Ministèi	RE DE L'ENSEIGNEMENT SUDÉRIEUR
	E LA RECHERCHE SCIENTIFIQUE
) Tasdawit n Bgayet Université de Béjaïa	
UNIVERS	
	FACULTE DE TECHNOLOGIE
DÉPA	RTEMENT DE GÉNIE MÉCANIQUE
	MÉMOIRE DE FIN D'ÉTUDES
Prés	ENTÉ POUR L'OBTENTION DU DIPLÔME DE
	MASTER
	Filière : Génie Mécanique
Spécialité : In	ISTALLATIONS ENERGÉTIQUES ET TURBOMACHINES
	Par:
	CHILLA SOFIANE
	AMRANE ABBES
	Thème
ETUDE CO DIESEL A	OMPARATIVE ENTRE UN MOTEUR ASPIRATION NATURELLE ET UN MOTEUR SURALIMENTE
Soutenu le 12/10/2020. Deva	nt le jury composé de :
Soutenu le 12/10/2020. Deva Mr. A.DJERRAI	nt le jury composé de : DA Président
Soutenu le 12/10/2020. Deva Mr. A.DJERRAI Mr. B.HAMTAC	nt le jury composé de : DA Président CHE Rapporteur
Soutenu le 12/10/2020. Deva Mr. A.DJERRAI Mr. B.HAMTAC Mr. M.HAMDI	nt le jury composé de : DA Président CHE Rapporteur Examinateur

REMERCIEMENTS

Avant tous, je remercie ALLAH le tout puissant pour m'avoir donné la force et la patience pour mener à terme ce travail.

Nous souhaitons adresser nos remerciements les plus sincères aux personnes qui nous ont apportés leur aide et qui ont contribué à l'élaboration de ce mémoire, ainsi qu'à la réussite de cette formidable année universitaire.

Nous tenons à remercier sincèrement M.HAMTACHE Brahim, qui en tant qu'encadreur, s'est toujours montré à l'écoute et disponible tout au long de la réalisation de ce mémoire.

Nos Remerciements vont aussi aux membres de jury de nous avoir fait honneur de bien vouloir participer au jury de ce mémoire et pour toute l'attention qu'ils vont prêter à l'évaluation de notre travail.

Enfin, Nous tenons à remercier toutes les personnes qui nous ont aidés et encouragés de prés ou de loin à la réalisation de ce mémoire. Dédicaces

JE DÉDIE CE MODESTE TRAVAIL QUI EST LE FRUIT DE PLUSIEURS ANNÉES DE MES ÉTUDES À :

MES TRÈS CHERS PARENTS QUI M'ONT TOUJOURS SOUTENU, AIDÉ ET ENCOURAGÉ AU COURS DE MES ÉTUDES ;

MES FRÈRES ET SŒURS ;

MA FAMILLE **CHILLA** POUR LEUR ENCOURAGEMENTS DURANT CETTE PÉRIODE DE CRISE SANITAIRE « COVID 19 » ;

TOUS MES PROCHES;

TOUS MES AMIS SANS EXCEPTION ;

Toute la promo de Génie mécanique 2020 ;

ET À MON ENCADREUR MR. HAMTACHE BRAHIM POUR SES CONTRIBUTIONS À RÉALISER CE TRAVAIL.

Sofiane

Dédicaces

Je dédie ce modeste travail à :

Ma chère mère qui m'a toujours motivé et encouragé le long de mes études

Mon cher père que dieu l'accueille dans son vaste paradis

Mon frère « Salah », ma sœur et sa fille « Nadine »

Mes amis «Adnane, Alilou, Boobkeur »

Tous mes proches

Tous mes amis

Toute la promo de génie mécanique 2020

Et à mon encadreur M^r HAMTACHE. B qui m'a aidé pour réaliser ce travail.

Amrane abbes

Remerciement
Dédicace
Sommaire
Liste des figures
Liste des tableaux
Nomenclature
Introduction générale1

Chapitre I : Généralité sur le moteur Diesel

1.1. Introduction
I.2. Principe de fonctionnement du moteur Diesel
I.3. Principe de fonctionnement réel du moteur Diesel4
I.3.1. Avance et retard d'ouverture et fermeture de soupapes d'admission4
I.3.2. Avance et retard d'ouverture et fermeture de soupapes d'échappement5
I.3.3. Avance à l'injection
I.4. Diagramme de pression et volume
I.4.1 : Diagramme réel du moteur Diesel6
I.4.2 : Diagramme théorique du moteur Diesel6
I.5 Différents types d'injection du moteur Diesel7
I.5.1 : Injection indirecte7
I.5.2 : Injection directe
I.5.3 : Différents types d'injecteurs10
I.6 : Caractéristiques du carburant gas-oil11
I.6.1. Indice de cétane12

I.6.2. Pouvoir calorifique du combustible	12
I.7 : Emission polluante du moteur Diesel	12
I.7.1 : La réaction de la combustion	13
I.7.2 : Formation des polluants	13
I.7.3 : Différentes techniques de traitement des émissions polluantes	15
I.8 : Avantages et inconvénients du moteur Diesel	16
I.9 : Conclusion	17

$Chapitre \ II: Suralimentation \ des \ moteurs \ Diesel$

II.1 : Introduction
II.2 : Principe de fonctionnement du turbocompresseur
II.3 : Différents types de turbocompresseur
II.3.1 : Turbocompresseur simple19
II.3.2 : Turbocompresseur double
II.3.3 : Turbocompresseur à double entrée20
II.3.4 : Turbocompresseur à géométrie variable21
II.3.5 : Turbocompresseur électrique21
II.4. Adaptation du turbocompresseur au moteur Diesel
II.5. Différents types de conceptions des turbocompresseurs
II.5.1 : Conception de base
II.5.2 : Conception à un seul étage avec entérinement mécanique au moteur23
II.5.3 : Conception à deux étages de compresseurs24
II.5.4 : Conception à deux étages de turbines24
II.6 : Caractéristiques thermodynamiques du turbocompresseur

II.6.1 : Compression de l'air à l'admission	25
II.6.2.Utilisation des gaz d'échappement	26
II.6.3 : Boucle de suralimentation	27
II.7 : Suralimentation par le recyclage des gaz d'échappement	28
II.8 : Conclusion	29

Chapitre III : Etudes des paramètres énergétiques du moteur Diesel ZIL-645

III.1 Introduction	30
III.2 : Caractéristiques techniques du moteur Diesel ZIL-645	31
III.2.1 : Nombre de cylindre	
III.2.2 : Alésage	31
III.2.3 : Course du piston	31
III.2.4 : Cylindrée	31
III.2.5 : Taux de compression	31
III.2.6 : Coefficient d'excès d'air	32
III.2.7 : Vitesse de rotation	32
III.2.8 : Couple	32
III.2.9 : Puissance nominale	32
III.2.10 : Travail du moteur	
III.2.11 : Consommation spécifique	33
III.2.12 : Pression moyenne	
III.2.13 : Rendement	34
III.3 : Position du problème	34

III.4 : Calcul des différents paramètres énergétique du moteur ZIL-645 à aspiration naturelle et
suralimenté
III.4.1 Paramètres thermodynamiques
III.4.1.1. Paramètres de l'air des gaz d'échappement
III.4.1.2. Paramètres de l'air et des gaz résiduels
III.4.1.3. Étude du processus d'admission
III.4.1.4. Étude du processus de compression41
III.4.1.5. Étude de la combustion43
III.4.1.6. Etude de la détente46
III.4.2. Paramètres de performances du moteur49
III.4.2.1. Paramètres indiquée49
III.4.2.2. Paramètres effectifs
III.4.3. Calcul des paramètres de turbocompresseur
III.4.3.1. Calcul des paramètres du compresseur
III.4.3.2 Calcule paramètres de la turbine à gaz60
III.4.4 Bilan thermique du moteur62
III.4.4.1 : Quantité de chaleur totale dégagée par le combustible dans le moteur62
III.4.4.2 : Quantité de chaleur équivalente au travail effectif63
III.4.4.3 : Quantité de chaleur cédée au système de refroidissement
III.4.4.4 : Quantité de chaleur emportée par les gaz d'échappement
III.4.4.5 : Quantité de chaleur restante65
III.5 Conclusion

Chapitre IV : Modélisation numérique

IV.1 : Introduction
IV.2 : Construction des caractéristiques du régime de vitesse moteur
IV.2.1 : Puissance effective
IV.2.2 : Couple moyenne effective
IV.2.3 : Pression moyenne effective
IV.2.4 : Consommation spécifique de carburant
IV.2.5 : Consommation horaire de la combustion67
IV.3.6 : Taux de remplissage du cylindre67
IV.3.7 : Pression moyenne indiquée67
IV.3.8 : Puissance indiquée67
IV.3.9 : Couple indiqué67
IV.3.10 : consommation spécifique indiquée67
IV.3 Conclusion
Conclusion générale72
Références bibliographiques

Annexes

Résumé

Liste des figures

Figure I.1 : Quatre temps d'un moteur Diesel4
Figure I.2 : Cycle thermodynamique mixte (réel et théorique) du moteur Diesel7
Figure I.3 : Injecteur indirect à précombustion et à chambre de turbulence
Figure I.4 : Injecteur direct9
Figure I.5 : Principe de fonctionnement d'injection directe du moteur diesel à rumpe
commune9
Figure I.6 : Injecteur à téton10
Figure I.7 : Injecteur à plusieurs trous10
Figure II.1 : Principe de fonctionnement de la suralimentation par turbocompresseur19
Figure II.2 : Turbocompresseur simple
Figure II.3 : Turbocompresseur double
Figure II.4 : Turbocompresseur à double entrée20
Figure II.5 : Turbocompresseur à géométrie variable
Figure II.6 : Turbocompresseur électrique
Figure II.7 : Conception de base du turbocompresseur
Figure II.8 : Conception à un seul étage avec entrainement mécanique au moteur23
Figure II.9 : Conception à deux étages de compresseurs avec entrainement mécanique au
Moteur
Figure II.10 : Conception à deux étages de turbine avec entrainement mécanique au moteur24
Figure II.11 : Principe de fonctionnement de système de recyclage des gaz d'échappement28
Figure III.1 : Moteur diesel (ZIL-645)
Figure III.2 : Processus d'admission dans les moteurs (aspiration naturelle ; suralimenté)38
Figure IV.1 : Courbes de puissances effectives et de couples effectives du moteur en fonction
de la vitesse de rotation du vilebrequin (aspiration naturelle ; suralimenté)68

- Figure IV.2 : Courbes de consommations spécifiques effectives et horaires du moteur en fonction de la vitesse de rotation du vilebrequin (aspiration naturelle ; suralimenté....68
- Figure IV.3 : Courbes de consommations spécifiques indiquées et horaire du moteur en fonction de la vitesse de rotation du vilebrequin (aspiration naturelle ; suralimenté)...69
- Figure IV.5 : Courbes de puissance indiquée et de couple indiqué du moteur en fonction de la vitesse de rotation du vilebrequin (aspiration naturelle ; suralimenté)70

Liste des tableaux

Tableau I.1 : Caractéristiques du gas-oil11
Tableau III.1 : Paramètres de l'air et des gaz d'échappement
Tableau III.2 : Paramètres du processus d'admission41
Tableau III.3 : Paramètres du processus de compression
Tableau III.4 : Paramètres du processus de combustion46
Tableau III.5 : Paramètres du processus de la détente
Tableau III.6 : Paramètres de performances du moteur
Tableau III.7 : Paramètres de performance du turbocompresseur
Tableau III.8 : Bilan thermique

i	Nombre de cylindre
3	Taux de compression
α	Coefficient d'excès d'air
ρ	Taux de détente préalable
δ	Taux de détente postérieure
Г	Coefficient d'arrondi du diagramme
β	Coefficient de changement moléculaire réel du mélange après la combustion
ба	Coefficient de frottement du système hydraulique d'admission dans la section de la
	soupape
λ	Taux de croissance de pression
lo	Quantité stœchiométrique d'air nécessaire à la combustion [kg d'air / kg comb]
L_0	Quantité stœchiométrique d'air nécessaire à la combustion [kmole d'air / kg comb]
eta_{o}	Coefficient d'échange moléculaire du mélange après la combustion
γ_r	Coefficient des gaz résiduels
η_{ν}	Taux de remplissage des cylindres
ΔT	Choix de la température de réchauffement de la charge fraiche
η_i	Rendement indiqué du moteur
ηм	Rendement mécanique
η_e	Rendement effectif
ρ_k	Masse volumique de l'air dans le compresseur
$ ho_0$	Masse volumique de l'air
n_k	Coefficient polytropique du compresseur
<i>n</i> 1	Exposant polytropique de compression

n_2	Exposant polytropique de détente	
С	Coefficient de proportionnalité	
m	Indice de puissance	
R	Constante universelle des gaz	[J/mole.K]
K	Rapport de l'alésage à la course	
ω	Vitesse angulaire	[rad.s ⁻¹]
<i>r</i> _a	Constante des gaz	[J/kg. K]
μ_{air}	Masse molaire de l'air	[kg.kmole ⁻¹]
μ_{cp}	Capacité calorifique moyenne des produit de combustion	on [kJ/(kmole. ⁰ C)]
$C_{\mu v c}$	Capacité calorifique molaire moyenne de la charge fraiche à la fin de compression	
		[kJ/kmole K]
$C_{\mu pz}$	Capacité calorifique molaire moyenne à la fin de la combustion [kJ/kmole K]	
γ	Exposant adiabatique de l'air	
V_c	Volume des gaz pendant la compression	[L]
V_z	Volume des gaz à la combustion	[L]
V_h	Cylindrée unitaire du moteur	[L]
D	Alésage du cylindre	[<i>mm</i>]
S	Course du piston	[<i>mm</i>]
n	Vitesse de rotation de vilebrequin	[tr / min]
M_e	Couple moteur	[N . <i>m</i>]
M_i	Couple moteur indiqué	[N.m]
Vp	Vitesse moyenne réelle du piston	[<i>m</i> /s]
M_1	Quantité réelle de la charge fraiche	[kmole d'air / kg combustible]
M_2	Quantité des gaz brulés lors de la combustion	[kmole]
Mz	Quantité molaire des gaz brulés âpres la combustion [kmole d'air / kg combustible]

M_c	Quantité molaire des gaz à la fin de compression	[kmole d'air / kg combustible]
Mr	Quantité molaire des gaz résiduels	[kmole d'air / kg combustible]
M_z	Quantité molaire des gaz brulés âpres la combustion	[kmole d'air / kg combustible]
Q	Quantité de chaleur cédée aux gaz	[kJ/kg]
Q _H	pouvoir calorifique inferieure du combustible	[kJ/kg]
gi	Consommation spécifique indiquée du combustible	[g/kW.h]
g _e	Consommation spécifique effective du combustible	[g/kW.h]
GT	Consommation horaire du combustible	[kg/h]
Ne	Puissance effective	[kW]
N _e '	Puissance effective	[kW]
Le	Travail effectif du moteur	[kJ]
Li	Travail indiqué du moteur	[kJ]
Ni	Puissance indiquée	[kW]
P_0	Pression initiale	[MPa]
Pr	Pression des gaz brules résiduels	[MPa]
P_b	Pression à la fin de la détente	[MPa]
P_i '	Pression moyenne indiquée du cycle	[MPa]
P _i	Pression réelle indiquée du cycle	[MPa]
Pa	Pression à la fin de l'admission	[MPa]
P_k	Pression à la sortie du compresseur	[MPa]
P_M	Pression moyenne des pertes mécaniques	[MPa]
Pe	Pression moyenne effective	[MPa]
Δра	Pertes de charges dans l'admission	[MPa]
P_z	Pression à la fin de la combustion	[MPa]
P _C	Pression à la fin de la compression	[MPa]
T_b	Température à la fin de la détente	[K]
T_0	Température initiale	[K]

T_r	Température des gaz brules résiduels	[K]
T_z	Température à la fin de la combustion	[K]
Ta	Température à la fin de l'admission	[K]
T_C	La Température à la fin de la compression	[K]
Q_0	Quantité de chaleur totale dégagée par le combustible dans le moteur	[W]
Q_e	Quantité de chaleur équivalente au travail effectif	[W]
Qref	Quantité de chaleur cédée au système de refroidissement	[W]
Q_g	Quantité de chaleur emportée par les gaz d'échappement	[W]
Qrest	Quantité de chaleur restante	[W]
G_k	Débit d'air dans le compresseur	[kg/s]
ϕ_a	Coefficient de soufflance	
Ladk	Travail adiabatique du compresseur	[kJ/Kg]
N_k	Puissance consommée par le compresseur	[kJ/s]
η_{adk}	Rendement adiabatique du compresseur	
$oldsymbol{\delta}_k$	Puissance relative du compresseur	
ge_k	Consommation spécifique du compresseur	[kg/kW.h]
P_T	Pression des gaz dans le récepteur d'échappement	[MPa]
T_g	Température des gaz dans le collecteur d'échappement	[K]
T_e	Température a la fin de la détente	[K]
μCp_e	Capacité calorifique molaire des gaz d'échappement	[kJ/kmole.K]
μCp_k	Capacité calorifique molaire de l'air	[kJ/kmole.K]
µСр _{СМ}	Capacité calorifique molaire du mélange gaz-air dans le récepteur d'é	chappement
		[kJ/kmole.K]

μCv _{CM}	Capacité calorifique moyenne du mélange gaz-air dans le récepteur d'échappement	
		[kJ/kmole.K]
T_T	Température molaire des gaz devant la turbine	[K]
G_g	Débit des gaz à travers la turbine	[kg/s]
μ_g	Masse molaire des gaz d'échappement	[kg.kmole ⁻¹]
K _T	Exposant de détente dans la turbine	
LadT	Le travail massique adiabatique de la turbine	[kJ/kg]
L'adT	Travail molaire adiabatique de la turbine	[kJ/kmole]
NT	Puissance de la turbine	[kJ/s]
η_T	Rendement isentropique de la turbine	
Ku	Coefficient d'impulsion	
λ_{H}	Degré de suralimentation	
δτ	Puissance relative de la turbine	

Introduction générale

Introduction générale

Les moteurs thermiques ; y compris le moteur Diesel, tendent à transformer l'énergie chimique de combustible (thermique) en énergie mécanique, ils sont aussi connus sous la dénomination « des moteurs à combustion » et qui se séparent en deux types à savoir :

Les moteurs à combustion externe où le système d'air est recyclé et la combustion se situent à l'extérieur du moteur. Ces moteurs sont moins utilisés, les machines à vapeur et les moteurs sterling font partie de ce type.

En revanche, les moteurs à combustion interne, inventés au cours du 19émé siècle, ont la combustion qui est formée à l'intérieur du moteur, ces derniers sont classifiés par trois grandes familles ; moteur à essence, moteur Diesel et à gaz.

Parmi les moteurs à combustion interne qui ont eu une grande satisfaction dans plusieurs domaines, grâce à leur puissance et leur efficacité, sont les moteurs Diesel, qui ont un rendement thermique plus élevé aux autres moteurs. C'est pour cela qu'ils sont utilisés pour les navires et les automobiles de forte puissance.

Le moteur Diesel est un moteur dont l'allumage n'est pas commandé, mais spontané par un phénomène d'autoallumage (par compression). Le fonctionnement de ce moteur n'exige aucun dispositif d'allumage tell que une bougie, leur inflammation repose sur la pulvérisation progressive de combustible sur la surface de l'air comprimé à une température supérieure au point d'inflammabilité du combustible.

Le moteur Diesel actuellement dispose d'une méthode d'amélioration utilisé massivement dans ce moteur, qui consiste à augmenter le débit d'air dans la charge fraiche par un turbocompresseur afin d'améliorer le rendement et l'efficacité du moteur, ainsi de diminuer la consommation spécifique de combustible.

La présentation de notre mémoire est composée de quatre chapitres, dont le but est d'atteindre l'objectif de notre recherche :

Dans le premier chapitre, nous allons donner des généralités sur le moteur diesel et ses émissions polluantes, ainsi les caractéristiques du combustible gas-oil.

Dans le deuxième chapitre, nous présentons le système de suralimentation et ses différentes conceptions.

Introduction générale

Le troisième chapitre est destiné à l'étude et au calcul de différents paramètres énergétiques du type de moteur Diesel (ZIL-645).

Dans le quatrième chapitre et le dernier, nous allons présenter une modélisation numérique de notre étude.

Chapitre I :

Généralité sur le moteur Diesel

I.1 Introduction

Depuis l'apparence du moteur Diesel en 1897, les ingénieurs ne cessent pas d'évoluer et améliorer la capacité et les performances du moteur, et surtout d'avoir une réaction écologique pour la réduction des émissions polluantes, l'évolution de la puissance de ce moteur souligne directement la fiabilité des organes par lequel est construit.

Dans ce chapitre, nous allons effectuer une présentation bibliographique sur le moteur Diesel et ses émissions polluantes.

I.2 Principe de fonctionnement du moteur Diesel

Le principe de fonctionnement du moteur Diesel est de fournir l'énergie mécanique à l'aide d'une énergie thermique, le moteur à quatre temps est le plus utilisé sur les véhicules, la rotation complète prendrait 720 degré ; donc chaque temps a besoin de 180 degrés pour une rotation de vilebrequin, donc deux tours du vilebrequin chaque les quatre temps.

Le moteur Diesel peut contenir un ou plusieurs cylindres, les cylindres ont tous le même fonctionnement et chaque cylindre se génère une évolution périodique qui forme un cycle du fonctionnement.

Chaque cylindre du moteurs Diesel à quatre temps doit accomplir les quatre différents points du cycle, le fonctionnement de ce cycle est une étude théorique et sont :

Admission : La soupape d'admission s'ouvre et le piston descend jusqu'au PMB, la chambre de combustion se remplit par l'air et la soupape d'échappement ferme.

Compression : Le piston monte et les soupapes sont fermées, le volume de la chambre de combustion diminue et l'air se comprime jusqu'au 400 bar, donc la température monte jusqu'au 600°c qui permet l'auto inflammation.

Combustion et détente : Le carburant injecté à haute pression, la combustion se réalise et repousse le piston à descendre jusqu'au PMB.

L'échappement : Le piston remonte, la soupape d'échappement s'ouvre et les gaz brulés s'échappent par la remonté du piston jusqu'au PMH.

Le cycle recommence et les opérations se répètent de même exécution.

Les soupapes d'admission et d'échappement sont commandées mécaniquement et elles sont liées au positionnement du vilebrequin.

Figure I.1 : Quatre temps d'un moteur Diesel

[2]

Chapitre I

I.3 Principe de fonctionnement réel du moteur Diesel

Le principe de fonctionnement réel du moteur Diesel porte quelques modifications qui s'imposent sur le retard et l'avance d'ouverture et de fermeture des soupapes d'admissions et d'échappements, et cela joue un rôle très important sur le fonctionnement du moteur.

I.3.1 Avance et retard d'ouverture et la fermeture de soupapes d'admission

Dans la période de refoulement des gaz brulés vers la soupape d'échappement, les pertes de charges des gaz brulés créent une surpression par rapport à la pression de l'orifice d'échappement, ensuite ces gaz s'échapperont, le piston arrivera au point mort haut, dans ce moment, la pression dans le cylindre est plus élevée par rapport à la pression atmosphérique, donc dans le cycle théorique, la soupape d'admission s'ouvrera instantanément et réellement en ce moment la pénétration de l'air dans le cylindre est complexe, pour cette raison, la soupape d'admission s'ouvre soit en retard ou en avance.

a) Avance ou retard d'ouverture de soupapes d'admission

• Avance d'ouverture de soupapes d'admission

L'avance d'ouverture de soupapes d'admission est pour donner un temps à l'air de se pénétrer dans le cylindre et de vaincre leur masse d'inertie, et également, de permettre une évacuation des gaz brulés et d'augmenter le taux de remplissage.

• Retard d'ouverture de soupapes d'admission

Le retard d'ouverture de soupapes d'admission est pour faciliter la pénétration de l'air dans le cylindre profitant de la dépression, quand le piston quitte le point mort haut.

b) Retard de fermeture de soupapes d'admission

Dans la phase d'admission, il est impératif de laisser un temps de retard de fermeture de soupapes d'admission lorsque le piston atteint le point mort bas, afin d'obtenir un bon remplissage d'air pour une combustion complète.

I.3.2 Avance et retard d'ouverture et la fermeture de soupapes d'échappement

a) Avance d'ouverture de soupapes d'échappement

Dans la phase de détente, il est nécessaire d'ouvrir la soupape d'échappement à l'avance, si le piston atteint le point mort bas et l'ouverture de la soupape sera instantanée, il est difficile d'évacuer les gaz brulés par la remonté du piston, cela nécessite un travail plus élevé du piston pour échapper les gaz brulés.

L'ouverture de la soupape d'échappement à l'avance mène à la diminution de la pression dans le cylindre jusqu'à la pression atmosphérique de la conduite d'échappement, ce qui permet un meilleur échappement des gaz brulés.

b) Retard de la fermeture de soupapes d'échappement

Le retard de la fermeture de soupapes d'échappement est lié à l'avance d'ouverture de soupapes d'admission qui sert à évacuer les gaz brulés et assurer un bon nettoyage du cylindre par la rentrée d'air. Ce système est favorisé sur les moteurs Diesel suralimenté, car l'air qui rentre dans le cylindre permet aux gaz brulés d'échapper, ainsi ils sortiront par la conduite d'échappement, cela va diminuer la température et la pression dans la conduite d'échappement, ce qui permet d'avoir une pression d'échappement inférieure à celle d'admission.

I.3.3 Avance à l'injection

L'avance de l'injection du carburant avant que le piston atteint le point mort haut durant la compression est effectuée à l'effet de coïncider le début de la combustion avec la position du piston au point mort haut, le temps entre le début de l'injection et le début de la combustion est représenté par un angle θ .

I.4 Diagramme de pression et de volume

Les transformations physiques et chimiques subies par le carburant dans les moteurs Diesel sont représentées par un diagramme afin d'étudier le fonctionnement du moteur, le diagramme est une courbe qui représente les variations de pressions exercées sur le piston en fonction du volume, comme il peut se présenter le cycle sur le diagramme qui représente les variations de températures en fonction de l'entropie.

I.4.1 Diagramme réel du moteur Diesel

Le diagramme réel représente l'étude du fonctionnement du moteur à l'aide des appareils enregistreurs mécaniques, électriques et optiques. Ce diagramme représente les variations réelles de pression, volume et température afin d'obtenir un rendement parfait et une puissance plus élevée.

I.4.2 Diagramme théorique du moteur Diesel

Le diagramme théorique représente l'étude mathématique du fonctionnement du moteur, afin d'obtenir une approximation théorique pour calculer les paramètres énergétiques du moteur.

Le cycle théorique facilite les calculs des paramètres énergétiques qui peuvent rapprocher au calcul réel. Dans le but de calculer les paramètres énergétiques d'un cycle moteur Diesel théorique, nous prenons quelques substantielles représentées par :

- Le carburant gasoil est considéré comme un fluide parfait, ce qui signifie que les pertes de charges sont nulles.
- L'aspiration et l'échappement s'effectue à une pression atmosphérique.
- Les pertes chaleur dues à la dissociation des molécules et au transfert de chaleur à la paroi sont prisent en considération par un coefficient appelé taux d'utilisation de chaleur ξ.
- Le temps de compression et de détente sont supposés adiabatiques.
- Le temps de combustion est supposé isobare, isochore et instantané.

Généralité sur le moteur Diesel

Figure I.2 : Cycle thermodynamique mixte (réel et théorique) du moteur Diesel [7]

I.5 Différents types d'injection du moteur Diesel

Le système d'injection dans les moteurs Diesel joue un rôle très important ; il assure le contrôle de l'acheminement du carburant en fonction du besoin du moteur et assure une haute pression d'injection pour le système d'autoallumage. Dans les moteurs Diesel, il existe deux types d'injections ; injection indirecte et directe qui ont des conséquences liées à la consommation du combustible, les émissions polluantes et le bruit du moteur.

Le système d'injection fonctionne mécaniquement à l'origine, avec l'évolution l'électronique dans les moteurs automobiles, les injecteurs sont améliorés par des calculateurs électroniques.

I.5.1 Injection indirecte

Dans les moteurs Diesel, le système d'injection indirecte se définie par le jet de combustible dans une préchambre située à l'intérieur de la culasse et qui est reliée directement à la chambre de combustion (cylindre), où va s'amorcer la combustion dans le petit volume de la préchambre. La combustion dans la préchambre est incomplète due au volume insuffisant. Finalement, le combustible s'échappera dans la chambre de combustion où la combustion complète se déroulera.

Les moteurs Diesel à injection indirecte a besoin d'une bougie de préchauffage, car la compression dans la préchambre ne peut pas amener l'air à une température plus élevée pour l'autoallumage.

Le système d'injection indirecte est avantageux dans le cas du bruit du moteur ; la combustion déroulera silencieusement due à la régulation de la pression, les émissions de NOx sont faibles et le carburant brule parfaitement ; ce qui génère moins de particules finies.

Mais ce système engendre des inconvénients ; le rendement du moteur est moins parfait dû aux pertes thermiques dans la préchambre. Ces pertes sont liées aux frottements du mélange gaz et combustible brulés et aux parois de la préchambre.

Le système à injection indirecte décrie deux types de préchambre, à précombustion et à chambre de turbulence. Dans le cas de chambre de turbulence, le volume occupé est le même volume de la chambre de combustion et relié entre eux avec un orifice de forme tronconique.

Figure I.3 : Injecteur indirecte à précombustion et à chambre de turbulence [3]

I.5.2 Injection directe

Le système d'injection directe fonctionne avec la pulvérisation du combustible directement dans la chambre de combustion sans une préchambre ou la chambre de turbulence, l'injecteur est relié généralement à la tête de la chambre de combustion.

Ce système est plus efficace et économe ; il réduit la consommation du carburant et son rendement est plus élevé par rapport au moteur à injection indirecte, et ce, pour des raisons de faibles pertes thermiques liées aux frottements. Les moteurs à injection directe exigent une précision de jet parfaite et un excès d'air important pour que les molécules du combustible se mettent on contact avec l'air plus rapidement, et ceci assure une combustion complète. Il existe une autre technique qui consiste à utiliser un mouvement tourbillon d'excès d'air à l'admission et cette action assure également une combustion complète.

Les moteurs à injection directe engendrent deux problèmes ; le bruit de la combustion et l'émission d'oxyde d'azote.

Généralité sur le moteur Diesel

Figure I.4 : Injecteur direct

[3]

- Injection directe à rampe commune :

En raison du bruit engendré par les moteurs à injection directe, le système d'injection directe à rampe commune (Common rail) a été fabriqué afin de remédier à ce problème. Dans les moteurs précédents à injection directe, la pompe à basse pression alimente les injecteurs, et en ce qui concerne le système à rampe commune, la pression de l'injection ne dépend pas de la vitesse de rotation du moteur, mais il emploie des injecteurs piézoélectriques qui tendent à contrôler la quantité du carburant avec une pression très élevée.

L'injecteur direct à rampe commune réduit le bruit et l'émission d'oxyde d'azote, et ce grâce aux faibles quantités d'injection du carburant qui mènent à l'augmentation de la température et de la pression dans le cylindre, ainsi il permet au combustible de bruler à un point particulier dans la chambre de combustion. Cette méthode est appelée une préinjection.

Figure I.5 : Principe de fonctionnement d'injection directe du moteur Diesel à rumpe commune. [8]

I.5.3 Différents types d'injecteurs

Les injecteurs se regroupent dans deux grandes familles :

a) Injecteurs à téton

Les injecteurs à téton sont utilisés généralement dans les moteurs à injection indirecte, ils peuvent être présenté sous des différentes formes du jet, si la forme de l'extrémité du téton est cylindrique, l'angle du jet est étroit, si elle est conique, la pulvérisation suivra l'angle de cône.

Figure I.6 : Injecteur à téton[6]

b) Injecteurs à trous

Les injecteurs à trous sont composés de deux modèles ; injecteur à un trou et à plusieurs trous.

- Les injecteurs à un trou sont utilisés également sur les moteurs à injection indirecte, le diamètre de ce trou varie entre 0.2 et 1.5 mm.

- Contrairement aux injecteurs précédents, les injecteurs à plusieurs trous sont employés sur les moteurs à injection directe, le nombre de trous varie entre 2 à 7 trous et le diamètre de chacun égale à 0.2 mm. La forme du jet dépend du diamètre et de la forme des trous.

Figure I.7 : Injecteur à plusieurs trous [6]

I.6 Caractéristiques du carburant gas-oil

Le gas-oil est un carburant dérivé du pétrole. C'est un mélange de divers hydrocarbures. Il est utilisé pour l'alimentation des moteurs Diesel.

La première partie de raffinage du pétrole brut consiste à enlever la boue et l'eau qu'il contient, ensuite on l'extrait par des différentes distillations, et ce en raison de différentes températures, à savoir :

- De 40 à 200°c, le pétrole est séparé dans la fraction de distillation légère et gazeuse, comme l'essence et le gaz de pétrole liquéfié.
- De 150 à 300°c, le pétrole est séparé dans la fraction de distillation moyenne, tel que le pétrole lampant et le kérosène.
- De 250 à 350, le pétrole est séparé dans la fraction de distillation gazole ou bien le gas-oil.
- Au-dessus de 350°c, le pétrole est séparé dans la fraction de distillation résidu, tel que le fuel-oil, produit lourd, puis les huiles de graissage et enfin les goudrons.

• Les caractéristiques du gas-oil utilisé dans les moteurs Diesel

Dans les moteurs Diesel, le gas-oil utilisé doit répondre à la mesure d'usage que nous allons présenter dans le tableau ci-dessous :

Les caractéristiques	Le résultat
Indice de couleur au calorimètre UNILON	Inférieur à 5
Point d'inflammabilité LUCHAIRE	Supérieur à 70°c
Densité	0.82 à 0.87
Point de congélation	Etre – 15 et -25°c
Acidité minérale	Nulle
Viscosité à 20°c	1.8 ENGLER
Teneur de soufre	Maximum 0.5%
Indice de CETANE	Maximum 50
Sédiment divers	Nuls
Eau et cendre	0.01 à 0.02%

Tableau I.1 : Caractéristiques du Gas-oil[5]

I.6.1 Indice de cétane

L'indice de cétane est un élément qui mesure la capacité et le délai d'allumage d'un combustible dans les moteurs Diesel, Le combustible utilisé dans ces moteurs est généralement le gas-oil, qui doit s'auto-enflammer sous l'effet de la compression élevée.

Le gas-oil est issu par deux hydrocarbures utilisés pour désigner le retard à l'inflammation du combustible, sont :

- Le cétane (C₁₆H₃₄) est un hydrocarbure saturé dont la capacité de s'auto-enflammer est importante et le retard à l'inflammation est considérable.
- L'alphaméthylnaphtalène $(C_{11}H_{10})$ est un hydrocarbure saturé dont le retard à l'inflammation est très faible.

I.6.2 Pouvoir calorifique du combustible

Le pouvoir calorifique d'un combustible détermine la quantité d'énergie dégagée par la combustion, autrement le pouvoir calorifique est égal à la chaleur délivrée par le combustible dans une combustion complète dans les conditions initiales à pression et à volume constant, et il s'exprime par l'unité de joule par kilogramme. C'est une grandeur indispensable pour obtenir un bilan énergétique du moteur.

Le pouvoir calorifique se sépare en deux types de calculs ; le pouvoir calorifique inférieur qui est adopté pour la forme gazeuse d'eau à la fin de la combustion, ce qui est appliqué aux moteurs à combustion interne, puisque l'eau est rejetée sous forme de vapeur, et le pouvoir calorifique supérieur qui est utilisé lorsque l'eau sort sous forme liquide.

I.7 Emissions polluantes du moteur Diesel

En dépit des progrès réalisés, en vue de pallier aux problèmes de pollutions engendrées en partie par les moteurs Diesel, néanmoins, ces derniers sont responsables à l'émission de maints gaz nocifs et éventuellement, aux éléments chimiques formés lors de la combustion.

Parmi les émissions polluantes néfastes du moteur Diesel qui sont destructibles et dangereuses pour la santé humaine et celle de l'environnement en générale, nous distinguons les oxydes de carbone (CO) et (CO₂), les oxydes d'azote (NO_x), le dioxyde de soufre (SO₂), les hydrocarbures imbrulés et les particules carbonisées.

I.7.1 Réaction de la combustion

La combustion est une réaction chimique issue par un carburant composé du carbone et l'hydrogène, et l'air atmosphérique composé de l'oxygène et l'azote, dont l'azote est extrait de la réaction pour des raisons que l'azote s'oxyde à température supérieure à 2000°C.

Dans un kg de combustible gas-oil, la somme des teneurs de masse de carbone, l'hydrogène, l'oxygène et le soufre est égale à 1.

$$C + H + O + S = 1$$

Les réactions chimiques de la combustion se déroulent de la manière suivante :

$$C + O_2 = CO_2$$
$$H_2 + \frac{1}{2}O_2 = H_2O$$
$$S + O_2 = SO_2$$

- Réaction générale de la combustion

$$C_n H_m + \left(n + \frac{m}{4}\right) (O_2 + 3.78N_2) \rightarrow n. CO_2 + \frac{m}{2} \cdot H_2 O + 3.78 \left(n + \frac{m}{4}\right) N_2 + \Delta H_0$$

 ΔH_c : L'enthalpie de la combustion.

I.7.2 Formations des polluants

a) Oxydes d'azote

Les oxydes d'azote sont des gaz nocifs issus par la transformation chimique de l'air (Oxygène et l'azote) sous une haute température. Et ils sont regroupés par deux espèces; le monoxyde d'azote (NO) et le dioxyde d'azote (NO₂).

Les principales réactions qui réagissant sur la formation des oxydes d'azote sont :

$$O + N_2 = NO + N$$
$$N + O_2 = NO + O$$
$$N + OH = NO + H$$

Suite à la formation de monoxyde d'azote, il peut se transformer en dioxyde d'azote par la réaction suivante :

$$NO + HO_2 = NO_2 + OH$$

b) Oxydes de carbone

Les oxydes de carbone sont composés de deux gaz, l'un est dangereux pour la santé humaine qui est le monoxyde de carbone (CO), et l'autre qui a un impact direct sur l'effet de serre.

Le monoxyde de carbone issu de la transformation chimique du combustible et l'air, dont la combustion est incomplète due au manque de l'oxygène dans la combustion et l'augmentation de la température. Dans les moteurs Diesel, les émissions de (CO) sont naturellement faibles.

La réaction de basse de monoxyde de carbone est donnée par :

$$C + \frac{1}{2}O_2 = CO$$

Le dioxyde de carbone est un des produits de la combustion du combustible dans l'atmosphère, la combustion est complète et riche en oxygène.

La réaction de basse de dioxyde de carbone est donnée par :

$$C + O_2 = CO_2$$

c) Dioxyde de soufre

Le dioxyde de soufre (SO₂), émanant par l'oxydation du combustible dans la combustion, il contient une faible quantité de soufre.

La réaction de basse de dioxyde de soufre est donnée par:

$$S + O_2 = SO_2$$

d) Hydrocarbures imbrulés

Les émissions des hydrocarbures imbrulés sont formées par une combustion incomplète, attachée à la température inférieure des parois du cylindre par rapport à la température de la combustion et la façon dont nous injectons le combustible (la taille des gouttelettes d'injection est grande et la vitesse réduite).

Ces hydrocarbures imbrulés sont constitués généralement de carbone, l'hydrogène et d'une petite teneur d'oxygène.

e) Particules carbonisées

Les particules carbonisées sont constituées de carbone, elles sont issues par la combustion incomplète à basse température du combustible et les huiles de graissage.

I.7.3 Différentes techniques de traitement des émissions polluantes

Dans les moteurs Diesel, la réduction des produits de combustion se fait par des différentes méthodes ; soit la réduction est liée directement à la combustion ou à la sortie du moteur, on distingue trois méthodes :

- L'amélioration de la combustion.
- L'amélioration des postes de traitement des produits de la combustion.
- Le développement du carburant.

a) Amélioration de la combustion

Les moteurs Diesel se sont développés par l'invention du système d'injection commune rail pour la réduction de ces émissions polluantes ; la rampe commune alimente les injecteurs de tous les cylindres et permet une pression d'injection semblable sur tous les cylindres pour un meilleur contrôle de l'alimentation et de la pulvérisation du carburant.

b) Amélioration des postes de traitement des produits de la combustion

Le poste de traitement des produits de la combustion dans les moteurs Diesel est assuré par des pots catalytiques pour la réduction des monoxydes de carbone, les oxydes d'azote et les hydrocarbures imbrulés. En présence de ces catalyseurs qui convertissent ces produits de combustion en eau, en dioxyde d'azote et en dioxyde de carbone, ce dernier est moins toxique bien que c'est le premier responsable de l'effet de serre.

Les transformations chimiques de ces produits sont réalisées par des réactions liées à la température et à la rapidité de la transformation, ces réactions sont :

- Oxydation du monoxyde de carbone :

$$2CO + O_2 = 2CO_2$$

- Oxydation des hydrocarbures :

$$4C_nH_m + (4n+m)O_2 \rightarrow 4nCO_2 + 2mH_2O$$

- Reduction des oxydes d'azote

$$2NO + 2CO \rightarrow N_2 + 2CO_2$$

c) Développement du carburant

Le carburant Diesel est sensible à l'effet environnemental, l'amélioration de ce carburant provient de l'utilisation des additifs chimiques, ces additifs sont souvent complexes et ont plusieurs fonctions, ainsi la composition du gas-oil est très complexe pour disposer le modèle contenant toutes les espèces.

I.8 Avantages et inconvénients du moteur Diesel

Les moteurs Diesel ont révolutionné le monde des automobiles. Ce succès revient en partie à leur rendement qui est plus important par rapport à ceux d'essence, et ce en raison de la compression élevée. Ces moteurs sont aussi connus d'être moins onéreux ; étant donné qu'ils consomment moins de carburant.

Les moteurs Diesel ont tendance à être plus durables et plus résistants car ces moteurs périssent moins par rapport aux moteurs d'essence malgré qu'ils parcourent des longues distances. Comme ces moteurs peuvent fonctionner avec de l'huile végétale au lieu du gazole, ils assurent un carburant reconductible en cas de carence de pétrole. En outre, moins d'incendies sont engendrés dans les véhicules dont le moteur est Diesel, et ce, en raison que le combustible gas-oil produit des vapeurs inflammable qu'après l'atteinte d'une température supérieure à 80°c.

Malgré tous leurs privilèges, les moteurs Diesel ne sont pas sans inconvénients. Ils sont moins écologiques et polluants vu leur émissions de gaz nocifs en particulier le CO2 et d'oxydes d'azote qui sont à l'origine de l'effet de serre, et ce malgré, le moins rejet en matière d'hydrocarbures imbrulés par rapport aux moteurs d'essence. En revanche, de maints progrès sont effectués afin de remédier à ce problème de pollution qui intrigue et détruit le monde d'aujourd'hui, et ce en inventant le filtre à particules qui, par conséquent, limite l'émission de monoxyde de carbone. Entre autres problèmes relatifs aux moteurs Diesel, tel que la forte odeur du carburant dégagé, ils sont aussi plus bruyants par rapport à ceux d'essence, et ce en dépit des progrès qui sont faits à l'effet de pallier à ce problème et ainsi, réduire leur niveau sonore. Les moteurs Diesel sont plus lourds dans la construction et pose des problèmes mécaniques plus complexes que les moteurs à essence, leur étanchéité est plus difficile à réaliser, ainsi que les organes du moteur sont soumis à des pressions très élevées, par conséquent, les efforts sont considérables.

I.9 Conclusion

Dans notre chapitre, nous avons donné toute une généralité sur les moteurs Diesel, tel que le principe de fonctionnement avec les différents cycles (théorique et réel), ainsi les différents types d'injection.

Le cœur du moteur est la partie ou se déroule la combustion et le combustible est la source thermique du moteur, c'est pour cela que nous avons donné une description sur le combustible gas-oil et les émissions polluantes des produits de la combustion, ainsi les différentes techniques pour réduire ces émissions.
Chapitre II :

Suralimentation des moteurs Diesel

II.1 Introduction

Depuis l'apparition des moteurs Diesel, les différentes techniques d'amélioration sont effectuées à l'effet de rendre le moteur plus puissant et rentable. Parmi ces techniques, nous trouvons la suralimentation par un turbocompresseur et par un compresseur, ainsi il existe le système de recyclage des gaz des produits de la combustion qui est nécessaire surtout pour la réduction des émissions polluantes.

Met en proposition en 1905, le système de suralimentation des moteurs par le dispositif de turbocompresseur est fortement employé non seulement sur les moteurs DIESEL, mais aussi sur tous les moteurs d'automobiles. Ce dispositif de turbocompresseur a été réalisé pour la première fois sur les moteurs industriels, précisément sur des moteurs marins. Ensuite, le turbocompresseur est employé sur les moteurs des camions. Enfin, à compter des années quatre-vingt, il est utilisé sur les moteurs des automobiles.

II.2 Principe de fonctionnement du turbocompresseur

Dans ce système, la puissance est augmentée à cause de la compression de l'air dans le compresseur qui augmente la masse volumique de l'air à l'admission, ainsi le refroidissement de l'air par le biais d'un échangeur qui est installé entre le compresseur et le moteur. Le compresseur et l'échangeur de chaleur sont montés en série sur le circuit d'admission.

Installé sur le circuit de gaz d'échappement, la turbine entraine le compresseur comme elle est reliée à ce dernier par un arbre. Le compresseur comprime de l'air aspiré puis refroidi par l'échangeur. Éventuellement, il envoie l'air comprimé dans les cylindres, et il diminue l'énergie ainsi résultant à l'auto-inflammation et à l'accroissement de la quantité d'oxygène importante pour une combustion complète. De ce fait, il y'aura plus d'injection de carburant et le moteur devient plus puissant. Un moteur suralimenté est plus léger et plus facile à être installé que le moteur à aspiration naturelle.

En vue de contrôler la vitesse des turbocompresseurs, deux méthodes sont mises en avance :

La première repose sur la vanne appelée WASTE GATE, qui permet l'échappement d'une partie des gaz d'échappement sans passer par la turbine, par conséquent, la sortie des gaz d'échappement est réduite. La vanne de WASTE GATE permet de contrôler la quantité des gaz attribués à la turbine pour réduire la puissance délivrée au compresseur afin de s'adapter au besoin du ce dernier. Ce système de suralimentation est utilisé sur les automobiles et les véhicules industriels performants.

Suralimentation des moteurs Diesel

La deuxième méthode est de commander la vitesse de rotation du turbocompresseur. En outre, elle est effectuée à l'aide des turbocompresseurs dits géométrie variable (VGT), qui ont une turbine avec un angle d'inclinaison des aubes variables dus à un actionneur. Cela permit, ainsi, de régulariser la vitesse de rotation du turbocompresseur.

En plus de la puissance du moteur, ce système de suralimentation permet aussi d'augmenter l'expulsion de substance polluante via les gaz d'échappement, car la température des gaz résiduels sera en augmentation. En conséquence, cette action dégage plus de particules polluantes tel que les gaz NO_x, et ainsi pollue notre environnement.

Figure II.1 : Principe de fonctionnement de la suralimentation par turbocompresseur [8]Besoin d'air du moteur

Le débit d'air est nécessaire au fonctionnement du moteur pour éviter les fumés et les températures excessives des gaz d'échappement, et ce débit dépend de la puissance fournie par la turbine et les conditions de fonctionnement du moteur à un régime spécifique. La consommation spécifique de combustible et le rapport air/carburant est pour estimer le besoin d'air du moteur. Le débit d'air nécessaire d'un moteur suralimenté est plus critique lors que la charge est grande.

II.3 Différents types de turbocompresseurs

Il existe plusieurs types de turbocompresseurs utilisés dans les moteurs Diesel, parmi ces types :

II.3.1 Turbocompresseur simple

Le turbocompresseur simple est le plus fréquent de tous, il est possible d'obtenir des caractéristiques complétement différentes en variant la taille de la turbine et du compresseur.

Les grands turbocompresseurs délivrent une puissance importante au régime maximal, et les petits tournent plus vite et délivrent une meilleure puissance à bas régime.

Figure II.2 : Turbocompresseur simple[12]

II.3.2 Turbocompresseur double

Le turbocompresseur double comme son nom indique l'installation d'un autre turbocompresseur simple à un moteur. Il est possible d'installer un turbocompresseur sur chaque ensemble de cylindre, ou bien deux turbocompresseurs d'où le premier est petit adapté au régime plus faible associé au deuxième plus grand et adapté au régime plus élevé. Cette deuxième configuration est plus attendue sur les moteurs Diesel et donne un couple plus élevé à bas régime, ainsi une meilleure puissance à un régime élevé.

Figure II.3 : Turbocompresseur double[12]

II.3.3 Turbocompresseur à double entrée

Le turbocompresseur à double entrée permet d'acheminer plus efficacement les gaz d'échappement et d'équilibrer la pression des gaz dans les cylindres, cela contribue à fournir un air plus dense et plus pur à chaque cylindre, la turbine reçoit plus d'énergie et délivre plus de puissance. Ces turbocompresseurs sont plus efficaces qu'aux deux turbocompresseurs précédents.

Figure II.4 : Turbocompresseur à double entrée [12]

II.3.4 Turbocompresseur à géométrie variable

Le turbocompresseur à géométrie variable est largement le plus utilisé sur les moteurs Diesel en raison de la température plus faible des gaz d'échappement, et ce, malgré leur cout élevé et la matière des composants qui sont fabriqués à partir des matériaux exotiques.

Le turbocompresseur à géométrie variable comprend une turbine qui contient des ailettes de forme aérodynamique. Ces ailettes tournent pour faire varier l'angle de tourbillonnement du gaz et la section transversale.

Les ailettes modifient le ratio surface / radius de vannes interne pour s'adapter au régime moteur et d'obtenir des performances optimales.

Figure II.5 : Turbocompresseur à géométrie variable [12]

II.3.5 Turbocompresseur électrique

Le turbocompresseur électrique est utilisé pour éviter la latence de turbocompresseur et adapté pour des régimes bas et aide à augmenter la vitesse de rotation de turbocompresseur dès le démarrage jusqu'à ce que la puissance du volume d'échappement soit assez élevée pour faire marcher le turbocompresseur. Ces turbocompresseurs sont entrainés par un moteur électrique et ils répondent aux inconvénients des turbocompresseurs précédents.

Figure II.6 : Turbocompresseur électrique[12]

II.4 Adaptation du turbocompresseur au moteur Diesel

La suralimentation par un turbocompresseur est la plus utilisée sur les moteurs Diesel. Premièrement, elle fonctionne avec un mélange riche en air, pour cela, il est nécessaire d'avoir un rapport d'air/combustible bien contrôlé, donc les turbocompresseurs sont bien destinés au moteur Diesel pour augmenter leur puissance.

Le moteur Diesel se caractérise par un couple très élevé sur une grande plage de vitesse. Les moteurs Diesel suralimentés peuvent atteindre un couple maximal sur une vitesse de rotation de 1800 tr/min, et une puissance nominale qui peut atteindre une vitesse de rotation de 4500 tr/min. A cet égard, le moteur Diesel turbocompresseur développe des couples plus élevés qu'au même moteur non suralimenté.

Les moteurs Diesel suralimenté sont moins performants sur des faibles vitesses de rotation à cause du volume des gaz d'échappement qui est faible, ce qui produit des faibles pressions d'air à l'admission.

La suralimentation des moteurs Diesel se focalise sur l'adaptation du turbocompresseur au régime du couple maximal, ce que signifie à une petite vitesse et à pleine charge.

La suralimentation des moteurs Diesel premièrement sont sensibles à la faible pression d'air à l'admission qui peut entrainer des fumés et des températures trop élevées. En outre, l'augmentation de la pression d'air à l'admission peut provoquer des pressions et des températures inacceptables dans les cylindres en provoquant des corrosions au moteur.

Le choix de la turbine dépend de la forme du couple moteur, par exemple ; une petite turbine entraine des pressions plus élevées et des couples plus élevés à une vitesse inférieure sur des petites plages de vitesse, et une grande turbine permettra d'entrainer des pressions moyennes et des couples inférieurs mais favorisera des régimes nominaux. **[10]**

II.5 Différents types de conceptions des turbocompresseurs

La conception de turbocompresseur se réalise par des différents types afin d'améliorer la puissance de la turbine et le compresseur :

II.5.1 Conception de base

La conception de base est réalisée sur un seul étage de turbocompresseur d'où l'alimentation du compresseur se fait à l'aide d'un arbre entrainé par la turbine. Cette conception est structurellement plus simple. Dans ce cas, la puissance délivrée par la turbine est égale à la puissance absorbée par le compresseur.

Figure II.7 : Conception de base du turbocompresseur[11]II.5.2 Conception à un seul étage avec entrainement mécanique au moteur

Chaque des systèmes de suralimentation présentent certains avantages, ils ont déjà été mentionnées. Mais chacun d'entre eux a ses propres défauts, la suralimentation mécanique est caractérisée par une grande complexité structurelle et des valeurs numériques d'efficacité mécanique plus faible. Par contre, la suralimentation par turbine à gaz est structurellement plus simple, car nous utilisons le raccordement du groupe de suralimentation au réseau de gaz. Cependant, le moteur avec un turbocompresseur est exposé à la plus mauvaise réceptivité (capacité de transition rapide d'un mode de fonctionnement).

Le turbocompresseur garde la même vitesse (basse) pendant un certain temps par inertie. Par conséquent, le turbocompresseur ne fournit pas une augmentation de la quantité d'air fournie dans la mesure où l'alimentation du carburant augmente. Il y a une pénurie d'oxydant, ce qui entraine le facteur de débordement de l'air à la diminution.

Le moteur avec un turbocompresseur a également les pires propriétés de démarrage par rapport à un moteur qui a une suralimentation mécanique.

Cette conception combinée de relier le compresseur mécaniquement au moteur avec un arbre, ce dernier est relié une autre fois à la turbine, permet de répondre aux inconvénients de chaque type de suralimentation.

Figure II.8 : Conception à un seul étage avec entrainement mécanique au moteur [11]

II.5.3 Conception à deux étages de compresseurs

La conception à deux étages de compresseurs est très efficace, elle assure la compression d'air par deux étages d'où le premier est relié à la turbine et le deuxième est relié mécaniquement au moteur, en raison de la liaison mécanique de ce dernier avec le vilebrequin pour assurer un bon démarrage et avec un bon accueil.

L'aspiration des compresseurs est effectuée au moyen d'une suralimentation parallèle de la charge comprimée dans le tuyau d'entré, l'application de surcharge en deux étages permet de réaliser des économies d'énergies importantes.

Figure II.9 : Conception à deux étages de compresseurs avec entrainement mécanique au moteur [11]

II.5.4 Conception à deux étages de turbines

Dans cette conception à deux étages de la turbine, la première turbine alimente le compresseur et la deuxième alimente le vilebrequin, cette conception permet d'utiliser plus pleinement l'énergie des gaz d'échappement afin de transmettre la puissance de la turbine au moteur.

Figure II.10 : Conception à deux étages de turbines avec entrainement mécanique au moteur [11]

II.6 Caractéristiques thermodynamiques du turbocompresseur

II.6.1 Compression de l'air à l'admission

a) Puissance de compression

La compression de l'air se réalise avec l'élévation de la température à l'admission, la compression de l'air est supposé adiabatique due au faible échange thermique avec le milieu extérieur, dans ce cas la compression isentropique, la puissance est donnée par :

$$N_{k\,is} = G_a C p_a (T_{sk} - T_{ek})_{is}$$
[II. 1]

Avec:

$$(T_{sk} - T_{ek})_{is} = T_{ek} [(\frac{P_{sk}}{P_{ek}})^{\frac{\gamma - 1}{\gamma}} - 1]$$
[II. 2]

En réalité, la température de compression est bien plus grande que la température isentropique et le rapport entre la puissance théorique et réel c'est le rendement isentropique du compresseur :

$$N_k = \frac{N_{c\ is}}{\eta_c} = G_a C p_a (T_{sk} - T_{ek})$$
[II.3]

b) Rendement isentropique du compresseur

Le rendement isentropique du compresseur dépend de rapport de la compression, et il est donné sous la formule précédente :

$$\eta_{k} = \frac{N_{k \, is}}{N_{k}} = T_{ek} \frac{\left[\left(\frac{P_{sk}}{P_{ek}}\right)^{\frac{\gamma-1}{\gamma}} - 1\right]}{(T_{sk} - T_{ek})}$$
[II. 4]

c) Refroidissement de l'air à l'admission

Dans la plupart des moteur Diesel suralimentés, l'air à la sortie du compresseur est refroidi par un échangeur de chaleur soit par air ou par l'eau, l'efficacité d'un refroidisseur d'air de suralimentation (RAS) est définie par la différence de température d'entrée et de sortie par rapport à la différence de température d'entrée et celle du fluide de refroidissement.

$$\varepsilon = \frac{(T_{sk} - T_{sR})}{(T_{sk} - T_r)}$$
[II. 5]

II.6.2 Utilisation des gaz d'échappement

a) Puissance de la turbine

La puissance délivrée par la turbine est proportionnelle aux débits des gaz d'échappement et aux différentes températures due à la détente des gaz.

$$N_{T \, is} = G_g C p_g \, (T_{eT} - T_{sT})_{is}$$
[II. 6]

Avec :

$$(T_{eT} - T_{sT})_{is} = T_{eT} \left[1 - \left(\frac{P_{sT}}{P_{eT}}\right)^{\frac{\gamma - 1}{\gamma}} \right]$$
[II.7]

La puissance réelle de la turbine est donnée par :

$$N_T = N_T i_s \eta_T$$
[II. 8]

$$N_{T} = G_{g}Cp_{g}(T_{eT} - T_{sT}) = G_{g}Cp_{g}\eta_{T}T_{eT}\left[1 - (\frac{P_{sT}}{P_{eT}})^{\frac{\gamma-1}{\gamma}}\right]$$

b) Le rendement mécanique du turbocompresseur

Le rendement mécanique du turbocompresseur définit le rapport entre la puissance délivrée par la turbine sur la puissance du compresseur, exprimé par :

$$\eta_{TM} = \frac{N_k}{N_T} = \frac{G_a C p_a (T_{sk} - T_{ek})}{G_g C p_g T_{eT} [1 - (\frac{P_{sT}}{P_{eT}})^{\frac{\gamma - 1}{\gamma}}]}$$
[II. 9]

c) Energie récupérable dans les gaz d'échappement

L'énergie contenue dans les gaz d'échappement avant la turbine comprend l'enthalpie dans les gaz en fin de détente du cycle moteur, après passage de la soupape d'échappement et la pression fournie par le piston aux gaz repoussées vers l'échappement. Cette énergie est relativement importante, du même ordre de grandeur que l'énergie fournie à l'arbre moteur, c'est-à-dire 40% environ de l'énergie de combustible introduit. La turbine n'utilise qu'une faible partie de cette énergie.

Il faut noter que la récupération de l'énergie par détente des gaz d'échappement suppose une augmentation de la pression d'échappement à la sortie du moteur, avant turbine, qui pénalise le fonctionnement du moteur. Nous pouvons estimer rapidement que les pertes de pression moyenne effective sur le cycle moteur est égale à la différence entre la pression d'échappement à la sortie du moteur et la pression à la sortie de la turbine.

Cependant il faut noter que la pression moyenne effective est augmentée par la surpression de l'air à l'admission. Ainsi, le travail fourni par le cycle moteur est affecté par la différence entre la pression d'admission et la pression d'échappement. Si les réglages permettent une pression d'échappement très inférieure à la pression d'admission, il est possible de récupérer de l'énergie en « bas su cycle », grâce à une boucle de balayage donnant un travail positif par opposition au travail négatif de la boucle d'un moteur où la pression d'échappement serait supérieure à celle d'admission. **[10]**

II.6.3 Boucle de suralimentation

a) Autonomie du turbocompresseur

Lorsque le turbocompresseur est en fonctionnement stabilisé autonome, la puissance délivrée par la turbine équilibre la puissance absorbée par le compresseur, et nous pouvons écrire la relation thermodynamique suivante :

$$G_a C p_a T_1[(\frac{P_2}{P_1})^{\frac{\gamma-1}{\gamma}} - 1] = \eta_k \eta_{TM} G_g C p_g T_{eT} [(\frac{P_a}{P_2})^{\frac{\gamma-1}{\gamma}} - 1]$$
[II. 10]

Cette relation permet de déterminer les conditions de fonctionnement d'un turbocompresseur pour que celui-ci soit en équilibre. En particulier, nous pouvons remarquer que pour le fonctionnement du compresseur donné, la diminution du rendement de la turbine ou du compresseur, la réduction du débit de gaz dans la turbine ou une baisse de température des gaz d'échappement s'accompagneront nécessairement d'une augmentation des pressions à l'entrée de la turbine. **[10]**

b) Influence de la condition de fonctionnement

En reprenant l'équation d'équilibre précédente, nous remarquons que lorsque la température ambiante varie, le rapport des températures à l'entrée de la turbine et à l'entrée du compresseur doit garder une valeur constante pour que le turbocompresseur conserve les mêmes performances au niveau des rapports de compression et de détente. Ce rapport de température (T_{eT}/T_{eK}), invariant caractéristique de toutes les turbomachines, a une valeur de l'ordre de 3.20 pour les turbocompresseurs pour automobiles fonctionnant avec un rapport de compression de l'ordre de 2.5/1. **[10]**

II.7 Suralimentation par le recyclage des gaz d'échappement

Inventé dans les années 1970, le recyclage des gaz d'échappement, généralement nommé EGR (terme anglais désignant Exhaust Gas Recirculation), est un système qui redirige une partie des gaz d'échappement dans le collecteur d'admission d'un moteur. Ce système est utilisé dans les modernes automobiles en particulier ceux de Diesel.

Il est mis en avant pour des raisons écologiques. C'est un système qui réduit le taux d'expulsion du gaz toxique et le dioxyde d'azote qui contribue en grande partie à l'effet de serre, étant donné que ce gaz est engendré par la haute pression et la haute température.

Le mélange de l'oxygène aux gaz d'échappement résulte à l'abaissement de la température dans la chambre de combustion, de ce fait, diminuant la formation du dioxyde d'azote.

Il y'a deux méthodes pour réaliser le recyclage des gaz d'échappement :

- La première méthode consiste à l'avance d'ouverture des soupapes d'admission avant que les soupapes d'échappement soit complétement fermées, ce qui laisse les gaz brulés dans le cylindre pénètrent dans le collecteur d'admission, en fonction du rapport de pression entre la conduite d'admission et celle d'échappement, cet avance de l'ouverture des soupapes d'admission permet de réaliser un recyclage interne des gaz d'échappement.
- La deuxième méthode de recyclage des produits de la combustion est réalisée par le bronchement d'un tube métallique au collecteur d'échappement qui va être relié au collecteur d'admission. Ce tube assure la pénétration des gaz brulés après leur passage par un échangeur de chaleur qui diminue la température des gaz résiduels afin de diminuer la formation des oxydes d'azote dans la chambre de combustion.

Figure II.11 : Principe de fonctionnement de système de recyclage des gaz d'échappement [8]

II.8 Conclusion

La suralimentation est devenue un élément incontournable dans les moteurs Diesel. Dans notre chapitre, nous avons expliqué le principe de fonctionnement du turbocompresseur et les différents types que nous pouvons trouver, ainsi l'adaptation des turbocompresseurs sur les moteurs Diesel et les différentes conceptions des turbocompresseurs avec l'amélioration de mode d'entrainement mécanique du compresseur. En fin, nous avons donné une brève explication d'un autre type de la suralimentation par le recyclage des gaz d'échappement. **Chapitre III :**

Etudes des paramètres énergétiques du moteur Diesel ZIL-645

III.1 Introduction

Le moteur Diesel (ZIL-645) est un moteur qui a été créé à l'usine de likhachev dans les années 70 du dernier siècle. Ce moteur se caractérise par une capacité de charge très élevée et une maintenance simple, le moteur (ZIL-645) est utilisé pour les véhicules de l'agriculture et les chantiers de construction (Camion).

Le moteur (ZIL-645) est un moteur Diesel à quatre ayant 8 cylindres montés en V avec un angle de 90° ; un moteur à aspiration naturelle qui fonctionne avec un cycle mixte.

Chaque culasse comporte 4 cylindres, chaque cylindre comporte deux soupapes (soupape d'admission et d'échappement), dont les soupapes et le culbuteur sont actionnés par l'arbre à cames mécaniquement, Les accessoires sont entrainés par le moteur, le système d'injection est fermé (direct). La pompe de carburant à haute pression, à huit sections, à tiroir avec une pompe de carburant à basse pression, embrayage d'avance à injection de carburant. Le régulateur de vitesse à deux modes, le filtre à air est sec avec un élément filtrant remplaçable et un indicateur de colmatage.

Le système de lubrification est assuré par une pompe de haute pression qui aspire l'huile du réservoir pour le conduire aux différents organes, ainsi une pompe à basse pression qui aspire l'huile du carter afin de le refouler au réservoir.

Le système de refroidissement est assuré par une pompe à eau et un radiateur.

Figure III.1 : Moteur Diesel (ZIL-645) [9]

III.2 Caractéristiques techniques du moteur Diesel (ZIL-645)

III.2.1 Nombre de cylindre

Le nombre de cylindre dans un moteur représente le nombre de chambre de combustion, où se déroule la combustion. Le moteur (ZIL-645) possède huit cylindres montés en V.

III.2.2 Alésage

L'alésage d'un moteur veut dire le diamètre des cylindres et exprimé en millimètre. L'alésage du moteur (ZIL-645) égale à 110 mm.

III.2.3 Course du piston

La course du piston représente la distance parcourue par le piston entre le point mort haut (PMH) et le point mort bas (PMB), elle est exprimée en millimètre.

Généralement, la course du piston est supérieure à son diamètre, dans le cas où la course et le diamètre sont égaux, le bloc moteur est appelé carré, si la course est inférieure au diamètre, dans ce cas, le moteur est super carré.

La course du moteur (ZIL-645) est de 115 mm, donc elle est supérieure à son diamètre.

III.2.4 Cylindrée

La cylindrée d'un moteur représente le volume total des cylindres parcourus par les pistons du point mort haut au point mort bas, la cylindrée unitaire décrie le volume d'un seul cylindre, le volume total est le volume unitaire devisé par le nombre de cylindre. La cylindrée est exprimée en litre.

La cylindrée du moteur (ZIL-645) est de V_T = 8.74 L, par conséquent la cylindrée unitaire du moteur est de $\frac{8.74}{8}$ égale à V_h = 1.0925 L.

III.2.5 Taux de compression

Le taux de compression représente le rapport volumétrique entre le volume total des cylindres (Cylindrée totale) et le volume des cylindres lorsque les pistons sont au point mort haut.

Le taux de compression dans les moteurs Diesel à injection directe varie entre 16 et 21, par contre, les moteurs à injection indirecte, le taux de compression est plus élevé et varie entre 21 et 25.

Le taux de compression du moteur (ZIL-645) est de $\varepsilon = 18.5$, par le taux de compression et la cylindrée du moteur, on peut déduire le volume de compression.

III.2.6 Coefficient d'excès d'air

Le coefficient d'excès d'air est une grandeur qui caractérise la quantité réelle d'air participante à la combustion d'un kg de combustible par la quantité théorique nécessaire.

On appelle combustion complète, lorsque le coefficient d'air est égal à 1, le mélange est stœchiométrique, si le coefficient est inférieur à 1 comme dans le moteur à essence, le mélange est dit riche en carburant, et si le coefficient est supérieur comme dans le moteur Diesel, le mélange est dit pauvre en carburant.

Le coefficient d'air dans le moteur (ZIL-645) est de $\alpha = 1.4$.

III.2.7 Vitesse de rotation

La vitesse de rotation d'un moteur c'est le nombre de rotation lequel tourne le vilebrequin par unité de temps, et parfois se dénomme par le régime moteur. La vitesse s'exprime généralement en tour par minute ou bien on radian par seconde.

La vitesse de rotation du moteur (ZIL-645) est de 2800 tr/min.

III.2.8 Couple

Le couple est un système de deux forces qui sont égales et dans deux sens différents, il est caractérisé par grandeurs de forces par rapport à la distance entre les points d'application (Bras de Levier). Dans un moteur Diesel, la pression exercée sur les pistons pour effectuer ses déplacements dans des différents sens est appliquée au maneton afin de créer un couple pour le transmettre au vilebrequin.

Le couple exprime le rapport entre la puissance et la vitesse de rotation du moteur. L'unité du couple est le Newton mètre. Le couple maximal du moteur (ZIL-645) est de 509 N.m.

III.2.9 Puissance nominale

La puissance nominale d'un moteur dépend du couple et de la vitesse de rotation, plus la vitesse de rotation du moteur est grande plus la puissance augmente. La puissance s'exprime en Watt.

La puissance nominale du moteur (ZIL-645) est de 136 W.

III.2.10 Travail du moteur

Le travail indiqué du moteur peut se définir par le travail des forces de pression des gaz transmis aux pistons par un cycle de quatre temps. Il est exprimé en unité de joule.

Dans le cycle théorique, le travail indiqué est représenté par la surface fermée du diagramme, on peut calculer le travail à partir de l'intégration de la pression par deux tours du vilebrequin.

Dans le cycle réel, le travail indiqué représente le travail des gaz de la compression et la détente qui est le travail indiqué brut, ainsi le travail fourni à l'extérieur de signe négatif qui correspond au travail de remplissage et de la vidange des cylindres appelé le travail de pompage. Le travail indiqué est donc donné par cette relation :

$$L_i = L_{ib} + \left| L_p \right|$$
[III. 1]

Le travail effectif est le travail fourni par le vilebrequin est donné par le travail indiqué moins le travail de frottement engendré par les pertes mécaniques. Ces pertes sont décomposées en deux parties ; les pertes liées aux frottements des organes mobiles avec les organes fixes et les pertes liées aux travaux des accessoires.

$$L_e = L_i - L_m$$
[III. 2]

III.2.11 Consommation spécifique

La consommation spécifique indique la capacité d'un moteur à convertir l'énergie du combustible en travail, elle égale à la consommation horaire du combustible par la puissance effective du moteur, exprimée en kilogramme par kilowatt heure.

Plus la consommation spécifique d'un moteur plus faible plus le moteur exploite l'énergie du carburant efficacement.

La consommation spécifique minimale du moteur (ZIL-645) est de 217 g/KW.h.

III.2.12 Pression moyenne

La pression moyenne représente le travail spécifique du moteur par sa cylindrée, théoriquement représente une pression constante qu'il faut appliquer à la surface du cylindre pour obtenir un travail égal au travail du moteur. La pression moyenne est utilisée pour comparer les performances de moteurs par des différentes dimensions.

III.2.13 Rendement

Rendement effectif représente le rapport du travail du vilebrequin sur la quantité de chaleur dégagée par la combustion.

Rendement indiqué représente le rapport du travail indiqué sur la quantité de chaleur dégagée par la combustion.

Rendement mécanique représente le travail effectif sur le travail indiqué.

III.3 Position du problème

Notre travail consiste à calculer les différents paramètres énergétiques du moteur (ZIL-645) à aspiration naturelle, et dans le but de l'amélioration des paramètres énergétiques par la suralimentation avec un turbocompresseur, on calcule ces derniers et en faisant la comparaison entre les deux moteurs à aspiration naturelle et suralimenté.

III.4 Calcul des différents paramètres énergétique du moteur (ZIL-645) à

Aspiration naturelle et suralimenté

Pour la suralimentation du moteur Diesel (ZIL-645) à quatre temps ayant les mêmes caractéristiques du moteur à aspiration naturelle, le coefficient d'air est augmenté pour diminuer la température à la fin de la combustion, ainsi la toxicité des gaz d'échappement. Généralement, le coefficient d'excès d'air dans les moteurs suralimentés varie dans l'intervalle $\alpha = 1.6...1.8$. Dans notre cas on prend $\alpha = 1.7$.

III.4.1 Paramètres thermodynamiques

III.4.1.1 Paramètres de l'air des gaz d'échappement

a) Pouvoir calorifique inferieure du combustible

Le pouvoir calorifique inférieur exprime la quantité de chaleur dégagée par une combustion complète d'un kg de combustible.

Les teneurs massiques moyennes du combustible : C = 0.87, H = 0.126, O = 0.004 $Q_H = 33.91C + 125.6H - 10.89$ (O - S) - 2.51(9H + W) [III. 3] $Q_H = 33.91 \times 0.87 + 125.6 \times 0.126 - 10.89 \times 0.004 - 2.51 \times 9 \times 0.126$ $Q_H = 42.4374 MJ/kg \rightarrow QH = 42437.4 kJ/kg$ Q_H : La quantité de chaleur dégagée par la combustion complète d'une unité de combustible

b) Quantité stœchiométrique d'air nécessaire à la combustion de 1kg

La quantité d'air atmosphérique introduite dans la cylindrée, pour une combustion complète de 1 Kg du combustible liquide dont les teneurs en masse de carbone, d'oxygène, d'hydrogène et de l'azote.

$$l_{0} = \frac{1}{0.23} \left(\frac{8}{3}C + 8H - 0 \right)$$
[III. 4]

$$l_{0} = \frac{1}{0.23} \left(\frac{8}{3} \times 0.87 + 80.126 - 0.004 \right)$$

$$l_{0} = 14.4522 \, kg \, d'air \, / \, kg \, combustible$$

$$L_{0} = \frac{l_{0}}{\mu_{air}} = \frac{14.4522}{29} = 0.4984 \, kmole \, d'air / kg \, combustible$$

c) Quantité réelle de la charge fraiche

Dans les moteurs Diesel, le fluide introduit dans le cylindre est composé de l'air seulement.

$$M_1 = \alpha L_0$$
[III.5]

- Moteur à aspiration naturelle

 $M_1 = 1.4 \times 0.4984$; $M_1 = 0.6978$ kmole d'air / kg combustible

- Pour le moteur suralimenté

 M_1 = 1.7 × 0.4984 ; M_1 = 0.8473 kmole d'air / kg combustible

d) Quantité des gaz brulés lors de la combustion

Pour une combustion complète du combustible $\alpha \ge 1$, les gaz d'échappement sont constitués de CO₂, H₂O, N₂ et O₂.

$$\Delta M = M_2 - M_1 \quad \rightarrow \quad M_2 = M_1 + \Delta M$$

$$M_2 = \alpha L_0 + \frac{H}{4} + \frac{O}{32}$$
[III. 6]

- Moteur à aspiration naturelle

$$M_2 = 1.4 \times 0.4984 + \frac{0.126}{4} + \frac{0.004}{32}$$
; $M_2 = 0.7294 \ kmole$

- Pour le moteur suralimenté

$$M_2 = 1.7 \times 0.4984 + \frac{0.126}{4} + \frac{0.004}{32}$$
; $M_2 = 0.8789 \ kmole$

e) Coefficient d'échange moléculaire du mélange après la combustion

Le coefficient d'échange moléculaire est le rapport de la quantité des gaz brulés lors la combustion et la charge fraiche. Cette quantité des gaz brulés peut être supérieure ou inférieure ou égale à la charge fraiche.

$$\beta_0 = \frac{M_2}{M_1}$$
[III. 7]

- Moteur à aspiration naturelle

 $\beta_0 = \frac{0.7294}{0.6978} \qquad \qquad ; \qquad \beta_0 = 1.0453$

- Pour le moteur suralimenté

$$\beta_0 = \frac{0.8789}{0.8479} \qquad \qquad ; \qquad \beta_0 = 1.0373$$

Tableau III.1 : Paramètres de l'air et des gaz d'échappement

Paramètres	Aspiration naturelle	Suralimenté
n [tr/min]	2800	2800
α	1.4	1.7
<i>M</i> ₁ [kmole d'air/kg comb]	0.6978	0.8473
M_2 [kmole d'air/kg comb]	0.7294	0.8789
β_0	1.0453	1.0373

III.4.1.2 Paramètres de l'air ambiant et des gaz résiduels

La valeur des paramètres du fluide moteur à l'admission, dépend de type de moteur.

- Moteur à aspiration naturelle

$$On \ prend: \quad P_0 = 0.1 \ MPa \ ; \ T0 = 293 \ K$$

$$P_r = (1.05 \dots \dots 1.25) P_0 \qquad [III. 8]$$

$$P_r = 1.05 \times 0.1 \qquad ; \qquad P_r = 0.105 \ MPa$$

$$T_r = (600 \dots ...900) \qquad ; \qquad On \ prend \ T_r = 750 \ K$$

$$- \ Pour \ le \ moteur \ suraliment \acute{e}$$

$$T_k = T_0 \left(\frac{P_k}{P_0}\right)^{\frac{n_k-1}{n_k}} \qquad [III. 9]$$

$$n_k = 1.4 \dots \dots 2 \qquad ; \qquad On \ prend \ n_k = 1.65$$

$$T_k : 293 \times \left(\frac{0.17}{0.1}\right)^{\frac{1.65-1}{1.65}} \quad ; \qquad T_k : 361.1192 \ K$$

$$P_k = (1.5 \dots \dots 2.2) P_0 \qquad [III. 10]$$

$$P_k = 1.7 \times 0.1 \qquad ; \qquad P_k = 0.17 \ MPa$$

$$P_r = (0.75 \dots \dots 1.10) P_k \qquad [III. 11]$$

$$P_r = 0.95 \times 0.17 \qquad ; \qquad P_r = 0.1615 \ MPa$$

$$T_r = 700 \dots ...900 \qquad ; \qquad On \ prend \ T_r = 800 \ K$$

III.4.1.3 Etude du processus d'admission

Pendant ce temps d'admission, les soupapes d'admission s'ouvrent pour laisser une certaine quantité d'air d'entrer et au même temps les soupapes d'échappement resteront fermées. Afin de remplir le cylindre le volume des cylindres.

Figure III.2 : Processus d'admission dans les moteurs (aspiration naturelle ; suralimenté) [1]

Le processus d'admission commence au point s, qui correspond à l'avance d'ouverture de la soupape. Réellement la charge fraiche ne rentre dans le cylindre qu'après la détente des gaz résiduels à la pression à la atmosphérique pour le moteur à aspiration naturelle et la pression de compression pour le moteur suralimenté. Le piston se déplace au PMB et la pression dans le cylindre devient inférieure à celle de la tubulaire d'admission, ce qui permet à la charge fraiche de pénétrer facilement au cylindre. Dans le cas de suralimentation, la pression dans le cylindre est toujours inférieure à la pression du compresseur.

a) Choix de la température de réchauffement de la charge fraiche

- Moteur à aspiration naturelle

$$\Delta T = (20^{\circ} \dots ... 40^{\circ})$$
; On prend $\Delta T = 20^{\circ}$

- Pour le moteur suralimenté

 $\Delta T = (0^{\circ} \dots \dots 10^{\circ})$; On prend $\Delta T = 10^{\circ}$

b) Pertes de charges dans l'admission

$$\Delta P_a = (\beta^2 + \delta a) \frac{Wa^2}{2} \rho_0$$
[III. 12]
 $(\beta^2 + \delta a) = 2.5 \dots \dots 4$; On prend $(\beta_2 + \delta a) = 3 m/s$
 $Wa = 50 \dots \dots 130 m/s$; On prend $Wa = 70 m/s$

- Moteur à aspiration naturelle

$$\rho_0 = \frac{P_0}{r_a \times T_0} \times 10^6$$

$$\rho_0 = \frac{0.1}{287 \times 293} \times 10^6 \qquad ; \quad \rho_0 = 1.1892 \ kg \ / \ m3$$
[III. 13]

 ρ_0 : La masse volumique de l'air

$$\Delta P_a = 3 \times \frac{70^2}{2} \rho_0 \times 10^{-6}$$
; $\Delta P_a = 0.0087 MPa$

- Pour le moteur suralimenté

$$\rho_k = \frac{P_k}{r_a \times T_k} \times 10^6$$
[III. 14]

$$\rho_k = \frac{0.17}{287 \times 361.1192} \times 10^6$$
; $\rho_k = 1.6403 \, kg \, / \, m3$

 ρ_k : La masse volumique de l'air du compresseur

$$\Delta P_a = 3 \times \frac{70^2}{2} \times 1.6403 \times 10^{-6}$$
; $\Delta P_a = 0.0121 MPa$

c) Pression à la fin de l'admission

$$P_a = P_0 - \Delta P_a \tag{III. 15}$$

- Moteur à aspiration naturelle

$$P_a = 0.1 - 0.0087$$
; $P_a = 0.0913 MPa$

- Pour le moteur suralimenté

 $P_a = 0.17 - 0.0121$; $P_a = 0.1579 \ MPa$

d) Coefficient des gaz résiduels

Au début de chaque cycle, le cylindre contient des produits de combustion, qui n'arrivent pas à s'échapper. Ces gaz sont appelés gaz résiduels. Pour estimer la quantité (M_r) de ces derniers par rapport à la quantité du fluide admis (M_1), on introduit un coefficient appelé coefficient des gaz résiduels (γ_r).

$$\gamma_r = \frac{M_r}{M_1} = \frac{T_0 + \Delta T}{T_r} \times \frac{P_r}{\varepsilon P_a - P_r}$$
[III. 16]

- Moteur à aspiration naturelle

$$\gamma_r = \frac{293 + 20}{750} \times \frac{0.105}{18.5 \times 0.0913 - 0.105}$$
; $\gamma_r = 0.027$

- Pour le moteur suralimenté

$$\gamma_r = \frac{361.1192 + 10}{800} \times \frac{0.1615}{18.5 \times 0.1579 - 0.1615} \qquad ; \qquad \gamma_r = 0.027$$

e) Température à la fin de l'admission

Pour développer la formule qui permet de déterminer la température à la fin d'admission de la charge fraiche, on utilise le bilan thermique :

$$M_1(T_0 + \Delta T) + M_r T_r = (M_1 + M_r)T_r$$

$$T_a = \frac{T_0 + \Delta T + \gamma_r T_r}{1 + \gamma_r}$$
[III. 17]

- Moteur à aspiration naturelle

$$T_a = \frac{293 + 20 + 0.027 \times 750}{1 + 0.027} \qquad ; \qquad T_a = 324.4888 K$$

- Pour le moteur suralimenté

$$T_a = \frac{361.1192 + 10 + 0.027 \times 800}{1 + 0.027} \qquad ; \qquad T_a = 382.3945 \, K$$

f) Taux de remplissage des cylindres

C'est le rapport entre la quantité d'air occupant le volume total du cylindre au début de la compression réelle et la quantité qui pourrait remplir le volume de la cylindrée dans les conditions à l'admission de température et pression.

$$\eta_{\nu} = \frac{1}{\varepsilon - 1} \times \frac{T_0}{T_0 + \Delta T} \times \frac{1}{P_0} (\varepsilon P_a - P_r)$$
[III. 18]

- Moteur à aspiration naturelle

$$\eta_{\nu} = \frac{1}{18.5 - 1} \times \frac{293}{293 + 20} \times \frac{1}{0.1} (18.5 \times 0.0913 - 0.105) \qquad ; \quad \eta_{\nu} = 0.8473$$

- Pour le moteur suralimenté

$$\eta_v = \frac{1}{18.5 - 1} \times \frac{361.1192}{361.1192 + 10} \times \frac{1}{0.17} (18.5 \times 0.1579 - 0.1615) ; \quad \eta_v = 0.9026$$

Paramètres	Aspiration naturelle	Suralimenté
n [tr/min]	2800	2800
α	1.4	1.7
$T_r[K]$	750	800
$P_r [MPa]$	0.105	0.1615
$\Delta T [K]$	20	10
$ ho_0$; $ ho_k$ [kg/m ³]	1.1892	1.6403
$\Delta P_a [MPa]$	0.0087	0.0121
$P_a[MPa]$	0.0913	0.1579
γ_r	0.027	0.027
$T_a[K]$	324.4888	382.3945
η_{v}	0.8473	0.9026

Tableau III.2 : Paramètres du processus d'admission

III.4.1.4 Etude du processus de compression

Durant ce temps, les soupapes d'admission et d'échappement seront bien fermées, pour rôle de comprimer l'air entré dans le cylindre par le déplacement du piston du PMB au PMH, et préparé à réaliser une bonne combustion.

a) Pression à la fin de la compression

$$P_c = P_a \varepsilon^{n1}$$
[III. 19]

- Moteur à aspiration naturelle

L'exposant polytropique pour le moteur à aspiration naturelle varie entre :

$n_1 = (1.38 \dots 1.42)$;	$On \ prend \ n_1 \ = \ 1.38$
$P_c = 0.0913 \times 18.5^{1.38}$;	$P_c = 5.1188 MPa$

- Pour le moteur suralimenté

L'exposant polytropique pour le moteur suralimenté varie entre :

$n_1 = 1.34 \dots 1.38$;	$On \ prend \ n_1 \ = \ 1.37$
$P_c = 0.1579 \times 18.5^{1.37}$;	$P_{c} = 8.5982 \ MPa$

b) Température à la fin de la compression

$$T_c = T_a \, \varepsilon^{n1-1} \tag{III. 20}$$

- Moteur à aspiration naturelle		
$T_c = 324.4888 \times 18.5^{1.38-1}$;	$T_c = 983.3881 K$
- Pour le moteur suralimenté		
$T_c = 382.3945 \times 18.5^{1.36-1}$;	$T_c = 1125.551 K$
c) Quantité molaire des gaz résidu	els	
$M_r = \alpha l_0 \gamma_r$		[III.21]
- Moteur à aspiration naturelle		
$M_r = 1.4 \times 0.4984 \times 0.027$;	$M_r=0.0188~kmole~d'air$ / kg combustible
- Pour le moteur suralimenté		
$M_r = 1.7 \times 0.4984 \times 0.027$;	$M_r=0.0229~kmole~d'air$ / kg combustible
d) Quantité molaire des gaz à la fi	n de com	pression
C'est la somme de la quantité	de fluide	admis dans le cylindre et la quantité des gaz.
$M_c = M_1 + M_r$		[111.22
- Moteur à aspiration naturelle		
$M_c = 0.6978 + 0.0188$;	$M_c = 0.7166 \ kmole \ d'air \ / \ kg \ combustible$
- Pour le moteur suralimenté		
$M_c = 0.8473 + 0.0229$;	$M_c = 0.8702$ kmole d'air / kg combustible
e) Capacité calorifique molaire mo	oyenne d	e la charge fraiche à la fin de compression
$C_{ucv} = 20.16 + 1.74 \times 10^{-3} T_c$		[III.23]
- Moteur à aspiration naturelle		
$C_{\mu\nu c} = 20.16 + 1.74 \times 10^{-3} \times 983$	3.3881	; $C_{\mu\nu c} = 21.8711 \ kJ/kmole \ K$
- Pour le moteur suralimenté		
$C_{\mu\nu c} = 20.16 + 1.74 \times 10^{-3} \times 11$	25.551	; $C_{\mu\nu c} = 22.1185 \ kJ/kmole \ K$

Paramètres	Aspiration naturelle	Suralimenté
n [tr/min]	2800	2800
n_I	1.38	1.37
$P_c[MPa]$	5.1188	8.5982
$T_c [K]$	983.3881	1125.551
<i>M_r [kmole d'air / kg comb]</i>	0.0188	0.0229
M_c [kmole d'air / kg comb]	0.7166	0.8702
C _{uvc} [kJ/kmole K]	21.8711	22.1185

 Tableau III.3 : Paramètres du processus de compression

III.4.1.5 Etude de la combustion

La combustion représente la partie principale du cycle. Selon le premier principe de la thermodynamique, la quantité de la chaleur dégagée durant ce processus est utilisée pour accroitre l'énergie interne et fournir le travail mécanique.

Avant l'arrivée du piston au point mort haut, à l'aide du système d'injection, une certaine quantité du combustible finement pulvérisée est injectée dans le cylindre. Le contact des particules du combustible avec l'air chaud provoque l'inflammation du mélange air + combustible en déclenchant ainsi l'explosion.

a) Capacité calorifique molaire moyenne à la fin de la combustion

La capacité calorifique moyenne correspondant à une variation de température d'une valeur fixe.

$$C_{\mu pz} = R + \left(20.2 + \frac{0.92}{\alpha}\right) + \left(15.5 + \frac{13.8}{\alpha}\right) \times 10^{-4} Tz$$
 [III. 24]

- Moteur à aspiration naturelle

 $C_{\mu p z} = 8.314 + (20.2 + \frac{0.92}{1.4}) + (15.5 + \frac{13.8}{1.4}) \times 10^{-4} Tz$

$$C_{\mu pz} = 29.1711 + 2.5357 \times 10^{-3} Tz \ kJ/kmole$$

- Pour le moteur suralimenté

$$C_{\mu p z} = 8.314 + \left(20.2 + \frac{0.92}{1.7}\right) + \left(15.5 + \frac{13.8}{1.7}\right) \times 10^{-4} Tz$$
$$C_{\mu p z} = 29.0552 + 2.3618 \times 10^{-3} Tz \qquad kJ/kmole K$$

III.4.1.5.2 Quantité molaire des gaz brulés âpres la combustion

Cette quantité représentée par la quantité des gaz résiduels et la quantité totale des gaz d'échappement.

$$M_z = M_r + M_2$$
[III. 25]

- Moteur à aspiration naturelle

 $M_z = 0.0188 + 0.7294$; $M_z = 0.7482$ kmole d'air / kg combustible

- Pour le moteur suralimenté

 $M_z = 0.0229 + 0.8789$; $M_z = 0.9018$ kmole d'air / kg combustible

c) Coefficient de changement moléculaire réel du mélange après la combustion

C'est le rapport des quantités molaires des gaz avant et âpres la combustion.

$$\beta = \frac{M_z}{M_c}$$
[III. 26]

- Moteur à aspiration naturelle

 $\beta = \frac{0.7482}{0.7366} \qquad \qquad ; \qquad \beta = 1.0441$

- Pour le moteur suralimenté

$$\beta = \frac{0.9018}{0.8702} \qquad \qquad ; \qquad \beta = 1.0363$$

d) Quantité de chaleur cédée aux gaz

$$Q = \xi. Q_H$$
[III. 27]

- Moteur à aspiration naturelle

 ξ : Le coefficient d'utilisation de chaleur ;

 $\xi = 0.7 \dots 0.9$; On prend $\xi = 0.82$ $Q = 0.82 \times 42.4374$; Q = 34.7987 MJ/kg

- Pour le moteur suralimenté

On prend $\xi = 0.86$

 $Q = 0.86 \times 42.4374$; Q = 36.962 MJ/kg

e) Température à la fin de la combustion

$$\beta C_{\mu p z} T_{z} = \frac{Q}{\alpha L_{0}(1+\gamma_{r})} + T_{c} \left(C_{\mu v c} + 83.14\lambda \right)$$
[III. 28]

- Moteur à aspiration naturelle

Le taux de croissance de pression :

$$\lambda = 1.2 \dots 2.5$$
; On prend $\lambda = 1.85$

Le taux de croissance est défini par le rapport de la pression à la fin de la combustion sur la pression à la fin de la compression.

$$1.0441 (29.1711 + 2.5357 \times 10^{-3}T_z)T_z$$

= $\frac{34.7987 \times 1000}{1.4 \times 0.4984(1 + 0.027)}$ + 983.3881 × (21.8711 + 8.314 × 1.85)

 $30.4575T_z + 2.6475 \times 10^{-3} T_z^2 = 48560.8754 + 36633.1735$

$$2.6475 \times 10T_z^2 + 30.4575 T_z - 85194.0489 = 0$$

 $\Delta = b^2 - 4ac = 1829.8643$

$$Tz = \frac{-b \pm \sqrt{\Delta}}{2a}$$
; $Tz = 2326.6125 K$

- Pour le moteur suralimenté

Le taux de croissance de pression :

$$\lambda = 1.2 \dots 2.5$$
; On prend $\lambda = 1.5$

 $1.0363 (29.0552 + 2.3618 \times 10^{-3} T_z)T_z$

$$= \frac{36962}{1.7 \times 0.4984(1+0.027)} + 1125.551 \times (22.1185 + 8.314 \times 1.5)$$

$$2.4475 \times 10^{-3}T_z^2 + 30.1099 T_z - 81409.6598 = 0$$

$$\Delta = b^2 - 4ac = 1703.6066$$
$$T_z = \frac{-b \pm \sqrt{\Delta}}{2a} \qquad ; \quad T_z = 2280.8722 \ K$$

f) Pression à la fin de la combustion

La pression à la fin de combustion est le rapport entre le taux de croissance de la pression fois la pression à la fin de compression.

$$P_z = \lambda P_c$$
[III. 29]

- Moteur à aspiration naturelle

$$P_z = 1.85 \times 5.1188$$
 ; $P_z = 9.4698 MPa$

- Pour le moteur suralimenté

$$P_z = 1.5 \times 8.5682$$
; $P_z = 12.8773 MPa$

Paramètres	Aspiration naturelle	Suralimenté
n [tr/min]	2800	2800
C_{upz} [kJ/kmole K]	$29.1711 + 2.5357 \times 10^{-3} T_z$	$29.0552 + 2.3618 \times 10^{-3} T_z$
M_z [kmole d'air / kg comb]	0.7482	0.9018
β	1.0441	1.0363
Q [MJ/kg]	34.7987	36.962
$T_{z}[K]$	2326.6125	2280.8722
P_z [MPa]	9.4698	12.8773
λ	1.85	1.5

Tableau III.4 : Paramètres du processus de la combustion

III.4.1.6 Etude de la détente

Durant ce temps, les soupapes d'admission et d'échappement sont fermées. La détente des gaz crée un effort mécanique sur la surface du piston qui oblige celui-ci à se déplacer du PMH vers le PMB pour obtenir un travail mécanique qui se transforme par le mouvement rectiligne du piston en mouvement rotatif du vilebrequin grâce à la liaison bielle-manivelle.

a) Taux de détente préalable

C'est le rapport entre le volume des gaz pendant la combustion V_z et le volume des gaz pendant la compression V_c .

$$PV = MRT \rightarrow \rho = \frac{M_z R T_z}{P_z} \times \frac{P_c}{M_c R T_c} = \frac{M_z}{M_c} \times \frac{T_z}{T_c} \times \frac{P_c}{P_z}$$
$$\rho = \frac{\beta}{\lambda} \times \frac{T_z}{T_c}$$
[III.30]

46

- Moteur à aspiration naturelle

$$\rho = \frac{1.0441}{1.85} \times \frac{2326.6125}{983.3881} \qquad \qquad ; \quad \rho = 1.3353$$

- Pour le moteur suralimenté

$$\rho = \frac{1.0363}{1.5} \times \frac{2280.8722}{1125.551} \qquad \qquad ; \quad \rho = 1.4$$

b) Taux de détente postérieure

C'est le rapport entre le volume du gaz à la fin de la détente et le volume du gaz à la fin de la combustion.

$$\delta = \frac{V_b}{V_z} = \frac{V_b}{V_z} \times \frac{V_c}{V_c}$$

$$\delta = \frac{\varepsilon}{\rho}$$

[III.31]

- Moteur à aspiration naturelle

$$\delta = \frac{18.5}{1.3353} \qquad ; \quad \delta = 13.8546$$

- Pour le moteur suralimenté

$$\delta = \frac{18.5}{1.4}$$
; $\delta = 13.2143$

c) Pression à la fin de la détente Pb

$$P_z V_z^{n_2} = P_b V_b^{n_2} \rightarrow \frac{P_b}{P_z} = \left(\frac{V_z}{V_b}\right)^{n_2}$$

$$P_b = P_z \times \left(\frac{1}{\delta}\right)^{n_2}$$
[III. 32]

L'exposant polytropique de la détente est :

$$n_2 = 1.22 + \frac{130}{n}$$
[III. 33]

$$n_2 = 1.22 + \frac{130}{2800}$$
; $n_2 = 1.2664$

- Moteur à aspiration naturelle

$$P_b = 9.4698 \times \frac{1}{13.8546^{1.2664}}$$
; $P_b = 0.3393 MPa$

- Pour le moteur suralimenté

$$P_b = 12.8773 \times \frac{1}{13.2143^{1.2664}}$$
; $P_b = 0.4899 MPa$

d) Température à la fin de la détente

$$T_{z}V_{z}^{n_{2}-1} = T_{b}V_{b}^{n_{2}-1}$$

$$T_{b} = T_{z} \times (\frac{1}{\delta})^{n_{2}-1}$$
[III. 34]

- Moteur à aspiration naturelle

$$T_b = 2326.6125 \times \frac{1}{13.8546^{0.2664}}$$
; $T_b = 1155.057 \ K$

- Pour le moteur suralimenté

$$Tb = 2280.8722 \times \frac{1}{13.2143^{0.2664}}$$
; $T_b = 1146.7131 \ K$

e) Vérification de la température des gaz résiduels prise auparavant

$$T_r' = \frac{Tb}{\sqrt[3]{\frac{P_b}{P_r}}}$$
[III.35]

- Moteur à aspiration naturelle

$$T_r' = \frac{1155.057}{\sqrt[3]{\frac{0.3399}{0.105}}} \qquad ; \quad T_r' = 780.8174 \, K$$

$$\Delta T_r = \frac{T_r' - T_r}{T_r'} \times 100\% = \frac{780.8174 - 750}{780.8174} \times 100 = 3.95\% < 5\% \quad ce \ qui \ est \ acceptable$$

- Pour le moteur suralimenté

$$T_{r'} = \frac{1146.7131}{\sqrt[3]{0.4899}} ; \quad T_{r'} = 792.64 K$$

Etudes des paramètres énergétiques du moteur Diesel (ZIL-645)

$$\Delta T_r = \frac{T_r' - T_r}{T_r'} \times 100\% = \frac{792.64 - 800}{792.64} \times 100 = 0.09\% < 5\% \ ce \ qui \ est \ acceptable$$

Paramètres	Aspiration naturelle	Suralimenté
n [tr/min]	2800	2800
ρ	1.3353	1.4
δ	13.8546	13.2143
<i>n</i> ₂	1.2664	1.2664
$P_b [MPa]$	0.3393	0.4899
$T_b[K]$	1155.057	1146.7131
$T_r'[K]$	780.8174	792.64
ΔT_r ',%	3.95	0.09

Tableau III.5 : Paramètres du processus de la détente

III.4.2 Paramètres de performances du moteur

Les paramètres généraux du travail du cycle se séparent en deux types ; paramètres indiqués (intérieurs) et effectifs (extérieurs). Les paramètres indiqués caractérisent les degrés de perfection (qualité du cycle) en tenant compte seulement des pertes de chaleur, par contre les paramètres effectifs caractérisent les pertes mécaniques au moment du transfert d'énergie de la détente des gaz au vilebrequin.

III.4.2.1 Paramètres indiqués

Les paramètres indiqués caractérisent l'organisation réelle du cycle considéré. Ils tiennent compte seulement des pertes de chaleur ayant lieu dans le cycle réel. Ces pertes sont dues à :

- la transmission de la chaleur à travers les parois.

- une combustion incomplète dans les zones riches.

- à la dissociation des molécules de CO₂ à haute température en absorbant de la chaleur.

- aux fuites du fluide-moteur.

Les pertes de chaleurs dues à la réalisation du cycle réel atteignent 10 à 30 % toute la chaleur utilisée dans le cycle thermodynamique identique ce qui signifie la possibilité d'améliorer au futur le rendement indiqué des moteurs. **[14]**

a) Pression moyenne indiquée du cycle

Cette pression Pi' représente une pression éventuelle constante comme grandeur moyenne au cours du cycle, agissante sur le piston qui par une course de ce dernier produit un travail égal au travail indiqué de tout le cycle.

$$P_{i}' = \frac{P_{c}}{\varepsilon - 1} \left[\lambda \left(\rho - 1 \right) + \frac{\lambda \rho}{n_{2} - 1} \left(1 - \frac{1}{\delta^{n_{2} - 1}} \right) - \frac{1}{n_{1} - 1} \left(1 - \frac{1}{\varepsilon^{n_{1} - 1}} \right) \right]$$
[III. 37]

- Moteur à aspiration naturelle

$$P_{i}' = \frac{5.1188}{18.5 - 1} [1.85(1.3353 - 1) + \frac{1.85 \times 1.3353}{1.2664 - 1} (1 - \frac{1}{13.8546^{1.2664 - 1}}) - \frac{1}{1.38 - 1} (1 - \frac{1}{18.5^{1.38 - 1}})]$$

 $P_i' = 1.0315 MPa$

- Pour le moteur suralimenté

$$P_i' = \frac{8.5982}{18.5 - 1} [1.5 (1.4 - 1) + \frac{1.5x1.4}{1.2664 - 1} (1 - \frac{1}{13.2143^{1.2664 - 1}}) - \frac{1}{1.37 - 1} (1 - \frac{1}{18.5^{1.37 - 1}})]$$

 $P_i' = 1.3439 MPa$

b) Pression réelle indiquée du cycle

$$P_i = \Gamma P_i' - \Delta P_i$$
[III. 38]

Avec $\Gamma = 0.92 \dots \dots 0.95$; On prend $\Gamma = 0.92$;

 Γ : le coefficient d'arrondi du diagramme

$$\Delta P_i = P_r - P_a$$
[III. 39]

- Moteur à aspiration naturelle

$$\Delta P_i = 0.105 - 0.0913 \qquad ; \quad \Delta P_i = 0.0137 \, MPa$$

Donc
$$P_i = 0.92 \times 1.0315 - 0.0137$$
 ; $P_i = 0.9353 MPa$

- Pour le moteur suralimenté

 $\Delta P_i = 0.1615 - 0.1579 \qquad ; \quad \Delta P_i = 0.0036 \, MPa$

Donc $P_i = 0.92 \times 1.3439 - 0.0036$; $P_i = 1.2328 MPa$

c) La cylindrée du moteur

$$V_h = \frac{3.14 D^2}{4} \frac{S}{10^6}$$
[III.40]

 $V_h = \frac{3.14 \times 110^2}{4} \times \frac{S}{10^6}$; $V_h = 1.0923 L$

d) Travail réel indiqué

$$L_i = P_i V_h$$
[III. 41]

- Moteur a aspiration naturelle

$$L_i = 0.9353 \times 1.0923$$
; $L_i = 1.0216 \, kJ$

- Pour le moteur suralimenté

$$L_i = 1.2328 \times 1.0923$$
; $L_i = 1.3466 \, kJ$

e) Rendement indiqué du moteur

Le rendement indiqué est le rapport de la chaleur transformée en travail indiqué sur la quantité totale de la chaleur reçue par suite de la combustion.

$$\eta_i = \frac{P_i \,\alpha \,l_0}{Q_H \,\rho_0 \,\eta_\nu}$$
[III. 42]

- Moteur à aspiration naturelle

$$\eta_i = \frac{0.9353 \times 1.4 \times 14.4522}{42.4374 \times 1.1892 \times 0.8473} \qquad ; \qquad \eta_i = 0.4426 = 44.26 \%$$

- Pour le moteur suralimenté

$$\eta_i = \frac{1.2328 \times 1.7 \times 14.4522}{42.4374 \times 1.6403 \times 0.9026} \qquad ; \quad \eta_i = 0.4821 = 48.21 \%$$

f) Consommation spécifique indiquée du combustible

La consommation spécifique indiquée se caractérise par la quantité du combustible qu'il faut dépenser pour obtenir un travail d'une puissance d'un kw pendant une heure de temps.

$$g_i = \frac{3600}{Q_H \times \eta_i}$$
[III.43]
- Moteur à aspiration naturelle

$$g_i = \frac{3600}{42.4374 \times 0.4426}$$
; $g_i = 191.6648 \, g/kW.h$

- Pour le moteur suralimenté

$$g_i = \frac{3600}{42.4374 \times 0.4821}$$
; $g_i = 175.9611 \, g/kW.h$

g) Puissance indiquée

C'est le travail fourni par les gaz brulés dans les cylindres par une unité de temps. En tenant compte de la vitesse de rotation du vilebrequin et le nombre des cylindres du moteur. La puissance indiquée reflète la puissance développée par le moteur considérant seulement les pertes thermiques.

$$N_i = \frac{i \, V_h P_i \, n}{30 \, \tau}$$
[III. 44]

- Le moteur à aspiration naturelle

$$N_i = \frac{8 \times 1.0923 \times 0.9353 \times 2800}{30 \times 4} \qquad ; \qquad N_i = 190.7039 \, kW$$

- Pour le moteur suralimenté

$$N_i = \frac{8 \times 1.0923 \times 1.2328 \times 2800}{30 \times 4} \qquad ; \qquad N_i = 251.363 \ kW$$

h) Couple moteur indiqué

Le couple moteur indiqué est le rapport entre la puissance indiquée par la vitesse angulaire du vilebrequin.

$$M_i = \frac{N_i}{\omega} = \frac{N_i \, 60}{2 \, \pi \, n} \tag{III.45}$$

- Moteur à aspiration naturelle

$$M_i = \frac{190.7039 \times 60}{2 \times 3.14 \times 2800} \qquad ; \quad M_i = 650.7185 \, N. \, m_i$$

$$M_i = \frac{251.363 \times 60}{2 \times 3.14 \times 2800} \qquad ; \quad M_i = 857.699 \, N. \, m$$

III.4.2.2 Paramètres effectifs

Une partie du travail indiqué effectué par les gaz est perdue sous forme des pertes mécaniques. Elles comportent le travail dépensé pour vaincre les frottements, le travail dépensé pour entrainer les mécanismes de l'auxiliaire.

Pour passer des paramètres indiqués aux paramètres effectifs du moteur, il faut tenir compte de la partie du travail indiqué perdu pour récompenser les pertes mécaniques. Ces pertes sont évaluées par un paramètre que l'on appelle rendement mécanique. **[14]**

a) Pression moyenne des pertes mécaniques

La pression moyenne des pertes mécaniques est le travail dépensé au cours du cycle par unité du volume de la cylindrée unitaire, elle s'exprime à l'aide des formules expérimentales en fonction de la vitesse du piston.

$$P_M = a + b.v_p$$
[III.46]

Avec : v_p Vitesse moyenne du piston. ; $v_p = 6.5 \dots 12 m/s$ (Camion)

$$v_p = \frac{S n}{30}$$
[III. 47]

$$v_p = \frac{115 \times 2800}{30}$$
 ; $v_p = 10.7333 \text{ m/s}$

Et a et b sont des coefficients qui dépendent du type de moteur, les dimensions, nombre de cylindre et le régime thermique du moteur.

Pour un moteur diesel a chambre unique : a = 0.105 [MPa] et $b = 0.012 [MPa. s. m^{-1}]$

$$P_M = 0.105 + 0.012 \times 10.7333$$
; $P_M = 0.2338 MPa$

b) Pression moyenne effective

$$P_e = P_i - P_M$$
[III.48]

- Moteur à aspiration naturelle

 $P_e = 0.9353 - 0.2338$; $P_e = 0.7015 MPa$

$$P_e = 1.2328 - 0.2338$$
; $P_e = 0.999 MPa$

c) Travail effectif

$$L_e = P_e V_h$$
[III. 49]

- Moteur à aspiration naturelle

$$L_e = 0.7015 \times 1.0923$$
; $L_e = 0.7662 \, kJ$

- Pour le moteur suralimenté

$$L_e = 0.999 \times 1.0923$$
; $L_e = 1.0912 \, kJ$

d) Rendement mécanique

Le rendement mécanique caractérise la valeur des pertes par frottement et l'entrainement des auxiliaires.

$$\eta_M = \frac{P_e}{P_i}$$
[III. 50]

- Moteur à aspiration naturelle

$$\eta_M = \frac{0.7015}{0.9353}$$
; $\eta_M = 0.75 = 75\%$

- Pour le moteur suralimenté

$$\eta_M = \frac{0.999}{1.2328} \qquad \qquad ; \quad \eta_M = 0.8104 = 81.04 \ \%$$

e) Rendement effectif

Le rendement effectif caractérise le degré d'utilisation du combustible en tenant compte de toutes les pertes (mécaniques et thermiques).

$\eta_e = \eta_i$	$\eta_i imes \eta_M$	[III. 51]

- Moteur à aspiration naturelle

$$\eta_e = 0.4426 \times 0.75$$
 ; $\eta_e = 0.332 = 33.2 \%$

$$\eta_e = 0.4821 \times 0.8104$$
 ; $\eta_e = 0.3907 = 39.07 \%$

f) Consommation spécifique effective du combustible

$$g_e = \frac{3600}{Q_H \times \eta_e}$$
[III. 52]

- Moteur à aspiration naturelle

$$g_e = \frac{3600}{42.4374 \times 0.332} \qquad ; \quad g_e = 255.5146 \ g/kW.h$$

- Pour le moteur suralimenté

$$g_e = \frac{3600}{42.4374 \times 0.3907}$$
; $g_e = 217.1252 \ g/kW.h$

g) Puissance effective

La puissance effective du moteur compte tenu de la perte que subit la puissance indiquée par suite des frottements et de l'énergie absorbée par les auxiliaires nécessaires au fonctionnement du moteur.

$$N_{e'} = \frac{i \, V_h P_e \, n}{30 \, \tau}$$
[III. 53]

- Pour le moteur à aspiration naturelle

$$N_{e'} = \frac{8 \times 1.0923 \times 0.7015 \times 2800}{30 \times 4} \qquad ; \quad N_{e'} = 143.033 \, kW$$

$$\Delta N_e = \frac{N'_e - N_e}{N'_e} \times 100 = \frac{143.033 - 136}{143.033} \times 100 = 4.917 \% < 5\% \ ce \ qui \ est \ acceptable$$

- Pour le moteur suralimenté

$$N_{e'} = \frac{8 \times 1.0923 \times 0.999 \times 2800}{30 \times 4}$$
; $N_{e'} = 203.6921 \, KW$

h) Couple moteur

$$M_e = 9554 \times \frac{N'_e}{n}$$
[III. 54]

- Moteur à aspiration naturelle

$$M_e = 9554 \times \frac{143.033}{2800} \qquad ; \quad M_e = 488.049 \, N. \, m$$

- Pour le moteur suralimenté

$$M_e = 9554 \times \frac{203.6921}{2800} \qquad ; \quad M_e = 695.0265 \, N. \, m$$

i) Consommation horaire du combustible

$$G_T = N'_e \times g_e$$
[III. 55]

- Moteur à aspiration naturelle

$$G_T = 143.033 \times 255.5146$$
; $G_T = 36.547 \ kg/h$

- Pour le moteur suralimenté

$$G_T = 203.6921 \times 217.1252$$
; $G_T = 44.2267 kg/h$

j) Débit d'air

$$G_a = \alpha . l_0 . G_T \varphi_a$$
 [III. 56]

Avec φ_a : coefficient de soufflance ; $\varphi_a = (1.05 \dots 1.1)$; On prend $\varphi_a = 1.1$

Le coefficient de soufflance explique le rapport entre le débit d'air admis dans le cylindre et le débit d'air sortant du cylindre.

- Moteur à aspiration naturelle

$G_a = 1.4 \times 14.4522 \times 36.547 \times 1.1$; $G_a = 813.4042 \ kg/h = 0.2259 \ kg/s$
- Pour le moteur suralimenté	
$G_k = 1.7 \times 14.4522 \times 44.2267 \times 1.1$; $G_k = 1195.2537 \ kg/h = 0.332 \ kg/s$
k) Quantité des gaz d'échappement	
$G_g = G_T + G_a$	[III. 57]
- Moteur à aspiration naturelle	
$G_g = 36.547 + 813.4042$; $G_g = 849.9512 \ kg/h = 0.2361 \ kg/s$
- Pour moteur suralimenté	
$G_g = 44.2267 + 1195.2537$; $G_g = 1239.4804 \ kg/h = 0.3443 \ kg/s$

Chapitre III

Paramètres	Aspiration naturelle	Suralimenté
n [tr/min]	2800	2800
P_i' [MPa]	1.0315	1.3439
$P_i [MPa]$	0.9353	1.2328
$L_i [kJ]$	1.0216	1.3466
η_i	0.4426	0.4821
$g_i [g/kW h]$	191.6648	175.9611
$V_h[L]$	1.0923	1.0923
Ni [kW]	190.7039	251.363
Mi [N.m]	650.7185	857.699
$P_m[MPa]$	0.2338	0.2338
$P_e[MPa]$	0.7015	0.999
$L_e [kJ]$	0.7662	1.0912
η_M	0.75	0.8104
η_e	0.332	0.3907
$g_e \left[g/kW h \right]$	255.5146	217.1252
N_e ' [kW]	143.033	203.6921
M_e [N.m]	488.049	695.0265
$G_T[kg/h]$	36.547	44.2267
G_a ; G_k [kg/h]	813.4042	1195.2537
G_g ; $G_T[kg/h]$	849.9512	1239.4804

 Tableau III.6 : Paramètres de performances du moteur

III.4.3 Calcul des paramètres turbocompresseur

III.4.3.1 Calcul des paramètres du compresseur

a) Travail isentropique du compresseur

$$L_{adk} = \frac{\gamma \ r}{\gamma - 1} \ T_0 \ [(\frac{P_k}{P_0})^{\frac{\gamma - 1}{\gamma}} - 1]$$
[III. 58]

$$L_{adk} = \frac{1.4 \times 0.287}{1.4 - 1} \ 293 \left[\left(\frac{0.17}{0.1} \right)^{\frac{1.4 - 1}{1.4}} - 1 \right] \qquad ; \qquad L_{adk} = 48.1811 \ kJ/kg$$

Où $\gamma = 1.4$ Exposant adiabatique de l'air.

 $r_a = 0.287 \ kJ/kg.K$ Constante spécifique de l'air.

b) Puissance consommée par le compresseur

La puissance consommée par le compresseur représente la même puissance délivrée par la turbine, et elle exprime le rapport de la masse d'air aspiré par le compresseur et le travail du compresseur sur le rendement isentropique du compresseur.

$$N_k = \frac{G_k L_{adk}}{\eta_{adk}}$$
[III. 59]

$$N_k = \frac{0.332 \times 48.1811}{0.70} \qquad ; \quad N_k = 22.8516 \, kJ/s$$

Où le rendement isentropique du compresseur centrifuge varie entre 0.7....0.84

On prend $\eta_{is k} = 0.70$

c) Puissance relative du compresseur

$$\delta_k = \frac{N_k}{N_i}$$
[III. 60]

$$\delta_k = \frac{22.8516}{251.363} \qquad ; \quad \delta_k = 0.0909$$

La puissance relative du compresseur définie la puissance du compresseur par la puissance indiqué dans le moteur. La consommation spécifique d'air par le moteur ;

$$g_{ek} = \frac{3600 \, G_k}{N_e'}$$
[III. 61]

$$g_{ek} = \frac{3600 \times 0.332}{203.6921} \qquad ; \quad g_{ek} = 5.8677 \, kg/kW. \, h$$

d) Pression des gaz dans le collecteur d'échappement

Le rapport de pression de suralimentation P_k (se comprend comme la pression dans le collecteur d'admission) par rapport à la pression P_T (se comprend comme la pression dans le collecteur d'échappement ou bien la pression avant la turbine), ce rapport caractérise l'intensité de la suralimentation dans la chambre de combustion au cours de l'ouverture de la soupape pour réaliser la suralimentation.

Il est nécessaire de garantir le rapport $\frac{P_k}{P_T} > 1$ ce dernier dépend de la perfection du système de suralimentation.

Etudes des paramètres énergétiques du moteur Diesel (ZIL-645)

La pression des gaz dans le collecteur avant la turbine est généralement égale à la pression dans le collecteur d'échappement $P_T = Pp$. Vu les pertes minimales entre le collecteur d'échappement et l'entrée de la turbine, les pressions sont presque identiques.

Selon les expériences, les valeurs de ce rapport comprise entre 1.15....1.3.

$$\frac{P_k}{P_T} = 1.15 \dots \dots 1.3$$

$$P_T = \frac{0.17}{1.25} \qquad ; \qquad P_T = 0.136$$

e) Température des gaz d'échappement dans le collecteur d'échappement

$$T_g = \frac{T_e}{(\frac{P_e}{P_p})^{\frac{m-1}{m}}}$$
[III.62]

Où l'exposant polytropique d'expansion est recommandé dans l'intervalle de 1.25...1.35

On prend m = 1.3

$$T_g = \frac{1146.7131}{(\frac{0.4899}{0.136})^{\frac{1.3-1}{1.3}}} \qquad ; \quad T_g = 853.1313 \, K$$

La température des gaz d'échappement pour les moteur Diesel est comprise entre 750...900k ; parallèlement notre résultat est acceptable.

f) Capacité calorifique molaire isobare des gaz d'échappement

La capacité calorifique molaire est déterminée par cette relation :

$$\mu C p_e = \mu C v_e + 8.314$$

 $\mu C p_e = 29.053 + 0.00236 T_r$

$$\mu C p_e = 29.053 + 0.00236 \times 853.1313 = 31.0664 \, kJ/kmole. K$$

g) Capacité calorifique molaire isobare de l'air

La capacité calorifique moyenne de l'air se détermine par :

$$\mu C p_k = \mu C v_k + 8.314$$

 $\mu C p_k = 20.16 + 0.00174 \, T_k + 8.314$

 $\mu Cp_k = 20.16 + 0.00174 \times 361.1192 + 8.314 = 29.1023 \, kJ/kmole. K$

h) Capacité calorifique molaire du mélange gaz-air dans le récepteur d'échappement

$$\mu C p_{CM} = \frac{\beta \,\mu C p_e + (\varphi_a - 1)\mu C p_k}{\varphi_a - 1 + \beta}$$
[III. 63]

 $\mu C p_{CM} = \frac{1.0363 \times 31.0664 + (1.1 - 1) \times 29.1023}{1.1 - 1 + 1.0363} \quad ; \quad \mu C p_{CM} = 30.8935 \, kJ/kmole. K$

i) Capacité calorifique moyenne du mélange gaz-air dans le récepteur d'échappement

$$\mu C v_{CM} = \mu C p_{CM} - 8.314$$
$$\mu C v_{CM} = 30.8935 - 8.314 = 22.5795 \ kg/kmole. K$$

j) Température des gaz devant la turbine

$$T_T = \frac{(\varphi_a - 1)\mu C p_k T_k + \beta \mu C p_e T_r}{(\varphi_a - 1 + \beta)\mu C p_{CM}}$$
[III. 64]

$$T_T = \frac{(1.1-1) \times 29.1023 \times 361.1192 + 1.0363 \times 31.0664 \times 853.1313}{(1.1-1+1.0363) \times 30.8935}$$

$T_T = 812.3437 K$

Due aux pertes thermiques dans la conduite d'échappement, il est concevable que la température diminue à l'entrée de la turbine.

III.4.3.2 Calcul des paramètres de la turbine à gaz

a) Exposant adiabatique de détente dans la turbine

$$K_T = \frac{Cp_{CM}}{Cv_{CM}}$$
[III. 65]

$$K_T = \frac{30.8935}{22.5795} \qquad ; \quad K_T = 1.3682$$

b) Travail molaire adiabatique de la turbine

$$L'_{adT} = \mu C p_{CM} T_T \left[1 - \left(\frac{P_{3T}}{P_T}\right)^{\frac{K_T - 1}{K_T}} \right]$$
[III. 66]

$$L'_{adT} = 30.8935 \times 812.3437 \times \left[1 - \left(\frac{0.102}{0.136}\right)^{\frac{1.3682 - 1}{1.3682}}\right] \quad ; \quad L'_{adT} = 1869.6103 \ kJ/kmole$$

c) Travail massique adiabatique de la turbine

$$L_{adT} = \frac{L_{adT}}{\mu_g}$$

$$L_{adT} = \frac{1869.6103}{29}$$
; $L_{adT} = 64.4693 \, kJ/kg$

On considère que la capacité calorifique des gaz d'échappement est égale à la capacité calorifique de l'air. $\mu_g \approx \mu_{air}$

d) Puissance de la turbine

$$N_T = G_g L_{adT} \eta_T K_u$$
[III. 68]

$$N_T = 0.3443 \times 64.4693 \times 0.78 \times 1.32$$
; $N_T = 22.8538 kJ/s$
 $\eta_T = 0.74 \dots 0.84$; $\eta_T = 0.78$

 K_u : coefficient d'impulsion selon les données expérimentales varie entre 1.1...1.35 ;

On prend $K_u = 1.32$.

Ce coefficient caractérise l'aptitude opérationnelle des gaz du système de suralimentation à pression variable avant la turbine par rapport au système à pression constante.

e) Puissance relative de la turbine

$$\delta_T = \frac{N_T}{N_i}$$
[III. 69]

$$\delta_T = \frac{22.8538}{251.363} \qquad ; \quad \delta_T = 0.0909$$

Le degré de suralimentation est le rapport entre la pression moyenne effective du moteur avec la suralimentation et la pression moyenne effective du moteur à aspiration naturelle, ou bien le rapport de puissance entre les deux moteurs.

$$\lambda_H = \frac{Pe_H}{Pe}$$
[III.70]

$$\lambda_H = \frac{0.999}{0.7015} \qquad ; \quad \lambda_H = 1.4241$$

Paramètres	Valeurs
$L_{adk}[kJ/kg]$	48.1811
$N_k [kJ/s]$	22.8516
δ_k	0.0909
$ge_k [kg/kWh]$	5.8677
$T_g[K]$	853.1313
μcpe [kJ/kmole k]	31.0664
$\mu cp_k [kJ/kmole k]$	21.1023
µсрс _М [kJ/kmole k]	30.8935
$\mu cvc_M [kg/kmole k]$	22.5795
$T_T[K]$	812.3437
K _T	1.3682
L' _{adT} [kJ/kmole]	1869.6103
L_{adT} [kJ/kg]	64.4693
$N_T [kJ/s]$	22.8538
δ_T	0.0909
λ_H	1.4241

Tableau III.7 : Paramètres de performances du turbocompresseur

III.4.4 Bilan thermique du moteur

III.4.4.1 Quantité de chaleur totale dégagée par le combustible dans le moteur

$$Q_0 = Q_H \cdot G_T$$
 [III. 71]

- Moteur à aspiration naturelle

$$Q_0 = 42.4374 \times 10^6 \times \frac{36.547}{3600}$$
; $Q_0 = 430822.1272 W \text{ ou } J/s$

$$Q_0 = 42.4374 \times 10^6 \times \frac{44.2267}{3600}$$
; $Q_0 = 521351.7107 W \text{ ou } J/s$

Chapitre III

III.4.4.2 Quantité de chaleur équivalente au travail effectif

$$Q_e = 1000.N_e$$
' [III.72]

- Moteur à aspiration naturelle

$$Q_e = 1000 \times 143.033$$
; $Q_e = 143033 W$

- Pour le moteur suralimenté

$$Q_e = 1000 \times 203.6921$$
 ; $Q_e = 203692.1 W$

III.4.4.3 Quantité de chaleur cédée au système de refroidissement

$$Q_{ref} = C.i.D^{1+2m}.n^m.\frac{1}{\alpha}$$
 [III.73]

 $C = 0.45 \dots 0.53 \rightarrow \text{Coefficient de proportionnalité.}$

 $m = 0.6 \dots \dots 0.7 \rightarrow$ Indice de puissance.

- Moteur à aspiration naturelle

$$Q_{ref} = 0.48 \times 8 \times 11^{1+2 \times 0.66} \times 2800^{0.66} \times \frac{1}{1.4}$$
; $Q_{ref} = 134697.1848 W$

- Pour le moteur suralimenté

 $Q_{ref} = 0.53 \times 8 \times 11^{1+2 \times 0.68} \times 2800^{0.68} \times \frac{1}{1.7}$; $Q_{ref} = 158005.1103 W$

III.4.4.4 Quantité de chaleur emportée par les gaz d'échappement

$$Q_g = G_T \left[M_2 . \, \mu cp \, \Big|_{0}^{Tr} \, T_r - M_1 . \, \mu cp \, \Big|_{0}^{T_0} \, T_0 \right]$$
[III. 74]

- Moteur à aspiration naturelle

$$\mu cp \mid_{0}^{T_{0}} \rightarrow 100 \rightarrow 0.08$$

$$20 \ 0c \rightarrow 0.016$$

$$0.016 + 20.759 = 20.775$$

 $\mu cp \Big|_{0}^{T_{0}} = 20.775 + 8.314 = 29.089 \, kJ/kmole \, ^{\circ}c$

 $\mu cp \Big|_{0}^{Tr} = 23.5646 + 8.314 = 31.8786 \ kJ/kmole^{\circ}c$

$$Q_g = \frac{36.547}{3600} [0.7294 \times 31.8786 \times 507.8174 - 0.6978 \times 29.089 \times 20] \times 10^3$$
$$Q_g = 115751.775 J/s$$

- Pour le moteur suralimenté

$$Q_{g} = G_{T}[M_{2}.\,\mu cp \mid_{0}^{Tr} Tr - M_{1}.\,\mu cp \mid_{0}^{T_{k}} T_{k}]$$

$$\mu cp \mid_{0}^{T_{k}} \rightarrow 100 \rightarrow 0.08$$

$$88.1192 \rightarrow 0.0705$$

$$0.0705 + 20.759 = 20.8295$$

$$\mu cp \mid_{0}^{T_{k}} = 20.8295 + 8.314 = 29.1435 \ kJ/kmole \circ c$$

$$\mu cp \mid_{0}^{Tr} \rightarrow 100 \rightarrow 0.389$$

$$p \mid_{0}^{0} \rightarrow 100 \rightarrow 0.389$$

 $19.64 \rightarrow 0.0764$

23.2395 + 0.0764 = 23.3159

 $\mu cp \Big|_{0}^{Tr} = 23.2395 + 8.314 = 31.6294$

 $Q_g = \frac{44.2267}{3600} [0.8789 \times 31.6294 \times 519.64 - 0.8473 \times 29.1435 \times 88.1192] \times 10^3$ $Q_g = 150733.9428 J/s$

III.4.4.5 Quantité de chaleur restante

$$Q_{rest} = Q_0 - (Q_e + Q_{ref} + Q_g)$$
 [III.75]

- Moteur à aspiration naturelle

 $Q_{rest} = 430822.1272 - (143033 + 134697.1848 + 115751.775)$

 $Q_{rest} = 37340.1674 J/s$

- Pour le moteur suralimenté

 $Q_{rest} = 521351.7107 - (203692.1 + 158005.1103 + 150733.9428)$

Qrest = 8920.5576 J/s

Tableau III.8 : Bilan thermique

La composition du bilan thermique	Aspiration	%	Suralimenté	%
	naturelle			
La quantité de chaleur équivalente au travail	143033	33.2	203692.1	39.07
effectif Qe				
La quantité de chaleur cédée au système de	134697.1848	31.27	158005.1103	30.31
refroidissement Q _{ref}				
La quantité de chaleur emportée par les gaz	115751.775	26.87	150733.9428	28.91
d'échappement Qg				
La quantité de chaleur restante	37340.1674	8.67	8920.5576	1.71
La quantité de chaleur totale dégagée par le	430822.1272	100	521351.7107	100
combustible dans le moteur Q ₀				

III.5 Conclusion

Dans ce chapitre, nous avons présenté toutes les caractéristiques du moteur Diesel (ZIL-645), ainsi nous avons effectué les calculs énergétiques du moteur en deux types d'alimentation de l'air ; à aspiration naturelle et suralimentée par un turbocompresseur.

Chapitre III

Chapitre IV : Modélisation numérique

IV.1 Introduction

Notre étude est bien déterminée dans le chapitre précédent. Dans ce chapitre, on va présenter la modélisation des variations de performances du moteur (ZIL-645) en fonction du régime de vitesse.

IV.2 Construction des caractéristiques du régime de vitesse du moteur

La construction des caractéristiques du régime de vitesse des moteurs déjà fabriqués parfois utilise des résultats des calculs thermiques effectués sur plusieurs régimes du fonctionnement du moteur à plein charge. Par ailleurs, cette méthode de calcul des caractéristiques du régime de vitesse donne des résultats fiables uniquement en cas de disponibilité des résultats expérimentaux complets des données, suivant les différents paramètres du fonctionnement du moteur au régime partiel des caractéristiques de vitesse.

La construction des courbes des caractéristiques de vitesse est réalisée pour les moteurs Diesel de vitesse de rotation de 500 à 3500 tr/min.

On choisit les régimes de vitesse de calcul suivants :

500; 1000; 1500; 2000; 2500; 2800; 3000; 3500.

IV.2.1 Puissance effective

$$N_{e.x} = N_e \frac{n_x}{n} \left[0.87 + 1.13 \frac{n_x}{n} - (\frac{n_x}{n})^2 \right]$$
 [IV. 1]

IV.2.2 Couple moyen effectif

$$M_{e,x} = \frac{3 \times 10^4 N_{e,x}}{\pi n_x}$$
[IV.2]

IV.2.3 Pression moyenne effective

$$P_{e.x} = \frac{30 \tau N_{e.x}}{V_h n_x}$$
[IV.3]

IV.2.4 Consommation spécifique de carburant

$$g_{e.x} = g_{eN} \left[1.55 - 1.55 \, \frac{n_x}{n} + \left(\frac{n_x}{n}\right)^2 \right]$$
 [IV. 4]

IV.2.5 Consommation horaire de la combustion

$$G_{T.x} = g_{e.x} \cdot N_{e.x} \cdot 10^{-3}$$
 [IV. 5]

IV.2.6 Taux de remplissage du cylindre

$$\eta_{v.x} = \frac{P_{e.x} \, l_0 \, \alpha_x \, g_{e.x}}{3600 \, \rho_k}$$
[IV. 6]

IV.2.7 Pression moyenne indiquée

$$P_{i.x} = P_{e.x} + P_{M.x}$$
 [IV. 7]

Avec : $P_{M.x} = 0.105 + 0.012 V_{p.x}$

$$v_{p.x} = \frac{s n_x}{30}$$

IV.2.8 Puissance indiquée

$$N_{i,x} = N_i \frac{n_x}{n} \left[0.87 + 1.13 \frac{n_x}{n} - (\frac{n_x}{n})^2 \right]$$
 [IV.8]

IV.2.9 Couple indiqué

$$M_{i.x} = \frac{P_{i.x} V_h \ 1000}{\tau \ \pi}$$
[IV. 9]

IV.2.10 Consommation spécifique indiquée

$$g_{i,x} = g_i [1.55 - 1.55 \, \frac{n_x}{n} + (\frac{n_x}{n})^2]$$
[IV. 10]

- Moteur aspiration naturelle

$$\alpha_{min} = 0.836 \times 1.4 = 1.17$$

- Pour le moteur suralimenté

 $\alpha_{min} = 0.73 \times 1.7 = 1.24$

Figure IV.1 : Courbes de puissances effectives et de couples effectifs du moteur en fonction de la vitesse de rotation du vilebrequin (aspiration naturelle ; suralimenté)

Commentaire IV.1:

La puissance et le couple sont souvent représentés sur le même graphe en fonction du régime vitesse. Sur notre graphe, on observe une augmentation de la puissance du moteur à aspiration naturelle jusqu'à 143 KW sur un régime de vitesse nominal et une puissance de 203 KW sur la même vitesse de rotation pour le moteur suralimenté. Alors que, la courbe du couple moteur à aspiration naturelle est en augmentation jusqu'au 550 N.m, où le moteur entraine un couple maximal sur une vitesse de rotation de 1500 tr/min. Pour le moteur suralimenté, le couple maximal est environ de 850 N.m, après le couple diminue avec l'augmentation de la vitesse de rotation dû à la diminution du rendement mécanique causée par l'augmentation des frottements et cette hypothèse est valable pour la puissance au-delà de la vitesse de rotation nominale.

Figure IV.2 : Courbes de consommations spécifiques effectives et horaires du moteur en fonction de la vitesse de rotation du vilebrequin (aspiration naturelle ; suralimenté)

Commentaire IV.2 :

Sur notre graphe, on observe que la consommation spécifique effective du moteur à aspiration naturelle diminue jusqu'à 242 g/KW.h sur une vitesse de rotation de 2000 tr/min et de 205 g/KW.h pour le moteur suralimenté, dues à l'augmentation du rendement mécanique et la diminution du rendement indiqué, ainsi la consommation spécifique augmente en raison du rendement indiqué qui augmente avec la diminution du rendement mécanique. La consommation horaire augmente proportionnellement avec le régime de vitesse causée par l'augmentation de nombre de cycle par unité de temps, donc l'injecteur injecte plus de carburant.

Figure IV.3 : Courbes de consommation spécifiques indiquée et horaire du moteur en fonction de la vitesse de rotation du vilebrequin (aspiration naturelle ; suralimenté)

Commentaire IV.3 :

La consommation spécifique indiquée varie d'une façon décroissante jusqu'à une vitesse de 2000 tr/min, pour les deux moteurs, ainsi elle augmente avec l'augmentation du régime. Celle-ci est due à la variation du rendement indiqué et le rendement mécanique.

Figure IV.4 : Courbes de pressions effectives et indiquées du moteur en fonction de la vitesse de rotation du vilebrequin (aspiration naturelle ; suralimenté)

Commentaire IV.4 :

Le diagramme de pression effective pour les deux moteurs accroissent jusqu'à une vitesse de 1500 tr/min, et le diagramme de pression indiquée jusqu'à une vitesse de 2000 tr/min. Ainsi elles diminuent avec l'augmentation de la vitesse de rotation. Ces pressions dépendent de la dose cyclique, le rendement indiqué et le rendement mécanique.

Figure IV.5 : Courbes de puissances indiquées et de couples indiqués du moteur en fonction de la vitesse de rotation du vilebrequin (aspiration naturelle ; suralimenté)

Commentaire IV.5 :

Sur notre graphe, la puissance indiquée de deux moteurs augmente proportionnellement avec l'augmentation de la vitesse de rotation, et le moteur peut atteindre son couple indiqué maximal sur une petite plage de vitesse de 2000 tr/min, ainsi le couple diminue avec la diminution du rendement mécanique. De même façon avec la puissance au-delà du régime nominal de vitesse.

Figure IV.6 : Courbes de taux de remplissages et l'excès d'air du moteur en fonction de la vitesse de rotation du vilebrequin (aspiration naturelle ; suralimenté)

Commentaire IV.6 :

Sur notre graphe, on observe que l'excès d'air est une ligne droite croissante, le taux de remplissage diminue progressivement par rapport à la vitesse de rotation dû à l'augmentation des pertes de charge de la charge fraîche dans le collecteur d'admission.

IV.3 Conclusion

La modélisation du notre moteur ZIL-645 permet d'étudier ses performances par des différents régimes, ainsi de donner un avantage de déterminer la comparaison entre les deux moteurs (aspiration naturelle ; suralimenté).

Conclusion générale

Conclusion générale

Conclusion générale

Cette étude comparative entre le moteur Diesel à aspiration naturelle avec un moteur suralimenté a pour objectif de distinguer l'influence de la suralimentation sur les performances du moteur (ZIL-645) à aspiration naturelle, ainsi l'influence écologique lors de suralimentation.

Le turbocompresseur équipe maintenant la majorité des moteurs Diesel, Dans le but de la réduction des émissions polluantes, notre recherche bibliographique détermine que les produits de combustion sont plus toxique, et comme la majorité des moteurs diesel également sont équipé d'un système EGR qui réduits ces émission d'une manière plus efficace.

D'après la présentation des différents résultats obtenue dans notre étude, on déduit :

En premier lieu, depuis les résultats thermodynamiques du moteur, on déduit que lors de l'admission et la compression, les températures et les pressions du moteur suralimenté sont plus élevées par rapport à celles du moteur à aspiration naturelle, et ce, est dû à la compression de l'air ; par conséquent, le taux de remplissage est bien plus élevé. En revanche, la température du moteur suralimenté, lors de la combustion et la détente, diminue en raison de l'augmentation du coefficient d'excès d'air, et ce, à l'effet non seulement d'éviter les températures excessives à la fin de la combustion, mais aussi pour diminuer la production des NO_x.

En outre, l'amélioration des performances du moteur Diesel se réalise par la modification de la cylindré du moteur en gardant cette dernière constante. De ce fait, lors de la suralimentation du moteur, on déduit que la puissance délivrée par le moteur est bien plus grande qu'au moteur à aspiration naturelle, et ce, est dû à l'augmentation du débit d'air à l'admission ; 42% d'augmentation. Ainsi, le moteur suralimenté consomme moins de carburant par unité de puissance (Consommation spécifique) par rapport au moteur à aspiration naturelle ; ce qui rend le moteur plus performant et atteint l'objectif d'amélioration.

Par ailleurs, les calculs de la suralimentation par un turbocompresseur nous déterminent la justesse du couplage de la turbine et le compresseur, vu que la puissance des deux derniers est égale ; la puissance de la turbine nécessite une énergie cinétique suffisante pour son entrainement.

Dans le bilan thermique de deux moteurs, la quantité de la chaleur dégagée par le moteur suralimenté est bien supérieure à celle du moteur à aspiration naturelle, également celle des gaz d'échappement, et ce, pour mettre en fonctionnement la turbine.

Finalement, ce travail est bien effectué, et nous souhaitons à l'avenir que les calculs énergétiques seront faits avec vérification des pertes de charges dans les canalisations.

Références bibliographiques

[1] **B.HAMTACHE**, cours ; « moteur à combustion interne » ; 2^{eme} année master « Installation Energétique et Turbomachine ».

[2] DJEMILI Abdesselam et MESBAHI Abderrahim, « L'impact des paramètres de fonctionnements sur le rendement de moteur diesel », Mémoire de fin d'étude master académique « université Echahid Hamma Lakhdar d'el oued ». Promotion 2017/2018.

[3] AMARI Salah et LOUNIS Bilal, « étude et maintenance d'un moteur diesel de station pétrolière Caterpillar 3512 », mémoire fin d'étude master « Université KASDI Merbah – Ouargla ». Promotion 2016/2017.

[4] Cours, « machine thermique ». « Academia.edu ».

[5] **DIDIER JOLIVET** « le moteur diesel». « Paris 1970 », CHOTARD ET ASSOCIES EDITEUR.

[6] Cours, « le moteur diesel 1.6 ». « Academia.edu ».

[7] Hussein IBRAHIM, « moteur diesel suralimenté bases et calculs cycles réel, théorique et thermodynamique », thèse doctorat « université Québec à Rimouski ». Promotion Novembre 2006.

[8] Zahi SABEH, « Application à moteur Diesel suralimenté à injection direct », thèse « Doctorat de l'Institut National Polytechnique de lorraine ». Promotion Décembre 2006.

[9] Photo du moteur (ZIL-645)

Articles /chto_za_zapchasti_na_zil_645.

[10] AIME PAROIS, « Suralimentation des moteurs des véhicules par turbocompresseur », Article « Technique de l'ingénieur ressource documentaire scientifique et technique en français ».

[11] KOUKHARENOV .G.M, « Dispositif de suralimentation », « UNIVERSITE TECHNIQUE DE BIELORUSSIE » MINSK 2012.

[12] BOURZINI Oussama, « Etude de l'influence de la suralimentation sur les caractéristiques d'un moteur essence » mémoire fin d'étude master « Université aboubakr belkaid – tlemcen »Promotion 2017/2018.

[13] John B. Heywood, « INTERNAL COMBUSTION ENGINE FUNDAMENTALS », « Professor of Mechanical Engineering Director, Sloan Automotive Laboratory Massachusetts Institute of Technology ». McGraw-Hill Book Company, 1988.

[14] AGOUNE Sadiq, RIAH Chabane. « Etude énergétique et dynamique d'un moteur à combustion interne », Mémoire fin d'étude « Université Abderrahmane MIRA Bejaia ». Promotion juin 2014.

Annexe 1

n _x	Ne _x	Me _x	Pe _x	gex	GT _x	ηv_x	α_{x}
500	26.5606651	507.528633	0.72948819	333.472626	8.85725475	0.96081745	1.17
1000	58.5424061	559.322351	0.80393307	287.193196	16.8129807	0.95089033	1.22
1500	91.0584358	579.990037	0.83363944	257.20934	23.4210801	0.91927462	1.27
2000	119.221967	569.53169	0.8186073	243.521058	29.0330595	0.88830606	1.32
2500	138.146213	527.947311	0.75883665	246.128349	34.0016994	0.86378781	1.37
2800	143.033	488.056187	0.70149978	255.5146	36.5470198	0.8471257	1.4
3000	142.944386	455.236899	0.6543275	265.031215	37.8847244	0.83129871	1.42
3500	128.7297	351.400455	0.50507984	300.229655	38.6484734	0.75250176	1.47

Tableau 1 : Fonctionnement du moteur à aspiration naturelle par rapport aux vitesses de rotations du vilebrequin

V _{px}	P _{Mx}	Pix	Nix	Mix	gi _x
1.916665	0.12799998	0.85748817	35.4129636	596.582377	250.142122
3.83333	0.15099996	0.95493303	78.0537719	664.377928	215.427324
5.749995	0.17399994	1.00763938	121.40694	701.047447	192.936046
7.66666	0.19699992	1.01560722	158.956983	706.590933	182.668289
9.583325	0.2199999	0.97883655	184.1884415	681.008387	184.624052
10.733324	0.23379989	0.93529967	190.7039	650.718364	191.6648
11.49999	0.24299988	0.89732738	190.585753	624.299809	198.803336
13.416655	0.26599986	0.7710797	171.63351	536.465198	225.20614

Annexe 2

n_x	Ne _x	Me _x	Pe _x	ge _x	GT _x	ηv_x	α_{x}
500	37.8248213	722.767285	1.03885804	283.370542	10.7184401	0.89338934	1.24
1000	83.3697513	796.526286	1.14487437	244.044294	20.3459121	0.91630375	1.34
1500	129.675557	825.958964	1.18717896	218.565316	28.3425792	0.91446714	1.44
2000	169.783007	811.06532	1.16577181	206.933609	35.1338104	0.90922942	1.54
2500	196.732867	751.845353	1.08065294	209.149172	41.1465164	0.90718198	1.64
2800	203.6921	695.036738	0.99899989	217.1252	44.226688	0.90247007	1.7
3000	203.565906	648.299063	0.93182233	225.212006	45.845486	0.89368008	1.74
3500	183.32289	500.426451	0.71927999	255.12211	46.7697225	0.8263653	1.84

Tableau 2 : Fonctionnement du moteur suralimenté par rapport aux vitesses de rotations du vilebrequin

Pi _x	Nix	Mix	gi _x
1.16685802	46.6771198	811.821029	229.647191
1.29587433	102.881117	901.581863	187.776685
1.36117889	160.024061	947.016375	177.128189
1.36277173	209.518022	948.124564	167.701701
1.30065284	242.77507	904.90643	169.467223
1.23279987	251.363	857.698915	175.9611
1.17482221	251.207272	817.361974	182.514753
0.98527985	226.2267	685.491195	206.754293

$T \ \setminus \ \alpha$	1	1.1	1.2	1.3	1.4	1.5	1.6	1.8	2	2.2
0	22.184	22.061	21.958	21.870	21.794	21.728	21.670	21.572	21.493	21.428
100	22.545	22.398	22.275	22.169	22.078	21.999	21.929	21.812	21.717	21.640
200	22.908	22.742	22.602	22.482	22.379	22.289	22.210	22.077	21.970	21.882
300	23.324	23.142	22.989	22.858	22.745	22.647	22.560	22.415	22.300	22.202
400	23.750	23.554	23.390	23.249	23.128	23.022	22.930	22.774	22.648	22.544
500	24.192	23.985	23.811	23.662	23.533	23.421	23.322	23.157	23.023	22.914
600	24.631	24.413	24.229	24.073	23.937	23.819	23.716	23.541	23.401	23.285
700	25.069	24.840	24.648	24.484	24.342	24.218	24.109	23.927	23.780	23.659
800	25.490	25.251	25.050	24.879	24.731	24.602	24.488	24.298	24.144	24.018
900	25.896	25.648	25.439	25.261	25.107	24.973	24.855	24.657	24.487	24.366
1000	26.278	26.021	25.804	25.620	25.460	25.321	25.199	24.993	24.828	24.692
1100	26.641	26.375	26.151	25.960	25.795	25.652	25.525	25.313	25.142	25.001
1200	26.987	26.713	26.482	26.286	26.116	25.967	25.837	25.618	25.442	25.296
1300	27.311	27.029	26.792	26.589	26.415	26.262	26.128	25.903	25.722	25.572
1400	27.618	27.328	27.085	26.877	26.698	26.541	26.404	26.173	25.986	25.833
1500	27.907	27.610	27.361	27.148	26.965	26.805	26.664	26.427	26.237	26.080
1600	28.175	27.873	27.618	27.400	27.212	27.049	26.905	26.663	26.468	26.308
1700	28.432	28.123	27.863	27.641	27.449	27.282	27.135	26.888	26.690	26.526
1800	28.669	28.354	28.089	27.863	27.668	27.497	27.348	27.096	26.894	26.727
1900	28.895	28.575	28.305	28.076	27.877	27.704	27.552	27.296	27.090	26.921
2000	29.107	28.782	28.508	28.275	28.073	27.898	27.743	27.483	27.274	27.102

 Tableau 3 : Capacité calorifique moyenne des produits de combustion du Diesel Kj/Kmole. oc, sous l'excès.

Annexe 4

T \ Produits	AIR	O ₂	N_2	H ₂	СО	CO_2	H ₂ O
0	20.759	20.960	20.705	20.303	20.809	27.546	25.185
100	20.839	21.224	20.734	20.621	20.864	29.799	25.428
200	20.985	21.617	20.801	20.759	20.989	31.746	25.804
300	21.207	22.086	20.973	20.809	21.203	33.442	26.261
400	21.475	22.564	21.186	20.872	21.475	34.936	26.776
500	21.781	23.020	21.450	20.935	21.785	36.259	27.316
600	22.091	23.447	21.731	21.002	22.112	37.440	27.881
700	22.409	23.837	22.028	21.094	22.438	38.499	28.476
800	22.714	24.188	22.321	21.203	22.756	39.450	29.079
900	23.008	24.511	22.610	21.333	23.062	40.304	29.694
1000	23.284	24.804	22.882	21.475	23.351	41.079	30.306
1100	23.548	25.072	23.142	21.630	23.623	41.789	30.913
1200	23.795	25.319	23.393	21.793	23.878	42.427	31.511
1300	24.029	25.549	23.627	21.973	24.113	43.009	32.093
1400	24.251	25.763	23.849	22.153	24.339	43.545	32.663
1500	24.460	25.968	24.059	22.333	24.544	44.035	33.211
1600	24.653	26.160	24.251	22.518	24.737	44.487	33.743
1700	24.837	26.345	24.435	22.698	24.917	44.906	34.262
1800	25.005	26.520	24.603	22.878	25.089	45.291	34.756
1900	25.168	26.692	24.766	23.058	25.248	45.647	35.225
2000	25.327	26.855	24.917	23.234	25.394	45.977	35.682

Tableau 4 : Capacité calorifique molaire moyenne des gaz sous un volume constant, Kj/Kmole.°c

Résumé

L'évolution de la technologie des moteurs à combustion interne dans le monde actuel, permet d'avoir des moteurs Diesel de grandes performances, afin de répondre à tous les problèmes qu'on peut rencontrer via de différents modes d'utilisation de ces moteurs.

L'objectif de ce travail est d'améliorer les paramètres énergétiques du moteur Diesel (ZIL-645) à aspiration naturelle avec la suralimentation par un turbocompresseur. Premièrement, notre étude commence par une recherche bibliographique, où nous avons présenté une généralité sur le moteur Diesel et ses émissions polluantes, ainsi les différentes méthodes de suralimentation que nous pourrons distinguer. Ensuite, l'étude des paramètres énergétiques du moteur est bien déterminée, l'amélioration est effectuée. Finalement, on a affaire à une comparaison entre les performances énergétiques, économiques et écologiques du moteur Diesel (ZIL-645) à aspiration naturelle et suralimenté.

Mots clefs : Moteur Diesel, turbocompresseur, suralimentation, aspiration naturelle, performances énergétiques, étude comparative, modélisation numérique.

Abstract

The evolution of internal combustion engine technology in today's world allows for highperformance Diesel engines to meet all the problems that can be encountered through the different ways in which these engines are used.

The objective of this work is to improve the energy parameters of the naturally aspirated Diesel engine (ZIL-645) with turbocharging. Firstly, our study begins with a bibliographical research, where we presented a general overview of the Diesel engine and its pollutant emissions, as well as the different turbocharging methods that we will be able to distinguish. Then, the study of the energetic parameters of the engine is well determined, the improvement is carried out. Finally, we are dealing with a comparison between the energy, economic and ecological performances of the Diesel engine (ZIL-645) with natural aspiration and supercharged.

Key words: Diesel engine, turbocharger, supercharging, natural aspiration, energy performance, comparative study, numerical modeling.