République Algérienne Démocratique et Populaire
Ministére de I’Enseignement Supérieur et de la Recherche Scientifique
Université A.MIRA-BEJAIA

-.= g :1. _'I :. -' -—i Q II :.
qB Tasdawit N BEgavet
Universite de BSjaia

Faculté des Sciences Exactes
Département d’Informatique

THESE

Présentée par

Abdelhamid Khiat

Pour I’obtention du grade de

DOCTEUR EN SCIENCES

Filiere : Informatique

Option : Réseaux et Systéemes Distribués

Théme

Resource Management and Scheduling in Large

Scale Distributed Systems: Cloud & Grid

Soutenue le : 04 Février 2021 Devant le Jury composé de :
Nom et Prénom Grade

Mr Ahror BELAID Professeur Univ. de Béjaia Président
Mr Abelkamal TARI Professeur Univ. de Béjaia Rapporteur
Mr Nadjib BADACHE Professeur USTHB - Alger Examinateur
Mr Abderrazak SEBAA MCA Univ. de Béjaia Examinateur
Mr Ali MELIT Professeur Univ. de Jijel Examinateur
Mr Azze-Eddine MAREDJ MRA CERIST Examinateur

Année Universitaire : 2020/2021

My parents, wife, and children

1

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Allah almighty for giving me the strength,
knowledge, ability and opportunity to undertake this research study.

I would like to express my deeply-felt thanks to my thesis advisor, Prof. Abdelka-
mel TARI, for his warm encouragement and thoughtful guidance. It has been an
honor and pleasure working with him during the last years.

I also thank the members of thesis committee: Prof. BELAID Ahror, Prof. TARI
Abdelkamel, Prof. BADACHE Nadjib, Dr. SEBAA Abderazak, Dr. MELIT Ali and
Dr. MAREDJ Azze-eddine for having accepted to assess my thesis.

I am happy to acknowledge my deepest sincere gratitude to Dr. Guérout Tom
with whom I exchanged valuable ideas during my visit to LAAS-CNRS and helped
me to move forward efficiently in my work preparation.

An extra special recognition to my family whose love and aid have made this
thesis possible, especially my parents and my wife, I love you all very much and am
immensely grateful for all that you do. Thank you for everything.

I would like to greatly thank again the ex-director of CERIST Prof. BADACHE
Nadjib, director of CERIST Prof. Hacéne BELBACHIR, and the chief of DRSD di-
vision Mrs. EL-MAOUHAB Aouaouche for their support and unbounded trust on
me and also for the means they managed to secure for me to fully accomplish my
thesis preparation in an efficient way. Without forgetting to acknowledge my dearest
colleagues, SADALLAH Madjid, BELAZZOUGUI Djamal, AMRANE Abdesalam,
and CHAA Messaoud for the whole time we spent together working, debating, brain-

storming, sharing ideas and more.

1l

TABLE OF CONTENTS

DEDICATION il
ACKNOWLEDGEMENTS oo, iii
LIST OF FIGURES oo, vii
LIST OF TABLES s s, ix
LIST OF ALGORITHMS X
LIST OF ABBREVIATIONS oo, xi
General introduction, 1
I. Background 11

1.1 Introduction 11

1.2 Scheduler Characteristics 11

1.3 Task Caracteristics 12

1.4 Distributed Architectures 13

1.5 QoS parameters 18

1.6 Conclusion s, 19

II. Related Work 21

2.1 Introduction, 21

2.2 Scheduling Algorithms 21

2.2.1 Non-evolutionary Approaches 22

2.2.2 Evolutionary Approaches 27

2.3 Resource Management Solutions 30

2.3.1 Simulators 30

2.3.2 Frameworks 33

24 Analyses 36

2.5 Conclusion 37

v

ITII. MFHS: a Modular scheduling Framework for Heterogeneous

System 39
3.1 Imntroduction 39
3.2 High level Architecture 40
3.3 Internal architecture of MFHS 40

3.3.1 Resources Discovery 42

3.3.2 Requests Collector 43

3.3.3 Scheduling oL 44

3.3.4 Resources Allocation 45

3.3.50 Resources Monitoring 45

3.3.6 Behaviour Study 46

3.4 MFHS QoS measurement 46
3.4.1 Total response time (makespan) 46

3.4.2 Responsetime 47

3.4.3 Average resources utilization 47

344 Cost 47

3.4.5 Energy consumption. L. 48

3.5 Conclusion 49
IV. Scheduling Algorithms 51
4.1 Introduction 51
4.2 Target Environment o000 ol
4.3 Problem Description 52
4.4 MMino 53
4.4.1 Step 1: Task Classification 54

4.4.2 Step 2: Algorithm Selection 55

4.5 InterRC Heuristic 56
4.5.1 Objective 56

4.5.2 Operators 56

4.5.3 End Conditions 57

4.54 Global Process 57

4.5.5 Detailed Process a7

4.6 Conclusion 60
V. Evaluation of the proposals 63
5.1 Introduction 63
5.2 InterRC Evaluation 64
5.2.1 Benchmark Datasets 64

5.2.2 makespan Comparison 64

5.2.3 makespan Evolution Speed 66

5.3 MDMin Evaluation and MFHS validation 69

5.3.1 Used Environments 69

5.3.2 InmputData 69

5.3.3 An illustrative example L. 70

5.3.4 Evaluation with simulated experimentation 70

5.3.5 Ewvaluation with Emulab 73

5.3.6 Experimentation on real experimental Cloud Platform 80

5.4 Discussion 89

5.5 Conclusion 92
Conclusion and Perspectives 93
BIBLIOGRAPHY 99

vi

Figure

3.1

3.2

4.1

5.1

5.2

5.3

5.4

2.5

2.6

5.7

2.8

5.9

5.10

5.11

5.12

5.13

5.14

LIST OF FIGURES

High level global architecture.
Internal components of the scheduler
Task scheduling scheme,
Evolution of ratio value as function of time
Zoom on Figure 5.1o oo
Gap value to the lower bound
3D solution time illustration and comparison
Makespan analysis with various problem sizes.
Topology
Theoretical vs Real makespan
Theoretical vs Real Resources utilization average per algorithm . . .
Theoretical vs Real energy consumption per algorithm
Theoretical vs Real Cost per algorithm
Theoretical vs Real Completion time per VM per algorithm
Theoretical vs Real Resources utilization per VM per algorithm

Theoretical vs Real Energy per VM per algorithm

Theoretical vs Real Cost per VM per algorithm

vii

5.15

5.16

5.17

5.18

5.19

5.20

5.21

2.22

5.23

5.24

3D Data rate transfer measurements 82

Real time data rate transfer monitoring 84
Theoretical vs Real makespan 86
Theoretical vs Real Resources utilization average per Algo 86
Theoretical vs Real energy consumption per algorithm 86
Theoretical vs Real Cost per algorithm 87
Theoretical vs Real Completion time per VM per algorithm 87
Theoretical vs Real Resources utilization per VM per algorithm . . 87
Theoretical vs Real Energy per VM per algorithm 88
Theoretical vs Real Cost per VM per algorithm 88

viil

Table
2.1
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10

LIST OF TABLES

Scheduling algorithms’ comparison 36
Makespan comparaison with deterministic heuristics 65
Makespan comparaison with evolutionary heuristics 65
Task Execution Time (s) on each resource 70
Download and Upload characteristics 74
In/Out Disk speed characteristics 74
Dynamic: Requests Description 76
Dynamic: Tasks allocation 7
Resources characteristicso 81
Openstack:Requests Description 85
Openstack:Tasks affectation 85

X

LIST OF ALGORITHMS

Algorithms
1 Scheduling Module Algorithm 45
2 MMin Algorithm 55
3 Global InterRC Process oo 57
4 Initial affectation 58
5 makespan improvement L. 59
6 Task redistribution 60
7 Virtual machine execution scenario. 75

LIST OF ABBREVIATIONS

GA Genetic Algorithm

ACO Ant Colony Optimization

PSO Particle Swarm Optimization

QoS Quality of Service

HPC High-Performance Computing

InterRC Inter-Resources Collaboration Heuristic

SLA Service Level Agreement

SSH Secure Shell

DEC Digital Equipment Corporation

SNNA Systems Network Architecture

NP-Hard Non-deterministic Polynomial-time Hardness
LAAS Laboratoire d’Analyse et d’Architecture des Systémes
CNRS Centre National de la Recherche Scientifique
PC Personal Computer

RC Relative Cost

RR Round Robin

HCSP Heterogeneous Computing Scheduling Problem
VM Virtual Machine

DAG Directed Acyclic Graph

VO Virtual Organization

x1

SaaS Software as a Service
TaaS Infrastructure as a Service
PaaS Platform as a Service
DaaS Data as a Service

FaaS Function as a Service
BaaS Backend As A Service
IoT Internet of Things

P2P peer-to-peer

CPU Central Processing Unit
GUI Graphical User Interface
MIPS Million Instructions Per Second

MI Millions Instructions

xii

(General introduction

Distributed architectures and scheduling

Since the advent of automated computing, computers started to be used in order
to realize computing operations and their needs in terms of resources never stopped
growing. The arrival of the distributed system was considered as a good solution that
can be exploited to realize more complex computing operations, by distributing the
computation over a set of computation units that are connected by a network.

First solutions of distributed computing appeared during the 1970s, where many
efforts are done to improve this kind of computing system. For example, French
Cyclades network, pushed by a French international company called CII and its Dis-
tributed System Architecture, based on the Datagram, tried to pool the computing
resources of university centers. Meanwhile, In the United States, IBM and Digi-
tal Equipment Corporation (DEC) created the Systems Network Architecture (SNA)
and DECnet architectures, taking advantage of the digitization of AT&T’s telephone
network and its dedicated medium-speed connections. From that time on, the design
of large systems was challenged by networked minicomputers, such as the Mitra and
then the Mini, which complemented it and modified its architecture.

Simple computer machines were progressively replaced by distributed computers
to the point most of today’s computing architectures are distributed. Subsequently,
these architectures never stopped evolving, and a huge variety in terms of comput-
ing architectures and services offered were created, giving birth to many computing
paradigms and architectures, including Cloud, Fog, and a flurry of other heteroge-
neous distributed computing concepts. The facilities proposed through the services
hosted in these kinds of infrastructures are more and more varied, thereby attracting
an ever increasing number of users. Each one of these architectures has its own charac-
teristics, use areas, and advantages/disadvantages. This gives the user/provider the
freedom to choose which architecture to use according to his requirements/service

provider.

According to [110], a distributed system is a system whose components are located
on different networked computers, which communicate and coordinate their actions
by passing messages to one another. Distributed computing is used in many areas, for
example, management of banking transactions, air traffic control, supercomputing,
distributed file storage system. One of the most important use cases of distributed
computing architectures is the execution of complex computing operations, which
cannot be achieved using only one computer, or which takes a longer time when
executed on only one computer. This is why it is important to execute this work on
a parallel architecture sustained by a significant number of computing resources.

In the general case, a distributed computing architecture is composed of mainly
two actors, a service provider and service consumers (users). Each of them looks to
benefit as much as possible from the computing infrastructure. To avoid a conflict of
interest between these actors, negotiation must be done before starting work, both
providers and users must sign a contract before engaging. The contract is called
Service Level Agreement (SLA). During the SLA negotiation, a trade-off between
both providers and users must be ensured. Then, many parameters can be discussed.
Usually, these parameters are called Quality of Service (QoS) parameters.

The facilities proposed through the services hosted in these kinds of infrastructures
are more and more various and thereby increasing the number of users. The com-
plexity of such an infrastructure raises many issues regarding the functioning of the
services, especially to ensure reliable and efficient access to users. Indeed, computing
resource providers must keep their infrastructure running smoothly and propose a
high level of QoS in order to fit users’ expectations. These considerations force the
computing service providers to analyze the characteristics of their systems in order
to manage and improve them to find the best trade-off between their own interests
and the level of quality of service proposed to the users.

In the distributed computing area, two main notions need to be known before
talking about scheduling and resource management solutions. The first one is Re-
sources, and the second one is Work. Usually, these two elements are collaborative,
which means that each one of them must know the characteristics of the other. More
in detail, a resource must know its characteristics to be able to accept or refuse a
work or a part work, while a task must now its requirements to be able to select the
set of candidate resources that can be used for future allocation for their execution.
Usually, the informations can be managed through a resource management solution.

From a resource point of view, the term Resource is used to refer to any virtual or

physical equipment that can be shared, and used by a resource management solution.

Resources can be a virtual or physical machine equipped with an operating system,
a virtual network equipment, or a shared memory.

The term work refers to a program composed of a set of tasks, each of which
represents a program unit that cannot be subdivided into subprograms. In a given
work, the necessary time to finish the last task is called makespan. In order to
ensure the execution of a work in a distributed environment, a set of resources must
be allocated, then, each task of the work must be assigned to one of these allocated
resources. The latter are often heterogeneous, which means that the execution time
of a task changes from a resource to another. Subsequently, the makespan changes
according to the user mapping. Therefore and in order to ensure a better mapping
of the set of tasks to the set of allocated resources, a power scheduler must be used.

Before finding the mapping of tasks, a scheduler needs to be supported by a
set of informations about the resources that compose the architecture, and by a set
of informations about the tasks to be executed. After finishing the mapping, the
scheduler sends the message. It then needs to get help to execute and measure QoS
parameters. One of the most important research issues raised is how to smartly
manage those resources.

From a provider’s point of view, resource management is a critical aspect as it
can have a huge impact on the functioning of its whole infrastructure. In most cases,
a computing service can be seen as a set of tasks that have to be scheduled over
a set of available resources in the computing infrastructure. As each resource is a
whole or a part of a computing service, any modification of the task allocation has to
be done without impacting the users’ experience while trying to optimize the global
behavior of the services. Also, several parameters (objectives), likes response time,
resource usage, cost, power consumption, load balancing, etc., need to be taken into
consideration when designing and evaluating a task scheduling solution.

Scheduling has a specific role, which consists in mapping a set of tasks to a set
of resources. Meanwhile, resource management consists in doing more actions, like
resource discovery, request collector, resource allocation, and resource monitoring.
Resource management can be changed according to the used design. As an input
of the scheduler, many values can be needed before running a scheduler process, for
example, the estimated execution time, the estimated cost, the estimated consumed
energy. The output of the schedule consists in affecting of the set of tasks to the set
of resources. Also, a set of characteristics that concern the work need to be defined,
for example, new tasks can be introduced during the execution processes, some tasks

have higher priorities than others,.. etc. With regard to the scheduler also, it is

necessary to define some characteristics, for example, can we change the result during

the execution of the resulting mapping ...etc.

Research Problems

Today’s distributed computing infrastructures, including Grid, Cloud, Fog and
other distributed system paradigms, are characterized by great difficulty in manag-
ing their resources due to a few characteristics, such as the high level of resources’
heterogeneity, instability the environment, where resources can join or leave the in-
frastructure at any time and tasks can arrive sporadically on any site and at any time,
and the momentum of change of these infrastructures in terms of the appearance of
new architectures or changes in existing architectures. These factors have given rise
to other problems. In our thesis, we are interested in a sub-part of these problems
that we will present in the remainder of this subsection.

The problem of task scheduling in distributed computing environments remains
one of the most important challenges. In general, scheduling problems are classified
as Non-deterministic Polynomial-time Hardness (NP-Hard) [37], which means that
there is no known general solution for which the optimal value of the objective(s)
to be optimized can be obtained in a time that is polynomial with the size of the
problem. Consequently, a significant number of approaches have been proposed in
the literature, which aims at finding a possible mapping while getting the optimal
value of the objective(s) to be optimized within a reasonable time. Fortunately,
the new distributed architectures, characterized by their powers and their varieties,
always give the possibility to think about proposing new algorithms. Task scheduling
in distributed computing systems is our first problem treated in our thesis work.

The second issue addressed is closely related to the first one presented above. It is
motivated by the fact that there are a large number of approaches of task scheduling
already proposed in the literature. These approaches, although they often produce
interesting results, are almost always carried out only by simulation and are therefore,
unfortunately, never deployed and tested in real conditions. This is mainly due to

the following reasons:

e The approach was not necessarily designed to be deployed in real conditions,

e There is a huge time cost to spend to make it run smoothly on Cloud or Fog
platform,

e Even if some approaches can be run on real distributed systems, the portability

and reproducibility of the experimentation are another hard point to face with.

To the best of our knowledge, now has addressed simultaneously all the points
mentioned above, which motivated us to work on those issues and to propose a solution
that can contribute to resolve the second point. Indeed, our smart solution tries to
propose a clean and reproducible scheduling solution regardless the distributed system

involved.

Objectives

In order to contribute to the resolution of the problems mentioned in Section |,
we have divided our objectives into two parts, the first one is related to the task
scheduling problem, while the second one is related to the resource management

issue.

The first objective of our work consists in contributing in the field of task schedul-
ing in distributed computing systems, by proposing solutions that can minimize the
total response time as much as possible. The proposed solutions must take into ac-
count the scalability factor (extensibility) as well as the great heterogeneity of today’s
distributed systems. Also, the time of finding the mapping must be considered, and

reduced as much as possible.

Our second objective is related to the first one, it consists in proposing a solution
for resource management that can exploit our proposed algorithms, or any other task
scheduling algorithm. This solution must offer the possibility to make an intelligent
management of the resources of such a distributed computing system. This solution
must also make it possible to do a "From theoretical to real deployment", i.e. an
automatic switch from the evaluation phase to the deployment phase. Therefore, the
tool should be easily adaptable to different kinds of distributed environments, take
into account the great heterogeneity of resources, and support the scalability of the

use distributed system.

In more detail, our solution should offer to the research and development commu-
nities a reliable solution, which can help them understand the behavior of the used
architecture, and which can also evaluate such scheduling algorithms in theoretical
values first, predict the behavior of the platform before deployment, and then deploy
the best found solution in a real environment in a third step. While studying the
behavior of these algorithms during a real execution, our goal is not only to study the
total response time but also other parameters of QoS that we considered important,

such as cost, energy consumption, and resource usage.

Contributions

With regards to scheduling, we have proposed two algorithms that consider min-
imizing the total response time. The first is a simple heuristic called MMin, and
the second is an evolutionary approach called Inter-Resources Collaboration Heuris-

tic (InterRC).
The InterRC heuristic belongs to the family of evolutionary approaches which

are considered as an important way to solve the scheduling problem. Usually, in
an evolutionary approach, the value of the objective(s) to be optimized is improved
over time, by starting from a solution called initial solution which is then improved
through iterations until reaching one or some conditions called end conditions. In
this way, InterRC tries to find the best match between a set of tasks and a set of
heterogeneous resources in a distributed environment, with the goal of minimizing
the total response time. In the InterRC' approach, we use a new concept called inter
collaboration. As the name implies, InterRC' is trying to evolve from one solution
to a better solution. To do this, each time we switch from one solution to another,
the resources try to exchange tasks with each other and test whether this exchange
improves the total response time. In the positive case, this exchange is carried out
and in the opposite case, the exchange does not take place. InterRC uses certain

operators and stopping conditions that will be defined in detail in this manuscript.

For MMin, since simple heuristics are important in terms of fast execution time,
we propose in the second contribution a simple heuristic called MMin, The latter
inherits the advantages of Maz-Min and Min-Min. To avoid the disadvantages of
Maz-Min and Min-Min, the proposed solution is executed in n iterations, where n
represents the total number of tasks to be scheduled, then, in each iteration, MMin

calls one of these two solutions depending on the overall state of the system.

The third contribution consists in proposing a solution that allows to manage
the resources of the distributed computing infrastructure, and in order to meet our
second objective by doing a "From theoretical to real deployment", we proposed a
framework called Modular scheduling Framework for Heterogeneous System (MFHS).
The latter is composed of several modules, each of which has its own role: Resource
Discovery, Request Collection, Scheduling, Resource Allocation, and Behavior Study.
These modules are easily adaptable in any heterogeneous distributed environment.
The validation of our framework has been done in three different environments which
are: a Personal Computer (PC) (using MFHS as a simulator), an OpenStack-based
Cloud located at the Laboratoire d’Analyse et d’Architecture des Systémes (LAAS)

of the Centre National de la Recherche Scientifique (CNRS) (LAAS-CNRS, Toulouse,
France), and an Emulab-based test platform located at the Centre de Recherche sur
I'Information Scientifique et Technique (CERIST, Algérie). The aim of our exper-
iments is to show the proper functioning of MFHS on the one hand, and to show
the efficiency of our MMin algorithm compared to two other algorithms on the other
hand, in terms of total response time. In addition, MFHS allows measuring the cost,
the consumed energy, as well as the load balancing between resources.

MFHS is composed of several modules, each with its own role: Resource discovery,
Request Collector, Scheduling, Resource Allocation and Behavior Study. The extensive
experimentations exposed in Chapter V, were carried on in order to validate MFHS
using our proposed MMin, Max-Min, and Min-Min algorithms. The validation is
done by both using theoretical analysis and real deployment on a research Cloud
platform.

The third contribution can be, briefly, expressed as follows:

e Definition of a Cloud Computing model dedicated to the off-line scheduling of
independent, non-preemptive and fixed priority tasks,

e Proposition of a framework that can be used in both virtual and real distributed
computing platforms, which integrates a set of modules, and is easily adaptable
in any heterogeneous distributed environment,

e Highlighting of the reliability of the proposed approach using three different
environments and expose wide experimentation using the experimental Cloud
based on OpenStack which compares the efficiency of the proposed MMin against
two others algorithms in terms of QoS metrics.

e Validation of MFHS as a simulator, while using a theoretical data.

e Basic evaluation of MFHS using Emulab testbed,

e Exposition of wide experimentations using MFHS in a real Cloud environment
based on OpenStack which compare the efficiency of a heuristic and algorithms

through the computation of a set of metrics and parameters.

Thesis Organization

The remainder of the thesis is organized as follows:
In Chapter I, we discuss the background that is related to the context of our work.
Firstly, we present the most widely considered characteristics of schedulers and tasks.

Then, we talk about a set of distributed architectures, especially recent ones. Finally,

we present different QoS parameters. This chapter allows understanding the ones
that follow it.

In Chapter II, we introduce the related work. Two sub-sections are presented
in this Chapter. The first one consists in describing the task scheduling algorithms
existing in the literature, that we have classified into two categories, which are non-
evolutionary, and evolutionary approaches. Then, in the second sub-section, we
present a set of evaluation tools, allowing to evaluate such an algorithm. More in
detail, this second part presents the simulators of distributed environments in a first

time, and the frameworks oriented resource management in a second time.

In Chapter III, which is mainly derived from our publication [62], we present in
detail our framework MFHS. In this chapter, the architectural model that we have
adopted by our framework is presented. Then, the different modules, as well as the

different formulas used to compute various QoS parameters are discussed.

In Chapter IV, we describe in detail our two proposed algorithms, which are mainly
inspired by our two publications [61], and [62]. The first algorithm is a deterministic
heuristic called MMin which is presented in our publication [62]. MMin combines the
two well-known heuristics Max-Min and Min-Min. The second algorithm is another
evolutionary approach that we presented in our paper [62]. Remember that the

objective of our two proposals is to optimize (minimize) the total response time.

In Chapter V, we present in detail the evaluation of our proposals, a presentation
of InterRC using a simulator is described in the first part, then, various experiments
that we have carried out using MMin and MFHS are discussed in the second part.
The latter is quite large compared to the first one, because it brings together two
objectives, on the one hand the well-functioning of our MFHS framework, and on the
other hand the efficiency of our MMin algorithm in terms of total response time. The
experiments done in the second part were conducted on three different environments,
the first one is a simple PC where MFHS was used as a simulator, the second one is
an Emulab environment located at CERIST and the third one is a Cloud environment
located at LAAS. Four QoS parameters were considered in each experiment, namely,

the total response time, cost, energy consumed, and resource usage.

In Chapter 5.5, which is the last one in our thesis, we start with a discussion of
the different results that we have obtained during our various experimentations, then
we finished with a conclusion and with a presentation of several perspectives that can

follow our work.

List of Publications

As results, two papers are published. The first one exposes our evolutionary solu-
tion of task scheduling, which is published in the "Mendel Soft Computing journal"
after its presentation in the 25th International Conference on Soft Computing. Then,
the seconde one is published in the journal "Software: Practice and Experience", it
exposes our framework, and our heuristic MMin.

Our two publications are:

1. Abdelhamid Khiat and Abdelkamel Tari. Interrc: An inter-resources collabo-
ration heuristic for scheduling independent tasks on heterogeneous distributed
environments. In MENDEL, volume 25, pages 179-188, 2019.

2. Abdelhamid Khiat, Abdelkamel Tari, and Tom Guérout. MFHS: A modular
scheduling framework for heterogeneous system. Software: Practice and Expe-
rience, 50(8):1463-1497, 2020. doi: 10.1002/spe.2827.

CHAPTER I

Background

1.1 Introduction

Before giving details about the main subjects of this thesis, which are the resource
management and scheduling in large scale distributed systems, we will start by ex-
plaining a set of key-concepts which represent the background needed to understand
our contributions.

In this chapter, we will present the background. We start by giving the most
important properties related to task scheduling, then we discuss a set of distributed
environments which can be used to achieve a parallel computing, and finally, we
present different QoS parameters, where one or more of them can be considered when
proposing such a solution for task scheduling or resource management oriented to

distributed environment.

1.2 Scheduler Characteristics

Scheduler invocation There are mainly two ways to invoke a scheduling process:
event-guided invocation [18| and time-guided invocation [69]. In the first case, the
invocation of the scheduler is decided following an event such as task arrival, or change
of a resource’s state. Whereas in the second case the invocation time of the scheduler
is defined beforehand and does not depend on any event. It is common to use the term
on-line scheduling to mean event-invoked scheduler, and the term off-line scheduling

is used for a time invoked scheduler.

Scheduler nature Two types of scheduling can be distinguished. Dynamic schedul-
ing and Static scheduling. According to [107], in a static scheduling case, the sched-

uler has complete view of the tasks set and its constraints. such as, precedences

11

constraints, execution time, preemption, priority, etc. In contrast, a dynamic sched-
uler has complete knowledge of the currently active set of tasks, but new arrivals
may occur in the future, not known to the algorithm at the time it is scheduling the

current set. The schedule therefore change over time.

Determinisity Algorithms can be classified as either deterministic or non-deterministic.
In a deterministic algorithm, the results are identical even if the execution of this al-
gorithm is repeated many times. Conversely, in a non-deterministic algorithm, the

results vary at each execution of the algorithm.

1.3 Task Caracteristics

Priority It defines whether some tasks of the whole set taken into account have to
be scheduled before the other or allowed to be delayed. When all tasks to be scheduled
have the same priority value, the scheduler is said without priority and all the tasks
have the same probability of being started first. Contrary, for task scheduling with
priority, the value of this latter can vary between an interval which defined the tasks
that have a higher priority than the other. In general, a higher priority leads to have
a higher probability of being schedule firstly.

In priority scheduling, two cases are possible: dynamic or static priority. In the
case of dynamic priority scheduling, the priorities are computed during the execution
of the tasks, whereas, in the static priority scheduling, the values of the priorities are

fixed and can not be changed during the tasks execution.

Deadline A task can have a constraint on the execution end date, meaning that the
task completion time must be lower than a given time. In this case, the scheduling
approach is said to be time-constrained (with deadline). Contrarily, when the task
completion time is not subjects to a deadline, the scheduling approach is not time-

constrained.

Preemption We say that a task is preemptible when it is allowed to suspend its
execution. The suspension is generally done to execute another task with higher
priority than the suspended one. Meanwhile, a non-preemptible task is a task whose
suspension is not allowed in any case which means since its execution has been started
the task has to be completed.

12

Dependence This characteristic allows to define the relationship between tasks.
Two cases are possible: dependent tasks or independent tasks. In the case of inde-
pendent tasks, there is no precedence constraint between tasks, i.e. each task can be
started without waiting for another. Whereas in the case of dependent tasks, there
are precedence constraints between the tasks, where, each task must respect the de-
pendency constraints and wait for the completion of all preceding tasks before it is
started. In this second case, the term workflow is widely used and a Directed Acyclic
Graph (DAG) is also used to model a tasks scheduling problem using dependencies

constraints.

Tardiness In a time-constrained scheduling approach, the tardiness of a given task
represents the delay penalty of this task. It is defined as the time between the due-time
(deadline) and the real completion time of the corresponding tasks. It is significant

only if a task is completed after its due-time [94].

Periodicty It is possible to classify the tasks in terms of their appearance into three
main categories: periodic, sporadic, and aperiodic tasks. A periodic task is a task
that repeats after a certain fixed time interval (clock interrupts). A sporadic task is
a task that recurs at random instants. An aperiodic task is in many ways similar to
a sporadic task, except that, in case of an aperiodic task, the minimum separation
time between two consecutive instances can be 0. That is, two or more instances of

an aperiodic task might occur at the same instant.

1.4 Distributed Architectures

Since their, distributed systems never stopped evolving, especially with the ad-
vent of new types of resources that can be solicited to participate to a distributed
computing, like smartphones, tablets, or any other network equipments that possess
a computing equipment (processor). Innovation in this kind of computing archi-
tectures leads to the apparition of new ones, and also increases the importance of
these paradigms of computing. In this chapter, we aim to review the most important
distributed computing paradigms and the main similarities and differences between

them, in particular, the ones that can be supported by our proposed solutions.

Cluster the concept of Cluster has emerged in the early 1970s. A cluster was

organized in the following way: a front-end machine that allows the user to submit

13

tasks, and a set of storage and computing nodes that allow the user to execute the
tasks. The nodes are linked together by a local area network. A backup machine
allows to store the current job while the cluster is processing another user’s jobs.
This type of clusters has several drawbacks, in particular the need to expand their
capacities without turning them off. Beyond a certain size, they will pose a problem
of space in buildings, electricity supply, or air conditioning. As another drawback,
there is the fact the users will have to share the same environment. In other words,
there cannot be, for example, users who use their own operating system: users must
work with the programs and libraries installed on the cluster’s machines.

Today, clusters are still used for High-Performance Computing (HPC). The
Top500! is a ranking listing the 500 most powerful clusters in the world. For ex-
ample, in November 2019, the top-ranked cluster in the ranking is the Summit?
supercomputer developed by IBM, which provides a Theoretical Peak (Rpeak) of
200,795 T'Flop/s.

At the same time, the organization of the clusters has changed: clusters have
been made usable as a single computer with "single-image systems" [82]. A low-level
overlay allows the merging of all nodes. For example, when the user invokes the ps
command, system calls are modified to return a list of all processes running on all
nodes of the cluster. Such implementations have been proposed by OpenSSI 2 or
open *. The disadvantage of this kind of systems is the cumbersome maintenance.
Each addition to the operating system kernel leads to a change in the software.

Nowadays, the amount of data to be processed increases significantly and in a
BigData context, transferring the data to the computing node is no longer possible.
It was therefore considered to move the processing to the servers storing the data
rather than the other way around. In this way, the computing and storage nodes
were merged. In this area, implementations such as Hadoop [118] or over-layers such
as Spark [129] or Flint [100] are used.

Grid computing The concept of Grid emerged in the 1990s. A grid can be seen as
a set of clusters geographically distributed over a territory and interconnected (either
by a dedicated network or via the Internet). Usually, this interconnection network
has a much higher latency than the latency of the internal network of each cluster.

Those high levels of latency bring many difficulties, for example, for the sharing of

Thttps://www.top500.org,/lists/2019/11/

Zhttps://www.top500.org/system /179397
3http://openssi.org/

4Mosixhttp: / /openmosix.sourceforge.net /

14

data between different sites. Accessing data located in another cluster of the grid
becomes an expensive operation. File systems such as Xtreemfs have been invented
for this particular use case [51].

A major concept that makes the grid different from other distributed architectures
is the use of Virtual Organization (VO). The latter allows to organize the whole set of
grid users into virtual organizations that work on the same resources; which are not,
generally, accessible by the other VOs. The shared resources can be data, material

devices, processing software, etc.

Cloud Computing Cloud computing is composed of a very large number of servers
distributed in a limited number of data centers. Virtualization technologies is the
main used technology, which allows these nearly infinite resources to be allocated on
demand by users [130].

Cloud computing providers can provide services at different levels of abstraction
such as: Software as a Service (SaaS) which consists in hosting and maintaining
an entire application for a user, Infrastructure as a Service (IaaS) which consists in
providing only virtual machines that the user can configure himself, or Platform as a
Service (PaaS) which provides both the hardware and operating systems ...etc.

SaaS, TaaS, and PaaS are the most known abstraction levels, but there exist other
levels, like Data as a Service (DaaS) that is considered as a subset of SaaS. Function
as a Service (FaaS) is even simpler than PaaS. As suggested by its name, it is based on
the functions which can be triggered by a given event. Backend As A Service (BaaS)
differs from PaaS. It provides the tools and services necessary for the development
and operation of the applications, allowing I'T departments to avoid investing in the

development and management of their back-end infrastructures.

IoT Due to their centralized architecture, Cloud Computing infrastructures are not
adapted to the needs of the Internet of Things (IoT). Firstly, the long-distance
between connected objects and data centers delays responses to users, because of the
low latency. This makes its use incompatible with a large number of use cases in which
the response time is critical [10]. Some authors go so far as to say that the latency
to reach a server located on a Cloud Computing site is high and unpredictable [130].
The second reason is that the number of existing data centers can not keep up with an
ever-increasing number of connected objects, considering the high number of requests
and network load [130]. To give an order of magnitude, Shi et al [102] indicated that
in 2019, the connected objects will produce 500 zetta-bytes of data, whereas it is

15

estimated that the amount of data produced by Cloud infrastructures can currently
only carry 10.4 Zo (we are not able to check this value under the day of writing this
thesis).

IoT has been proposed in order to avoid the Cloud weaknesses. According to ITU®,
[oT is defined as "global infrastructure for the information society, which provides
advanced services by interconnecting objects (physical or virtual) using existing or

evolving inter-operable information and communication technologies".

Edge The general idea of the Edge solution consists in carrying out the computa-
tion, no longer on the Cloud Computing infrastructure but on servers located at the
edge of the network, as close as possible to the users and connected objects. To do
this, servers are deployed close to the users, at the edge of the network [57] [35]; [102].
In the case of a cellular network, servers are deployed near each "base station". Users
then use the resources provided by the servers located in the cell to which they are
connected. These servers perform calculations that require low response times and
pass on those that require higher resources to the Cloud. Such an architecture is also
useful when storing data: the user queries a server located at the edge of the network.
If the latter does not have sufficient resources, the request is transmitted to the Cloud
infrastructure. When the data is returned by the Cloud, it is cached so that future
requests can be answered directly. Servers located at the edge of the network have
fewer resources than those in the Cloud, but sufficient resources to perform some
operations that require low latency.

Extreme Edge Computing is a specific case of Edge computing. The "Extreme
Edge Computing" model has the same objective as Edge Computing: to process
requests as close as possible to the users in order to limit the demands on the Cloud
infrastructure. However, the implementation is different: instead of placing new
servers close to users, users pool and share resources using peer-to-peer (P2P) or ad-
hoc protocols [64]. Calculations and storage are therefore performed on the devices
(connected objects) themselves. The differences between these different infrastructure

models are summarized in details by Yi et al [127].

Fog Computing For several authors, "Mobile Cloud Computing" type infrastruc-
tures cannot cope with the mobility constraints of connected objects [126] [79]. Thus
on small cells or when the connected object has a very high mobility, the server on

which the calculations are deported will change permanently. This change will be

Shttps://www.itw.int /ITU-T /recommendations/rec.aspx?rec=11559&lang=en

16

the cause of high latencies when submitting a computation. "Low Cloud", "Fog" or
"Fog Computing infrastructures" were proposed by Cisco® in 2012 [10] and are today
supported by many manufacturers. The proposed architecture consists in deploying,
not isolated servers close to the users but, small data centers distributed in different
sites located at the periphery of the network. These data centers typically include
about ten servers and provide computing and storage resources to clients located at
the edge of the network. Because of their larger size compared to Edge Computing,
Fog’s sites support greater user mobility while improving response times compared
to a cloud infrastructure. In order to simplify deployment, it has been proposed to
place the servers in points of presence on the Internet [71]. Each device accesses a
server located in its immediate environment. This server performs some computing
locally and delegates those that are too costly to another server located a little further
away from the end user. In this way, the computations are distributed throughout
the infrastructure. The servers close to the users take care of the inexpensive but
low response time processing, up to the Cloud Computing which performs the very
resource-intensive calculations but for which the response times are less important.
Fog infrastructures can also be hierarchical, with a Cloud computing architecture
at the top of the hierarchy [11] [33] [14]. The general idea is that, the more a site is
in the top of Fog hierarchy, the more the provided resources are important. On the
other hand, the latency to reach this site is high. The Cloud provides almost unlimited
storage and computing capacity at high latency, while the Fog site closest to the user
provides very low latency, low computing and storage capacity. The advantage of such
an architecture is that when a Fog site needs to access data or perform computations
in the cloud, the cloud infrastructure is not directly affected. Many sites are traversed,
allowing data to be cached, aggregated, and even some portions of the computations
to be performed [1]. As a result, the Cloud receives much less data than when it
is used directly, allowing a better scalability. In some cases, all the computing is
performed before the Cloud infrastructure is reached, reducing calculation time. The
general idea of the Fog is to be able to perform Big Data calculations with latency
constraints [9]. Such an architecture has other advantages, especially from a privacy
and security point of view [108] [128]. Having the user’s data on a server located close
to the user limits the number of potential attackers that may be encountered the way.
Similarly, each server only manages the data of a small number of users, which limits
the impact in case one of them is compromised. Finally, other authors evaluate the

potential energy gain by redirecting queries to the Fog site or data center with the

Shttps://www.cisco.com/

17

lowest carbon footprint at the time [55] [34].

1.5 QoS parameters

QoS (Quality of Service) is an important criterion that must be considered when
designing solutions for task scheduling or resource management, which aims to ensure
a good execution of users’s job in order to satisfy the architecture users. For this,
several metrics can be considered. In this section, we will present a set of such
metrics and give a brief description of each one of them. These criteria help also to
evaluate the quality of a scheduling solution, although it should be noted that this
quality depends not only on the scheduler policy, but also, on the state of the used
computing platform. In chapter III, we will take some of the parameters presented
here, especially the ones that we have used in our solutions, then we give more details
about the formulas used to calculate them. QoS parameters can vary from one field
to another. In the following, we will focus on the QoS parameters that are the most
relevant in the field of distributed computing, especially those that have a direct

influence on the system behavior

Makespan One of the most commonly used measures in the evaluation of schedul-
ing algorithms is the Total Completion Time or Makespan. The makespan is the
difference between the time of job submission and the time at which result is ob-
tained. In other words, it is the completion date of the last task. In general, the
makespan depends of the task execution time and the time taken by the transfer of
the data over the network. The execution time depends on both workload and ma-
chine performance. The network transmission time depends both on the latency of

the network and the size of transmitted data.

Cost As a result of the market-oriented feature of today’s services, most providers
of distributed computing platforms have set prices for the use of their services. The
cost is generally set in relation to the transfer of a unit of data (e.g. per MB) between
the resources used and the price for processing per unit of time (e.g. per hour). Other
parameters are also considered such that the quality of the resource used, i.e. the
unit cost of using a resource is higher when it has a low probability of having a failure

than when it has high probability.

18

Reliability Reliability represents the probability that the job will be fully executed
successfully, without any resource fault. Several models are available, such as the one

described in [114], which is an intrinsic property of the resource.

Consumed Energy This parameter becomes more and more important, which im-
poses its consideration when proposing a scheduling or resource management solution
for such a distributed architecture, independently of its nature. According to plan-
etoscope 7, world energy consumption represents 428 tonnes of oil equivalent every
second (meter) or 13,511.2 Million tonnes of oil equivalent (Mtoe) per year. Fossil

fuels still account for 81% of world consumption.

Load balancing This parameter is considered as one of the key issues: it is nec-
essary to distribute the workload between several nodes to ensure that no node is
overloaded compared with others. Load balancing must be ensured while optimizing

other parameters such as makespan and resource utilization.

Resource utilization Is the efficient and effective use of the set of available re-
sources. In this way, all resources allocated for such a job need to be used as much as
possible to avoid an additional consumed energy and cost This parameter becomes
more important, when the computing providers compute the cost per time and not

per Central Processing Unit (CPU) time utilization.

1.6 Conclusion

In this chapter, we have described different notions, which represent the back-
ground necessary for the user to introduce our own work. First, we have presented
many notions concerning the task scheduling part. We also presented different proper-
ties related to the tasks, and different parameters concerning the scheduler. Secondly,
we have outlined several parameters of QoS that allow us to analyze the behavior of
task scheduling approaches in a distributed computing architecture. Finally, we have
discussed different kinds of distributed computing architectures, which are required
to understand the philosophy of these architectures.

All presented material is used in the remainder of this thesis. In the following

chapter, we analyze a set of scheduling heuristics. Meanwhile, the presented heuris-

"https://www.planetoscope.com /Source-d-energie /229-consommation-mondiale-d-energie-en-
tep-.html

19

tics are classified into two categories, evolutionary heuristics and non-evolutionary

heuristics.

20

CHAPTER II

Related Work

2.1 Introduction

In this chapter, we present our related work. For a more clear presentation, we
have divided this chapter into two parts. In the first one, we discuss task scheduling
whereas in the second, we cover resource management. In the first subsection, we
focus on different task scheduling heuristics, especially, that are tightly related to our
proposed scheduling solutions. Then, the second subsection which covers resource
management is further presented as two subsections: simulation tools that allows to
simulate a distributed computing environment, and frameworks that can be deployed

in real world distributed architectures.

2.2 Scheduling Algorithms

The complexity of the task scheduling problem in distributed environments when
it comes to find the optimal makespan is NP-Hard in general [37]. Consequently,
there is a lack of solutions that can find the optimal makespan in a reasonable time,
especially when the problem size increases. An important number of approximate
approaches that address this problem have been proposed in the literature. These
approaches aim to find a solution as near as possible to the optimal solution in a
reasonable time.

A set of non exhaustive works will be presented in the remainder of this section.
The presentation is divided into two subsections. In the first one, a set of non-
evolutionary heuristics, characterized by their low execution time complexity, will be
presented, including a set of heuristics based on both Max-Min and Min-Min. Then,
in the second one, some evolutionary approaches will be introduced, which are usually

characterized by a good result in terms of objectives to be optimized.

21

2.2.1 Non-evolutionary Approaches
2.2.1.1 Conventional Heuristics

Maz-Min [30] algorithm consists of executing a set of iterations. The iteration
process consists of selecting the task that has the biggest completion time, and then
affects it to the resource that gives the minimum execution time. It subsequently
repeats this process until the end of scheduling all tasks. After each iteration, the
completion time is updated for each task that is not yet executed.

In the Min-Min [30] scheduling process, an iteration consists of selecting the re-
source that has the minimum value of completion time, then, the task that has the
minimum execution time on this resource is selected. Similarly for Maz-Min, after
each iteration the completion time is updated for all tasks not yet mapped.

Min-Mazx |53] heuristic is similar to Maz-Min and Min-Min approaches, it sched-
ules one task in each iteration, until the scheduling of all tasks. At each iteration,
the minimum completion times of all unassigned tasks over all available resources are
computed. Then, for each unassigned task, the ratio of its minimum execution time
on all resources to the execution time on the processor that resulted to the minimum
completion time is computed. The task that has the highest value of this ratio is
removed from the list of unassigned tasks and scheduled to the resource that gives
the minimum completion time.

Sufferage algorithm [77| executed in iterations where each iteration is composed of
two processes. The first one consists of computing for each task a value called sufer,
which represents the difference between the first and the second minimum execution
time of the concerned task. While the second one allows affecting the task with
maximum suf fer to the resource that gives the minimum completion time. These
two processes are repeated until the end of the assignment of all tasks.

Round Robin (RR) algorithm is a simple heuristic with low complexity, which
remains largely used in a significant number of algorithms, particularly, in the real
deployed algorithms. the RR algorithm affects the first task found in the set of not
affected tasks to the first available found resource, until there are no remaining tasks.

An algorithm called Relative Cost algorithm (RC') was proposed in [122]. Relative
Cost (RC) utilizes an indicator called Relative Cost (RC'). According to authors, RC
retains the advantages of the Min-Min algorithm regarding makespan, and efficiently
balances the load. The task and resource that are selected in each iteration is based
on two quantities: the static relative cost and the dynamic relative cost. The static

relative cost is computed once at the start of the algorithm as rate between the

22

execution time of this task on this resource to the average of its execution time
on all available resources. The dynamic relative cost is computed before each task
is scheduled as the rate of the completion time of the task on the resource to the

average of its completion time on all available resources.

2.2.1.2 Heuristics based on both Max-Min and Min-Min

The heuristics that are presented in section 2.2.1.1 are considered as conventional
heuristics. Therefore, an important number of heuristics is based on the presented
heuristics. In the following, we expose the most notable ones. Looking to the huge
number of this kind of heuristics that exist in the literature, we will focus only on
the ones based on Min-Min and Max-Min. This choice is made because one of our
contributions combines the two algorithms.

In the litterature [75] [27], the complexity of Min-Min and Maz-Min is known to
be O(mn?), where n represents the number of tasks and m the number of resources.
Nevertheless, an implementation of [109] that switches from the original task-oriented
view to a processor, reduces the complexity of Min-Min to O(mnlogn).

In [88], the authors have proposed a hybridization of Min-Min and Maz-Min.
The proposed algorithm, called RASA, starts by counting the number of available
resources. If this number is even, the algorithm calls the Min-Min algorithm, if not,
it calls Maz-Min algorithm. Then, the execution will be alternatively between these
two algorithms. In [81], the authors have proposed to combine RASA with Min-Min
for scheduling tasks in a Cloud environment by dynamically choosing in each iteration
the adequate solution to be used (i.e RASA, Min-Min) to be used. In both proposals,
the authors looks to optimize the total makespan.

Another hybridization of Min-Min and Maz-Min is proposed in [31]. The pro-
posed algorithm selects in each iteration an algorithm (Min-Min or Maz-Min) to be
executed. The selection is based on the computation of the position of the first task
in the meta-task in which the distance between its completion time and its succes-
sor’s completion time is greater than a value called sd (standard deviation). If this
position is less than n/2 (task located in the first half of the meta-task) or if sd is
less than a predefined threshold, then the Min-Min algorithm is selected. Otherwise,
the Max-Min algorithm is selected.

Another approach based on the statistical concept called asymmetry coefficient is
proposed in [87]. According to the author, Min-Min gives a good total response time

and the Maz-Min gives a better machine utilization rate in terms of load balancing

23

between resources. Besides, Min-Min gives poor results for a positive skewness co-
efficient because the majority of tasks are of small size. The skewness asymmetry
coefficient is computed at each iteration. If the skewness is less than zero, then the
Mazx-Min algorithm is used, otherwise the Min-Min algorithm is executed. This new
algorithm shows a better load balancing and total response time compared with two
classical algorithms.

In [73], the authors have proposed a heuristic that looks to minimize the makespan
of a job which is executed on geo-distributed data-centers. The proposed heuristic
called Min-Max-Min, extends Max-Min algorithm. In the proposed heuristic the task
which has the shortest expected completion time has the priority to be selected first,
while the details of the proposed heuristic were not given in the article.

Usually, the algorithms based on Maxz-Min and Min-Min consider only one pa-
rameter related to the execution time. Whereas an improved Max-Min algorithm
was proposed in [58] which considers additional job’s characteristics like size, outline,
payload ratio, and available storage.

Other propositions look to improve one of the two algorithms, as for example
in [28]. The authors made only one change to the original Maz-Min algorithm. The
latter begins with the assignment of the task that has a maximum completion time to
the resource that offers a minimum execution time, whereas, in the proposed version
the scheduler starts by the assignment of the task that has a maximum completion
time to the resource that offers a minimum completion time (always by a recursive
execution of the algorithm). Thereafter, Bhoi et al. proposes a single change to the
previous algorithm([28]). The basic idea of this new algorithm is to assign the tasks
that their completion time’s value is the nearest to the average of the completion
times of the other tasks (not the greatest).

An algorithm based on Min-Min was proposed in [4] where the processing and the
data transfer speed are considered. The principle of the proposed algorithm consists
to divide the set of resources into four categories: low/high data transfer rate and
high /low processing speed. Afterward, for each task, the algorithm computes the
value of CCR (communication to ration computation) to determine the nature of the
job. The latter can be in high/low QoS in terms of CN (Communication Link) or
high /low QoS in terms of CPU (CPU speed). According to the job nature and to
the resource category, the algorithm determines the set of candidate resources for
the job’s execution. Then, Min-Min algorithm is executed for each job on the set of
candidate resources to select the appropriate resource to execute the job.

In [60], a two phases scheduling algorithm is proposed. The first phase consists

24

to call the standard Min-Min. In a second phase, the rescheduling is executed by
ordering the tasks scheduled on the resource giving the makespan by decreasing order.
It then finds another resource that can execute one of those tasks and reproduce the
expected makespan.

Max-Min and Min-Min are also used to optimize other parameters like load bal-
ancing. In [40], the authors propose a load balancing solution in addition to the total
time response optimization. The idea consists of executing the algorithm Max-Min
in two phases: the first one consists of executing the classical Maz-Min and the task
is rescheduled in the second phase to achieve the maximum load balancing. To do
this, the algorithm compares the M CT (Minimum Completion Time) of each task T
with the response time produced by the standard Maz-Min algorithm (after sorting
tasks in ascending order).

In [68], expanded Maz-Min (Ezpa-Maz-Min) algorithm is proposed. Based on
Mazx-Min, it aims to reduce the cost and balance load by effectively give equal oppor-
tunity to both cloudlets with maximum and minimum execution time to be scheduled
first.

In [116], the authors have proposed an application of the Maz—Min Ant System
in mobile Cloud computing. The authors present a local mobile Cloud model with
a detailed application scheduling structure for the first time. Then, a scheduling
algorithm for the presented model is presented. The presented algorithm is based on
Max—Min ant system called MMAS.

In [50], based on the original Maz-Min, the authors introduce a machine learn-
ing approach to improve the completion time in a Cloud environment. The proposed
algorithm is called MMSIA. After clustering the size of requests and clustering utiliza-
tion percent of the set of Virtual Machine (VM), MMSIA uses the “learned learning”
machine learning approach. Then it assigns the largest cluster requests to the VM

with the least utilization percent.

2.2.1.3 Other Non-evolutionary Approaches

In this section, we present some heuristics that cannot be considered as conven-
tional.

LSufferage proposed in [41] is inspired by Sufferage. In the LSufferage algorithm,
a static descending ordered list is generated for each possessor p. Each element of
the generated lists contains the task identifier, and an associated value. The latter

is obtained by computing the ratio between the maximum execution time of the

25

concerned tasks T and its execution time on p if the execution time of T on p is not
the maximum execution time, otherwise, the value is calculated by the division of
the execution time on the second fastest possessor on the maximum execution time
(p). Finally, the scheduler uses these values to schedule each task to the processor
according to their priority (computed ratios).

In [59], a two-phases scheduling algorithm is proposed. In the first phase, the tradi-
tional Min-Min algorithm is executed. In the second phase, the tasks are rescheduled
to improve the use of the improve the resources utilization.

In [54], a two level load balancing approach is proposed, which aims to improve
the result from a level to another one. The proposed solution combines join idle queue
and join shortest queue approach.

In [21], a two level priorities are defined for tasks and resources. Using Min-Min,
scheduler start by schedule the tasks of high priority to the high level resource, then
schedule the rest of tasks to all available resources. Then, a rescheduling is made to
improve the load balancing between resources.

In [92], a scheduling algorithm based on non linear programming is proposed while
only considering the network bandwidth. According to the author, a smart usage of
network bandwidth allows to avoid wastage of available resources.

In [80], an intelligent technique was proposed, by choosing dynamically in each
iteration the adequate solution (RASA, Min-Min) to be used.

In [78], Carbon and Cost Aware GEographical Job Scheduling (CAGE) is a tech-
nique based on the Alternating Direction Method of Multipliers (ADMM) and en-
visage to reduce carbon footprints and electricity cost in geo-distributed collocation
data-centers. Then, this work proposes a dynamic distribution of the work-flow con-
sidering local renewable availability, carbon efficiency, electricity price, and energy
usage.

In [43], a dynamic preemptive resources allocation approach is proposed, the pre-
emption is down to allow the tasks of high priority to be executed on concerned
resource. The priority of tasks are based on cost and deadline. The proposed ap-
proach support also the fault tolerance.

In [46] a hybrid integrated thermal aware scheduling algorithm was proposed,
which aims to minimize cooling energy consumption in data center labs when assign-
ing jobs for computation.

In [105], Longest Cloudlet Fastest Processing Element (LCFP) and Shortest Cloudlet
Fastest Processing Element (SCFP) are two algorithms which are proposed, both
LCFP and SCEP envisages to optimize the total makespan. In LCEP, the length-

26

ier cloudlets are mapped to processing elements having high computational power,
while SCFP starts firstly by mapping the shorter cloudlets to processing elements
having high computational power.

In [20], a scheduling algorithm for assigning jobs to machines with heterogeneous
processor cardinality is exposed. The authors have proposed to improve the efficiency
of the dynamic programming, and have considered the total makespan as objective
to be optimized.

In [113], the authors have proposed a scheduling heuristics that aims to reduce
power consumption of parallel tasks in a cluster with the Dynamic Voltage Frequency
Scaling (DVFS) technique. Then, the authors have discussed the relationship between
energy consumption and task execution time.

In 98], a cost based algorithm was proposed, when a group of tasks are created
according to their proprieties, then divide each group into sub-groups based on the
resources’ Million Instructions Per Second (MIPS) and the required Millions Instruc-
tions (MI) of each task. Finlay, applying the the proposed algorithm while minimizing
the total cost.

In [94], an interesting point of the proposed Cloud workflow scheduling algorithm
(CWSA) is its implementation in a real world by considering a scientific complex

workflow applications.

2.2.2 Evolutionary Approaches
2.2.2.1 Conventional Evolutionary Approaches

Genetic Algorithm (GA) [42] is a popular meta-heuristic, considered as an evolu-
tionary approach works in polynomial time, GA is inspired by the biologic process of
the natural selection, in a standard GA, the algorithm starts with an initial popula-
tion, where this latter is composed of a set of solutions called individuals (chromo-
somes), the initial population known as first generation as inspired from the biologic
language, the G'A looks to improve the initial population by applying two main op-
erators C'rossover and Mutation, the new population called new generation. The
passage from a generation to another is called iteration, Crossover operator consists
to exchange a parts (gens) of two selected individuals, while Mutation operator con-
sists to alter one or more gens with a given probability called crossover probability,
usually the value of the latter is low.

A fitness function is used in the selection processes, by giving to best individual a

high probability to continue its existence in the next generation, while the individuals

27

with lower fitness values will have a high probability to be dropped out. Then, a stop
criterion is used to make an end to the algorithm, that can be a fixed number of
generations, non evolution in the result after a number of generation, or a fixed time
of execution of the algorithm.

Another nature-inspired meta-heuristic called Ant Colony Optimization (ACO)
was proposed in [26], ACO has been inspired by the foraging behavior of ants, where
a set of ants looks to find the best way to a found source of food. The algorithm
works as follows. The ants start by searching randomly a way that can reach the food,
when an ant finds a food, it comeback to the nest and deposits in the return way
a chemical pheromone, and each other ant explores this way deposits a pheromone,
the quantity of the deposed pheromone in a way allows to evaluate the quality of
the way. Consequently, the way that contains the biggest quantity of pheromone
is considered as the best know way. The vaporization of pheromone is a chemical
property of the pheromone that is used, when a way contains a small quantity of
pheromone is considered as bad way, then, it will be least used, subsequently, the
pheromone will evaporate with time, until its disappearance, then the way disap-
pearance. In an optimization problem, a way represents usually a solution, and the
quantity of pheromone represents the quality of the solution. Several adaptations and
modifications are proposed in the literature.

Particle Swarm Optimization (PSO) [103] is another meta-heuristic inspired from
the living world, a set of particles work in collaboration in the swarm, each particle
explores randomly the space of found object called solution, then saves its best found
solution, each time a particle improves its best known solution, the latter will be
communicated to the swarm in order to select a best global solution, finally, the best

global solution is considerer a the final best found solution.

2.2.2.2 Non-conventional Evolutionary Approaches

In this subsection, we describe a set of algorithms that we have considered as non-
conventional evolutionary approaches. That’s means, the exposed algorithms start
from an initial solution, and try to improve it to achieve a final solution. The algo-
rithms are based on a conventional heuristics, conventional evolutionary approaches,
or propose new operators.

Looking to the huge number of related work proposed in the literature, it is hard
to describe all of them. Meanwhile, we have just selected a part of these works to be

analyzed in this part of our thesis.

28

In the literature, many approaches base on GA are proposed, the authors of [97]
and[39] are adapted GA for multi-objectives optimization.

Some other works combine GA with other heuristics in order to optimize one
or more parameters, for example, Zhu et al. [134] have proposed a combination of
GA with Multi-agent and Min-Min techniques, Shojafar et al. [104] have proposed a
combination of GA with fuzzy theory, and Tao et al. [111] have combined Pareto and
GA in the aim of optimizing the energy aware and the makespan.

Several propositions propose to improve the original GA by introducing simple
modifications, like In [131] when the authors have considered computational and com-
munication in their adaptation of GS, [38] when the authors propose to implement GA
in an architecture based on Hadoop MapReduce using Java with GA package, [101]
when the authors propose a shadow price guided SGA based approach, or [132] when
the authors have proposed a parallel implementation of GA (PGA) to optimize the
VM allocation in Cloud based environment. Also, in [91], a model was defined, then
a multi-objective algorithm based on PSO was proposed.

Many approaches are proposed to make PSO more improved, [123], [44], [24]
and [115] are good example that use PSO for multi-objectives optimization. The
first one aims to optimize makespan and cost optimization, the second one looks to
optimize the total processing cost and the communication time, the third one define
load balancing, speed-up ratio and makespan as parameters to be optimized, then
the last one envisages to optimize the cost and the task response time.

In [8], a few scheduling algorithms respect really the Cloud proprieties as elasticity
and heterogeneities of resources was proposed, the proposed algorithm is based on
PSO technique, a dynamic provisioning for the resources status is used in the proposed
algorithm.

In [22], a set-based PSO (S-PSO) was proposed by addressing the QoS constraints.
The S-PSO extends the original PSO in the discrete space and the service instances
available in the Cloud can be considered as a resource set.The S-PSO was integrated
with seven heuristics.

In [5], a variant of continuous PSO algorithm with smallest position value (SPV)
and weighted sum approach for pareto-optimality was used to resolve bi-objective
task scheduling problem in a Cloud Computing environment.

In [136], a resource allocation framework was proposed to execute a set of tasks
on an external Clouds when the TAAS provider can not ensure the QoS requirement,
the problem was formulated as an integer programming model, and solved using a

self-adaptive learning particle swarm optimization (PSO) approach.

29

In [76], to ensure a better share of charge, the proposed approach ensure real time
resource monitoring, and when a hot spots are identified, an ACO based algorithm
is called, to redistribute the charge between resources. To evaluate the proposed
approach, the authors have personalize an environment Jmeter and Xen.

In [25], an ant colony based algorithm was proposed to ensure a better load bal-
ancing, by exploiting the under loaded resources.

In [125], a tow level tasks scheduling algorithm was proposed, in the first level a
PSO algorithm is applied, then in the second level an improved ants colony algorithm
called max-min ant colony algorithm is applied.

In [72], a task scheduling policy using Load Balancing Ant Colony Optimization
was proposed, by considering the MIPS and network bandwidth, the proposed al-
gorithm was compared with basic ACO and FCFS. the compared parameters were
makespan and the load balancing.

In [117], an ACO and PSO Combined algorithm was proposed and use the muta-
tion and crossover operation inspired by the GA technique, according to the authors,
the proposed algorithm accelerated the convergence speed and improve Resource Uti-

lization Ratio.

2.3 Resource Management Solutions

A significant number of challenges have emerged with the advent of distributed
computing technology. Consequently, an important number of works, which propose
simulators and frameworks, were introduced in the literature in order to cope with
these challenges. In the following, a selection of the most used and interesting ones
is detailed. In this Section, we start first by presenting a set of simulators that can
simulate such a distributed infrastructure, then we proceed to the presentation of
a set of frameworks allowing to ensure the task of resource management in a real

distributed computing infrastructures.

2.3.1 Simulators

SIMGRID [19] is a simulator that provides basic functionality for the simulation
of distributed applications in heterogeneous distributed environments. Its use is well
suited for the evaluation of heuristics, prototyping, development, and improvement
of grid applications.

DCWorms (Data Center Workload and Resource Management Simulator) [70], is a
simulator developed at the Poznan Supercomputing and Networking Center (PSNC)

30

laboratory in Poznan, Poland, based on the former GSSIM [3] simulator. GSSIM has
been developed to provide an automated tool for experimental studies of resource
allocation and scheduling policies dedicated to distributed systems. DCworms is de-
veloped on these basic GSSIM functionalities, but above all it offers additional func-
tionalities related to energy consumption and energy efficiency studies. DCWorms
has as its main objective to enable the modeling and simulation of computing in-
frastructures in order to estimate their performance, energy consumption, as well
as different energy consumption metrics for different workload types and scheduling
policies. The DCWorms simulator input data can be directly provided by the user, or
generated using a GSSIM functionality, called workload generator. However, the key
elements of DCWorms’ architecture are plugins. They allow users to configure and

adapt their simulation environment according to the characteristics of their studies.

GreenCloud [65] is an extension of the network simulator ns2 [52]. It provides a de-
tailed modeling and analysis of the energy consumed by the elements of the network
servers, routers and links between them. In addition, it analyzes the load distri-
bution through the network, as well as communications with high accuracy (TCP
packet level). In terms of energy, GreenCloud defines three types of energy: cal-
culation (CPU), communications, and physical computing center (cooling system),
and includes two methods of energy reduction: DVS (Dynamic Voltage Scaling) to
decrease the voltage of switches and DNS (Dynamic Network Shutdown) that allows

to shut down switches when it is possible.

CloudSim [16] is a toolkit for modeling and simulation of Infrastructure as a Ser-
vice (IaaS) cloud computing environments. It allows users to define the characteristics
of data centers, including number and characteristics of hosts, available storage, net-
work topology, and patterns of data centers’ usage. It allows the development of
policies for placement of virtual machines on hosts, allocation of cores to virtual ma-
chines, and sharing of processing times among applications running on a single virtual
machine. The application layer is managed by brokers, which represent users of the
cloud infrastructure, that request creation of virtual machines in the data center. A
broker can simultaneously own one or more virtual machines, which execute applica-
tion tasks. Virtual machines are kept operating while there are tasks to be executed,
and they are explicitly deallocated by the broker when all the tasks finish. Capacities
of both virtual machines and hosts’ CPUs are defined in MIPS (Million Instructions
Per Second). Tasks, called cloudlets, are assigned to virtual machines and defined as
the number of instructions required for their completion. Recently, a Fog version is

available called iFogSim [45]|.. The latter is designed for modeling and simulation of

31

resource management techniques in the Internet of Things, Edge and Fog computing
environments.

Many other open-source simulators based on CloudSim have been proposed, like
NetworkCloudSim [36], FederatedCloudSim [67], DynamicCloudSim [13], TeachCloud [56],
FTCloudSim [133], WorkflowSim [23] ElasticSim [15], CloudAnalyst [119] and CloudReports [96].
All cited simulators were developed using the Java language and include the sup-
port for energy, cost and federation models. Only Techcloud includes the SLA
(Service-Level Agreement) support. Some of the simulators (ElasticSim, CloudAn-
alyst, CloudReports and TechCloud) provide a Graphical User Interface (GUI). A
common disadvantage of those simulators is that they do not support parallel exper-
iments, which means that they do not offer the ability to combine more than one
machine to work together in order to process the given tasks.

ContainerCloudSim [90] and EMUSIM [17] are two important extensions of CloudSim.
The first one allows to estimate the data center power consumption by defining a
power model. While the second one proposes to integrate emulation and simula-
tion, it combines emulation (AEF-Automated Emulation Framework) and simulation
(CloudSim). In the emulation part, the software model is tested on the actual hard-

ware itself.

Another proposed tool called EMUSIM [17] integrates emulation and simula-
tion. It combines emulation (AEF-Automated Emulation Framework) and simulation
(CloudSim). In the emulation part, the software model is tested on the actual hard-
ware itself. EMUSIM is an open-source solution developed using the Java language.

An extension of the NS2 network simulator called GreenCloud [66] was proposed.
It is an open-source tool developed using the C++ and OTcl programming languages

and has a GUI. The users must use both C++ and OTcl to carry-on their simulations

A commercial solution similar to CloudSim called MDCSim [74]| was proposed. It
is an event-driven simulator, developed using Java and C+-+ programming languages.
MDCSim provides a graphical user interface that allows to easily model the desired
Cloud architecture.

A flexible simulator called iCanCloud [86] based on SIMCAN [85] was proposed
by Nunez et al.. The latter is a simulation platform designed for modeling HPC
architectures and the former comes to avoid the common weakness other simulators
such as CloudSim, GreenCloud and MDCsim. Both SIMCAN and iCanCloud are

open-source simulators developed using the C++ language. Those two simulators

32

offer the possibility of making parallel experiments. With iCanCloud it is possible to
add many adapted MPI library and POSIX based API for simulating new applica-
tions. However, none of the two simulators provides the energy model, the Federation
model and, the SLA support.

secCloudSim is a simulator built on top of iCanCloud and proposed in [93|. Tt
is developed using the C++ language and provides security basic features such as
authentication and authorization. Similarly to iCanCloud, secCloudSim supports
parallel experiments.

An open-source test-bed framework called OpenStackEmu [48] was proposed by Her-
nandez Benet et al., for experimental research on data communication networks, es-
pecially in the area of cloud infrastructures. According to authors, OpenStackEmu is
the first attempt that combines the OpenStack infrastructure with a Software Defined
Networking (SDN) based controller. OpenStackEmu enables emulating a large-scale

network connected to the OpenStack infrastructure.

2.3.2 Frameworks

In [32], the authors have proposed and implemented an Opensource framework
called Snooze, which allows the distributed management of VMs in private Clouds.
In addition to the functionality already exist in other Cloud management platforms
(OpenStack, Eucalyptus, and OpenNebula), Snooze implements the dynamic VMs
consolidation as one of its base features. Another difference consists to the implemen-
tation of hierarchical distributed resource management. The management hierarchy
is composed of three layers: local controllers on each physical node, group managers
for managing a set of local controllers, and a group leader dynamically selected from
the set of group managers and performing global management tasks. The distributed
structure ensures the fault-tolerance and self-healing management, by avoiding single
points of failure and automatically selecting a new group leader if the current one
fails. Snooze also integrates monitoring of the resource usage by VMs and hosts,
which can be leveraged by VM consolidation policies. These policies are intended to
be implemented at the level of group managers, and therefore can only be applied
to subsets of hosts. This approach partially solves the problem of scalability of VM
consolidation by the cost of losing the ability of optimizing the VM placement across
all the nodes of the data center.

An approach called Sandpiper was proposed in [120], which aims to ensure the load

balancing in virtualized data centers using VM live migration. The main objective

33

of the proposed system consists to avoid host overloads referred to as hot spots by
detecting them and migrating overloaded VMs to less loaded hosts. The authors
applied an application-agnostic approach, referred to as a black-box approach, in
which the set of VMs are observed from outside, independent of the nature of the
applications hosted on the VM. A hot spot is detected when the aggregate usage of a
host’s resources exceeds the specified threshold for k out of n last measurements, as
well as for the next predicted value. Another proposed approach is gray-box, when
a certain application-specific data are allowed to be collected. The VM placement is

computed heuristically by placing the most loaded VMs to the least loaded host.

Entropy is an Opensource VM consolidation manager for homogeneous clusters
developed by Hermenier et al.. Entropy was implemented on top of Xen and focused
on two objectives: maintaining a configuration of the cluster, where all VMs allocate
sufficient resources, and minimizing the number of active hosts. To optimize the VM
placement, Entropy applies a two-phase approach. First, a constraint programming
problem is solved to find an optimal VM placement, which minimizes the number
of active hosts. Then, another optimization problem is solved, which consists to
find a target cluster configuration with the minimal number of active hosts that also
minimizes the total cost of reconfiguration, which is proportional to the cost of VM
migrations.

An Opensource called OpenStack Neat was proposed in [6]. The framework based
on the OpenStack platform, and oriented to distributed dynamic VM consolidation
in Cloud data centers. The framework is designed and implemented as a trans-
parent add-on to OpenStack, which means that OpenStack Neat can be used under
OpenStack without modification of the original installation, and without specific con-
figuration. The proposed framework focus on live VM migration approach. To avoid
performance degradation VMs are migrated from overloaded servers, and to increase
the resource utilization and decrease the amount of energy consumed, VMs are mi-
grated from under-loaded servers to switched them off.

Teixeira et al. have proposed a combination framework of Mininet (a well-known
SDN emulator) and POX (an Openflow controller written in python), in order to
support the simulation of SDN features in cloud computing environments. Mininet
is used to emulate network topologies and data traffic in a data center running an
OpenFlow controller in POX. Thanks to the use of Mininet and POX, the proposed
framework provides practical results and a ready-to-use software in a real SDN envi-
ronment. The simulation tool, however, is lacking support for cloud-specific features

such as defining heterogeneous VM types or executing various application workloads

34

on the simulated host.

A Virtual Resource Management Framework (VRMF) is proposed in [84]. VRMF
allows to manage the resources in TaaS Cloud federation. System performance eval-
uation is done using ns3 environment, while basing on response time to evaluate the

ecosystem, and the system must be evaluated before and after the deployment of all
modules in VRMF.

A general cross-layer Cloud scheduling framework for IoT tasks is proposed in [121],
where an appropriate algorithm will be selected dynamically based on some criteria of

the analyzed tasks, different experiments were conducted using CloudSim simulator.

In [135], a resource provisioning framework oriented QoS requirement was pro-
posed ensuring an effective scheduling objective. The framework was evaluated by
both simulation using CLoudSim and in real cloud environment based on aneka, on
which energy consumption, execution cost, and execution time are the considered

parameters.

Somasundaram and Govindarajan have proposed a solution called CLOUDRB.
The latter is a cloud resource broker for scheduling and managing High-Performance
Computing (HPC) applications in Science Cloud, it integrates deadline-based job
scheduling policy with particle swarm optimization-based resource scheduling mech-

anism to minimize both cost and execution time to meet a user specified deadline.

CometCloud [63] is a cloud framework that provides autonomic workflow manage-
ment by addressing changing computational and QoS requirements. The overarching
goal of CometCloud is to realize virtual computational cloud infrastructure that in-
tegrates local computational environments and public cloud services on-demand, and
provide abstractions and mechanisms to support a range of programming paradigms

and real-world applications on such an infrastructure. Specifically,

35

2.4 Analyses

Reference Objectives Based on Evaluation tool Environment-oriented
[4] Makespan Min-Min GridSim Grid
[28] Makespan Max-Min JAVA 6 Cloud Computing
[81] Makespan and I[ii]l—l\rli Java 7 Cloud
88 Makespan Min-Min, Max-Min GridSim Grid
68 Makespan, cost, balance load Max-Min CloudSim
73 Makespan Max-Min MATLAB. Grid
[116] Load Balancing Max—-Min, machine learning not cited Mobile Cloud Computing
87 Load balancing and makespan Min-Min, Max-Min MATLAB Grid computing
60 Makespan Min-Min Java Cloud, and Grid computing
7] Makespan [28] CloudSim Cloud computing
50 Completion time Max-Min CloudSim Cloud Computing
40 Load balancing Max-Min Alea 3.0 Grid
[31] Makespan Min-Min and Max-Min GridSim Grid Computing

Table 2.1: Scheduling algorithms’ comparison

Table 2.1 shows a brief comparison of the algorithms described above in terms of
the objectives to be optimized, the used heuristics, the tools used in the evaluation
phase, and the target environments. In the table, we are interested by a subset
of the presented scheduling algorithms, which are the ones based on Min-Min, or
Max-Min. The choice is done because one of our proposed heuristics uses Max-Min
and Min-Min. The table shows that all presented algorithms, including all the other
algorithms discussed in section 2.2, are evaluated by simulation, That’s means, none
of them has been deployed on a real distributed architecture. The lack of deployment

of scheduling algorithms in a real-world environment can be explained by:

e The lacking of efficient solutions that facilitate the switch from simulation to
real deployment,
e even if such a framework that allows a real-world deployment exists, it is difficult

to make an easy switch from one architecture to another.

As described in Section 2.3, the already known resource management solutions,
including frameworks and simulators, propose different kinds of relevant features.
None of them includes an easy solution to switch between different environments.
This leads us to suggest the need to propose a framework, which eases the switch be-
tween a theoretical study, an emulator, and a real distributed platform. The switch
between different kinds of environments may be done automatically, without addi-
tional efforts. Indeed, a theoretical, or local emulated study, is often relevant when
starting a research study as it allows to have first results without requiring a long

preparation time.

36

To our best knowledge, all existing frameworks are designed for a specific archi-
tecture, which is considered as common weakness between these frameworks. This
common weakness can be resolved by proposing a solution that facilities the switch
from one architecture to another, for example from a Cloud based on Openstack to
a Cloud based on Azure, from a Cloud based on OpenStack to an emulated environ-
ment based on Emulab, ...etc. The issue is addressed in our thesis work, on which we
have proposed a framework that contributes to resolving this weakness. Our proposed

framework is described in detail in Chapter II.

2.5 Conclusion

In this chapter, we first presented a set of scheduling algorithms in relation to our
propositions. Then, in the second time, we have presented a set of evaluation tools in
relation to resource management, especially the ones used in the field of distributed
systems.

In the first part, we started by presenting a set of simple scheduling heuristics
separated into two sub-sections. In the first one, a set of convention heuristics, then
a set of heuristics based on both Max-Min and Min-Min that is in relation with our
proposition MMin are presented. Then, in the second one, we have discussed a set
of conventional evolutionary approaches, followed by the presentation of a set of non
conventional evolutionary approaches

In the second part, we have presented a set of evaluation tools, that can be used
as a resource management solution. The presentation was separated into two parts.
In the first one consist of showing a set of simulator, that can simulate distributed
computing infrastructures, while the second part consists of presenting a set of frame-
work able to manage a resource of an infrastructure. the frameworks are, usually, used
for a specific case. Unfortunately, all the presented evaluation tools can’t make the
priority of "From theoretical to real deployment. The latter is the subject of one of

our contributions, which will be presented in detail in the following chapter.

37

CHAPTER III

MFHS: a Modular scheduling Framework for

Heterogeneous System

3.1 Introduction

Current innovative distributed architectures, proposing on-line services, involve
more and more computing resources. From a provider point of view, the platform
management leads to challenging problematic relating to resource allocation which
involve different kind of quality of service parameters the provider has to focus on
to keep his platform reliable and efficient. In this chapter, we will present in detail
our proposed tool called MFHS, which is a modular generic framework that can be
adapted to any distributed computing environment. Structured in modules. MFHS
allows to discover the existing computing resources in terms of computing perfor-
mance, network throughput and disk 1/O speeds (Resources Discovery module), it
also allows to predict how the experiment should behave (P; value). As the setting
up of real experiments is often complex, MFHS allows: to make theoretical experi-
mentation (based on models), to use any kind of distributed emulators or to deploy
experiments on real experimental platforms. Our framework take into consideration
four QoS parameters (Resources Monitoring module): energy consumption, cost, re-
source utilization, and makespan. Then, the users of our framework can explore
the heuristics already deployed on MFHS, as can deploy any new task scheduling
heuristic.

In more practical terms MFHS allows to conduct studies in both theoretical and
real environment. In other words, MFHS can be used as a simulator only to con-
duct theoretical studies using generic input before deploying it on a real distributed
computing environment. This kind of pre-computation phase can help to conduct a

smart first evaluation of any scheduling approach. On the experimental side, MFHS

39

framework can be deployed on any distributed computing environment. Its behav-
ior and architecture allow to discover the environment on which MFHS is deployed
by checking various properties, such as configuration files, network characteristics,
hardware performance, etc.

From an algorithmic point of view, MFHS can support any scheduling algorithm
taking into account single or multi-objective QoS approach. In the proposed archi-
tecture, the Scheduling module is in charge of executing the chosen algorithm to find
an affectation of a set of tasks to a set of resources. A task is the basic element
which is characterized by a set of needs in terms of the amount of data to upload,
download, write and read from disk. Also, the technique used for the invocation of
the scheduling process is the time invocation. The task characteristics supported by
the MFHS are independents, non preemptive, with or without deadline and without
priority.

In the reminder of this Chapter, we start by describing the global architecture cho-
sen for MFHS in Subsection 3.2. Then, the whole modules are introduced separately
in Subsection 3.3. Finlay, Subsection 3.4 shows in detail several QoS parameters used

in the following studies.

3.2 High level Architecture

Figure 3.1 depicts a high level description of the considered computing architec-
ture. The set of resources are hosted on different datacenters linked by a network
which could be in distinct geographical location. Each of these datacenters hosts
a set of computing resources (also called computing nodes), which can be physical
servers, as can be virtual machines. Each computing node has its own characteristics
resulting to the heterogeneity of the distributed computing resources. The character-
istics that make resources heterogeneous can be pure processor performance, network
bandwidth, I/O speed, etc.

Figure 3.1 depicts the global architecture proposed from the users where which
come from the requested task (77,...,7,,) to the computing nodes (V M;,...,V M,,) that
are the parts of the available physical resources (PM).

3.3 Internal architecture of MFHS

Figure 3.2 describes in detail the internal architecture of MFHS framework.

We have chosen a modular architecture, in order to enjoy the benefits of modular

40

Datacenter | Datacenter
1 1 1 1
H H 1]
VM VM VM VM
VM VM e i e VM ~ v
pu &y v

Figure 3.1: High level global architecture

development, such as facilitating the understanding of the source code to make fast
modifications and adaptations for any distributed architecture. It is also possible to
take only a subset of the modules for re-utilization in another resource management
solution. Each module of MFHS framework serves to fulfill a well defined function.

MFHS is a centralized framework, meaning, to deploy the MFHS on a new or an
existing distributed computing architecture, the framework can be deployed on any
chosen simple machine.

From a security point of view, all exchanged messages done during MFHS pro-
cesses are encrypted, which avoid any risk of learning messages if the latter are sniffed.
Two possibilities are possible, use asymmetric cryptography or symmetric cryptog-
raphy. The first one, also known as public-key cryptography, is a process that uses
a pair of related keys, one public key and one private key, to encrypt and decrypt a
message and protect it from unauthorized access or use. A public key is a crypto-
graphic key that can be used by any person to encrypt a message so that it can only
be deciphered by the intended recipient with their private key. While the second one,
is a method where the uses a single key that needs to be shared among the people
who need to receive the message.

In large distributed systems, including our case, the use of symmetric cryptogra-
phy, implies a huge number of keys that must be exchanged over the network, but in
the case of using asymmetric cryptography, this number of exchanges is reduced. For

this reason, we have opted for the asymmetric method. Then, the Secure Shell (SSH)

41

& Time guided invocation
Users

V2

Requests Comportement Study

collector
Scheduling 4
R~

Resources Resources Resources
Discovery Allocation Monitoring

Network

Datacenter | Datacenter |

Figure 3.2: Internal components of the scheduler

protocol with a public-key authentication is used to ensure a secure communication
between the MFHS framework and the set of computing nodes, and any change is
needed at the level of the computing nodes.

In the following, We will give the details of each module of the MFHS framework.

3.3.1 Resources Discovery

This module makes carry out the Resource Discovery phase. This data collected
by this module will be used by the Scheduling module and the Resources Monitoring
module so the different informations that are collected by this module will be stored
in a structured file. Where each line corresponds to the capacity description of one
resource (j), identified by a unique identifier R;, each line of this file is written using

the following structure:

RPD; = R; : PM; : DebitDk; : DebitUk; : Speedl; : SpeedO;
NBRPhysicalCPUs; : NBRLogical CPUs; : Ppin; : Praz; - CRj : SMem; :
SDiS]fj

In the previous structure (Resource description), RPD; represents the perfor-
mance description of the resource R;, PM; represents the identifier of the physical

machine that hosts R;, DebitDFk; represents the download speed from the resource

42

R;, DebitUk; represents the upload speed on the resource R;, Speedl; represents the
write rate on the disk of the resource R;, SpeedO; represents the read rate from the
disk of the resource R;, NBRPhysical CPUs; represents the number of the physical
CPUs available on the resource R;, NBRLogicalCPUs; represents the number of
logical CPUs available on the resource, P, represents the power consumed at the
idle state of the PM; processors, Pq., represents the power consumed at the 100%
use of the PM; processors, C'R; represents the utilization cost of the resource R;
per unit time, SMem; represents the memory size of the resource R;, and SDiks;
represents the storage disk size of the resource R;.

The set of values are retrieved directly if the environment on which MFHS is
deployed makes it possible to set the values concerning upload and download rates,
read and write rates on the disk. But some cloud environments do not give the
possibility to fix these values, in this case, this module allows to discover the different
average debit, by executing a set of scripts.

In addition, this module allows getting a view about the environment stability
on which MFHS is deployed, and this by computing a convergence index called P4,
whenever P7 close to 1 then the environment is more stable, in order Pt is calculated
using Formula 77, 5.3 and 5.5. This set of three formulas are defined and described
in Subsection 5.3.6.2. Knowing P71 the designer of a scheduling algorithm can predict
the degree of precision of the results in terms of QoS to be obtained before running the

algorithm, and to predict the possible difference between theoretical and real results.

3.3.2 Requests Collector

This module collects data about the tasks execution requests, information col-
lected during the execution of the Requests Collector module are stored in an single

structured file. Each line describes a unique task, the structure of this file is as follows:

PRTi =T, : SizeDTU; : SizeDTD; : SizeDTW; : Size DTR; : TimeCPU; :
EstimatedCPU; : RNBRPhysical CPUs; : RN BRLogical CPUs; : RMem, :
Budget; : MaxEnerqgy;

In the previous structure (Request description), SizeDTU; represents the size of
data to be downloaded by the task T;, SizeDT D; represents the size of data to be up-
loaded by the task T;, Size DTW; represents the size of data to be writing in the disk
during the execution of task T}, Size DT R; represents the size of data to be reading

43

from the disk during the execution of task T;, T@meC PU; represents the time on which
CPU will be used to EstimatedCPU;% of its capacity, RN BRPhysicalC PUs; rep-
resents the number of physical CPUs required by the task T;, RN BRLogicalC' PUs;
represents the number of logical CPUs required by the task T;, RMem,; represents
the memory size required by the task i, Budget; represents the budget of the task T;
that must not be exceeded, and MaxEnergy; represents the maximum energy that
a task T; must not be exceeded.

The information mentioned in the corresponding file makes it possible to filter the
whole of the available resources in order to select only the resources that owns the
necessary performances in order to candidate to the execution of the concerned tasks.
Next, these values will be used to calculate the estimated value of execution time,

cost, and consumed energy of each task on each resource.

3.3.3 Scheduling

Scheduling module begins by collecting the information gathered by the Resources
Discovery module and the Requests Collector module. Then, two sub steps are ap-
plied. In the first one step and for each task T}, a filter on the set of available resources
is applied, in the objective of extracting only the computing nodes that be able to
execute the given Tj, this filter is realized in function of the compute node capacity on
the one hand, and other in function of the needs of the task. Let us point out that the
parameters supported in the filter are: minimum needed memory, minimum needed
storage space and the number of the required CPUs and vCPUs. In the second step,
the set of selected schedulers are applied.

Each scheduler must have in input, the set of tasks, the set computing nodes,
the matrix that estimates the execution time of each task on each available resource,
matrix that estimates the cost of the execution of each task on each resource, and the
matrix that estimates the energy consumed by each task in function of the resource.
Then, each called scheduler, must generate as output a matrix, that is called an
allocation matrix, this matrix is of size 2 x n, where n is the total number of tasks
that must be executed, the first column represents the task identification and the
second column represents the computing node identification that is to execute the
given task.

The Scheduling module is modeled in such a way that it is easy to inject any
kind of scheduling algorithm. Each integrated algorithm must return an affectation

matrix, and can have one ore more matrix as input.

44

The different steps of this scheduling module are listed the following Algorithm 1:

INPUT Tasks description

Resources description
FUNCTION Apply the filter

Compute estimated execution time (Equation 3.3) of each task
on each resource

Compute estimated cost (Equation 3.7) of each task on each
resource

Compute estimated energy consumption (Equation 3.10) of each
task on each resource

Call the appropriate scheduling algorithm
ouTPUT Assignment of tasks to resources

Algorithm 1: Scheduling Module Algorithm
To compute the estimated execution time of each task on each resource the sched-

uler uses (Equation 3.3, while the estimated cost depends to the estimated execution
time ((Equation 3.7)). The energy consumption can be estimated by knowing the
CPU use ((Equation 3.10)).

3.3.4 Resources Allocation

The main role of this module is to perform a resources allocation based on an
affectation matrix. Next, this module is also responsible for sending each task to its
corresponding computing node. For each task, the source code and the data must be
uploaded to the corresponding computing node. At the end of the task execution,
the resulting data must be downloaded from the corresponding computing node.

This module must record the start and end times of the task execution. This

information will be used by the Behavior Study and Monitoring modules.

3.3.5 Resources Monitoring

The resources monitoring module is a system process, created at the beginning
of the global task scheduling process invocation. This module is useful when it is
a real execution, but when MFHS is called for a theoretical analysis the process
corresponding to this module will not be instantiated. This process stays active
during the execution of all other modules of MFHS. Since all modules have finished

their execution, the resource monitoring process is killed and waits to be reactivated

45

for the next scheduling processes. This module allows controlling the platform on
which MFHS is deployed during the real execution of the task scheduling process. It
can detect any anomaly such as the loss of connection to a compute node, erroneous
access attempts that may be the object of an attack or the loss of connection on the
node where MFHS is running. The various information extracted from this process

is archived and will be accessible for future uses.

3.3.6 Behaviour Study

This module is invoked at the end of the scheduling process. It allows to collect
informations from all other module and generates a detailed report containing, for

each algorithm, the following real and theoretical values:

e The total response time of each compute node, the average response time and
the makespan,

e The compute nodes resource utilization and the overall average resources uti-
lization,

e The energy consumed by each resource and the overall average energy consump-
tion,

e The total cost,

e The data transfer (upload and download) rates which is the average between
the control node and the computing nodes,

e The read/write rates average on disk.

Having these theoretical and real values, the module computes a ratio using these
values in order to estimate the sustainability of the computing environment. In
addition, the report contains a set of information about the possible encountered

difficulties during the execution of scheduling process.

3.4 MFHS QoS measurement

In the following, formulas and descriptions of the QoS parameters which are taken
into account in MFHS in terms of completion time, resource utilization, cost and
energy consumption are described.

3.4.1 Total response time (makespan)

The makespan, M S, represents the maximum over the tasks completion times. It

is computed using formula 3.1, where NbrT represents the total number of tasks.

46

MS = max {(CT}) , i = [1..NbrT]} (3.1)

3.4.2 Response time

Total response time (makespan), MS, is computed for the whole of all tasks,
and it is computed when the execution of all the tasks is finished. Meanwhile, the
completion time (C'T;) is computed for each task 7}, using formula 3.2. In the latter,
T'Start; represents the start time of the task T;, and ET; represents the execution

time of the task 7; on the resource R;. ET; is obtained using the formula 3.3.

CT; = T'Start; + ET; (3.2)

BT — SizeDTW, . SizeDTR; n SizeDTD; n SizeDTU;
b Debitl; DebitO; DebitDk; DebitUk;

+ TimeCPU; (3.3)

3.4.3 Average resources utilization

The optimization of the resources usage is one of the objectives of QoS, this

function must be maximized, it is computed by the following formula:

2 (RUj)

n

RU = (3.4)

In Formula 3.4, RU represents the resource utilization average of the whole set of
all resources, and RU; represents the resource utilization of R;. RU; is found using

Formula 3.5.

> i (b * ET)

RU; =
/ Makespan

(3.5)

For each task T;, the coefficient b;; takes the value 1 if T} is executed on R;, else, the
value b;; equals 0.
The value of RU is between 0 and 1, each time the value is close to 1 then we say

that the resources are better used

3.4.4 Cost

The total cost C'U is the cost that a user must pay to service provider for resource

utilization. This value may be minimized as much as possible, CU is computed using

47

the formulas 3.6 and 3.7.

CU =) (CU)) (3.6)
j=1
CUj represents the cost of utilization of the resources I?;, and it is computed using

the following formula:

n

CU; =Y (b = ET; * CRy) (3.7)

i=1

where C'R; denotes the cost of resource j per unit time.

3.4.5 Energy consumption

According to the most important work on the energy consumption [95], the energy
consumed by the server processors represents the most important values comparing
with the other component of the server, like disk storage, network cards, etc. For-
mula 3.8 allows to get the power consumed by a processor, and subsequently by the

server.

P = Pmm + (Pmax - Pm'm)u (38)

Where P,.;, represents the power consumed at the idle state of the processor.
P represents the CPU power consumption when it is used at 100%. u represents
the cpu load. Then, to get the power consumption of a resource j, the following

formula is used:

P = (Pyus — Poin)Bj (3.9)

Where Bj represents the Power consumed by the resource processes on the physi-
cal resource that hosts the resource 7. Note that the power consumption of a resource
7 is captured n times during the execution of task ¢, then, to get the total energy
(E;)consumed by this task ¢ on a resource j during 7" instances of time, the used

D Yt

j= SERE LT (3.10)

formula is described as:

The total energy consumed by the set of tasks is obtained using the following formula,

48

where NbrR represent the total number of used resources.

NbrR

E = Z (E;) (3.11)

3.5 Conclusion

As described above, distributed computing paradigm intrinsically allows numerous
various kind of on-demand services which run on many computing resources. Thanks
to these offers, Distributed computing infrastructure usage is still increasing and the
QoS parameters can be widely affected with the size grown of the architectures in
terms of the number of resources deployed and in terms of the number of users. The
scalability motive to the exiting of a smart solution that can manage the architectures.

The importance of the task scheduling in a distributed computing architectures
implies the existence of a large number of good propositions that look to solve the
problematic, but almost of them have been evaluated by simulation and never been
implemented despite their effectiveness, this due to the difficulty of moving from
simulation to real implementation, and even if it has been implemented, it is also
difficult to switch from one platform to another. In this chapter, we have presented
our solution that can contribute to solving these issues.

From a service provider point of view, one of the main keys is the management of
the computing resources which continuously receive a very large number of requests.
The management must consider the optimization of QoS parameters. In our presented
contribution, a set of QoS parameters are considered and analyzed. For example, the
energy consumption that is now well known and raise much research problematic and
which has an environmental impact, the cost of services consumption which has an
important impact of a lot of companies, and the response time and load balancing
can not be ignored which has an indirect impact on the energy consumption and cost.

In our best knowledge, the already known frameworks propose different kind of
relevant features. None of them includes an easy solution to switch between different
environments. While introducing MFHS, we propose a framework which ease the
transition between a theoretical study, an emulator, and a real distributed platform
without hard efforts. Indeed, a theoretical, or local emulated study, is often relevant
when starting a research study as it allows to have first results without requiring a

long preparation time.

49

CHAPTER IV

Scheduling Algorithms

4.1 Introduction

Independent task scheduling problem in distributed computing environments with
makespan optimization as an objective is an NP-Hard problem. Consequently, an
important number of approaches looking to approximate the optimal makespan in
reasonable time have been proposed in the literature. In this chapter, we present
two new heuristics of independent task scheduling, the first one called MMin and the
second one called InterRC.

InterRC solution is an evolutionary approach, which starts with an initial solution,
then executes a set of iterations, for the purpose of improving the initial solution and
close the optimal makespan as soon as possible. During the makespan improvement
some operators are used, which will be described in detail in this chapter.

MMin is a fast deterministic heuristic inspired by MinMin and MaxMin. Indeed,
MinMin and MaxMin both have advantages and disadvantages regarding the tasks
and resources characteristics. Our proposed MMin algorithm makes a hybridization
of MinMin and MaxzMin in order to take advantage of these two algorithms. The
main objective of MMin consists in optimizing the total makespan while preserving
the fast execution of the algorithm that characterize both MinMin and MaxMin.

4.2 Target Environment

In both, this chapter and the next one, we present our contributions. In all
our contributions, we look to be independent on the used environment. Thus, both
MMin and InterRC algorithms, that we present in this chapter, are intended for any

distributed algorithms. Meanwhile, whatever the level of resources’ heterogeneity |,

o1

and of tasks’ heterogeneity our algorithms can be used. Grid, Cloud, Fog computing,
and other systems that we have described in Chapter I are good examples of systems,
on which our algorithms can be deployed.

Figure 4.1 shows a simple task scheduling scheme, which represents a kind of
MMin, and InterRC deployment. The set of resources that compose the distributed
architecture to be managed can be situated at any geographical localization, with
condition that any two distinct resources can be connected with direct or indirect
link. Then, concerning the tasks, we assume that a given task can come from any
foreign resource, or be located on a resource owned by the distributed system that

we want to manage.

Tasks Distributed system resources

“ ‘ ‘
| |

Task information l ‘ Resource information

[Scheduler]

! Asignment of tasks to resources i

Figure 4.1: Task scheduling scheme

In the next section, we describe the formulation of the task scheduling problem

that we have considered in this thesis.

4.3 Problem Description

The task scheduling problem addressed in our thesis can be described as fol-
lows: a set of tasks T' = {Ty,...,T,,—1} must be mapped to a set of resources R =
{Ry, ..., Rm_1}, where n represents the total number of tasks to be scheduled and m
represents the total number of available resources allocated to execute the whole set

of tasks T'. Assuming that a matrix ET of n x m elements is defined, where each

52

entry ET[i][j] of the matrix ET represents the execution time of the task 7T; on the
resource [2; whatever T; € T and R; € R.

It is assumed that all tasks to be scheduled are independent and non-preemptive,
i.e. There is no dependency relationship between the tasks and whatever T;, T;
cannot stop once started. In addition to these two conditions (independence and
non-preemptively), all tasks have the same priority, that is, for each couple (7;, T})
in 7', T; and T} have the same chance to be scheduled first.

The model used to estimate the execution time of each task 7T; in T on each
resource R; in R is the one defined by Ali et al.[2]. This model is considered as
one of the most widely used models for Heterogeneous Computing Scheduling Prob-
lem (HCSP). When generating the matrix E7" this model takes into account three
properties: machine heterogeneity, task heterogeneity, and consistency.

Machine heterogeneity represents the relation between resources in terms of com-
puting power, which results in a variation of execution time. In a high machine
heterogeneity HCSP systems, the difference between the execution time of a task T;
from a resource to another is high. On the other hand, in low machine heterogeneity,
the difference between execution times is low. The task heterogeneity represents the
difference of computing power needs from a task to another. Subsequently, in a high
task heterogeneity HCSP, there is a high difference in terms of execution time from
a task to another on a given resource R;. In contrast, for a low task heterogeneity
HCSP this difference remains low. The third classification used in HCSP is the con-
sistency: in a consistent ET'C if a task T; is slower than a task 7; on R;, then T; is
slower than a 7j on all other machines. An ET'C is inconsistent if it is possible to
find two tasks 7T; and T} such that T; is slower than 7T; on some machines and 7} is
slower than T; on other machines. Moreover, a semi-consistent ET'C' can be used to

model those inconsistent systems that include a consistent subsystem.

4.4 MMin

An important motivation that led us to think about proposing a heuristic based
on Min-Min and Max-Min is the complexity of the two algorithms. Both Min-Min
and Max-Min are well-known heuristics and characterized by a low execution time
(low complexity). Meanwhile, MMin is also characterized by its low complexity time,
which is an important parameter that must be considered when treating a scheduling
problems, especially when dealing with large scale distributed environments.

Both algorithms are efficient in terms of makespan, when the task’s sizes are

23

quite the same in terms of execution time (low task/resource heterogeneity). How-
ever, when it comes to tasks with very different execution times (high task/resource
heterogeneity), the both algorithms efficiency become to be more critical. In more
detail, when there is a large execution time difference, the Min-Min algorithm penal-
izes the largest tasks leading to increase the completion time. Especially when there
is a large amount of small-sized tasks [99]. For the Max-Min algorithm, it shows
its advantages when there is a significant number of large tasks. In this case, the
algorithm penalizes small tasks, by increasing their completion time mostly because
they have to wait until all large tasks are finished [99].

Our proposed MMin heuristic strives at good performance for any level of task/re-
source heterogeneity, by trying to get to the situation where there are no large differ-
ences between the tasks’ execution times. By doing this, the proposed method avoids
the weaknesses of the two algorithms, Max-Min and Min-Min.

In the proposed heuristic, as described above, it assumed that we have a meta-
task composed of n tasks, each task must be affected to a resource of the set of m
available resources. MMin is executed in n (number of tasks) iterations. At each
iteration, only one single task is scheduled and then deleted from the meta-task, then
MMin algorithm ends when the meta-task becomes empty. The choice of the task
to be scheduled is done with the objective of reducing the difference between the
task’s execution time (tasks not yet scheduled), i.e. making the system in "low task

heterogeneity" and "low resource heterogeneity" stat.

4.4.1 Step 1: Task Classification

In this setup (marked Step 1 in Algorithm 2), the set of task are classified into
categories according to their sizes, which allows us to get more informations about
the global status of the system.

Two categories are defined, large tasks and small tasks, the first category contains
the tasks with high execution time, and the second one contains the tasks with low
execution time. The number of small tasks (GlobaNBRST) and the number of large
tasks (GlobaNBRST) are varied from an iteration to another, therefore, are computed
at each iteration. GlobalNBRST and GlobalNBRST are used in the second step.

The number of small and large tasks correspond to the number of tasks that have
a completion time lower and greater than the localavg respectively. The localavg is
computed for each resource for the set of tasks not yet scheduled. The localavg is com-

puted, in the first two lines of the forall loop, using mazxr_CT _R; and min_CT_R;

o4

while Euwist tasks in meta-task do
Global NBRST = 0;
Global NBRLT = 0;
Step 1:
forall Resource R; do
range = maxr_CT _R; — min_CT _Rj;
valavg = min_CT + range/2;
forall Tasks T; do
if CT(tj) <wvalavg then
‘ GlobalN BRST = Global NBRST + 1;
else
| GlobalNBRLT = GlobalNBRLT + 1;
end

end

end

Step 2:

if GlobalN BRST > GlobalNBRSLT then
‘ CallMax — Minalgorithm;

else
‘ CallMin — Minalgorithm;

end

Delete scheduled task from meta-tasks;

Update the completion time;

end
Algorithm 2: MMin Algorithm

which respectively represent the maximum value and the minimum value of the com-

pletion time of the resource R;.

4.4.2 Step 2: Algorithm Selection

In this setup (marked Step 2 in Algorithm 2), one of the two Max-Min and Min-
Min heuristics is called following few conditions. To decide which algorithm has to be
executed, the number of the small tasks and the number of large tasks are compared.
If the number of large tasks is higher than the small ones, the Min-Min algorithm is
called. Otherwise, the Max-Min algorithm is called.

This second step allows to lead the system to stat of low task heterogeneity/ low
resource heterogeneity, then, as explained previously in this section, avoid disadvan-

tages of Min-Min and Max-Min heuristics.

95

4.5 InterRC Heuristic

In this section, we introduce the proposed heuristic, by first describing the de-
tails of the proposed InterRC' heuristic, which aims to resolve the Heterogeneous
Computing Scheduling Problem (HCSP) described previously in Section 4.3 of this
chapter, The different elements needed for the understanding of InterRC heuristic are

presented, as well as the process flow, will be presented in detail in five sub-sections.

4.5.1 Objective

The main objective of the InterRC heuristic consists in optimizing the makespan
of HCSP described above, where makespan represents the total time needed to com-
plete the execution of all tasks. The latter can be computed using Formula 4.1. In
the formula, ET[i][j] represents the execution time of T; on R; as already described in
the previous subsection and b;; is a boolean value which is equal to 1 if 7; is affected

to R;, otherwise b;; equals to 0.

makespan = maz;_1_m »_ ETIi][j] * b;
=0
1 of T, evecuted on R;

With, bi; = { z
eLse

4.5.2 Operators

The operators that we have defined allows to create new solutions, then give more
chance to obtain an improved affectation of the set of tasks to the set of available

resources.
The following two operators are defined, and used by the InterRC heuristic.

move: consists to test if the value of makespan obtained after a move of a task
T; from a resource R;; to another one Rj, will not exceed the actual makespan. If

that is the case, the move is applied, otherwise, it will not be applied.

permutation: consists in checking if the makespan after a permutation between
two distinct tasks 73, and Tj, situated on two different resources R;; and R;, will not
exceed the actual makespan, then the permutation is applied in case the test proves

to be true, if not, it is not applied.

o6

4.5.3 End Conditions

Our InterRC heuristic comes to an end if one of the two following conditions
is reached: The time MaxResTime which represents the maximum time dedicated
to the execution of InterRC algorithm is reached, or the loop L1 presented in both
algorithms (Algorithm 5 and Algorithm 6) ends with any improvement of the actual
makespan in the case of Algorithm 5, or with any possible redistribution in the case
of Algorithm 6.

4.5.4 Global Process

As described in Algorithm 3, the global process of InterRC heuristic consists in
three phases: The first one aims to generate an initial solution, while the second one
looks to improve the actual makespan. Finally, the third phase allows to redistribute
the set of tasks over the set of available resources without exceeding the actual value
of makespan. Note that the second and third phases are executed alternatively
with a fixed number of times (Nbrlterations). The alternation allows a maximum
redistribution, and avoids system stability as much as possible. The stability means
the difficulty to find any moving/permutation that can improve the actual makespan.

The second and third phases can be achieved using permutation/move operators.

Call Algorithm 4

i=1;

while NotEndExecTime AND improve = true AND i < Nbrlteration do
14+
Call Algorithm 5;
Call Algorithm 6;

end

Return Task affectation;
Algorithm 3: Global InterRC' Process

4.5.5 Detailed Process

In this section, we aim to give more details about the InterRC heuristic process,
by presenting the detail of the algorithms including in Algorithm 3, which is presented

in the previous subsection.

A. Initial affectation: This first phase described by Algorithm 4 consists in gen-
erating an initial solution, which starts by choosing randomly a resource R;,;
and a task Tj,;;. Then, the loop L1 of Algorithm 4 is called to assign all tasks

57

to R, starting by T;,;;. Note that the choice of R;,;; and Tj,;; has an impact
on the final makepan, i.e. if we change the initial solution, we get probably a

different final result.

Choose randomly a resources R; e AND a task T; jni
for (ii = 0;ii < n;ii++)do -

i = (4 +1_init)%n;

Assign T; to Rj_im't 3
end

Return Task affectation;
Algorithm 4: Initial affectation

B. makespan improvement: In this second phase of the InterRC heuristic which
is described by Algorithm 5, a loop over the set of tasks affected to R;ug is
executed (R;ys represents the resource that gives the makespan). Then, for
each found task Tj,s, the algorithm loops over the set of other resources (other
than R;y) and for each found resource R; with R;! = R;yg, the algorithm first
tests if the move of T}, from R;yg to R; improves the actual makespan; if the
test is positive, the move operation is realized, the new makespan is computed,
and loop L1 broken with the update of improve value to true. Otherwise, the
loop L3 are triggered with the aim of finding a task Tj; that can improve the
actual makespan if it is permuted with Tj,,s, as soon as a task Tl is found,
the permutation is realized, the new makespan is calculated, and the loop L3

is broken with the update of improve value to true.

C. Task redistribution: Algorithm 6 describes this third phase of the InterRC
heuristic. Unlike Algorithm 5, Algorithm 6 will not try the move of a task from
Rjus, or the permutation of a task situated on ;)¢ with another task located
on another resource other than R;yg. However, the tests will be larger. In
more details, the loop L1 allows to loop over the set of resources R, then, for
each found resource R;;, a loop of the tasks affected to R;; is done. Afterward,
the algorithm re-loop over the set of resource and for each found resource R;s.
The algorithm test in the first time if the move of T;; to Rj, will not penalize
the actual value of makespan, then the move is applied in case the test proves
to be true, if not, the loop L3 is triggered in order to find a task 7;, that
does not penalize the actual makespan if it is permuted with 7T};. As soon as
a permutation is possible, the permutation is realized, the new makespan is

calculated, and the loop L3 is broken with the update of improve value to true.

o8

In this third phase, each task can be moved/permuted only once. To ensure
this uniqueness of move /permutation, a set called T's_Tested is created, then,
the tasks candidate to moving/permutation operators are added to this set.
Thereafter, the tasks of the set T's Tested cannot re-participate to another
move /permutation operations. The use of T's Tested set allow to finish the

phase as fast as possible, with maximum move/permutation possible.

improve = true

L0: while (ResTime < Max_ ResTime AN D improve = true) do
improve = false

L1: forall T;,,s € Rjms do
L2: forall (Rj € RAND R; # R,,;) do

if (Move(T;ys to R;) improves MS) then
Move(Tims, Rj); MS = Get_New_ MS; improve = true;

break L1;
else
L3: forall (T; € R; AND R;! = R;y5) do
if Permut(T;, Tis) improves M S then
Permute(T;, Tims);
MS = Get_New_ MS; improve = true;

break L1;
else
end
end
end
end
end

end

Return Task affectation;
Algorithm 5: makespan improvement

29

improve = true

LO: while (ResTime < Max_ResTime AN D improve = true) do
forall T;; € R do

L1: forall T};; € R;; do

if (1T;; ¢ T's Tested) then
Ts_ Tested.add(T});

L2: forall (Rjg € RAND Rjg 7£ Rzl) do

if (Move(T}; to Rjs) improvesM S) then

Move(T;1, Rj2); MS = Get _New_ MS; improve = true;
break L1;

else

L3: forall (T}, € Rj2) do

if Permut(T;1, ;o) improves M S then
Permute(T;, Tio);

MS = Get_New_ MS; improve = true;

break L1;
else
end
end
end
end
else
end
end
end

end

Return Task affectation;
Algorithm 6: Task redistribution

4.6 Conclusion

The Heterogeneous Computing Scheduling Problem (HCSP) that we have ad-
dressed in this chapter is known to be an NP-Hard problem when it comes to op-
timize the makespan. The number of research works examining this problem keeps
increasing, especially, with the increased need for computing power. The latter can
be matched through powerful distributed computing architectures like Cloud, HPS,
Fog, and Cloud computing.

60

In this chapter, we have presented two new task scheduling heuristics: MMin
and InterRC. MMin is a fast deterministic heuristic, and InterRC' is an evolutionary
heuristic.

InterRC' is an evolutionary heuristic that aims to evolve towards the better final
makespan starting from an initial solution. It then switches alternatively between
two phase (redistribution/improvement) until reaching one of two stop conditions
already discussed above.

MDMin combines the two well-known conventional heuristics Min-Min and Maz-
Min. Like the two latter, MMin is executed in n iterations, in each iteration one of
the two heuristics is called (Min-Min or Maz-Min) according to the global stat of the
system.

All details about the experiments that we have conducted on our different pro-

posals are presented in the next chapter (Chapter V).

61

CHAPTER V

Evaluation of the proposals

5.1 Introduction

In this chapter, we present the different experimentations that we have made to
evaluate our three contributions described in the previous chapters. We start by pre-
senting the InterRC evaluation phase in the first section, then, both the validation of
different modules that compose MFHS and the evaluation of MMin algorithm will be
presented in the same time in the second section. The latter is a little long compared
to the first one, because it contains intensive experiments done in three different kinds
of environments (simulator, emulator, and real Cloud based environment).

From InterRC point of view, the evaluation is done using our developed simulator.
InterRC heuristic is compared with a set of non-evolutionary approaches, and with a
set of evolutionary approaches. The main parameter studied in the evaluation phase
is the total response time (makespan).

From the MFHS point of view, the part of our work that we present in this chapter
allows to validate the different modules that compose our framework, while studying
all QoS parameters discussed in Chapter III.

From MM:in point of view, the evaluation phase that we discuss in this chapter
shows the good result of MMin compared to two other heuristics, namely Maz-Min
and Min-Min. The evaluation of MMin is done using MFHS framework, which allows
to both shows the good results mainly concern the total response time obtained using
MDMin, and validate the different modules that compose MFHS framework on the
three environments cited below.

The three environments are used to highlight the reliability of MFHS (measured
P,=90% against 94% for the predicted P;). Deployment and scheduling studies have

also been achieved using MFHS as a simulator, MFHS in an experimental Cloud

63

based on OpenStack, and MFHS in an emulator test-bed based on Emulab. During
experiments, four QoS parameters are taken into account (measured using Resources
Monitoring module): energy consumption, cost, resource utilization, and makespan.
These studies, as we mentioned before, are achieved using MMin, Mazx-Min, and

Main-Min algorithms.

5.2 InterRC Evaluation

In order to evaluate InterRC approach, a simulator was developed using Java,
R, and shell scripting. Then, the proposed InterRC algorithm was implemented
and integrated to the developed simulator using the Java language. The evaluation
phase was realized on a PC with Processor ¢7 and 8GO of RAM, on which, a set of
experiments was done, then the results of the InterRC algorithm were compared with

a set of algorithms, already presented in Chapter II.

5.2.1 Benchmark Datasets

In order to evaluate InterRC heuristic, we have used 12 classic problem instances
proposed by Braun et al in [12], each instance having 512 tasks and 16 machines. An
instance look like a 2D matrix composed 512 rows (or tasks) to be scheduled to 16
columns (or resource). Note that each element of this matrix denotes the expected
execution time of a task on a resource.

The instances of these datasets are following u_x yyzz structure, where u rep-
resents the uniform distribution that is used to generate these instances, x is the
type of consistency, yy and zz are the task and resource heterogeneity respectively.
The type of consistency is of the following types: consistent (c), inconsistent (i), and
semi-consistent (s). The type of heterogeneity is either high (hi) or low (lo). Thus,
the structure makes the following twelve instances: u ¢ hihi, u_c¢_hilo, u_c¢_lohi,
u_c_lolo,u i hihi,u i hilo,u i lohi,u i lolo, u_ s hihi,u s hilo,u s lohi,

and u_s_lolo.

5.2.2 makespan Comparison

The proposed InterRC' heuristic was compared with two kinds of heuristics: the
first one is the set of fast deterministic heuristics, which are characterized by a low
execution time and give the same result even if we repeat the execution of the al-

gorithm many times. Meanwhile, the second kind is the evolutionary approaches

64

characterized by good results. The chosen fast deterministic heuristics are RC' [122],
Sufferage 77|, Min-Maz 53], and Min-Min [53]. Meanwhile, the used evolutionary
heuristics are ¢cMA [124], GA [42]|, PA-CGA [89] and CHC [29].

The execution of InterRC' algorithm has been redone several times. The best
obtained results are presented in Table 5.2 and Table 5.1. Table 5.2 shows the com-
parison of the makespan obtained by InterRC algorithm with the evolutionary algo-
rithms, while Table 5.1 compares the obtained makespan with the best known and

fast deterministic heuristics.

The last column (LP Bound) of two tables (Table 5.1 and Table 5.2) corresponds
to the lower bound for the makespan value, which can be computed by solving the
linear relaxation for the preemptive case using a linear programming solver [83]. The
gray fields in both Table 5.1 and Table 5.2 indicate that the corresponding value is
less than the value obtained by our algorithm, meaning that the makespan is not

improved using our proposed algorithm.

Dataset Min-Min | Min-Max RC Sufferage | LSufferage | InterRC | LP Bound
A.u_c_hihi.0 | 8460675.0 | 8205561.3 | 9576839.0 | 10249172.9 | 8092234.8 | 7434522,4
Au_c¢_ hilo.0 | 1618054 161686.8 163200.2 168982.6 160100.3 154111,9
A _c_lohi.0 | 275837.4 | 279907.7 | 309192.7 337121.5 255070.3 2415827
Au_c_lolo.0 5441.4 5485.4 5542.6 5658.5 5487 .4 5174,3
A i hihi.0 | 3513919.3 | 3066454.8 | 3447651.4 | 3306818.9 | 3436518.1 | 2985279,8
A i hilo.0 80755.7 75711.6 76471.5 77589.1 77998.5 74194,2
A i lohi.0 | 120517.7 108533.3 126002.4 114578.9 112400.9 104378.,5
Au i lolo.0 2785.6 2613.5 2677.0 2639.3 2735.7 2569,4
A.u_s hihi.0 | 5160342.8 | 4627988.8 | 5068011.5 | 5121953.6 | 4394021.6 | 4216710,5
Au_s hilo.0 | 104375.2 100128.4 101739.6 102499.9 100813.8 97782,8
A.u_s lohi.0 | 140284.5 133039.3 143491.2 150297.1 134568.5 123327.7
Au_s lolo.0 3806.8 3555.2 3679.6 3846.5 3695.8 3486,6

Table 5.1: Makespan comparaison with deterministic heuristics

Instance cMA GA PA-CGA CHC MA + TS | InterRC | LP Bound
A.u_c_hihi0 | 7700930 | 7659879 | 7437591 | 7599288 | 7530020 | 74345224
A.u_c_ hilo0 | 155335 155092 154393 154947 154111,9
Au_c_lohi0 | 251360 250512 242062 251194 245289 241582,7
Au_c_lolod | 5218 5239 5248 5226 5174 5174,3
A.u_i hihi0 | 3186665 | 3019844 | 3011581 | 3015049 | 3058475 | 2985279,8
A i hilo0 75857 74477 74241 75109 741942
A i lohi0 | 110621 104688 104490 104546 105809 104378,5
Au i lolo0 2624 2577 2603 2577 2597 2569,4
Au_s hihi0 | 4424541 | 4332248 | 4229018 | 4299146 | 4321015 | 4216710,5
Au_s_hilo0 | 98284 97888 97782,3
A _s lohi0 | 130015 126438 125579 126238 127633 123327,7
Au_s_lolo0 | 3522 3510 3526 3492 3486,6

Table 5.2: Makespan comparaison with evolutionary heuristics

65

Three parameters can change the resulting makespan. The algorithm’s execution
time, the values of R; i and T; i, and the value Nbrlterations. In our imple-
mentation, the fixed time for InterRC execution is 20s for all tests, R; i and T; i
values are randomly selected in each test and the Nbrlterations is fixed to 4 each
one (redistribution/improvement) executed for 5s to get 4 * 5 = 20s, which is the

total execution time dedicated to InterRC.

5.2.3 makespan Evolution Speed

In order to study the speed of the makespan evolution as a function of time when
running the InterRC heuristic, the following process is followed:

The value of the best makespan (best _ms) given by the Min-Min, Max-Min, RC
and Sufferage algorithms is calculated before running the InterRC algorithm. Then,
at each detection of improvement of the makespan value during InterRC' execution,
a ratio ratio between this makespan (ms_evol) and best ms is calculated using

Formula 5.1.

(best ms/ms_evol)-1 if best ms < ms_evol
ratio = (5.1)

1-(ms_evol/best ms) else

A negative value of ratio means that best ms is not yet reached, whereas a
positive value of ratio means that ms_evol is better than best _ms. The convergence
of raio value to 0 means that ms_evol value converges to best _ms value. On the
contrary, when the value of ratio keeps away from 0 to one of the other peak values (1
or —1), that means that the value of ms__ewvol, Keep away from the value of best _ms.
This move away leads to a better result if the peak value is 1, but in the other case,
the move away leads to a worse result.

Figure 5.1 presents the evolution speed of ratio value obtained for each instance.
It shows that the makespan improvement through InterRC' is done quickly at first
time, and the ms__evol value converges quickly towards the BestM .S value, but after
some time, the improvement speed starts to become relatively heavy; ultimately, the
makespan improvement can stop, which makes the continuation of the algorithm
execution unnecessary.

A zoom of Figure 5.1 is presented in Figure 5.2. The latter gives more detail about
the evolution speed of ms_ewvol before reaching the value of best ms. It is shows

that the nature of this evolution can vary from one instance to another, which allows

66

to say that the evolution speed depends on the nature of tasks, as well as resources.

0.00+ g Instance
—— A.u_c_hihi
—— A.u_c_hilo
g -0.25+4 —— A.u_c_lohi
R —— A.u_c_lolo
S —— A.U_i_hihi
2 —— A.u_i_hilo
@ —0.504 —— A.u_i_lohi
o —— A.u_i_lolo
—— A.u_s_hihi
—— A.u_s_hilo
—0.75+ —— A.u_s_lohi
—— A.u_s_lolo
—1.00 1
Oe+00 1e+10 2e+10 3e+10 4e+10
Time(ns)
Figure 5.1: Evolution of ratio value as function of time
0.00 A —]
Instance
—— A.u_c_hihi
—0.251 —— A.u_c_hilo
— —— A.u_c_lohi
2 —— A.u_c_lolo
S —— A.U_i_hihi
2 -0.50+ —— A.u_i_hilo
© —— A.u_i_lohi
o —— A.u_i_lolo
—— A.u_s_hihi
-0.75 - —— A.u_s_hilo
—— A.u_s_lohi
—— A.u_s_lolo
—-1.00 1
0e+00 2e+09 4e+09 6e+09
Time(ns)

Figure 5.2: Zoom on Figure 5.1

67

The gap value is another parameter studied in our evaluation, it represents the
relative gap value of any algorithm with respect to the corresponding lower bound,
gap value is calculated using Formula 5.2. When MS LP _Bound is the makespan
obtained by lp bound and MS Algo presents the makespan of the algorithm on
which we look to calculate the gap value.

Figure 5.3 shows the average of gap value of the evaluated algorithms. The gap
value of our proposed InterRC' is the best one comparing with all other algorithms
with a value equal to 2.013. Figure 5.3 shows also that the gap value of evolutionary

approaches are the best comparing with all other fast deterministic heuristics.

MS LP_ Bound— MS Algo

gap = (5.2)
MS LP Bound
Algorithm
[Pa-cea
=
=
< .
.LSufferage
.Sufferage
InterRC 4 -13
0 5 10 15
Gap value

Figure 5.3: Gap value to the lower bound

68

5.3 MMin Evaluation and MFHS validation

This section aims to achieve two objectives, the first one is the MMin evaluation,
and the second one is the MFHS validation. For these reasons, extensive experiences
on MMin and MFHS are done on three different kinds of environments, which will

be presented in detail in the remainder of this section.

5.3.1 Used Environments

The set of modules that compose our proposed MFHS were implemented using
Java, R, and Shell programming languages. MFHS works in any Linux distribution
based on Debian?, like Ubuntu? on which we gave realized all our experimental studies.

The experimentation exposed in this section have been conducted using three
different kind of environments, where MFHS is used as an evaluation tool. In the
first one, MFHS was used as a theoretical tool on which an evaluation of the MMin
algorithm is done. In the second one, a real MFHS framework experimentation and
an evaluation of the MMin algorithm using real data are done on a test environment
based on Emulab test-beds. Then, in the last one, a real MFHS framework experi-
mentation, as well as the evaluation of the MMin algorithm are made in a production
Cloud environment based on OpenStack.

In the following, we expose in detail the whole experimentation done in these three

different contexts.

5.3.2 Input Data

In order to achieve our different experimentations, we need to introduce different
data, concerning the task and resource characteristics.

For the resource characteristics, data are generated randomly for the simulated
experimentation, whereas, all data are collected from a real environment for the
experimentation done on an emulated based environment and for experimentation
done on real Cloud based environment. The use of real data in the two latter kinds
of experimentation gives more significance to our experimentations. The details of
these data will be given during the presentation of each experimentation.

For the task characteristics, the data are generated randomly with a high hetero-
geneity between tasks. Similarly to resources, the different task characteristics will

be presented in detail when presenting the corresponding experimentation.

Thttps: //www.debian.org
https: //www.ubuntu.com

69

5.3.3 An illustrative example

In this subsection, a simple illustrative case is presented, where the heterogeneity
of the set of candidate resources to a given task execution is clearly shown. Indeed,
each task has a different execution time depending on the resource on which it is
executed.

The following table shows the execution time of each task 7T; on each resource R;.

| Task/Resource | RO | R1 | R2 |

TO 5 8 | 10
T1 5 718
T2 9 | 3 6
T3 17 1 3 8
T4 14 | 12 | 28
T5 16 | 4 | 27

Table 5.3: Task Execution Time (s) on each resource

In the example shown in Table 5.3, the total makespan obtained with our proposed
heuristic MMin is 17s, while the ones obtained with Maz-Min and Min-Min are 21s
and 19s, respectively.

In order to clearly present the different possibilities of task allocation according
to the resources taken into account, this example is very limited in terms of problem

size (5 tasks and 3 resources).

5.3.4 Evaluation with simulated experimentation

Before moving to a real experimentation in a Cloud environment, a theoretical
evaluation of the proposed heuristic has been done. Indeed, this type of evaluation is
well-motivated due to the fact that the amount of resources as well as the number of
tasks are not subject to cause any issue. In addition, it allows to make the evaluation
much faster than proceeding the execution on a real environment.

As this section is dedicated to theoretical evaluation, it is easy to smoothly in-
crease the allocation size problem leading to more complex cases to solve. Thus, the
remainder of this subsection presents a kind of scalability evaluation up to a high
amount of tasks and resources.

In order to evaluate and compare the proposed MMin with the original Max-
Min and Min-Min algorithms in terms of Solution Time, the set of these algorithms

was rewritten in Java Language. All measurements have been done on the same

70

(a) Max-Min Solution Time (b) Min-Min Solution Time

MMMMMM

(c) MMin Solution Time (d) Solution Time comparison

Figure 5.4: 3D solution time illustration and comparison

server which is a DELL R630 equipped with a Intel(R) Xeon(R) CPU E5-2623 v3 @
3.00GHz running at its faster frequency (Turbo mod disable). Subsequently, MFHS
is used to achieve the following study and allows to measure the Resolution Time in

safe conditions for each algorithm.

This study has been done by smoothly varying the number of tasks and the number

of resources. The values used for both tasks and resources are the following:
T =1[30000 20000 10000 5000 3000 1500 500 100 50 10 |
R=1[10000 7500 5000 2500 1000 500 150 75 25 5 |

This leads to get 100 cases, , each of which represents a point in the following 3D

figures.

71

10000_5 10000_500 100_5

20000_5 20000_75 30000_5

Group.2

. MaxMin

3000_5 3000_500 3000_75 . MinMin

[wmin

nxm

5000_5 5000_500

Makespan (s)

Figure 5.5: Makespan analysis with various problem sizes.

Figure 5.4 is composed of a set of sub-figures. In our case, this figure is com-
posed of four sub-figures, where, Subfigure V.4(a), V.4(b) and V.4(c) give a three
dimensional representation for each evaluated algorithm. The X and Y axes repre-
sent, respectively, the number of tasks NbrT and the number of computing nodes
NbrR, while the Z axis represents the time spent to find the scheduling solution. In
Subfigure V.4(d), a comparison of these algorithms in terms of solution time is made.
These graphs show that the combination of Max-Min and Min-Min to get the MMin

algorithm has no influence on the resolution time of such a scheduling problem.

As several cases have been solved to generate the Figure 5.4, it is also possible
to have a first result overview in terms of makespan. These results are highlight
through the Figure 5.5, where only 12 cases have been selected (over the 100 cases
done) and are illustrated 12 sub-figures. Each sub-figure correspond to a unique
case (NbrT x NbrR) which is indicated in the top, whereas the makespan result (in
second) is indicated in the three bars corresponding to each of the three respective
algorithms (MinMin, MazMin and MMin). The experiments for all these cases have
been conducted using a quite high difference between the task execution times. More

precisely, short and long tasks have been defined in order to ensure heterogeneity. The

72

execution time for short tasks varies from 1s to 100s, whereas it varies from 1000s to
10000s for the long ones. The results presented in Figure 5.5 show that MMin almost
gives the best makespan optimization. Indeed, for the whole 100 cases studied in this
section, MMin was 37 times the best, MinMin 10 times and 13 times for MaxMin.
In the other studied cases, the makespan is the same, especially when the number of

resources is very large compared to the number of tasks.

5.3.5 Evaluation with Emulab

Emulab [49] is considered as one of traditional computing cluster environment that
can be used as an experimental environment. Emulab allows to specify a network
topology and link characteristics. Subsequently, it allows to get an heterogeneous
environment suitable to make various experimentations and evaluations. In our thesis,

we have used Emulab as an emulator of a Grid environment.

5.3.5.1 Resources Reservation

In the case of the MFHS experimentation, to evaluate MMin, Max-Min and Min-
Min algorithms in an Emulab based environment, MFHS is deployed over an Emulab
based environment using a set of 6 reserved physical machines connected through a

private network with a star topology as shown in Figure 5.6.

NodeA
10.1.1.3 NodeB
10.1.1.4
o4 lIIl
= N
s &
Y
'1(_)0Mb/100Mb 70Mb/30Mb '
& NodeC
Controler Node A *;\0476 10.1.1.5
10.1.1.2 22
\\?%

100Mb/100Mb

NodeD
10.1.1.6

NodeE
10.1.1.7

Figure 5.6: Topology

73

The different rates of the network cards of the set of used resources are fixed as
indicated in Figure 5.6. Although, we let the Resources Discovery module to discover
these rates values in order to show the right functioning of the Resources Discovery

module and to get the Pi value defined by Formula 5.3.

As shown in Figure 5.6, one of the servers is dedicated to be a controller node,
while the remaining five servers are used as computing nodes. MFHS is deployed on
Controller node and the communication between the controller node and the com-

puting nodes is made with SSH protocol using a Key Authentication Mechanism.

5.3.5.2 Resources Discovery

Using the Resources Discovery module, the collected information are described in
Tables 5.4 and 5.5. Table 5.4 gives the download and upload throughputs between the
controller node and the different computing nodes, while Table 5.5 gives the different

write and read rate values.

| Host | Upload (Mb/S) | Download (Mb/S) |

10.1.1.3 1.10 0.56
10.1.1.4 7.17 8.53
10.1.1.5 3.11 6.53
10.1.1.6 1.66 4.88
10.1.1.7 8.40 7.71

Table 5.4: Download and Upload characteristics

| Host | Buffer Disk Read (Mb/S) | Cached Disk Read (Mb/S) | Timing Write (Mb/S) |

10.1.1.3 150.39 1940 98.0
10.1.1.4 74.97 1652 64.8
10.1.1.5 75.23 1664 66.0
10.1.1.6 60.10 2476 56.1
10.1.1.7 75.46 1628 66.5

Table 5.5: In/Out Disk speed characteristics

Knowing these values are real measured values (and not fixed ones), they could
vary regarding physical or hardware equipment changes. Hence, the Resources Dis-

covery module is in charge of sensoring these values before each scheduling operation.

74

5.3.5.3 Requests Collector

Algorithm 7 is used to test the MFHS approach on a real environment as well to
evaluate and compare the MMin scheduling approach with the original Min-Min and
Mazx-Min with real data.

Input : UFS;, DFS;, RFS;, WF'S;

Output: ET;, C;, E;

Call : START

Call : Upload(UF'S;) ; // Upload file of size UF'S;

Call : Download(DF'S;) ; // Download file of size UF'S;

Call : Read(RFS;); // Read file of size UF'S;

Call : Write(WF'S;) ; // Write file of size UF'S;

Call : UseCPU(TimeC PU,;,EstimatedCPU;); // Use EstimatedC PU;% of

CPU during TimeCPU;s

Call : Compute ET;

Call : Compute C;

Call : Compute E;

Call :END

Return (ET;, C;, E;)

Algorithm 7: Virtual machine execution scenario.

Assuming that each task T; defined in Algorithm 7 is described as follows: T; =

UFS,;, DFS;, RFS;, WFS;, where:

UF'S; represents the size of the data to be uploaded
DF'S; represents the size of data to be downloaded

RFS; represents the size of data to be read from disk

F'S; represents the size of data to be written to disk

The requirements of each task are randomly generated. The generated values are
listed in Table 5.6.

5

o

IS S P 1

S E 1 E 2 5%

P~ & w0 »n = B
=% | = = | % [3|F
7|2 2 E Eolel R
S| 5| 3 & = %0
TO | 15000 | 25000 18000 | 25000 | 2 | 340
T1 | 20000 | 15000 15000 | 40000 | 2 | 180
T2 | 15000 | 15000 | 25000 | 12000 | 2 | 100
T3 | 55000 | 10000 11000 | 50000 | 2 | 210
T4 | 32000 9000 15000 | 19000 | 2 | 70
T5 | 32000 | 18000 5000 39000 | 2 | 90
T6 8000 25000 30000 | 40000 | 2 | 300
T7 | 50000 | 17000 12000 | 77000 | 2 | 80
T8 | 60000 | 19000 11000 | 12000 | 2 | 200
T9 | 80000 5000 20000 7000 | 2 | 60
T10 | 25000 | 10000 80000 | 10000 | 2 | 210
T11 | 52000 | 25000 32000 | 46000 | 2 | 140
T12 | 10000 | 10000 | 30000 | 20000 | 2 | 280
T13 | 35000 | 14000 50000 | 15000 | 2 | 80
T14 | 50000 | 50000 21000 | 24000 | 2 | 160
T15 | 92000 | 10000 8000 | 41000 | 2 | 260
T16 | 55000 | 15000 15000 | 40000 | 2 | 100
T17 | 15000 | 10000 | 35000 | 50000 | 2 | 190
T18 | 57000 | 9000 15000 | 19000 | 2 | 150
T19 | 20000 | 35000 5000 55000 | 2 | 120
T20 | 60000 5000 15000 | 39000 | 2 | 100
T21 | 25000 | 17000 22000 | 35000 | 2 | 80
T22 | 20000 | 9000 21000 | 22000 | 2 | 120
T23 | 12000 | 5000 60000 | 7000 | 2 | 130
T24 | 15000 7000 120000 | 10000 | 2 | 150
T25 | 12000 5000 30000 | 28000 | 2 | 200
T26 | 10000 | 10000 30000 | 65000 | 2 | 200
T27 | 40000 5000 75000 | 77000 | 2 | 180
T28 | 15000 | 250000 | 92000 | 56000 | 2 | 160
T29 | 8000 18000 20000 | 40000 | 2 | 90

Table 5.6: Dynamic: Requests Description

5.3.5.4 Scheduling

After the execution of the Resources Discovery and Requests Collector modules,

the scheduling process starts. Running the chosen algorithms and waiting for their

76

execution end, it allocates the tasks to different resources. Assignment of tasks is de-
scribed in Table 5.7. To be able to compare the algorithms, the scheduler is launched
with three different algorithms, namely MMin, the original Max-Min and the original
Min-Min.

‘ Algorithm H Max-Min H Min-Min H MMin

‘ Host ‘ ‘ Tasks ‘ ‘ Tasks ‘ ‘ Tasks
RO T12,T17,T20,T23,T3 T1,T15,T16,T26,T29 T12,T16,T17,T20,T3
R1 T0,T11,T19,T21,T27,T5 T10,T19,T2,T21,T27,T28 T0,T11,T19,T2,T27,T4
R2 T13,T14,T18,T22,T26,T28,T4 || T11,T14,T22,T3,T4,T6,T7 || T14,T18,T23,T26,T28,T29,T5
R3 T10,T2,T24,T25,T6 T0,T13,T17,T20,T24,T8 T10,T21,T24,T25,T6
R4 T1,T15,T16,T29,T7,T8,T9 T12,T18,T23,1T25,T5,T9 T1,T13,T15,T22,T7,T8

Table 5.7: Dynamic: Tasks allocation

5.3.5.5 Behavior Study

During the task execution process, it is possible to monitor the progress of this
process with the Resources Monitoring module. This module is able to detect the
failures related to the network, the disks or the processing. Then the state of this
process is communicated to the Behavior Study module. In our evaluation, after
the end of execution of all tasks with success, we get the results depicted in a set
of figures which also are automatically generated from the Behavior Study module.
Figures 5.7, 5.8, 5.9 and 5.10 depict all the results per algorithm. Each of these figures
is composed of three sub-figures. The first one exposes the results obtained through
the theoretical analysis, the second one gives the real results obtained after the end
of execution, and the last one gives a ratio between these two. In another set of
figures, (figures 5.11, 5.12, 5.13 and 5.14), the results are illustrated in more detail
by representing the completion time, resource utilization, energy and cost metrics’

values for each resource used.

° Theosf)stical makesp::;oo ‘ Sbgem makiop?an o oo Regilszmen mr?(é?etion tirr?:?s) 0
(a) Emulab: Theoretical (b) Emulab: Real makespan (¢) Emaulab: Real vs Theoreti-
makespan cal makespan

Figure 5.7: Theoretical vs Real makespan

7

5 5 5
3 3 3
O.bO 0..25 0;50 0. .75 OvbO 0. .25 0.:50 0. .75 OvbO 0..25 0. :50 0..75 1 ;JO

Theoretical resources utilisation average (%) Real resources utilisation average (%) Resources utilisation report average (%)

(a) Emulab: Theoretical Re-(b) Emulab: Real Resources (c¢) Emulab: Real vs Theoret-
utilization average ical Resources utilization aver-
age

sources utilization average

Figure 5.8: Theoretical vs Real Resources utilization average per algorithm

MMin - MMin - MMin -
E 172 £ vn 172 £ v
IS 5 s
2 MinMin- 169 2 minmin - 169 2 minmin -
o o o
8 8 8
S MaxMin- 166 O MaxMin- 166 D MaxMin-
. ' . ' . ' s ' . ' . ' '
0 50 100 150 0 50 100 150 0.00 0.25 0.50 075 1.00
Theoretical energy consumption (Wh) Real energy consumption (Wh) Theoretical vs Real energy consumption (%)

(a) Emulab: Theoretical en-(b) Emulab: Real energy con- (c) Emulab: Real vs Theoreti-

ergy consumption per algo-sumption per algorithm cal energy consumption per al-

rithm gorithm

Figure 5.9: Theoretical vs Real energy consumption per algorithm

o =] =]
Q Q Q
0 10000 20000 30000 0 10000 20000 30000 0.00 0.25 050 0.75 1.00
Theoretical Total Cost ($) Real Total Cost ($) Theoretical vs Real total cost (%)

(a) Emulab: Theoretical Cost(b) Emulab: Real Cost per al- (¢) Emulab: Real vs Theoreti-
consumption per algorithm gorithm cal cost per algorithm

Figure 5.10: Theoretical vs Real Cost per algorithm

78

MMMMM

E wowin-

MMMMMMMMMMMMMMMMMMMM

m
HEEEE:
H H
[H
-
H
[H

560 108 500 1000 025 050 075
‘Theoretical completion time (s) Real completion time (s) ‘Theoretical vs Real completion time (%),

(a) Emulab: Theoretical Com-(b) Emulab: Real Completion (c) Emulab: Real vs theoretical
pletion time per VM per Algo-time per VM per Algorithm Completion time report per VM
rithm per Algorithm

Figure 5.11: Theoretical vs Real Completion time per VM per algorithm

mmmmmmmmmmmmmmm

wi wi
e . e
[H [
‘‘‘‘‘‘‘ e § - e
W < W
e e

| | l||

3
5

b

3

[1 [H
"

g

lgorithm

075 5 050 025 X o
‘Theoretical resources uiisation (%) Real resources utiisation (%) ‘Theoretical vs Real resources uiisation (%)

(a) Emulab: Theoretical Re-(b) Emulab: Real Resources (c) Emulab: Real vs Theoret-
sources utilization per VM perutilization per VM per Algo- ical Resources utilization per
Algorithm rithm VM per Algorithm

Figure 5.12: Theoretical vs Real Resources utilization per VM per algorithm

| h \“WD | h VIMM | - VIMM
£ £ o . W
: 1R S e S Hova
& W .
B ™ [
(a) Emulab: Theoretical En-(b) Emulab: Real Energy per (c) Emulab: Real vs Theoreti-
ergy per VM per Algorithm VM per Algorithm cal Energy per VM per Algo-

rithm

Figure 5.13: Theoretical vs Real Energy per VM per algorithm

79

EEEEN:
SEEEE

(a) Emulab: Theoretical Cost(b) Emulab: Real Cost per VM (¢) Emulab: Real vs Theoreti-
per VM per Algorithm per Algorithm cal Cost per VM per Algorithm

Figure 5.14: Theoretical vs Real Cost per VM per algorithm

5.3.6 Experimentation on real experimental Cloud Platform

To validate the proposed MFHS framework and evaluate the proposed scheduling
approach MMin, an experimental Cloud Computing platform based on OpenStack
(Kilo version) has been used. First of all, we studied the reliability of the extra_ specs
module used to manage the input /output rates of the network card and the read /write
disk rates. This phase is done in order to find an index of prediction denoted P7 that
allows to estimate the proportion of convergence between the theoretical and real

execution. Pi will be calculated during the Resources Discovery process.

5.3.6.1 Resources Reservation

To build an experimental environment based on MFHS framework, firstly, the
MFHS controller node is deployed on existing cloud environment based on Openstack.
The deployment is done on the same node that contains the main Cloud controller
node. Secondly, a set of 6 VM is deployed on the Cloud environment to be used as
the MFHS compute nodes.

As described in Table 5.8, each V M has its own characteristics in terms of disk
read/write rates and data network transfer rate. As mentioned above, the resource

heterogeneity is obtained by setting up the extra_ specs OpenStack module.

80

| Host | Upload (Kb/S) | Download (Kb/S) | Write Disk (Mb/S) | Read Disk (Mb/S) |

VMO 256 512 S 7
VM1 256 012 2 2
VM2 012 1024 8 4
VM3 128 1024 6 8
VM4 256 256) 7
VM5 2048 128 3 3

Table 5.8: Resources characteristics

5.3.6.2 Resources Discovery

In order to find the Pi, we have used two popular Linux programs: scp and dd.
The scp program allows to make a secure transfers of files between the controller node
and any compute node and dd allows to read or write data on disk. Consequently,
using these two programs allowed us to check the efficiency and reliability of the
extra_ specs module regarding these network and disk rates.

The tests have been conducted for the following cases:

e Upload: This test allows computing the efficiency degree (pi_scp out) of the
module that limits the throughput of the output card.

e Download: This test allows computing the efficiency degree (pi_scp in) of the
module that limits the throughput of the input card.

e Disk read: This test allows computing the efficiency degree (pi_disk read) of
the module that limits the reading rate from disk.

e Disk write This test allows computing the efficiency degree (pi_ disk write) of

the module that limits the write rate on disk.

We remind the reader that these testing steps have been done locally on each
instantiated VM, meaning the Upload term is associated to the amount of data sent
from the network car of each VM, and the Download term is associated to the amount

of data received by the network card of each VM.

To get the P; value, a set of intensive experiments was carried-on using the MFHS
framework, results are illustrated by the two figures 5.15 and 5.16.

Figure 5.15 includes four sub-figures V.15(a) V.15(b) V.15(c)and V.15(d), each one
corresponding to one of the four partial experiences which allows to have a partial
Pi. Then, Formula 5.3 is used to get the global Pz, while each partial Pi denoted
Partial P; is computed using Formula ?7. The set of partial P and the global P will

81

pi_scp_in =0.97 % pi_scp_out = 0.9 %

(a) OpenStack: Scp In measure-(b) OpenStack: Scp Out measure-
ments ments

pi_disc_read = 0.95 % pi_disc_write = 0.93 %

(¢) OpenStack: Disk read measure- (d) OpenStack: Disk write mea-
ments surements

Figure 5.15: 3D Data rate transfer measurements

be used by the other modules of MFHS. In Figure 5.15, the x axis represents the
estimated test time of the corresponding theoretical rate represented by the y axis.
Meanwhile, the z axis represents the ratio between theoretical and real time obtained
after a real experience. Note that the ratio of the sth experience, denoted Report;,
is computed as follow: Assume that the theoretical throughput is 7D and the real
throughput computed by launching a real test on the reserved resource is RD. Then
Report; is computed using the Equation 5.5, while the Partial P; of each of the four
operations (scp in, scp out, disk read and disk write) is obtained by calculating the

sum of the Report; obtained after each test divided on the number of the tests. Each

of these Partial P; is mentioned on the associated sub-figure.

Pi =

pi_scp _in—+pi_scp _out +pi_disc_read + pi_disc_write
4

82

>, Report;

n (5.4)
Partial P; € {pi_scp_in,pi_scp out,pi_disc_read,pi disc_write}

Partial P, =

Mln(ﬂ, Rt)
Maz(Ti, Ry)

From sub-figures V.15(a), V.15(b), V.15(c) and V.15(d), it is clear that the ex-

tra_ specs module is reliable, since the majority of the performed tests show a report

Report; = (5.5)

value greater than 0.94.

Figure 5.16 shows a real time evolution of data transfer rate processes. Each
sub-figure allows following the evolution in real time of the four particular operations
observed: Upload (Scp Out), Download (Scp In), Disk read and Disk write. The
horizontal lines correspond to theoretical Upload and Download rates which as set-
up for each resource (Table 5.8). In the Download rate figure, only four horizontal
lines are shown as this rate is respectively the same for R1 / R2 (512Kb/S), and for
R4 / R4 (1024Kb/S). The real Download rates monitored during an scp in from each
virtual machine all start with a rate of about 3000Kb/s and then clearly decrease
down to the chosen value. It is also interesting to note that each real measured rate
is quite stable over the time, except for a few peaks down on only one resource.

The top left part of Figure 5.16 shows in real time the rate evolution for the data
upload to the desired resource, it is remarkable that the upload rate in each experience
start from 4Mb/s, that’s it quickly converges to the theoretical corresponding rate,
then, the rate stays stable during the rest of the data transfer. In this figure six
curves and four horizontal lines are shown, while six different resources are used in
this experience. This is explained by the fact that R0, R1 and R4 have the same
theoretical rate as shown in Table 5.8.

The bottom left part of Figure 5.16 represents the real time monitoring of the
data read from the storage disk. It has a behavior similar to the top left part of the
figure which depicts the upload rate experience, except that the rate starts with a
high value close to 4Gb/s, and the convergence to the theoretical corresponding value
is slower. Then, the bottom right part represents the experiment regarding the real
time monitoring of the write rate on the resource’s storage disk. The figure shows
that the rate starts with a value close to the theoretical fixed rate, then, the rate it
slightly varies during the experiment.

We conclude that the behaviors of the experiments are different from each other,

83

but the extraspec module is reliable in all the experimentation. These figures remain
important to detect anomalies that may arise during the execution of such a data

transfer or 1/O operation.

3000 - 4000 -
— -
a R @ 3000 R
- Q0
S 2000 5 2 5
=3 4 g 4
Q IS
= 3 £ 2000- — W 3
= ©
; g :
— c
2 1000 - 1 s 1
0 A 1000- 0
0- 0-
]]]]]]
0 50 100 0 50 100
Time (s) Time (s)
8- |
400 - | "
o R 0 R
S 300- 5 O 5
\2/ g % ,—H««—Wv-/\w—w———
g 4 @ 4
s 3 © 3
© 200- o A
= 2 % 2
; L
2 1 ~ 4- 1
£)
O 100- 0 0 0
A A A
A 14 |
0. 2 gl
]]]]]]]]]
0 50 100 0 25 50 75 100 125
Time (s) Time (s)

Figure 5.16: Real time data rate transfer monitoring

5.3.6.3 Requests Collector

The program 7 defined in Subsection 5.3.5.3, is still used for the experiments on
OpenStack environment. The following table describes the characteristics of the set

of tasks on which the experimentation and evaluation of the algorithm is carried out:

84

Task id | Upload FS (KB) | Download FS (KB) | Read FS (KB) | Write FS(KB) | vCPUs number | CPU Time(S)
TO 1000 2000 18000 11000 6 440
T1 2000 5000 15000 40000 6 180
T2 1000 15000 25000 12000 6 40
T3 6000 10000 11000 50000 6 110
T4 3000 9000 15000 19000 6 80
T5 12000 8000 5000 39000 6 90
T6 8000 5000 30000 40000 6 300
T7 5000 7000 12000 77000 6 80
T8 8000 9000 11000 3000 6 100
T9 12000 5000 20000 7000 6 150
T10 25000 10000 80000 10000 6 110
T11 12000 25000 32000 46000 6 140
T12 10000 10000 30000 20000 6 180
T13 4000 4000 50000 15000 6 110
T14 5000 5000 21000 24000 6 60
T15 1000 1000 8000 41000 6 260
T16 2000 15000 15000 40000 6 100
T17 6000 10000 35000 50000 6 190
T18 3000 9000 15000 19000 6 150
T19 12000 8000 5000 55000 6 120
T20 8000 5000 15000 39000 6 100
T21 5000 7000 22000 35000 6 80
T22 2000 9000 21000 22000 6 120
T23 12000 5000 60000 7000 6 130
T24 15000 7000 120000 10000 6 150
T25 12000 5000 30000 28000 6 200
T26 10000 10000 30000 65000 6 200
T27 4000 5000 75000 77000 6 180
T28 15000 15000 92000 56000 6 160
T29 8000 8000 20000 40000 6 90

5.3.6.4 Scheduling

Table 5.9: Openstack:Requests Description

In the first step, a filter is applied to select the set of resources that will participate

to the execution of the set of tasks. After defining the detailed description of each

task, any scheduling algorithm can be used. In our case, we call the MMin, Maz-Min

and Min-Min, each of these algorithms returns as output the assignment of tasks to

different reserved resources.

The following table gives us the task assignment returned by each algorithm:

‘ Algorithm H Max-Min H Min-Min H MMin ‘
‘ Host ‘ ‘ Tasks ‘ ‘ Tasks ‘ ‘ Tasks ‘
RO T12,T17,T20,T23,T3 T1,T15,T16,T26,T29 T12,T16,T17,T20,T3
R1 T0,T11,T19,T21,T27,T5 T10,T19,T2,T21,T27,T28 T0,T11,T19,T2,T27,T4
R2 T13,T14,T18,T22,T26,T28,T4 || T11,T14,T22,T3,T4,T6,T7 || T14,T18,T23,1T26,1T28,T29,T5
R3 T10,T2,T24,T25,T6 T0,T13,T17,T20,T24,T8 T10,T21,T24,T25,T6
R4 T1,T15,T16,1T29,T7,T8,T9 T12,T18,1T23,T25,T5,T9 T1,T13,T15,T22,T7,T8,T9

Table 5.10: Openstack:Tasks affectation

85

5.3.6.5 Behavior Study

Using the responsive module of the behavior study defined in MFHS, a set of 8
figures (Figure 5.17 to Figure 5.24) has been automatically generated at the end of
all scheduling process. In the following, all those different figures are discussed with
an explanation of the meaning of each one. In addition, the results obtained for each

evaluated algorithm in this experimentation are compared.

g e 1086 g 1345, g 0.89
%’ MinMin - 1282 % MinMin - 1388 % MinMin -
§ MaxMin - 1096 g MaxMin - 1321 § MaxMin -

500 1000 0.00 0.25 0.50 0.75
Real Total Completion time (s)

o-

500 1000
Theoretical makespan

(a) OpenStack: Theoretical(b) OpenStack: Real makespan (c) OpenStack: Real vs Theo-
retical makespan

o-

Real makespan

makespan

Figure 5.17: Theoretical vs Real makespan

E MMin - 0.97 -.E MMin - -.E MMin - 0.89
=] o o
3 b 2
S MaxMin- 0.97 S MaxMin- S MaxMin- 0.91
Ol75 OZ)O D.l25 D%D Dl75 lZ]Cl

' ' ' ' ' ' ' '
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50

Real resources utilisation average (%) Resources utilisation report average (%)

Theoretical resources utilisation average (%)

(a) OpenStack: Theoretical(b) OpenStack: Real Resource (c) OpenStack: Real vs Theo-

Resources utilization average utilization average retical Resource utilization av-
erage

Figure 5.18: Theoretical vs Real Resources utilization average per Algo

o =] =]
g g 3

20 40 0.00 025 0.50 075
Real energy consumption (Wh) Theoretical vs Real energy consumption (%)

=
3
o

TheoreticaIZSnergy consu:sption (wh)
(a) OpenStack: Theoretical en-(b) OpenStack: Real energy (c) OpenStack: Real vs Theo-
ergy consumption per algo-consumption per algorithm retical energy consumption per
algorithm

o-

rithm

Figure 5.19: Theoretical vs Real energy consumption per algorithm

86

g 135936 /MRS 157410 g 0.89
S winwin- 134247 S wiowin- 144460 S wiowin-
Tse7 10N 155100 i

0 50000 100000 150000 0.00

0e+00 Se+04 1e+05
Real Total Cost ($)

Theoretical Total Cost ($)
(a) OpenStack: Theoretical(b) OpenStack: Real Cost per (c) OpenStack: Real vs Theo-
Cost consumption per algo-algorithm retical cost per algorithm
rithm

Theoretical vs Real total cost (%)

Figure 5.20: Theoretical vs Real Cost per algorithm

w w
e o W wo
3 e £ e £ e
£ e 2w e £ W
2 e 2 W 2 W
e e e
s s s

560 st 1000 025 050 075 100
Theoretical completion time () Real completion time (s) Theoretical vs Real completion time (%)

(a) OpenStack: Theoretical(b) OpenStack: Real Comple- (c) OpenStack: Real vs theoret-

Completion time per VM pertion time per VM per Algorithm ical Completion time report per
Algorithm VM per Algorithm

Figure 5.21: Theoretical vs Real Completion time per VM per algorithm

Algorithm
FEEREZ
Algorithm

L1111 H

160 00

o 050 o o5 050 o
Real resources utiisation (%) ‘Theoretical vs Real resources uiisation (%)

000 23 o050 075
Theoretical resources utiisation (%)

(a) OpenStack: Theoretical(b) OpenStack: Real Resources (c) OpenStack: Real vs Theo-

Resources utilization per VMutilization per VM per Algo- retical Resources utilization per

per Algorithm rithm VM per Algorithm

Figure 5.22: Theoretical vs Real Resources utilization per VM per algorithm

87

MMMMMMMMMM

BE3

smmmnn:

ER

[{1111 H
§§33:¢%
o
‘éA

s 00 o
nergy consumption (Wh) ‘Theoretical vs Real energy consumption (%)

(a) OpenStack: Theoretical(b) OpenStack: Real Energy (c) OpenStack: Real vs Theo-
Energy per VM per Algorithmper VM per Algorithm retical Energy per VM per Al-
gorithm

[T 1] H
.
H z

Figure 5.23: Theoretical vs Real Energy per VM per algorithm

100

20600 a0b00 6 30600 obo o 050 33
eeeeeeeeeeeeee ® Real cost ($) ‘Theoretical vs Real cost (%)

(a) OpenStack: Theoretical(b) OpenStack: Real Cost per (c) OpenStack: Real vs Theo-
Cost per VM per Algorithm VM per Algorithm retical Cost per VM per Algo-
rithm

Figure 5.24: Theoretical vs Real Cost per VM per algorithm

Figure 5.17, Figure 5.18, Figure 5.19 and Figure 5.20 give a global view of the
behavior of each of the used scheduling algorithms, while Figure 5.21, Figure 5.22,
Figure 5.23 and Figure 5.24 give a detailed view of the behavior of the corresponding
used scheduling algorithm. On each of these figures, the left sub-figure depicts the
theoretical values obtained before starting the real execution of the corresponding
algorithm on real Cloud based on OpenStack, the middle one depicts the values
obtained on the real Cloud platform which are obtained after the end of execution
of the corresponding algorithm, finally the right sub-figure shows the computed ratio
between these two.

Over the set of figures, we can say that MMin gives the best makespan, followed
by the Max-Min, and then Min-Min as described in Figure V.17(a). Meanwhile, Min-

Min ensures the best result with regard to consumed energy (Figure V.19(a)) and

88

cost (Figure V.20(a)). Finally, Maz-Min and MDMin are the best in same position
concerning resources utilization average according to Figure V.18(a).

In the right sub-figure in all figures, a ratio between the theoretical values ob-
tained on the real Cloud platform is computed. It shows the efficiency of the used
tools in the execution, especially with regard to disk read/write speeds and network
upload/download speeds. In all cases, we show that the measured value Pi is great

than 88%, with an average of 91.25% for all experimentations.

5.4 Discussion

For InterRC heuristic, our experiments are conducted through simulation, where
different comparisons of the proposed InterRC heuristic with others heuristics show
that the proposed approach gives a better makespan in about 90 % of cases comparing
with evolutionary approaches, and in 100 % of cases comparing with fast deterministic
heuristics.

For MMin Evaluation and MFHS validation, the different experiments were con-
ducted in three different environments. The first one consists to use a personal com-
puter, which allows to demonstrate the possibility of use of MFHS to make theoretical
analysis. The second one consists to use an emulator that emulates a distributed envi-
ronment, demonstrating the possibility of using MFHS in an emulated environment.
The last one consists to use a real experimental cloud environment, demonstrating
the possibility of use of MFHS in a real distributed environment. Note that all ex-
periments in the three different environments have been done to show the proper
functioning of MFHS while taking advantage of the opportunity to compare our pro-
posed MMin algorithm with the original Maz-Min and Min-Min algorithms. This
just to give an example, as well as it is possible to make the different experimen-
tations with other scheduling algorithms and in other distributed environments. In
our experiments, we have considered response time, load balancing, cost, and energy
consumption as QoS parameters.

Looking at the QoS parameters measured in the OpenStack environment, it is
well observed that resources utilization using Maz-Min and MMain are relatively high
compared to Min-Min, while this latter consumes less energy and cost compared to
MMin and Maz-Min. Consequently, it is recommended to use Min-Min for cost and
energy optimization, MMin for makespan optimization, and to choose between MMin
and Maz-Min to optimize the resources utilization parameter.

From the experiments conducted on Emulab, it is clear that the makespan obtained

89

using MMin is always better than the other two algorithms, even for resource usage.
We also notice that the results are similar to the one obtained in the Openstack
environment. This means that the Min-Min algorithm does not exploit the resources
very well compared to the other two algorithms. However, by taking a look at the
energy consumption and cost, we can notice that the results are not similar in the
Emulab and Openstack platforms. On the one hand, the energy consumed using Max-
Min algorithm is less than the other two algorithms. Concerning the cost parameter,
the MMin heuristic gives the best result which is the lowest compared to the cost
obtained using Min-Min or Mazx-Min. This result difference in both Emulab and
Openstack experimental environments can be explained by the fact that the resource
utilization, cost, and energy parameters are not subjected to be optimized by the
MDMin heuristic. On the other hand, the makespan metric, which is intrinsically
optimized by the proposed MMin, always gives the best result using the latter in

both experimental environments.

For both OpenStack and Emulab environments, the experiments start by a theo-
retical analysis, then a real deployment is done in the second step, while computing
the Pi, which allows to predicate the ratio between the results obtained with a theo-
retical analysis, and the ones that will be obtained after a real deployment. In both
environments, the fact of having a convergence close to 90% between real results and
theoretical ones, in most of the cases for all computed QoS parameters, shows the
efficiency of all MFHS component modules. Also, the computed offset of 90% is very
close to the predicted Pi which was about 94%. This result shows us that the exper-
imentation has been set using relevant tools for managing network and disk rate and
shows that the OpenStack extra_space module worked pretty well during the whole

real virtual machine execution.

All MFHS modules have been explored, from resources discovery and requests
collector to resources allocation, resources monitoring, and behavior study, while

passing by exploring scheduling module.

Also, in both used environments, the transition from theoretical analysis to a real
deployment is done automatically with any code source modification. Moreover, the
transition from the environment to another is done exploring the modularity property
of MFHS which facilitates the reuse of modules.

The different realized experiments allow us to say that MFHS functions are
reached as intended. Hence, all modules are portable and easily reusable in vari-

ous distributed environments.

90

One of the highlighted aims in presenting MFHS is to propose a modular frame-
work which can be used in both theoretical, virtual and real environments. To demon-
strate these facilities, we chose to expose studies in these 3 cases. Doing this, we hope
to clearly show that good accuracy results can be reached, even on theoretical and
Emulab environments which do not require long and hard installation and configura-

tion. And so, it is not necessary to devote much time to setting up experiments.

Evaluating MFHS in different experimental setups are also important in order to

face with:

The reliability of models used

Multiple levels of external perturbation

Multiple levels of platform accuracy

Multiple difficulty levels to propose reproducible experimentations

Highlight MFHS can be used in a reliable way in different experimental setups,

and able to switch from one to another.

About the framework performance, it is not affected while moving from theoret-
ical studies to emulation and from emulation to real cloud testbed. Obviously, for
the reasons described above, it is easier (in terms of deployment complexity) to per-
form theoretical experiments compared to Emulab. Also, the Emulab environment
represents less risk compared to an OpenStack-based Cloud (all of OpenStack’s in-
trinsic services architecture is very efficient but very complex, which includes higher
risks of malfunction at any levels). In the experimentation we did, we did not no-
ticed a big performance difference between the three environments except the network
throughput and I/0 speed variations on the Cloud-based experimental platform.

The security is an important parameter that mus be considered in any solution,
especially the one deployed in a environment with high level of risk, like our case,
where we have a huge number of users, and a large scale resources that compose
the environment. This security parameter is considered by our framework MFHS,
when the authentication in our system, the all messages exchanged between nodes,
whatever their type (V M, PM, or other) are encrypted. The method that we have
used is an asymmetric encryption method, also called public-key cryptography. This
method is implemented in SSH protocol that we have re-used in MFHS. Also, this
method is most suitable for large scale systems, because it reduces the number of keys

exchanged.

91

5.5 Conclusion

This chapter was organized into two parts, the first was dedicated to the presen-
tation of the evaluation of our proposed InterRC heuristic, whereas, the second one
aimed to show the well-functioning of MFHS framework, meanwhile, showing the
good results of our proposed heuristic MMin.

To achieve our objective, we have used our owner simulator to evaluate InterRC
heuristic, and we have used three different environments for MMin evaluation and
MFHS validation. The first of which is a simple environment that allows to analyze
the scheduling algorithms only by simulation, whereas the second and the third ones
are respectively, an emulator called EFmulab and a real Cloud environment based on
OpenStack. Note that the portability property of our framework is used during the
transition from an environment to another one. During our experiments, we have

explored all presented modules, and then quantified all considered QoS parameters.

92

Conclusion and Perspectives

In this last stage of our work presentation, we will give a general conclusion, and
perspectives for future work. We begin by presenting a general conclusion that con-
cerns all the works presented in our thesis. We then present the perspectives part as
a set of open research challenges related to our works. We expect that tackling those

challenges will contritbue to further advance the area.

Conclusion

In our thesis, we have mainly addressed two problems. The first one is related to
task scheduling, whereas the second one is related to resource management. In both
cases, we have focused on large scale distributed computing architectures.

The complexity of task scheduling problem lead the researchers working in this
area to propose a huge number of approaches. These approaches, although, they
often produce good results, are almost always only evaluated through by simulation
and are therefore unfortunately never deployed and tested in real conditions.

Looking at the variety in terms of the different distributed computing architectures
existing nowadays on one side, and the huge number of task scheduling approaches
already proposed in the literature on the other side, it becomes more difficult to
say which task scheduling approach is the more suitable for which distributed ar-
chitectures, especially when it comes to real world environments. To help resolve
this issue, it is important to design a smart resource management solution that can:
(1) be adapted to any distributed computing architecture, and (2) help both the re-
search and development communities to make an automatic switch from simulation
to real deployment for any task scheduling algorithms in any distributed computing
environment.

Our efforts to resolve the problems addressed in our thesis resulted in the following
three major contributions:

The first one consists in proposing a smart resource management solution called

93

MFHS, which can be adapted to any distributed computing architecture, and that
can help the research and development communities alike to achieve an important
property that we have called "From theoretical to real deployment". The latter con-
sists to ensure an automatic switch from the simulation phase to the real deployment
phase of any task scheduling algorithms in any distributed computing architecture.

MFHS is a generic framework which includes dedicated modules in charge of
discovering computing resources, collecting data about requests, scheduling (and al-
locating) tasks over the available resources, monitoring those resources, and analyzing
the results through a set of parameters. As it presented in Chapter III the architec-
ture of MFHS allows conducting experimentation from scratch in both virtual and
real distributed computing environments for any kind of studies. Indeed, thanks to
the Resource Discovery module, the setting up of experimentation in a heterogeneous
environment is facilitated, since MFHS is able to automatically discover the main
computing resources characteristics: number of Vepu, amount of RAM, free storage
capacity, read /write disk rate and upload/download rate between computing nodes.
This functionality is one of the keys to ease the setting up of experiments in a real
distributed computing context.

The second and the third contributions can be seen from a pure scheduling point
of view. Both proposed methods, MMin and InterRC, aim to optimize the total
response time.

InterRC' is an evolutionary heuristic. In general, evolutionary heuristics are not
deterministic, which is also the case of InterRC'; this means that the results may not
be the same if we re-execute the scheduler. InterRC uses a new concept that we have
proposed, called Inter Collaboration, which allows a set of resources to work together
by trying to exchange tasks with the aim to improve the total response time.

MMin is a fast deterministic scheduling heuristic, characterized by low execution
time. MMin is proposed with the aim to get a better optimization trade-off while
taking advantage of the good qualities of both well-known Min-Min and Maz-Min
heuristics. Like the latter two heuristics, MMin is executed in iterations, in each
iteration, MMin call Min-Min or Maz-Min according to the global state of the system.

In addition to the proposition of two scheduling heuristics and a resource man-
agement solution, we have presented, in this thesis, two chapters that describe the
state of the art. The first one discusses the background of the proposed research of
this thesis, and the second one describes the work in relation to our thesis work.

The experimentation shown the throughout Chapter V illustrates how the MFHS

framework can be easily integrated into various distributed computing environments.

94

This is achieved using two different environments which are a real Cloud environment
based on OpenStack and a test-bed environment based on Emulab. Through the set
of experimentations, we have demonstrated the possibility to easily integrate new
task scheduling algorithms into the proposed framework. Thus, the framework allows
selecting some or all of the available algorithms, in order to make a theoretical eval-
uation before conducting a real experimentation. Another interesting point offered
by the framework, is the ability to compute a coefficient (called Pi) which makes it
possible to predict the percentage of offset expected between the theoretical results
and those that should be obtained after a real execution.

Also, the set of conducted experimentations have shown the intrinsic ability of
MFHS to compute and then allowed us to compare scheduling approaches through
various metrics. These metrics can be either multiple objectives to be optimized or
simple parameters to be analyzed. While the MMin heuristic used in experimentation
only focuses on its optimization using the makespan metric, all the other analysed
results include other parameters like the average resource utilization, the cost, and
the global energy consumption.

The evaluation of InterRC was conducted with a set of non evolutionary heuristics,
then with a set of evolutionary heuristics. In the first case, InterRC always gives the
best total completion time, whereas it gives the best total completion time in about
90% of the experite,ts in the second case. A weak point of InterRC, and most of the
other evolutionary heuristics, is their execution time, which is usually high compared
with non-evolutionary heuristics. In addition, the results can stop improving after
some time, making it important to detect the point of "evolution stop" to interrupt

the algorithm execution.

Perspectives

Despite substantial contributions of the current thesis in the resources manage-
ment and scheduling in large distributed systems, there are several perspectives that
can follows the presented work. We will present a set of the perspectives in three

parts, each one discussing the perspectives related to a corresponding contribution:

InterRC algorithm : Since the InterRC heuristic proposes to the different re-
sources to collaborate together in order to improve the total response time, and
knowing that any resource of the whole set of resources can crash in any time, it

will be interesting to think about the integration of the fault tolerance management

95

aspect in order to allow the InterRC heuristic to continue its execution if one or more
resources failed to continue their work.

It is also possible to make more intensive experimentations by varying the time
dedicated to the InterRC execution and show the corresponding results. It would
finally be useful to allow more variety in the initial solutions and show the behavior

of InterRC' in regard to the initial solution.

MMin algorithm Currently, MMin combines only Maz-Min and Min-Min heuris-
tics. It is conceivable to combine other heuristics, including evolutionary ones, com-
paring the resulting combination with other scheduling algorithms. Integrating more
algorithms into the MFHS framework would increase its chances of being used by
others researches and developers.

Many common perspectives can concern both InterRC and MMin heuristics:

e Both InterRC and MMin heuristics are mono-objective, their aim being to min-
imize the total response time optimization. It is conceivable to converting them
into multi-objective heuristics, by introducing other objectives to be optimized,
especially cost and energy consumption. We could then compare them with
multi-objective scheduling algorithms.

e Considering the tasks’ characteristics, both InterRC' and MMin are oriented
towards scheduling non-preemptive and independent tasks with equal proper-
ties. It is possible to extend our algorithms to schedule tasks with different
nature, like dependent tasks that form a DAG, tasks with unequal priorities, or
preemptive tasks, ...

e it is conceivable to combine InterRC, MMin, or their inherited algorithms with
others heuristics while using our MFHS framework. That would allow us to
both get more available algorithms in MFHS, and get more comparison results

concerning these scheduling algorithms.

MFHS Framework The future works that we propose as improvements to our

framework can be summarized in the following points:

e Extend the framework through other specific features closer to actual emerging
distributed and heterogeneous architecture like Fog Computing,

e Extend MFHS to support other nature of tasks, inter alia, the tasks that can
be associated to a type which defines its priority or to tasks that can be delayed

or stopped (pre-emption) for a certain period of time,

96

Extend MFHS to support other nature of schedulers, like event-invocation, and
dynamic scheduling.

Integrate a fault tolerance management mechanism, in order to ensure the con-
tinuity of the execution of such scheduling algorithms in the case of fault detec-
tion,

Perform a detailed analysis of the scalability of both MFHS modules and the
MDMin heuristic to ensure the proper functioning of MFHS in a wide Internet
of Things environment,

Conduct experimentations in an experimental distributed computing plateform
which is partially feeded by renewable energy (photovoltaic energy production).
This would allow to improve the MFHS framework by taking into account
both brown and green energy sources. The analysis of the global amount of
consumed energy could be done while taking into account the productivity rate
of the various energy sources with the intention of increasing the use of clean

energy and improving the way they are used, given their limited lifetime.

97

BIBLIOGRAPHY

99

1

2l

13l

4]

5]

(6]

17l

8]

9]

BIBLIOGRAPHY

Mohammad Aazam and Eui-Nam Huh. Fog computing and smart gateway
based communication for cloud of things. In 2014 International Conference on
Future Internet of Things and Cloud, pages 464-470. IEEE, 2014.

S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali. Task execu-
tion time modeling for heterogeneous computing systems. In Proceedings 9th
Heterogeneous Computing Workshop (HCW 2000) (Cat. No.PR00556), pages
185-199, 2000. doi: 10.1109/HCW.2000.843743.

Slawomir Bak, Marcin Krystek, Krzysztof Kurowski, Ariel Oleksiak, Wojciech
Piatek, and Jan Waglarz. Gssim-a tool for distributed computing experiments.
Scientific Programming, 19(4):231-251, 2011.

Rajesh Kumar Bawa and Gaurav Sharma. Modified min-min heuristic for job
scheduling based on qos in grid environment. In Information Management in
the Knowledge Economy (IMKE), 2013 2nd International Conference on, pages
166-171. IEEE, 2013.

AS Ajeena Beegom and MS Rajasree. A particle swarm optimization based
pareto optimal task scheduling in cloud computing. In International Conference
in Swarm Intelligence, pages 79-86. Springer, 2014.

Anton Beloglazov and Rajkumar Buyya. Openstack neat: a framework for
dynamic and energy-efficient consolidation of virtual machines in openstack
clouds. Concurrency and Computation: Practice and Ezxperience, 27(5):1310—
1333, 2015.

Upendra Bhoi, Purvi N Ramanuj, et al. Enhanced max-min task scheduling al-
gorithm in cloud computing. International Journal of Application or Innovation
in Engineering and Management (IJAIEM), 2(4):259-264, 2013.

Supriya S. Bichkule and Ravi Mante. Deadline based resource provisioning and
scheduling algorithm for scientific workflows on clouds : a review. 2017.

Luiz F Bittencourt, Javier Diaz-Montes, Rajkumar Buyya, Omer F Rana, and
Manish Parashar. Mobility-aware application scheduling in fog computing.
IEEE Cloud Computing, 4(2):26-35, 2017.

101

[10] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog com-
puting and its role in the internet of things. In Proceedings of the first edition
of the MCC workshop on Mobile cloud computing, pages 13-16, 2012.

[11] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog com-
puting: A platform for internet of things and analytics. In Big data and internet
of things: A roadmap for smart environments, pages 169-186. Springer, 2014.

[12] Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L B6loni,
Muthucumaru Maheswaran, Albert [Reuther, James P Robertson,
Mitchell D Theys, Bin Yao, Debra Hensgen, and Richard F Freund.
A comparison of eleven static heuristics for mapping a class of in-
dependent tasks onto heterogeneous distributed computing systems.
Journal of Parallel and Distributed Computing, 61(6):810 — 837, 2001.
ISSN 0743-7315. doi: https://doi.org/10.1006/jpdc.2000.1714. URL
http://www.sciencedirect.com/science/article/pii/S0743731500917143.

[13] Marc Bux and Ulf Leser. Dynamiccloudsim: Simulating heterogeneity in com-
putational clouds. Future Generation Computer Systems, 46:85-99, 2015.

[14] Charles C Byers and Patrick Wetterwald. Fog computing distributing data and
intelligence for resiliency and scale necessary for iot: The internet of things
(ubiquity symposium). Ubiquity, 2015(November):1-12, 2015.

[15] Zhicheng Cai, Qianmu Li, and Xiaoping Li. Elasticsim: A toolkit for simu-
lating workflows with cloud resource runtime auto-scaling and stochastic task
execution times. Journal of Grid Computing, 15(2):257-272, 2017.

[16] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and
Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software: Practice and experience, 41(1):23-50, 2011.

[17] Rodrigo N Calheiros, Marco AS Netto, César AF De Rose, and Rajkumar
Buyya. Emusim: an integrated emulation and simulation environment for
modeling, evaluation, and validation of performance of cloud computing ap-
plications. Software: Practice and Experience, 43(5):595-612, 2013.

[18] Jan Carlson, Jukka Miki-Turja, and Mikael Nolin. Event-Pattern Triggered
Real-Time Tasks. In Giorgio Buttazzo and Pascale Mine, editors, 16th Interna-
tional Conference on Real-Time and Network Systems (RTNS 2008), Rennes,
France, Oct 2008.

[19] Henri Casanova, Arnaud Legrand, and Martin Quinson. Simgrid: A generic
framework for large-scale distributed experiments. In Computer Modeling and
Simulation, 2008. UKSIM 2008. Tenth International Conference on, pages 126—
131, april 2008.

102

[20] H. J. Chang, J. J. Wu, and P. Liu. Job scheduling techniques for distributed
systems with heterogeneous processor cardinality. In 2009 10th International

Symposium on Pervasive Systems, Algorithms, and Networks, pages 57-62, Dec
2009. doi: 10.1109/I-SPAN.2009.68.

[21] Huankai Chen, F. Wang, N. Helian, and G. Akanmu. User-priority guided
min-min scheduling algorithm for load balancing in cloud computing. In 2013
National Conference on Parallel Computing Technologies (PARCOMPTECH),
pages 1-8, Feb 2013. doi: 10.1109/ParCompTech.2013.6621389.

[22] W. N. Chen and J. Zhang. A set-based discrete pso for cloud workflow schedul-
ing with user-defined qos constraints. In 2012 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pages 773-778, Oct 2012. doi:
10.1109/ICSMC.2012.6377821.

[23] Weiwei Chen and Ewa Deelman. Workflowsim: A toolkit for simulating sci-
entific workflows in distributed environments. In E-science (e-science), 2012
IEEE 8th International Conference on, pages 1-8. IEEE, 2012.

[24] S Chitra, B Madhusudhanan, GR Sakthidharan, and P Saravanan. Local min-
ima jump pso for workflow scheduling in cloud computing environments. In

Advances in computer science and its applications, pages 1225-1234. Springer,
2014.

[25] Santanu Dam, Gopa Mandal, Kousik Dasgupta, and Paramartha Dutta. An
ant colony based load balancing strategy in cloud computing. In Advanced
Computing, Networking and Informatics-Volume 2, pages 403-413. Springer,
2014.

[26] Marco Dorigo and Gianni Di Caro. Ant colony optimization: a new meta-
heuristic. In Proceedings of the 1999 congress on evolutionary computation-
CEC99 (Cat. No. 99TH8406), volume 2, pages 1470-1477. IEEE, 1999.

[27] Rubing Duan, Radu Prodan, and Thomas Fahringer. Performance and cost
optimization for multiple large-scale grid workflow applications. In Proceedings
of the 2007 ACM/IEEE conference on Supercomputing, page 12. ACM, 2007.

[28] OM Elzeki, MZ Reshad, and MA Elsoud. Improved max-min algorithm in cloud
computing. International Journal of Computer Applications, 50(12), 2012.

[29] Larry J. Eshelman. The chc adaptive search algorithm: How to have
safe search when engaging in nontraditional genetic recombination. vol-
ume 1 of Foundations of Genetic Algorithms, pages 265 — 283. Elsevier,
1991. doi: https://doi.org/10.1016/B978-0-08-050684-5.50020-3. URL
http://www.sciencedirect.com/science/article/pii/B9780080506845500203.

[30] Kobra Etminani and M Naghibzadeh. A min-min max-min selective algorihtm
for grid task scheduling. In 2007 3rd IEEE/IFIP International Conference in
Central Asia on Internet, pages 1-7. IEEE, 2007.

103

[31] Kobra Etminani, Mahmaud Naghibzadeh, and Noorali Raeeji Yanehsari. A
hybrid min-min max-min algorithm with improved performance. Department
of Computer Engineering, Ferdowsi University of Mashad, Iran, 32:1-3, 2007.

[32] Eugen Feller, Louis Rilling, and Christine Morin. Snooze: A scalable and auto-
nomic virtual machine management framework for private clouds. In 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(cegrid 2012), pages 482—-489. IEEE, 2012.

[33] Mohamed Firdhous, Osman Ghazali, and Suhaidi Hassan. Fog computing: Will
it be the future of cloud computing? The Third International Conference on
Informatics & Applications (ICIA2014), 2014.

[34] Peter Xiang Gao, Andrew R Curtis, Bernard Wong, and Srinivasan Keshav.
It’s not easy being green. ACM SIGCOMM Computer Communication Review,
42(4):211-222, 2012.

[35] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta, Teruo
Higashino, Adriana lamnitchi, Marinho Barcellos, Pascal Felber, and Etienne
Riviere. Edge-centric computing: Vision and challenges, 2015.

[36] Saurabh Kumar Garg and Rajkumar Buyya. Networkcloudsim: Modelling par-
allel applications in cloud simulations. In 2011 Fourth IEEFE International Con-
ference on Utility and Cloud Computing, pages 105-113. IEEE, 2011.

[37] Michael R Gary and David S Johnson. Computers and intractability: A guide
to the theory of np-completeness, 1979.

[38] Y. Ge and G. Wei. Ga-based task scheduler for the cloud computing systems.
In 2010 International Conference on Web Information Systems and Mining,
volume 2, pages 181-186, Oct 2010. doi: 10.1109/WISM.2010.87.

[39] Arash Ghorbannia Delavar and Yalda Aryan. Hsga: a hybrid heuristic algo-
rithm for workflow scheduling in cloud systems. Cluster Computing, 17(1):
129-137, Mar 2014. ISSN 1573-7543. doi: 10.1007/s10586-013-0275-6. URL
https://doi.org/10.1007/s10586-013-0275-6.

[40] Tarun Kumar Ghosh, Rajmohan Goswami, Sumit Bera, and Subhabrata Bar-
man. Load balanced static grid scheduling using max-min heuristic. In Parallel
Distributed and Grid Computing (PDGC), 2012 2nd IEEE International Con-
ference on, pages 419-423. IEEE, 2012.

[41] Christos Gogos, Christos Valouxis, Panayiotis Alefragis, George Goulas,
Nikolaos Voros, and Efthymios Housos. Scheduling independent
tasks on heterogeneous processors using heuristics and column pric-
ing. Future Generation Computer Systems, 60:48 — 66, 2016. ISSN
0167-739X. doi: https://doi.org/10.1016/j.future.2016.01.016. URL
http://www.sciencedirect.com/science/article/pii/S0167739X16000297.

104

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

David E Golberg. Genetic algorithms in search, optimization, and machine
learning. Addion wesley, 1989(102):36, 1989.

S. Goutam and A. K. Yadav. Preemptable priority based dynamic resource
allocation in cloud computing with fault tolerance. In 2015 International Con-
ference on Communication Networks (ICCN), pages 278285, Nov 2015. doi:
10.1109/ICCN.2015.54.

Lizheng Guo, Shuguang Zhao, Shigen Shen, and Changyuan Jiang. Task
scheduling optimization in cloud computing based on heuristic algorithm. JNW,
7:547-553, 2012.

Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar Buyya.
ifogsim: A toolkit for modeling and simulation of resource management tech-

niques in the internet of things, edge and fog computing environments. Software:
Practice and Experience, 47(9):1275-1296, 2017.

A. A. Haruna, L. T. Jung, and N. Zakaria. Design and development of hybrid
integrated thermal aware job scheduling on computational grid environment.

In 2015 International Symposium on Mathematical Sciences and Computing
Research (iSMSC), pages 13-17, May 2015. doi: 10.1109/ISMSC.2015.7594020.

Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia
Lawall. Entropy: a consolidation manager for clusters. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, pages 41-50. ACM, 2009.

Cristian Hernandez Benet, Robayet Nasim, Kyoomars Alizadeh Noghani, and
Andreas Kassler. Openstackemu-a cloud testbed combining network emulation
with openstack and sdn. In The 14th Annual IEEE Consumer Communications
¢ Networking Conference (CCNC), 8-11 Jan. 2017, Las Vegas, USA. IEEE
conference proceedings, 2017.

Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi Guruprasad,
Tim Stack, Kirk Webb, and Jay Lepreau. Large-scale virtualization in the em-
ulab network testbed. In USENIX 2008 Annual Technical Conference, ATC’08,
pages 113-128, 2008.

Tran Cong Hung, Le Ngoc Hieu, Phan Thanh Hy, and Nguyen Xuan Phi.
Mmsia: Improved max-min scheduling algorithm for load balancing on cloud
computing. In Proceedings of the 3rd International Conference on Machine
Learning and Soft Computing, pages 60—64. ACM, 2019.

Felix Hupfeld, Toni Cortes, Bjorn Kolbeck, Jan Stender, Erich Focht, Matthias
Hess, Jesus Malo, Jonathan Marti, and Eugenio Cesario. The xtreemfs archi-

tecture—a case for object-based file systems in grids. Concurrency and compu-
tation: Practice and experience, 20(17):2049-2060, 2008.

105

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

62|

[63]

T. Issariyakul and E. Hossain. Introduction to network simulator NS2. Springer,
2011.

Hesam Izakian, Ajith Abraham, and Vaclav Snasel. Comparison of heuristics
for scheduling independent tasks on heterogeneous distributed environments.
In 2009 International Joint Conference on Computational Sciences and Opti-
mazation, volume 1, pages 8—12. IEEE, 2009.

A. Jain and R. Kumar. A multi stage load balancing technique for cloud envi-
ronment. In 2016 International Conference on Information Communication
and Embedded Systems (ICICES), pages 1-7, Feb 2016. doi: 10.1109/ICI-
CES.2016.7518921.

Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney S
Tucker. Fog computing may help to save energy in cloud computing. [FEFE
Journal on Selected Areas in Communications, 34(5):1728-1739, 2016.

Yaser Jararweh, Zakarea Alshara, Moath Jarrah, Mazen Kharbutli, and Mo-
hammad N Alsaleh. Teachcloud: a cloud computing educational toolkit. Inter-
national Journal of Cloud Computing 1, 2(2-3):237-257, 2013.

Yaser Jararweh, Fadi Ababneh Lo’ai Tawalbeh, Fadi Ababneh, Abdallah
Khreishah, and Fahd Dosari. Scalable cloudlet-based mobile computing model.
In FNC/MobiSPC, pages 434-441, 2014.

Navdeep Kaur and Khushdeep Kaur. Improved max-min scheduling algorithm.
IOSR Journal of Computer Engineering (IOSR-JCE), 17(3):42-49, 2015.

Rajwinder Kaur and Prasenjit Kumar Patra. Resource allocation with improved
min-min algorithm. International Journal of Computer Applications, 76(15):
61-67, August 2013. Full text available.

Rajwinder Kaur and Prasenjit Kumar Patra. Resource allocation with improved
minmin algorithm. International Journal of Computer Applications, 76(15),
2013.

Abdelhamid Khiat and Abdelkamel Tari. Interrc: An inter-resources collabo-
ration heuristic for scheduling independent tasks on heterogeneous distributed
environments. In MENDFEL, volume 25, pages 179-188, 2019.

Abdelhamid Khiat, Abdelkamel Tari, and Tom Guérout. Mfhs: A mod-
ular scheduling framework for heterogeneous system. Software: Practice
and Experience, 50(8):1463-1497, 2020. doi: 10.1002/spe.2827. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2827.

Hyunjoo Kim and Manish Parashar. Cometcloud: An autonomic cloud engine.
Cloud Computing: Principles and Paradigms, pages 275297, 2011.

106

[64]

[65]

[66]

|67]

[68]

[69]

[70]

|71

[72]

73]

[74]

Alexander Klemm, Christoph Lindemann, and Oliver P Waldhorst. A special-
purpose peer-to-peer file sharing system for mobile ad hoc networks. In 2003
IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.
03CH37484), volume 4, pages 2758-2763. IEEE, 2003.

D. Kliazovich, P. Bouvry, Y. Audzevich, and S.U. Khan. Greencloud: A packet-
level simulator of energy-aware cloud computing data centers. In GLOBECOM
2010, IEEE Global Telecommunications Conference, pages 1-5, 2010.

Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. Greencloud: a
packet-level simulator of energy-aware cloud computing data centers. The Jour-
nal of Supercomputing, 62(3):1263-1283, 2012.

Andreas Kohne, Marc Spohr, Lars Nagel, and Olaf Spinczyk. Federated-
cloudsim: a sla-aware federated cloud simulation framework. In Proceedings of
the 2nd International Workshop on CrossCloud Systems, page 3. ACM, 2014.

James Kok Konjaang, Fahrul Hakim Ayob, and Abdullah Muhammed. Cost ef-
fective expa-max-min scientific workflow allocation and load balancing strategy
in cloud computing. JCS, 14(5):623-638, 2018.

H. Kopetz. The time-triggered model of computation. In Proceedings 19th
IEEE Real-Time Systems Symposium (Cat. No.98CB36279), pages 168-177,
Dec 1998. doi: 10.1109/REAL.1998.739743.

Krzysztof Kurowski, Ariel Oleksiak, W Piatek, Tomasz Piontek, A Przy-
byszewski, and J Weglarz. Dcworms—a tool for simulation of energy efficiency

in distributed computing infrastructures. Simulation Modelling Practice and
Theory, 39:135-151, 2013.

Adrien Lebre, Jonathan Pastor, Marin Bertier, Frédéric Desprez, Jonathan
Rouzaud-Cornabas, Cédric Tedeschi, Paolo Anedda, Gianluigi Zanetti, Ramon
Nou, Toni Cortes, et al. Beyond the cloud, how should next generation utility
computing infrastructures be designed? 2013.

Kun Li, Gaochao Xu, Guangyu Zhao, Yushuang Dong, and Dan Wang. Cloud
task scheduling based on load balancing ant colony optimization. In 2011 sizth
annual ChinaGrid conference, pages 3-9. IEEE, 2011.

Yan Li, Zhunge Zhu, and Yong Wang. Min-max-min: A heuristic schedul-
ing algorithm for jobs across geo-distributed datacenters. In 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS), pages
1573-1574. IEEE, 2018.

Seung-Hwan Lim, Bikash Sharma, Gunwoo Nam, Eun-Kyoung Kim, and
Chita R Das. Mdcsim: A multi-tier data center simulation, platform. In CLUS-
TER, volume 31, pages 1-9, 2009.

107

[75]

|76]

[77]

78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

Cong Liu and Sanjeev Baskiyar. A general distributed scalable grid scheduler
for independent tasks. Journal of Parallel and Distributed Computing, 69(3):
307-314, 2009.

X. Lu and Z. Gu. A load-adapative cloud resource scheduling model based on
ant colony algorithm. In 2011 IEEFE International Conference on Cloud Com-
puting and Intelligence Systems, pages 296-300, Sept 2011. doi: 10.1109/C-
CIS.2011.6045078.

Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, Debra Hensgen,
and Richard F Freund. Dynamic mapping of a class of independent tasks onto
heterogeneous computing systems. Journal of parallel and distributed comput-
ing, 59(2):107-131, 1999.

A. H. Mahmud and S. S. Iyengar. A distributed framework for carbon and cost
aware geographical job scheduling in a hybrid data center infrastructure. In
2016 IEEE International Conference on Autonomic Computing (ICAC), pages
75-84, July 2016. doi: 10.1109/ICAC.2016.21.

Francesco Malandrino, Scott Kirkpatrick, and Carla-Fabiana Chiasserini. How
close to the edge? delay/utilization trends in mec. In Proceedings of the 2016
ACM Workshop on Cloud-Assisted Networking, pages 37-42, 2016.

S. Mittal and A. Katal. An optimized task scheduling algorithm in cloud com-
puting. In 2016 IEEE 6th International Conference on Advanced Computing
(IACC), pages 197-202, Feb 2016. doi: 10.1109/TACC.2016.45.

Shubham Mittal and Avita Katal. An optimized task scheduling algorithm in
cloud computing. In 2016 IEEE 6th International Conference on Advanced
Computing (IACC), pages 197-202. IEEE, 2016.

Christine Morin, Pascal Gallard, Renaud Lottiaux, and Geoffroy Vallée. To-
wards an efficient single system image cluster operating system. Future Gener-
ation Computer Systems, 20(4):505-521, 2004.

Sergio Nesmachnow, Héctor Cancela, and Enrique Alba. A parallel micro evo-
lutionary algorithm for heterogeneous computing and grid scheduling. Applied
Soft Computing, 12(2):626-639, 2012.

Anant V Nimkar and Soumya K Ghosh. Realization of virtual resource man-
agement framework in iaas cloud federation. In Proceedings of International
Conference on Communication and Networks, pages 155-164. Springer, 2017.

Alberto Nunez, Javier Fernandez, Rosa Filgueira, Félix Garcia, and Jestus Car-
retero. Simcan: A flexible, scalable and expandable simulation platform for
modelling and simulating distributed architectures and applications. Simula-
tion Modelling Practice and Theory, 20(1):12-32, 2012.

108

[36]

[87]

[38]

[89]

[90]

[91]

[92]

193]

[94]

[95]

Alberto Nunez, Jose L Vazquez-Poletti, Agustin C Caminero, Gabriel G Cas-
tané, Jesus Carretero, and Ignacio M Llorente. icancloud: A flexible and scal-

able cloud infrastructure simulator. Journal of Grid Computing, 10(1):185-209,
2012.

Sanjaya Kumar Panda, Pratik Agrawal, Pabitra Mohan Khilar, and
Durga Prasad Mohapatra. Skewness-based min-min max-min heuristic for grid
task scheduling. ACCT : Fourth International Conference on Advanced Com-
puting € Communication Technologies ACCT, 2014.

Saeed Parsa and Reza Entezari-Maleki. Rasa: a new grid task scheduling algo-
rithm. International Journal of Digital Content Technology and its Applications,
3(4):91-99, 20009.

Frédéric Pinel, Bernabé Dorronsoro, and Pascal Bouvry. A new parallel asyn-
chronous cellular genetic algorithm for scheduling in grids. In 2010 IEEFE Inter-
national Symposium on Parallel & Distributed Processing, Workshops and Phd
Forum (IPDPSW), pages 1-8. IEEE, 2010.

Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N Calheiros, and Rajku-
mar Buyya. Containercloudsim: An environment for modeling and simulation

of containers in cloud data centers. Software: Practice and Experience, 47(4):
505-521, 2017.

Fahimeh Ramezani, Jie Lu, and Farookh Hussain. Task scheduling optimization
in cloud computing applying multi-objective particle swarm optimization. In In-

ternational Conference on Service-oriented computing, pages 237-251. Springer,
2013.

A. Razaque, N. R. Vennapusa, N. Soni, G. S. Janapati, and k. R. Vangala.
Task scheduling in cloud computing. In 2016 IEEE Long Island Systems, Ap-
plications and Technology Conference (LISAT), pages 1-5, April 2016. doi:
10.1109/LISAT.2016.7494149.

Ubaid Ur Rehman, Amir Ali, and Zahid Anwar. seccloudsim: Secure cloud sim-
ulator. In Frontiers of Information Technology (FIT), 2014 12th International
Conference on, pages 208-213. IEEE, 2014.

B. P. Rimal and M. Maier. Workflow scheduling in multi-tenant cloud comput-
ing environments. IEEE Transactions on Parallel and Distributed Systems, 28
(1):290-304, Jan 2017. ISSN 1045-9219. doi: 10.1109/TPDS.2016.2556668.

Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. A com-
parison of high-level full-system power models. In Proceedings of the 2008
conference on Power aware computing and systems, HotPower’08, pages 3-3,

Berkeley, CA, USA, 2008. USENIX Association.

109

[96]

197]

98]

[99]

[100]

[101]

102]

[103]

[104]

[105]

[106]

Thiago Teixeira Sa, Rodrigo N Calheiros, and Danielo G Gomes. Cloudreports:
an extensible simulation tool for energy-aware cloud computing environments.
In cloud computing, pages 127-142. Springer, 2014.

K. Sellami, M. Ahmed-Nacer, P.F. Tiako, and R. Chelouah. Immune genetic
algorithm for scheduling service workflows with QoS constraints in cloud com-
puting. South African Journal of Industrial Engineering, 24:68 — 82, 11 2013.
ISSN 2224-7890.

S. Selvarani and G. S. Sadhasivam. Improved cost-based algorithm for task
scheduling in cloud computing. In 2010 IEEE International Conference on
Computational Intelligence and Computing Research, pages 1-5, Dec 2010. doi:
10.1109/ICCIC.2010.5705847.

Neha Sharma, Sanjay Tyagi, and Swati Atri. A comparative analysis of min-
min and max-min algorithms based on the makespan parameter. International
Journal of Advanced Research in Computer Science, 8(3), 2017.

Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant Shenoy. Flint:
Batch-interactive data-intensive processing on transient servers. In Proceedings
of the Eleventh Furopean Conference on Computer Systems, pages 1-15, 2016.

Gang Shen and Yan-Qing Zhang. A shadow price guided genetic algorithm for
energy aware task scheduling on cloud computers. In International Conference
in Swarm Intelligence, pages 522—529. Springer, 2011.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge com-
puting: Vision and challenges. IEEE internet of things journal, 3(5):637-646,
2016.

Yuhui Shi et al. Particle swarm optimization: developments, applications and
resources. In Proceedings of the 2001 Congress on FEvolutionary Computation
(IEEE Cat. No. 01TH8546), volume 1, pages 81-86. IEEE, 2001.

Mohammad Shojafar, Saeed Javanmardi, Saeid Abolfazli, and Nicola Corde-
schi. Fuge: A joint meta-heuristic approach to cloud job scheduling algo-
rithm using fuzzy theory and a genetic method. Cluster Computing, 18(2):
829-844, June 2015. ISSN 1386-7857. doi: 10.1007/s10586-014-0420-x. URL
http://dx.doi.org/10.1007/s10586-014-0420-x.

S Sindhu and Saswati Mukherjee. Efficient task scheduling algorithms for cloud
computing environment. In International Conference on High Performance
Architecture and Grid Computing, pages 79-83. Springer, 2011.

Thamarai Selvi Somasundaram and Kannan Govindarajan. Cloudrb: A frame-
work for scheduling and managing high-performance computing (hpc) applica-
tions in science cloud. Future Generation Computer Systems, 34:47-65, 2014.

110

[107] John A. Stankovic, Krithi Ramamritham, and Marco Spuri. Deadline Schedul-
ing for Real-Time Systems: Edf and Related Algorithms. Kluwer Academic
Publishers, Norwell, MA, USA, 1998. ISBN 0792382692.

[108] Ivan Stojmenovic and Sheng Wen. The fog computing paradigm: Scenarios and
security issues. In 2014 federated conference on computer science and informa-
tion systems, pages 1-8. IEEE, 2014.

[109] E Kartal Tabak, B Barla Cambazoglu, and Cevdet Aykanat. Improving the
performance of independenttask assignment heuristics minmin, maxmin and
sufferage. IEEE Transactions on Parallel and Distributed Systems, 25(5):1244—
1256, 2013.

[110] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles
and paradigms. Prentice-Hall, 2007.

[111] Fei Tao, Ying Feng, Lin Zhang, and T.W. Liao. Clps-ga: A case library
and pareto solution-based hybrid genetic algorithm for energy-aware cloud
service scheduling. Applied Soft Computing, 19(Supplement C):264 — 279,
2014. ISSN 1568-4946. doi: https://doi.org/10.1016/j.as0c¢.2014.01.036. URL
http://www.sciencedirect.com/science/article/pii/S1568494614000568.

[112] J. Teixeira, G. Antichi, D. Adami, A. Del Chiaro, S. Giordano, and A. Santos.
Datacenter in a box: Test your sdn cloud-datacenter controller at home. In
2013 Second Furopean Workshop on Software Defined Networks, pages 99-104,
Oct 2013. doi: 10.1109/EWSDN.2013.23.

[113] Lizhe Wang, Samee U. Khan, Dan Chen, Joanna Kolodziej, Rajiv Ranjan,
Cheng zhong Xu, and Albert Zomaya. FKEnergy-aware parallel task schedul-
ing in a cluster. Future Generation Computer Systems, 29(7):1661 — 1670,
2013. ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.2013.02.010. URL
http://www.sciencedirect.com/science/article/pii/S0167739X13000484.
Including Special sections: Cyber-enabled Distributed Computing for Ubig-
uitous Cloud and Network Services & Cloud Computing and Scientific
Applications — Big Data, Scalable Analytics, and Beyond.

[114] Xiaofeng Wang, Chee Shin Yeo, Rajkumar Buyya, and Jinshu Su. Optimizing
the makespan and reliability for workflow applications with reputation and a
look-ahead genetic algorithm. Future Generation Computer Systems, 27(8):
1124-1134, 2011.

[115] Yan Wang, Jinkuan Wang, Cuirong Wang, and Xin Song. Research on resource
scheduling of cloud based on improved particle swarm optimization algorithm.
In International Conference on Brain Inspired Cognitive Systems, pages 118
125. Springer, 2013.

111

[116]

[117]

[118]
[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

Xianglin Wei, Jianhua Fan, Tongxiang Wang, and Qiping Wang. Efficient ap-
plication scheduling in mobile cloud computing based on max—min ant system.
Soft Computing, 20(7):2611-2625, 2016.

X. Wen, M. Huang, and J. Shi. Study on resources scheduling based on aco
allgorithm and pso algorithm in cloud computing. In 2012 11th International
Symposium on Distributed Computing and Applications to Business, Engineer-
ing Science, pages 219-222, Oct 2012. doi: 10.1109/DCABES.2012.63.

Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.

Bhathiya Wickremasinghe, Rodrigo N Calheiros, and Rajkumar Buyya. Cloud-
analyst: A cloudsim-based visual modeller for analysing cloud computing en-
vironments and applications. In Advanced Information Networking and Appli-
cations (AINA), 2010 24th IEEE International Conference on, pages 446-452.
IEEE, 2010.

Timothy Wood, Prashant J Shenoy, Arun Venkataramani, Mazin S Yousif, et al.
Black-box and gray-box strategies for virtual machine migration. In NSDI,
volume 7, pages 17-17, 2007.

Guanlin Wu, Weidong Bao, Xiaomin Zhu, and Xiongtao Zhang. A general cross-
layer cloud scheduling framework for multiple iot computer tasks. Sensors, 18
(6):1671, 2018.

Min-You Wu and Wei Shu. A high-performance mapping algorithm for het-
erogeneous computing systems. In Proceedings 15th International Parallel and
Distributed Processing Symposium. IPDPS 2001, pages 6—pp. IEEE, 2001.

Z. Wu, Z. Ni, L. Gu, and X. Liu. A revised discrete particle swarm op-
timization for cloud workflow scheduling. In 2010 International Conference
on Computational Intelligence and Security, pages 184-188, Dec 2010. doi:
10.1109/CIS.2010.46.

Fatos Xhafa, Enrique Alba, Bernabé Dorronsoro, Bernat Duran, and Ajith
Abraham. Efficient batch job scheduling in grids using cellular memetic algo-
rithms. In Metaheuristics for Scheduling in Distributed Computing Environ-
ments, pages 273-299. Springer, 2008.

Y. Xiaoguang, C. Tingbin, and Z. Qisong. Research on cloud computing sched-
ule based on improved hybrid pso. In Proceedings of 2013 3rd International
Conference on Computer Science and Network Technology, pages 388-391, Oct
2013. doi: 10.1109/ICCSNT.2013.6967136.

Marcelo Yannuzzi, Rodolfo Milito, René Serral-Gracia, Diego Montero, and
Mario Nemirovsky. Key ingredients in an iot recipe: Fog computing, cloud
computing, and more fog computing. In 201/ IEEE 19th International Work-
shop on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), pages 325-329. IEEE, 2014.

112

[127]

[128]

[129]

[130]

[131]

132

[133]

[134]

[135]

[136]

Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog computing: Platform
and applications. In 2015 Third IEEE Workshop on Hot Topics in Web Systems
and Technologies (HotWeb), pages 73-78. IEEE, 2015.

Shanhe Yi, Zhengrui Qin, and Qun Li. Security and privacy issues of fog com-
puting: A survey. In International conference on wireless algorithms, systems,
and applications, pages 685-695. Springer, 2015.

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. Spark: Cluster computing with working sets. HotCloud, 10(10-10):
95, 2010.

Ben Zhang, Nitesh Mor, John Kolb, Douglas S Chan, Ken Lutz, Eric Allman,
John Wawrzynek, Edward Lee, and John Kubiatowicz. The cloud is not enough:
Saving iot from the cloud. In 7th { USENIX} Workshop on Hot Topics in Cloud
Computing (HotCloud 15), 2015.

C. Zhao, S. Zhang, Q. Liu, J. Xie, and J. Hu. Independent tasks schedul-
ing based on genetic algorithm in cloud computing. In 2009 5th International

Conference on Wireless Communications, Networking and Mobile Computing,
pages 14, Sept 2009. doi: 10.1109/WICOM.2009.5301850.

Zhongni Zheng, Rui Wang, Hai Zhong, and Xuejie Zhang. An approach for
cloud resource scheduling based on parallel genetic algorithm. In 2011 3rd

International Conference on Computer Research and Development, volume 2,
pages 444-447, March 2011. doi: 10.1109/ICCRD.2011.5764170.

Ao Zhou, Shangguang Wang, Chenchen Yang, Lei Sun, Qibo Sun, and Fangchun
Yang. Ftcloudsim: support for cloud service reliability enhancement simulation.
International Journal of Web and Grid Services, 11(4):347-361, 2015.

Kai Zhu, Huaguang Song, Lijing Liu, Jinzhu Gao, and Guojian Cheng. Hybrid
genetic algorithm for cloud computing applications. 2011 IEEE Asia-Pacific
Services Computing Conference, pages 182-187, 2011.

Xiaomin Zhu, Yabing Zha, Ling Liu, and Peng Jiao. General framework for task
scheduling and resource provisioning in cloud computing systems. In 2016 I[EEFE
40th Annual Computer Software and Applications Conference (COMPSAC),
volume 1, pages 664-673. IEEE, 2016.

X. Zuo, G. Zhang, and W. Tan. Self-adaptive learning pso-based deadline
constrained task scheduling for hybrid iaas cloud. IEEE Transactions on Au-
tomation Science and Engineering, 11(2):564-573, April 2014. ISSN 1545-5955.
doi: 10.1109/TASE.2013.2272758.

113

ABSTRACT

In today’s distributed systems, heterogeneous tasks appear concurrently at any site and at any
time. However, Task scheduling presents a major problem in distributed systems. Indeed, it is
difficult to: (i) know the location of all tasks/resources, (ii) verify /guarantee the time constraints
taking into account the communication delays induced by the tasks, and (iii) predict the platform’s
behavior. In this thesis, we have contributed to the resolution of these problems by proposing task
scheduling strategies oriented to distributed systems. Also, by developing resource management
solutions which allow, among others, resource discovery, task discovery, resource allocation, resource
behavior prediction, etc...

Keywords: Distributed computing; Heterogeneous environment; Task scheduling; Resource
management.

RESUME

Dans les systéemes distribués, des taches hétérogénes peuvent apparaitre concurremment sur n’importe
quel site et & n’importe quel moment. Le probléme d’ordonnancement des taches dans un univers
distribué est mal résolu a I’heure actuelle. En effet, il est difficile de : i) connaitre la localisation
de toutes les taches/ressources, ii) vérifier/garantir les contraintes temporelles en tenant compte des
délais de communication induits par les taches, et iii) prédire le comportement de la plate-forme.
Dans cette thése, nous avons contribué a la résolution de ces problémes. Ceci en proposant des
stratégies d’ordonnancement des taches orientées vers les systémes distribués. Ainsi, en élaborant
des solutions de gestion de ressources qui permettent, entre autres, d’assurer la découverte des
ressources, la découverte des taches, I’allocation des ressources et la prédiction de comportement des
ressources, etc ...

Mots-clés : Informatique distribuée; Environnement hétérogéne; Ordonnancement des taches;
Gestion de ressources.

2y Sl s @ gl oelie (K e b gl ol Of Ke e Tesll D) Gl

e B G OL s Loy ol By KL Sl o) Josdl & de i Lasy o
Ll dlebe me cagl 353 002/ GEdl (1) ¢ bl /Ul P e Bms (1) iamall
Yy Loyl Jlamie] dmy J pastadl 6 5ol) oWl Aol S0 (1) 5 ¢ Pl e SV JLaV!
CIBl & e ALY Slaalld) e degex dis X oy LY o g0 Sl shs gl
3] Jsb sk) Ll BloYl ¢ k) 1ol Wil Zall p4ll Boad Sae laglild
3y ¢ 3lall iy ¢ Al Sl ¢ sl B ¢ sl el v e e) 3l

Bl dsl
Syl 1) ¢ alldl g ¢ Ldlaie s Ty (e sl) dsd] BN O

