration par rapport à la matrice vierge pour les différentes modifications effectuées.

Cependant, une meilleure stabilité est obtenue par l'ajout de l'agent compatibilisant PP-g-MA. Cette amélioration est expliquée par une meilleure adhésion interfaciale entre les fibres et la matrice.

L'étude réalisée par *R.Bouza et al* [56] confirme que l'addition de la charge cellulosique aussi bien que sa bonne dispersion, agissent comme agent de nucléation qui augmente la température ainsi que la vitesse de cristallisation de la matrice PP. Par conséquence, réduisent le temps de refroidissement nécessaire pour atteindre une bonne stabilité dimensionnelle. Ceci est très important du point de vu technique, car il permet d'augmenter la productivité en diminuant le temps de cycle de solidification du composite. D'un autre coté, ils ont constaté que l'augmentation de la charge n'améliore pas forcement la cristallinité des composites. Ceci est relié à l'augmentation de la vitesse de cristallisation qui provoque l'apparition de structures cristallines imparfaites de tailles réduites.

Contrairement à *M.Pracella et al* [42], *R.Bouza et al* [56] ont démontré l'apparition de la phase cristalline β avec l'ajout de 20% de farine de bois. Ceci a été confirmé par l'apparition d'un second pic à faible température sur le diagramme endothermique obtenue par DSC et par l'apparition du pic correspondant au plan 300 sur l'analyse par DRX. Pareillement, l'analyse par DSC a montré que la stabilité des composites est inférieure à celle de la matrice vierge. Ceci est dû à la faible stabilité thermique de l'hémicellulose contenue dans la farine. Mais cet effet est relativement amélioré pour les composites compatibilisés en raison de l'amélioration de l'adhésion entre la charge et la matrice. Toutefois, la température de dégradation maximale est beaucoup plus importante pour les composites que pour la matrice vierge. Ce qui indique qu'une grande partie des composants du matériau composites se dégrade à des températures plus élevées.

K.Nayak et al [57] sont intéressés aux comportements mécaniques et thermiques des composites PEHD/Jute, traités par le PE-g-MA. Ils ont constaté que les résistances à la traction et au fluage augmentent avec l'augmentation de la teneur en fibres jusqu'à 30%,

au-delà de cette valeur la résistance se détériore. Cette augmentation de la résistance mécanique est principalement attribuée à l'effet de renforcement de la fibre, ce qui a permis une distribution uniforme du polymère dans la phase dispersée de la fibre. Au-delà de 30%, la formation des agrégats a été favorisée à l'intérieure de la matrice, ce qui a provoqué un transfert de tension nom uniforme, et par conséquent une diminution de la résistance à la traction. Une hausse dans la stabilité thermique des composites traités avec le PE-g-MA comparés à ceux nom traités a été enregistrée. Ils ont remarqués aussi la présence de deux pics de relaxation qui correspondent respectivement à α et γ . Le premier est associé à la mobilité des segments de la chaine de PEHD dans la phase cristalline et le deuxième est associé à la température de transition vitreuse (Tg) relative à la phase amorphe, par contre la relaxation β n'est pas visible en raison de l'absence de branchement dans le PEHD. Les concentrations de la fibre et de l'agent de couplage ont été optimisées à des valeurs correspondantes respectivement à 30% et 1%.

L'incorporation de matériaux cellulosique dans la matrice polychlorure de vinyle affecte un grand nombre de propriétés. Cependant, il s'est avéré que la qualité de l'adhésion seule, ne prédomine pas les propriétés des composites mais d'autre facteurs rentrent également en jeu. Ces derniers sont aussi bien affectés par la fraction, la nature ou la taille de la charge incorporée. De nombreuses études ont été réalisées afin de voir l'influence de l'un ou de l'autre sur les propriétés mécaniques, physiques ou thermiques de composites PVC/FA.

Ceci a été réalisée par *Nicole Stark* [58], lors d'un travail sur les effets de la taille des particules de farine de bois sur les propriétés du polypropylène, quatre types de dérivés de la farine de bois ont été utilisés comme charge avec le polypropylène à différents taux de 20, 40, 50 et 60% (% massique). Ils ont observé lorsque la quantité de farine augmente, les modules de flexion et de traction, la densité, la température de ramollissement et l'énergie au choc (avec entaille) augmentent. Par contre, l'allongement à la traction, l'indice de fluidité et l'énergie au choc (sans entaille) diminuent.

Pour étudier la taille des particules, ils ont sélectionné une proportion de farine de bois à 40%. Ils ont constaté que la taille des particules affecte l'indice de fluidité, la température de ramollissement et l'énergie au choc. Ils ont déduit que les particules supérieures à 0,25mm augmentent les modules de traction et de flexion. Une étude plus approfondie sur l'arrangement ou la distribution des particules aurait peut-être permis d'expliquer plus précisément ces dernières observations. En effet, *K.Oksman et C.Clemons* [59] et *S.M.Shaler* [60] notent que de petites particules bien dispersées augmentent généralement les propriétés mécaniques.

L'étude menée par *A.R.Sanadi et al* [61] ont effectué des analyses thermiques et mécaniques sur des composites à base de polypropylène et de charge lignocellulosiques. Ils ont axé leur étude sur l'effet de la teneur en fibres de l'interface sur le comportement mécanique des composites à fibres de kenaf. L'anhydride maléique (AM) greffé sur du polypropylène (PP-g-AM) a été utilisé comme agent de couplage. La résistance et le module d'Young augmente avec la l'addition des fibres et les défauts de déformation diminuent avec l'augmentation de la composition en fibres.

Ahmed Koubaa et al [62] ont étudié l'influence du procédé de transformation et la taille de la fibre sur la structure et les propriétés de WPC. Les (WPC) ont été mises en œuvre par le procédé d'extrusion et moulage par injection (IM) en utilisant des fibres de longueurs différents. Le procédé (IM) à donner de meilleurs résultats des propriétés physiques et mécaniques par rapport au procédé d'extrusion, mais la plus haute densité a été obtenue avec le procédé d'extrusion. Par conséquent, cette différence de comportement mécanique ne pourraient pas être expliquées par la densité du composite seulement mais par la variation de la structure (alignement de la fibre) et la qualité de la surface. Dans cette étude les analyses microscopiques ont montré que, avec le procédé IM, les fibres ont été bien alignées sur la surface, alors que dans le procédé d'extrusion les fibres.

Pour l'absorption en eau, les deux procédés de transformation ont montré que l'absorption en eau est en moyenne 13% pour WPC moulage par injection et 42% que pour l'extrusion, Cette différence de l'absorption due à la qualité de la surface des composites et à l'orientation de la fibre peut avoir aussi cette différence dans le comportement d'absorption de l'eau avec le procédé de transformation.

Ces résultats permettent d'identifier un procédé de transformation convenable pour étudier la longueur de la fibre. Cette étude nous a permis de comprendre un meilleur rapport entre le procédé de transformation et les caractéristiques de la fibre, et le comportement du composite.

L'étude réalisée par *S. Migneault et al* [63] sur l'effet de la longueur des fibres de carbone (de dimension 0.5, 1, 2, 5,10 mm) sur les propriétés du polypropylène.

Dans cette étude ils ont montrés que : les fibres de carbone de longueur 0.5, 1, 2 mm à donner de meilleurs propriété mécanique par rapport à la longueur 5 et 10 mm dans les composites Fibres de carbone/Polypropylène CF/PP. Les résultats de l'analyse thermogravimétrie (ATG) ont montré que la stabilité thermique de composites CF/PP est améliorée par l'augmentation de la longueur de la fibre.

Les résultats d'analyse dynamique mécanique DMA ont montré que : le module de conservation du composite Fibre de carbone/Polypropylène CF/PP des longueurs de la fibre 5 et 10 mm et amélioré par apport à la longueur de la fibre 1 et 2 mm, aucun changement considérable n'a été observé.

H.Wang et al [64] ont analysé l'influence de la teneur en humidité et la taille des particules de bamboo sur la stabilité dimensionnelle et les propriétés mécaniques (module de traction, résistance à la traction) du composite bamboo/PVC. Dans cette étude, trois groupes de particules sont utilisés correspondant à trois différents diamètres de 0,84, 0,42, 0,25 mm respectivement, la teneur en bamboo est de 50, 60 et 70% massique et la teneur en humidité des fibres de bamboo varie selon trois valeurs : 3,5 et 8%.

Les résultats montrent que la densité du composite avec 50% massique est de 943 kg/m³, valeur supérieure à celle du composite à 70% dont la densité est de 714 kg/m³, du fait de la haute porosité du bamboo et sa faible densité relativement au PVC.

L'absorption d'eau augmente en fonction de la teneur en fibre du fait de la présence de porosité, et lumens liaisons hydrogènes liés aux groupements hydroxyles présents dans les régions amorphes de la cellulose et hémicellulose de la fibre accessibles à l'eau.

A.K.Beldzki et al [65] ont étudié les composites en polypropylène renforcés par les fibres d'abaca et les comparer avec les composites PP/Fibre de jute et PP/Fibre de lin. Ils ont utilisé différents taux de charge (20, 30, 40, 50 % en poids). Après examen des propriétés mécaniques des différents composites élaborés, pour un taux de charge inférieure à 40 % la résistance de traction et de flexion augmentent. Au de là de ce taux l'effet inverse a été constaté. Les essais de choc ont été également effectués et la même tendance a été observée.

Après incorporation d'un agent de couplage (PP-g-MA) aux différents composites, les résistances à la traction et de flexion augmentent de 30 % à 80% pour les différents taux de charge et cela est dû à une amélioration de l'adhésion interfaciale entre les différentes fibres et la matrice PP. Ils ont constaté aussi que les composites PP/Fibre de jute fournissent de meilleurs résultats en termes de résistance à la traction et de flexion, par contre le composite PP/Fibre d'abaca a révélé de meilleures résistances au choc comparé aux composites PP/Jute et PP/lin.

D.Maldas et al [66] ont étudié l'effet de la proportion et la granulométrie de la charge, la présence et la concentration de l'agent de couplage poly (méthylène (polyphenyl isocyanate) ainsi que sa nature sur les propriétés mécaniques tels que l'allongement, l'énergie, la résistance à la traction et aussi le module de traction des composites à base d'une matrice de polystyrène et de farine de bois de sapin. Les résultats révèlent une amélioration des propriétés mécaniques lorsque la température de malaxage des composites se situe entre 175 et 190°C. Au-delà de cette température une diminution des propriétés est enregistrée. D'autre part, la concentration optimale de l'agent de couplage est estimée à 2%. En outre, il est observé que la taille optimale des particules de la charge naturelle et $60\mu m$, alors que la proportion de la charge est de l'ordre de 30%. L'augmentation de la quantité de charge s'avère bénéfique, si seulement, elle est accompagnée par une amélioration d'adhésion.

B.A.Acha et al [67] ont fait varier le taux de fibre de jute incorporé dans une matrice de polypropylène et mettent en évidence l'augmentation du module d'Young avec le taux de fibre. Ce comportement est relié à l'utilisation d'une charge rigide à haut module. En contrepartie, une réduction de la déformation à la rupture est enregistrée à cause de la limitation imposée sur l'allongement de la matrice par l'utilisation de cette charge rigide. Au même temps, ils ont constaté que malgré une faible adhésion de la matrice aux fibres, une augmentation de la résistance en traction est obtenue. Ce qui est expliqué par l'effet de la longueur des fibres. Avec l'ajout d'agent de couplage, les auteurs ont constaté une diminution de la déformation des composites qu'ils ont expliqué par la rigidification de l'interphase entre fibre et matrice ce qui empêche la mobilité des chaines macromoléculaires donc limite la déformabilité de la matrice. Les tests au choc ont également montré une faible énergie de propagation pour les composites compatibilisés ce qui est une indication d'une bonne adhésion entre la matrice polypropylène et les fibres.

La majorité de ces travaux, ont montré que l'existence de fortes interactions entre les charges et la matrice traduit une bonne adhésion interfaciale. Ceci améliore à la fois la résistance mécanique du composite et sa stabilité thermique en plus de l'amélioration de la résistance à l'absorption d'eau. Ceci est très intéressant dans des applications en contacte direct avec un milieu humide.

Partie expérimentale

Partie expérimentale

Protocoles Expérimentaux Et Techniques D'analyse

Dans ce chapitre, nous présenterons les matériaux utilisés, le mode de préparation des échantillons, ainsi que la description des techniques expérimentales utilisées dans la caractérisation.

II-1 Présentation des produits utilisés

II-1-1 Polychlorure de vinyle

Dans notre travail nous nous sommes intéressés à l'étude des composites à base d'une matrice en polychlorure de vinyle. Le choix de cette matrice est justifié par le fait que le polychlorure de vinyle est un polymère de grand tonnage et présente d'excellentes propriétés et une production mondiale importante. Le polychlorure de vinyle est fourni par la société CABEL de la zone industrielle **SEMMAR** (Alger), fournisseur : ETOCHU/JAPAN dont les propriétés sont résumées dans le tableau 3.

Propriété	Caractéristiques	Valeur nominale	Méthode de test
Aspect	Poudre blanche	-	-
Propriétés Physiques	Densité : 30-35°C Viscosité Valeur K Teneur en volatil	0.481-0.561 0.99-1.030 70.2-72.0 0.5 % max	ASTM D 1895 ASTM D 1243 DIN 53726 ASTM D 3030

Tableau.3: Propriétés de polychlorure de vinyle de type SE-1200.

II-1-2 Plastifiant Dioctylphtalate (DOP)

Le plastifiant utilisé pour l'élaboration des différentes formulations des composites est le di-2-éthylhexylphtalate appelé couramment le dioctylphtalate (DOP). Les différentes caractéristiques du DOP sont regroupées dans le tableau 4.

Caractéristique	Valeur	Méthode de test
Aspect	Huileux limpide	-
Densité	0.982-0.986	ASTM D 1298 - 90
Acidité	< 0.1mg KOH/g	ASTM D 1045 - 86
Couleur	Max 40 APHA	ASTM D 1045 - 86
Viscosité à 20°C	75-85 Cst	ASTM D 445 - 88
Viscosité à 25°C	57-61 Cst	ASTM D 445 - 88
Teneur en ester	99-99.8 %	CHROMATOGRAPHY
Point d'éclair	> 190°C	ASTM D 93 - 90
Teneur en eau	≤ 1000 ppm	ASTM E 203 - 92
Indice de	1.485-1.487	ASTM D-1045
réfraction		

Tableau.4: Propriétés de di-2-éthylhexylphtalate-(DOP).

II-1-3 Stabilisant REAPAK B-CV/3037

Le REAPAK B-CV/3037 est un stabilisant à haute performance Ca/Zn en poudre, il est utilisé dans la production en PVC, soit pour isolation primaire que pour gaines. Ce produit est aussi utilisé convenablement pour une vaste gamme d'application. Les différentes caractéristiques du stabilisant Ca/Zn sont regroupées dans le tableau 5.

Propriété	Caractéristiques	Valeur nominale	Méthode de test
Aspect	Poudre blanche	-	Visuel
Propriété physique	Densité	0.37	APF00500

Tableau.5: Propriétés de REAPAK B-CV/3037 (Ca/Zn).

II-1-4 Fibre d'Alfa

La charge naturelle utilisée dans ce présent travail est la fibre d'Alfa récupérée directement dans la région de M'sila, Algérie.

II-1-4-1 Caractérisation de la fibre d'Alfa

a) Mode d'obtention de la fibre d'Alfa

a.1 Lavage: Nous avons procédé au lavage des tiges d'Alfa avec de l'eau froide afin d'éliminer les impuretés.

a.2 Séchage: Les tiges d'Alfa sont étalées sur un support propre, puis séchées à l'air libre pendant quatre jours.

a.3 Broyage et le découpage : Les fibres d'Alfa sont au préalable découpées à une longueur de 1 à 2 cm, ensuite par l'effet de cisaillement intense produit par le biais d'un broyeur à poivre, la fibre d'Alfa est obtenue.

a.4 Tamisage : La fibre ainsi obtenue est tamisée, à travers plusieurs tamis de différents diamètres : $160 \mu m$, $200 \mu m$, $250 \mu m$, $315 \mu m$.

B) Analyse chimique de la fibre d'Alfa

On a procédé en premier lieu à la détermination du taux d'extractible, le taux de matière minérale et à la détermination majeurs (lignine, hémicellulose, cellulose).

Chapitre II Protocoles Expérimentaux et Techniques D'analyse

B-1 Détermination du taux d'extractibles

Les extractibles sont des composés solubles dans des solvants (éther de pétrole, méthanol, dichloroethane, eau).

* Mode opératoire

- Une prise d'essai de la fibre d'Alfa (M₀) mise dans une cartouche d'extraction recouverte du coton ;
- L'introduire dans le soxhlet en utilisant l'acétone comme solvant ;
- Porter à reflux pendant 24h ;
- Séchage à l'air libre puis mettre dans l'étuve à une température de 105° C, pendant 12h ;
- > Peser (M_1) après refroidissement.

Le taux d'extractibles est donné par la relation suivante :

Taux d'extractible (%) =
$$\frac{M_0 - M_1}{M_0} * 100$$

Avec :

M₀: Prise d'essai de l'échantillon (g).

M₁: masse de l'échantillon après étuvage (g).

B-2 Détermination du taux de matière minérale (TMM)

La matière minérale existante dans la fibre d'Alfa est obtenue par incération d'une quantité (M_0) de ces dernières dans un four à 800°C pendant 4 heures. La masse du résidu obtenu (cendre) (M_1) représente la teneur de la matière minérale.

Le taux de matière minérale (TMM) est exprimé par la relation suivante :

TMM (%) =
$$\frac{M_1}{M_0} * 100$$

B-3 Détermination du taux de lignine

* Mode opératoire

- Une prise d'essai de la fibre d'Alfa (M₀), est immergée dans l'acide sulfurique concentré à 72% à une température ambiante pendant 2h avec une légère agitation toutes les 15 minutes ;
- Porter à reflux pendant 4h dans un ballon contenant 500ml de l'eau distillée chaude ;
- Laissé reposer à une température ambiante pendant 24h ;
- Filtrer sous vide et rincer avec de l'eau distillée bouillante, puis avec de l'eau froide jusqu'à PH neutre ;
- Séchage du filtre obtenu dans l'étuve à une température de 105° C jusqu'à l'obtention de masse constante (M₁).

Le taux de la lignine est exprimé par la relation suivante :

Lignine (%) =
$$\frac{M_0}{M_1} * 100$$

B-4 Détermination du taux de cellulose

L'obtention du taux de cellulose s'effectue en deux étapes :

1^{ère} étape : Elimination de la lignine (blanchissement)

* Mode opératoire

Peser M₀ = 5g de la fibre d'Alfa sans extractibles après séchage dans l'étuve à une température 105°C ;

- L'introduire dans une solution tampon d'acide acétique (CH3COOH) et d'acétate de sodium (CH3COO⁻Na⁺) jusqu'à immersion totale de la fibre d'Alfa ;
- Porter à reflux pendant 8h à une température de 80°C, en ajoutant chaque 2h,
 2g de (NaClO₃), laissé reposer pendant 24h ;
- Filtrer sous vide et rincer avec de l'eau distillée, puis avec l'acétone, laisse reposer à température ambiante pendant 24h ;
- Séchage du filtre obtenu dans l'étuve à une température de 105° C jusqu'à l'obtention de masse constante (M₁).

2^{ème} étape : Elimination de l'hémicellulose

* Mode opératoire

- Introduire la masse (M₁) récupérée dans la première étape dans une solution de soude concentrée (2M) jusqu'à immersion totale à une température ambiante pendant 30 mn avec une légère agitation toutes les 10 mn ;
- Laisse reposé à une température ambiante pendant 24h après l'ajout de 100ml de l'eau distillée ;
- Filtrer sous vide et rincer avec de l'acide acétique à 10%, puis avec de l'eau distillée jusqu'à l'obtention d'un PH neutre ;
- Séchage du filtre obtenu dans l'étuve à une température de 105° C jusqu'à l'obtention de masse de résidu (M₂).

Le taux de cellulose est exprimé par la relation suivante :

Cellulose (%) =
$$\frac{M_2}{M_0} * 100$$

Avec :

M₀: masse pesée de l'échantillon (g).

M₁: masse de résidu en cellulose (g).

B-5 Détermination du taux d'hémicellulose

Le taux d'hémicellulose est évalué directement par calcul :

Hémicellulose (%) =100 – (% TMM + % Extractible + % Lignine +% Cellulose).

B-5 Densité

La densité apparente est mesurée par la méthode pycnométrique, selon la norme NFT51-063. L'éthanol est le solvant de déplacement utilisé qui assure une bonne mouillabilité de l'échantillon.

$$d = \frac{\rho (M_2 - M_1)}{(M_4 - M_1) - (M_3 - M_2)}$$

 ρ : Densité du liquide de déplacement ;

M₁ : Poids du pycnomètre à vide ;

M₂ : Poids du pycnomètre contenant la prise d'essai ;

M₃ : Poids du pycnomètre contenant la prise d'essai et le liquide de déplacement ;

M₄ : Poids du pycnomètre contenant le liquide de déplacement.

II-2 Elaboration des composites PVC/fibre d'Alfa

Le pré mélange a été préparé par un procédé de calandrage. Initialement on mélange 3 Kg du polychlorure de vinyle avec 120 g du stabilisant, ce mélange a été introduit dans un mélangeur de type TG6HK8 (voir la Figure.7), après un temps de séjour de trois

Protocoles Expérimentaux et Techniques D'analyse

minutes, à une vitesse de 3000 tour/minutes. On ajoute 900 g du plastifiant et on a continué à mélanger pendant sept minutes de telle manière à ne pas dépasser une température de 90°C. Le compound obtenue est appelé mélange à sec, il est utilisé pour la préparation des différentes formulations.

Chapitre II

Figure. 7: Mélangeur type TG6HK

Ce pré mélange (PVC plastifié et stabilisé/FA) (voir la Figure.8) est réalisé dans un mélangeur à double cylindres de type SCUYER A 80 (voir la Figure.9). Pour chaque formulation 300 grammes prélevés du mélange à sec sont ramollis à une vitesse de rotation des cylindres de 29 tour/minutes et à une température de 136°C, après cinq minute on a introduit la fibre d'Alfa à la teneur désirée soit : 10%,15% et 20% massique du mélange totale à différents diamètres (160µm, 200µm, 250µm, 315µm). Le malaxage est maintenu pendant sept minutes.

Chaque formulation est ensuite soumise à un moulage par pressage à chaud sous une pression de 250KN et à une température de 170°C à l'aide d'une presse de marque FONTJINE de model TP400 (voir la Figure.10) pendant un temps de séjours de cinq minutes. Un préchauffage est réalisé jusqu'à une fusion préliminaire du mélange, afin d'éviter la présence des bulles d'air. Les plaques (voir la figure.11) ainsi obtenues avec

une épaisseur de 2mm serviront pour le découpage d'échantillons sous forme d'haltères (voir la figure.12) et carrés pour être utilisés ensuite dans les différents tests de caractérisation.

Figure. 8: Poudres du polychlorure de vinyle et de la fibre d'Alfa tamisé

Figure. 9 : Mode de préparation des filmes de composites par calandrage

Figure. 10: Moulage par compression

Figure. 11: Plaque du PVC vierge après compression

Figure. 12 : Forme des haltères

Les compositions massiques des différentes formulations PVC/FA élaborées sont résumées dans le tableau 6.

Composants	Formulations			
	F0(%)	F10(%)	F15(%)	F20(%)
PVC	100	100	100	100
Plastifiant DOP	30	30	30	30
Stabilisant Ca /Zn	4	4	4	4
F160	-	10	15	20
F200	-	10	15	20
F250	-	10	15	20
F315	-	10	15	20

Tableau.6: Les compositions massiques des différentes formulations PVC/FA.

II-3 Techniques expérimentales

II-3-1 Test de dureté

La mesure de dureté a été réalisée selon la norme MTD-DSM et ISO-R 868. Ce test consiste à appliquer un effort dont le but d'enfoncer un pénétrateur dans les plaques à analyser, la valeur de la dureté est relevé directement après 15 secondes sur le duromètre shore D (voir la figure.13). Pour avoir des résultats plus précis, on a relevé les valeurs dans des zones distinctes de la plaque.

Figure. 13 : Duromètre Shore D.

II-3-2 Test de densité

La mesure de densité a été réalisée a l'aide d'un densimètre selon la norme MTD-DSM et ISO-R 868, ce test consiste à peser la masse de l'échantillon (m = 5g) dans l'air notée (A), suivi d'une tare de la balance, puis on prend le même échantillon et on le pèse sous l'eau distillée. La valeur affichée sur la balance désigne la poussée d'Archimède de l'échantillon notée (P). La masse volumique de l'eau distillée est tirée dans des tables tout en connaissant sa température (voir la figure. 14).

La masse volumique de l'échantillon est calculée de la manière suivante :

$$\rho_{\text{\acute{e}chantillon}} = \frac{A}{P} * \rho_{\text{eau distill\acute{e}e}}$$

Avec :

 ρ $_{\acute{e}chantillon}$: La masse volumique de l'échantillon

ρ eau distillé: La masse volumique de l'eau distillée

A : La masse de l'échantillon dans l'air

P : Poussée d'Archimède.

Figure. 14 : Densimètre

II-3-3 Test d'absorption d'eau

Le test d'absorption d'eau consiste à immergé des éprouvette carrées de 2 cm de coté (trois éprouvette carrés pour chaque diamètre à différent taux) dans l'eau distillée à température 21°C sous l'agitation. Avant l'immersion, les éprouvettes carrées ont été étuvées à 50 °C pendant 24h ensuite refroidies dans un dessiccateur. Et immédiatement après, elles ont été pesées (m_0) sur une balance analytique de précision 0.0001g. Un suivi périodique de la variation du poids est effectué (m) chaque 24h. Et avant d'effectuer chaque pesés, la quantité d'eau en excès est éliminée en essuyant l'échantillon. L'opération continue pendant deux mois pour étudier la cinétique d'absorption.

La variation de masse est donnée par la formule suivante :

$$\Delta m (\%) = \frac{m - m_0}{m_0} * 100$$

Avec :

m₀ : La masse des échantillons avant immersion

m : La masse des échantillons après immersion.

Figure. 15 : Absorption d'eau

II-3-4 Propriétés morphologiques : Microscopie électronique à balayage (MEB)

La microscopie électronique à balayage (MEB) est une technique effectuée à l'Université A. MIRA de Bejaia, elle permet de visualiser des structures par bombardement d'électrons. Les électrons incidents excitent la couche superficielle de l'échantillon, produisant une émission d'électrons secondaires. Ceux-ci seront plus facilement émis par les reliefs de la surface de l'échantillon et donneront naissance à des zones lumineuses alors que les creux apparaîtront plus sombres. Les mesures ont été

réalisées sur des échantillons à surface fracturée à l'aide d'un microscope électronique à balayage de marque **FEI CONTA 200**.

II-3-5 Propriétés thermiques : Analyse thermogravimétrique (ATG)

L'analyse thermogravimétrique mesure les variations de masse d'un matériau (soumis à des variations de température dans une atmosphère contrôlée). Les mesures de la stabilité et les vitesses de décompositions des différents échantillons sont effectuées à l'aide d'un appareil thermogravimétrique de type « **SETAREM TGA 92** ». Une masse initiale de quelques milligrammes (15 à 20 mg) d'un échantillon est introduite da ns un creuset en platine. La masse de l'échantillon en fonction de la température est mesurée à l'aide d'une thermobalance sous atmosphère inerte d'argon jusqu'à 700°C avec une vitesse de chauffe (10°C/mn).

II-3-6 Propriétés mécaniques

II-3-6-1 Test de traction

Le test de traction permet de déterminer l'allongement, la contrainte à la rupture et le module d'Young des matériaux. Ces essais permettent d'établir une relation entre les contraintes et les déformations et de déterminer la nature du matériau (rigide ou souple). Le test de traction est réalisé sur des éprouvettes normalisées sous forme d'haltère de type « H_2 ». Ces essais ont été réalisés sur une machine de traction de marque type « **Zwick/Roell** », pilotée par un microordinateur selon la norme « **ISO 527, juin 1993** » à la température ambiante et une vitesse de déplacement 100 mm/min. Ce test consiste à soumettre l'éprouvette à un étirement avec une vitesse constante, et on relève la force de traction nécessaire en fonction de l'allongement (voir la figure. 16).

Figure. 16 : Machine de traction *Zwick/Rowell*

Ces essais permettent de tracer une courbe dite de traction à partir de laquelle les caractéristiques suivantes peuvent être déduites :

- La déformation élastique ;
- La limite élastique « σe » ;
- La déformation plastique ;
- La contrainte maximale atteinte (contrainte à la rupture) notée « σ » ;
- Le module d'élasticité « E ».

La contrainte à la rupture est définie comme étant le rapport entre l'effort maximal « F » et la section de l'éprouvette « S »

 $\sigma = \frac{F}{S}$

Le pourcentage d'allongement à la rupture est calculé par la relation suivante :

$$\epsilon_{(\%)} = \frac{L - L_0}{L_0} * 100$$

Figure. 17 : Courbe de traction

Avec :

- ε: Allongement à la rupture
- L : Longueur initiale de l'éprouvette
- L₀ : Longueur finale de l'éprouvette

Le module d'élasticité : c'est le rapport entre la contrainte à la rupture et l'allongement à la rupture dans le domaine élastique.

$$E = \frac{\sigma}{\epsilon}$$

Résultats et discussions

Chapitre III Résultats et Discussions

Comme tous les matériaux utilisés dans le milieu industriel, les matériaux composites doivent être caractérisés et contrôlés afin de répondre aux règles de qualité et de sécurité souhaitées. Leur utilisation intense dans des applications industrielles suscite grand intérêt à connaître leurs propriétés mécaniques et physiques.

III-1 Caractérisation physico-chimique de la fibre d'Alfa

La composition chimique de la fibre d'Alfa a été déterminée au niveau du laboratoire des matériaux organiques, Université de Bejaia. Les différents résultats sont représentés sur le tableau 7.

Propriétés	Valeurs
Taux de cellulose	45%
Taux de lignine	29.8%
Taux d'hémicellulose	20.94%
Taux d'humidité	11.2%
Taux d'extractible	65.08%
Taux de matière minérale	2.26%
Densité	0.498

Tableau 7 : Composition chimique de la fibre d'Alfa

La teneur en cellulose assez appréciable nous permet ainsi d'envisager l'utilisation de la fibre d'Alfa en tant que renfort idéal pour la valorisation à moindre coût des composites à matrice thermoplastique.

III-2 Caractérisation des composites

Parmi les techniques de caractérisation utilisées habituellement dans l'étude de la qualité de l'interface entre les charges, en particulier cellulosiques connues pour leur hydrophilie importante, et la matrice thermoplastique (polychlorure de vinyle) hydrophobe, on trouve la méthode microscopique électronique à balayage MEB pour une caractérisation de la morphologie des surfaces fracturées des composites. Nous avons appuyé cette technique par une plus simple mais qui reste efficace qu'est le suivi du taux d'absorption d'eau, densité et de la dureté en plus de l'analyse thermogravimétrique ATG et propriétés mécaniques.

III-2-1 Caractérisation morphologique (Analyse Microscopique Electronique à Balayage (MEB)

L'incorporation de 15% massique de la fibre d'Alfa (FA) à différents diamètres à la matrice vierge du polychlorure de vinyle, sont observés par la microscopie électronique à balayage MEB. Les images obtenues pour les différentes formulations PVC vierge, $PVC/F_{15}160$, $PVC/F_{15}200$, $PVC/F_{15}250$, $PVC/F_{15}315$ sont représentées, respectivement, en figures 18, 19, 20, 21, 22.

La figure 18 représentant le micrographe de la surface fracturée du PVC vierge, montre un état de la surface plus au moins homogène et régulière [68].

Figure. 18 : Micrographie en MEB de la surface fracturée du PVC vierge avec un grossissement de 300

Les figures 19, 20, 21, 22 montrent la surface fracturée des composites PVC/F160, PVC/F200, PVC/F250, PVC/F315 correspondant au taux de charge de 15% en masse.

En figure 19, on observe la présence d'agrégats de l'Alfa, totalement séparés de la matrice de polychlorure de vinyle, mais avec une dimension réduite de la taille de ses agrégats favorisant une meilleure dispersion dans la matrice polychlorure de vinyle.

Figure. 19 : Micrographie en MEB de la surface fracturée du composite PVC/F₁₅160 avec un grossissement de 300

Ces agrégats augmentent en nombre et en dimensions avec l'augmentation de la tailles des fibres d'Alfa (voir figure 20, 21, 22). De plus, la morphologie de surface se distingue par la présence de porosités et de fissurations impliquant l'absence de compatibilité entre la matrice PVC et la fibre d'Alfa, et par voie de conséquence une faible adhésion interfaciale entre la matrice PVC et la fibre d'Alfa. Ceci a déjà été rapporté en littérature [69, 70, 71].

Figure. 20 : Micrographie en MEB de la surface fracturée du composite PVC/F₁₅200 avec grossissement de 30

Figure. 21 : Micrographie en MEB de la surface fracturée du composite PVC/F₁₅250 avec un grossissement de 300

Figure. 22 : Micrographie en MEB de la surface fracturée du composite PVC/F₁₅315 avec un grossissement de 300

III-2-2 Caractérisation physique

III-2-2-1 Test de la dureté Shore D

L'évolution de la dureté des composites PVC/FA en fonction de la taille et du taux de la fibre d'Alfa sont illustrée sur la figure 23, 24. On observe que l'incorporation de la fibre d'Alfa dans le Polychlorure de vinyle est accompagnée d'une augmentation de la dureté des composites PVC/FA comparé au PVC vierge. Cette augmentation est d'autant plus importante que le taux et la taille de la fibre d'Alfa est élevée. Ces résultats sont prévisibles dans la mesure où la fibre d'Alfa est constituée de 45 à 54% de cellulose qui est classée parmi les fibres dures ce qui se traduit par une plus grande résistance à la pénétration de l'aiguille du duromètre dans le matériau composite donc elle accroît la dureté des composites PVC/FA.

Chapitre III

Figure. 24 : Évolution de la dureté des composites PVC/FA en fonction de la taille des

III-2-2-2 Test de densité

L'incorporation de la fibre d'Alfa dans le polychlorure de vinyle conduit à l'obtention de composites à faible densité. En effet, la figure 25, 26, montre l'évolution de la densité en fonction de la taille et du taux de la fibre d'Alfa, nous observons que l'augmentation du taux de la fibre d'Alfa (10%, 15%, 20%) en masse, affiche une tendance à la diminution de la densité des composites PVC/FA. En effet cette incorporation de la fibre d'Alfa dans la matrice PVC entraine l'obtention d'un matériau léger. En revanche, pour les composites obtenus à partir des fibres de taille différentes (160µm, 200µm, 250µm, 315µm), on constate que leurs densités sont presque égales à celle de la matrice vierge. Cependant pour une teneur en charge donnée, la densité n'est pas influencée par la taille des fibres d'Alfa. Ces résultats sont en accord avec les travaux de *B. James et al* [72], suggèrent que la densité des composites polyéthylènes haute densité (PEHD)/Fibre de bois ne sont pas influencées par la longueur des fibres.

Figure. 25 : Évolution de la densité des composites PVC/FA en fonction du taux de FA

Figure. 26 : Évolution de la densité des composite PVC/FA en fonction de la taille des FA

III-2-2-3 Absorption d'eau

La fibre d'Alfa très riche en groupements hydroxyles présente une structure adéquate pour interagir avec les molécules d'eau par la formation de liaisons hydrogènes. Ainsi le polychlorure de vinyle chargé par la fibre d'Alfa est disposé à absorber de grandes quantités d'eau ce qui engendre une diminution des propriétés mécaniques [73].

Une étude du comportement du composite PVC/FA à différents taux et à différentes tailles vis-à-vis de l'absorption d'eau, comparé à celui de la matrice PVC vierge a été réalisée et les résultats sont rapportés en figure 27, 28,29, 30.

A partir de ces figures 27, 28,29, 30 on constate que le taux d'absorption d'eau augmente linéairement en le comparant à celui de la matrice polychlorure de vinyle seule qui enregistre un taux quasi négligeable (0,6%) pendant 4 jours, cela due à la nature apolaire de ce polymère qui lui confère le caractère hydrophobe, ces résultats sont

confirmées par *S.Boufi et al* [74] et *Alain Dufresne et al* [75]. Cependant pour les composites PVC/FA à un taux 10% a différentes tailles, l'équilibre est atteint au bout de 10 jours, 2,08%, 2,82%, 3,54%, 5,14% respectivement, contrairement au composite PVC/FA à un taux 20% où le taux d'absorption continue à augmenter, l'équilibre est atteint au bout de 30 jours, avec des gains de masse de 10,86%, 12,17%, 16,94%, 18,96% respectivement. Ce comportement peut être expliqué par le fait que la fibre d'Alfa très hydrophile grâce aux groupements hydroxyles qu'elle contient lesquels vont interagir avec les molécules d'eau environnantes en formant des liaisons hydrogènes, donc plus le taux et la taille de la fibre est élevée, plus la concentration en OH s'accroit et par conséquent le taux d'absorption devient plus important.

Figure. 27 : Évolution du taux d'absorption d'eau des composites PVC/F160 en fonction du taux de FA

Figure. 28 : Évolution du taux d'absorption d'eau des composites PVC/F200 en fonction du taux de FA

Figure. 29 : Évolution du taux d'absorption d'eau des composites PVC/F250 en fonction du taux de FA

Figure. 30 : Évolution du taux d'absorption d'eau des composites PVC/F 315 en fonction du taux de FA

III-2-3 Propriétés mécaniques

Les propriétés mécaniques des composites à matrice thermoplastiques comme le PVC dépendent de plusieurs facteurs, telles que la dispersion des fibres, la quantité d'air emmagasinée dans le composite durant le mélangeage [76] et l'absorption d'eau [77]. Toutefois, d'après *S.Th. Georgopoulos et al* [78], il faut signaler que l'interface fibrematrice joue un rôle critique pour que chaque élément constituant le composite contribue à la propriété finale du matériau. La résistance des composites à fibre courtes dépend de l'adhésion interfaciale, tandis que le module dépend de l'orientation des fibres. Enfin, un autre facteur influence les propriétés de rupture (résistance et allongement) est le facteur de forme [77.78].

III-2-3-1 Module d'Young

Les figures 31et 32, représente l'évolution du module d'Young en fonction du taux et de la taille de la fibre d'Alfa. D'après ces histogrammes, nous remarquons que le module d'Young accroît avec l'augmentation du taux de charge et la taille de la fibre d'Alfa. Cette augmentation du module d'Young indique que la rigidité des composite a augmenté en réduisant leur élasticité. Autrement dit le module d'Young augmente et cette augmentation est d'autant plus importante que le taux et la taille de la fibre est élevé. Cela est attribué probablement à la bonne orientation des fibres d'Alfa [78], et à la rigidité apporté par les fibres d'Alfa au PVC, ces résultats sont en accord avec les travaux obtenus par *Stark* et *Sanadi* [58,61] sur les effets de la taille des particules de farine de bois sur les propriétés du polypropylène, à différents taux de 20, 40, 50 et 60% massique. Ils ont observé lorsque la quantité de fibre augmente, les modules de flexion et de traction, augmentent a une taille des particules de la FB supérieures à 0,25mm.

Figure. 31 : Évolution du module d'Young des composites PVC/FA en fonction du taux de FA

Figure. 32 : Évolution du module d'Young des composites PVC/FA en fonction de la taille des FA

III-2-3-2 Allongement à la rupture

Les figures 33 et 34, représentent l'évolution de l'allongement à la rupture en fonction de la taille et de la teneur de fibre d'Alfa qui est de 10, 15, 20% en masse. L'allongement à la rupture de PVC vierge est de 185%. L'ajout de la fibre d'Alfa dans la matrice thermoplastique à raison de 10% provoque une chute brutale du pourcentage d'allongement pour le PVC vierge à moins de 70% pour le composite PVC/FA. L'augmentation de la teneur de la fibre d'Alfa dans le composite accentue davantage la baisse de cette caractéristiques mécaniques comme le montre également la figure 32, ce résultat est prévisible dans la mesure où l'addition de la fibre d'Alfa de caractère rigide dans la matrice de PVC [79,80]. Cependant cette dernière caractérise par diminution au

fur et à mesure que la taille des fibres d'Alfa augmente. Ces diminutions de l'ordre de 70 %, 50 % et 30 % ont été enregistrées pour les composites PVC/FA à différents taux de charge 10, 15, 20 % respectivement par rapport à la matrice de polychlorure de vinyle vierge. Ce résultat est en accord parfait avec *K. Oksman* et *C. Clemons* [59]. La détérioration de cette propriété est principalement due à la mauvaise dispersion de la fibre d'Alfa dans la matrice engendrée par une faible adhésion interfaciale fibre-matrice, conduisant également à la formation d'agrégats chaque fois en augmentant la taille des fibres.

Figure. 33 : Évolution de l'allongement à la rupture des composites PVC/FA en fonction du taux de FA

Figure. 34 : Évolution de l'allongement à la rupture des composites PVC/FA en fonction de la taille des FA

III-2-3-3 Contrainte à la rupture

L'effet de la taille et de la teneur de la fibre d'Alfa sur la contrainte à la rupture des composites PVC/FA est présenté en figures 35 et 36. L'augmentation du taux et de la taille de la fibre d'Alfa dans la matrice de polychlorure de vinyle conduit à une diminution de la contrainte à la rupture pour les composites comparée à la matrice de polychlorure de vinyle vierge. Effectivement, nous enregistrons une diminution de 16 %,

Chapitre III

15 % et 10 % pour les formulations élaborées avec la fibre d'Alfa 10, 15, 20 % en masse. En effet, quelques travaux de recherche ont confirmé ces résultats tels que *Kaci et al* [42], *Djidjelli* et al [10] ont attribué cette baisse à la diminution de la force de liaison entre la fibre et la matrice qui obstrue la propagation d'effort. Cette diminution augmente au fur et à mesure que le taux de fibre d'Alfa augmente, cela peut s'expliquer par la tendance des particules de la fibre d'Alfa à se regrouper en formant des agglomérations qui induisent des hétérogénéités et un transfert de contrainte nom uniforme au sein de la matrice, par conséquent il se produit une fragilisation du matériaux composite. Cependant cette baisse met en évidence le rôle principale de la taille des fibres d'Alfa dans l'améliorations de l'adhésion interfaciale qui est en parfait accord avec *Stark et Sanadi* [58,61] et que c'est bien la taille qui est le paramètre prépondérant influençant les propriétés mécaniques d'après *Shaler* [60] qui distinguent les petites particules bien dispersées améliorent aussi la résistance mécanique.

Figure. 35 : Évolution de la contrainte à la rupture des composites PVC/FA en fonction du taux de FA

Figure. 36: Évolution de la contrainte à la rupture des composites PVC/FA en fonction de la taille des FA

III-2-4 Etude de stabilité des composites ATG/DTG

La stabilité thermique des composites est un paramètre important pour leur transformation et usage. Leur préparation demande un mélange de ces constituants à des hautes températures. Cependant, à ces conditions la dégradation peut engendrer des effets indésirables qui se répercutent sur quelques propriétés.

III-2-4-1 Comportement thermique de la matrice polychlorure de vinyle

Les thermogrammes TG et DTG de la matrice PVC vierge représentés sur la figure 37 nous permettent d'observé deux palier de perte de masse. En effet, on registre un premier palier de stabilité, qui s'étale entre 10°C et 239,2°C ou l'échantillon est stable thermiquement. A partir de la température de début de décomposition l'échantillon (247,1-316) subit une perte de masse qui est évalué à 57%, elle est attribuée au phénomène de déshydrochloruration (dégagement de HCL) et la perte du plastifiant. Sous l'effet de la température les radicaux (CL') résultants de la coupure des liaisons labiles (-C-CL) vont arracher un radical d'hydrogène (H) des groupes (-C-H) adjacents pour créer par la suite une liaison H-CL. Ce mécanisme chimique donne naissance à une double liaison sur la chaîne du polymère. Dés que cette réaction démarre, elle progresse le long de la chaîne compte tenu du fait que chaque liaison insaturée disloque l'atome de chlore en position α par activation et induit une nouvelle libération de l'acide chlorhydrique. Ce processus est suivi de la formation des doubles liaisons conjuguées dans les chaînes polymériques [10].

Mécanisme de dépolymérisation :

Polychlorure de vinyle

Polyacétylène

De 316°C à 407,1°C L'échantillon est de nouveau stable thermiquement, autrement dit l'échantillon ne perd pas de masse dans cette plage de température. En effet, après le dégagement de HCL, des doubles liaisons sont formés et donne naissances au polyacétylène qui est plus stable que le PVC, il se réticule au fera et à mesure de sa formation. De 407,1°C à 462,3°C on observe un deuxième palier de décomposition, beaucoup plus faible que le premier et il correspond au cracking du polyacétyléne (rupture des liaisons covalentes). Au delà de 462,3°C un résidu stable est formé, il correspond au carbone.

Pour la vitesse de décomposition en %/mn la figure nous montre que la vitesse de décomposition est presque nulle pour les températures inférieures à 235° C. A partir de cette température la vitesse augmente brusquement et atteint un maximum de 18,57 %/mn à Tmax =255,4°C, cette phase correspond à la phase de dégagement de l'acide chlorhydrique [10].

Au-delà de 255,4°C la vitesse de décomposition diminue de nouveau et atteint le niveau zéro dans la zone de formation du polyacétyléne. Le cracking du polyacétyléne se manifeste de par une nouvelle augmentation de la vitesse jusqu'à une valeur de 4%/mn et diminue de nouveau jusqu'à la valeur zéro au voisinage de 462,3°C (formation du résidu du carbone).

Figure. 37 : Thermogrammes TG et DTG de polychlorure de vinyle (PVC) vierge

III-2-4-2 Comportement thermique des composites PVC/FA

a. Effet de taux de la fibre d'Alfa

Les figures 38 et 39, montrent les thermogrammes TG, des différents composites élaborés des formulations : F160 et F315 à différent taux 10, 15, 20%. On constate que l'incorporation de la fibre d'Alfa dans la matrice polychlorure de vinyle diminue la température de début de décomposition et cette diminution est d'autant plus grande que le taux de la fibre d'Alfa augmente. Elle estimée à 247,1°C pour le PVC vierge et à 239,5°C, à 227,1°C, à 222°C pour les formulations $F_{10}160$, $F_{15}160$, $F_{20}160$ et de 236,6°C 232°C, 230,8°C pour les formulations $F_{10}315$, $F_{15}315$, $F_{20}315$ respectivement. Cette diminution peut être attribuée à la présence des trois constituants principaux (cellulose, hémicellulose et lignines) de la fibre, un tel résultat est confirme par *Ersan putun et al*

[81]. Par conséquent le comportement thermique du composite représente la somme des comportements individuels de ces deux constituants fibre et matrice. Au voisinage de 460°C, on enregistre un palier de stabilité, attribué à la formation d'un résidu. Ces résultats sont en accord avec les quantités des substances minérales dans les fibres lignocellulociques. À titre d'exemple on enregistre 21, 093, 19,252, 14, 478 % de résidu pour les formulations $F_{10}160$, $F_{15}160$ et $F_{20}160$ respectivement.

Figure. 38 : Thermogrammes TG des composites PVC/F160

Figure. 39 : Thermogrammes TG des composites PVC/F315

Les figures 40 et 41, représentent les thermogrammes DTG des composite PVC/FA pour les formulations F160, F315 à différents taux de charge 10, 15, 20% en masse.

Au voisinage de 100°C qui correspond à l'évaporation de l'eau physiquement absorbée à la surface de la fibre d'Alfa pour les composites PVC/FA. L'air est d'autant plus important que le taux de fibre est important, ce phénomène peut être attribué à la nature hydrophile de la fibre d'Alfa qui a la capacité d'absorber plus de molécules d'eaux.

La dégradation thermique de l'hémicellulose et de la cellulose est localisée entre 200 et 300°C. Plus précisément la décomposition thermique de la cellulose se produit essentiellement à partir d'une température de 310°C et se fait par dépolymérisation [82]. En effet, lorsqu'elle est soumise à de très hautes températures, elle absorbe suffisamment d'énergie pour entrainer la rupture de la liaison glucosidique. La dépolymérisation peut

Chapitre III

être également accompagnée de la déshydratation des sucres donnant naissances à des composés insaturés et une variété de composés volatiles. Les hémicelluloses sont moins stables thermiquement que la cellulose, elles se dégradent généralement à des températures comprises entre 200 et 260°C. Bien qu'elles représentent une plus faible fraction dans la fibre que la cellulose, elles peuvent toutefois affecter significativement le comportement thermique du composite à cause de leur association structurale avec les autres constituants. Dans une étude sur la fibre de jute et de ses composants effectués par *Bhaduri et al* [83], ils attribuent ce processus à la pyrolyse de la fraction d'hémicellulose.

Aux environs de 350°C, elle correspond à la décomposition de la lignine, ce processus peut s'explique par le clivage des liaisons carbone-carbone entre les unités structurales de lignine et par des réactions de déshydratation [84].au dessus de 300°C, les chaines aliphatiques du cycle aromatique commencent à se rompre pour produire des dérivés phénoliques. Des résultats semblables ont été rapportés par *Ersan putun et al* [81].

On remarque que l'introduction de la fibre d'Alfa à différents teneur et à différents tailles, conduit à une diminution de la température de début de dégradation et à la réduction de la vitesse maximale de décomposition. Elle est estimée à 18,57% min pour le PVC vierge et à 13,003, 10,42, et 10,29 % min pour la formulation F160, et 12,29, 11,90, 10,88 % min pour la formulation F315 respectivement.

Au delà de 460°C, on enregistre un palier de stabilité pour les deux formulations F160 et F315 à différents teneur 10, 15, 20% respectivement, qui correspond à la formation du résidu de carbone.

Figure. 40 : Thermogrammes DTG des composites PVC/F160

Figure. 41 : Thermogrammes DTG des composites PVC/F315

b. Effet de la taille de la fibre d'Alfa

Les figures 42,43 et 44 montrent les thermogrammes TG, des composites PVC/FA élaborés des formulations : F160 et F315 à différent taux 10, 15, 20% en masse.

L'allure des thermogrammes TG des différents composites est identique pour la matrice PVC et les formulations F160 et F315. En effet, ils enregistrent tous trois paliers de stabilité thermique ou l'échantillon est stable thermiquement et deux perte de masse (une très importante et une autre très faible). On peut conclure que la stabilité thermique n'est pas influencée par la taille des fibres d'Alfa, en effet les thermogrammes TG des formulations F160 et F315 à différents teneur sont superposable.

Figure. 42 : Thermogrammes TG des composites $PVC/F_{10}315$ et $F_{10}160$

Figure. 43 : Thermogrammes TG des composites $PVC/F_{15}315$ et $F_{15}160$

Figure. 44 : Thermogrammes TG des composites $PVC/F_{20}315$ et $F_{20}160$

Figure. 45 : Thermogrammes DTG des composites $PVC/F_{10}315$ et $F_{10}160$

Figure. 46 : Thermogrammes DTG des composites $PVC/F_{15}315$ et $F_{15}160$

Figure. 47 : Thermogrammes DTG des composites $PVC/F_{20}315$ et $F_{20}160$

Conclusion

Conclusion générale

Les composites bois/plastique, sont des matériaux en plein développements, particulièrement intéressants en raison de l'amélioration de l'ensemble des propriétés du polymère que peut apporter un renfort à fibre végétale.

Au cours de ce travail nous avons réalisé une étude sur l'élaboration et la caractérisation de composites à matrice polychlorure de vinyle chargé de 10%,15% et 20% de fibre d'Alfa à différents tailles (df<160, df<200, df<250, df<315) et étudié la morphologie et les propriétés mécaniques et thermiques des plaques composites obtenus.

Au terme de cette étude et sur la base des résultats expérimentaux, nous pouvons tirer les principales conclusions suivantes :

Une diminution de la densité des composites PVC/FA par rapport à celle du PVC vierge. En effet cette incorporation de la fibre d'Alfa dans la matrice PVC entraine l'obtention d'un matériau léger. En revanche, les résultats de la densité des composites PVC/FA ne sont pas influencés par la taille des fibres d'Alfa.

Les résultats des propriétés mécaniques (Contrainte et allongement à la rupture) montrent une diminution au fur et à mesure que le taux et la taille de la fibre d'Alfa augmentent, alors que le module d'Young et la dureté shore croient progressivement ceux-ci sont attribués à la mauvaise dispersion de la fibre dans la matrice, formant ainsi des agrégats qui conduisent à la fragilisation du système composite.

Le taux d'absorption d'eau dépend du taux d'immersion, du taux de la fibre d'Alfa mais aussi de la taille de la fibre d'Alfa, qui se traduit par une augmentation du taux d'absorption d'eau.

L'étude par microscopie électronique à balayage (MEB) des surfaces fracturées des composites montrent pour la formulation F160, présence d'agrégats avec une dimension réduite de la taille des fibres d'Alfa indiquant ainsi une bonne dispersion contrairement pour les formulations F200, F250, F315.

L'analyse thermique a permis de montrer que l'incorporation de la fibre d'Alfa dans la matrice fait diminuer la température de début de décomposition. L'effet de la taille des fibres d'Alfa pour les formulations F160, F200, F250, F315 (10%,15%,20%), enregistre un gain dans la température maximale de décomposition comparé au PVC vierge.

✓ Perspectives :

Certains aspect non étudiés tels que la modification chimique, le vieillissement, la biodégradabilité et les propriétés morphologiques et diélectriques de ces matériaux composites mériteraient d'être définis afin d'ouvrir d'avantage le domaine d'applications de ces nouveaux agromatériaux. Ce sont quelques unes des voies que compte développer le laboratoire dans la poursuite de ce travail.

Références bibliographiques

Références bibliographiques

[01] A.Wechsler, S.Hiziroglu, Some of the properties of wood plastic composites, Bluid Envir, 42,2637-2644, (2007).

[02] M.Kaci, H.Djidjlli, A.Boukerrou, L.Zaidi, Effet of wood filler treatement and EBGMA compatibilizer on morphologiy and mechanecal properties of low density polyethylene/olive husk flour composite, express Polymer Letter, 467-473, (2007).

[03] Z.Dominkovics, L.Danyadi, B.Pukanszky, Surface modification of wood flower and its effect on the properties of PP/wood composites, Composites : Part A, 38, 1893-2230, (2007).

[04] A.Bessadok, S.Marais, F.Gouanvé, L.Colasse, I.Zimmerlin, S.Roudesli, Effet of chemical treatements of Alfa fibers on water-sorption properties, Compos Sci Technol, 67,685-667, (2007).

[05] S.Ben Brahim, RB.cheikh, influence of fibre orientation and volume fraction on the tensile propreties of unidirectional Alfa-polyester composite, Compos Sci Technol, 67,140-147, (2007).

[06] Gay, Daniel, Matériaux Composites, 4ème Edition, Paris, Hermès, (1997).

[07] Hans-Henning Kausch, Nicole Heymans, Christopher John Plummer, Pierre Decroly, Matériaux polymères, Propriétés mécaniques et physiques, Traité des Matériaux, Presses Polytechniques et Université ROMANDES, (2001).

[08] Franck Michaud, Rhéologie de panneaux composites Bois/Thermoplastiques Sous chargement thermomécanique, Aptitude au postformage, thèse de doctorat, université Laval Québec, Canada et université Bordeaux, France, (2003).

[09] Barun S. Gupta, Isabela Reiniati, Marie-Pierre G. Laborie, Surface properties and adhesion of wood fiber reinforced thermoplastic composites, Colloids and Surfaces A, Physicochem. Eng. Aspects, 302, 388–395, (2007).

[10] H.Djidjeli, D Benachour, A. Boukerrou, O .Zefouni ,J. Martinez-vega, J. Farenc, M.kaci, Thermal, dielectric and mechanical study of poly(vinil chloride)/olive pomace composite, Express polymer letters, 846-852, (2007).

[11] Stéphane HUGUET, Application de classificateurs aux données d'émission acoustique: identification de la signature acoustique des mécanismes d'endommagement dans les composites à matrice polymère, thèse de doctorat, Institut national des sciences appliquées de Lyon, (2002).

[12] D.N.S.Hon et N.Shiraishi, Wood and Cellulose Chemistry, Marcel Dekker, New York, (1991).

[13] D.Fengel et G. Wegner, Wood chemestry-Urastructure, Reactions, De Gruyter, Berlin, (1983).

[14] H.Braconnot, Ann.Chim, Sur la conversion du corps ligneux en gomme, en sucre, et en un acide d'une nature particulière, par le moyen de l'acide sulifurique, conversion de la même substance ligneuse en ulmine par la potasse, 12,172-195, (1819).

[15] A.Payen, Compt. Rend, Mémoire sur la composition du tissu propre des plantes et du ligneuse, 7,1052-1056, (1838).

[16] A.brongniart, T. T. Pelouse, A. B Dumas, Compt. Rend, Rapport sur un mémoire de M. Payen, relatif à la composition de la nature ligneuse, 8,51-53, (1839).

[17] R. Willstatter, Z. L,Ber, Zur Kenntnis der hydrolyse von cellulose.I, 46,2401-2412, (1839).

[18] H. Staudinger, Ber,Die Chemie der hochmolekularen organischen Stoffe im Sinne der kekuléschen Strukturlehre, 59,3019-3043, (1926).
[19] H.Zoebelein (Ed), Dictionnary of renewable Resources, VCH, basel, (1997).

[20] K.V. Sarkanen et C.H. Ludvig (Ed), Lignins-Occurence, Formation, Structure and Reactions, Wiley-Interscience, New York, (1971).

[21] R.M. Rowell, R.A. Young et J.K. Rowell (Ed), paper and composites from agro-Based Resources, CRC Lewis, Boca Raton, (1993).

[22] T. Higichi, dans Lignon Biodegradation, (T.K. Kirk, T. Higichi et H. M. Chang, Ed), CRC Press, Boca Raton, Vol. 1, Ch.1, (1980).

[23] W.G Glasser, R.A. Northey et T.P. Schultz (Ed), Lignin, Historical, Biological and Materials Perspectives, ACS symposium Series 742, (2000).

[24] David SEDAN, Etude des interactions physico-chimiques aux interfaces fibres de chanvre/ciment. Influence sur les propriétés mécaniques du composite, Thèse de doctorat, l'Université de Limoges, (2007).

[25] S. Th. Georgopoulos, P.A. Tarantili, E. Avgerinos, A.G. Andreopoulos, E.G. Koukios, Thermoplastic polymers reinforced with fibrous agricultural residues, Polymer Degradation and Stability, 90, 303-312, (2005).

[26] Andrzej K. Bledzki, Omar Faruk, Injection moulded microcellular wood fibrepolypropylene composites, Composites, Part A 37, 1358–1367, (2006). [27] K.Y. Lin, M. Xanthos, K.K. Sirkar, Novel polypropylene-based microporous membranes via spherulitic deformation, Journal of Membrane Science, 330, 267–278, (2009).

[28] B.F. Abu-Sharkh, H. Hamid, Degradation study of date palm fibre/polypropylene composites in natural and artificial weathering: mechanical and thermal analysis, Polymer Degradation and Stability, 85, 967-973, (2004).

[29] Paiva MC, Ammar I, Campos AR, Cheikh RB, Cunha A.M. Alfa fibres: Mecanical,morphological and interfacial characterization, Compos Sci and Technol, 67, 1132-1138, (2007)

[30] Composite material handbook, Materials science corporation, University of Delaware, army research Laboratory, july, (2000).

[31] Material and Processing development drive Wood plastic Composites forward plastics additives and compounding, Elsevier, (2003).

[32] Wood Plasic Composites, Current trends in materials and processing, (2005).

[33] G.H Florentin, 4ème Symposium International sur les composites bois plastiques, matériaux innovants dans le dominie de la construction de l'ammeublement, FCBA, Bordeaux, (2009).

[34] J.P Artie, Les techno plastiques de grand tonnage, caracteristiques techniques et economiques, 2ème Edition TECHNIP, (1987).

[35] M.Carrega et Coll, Materiaux polymers, 2ème Edition Dunod, Paris, (2007).

[36] S.Fuzessery, Monographies, le PP, Technique de l'ingenieur, A3320.

[37] J.P Mercier, P.E Boudau, L. Carlson, J.A.E Mansour, Materiaux composites a matrice organiques, copnstituants, procédés, proprieties, 15, 1ére Edition, Presse Polytechniques, Université Romande, Suisse, (2004).

[38] M.Reyne, Les composites, Edition PUF, (1995).

[39] S.H.Mansour, J.N.Assad, B.A.Iskander, S.Y.Ttawfik; Influence of some additives on the performance of WF/Polyolefin composite, Journal of Applied Science, 109, 2243-2249, (2008).

[40] T.T.L.Doan and all, jute /PP composites, Effect of matrix modification, Composite Scfcience and Technology, 66, 952-963, (2006).

[41] H.S.Yang, H.J.Kim, H.J.Park, B.J.Lee; T.S.Hwang, Effect of compatibilizing agents on rice husk flour reinforced PP composites, Composite Structures, 77,45-55, (2007).

[42] M.Kaci, L.Zaidi, A.Benhamida, S.Cimmino, D.Durracio, Ethylene N-Butyl Acrylate Glycidyl Methacrylate Terpolymer As compatibilizer for isotactic polypropylene/wood flour composites, CZASOPISMO TECHNICZNE M,z, 6-M/2006(RPK 103)ISSN 0011-4561, 251-256, (2006).

[43] A.Wechsler, S.Hiziroglu, Some of the properties of wood plastic composites, Build Envir, 42, 2637-2644, (2007).

[44] M.N.Ichazo, C.Albano, J.Gonzalez, R.Perera, M.V.Candal, Polypropylene/wood flour composites: treatments and propreties, Compopsite Structures, 54, 207-214, (2001).
[45] H.S.Kima, S.Kima, H.J.Kima, H.S.Yang, Thermal propreties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content, Thermochimica Acta 451, 181-188, (2006).

[46] S.MB.Nachtigall, G.S.Cerveira, S.M.L.Rosa, New polymeric-coupling agent for polypropylene/Wood-flour composites, Polymer Testing, 26, 619-628, (2007).

[47] M.Parcella, D.Chionna, I.Anguillesi, Z.Kulinski, E.Piorkowska, Functionalization, compatibilization and properties of polypropylene composites with Hemp fibers, Composites Science and Technology, 66, 2218-223à, (2006).

[48] V.Hristov, Stefanka Vasileva, Dynamic Mechanical and Thermal properties of modified polypropylene wood fiber composites, Macromol. Mater. Eng, 288, 798-806, (2003).

[49] T.H.S.Costa, D.L.Carvalho, D.C.S.Souza, F.M.B.Coutinhou, G.C.Pinto, B.V.Kotka, Statistical experimental design and modelling of polypropylene-wood fiber composites, Polym.Test, 19, 419-428, (2000).

[50] C. Panayiotou, Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour, Composites, Part A 36, 965–974, (2005).

[51] H.S.Yang, M.P.Wolcott, H.S.Kim, S.Kim, H.J.Kim, Properties of lignocellulosique material filled PP biocomposites made with different manufacturing processes, Polymer Testing, 25, 668-676, (2006).

[52] M.Zampaloni, F.Pourboghrat, S.A.Yankovich, B.N.Rodgers, J.Moore; L.T.Drzal, A.K.Mohanty, M.Misra, kenaf fiber reinforced PP composites: A discussion on manufacturing problems and solutions, Composites Part A: Applied Science and Manufacturing, 38, 1569-1580, (2007).

[53] J.W.Kim, D.P.Harper, A.M.Taylor, Effect of wood species on the mechanical and thermal properties of wood plastic composites, Journal of Applied Science, 112, 1378-1385, (2009).

[54] S.J.Kim, J.B.Moon, G.H.Kim, C.S.Ha, Mechanical properties of polypropylene/naturel fiber composites, comparaison of wood fiber and conton fiber, Polymer Testing, 27, 801-806, (2008).

[55] Alain Lamure, Adhesion et Adherence des materiaux. Mécanismes d'adhésion.

[56] R.Bouza, S.G.Pardo, L.Barral, M.J.Abad, Design of new PP/WF composites, Processing and physical characterization, Polymer Composite, 30,880-886, (2008).

[57] Sanjay K.nayak, Sushil K.Verma, Smita Mohanty, Composites Science and Technology, Vol66, 538-547, (2006).

[58] N.M.Stark, Proceeding of Functional Filler, Inter. Conference on Wood fiber-Plastic Composites, San Diego, CA, (December 8-10 - 1997).

[59] K.Oksman et C.Clemons, Mechanical Properties and Morphology of Impact Modified Polypropylene-Wood Flour Composites, J.App.Polym.Sci,67, 1503-1513, (1998).

[60] S.M.Shaler, Mechanics of the interface in discontinuous wood fiber composites, WoodFiber/Polymer Composites, Fundamental concepts, processes and material options, Ed. By M.P.Wolcott, Forest Product Society, Madison, USA, 9, (1993).

[61] A.R.Sanadi, D.F.Caulfield, N.M.Stark, C.C.Clemons, Thermal and Mechanical Analysis of lignocellulosic-polypropylene Composites, in, Fifth International Conference on wood fiber-plastic composites, Wisconsin, U.S.A, (1999). [62] A.Koubaa, A.Cloutier, E.Villeneuve, Potentiel de l'ecorce pour la fabrication de panneaux composites par extrusion, Presentation au 72ème congrés de l'ACFAS.Montréal, 10-14 mai (2004).

[63] S. Migneault , A. Koubaa , F. Erchiqui , A. Chaala , K. Englund , C. Krause, Effect of fiber, length on processing and properties of extruded wood-fiber/HDPE composites. J Appl Polym Sci, 110, 1085–92, (2008).

[64] Wan.H, Sheng K, Adl .M, QIan.X, Impact response of Bamboo-plastic, Composit with the properties of Bamboo and polyvinylchloride (PVC).J Bionic Eng Suppl, 5, 28-33, (2008).

[65] A.K.Bledzki, A. A. Mamun, O. Faruk, Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites, EXPRESS Polymer Letters, 755–762, (2007).

[66] D.Maldas.B. V.Kokta, R.G.Raj and S.T.Sean, Use of wood fibers as reinforcing fillers for polystyrene, Materials Science and Engineering A, 000, 000-000, (1988).

[67] B.A.Acha, M.M.Reboredo, N.E.Marcovich, Effect of coupling agents on the thermal and mechanical properties of polypropylene-jute fabric composites, Polymer International, 55, 1104-1113, (2006).

[68] J.C.M.Suarez, E.E.Da Costa Montero, E.Biasotto Mano, Study of the effect of gamma irradiation on polyolefins-low-density polyethylene, Polymer Degradation and Stability, 75, 143-151, (2002).

[69] N.E.Marovich, M.L.Aranguren, M.M.Reboredo, Modified wood flour as thermoset fillers part I. Effect of the chemical modification and percentage of filler on the mechanical properties, Polymer, 42, 815-825, (2001).

[70] P.Rachtanapum, S.E Selke, L.M.matuana, Microcellulaire from of polymer blends of HDPE/PP and their composites with wood fiber, J.App.Polym.Sci, 88, 2842-2850, (2003).

[71] A.J.Nunez, Pablo C.Sturn, Jose M.Kenny, M.I.Aranguren, Norma E. Marcovich, M.M.Reboredo, Mechanical characterization of polypropylene wood flour composites, J.App.Polym.Sci, 88,1420-1428, (2003).

[72] B.James, B.J.Lee, A.G.McDonald, Influence of fiber length on the mechanical properties of wood-fiber/polypropylène preperg sheets, Materials research innovations, 4, 97-103, (2001).

[73] H.Nakatani, S.Suzuki, T.Tanaka, M.Terano, New kinetic aspect on the mechanism of thermal oxidative degradation of PP with various tacticities, Polymer, 46, 12366-12371, (2005).

[74] S. Boufi, M.Abdelmouleh, M.N.belgacem, A.Dufresne, Composite Science and Technology, Vol 67, 1627-1639, (2007).

[75] Alain Dufersne, Daniel Pasquini, Eliangela de Morais Teixeira, Antonio Aprigio da Silva Curvelo, Mohamed Naceur, Composite Science and Technology, Vol 68, 193-201, (2008).

[76] A.K .Beldzki, A. Letman , A. Viksne , L. Rence, Comparaison of compounding process and wood type of wood fiber-PP composite, Composite A, 36, 789-797, (2005).

[77] S.th .Georgopoulos, P.A. Tarantili, E. Avgerinos, A.G. andreopoulos, E.G.koukios, thermoplastic polymers reinforced with fibrous agricultural residues, Polym Degrad stab , 90, 303-312, (2005).

[78] J.E.Crespo, R.Balart, L.Sanchez, J.Lopez, Mechanical behaviour of vinyl plastisols with cellulosique fillers, Analysis of the interface between particules and matrices, Int J Adhesion & Adhesives, 27,422-428, (2007).

[79] V.N.Hristov, M.Krumova, St Vasileva, G.H.Michler, Modified polypropylene wood flour composites, II.Fracture, deformation, and mechanical properties, J.App,Polym, Sci, 92, 1286-1292, (2004).

[80] Fiche Technique de LABOSI-France.

[81] Ersan Puntun, Basak Burcu Uzun, Ayse Eren Puntun.J. Anal.Appl, Vol 79, 147-153, (2007).

[82] K.J. Heritage, J.Mann, Roldan-gonzales, Journal of Polymer Science, Part A, Vol 1, 671-685, (1963).

[83] S.K.bhaduri, A.Mathew, M.D. Day, S.N. Pandey, Cellulose Chem Technol, Vol 28, 391, (1994).

[84] M.Kosik, V.Luzakova, V.Reiser, Cellulose Chemistry and Technology, Vol 6, 589-597, (1972).

Résultats des propriétés mécaniques :

	Module d'Young				
Formulations	F0	F160	F200	F250	F315
F0	311,2± 39,61	00	00	00	00
F10	00	347,39 ± 8,28	396,14 ± 128,52	421,94 ± 61,71	441,08 ± 19,53
F15	00	373,72 ± 29,63	402,98 ± 85,45	430,96 ± 21,12	480,18 ± 44,15
F20	00	377,05± 41,08	426,08± 54,74	468,15± 74,26	558,15± 42,74

	Allongement à la rupture				
Formulations	F0	F160	F200	F250	F315
F0	$184,76 \pm 10,02$	00	00	00	00
F10	00	77,87 ± 8,52	76,62 ± 4,20	70,79 ± 13,43	66,23 ± 7,88
F15	00	62,56 ± 2,73	60,44 ± 4,53	53,62 ± 5,21	43,85 ± 12,96
F20	00	36,14 ± 11,17	29,19 ± 5,23	27,87± 4,68	$\begin{array}{c} 23,15 \pm \\ 3,50 \end{array}$

	Contrainte à la rupture				
Formulations	F0	F160	F200	F250	F315
F0	$25,38 \pm \\0,86$	00	00	00	00
F10	00	16,36± 1,41	16,28 ± 1,30	16,24± 0,34	$\begin{array}{c} 15,67 \pm \\ 0,29 \end{array}$
F15	00	$15,27\pm 0,58$	14,61 ± 0,72	14,51 ± 0,44	12,83 ± 1,22
F20	00	12,12± 1,13	$12,12 \pm 0,55$	10,81± 0,78	$\begin{array}{c} 10,58 \pm \\ 0,35 \end{array}$

Valeurs de l'absorption d'eau :

	PVC			
_	VIERGE	160 á10%	160 à 15%	160 à 20%
Temps				
(h)	Taux ABS%	Taux ABS%	Taux ABS%	Taux ABS%
0	0	0	0	0
24h	0,31992092	1,1822274	271819891	4,57266436
48h	0,484387195	1,328378327	2,92408356	5,961064173
72h	0,62407088	1,531778373	3,051784168	7,367070508
96h	0,63308273	1,634733952	3,148211157	7,89526609
120h	0,635335693	1,735178419	3,275911765	8,051209548
144h	0,637588656	1,850689556	3,351489675	8,373157331
168h	0,637588656	1,996334033	3,502645497	8,529100788
192h	0,637588656	2,013911815	3,711136284	8,702650765
216h	0,637588656	2,016422926	3,851867566	8,906383347
240h	0,637588657	2,018934038	4,013447927	9,120176797
264h	0,637588657	2,02144515	3,9665375	9,230846347
288h	0,637588658	2,02144515	4,117693321	9,371698503
312h	0,637588658	2,02144515	4,245393928	9,555309348
336h	0,637588659	2,02144516	4,318365704	9,706222371
360h	0,637588660	2,02144516	4,326184109	9,80934627
384h	0,637588661	2,02144517	4,56855465	9,904924519
408h	0,637588661	2,02144517	4,576373054	10,00050277
432h	0,637588662	2,02144518	4,581585324	10,10111145
456h	0,637588663	2,02144518	4,586797593	10,20172013
480h	0,637588663	2,02144518	4,592009863	10,36520924
504h	0,637588664	2,02144518	4,594615998	10,49851574
528h	0,637588665	2,02144519	4,597222133	10,56894182
552h	0,637588665	2,02144519	4,597222135	10,65194398
576h	0,637588666	2,02144520	4,597222137	10,73243093
600h	0,637588667	2,02144520	4,597222139	10,78273527
624h	0,637588668	2,02144521	4,597222140	10,84813091
648h	0,637588669	2,02144521	4,597222141	10,85567657
672h	0,637588669	2,02144522	4,597222142	10,860707
696h	0,637588670	2,02144523	4,597222143	10,86322222
720h	0,637588670	2,02144524	4,597222143	10,86573743

	PVC			
	VIERGE	200 à10%	200 à 15%	200 à 20%
Temps				
(h)	Taux ABS%	Taux ABS%	Taux ABS%	Taux ABS%
0	0	0	0	0
24h	0,31992092	1,88337918	2,36189347	4,96295746
48h	0,484387195	2,181250465	3,550252001	6,823756783
72h	0,62407088	2,285331946	3,780017788	7,681062464
96h	0,63308273	2,435754467	3,948018579	8,642434153
120h	0,635335693	2,627313954	4,039430774	9,061175946
144h	0,637588656	2,734617005	4,234608163	9,445229069
168h	0,637588656	2,792853072	4,175313766	9,749993806
192h	0,637588656	2,807721855	4,303784959	9,935825962
216h	0,637588656	2,815156246	4,518727147	10,10679155
240h	0,637588657	2,820112507	4,726257535	10,25050175
264h	0,637588657	2,822590638	4,933787924	10,404123
288h	0,637588658	2,822590636	5,067200316	10,56517753
312h	0,637588658	2,822590637	5,227789307	10,70640997
336h	0,637588659	2,82259063	5,415554897	10,81295374
360h	0,637588660	2,822590638	5,573673288	10,94179737
384h	0,637588661	2,822590642	5,605791086	11,07311876
408h	0,637588661	2,822590644	5,672497282	11,23169553
432h	0,637588662	2,822590646	5,687320882	11,39770559
456h	0,637588663	2,822590648	5,704615081	11,54637132
480h	0,637588663	2,822590650	5,72190928	11,71485914
504h	0,637588664	2,822590652	5,724379879	11,82635843
528h	0,637588665	2,822590654	5,731791682	12,0047573
552h	0,637588665	2,822590656	5,731791686	12,04687926
576h	0,637588666	2,822590658	5,731791690	12,08652345
600h	0,637588667	2,822590660	5,731791692	12,12368988
624h	0,637588668	2,822590662	5,731791693	12,15590079
648h	0,637588669	2,822590663	5,731791694	12,16333408
672h	0,637588669	2,822590664	5,731791695	12,17076736
696h	0,637588670	2,822590664	5,731791696	12,17572289
720h	0,637588670	2,822590664	5,731791696	12,17820065

	PVC			
	VIERGE	250 à10%	250 à 15%	250 à 20%
Temps				
(h)	Taux ABS%	Taux ABS%	Taux ABS%	Taux ABS%
0	0	0	0	0
24h	0,31992092	1,5349969	2,94213312	7,0655321
48h	0,484387195	2,178779592	3,625181111	8,259347439
72h	0,62407088	2,4354577	3,953398977	8,882913121
96h	0,63308273	2,677212663	4,55661019	9,191218829
120h	0,635335693	3,08312223	5,213045921	10,50093857
144h	0,637588656	3,453216247	5,508737692	11,31690556
168h	0,637588656	3,530816605	5,816257134	12,03551285
192h	0,637588656	3,536785863	6,375114581	12,84684366
216h	0,637588656	3,542755122	6,670806351	13,52836154
240h	0,637588657	3,545739751	6,981282711	14,13570061
264h	0,637588657	3,545739756	7,173482362	14,79867379
288h	0,637588658	3,545739759	7,398208108	15,10929758
312h	0,637588658	3,545739762	7,581537006	15,30401698
336h	0,637588659	3,545739764	7,590407759	15,46396505
360h	0,637588660	3,545739767	7,628847689	15,69577386
384h	0,637588661	3,545739770	7,658416866	15,83022296
408h	0,637588661	3,545739773	7,667287619	15,94844545
432h	0,637588662	3,545739775	7,670244537	16,10839353
456h	0,637588663	3,545739777	7,670244537	16,23820646
480h	0,637588663	3,545739780	7,673201455	16,38192792
504h	0,637588664	3,545739784	7,673201458	16,58128349
528h	0,637588665	3,545739786	7,673201461	16,77136671
552h	0,637588665	3,545739788	7,673201463	16,84090935
576h	0,637588666	3,545739791	7,673201465	16,87799876
600h	0,637588667	3,545739793	7,673201468	16,91045199
624h	0,637588668	3,545739794	7,673201472	16,93131478
648h	0,637588669	3,545739795	7,673201474	16,94058713
672h	0,637588669	3,545739796	7,673201475	16,94522331
696h	0,637588670	3,545739797	7,673201476	16,9475414
720h	0,637588670	3,545739797	7,673201476	16,9475414

	PVC			
	VIERGE	315 à10%	315 à 15%	315 à 20%
Temps (h)	Taux ABS%	Taux ABS%	Taux ABS%	Taux ABS%
0	0	0	0	0
24h	0,31992092	4,08929041	6,44373601	9,09501849
48h	0,484387195	4,423890442	6,755748491	10,05726071
72h	0,62407088	4,617480462	6,895928011	11,28858632
96h	0,63308273	4,739370474	7,056456171	12,00542448
120h	0,635335693	4,887550489	7,273508332	12,78684266
144h	0,637588656	4,9974905	7,458907052	13,30563544
168h	0,637588656	5,054850505	7,587781772	13,80290155
192h	0,637588656	5,109820511	7,770919532	14,44009103
216h	0,637588656	5,124160512	8,026408013	15,32053189
240h	0,637588657	5,136110514	8,189197133	15,99001137
264h	0,637588657	5,140890519	8,286418413	16,61643752
288h	0,637588658	5,140890523	8,419815053	17,28376433
312h	0,637588658	5,140890527	8,591648014	17,94248048
336h	0,637588659	5,140890530	8,774785774	18,15128919
360h	0,637588660	5,140890534	8,849397454	18,28044922
384h	0,637588661	5,140890538	8,905921454	18,40315125
408h	0,637588661	5,140890545	8,960184494	18,50217394
432h	0,637588662	5,140890549	9,032535214	18,57105929
456h	0,637588663	5,140890553	9,122973615	18,6291813
480h	0,637588663	5,140890555	9,177236620	18,65501331
504h	0,637588664	5,140890559	9,202107226	18,71959332
528h	0,637588665	5,140890562	9,211151034	18,75834133
552h	0,637588665	5,140890564	9,211151045	18,79708934
576h	0,637588666	5,140890566	9,211151053	18,85736402
600h	0,637588667	5,140890567	9,211151056	18,89826469
624h	0,637588668	5,140890568	9,211151058	18,93916537
648h	0,637588669	5,140890569	9,211151060	18,95423404
672h	0,637588669	5,140890570	9,211151062	18,95853937
696h	0,637588670	5,140890571	9,211151063	18,96069204
720h	0,637588670	5,140890571	9,211151064	18,96069204

Résultats d'analyse thermique ATG-DTG :

PVC vierge			160/10		
Température	Tg%	DTG %mn	Température	Tg%	DTG%mn
2,7	99,826		1,9	99,848	
2,9	99,884	-0,0612	1,9	99,848	-0,0204
2,9	99,768	-0,0456	1,9	99,899	-0,023
2,9	99,768	0,0574	2,1	99,848	-0,0211
3	99,826	0,2095	2,1	99,798	0,0197
3,5	100,116	0,3904	2,2	99,798	0,232
5,1	100,581	0,5874	2,7	100,152	0,6603
8,4	101,104	0,722	5	100,910	0,9497
13,7	101,743	0,7416	10,5	101,821	0,9038
21,5	102,382	0,6581	19,4	102,934	0,6778
31,7	102,847	0,519	31	103,187	0,4425
43,6	103,254	0,3732	44,2	103,338	0,2324
55,8	103,486	0,2494	57,3	103,288	0,0733
68,3	103,719	0,1541	70,1	103,237	-0,0115
80,8	103,777	0,0992	82,1	103,288	-0,0352
91,9	103,893	0,0852	92,8	103,288	-0,0312
102,7	103,951	0,0856	102,7	103,338	-0,0096
113	104,009	0,092	112,3	103,440	0,0223
122,6	104,126	0,0992	121,4	103,440	0,0522
132	104,184	0,1016	130,4	103,541	0,0822
141,2	104,300	0,1063	139,5	103,591	0,0849
150,7	104,358	0,0877	148,9	103,541	0,0656
159,8	104,358	0,0439	158,1	103,490	0,0485
169	104,358	-0,0009	167,7	103,288	0,01
178	104,300	-0,0553	177	103,184	-0,0548
186,8	104,126	-0,1157	186,3	103,184	-0,1474
195,4	104,009	-0,1916	195,3	103,184	-0,2753
204,2	104,603	-0,3469	204,2	102,984	-0,471
213	103,603	-0,57	213,2	102,58	-0,7708
221,8	103,080	-0,894	221,9	101,77	-1,3192
230,5	102,15	-2,6197	230,6	100,455	-2,6695
239,2	100,174	-8,2157	239,5	97,471	-4,619
247,1	88,611	-15,1288	248,2	92,666	-6,1991
255,4	73,794	-18,5798	256,7	87,203	-8,2513
264	56,479	-15,5158	265,3	79,16	-11,2217
272,8	46,949	-8,3021	273,7	63,285	-13,003
281,6	43,405	-3,4872	282,2	56,854	-11,596
290,2	41,662	-1,6836	290,8	48,508	-7,9775
298,9	40,732	-0,8978	299,3	43,652	-4,6361

307,4	40,209	-0,4627	307,8	41,022	-2,482
316	39,977	-0,2176	316,2	39,656	-1,2362
324,4	39,919	-0,1073	324,6	39,049	-0,5866
332,7	39,802	-0,0676	332,9	38,796	-0,3105
341	39,802	-0,0455	341,1	38,594	-0,2357
349,2	39,744	-0,0396	349,3	38,392	-0,2375
357,5	39,744	-0,0473	357,5	38,189	-0,2657
365,7	39,628	-0,0532	365,7	37,987	-0,3428
374	39,628	-0,0732	373,9	37,633	-0,4695
382,2	39,57	-0,1243	382	37,178	-0,6529
390,5	39,512	-0,4521	390,1	36,571	-0,9464
398,8	38,931	-1,3583	398,1	35,66	-1,4911
407,1	37,188	-2,2595	406,3	34,092	-2,2304
415,3	35,038	-2,4536	414,3	32,018	-2,3458
423,6	32,946	-2,0522	422,5	29,54	-2,2508
431,4	31,61	-1,5942	430,6	28,073	-1,5968
439,2	30,389	-1,3298	438,6	26,96	-1,2077
446,8	29,343	-1,1149	446,5	26,05	-0,9175
454,5	28,53	-0,911	454,5	25,443	-0,6718
462,3	27,833	-0,7139	462,5	24,987	-0,501
470	27,368	-0,5351	470,3	24,633	-0,4039
477,9	26,961	-0,4146	478,2	24,33	-0,3594
486	26,671	-0,3435	486,2	24,026	-0,3413
494	26,38	-0,2967	493,9	23,723	-0,3098
502,2	26,148	-0,2848	501,8	23,52	-0,2372
510,4	25,973	-0,3533	509,6	23,369	-0,1649
518,6	25,625	-0,4768	517,4	23,268	-0,1301
526,3	25,102	-0,5351	525,3	23,166	-0,1338
534,1	24,695	-0,5189	533,3	23,015	-0,139
541,9	24,288	-0,4955	541	22,914	-0,1308
549,8	23,823	-0,4738	548,8	22,812	-0,1193
557,6	23,475	-0,4597	556,4	22,711	-0,1086
565,5	23,126	-0,4461	564,3	22,61	-0,106
573,3	22,719	-0,4278	572,2	22,509	-0,1101
581,1	22,371	-0,4082	580,3	22,458	-0,1075
589,1	22,08	-0,395	588,3	22,357	-0,1156
596,7	21,732	-0,378	595,9	22,256	-0,1197
604,4	21,441	-0,3538	603,7	22,155	-0,1086
612,2	21,15	-0,3227	611,5	22,054	-0,1119
619,8	20,918	-0,3103	619,2	21,952	-0,1238
627,6	20,628	-0,292	627,1	21,851	-0,1197
635,4	20,395	-0,2533	634,8	21,75	-0,1179
643,4	20,221	-0,218	642,6	21,649	-0,1308
651,2	20,046	-0,2043	650,2	21,548	-0,136
659,1	19,872	-0,2307	657,9	21,447	-0,146

667	19,698	-0,2665	665,7	21,295	-0,1564
674,9	19,407	-0,3001	673,5	21,194	-0,1297
682,7	19,175		681,1	21,093	

160/15			160/20		
Température	Tg%	DTG%mn	Température	Tg%	DTG%mn
5,1	98,534		1,4	99,288	
5,1	98,544	0,2897	1,4	99,130	-0,1959
5,3	99,654	0,0766	1,4	99,051	-0,0638
5,3	98,523	-0,225	1,4	98,972	-0,0614
5,3	98,586	-0,1447	1,4	98,972	-0,0255
5,3	98,555	-0,0276	1,4	98,72	0,2219
5,6	98,586	0,1826	1,7	99,209	0,7662
6,9	98,848	0,345	3,5	100,237	1,2235
10,8	98,215	0,3855	8,5	101,345	1,202
17,9	99,518	0,3274	17,3	102,294	0,8398
27,9	99,759	0,2321	29,3	102,769	0,4272
40,3	99,906	0,1356	43,1	103,006	0,1159
52,7	99,969	0,0517	57	103,006	-0,0673
65,6	100,000	-0,0131	70,4	103,848	-0,1467
78	99,937	-0,0509	83	103,690	-0,1392
89,5	99,895	-0,0655	94	102,611	-0,0609
100,1	99,822	-0,0675	104,3	102,611	0,0197
110,4	99,78	-0,0634	114	102,690	0,0864
120	99,717	-0,0623	123	102,769	0,1369
129,1	99,665	-0,0603	131,8	102,927	0,1612
138,2	99,623	-0,0471	140,7	103,085	0,186
147,3	99,581	-0,0305	149,9	103,244	0,1756
156,2	99,571	-0,0221	158,9	103,323	0,0997
165,2	99,56	-0,0366	168,1	103,402	0,0151
174,3	99,508	-0,0715	177,4	103,323	-0,0591
183,4	99,434	-0,122	186,5	103,244	-0,1727
192,3	99,34	-0,2103	194,4	103,085	-0,3448
201,2	99,12	-0,3559	204,4	102,69	-0,6086
210	99,764	-0,5886	213,2	102,057	-1,0497
218,7	99,146	-0,9987	222	98,908	-2,1277
227,1	98,162	-2,1537	230,6	98,813	-4,2015
235,4	94,848	-4,1267	239,3	94,066	-6,179
243,6	90,041	-5,2587	247,9	88,291	-7,6575
251,5	85,894	-5,8525	256,4	81,487	-9,7001
259,1	80,626	-7,5079	265	71,915	-10,29
266,8	73,421	-9,5507	273,9	60,601	-9,9005

274,4	64,509	-10,4255	282,9	51,878	-8,2342
282,3	55,577	-9,1693	291,7	46,915	-4,7984
290,1	48,979	-6,6359	300,2	44,225	-2,6644
298	44,643	-4,3521	308,5	42,642	-1,4791
305,6	41,858	-2,7726	316,6	41,851	-0,8033
313,2	40,119	-1,7235	324,6	41,377	-0,4422
320,7	39,051	-1,0313	332,7	41,139	-0,2689
328,3	38,423	-0,6087	340,8	40,981	-0,215
336,1	38,046	-0,3955	349	40,823	-0,2087
343,7	37,795	-0,3176	357,2	40,665	-0,2203
351,4	37,543	-0,3193	365,4	40,427	-0,2411
359,1	37,26	-0,3685	373,5	40,19	-0,2597
367	36,946	-0,4631	381,6	39,953	-0,3182
375	36,538	-0,6366	389,9	39,794	-0,8804
383,3	35,878	-0,9285	398,4	38,608	-1,7863
391	34,977	-1,3071	406,7	36,709	-2,0883
398,2	33,71	-1,6622	414,9	35,047	-1,9323
404,9	32,171	-1,8858	422,9	33,465	-1,6988
411,5	30,548	-2,0421	430,9	32,199	-1,4583
418,3	28,778	-2,2312	439	31,092	-1,2589
426,1	26,893	-2,2149	446,8	30,063	-1,0786
434,5	25,029	-1,7579	445,6	29,193	-0,9256
443,4	23,866	-1,1491	462,4	28,56	-0,8155
452,5	23,154	-0,7433	470,3	27,927	-0,7448
461,6	22,652	-0,495	478,1	27,373	-0,6967
470,5	22,327	-0,3294	486	26,741	-0,6961
479,2	22,117	-0,2227	494	26,187	-0,7714
487,7	21,96	-0,1609	502	25,475	-0,8503
496,3	21,887	-0,1292	509,9	24,763	-0,8932
505,2	21,712	-0,1105	517,9	23,972	-0,9117
514	21,678	-0,1	525,7	23,259	-0,9175
522,4	21,583	-0,0915	533,7	22,468	-0,9024
530,5	21,521	-0,0904	541,5	21,677	-0,8624
538,7	21,447	-0,0894	549,2	21,044	-0,8161
547	21,363	-0,0898	556,8	20,332	-0,7651
555	21,301	-0,0943	564,4	19,778	-0,7129
562,6	21,206	-0,0924	571,9	19,146	-0,6683
569,8	21,144	-0,0837	579,6	18,671	-0,6312
577,6	21,081	-0,0785	587,2	18,038	-0,5987
585,8	20,986	-0,0789	594,9	17,642	-0,5599
594,5	20,924	-0,0829	602,6	17,168	-0,5129
603,3	20,861	-0,083	610,3	16,772	-0,4718
611,8	20,777	-0,0866	618	16,377	-0,4225
620	20,725	-0,0943	626,6	16,06	-0,3657
627,8	20,641	-0,1067	633,2	15,744	-0,3275

635,8	20,547	-0,1132	640,9	15,506	-0,3008
643,6	20,452	-0,116	648,3	15,269	-0,2805
651,4	20,358	-0,1179	656	15,032	-0,2539
659,2	20,243	-0,125	663,9	14,873	-0,2359
666,9	20,138	-0,1325	671,6	14,715	-0,233
674,5	20,013	-0,1337	679,5	14,478	
682,6	19,918	-0,1429			
690,6	19,814	-0,1551			
698,5	19,667	-0,1598			
706,5	19,541	-0,148			
714,5	19,447	-0,17			
722,7	19,259	-0,1863			

315/10			315/15		
Température	Tg%	DTG%mn	Température	Tg%	DTG%MN
2,1	99,479		1,7	99,928	
2,1	99,479	-0,0832	1,9	99,857	-0,0818
2,1	99,479	-0,0119	1,9	99,857	-0,0247
2,1	99,479	-0,0046	1,9	99,857	-0,0278
2,1	99,479	-0,003	1,9	99,785	0,0121
2,2	99,479	0,0133	1,9	99,785	0,3267
2,2	99,479	0,1504	2,4	100,286	0,902
2,5	99,671	0,442	5	101,360	1,2481
5,3	100,247	0,6129	10,8	102,434	1,1516
12,1	100,768	0,5391	20,2	103,293	0,816
22,8	101,152	0,353	32,3	103,794	0,4557
36,6	101,371	0,1698	46	104,080	0,1835
51	101,426	0,041	59,4	104,152	0,0225
65	101,426	-0,0406	72,4	104,080	-0,0393
78,3	101,344	-0,0768	84,3	104,009	-0,0293
89,7	101,262	-0,0773	95	104,009	0,0288
100,1	101,234	-0,0633	105	104,080	0,0875
109,7	101,179	-0,0364	114,5	104,152	0,13
118,7	101,152	-0,0074	123,5	104,295	0,1553
127,3	101,179	0,0143	132,4	104,438	0,1584
136,1	101,179	0,0229	141,5	104,581	0,1663
145,3	101,179	0,0217	150,8	104,653	0,1453
154,5	101,234	0,0123	159,9	104,796	0,0944
163,9	101,234	0,0004	169,2	104,868	0,0372
173,4	101,179	-0,0153	178,5	104,796	-0,0289
182,9	101,125	-0,06	187,7	104,653	-0,1349
192,1	101,015	-0,1261	196,9	104,366	-0,2842

201,1	100,768	-0,2123	205,8	103,865	-0,5081
210,2	100,466	-0,3424	214,5	103,006	-0,8333
219	99,981	-0,6222	223,3	101,575	-1,418
227,8	99,781	-1,2337	232	98,575	-2,9671
236,6	98,656	-2,976	240,8	98,282	-5,4423
245,4	89,907	-5,1937	249,3	92,484	-7,4555
254	83,681	-6,8361	258	85,827	-9,4499
262,4	74,602	-9,1957	266,6	76,807	-11,6492
270,8	63,741	-11,7383	275,2	65,999	-11,9015
279,3	53,593	-12,2981	283,6	56,478	-9,5348
288	46,133	-10,3912	292,2	49,964	-6,2211
296,9	41,133	-7,1906	300,7	49,242	-3,4852
305,7	41,662	-4,1012	309	44,381	-1,7662
314,3	39,523	-1,973	317,2	43,45	-0,88
322,7	38,563	-0,8988	325,5	42,949	-0,4929
330,9	38,124	-0,4891	333,8	42,663	-0,3414
339,2	37,822	-0,3683	342,2	42,377	-0,3026
347,3	37,521	-0,3426	350,5	42,162	-0,3016
355,6	37,246	-0,3496	358,7	41,875	-0,3209
363,9	36,945	-0,3798	367	41,589	-0,3445
372,1	36,615	-0,429	375,2	41,303	-0,3686
380,4	36,231	-0,5238	383,5	41,016	-0,5139
388,5	35,765	-0,7559	391,7	40,659	-1,1186
396,5	35,052	-1,3462	400,3	39,155	-1,8045
404,5	33,516	-2,0471	408,5	37,509	-2,0569
412,5	31,569	-2,383	416,6	35,791	-1,9288
420,6	29,539	-2,1283	424,6	34,216	-1,6734
428,6	28,003	-1,6667	432,7	32,999	-1,3939
436,6	26,796	-1,3278	440,7	31,926	-1,193
444,5	25,782	-1,1065	448,6	30,995	-1,0252
452,4	24,959	-0,8704	456,6	30,208	-0,86
460,1	24,328	-0,6735	464,5	29,563	-0,7279
467,9	23,862	-0,5236	472,4	28,991	-0,6508
475,4	23,505	-0,43	480,1	28,49	-0,6067
483,1	23,121	-0,391	487,7	27,989	-0,5459
490,7	22,82	-0,352	495,3	27,559	-0,4824
498,5	22,545	-0,3058	503	27,201	-0,5359
506,5	22,298	-0,2449	511,1	26,772	-0,5748
514,2	22,134	-0,1845	518,9	26,271	-0,5821
522,2	22,024	-0,1545	526,7	25,77	-0,5758
530,1	21,887	-0,1479	534,6	25,268	-0,5564
538,1	21,75	-0,1437	542,5	24,839	-0,5454
546,2	21,64	-0,1346	550,3	24,409	-0,5354
554,2	21,53	-0,1224	558,3	23,98	-0,5144
562,3	21,421	-0,1155	566,2	23,479	-0,5118

570,4	21,338	-0,1228	573,9	23,049	-0,5066
578,5	21,229	-0,1288	581,6	22,691	-0,4966
586,4	21,119	-0,1304	589,4	22,19	-0,4914
594,4	21,009	-0,1296	597	21,832	-0,4924
602	20,927	-0,1232	604,9	21,403	-0,4888
609,9	20,817	-0,129	612,6	20,974	-0,483
617,7	20,68	-0,1419	620,2	20,616	-0,4961
625,5	20,57	-0,1427	627,9	20,186	-0,5144
633,2	20,461	-0,1447	635,8	19,757	-0,5255
640,9	20,324	-0,1473	643,7	19,327	-0,5307
648,7	20,214	-0,1501	651,4	18,898	-0,5291
656,3	20,104	-0,1557	659,1	18,468	-0,5339
664	19,94	-0,1632	666,7	18,039	-0,5428
671,5	19,83	-0,1656	674,5	17,609	
679,1	19,693	-0,1708	682,3	17,108	
686,6	19,528	-0,1776			
694	19,391	-0,1805			
701,3	19,254	-0,1851			
708,7	19,089	-0,1967			
716,3	18,925	-0,2044			
723,8	18,733				

315/ 20		
Température	Tg%	DTG%MN
1,7	99,489	
1,9	100,669	0,2346
1,9	100,354	-0,5138
1,9	100,039	-0,4363
1,9	100,000	-0,2412
2,1	99,449	-0,2328
2,1	99,410	0,3147
2,9	99,882	0,7556
6,7	100,747	0,855
15,2	101,456	0,6683
27,5	101,888	0,3827
42,2	102,046	0,1204
56,7	102,046	-0,0573
70,7	101,928	-0,1475
83,6	101,810	-0,1634
94,4	101,692	-0,1421
104,4	101,594	-0,0918
113,7	101,534	-0,0368

122,3	101,534	0,0163
131,2	101,534	0,0515
140,2	101,613	0,0623
149,7	101,652	0,0623
158,9	101,692	0,0409
168,2	101,731	0,0084
177,6	101,731	-0,0369
186,8	101,692	-0,1155
195,8	101,534	-0,2308
204,6	101,298	-0,4055
213,5	100,905	-0,6919
222	100,197	-1,2225
230,8	98,017	-2,7105
239,5	95,909	-5,0772
248,1	90,323	-6,5214
256,7	84,854	-7,4202
265,3	78,285	-9,2708
273,3	69,394	-10,8812
282,3	59,717	-10,4899
291	51,534	-8,2186
299,7	45,909	-5,3766
308,1	42,683	-3,0082
316,4	41,07	-1,5159
324,7	40,283	-0,7755
333	39,851	-0,5015
341,4	39,418	-0,4577
349,4	39,103	-0,4334
357,6	38,788	-0,4121
365,9	38,395	-0,4291
374,2	38,041	-0,4755
382,6	37,648	-0,5885
390,9	37,097	-1,0539
399,1	35,956	-1,843
407,2	33,95	-2,0387
415,3	32,179	-2,0198
423,3	30,527	-1,7612
431,3	29,229	-1,4251
439,5	28,167	-1,1548
447,7	27,301	-0,9245
456	26,633	-0,7502
464,3	26,082	-0,6309
472,3	25,57	-0,5401
480	25,177	-0,4453
487,6	24,823	-0,3407
495	24,587	-0,2519

502,5	24,43	-0,2012
510,2	24,272	-0,1902
518,2	24,115	-0,1928
526	23,958	-0,1997
533,9	23,761	-0,2026
541,7	23,603	-0,2017
549,4	23,446	-0,1963
557	23,289	-0,1945
564,2	23,131	-0,1905
571,3	22,974	-0,185
578,9	22,817	-0,1876
586,9	22,659	-0,1997
595,1	22,463	-0,1876
603	22,345	-0,1672
611	22,187	-0,17
619	22,069	-0,177
627	21,912	-0,1807
634,9	21,755	-0,1844
642,8	21,597	-0,1882
650,5	21,44	-0,1905
658,4	21,282	-0,194
666,2	21,125	-0,1977
673,9	20,968	-0,2012
681,7	20,771	-0,2081
689,4	20,614	-0,2141
697	20,456	-0,2196
704,6	20,22	-0,228
712,3	20,024	-0,2363
720,2	19,866	-0,247
727,9	19,63	

	Valeurs de la densité						
Formulations	F0	F160	F200	F250	F315		
F0	60	00	00	00	00		
F10	00	61	62	63	64		
F15	00	62	64	66	67		
F20	00	63	65	67	68		

Valeurs de la densité et de la dureté shore D :

	Valeurs de la dureté shore D						
Formulations	F0	F160	F200	F250	F315		
F0	1,27	00	00	00	00		
F10	00	1,26	1,26	1,26	1,26		
F15	00	1,25	1,25	1,25	1,25		
F20	00	1,19	1,19	1,19	1,19		

Comparaison du comportement thermique des différents composites :

Enchantions	Température	Gamme de	Température	Gamme de	Température	Taux
	de début de	températures	et vitesse	températures	et vitesse	de
	décomposition	de la 1 ^{ière} perte	max de la	de la 2 ^{ième} de	max de perte	résidu
	(°C)	de masse (°C)	1 ^{ière} perte de	perte de	de masse (°C	(%)
			masse (°C	masse (°C)	et %/min)	
			et%/min)			
F0	247,1	247,1-316	V=18,57	407,1-462,3	V=2,45	19,175
			T=255,4		T=415,3	
$F_{10}160$	239,5	239,5-316,2	V=13,003	406,3-454,5	V=2,34	21,093
			T= 273,7		T= 414,3	
$F_{15}160$	227,1	227,1-320,7	V=10,42	404,9-452,5	V=2,23	19,259
			T=274,4		T= 418,3	
E ₂₀ 160	222	222-332 7	V=10.29	398 4-445 6	V = 2.08	14 478
1 20100		222 332,1	T = 265	550,1115,0	T = 406.7	11,170
			1-205		1-100,7	
$F_{10}315$	236,6	236,6-314,3	V=12,29	404,5-452,4	V=2,38	18,733
			T = 279,3		T=412,5	
F ₁₅ 315	232	232-317,2	V=11,90	400,3-448,8	V= 2,05	17,108
10			T = 275.2	, ,	T = 408.5	
			, , , , , , , , , , , , , , , , , , ,		, ,	
E 215	220.8	220 8 222	V-10.99	200 1 447 7	V = 2.02	10.62
г ₂₀ 313	230,8	230,8-333	v = 10,88 T = 272.2	399,1-447,7	v = 2,03 T = 407.2	19,03
			1 = 2/3,3		1 = 407, 2	

Résumé

Les plastibois font l'objet d'un grand intérêt depuis quelques années. Ils disposent d'atouts importants par rapport aux polymères à l'état pur.

L'utilisation d'Alfa, au sens large des matériaux cellulosiques dans la conception des matériaux composites permet d'associer des matériaux résistant, léger, abondant, nom abrasif, structuré et à faible cout avec de nombreux matériaux tel que les métaux, les plastiques.

Les inconvénients principale des composites renforcés par les charges naturelles est le manque d'une bonne adhésion interfaciale entre la charge et la matrice, la tailles de la charge, lequel engendre une détérioration des propriétés mécaniques du matériau fini.

Dans ce contexte, différentes formulations à base de Polychlorure de vinyle/Fibre d'Alfa ont été préparés en utilisant le calandrage comme méthode de transformation.

La caractérisation des composites PVC/FA obtenus ont montré une nette amélioration sur l'ensemble des propriétés physiques et mécaniques. En revanche la déformation à la rupture augmente, l'effet inverse est observé pour le module d'Youg. De plus le taux de gonflement dans l'eau augmente.

Mots clés: Composites, polychlorure de vinyle, charge cellulosique, fibre d'Alfa, bois polymère.

Abstract

The plastic lumber is the subject of great interest for some years. They have significant strengths compared to pure polymers.

The use of Alfa, broadly cellulosic materials in the design of composite materials can combine resistant materials, light, heavy, abrasive name, structured and low cost with many materials such as metals, plastics...

The main disadvantages of composites reinforced by natural loads are the lack of good interfacial adhesion between the load and the matrix, the size of the load, which causes deterioration of mechanical properties of the finished material.

In this context, several formulations based on polyvinyl chloride / Alfa Fiber have been prepared using the method as calendaring processing.

The characterization of composite PVC / FA obtained showed a marked improvement on all physical and mechanical properties. In contrast, the failure strain increases, the opposite effect is observed for the module of Young. In addition the rate of swelling in water increases.

Keywords: Composites, polyvinyl chloride, load cellulose, Alfa Fiber, wood polymer.

Sous la direction de Mr BOUKERROU