République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Abderrahmane MIRA de Bejaia

Faculté de Technologie Département d'**Hydraulique**

MÉMOIRE DE FIN D'ÉTUDES

Présenté par :

RAHALI MEHAND

En vue de l'obtention du diplôme de MASTERen Hydraulique

Option: Hydraulique urbaine

INTITULE:

Dimensionnement du réseau d'alimentation en eau potable de la zone Ihedadhen I

Soutenu le 25 /06 /2018 devant le jury composé de :

- Président : M^R MERABET

- Promoteur (s): M^R M.YAKOUBI

- Examinateur (s): M^R NASRI

Année 2017/2018

Remerciements

Je remercie l'ensemble de mes enseignants qui, par leur dévouement, m'ont aidé à réussir ma formation.

Je tiens à remercier vivement, mon promoteur \mathcal{M}^{er} Yakoubi, sans son soutien et ses conseils, je n'aurais pas pu continuer ce travail.

Je tiens aussi à remercier, particulièrement, \mathcal{M}^{er} Chenafi et \mathcal{M}^{er} Kaji.

Je remercie toutes les personnes qui m'ont aidé à réaliser ce modeste travail.

RAHALI.M

Dédicaces

Je dédie ce modeste travail à toute ma famille ;

A mes chers amís :Boussad,Lyes,Hakím;

A toute personne avec qui j'ai partagé des parties de ma vie surtout à l'université ;

A tous ceux qui m'ont soutenu et aidé dans la réalisation de ce modeste travail.

RAHALI.M

Introduction générale

Introduction générale

Introduction générale

Pour répondre aux besoins en eau de la zone Ihedadhen I, sise dans la commune de Bejaïa, et vu l'état dégradé de son réseau actuel d'alimentation en eau potable, on lui dimensionnera un autre réseau, tout neuf, qui répond aux besoins dans l'horizon de 2047.

Pour cela, on va suivre le plan de travail suivant :

Premièrement ,dans le chapitre premier ,on donne un aperçu sur la zone d'étude ,au deuxième chapitre ,on va estimer les besoins en eau de la population à l'horizon de 2047 .Dans le chapitre trois ,on essaye de dimensionner les réservoirs nécessaires pour le stockage d'eau ,dans le dernier chapitre ,et suivant les données des chapitres précédents ,on va dimensionner le réseau ,pour cela ,il faut choisir les diamètres des conduites qui véhiculeront le débit nécessaire dans les bonnes conditions de pression et de vitesse ,on terminera par une conclusion générale.

Chapitre I: Présentation du site

Chapitre I : Présentation du site

Introduction:

Dans ce chapitre, on va faire une présentation de notre site qui nous permettra d'avoir une idée sur ce dernier et les paramètres qui entrent dans notre travail.

I.1. Situation géographique :

Notre site d'étude est situé dans au sud de la commune de Béjaia ,il se compose de 4 cités ,cité 600 logements ,cité 300 logements ,cité Adrar et cité Djama

I.2. Situation de l'aire d'étude :

La zone d'étude Ihedadhen I est située dans la commune de Bejaia au sud de la ville de Bejaia.

Figure (I.1) : Localisation du site d'étude

I.3.Population actuelle :[1]

La population de notre site d'étude est de 10020 habitants en 2007.

I.4. Situation climatologique:

I.4.1.Le climat: [2]

Notre site bénéficie d'un climat tempéré avec un hiver doux caractéristique des zones méditerranéennes avec une température de 15 °C en moyenne. La période estivale, rafraîchie par les vents marins, présente une température moyenne de 25 °C.

I.4.2.La température moyenne : [3]

Les températures mensuelles moyennes sont récapitulées dans le tableau suivant :

			,	/	-			1				
Mois	Jan	Fév	Mar	Avr	Mai	Juin	Jul	Aou	Sep	Oct	Nov	Déc
Tmin °C	8,8	8,9	10	11,4	14,2	17,9	20,7	21,5	19,6	16,2	12,6	9,5
Tmax°C	14,2	14,6	16,8	19,2	22,3	25,3	28	29,3	27,6	22,9	18,5	15,5
Tmoy °C	11,5	11,7	13,4	15,3	18,2	21,6	24,3	25,4	23,6	19,5	15,5	12,5

Tableau (I.1): Moyennes mensuelles des températures.

✓ T moy : Température moyenne en C
 ✓ T max : Température moyenne en C
 ✓ T min : Température minimale en C.

I.5.Situation hydraulique : [4]

I.5.1. Réseau de distribution actuel :

Le réseau de distribution actuel de la zone étudiée est très vétuste, souffrant de nombreux problèmes : fuites qui dépassent les 50%, mauvaise répartition des ressources entre les différents consommateurs, ce réseau ne répond pas aux exigences des besoins actuels et futurs, pressions trop élevées dans certains points et trop basses dans d'autres endroits. Par conséquent, le réseau doit être intégralement rénové.

I.5.2.Ouvrages de stockage :

Notre site est alimenté par deux réservoirs circulaires, en béton armé (semi-enterrés). Chaque réservoir a une capacité de stockage de 1000 m³. Ces deux réservoirs sont en bon état.

Conclusion:

Dans ce chapitre nous avons présenté notre site de travail, nous avons présenté l'état actuel de son réseau de distribution, qui est d'après le rapport de l'ADE de Bejaïa, un réseau vétuste, qui ne remplit pas sa tache ce qui nécessite son intégrale rénovation.

Chapitre II: Estimations des besoins

Chapitre II: Estimation des besoins

Introduction:

Dans ce présent chapitre, on va faire une estimation des besoins en eau de notre secteur étudié, La consommation de chaque catégorie est déterminée à partir d'une certaine norme ou dotation, spécifique pour chaque catégorie.

II.1. Estimation de la population future :

L'évolution de la démographie suit la loi des accroissements géométriques qui est donnée par la loi des intérêts composés :

$$P_n = P_{0} (1+t)^n$$

Avec:

P_n: Population pour l'horizon considéré.

P₀: Population à l'année de référence.

t : Taux d'accroissement annuel de la population (%).

n : Nombre d'années qui séparent l'année de référence à l'horizon considéré.

D'après les statistiques données par d'ADE de Bejaïa, le nombre d'habitants du secteur Ihedadhen I pour l'année 2007 est estimé de 10020 habitants, avec un taux d'accroissement de 1%. Dans le tableau suivant on représente l'estimation de la population à l'horizon de projet.

Tableau (II .1) : Répartition de la population à l'horizon du projet

Secteur	Taux d'accroissement	1	Population 2017	Population 2027	Population 2037	Population 2047
Ihedadhen I	1%	10020	10959	12106	13373	14772

Donc dans l'horizon de 2047, le nombre d'habitants de la zone d'étude sera de l'ordre de **14772** habitants.

II. 2 .Catégories des besoins en eau :

Dans notre secteur il y'a différents types de consommateurs, pour qui on doit calculer les consommations, ces types ou catégories de besoins sont :

- > Besoins domestiques;
- > Besoins scolaires;
- > Besoins sanitaires;

> Besoins socioculturels.

II.3. Evaluation de la consommation moyenne journalière :[1]

La consommation en eau dans une agglomération dépend du développement et de mode de vie de cette agglomération .la dotation varie donc selon le type de l'agglomération, dans notre cas on prend une dotation de 150 l/j/hab , pour les besoins domestiques, vu le caractère urbain de notre secteur et de sa grandeur, et cela pour l'horizon de 2047.

II.3 .1 Les besoins domestiques :

Pour estimer les besoins en eau domestiques, on doit tenir compte de l'accroissement de la population, de ses habitudes et de son mode vie .La consommation est calculée à la base de l'équation suivante :

$$Q_{\text{moy, j}} = (1/1000) *D*N (m^3/j)$$

Avec:

Q_{moy, j}: consommation moyenne journalière en m³/j;

D : dotation journalière en l/j/hab ;

N : nombre de consommateurs.

Le tableau suivant résume les besoin en eau domestiques :

Tableau (II.2) : Tableau des besoins domestiques

Secteur	Population en 2047	Dotation (l/j /hab)	Débit (m³/j)
Ihedadhen I	14772	150	2215,8

II.3 .2.Les besoins scolaires :

Les besoins scolaires de notre zone d'étude sont récapitulés dans le tableau suivant :

Tableau (II.3): Tableau des besoins scolaires

Equipement	Nombre	Nombre d'élèves	Dotation (1/j/unité)	Débit (m³/j)
Ecole primaire	3	1990	10	19 ,9

C.E.M	3	1920	10	19,2
Lycée	1	710	10	7,1
Ecole de formation professionnelle	1	230	10	2,3
Total	8	4850		48,5

II.3.3.Les besoins sanitaires :

Les besoins sanitaires de notre zone d'étude sont résumés dans le tableau qui suit :

Tableau (II.4): Tableau des besoins sanitaires

Equipement	Unité	Nombre de passions	Dotation (1 /j/unité)	Débit (m ³ /j)
polyclinique	Passion	40	15	0,6
Total		40		0,6

II.3.4. Les besoins socioculturels :

Dans le tableau suivant sont présentés les besoins socioculturels :

Tableau (II.5): Tableau des besoins socioculturels

Equipement	Nombre	Nombre d'usagers	Dotation (1/j/unité)	Débit (m³/j)
Mosquée	1	900	15	13,5
Total	1			13,5

II.4 . Récapitulation des différents besoins en eau :

Dans le tableau suivant on résume les besoins en eau totaux de notre secteur étudié :

Catégorie des besoins $Q_{moy,j}(m^3/j)$ Domestiques2215,8Scolaires48,5Sanitaires0,6Socioculturels13,5Total2278,4

Tableau (II.6): Récapitulation des besoins en eau

Donc à l'horizon de 2047, les besoins moyens journaliers totaux de notre secteur étudié seront **2278,4** (m³/j)

II.5. Majoration de la consommation moyenne journalière :

Afin de compenser les fuites qui pourront se produire dans le réseau d'alimentation en eau potable, et d'éviter tout risque d'insuffisance d'eau, on fait une majoration de 20% pour la consommation moyenne journalière, ces fuites sont généralement fonction du type des tuyaux, de la nature de terrain et la qualité de l'entretien et aussi des probables accidents qui pourront avoir lieu.

La consommation moyenne journalière majorée est présenté dans le tableau suivant :

Année Besoins totaux Pertes 20% (m^3/j) (m^3/J) (m^3/j) (m^3/j) (m^3/j) 2047 2278,4 455,680 2734,08

Tableau (II .7) : Tableau de Q_{moy} majoré pour l'année 2047

II.6. Variation de la consommation journalière :

Au cours de l'année, la consommation de l'eau fluctue autour de la consommation moyenne journalière, les deux cas extrêmes de ces fluctuations sont la consommation maximale journalière et la consommation minimale journalière, qui se caractérisent par les coefficients d'irrégularité maximal $K_{max,j}$ et minimal $K_{min,j}$.

> La consommation maximale journalière :

Elle s'obtient à l'aide de la formule suivante :

$$Q_{\text{max,j}} = K_{\text{max,j}} Q_{\text{moy,j}}$$
.

Avec:

 $Q_{max, j}$: Débit maximal du jour le plus chargé de l'année ;

Q_{mov.i}: Débit moyen journalier;

K_{max,j}: coefficient d'irrégularité maximal qui dépend de l'importance de l'agglomération .Sa valeur est comprise entre 1,1 et 1,3, dans notre cas on va prendre la valeur moyenne soit

 $\mathbf{K}_{\text{max.j}} = 1,2$. Donc:

$$Q_{\text{max , j}} = 1,2*Q_{\text{moy . j}}$$
.

> Consommation minimale journalière :

On l'obtient à l'aide de la formule suivante :

$$Q_{\min,j} = K_{\min,j} * Q_{\max,j}$$
.

Avec:

Q_{min.j}: Débit minimal du jour le moins chargé de l'année ;

 $Q_{moy.j}$: Débit moyen journalier

 $K_{min,j}$: coefficient d'irrégularité minimal qui dépend de l'importance de l'agglomération, sa valeur est comprise entre 0,7 et 0,9 .Dans notre cas on va prendre la valeur moyenne soit

 $\mathbf{K}_{\min,i} = 0.8$. Donc:

$$Q_{min.j} = 0.8* Q_{moy.j}$$
.

Dans le tableau suivant, on résume les principaux résultats :

 $Tableau\ (II.8): Tableau\ r\'ecapitulatif\ des\ consommations\ journalières\ Q_{moy,j}\ ;\ Q_{min,j}\ ;\ Q_{max,j}$

Année	$Q_{\text{moy.j}}(m^3/j)$	$Q_{\min,j}$ (m ³ /j)	$Q_{\text{max, j}}$ (m ³ /j)
2047	2734,08	2190,464	3284,496

II.7 .Variation de la consommation horaire :

Le débit maximal et le débit minimal subissent des variations horaires, on caractérise ces variations par les coefficients de variation horaire, $K_{max,h}$ pour le débit maximal, $K_{min,h}$ pour le débit minimal, on obtient les deux cas extrêmes, le débit maximal horaire pour la journée la plus chargée et le débit minimal horaire pour la journée la moins chargée.

> Débit maximal horaire :

Ce débit est calculé à l'aide de la formule suivante :

Avec:

 $\mathbf{Q}_{\text{max,h}}$:Débit maximal horaire (m³/h);

 $\mathbf{Q}_{\text{moy,h,max}}$: Débit moyen horaire de la journée la plus chargée (m^3/h) , ce débit s'obtient par la formule suivante :

$$Q_{moy,h,max} = Q_{max,j}/24 \text{ , ou}$$

$$Q_{moy,h,max} = 3284,496/24 = 136,854 \text{ , } \mathbf{Q_{moy,h,max}} = \mathbf{136,854(m^3/h)}$$

 $K_{max,h}$: coefficient de variation horaire maximal, ce coefficient est obtenu par la formule suivante :

$$K_{max,h} = \alpha max * \beta max ;$$

Avec:

αmax : Coefficient qui tient compte du confort de l'agglomération, il varie entre 1,2 et 1,4, dans notre cas on prend αmax=1,3.

βmax : Coefficient qui dépend du nombre d'habitants, sa valeur est donnée dans le tableau suivant :

Tableau (II.9) : β *max en fonction du nombre d'habitants.*

Nombre d'hab*10 ³	<1,0	1,5	2,5	4	6	10	20	30	100	300	>1000
β _{max}	2	1,8	1,6	1,5	1,4	1,3	1,2	1,15	1,1	1,03	1

Le nombre d'habitants de notre zone d'étude à l'horizon de 2047 est 14772 habitants, le coefficient β_{max} dans notre cas est calculé comme suit :

- \triangleright 10000 habitants : $\beta_{\text{max}}=1,3$;
- \geq 20000 habitants : $\beta_{\text{max}}=1,2$;
- \triangleright 14772 habitants : β_{max} = ?.

$$\frac{10000-14772}{1,3-\beta max} = \frac{14772-20000}{\beta max-1,2}, donc: \beta max=1,252$$

Donc
$$K_{\text{max},h} = \alpha \max * \beta \max = 1,3*1,252=1,628$$
; $K_{\text{max},h} = 1,628$;

Et: le débit maximal horaire est: $Q_{\text{max},h} = Q_{\text{moy},h,\text{max}} * K_{\text{max},h} = 136,854 * 1,628 = 222,798 \text{ (m}^3/\text{h)};$

Donc : $Q_{\text{max,h}} = 222,798 \text{ (m}^3/\text{h)}.$

> Débit minimum horaire :

Ce débit est calculé à l'aide de la formule suivante :

$$Q_{min,h}=Q_{moy,h,min}*K_{min,h}$$
. Avec:

Q_{min,h}: Débit minimal horaire (m³/h);

 $\mathbf{Q}_{\text{moy,h,min}}$: Débit moyen horaire de la journée la moins chargée (m³/h), ce débit s'obtient par la formule suivante :

$$Q_{moy,h,min}\!=\!Q_{min,j}/24 \ , \ ou$$

$$Q_{moy,h,min}\!=\!2190,\!464/24\!=\!91,\!269(m^3/h) \ , \ Q_{moy,h,min}\!=\!91,\!269(m^3/h).$$

 $K_{min,h}$: coefficient de variation horaire minimal, ce coefficient est obtenu par la formule suivante :

$$K_{\min,h} = \alpha \min * \beta \min;$$

Avec:

amin : Coefficient qui tient compte du confort de l'agglomération, il varie entre 0,4 et 0 ,6 dans notre cas on prend αmax=0,5

βmin : Coefficient qui dépend du nombre d'habitants, sa valeur est donnée dans le tableau suivant :

Tableau (II.10) : βmin en fonction du nombre d'habitants.

Nombre d'hab*10 ³	<1,0	1,5	2,5	4	6	10	20	30	100
βmin	0,1	0,1	0,1	0,2	0,25	0 ,4	0,5	0,6	0,7

On a un nombre d'habitants égal à 14772 habitants, on trouve que βmin=0,448

Donc: $K_{min, h} = \alpha min * \beta min = 1,5*0,448=0,672$; $K_{min, h} = 0,672$

Donc : le débit minimal horaire est : $Q_{min,h} = Q_{moy,h,min} * K_{min,h} = 91,269 * 0,672 = 61,333 (m^3/h)$;

Ou : $Q_{min,h} = 61,333 \text{ (m}^3/\text{h)}$.

II.8. Evaluation de la consommation horaire en fonction du nombre d'habitants :

Cette variation du débit horaire sera exprimée en pourcentage (%) par rapport au débit maximal journalier de l'agglomération .On obtient la répartition horaire à l'aide de coefficient maximum horaire qui varie selon le caractère de l'agglomération .Dans notre cas on prend $K_{max,h}=1,7$, en prenant cette valeur on choisit le régime de consommation horaire pour notre secteur suivant le tableau de répartition horaire (voir Annexe 1).Les résultats obtenus sont résumés dans le tableau ci-dessous :

Tableau(II.11) : Variation des débits horaires

Heure	Conso	mmation totale	Consc	ommation cumulée		
	Q _{max,j} =	3284,496(m ³ /j)	Q _{max,j} =3284,496(m ³ /j)			
	%	m ³ /h	%	m³/h		
0-1	1,0	32,845	1,0	32,845		
1-2	1,0	32,845	2,0	65,69		
2-3	1,0	32,845	3,0	98,535		
3-4	1,0	32,845	4,0	131,38		
4-5	2,0	65,690	6,0	197,07		
5-6	3,0	98,535	9,0	295,605		
6-7	5,0	164,225	14,0	459,83		
7-8	6,5	213,492	20,5	673,322		
8-9	6,5	213,492	27,0	886,814		
9-10	5,5	180,647	32,5	1067,461		
10-11	4,5	147,802	37,0	1215,263		
11-12	5,5	180,647	42,5	1395,91		
12-13	7,0	229,915	49,5	1625,825		
13-14	7,0	229,915	56,5	1855,74		
14-15	5,5	180,647	62,0	2036,387		
15-16	4,5	147,802	66,5	2184,189		
16-17	5,0	164,225	71,5	2348,414		
17-18	6,5	213,492	78,0	2561,906		

18-19	6,5	213,492	84,5	2775,398
19-20	5,0	164,225	89,5	2939,623
20-21	4,5	147,802	94,0	3087,425
21-22	3,0	98,535	97,0	3185,96
22-23	2,0	65,690	99,0	3251,65
23-24	1,0	32,845	100	3284,496
Totale	100	3284,496		

D'après ce tableau on trouve que :

$$Q_{max,h} = 229,915 \text{ m}^3/\text{h}$$

$$Q_{min,h}=32,845 \text{ m}^3/\text{h}$$

Conclusion:

Dans ce chapitre nous avons estimé les différents besoins en eau, nous avons déterminé le débit maximal journalier nécessaire pour alimenter la zone de Ihedadhen I qui est de $Q_{max,j}$ =3284,496(m³/j).

Chapitre III : Réservoirs

Chapitre III: Les réservoirs

Introduction:

Dans ce chapitre nous allons discuter l'une des infrastructures urbaines qui est le réservoir. Les réservoirs sont des ouvrages hydrauliques qui, principalement, servent pour stocker et réserver l'eau .Ils jouent un rôle intermédiaire important entre le réseau d'adduction et celui de distribution.

III.1. Rôles des réservoirs :[5]

Les réservoirs ont plusieurs fonctions différentes et multiples, ils peuvent assurer :

La régulation de l'apport de la consommation d'eau :

Généralement, le débit refoulé par la pompe n'est pas égal au débit consommé, cela nécessite un réservoir qui joue le rôle de régulateur et d'accumulateur.

La régulation de la pression :

Dans ce cas, le réservoir doit être placé en un point de telle sorte que son altitude assure les pressions nécessaires dans les points les plus éloignés.

➤ Gain de l'énergie au niveau de la station de pompage :

Il permet la réduction des dépenses d'énergie (stockage pendant la nuit et distribution gravitaire pendant les heures de pointes).

> Brise de charge :

Dans un terrain accidenté, on peut avoir des pressions non admissibles dans certains points du réseau, donc un réservoir peut être utilisé comme brise de charge.

> Stockage de la réserve d'incendie :

On peut avoir un réservoir entier destiné à la réserve d'incendie mais cela est rare vu le cout de réalisation, donc la réserve d'incendie est ajoutée dans le réservoir d'accumulation.Les réservoirs doivent être : étanches, protégés contre toute contamination de l'eau, construits avec des matériaux qui ne seront pas capables d'altérer l'eau et construits de telle sorte qu'ils préservent l'eau contre les variations de température.

III.2. Classification des réservoirs : [6]

On peut classer les réservoirs selon :

> Leur position par rapport au sol :

Ils peuvent être:

✓ Enterrés ;

- ✓ Semi-enterrés;
- ✓ Surélevés, que l'on nomme aussi château d'eau.

Leur forme, à savoir :

- ✓ Circulaires :
- ✓ Carrés et rectangulaires ;
- ✓ Quelconques.

> La nature du matériau qui les compose :

- ✓ Métallique ;
- ✓ En maçonnerie;
- ✓ En béton armé ordinaire ou précontraint.

III.3. Choix du site d'implantation : [7]

Pour choisir le site de l'emplacement des réservoirs il faut tenir compte des données topographiques, de la géologie et la nature de terrain. Cet emplacement obéit à certaines conditions suivantes :

- ✓ Au centre de l'agglomération (Château d'eau) pour réduire les pertes de charge et par conséquent les diamètres.
- ✓ En altitude en réduisant le diamètre .La partie de charge est compensée alors par une pression plus grande.
- ✓ L'altitude du réservoir, plus précisément du radier, doit se situer à un niveau supérieur à la plus haute cote piézométrique exigée sur le réseau.
- ✓ Par conséquent il faut évaluer la perte de charge entre le réservoir et le point de plus haute cote piézométrique à desservir .On obtient ainsi approximativement l'altitude du radier.
- ✓ La topographie et la géologie ont une place très importance dans le choix de l'emplacement, il faut aussi tenir compte des extensions futurs.

III.4. Choix du type de réservoirs : [7]

Le choix du type de réservoir dépend principalement des facteurs économiques. On opte pour les réservoirs semi-enterrés qui présentent les avantages suivants :

- ✓ Economie sur les frais de construction ;
- ✓ Etanchéité plus facile à réaliser ;
- ✓ Construction pour le stockage d'eau à une température constante.

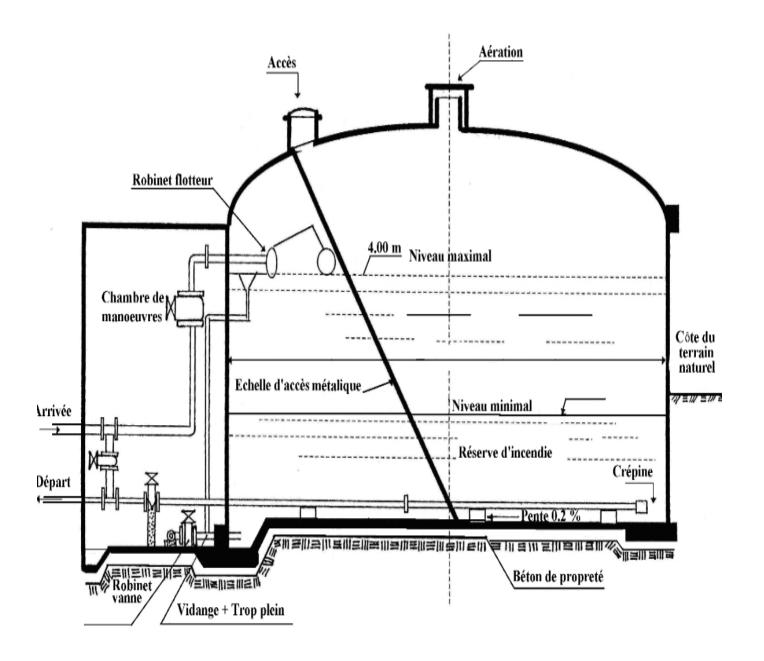


Figure (III.1): Réservoir cylindrique semi-enterré

III.5. Equipements du réservoir : [7]

Tout réservoir unique ou avec compartiments doit avoir les équipements suivants :

III.5.1. Conduite d'arrivée :

C'est la conduite qui provient de la source gravitaire ou par refoulement et qui assure le remplissage du réservoir .Selon la qualité de l'eau, cette arrivée peut avoir différents endroits au niveau de la cuve.

III.5.2. Conduite de départ ou de distribution :

Cette conduite est placée à l'opposé de la conduite d'arrivée à quelques centimètres audessus du radier (15 à 20 cm) pour éviter l'entrée des matières en suspension.

III.5.3. Conduite de vidange :

Cette conduite permet la vidange du réservoir en cas de nettoyage ou de répartition, elle doit partir du point le plus bas du radier.

III.5.4. Conduite de trop-plein :

Cette conduite permet d'évacuer l'excès d'eau dans le réservoir en cas ou la pompe ne s'arrête pas.

III.5.5. Système de matérialisation d'incendie :

C'est une disposition spéciale de la tuyauterie qui permet d'interrompre l'écoulement une fois le niveau de la réserve d'incendie est atteint, pour cela nous avons intérêt à équiper l'ouvrage d'un système à siphon permettant de transiter l'eau du réservoir tout en préservant la quantité destinée pour l'incendie. Cette interdiction sera bien entendu, levée par une manœuvre manuelle effectuée sur place ou à distance en cas d'incendie.

III.5.6. Conduite by-pass:

Toutes ces conduites doivent normalement aboutir dans une chambre de manœuvre accolée au réservoir .La traversée des parois des réservoirs par les diverses canalisations peut s'effectuer ,soit à l'aide des gaines comprenant un corps en fonte muni de cannelures extérieures et de deux brides de raccordement, soit au moyen de manchons et viroles à doubles bride.

III.6.Capacité du réservoir : [7]

La capacité du réservoir est déterminée en fonction des variations des débits entrant et sortant, en d'autres termes, du mode d'adduction (apport) et de la consommation journalière de l'agglomération .Le calcul de la capacité du réservoir peut se faire suivant deux méthodes :

- Méthodes graphique
- > Méthodes analytique

III.6.1. Méthode graphique :

Dans cette méthode, on trace sur le même graphe la courbe de consommation totale et la courbe cumulée des débits d'apport en fonction du temps. Le volume de stockage du réservoir s'obtient en additionnant la valeur absolue des écarts des deux entre les deux courbes.

III.6.2. Méthode analytique :

La méthode analytique consiste à calculer, pour chaque heure de la journée, le résidu dans le réservoir .Le volume de régulation sera :

$$V_r = (P\% * Q_{max,j})/100 \text{ (m}^3)$$

Avec:

V_r: Capacité résiduelle (m³);

P%: Résidu maximum des le réservoir (%);

 $Q_{max,j}$: La consommation maximale journalière (m^3/j) .

III.6.2.1. Détermination de la valeur de P%:

A partir des valeurs de α max et β max, on détermine le coefficient de variation horaire $K_{max, h}$ par la relation suivante :

$$K_{\text{max, h}} = \alpha \text{max} * \beta \text{max}$$

Dans notre cas $K_{\text{max, h}}=1,7$.

La répartition de la consommation maximale journalière sur les 24 heures s'obtient à partir du tableau de distribution du débit journalier sur 24 heures (voir Annexe1).On fait ensuite une répartition du débit de pompage le long de la journée. La différence entre l'apport et la distribution pour chaque heure de la journée sera reportée dans la colonne des surplus ou des déficits selon son signe.

Après on détermine le résidu dans le réservoir pour chaque heure. La valeur maximale trouvée (P%) sera le pourcentage du volume de stockage qui se trouve comme suit :

$$P\% = |Pmax(\%)| + |-Pmin(\%)|$$

Avec:

P_{max}: Le résidu maximum dans la journée (%).

P_{min}: Le résidu minimum dans la journée(%).

III.6.3. Le volume total du réservoir :

Le volume total du réservoir (V_T) sera calculé en tenant compte de la réserve d'incendie qui est 120 m³ (volume nécessaire pour éteindre un incendie de deux heures).

$$V_T = V_r + V_{inc}$$

III.6.4.Dimensionnement du réservoir :

La distribution sera gravitaire, à partir de la valeur de K_{max, h}=1,7, on détermine la répartition des débits dans la journée (Voir Annexe1)

Heures Gravitaire consommation surplus Résidu déficit Н **% % % % %** 0-1 4 5 1,0 4 1-2 5 4 1,0 8 5 2-3 4 12 1,0 5 4 3-4 1,0 16 5 3 4-5 2,0 19 2 5-6 5 3,0 / 21 5 0 6-7 5,0 21 5 7-8 6,5 1,5 19,5 8-9 5 6,5 1,5 18 9-10 5 5,5 0,5 17,5 5 10-11 4,5 0,5 18 17,5 5 11-12 5,5 0,5 5 12-13 7,0 2 15,5 5 2 13-14 7,0 13,5 14-15 5 5,5 0,5 13 15-16 5 4,5 0,5 13,5 5 0 16-17 5,0 13,5 5 17-18 6,5 1,5 12 5,5 18-19 0 6,5 6,5 19-20 0 5 0,5 5,0 20-21 0 4,5 / 4,5 -4 -7 0 3 21-22 3,0 22-23 5 3 7 2,0 -4 5 4 23-24 1,0 / 0 100 **Total** 100

Tableau(III.1): Dimensionnement du réservoir

D'après le tableau Tableau(III.1), on trouve que :

$$P\% = |21(\%)| + |-7(\%)| = 28\%$$

$$V_r = (P\% * Q_{max,j})/100 = 28*3284,496/100=919,659 \text{ m}^3$$

Donc:

$$V_T = V_r + V_{inc} = 919,659 + 120 = 1039,659 \text{ m}^3$$

Puisque le réseau est alimenté par deux réservoirs de capacité 1000 m³ chacun, cela sera suffisant pour stocker le volume 1039,659 m³ que nous avons trouvé.

Conclusion:

D'après les calculs que nous avons faits, les réservoirs actuels alimentant notre réseau seront amplement suffisants pour stocker le volume de 1039,659 m³.

Chapitre IV: Réseau du distribution

Chapitre IV: Réseau de distribution

Introduction:

Le but du réseau de distribution est de ramener l'eau du réservoir jusqu'aux consommateurs en respectant des pressions et des vitesses bien déterminées .Pour cela les diamètres doivent être suffisants pour transporter le débit désiré et assurer une pression de sol suffisante correspondant aux hauteurs des immeubles. La vitesse de l'eau dans les conduites sera comprise entre 0.5 et 1.0 m³/s.

IV.1 Classification des réseaux de distribution : [7]

On peut les classer comme suit :

IV.1.1 Réseau ramifié:

La circulation de l'eau dans ce réseau a un seul sens (des conduites principales, vers les conduites secondaires, ensuite vers des conduites tertiaires,...etc.) ; l'avantage de ce réseau c'est qu'il est économique, mais la rupture d'une conduite principale prive les abonnés de l'aval, d'où sans manque de sécurité.

IV.1.2 Réseau maillé :

Le réseau dérive du réseau ramifié par connexion des extrémités des conduites (généralement jusqu'au niveau des conduites tertiaires), permettant une alimentation en retour. Ainsi, chaque point du réseau peut être alimenté en eau de deux ou plusieurs cotés .Ce type de réseau présente les avantages suivants :

- ✓ Plus de sécurité dans l'alimentation (en cas de rupture des conduites, il suffit de l'isoler et tous les abonnés situés à l'aval sont alimentés par d'autres conduites)
- ✓ Une répartition plus uniforme des pressions et des débits dans tout le réseau.

IV.1.3. Réseau mixte:

Un réseau est mixte (maillé-ramifié), lorsque ce dernier constitue une partie ramifiée et une autre maillée .Ce type de schéma est utilisé pour desservir les quartiers en périphérie de la ville par les ramifications issues des mailles utilisées dans le centre de cette ville.

IV.2. Description du réseau de distribution :

La distribution se fait gravitairement à partir d'un réservoir situé à une cote de radier de 148m. Notre réseau est du type mixte.

IV.3 Choix du tracé:

Le tracé définitif doit respecter les points suivants :

✓ Minimiser le nombre de passages difficiles : traversée de route, de ravine...;

- ✓ Eviter les zones rocheuses : une tranchée devra être creusée ;
- ✓ Préférer les zones accessibles : le long des chemins existants par exemple ;
- ✓ Tenir compte des problèmes de propriété de terrain et d'autorisation : problèmes fonciers ;
- ✓ Au niveau de la communauté, le tracé est généralement dicté par les contraintes liées à l'occupation des sols (jardins, maison...).

IV.4. Choix du type des conduites :[8]

Le choix est fondé sur des critères d'ordre techniques et économiques : le diamètre, la pression de service, la durée de vie, les conditions de pose et de transport, le prix et la disponibilité sur le marché.

Dans notre projet, le PEHD répond aux objectifs recherchés .Donc nous l'utilisons pour les raisons suivantes :

- ✓ Facilité de pose (grande flexibilité) ;
- ✓ Possibilités d'enroulement en couronnes pour les petits diamètres ;
- ✓ Permet des rayons de courbures inférieurs aux réseaux traditionnels ;
- ✓ Résiste à la corrosion interne, externe et micro biologique ;
- ✓ Disponibilité sur le marché national ;
- ✓ Une rugosité très faible ;
- ✓ Meilleurs résistances aux contraintes (choc, écrasement, déplacement du terrain).

IV.5 Exigence du réseau de distribution :

Pour la meilleure performance du réseau, il faut que :

- ✓ La pression soit supérieure à 1 bar ;
- ✓ Sur la totalité du réseau, la pression maximale régnant ne doit en aucun cas dépasser les 6 bars, ceci provoquera des désordres.
- ✓ Les vitesses doivent être entre 0,5 et 1,0 m/s sauf exception;
- ✓ Les diamètres doivent permettre l'écoulement des débits de pointe.

IV.6 Calcul hydraulique du réseau de distribution : [7]

IV.6.1. Débit de pointe :

Le débit de pointe représente le débit de dimensionnement du réseau de distribution, il représente la consommation d'eau maximale de l'heure la plus chargée de la journée, il est donné par la formule suivante :

$$Q_p = K_{\text{max,h}^*} Q_{\text{max,j}}/24$$

 Q_p : Débit de pointe (m^3/j) ;

Q_{max,j}:Débit maximum journalier (m³/j);

K_{max ,h}: Coefficient de variation horaire.

Dans notre cas $Q_p = 3284,496*1,628/24=61,891/s$

IV.6.2. Débit spécifique :

C'est de débit d'eau transité dans un mètre de canalisation

 $Q_s: Q_p/\Sigma L$

Q_s: Débit spécifique (1/s/m);

Q_p:Débit de pointe (1/s);

ΣL : Somme des longueurs des tronçons du réseau.

Dans notre cas $Q_s = 61.89 / 16211.95 = 0.0038 1 / s/m$

IV.6.3.Débit en route :

C'est le débit circulant à travers un tronçon et supposé être consommé d'une façon uniforme sur toute la longueur de ce dernier .Il se calcule par :

$$Q_r = Q_s * L_i$$

Q_r: Débit en route de tronçon (l/s);

Q_s: Débit spécifique (l/m/s);

L_i: Longueur du tronçon (i) en (m).

Dans le tableau suivant on donne les débits en route dans chaque conduite :

Tableau (IV . 1) : les débits de routes dans les conduites

conduite	L _{ij} (m)	Q _r (I/s)	conduite	L _{ij} (m)	Q _r (I/s)
R1-N1	37,08	0,1409	N13-N14	26,72	0,1015
N1-N2	57,83	0,2169	N14-N15	55,57	0,211
N2-N3	210,95	0,8016	N14-N16	53	0,2014
N3-N4	120,3	0,4571	N16-N17	111,79	0,4248
N4-N28	229,1	0,8706	N16- N20	128,3	0,4875
N28-N5	23	0,0874	N17-N18	194,74	0,74
N5-N6	50,68	0,1926	N17-N19	5,371	0,0204
N6-N13	73,68	0,28	N19-N20	49,63	0,1886
N6-N7	168,68	0,641	N19-N25	179,11	0,6806
N7-N8	20	0,076	N21-N22	66,64	0,2532
N8-N10	55,82	0,2121	N21-N25	123,34	0,4687
N8- N9	75,95	0,2886	N22-N23	116,7	0,4435
N10-N11	37,2	0,1414	N23-N24	40	0,1520
(N11-N12)	184,88	0,7025	N24-N25	25,52	0,097
N11-N12	32,03	0,1217	N24-N26	97,53	0,3706
N12-N13	29,05	0,1104	N25-N26	72,73	0,2764

					_
N26-N27	77,51	0,2945	N71-N72	100,88	0,3833
N28-N29	11,98	0,0455	N71-N75	401,06	1,5240
N29-N30	94,02	0,3573	N72-N73	100,06	0,3802
N29-N31	80,26	0,3050	(N72-N73)	317,98	1,2083
N31-N32	190,27	0,723	N74-N79	50	0,1900
N31-N33	91	0,3458	N73-N74	70	0,266
N33-N34	128,78	0,4891	N75- N76	97,54	0,3706
N28-N35	171,14	0,6503	N75- N77	192,81	0,7327
N35-N36	65,05	0,2472	N75-N78	261,41	0,9933
N35-N37	27,31	0,1038	N79-N80	158,63	0,6028
N37-N38	28,13	0,1069	N80-N81	40,48	0,1538
N38-N39	174,7	0,6639	N80-N82	29,02	0,1103
N39-N40	184	0,6992	N80- N83	29,02	0,1103
N40-N41	66	0,2508	N78-N83	100,05	0,3802
N40-42	15,75	0,0599	N83-N84	122	0,4636
N42-N43	2,791	0,0106	N83-N84	122	0,4636
N42-N45	40	0,152	N83-N85	97,96	0,3772
N43-N44	73,56	0,2795	N85-N86	5,358	0,0204
N44-N46	73,82	0,2805	N86-N87	81,77	0,3107
N44-N48	21,18	0 ,0805	N86-N88	151,28	0,5749
N45- N47	125	0,475	N85-N89	105,05	0,3992
N48-N49	36,01	0,1370	N89-N90	11,85	0,045
N48-N52	14,81	0,05630	N90-N91	183,78	0,6984
N49-N51	27,85	0,1058	N90-N92	259,53	0,9862
N49-N50	67	0,2546	N92-N93	334,8	1,2722
N48-N52	14,81	0,05630	N92-N94	338,6	1,2867
N52-N53	36,87	0,1401	N95-N96	367,51	1,3965
N52-N54	44,2	0,168	N89-N97	108,81	0,4135
N54-N55	50,72	0,1927	N97-N98	205,5	0,7809
N54-N56	106,52	0,2242	N97-N99	219,79	0,8352
N55-N56	59	0,2242	N99-N100	446,39	1,6963
N55-N57	75,45	0,2867	N100-N101	41,08	0,1516
N56-N58	78,98	0,3000	N100-N102	521,16	1,9804
N58-N59	35,16	0,134	N102-N108	94,44	0,3589
N59-N60	31,29	0,119	N103-N105	130,7	0,4967
N60-N61	35,33	0,134	N104-N105	120	0,4560
N60-N62	44,85	0,1704	N104- N112	313,5	1,1913
N58-N63	228,85	0,8696	N105-N106	26,78	0,1018
N59-N63	114	0,4332	N106-N107	10	0,038
N63-N64	30,72	0,1167	N106-N108	43,12	0,1638
N50- N64	129,39	0,4916	N107-N112	237,2	0,9014
N64-N65	91,09	0,3461	N108-N109	15	0,057
N65-N66	64,8	0,2462	N109-N110	72,06	0,2738
N67-N65	32,39	0,1231	N110-N111	111,66	0,4243
N67-N68	69,14	0,263	N70-N112	19,71	0,0749
N51-N67	16,65	0,0633	N106-N113	166,95	0,6344
N51-N69	71,23	0,271	N113-N114	74,58	0,2834
N38-N70	986,86	3,7501	N113-N115	45,45	0,1727
N70-N71	40,8	0,1550	N115-N116	91,84	0,3490

N115-N117	87,36	0,3320	N121-N122	679	2,5802
N117-N118	85,00	0,3230	N37-N121	514,35	1,9545
N117-N119	115,15	0,4376	N104-N121	215,89	0,8204
N119-N120	100,26	0,3810	N121-N122	679	2,5802
N89-N119	16,61	0,0631			

IV.6.4. Débit en nœud:

C'est le débit concentré en chaque nœud pour alimenter la population répartie autour des moitiés des tronçons des conduites ayant en commun le nœud considéré.

Il se calcule comme suit :

$$Q_n = 0.5\Sigma Q_r + Q_c$$

Q_n: Débit de nœud (l/s);

 Σ Q_r: La somme des débits de route (l/s);

Q_c: Débit localisé en nœud considéré (l/s).

On donne dans le tableau suivant les débits en nœuds :

Tableau (IV.2) : les débites en nœuds

Nœud	Q _n (I/s)	Nœud	Q _n (I/s)	Nœud	Q _n (I/s)
R1		N22	0,6996	N44	0,3202
N1	0,1789	N23	0,2977	N45	0,3135
N2	0,5092	N24	0,3096	N46	0,3436
N3	0,6293	N25	0,4210	N47	0,2375
N4	0,6638	N26	0,4707	N48	0,1369
N5	0,14	N27	0,1472	N49	0,2487
N6	0,5568	N28	0,0664	N50	0,5004
N7	0,3585	N29	0,3539	N51	0,2200
N8	0,2883	N30	0,1786	N52	0,1822
N9	0,1443	N31	0,6869	N53	0,0700
N10	0,4219	N32	0,3615	N54	0,3827
N11	0,4828	N33	0,4174	N55	0,3518
N12	0,1160	N34	0,2445	N56	0,4645
N13	0,1907	N35	0,5006	N57	0,1433
N14	0,2570	N36	0,1236	N58	0,6518
N15	0,1055	N37	1,0826	N59	0,3431
N16	0,5568	N38	2,2604	N60	0,2117
N17	0,3802	N39	0,6816	N61	0,067
N18	0,3700	N40	0,5049	N62	0,0852
N19	0,4448	N41	0,1254	N63	0,7097
N20	0,3380	N42	0,1110	N64	0,4772
N21	0,3609	N43	0,1450	N65	0,3577
N66	0,1231	N87	0,1554	N108	0,2898
N67	0,2247	N88	0,2874	N109	0,1654

N68	0,1315	N89	0,4604	N110	0,3490
N69	0,1355	N90	0,8648	N111	0,2110
N70	1,99	N91	0,3492	N112	1,0838
N71	1,0296	N92	1,7725	N113	1,0905
N72	0,9859	N93	0,6361	N114	0,1417
N73	0,9209	N94	0,6433	N115	0,8537
N74	0,2280	N95	0,9050	N116	0,3490
N75	1,8103	N96	0,6982	N117	0,5463
N76	0,1853	N97	0,8081	N118	0,1615
N77	0,366	N98	0,3905	N119	0,4408
N78	0,9368	N99	1,2658	N120	0,1905
N79	0,6464	N100	1,9164	N121	2,6776
N80	0,4334	N101	0,0781	N122	1,2901
N81	0,0769	N102	1,1697		
N82	0,055	N103	0,2480		
N83	0,608	N104	1,2339		
N84	0,2318	N105	0,5272		
N85	0,3959	N106	0,1518		
N86	0,453	N107	0,4697		

IV.6.5.Débit aval:

C'est le débit résiduel, quittant le tronçon vers l'aval.

IV.6.6.Débit de tronçon :

C'est la somme entre le débit de route et son débit aval. On procède à la répartition des débits selon les différents tronçons de la manière suivante :

$$Q_{tr} = Q_{av} + Q_r$$

Qtr: Débit de tronçon (1/s);

Q_r: Débit de route (l/s);

Qav: Débit aval (1/s).

IV. Configuration et simulation de réseau hydraulique : [9]

IV.7.1. Présentation d'EPANET :

EPANET est un logiciel de simulation du comportement hydraulique et qualitatif de l'eau sur de longues durées dans les réseaux sous pression. Un réseau est un ensemble tuyaux, nœuds (jonctions de tuyau), pompes, vannes, bâches et réservoirs .EPANET calcule le débit dans chaque tuyau, la pression à chaque nœud, le niveau de l'eau dans les réservoirs, et la concentration en substances chimiques dans les différentes parties du réseau, au cours d'une durée de simulation divisée en plusieurs étapes. Le logiciel est également capable de calculer les temps de séjour et de suivre l'origine de l'eau.

EPANET a pour objectif une meilleure compréhension de l'écoulement et de l'usage de l'eau dans les systèmes de distribution.

IV.7.2.Utilisation d'EPANET:

Les étapes classiques de l'utilisation d'EPANET pour modéliser un système de distribution d'eau sont les suivantes :

- ✓ Dessiner un réseau représentant le système de distribution ou importer une description de base du réseau enregistré dans un fichier au format texte ;
- ✓ Saisir les propriétés des éléments du réseau ;
- ✓ Décrire le fonctionnement du système ;
- ✓ Sélectionner un ensemble d'options de simulation ;
- ✓ Lancer une simulation hydraulique ou une analyse de la qualité ;
- ✓ Visualiser les résultats d'une simulation.

IV.7.3. Modélisation du réseau :

EPANET modélise un système de distribution d'eau comme un ensemble d'arcs reliés à des nœuds.

Les arcs représentent des tuyaux, des pompes, et des vannes de contrôle .Les nœuds représentent des nœuds de demande, des réservoirs et des bâches.

Dans le présent projet, la modélisation a été faite en introduisant les différentes données du réseau.

> Au niveau des nœuds :

L'altitude du nœud par rapport à un plan de référence ;

La demande en eau (débit prélevé sur le réseau).

> Au niveau des arcs :

Les nœuds initiaux et finals ;

Le diamètre ;

La longueur ;

Le coefficient de rugosité (pour déterminer la perte de charge).

> Au niveau des réservoirs :

L'altitude du radier;

Le diamètre;

Le niveau initial, minimal et maximal d'eau.

IV.7.4. Simulation du réseau :

Après la saisie des informations du réseau, la simulation peut être lancée .Dans cette étape, et grâce à son moteur de calcul, le logiciel analyse le comportement du réseau dans les conditions requises et détermine les différentes grandeurs hydrauliques (vitesse, débit, pression et charge) à un instant donné, ce qui implique de résoudre simultanément les équilibres de masse dans les nœuds et les pertes de charge dans chaque arc du réseau.

IV.7.5.Dimensionnement du réseau : [9]

Dans cette partie on essaye de dimensionner le réseau ça veut dire trouver les diamètres nécessaires pour véhiculer le débit dont on a besoin avec les pressions et des vitesses convenables ; dans le logiciel Epanet, on fait entrer les données nécessaires, à savoir les altitudes des nœuds, les demandes des nœuds, on essaye de trouver les diamètres en faisant plusieurs tâtonnements ; le tableau suivant donne les hauteurs des nœuds :

Tableau	(IV.3)	: les	altitudes	des	nœuds

N nœud	Altitude(m)	N nœud	Altitude(m)	N nœud	Altitude(m)
R1	149,16	N24	114,06	N47	98,6
N1	146,83	N25	112,28	N48	99,56
N2	140,63	N26	110,4	N49	99,55
N3	140,74	N27	108,36	N50	100,16
N4	132,39	N28	117,8	N51	98,83
N5	118,16	N28	117,8	N52	99,13
N6	116,36	N29	117,51	N53	97,83
N7	117,9	N30	109,53	N54	98,08
N8	118,41	N31	112,52	N55	97,2
N9	118,15	N32	118,13	N56	96,37
N10	114,64	N33	109,41	N57	95,84
N11	114,41	N34	113,29	N58	95,02
N12	113,95	N35	109,53	N59	95,51
N13	113,36	N36	109,84	N60	94,97
N14	112,49	N37	108,65	N61	95,93
N15	109,64	N38	107,88	N62	94,55
N16	111,03	N39	109,84	N63	95,93
N17	108,8	N40	103,08	N64	95,86
N18	109,87	N41	102,77	N65	97,16
N19	108,92	N42	102,7	N66	96,78
N20	111,27	N43	102,5	N67	98,28
N21	111,78	N44	100,12	N68	97,36
N22	115,17	N45	102,36	N69	99,03
N23	113,52	N46	101,51	N70	102,16
N71	101,96	N89	107,69	N107	103,55
N72	101,75	N90	107,71	N108	103,82
N73	102,67	N91	118,31	N109	103,79
N74	103,47	N92	110,86	N110	104,1

N75	103,77	N93	121,56	N111	104,24
N76	101,81	N94	118,99	N112	102,27
N77	119,63	N95	108,16	N113	104,64
N78	103,4	N96	113,08	N114	103,66
N79	103,47	N97	108,4	N115	104,98
N80	103,47	N98	120,02	N116	103,91
N81	103,91	N99	112,4	N117	105,61
N82	103,67	N100	108,93	N118	104,41
N83	104,96	N101	109,67	N119	107,35
N84	120,84	N102	104,22	N120	105,65
N85	106,03	N103	104,13	N121	108,42
N86	106,11	N104	102,88	N122	108,61
N87	105,77	N105	103,15		
N88	111,18	N106	103,61		

L'annexe 2 représente le réseau avant la simulation.

Après plusieurs essais sur les diamètres, on trouve ceux qui respectent les conditions de pression et de vitesses, le tableau suivant donne la liste de ces derniers :

Tableau (IV.4) : les diamètres des conduites.

Conduite	Diamètre	Diamètre	Conduite	Diamètre	Diamètre
	intérieur (mm)	extérieur		intérieur (mm)	extérieur
		(mm)			(mm)
R1-N1	375,2	400	N17-N19	35,4	40
N1-N2	375,2	400	N19-N20	44,4	50
N2-N3	375,2	400	N19-N25	44,4	50
N3-N4	375,2	400	N21-N22	20,4	25
N4-N28	375,2	400	N21-N25	35,4	40
N28-N5	108,4	125	N22-N23	13,4	16
N5-N6	108,4	125	N23-N24	13,4	16
N6-N13	95,2	110	N24-N25	13,4	16
N6-N7	56,2	63	N24-N26	35,4	40
N7-N8	44,4	50	N25-N26	35,4	40
N8- N9	20,4	25	N26-N27	13,4	16
N8-N10	35,4	40	N28-N29	66,8	75
N10-N11	44,4	50	N29-N30	20,4	25
(N11-N12)	35,4	40	N29-N31	56,2	63
N11-N12	56,2	63	N31-N32	26,4	32
N12-N13	56,2	63	N31-N33	35,4	40
N13-N14	77,8	90	N33-N34	26,4	32
N14-N15	35,4	40	N28-N35	217,2	250
N14-N16	77,8	90	N35-N36	20,4	32
N16-N17	56,2	63	N35-N37	217,2	250
N16- N20	66,8	75	N37-N38	217,2	250
N17-N18	26,4	32	N38-N39	127,6	160
N38-N70	173,6	200	N75- N76	20,4	25
N39-N40	127,6	160	N79-N80	35,4	40

N40-N41						
N42-N43 66,8 75 N85-N89 44,4 50 N43-N44 56,2 63 N89-N90 77,8 90 N44-N46 56,2 63 N90-N91 26,4 32 N44-N48 77,8 90 N90-N92 77,8 90 N48-N49 35,4 40 N92-N93 35,4 40 N48-N52 56,2 63 N95-N96 35,4 40 N49-N51 56,2 63 N95-N96 35,4 40 N49-N50 56,2 63 N97-N98 26,4 32 N50-N64 56,2 63 N97-N99 56,2 63 N48-N52 56,2 63 N102-N108 77,8 90 N52-N53 13,4 16 N103-N105 20,4 32 N52-N54 56,2 63 N104-N105 173,6 200 N54-N55 35,4 40 N105-N106 173,6 200 N54-N56 <	N40-N41	13,4		N80-N81	13,4	
N43-N44 56,2 63 N89-N90 77,8 90 N44-N46 56,2 63 N90-N91 26,4 32 N44-N48 77,8 90 N90-N92 77,8 90 N48-N49 35,4 40 N92-N93 35,4 40 N48-N52 56,2 63 N92-N94 35,4 40 N49-N50 56,2 63 N97-N98 26,4 32 N50-N64 56,2 63 N97-N99 56,2 63 N50-N64 56,2 63 N97-N99 56,2 63 N50-N64 56,2 63 N102-N108 77,8 90 N52-N53 13,4 16 N103-N105 20,4 32 N52-N54 56,2 63 N104-N105 173,6 200 N54-N55 35,4 40 N105-N106 173,6 200 N55-N56 13,4 16 N106-N107 53,5 63 N55-N56	N40-42	138,8		N86-N88	13,4	
N44-N46 56,2 63 N90-N91 26,4 32 N44-N48 77,8 90 N90-N92 77,8 90 N48-N49 35,4 40 N92-N93 35,4 40 N48-N52 56,2 63 N95-N96 35,4 40 N49-N51 56,2 63 N97-N98 26,4 32 N50-N64 56,2 63 N97-N99 56,2 63 N50-N64 56,2 63 N97-N99 56,2 63 N52-N53 13,4 16 N103-N105 20,4 32 N52-N53 13,4 16 N103-N105 20,4 32 N52-N54 56,2 63 N104-N105 173,6 200 N54-N55 35,4 40 N105-N106 173,6 200 N54-N56 44,4 50 N106-N107 53,5 63 N55-N56 13,4 16 N108-N109 35,4 40 N58-N59	N42-N43	66,8	75	N85-N89	44,4	50
N44-N48 77,8 90 N90-N92 77,8 90 N48-N49 35,4 40 N92-N93 35,4 40 N48-N52 56,2 63 N92-N94 35,4 40 N49-N51 56,2 63 N97-N98 26,4 32 N49-N50 56,2 63 N97-N99 56,2 63 N50-N64 56,2 63 N97-N99 56,2 63 N48-N52 56,2 63 N102-N108 77,8 90 N52-N53 13,4 16 N103-N105 20,4 32 N52-N54 56,2 63 N104-N105 173,6 200 N54-N56 56,2 63 N105-N106 173,6 200 N54-N56 44,4 50 N106-N107 53,5 63 N55-N56 13,4 16 N106-N108 95,2 110 N55-N57 20,4 25 N107-N112 56,2 63 N59-N60	N43-N44	56,2		N89-N90	77,8	
N48-N49 35,4 40 N92-N93 35,4 40 N48-N52 56,2 63 N92-N94 35,4 40 N49-N51 56,2 63 N95-N96 35,4 40 N49-N50 56,2 63 N97-N98 26,4 32 N50-N64 56,2 63 N97-N99 56,2 63 N52-N53 13,4 16 N103-N105 20,4 32 N52-N54 56,2 63 N104-N105 173,6 200 N54-N55 35,4 40 N105-N106 173,6 200 N54-N56 44,4 50 N106-N107 53,5 63 N55-N56 13,4 16 N106-N107 53,5 63 N55-N57 20,4 25 N107-N112 56,2 63 N58-N59 35,4 40 N108-N109 35,4 40 N59-N60 26,4 32 N110-N111 20,4 32 N60-N61	N44-N46	56,2	63	N90-N91	26,4	32
N48-N52 56,2 63 N92-N94 35,4 40 N49-N51 56,2 63 N95-N96 35,4 40 N49-N50 56,2 63 N97-N98 26,4 32 N50-N64 56,2 63 N97-N99 56,2 63 N48-N52 56,2 63 N102-N108 77,8 90 N52-N53 13,4 16 N103-N105 20,4 32 N52-N54 56,2 63 N104-N105 173,6 200 N54-N55 35,4 40 N105-N106 173,6 200 N54-N56 44,4 50 N106-N107 53,5 63 N55-N56 13,4 16 N106-N108 95,2 110 N55-N57 20,4 25 N107-N112 56,2 63 N58-N59 35,4 40 N108-N109 35,4 40 N59-N60 26,4 32 N110-N111 20,4 32 N60-N61 <td>N44-N48</td> <td>77,8</td> <td>90</td> <td>N90-N92</td> <td>77,8</td> <td>90</td>	N44-N48	77,8	90	N90-N92	77,8	90
N49-N51 56,2 63 N95-N96 35,4 40 N49-N50 56,2 63 N97-N98 26,4 32 N50-N64 56,2 63 N97-N99 56,2 63 N48-N52 56,2 63 N102-N108 77,8 90 N52-N53 13,4 16 N103-N105 20,4 32 N52-N54 56,2 63 N104-N105 173,6 200 N54-N55 35,4 40 N105-N106 173,6 200 N54-N56 44,4 50 N106-N107 53,5 63 N55-N56 13,4 16 N106-N108 95,2 110 N55-N57 20,4 25 N107-N112 56,2 63 N56-N58 35,4 40 N108-N109 35,4 40 N58-N59 35,4 40 N108-N109 35,4 40 N58-N59 35,4 40 N108-N111 20,4 32 N60-N61 </td <td>N48-N49</td> <td>35,4</td> <td>40</td> <td>N92-N93</td> <td>35,4</td> <td>40</td>	N48-N49	35,4	40	N92-N93	35,4	40
N49-N50 56,2 63 N97-N98 26,4 32 N50- N64 56,2 63 N97-N99 56,2 63 N48-N52 56,2 63 N102-N108 77,8 90 N52-N53 13,4 16 N103-N105 20,4 32 N52-N54 56,2 63 N104-N105 173,6 200 N54-N55 35,4 40 N105-N106 173,6 200 N54-N56 44,4 50 N106-N107 53,5 63 N55-N56 13,4 16 N106-N108 95,2 110 N55-N57 20,4 25 N107-N112 56,2 63 N56-N58 35,4 40 N108-N109 35,4 40 N59-N60 26,4 32 N110-N111 20,4 32 N60-N61 20,4 25 N70-N112 77,8 90 N67-N63 35,4 40 N113-N114 20,4 32 N67-N65	N48-N52	56,2	63	N92-N94	35,4	40
N50- N64 56,2 63 N97-N99 56,2 63 N48-N52 56,2 63 N102-N108 77,8 90 N52-N53 13,4 16 N103-N105 20,4 32 N52-N54 56,2 63 N104-N105 173,6 200 N54-N55 35,4 40 N105-N106 173,6 200 N54-N56 44,4 50 N106-N107 53,5 63 N55-N56 13,4 16 N106-N108 95,2 110 N55-N57 20,4 25 N107-N112 56,2 63 N56-N58 35,4 40 N108-N109 35,4 40 N58-N59 35,4 40 N109-N110 35,4 40 N59-N60 26,4 32 N110-N111 20,4 32 N60-N61 20,4 25 N70-N112 77,8 90 N60-N62 20,4 25 N106-N113 138,8 160 N67	N49-N51	56,2	63	N95-N96	35,4	40
N48-N52 56,2 63 N102-N108 77,8 90 N52-N53 13,4 16 N103-N105 20,4 32 N52-N54 56,2 63 N104-N105 173,6 200 N54-N55 35,4 40 N105-N106 173,6 200 N54-N56 44,4 50 N106-N107 53,5 63 N55-N56 13,4 16 N106-N108 95,2 110 N55-N57 20,4 25 N107-N112 56,2 63 N56-N58 35,4 40 N108-N109 35,4 40 N58-N59 35,4 40 N109-N110 35,4 40 N59-N60 26,4 32 N110-N111 20,4 32 N60-N61 20,4 25 N70-N112 77,8 90 N60-N62 20,4 25 N106-N13 138,8 160 N51-N63 35,4 40 N113-N115 138,8 160 N	N49-N50	56,2	63	N97-N98	26,4	32
N52-N53 13,4 16 N103-N105 20,4 32 N52-N54 56,2 63 N104-N105 173,6 200 N54-N55 35,4 40 N105-N106 173,6 200 N54-N56 44,4 50 N106-N107 53,5 63 N55-N56 13,4 16 N106-N108 95,2 110 N55-N57 20,4 25 N107-N112 56,2 63 N56-N58 35,4 40 N108-N109 35,4 40 N58-N59 35,4 40 N109-N110 35,4 40 N59-N60 26,4 32 N110-N111 20,4 32 N60-N61 20,4 25 N70-N112 77,8 90 N60-N62 20,4 25 N106-N113 138,8 160 N58-N63 35,4 40 N113-N114 20,4 32 N67-N65 44,4 50 N113-N115 138,8 160	N50- N64	56,2	63	N97-N99	56,2	63
N52-N54 56,2 63 N104-N105 173,6 200 N54-N55 35,4 40 N105-N106 173,6 200 N54-N56 44,4 50 N106-N107 53,5 63 N55-N56 13,4 16 N106-N108 95,2 110 N55-N57 20,4 25 N107-N112 56,2 63 N56-N58 35,4 40 N108-N109 35,4 40 N58-N59 35,4 40 N109-N110 35,4 40 N59-N60 26,4 32 N110-N111 20,4 32 N60-N61 20,4 25 N70-N112 77,8 90 N60-N62 20,4 25 N106-N113 138,8 160 N58-N63 35,4 40 N113-N114 20,4 32 N67-N65 44,4 50 N113-N115 138,8 160 N51-N67 44,4 50 N115-N117 138,8 160 <t< td=""><td>N48-N52</td><td>56,2</td><td>63</td><td>N102-N108</td><td>77,8</td><td>90</td></t<>	N48-N52	56,2	63	N102-N108	77,8	90
N54-N55 35,4 40 N105-N106 173,6 200 N54-N56 44,4 50 N106-N107 53,5 63 N55-N56 13,4 16 N106-N108 95,2 110 N55-N57 20,4 25 N107-N112 56,2 63 N56-N58 35,4 40 N108-N109 35,4 40 N58-N59 35,4 40 N109-N110 35,4 40 N59-N60 26,4 32 N110-N111 20,4 32 N60-N61 20,4 25 N70-N112 77,8 90 N60-N62 20,4 25 N106-N113 138,8 160 N58-N63 35,4 40 N113-N114 20,4 32 N67-N65 44,4 50 N113-N115 138,8 160 N67-N68 35,4 40 N115-N117 138,8 160 N51-N69 20,4 25 N117-N118 20,4 32	N52-N53	13,4	16	N103-N105	20,4	32
N54-N56 44,4 50 N106-N107 53,5 63 N55-N56 13,4 16 N106-N108 95,2 110 N55-N57 20,4 25 N107-N112 56,2 63 N56-N58 35,4 40 N108-N109 35,4 40 N58-N59 35,4 40 N109-N110 35,4 40 N59-N60 26,4 32 N110-N111 20,4 32 N60-N61 20,4 25 N70-N112 77,8 90 N60-N62 20,4 25 N106-N113 138,8 160 N58-N63 35,4 40 N113-N114 20,4 32 N67-N65 44,4 50 N113-N115 138,8 160 N67-N68 35,4 40 N115-N116 26,4 32 N51-N67 44,4 50 N115-N117 138,8 160 N51-N69 20,4 25 N117-N118 20,4 32 N7	N52-N54	56,2	63	N104-N105	173,6	200
N55-N56 13,4 16 N106-N108 95,2 110 N55-N57 20,4 25 N107-N112 56,2 63 N56-N58 35,4 40 N108-N109 35,4 40 N58-N59 35,4 40 N109-N110 35,4 40 N59-N60 26,4 32 N110-N111 20,4 32 N60-N61 20,4 25 N70-N112 77,8 90 N60-N62 20,4 25 N106-N113 138,8 160 N58-N63 35,4 40 N113-N114 20,4 32 N67-N65 44,4 50 N113-N115 138,8 160 N67-N68 35,4 40 N115-N116 26,4 32 N51-N67 44,4 50 N115-N117 138,8 160 N51-N69 20,4 25 N117-N118 20,4 32 N70-N71 138,8 160 N117-N119 138,8 160 <t< td=""><td>N54-N55</td><td>35,4</td><td>40</td><td>N105-N106</td><td>173,6</td><td>200</td></t<>	N54-N55	35,4	40	N105-N106	173,6	200
N55-N57 20,4 25 N107-N112 56,2 63 N56-N58 35,4 40 N108-N109 35,4 40 N58-N59 35,4 40 N109-N110 35,4 40 N59-N60 26,4 32 N110-N111 20,4 32 N60-N61 20,4 25 N70-N112 77,8 90 N60-N62 20,4 25 N106-N113 138,8 160 N58-N63 35,4 40 N113-N114 20,4 32 N67-N65 44,4 50 N113-N115 138,8 160 N67-N68 35,4 40 N115-N116 26,4 32 N51-N67 44,4 50 N115-N117 138,8 160 N51-N69 20,4 25 N117-N118 20,4 32 N70-N71 138,8 160 N117-N119 138,8 160 N71-N72 77,8 90 N119-N120 20,4 32 <td< td=""><td>N54-N56</td><td>44,4</td><td>50</td><td>N106-N107</td><td>53,5</td><td>63</td></td<>	N54-N56	44,4	50	N106-N107	53,5	63
N56-N58 35,4 40 N108-N109 35,4 40 N58-N59 35,4 40 N109-N110 35,4 40 N59-N60 26,4 32 N110-N111 20,4 32 N60-N61 20,4 25 N70-N112 77,8 90 N60-N62 20,4 25 N106-N113 138,8 160 N58-N63 35,4 40 N113-N114 20,4 32 N67-N65 44,4 50 N113-N115 138,8 160 N67-N68 35,4 40 N115-N116 26,4 32 N51-N67 44,4 50 N115-N117 138,8 160 N51-N69 20,4 25 N117-N118 20,4 32 N70-N71 138,8 160 N117-N119 138,8 160 N71-N72 77,8 90 N119-N120 20,4 32 N72-N73 56,2 63 N121-N122 56,2 63 <td< td=""><td>N55-N56</td><td>13,4</td><td>16</td><td>N106-N108</td><td>95,2</td><td>110</td></td<>	N55-N56	13,4	16	N106-N108	95,2	110
N58-N59 35,4 40 N109-N110 35,4 40 N59-N60 26,4 32 N110-N111 20,4 32 N60-N61 20,4 25 N70-N112 77,8 90 N60-N62 20,4 25 N106-N113 138,8 160 N58-N63 35,4 40 N113-N114 20,4 32 N67-N65 44,4 50 N113-N115 138,8 160 N67-N68 35,4 40 N115-N116 26,4 32 N51-N67 44,4 50 N115-N117 138,8 160 N51-N69 20,4 25 N117-N118 20,4 32 N70-N71 138,8 160 N117-N119 138,8 160 N71-N72 77,8 90 N119-N120 20,4 32 N71-N75 95,2 110 N89-N119 138,8 160 N72-N73 56,2 63 N121-N122 56,2 63 <	N55-N57	20,4	25	N107-N112	56,2	63
N59-N60 26,4 32 N110-N111 20,4 32 N60-N61 20,4 25 N70-N112 77,8 90 N60-N62 20,4 25 N106-N113 138,8 160 N58-N63 35,4 40 N113-N114 20,4 32 N67-N65 44,4 50 N113-N115 138,8 160 N67-N68 35,4 40 N115-N116 26,4 32 N51-N67 44,4 50 N115-N117 138,8 160 N51-N69 20,4 25 N117-N118 20,4 32 N70-N71 138,8 160 N117-N119 138,8 160 N71-N72 77,8 90 N119-N120 20,4 32 N71-N75 95,2 110 N89-N119 138,8 160 N72-N73 56,2 63 N121-N122 56,2 63 (N72-N73) 35,4 40 N37-N121 173,6 200	N56-N58	35,4	40	N108-N109	35,4	40
N60-N61 20,4 25 N70-N112 77,8 90 N60-N62 20,4 25 N106-N113 138,8 160 N58-N63 35,4 40 N113-N114 20,4 32 N67-N65 44,4 50 N113-N115 138,8 160 N67-N68 35,4 40 N115-N116 26,4 32 N51-N67 44,4 50 N115-N117 138,8 160 N51-N69 20,4 25 N117-N118 20,4 32 N70-N71 138,8 160 N117-N119 138,8 160 N71-N72 77,8 90 N119-N120 20,4 32 N71-N75 95,2 110 N89-N119 138,8 160 N72-N73 56,2 63 N121-N122 56,2 63 (N72-N73) 35,4 40 N37-N121 173,6 200 N73-N74 44,4 50 N104-N112 20,4 32	N58-N59	35,4	40	N109-N110	35,4	40
N60-N62 20,4 25 N106-N113 138,8 160 N58-N63 35,4 40 N113-N114 20,4 32 N67-N65 44,4 50 N113-N115 138,8 160 N67-N68 35,4 40 N115-N116 26,4 32 N51-N67 44,4 50 N115-N117 138,8 160 N51-N69 20,4 25 N117-N118 20,4 32 N70-N71 138,8 160 N117-N119 138,8 160 N71-N72 77,8 90 N119-N120 20,4 32 N71-N75 95,2 110 N89-N119 138,8 160 N72-N73 56,2 63 N121-N122 56,2 63 (N72-N73) 35,4 40 N37-N121 173,6 200 N73-N74 44,4 50 N104-N121 173,6 200 N74-N79 35,4 40 N104-N112 20,4 32	N59-N60	26,4	32	N110-N111	20,4	32
N58-N63 35,4 40 N113-N114 20,4 32 N67-N65 44,4 50 N113-N115 138,8 160 N67-N68 35,4 40 N115-N116 26,4 32 N51-N67 44,4 50 N115-N117 138,8 160 N51-N69 20,4 25 N117-N118 20,4 32 N70-N71 138,8 160 N117-N119 138,8 160 N71-N72 77,8 90 N119-N120 20,4 32 N71-N75 95,2 110 N89-N119 138,8 160 N72-N73 56,2 63 N121-N122 56,2 63 (N72-N73) 35,4 40 N37-N121 173,6 200 N73-N74 44,4 50 N104-N121 173,6 200 N74-N79 35,4 40 N104-N112 20,4 32 N75-N78 77,8 90 N37-N121 173,6 200	N60-N61	20,4	25	N70-N112	77,8	90
N67-N65 44,4 50 N113-N115 138,8 160 N67-N68 35,4 40 N115-N116 26,4 32 N51-N67 44,4 50 N115-N117 138,8 160 N51-N69 20,4 25 N117-N118 20,4 32 N70-N71 138,8 160 N117-N119 138,8 160 N71-N72 77,8 90 N119-N120 20,4 32 N71-N75 95,2 110 N89-N119 138,8 160 N72-N73 56,2 63 N121-N122 56,2 63 (N72-N73) 35,4 40 N37-N121 173,6 200 N73-N74 44,4 50 N104-N121 173,6 200 N74-N79 35,4 40 N104-N112 20,4 32 N75-N78 77,8 90 N37-N121 173,6 200	N60-N62	20,4	25	N106-N113	138,8	160
N67-N68 35,4 40 N115-N116 26,4 32 N51-N67 44,4 50 N115-N117 138,8 160 N51-N69 20,4 25 N117-N118 20,4 32 N70-N71 138,8 160 N117-N119 138,8 160 N71-N72 77,8 90 N119-N120 20,4 32 N71-N75 95,2 110 N89-N119 138,8 160 N72-N73 56,2 63 N121-N122 56,2 63 (N72-N73) 35,4 40 N37-N121 173,6 200 N73-N74 44,4 50 N104-N121 173,6 200 N74-N79 35,4 40 N104-N112 20,4 32 N75-N78 77,8 90 N37-N121 173,6 200	N58-N63	35,4	40	N113-N114	20,4	32
N51-N67 44,4 50 N115-N117 138,8 160 N51-N69 20,4 25 N117-N118 20,4 32 N70-N71 138,8 160 N117-N119 138,8 160 N71-N72 77,8 90 N119-N120 20,4 32 N71-N75 95,2 110 N89-N119 138,8 160 N72-N73 56,2 63 N121-N122 56,2 63 (N72-N73) 35,4 40 N37-N121 173,6 200 N73-N74 44,4 50 N104-N121 173,6 200 N74-N79 35,4 40 N104-N112 20,4 32 N75-N78 77,8 90 N37-N121 173,6 200	N67-N65	44,4	50	N113-N115	138,8	160
N51-N69 20,4 25 N117-N118 20,4 32 N70-N71 138,8 160 N117-N119 138,8 160 N71-N72 77,8 90 N119-N120 20,4 32 N71-N75 95,2 110 N89-N119 138,8 160 N72-N73 56,2 63 N121-N122 56,2 63 (N72-N73) 35,4 40 N37-N121 173,6 200 N73-N74 44,4 50 N104-N121 173,6 200 N74-N79 35,4 40 N104-N112 20,4 32 N75-N78 77,8 90 N37-N121 173,6 200	N67-N68	35,4	40	N115-N116	26,4	32
N70-N71 138,8 160 N117-N119 138,8 160 N71-N72 77,8 90 N119-N120 20,4 32 N71-N75 95,2 110 N89-N119 138,8 160 N72-N73 56,2 63 N121-N122 56,2 63 (N72-N73) 35,4 40 N37-N121 173,6 200 N73-N74 44,4 50 N104-N121 173,6 200 N74-N79 35,4 40 N104-N112 20,4 32 N75-N78 77,8 90 N37-N121 173,6 200	N51-N67	44,4	50	N115-N117	138,8	160
N71-N72 77,8 90 N119-N120 20,4 32 N71-N75 95,2 110 N89-N119 138,8 160 N72-N73 56,2 63 N121-N122 56,2 63 (N72-N73) 35,4 40 N37-N121 173,6 200 N73-N74 44,4 50 N104-N121 173,6 200 N74-N79 35,4 40 N104-N112 20,4 32 N75-N78 77,8 90 N37-N121 173,6 200	N51-N69	20,4	25	N117-N118	20,4	32
N71-N75 95,2 110 N89-N119 138,8 160 N72-N73 56,2 63 N121-N122 56,2 63 (N72-N73) 35,4 40 N37-N121 173,6 200 N73-N74 44,4 50 N104-N121 173,6 200 N74-N79 35,4 40 N104-N112 20,4 32 N75-N78 77,8 90 N37-N121 173,6 200	N70-N71	138,8	160	N117-N119	138,8	160
N72-N73 56,2 63 N121-N122 56,2 63 (N72-N73) 35,4 40 N37-N121 173,6 200 N73-N74 44,4 50 N104-N121 173,6 200 N74-N79 35,4 40 N104-N112 20,4 32 N75-N78 77,8 90 N37-N121 173,6 200	N71-N72	77,8	90	N119-N120	20,4	32
(N72-N73) 35,4 40 N37-N121 173,6 200 N73-N74 44,4 50 N104-N121 173,6 200 N74-N79 35,4 40 N104-N112 20,4 32 N75-N78 77,8 90 N37-N121 173,6 200	N71-N75	95,2	110	N89-N119	138,8	160
N73-N74 44,4 50 N104-N121 173,6 200 N74-N79 35,4 40 N104-N112 20,4 32 N75-N78 77,8 90 N37-N121 173,6 200	N72-N73	56,2	63	N121-N122	56,2	63
N74-N79 35,4 40 N104- N112 20,4 32 N75-N78 77,8 90 N37-N121 173,6 200	(N72-N73)	35,4	40	N37-N121	173,6	200
N75-N78 77,8 90 N37-N121 173,6 200	N73-N74	44,4	50	N104-N121	173,6	200
	N74-N79	35,4	40	N104- N112	20,4	32
N75- N77 26,4 32 N104-N121 173,6 200	N75-N78	77,8	90	N37-N121	173,6	200
	N75- N77	26,4	32	N104-N121	173,6	200

Le tableau suivant montre les pressions et les charges en chaque nœud :

Tableau (IV .5): les pressions et les charges dans les nœuds

nœud	Pression(m)	Charge(m)	Nœud(m)	Pression (m)	Charge(m)
N1	4,31	151,14	N43	46,28	148,78
N2	10,45	151,08	N44	47,95	148,07
N3	10,17	150,91	N45	46,30	148,66
N4	18,43	150,82	N46	47,02	148,53
N5	32,33	150,49	N47	49,71	148,31

NC	22.04	450.47	N140	40.44	4.47.07
N6	33,81	150,17	N48	48,41	147,97
N7	31,38	149,28	N49	48,09	147,64
N8	30,69	149,10	N50	47,86	148,02
N9	29,87	147,87	N51	48,60	147,43
N10	34,19	148,83	N52	48,48	147,61
N11	34,89	149,30	N53	48,63	147,76
N12	35,56	149,51	N54	49,18	147,26
N13	36,42	149,78	N55	49,39	146,59
N14	37,02	149,51	N56	49,88	146,25
N15	39,87	149,51	N57	49,55	145,92
N16	38,02	149,05	N58	50,43	145,45
N17	39,50	148,30	N59	49,51	144,92
N18	33,63	143,50	N60	49,40	144,17
N19	39,30	148,22	N61	47,66	143,59
N20	37,15	148,42	N62	48,51	143,06
N21	36,03	147,81	N63	50,45	146,38
N22	32,93	148,10	N64	50,78	146,64
N23	32,74	146,26	N65	49,81	146,97
N24	32,23	146,29	N66	50,13	146,91
N25	34,30	146,58	N67	48,92	147,20
N26	35,67	146,07	N68	49,77	147,13
N27	37,61	147,87	N69	47,37	146,40
N28	32,98	150,78	N70	46,23	148,39
N29	33,16	150,70	N71	46,34	148,30
N30	38,96	148,49	N72	46,05	147,80
N31	37,38	149,90	N73	44,28	146,95
N32	27,27	145,40	N74	42,83	146,30
N33	38,96	148,37	N75	42,52	146,29
N34	33,55	146,84	N76	42,03	143,84
N35	40,71	150,24	N77	26,32	141,61
N36	37,31	147,15	N78	41,85	145,25
N37	41,50	150,15	N79	42,02	145,49
N38	42,22	150,10	N80	39,76	143,23
N39	39,61	149,45	N81	39,10	143,01
N40	45,77	148,85	N82	39,48	143,15
N41	46,07	148,84	N83	39,20	144,16
N42	46,10	148,80	N84	18,77	139,61
N85	37,03	143,06	N104	44,21	147,09
N86	36,90	143,01	N105	43,58	146,73
N87	35,73	141,50	N106	43,05	146,66
N88	29,44	140,62	N107	43,15	146,70
N89	37,17	144,86	N108	42,69	146,51
N90	36,88	144,59	N109	42,42	146,21
N91	22,19	140,50	N110	41,21	145,31
N92	32,22	143,08	N110	37,54	141,78
N93	16,25	137,81	N112	46,03	148,30
N94	18,65	137,64	N112 N113	41,09	145,73
N95					
	35,44	143,60	N114	40,90	144,56
N96	23,69	136,77	N115	40,54	145,52

N97	35,07	143,47	N116	39,56	143,47
N98	17,87	137,89	N117	39,46	145,17
N99	29,35	141,75	N118	38,59	143,50
N100	31,62	140,55	N119	37,42	144,77
N101	30,65	140,32	N120	36,48	142,13
N102	41,87	146,00	N121	39,37	147,79
N103	37,11	141,24	N122	35,11	143,72

Les vitesses dans chaque conduite sont données dans le tableau suivant

Tableau (IV.6): les vitesses dans les conduites.

conduite	Vitesse	conduite	vitesse	Conduite	vitesse
R1-N1	0,55	N17-N19	0,63	N38-N70	0,57
N1-N2	0,55	N19-N20	0,53	N39-N40	0,65
N2-N3	0,55	N19-N25	0,56	N40-N41	0,38
N3-N4	0,54	N21-N22	0,20	N40-42	0,63
N4-N28	0,54	N21-N25	0,50	N42-N43	0,53
N28-N5	0,85	N22-N23	0,53	N43-N44	0,69
N5-N6	0,84	N23-N24	0,33	N44-N46	0,54
N6-N13	0,84	N24-N25	0,54	N44-N48	0,57
N6-N7	0,48	N24-N26	0,43	N48-N49	0,47
N7-N8	0,55	N25-N26	0,41	N48-N52	0,86
N8- N9	0,44	N26-N27	0,46	N49-N51	0,60
N8-N10	0,42	N28-N29	0,64	N49-N50	0,51
N10-N11	0,66	N29-N30	0,55	N50- N64	0,69
(N11-N12)	0,14	N29-N31	0,69	N48-N52	0,86
N11-N12	0,55	N31-N32	0,66	N52-N53	0,38
N12-N13	0,65	N31-N33	0,67	N52-N54	0,76
N13-N14	0,87	N33-N34	0,45	N54-N55	0,67
N14-N15	0,57	N28-N35	1,00	N54-N56	0,49
N14-N16	0,80	N35-N36	0,66	N55-N56	0,43
N16-N17	0,54	N35-N37	0,99	N55-N57	0,44
N16- N20	0,52	N37-N38	0,66	N56-N58	0,53
N17-N18	0,68	N38-N39	0,70	N58-N59	0,42
N59-N60	0,66	N80-N81	0,43	N106-N108	0,55
N60-N61	0,36	N80-N82	0,42	N107-N112	0,56
N60-N62	0,47	N78-N83	0,62	N109-N110	0,57
N58-N63	0,46	N83-N84	0,71	N110-N111	0,65
N59-N63	0,58	N83-N84	0,71	N70-N112	0,58
N63-N64	0,64	N83-N85	0,51	N106-N113	0,92
N64-N65	0,31	N85-N86	0,58	N113-N114	0,43
N65-N66	0,52	N86-N87	0,48	N113-N115	0,84
N67-N65	0,51	N86-N88	0,53	N115-N116	0,64
N67-N68	0,51	N85-N89	0,76	N115-N117	0,76
N51-N67	0,72	N89-N90	0,90	N117-N118	0,49
N51-N69	0,41	N90-N91	0,64	N117-N119	0,72
N70-N71	0,57	N90-N92	0,64	N119-N120	0,58
N71-N72	0,59	N92-N93	0,65	N89-N119	0,67

N71-N75	0,68	N92-N94	0,65	N121-N122	0,52
N72-N73	0,63	N95-N96	0,71	N37-N121	0,97
(N72-N73)	0,52	N97-N98	0,71	N104-N121	0,80
N73-N74	0,56	N97-N99	0,60	N104- N112	0,30
N74-N79	0,66	N102-N108	0,62	N37-N121	0,97
N75-N78	0,52	N103-N105	0,76		
N75- N77	0,67	N104-N105	0,76		
N75- N76	0,57	N105-N106	0,73		
N79-N80	0,57	N106-N107	0,92		

L'annexe 3 représente le réseau après la simulation.

Conclusion:

Dans ce chapitre on a dimensionné notre réseau, pour cela on a calculé notre débit spécifique qui nous a servi à calculer les débits de routes dans chaque conduite, à partir de ces débits, on a calculé les demandes aux nœuds, on a introduit ces demandes ainsi que les altitudes des nœuds dans le logiciel EPANET, après plusieurs tâtonnements sur les diamètres, on a trouvé les diamètres convenables qui respectent les conditions des pressions et des vitesses.

Conclusion générale

Conclusion générale

Conclusion générale

Au cours de notre travail, on s'est fixé l'objectif de dimensionner le réseau d'alimentation en eau potable de la zone Ihedadhen I, on a estimé les besoins de cette zone, qui s'élèvent à 3284,496 m³/j pour l'horizon de 2047, après, on a calculé les réservoirs nécessaires pour stocker notre volume de 1039,659 m³, on a trouvé que les deux réservoirs de bon état et de 1000 m³ chacun, seront amplement suffisants.

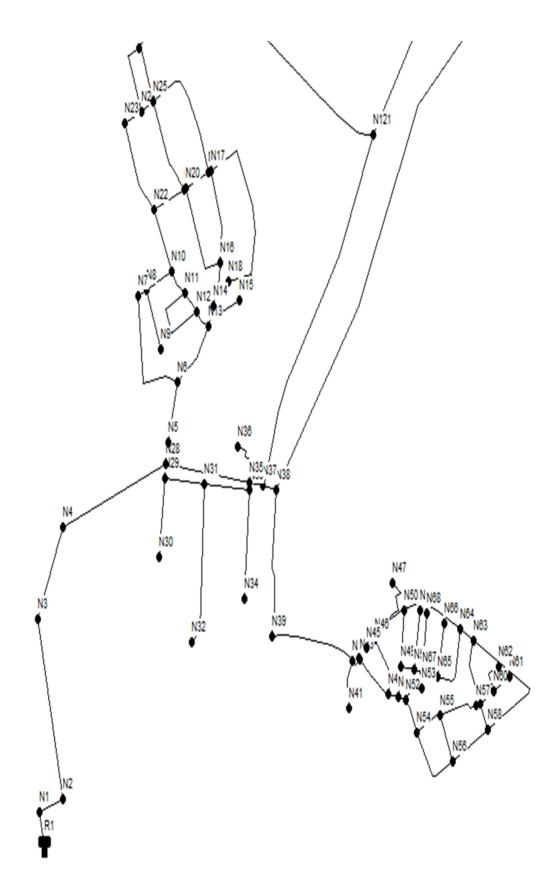
Dans la dernière étape qui est le dimensionnement du réseau, on a opté pour le matériau (PEHD), pour les avantages qu'il présente, notre réseau a pris la forme mixte (ramifié et maillé), les diamètres de canalisations varient entre **32mm** et **250 mm**, sauf quelques exceptions.

Finalement, un entretien sérieux et permanant permet une langue vie et un bon fonctionnement du réseau.

Annexes

Annexes

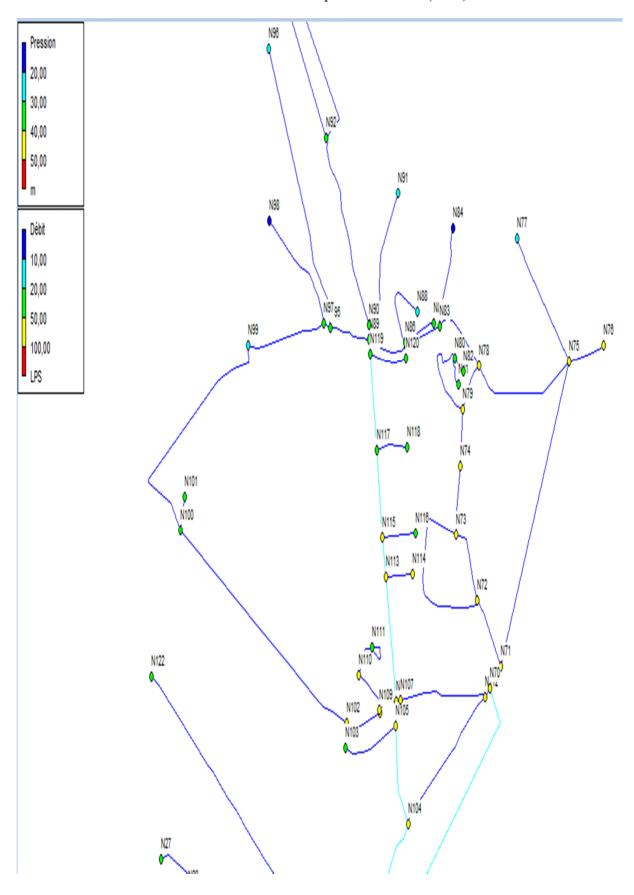
Annexe 1 : Statistiques des régimes de consommations des agglomérations


Heure	K=1,25	K=1,3	K=1,35	K=1,5	K=1,7	K=2	K=2,5
0-1	3,35	3,2	3,0	1,5	1,0	0,75	0,6
1-2	3,25	3,10	3,2	1,5	1,0	0,75	0,6
2-3	3,30	3,2	2,5	1,5	1,0	1,0	1,2
3-4	3,20	3,2	2,6	1,5	1,0	1,0	2,0
4-5	3,25	3,2	3,5	2,5	2,0	3,0	3,5
5-6	3,40	3,4	4,1	3,5	3,0	5,5	3,5
6-7	3,85	3,8	4,5	4,5	5,0	5,5	4,5
7-8	4,45	4,6	4,9	5,5	6,5	5,5	10,20
8-9	5,20	5,4	4,9	6,25	6,5	3,5	6,5
9-10	5,05	5,0	5,6	6,25	4,5	6,0	4,1
10-11	4,45	4,8	4,9	6,25	5,5	8,5	4,1
11-12	4,60	4,6	4,7	6,25	5,5	8,5	4,1
12-13	4,60	4,5	4,4	5,0	7,0	6,0	3,5
13-14	4,55	4,4	4,1	5,0	7,0	6,0	3,5
14-15	4,75	4,6	4,1	5,5	5,5	5,0	6,2
15-16	4,70	4,6	4,4	6,0	4,5	5,0	6,2
16-17	4,65	4,4	4,3	6,0	5,0	3,5	10,4
17-18	4, 35	4,3	4,1	5,5	6,5	6,0	9,4
18-19	4,40	4,4	4,5	4,5	5,0	6,5	7,3
19-20	4,30	4,5	4,5	4,5	5,0	6,0	1,6
20-21	4,30	4,5	4,5	4,0	4,5	6,0	1,6
21-22	4,20	4,8	4,8	3,0	3,0	3,0	1,0
22-23	3,75	3,8	4,6	2,0	2,0	2,0	0,6
23-24	3,70	3,7	3,3	1,5	1,0	2,0	0,6

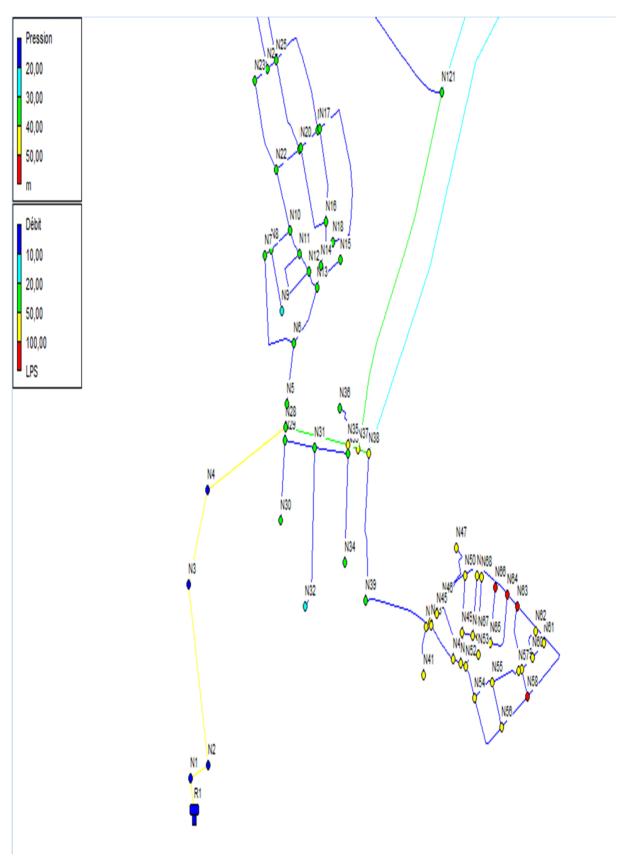
Bibliographie

Bibliographie

- [1] Données statistiques, Direction de la programmation et suivi budgétaires de la wilaya Bejaïa.
- [2] Site internet, Wikipidia.
- [3] Site internet. Wilaya de Bejaïa.
- [4] ADE de Bejaïa.
- [5] Sekour M, Khazem T. «alimentation en eau potable de la commune de Bounoun, W : Tizi ouzou». Mémoire de fin d'étude, Université de Béjaia ,2016.
- [6] **Bourrier.R, Selmi.B**., Techniques de la gestion et de la distribution de l'eau, *Edition le moniteur*, Paris, 829 pages, 2011.
- [7] **Bonnin.J**., Hydraulique urbaine appliquée aux agglomérations de petite et moyenne importance, *Editions Eyrolles*, 1977.
- [8] Catalogue PEHD, STMP CHIALI.
- [9] EPANET 2.0 : Manuel de l'utilisateur (version française).


Annexe 2 : le réseau avant simulation

N98 N77 N97₉₅ N90 N89 N119 N76 N75 N117 N118 N100 N116-N115 N114 N113 N72 N122 N109 N107 N102 N104


Annexe 2 : le réseau avant simulation (suite)

Annexe 3 : le réseau après simulation (suite)

Annexes

Annexe 3 : le réseau après simulation

Sommaire

Introduction générale :	1
Chapitre I : Présentation du site	. 2
Introduction:	2
I.1.Situation géographique :	2
I.2.Situation de l'aire d'étude	2
I.3.Population actuelle:	4
I.4.Situation climatologique :	4
I.4.1.Le climat :	4
I.4.2.La pluviométrie :	4
I.4.3.La température moyenne :	4
I.5.Situation hydraulique :	5
I.5.1.Réseau de distribution actuel:	5
I.5.2.Ouvrages de stockage : 2 Réservoirs d'Ihedadhen 1 :	5
Conclusion:	5
Chapitre II : Estimation des besoins	6
Introduction:	
II.1. Evaluation de la population future :	
II. 2 .Catégories des besoins en eau :	
II.3. Evaluation de la consommation moyenne journalière	
II.3 .1 Les besoins domestiques :	7
II.3 .2.Les besoins scolaires :	7
II.3.3.Les besoins sanitaires :	8
II.3.4. Les besoins socioculturels :	8
II.4 .Récapitulation des différents besoins en eau :	8
II.5.Majoration de la consommation moyenne journalière :	
II.6. Variation de la consommation journalière :	
II.7 .Variation de la consommation horaire :	

Sommaire

II.8. Evaluation de la consommation horaire en fonction du nombre d'ha	bitants : 13
Conclusion:	14
Chanitus III a I og vágamysing	15
Chapitre III : Les réservoirs	
Introduction:	
III.1. Rôles des réservoirs	
III.2. Classification des réservoirs	
III.3. Choix du site d'implantation	
III.4. Choix du type de réservoirs :	
III.5. Equipements du réservoir	
III.5.1. Conduite d'arrivée :	
III.5.2. Conduite de départ ou de distribution :	
III.5.3. Conduite de vidange :	
III.5.4. Conduite de trop-plein :	
III.5.5. Système de matérialisation d'incendie :	18
III.5.6. Conduite by-pass:	18
III.6.Capacité du réservoir	18
III.6.1. Méthode graphique :	18
III.6.2. Méthode analytique :	18
III.6.3. Le volume total du réservoir :	19
III.6.4.Dimensionnement du réservoir :	19
Conclusion:	20
Chapitre IV : Réseau de distribution	21
Introduction:	
IV.1 Classification des réseaux de distribution :	
IV.1.1 Réseau ramifié :	
IV.1.2 Réseau maillé :	
IV.1.3. Réseau mixte :	
IV.2. Description du réseau de distribution :	
IV.3 Choix du tracé :	
IV.4. Choix du type des conduites :	
1 v. T. Onom an type aco contained	∠1

Sommaire

IV.5 Exigence du réseau de distribution :
IV.6 Calcul hydraulique du réseau de distribution :
IV.6.1. Débit de pointe :
IV.6.2. Débit spécifique :
IV.6.3.Débit en route :
IV.6.4. Débit en nœud :
IV.6.5.Débit aval :
IV.6.6.Débit de tronçon :
IV. Configuration et simulation de réseau hydraulique :
IV.7.1.Présentation d'EPANET:
IV.7.2.Utilisation d'EPANET:
IV.7.3.Modélisation du réseau :
IV.7.4. Simulation du réseau :
IV.7.5.Dimensionnement du réseau :
Conclusion:
Conclusion générale:

Résumé:

Dans notre travail ,nous avons dimensionné un nouveau réseau de distribution en eau potable pour le zone de Ihedadhen I ,ce réseau est vétuste et ne répond plus aux besoin des consommateurs, pour cela ,nous avons estimé la population future dans cette zone à l'horizon de 2047,pour laquelle nous avons estimé les besoins en eau potable pour le même horizon ,ensuite nous avons trouvé le débit avec lequel le futur réseau sera dimensionné .Pour le stockage ,nous avons trouvé que les deux réservoirs alimentant le réseau seront suffisants et sont en bon état. Finalement, nous avons dimensionné le réseau, en trouvant les diamètres des conduites qui respectent les conditions de pression et de vitesse.

Mots clés :dimensionner ,réseau de distribution en eau potable ,réservoir ,débit .

Abstract:

In our work, we sized a new drinking water distribution network for the IhedadhenI area, this network is old and no longer gives the needs of consumers, for this we have estimated the future population in this area to the horizon of 2047, for which we estimated the need for drinking water for the same horizon, then we found the flow with which the future network will be dimensioned. For the storage, we found that the two reservoirs feeding the network will be sufficient and are in good condition. Finally, we dimensioned the network, finding the diameters of the pipes which respect the conditions of pressure and speed.

Keywords: to size, drinking water distribution network, reservoir, flow.

ملخص:

من خلال عملنا هذا حاولنا تحجيم شبكة جديدة لتوزيع الماء الصالح للشرب لمنطقة إحدادن مقابل الشبكة القديمة التي لم تعد تلبي حاجيات المستهلكين.

قمنا بتقدير سكان المنطقة في حدود 2047، وقد قمنا بتقدير حاجيات الماء الشروب للسكان الذين تم تقدير هم، بعد ذلك قمنا بإجاد التدفق الذي من خلاله نقوم بتحجيم الشبكة.

لغرض تخزين المياه وجدنا أن الخزانين اللذان يزودان الشبكة كافيان وهما في حالة جيدة. وفي النهاية قمنا بتحجيم الشبكة الجديدة بإيجاد الأقطار المناسبة للأنابيب وذلك بإحترام شروط الضغط والسرعة.

الكلمات المفتاحية: تحجيم، شبكة توزيع الماء الصالح للشرب: خزان، التدفق.

Liste des figures

Figure (I.1): Localisation du site d'étude	. 3
Figure (III.1): Réservoir cylindrique semi-enterré	17

Liste des symboles

P0 : Population à l'année de référence

t: Taux d'accroissement annuel de la population (%)

n : Nombre d'années qui séparent l'année de référence à l'horizon considéré

Qmoy, j : consommation moyenne journalière en m3/j

D: dotation journalière en l/j/hab

N : nombre de consommateurs

Qmax, j : Débit maximal du jour le plus chargé de l'année

Qmoy .j : Débit moyen journalier

Kmax.j: coefficient d'irrégularité maximal qui dépend de l'importance de l'agglomération

Qmin.j : Débit minimal du jour le moins chargé de l'année

Qmoy .j: Débit moyen journalier

Kmin.j: coefficient d'irrégularité minimal qui dépend de l'importance de l'agglomération

Qmax,h :Débit maximal horaire (m3 /h)

Qmoy,h,max : Débit moyen horaire de la journée la plus chargée (m3 /h)

Kmax, h: coefficient de variation horaire maximal

amax : Coefficient qui tient compte du confort de l'agglomération

βmax : Coefficient qui dépend du nombre d'habitants

Qmin,h: Débit minimal horaire (m3/h)

Qmoy,h,min: Débit moyen horaire de la journée la moins chargée (m3/h)

Kmin, h: coefficient de variation horaire minimal

amin : Coefficient qui tient compte du confort de l'agglomération

βmin : Coefficient qui dépend du nombre d'habitants

Vr : Capacité résiduelle (m3)

P%: Résidu maximum des le réservoir (%)

Qmax,j: La consommation maximale journalière (m3/j)

P_{max}: Le résidu maximum dans la journée (%)

P_{min}: Le résidu minimum dans la journée(%)

VT: Le volume total du réservoir

Qp : Débit de pointe (m 3/j)

Qmax,j:Débit maximum journalier (m 3/j)

Q_s: Débit spécifique (1/s/m)

Q_p:Débit de pointe (l/s)

Liste des symboles

 ΣL : Somme des longueurs des tronçons du réseau

Q_r : Débit en route de tronçon (l/s)

Q_s: Débit spécifique (l/m/s)

L_i: Longueur du tronçon (i) en (m)

Q_n: Débit de nœud (l/s)

 Σ Q_r : La somme des débits de route (l/s)

Qc: Débit localisé en nœud considéré (l/s)

Liste des tableaux

Tableau (I.1): Moyennes mensuelles des températures.	4
Tableau (II .1) : Répartition de la population à l'horizon du projet	6
Tableau (II.2): Tableau des besoins domestiques	. 7
Tableau (II.3): Tableau des besoins scolaires	. 7
Tableau (II.4): Tableau des besoins sanitaires	8
Tableau (II.5): Tableau des besoins socioculturels	. 8
Tableau (II.6): Récapitulation des besoins en eau	. 8
Tableau (II .7) : Tableau de Q _{moy} majoré pour l'année 2047	9
$Tableau\ (II.8): Tableau\ r\'{e}capitulatif\ des\ consommations\ journali\`{e}res\ Q_{moy,j}\ ; Q_{min,j}\ ; Q_{max,\ j}$	10
Tableau (II.9) : βmax en fonction du nombre d'habitants	11
Tableau (II.10) : βmin en fonction du nombre d'habitants.	12
Tableau(II.11): Variation des débits horaires	13
Tableau(III.1): Dimensionnement du réservoir	20
Tuoieus(III.1) : Dimensionnement du reservoir	20
Tableau (IV .1): les débits de routes dans les conduites	22
Tableau (IV.2): les débits en nœuds	
Tableau (IV.3): les altitudes des nœuds	
Tableau (IV.4): les diamètres des conduites.	29
Tableau (IV .5): les pressions et les charges dans les nœuds	30
Tableau (IV.6): les vitesses dans les conduites.	32