Isolation and Characterisation of Some Microalgae Bioactive Molecules

Emeka Ugoala, George Ndukwe, Rachael Ayo


This study involved the isolation, structure elucidation, and biological screening of secondary metabolites in freshwater microalgae for bioactive and chemically novel compounds. Isolates were fractionated and purified from the methanol, ethyl acetate, dichloromethane, petroleum ether and aqueous extracts of microalgae via column chromatography technique over silica gel using a gradient mixture of solvents. The chemical structures of isolated compounds have been elucidated using Solid-state cross polarization (CP) and magic angle spinning (MAS) 13C-NMR spectroscopic technique at spectrometer frequency at a field strength corresponding to 91.3695 MHz for 13C and 363.331 MHz for 1H. Of the nine compounds isolated, eight have a glycan skeleton with attached amino acids units. Two of the eight contain beta amino acids units. These are not very common metabolites but hold promise as drug leads. The elements of diversity in the isolates were the gluco and manno configurations of the pyranose ring, the α-configurations at the anomeric centre, and the positions of the carbohydrate and amino acid sectors in the ring. These molecules are not easily available through gene technology since they are post translational products resulting from the activity of glycosyl hydrolases and transferases. The chemical shifts were rationalized in terms of the number of sugar residues, the sugar ring structures, the positions and anomeric configurations of the inter-sugar linkages. Considering all the NMR data, it was concluded that the compounds were glycylglycylglycylglycine, α-D-glucopyranosyl-2-amino-4-methylpentanoic acid, α-D-glucopyranosyl-2-methylamino-4-methylpentanoic acid, α-D-glucopyranosyl-2-amino-4-methylpentanoate, α-D-glucopyranosyl-glycylglycine, α-D-glucopyranosyl-3-aminobutanoic acid, α-D-glucopyranosyl-2,4,7-triaminooctantrioic acid, α-D-mannopyranosyl-2-amino-3-methylbutanoic acid and α-D-mannopyranosyl-3-aminobutanoic acid.


Solid-state NMR, CP/MAS, Glycoamino acids, Carbohydrate, Chemical shift, Carbon resonance

Full Text:



Ogbonna, J. C.; Yoshizawa, H. & Tanaka, H. Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms Journal of Applied Phycology, 12(2000) 277-284.

Thidarat Papone, Supaporn Kookkhunthod and Ratanaporn Leesing International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 6(2012):195-199

Anon. Mixed cultivation of Euglena gracilis and Chlorella sorokiniana: a production method of algae biomass on a large scale. Journal of Applied Biosciences 35(2010). 2225 – 2234

Olaizola, M. Commercial development of microalgal biotechnology: from the test tube to the market place. Biomolecular Engineering, 20(2003)459-466

Singh, S.; Kate, B. N. & Banecjee, U. C. Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Reviews in Biotechnology 25(2005)73–95

Boyd, C.E. Water Quality in Warm Water Fish Ponds. Agricultural Experiment Station. Auburn University, Alabama, USA. 2000.

Yamagishi, T. Plankton Algae in Taiwan (Formosa). Uchida Rokakuku, Tokyo, Japan. (1992) 253 pp.

Vymazal, J. Algae and Element Cycling in Wetlands. CRC Press, Inc., Boca Raton, Florida, USA. (1995)689 pp.

Ciferri, O. Spirulina, the Edible Micro-Organism. Microbiological Reviews, 47(1983). 551-578.

Tomaselli, Morphology, Ultrastructure and Taxonomy of Arthrospira (Spirulina) maxima and Arthospira. (Spirulina) platensis. In: A. Vonshak, Ed., Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology, Taylor and Francis, London, 1997, 1-16.

Ballot, A.; Dadheech, P. and Krienitz, L. Phylogenetic Relationship of Arthrospira, Phormidium, and Spirulina strains from Kenyan and Indian Water bodies, Agra University Journal of Research: Science, 113(2004)37-56.

Gomont, M. M. Monographie des Oscillariées (Nostocacées Homocystées). Ann. Sci. Nat. Bot., Ser. 7(1892). 263-368.

Anagnostidis, K. and Golubic, S. Uber die Okologie Einiger Spirulina-Arten. Nova Hedwigia 11(1966). 309-335.

Guglielmgi and C. Bazirge (1982). Structure et Distribution des pores et des Perforations de l’enveloppe de Peptidoglycane chez Quelques Cyanobactkries. Protistologica, 18:151-165.

Rethmeier, J. “Untersuchungen zur O X kologie und zum Mechanismus der Sul®dadaption mariner Cyanobakterien der Ostsee,” PhD Thesis, (1995).

Komárek, J. Diversita a Moderní Klasifikace Sinic (Cyanoprocaryota) Diversity and Modern Classification of Cyanobacteria (Cyanoprokaryota). Inaugural Dissertation Not Published, (1992).

Zhu, W.; Chiu, M. C. L.; Ooi, V. E. C.; Chan, P. K. S. & Angjr, O. P. Antiviral property and mode of action of a sulphated polysaccharide from Sargassum platens against herpes simplex virus type 2. International Journal of Antimicrobial Agents, 24(2004)18-25

Conte, P.; Piccolo, A.; van Lagen, B.; Buurman, P. & Hemminga, M. A. Effects of residual ashes in CP-MAS 13C-NMR spectra of humic substances from volcanic soils. Fresenius Environmental Bulletin, 10(2001)369–374.

Mao, J. D. & Schmidt-Rohr, K. Separation of acetal or ketal O–C–O 13C NMR signals from aromatic-carbon bands by a chemical shift-anisotropy filter. Solid State NMR 26(2004). 36–45. doi:10.1016/j.ssnmr.2003.09.003

Wilson, M. A. NMR techniques and applications in geochemistry and soil chemistry. Pergamon Press Oxford (UK), 1987

Schofield, J. D. and Baianu, I. C. Cereal Chemistry 1982, 59240–245

Roscoe, R.; Buurman, P. and Van Lagen, B. Bras Ci Sol; 2004, 28: 811-18

Skjemstad, J. O; Frost, R. L.; Barron, P. F. Australian Journal of Soil Science, 1983, 21: 539-47.

Lemma, B.; Nilsson, I.; Kleja, D. B.; Olsson, M. and Knicker, H. Soil Biology and Biochemistry; 2007, 39: 2317-28.

Quideau, S. A.; Chadwick, O. A.; Benesi, A.; Graham, R. C. and Anderson, M. A. Geoderma; 2001, 104: 41-60.

Keenan, M. H. J.; Belton, P. S.; Matthew, J. A. and Howson, S. J. A Carbohydrate Research 1985, 138:168–170.

Renard, C. M. G. C. and Jarvis, M. C. Carbohydrate Polymer, 1999, 39:209–216

Maunu, S.; Liitiä, T.; Kauliomäki, S.; Hortling, B. and Sundquist, J. Cellulose; 2000, 7:147-59.

Taylor, R. E., French, A. D. and Gamble, G. R. Journal of Molecular Structure 2008, 878:177-84.

Sinitsya, A.; Čopikova, J.; Prutyanov, V.; Skoblya, S. and Machovic, V. Carbohydrate Polymer, 2000, 42: 359–368.

Malovikova, A. and Kohn, R. Czech. Chem. C., 1986, 51: 2259–2270

Jarvis, M. C. and Apperley, D. C. Carbohydrate Research 1995, 275: 131.

Sinitsya, A.; Čopikova, J. and Pavlikova, H. Journal Car¬bohydrate Chemistry, 1998, 17: 279–292.

Rajamohanan, P. R.; Ganapathy, S.; Vyas, P. R.; Ravikumar, A. and Deshpande, M. V. (1996). Journal of Biochemical and Biophysical Methods, 1996, 313(4):151–163

van de Velde, K. and Kiekens, P. Carbohydrate Polymers, 2004, 584:409–416

Muhammad Saad Shaikh; Simon Rawlinson and Natalia Karpukhina A. Pakistan Oral and Dental Journal 2014, 34:2

Carlsson, A. S.; van Beilen, J. B.; Moller, R. and Clayton, D. Micro- and Macro-Algae: Utility for Industrial Applications 1st ed. Newbury: CPL Press, 2007

Borowitzka, M. A. Algal Culturing Techniques. Burlington, MA: Elsevier Academic Press; 2005

Van Gerpen, J. H. and He, B. Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, 2010, 382-415.

Halim, R.; B. Gladman, M.; Danquah, and P. Webley. Bioresource Tech. 2011, 102(1): 178-185

Liu, J.; Huang, J.; Sun, Z.; Zhong, Y.; Jiang, Y. and Chen, F. Bioresource Technology, 2011, 102(1):106-110.

Desbois, P. A.; Spragg, A. M. & Smith, V. J. A Fatty Acid from the Diatom Phaeodactylum tricornutum is Antibacterial against Diverse Bacteria Including Multi-resistant Staphylococcus aureus (MRSA). Marine Biotechnology, (2008)1436-2236

Shin, S. Y.; Bajpai, V. K.; Kim, H. R. & Kang, S. C. Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms, Food science and Technology, 40(2006)1515

Mengesha, A. E. Isolation, Structural Elucidation, Quantification and Formulation of the Saponins and Flavonoids of the Seeds of Glinus Lotoides. PhD Dissertation der Fakultät für Chemie und Pharmazie der Eberhard-Karls-Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften, (2005)194 pages

Fyfe, C. A. Solid state NMR for chemists. C.F.C. Press, Guelph, Ont, 1984.

Ross, C.; Beier, B.; Radford, P.; Mundy and Garya Strobel Canadian Journal of Chemistry, 1980, 58:2800

Bock, K. and Pedersen, C. Advances in Carbohydrates Chemistry and Biochemistry, 1983, 41:27-66

Kamide, K.; Okajima, K.; Kowsaka, K. & Matsui, T. CP-MAS 13C-NMR Spectra of Cellulose Solids: An explanation by the intramolecular Hydrogen Bond Concept. Polymer Journal 17(1984):701-706

Yuki, G. K. NMR studies on carbohydrates - Application of 13C NMR to determine composition, conformation, and dynamics of polysaccharides. Journal of Synthetic Organic Chemistry, Japan, 37(1979).):935-947

Majerle, A.; Kidric, J. and Jerala, R. Journal of Antimicrobiology and Chemotherapy. 2003, 51: 1159-1165.

Kricheldorf, H. R.; Muller, D. & Ziegler, K. Carbon-13 NMR CP/MAS investigation of silk proteins. Polymer Bulletin 9 (1983)284–291.

Kricheldorf, H. R. & Muller, D. Characterisation of proteins by means of C-13 NMR CP/MAS spectroscopy. Colloid and Polymer Science 262(1984) 856–861.

Wamer, I & Witkowski, S. Analysis of solid state 13C NMR of biologically active compounds. Current organic chemistry, 5(2001)987-999

Diaz, L. E.; Morin, F.; Mayne, C. L. & Grant, D. M. Magnetic Resonance Chemistry, 24(1986)167

Conte, P; Piccolo A.; van Lagen, B.; Buurman, P. and Hemminga, M. A. Solid State Nuclear Magnetic Resonance, 2002, 21:158–17

Synytsya, A.; Čopíková, J.; Prutyanov, V.; Skoblya, S. and Machovic, V. Carbohydrate Polymers, 2009, 76(4):548–556



  • There are currently no refbacks.



 All open access articles published in AJNP are distributed under the terms of the  Creative Commons Attribution-  4.0 International License


 Flag Counter