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Chapter 1

(General Introduction

Our universe has been created from one point or from only one event as the Big Bang
theory says. This is what prompted most of physicists to think that there exist only one
system, which describes the universe or more appropriately one single law that governs
this universe. As well known today the physical universe is described by four interactions:

Gravity this effect is weak and very clear; appears at large scale, resulting from the
interaction between two masses, it is always attractive (there is one kind of masses).

Electromagnetism resulting from the interaction between two charges in different
ways, attractive or repulsive according to the charges sign. In particle physics
the electromagnetic force is the result of the fact that charged particles exchange
photons with one another.

Weak interaction (weak nuclear force) this interaction occurs between subatomic par-
ticles, and it is the responsible for the atoms radioactive decay. In particle physics,
fermions can exchange a three kinds of massive bosons W', W~and Z. In beta
decay a neutron transforms to a proton with emission of W ~particle, which then
decays into electron and neutrino. The same process appears in the fusion of hy-
drogen into helium at the core of our sun. Weak interaction is weak because the
massive bosons W', W~and Z have a rest mass much bigger than those of the
leptons and the quarks (except the Top quark).

Strong interaction Neutrons and protons combined in one nucleus by strong interac-
tion. In particle physics the proton consists of three quarks, each of quarks have
three states or three colors (green, red, blue). The strong nuclear force, according
to the standard model, is the result of the fact that particles with colors charges
exchange gluons one another and this exchange holds quarks together inside pro-
tons. The gluon state defined by two colors (red and anti red, blue and anti green,
green and anti green....) then the gluon can split up into quark and its associated
anti-quark also a quark annihilates its associated anti-quark to produce a gluon.
Therefore, the proton does not just have a three quarks in addition there are a
virtual quarks and anti-quarks created and annihilated inside this proton. The

3
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gluons attract themselves because gluons can absorb and emit other gluons unlike
photons. Moreover, if we apply amount of energy to separate two quarks this en-
ergy is converted to create a quark and anti quark and these quarks stay bounded
so an isolated quark could never be observed. Unlike electromagnetic force the
strong nuclear force between quarks does not decrease as we increase the distance
between them. The strong nuclear force inside a nucleus is very strong compared
to the electric repulsive force between protons inside this nucleus.

The last three interactions were combined in standard model [1] as a gauge theory. The
model is based on quantum mechanics which governs the particles world. The rest is the
gravity which is connected to spacetime geometry. The latter is neither a gauge theory
nor a quantum mechanical theory. Therefore, string theory seeks a quantum mechanical
theory of gravity, and thence gives a unified description to the four interactions.

The general relativity |2, 3, 4, 5] is one of the most important and fundamental
theories. This is confirmed with the observations data such as the perihelion advance,
the gravitational lensing, the gravitational waves (detected recently by LIGO experiment
[6]) and more recently (April 2019) the detection of black hole image created by the Event
Horizon Telescope. For these reasons, and based on general relativity concepts, we can
look for another way of unification. Some physicists led by Einstein were speculating
about a unified theory in a geometrical way. Basically, the unified geometrical theory
is frequently a modification of general relativity geometry (non-Riemannian geometry)
such as the use of anti- or non- symmetric metric, conformal metric (Weyl theory [7]) and
affine connection [8] , furthermore, by the need of extra dimensions, as in Kaluza-Klein
theory [9, 10].

On the other hand, in classical physics, we can determine the distance traveled by a
body just when we have or know its amount of energy. Thus, if we know the amount of
energy of a physical system, whatever the type of the interaction occurs in it, we can figure
out the dynamics of particles or bodies in this system. Nature often shows us that it is
founded on similarity, harmony and uniformity. In this regard, it is worth mentioning here
the “Principle of Solidarity”![11] which entails a mutual interaction between phenomena
(the four interactions) and the spacetime structure. As we can notice in [12], this principle
may seem somewhat fundamental to a geometric view of interactions. This leads to a
reasonable thought so that every interaction has its own spacetime with a generalized
Minkowski metric, which is occupied by a dynamic character. Accordingly, we find
ourselves on the face of the suggested principles of DSR (Deformed Special Relativity)
theory [11, 13, 14]. The theory is based on the deformation of the Minkowski spacetime.
In the same way as the Galilean transformations are invalid in the relativistic speed
regime, and they are replaced by those of Lorentz. Likewise, the Lorentz transformations

!This principle was stated by Italian mathematician Bruno Finzi, who says that “It is necessary to
consider space-time TO BE SOLIDLY CONNECTED with the physical phenomena occurring in it, so
that its features and its very nature do change with the features and the nature of those. In this way not
only space-time properties affect phenomena, but reciprocally phenomena do affect space-time properties.
One thus recognizes in such an appealing “Principle of Solidarity” between phenomena and space-time
that characteristic of mutual dependence between entities, which is peculiar to modern science.”



CHAPTER 1. GENERAL INTRODUCTION 5

become invalid at the Planck scale energies and must be modified. Therefore, the metric
becomes dependent on energy in a dynamic role [15].

In general relativity theory, Einsteins’ equations have succeeded in giving the relation
between the geometry of spacetime and the energy-momentum. So, whatever the kind
of energy (of all interactions) in Einsteins’ equations right hand side, it becomes the
source of gravitational field. Well, let’s take the example of the Einstein-Maxwell equa-
tions where the electromagnetism energy-impulsion contribute to affect the structure of
spacetime. Besides, in classical physics where the acceleration has a physical meaning,
we can consider acceleration as an aspect of nature harmony. This appears very clear in
Newton’s second law of dynamics. He assumes that all forces with its different kinds can
provide an acceleration to the particles (despite its properties) multiplied by an inertial
term (till this day science does not give a clear picture to the true nature of the inertial
mass). Although neither force nor acceleration has physical meaning in quantum me-
chanics. However, having a look at the relationship between acceleration in the classical
case, and its equivalent in quantum mechanics, is not impossible (in particle accelerators
the energy of particles increase with acceleration) but it can be resurrected ( see [16, 17|
for knowledge). In addition, we must not forget the perfect equivalence between gravity
and accelerated frame, which lets acceleration get another meaning in quantum gravity.

Moreover, based on general relativity theory achievements, another thinking about
geometrization has been shown in [18, 19, 20, 21]. The author in [18, 19, 20| assumes
unexpected approach in which the non-gravitational interactions affect the spacetime
structure. In this approach, and in a similar way as gravity, the non-gravitational inter-
actions manifest themselves through a metric that is dependent on the different types of
potential energies. Hence, the features as well as the nature of spacetime change from
an interaction to another. By the way, this reminds us again of the deformed special
relativity theory?.

Despite it seems difficult to think about non-linear theory of electromagnetic field
related to the curvature of spacetime, the unprecedented work [22| indicates an extended
version of equivalence principle for the electromagnetic interaction. Also, by using a
modified Lorentz gauge condition, it shows that the Maxwells’ equations are derived
from Einstein one in weak field limit, as well as the geodesic equation gives a form of
Lorentz force.

In this thesis, based on the previously mentioned properties of nature, we will put
emphasis on the geometrization of the electromagnetic interaction. The questions aris-
ing are: what is the manner in which electromagnetism affects the spacetime geometry?
What is the right way to make electromagnetism dependent on the geometry of space-
time? How will be the transition from geometry to quantization?. Based on the afore-
mentioned works [18, 19, 20, 22|, we will discuss these questions. Then, we will attempt
to provide another geometrical explanation for the electromagnetic interaction. More-
over, we will deal with Riemann geometry in four-dimensional spacetime where we can
show how Einsteins’ equations could describe an electromagnetic field, and furthermore,

2Tt should noting that in deformed special relativity, the curvature is zero, and the theory appears
in cases of small scales.
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the effect of the field on the metric, and how a trajectory of charged particle becomes a
geodesic. The quantum effect of geometrization was expected and this effect obviously
appears in the energy levels of quantum particles. Indeed, we will interpret this point
clearly and with details in a quantum application of hydrogen atom. For someone start
with the principle of solidarity (who is somewhat in agreement with this principle), he
can ask this question, what is the manner in which the electromagnetism affects the
spacetime properties?

Fundamentally, in order to distinguish between space-time structures of gravity and
electromagnetism, we will use the term "universe". Any way, in general relativity, the
geometrical theory of gravity is based on the so-called equivalence principle so that dif-
ferent objects follow the same worldline. By the same token, in electromagnetic universe,
we urgently need a new concept for the equivalence principle to make a total geometrical
description of electromagnetism. The problem is that different charged particles follow
different worldlines according to the charge and mass properties. For that reason, it seems
appropriate to consider a geometry related to the properties of particles. In a way, it is
the interaction between charged particles that influences the spacetime geometry. From
a founding principle of equivalence, a metric of electromagnetism can be inferred [23].
Moreover, the source of electromagnetism is described by the Einsteins’ type equations.
The transition towards a quantum mechanical theory, which is based on the geometry,
may lead to thinking about quantum equivalence principle. The hydrogen atom is going
to be the field of application where we will see how geometry have an effect on energy
levels.

In the world of gravity, a convincing explanation for the cosmological constant is that
it is the responsible for the cosmic expansion, while the proposition of a cosmological
constant in the universe of electromagnetism does not seem impossible. Rather, we will
be able, with its help, to give an explanation for the Lamb shift [23]. We call it the
electromagnetic lambda term to distinguish between the two different constants.

This thesis is organized as follows: In chapter 2, we give a brief overview of the physics
and mathematical tools of general relativity. In chapter 3, we exhibit the analogy between
gravity and electromagnetism in weak field limit taking Barros approach into account.
In chapter 4, we establish the metric of the electromagnetism with and without the
electromagnetic lambda term, we study the motion of charged particles in both cases,
and we show the effect of the geometrical theory on the energy levels of the hydrogen
atom. In the chapter 5, we summarize the work and conclude.



Chapter 2

Spacetime Geometry

2.1 Introduction

Classically, the “space” is the place where the physical object is located and where it
moves. On the other hand, we have the mysterious notion "time”, let’s say it comes to
define the succession of different locations of the physical object. However, in relativity
space and time are combined into one shape called spacetime and as the name suggests,
we cannot distinguish between space and time because an observer unable to determine
the location of the object separated from time, and thus there is no space without time
and no time without space. Therefore, Einstein thought that time is a fourth dimension
like the three other dimensions of space.

However, it is a long story to go from Newton era to the era of gravitational waves
and Black holes. In this story, the spacetime plays a central role with a changed notion
every time. At the beginning, the space is absolute with a one clock of time in this
whole universe passing through relativistic spacetime to a dynamical spacetime (curve
and expanded spacetime) and so on to arrive at a discrete and quantum spacetimes. For
this reason, it is worth, here, to give an overview about the geometry of spacetime.

2.2 Why Einstein not Newton?

The “Luminiferous aether” hypothesis had arisen since the Galilei’s physics was unable
to make a juxtaposition of the two well-defined theories of Newtonian dynamics and
Maxwell’s electromagnetism. As it is known, the Galilean transformations did not keep
the Maxwells’ equations invariant contrary to Newton’s dynamic equation. To save the
Galileans’ transformations and overcome the problem of the non-invariant of Maxwells’
equations, the “aether” hypothesis was suggested. According to this hypothesis, the light
(electromagnetic waves) does not have the same physical rules and must be travel in a
medium called “aether” (as a note the air is the medium of sound’s waves propagation).
Unfortunately, Michelson-Morley experiment disproved the existence of aether but the
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solution was the theory of relativity. (Openly, one can believe in the idea of aether! and
with another concept and this does not require that relativity is wrong. Despite this, the
equation E = mc? remains the smartest and most wonderful. )

2.2.1 from absolute to relative

Descartes viewed that space and matter are the same thing [24]. Indeed, there is no space
without matter and that it mean the vacuum itself taken to be a matter. Going back
to Newton, we find, according to him, that the absolute space is necessary result for the
existence of anything, and hence in the absolute space, neither motion nor matter affect
this space. In the bucket experiment, the rotation of a bucket fulled with water, makes
the water take a concave shape relative to an observer at rest. Although the observer
becomes rotating with the bucket, the water still in the concave shape. Newton? explain
that as a result of water rotation relative to the surrounding absolute space. Even so,
Mach argued that the water still taking a concave shape because it rotates relative to
the distant stars and galaxies. The motion of a body according to Mach is the result of
interaction between this body and all the matter in this universe. Therefore, there is no
meaning of inertia in empty universe and consequently no motion [25].

However, who does assert that bodies with different amounts of energy occupy the
same absolute space? Basically, something is moving, but what is meant exactly by
saying that something is moving in relative to something. As Einstein reasoned [26], in
this universe nothing is “absolute”’, and thus the water remains concave in the bucket
experiment because it moves relative to the space time [25]. Taking another example a
body moves at the ground relative to the earth, earth moves relative to the sun and the
sun moves relative to the center of galaxy and so on. Consequently, one might give a
physical size of something but this physical size stays real (exact) for its reference not
for all references. The motion of the moon is circular relative to the earth while it has
a spiral circular motion relative to the sun. This is what the word relative means. In
special relativity, the term relative means everything move relative to everything, and
the objects become significant, only, relative to other objects.

2.2.2 The spacetime-motion harmony

The shape of high speed rectilinear motion of a disk changes from a sphere to hyperbola
relative to an observer at rest. Properly, the observer which is moving with the disk and
with the same velocity see the disk in a spherical shape . In fact, both observers are right,
the difference is that at the first reference the motion of the disk affects the surrounding

1We just keep the phenomenon of length contraction and time dilation taking place in oriented way
that deviates from the direction of the ether (you can consult the Sagnac experiment).

2Newton show that the force is just an acceleration relative to the absolute space, which can be
considered as a fixed frame. In addition, the definition of the inertial frames is related to this absolute
space in which those frames are just move with a constant velocity relative to this absolute space. This
means that the existence of absolute space is an inevitable necessity in order to define motion and inertial
frame notion.
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spacetime geometry, and therefore it is showing up in a deformed shape. This, obviously,
impossible for an absolute space but it is convenient for special relativity by taking into
account the length contraction and time dilation phenomena.

Further, if we returned to the disk example but in this case the disk rotates with high

speed. According to special relativity, an observer in the center find that (% =
(wR)?

m\/1— 3~ < m) and this is something wrong (this called Ehrenfest paradox [27]).
Einstein argument to handle this paradox was that the geometry is non-euclidean and
the centrifugal force affects the spacetime.

On the other hand, in general relativity, matter (energy) affects the geometry of
space-time. As a result, (for example) the orbit of Mercury, in fact, is not closed and this
is confirmed by the curvature of space-time caused by the mass of the sun. More than
that, the spacetime can be fluctuated and gives a gravitational waves.

From the previous, the spacetime becomes dynamical and that it means the space-
time is something material (acting and reacting), and therefore any thing occurs in this
spacetime influence it, and reciprocally the influenced spacetime affects the motion.

2.3 Equivalence Principle

The classical theory shows that the gravity is just a force between masses, and its effect
is given with

My My

2
12

Fio=Fy =G (2.1)

According to Newton the gravitational mass plays two roles at the same time so that
a mass m plays a role of an active mass, and acts a force on a passive mass M, in which

F =G m‘;é\/lp . Simultaneously, the mass M plays a role of an active mass, and acts to
mféw“ The two forces have the
same strength leading to e = % and this required that (m, = m, and M, = M,).
In another part, the inertial mass of some body appears when we apply a force to this
body. We can see this type of masses as a resistance of bodies acceleration. Accidentally,
in Newtonian dynamics, the gravitational mass cancels the inertial one and thus, we can
approve this (m, = m, = mr).

Otherwise, the Newtonian gravity theory is incompatible with the special theory
of relativity [2, 4, 28| (non-covariant theory). This pushed Einstein after some thought
Experiments to think about a geometrical theory of gravity in which he started by setting
the equivalence principle.

Interestingly enough, the trajectories of particles in gravitational field are indepen-
dent on the particle’s properties, and hence they fall in the same way. Equivalently,
an accelerated observers see objects (locally) fall in the same way independently from
its properties. This reason is the consequence of the inertial and gravitational masses
universality equality. Moreover, according to the equivalence principle, the gravitational

field affect in a same way the motion of particles, and then the particles follow only one

m (in this case becomes passive mass) a force ' = G
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world-line called geodesic. Clearly, the observer and a test body have the same motion
under the effect of gravitational field®.

The motion of charged particle is dependent on its (mil) term, and therefore for par-
ticles with different (mil) terms it have a different world-lines. The background observer
who is measuring the electromagnetic field is not a subject of that field [28]. In fact,
this inertial observer follow a geodesic motion and show that the word-line of charged
particle is just a deviation from its inertial motion.

The observer cannot measure the effect of gravitational field and we cannot isolate
the observer from the gravity effect. Consequently, the gravity is not a force. Perfectly,
the gravity is a geometrical phenomenon and its effect is given by the curvature of the
spacetime metric while the observer follows the geodesic line of this metric (for more
arguments lead to that gravity is geometry see [3]).

2.4 Mathematical tools of general relativity theory

In general relativity theory, the space time is four dimensional Pseudo-Riemannian Mani-
fold [2, 3, 4] and the gravity is just an effect of the active mass on the spacetime geometry.

2.4.1 The metric tensor and the geodesic
The metric

In euclidean geometry, Pythagorean theorem plays a fundamental role. It states that in
right triangle the area of the square whose side is the hypotenuse (c¢) is equal to the area
of the squares of the other two sides (a and b) then we get the Pythagorean equation

a’ + b =2

The content of the Pythagorean theorem supposed to stay valid in higher dimensions
with infinitesimal displacement|29]. Thus, in four dimensional flat spacetime a distance
between an event (zV, x', 22, 23) and a nearby one (z° + Az°, 2! + Azl 22 + Ax?,
3 4+ Az3) is given by

(As)2 = (Ax0)2 + (A:L'l)2 + (Am2)2 + (Az?)?

3
= Y SuwAztArY, (2.2)

=0

i=1,2,3

then if we put a* — ix , we find

3Suppose that an observer and a body were stimulated by the effect of a gravitational field, and
we suppose that the observer feels the effect of gravity only by the motion of the body relative to him.
According to the equivalence principle the gravitational field affect the observer and the body in the
same way. Both the observer and the body move under the effect of gravity but the observer cannot
feels this effect because, relative to him, the body remains at rest.
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(As)? = n, Azt Az’ (2.3)

Where 7,,, = diag(1,—1,—1,—1) is the metric of the flat Minkowski spacetime and it
is taken to be a constant. Whereas if we move from a flat to a curved space-time, the
equation (2.3) must be generalized to give us a sort of infinitesimal Pythagorean equation
in curved space-time, so that

ds* = g datds”, (2.4)

and also in this case g,, is symmetric and it is not constant. In general relativity,
the metric (g..,) characterizes the gravity and its contents are the total properties of
the gravitational source. We can deal with the metric as a geometrical description of
potentials.

The relation between the metric and the connection was established through the
metricity condition

Vpg/u/ = 8pgp,u - F;\Mg)\l/ - F/);yg/l)\ = 07 (25)

where V, is the covariant derivative. This operator writing as a partial derivative plus
some corrections linear to the connection coefficients. Unlike the partial derivative, the
covariant derivative [5] of a vector transforms as a tensor in arbitrary manifold but in
Cartesian coordinates reduces to the partial derivative.

The permutations for the three indices in the equation (2.5) give

1
F}),\LV - ig)\p(augpu + aug,up - 8pgyu)- (2.6)

Knowing that this connection is metric compatible due to the metricity condition. This
free-torsion connection called Christoffel connection (or symbols). The connection plays
in some way a role of field but it is not properly transforms as a tensor.

Geodesics

In flat spacetime, the shortest distance between two points is a straight line segment but
this fact is lost when we talking about curved spacetime. More accurately, in arbitrary
manifold this definition of straight line is generalized to be a geodesic line (shortest
distance in curved spacetime).

The geodesic equation or in other words the equation of motion is derived from least
action. Least action means short distance and remembering that we talk about distance
above in the part of metric (2.4). So, in a manifold the length between two fixed points
A1 and A9 on a curve z#(\) is given as

A2

Fa P dwrd
S xH dx?
A1 A1 A1
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Considering the infinitesimal variation in path z#(\) = z#(\) + dz#(A), the geodesic

requires Mi—?,\) = 0, and by integration and some calculation [2, 3, 5| one can get

d?at dx? dx?
' ——— =0. 2.8
d\? e dX dA (28)
In general relativity theory, the geodesic equations determine the effect of gravita-
tional field on the motion of particles.

2.4.2 Parallel transport

The meaning of parallel transporting a vector is to keep it constant when we displace
it from a point to another. This instrument denotes a sense of curvature and makes a
difference between curved and flat manifolds. Thus, in order to figurate this sense, we
parallel transport a vector on a triangle curve in flat manifold (see Figure 2.1). The
transported vector returns to the started point with the same position of the started vec-
tor. In counterpart in curved manifold (the spherical one in Figure 2.1 ) the transported
vector on the curved triangle return to the started point with a different direction. In
addition, in curved manifold a parallel transport of a vector becomes path dependent.

2

»

]
Figure 2.1: Parallel transport of a vector in flat and curved manifold. Source:
http://physics.gmu.edu/ “isatija/ExoticQW /Week9.pdf.

The partial derivative of a vector is a subtract of this vector in a point x + dz from
it in a point x, such as

O,V (z)da” = VP (z + dz) — VF(z). (2.9)

With this definition the partial derivative of a vector does not transform as a tensor in
arbitrary manifold. For that reason, this definition is not comprehensive, and therefor
this definition should be generalized. In order to do that, we recall the parallel transport,
and as we know the transported vector on a closed curve in curved manifold does not
keep the same position (in the point x + dx this vector becomes V + §V') . In order to
define a covariant derivative which is transform as a tensor, we parallel transporting this
quantity V#(z) from x to = + dz and hence we obtain
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V, V¥ (x)dx"=VH(x + dx) — [VF(x) + §VF(x)]. (2.10)

The quantity 6V#(z) should be proportional to the vector itself and it can be seen as a
rotation of this vector, so this quantity is written as

SVH(x) = T, (@) V¥ (w)da?, (2.11)

then from this equation we can get

V., VH(z) = 0,VH(z) + ', (z)VP (). (2.12)
The equation of parallel transport of a vector V#(z) is

Iz p
dVd ;“") + Fﬁy(:B)%V”(x) 0. (2.13)
Another equation that can be extracted from the parallel transport definition is the
geodesic equation. It can be done if we parallel transporting the tangent vector %\# of a
curve ().

Moreover, the most important thing that must arise clearly from the parallel transport
is the Riemann tensor. Thenceforward, we parallel transporting a vector V# (see Figure
2.2) from a point A towards B along the two curves which pass through the two different

points A1 and As.

Related to curvature

Figure 2.2: Transporting a vector from A to B parallel on the two curve, the first past
trough Al and A2.

The equation of parallel transporting a vector from A to A; is given by the following

Via, = VF =Th(AVEA”, (2.14)
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then we can consider the following expression to be right

Th (A1) = Th (A + Arx) = Th 5(A) + 03Tk 5 (A) Arz?. (2.15)
the equation of parallel transporting a vector from A trough Aito B is
Via s = Via, = Ths(AD)VEy, Agz”. (2.16)

The replacement of the two equations (2.14) and (2.15) in the last one reach

VXAlB%V# - Tﬁ.ﬁgVaAwﬂ — FgﬂVaAzmﬂ + FZBFgO.VpAlngZxﬁ

—O\Ih gV Ay Mgl (2.17)

We do the same thing along the curve (AA2B) and we get

Via,p=V" — FZﬁV“Awﬁ — FgﬁV"Amﬁ + FgﬁI‘g‘JVpAgx“Alxﬁ

—O\Ih 5V Dgat Ay (2.18)

The subtraction between the last two equations gives

Q.

= Rl 5\ VP A1 Ao, (2.19)

Viaig = Vs = |08Th, — O\Thy + T Toy = TT85 | VAA 2 Aga”

where the term R/;B ) is the so-called Riemann tensor. The latter can give the Ricci tensor
in the case where R’:)B #ERpg. Hence, the vanishing of all Riemann tensor components
in every regions of a manifold is a satisfactory condition for this manifold to be flat.

Through the use of the Bianchi identity and the Riemann tensor properties, we can
identify the Einstein’s tensor

1
Gag = Rag = 5905, (2.20)

where R = gaﬁRaig is the Ricci scalar. Thereafter, we can get the Einsteins’ equations
as

Gop = —KTwg, (2.21)

where Kk = 8:—46;, and T, is the stress-energy-momentum tensor which determines the

source of gravity. In any case, we can considering the Einsteins’ equations as a measure-
ment of gravity source [28]. The equation (2.21) returns to be the Poisson’s equation in
weak field limit. Outside a source T,,3 = 0 and not necessary the gravity effect vanish
and therefore the Einstein equation becomes
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Rap = 0. (2.22)

The solution of the last equation in the case of spherically symmetric gravitational
source is given by the line element

2

-1
ds? = (1 — 252?14) Ad? — (1 — 2??{) dr® — r2(d6? + sin® 0d¢?), (2.23)

which represent the Schwarzschild metric.

2.5 Cosmology and cosmological constant

A purely (ordinary) massive universe falls into its center under the effect of its purely
gravitational field. Einstein [30] think that the universe is static. For that reason, he
introduce a cosmological constant in his equations in order to balance the gravitational
effect in a sort of anti-gravity force. Thus, the Einstein’s equations have been modified
as follows

Ga,@ + Aga,@ = —K;Talg. (2.24)

In cosmology [28, 35, 36, 37|, the stress-energy tensor Tj,3 contain all types of matter
contents (barionic matter, dark matter, radiations..) in our universe, and it is taken to
be a stress-energy tensor of perfect fluid

P
Taﬂ = <p+ 62> UQUB - Pgag. (2'25)

However, for a rest fluid U, = (¢, 0,0,0) with U*U,, = ¢?, the components of this tensor
becomes

Top = diag(pc®goo, —Pgi1, —Pgaz, —Pgs3). (2.26)

The cosmological principle states that at large scale our universe is homogeneous (the
same at every point) and isotropic (the same in all directions)|28, 32|. The isotropy
has been confirmed in many experiments on the CMB* radiations (WMAP, COBE...).
Homogeneity and isotropy are what make (2.26) to become

T.s = diag(pc*, P, P, P). (2.27)

4According to the Big Bang cosmological model the early universe seemed very dense with high
temperature. This imply a non existence of atoms and all particles take a form of plasma with a thermal
photons scatter with the electrons of this plasma. The universe expands and the temperature decreas.
This led to a incorporation of an electron and proton to form a hydrogen atom. The thermal photons
have a small cross section to scatter with hydrogen atoms and that makes them freely propagate in space
formed what is called Cosmic Microwave Background[33]. As a result of these radiation, the sky appears
to us black at night.
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The other ways to written (2.24)

Gop = —k (Tap + T23) (2.28)
1
Rap = =k (Taﬁ - 2T9a6> + Agag, (2.29)
and thus we have
A
Tols = PAC*Gap = —Gap- (2.30)

This means that the vacuum appearing the same for every observer. Moreover, from the
equations (2.26), (2.27) and (2.30), we show that the contribution of the cosmological
constant can be considered as a type of exotic energy has a negative pressure P = —ppc?.
This energy called dark energy, the term “dark” because there is no direct detection of its
effect. Furthermore, the equations (2.28) and (2.29) say that the empty spacetime (in the
absence of matter T,3 = T' = 0 or any source of gravity) is not flat, indeed it is curved
by a kind of energy (pyac = % #0). Implying that the density must be p — p+ ppand
thus the Poison’s equation can be modified as

AP = 47G (p+ pn)

= 4rGp + %CQ (2.31)

Looking to the sky, observations prove the opposite to Einstein’s thought, and tell
us that our universe is not static but expanding. Therefore, Einstein’s belief seems to
be wrong, but the form of the equations stays the same to explain the expansion of the
universe (dark energy effect).

In 1929 Hubble showed with an astonishing observation that galaxies are moving
away from each other [31]. This what makes us view our neighboring galaxies receding
from us. Hubble measured the velocity v of receding galaxies via its redshift (Doppler
effect), and he find that

v = HyD. (2.32)

This expression, linearly, relates the velocity recession v of galaxies with its distance D
from us, where Hj is the Hubble constant at the present time. In addition, there are the
type Ia supernovae ® and CMB (anisotropies and polarization) observations support the
expansion of the universe (for more information see [36]).

5In a binary system the white dwarf star ,according to its huge density, it can accrete the mass from
its companion (red giant star). The mass of the white dwarf exceeds the Chandrasekhar limit (1.4 solar
masses) and therefore the electron degeneracy pressure cannot hold out the gravitational force [28, 34].
The core of the white dwarf is unable to resist, and thus explodes with high brightness in the form of a
supernova. Measuring the brightness via redshift enables to determine the density of dark energy and
the other types of matter.
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2.5.1 Friedmann-Robertson-Walker geometry

A misunderstanding arises if we really feel that the galaxies recede from us but, in fact,
the space itself increases between galaxies. Therefore, all of the observers in different
galaxies view us recede from them in the same way, and this completely agrees with
what the cosmological principle states. The locations of galaxies are embedded into the
space. The proper distance D between them is determined with respect to its comoving
distance z (distance at rest)

D = a(to)z (2.33)

where a(tg) = ag is the scale factor ,at the present time, function of cosmic time and
thus we have

dD da(to) do
= = = —D. 2.34
dt a T a (2.34)
We let the Hubble constant to be Hy = % then we recover the equation (2.32).

Making a side by side the cosmological principle and the comoving coordinate defi-
nition, one can set the form of the FRW metric |28, 32, 33, 37|

v =

dr® 4 r%(d6? + sin® 0d¢?) | , (2.35)

2 2 7,2 2
ds® = c*dt a(t)[l—k:r
where k£ can be 0,—1 or 1 represent a flat, opened or closed universe respectively. By
inserting the FRW metric with the stress-energy tensor (2.26) of perfect fluid of homoge-
neous and isotropic universe in the equation (2.29), we get the well-known Friedmanns’
equations |28, 32, 33, 37|

i 4nG 3P\ 1
L\ 2
1
H? = <Z) = %,) AP~ k. (2.37)

The other remaining equation is taken from the energy conservation equations V, T = 0
which give

P
p+3H (p + 02) =0. (2.38)

Besides, we should also show the so-called equation of state

P = wpc?. (2.39)

From (2.38) and the equation of state we can show that

p oc a3+, (2.40)

The different types of matter in our universe was classified as follows
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e The matter or the non-relativistic matter with w = 0 includes all material items
that have a zero pressure . For instance, the galaxies as well as gas and dust both
are in interstellar space in addition to the dark matter. The density of matter is
pm o< a~3. Thus the variation of matter density p,,(t) with the cosmic time is
written terms of the present time density pp, o as

3
pn(t) = Pm <C§f§f)>) (2.41)

e The radiation is the relativistic particle like photons. In the equation of state, this
type of matter has w = % and thus p, o a=*. We know that in early universe
a(t) is much smaller. This means that the early universe is a radiation-dominated

universe.

e The vacuum or the dark energy is an exotic fluid that has a negative pressure with
0

density pp o< a”.
An important thing that we have to present here is the dimensionless density parameter
of different types of matter

0 =2 i=m,rA (2.42)
C
Where the critical density p. = % is defined in case of flat universe (k = 0) with a zero
vacuum energy (A = 0). From the definition (2.42) and the Friedmann’s equation (2.37),
we get

1=Q,,+Q +Qp + Q. (2.43)

Where Qp = —%. However, based on the above results, the variation of Hubble
constant can be given with [2]

H? = Hg (meoa_?) + Qnoa_4 + Qo+ Qk70a_2) (2.44)

The observations show that our universe is flat (2 = 0) with the following suggested
present-time values [2]

Hy~T70kms ' Mpc™, Q0= 0, Qo =03, Qao~0.7, (2.45)
and thus

pr =5.9610"2Tkgm™!, A =1.1110"2m 2 (2.46)
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2.5.2 Distance and redshift

It is well known that measuring the distances of objects in the whole sky depends on
the analysis of the light emitted from these things. Hence, the light traveling in the
expanding universe is redshifted. This shift called cosmological redshift (z). Therefore,
the world line of a photon is null geodesic (ds? = c2dt? — a®(t)dr? = 0) if this photon
emitted (in flat universe k& = 0) at the moment ¢, + dt. and observed at t,, + 0tep, it
should travel along a distance

r— / ({f) (2.47)

From here we will have

/t5+6te Cdt _ /tob+6tob Cdt (2 48)
t t

() N a(t)
which gives
O _ Ot (2.49)
a(te) a(tob)
The photon have a frequency v = %, then we are done with
Ve  Otop  a(top)
1 —_ — = == . 2-50
7 Vop  Ote a(te) (2.50)
Thus, we have
dz
—=—(1 H 2.51
Y (1 40H, (251)
and by replacing in (2.47) in which r = tto ;(—dtt) and hence we find
¢ dz_ (2.52)

r= —

a(to) Jo H(z)

It is obvious that the distance when the universe was young would be smaller than the
distance in the present universe. Thus, the luminosity distance is given with

‘ dz
Hy Jo ( \—3 \—4 2\
Qo (14+2) 7+ Qo (142) 7 + Qa0 + Qo (147)2)

(2.53)
On the other hand, if the intrinsic luminosity L of an object is known and by measuring
its flux of radiation F', we can determine the luminosity distance

L

= (2.54)
4ﬂd%
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The type la supernovae are a standard candles (have the same absolute magnitude
M). The equation (2.54) can be reformulated as

dr(z)
m =M +5lo 25 2.55
+5logyg <1 Mpc + (2.55)
and therefore a plot of magnitude vs redshift (m —z) allows to determine the proportions
of the physical components €2; of the universe. In addition to assert that our universe is
in an accelerated expansion state.

2.6 Other types of geometry

It is known that gravity is well defined by Riemann’s geometry. Since this geometry is
unable to explain certain physical phenomena such as the beginning of the universe (dark
matter and dark energy...), the problem of unification, and quantum gravity theory, so
from that time it is indispensable to look for other theories that go beyond Riemann’s
geometry.

Generally, in geometry the connection is decomposed on the three parts [38, 39, 40]
as

=A

T, =T +EK),+L),. (2.56)
Where I f‘w is the Christofel symbol which depends on the metric. The second term is
the contortion that is defined by the torsion (Tﬁ\y = fl);y - fl)ju) in which

1
K/.)l,\l/ = _Kl/i\t = §gAp(Tupl/ +Tyup + Tpl/p,)‘ (2.57)

Then the last term the disformation which is given through non-metricity (Q . = V,9u0)

1
L/.>l\,l/ = Llé,u = ig)\p(—Qupl/ - Ql/p,p + pru)~ (258)

The types of geometries are classified according to the components of the connection. The
vanishing of non-metricity gives Riemann-Cartan geometry, the vanishing of torsion gives
the torsion free geometry, and taking the curvature Rgﬂ)\ (T') to be zero gives teleparallel
geometry (the path independent parallel transport). The Riemann geometry is just the
vanishing of torsion and non-metricity. Moreover, the teleparallel geometry with zero
torsion gives symmetric teleparallel geometry, and so on.

2.6.1 Weyl’s theory

In 1918, the German mathematician Hermann Weyl in an unprecedented attempt, pro-
posed a geometric theory [41, 42, 43, 44, 45] to unify general relativity and electromag-
netism. To the unification to take place, Weyl argues that Riemann’s geometry must be
generalized in which the Riemann definition of parallel transport is changed. In addi-
tion to the vector changes of its direction, as saw in Riemann’s geometry, the parallel
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transport of a vector from point A to the point B also changes the length of that vector.
Therefor, the length of the vector becomes dependent on the path (history) traversed by
the vector. The geometric meaning of that is this there is another kind of curvature that
should appear side by side to Riemann curvature in the equation (2.19). More accurately,
the non-metricity vanish.

In Weyl theory the metricity condition takes the following form

%agw, = OaGuv — fgﬂgﬁy - fgygulg = 2A0Gu0- (2.59)

In this case the Weyl connection f?w is not metric compatible since this connection
depends on the gravitational metric g,,, and the recurrence one-form® A, which plays
the role of electromagnetic potential. To show this clearly, we permute the three indices
in the last equation

OvGan — Tyagsn — Lagus = 2Augap (2.60)

a,ugzza - ffwga,@’ - fgugaﬁ = 2A,ugya '
We don'’t care about the order of indices because both the metric g, = g, and the
connection Fg# = Fﬁa are symmetric. Hence, the subtraction of the equation (2.59)
from the sum of the equation (2.60) gives

=~ 1
F;pu/ - §gpa(8ugl/a + 81/904# - aozgp,u) + gpa(Aag/u/ - Ap,gzla - AVQau)

= Ffw + gpa(Aag/w - Augua - Augau) ) (2.61)

where I'}), is Christoffel symbols of Riemann geometry and we note that in the case
A, = 0 the Weyl’s theory return to be general relativity.

The important thing in Weyl’s theory is that Weyl connection and consequently the
curvature tensor are invariant under the following transformations

G=ef
g=c¢lyg
A=A+df (2.62)

where f is some scalar function. These transformations represent a new concept of gauge
theory. For that reason Weyl believe that his theory is so effective.
The equations of motion are derived from the action [46]

S = / d*z/—g(R* + KE,, FM), (2.63)

where F),, = 0, A, — 0, A, is the electromagnetic field tensor and g is the determinant
of the metric. Thence, the variation of the action with respect to the metric tensor and
the potential vector respectively gives a type of Einstein-Maxwell equations

1
R <RW — 2gw,R> = —kT (2.64)

SFor reasons of the units we can make A, = €A, where € is taken to be equal to 1.



CHAPTER 2. SPACETIME GEOMETRY 22

and a type of Maxwells’ equations in curved spacetime

1
v—g
where T}, = —% (FM,Ff — igu,,FpUFW ) is the energy-momentum tensor of electromag-
netic field.

The physical problem in Weyl’s theory is the dependent of the length of the vector
VH on its history so that we have

14 3 174
Ou(V=gF") = =S g" (AuR + 0, ), (2.65)

L? = g, VFV"” (2.66)
and then

2LdL = 009 dz®VH*VY + g, dVIVY + g, VFAVY
and by using the equation (2.11) we get

2LAL = Vagu VPVY = 2449, VIV dz® = 24,12 dz®

after integration we obtain

L = Loel Aad=® (2.67)

where Lg is the initial length of the vector.

Therefore, Einstein did not accept Weyl’s theory because it contradicts with the
physical observations, and it gives an arbitrarily physical quantities [47] . The problem
comes from non-invariant length of the vector dz* and its derivatives the velocity u* =
df:, momentum p*, and the proper time. Consequently, the mass of particles and the
“atomic clocks”” will become related to its history and this is something impractical.

Weyl’s theory is dead and the rest are some attempts to revive this theory such
as Dirac and Eddington extended theories and some recent researches [48, 49] . The
important theories that try to save Weyl’s theory are those involving quantum gravity
and cosmology.

Another attempt to unify general relativity and electromagnetism came with Schrédinger’s
theory [8, 47]. Besides to the vanishing of the non-metricity, Schrédinger added a cyclic
condition to the metric and the most important result is the relation of the potential

q dx”
A= —guw—-.
mT e s
The problem in this relation is that the physical meaning is not well defined, and we can
see it as an accidental, also the theory is not invariant under the transformations (2.62).

(2.68)

"The atomic clock is the number of oscillations of the atom per unit of time. The caesium atom, for
example, has about nine billion vibration per second.
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2.6.2 Kaluza-Klein theory

Kaluza’s contribution was the extension of general relativity in five dimensions in order
to let the four dimensional Einstein’s theory cover the electromagnetism [9]. Thence, The
five dimensional metric has been computed with the two conditions|51|: i) The cylinder
condition in which all of the metric components are written independently from the fifth
dimension. ii) The fifth dimension is orthogonal on the four dimensional spacetime after
we get the form of line element

ds® = (g — N ¢* AL A,) datds” — N\p* A, dat'dy — \¢* Aydyda” — ¢*dy?,  (2.69)

and hence the metric

L= AN202A,A, —\HA
VAB = < o _W?Ay“ _¢¢2 ! > (2.70)
and its inverse matrix
AB _ gt —AAY B B

Where A\ = v/2x is some constant and ¢ is a scalar function and with the indices (4 =
0.4, =0...3).

It can be assumed that there is no received energy from the fifth dimension or, in
other words, the extra-dimensions decrease the energy. This means the vanishing of
Einstein’s tensor in five dimensions Gap = 0 or identically R4ap = 0 and that give, in
the case where ¢ = 1, the Einstein-Maxwell and Maxwell equations [50, 52|

G = —KT, (2.72)
VHE,, = 0. (2.73)

The equation of motion is just a five dimensional geodesic equation

d?z4 4 dxB dxC¢

el 2.74
ds? BO ds ds 0 (2.74)
which gives
d?xt dxf dz° dy dx”
1 = \—=gMF,,—, 2.75
ds? + o ds ds ds? P ds (2.75)

and if we put )\% = 4 we get the equation of motion in curved spacetime of charged
particle in electromagnetic field.
In Kaluza-Klein theory, the vector A, transforms as an abelian gauge vector. To show

that, we just applying the following transformations
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y— g =y+ Xe(x) (2.76)
on the equation g,4 = AA,,g44 to getting

, , ozt 0y
9u4(1‘7y) = gu4($,y(y,m))amﬁ&73

A, = A, +0,ue(x) (2.77)

In order to improve the theory and explain the invisibility of the fifth dimension as

well as the cylinder condition, Klein [10] assumed a compactified dimension where it

is taken to be a circle with smaller radius r. Therefore, all of the coordinates become
periodic ¢ (z#,y) = ¥ (z#,y + 2m) and then the wave field becomes Fourier expansion

+oo
Yla,y) =Y P (z)el v, (2.78)

By assuming that the fifth dimension is length-like, we can get the Klein-Gordon five
dimensional equation of that massless field

1 6?
<\:|a: - 7'28y2> Wfﬁ,y) = 07 (279)

where O, = ¢"0,,0, is the d’Alembert operator. By replacing the equation (2.78) in the
last one we get

(O +m2) v (z) = 0. (2.80)

We can show that a massless field in five dimensions is just a four dimensional field carries

_n
a mass mp = .
More than that the Fourier mode it can be carry a quantized charge, and this occur

if we apply the transformations (2.76) in which

P (z) = 7@y (),
Inserting the transformed mode in the equation (2.80) and by comparing to the covariant
derivative in U(1) local transformations (9, + igA,) we obtain

In = n% (2.81)
With this result, Klein attempt to explain the proportionality of all particles charges
with the electronic charge e.

Even so, the theory remains incomplete and suffers from several problems like the
non-included strong and weak interactions. In addition, it is incompatible with experi-
ments and the quantized charge and mass stay invalid. Moreover, the existence of fifth
dimension and its effects are undetectable. In another way, theories more than five dimen-
sions, for example super gravity, string and, super string theories have been, theoretically,
accepted but are not yet experimentally confirmed.
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2.7 Conclusion

In this chapter, we hastily mentioned the story of spacetime starting with an absolute
space and time arriving at a dynamical (curved) relativistic spacetime with extra dimen-
sions. In addition, we showed that the most developments in physics are directly related
to our view of the spacetime concept.

The story, here, is just a story of spacetime nothing more nothing less and then if we
develop, and in the right way, our view of the concept of spacetime, we will inevitably
reach the right and comprehensive physics.



Chapter 3

On the analogy between gravitation
and electromagnetism

3.1 Introduction

In the previous chapter, we saw that it is very difficult to find a single geometric theory
that matches the two theories, general relativity and electromagnetism. Where we also
deduced that the deviation from Riemann’s geometry creates problems and puts us in
front of non-physical meaning of the physical grandeur. On the other hand, the further
problem that faces us is the absence of experimental confirmation on theories with extra
dimensions. For these reasons, we will try to keep Riemann’s geometry, and in opposite
reasoning we will not thinking about a single theory based on a gauge gravity theory.
Contrary to that, we think towards an established metric theory for electromagnetism.
In addition, we focus on a geometrical theory for electromagnetism and not for the
unification.

For this purpose, we can pay attention to Einstein’s saying [53]| “The idea that there
are two structures of space independent of each other, the metric-gravitational and the
electromagnetic, is intolerable to the theoretical spirit”. Thence, it is not seems forbidden
for someone assume that gravity and electromagnetism are two different universes and
they are not necessarily independent. The two interactions defined in an equivalent
geometrical way (for a similar idea see [18, 20, 54]), and that means, again, the similarity
of nature. The authors in [54] used the concept "proper space-time" rather than the
term "electromagnetic universe".

We should taking a note that the observer is a subject of gravity universe and not a
subject of electromagnetism. Because in this case it is not affected by particle properties
like charge, mass, spin.... For that reason, he does not see charged particles falling free
under the effect of electromagnetism. On the other hand, if this observer is attached to a
charged particle which has a ratio -= equal to - of some other charged particles, then he
cannot distinguish (locally) between the effect of the electromagnetic field for him and
its effect on that charged particles.

In this chapter, we first showing up the analogy between gravity and electromagnetic

26
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universes in weak field limit and we shed light, quickly, on the ideas of Barros approach.
From now and on we will use the term o = L denotes charge to mass ratio of charged
test particle.

3.2 The weak field limit in gravity universe

There are many versions |55, 56, 57, 58, 59, 60, 61, 62, 63| to linearize Einsteins’ equations,
and that according to the suggested gauge conditions and the components of the metric.
At first, the similarity appeared between Coulomb’s and Newton’s laws. After that,
this similarity has been shown in linearized general relativity theory when the weak
gravitational field can split in an electrogravitational and magnetogravitational fields
[57, 64, 65]. Moreover, and as known in Maxwell’s theory, the movement of charged
particles creates a magnetic field also the same thing happens in gravity so that the
movement of matter creates a magnetogravitational field [58, 59]. We can take the
proper rotation of the sun as an example to this field.

3.2.1 Stationary case

In this section, we follow [2] and we will be interested in the stationary case when all the
metric components are time independent. The Minkowski spacetime is perturbed by a
weak gravitational field and then the metric becomes written on the form

G = NMuw + Iy, ‘hm/’ < 1 (3.1)

In the first order approximation and by using the following transformation (trace reverse
of hyw )

- 1
h;w = h;u/ - 577;wha (3'2)
where h = h® = —h, and by taking into account the harmonic de Donder gauge condition
Do ht* = 0, (3.3)
thus, the Einsteins’ equations
G _ _8nG h
oA
g
1 87G
3 (8M8Vh + Ohyw — 0u0phy), — 0,0,h, — 1y (Oh — a,aphgp)) = (3.4)
g
become simply
— 167G,
aoht” = — o T, (3.5)
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Where ¢, is the propagation velocity of the gravitational waves, O = 9,0" is the
d’Alembertian operator, and T}, is chosen to be

7% = pcg, TY = cypu’, TY = pu'v? =0, 4,j=1.3. (3.6)

It should be noted that the minus sign [2]| placed in the tensor is only to indicate that in
gravity universe there is solely one type of mass and therefore gravity is attractive and
not repulsive.

The solution of (3.5) is given by

_ 4A0 4P . Al ..
poo — A — hoi — —, Y =0. (3.7)
€9 G ‘9

Where A*, in this case, represents the four vector gravitational potential. Hence, the
equation (3.2) implies

Cq 2’ cg '
meaning that
29 ; 29 s
ds® = (1 + =5 )cpdt® + 2A;dtda’ — (1 — = )d;da’da’. (3.9)
c2 s

By substitution of the equations (3.7) and (3.6) in (3.5), we obtain the Maxwells’
equations of gravitational fields

V2o =L and VA= —pj, (3.10)

Vi, =0, VxB, — o]

: _ 167G 1
with pg = 2 and g9 = — 15

In addition, the geodesic equations in slow motion cases give us a form of Lorentz’s
gravitational force

d%xt

dt?
It is worth noting that the effect of the gravitational magnetic part can be neglected.
This is can be explored in the case where the rest energy of the matter distribution in
the energy-momentum tensor (see §17 of [2]) becomes the dominated part and, thus, the
equation (3.9) becomes

~ — (T, + QCféjuj) = E':Q +v xgg. (3.11)
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29 29 Do
2 _ 2 742 e
ds* = (1+ 2 Jegdt™ — (1 — 2 )6ijda da? . (3.12)

Roughly speaking, we can put that pgeg = ;%. The problem, here, is the four factor
)

and we can solve this problem with a simple change h% = h% = 44T 1yt this factor [22]
return and appears again in the magnetic term of the grav1tat10naf Lorentz’s force.

Furthermore, an additional magnetic term in Newton’s law plays an important role
in cosmology, and it may also be able to give an explanation to dark matter and precise
the motion of planets without the need of relativistic theory [64].

It is important to showing that the terms h% = A denote a rotating spacetime and in
the same time are the responsible of the magnetic part Thus, the rotation is equivalent
to magnetism. This equivalence between rotation and magnetism has been established

by Larmor |66, 59| via the relation w = 2(17]30,

where w is the angular velocity.

3.2.2 Non-stationary case

We follow [63], and for more details one can see [55, 56]. The idea of the author in [63]
is to introduce a generalized tensor, analogous to the electromagnetic tensor

1/ - _ _ _
GHvh = ’ (a/\huu — QRPN o gy R — nuaaah”) , (3.13)

The linearized harmonic gauge condition (3.3), leads to

g,uu)\ _ i (a)\ﬁlﬂf _ aVB#)‘) , (314)

and we can note that this tensor is antisymmetric in the two last indices, and this lead
to the following cyclic properties

GHA L GMY - GY M = () (3.15)

a)\Gp,ul/ + 8VGP>\M 4 a#GPV/\ =0. (316)

Hence, through the use of the harmonic gauge condition (3.3) and the metric trace reverse
(3.2) both of them in equation (3.4) they lead to the linearized Einsteins’ equations to
be on this form

167G
NG = — 2w, (3.17)
c
g
By putting , the gravitational Maxwells’ equations can be extracted from the

(0-0) and (0-7) Components of the equation (3.17)

hOu __ 4A#
Cg

- = — — 1 814’ = g e aE
V.E,=V (—V(P - ) = gﬁ, VxBy = poj + pogo—5.*- (3.18)
0
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Besides, the cyclic condition (3.16) gives

Lo B, - -
VxE, = —8—;, V.B, = 0. (3.19)
In this case pug = —432(; and g9 = —ﬁ and they lead to equp = —c% but the problem,
g g

here, is the four factor in magnetic part of Lorentz’s gravitational force in (3.11). The
other problem is the dependent of the fields definitions on the condition (3.3). To deal
with those problems, the authors in [22] and [55] proposed another approach based on
the dependence of the field directly with A and not A. Moreover, a subtle gauge has been
used. In fact, the three spacial components (v = 1,2, 3) of the harmonic condition (3.3)
has been preserved. While the zero component (9,h™ — %no‘oﬁah = 0) has been replaced
instead by the alternative condition hi = 0. Hence, the components of the metric are
given as
2A4° A
PO = == pli= (3.20)
Cq Cq
and with this form of the metric, the linearized Einsteins’ equations become
87G
—a

1
— 0, F" =
2¢q " c

(3.21)
g

Therefore, the Maxwells’ equations for gravity were obtained based on these Einsteins’
equations. Additionally, the geodesic equation gave a Lorentz’s force without the four
factor [22].

3.2.3 Weak gravitational field with cosmological constant

At yet the role of cosmological constant and its effects remain strange and unclear. This
constant may refer to an additional gravitational field comes from vacuum (anti-gravity
force), perhaps it is an extra energy or it is just another type of matter. More than that,
we are not sure that this constant can be considered as a first order weak gravitational
field. It can be showed as a second order approximations.

If we deal with this constant, on the basis, as a form of energy arises from vacuum,
in this case we will be unable to set the correct formula for the condition (3.3). Does
this constant change the condition or not?

Despite that, we will find in the reference [67] a use of the following coordinate
condition

L a 1 a a
8ahM = aa <hﬂ — 25Mh> = Anuax (322)

we can see this condition as a breakdown of gauge invariance. Accordingly, the Ricci
tensor can be written as
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1
Ry = 5 (00 + Oy — 0,0, — 0,0,1)
1 1 1 1 1
5w — 5040, (h,’j - 255h> ~ 500, <h5 - 25gh>
1 1 L1 .
iﬂhlw — iAnVOC(S,u — §A7],ua(5y
1

= iﬂhm, - A77;w- (323)

However, the Einsteins’ equations are taken to be

1
R, — iRgW —Ag = =K1, (3.24)

and we should note that the author in [67] used Einsteins’ equations with negative sign
in the term of the cosmological constant. If we multiply by ¢g*” then we get

R = kT — 4A (3.25)

we replace the last equation in (3.24) to obtain
1
R+ Aguy = —kT + inTgW. (3.26)
The substitution of (3.23) in (3.26) lead to

Ohuw + 2Ahy,, = —265T),, + KT g, (3.27)

without a source of matter we have T}, =T = 0 and this means [67]

Ohyu + 2Ahy,, = 0. (3.28)

The treatment of this equation in a stationary case leads to a modified Maxwells’
gravitational equations by the cosmological constant

V.E, = -2\
) (3.29)
ﬁxB_'g — —2AA
Whereas, if we work in the non-stationary case, we can find
O0®+2A0 =0 (3.30)

and this equation can be considered as a Klein-Gordon equation of graviton with a mass
mg = %\/ﬂ Thus, the propagation velocity of the gravitational field, or in other words
the graviton speed is not exactly equal to the speed of light, because its energy depends
on the cosmological constant [67]. There are many research topics on the massive gravity
and massive graviton and for more knowledge see [68, 69, 70, 71, 72, 73|. Moreover, by
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comparing the equation (3.30) with the equation (2.80) from the Kaluza-Klein theory,
the cosmological term can be shown ,as Wesson suggested, as a matter comes from the
fifth dimension [52].

3.3 The weak field limit in electromagnetic Universe

3.3.1 The weak field limit without electromagnetic lambda term

In the electromagnetic universe, charged particles live and exist, and the term ¢ = L of
those particles it can be the responsible of the existence of this universe. For a deeper
thinking, we should go back to early universe and ask this question: what is the origin
of charge? There are many different explications to the origin of charge. One can see
the charge as a topology or some physical aspect of spacetime |74, 75]. Even today, we
only know the charge from the electromagnetic phenomena, but we do not really know
its true origin.

From Newton’s dynamics, we can establish the equation of motion of a charged par-
ticle which moves under the effect of uniform electric field, as follows

. A2t .
a' = d—tz = oF' (3.31)
and then
i L2
z'(t) = §QE . (3.32)

We can make this coordinate transformation £ = = — %QEtQ to cancel the effect of the
field. To make this physically available, we have to admit that all of the points in the
space in the new coordinates must be indicated by g term. This it means that the p term
becomes dependent on spacetime geometry and thus we can naively show that

T — éa’c
(3.33)
.
t— Et
and with this simple transformations, the equation (3.32) becomes
- Loz
F(f) = SE'P. (3.34)

The problem of dimensions in (3.33) can be solved if we assume in the electromagnetic
universe that the charge and mass have the same dimensions.The other assumption to

solve this problem is that [z] = % [z] and we do the same thing with ¢. More easily we

can do this ¢ — gi, where ( = 1K g/C. We should dealing with (3.33) as a transitions
from gravity universe to elecromagnetic and not as a set of coordinate transfomations.

Therefore, and by following the same line of thought, in electromagnetic universe and
if we have passed from the gravity to the electromagnetic universes in weak field limit
the metric h has to transform as
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hyuw — ohyw (3.35)

and also the energy-momentum tensor [76, 22, 55|

_Tw/ — QTNV' (336)

We eliminate the minus sign because in the electromagnetic universe, we have two types
of charged particles and therefore we must have the two effects attractive and repulsive.
Moreover, from the comparison between Newton’s and Coulomb’s laws, we should replace
the constant G by K. For those reasons, in electromagnetic universe the Einsteins’
equations have to write on this form [76, 22, 55, 54|

Guv = Xe0T - (3.37)

Where Y, is the coupling constant in electromagnetic universe. According to the authors
in [22| the linear approximation is sufficient to describe the electromagnetism.

In this case, we will be interested in studying the non-stationary case and of course by
following the same steps in [22]. By applying the transformation (3.35) in the equation
(3.37) and thus we will show that the equation (3.21) becomes at first order in the
following form

2—968MF’“’ ~ xeoT™. (3.38)

In the linear regime, 7% ~ j* which lead the above equation to be

DM = 2% xe5" . (3.39)
As known the usual Maxwells” equations are 9, F'*" = 119" and thus leading to x. = 2’;{( .

More than that, the geodesic equations in first order approximations and in slow motion
give us the electromagnetic Lorentz’s force as we can see here

d’at

dt?

It is more interest to note, from the equation (3.37), that the curvature of spacetime

is the result of the interaction of the particle’s charge with the field, and for this we see

that the metric formula is related to the charge g of that particle. Otherwise, we can see

in [77] that, in the electromagnetic universe, the metric should be independent from the

particle properties, but besides this a modified formula for the geodesic equations must
be used as follows

~ — (T, + QCI‘Bjyj) =0 (E +vU xé)l . (3.40)

d2zH u dx? dx°

5 tolpe————

dr dr dr

Thus, particles with different o terms they will take a different geodesic lines. Further-

more, the equation (3.39) clearly means that in electromagnetic universe and similar to
gravity, the electromagnetism is geometry.

= 0. (3.41)
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3.3.2 The weak field limit with electromagnetic lambda term A,

In a similar way in gravity universe, we assume the existence of a constant we call it the
electromagnetic lambda A.. This constant maybe play the same role of the cosmological
constant maybe it is a type of energy or matter (we will discuss the role of that constant
precisely in the next chapter). Therefore, the Einsteins’ equations become

2nK
G;U'V - Aeg;w = CTQT“V. (342)
By applying on this equation an approximation of the first order outside a source, and by
using the condition (3.22), we will obtain in stationary case a modified form of Maxwells’
equations

V.E=—2A.®
. (3.43)
VxB = —2A. A

As we saw in the gravity universe, here, also we can see that the photon carries a mass
related to the electromagnetic lambda constant, and we set out the formula of the photon
mass as it follows

m, VT (3.44)

c

The possibility of obtaining a massive photon has been proposed by many researchers
[68, 78, 79, 80, 81, 82| but, in fact, the search of massive vector field was suggested at
first by Proca [78|. After that, Stueckelberg |79, 80| introduced a new scalar field in order
to generate a mass to the Abelian gauge theory. Interestingly enough, and as shown in
[82] the mass of the photon is a consequence of dark energy.

Additionally, in the case where A # A, then the velocity of gravitational waves
propagation is not the same for the electromagnetism. It should be noted that there are
new ideas and results in this chapter that have not yet been published.

3.4 The analogy between interactions in Barros approach

3.4.1 Barros approach

C. C. Barros in an unexpected idea [18, 20, 54|, based on general relativity theory,
he attempts to describe the non-gravitational interactions and similarly to gravity, in a
geometrical framework (we shall focus here on the method of finding the metric). Accord-
ingly, the effects of non-gravitational potentials should manifest through the spacetime
metric. The idea is based on the dynamics of Schwarzschild, and by starting from the
metric form

ds® = e(r)c?dt® — e(r)"tdr? — r3(d6? + sin®(0)d¢?), (3.45)

and it can be easy to find



CHAPTER 3. ON THE ANALOGY BETWEEN GRAVITATION AND
ELECTROMAGNETISM 35

dr = %\/d? = dt\/e(r) —e(r)712 — r2(6F +sin*(0)53) = Cff (3.46)

where 8 = dd—”f. By the use of the energy-momentum vector definition, one can show that
(for more details see [55])

= o_E_ &7(7")mcﬂ
Po = goop = e dr
E = e(r)mc?y. (3.47)
If 8 =0 then
2
[ L T (3.48)

and thus [18, 20]

e(r) = <1 + Um)Q. (3.49)

mc2

The last equation is an important relation where we see that the potential energy U(r)
can be gravitational or non-gravitational. Moreover, we can consider this result as a
generalized Schwarzschild solution to the strong field. While, in weak field limit ¢ — oo

U) <« 1 and therefore the equation (3.49) brings e(r) =~ (1 + 2U(r)>.

mc? mc?

leading to

3.4.2 Application to the hydrogen atom

Barros, in his applications to the hydrogen atom, did not use the tetrade formalism, but
rather he started from the principle of correspondence in a curved spacetime. We have
new results here and we are looking forward to publish them.

According to our understanding, Barros gave a total geometric description to the
hydrogen atom so that the old view of the atom has been replaced by a new one. Thus,
an electron moves around the nucleus under the effect of its interaction with the electric
field produces from nucleus. This vision can be viewed as follows, the electron falls freely
(follows geodesic line) in a spacetime curved by the interaction between the electron and
the nucleus. Therefore, instead of using minimal coupling in the usual Dirac equation

(iv" (O + iun) —m) 1 =0,

we will, in fact, use the Dirac equation of free electron in curved spacetime

(17" (O =Tp) =m) ¥ = 0. (3.50)

Where I'), = —% 9aly, [fy)‘, fyf’] is an additional term, which defines the covariant deriva-
tive of a spinor field. In other words, it can be considered as a corrections to the spinor

field [83].
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In the treatment of Dirac equation in curved spacetime [85, 86, 87, 88] it is convenient
to use the tetrade fields [84] (for all the details calculus in this subsection see appendix
A). Let us using equation (3.49) in the like Schwarzschild metric (3.45) to describe the
hydrogen atom in electromagnetic universe

2 -2
ds? = (1 - %) dt? — (1 - %) dr? — r2(d6? + sin® 0d¢?), (3.51)

where a = ﬁ i; is the classical electron radius. Thereafter, the Dirac equation (3.50) in

this metric is written as (see appendix A)

~1
O (1-2) i@ (1- ) o+ @10, 1 in® o,
r r rsin 6
1) @)1
el o el 1 _ _
(1 27«) + Lot —mfy =0, (3.52)
we introduce the new ansatz
l .
vitr0,0) = (1= 2) 7 10,0, 9). (3.53)
T
and again by following [86]
, 9(r)e(0)
T(r,0,p) = e™me? : (3.54)
—ih(r)o3e(0)
The angular momentum operator is defined as [86]
. 1 m
_ |2 - ¢ _
Ke(0) = [ o (32 + 5 cot 0) +io sm@] e(0) = ike(0) (3.55)

where o are the Pauli matrices. After some calculations and manipulations (see appendix
A), we managed to show that

(3.56)
2 dh(r 1—
(1= )" G + 52 (L= 9)h) + (=5 (1-2)) 9() =0
Obviously, this system of equations which are obtained here, by following new method
are the same obtained by Barros [18, 20, 54] while the author in [55] did not reach the

same result.
By making those transformations

g=€"F, h=e"G, p=fr, a=—1,
mc

we then get
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(1 + LE - ,ﬁzgp) P (1 + 2P - —;zfp) P4 02 (1 - —ch’;p) F
1
(Bhe *_%;>G:0
2102 —
(1+ 25 - 28 )¢ - (1 + o - —jZEP) G+ (1- )6

Let the solution to be in series form

N N
F=> anp™™, G=> byp"t. (3.57)
n=0 n=0

and we obtain the following coefficients recurrence relations

(me* — B) 298, 7 298  ~ (mc®—E)
— 2 (N+1 — =[(N+1- — b
Bhe (N+1+rk+ 2 5) — 7| v + n+m02 (he)? 3 N
(3.58)
again
VB als ol 2vB
-y (n+3) an+s — s (2n+5+/<;+ )an+2 + (n+2+/€+ )anﬂ
E +mc?
— an — (ﬁhc)bn + %bn+1 =0 (359)
VB ol gl 2yB
2 7 (n+3)bpys — . (2n+5—/<;+ )bn+2+(n+1—n+—) nt1
E —mc?
— bn + (/th)an + %an_t,_l =0. (360)

Next, we shall work to find the energy spectrum of the hydrogen atom. Accordingly, if
we make n — N in the last two equations, then all coefficients they have an order higher
than N vanish. Thus, the use of the recurrence relations in the equations above gives

2y o Y 2 _
Wﬁ +(N+1)B—Wmc =0 (3.61)

and we get
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m2ct — B2 mc? 8+2
5= ( o ) _ - —~(N+1)+ \/(N +1)2+ (hc)2] . (3.62)

As consequence, we find

2
EN:mc2 1-— (hc>

5 2
. —(N+1)+ \/(N +1)2+ (iZP] : (3.63)

Clearly, this specterum is different from the one obtained by Barros. Whereas Barros
assert that the spectrum is very close to the experimental data, both our spectrum and
Barros result are independent from the x eigenvalues. This it mean that maybe this is
not the right way to solve the Dirac equation.

The interesting thing is that the work in weak field limit 7Un(;) < 1 allows to recover
the usual Dirac system of equations for the hydrogen atom [18, 20|. Therefore, the
approximation & < 1 in (3.56) leads to

G+ ) ~ (% (L4 9) + 59 hlr)
: (3.64)
G+ SRR = = (G (14 5) - ) ()

r

In the case of lower moments % is taken, nearly, to be 1 [18, 20]. This makes the solution

of the above equations exactly coincide with the Dirac spectrum of the hydrogen atom.

3.5 Conclusion

In this chapter, we shown another viewpoint to the definition of spacetime geometry so
that the spacetime not only affected by the properties of active particles. More than
that, it is interacting with the properties of passive particles. Furthermore, the four
interactions should take place in a different spacetimes.

In general relativity, precisely in the Reissner—Nordstréom solution one can see how an
electromagnetic energy affects on the mass (merr = m— %2), and therefore contribute on
the curvature of the spacetime [89, 90]. On the other hand, we have the Melvin universe
in which a purely magnetic field affects the spacetime geometry [91]. This is the manner
how the electromagnetism affect the spacetime geometry in gravity universe. Along the
same line, the thinking about a direct effect of electromagnetism on the geometry, in
electromagnetic universe, is not seemed to be impossible.

However, if we think about the electromagnetic curvature of spacetime in classical
mechanics. It might seem a little easy but if we follow the same thinking in quantum
mechanics this description becomes more complicated. We will find ourselves in the
case where we can think about a quantum free fall of the electron in hydrogen atom.
Moreover, the introduce of the electromagnetic lambda appears as correction term to the
Maxwells” equations, but what about the quantum effect of that constant? What are the
consequences of this introducing constant on the energy levels of atoms?
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The extent to which the observer can measure precisely the geodesic motion of a
particle is related to his manner of interaction with the spacetime of the interaction. In
fact, the idea that the electromagnetism can affect the same spacetime in which we live is
not makes a sense, because we know that there is no effects of an electromagnetic field on
the clocks in our spacetime, and consequently no bending of light by the electromagnetic
field. In order to deal with this problem, we have already proposed the existence of the
electromagnetic universe and we will discuss its characteristic in the next chapter.



Chapter 4

The geometry of electromagnetic
universe

4.1 Introduction

In general relativity, the differences between the standard definition of the field and
the geometrical description of the field itself lies in the rate of time and the geodesic
(equivalence principle). Due to the equality m; = m, for each particle, we have the same
dynamic scene for all particles. On the other hand, in the electromagnetic case each
particle characterized by a specific ratio -Z | so we will have many scenes for different
particles. Therefore, one from the points of view that could be pursued is that all
of charged particles occupy another universe, we call it the electromagnetic universe.
The space and time of that universe could be completely different (different does not
necessarily mean separate) from our spacetime. Working on several particles will be
extremely complicated, and this is what will lead us in this work to focus on the electron
proper spacetime (the state of one particle).

From a philosophical perspective, we humans and all neutral objects are not a subject
to the electromagnetic universe but our geometrical spacetime is the real one because,
according to our awareness, the majority of matter in this universe are neutral, and the
dominant interaction in this visual universe is gravity. In addition, our realization and
interaction with the universe around us seem to be very clear and strongly related.

In this chapter, we investigate the possibility of making a geometrical description
to the electromagnetic universe based on Riemann geometry. This chapter is divided
in two parts the classical part where we will show the advantages that geometry added
to the classical motion of charged particle. In the other part, which is the quantum
mechanical part, we will exhibit the effect of the geometry on the electron energy levels.
The likelihood to explain the Lamb shift and the possibility of the existence of a new
type of vacuum energy will be discussed in this part.

40
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The classical approach

4.2 Towards an equivalence principle of the
electromagnetic universe

In general relativity, the inertial mass equal to gravitational one, and hence the motion
becomes independent from the particle properties. This what the equivalence principle
was stated. Therefore, in small regions we cannot distinguish between the gravitational
force and the acceleration (inertial force). In electromagnetism, the ratio -= often does not
equal to 1 but this does not necessarily mean that we can distinguish between acceleration
and the effect of an electromagnetic field in all cases. However, the equation (3.34) makes
no distinction between electromagnetism and acceleration with respect to an observer
attached to the charged particle.

As known, the accelerated charged particle radiates but these radiations have been
detected by an observer which is a subject of gravity universe. However, the interaction
between charged test particle ¢ and the electric field £ undistinguished from the accel-
eration of that particle. If this is truly right, then a charge ¢l fixed in the electric field
should be radiate in electromagnetic universe. In reality, no one can know exactly what
happen when we fix a charged particle in an electric field. In order to show this, we need
more informations from the observer in electromagnetic universe.

The problem of the electromagnetic interaction is the non universality of o = £
ratio. Consequently, the metric becomes dependent on the particle properties and we
will reserve a different metrics to a particles with different properties [76, 92]. The
same problem appears in the case where m; # mg and this can happen if we take into
consideration the contributions of the self force of a body [93, 94] .

4.3 The metric of the electromagnetic universe

4.3.1 Description of the method

Basically, the idea is just an electromagnetic field affect the spacetime geometry, in
electromagnetic universe, in a similar way as gravity. This is what the observer sees but
in this case the observer must be included in the electromagnetic universe. Therefore, in
spherically symmetric spacetime of the electromagnetic universe and in regions outside
the source (T%atte” = 0) of an electric field, the metric is taken to be

ds® = A(r)c2dt? — D(r)dr? — r*(d6? + sin® 0d¢?). (4.1)

Hence, the field is a radial electrostatic produces from a spherical charge (), which is
takes the following form
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0 -1 0 0
Eryl 1 0 0 0

Fw==Fu==""109 0 0 0 (4.2)
0 0 00

The observer which is not belongs to the electromagnetic universe deal with this
system as Maxwell’s theory in curved spacetime, and hence we can employ the Maxwells’
equations in curved spacetime outside the source

1 1
V" = ﬁaﬂ (V _QFW) - ﬁaﬂ (V _ggupngpa) =0, (4.3)

and then

Or [TQ\/A(T‘)D(T‘) sin nggOOFlo] =0, (4.4)

which leads to

and the integration yields

g

E(r)= )

A(r)D(r), (4.6)

where o is the integration constant. Generally, o carries the source informations so
that in a distant point from the source the spacetime becomes flat. The effect of the

curvature vanish and the electric field will be written in the usual form, and then we put
o= =K Q
4meg :

In equivalent way, an observer belongs to the electromagnetic universe sees that

spacetime is curved by the electric field. Therefore, the equation of state with respect to

that observer is the Einsteins’ type equations

G = —x.TuM, (4.7)

which play the same role of Maxwells’ equations and this is what was mentioned in
chapter 3. In addition to that we already show in [22] that the Einsteins’ equations in
weak field limit turn to be Maxwells’ equations.

Now, let us give some comments about the electromagnetic energy—momentum tensor
TfVM . At first, we can consider this tensor as a high order approximations of the metric
perturbation (h% ~ A*) and this can be explained as follows
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T = _ulo (Fupr - iguquaF”") (4.8)
= —ulo((@uho,) — dphop) (Buhi — 0%hoy) — i”ﬂ” (8,h00 — Dphoy) (OPhG — O7hE)

(4.9)

— () (Bphos — Bphoy) (9B — o7hE), (410)

where f(h,, ) represents all the necessary orders of the metric perturbation. In addition,
the tensor T;E/M is traceless and that what makes the equation (4.7) taken to be

REM = —x.TEM. (4.11)

In weak field limit (at first order approximations) this equation is just Rflf‘/[ ~ 0.

More than that and as we saw in gravity (see section 17.11 of [2| ) the electromag-
netic energy—momentum tensor Tf,;M produces from the electromagnetic field itself. In
our case, this means that the existence of electromagnetic field gives an additional elec-
tromagnetic field of the field itself and so on.

Nevertheless, the Einstein equations (4.7) denote that all the types of energy (7,)
can contribute to produce an electromagnetic field. Interestingly enough, one can reach
an electromagnetic field from the gravitational energy—momentum, and thus the equation
(4.7) it can be rewrite as

GIM = —xTEM + X TS (4.12)

Accordingly, in higher order approximation or in strong gravitational field, an observer
in electromagnetic universe can observe the contributions of the gravitational field to
generate electromagnetic waves.

4.3.2 The solution of Einsteins’ type equations

We shall work here to find the solution of the equation (4.11) but firstly we calculate the
components of the tensor (4.8), and make them directly depends on spacetime geometry
(4.1), and then we have

1 1
Too = —— (FOpFOp - goonan(T) ;
Ho 4

and by using (4.2) and (4.1) we get
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1 1

Too = <F01Fo — —goo (For F' + FwFlD))
o 4
1

1
- FoiF)t — = goo (Fo1 FO' + FyoFY0
Mo 01L'g 4900( 01 + I'10 ))
I 2
20 (For)
1 E(r)?

2u0 D(r)c?
Taking into a count (4.6) we obtain
1 (KQ\? A(r)
T — 413
%07 200 ( c ) rd (4.13)

and we do the same thing with 771, T2, and T33 and thus the Einsteins’ equations yield
[23]

A" A (A D KQ
-t — | =+ = = 4.14
2D+4D<A+D) 2,u0< C) ( )
A A A D’ D . 2
S A [P Y (4.15)
24 4A\A " D rD  2ug c
1 r (A D Ye (KQ\? 1
— el — (2 ) = <) 4.1
D +2D<A D) 2,u0< c ) 72 (4.16)
R33 = R22 sin 9 = T22 Sin2 0 (4.17)

with a simple manipulation the sum of equation (4.14) multiply by % with (4.15) gives

d
dr

We integrate and the constant of integration is determined in which the spacetime is
Minkowski in the case where r — oo, and that implies

(AD) = (4.18)

1
A(r) = 4.1
)= 5 (419)
The substitution of (4.19) in (4.16) lead up to
ai
—(rd) =1+ — 4.20
dr (rd) + r’ (4.20)
and then the integration gives us

72 r
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Xe (KQ
2/.L0 c

If we return to the chapter 3 exactly to Barros approach [18, 20] and as shown in the
equation (3.49) the component of the metric is just

e(r) = (1 + U(T)>2. (4.22)

2
where a1 = ) and as is a constant of integration.

mc?
According to the equations (4.6), (4.19) and E = —d‘zh(f) we can find, in our case, this
KQ
U(r)=qv(r) =q¢—— (4.23)

and that leads to

2
q KQ q KQ
=1 —_— 2——. 4.24
£(r) + (mc2 r ) + me? r (424)
By comparing the last equation with (4.21), we get
2
ay = (fg) C ag=2 <f;qc§> : (4.25)
in order to do that we have to take
2 q \?2
=—|—] . 4.26
Xe €0 (ch) ( )
Thus, we get [23]
Ay = (14 8@ : (4.27)
r)= :
mc?r )

and the surprising thing is that the same result was obtained by [54] in completely
different way. Actually, this is the only method which we have for determining the
constants as and Y. , but in reality we are not certain if it is the correct method or not.
What we have to do is wait until the end and through the obtained results we will know
whether our proposal is correct or not. The constant x. can be determined in condition
that the geodesic equations in weak field limit give a form of Coulomb’s law.

However, the term (%)2 is not necessarily an amount comes from the coupling con-
stant x. but it is a part of the energy-momentum tensor TMEVM . The square in the term
comes from the second order approximations in the tensor. More than that the term %
is a second order comes from the contributions of Tﬁ,M tensor. Therefore, in weak field
limit TIFVM = 0 and the Einstein equations (4.11) becomes Rflf\/[ = 0, and its solution is
given with

A(r) = Db) - (1+ %) , (4.28)

and this is the Schwarzschild metric of the electromagnetic universe.
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Furthermore, we can do all of that with gravity universe in which the Einsteins’
equations of the gravitational field become

K 1
Rff’ = mTﬁR = <FW,F,,” — 4gWFp(,F”"> , (4.29)

where pg = 4:—2G and F),, denote the gravity tensor field, which is taken as
GM
Ey(r) = =N A(r)D(r). (4.30)

Thence, we can find the exact Schwarzschild solution of Einsteins’ equations as follows

A(r) = DET) _ <1 _ GM1>2, (4.31)

2 r
but the problem with gravity is that the second order term is very weak and can be
neglected, so the equation (4.31) is reduced to A(r) = (1 — 2GM1).

2 r

4.4 Classical applications

The objective of this applications is to show the advantages and the importance of the
geometrical descriptions of the electromagnetic field, but these applications need to be
confirmed experimentally.

4.4.1 Equations of motion

In gravity universe, the earth moves around the sun under the effect of the gravitational
field (spacetime curvature equivalent to gravitational field effect) produces by the sun
itself. In a similar way, we choice the system of the classical hydrogen atom where an
electron (with a charge ¢ = —e) moves around the proton (@ = +e¢) under the effect
of a radial electrostatic field on the geometry of the spacetime in the electromagnetic
universe. In the attractive case with the use of (4.27), we can characterize this system
by the following metric

as? = (1~ g>2 (cat)* - (1~ g>_2 dr? — r*(d6” + sin® d¢?) (4.32)

r T

2
where o = &€
mc

Commonly, The equations of motion have been established by an observer which is
not belongs to the electromagnetic universe, and those equations are given by

d?xt q

—— = (=) F*7, 4.33

dr2 (m) a ( )
where v7 = % = £7. In the electromagnetic universe, the observer sees instead that

the electron follows the geodesic line represent by the geodesic equations
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—— = 07 (4.34)

In order to give the solution to this equation in the metric (4.32) we use, equivalent to
that, the Lagrange procedure [2] in which L = g,,@*&" and then we have

— aN? 90 N2 o 92 2,09
L-(l—;)ct—(l—;) 7 — (6 4 sin” 0¢~) (4.35)
and we substitute in the Euler-Lagrange equations
d (0L oL
ar <axu) ~ oo = (4.36)
we find [23]
(1-2)i=k (4.37)
" = :
a\—2 . « a\~3 ., ac? a\ o 9,79 YL
(1—;) r—ﬁ(l—;) 7“—|—r72<1—;>t —r?(0° +sin“6¢”) =0  (4.38)
.9 . .
0+ ;7’“0 —sinf cos§¢? =0 (4.39)
r?sin? 0 = b. (4.40)

Where k and b are constants and they respectively play a role of energy and angular
momentum. It should be known that L is not dependent on ¢ and ¢. The equation
(4.38) is more complicated and for a non-null geodesic! we can replace it by the first
integral of the geodesic equations

guati’ = 2. (4.41)
In addition, we interest to the electron motion in the equatorial plane where 6 = 5 and
thus we have
2,
(1 _ 2) i—k (4.42)
r
2 . -2 .
(1 - 9) 2 — (1 - 3) 222 = 2 (4.43)
r r
2 =b (4.44)
The substitution of (4.42) and (4.44) in (4.43) gives 23]
b2 a2 c? o}
.9 201.2
> 1_7) ——(z—f): kK2 - 1). 4.45
(e ( . , ) ( ) (4.45)

'For a null geodesic we have ds® = g, @ 3" = 0
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This equation represents the dynamics of a relativistic charged particle in Coulomb’s
field in more accurate form. Thus, in the case where b = 0 (movement in one direction)
we get

Ke?2 KZ2e*1
r2 mc? r3’

(4.46)

In order to show the shape of the electron orbit we use the equation r2<;5 = b which gives
us

dr drd¢ b dr

T _ T _2 4.47
dr  dodr r?do (447)
and thus we get
du )\ 2 2 2
<d;> +u%(1 — au)? - Cb—fu(Z —au) = Z—z(kQ - 1), (4.48)
where u = %, and the differentiation on ¢ gives
dzu—}—u(l—ozu)Q—azf(l—au)—cza—k(Ca)2u—0 (4.49)
dg? b2 b - '

This equation gives the electron orbit more complicated shape than the classical motion.

4.4.2 The perihelion advance in the classical electron orbit

An electron moves in curved spacetime in electromagnetic universe does not return to
the same starting point and thus its orbit is not closed. Obviously, the electron orbit
shows an advance of perihelion. In order to illustrate that we start from equation (4.49)
in weak field limit (o < 1)

d*u c?

7t b—;‘ + 3au? (4.50)

as usual [2| the solution of this equation is given with the following form

6204

u= b—Q(l + ecos¢) + Au. (4.51)
Where e is the eccentricity of the orbit and Aw is some perturbation of the elliptical
solution. We make a substitution in (4.50) and this implies that the solution must be

written as follows

CZOé

VRS b—2(1+ecos [o(1—P))) (4.52)

where 8 = 3%. From (4.52) we have to note that the period is larger than 27 and thus
we can prove this [23]
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2\ 2
(12”5) — 21~ 278 = 6 <5nec) . (4.53)
From this expression, we must comment on the obtained perihelion shift in the electro-
magnetic universe. This shift is written terms of the ratio -L of the test particle and the
angular momentum b = #, which have an important role in quantum application, and
we will show this later.

More interestingly, a possible of an atomic black hole comes from the singularity
— I;L ‘162’2 and for an electron-proton interaction this singularity takes value r ~ 10~%m,
and this is the scale where strong interaction takes place. Two attractive charges give us
a positive singularity, but in fact one can see this singularity as an atomic hole to escape

the electromagnetic universe.

5¢p =

r =

4.4.3 Clocks slow down in electromagnetic universe

The central problem faced the geometric description of electromagnetic interaction is the
problem of time, and we have seen a problem like that in Weyl theory. If we return to
our work, on reality, there is no effect of the electromagnetic field on the clocks rate. On
the other hand, an observer in the electromagnetic universe, his clock slowing down (or
speeding up depending on the charges sign) under the influence of the electromagnetic
field so that his clock rate is determined from the metric (4.32) for an observer at rest as
follows

Ar = (1 + %%) At (4.54)

where @, is the electric potential, A7 and At are the rates of time for an observer in
electromagnetic universe and the other in gravity universe respectively (for a same result
(4.54) see [21]).

For person who has the necessary capability to give his opinion in order to explain
this phenomenon, he can say the following

For an observer in gravity universe he is not belong to the electromagnetic universe.
For that reason, he cannot see the electromagnetic field as a geometric phenomenon
and thus he cannot observe the slow down of his clock. In the other way, an observer
in electromagnetic universe see his clock slow down. In equivalent way the observer in
gravity universe see a charge (@) which is the source of the electromagnetic field.

Instead of the observer seeing the clock slowing down and the electromagnetic field
is a geometric phenomenon, he will see rather than that a source (@) of electromagnetic
field (for more informations see [95]).

As known, an accelerated charged particle emit an electromagnetic field. This means
(for an observer in electromagnetic universe) the acceleration affect the spacetime geom-
etry of electromagnetic universe.

The rate of time and the perihelion advance, were reached by many researches (see
for example |21, 96]) in the context of the analogy between gravity and electromagnetic
but it stay a mathematical result without any precise physical explanation.
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4.5 The metric with electromagnetic lambda term A,

In electromagnetic universe, the lambda term is a new attempt to provide a new definition
to the vacuum. The importance of this new constant will be clearly shown in the quantum
applications in the next section.

Now, let us first look for a solution to Einsteins’ equations

GEM = —XTEM — Aegu, (4.55)

in another way

GEM = —xe (TEM +T0) . (4.56)

Before we look for a solution we must talk a little bit about the new constant. For that,
we have the term TA’}; = % 9w Which is an additional electromagnetic energy-momentum

tensor. If we assume that T’ Iﬁ\; has the same nature of TIFVM that consequently means an
additional electromagnetic field comes from the contributions of lambda term. In gravity
universe, the cosmological constant may arise as an additional gravitational potential

97, 98, 99

GM 1
B(r) = Pnewton + Pr = - 6/\7‘2. (4.57)
Thus we have [97, 98|
A
AD(r) =4rGp — 3 (4.58)

Accordingly, in the electromagnetic universe the presence of the electromagnetic

lambda term leads to the following splitting of the potential 4, — A, + Aﬁe, which

produces Fy,, — F,, + Fl’};. Hence, the Maxwells’ equations become

Vo (F"™ + FY) = poj” (4.59)
and then
VuF* = poj” — VMF“:. (4.60)
We put down
VLR =g, (4.61)

and we know that there is no physical meaning of negative density and that is confirmed
by the definition of Tlﬁj". Hence, the vacuum permeability 1 of vacuum must be negative
and this leads to the permittivity to be also negative. Therefore, if we let 7 — —po then
the equation (4.60) is

VuF" = o (37 + 7%.) (4.62)
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From what we mentioned previously, and by following the same line of thinking of
[100, 101]. the vacuum can be considered as a material with a negative permittivity and
permeability with a negative refractive index. This type of matter called metamaterials.

We return to the solution of Einsteins’ type equations, so a traceless electromagnetic
energy-momentum tensor 7}, = 0 gives us a Ricci scalar R = 4A, and that leads

Ry = —XeTfuM + Aegu (4.63)
and then we get [23]

A" A (A D A’ KQ
‘2D+4D<A+D> 2%(6)

A(r) (4.64)

A Al A D' D’ Ye 2

2oL == 4.
24 " 1A <A * D) "D 20 ( > Dir) (4.65)
1 r (A D Xe (KQ 9

1 (S )= — A 4.

D +2D<A D> 2,u,0< c > 2 el (4.66)
R33 = R22 sin2 0= T22 sin2 0. (4.67)

By following the same procedure used in the previous we find 23]

(cdt)? — dr?

<1 + qm) — &Tz

2 r 3

—r?(df* + sin® 0d¢?®) (4.68)

In order to show the influence of the lambda term on the dynamics, we take the Lagrange
L = g,@"&Yof the metric (4.68) of classical hydrogen atom, and we substitute in the
Euler-Lagrange equations (4.36). The steps involved in solving equations (4.36) (in the
case of zero lambda term) they have been used here, so as to get the following [23]

. b2 a2 A, ca « A,
4 [(1—T) —37"2] —7<2—;) - et = 2 - ) (4.69)
d*u 9 9 ca\ 2 ca A 1

From the first equation, it can be noted that the form of the electron energy is corrected
by an attractive kind of energy from lambda term. Moreover, from the differentiating of
(4.69) with respect to 7, we can deduce the form of lambda field as follows

dr? dr? d [v? a2 A ca o A dr
T ) (1=2) = 22| Y (- Q) mC e 2| T 71
T dT+mdr[r2[< ) 3T] ( ) T]df 0, (471)
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then we get

. b2 a2 2o « ca 2a?  mcA,
Clearly, the lambda field is
F(A m—@gmr (4.73)
o) =3 " )
It is obvious that
mo = L = mb, (4.74)

thereby (4.73) becomes

12 [(1 B g>2 B 1;)67“2] B mcta (2 B g) B mC2Aer2 _ mc? (k2—1) (4.75)

1m7'"2 +
T 2r r 6 2

2 2mir2

This may mean that the nature of this field is a magnetism because it acts on the angular
momentum in the energy equation (4.69). If we assume that a part of this field is electric,
then we can get

1
@=¢+6%3Mﬂ, (4.76)

and we can offset it in the Maxwells’ equation V- E = % in order to extract the vacuum
density expression

1mA
vac Ae :**76- 4.77
paclhe) = 5 (.17

In general, and if equation (4.61) is taken into account, we will find

1m A,
,Ovac(Ae) 3 77 . (478)
As it is well known, the negative density is meaningless in gravity universe but it is
possible in electromagnetic case. The significant thing here is the dependent of the
vacuum density on the particles properties. This means that we see a different vacuum
densities for particles with different 2 terms.
On the other part, the high order equation(4.70) is difficult to solve. It represents a
complicated shape of the electron’s circular orbit.
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Quantum approach

4.6 Quantum applications

In this part of the work, we will try to give a different interpretation to the well-known
Lamb shift. As known, this shift was explained in quantum electrodynamics (QED) by
the vacuum fluctuations. For that reason, and before we go further, we would like first
to give a simple introduction to the so-called vacuum.

4.6.1 The vacuum
e Empty space is really empty?

e Can Our mind really realize the meaning of vacuum?

4.6.1.1 Vacuum fluctuations

A vacuum with energy zero is not compatible with the uncertainty principle AEAt > g
Therefore, in quantum mechanics [102, 103, 104, 105, 106, 107, 108, 109, 110], the empty
space is not empty but in fact it is full with virtual particles which manifest themselves
as a pairs of matter and anti matter. These pairs appear (create) as an energy AFE),
and spontaneously disappear (annihilate) after a period of time At, provided that they
not violate the uncertainty principle. This means that one can borrow any amount of
energy from the vacuum and then return it, but at a time when it does not break the
uncertainty principle. This what means by vacuum fluctuations.

The existence of virtual particles effect seems to be convenient to explain some expe-
riences such as

Casimir effect This effect appears when we put a two uncharged plats of a metal in
vacuum at short distance (107%m) between them, we notice that they are close
each other [28, 114|. In quantum field theory, this can be explained by the quantum
vacuum effect. The virtual photons created between plates are less than the others
created outside. In addition, the photons wavelength between plates is limited.
The virtual photons outside hit the plates, which causes a pressure applied to the
plates and push them together.

Lamb shift is a splitting between 2s1,and 2py/, energy levels of the hydrogen atom with
a difference AE = E, P E,, = 4.372 X107 %V it was experimentally measured
by Lamb and Rutherford [108]. The shift is not predicted by Dirac’s theory, due
to the absence of the vacuum definition in this theory. In the other hand, in
quantum electrodynamics (QED) [102, 105, 107, 109], this shift was interpreted
based on the fact that the electron of the hydrogen atom interact with the vacuum
fluctuations (non-zero field). The quantized electromagnetic fields of the vacuum
fluctuations affect the position of the electron and not the proton because the last
is so heavy. There are two sources of the vacuum that contribute to the Lamb
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shift. The first one is the well-known vacuum polarization (photon self-energy) in
which a photon (electromagnetic field, the Coulomb field in hydrogen atom) creates
a virtual electron-positron pairs. The vacuum polarization (the pair production)
affects the propagation of the photon which means a modification in Coulomb’s
field [109] where the charge of the electron replaced by a renormalized charge (for
the details of calculus see [103, 104, 105]). In fact, the contribution of vacuum
polarization to the Lamb shift is much smaller. The second contribution type is
the electron self-energy where an electron emits and reabsorbs a virtual photon.
This affects the propagation of the electron [105] and leads to the renormalization
of the electron mass (mpr = me + dm). The interaction of the electron with its
own quantized field changes its energy states[110]. It is worth noting that the mass
term (dm) is different from the electric mass [111] of the classical electron.

Hawking radiations In the surface of the black hole, there are many pairs of virtual
particles when a pair created one of them escape the event horizon inside the black
hole [112]|. The other which is outside the black hole cannot annihilate and becomes
a real particle. (we should noting that there is no direct experiment which verify
the characteristics of the vacuum).

4.6.1.2 Vacuum state

By definition the vacuum state is the state of the lowest energy | n = 0 > of the quantum
field or in other words the state of no particles. A good example is the harmonic oscillator
[106] where the zero-point energy takes this value Ey = %hw # 0. This is totally different
from the classical mechanics where the vacuum is defined by the absence of the field and,
as a result, the zero value for energy equal to zero.

Let us now determine the energy of vacuum in the quantized Maxwell field [113,
114, 115, 116]. Initially, we start with the expression of the electromagnetic Hamiltonian
which is given by

1
H= [ $x(DLE? + — B2 A
[ 4B (4.79)

the electric and the magnetic fields, by following [113], are written in quantized form

. h:u002 3 w 2 i(k.x—wt) + —i(k.x—wt)
B[ /d K 5Ze(k, 3 (allk, A)e —at(k, e ) (480
lh,U/OC /d3 ZkXG k, )\ ( k, )\) i(kx—wt) _ a+(k, )\)efi(k.xfwt)) 7

(4.81)

where w = ¢ |k| = ck and e(k, \) is the vector polarization with A = 1,2. The substitution
of the fields expressions in (4.79) with the use of the following relations
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Bk —k) = =g [ dBxei® 02 ((k N).e(k,p) =6y, ke(k,A) =0

(27)°
lead to
By
H= / P D (0t I Na(lk, ) + alk, Na* (K, 1)) (4.82)
A=1
and we also have
[a(k, ), at (K, p)} = 6,03k — K). (4.83)
The last equation in (4.82) gives
1
H= /d3khwz <a+(k, Na(k, \) + 253(0)> : (4.84)
A
The zero-point energy of the Hamiltonian (4.84) is given by
E=<0|H|0>= 53(0)/d3kzhw (4.85)
A 2’
and it is obvious this expression diverge denoting an infinite vacuum. The introducing
of box renormalization [115, 116] in which §3(k) = (271r)3 [ d3xe*x — (2‘;)3 for k tends
to zero, and thence we obtain
=<0|p|0>=<p> —E—l/dgkhw
pU(IC - p - p vac— V - 2 (27T)3
1 [ 4nk’dk h
:/ " o = —— /dew. (4.86)
2 (2m) (2m)" 3
In order to avoid the divergence, practically, a cut-off can be imposed
h Wmazx 3 hw4
vac = dw = naz. 4.
e e f = s 487

At the Plank scale Ep = Awmae = \/% ~ 10~'GeV, and therefore we get the value of
the vacuum density in natural units as [116]

Poac ~ 1078GeV* (4.88)
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4.6.1.3 The cosmological constant problem

The problem of cosmological constant is the high discrepancy between the observed
value of cosmological constant and its estimated value in quantum mechanics [117|. In
other words, the zero energy vacuum cannot give a large cosmological constant. As
an illustrative example (see [28]), in semiclassical approach in quantum field theory the
gravity is treated as classical field and the zero energy vacuum as scalar field. Thus in
Einsteins’ equations (2.24), one can see that [2§]

81G
A—)A+7<p>vac. (489)
Naively, in case where A in the right equal to zero we get
81G
A= :T < P >vac - (4.90)

In contrary, and unfortunately, if we compare the observed value of cosmological constant
2
density pp = %QA ~ 10~48GeV* with (4.88) we find

Prac 10120, (4.91)
PA

This conflicting with (4.90). Hence, the cosmological constant problem remains the
biggest challenge in modern physics.

4.6.2 Fluctuations vs electromagnetic lambda term

As mentioned above, the Lamb-shift and other phenomena can be explained by the
vacuum fluctuations. Despite this, here we are going to give another way of seeing
things in which the geometric description plus the introducing of electromagnetic lambda
together give a new explanation for the Lamb shift. As usual in quantum mechanics, we
should look for a Hamiltonian to the system (hydrogen atom in our study). The first
thing we think about it is the equation of motion. For that, the transition from classical
form to an operator form in the equation (4.75) allows us to write this

p2 (r [2 AY en mcla o m2eA
p2'r(n) + QT[r/LfQ |:(1 - ?) - %Tz} - ToF (2 - ?) - CGA T2:| ¢<T797¢> , (492)
= E¢(r,0,9)
where the energy can be taken as
2
E= %(k@ —1). (4.93)

The equation (4.92) is a Schrodinger type. Properly, The comparison between (4.92) and
the ordinary Schrodinger’s equation of the hydrogen atom leads to [23]

H=Hy+ H, (4.94)
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A ~2 4
where Hy = 2 27(:;) + 2522 — m‘fo‘ is the usual Hamiltonian of the hydrogen atom and the

additional terms are taken to be a perturbed Hamiltonian to the Schrodinger one [23]

- al? Q@ AeL?  mca?  mcA
H,y=—— 2——)— c — °p2. 4.
P T omy8 ( 7) " m T o 6 (4.95)
If we use the following eigenvalue expression
L2Y]"(0,0) = L+ DAY (0, 9), (4.96)
we get another form of ﬁp as
- al(l+ 1)h? ! AL+ 1R mc2a®  mc*A. ,
Hyy=——"—(2—=)— — . 4.
prt 2mi3 ( r) om 22 6 (4.97)

It should note that the conditions on parameters r, 0 and ¢ in the wave function are
independent from the classical motion. Maybe the conditions stay the same for the s
orbital.

So the geodesic equation and the vacuum field enabled us to find a corrective Schrodinger’s
Hamiltonian. The rest is to find the corrected energies from this Hamiltonian. Based
on perturbation theory [118], we find the correction terms of the hydrogen atom energy
levels as follows

For the ground state (1s: n=1,/=0, m=0)

At first we have to take into consideration that the perturbed Hamiltonian in (4.97) is
purely radial and it is not affect the angular part of the bound states and also we have

2T
/ / YmYm* sin 0d0d¢ = 6,40 (4.98)

Besides, the degeneracy of the hydrogen atom bound stats is g, = n?, and thus the ground
state is non-degenerate. Therefore, at first order the energy correction is calculated as
follows

2T
)_< 100 | H, | 100 >= / / / |Rio|* H,YYY*r2dr sin dfd¢

2 2 2
me”o mec- A
:/0 |Ri0|? Hyre—or dr—/0 ( 57 " g er2> rdr

o . Ao
= 2mc2a53/ e a0 (a2 - 3r4) dr, (4.99)
0

and with the help of the integral [;° e Prdr = BQ—'H we can get

3
2a0 2e a0
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7O

—omc2a- | o2 _ Ae a0\
p(ls)—ch a [a 5 3 <24<2)>]

5
_ ag Q,
= 2m02a0 3 <a2 — Ae[))

2 4
_ mczaz B mCQAea(Q). (4.100)
ag 2
From that the ground state energy becomes [23]
2.2 20 2
_ g0, g _ W _ mea”  meTAeag
E=FE/ +E,y=FEo+E,i,)=—136eV+ 22 - 5 (4.101)

Additionally, the eigenfunction of the ground state, at the first order correction it is given
with

<nfm | H,| 100 >
| 1s >=[100 >+ (0)| L |(0)
By —FE
nfm=£100 1s

| ndm >=| 100 >, (4.102)

ném

and thus there is no first order corrections on the eigenfunction of the ground state.

For state n=2

This state is degenerate with g, = 4. In this case the correction terms are given by the
following matrix

200> [211> [210> |21—1>

<200  H, H, H, H,

E,= <211| H, H, H, H, . (4.103)
<210|  H, H, H, H,
<21—-1| H, H, H, H,

The condition (4.98) asserts that all of the elements of this matrix are zero except the
diagonals’ elements. The radial perturbed Hamiltonian (4.97) imply that for a states

with different n and ¢ have a different corresponding energies and that leads to E;gpz) =
1 _ g
Ep(2py) T Tp(2p2)
For the state n = 2,¢ = 0 and by following the same steps in (4.99) we obtain

ED 900 | H 1200 5= " [T (1" Con (0t A 2
p(28) =<< | p| >_ﬁ o —270/0 (& 2773—?7" roar

m02a2

= = — Tmc*Aal. (4.104)
0
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Thus we get 23]

Ey mca?
Fos = —
2 4 * 8a§

For the state n = 2,/ = 1 we find this

— Tmc®Acal. (4.105)

EY) =< 21| Hpyppey | 21 >

p(2p)
o0 2 2 2.2 2 i,
1 / < ah <2—a)—Aeh+mca—mCAer2>re‘10dr
0

B 24a} 3 r 3m 2r2 6
ah? a2h? mc2a? A K2
= — — — 5mc?Acal 4.106
2mal  2dmad | 24a | 3m O Ren (4.106)
and that leads to [23]
E h2 2h2 2 2 A h2
Es, = 0 a a mea Pl 5mctAcad. (4.107)

4 12mag + 24maé 24a% 3m

Then, we work to reach the Lamb shift experimental value (AEL g, = 4.372X 1076 V),
and this is can be done by determining the cosmological constant A, of the electromag-
netic universe. Hence, if we impose that

ah? o’h? mcta?  AR?
- —2mc*Acal = ABpgmy. (4108
12ma8 24ma% 12@% + 3m mc”Aeag Lamb ( )

EQS - E2p =

Then we can obviously get this

3m ah? a2h? mc2a?

Ae = AFE — — 4.109
“ (h2 - 6(mcap)?) Lamb 12ma} * 24mag  12a2 ( )
and after numerical applications we find 23]

A. = 8.4413239602 X 10" m 2. (4.110)

From this, we can drawn a constant with length characteristic

1

le = = 3.4418720060 X 10~ m. 4.111
€ \/[Te m < )

Because we talk here about the existence of two different vacuums of two universes. there
is no point in comparing the observed cosmological constant of gravity and the constant
Ae. We now return to the length [, which represent the horizon of the hydrogen atom.
This constant can indicate the quantum limit of the electron of a hydrogen atom so
that when the electron exceeds this distance, it becomes free and unbound. We can also
consider this distance as the necessary distance for the Casimir effect to appear.
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For all different values of n and /¢

In order to give a general energy expression, we use the following results [118§]

n2

<nl | r? | nt >= 5 (5n2 +1-—30(¢+ 1)) ag (4.112)
2
—2 S 411
<nl|r | ntl> W20+ 1) a2 (4.113)
2

0 r 3 | nl >= 4.114

<ntblr = T e T D @ (4114)
4[3n2 -0 (041

<nl|r | nt >= [3n° — (e + 1)) (4.115)

n30 (0 + 1) (20 + 1) [(2@ 11?2 4} a

to obtain from them [23]

Eo(A) Ey 2ah? 1 N 2a2h? [3n? — £ (€ +1)]

nl\{de) = o5 —
n? om ond20+1)aj  mo 5904 [<2e+ 1)° - 4] a
AL+ 1)h? meca? mc? A, 2

1—300+1)) a2 (4.116
om weil)a 12 (5n° + (6+1)) a5 (4.116)

The energies numerical values given by the formula (4.116) for n = 1...7 levels are pre-
sented in the table below (Table 4.1)
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n| & o] EY Ew(Ae) | [ED <E£1>/%) X 100
13.600 | 0] -0.0015030 | -13.6002 | 0.0015030 0.011051

0 | -0.0010308 | -3.4001

2 -3.400 T T 66762004 | -3.4007 8.4923e-4 0.024977
0 | -0.0042454 | -1.5154

3| -1.5111 [ 1] -0.0036630 | -1.5148 | 0.0034903 0.23097
2 | -0.0025623 | -1.5137
0| -0.013145 | -0.86315
1| -0.012158 | -0.86216

4 | -0.8500 5 T 20010211 | -0.86021 0.010702 1.2591
3| 00072937 | -0.85729
0| -0.031007 | -0.57591
1| -0.030381 | -0.57438

5 | -0.54400 | 2 | -0.027342 | -0.57134 | 0.025824 4.7471
3| -0.022784 | -0.56678
4 | -0.016709 | -0.56071
0| -0.065985 | -0.44376
1| -0.063794 | -0.44157
5 | -0.050410 | -0.43720

6 | -0.37778 3T 0052857 | 043063 0.053222 14.088
4 | -0.044108 | -0.42189
5| -0.033172 | -0.41095
0 -0.12206 -0.39961
1 -0.11908 -0.39663
2 -0.11312 -0.39068

7| -0.27755 | 3 -0.10419 -0.38174 | 0.098240 35.395
4| -0.092285 | -0.36984
5| -0.077401 | -0.35495
6 | -0.059539 | -0.33709

Table 4.1. The first order corrections of Bohr’s energies levels for n = 1...7 and its
corresponding sub-levels in electron-Volt.

Were E]()l) = %28_1 E,gl) in the table denotes the average of the sublevels perturbed
energies.
However, it is well to note that in the case where A, = 0, the equation (4.108) becomes

ah? a?h? n mec?o?
12mag 24ma3 12a3 '
This results in a shift of AE = 2.4595087102 10~* < AFELqms, and for that reason, we

need some contributions to reach the exact value of the shift. In this way, the electro-
magnetic lambda constant has been proposed.

Eos — E2p = (4117)
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Judging by the title (Fluctuations vs electromagnetic lambda term A.), we should add
some comments here. In gravity one can accept that the cosmological constant is the zero-
energy arises from the fluctuations of the gravitational field [119, 120]. By the same token,
the vacuum energy arises from the fluctuations of electromagnetic field can be considered
as an additional energy comes from contributions of the electromagnetic lambda term.
Moreover, in some cases the effect of the vacuum fluctuations on the hydrogen atom is
taken as a corrections to the Coulomb’s potential V(r + dr) = V(r) + 5rd‘2y) + ...(see
[109, 121]), we saw a same procedure in the equation (4.76). In the same way and as
the results of this work stated, the contributions of the geometric description plus the
electromagnetic lambda term are together participate to modify the motion of charged
particles.

4.6.3 Energy divergence and the cut-off

It is obvious that the energy expression (4.116) is divergent when n — oo. This, in fact, is
not a biggest problem and a same situation has been encountered in harmonic oscillator
energy expression. When the solution was that the series have to stop at n = Ny
to avoid the divergence of both the eigenfunctions and as consequent the energy. By
following a similar process but in this case we use a cut-off technique instead of N4z
This makes us think on the existence of a relationship between the cut-off (the horizon
of hydrogen atom) and N4, . The source of the divergence in the terms of perturbation
is the infinity. For that reason, the cut-off is used through this expression

1
VAe
f(Ae) = / [HpM:o ‘RQ()’Q — Hpré:l ‘R21’2 TQdT’ — AELamb' (4118)
0

One can use a software to compute this integral. Anyway, the plot of this function is
given in Figure 4.1. From this plot we can determine graphically (by finding solutions of
f(Ae) = 0) the new value of the constant A, so that we get [23]

A ~ 6.16658 X 1010m 2. (4.119)

Hence, we can determine the cut-off value with

€graph

1
! = ——— ~4.02696 X 10 5m. (4.120)

€graph /7Aeg7‘aph

These values are not far from the previously obtained values. Now we will try to follow
our intuition to develop an attempt to find the relationship between the cut-off and N4z .
The preliminary thinking lead us to think about Bohr’s relation r,, = agn? which allows

us to find
le raph
Niaz = 1] 2222~ 276. (4.121)
oy

Also, there is another problem in which the values of perturbed energies (at first order)
are close to the values of the unperturbed energies (zero order). These are clearly shown
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fAe)

2.x105

1.x107%
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-1.x103

Figure 4.1: The plot representation of f(A)

in the percentage Ez(al)/ %g of the table and for a much higher number of n. This maybe
due to the fact that the additional field from vacuum breaks the spherical symmetry. In
the same line of thought, one can think about cylindrical symmetry of hydrogen atom
rather than the spherical one.

4.7 Attempt to a geometrical description of magnetic field

We start with the electromagnetic metric in weak field limit where we saw that the mag-
netic terms are implicit in the components gg;. In addition to that there is an equivalence
between rotation and the magnetic field effect [59, 66] shown with this expression

qB
w= .
2me

(4.122)

A similar relation can be derived in the case of classical circular motion of a charged
particle under the effect of a uniform magnetic field and we have to write

2
F. = — =quB, (4.123)
r

where v = rw and that gives

w==. (4.124)
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For those reasons the magnetic field can be represented geometrically by a rotating
spacetime. Therefore, we chose the rotating cylindrical coordinates as an example, so we
have

ds® = c2dt* — dr* — r’d¢?® — dz* (4.125)

after the rotation transformation d¢ = d¢ + wdt we get [122]

2 w?r? 2 1,2 2 2 27,2 2
ds*=[(1- 2 )¢ dt® — 2wrdtdp — dr® — r*d¢” — dz°. (4.126)

In equivalent way we can obtain

B 2
ds? = (1 - <qr> ) 2dt? — 2 (i> Brledtdp — dr? — r2dg? — dz2.  (4.127)
mc

2
According to the square of the term L in the component goo, the term (%T) it can be

considered as an approximation of second order. The problem is that the use of equation
(4.124) is it correct or not? For a check, we have to search for some compatibility between
the geodesic equation of the metric (4.127) and the ordinary Lorentz equation of motion.
When we talk about the geometrical magnetic field, the difficulty arises in choosing the
correct symmetry.

4.8 Discussion of the results

The new phenomena shown here are the perihelion advance for a charged particle in
classical motion, and the corresponding Lamb shift in quantum mechanics. However,
this should not be seen as a quantification of the charged particle trajectories [123].
Properly speaking, the trajectory determines exact the position of, for example, the
electron in classical motion. In the other hand the atomic orbital (a state represented in
Hilbert space) is used to give the probability region of the existence of that electron. The
difference appears clearly in the classical approach where the solution leads to 6 = 7.
This condition was abandoned in the quantum application.

In our work, it is true that we succeeded in determining the value of the term lambda
electromagnetic in quantum motion, but what about its value in classical? Our expec-
tations state that the value of classical lambda (A.) is different from the quantum one.
Because the classical A, just denote a classical vacuum but the quantum A, represent a
vacuum with a quantum effect. In addition to that and as we have noted, the constant
concerns the limit of the quantum effect. Thereby, one can expect a presence of quantized
electromagnetic lambda [124].

Going back to chapter three, where we briefly talked about the photon mass. There
it can be said that the photon mass is equivalent to
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mey = ?/21\6 ~ 107" Kg. (4.128)

And as we discussed in the chapter, the inequality of the cosmological constant and
lambda lead to a tiny difference on the propagation speed between gravitational and
electromagnetic waves. In other words perhaps this difference explain why the electro-
magnetism is much stronger than gravity.

Obviously, from the equation (4.78), we can give the value of the vacuum density to
the hydrogen atom as

_ Lme B g 3000 % 1010 3, (4.129)
3 e Ho

We should note that an induced charge density can be generated from the vacuum po-

larization [125].

The importance of the electromagnetic lambda term appears in the early universe.
Where it is possible to ask about the amount of matter €25, for this constant, and how
the contribution of this matter affects the geometry of the universe? While an effective
cosmological constant comes from an electromagnetic field is possible in cosmic scale [126].
On the other hand, massive photons maybe could explain the effect of dark energy. In
this case, we can abandon the cosmological constant. Furthermore, All of this motivates
us to search for a unifying theory between gravity and electromagnetism.

For a toy model to the unification in the electromagnetism universe, one can think
about a five dimensional spacetime. The four dimension is the electromagnetism metric
and the fifth dimension is for the gravitation vector potential. In this case we can get
rid of the charge quantization problem in Kaluza-Klein theory. A bi-metric theory can
also be a way of thinking towards the unification.

pvac(Ae)



Chapter 5

(General Conclusion

In this thesis, we presented a novel approach in the light of Barros idea, which states
that the electromagnetic interaction affects the spacetime structure, as general relativity
did to describe gravity. In this regard, we can see the electromagnetic field geometri-
cally depends on the spacetime curvature. In which the full analogy between the two
interactions in weak field limit is taken into consideration.

As we have said before, the main reason for most developments in theoretical physics
is the change of our vision about spacetime concept. This what leads us to think about
a new spacetime with a different properties, and we called it the electromagnetic uni-
verse. This spacetime has a direct relation with the observer properties which are, in
our work, the charge and mass, or in short, the ratio -Z. In addition, the spacetime type
changes with the interaction characteristics. Therefore, in electromagnetic universe all
points in its spacetime become marked with the report -, and this what leads us to
establish another concept of the equivalence principle. In this case, the observer and all
the particles which have the same - ratio move, by the same way, under the influence
of the electromagnetic field on the geometry. This means that those particles follow the
same worldline called geodesic in a spacetime curved by the electromagnetic field. Subse-
quently, the observer itself becomes a part of this geometry or, in other words, a subject
of this interaction. Then, we cannot disconnect that observer from the electromagnetic
effect.

The equivalence principle means a type of Einsteins’ equations for the electromag-
netism. This means a metric, and the geodesic of that metric means an equation of
motion for charged particles. This is what we specifically detailed in this work so that in
Einsteins’ equations of the electromagnetic universe, we equated the tensor of electromag-
netic energy with geometry (Einstein’s tensor). For the Coulomb’s field, the advantages
of spherically symmetric allow to give an exact metric-solution of these equations. Of
course, the thing that we gain from geometrization is the precision of particles dynamics.
This is really what happened with the equation of motion for charged particles, and more
than that, we recorded an advance of perihelion in the case of classical circular motion
for those particles. However, the price to be paid in the case of curved spacetime is
time. In this occasion, a distinction must be made between an observer who belongs

66
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to the universe of electromagnetism and the one who does not. The first (who belongs)
is attached with the charged particle might see its spacetime marked by the L ratios,
and he will record a time-slowdown in its clock. In quantum mechanics, the correction
terms appear in the Hamiltonian of the system. In Schrédinger’s hydrogen atom, these
terms lead to the energy level splitting and accordingly, we set out a shift with the order
10~* eV between the orbitals 2s and 2p.

The inserting of the vacuum notion was the solution to make the shift reach the
experimental Lamb value . In general relativity, the cosmological constant denotes the
vacuum of gravity interaction, and it is considered as a fluid with negative pressure .
Accordingly, in order to define geometrically the vacuum of electromagnetism, we need
to another constant and we called it the electromagnetic lambda term. This constant is
not considered as a fluid in this case but as an induced field from vacuum. In classical
treatment, we set some properties for this vacuum in which the vacuum density becomes
dependent on the particle properties. Besides this, we have noticed a possibility of
a negative permeability of that induced field. The corrective terms to the Coulomb’s
potential arise from the geometry of spacetime, in addition to the term A, are taken as
a perturbation to the Schrodinger’s hydrogen atom. Those terms allowing us to explain
the Lamb shift which is not predicted by Dirac theory and furthermore without the need
of QED explanation.

Lastly, we refer to some difficulties that we have encountered in this research. First,
we determine the metric by using both Einstein and Maxwell equations. One can ask
why the Maxwells’ equations are used in curved spacetime. This means that a part
of the field described geometrically and the other part keeps the ordinary definition.
Second, the problem of the depending of the metric with particle properties, and for
this we should link a different metrics to a different particles. The third problem is
the unification between the two different spacetimes gravity and electromagnetism. In
addition to another problems such as

e The absence of a good explanation for a magnetic metric.
e The problem of Heisenberg uncertainty in curved spacetime.
e The ambiguous definition of vacuum in our quantum applications.

e The electromagnetism is a gauge theory and indeed, we need to a geometrical gauge
theory.

Therefore, our perspectives will be to look for a solutions of those problems.



Appendix A

A.1 Tetrad fields

If we deal with the dynamics of massive spin-half particles in curved spacetime it is better
to define at every points of that spacetime a local inertial frames [84]. Accordingly, to
define a vector field V#(x) (or tensor field) of general coordinates with respect to a scalar
field V(z) in local inertial frames, we have to go through the tetrad fields definition[84]

Vi(z) = eq(2)V() (A1)

in the other side

Ve(z) = ey (x)VH(z). (A.2)
Where e () is the so-called tetrad fields and ef, () is its inverse, so that they fulfill the

orthonormality conditions

ehed =6,
a M __ sa °
eueb—db

(A.3)

The Latin indices a, b... denote the local frames and the Greece indices p, u, v... refer to the

general coordinates. The tetrad el (z) = el is a four vector field forms an orthonormal

basis in general coordinates. Generally, the tetrad caries all informations about the
spacetime curvature and then we have

guu(m) = nabeg(x)eg(x) (A.4)

and vice versa

Nab = g ()€l (2)ey () (A.5)

We should note from the equation (A.2) that V(z) is a scalar field in general coor-
dinates and transforms as a vector in local Lorentz frames 84|

V(@) = Aj (@) V() (A.6)
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A.2 Dirac equation in curved spacetime

In Dirac equation % is a spinor field and it is not a tensor field, and the problem is
the undefined behavior of this spinor field in curved spacetime [84]. This problem arises
because we need to describe this spinor in general coordinates and there is no meaning
to do that. Consequently, to deal with this problem the spinors field should be observed
from the local inertial frames described by tetrad fields. Therefore, the form of Dirac’s
equation in curved spacetime becomes

(i7" Dy — m) = 0 (A7)
where v# = efy® are Dirac matrices in curved spacetime expressed terms of ones in
Minkowski spacetime v* with

,.Ya,yb 4 'Yb’)/a — _Qnab (A 8)

VY At = =29
The covariant derivative is taken to be D, = 0, — I',in which the term I', is the spin

connection

1
Ty = =377 ¢c Ve (A.9)
From that it is clear to prove this

1

r,= —gg)\afﬁp {7’\,7’)} . (A.10)

In fact

1
r,= —Zy“'ybezvuebl,

1
= =77 (Ouer, — Tfen) (A.11)

we have g, = eZeb,, and that leads

Vug)\u = (v,uelj\) €y — elj\ (V/Lebu) =0 (A12)

and then

el)’ﬁueby = I’Z)\gp,, + T8, 9p) — ebyaﬂelj\. (A.13)
The equation (A.13) in (A.11) gives

1 v
L, = _17 7)‘ (FZ)\gpl, — ebyauel/’\) . (A.14)

The sum of the last equation with (A.11) yields
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1
2Ly =~ (v”vAF,’iAgpu - ’V”WAFZVQM) (A.15)
The permutation in the indices v and A gives
1 « AP
Fu = _gg/\OéFMp ['7 Y :| (A16>

A.3 Applications

As we discussed in the chapter three the hydrogen atom becomes geometrically described
by the following metric

2 (1 %2 .o (i N2 o 9 9 .2 2
ds? = (1 r) dt (1 T) dr? — r2(d6” + sin® 0d¢?) (A.17)
where o = g i; The tetrad of this metric and its inverse are given as follows
o} a1
e, = diag ((1 - ?> , (1 — ;) , 7,7 sin 9> (A.18)
A ay 1 1
B — d 1— = (1—— - . Al
€a zag(( 7“) ’ r)’r’rsin@) (A.19)

Besides that from the connection formula

1
igAp(augpv + 8Vg,up - apgllu)7

we can give all the non-zero connections of that metric

0o« a1 1« o3 T« o
=5 (1-7) Te=5(-7) th=—5(-7),

A
F/u/_

r r
o2 2 1
i, =— <1—f),1“,1:_ '29(1_7),1“2:,,
22 r , 33 T8 , 217
1 cos
I3, = —sinfcosf, I3 =~, T3, = :
33 SmoEcosv, 1z U327 Sn
From that we can also compute the spin connections
1 « uo v
F)\ = _gguarl/)\ [7 y Y ] )
and then
1 e no v 1 0 0 .1 1 1 1 .0
Lo = —gnalSo 1,71 = =590l [1%7'] = gonlhe [+ 1]

S5 -2 (-9 B (-0 02 b
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1 1 1 1
I = —ggooF(ln [70770] - ggnrh [’717’71] - §922F§1 [72772] - §933F§1 [73773]

we have [y#,~"] = 0 in the case where u = v and thence

F1:07

1 1
Ty = ——gnl3 v, 7] - §g22f%2 [V - §933F§2 [*,7%]

=5 (09 (- (-2 ) b (2 o

and

1

1 1 1
I's = —ggnr‘%s (v %) - §922F§3 [,7%] - §g33r“;’3 [V, - §933F%3 [, %]

1 2 —2

=37 sin? 6 (1 - g) <1 - g) v, 7%] — r?sinfcos 6 [v*, 7]

r r
1 1 1 0

b g ] [ 4 it (50 [

2
= %sin2 0 [73,71] + TZ sin @ cos 6 [73,72] .
We have to take 1,2.. refer to the general coordinates and (1), (2)...to the inertial local
frames and we use all of this to find the Dirac equation in that case

(iv*Dy —m)yp =0
(9" (O = Tp) =m) ¢ =0
(iv"ef (Op = Lp) —m) =0, (A.20)

then we get

(0) 0

6(0)80 + i’7(1)€%1)81 + i’y(2) 2

[iy 6(2)82 + i7(3)e?3)63 — i'y(o) e?O)FO
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03

0 (17! (1@ @ly 9
[y (1 7") o+ (1 r)al_FW r82+w rsin 6
1« a r
00 La o aNT o )]0 1, @2 T @] 2
T (1 r)[’y Y }%)%)*W @(2>4[7 Y }‘3(1)6(2)
2

. ro. . r
+ 27(3)6?3)1 sin? @ [7(1),7(3)] 6%1)6?3) + Z’)/( )6(3) sin 6 cos [ (2 ),7(3)} 6%2)6?3) —m]y = 0.

(A.21)
We have (7(0))2 =1 and (fy(i)y(j)) d;; = —1, so we can show that
~(0) [7(0)’7(1)} = 7O )4 1) _ 4(0)5(1)(0) (A.22)
and we obtain from (A.8) that
041 = _~1)4(0)
and therefore
~(0) [V(O)ﬁ(l)} — (040, (1) 4 1 (0)0)(1) — 9,(1)
By taking this into account the equation (A.21) becomes
1 1
1-2) e +ir® (1= 2) 01+ iy -0y +in D ——0
r rsin 6
i (1) v(2)
+ 1 %+” (1—9)+W2 %Cotﬂ—m)wz() (A.23)
1
YO (1=2) " an+in® (1-2) o+ i @16, 1 i g,
r r rsin 6
(1 21
iy iy _
(1 QT) + 0 cotf — mlp =0 (A.24)
we adopt the following ansatz
l .
vitr6,6) = (1= )" =P, 6). (4.25)
By substitution in (A.24)
O(1_ N EriaW(1_2 @1 1 (3) Mo
[y <1 r) E+iny (1 )81+w (82—1—200‘59) CAmcny
iy
+ —m]x(r,0) =0 (A.26)

r
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We have the right to do that [86, 88|

then we get

a1 (e « ) 1 1 m

i (3)
+ 2

—m]x(r,0) =0 (A.27)

and we put [86, 88|

g(r)e(0)
x(r,0) = (A.28)
—ih(r)o3e(0)
where o3 = < (1) _01 ) is the z-Pauli matrix. In addition to that we should define the
K operator with [86, 88]
N 1 m
K — _ 2 — 3 17(;3 = ] A2
e(0) [ o (32 + 5 cot 6) +io sin@] £(0) = ire(0) (A.29)
and also we have
By replacing (A.30) and (A.28) in (A.27) we get
(1-)"E-m io® (1- )01 + 2
iz (0 + L oot ) — o2 e,
ot (1= 2)0— 2 2 (34 eotd) + o2 le —(1-2) ' E-m

g(r)e(0) ) 0
—ih(r)o3e(0) - 0

((1=2) " B-m)a0=0) + (097 (1- 2) iet0) + ) e

r

and this gives

1.3
+ [U J (82 + %cot 9) + iaQJ?’m‘b} h(r)e(@) =0 (A.31)

r rsin 6
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a1 3 3 ay dg(r) o3
((1 - ;) E+m> h(r)o3e(8) — o (1 ;) L2 (0) - Zg(r)e(0)
Jl 1 2 Mg
B - ; =0. A.32
[ " <82 + 5 cot@) +io Tsinﬁ] g(r)e(@) =0 (A.32)
We have
olod = —a3c! = —io?, 0?03 = —030? = io!
(o) -1
From there, the equation (A.31) is simplified as
aN dh(r) (1 —k) o\ 1 B
(1- ;) D+ () + (1- ;) E—m)g(r)=0. (A.33)

and then the equation o3x(A.32) leads to

((1 _ 9)_1 fom m) n)e0)— (1-2) 90) 0y~ Ly(me0)

r r

_ [W: (32 + %cot 9) + 01%] g(r)=(8) = 0. (A.34)

rsin @

By simplifications using (A.29) we get

(1-2) diz(:) P ((1 . 9)71 E+ m) h(r) = 0. (A.35)

r r r

At the end, we finish up to the following system of differential equations

(1= 2) 22+ £5200) = (1= ) B m) ) =0

T

(A.36)

A.4 The solution in series form

If we work in system of unites where ¢ and A not equal to one in this case the equation
(A.36) becomes

(1—2)" 4+ B (1 - 2) g(r) = (£ + 5 (1= 2)) hlr) = 0 e
(1= )" %2 + 52 (1= 2) h(r) + (f =5 (1= %)) 9(r) = 0

we pose that [18, 20]
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g=ePF, h=e¢ PG, p=pr, a= —72.
mc
The substitutions give a system of differential equations as follows

232 248 22 (+rK) B L 1 =
(1+ 25 -2 F- 1+ 25 -2 ) P+ B (1- ) F— (£ + % - 21)G=0

222 222 —
(1+ 25 -22)6- (1+ B - 2o+ B0 (1- )G+ (£ - %+ L) F=0

The functions in series form are given with

N N
F = Zanpn+5, G= Z bup" TS, (A.38)
n=0 n=0

the substitution in the above system leads to
N

= 9287 298 + -
Z(n + S)anpn+s_1 + Z o (n + S) anpn+s—3 A Z(n + S)anpn+s—2 _ Z anpn—i-s

2
mc
n=0

N
2
_Zm24nn+52 Trzﬁz n+s 1_|_ 14k Zanpn—l—sl 1+ QZann-l—sQ
n=0

E+mc ~
N ) b n+s I b n+s—1 _ 0
Bho 7;) "+ ﬁan:O np

- +s—1 al VB8 vs-3_ 2B l +5—2 S +
n-r+s— nN-rs— N—TS— n-rs
BETIN TSRS g ARSI I N e I,
n=0 n=0 n=0 =
295 §- . 18 =
n+s—2 n+s—1 n4+s—1 n+4s—2
-3 T S 0 S b 10 2 S
n=0 n=0
(E mc n+s n+s—1
+ »37 Z anp h Z anp =0.
n=0
This can be simplified as follows
N 2 52 N
Z il 264 (n+5) app" ™73 — il Z n+2s+1+k+ Lﬁ 5) app 2
‘= mc me? “—
N o N N
75 n+s 1 E +mc ) n-+s Y n+s—1
+T;)(n+s+1+f<;+ Zanp Wzmp Jr%anp

n=0
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N 9.9 N
g 6 n+s—3 76 ’75 n+s—2
51 (N +8)bnp ——22(2n+23+1—/@+—)
L me? e

2
’7/8 n+s 1 n+s E —mc ) n+s g n+s—1 __
+E n+3+1—li+7 E bnp Tg anp +%§ anp =0
n=0 n=0
with a rearrangement in the boundaries of the series

B ol
nts _ W0 (2n+23+5+/<;+ )an+2p

N-3 9,9
i (n+345)anysp

24 2
=, mic me?
N-1 N N
2 E + mec
+Z n+s+2—|—/€+ ’Yﬂ S)any1p"t Zanp 7)2@1/)’”5
n=-—1 IBFLC n=0
y N-1
x_ Z bn+lp
he =
N-3 9,9 N-2
72B4(n+3+s)bn+3p”+s—7—’82 2n+2s+5—kKk+ Vﬁ)bn+2p+
m2c me
n=-—3 n=-—2
N-1 2y N
2 B E —mec
+ Z n—i—s—i—l—ﬂ—i— )bnt1p Zb P Bhc )Zanp"+5
n=—1 n=0
5 N—1
* e Z ant1p" =0
n=-—1
From these equations, the recurrence relationship between coefficients can be extracted
as
232 232 232
B - B - "B - VB W
350 s 4 p— (1+s)ap 2T + " (2 + ) agp™ 1T — (1 +25+ K+ 7) agp” >
2
- ﬁ(3 +25s+ K+ 7762)a1p_1"'S +(1+s+r+ Lﬁz)aop_l'“ + lbop_Hs =0
mc me mc he
232 232 232
v 5 Sb0p73+s i 72ﬁ4 (14 8)bip~2t" + 7234 (24 8) bop~ 115 — gle) (1 19— gt ﬁ) bop 2T
m m2c
- ﬁ(3 + 25— /-@—}— il )b p I (1 4+s—k+ L/B) bop ' TF + hlcagp_H's =0

2
mc
we should assert this all of the coefficients ag, by, a1,b1,a2,b2 # 0 then we clearly find

that
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2122
;Yn2/6;4 SCLOP_?H_S =0
(A.39)
3+s 0
that imply s = 0. Moreover, we can obtain
2 2
(A.40)
2132
(;fcml ~ 281 - 5+ 2o )p—2 =0
which gives [18, 20|
g = Ittaa) e,
T 0 (A.41)
by = 7(1_H+’”62)m02b
1 B 0
also we have
202
(QTZTﬁ fg(3+/€+%fg)a1+(1+lﬂ+%cg)ao+hcbo) =0
(A.42)

(%br = (3fm+n1—fg)bl+(1fn+§%€)bo+%ao)p—1:0

m2c mc2

On the other side we additionally find

2
_ TZZ@N 1Rt — il —3)a NV T2 (N + 145+ —ﬁw) NV T (N 5+ —njcg)aN_le‘z
_ _ E +mc _ _
—anp™ —an_1pV T —an_op™N T - (ﬂhc) (bNPN +bn_1pN T+ bvop™ %)
+ L (bnp™ +bn_1pN 1) =0
he
2
- L@(QN 1wt 2 N (Vs Lﬁ) NV (N = 2o
mc mc mc
E — mc?
—bnp™N —by_1pN T —byop™N TR+ (ﬁhc) (anp™ +an—1p" 7+ an_2p™7?)
+ % (aNPN +an-1pV 1) =0

we can demonstrate from that the following [18, 20|

E+mc?
(- 5200, o

E—mc?
<( Bhc )“N—bN> pN =0

(A.43)
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that it mean

(Eiﬁh:f&) +1=0 (A.44)
so we get [18, 20]
m2ct — E2
B = ((hc)2E> (A.45)

More than that, we work to show the recurrence equations which is given as follows

2 E +mc?
<(N +1+k+ mLCBZ)CLN —aN—-1 — ( )bN,1 + foN) pN_l =0 (A46)

Bhc hc

E — 2
(B-m) o 1+7aN) PNl=0  (A47)

278
N+ 1—rt —C5)by —b T e
<( + o)y~ bt Bhc hic

2_
and then the subtraction of (mcﬁth) x(A.46) from (A.47) leads to

2
Nalope 280 (mc* - E) -

me? he

- Bhe me?  (he)? 6]
(A.48)
we do the same thing with terms of p’¥~2 and we obtain
~3 v8 | (mc* — E) (mc? — E) 2y
—— (2N +1 N —=)an—_
mc?( + +n+m62) e an + Bhe ( +m+m2)aN 1
2
v (mé - E) 76 78 278 g
by—1=—502N+1— —)bn b —
+(hc)2 5 N-1 ( tl-r+— ) + (N +mc)N1+hcaN1
(A.49)
The final and the important relations are
232
2
;f& (04 3) Gnss — TZ—B(% +54nt £L L Jansa + (n+ 2+ x4 'Yﬂ)anﬂ
(E+me)
—ap— ~—— b+ by =0 A.50
“ Bhe * he "t ( )
22
Vfc (n+3)bpys — WZ/B 2n+5—kK+ ﬂ)bn+2+(n+1—n+iﬂ) brt1
(B —mc?) g
— by, nt+ —apy1 =0 A.51
* Bhc n + hca 1 ( )
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The rest is the quest for the energy formula, so we let n — N in the equations (A.50)
and (A.51) and we know that our series functions are defined from 0 to N. Therefore,
all the coefficients have order bigger than N are zero and thus the two equations become

(E 4+ mc?)
_ X T hy =0 A.52
an Ghe OV (A.52)
by + (E-me) oo (A.53)
N Bhe aN = '
and then
E 2
aN _ _(—i—imc) (A.54)
b Bhe
an Bhc
—_—= . A5
by (E—mc?) (A.55)
Leading to
2a7N__(E+mc2) n Bhe
by Bhe (E — mc?)
and the use of (A.45) gives
an Bhe
—_—= . A.56
by (E—mc?) ( )
By replacing in (A.48) we get
Bhe (m62 — E) 2v0 0% 203 ~ (m02 —
N1 0y X Ny1—
(E —mc?) Bhe (N+1+m+ m02> he tloet e (he)? B
then
Hp  y (m - E) 8
2(N +1 — — =0
N1+ e (he)* B (me? — E)
once more
2Y Y 2
— N+1)p——— =0 A.57
B (V£ 18— Tme (A57)
This is a second order equation in 5 where its solutions are
204 _ 2 2 82
8= (m?c ) _me [—(N+1)i\/(N+1)2+ i ] (A.58)

(hc)? 4y (hc)?
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From this we take out the energy formula
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Abstract

In this thesis, we have developed a geometrical approach to the electromagnetism based on the
C. C. Barros idea. In this approach, the electromagnetic field, analogous to gravity, affects the
electromagnetic spacetime structure. This spacetime is also affected by the passive particle’s
properties, and that is why we called it the electromagnetic universe to distinguish it from
gravity. Therefore, in electron-proton classical mteraction, the electron should follow the
geodesic world line in a spacetime curved by the proton electromagnetic field. Hence, the metric
of the system was established. This is what brings new dynamics to the charged particles, and
thus causes new phenomena such as the perihelion advance, and the time slowdown in the
electromagnetic universe. In the quantum electron-proton interaction with the support of a novel
constant proposition, the Lamb shift of the hydrogen atom was explained. This constant is called
electromagnetic lambda term. It is related to the -electromagnetic vacuum. Unlike the
cosmological constant the contribution of that constant is considered as an induced
electromagnetic field comes from vacuum.
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Résumé

A la lumiére de lidée de C. C. Barros, une approche géométrique de I'¢lectromagnétisme a été
présentée de sorte que le champ électromagnétique, de fagon analogue a la gravité, affecte la
structure de l'espace-temps électromagnétique. Dans ce cas, la structure est également liée aux
propri¢tés de la particule passive, et c'est pour cela nous l'appelons lunivers électromagnétique.
Lors de l'interaction ¢électron-proton, I’électron doit suivre une géodésique dans un espace-
temps courbée par le champ ¢lectromagnétique du proton. Ainsi, la métrique du systeéme est
¢tablie. C'est ce qui apporte une nouvelle dynamique aux particules chargées, et provoque ainsi
de nouveaux phénomenes tels que décalage du périhélie, et la dilatation du temps dans l'univers
¢lectromagnétique. Lors dans le cas quantique de [Iinteraction ¢lectron-proton, avec
I'introduction d'une nouvelle constante, le décalage de Lamb de latome d'hydrogene a été
expliqué. Cette constante est appelée terme lambda électromagnétique. Elle est liée au vide
d'¢lectromagnétique. Contrarement a la constante cosmologique, la contribution de cette
constante est considérée comme un champ électromagnétique générer a partir du vide.



