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Introduction 
 

 

General idea and motivation 

 

Nanotechnology is considered a transversal technology. Nano-clusters represent an 
exciting newer class of nanoparticles that are being used in application from drug delivery to 
catalysis. Towards developing a better understanding of their structural, electronic, magnetic, 
and optical properties and stability we have to expand our knowledge in investigating them in 
different combinations and under a wide range of well-chosen initial conditions using the 
right tools for making new patterns which predict and guess a specific use for a given 
configuration in purposes of full exploitation. Note that atomic clusters are the ultimate 
nanoparticles where structure−property relationships can be studied at this scale of atom and 
electron at a time and, hence, can answer fundamental questions [1]. The application areas 
included Clean and Sustainable Energy: Production, Storage, Conversion, and Efficiency 
(solar, hydrogen, energy storage such as batteries and photo thermal energy conversion) and 
Medicine (bioactive, bio responsive and biomimetic materials, nanotoxicity, bio engineering 
and regenerative medicine, diagnostic devices such as sensors and image enhancement, 
therapeutic devices such as drug design and delivery, and noninvasive cancer treatment)[1]. 
Crosscutting areas included nanocatalysis (e.g., new developments in core−shell catalysts), 
properties (electronic, optical, and magnetic), hybrid nanoparticles, carbon nanostructures, 
polymer nanoparticles, and nanoparticles Ferro fluids [1]. Such domains and application 
zones make from clusters one of rewarding economic investment in the actual high-tech 
revolution.    

Semiconducting nano-crystalline materials like quantum dots (QDs) demonstrating on 
a size ranging from 2 up to 10 nm can produce distinctive colors determined by the size of the 
particles are resulting of the quantum confinement and hence different Band Gaps [2]. 
Besides that, their properties are not determined only by the size but also by the shape, 
composition and the structure, is it solid or hollow. As the character of being with such unique 
physical properties the QDs can be at the core of the next generation displays and other much 
instrument. Compared to organic luminescent materials used in organic light emitting diodes, 
QD based materials have purer color, longer lifetime, lower manufacturing cost and lower 
power consumption. Single electronic transistor, optical application like TV displays and solar 
cell, information storage, imaging medicine and even censoring there are among the areas that 
apply strongly this set of nanomaterials. For biological and chemical application QDs are 
currently under investigation to unveil important medical application, including potential 
cancer treatment. Their big advantage is that they can be targeted at single organ, such as the 
lever, much more precisely than conventional drugs. QDs are also being used in place of 
organic dyes in biological research, for example, they can be used like nanoscopic light bulbs 
to light up and color specific cells that need to be studied under microscope [2].  
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To meet this challenge, in order to create materials with enhanced physical and 
chemical properties, a degree of control and understanding of the individual building blocks is 
required. The bottom-up self-assembly in clusters design will be the answer of the challenge 
of the significant demand for the minimisation of devices with many area among them the 
nanoworld. 

Such a metalloid as germanium,which is estimated to be one of the most futuristic 
elements, as the silicon, Ge is a semiconductor, with anarrow band gap (0.67 eV), high carrier 
mobilities (μe=3900 cm2 V−1 s−1, μh=1900 cm2 V−1 s−1), large absorption coefficient (ca. 
2×105 cm−1) and large exciton Bohr radius (24 nm), so germanium is a particularly amazing 
material for charge storage and infrared optical and optoelectronic [3-4]. The use of 
germanium as precursor is widely recognized, as an example germanium chloride (GeCl4) [5], 
is uncolored liquid it is used to product Ge semiconducting quality and production of optical 
fiber, which helps to immediately transfer information over thousands of kilometers, creating 
the modern Internet. It is used in a transversal industry as 1960’s to make transistors [6], such 
as their use to make solar cells. Another form of germanium is the germanium oxide (GeO2), 
which is used to make high quality optical resolo-dispersion rate devices [7]. GeO2 has 
another peculiarity, which is been absolutely transparent [8] in infrared light which is used in 
laser devices. Germanium can reflect visible light but laterite light pass through. Beside of the 
reaction of Ge with O2, Ge also reacts with alcolite, which it is used to extract Bismuth 
Germinate and in radiation detectors asscintillators. However, the numerous application of 
germanium compounds as already mentioned is very diverse in modern technology. In the 
following, a comparison between some selected semiconductors and their properties presented 
in table (Ⅰ).   

Table (Ⅰ): Properties of selected semiconductors 

 

Si Ge GaAs 

Crystal structure Diamond 
 

Diamond Zinc blende 

Band gap energy (eV) 1.12 
 

0.66 1.42 

Lattice constant (A°) 5.43095  
 

5.6579 5.6533 

Intrinsic carrier concentration (cm-3) 1x1010
  

 
2x1013 2x106 

Electronic mobility (cm2 / Vs) 1500  
 

3900 8500 

Hole mobility (cm2 / Vs) 
 

450 1900 400 

Minority carrier lifetime (s) 10-6
  

 
10-6 10-6 

Thermal extension of the mesh (10-6 / K) 2.6  
 

5.9 5.73  
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3d-transition metals such as Pt [9], Pd [10] and Ir [11] have been as possible catalysts 
for the electrochemical oxygen reduction. Beyond, in catalysis and electro-catalysis the 
relationship between specific configuration (size, shape, composition) and the catalytic 
properties is that the major issue is to identify the active sites in the given structure. In 
peculiar, due to the differences of chemical and topological environment, catalytic properties 
are closely related to the modifications of the local electronic structure on various sites. And 
as a fact, fossil fuel burning in our daily uses causes’ environmental pollution by toxic 
emissions, such as CO, which the need to be oxidized, than the necessity of finding a cheaper 
catalyst made of earth-abundant elements with the same characteristic as rare one’s, and to be 
able of tuning their performance by electronic structure engineering [12]. 

The physics and chemistry of atomic aggregates and nanoparticles constitute a 
significant promising field. The domain is growing with a very immense rate, as certified by 
such amount of publications, conferences and workshops. In the development of new 
technologies, there is an inevitable trend towards miniaturization in micro and 
nanoelectronics. Our goal is to master technologically the most sophisticate devices of such 
small dimensions that their specific quantum properties are the most important.  

The theoretical study of small aggregates makes it possible to interpret and understand 
the existing experimental results obtained from the manipulation of the different matters at 
this scale. It also makes it possible to study useful properties even though, the known as 
difficult to be reached experimentally. For example, the geometric structure, which is an 
essential data for the interpretation and analysis of the results, remains very difficult to be 
determined experimentally, and can only be investigated indirectly using theoretical studies 
combining quantum chemistry methods for energy calculation and geometry optimization. 
However, because of the existence of several low electronic energy ground states and several 
isomers, the systematic search for the most stable geometry by ab-initio calculations produce 
difficulties for aggregates larger than ten atoms. Moreover, it would normally scan the entire 
hyper-surface potential of the ground state, which is not simple. From a tentative opinion, 
clusters in sizes between three and one hundred atoms are too large for spectroscopic 
techniques and too small for macroscopic methods such as electron microscopy or diffraction. 
For simple metals, spectroscopy techniques allow us to deduce information on the geometries, 
while for transition metals the situation is much more complicated because of their d orbital 
characterized by a high density of states. The most widely used technique is based on 
chemical reactions of reactivity to an atom or a probe molecule. 

From the methodological point of view a simply parameterized description of the 
electronic structure is often necessary for studies of complex transition-metal compounds 
involving intricate surface, structural and chemical effects. A wide variety of currently 
available ab-initio Density Functional Theory (DFT) band structure codes are available. Up to 
now these codes are still applicable to relatively simple structures, and in general, cannot be 
used in systematic studies of thermally activated structural transformations. 
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At this time, the race is in heat to understanding the influence of doping metal atoms 
on germanium clusters and the comparative study of the different physical properties of each 
doped clusters. Although, to have the agreement between what the calculations predict and the 
experimental results are not always so simple. To increase the chances of matching theory and 
experience, it is necessary to always use very precise numerical techniques.  

In an attempt to produce germanium clusters, S.Bals and co-author [13] have 
successfully synthesized small clusters, and characterized them using transmission electron 
microscopy in combination with ab-initio calculations and identified as possible building 
blocks, the seven-membered rings, trigonal prisms and some others smaller subunits. 
Different methods of synthesizing clusters are known by the scientific community, can be 
used in making such materials, (ion-sputtering, molecular beam epitaxy, redox 
transmetalation, gas phase cluster deposition, biochemical synthesis of protein - encapsulated 
grains, reduction of super-hydrides or carbonyls at a high temperature, using the reverse 
micelles technique and other techniques [14-15-16-17]. Depending on the method used one 
can obtain structures of different structural and physicochemical properties.  

Encapsulating one or more atoms of a transition metal inside the semiconductor cluster 
can saturate dangling bonds and improve cluster stability. A wide range of elements and 
transition metals are the subject of doped pure germanium clusters with the intention of 
seeking and discover the deferent improvement or modification which can be carried by the 
substitution of one of the atoms of a pure structure by a given doping atom, on structure, 
stability, cohesion energy, chemical hardness and optical properties. The main reason of 
making such huge number of calculation and providing a time to investigate all the data 
created, flow in the attention of sweeping away all the possible cases that may be present in 
our study and be as close as possible to the reality.      

Because of the aforementioned reasons we have carried out a systematic theoretical 
study of the clusters of germanium doped with different metals (Pd, Pt and Ir), to find their 
most stable structures and to characterize them from an energetic point of view. One of our 
goals in this investigation is to compare doped aggregates with pure aggregates and with 
other’s already studied in the literature [56-113]. In doped systems, one would expect a 
transfer of electronic charges from doping atoms to germanium atoms, which should result in 
physical properties different from those of pure one’s. Therefore, we seek to understand and 
characterize the stability and growth behavior of our clusters. We calculated their physical 
properties (structural, electronic and optical) based on the size n = 1-20 and the nature of the 
doping atom. Our work is a part of a big computational science area which investigates 
physical and/or chemical properties of the most stable structures of pure and doped clusters by 
different metals. For this, we have adopted first principles calculations implemented in the 
SIESTA [18]. This code is an ab-initio program, based on DFT which uses the pseudo-
potential method. More details on this code will be presented in the coming chapters of this 
thesis. 

In the beginning, the stable structures of pure and doped germanium clusters are 
identified by comparing the binding energies of the different possible arrangements of atoms 
corresponding to each considered size. In fact, the molecular dynamics method makes it 
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possible to do this work since, during the relaxation step, the program makes it possible to 
explore the entire configuration space and to identify the best structure according to the 
convergence conditions imposed in the calculation and, of course, it all depends on the initial 
atomic configuration in the cluster to be relaxed. For a given size, the number of possible 
structures is all the greater as the number of initial configurations (i.e. the number of 
relaxations) is large. The best structures are those with the lowest total energies. In general, 
for a cluster of a given size, when we obtain the same minimum energy balance structure from 
two or more different initial configurations, we consider the structure having the lowest 
binding energy may be the most stable configuration for this cluster. Several parameters 
which can be compared with other existing calculations are calculated: the symmetry group, 
the binding energy, the HOMO-LUMO gap, the vertical ionization potential, the electron 
affinity, chemical hardness, average bond length, second energy differences, and layered 
electronic structures. 

Our thesis is organized as follows: 

In chapter 1 we will give a description of the density functional theory (DFT), the 
theory on which all our calculations are based. We will show in particular how it makes it 
possible to obtain the total energy of a given system. After having recalled the basis of 
pseudo-potentials, we will present the way in which they are generated, tested and then used 
in a calculation practice. The third part of the chapter is devoted to ab-initio molecular 
dynamics. This has a great flexibility of implementation, so that it is possible, using a single 
code, to determine the electronic ground state of a system, its structural minima, as well as the 
stability of a particular geometry. 

In chapter 2 we present the SIESTA calculation code. The focus is on its basic 
principles, its potency, and the various physical properties it can give us. We also give the 
values chosen for the simulation parameters for the conjugate gradient method.    

Chapters 3 and 4 are devoted to the presentation, analysis and discussion of the results 
obtained. In chapter 3 we present the results of our study on the structure, stability and 
electronic and optical properties of pure germanium aggregates and doped with Pd and Pt. In 
the last chapter (Chapter 4) we present the results of calculations on germanium structures 
doped with Ir metal and we will discuss their structural, electronic and optical properties.  

In conclusion the results obtained in the doped clusters will be summarized and a 
number of improvements along with the future perspectives will be briefly discussed. 
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Chapter 1 

Methodology 
 

1.1   First principles approach 

1.1.1Quantum-Mechanical Methods 

Quantum mechanics is one of the most successful scientific theories ever created over 
the last century. Its creation is due to the fact that the other sciences such as Newtonian 
mechanics, Maxwell’s electromagnetic theory and even the Boltzmann’s statistics “therefore 
classical physics in general” could not explain all the physical phenomena encountered at this 
time in atomic and subatomic behaviors of matter which cannot be neglected. As one of the 
application of quantum mechanics on behalf the electronic behavior to mimic the true 
electronic system in simple way, we use Density Functional Theory. DFT was started in 
1920’s by Thomas [19] and Fermi [20] in purpose to resolve the “many body problem” which 
is considered the most fundamental difficulty in condensed matter theory. 

 

     1.1.2Ab-Initio Methods  

Using nothing but the Schrodinger equation equipped by a self-consistent field 
procedure one can calculate a various models molecular structures like for example Hartree-
Fock and Post Hartree-Fock methods. Such a method is used commonly for systems requiring 
electronic transition and needing a particular fairness. Since for any methods, they have 
advantages and imperfections. For example they are useful for a broad range of systems, do 
not depend on experimental data, and allow determining accurate forces and stresses via 
Hellman-Feynman theorem and permit to determine accurate total energies and energy 
differences. On the opposite side, they are computationally expensive and are only useful for 
small systems. 

 

     1.1.3Electronic Structure Methods 

The physical properties of materials are rarely accurately described due to the 
complexity of these multi-particle systems. Indeed, the resolution of these so-called “N-body” 
problems must inevitably have recourse to approximations, not only to simplify the 
calculations but also for a good representation of this very complicated system.  

 

     1.1.4Schrödinger equation  

The Schrödinger equation is a fundamental equation in quantum mechanics. It 
describes the evolution over time of interacting electrons. It brings us to the understanding of 
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the different physical and chemical properties of materials. However, the astronomical 
number of variables involved makes it impossible to solve this equation directly, hence the 
need to introduce approximations to overcome this problem. We are trying to model a set of 
interacting nuclei and electrons. Classical mechanics remains insufficient and it is necessary 
to call upon quantum mechanics whose basis is the resolution of the Schrödinger equation. 
We know that any stationary state of a quantum system is described by a wave function ψ, 
which is a proper function of the Schrödinger equation independent of time [21]: 

                                       H Ψ = E Ψ                                          (1.1) 

Where H is the Hamiltonian operator of the system {N nuclei + n electrons} and is written: 

H = Te + Uee + UeN + TN + UNN 

Where, 

Te:    Kinetic energy of electrons 

Uee:    Electron-electron interaction energy 

UeN:    Electron-nucleus interaction energy 

TN   :    Kinetic energy of the nuclei 

UNN:    Energy of nuclei-nuclei interaction 

 

By developing each term, we will have: 

 H= −
ħమ

ଶ௠೔
∑ ∇௜

ଶ
௜ −

ħమ

ଶெഀ
∑ ∇ఈ

ଶ
ఈ  + 

ଵ

ଶ
∑

௘మ

ห௥೔ି௥ೕห௜ஷ௝ − ∑
௘మ௓ഀ

|௥೔ିோഀ|௜,ఈ  + 
ଵ

ଶ
∑

௘మ௓ഀ௓ഁ

หோഀିோഁหఈஷఉ    (1.2) 

 

𝑚௜:     The mass of the electron i 

𝑀ఈ:     The mass of the nucleus α 

𝑍ఈ:      The atomic number of the nucleus α  

𝑟௜     :    The position of the electron i 

𝑅ఈ:      The position of the nucleus α  

 

An exact solution to equation (1.2) is impossible in the case of poly-electronic systems. It is 
therefore necessary to implement simplifying procedures associated with a few mathematical 
tricks in order to make it possible to obtain an exact or approximate solution.  
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1.2   Fundamental approximation  

     1.2.1    Born-Oppenheimer approximation (BOA) 

 Born-Oppenheimer Approximation (BOA) [22], is adopted as a first level of 
approach to problems with several bodies by highlighting the large gap between the mass of 
the electrons of the system (lighter, therefore with greater mobility) and that of the nuclei 
(relatively heavier M ≈ 1800 × m, therefore reduced mobility). In other words, this 
approximation is based on the idea of considering the nuclei as having sufficiently slow 
movements, relative to those of the electrons, so as to neglect them without great error, so we 
will have a purely electronic Hamiltonian. The Hamiltonian will be written in this case in the 
following form: 

                                     He = Te + Uee + UeN                                                   (1.3) 

The wave equation for the system is then written: 

൤−
ଵ

ଶ
∑ ∇௜

ଶ
௜ + 

ଵ

ଶ
∑

ଵ

ห௥೔ି௥ೕห௜ஷ௝ − ∑
௓ഀ

|௥೔ିோഀ|௜,ఈ ൨ ψe = Ee ψe                  (1.4) 

 

The Born-Oppenheimer approximation is only valid when the couplings of electronic and 
nuclear movements are negligible, that is to say when the wave functionψe does not undergo 
sudden variations when the nuclei vary. It reaches its limits when we deal, for example, with 
collision problems or problems of crossing potential energy surfaces. Unfortunately, the 
number of variables in equation (1.4) remains important and therefore direct resolution is 
impossible. We still have to go through approximations which should be as reasonable as 
possible. 

 

     1.2.2    Hartree approximation 

 Despite the simplifications that the Born-Oppenheimer approximation brings, we are 
faced with a problem with N bodies because of the electron-electron interaction term. The 
Schrödinger equation cannot be solved exactly for more than one electron. Douglas Hartree 
(1927) [23], proposed a method for calculating the wave functions and the approximate 
energies of ions and atoms. The basic idea of this approximation is to consider that the 
electrons move independently of each other, their movement is uncorrelated. Thus, if we 
consider two electrons 1 and 2, the probability of the presence of the electron of coordinate’s 
r1 in the orbital 1 is independent of that of the electron of coordinate’s r2 in the orbital 2. The 
Hamiltonian of such a system is written:  

                                               H = ∑ ℎ(𝑖)
ே೐
௜ୀଵ                                                               (1.5) 

Whereℎ(𝑖) is the monoelectronic Hamiltonian. 

The wave function with N electrons ϕ (rl, r2,...,rN) is represented as the product of wave 
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functions at a one particle: 

Ψ (ri,...... rN) = ∏ 𝜙(𝑟௜)
ே೐
௜ୀଵ                                            (1.6) 

Equation (1.6) is called Hartree Product (HP) [24]. 

The resolution of Schrödinger's equation goes from a problem of Ne electrons to that of a 
single electron: 

 

ቂ−
1

2
∑ ∆௜

ଶ
௜ + 𝑉௘௫௧𝑟 + 𝑉ு

௜ (𝑟)ቃ 𝜙௜(r) = 𝜀௜𝜙௜(r)                        (1.7) 

Where  

 𝑉௘௫௧𝑟 = ∑
௓ೌ

|௥೔ିோೌ|

ே೙
௔ୀଵ    

 𝑉ு
௜ (𝑟) = ∫

ఘ(௥′)

|௥೔ି𝒓′|
𝑑𝑟′ 

𝑉௘௫௧𝑟 is the external potential of the nucleus and 𝑉ு
௜ (𝑟)is the Hartree potential, it describes 

the mean field of the other electrons. 𝑁௡ and 𝜌(𝑟 ′) represents the number of nucleus and 

electron density, respectively.  

The great merit of this approach is to have proposed a self-coherent solution to the problem of 
the electronic system [25]. It has four important consequences: 

 The total Coulomb repulsion Ve-e of the electronic system is over estimated. 

 Simple to solve, but does not give good results. 

 Each electron feels its own charge. 

 The Pauli Exclusion Principle is not taken into account. 

A reasonable wave function must be asymmetric when exchanging two electrons [26].This 
last consequence being crippling, the approximation had to be improved [27] to take into 
account the spin in the resolution of the Schrödinger equation.  

 

     1.2.3    Hartree-Fock approximation 

One of the interactions that are not taken into account in the Hartree approximation is 
the exchange. It is expressed by the asymmetry of the wave function with respect to the 
exchange of the coordinates of two electrons. The system with N bodies (electrons) can then 
be described by the following equality: 

Ψ (r1, ..., ra, ..., rb, ..., rN) = − Ψ (r1, ..., rb, ..., ra, ..., rN)       (1.8) 
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In which the positions of “a” and “b” have been reversed. Ψ (r1, ...,rb, ..., ra, ..., rN) is the 
wave function of the N body system resulting from the product of mono-electronic functions.  

This is due to the fact that the electrons are Fermions (spin
ଵ

ଶ
) and obey a Fermi-Dirac 

distribution [28]. 

 V. Fock proposed to replace Hartree's wave-functions with a Slater determinant. We 
define the Slater determinant as an order N determinant formed on N distinct spin-orbitals 
which are mono-electronic functions of the space and spin variables [27]. 

Slater's determinant is written as follows 

 

Ψ (r1𝜎ଵ,...... rN𝜎ே) = ଵ

√ே! ተ

ተ

ψ
ଵ

(rଵ𝜎ଵ)ψ
ଵ

(rଶ𝜎ଶ)  . .   ψ
ଵ

(r୒𝜎ே)

ψ
ଶ

(rଵ𝜎ଵ)ψ
ଶ

(rଶ𝜎ଶ)  . .   ψ
ଶ

(r୒𝜎ே)
…       . .          . .              . .           …

ψ
୒

(rଵ𝜎ଵ)ψ
୒

(rଶ𝜎ଶ)  . .   ψ
୒

(r୒𝜎ே)
ተ

ተ
               (1.9) 

ri : Space variable.   

𝜎௜ : Spin variable. 

We thus obtain the Hartree-Fock equations:  

ቂ−
1

2
∑ ∆௜௜ + 𝑉௘௫௧𝑟 + 𝑉ு

௜ (𝑟) + 𝑉௫(𝑟)ቃ 𝜙௜(r) = 𝜀௜𝜙௜(r)             (1.10) 

Where                           𝑉௫(𝑟)𝜙௜(𝑟) = − ∑ 𝛿σiσj
 𝜙௝(𝑟) ∫

థೕ∗൫௥′൯థ೔(௥)

ห𝒓ି𝒓′ห௝ஷ௜ 𝑑𝑟 ′           (1.11) 

𝑉௫(𝑟)is the term added by Fock. It is non-linear. It is not only proportional to 𝜙𝑖 but also to 

𝜙𝑗 (i≠j), which has led to calling it, exchange potential. It is also a non-local operator since it 
implies integration. 

It should also be noted that, in the Hartree-Fock method, the electrons are considered to be 
independent of each other, and each, move in a mean potential created by all of the nuclei and 
the other electrons. There is therefore no instantaneous electron-electron interaction, hence the 
development of certain methods to try to remedy this problem of lack of correlation. 

 

     1.2.4    Hartree-Fock-Slater approximation 

In order to solve the Hartree-Fock equation, Slater [29] gives a more suitable form for 

the exchange potential 𝑉௫(𝑟)  for a homogeneous electron gas with density𝜌(𝑟):  

𝑉௫(𝑟)= -6αቂ
ଷఘ(௥)

଼గ
ቃ

ଵ/ଷ
                                      (1.12) 
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The resulting method is called the method 𝑋𝛼. 

At this stage of the approximation, the results are far from satisfactory. In reality, the 
complexity of interactions between electrons means that this method ignores electronic 
relationships. 

 

     1.2.5    Density Functional Theory 

           The detailed study of the electronic properties of a molecular system requires taking 
into account the effects of electronic correlation [30]. This is why, over the past thirty years, 
the Functional Density Theory or DFT has been used extensively for the study of physical or 
chemical systems. Initially designed and applied to solid state problems, several reasons 
contributed to its popularity for physical or chemical applications [30]: 

 

 This theory includes in its formalism a large part of electronic correlation. 

 The method can be applied to any type of system: covalent, ionic or metallic. 

 The IT tools (Informatics resources) required are lower, making studies of larger 
molecular systems accessible. 

 The mono-determinative aspect allows a physical or chemical interpretation of the 
wave function resulting from this type of formalism. 

 

A bit of history 

The DFT has its origins in the model developed by Llewellyn Thomas [19] (1927) and Enrico 
Fermi [20] (1927, 1928) who proposed an alternative method of solving the Schrödinger 
equation based on electronic density only. It is based on the assumption that the movements 
of the electrons are decorrelated and that the kinetic energy can be described by a local 
approximation based on the results for free electrons. Dirac [31] proposed that the exchange 
effects can be taken into account by incorporating a term coming from the density of 
exchange energy in a homogeneous electron gas. The thing that made this new approach go 
further is the fact that the term electronic correlation is missing. It was not until the sixties that 
the contributions of Pierre Hohenberg, Walter Kohn [32] and Lu Sham helped establish the 
theoretical formalism on which the current method is based. 

 

     1.2.6    Hohenberg-Kohn theorems and equations 

  Theorem 1: The electronic density ρ(r) is the only function necessary to obtain all the 
electronic properties of any system [32]. In other words, there is a one-to-one correspondence 
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between the electronic density of the ground state 𝝆𝟎(𝒓)and the external potential (𝑟) and 
therefore between 𝝆𝟎(𝒓)and the wave function of the ground state 𝜓0. 

The Hamiltonian of the electronic system will be written:  

H = − ଵ

ଶ
∑ ∆𝑖 + ∑

1

2𝑟𝑖𝑗
+ ∑ 𝑉ext(𝑟𝑖)

𝑁𝑛
𝑖

𝑁𝑒
𝑖≠𝑗

𝑛
𝑖                    (1.13) 

𝑉ext(𝑟௜) is the external potential, it has the following form: 

𝑉ext(𝑟௜) = − ∑
௓ೌ

|ோೖି௥೔|
ே௡
௞                                     (1.14) 

By integrating the electronic density 𝜌଴(𝑟) we obtain: 

∫ 𝜌଴(r)dr = n                                           (1.15) 

The energy functional will be written as: 

𝐸[𝜌଴] =  𝑇[𝜌଴] + 𝑈ே೐
[𝜌଴] + 𝑈௘௘[𝜌଴]                             (1.16)  

With                                           𝑈௘ே[𝜌଴] =  ∫ 𝜌଴(𝑟)𝑣௘ே(𝑟)𝑑𝑟                                    (1.17) 

 𝑇[𝜌଴] : Kinetic energy of the non-interacting electrons  

 𝑈௘௘[𝜌଴] : Classical Coulomb Interaction (Hartree energy) 

𝑣௘ே(𝑟) : Nuclear-electron potential    

The energy functional can also be written in the form: 

𝐸[𝜌଴] =  𝐹[𝜌଴] + ∫ 𝜌଴(𝑟)𝑣௘ே(𝑟)𝑑𝑟                                    (1.18) 

With                                           𝐹[𝜌଴] = 𝑇[𝜌଴] + 𝑈௘௘[𝜌଴]                                    (1.19) 

The functional [𝜌଴]are unknown. 

            Theorem 2: the energy 𝐸[𝜌] associated with any test density, satisfying the necessary 

boundary conditions ρ(r) ≥ 0 and ∫ ρ(r)dr = n and associated with an external potential 

𝑉ext(𝑟௜), is greater than or equal to the energy associated with the electron density of the 

ground state 𝐸[𝜌଴]. 

𝐸[𝜌଴] = Min 𝐸[𝜌]                                                (1.20) 

This theorem is nothing other than the variational principle expressed for functional energies 

of a density, 𝐸[𝜌]and not of a wave-function, E Ψ [33-34]. 

𝐸଴ ≤ E[𝜌(𝑟)] = 𝑈௘ே[𝜌଴] + 𝑇[𝜌(𝑟)] + 𝑈௘௘[𝜌(𝑟)]           (1.21) 
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In summary: all the properties of a system defined by an external potential Vext (r) can be 
determined from the electronic density of the ground state. The energy of the system 

𝐸[𝜌]reaches its minimum value if and only if the electron density is that of the ground state. 
The use of this variational approach is limited to the search for the energy of the ground state, 
and to be more precise, this reasoning is limited to the ground state for a given symmetry [30]. 

 

     1.2.7    Kohn-Sham equations 

To better exploit the theorems of Hohenberg and Kohn, W. Kohn and L. J. Sham [35] 
proposed in 1965 to use a fictitious system of electrons without interaction of the same 
density ρ (r) as the system of electrons in interaction. Based on this reference system, it is then 
possible to give an exact expression to the kinetic energy of a non-interacting system of N 
electrons as a functional of the density ρ (r).  

The Hamiltonian of the fictitious system is written: 

𝐻௦ =  ∑ ቂ−
1

2
∑ ∇௜

ଶ
𝑖  + 𝑉௘௙௙(𝑟௜)ቃ = ∑ ℎ௜

௞௦ே௘
௜ୀଵ

ே௘
௜ୀଵ                (1.22) 

Where  

𝑉௘௙௙(𝑟) = 𝑉௘௫௧ + ∫
ఘ(௥′)

|௥ି௥′|
𝑑𝑟 ′ + 𝑉௫௖ , is the effective potential.  

𝑉௫௖ =
ఋாೣ೎[ఘ(௥)]

ఋఘ(௥)
  , is the potential for exchange and correlation which is given by the 

derived functional. 

𝜌(𝑟)= ∑ |𝜑௜(𝑟)|ଶே௘
௜ୀଵ  is the density which is given by a sum of all the occupied orbitals 𝜑௜ . 

∫
ఘ(௥ᇲ)

|௥ି௥ᇱ|
𝑑𝑟ᇱ = 𝑉ு , is the Hartree potential of the electrons. 

 

The Schrodinger equation to be solved in the framework of Kohn and Sham's 
approach is of the following form: 

ቂ−
ଵ

ଶ
∇௜

ଶ + 𝑣௄ௌ(𝑟)ቃ 𝜑௜(𝑟) = 𝜀௜𝜑௜(𝑟)  ,  𝑖 = 1, … . . , 𝑁             (1.23) 

 

In terms of the energy functional:  

𝐸[𝜌] = 𝑇௄ௌ[𝜌] + ∫ 𝑣௄ௌ(𝑟)𝜌(𝑟)𝑑𝑟 

                    = 𝑇௄ௌ[𝜌] +       Û௄ௌ[𝜌]                                     (1.24) 
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We develop the term of energy in the equation (1.24) like that of an electron gas 
without interaction, and subjected to the action of external potentials (nuclei) and exchange-
correlation, we will then have: 

𝐸[𝜌] = 𝑇௄ௌ[𝜌] + න 𝑣ு(𝑟)𝜌(𝑟)𝑑𝑟 + න 𝑣௘௫௧(𝑟)𝜌(𝑟)𝑑𝑟 + 𝐸௑஼[𝜌] 

 

 

= 𝑇௄ௌ[𝜌] +        𝑈ு[𝜌]           +          𝑈௘௫௧[𝜌]        + 𝐸௑஼[𝜌]      (1.25) 

 

In the following a Self-consistent algorithm for solution of Kohn-Sham equations is presented 
in Figure 1.1. 
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Fig (1.1): Self-consistent algorithm for solution of Kohn-Sham equations [36]. 

Guess initial 𝜌௜  

Calculate effective potential 

𝑉௘௙௙(𝑟) = 𝑉௘௫௧ + ∫
ఘ(௥ᇲ)

|௥ି௥ᇱ|
𝑑𝑟ᇱ + 𝑉௫௖ 

൤−
1

2
∇௜

ଶ + 𝑣௄ௌ(𝑟)൨ |𝜑௜
  (𝑟)〉 = 𝜀௜|𝜑௜

  (𝑟)〉 

Solve Kohn-Sham equation 

Calculate the density 

𝜌(𝑟)= ∑ |𝜑௜(𝑟)|ଶே
௜ୀଵ  

Self-
consistency 

With 𝜌(𝑟) 

Select new value of density 

𝜌’(𝑟)= 𝛼𝜌 + (1 − 𝛼)𝜌’ 
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In this expression 𝐸௑஼[𝜌] is the energy of exchange-correlation, which gathers 

everything that is not known in the system, namely the effects of correlations due to the 
quantum nature of the electrons. 

                     𝐸௑஼[𝜌] = (𝑇[𝜌] − 𝑇௄ௌ[𝜌]) + (𝐸௘௘[𝜌] − Û௄ௌ[𝜌])               (1.26) 

These equations must be solved in a self-consistent way in order to find the density of the 
ground state (figure1.1). All DFT type calculations are based on the iterative resolution of 
these equations. Note that for DFT, only total energy, Fermi energy and electron densities 
have a physical meaning. The states and energies of Kohn-Sham are only intermediaries of 
calculation. However, they are used in many scientific works to calculate certain quantities 
such as band structures. 

 

     1.2.8    Approximation of the Local Density (LDA) 

To approximate the functional of the exchange-correlation energy 𝐸௑஼[𝜌]Kohn and 
Sham proposed in 1965 the local density approximation (LDA) [35]. The principle of this 
approximation is based on the assumption that we can replace the functional of 𝐸௑஼[𝜌]by that 
of a homogeneous gas with density 𝜌(𝑟)that varies slowly around a point, in other words, it is 
considered locally uniform. The term 𝐸௑஼[𝜌]will be written: 

𝐸௑஼
௅஽஺[𝜌(𝑟)] = ∫ 𝜌(𝑟)𝜀௑஼[𝜌(𝑟)]𝑑𝑟                                   (1.27) 

The term 𝜀௑஼[𝜌(𝑟)] is particle exchange-correlation energy density of electron gas. In 
addition, 𝜀௑஼[𝜌(𝑟)] is considered as the sum of an exchange and correlation contribution: 

𝜀௑஼[𝜌(𝑟)] = 𝜀௑[𝜌(𝑟)] + 𝜀஼[𝜌(𝑟)]                                   (1.28) 

 The term exchange𝜀௑[𝜌(𝑟)], called "Dirac exchange" [37] is written as follows: 

𝜀௑[𝜌(𝑟)] = −
ଷ

ସ
ቀ

ଷఘ(௥)

గ
ቁ

భ

య                                          (1.29) 

The correlation part 𝜀஼[𝜌(𝑟)]cannot be expressed exactly. The approximation of this term 
established by Vosko, Wilk and Nussair (VWN) [38] has been the most successful. It is based 
on an interpolation of the results of very precise quantum Monte-Carlo calculations on the 
uniform gas of electrons carried out by Ceperley and Alder [39]. 

In general, the LDA approximation gives good results when it comes to describing the 
structural properties, i.e. it allows to determine the energy variations with the crystal structure 
although it overestimates the cohesive energy. It also makes it possible to determine the 
parameter of mesh for the majority of solids and gives good values for the elastic constants 
like the modulus of isotropic compressibility. But this model is inappropriate for 
inhomogeneous systems. 
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     1.2.9    Generalized Gradient Approximation (GGA) 

At the molecular level, the inhomogeneities of the density can prove to be consequent 
from where the need to introduce these effects in the functional of exchange-correlation. The 
approximation implementing this type of correction is called Generalized Gradient 
Approximation (GGA) [40]. This approximation of the GGA has as main base the 
introduction of the non-homogeneity characterizing the charge densities of the real poly-
electronic systems through a substitution of the energy density 𝐸𝑋𝐶 of the LDA, 𝜀௑஼

௅஽஺[𝜌(𝑟)]by 

an energy density GGA, 𝜀௑஼
ீீ஺[𝜌, |∇𝜌|], dependent not only of the charge density but also of 

the gradient of this density. 

The mathematical form of energy is as follows: 

𝐸௑஼
ீீ஺[𝜌, ∇𝜌] = ∫ 𝜀௑஼

ீீ஺[𝜌(𝑟), |∇𝜌(𝑟)|]𝑑𝑟                            (1.30) 

These contributions are often developed separately: 

𝐸௑஼
ீீ஺[𝜌, ∇𝜌] = 𝐸௑

ீீ஺[𝜌, ∇𝜌] + 𝐸஼
ீீ஺[𝜌, ∇𝜌]                      (1.31) 

The exchange part is generally the functional of Becke (B), the correlation part that of Lee, 
Yang and Parr (LYP) or that of Perdew-Wang (PW) and Ernzerhof (E) with variants 86 and 
91 , hence the keywords PBE, BLYP, BPW86 and BPW91 [41]. 

 

     1.2.10   Success and limits of the DFT 

Density functional theory has emerged as a tool for solving quantum problems 
constituted by physical systems of different nature (atoms, molecules or solids). Several 
quantities are targeted, either to explain them or to obtain them because they are inaccessible 
by experience. The DFT methods allow a good estimate of the structure of the systems 
studied. The total energy is rendered with fairly good precision. The errors are, however, quite 
substantial for spin states. The exchange coupling, the electronic, magnetic and optical 
properties are accessible by a DFT calculation. However, the DFT method still suffers from 
several shortcomings, including the lack of real criteria which allow improving the functional 
and molecular properties [42]. 

 

1.3   Molecular modeling 

     1.3.1    Pseudo-potentials 

In order to further simplify the resolution of the N electron problem, an idea based on 
the distinction between two types of electrons is highlighted: core electrons and valence 
electrons. Heart orbitals are the lowest in energy. They are located near the nucleus, very little 
sensitive to the environment and do not participate in chemical bonds. In addition, they are 
difficult to represent on the basis of plane waves because they generally have strong 
oscillations around the nuclei. On the other hand, the valence orbitals are not very localized 
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and therefore extend far from the nucleus. They are the ones that determine physicochemical 
properties in the first order. From this separation, the following model is established: the core 
electrons and the nucleus form an effective potential, acting on the valence electrons. It is the 
pseudo-potential which includes all the interactions between the nucleus and the valence 
electrons as well as between the core electrons and the valence electrons. This idea, first 
expressed by Fermi in 1934, made it possible to reduce the number of equations to be solved, 
and therefore to get rid of the most localized results. Hellmann proposed in 1935 pseudo-
potential for potassium of the form [43-44]: 

𝑤(𝑟) = −
ଵ

௥
+

ଶ.଻ସ

௥
𝑒ିଵ.ଵ଺ ௥                                             (1.32) 

The pseudo-potentials are potentials which lead, for an electronic reference configuration of 
the isolated atom, to exact Eigen-values and to Eigen-functions as regular as possible in 
agreement with the atomic wave functions beyond a certain radius𝑟௖ chosen, called the cut-off 
radius. These Eigen-functions, called pseudo-functions, have the same diffusion properties 
(the same logarithmic derivatives) as the real wave functions. They are asked to have the 
greatest possible transferability, which means that they can be used in the greatest possible 
number of systems, meaning that they can be used in different thermodynamic environments 
[45]. 

There are several types of pseudo-potentials, each of which has its advantages and 
disadvantages: 

 The pseudo-potentials with conserved norm introduced by Hamman et al [46] 

 The ultra-soft pseudo-potential introduced by Vanderbilt [47]  

 The "dual-space Gaussian" pseudo-potentials introduced by Goedecker et al [48-49] 

We have chosen to use conserved norm pseudo-potentials for their conceptual 
simplicity of use and digital implementation.  

 

     1.3.2    The ab-initio pseudo-potentials 

Currently, physicists uses ab-initio pseudo-potentials which means "from first 
principles", that is to say without adjusted parameters which are from experience. The ab-
initio norm-preserving pseudo- potentials are pseudo-potentials that have been adjusted by 
keeping the charge density of the core electrons [44-50]. 

The family of preserved standard pseudo-potentials meets the following conditions: 

 Equality of pseudo (PS) and real (AE) Eigen-values for a given configuration 

     𝜀௡,௟
஺ா = 𝜀௡,௟

௉ௌ                                                  (1.33) 

 The real and pseudo wave functions are equal beyond the chosen cut-off radius 𝑟௖ 

𝑅௡,௟
஺ா(𝑟) = 𝑅௡,௟

௉ௌ(𝑟)For     𝑟 > 𝑟𝑐                           (1.34) 
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 The pseudo-wave function has no nodes. 

 The integrals of the real and pseudo charge densities agree for each valence state 
(conservation of the norm) 

∫ ห𝑅௡,௟
஺ா(𝑟)ห

ଶ
𝑟ଶ𝑑𝑟 =

௥೎

଴
∫ ห𝑅௡,௟

௉ௌ(𝑟)ห
ଶ

𝑟ଶ𝑑𝑟
௥೎

଴
𝑟 < 𝑟௖                   (1.35) 

𝑅௡,௟Is the radial part of the wave function. 

From this condition follows the fact that the logarithmic derivatives of the real and 

pseudo wave functions and their first derivatives with respect to energy agree for𝑟 > 𝑟𝑐. 

The interest of this pseudo-potential lies in the fact that it gives smooth wave pseudo-
functions, not subject to numerous breaks. This is not without importance as to the quality of 
the pseudo- potential, especially its transferability, the relativistic effect, and its effectiveness. 
In the following, schematic representation of the pseudo-potential and valence pseudo wave-
function versus all electron potential and true wave-function is presented in figure 1.2. 
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Fig (1.2): Schematic representation of the pseudo-potential and valence pseudo wave-function 
versus all electron potential and true wave-function. 
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1.3.3LCAO approximation method 

The linear combination of atomic orbitals was established by Lennard-Jones in 1929 
[51]. Because of the impossibility of analytically calculating the electronic function of 
molecules, many quantum methods use the LCAO approximation. A molecular wave function 
𝜓 is then written according to the n orbitals 𝜙𝑖 of the atoms that the molecule contains: 

𝜓 =  ∑ 𝐶௜𝜙௜
௡
௜ୀଵ                                                   (1.36) 

The product 𝐶௜𝜙௜ represents the percentage of atomic orbitals in each molecular 

orbital and 𝐶௜  the corresponding coefficient. The solution of Schrödinger's equation in the 
LCAO approximation requires the calculation of a large number of integrals, of the order of 
𝑛4, n: being the number of atomic orbitals in the system. 

 

1.4   Different Optimization Algorithms 

     1.4.1    Steepest descent method 

The ’steepest descent’ ’method is the first program developed for minimizing and 
optimizing geometry. Proposed by Wiberg [52], its principle is simple, after having calculated 
the energy corresponding to an initial geometry, we move each atom according to the three 
spatial coordinates and we recalculate their energy for each displacement. This amounts to 
calculating the first derivative only. Then one moves all the atoms on a distance which 
depends on the derivative according to the Cartesian coordinates, and then one carries out 
again the same operations. The "steepest descent" method consists in finding the direction of 
greatest slope during which the objective function 𝐹௑ം

decreases more quickly. The direction 

followed will be that indicated by the direction of the greatest slope of the energy function, 
which is the direction in which energy decreases the fastest, at least locally. The problem with 
this method is that it is random and very long in most cases. Towards the end of each 
minimization cycle, convergence becomes very slow beyond the first cycles (oscillating 
phenomena, rising energy). 

 

     1.4.2    Conjugated gradient method 

The principle is the same as the steepest descent method. For a quadratic energy 
surface, a function of 3N variables converges in 3N steps [53]. This method retains good 
efficiency, but is slower than the steepest descent method. The step is adjusted with each 
cycle to obtain the best reduction in energy. The interest of this algorithm is to avoid an 
oscillatory behavior around the minimum and to accelerate convergence.  

 

 

 



 
 

 21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (1.3): Schematic diagram of the determination of the most stable state of equilibrium 
using molecular dynamics. 
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Chapter 2 

Calculation methods 
 

The calculation code (SIESTA) 

Siesta (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is 
computer code that performs electronic structure calculations and ab initio molecular 
dynamics simulations of molecules and solids using density functional theory (DFT) [18]. 

2.1   Basics 

SIESTA belongs to the category of methods with basic sets centered on the atom 
(localized atomic orbital). The advantage of using this kind of functions is to have a reduced 
bases set and a relatively fast convergence, contrary to the other codes using a much larger 
base and which would make computations heavy, even impossible in certain cases. 

Its main features are: 

 It uses the Kohn-Sham density functional method in the local density approximation 
(LDA-LSD) and the generalized gradient approximation (GGA), as well as in a non-local 
form including Van interactions der Waals (VDW-DF). 

 It uses pseudo-potentials with norm preserved in their nonlocal form (Kleinman-
Bylander). 

 It projects the functions and densities of electronic waves on a grid of real space in 
order to calculate the Hartree and exchange-correlation potentials. 

 It allows the use of linear combinations of occupied localized orbitals (functions of the 
valence link or of Wannier type), which makes the dependence of the memory and time scale 
of the linear computer with the number of atoms. Simulations with several hundred atoms are 
possible with modest workstations. 

 It is written in FORTRAN 95 language and memory is allocated dynamically. 

 It can be compiled for serial or parallel execution. 

Siesta provides us with: 

 Total and partial energies. 

 Atomic forces, stress tensors. 

 The electric dipole moment. 

 Atomic and orbital populations and electronic density. 

 Geometric relaxation in a fixed or variable cell. 

 Molecular dynamics at constant temperature. 
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 Polarized spin calculations. 

 Sampling of the Brillouin zone. 

 Projected local and orbital state density 

 Dielectric polarization, Vibrations (phonons) and Band structure. 

2.2   Program execution 

 The SIESTA program has several application examples. To launch a calculation, three files are 
essential: 

 The input file with the extension ".fdf" which contains all the information relating to 
the simulation work. 

 The pseudo-potential which is an unformatted file with a functionally equivalent "vps" 
or ASCII file, but the latter is easier to transport and to consult. 

The executable of the SIESTA program obtained after its compilation. 

After compilation of the program, several files are created in the directory: 

 The Fdf.log file (contains all the data used, explicit or chosen by default). 

 The .ion file (complete information on the base and KB projectors). 

 The .XV file (contains positions and speeds). 

 The .STRUCT_OUT file (contains the vectors of the final cells and the positions in 
the crystallographic format). 

 The .DM file (contains the density matrix to allow a restart of the calculation). 

 The .ANI file (contains the coordinates of each step for moving atoms). 

 The .FA file (contains the forces exerted on the atoms). 

 The file .EIG (contains the Eigen-values of the Kohn-Sham Hamiltonian). 

 The .out file (contains all the results). 

2.3   Input data file 

FLEXIBLE DATA FORMAT (FDF) 

 The main input file contains all the physical data of the system and the parameters of 
the simulation to be performed. This file is written in a special format called FDF, developed 
by Alberto Garcia and José M. Soler. Data can be entered in any order and even omitted in 
favor of default values. 

 The FDF syntax is a “data label” followed by its value. Values that are not specified in 
the data file are given a default value. 

 All text proceeded by the character # is taken as a comment. 
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 Logical values can be specified as follows: T, true, .true, Yes, F, false, .false. A space 
("a blank") is also equivalent to "true". 

 Character strings must not be enclosed in single quotes. 

 The actual values which represent a physical quantity must be followed by their unit. 

 It is important to include a decimal point in a real number to distinguish it from a 
whole number, in order to avoid ambiguities when mixing types on the same input line. 

 Complex data structures are called blocks and are placed between ‘’% block label ‘’ 
and’% end block label ’’ (without the quotes). 

 If the same label is specified twice, the first takes precedence. 

 If a label is misspelled, it will not be recognized (there is no internal list of “accepted” 
tags in the program). You can check the actual value used by siesta by looking for the label in 
the fdf.log output file. 

2.4   Detailed description of Program options  

Here is a description of the variables that can be defined in the Siesta input file, with their data 
type and their default value. 

 SystemName (string): a string of one or more words containing a descriptive name of 
the system (maximum 150 characters). 

Default value: empty. 

 SystemLabel (string): a single word (max. 20 characters without blanks) containing a 
System nickname, used to name the output files. 

Default value: siesta 

 NumberOfSpecies (integer): Number of different atomic species in the simulation. 
Atoms of thesame species, but with a different set of pseudo-potentials or bases, are 
counted as different species. Default value: there is no default value. This variable 
must be specified. 

 NumberOfAtoms (integer): Number of atoms in the simulation. Default value: there 
is no default value. This variable must be provided. 

 ChemicalSpeciesLabel (data block): it specifies the different chemical species that 
are present, assigning them a number for later identification. Siesta recognizes the 
different atoms by the given atomic number. 

 AtomicMass (data block): it allows the user to enter the atomic masses of the 
different species used in the calculation, which is very useful in the dynamics of 
isotopes for example. If the species index is not found in the block, Siesta assigns 
natural mass to the corresponding atomic number. If the block is absent, all the masses 
are natural. Each species is characterized by a line containing, an index of the species 
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(integer), and the desired mass (real). The order is not important. If there is no integer 
or real numbers in the line, the line is ignored. 

 Net charge (real): specifies the net load of the system (in unit e). For charged 
systems, energy slowly converges with the size of the cell. For molecules and atoms, a 
Madelung corrective term is applied to energy to facilitate convergence with cell size 
(this only applies to CS, CC and CFC cells). For other cells or for periodic systems, 
this correction term does not apply and the user is warned by the program [54, 55]. 

2.5   Pseudo-potentials 

 Siesta uses pseudo-potentials to represent the electron-ion interaction (as most plane 
wave codes do and unlike so-called "all electron" programs). In particular, the pseudo-
potentials are of the “conservative of standards” type and can be generated by the Atom 
program. It should be noted that all pseudo-potentials must be thoroughly tested before using 
them. A number of other codes (such as APE) can generate pseudo-potentials that Siesta can 
use directly (usually in .psf format). 

 The pseudo-potentials will be read by Siesta from different files, one for each defined 
species (species defined in the Chemical Species Label block). The file names can be: 
Chemical label.vps (unformatted) or Chemical label.psf (ASCII),where the chemical label 
corresponds to that defined in the ChemicalSpeciesLabel block. 

 

Table (Ⅱ):Ionic charge, electronic configuration and cut-off radii of each orbital, for the 
different atoms used. 

Atom 
 

Z ion Configuration rc(Bohr)  
 

rs rp rd rf 

Ge, Z=32 4 
 

4s24p24d04f0 2.06 2.85 2.58 2.58  

Pd, Z=46 
 

10 5s15p04d94f0 2.58 2.71 2.45 2.45 

Ir, Z=77 
 

9 6s16p05d85f0 2.63 2.77 2.63 2.63 

Pt, Z=78 
 

10 6s16p05d95f0 2.6 2.73 2.6 2.6 

 

By using these pseudo-potentials, only valence electrons are treated explicitly in the 
calculations. The pseudo-potentials are adjusted to the wave functions of these atoms in their 
electronic configurations (see tableⅡ). These pseudo-potentials are selected in our work after 
finding energetic and structural properties that are well comparable with other experimental 
and theoretical work. In general, the use of pseudo-potentials is closely related to the basis of 
wave functions.  

 



 
 

 

 

Fig (2.1): Pseudo

 

: Pseudo-potentials and charge densities of the Ge atom

 26 

 

 

potentials and charge densities of the Ge atom 



 
 

 

 

Fig (2.2): Pseudo

 

 

: Pseudo-potentials and charge densities of the Pd atom
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Fig (2.3): Pseudo

 

: Pseudo-potentials and charge densities of the Ir atom
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Fig (2.4): Pseudo

 

 

: Pseudo-potentials and charge densities of the Pt atom
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2.6   Definition of the bases 

 PAO.BasisSize (string): it defines the usual basic sizes. This only has an effect if 
there is no PAO.Basis block. The possible bases are: 

 SZ or MINIMAL: minimum or simple zeta base. 

 DZ: double zeta base, in the scheme defined by PAO.BasisType. 

 SZP: single-zeta polarization orbital base. 

 

DZP or STANDARD: Like DZ with polarization orbitals. The polarization orbitals are 
constructedfrom the theory of disturbances. They are defined with a minimum angular 
moment so that there can be no orbitals occupied with the same in the valence band of the 
atomic configuration in the ground state. Default value: DZP. 

 PAO.EnergyShift (real energy): a standard for the radii of containment of the 
orbital. It is the excitation energy of the PAO due to confinement. It offers a general 
procedure for defining the confinement radii of the original PAOs (first-zeta) for all 
species, thus guaranteeing the compensation of the base. This only has an effect when 
the PAO block. Basis is not present or when the radii specified in this block are zero 
for the first zeta. 

Use: it must be positive. Default value: 0.02 R. 

 LatticeConstant (real length): used to define the scale of the vectors of the crystal 
lattice. Default value: Minimum size to include the system (assumed to be a molecule) 
without intercellular interactions. 

 LatticeParameters (data block): crystallographic way of specifying the vectors of 
the network, giving six real numbers: the three vector modules, a, b and c and the three 
angles (Angle between b and c). The three modules are given in LatticeConstant units; 
the three angles are in degrees. 

Default values: 1.0 1.0 1.0 90. 90. 90. 

 LatticeVectors (data block): cell vectors are read in units of the network constant. 
They are read as a CELL matrix (ixyz, ivector), each vector being a line. 

Default value: 

1.0 0.0 0.0 

0.0 1.0 0.0 

0.0 0.0 1.0 

 

If the LatticeConstant parameter is used, the default value of LatticeVectors is always 
diagonal but not necessarily cubic. 
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 SuperCell (data block): Entire 3x3 matrixes defining a super cell in terms of unit 
cells. 

 Spinpolarized (logical): logical variable which allows the choice between the 
polarized spin calculation ‘’ True ’’ or none polarized ‘’ False’. 

Default value: False. 
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Chapter 3 

Theoretical investigation of PdGen and PtGen 
Clusters 

 

3.1   Introduction  

 During the last decade, many efforts have been devoted to investigate the properties of 
pure or metal-doped germanium clusters due to their potential uses as assembled 
nanomaterials in the field of semiconductor materials and nanoelectronics. The scientific 
community basing on the uniqueness properties of this new category at this scale of matter 
have invested a big amount of effort to understand their riddles and knowing the perfect way 
to be used for. Great ideas were studied and others were established in different fields, for 
example: phototherapy of cancer cells, bio-imaging, catalysis and biosensors and even 
superconductivity and magnetism effects. The opportunities that will be created by the 
mastery of these new materials are outstanding, at the same time, properties are related to the 
size, the shape and the composition of every cluster which in turn the number of possible 
isomers become very important, so that searching for the lowest isomer is a very challenging 
task.  

 Physical and chemical properties of pure and doped germanium clusters are widely 
investigated theoretically and experimentally, it is often working, before any practical 
applications can be developed, the chemical, electronic and optical properties of the clusters 
have to be established in purpose to avoid an over-expenditure of time and financial 
resources. 

Several studies were encountered during the bibliographic research in the literature in 
attention to provide an update on the different approaches implemented in the analysis and 
investigation of the pure germanium clusters [56-71]. The low-lying neutral germanium 
clusters Gen in the size range of (21 ≤ n ≤ 29) had performed by Yoo and Zeng [56], it can be 
seen that the binding energies per atom increase rather smoothly with the increase of cluster 
size n. Among the generic motifs examined, they found that two motifs stand out in producing 
most low-lying clusters, namely, the six/nine motif, a puckered-hexagonal-ring Ge6 unit 
attached to a tricapped trigonal prism Ge9 , and the six/ten motif, a puckered-hexagonal-ring 
Ge6 unit attached to a bicapped antiprism Ge10 . The low-lying clusters obtained are all prolate 
in shape and their energies are appreciably lower than the near-spherical low-energy clusters. 
This result is consistent with the ion-mobility measurement in that medium-sized germanium 
clusters detected are all prolate in shape until the size n ~ 65. Wang and Zhao [57] have 
elucidated that when cluster size increases the super cluster architectures become less distinct 
for all Gen (n = 30 – 39) clusters and prefer the motif of super-cluster structures stacked by 
several stable subunits such as Ge10 and Ge6, connecting via a few bridging atoms, whereas 
the computed binding energies for all Gen clusters studied are not size sensitive. Wielgus et al 
[58] deduct that the bonding analyses revealed that the trimers and tetramers are stabilized 
through multicenter π bonding. In pentamers, this stabilizing factor is eliminated due to the 
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further cluster growth. The ionization of clusters does not change their geometrical 
characteristics. King et al [59] have published a Ge8

z (z = −6,−4, −2, 0, +2, +4) study of the 
effects of electron count on cluster geometry and revealed that the choice of germanium as the 
vertex atom for this study of eight-vertex clusters minimizes the maximum charge required 
for the range of 22 to 10 skeletal electrons in eight-vertex clusters with bare vertex atoms. As 
well, in a past work [60] they study the nine-atom germanium clusters effect of electron count 
on cluster geometry of Ge9

z clusters (z=−6, −4, −3, −2, 0, +2, and +4) and found that accord 
with Wade’s rules for a 2n+2 skeletal electron structure global minimum for the germanium 
cluster Ge9

2- is a tricapped trigonal prism and for Ge 9
4- the global minimum is the elongated 

tricapped trigonal prism. In the case of Wade’s rules for a 2n+4 skeletal electron structures for 
the capped square anti-prism is only 0.21 kcal/mol, above this global minima indicate that 
these two structures have very similar energies. Thus, the global minimum for the neutral 
cluster Ge9 was found to be a bicapped pentagonal bipyramid.  

Zhao and co-authors [61] on a comparison of the growth pattern of Sin and Gen 
clusters (n=25-33) they estimate that both of these clusters display a large deviation in that 
size range, and especially for n=29 that reveal a remarkable stabilities. they also noted that 
when small clusters serve as building blocks of bigger clusters, their surfaces tend to show 
puckered rhombuses which might be favorable interfaces for clusters’ aggregation and can 
also lead to bulk-motif linking with other blocks. Islam and Ray [62] have deducted that Ge2 
is found to have triplet ground state at both the self consistent field (SCF) and MP4 levels. For 
germanium trimers, the most favoured structure at the SCF level is found to be Ge isosceles, 
and for germanium tetramers, at the SCF level, the most favoured structure is rhombus Ge. 
Deutsch et al [63] in a comparative study of electron affinities of Gen

- (n= 2-5) clusters, the G2 
electron affinities of the germanium cluster anions are very similar to those of the 
corresponding silicon anions, and for (n=2-4) are in good agreement with experiment values. 
As well in former work [64] they found that binding energies of Gen (n = 2-5) using G2 
theory was in reasonable agreement with the experimental values, and the Gen fragmentation 
energies parallel as a function of cluster size.  

In a case of an experimental study Bals and co-workers [13] in atomic scale dynamics 
of ultra-small germanium clusters stated that using quantitative scanning transmission 
electron microscopy in combination with ab initio calculations (see Fig3.1), they was able to 
characterize the transition between different equilibrium geometries of a germanium cluster 
consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller 
subunits are identified as possible building blocks that stabilize the structure and in view of 
this configuration, the cluster was found to break up into smaller fragments consisting of 3–7 
atoms. Zhao et al [65] revealed in a study of the fragmentation behaviour that the lowest-
energy structures of the Gen clusters with n=17–33 can be viewed as an assembly of small 
stable subunits of a Ge6 or Ge9 linkage attaching to several small clusters. According to the 
large fragmentation energies conclude that the germanium clusters with 11 < n ≤ 33 can be 
easily dissociated into small stable germanium clusters, and they noted that the 
thermodynamic stability of Gen clusters have an oscillation character. Luo and co-authors [66] 
in a density functional theory study of germanium Ge11 clusters have found that clusters 
derived from bi-capped square anti-prism structure have the lowest total energies in general 



 
 

 

and thus is an important core unit in Ge
that some of the formerly reported Ge

Fig (3.1): Two examples of slightly varying starting
altered relaxed structures. (a,b) The left panels represent the top view of a model that 
corresponds to the experimental picture. The panels in the middle give two different 
configurations that are indistinguishab
functional theory (panels on the right), only one of the two possibilities is still compatible 
with the experimental image [13

 

In a study of stable structures of neutral and ionic Ge
have summarized that most of the ground state structures for the neutral and cationic Ge 
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In a study of stable structures of neutral and ionic Gen (n=11–19) clusters, Li et al 
have summarized that most of the ground state structures for the neutral and cationic Ge 
clusters have similar configurations, but different for the anionic Ge clusters. Most of the 
lowest energy structures for the neutral and ionic Gen (n=11–19) clusters are obviously 
different from those of the corresponding Sin clusters although the geometrical configurations 
of the small clusters (n<10) are basically the same. Their results also show that all the lowest 
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energy structures of the cationic Gen (n=11–19) clusters have the similar geometrical 
configurations to those of the corresponding neutral Gen (n=11–19) clusters except for n=11. 
However, for the anionic Gen (n=11–19) clusters, the conclusion is almost the reverse. In 
another work King and co-workers [68] studied the 11-atom bare germanium clusters using 
DFT. This work shows that the lowest energy structures for a given stoichiometry need not 
always be symmetrical and the low energy low symmetry isomers are all found to obey the 
Wade-Mingos rules. Li and co-workers [69] in an investigation of Gen

- and Gen
+ (n = 5–10) 

clusters in comparison with corresponding Sin ions have shown that the ground state 
structures of some Ge cluster ions are different from those of their corresponding neutral Ge 
clusters. Furthermore, the positive Ge ions have more severe structural distortion than the 
negative Ge ions due to Jahn–Teller distortion. In addition, there are differences between the 
ground state structures of Ge ions and Si ions, although most of the Ge ions have similar 
geometrical configurations to their corresponding Si ions.  

In the case of stable structures of Gen (n = 21–25) clusters, Liang and Li [70] show 
that all the lowest energy structures are the stacked prolate structures including a tricapped 
trigonal prism (TTP) subunit at least and that the structural characteristic is similar to that of 
the ground-state structures for Si clusters and specially in the range of 21–25 the most stable 
structures for Ge and Si clusters are obviously different. Habib ur Rehman and co-workers 
[71] studied the properties of Sin, Gen, and SinGen Clusters with 2-44 atoms. For the mixed 
clusters, the lower energy of Ge-Ge bonds leads to the occurrence of only few such bonds, 
whereas Si-Si and Ge-Si bonds are dominating. In the case of Sin clusters for which a 
transition from oblate to prolate shapes is found for clusters with slightly more than 30 atoms. 
Although, for the strongest bonds, in our case the Si-Si, show a tendency for the Si atoms to 
occupy the internal parts and for the Ge atoms to be found in the external parts. Finally, the 
overall decrease in the HOMO-LUMO gap as a function of increasing size can be observed. 

 A wide interest of doping pure germanium clusters by metal transition atoms have 
being successfully carrying out [72-111].  Mahtout et al [72] have found that Cu doping Gen 

(n=1-19) clusters enhances the stability of the corresponding germanium frame, although in 
the case of Ag and Au the binding energies are always lower than those of pure germanium 
clusters, and in same time the metal atom is encapsulated inside a germanium cage from n=10 
for Cu and from n = 12 for Ag and Au. Siouani et al [73] they noticed that the endohedral 
structures in which the vanadium atom is encapsulated inside a Gen cage are predicted to be 
favoured for n ≥ 10. The dopant V atom in the Gen clusters has not an immediate effect on the 
stability of small germanium clusters (n < 6), but it largely contributes to strengthen the 
stability for n ≥ 7. Remarkable stability of the VGe14 cage-like geometry and a peculiar 
electronic structure had concluded.  

An investigation of electronic and magnetic properties of medium-sized CrGen (15 ≤ n 
≤ 29) clusters had made by Mahtout and Tariket [74], their result show that encapsulation of 
Cr atoms within Gen clusters leads to stable clusters, the binding energies generally increase 
while HOMO–LUMO gaps decrease with the increasing of cluster size. Moreover, Cr atom in 
the clusters’s size and shape led the magnetic property. Djaadi et al [75] had investigate Gen+1 
and SnGen

(0, ±1) (n = 1 – 17) and found that they adopt compact structures when the cluster 
size is  increasing, further the Sn atom occupied a peripheral position for SnGen clusters when 
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n < 12 and occupied a core position for n > 12. Bulusu et al [76] have performed an unbiased 
search for the global minimum geometries of small-to-medium sized germanium clusters Gen 

(12 ≤ n ≤ 18) as well as a biased search (using seeding method) for Gen (17 ≤ n ≤ 20). All the 
low-lying clusters in the size range of (12 ≤ n ≤ 20) contain the tri-caped trigonal prism motif 
and are all prolate in geometry, which is in agreement with the experiment. Wang and Han 
[77] after studding geometries, stabilities, and electronic properties of Gen and CuGen (n = 2 – 
13) clusters, they have found that the relative stabilities of CuGe10 and Ge10 are the strongest 
among all different sized CuGen and Gen clusters, respectively. Besides that when the size of 
clusters increases the HOMO-LUMO gaps are decreasing when Cu is doped into the Gen 
clusters, even charge always transfers from copper to germanium atoms in all different sized 
clusters contrarily to some TM- doped silicon clusters.  

Jing et al [78] have predict that the GenCo (n = 1 – 13) clusters magnetic moment does 
not quench in which that the previous results with transition-metal-doped Sin clusters are in 
contrast with. For the ground state structures they found that the GenCo (n ≤ 9) clusters adapt 
a metal-encapsulated Gen cages in which the dopant atom occupy the center and enhances the 
stability of the host Gen clusters, whereas among them the most stable one is Ge10Co. Deng et 
al [79] in thier work have investigated theoretical and experimental series of cobalt-doped 
germanium clusters, CoGen

-/0 (n = 2–11), they found that the transition from exo- to 
endohedral structures began from n = 9 and this transition is caused by the transfer of 
electrons from the Gen framework to the Co atom and the minimization of the magnetic 
moments for both anionic and neutral CoGen clusters. Kumar et al [80] in their report have 
shown that in both neutral and anionic series of germanium doped transition metal (TM = Ti, 
Zr and Hf) the clusters having 20 valence electrons turn out to be relatively more stable and 
all clusters with size n>9 absorb TM atom endohedrally in the cage of Gen pure cluster while 
all TM- doped clusters beyond n>7, the spin on these last is quenched. Bandyopadhyay [81] 
in his work of studing chemical and physical properties of GenCu clusters within the size 
range n=1–20 had approved that the addition of a Cu atom to a Ge cluster is always a 
favorable action, whatever the cluster size, and that the most stables one’s are n=9, 10 and 11 
in all of neutral, anionic, and cationic clusters. According to the shell model predictions the 
study shows an agreement with nearly 20 valence electrons for neutral and charged clusters. 

A study of thorium encapsulated by germanium clusters from 16-20 atoms had carried 
out by Singhet et al [82], they explained that the stability was highly raised and compared to 
Ge clusters in the same size the binding energy was very higher in which suggests a strong 
possibility of their experimental realization in large quantities. Also, Th@Ge16 has a large 
highest HOMO-LUMO gap that makes it interesting for optoelectronic applications in visible 
domain. Wang and Han [83] have studied the behaviours of the NiGen (n =1-13) clusters by 
ab-initio method and concluded that for the small-sized the Ni-convex or substituted Gen 
frames but for the middle or larger-sized, Ni-concaved or encapsulated Gen frames and that 
the Ni-encapsulated Ge10 cluster is the most stable species of all different-sized clusters. 
Whereas, the charge transfer phenomena depend on the sizes of the Ni-doped Gen clusters. As 
well in separate work [84] exactly on tungsten-doped germanium clusters (n =1-17), they 
found that the charges transfer from the germanium framework to the W atom. Additionally, 
the WGe12 cluster is supposed to be a suitable as a building block of assembly cluster material 
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comparing it with all others clusters. At the end they conclude that the growth pattern of the 
TMGen depends on the kind of doped TM impurity. Even more, Wang and Han [85] had 
investigated the bimetallic Mo2Gen (n =9-15) clusters, the calculated fragmentation energies 
and the obtained relative stabilities demonstrate that the remarkable Mo2-doped Ge12 is the 
most stable species of all different sized clusters and it enable to be a unit of multiple metal 
Mo-doped germanium nanotubes. While the vibration mode analyses of Mo2-Gen clusters 
demonstrate that the Mo-Mo stretching vibrations are sensitive to the geometries of the 
germanium frame.  

Gopakumar et al [86], in a study of the electronic structure of germanium mono-
hydrides, GenH, with n ranging from 1 to 3, in the neutral, cationic, and anionic states, for all 
germanium monohydrides considered, a low-spin electronic ground state is predicted, 
considering charge, a certain positive net charge on the germanium unit, indicating a 
considerable charge transfer to the H atom leading to a Gen

+Hpolarization, and compared to 
the result it seems that the Ge3 cluster could capture a hydrogen atom in whatever charge 
state, leading to a stable entity. Zdetsis [87] in a study of Bismuth on germanium and silicon 
clusters show that are characterized by high stability and symmetry and relatively large 
HOMO-LUMO energy gaps. It is shown that the lower energy structures of these clusters and 
their bonding and electronic characteristics are fully compatible with very powerful stability 
rules and structural laws similar to the ones for the corresponding isovalent boranes, 
carboranes, and bisboranes. Bandyopadhyay and Sen [88] in neutral and cationic pure and Ni 
doped Ge clusters containing 1-20 Ge atoms are calculated and shown that clusters having 20 
valence electrons turn out to be relatively more stable, whereas when n > 9 the Ni atom is 
absorbed endohedrally in the Ge cage. Shi and co-workers [89] study the aluminium doped 
germanium clusters GenAl (n = 1–9) and that the clusters up to n = 9 prefer the close-packed 
configurations and that the small Ge7 and Ge5Al isomers are the most stable geometries for 
Gen+1 and GenAl clusters, respectively. Beside that the atomic magnetic moments (µB) brings 
the decrease as the cluster sizes increase for most of the aluminium doped germanium 
clusters.   

In investigation of GenCr clusters for n=1–13, Kapila and co-workers [90] show the 
preference of Cr atom to stabilize at the exohedral position, and that the most stable clusters 
among all other’s are for Ge5Cr and Ge10Cr, in addition to that, they suggest donor nature of 
Cr atoms as there is uniform charge transfer from Cr to Ge atoms. Hernandez and Leyva [91] 
in a study of small binary FenGem (n+m≤4) clusters the magnetic moments at Fe atoms are 
larger than the bulk magnetization, whereas the magnetic moments at Ge atoms take 
significant values and also found that the charge transference is from Fe atoms to Ge atoms. 
Li et al [92] in a study of bimetallic Au–Ge nanoclusters, endohedral cage-like AuGen

- 
clusters was favoured at n = 10, whereas the most stable cluster was found at n=12. The 
results demonstrated that the induced effects by an additional electron to the neutral clusters 
can enhance their stabilities. Kapila and co-workers [93] in another work of studying Mn, Co, 
Ni in Gen for (n=1–13) clusters, show that transition metal (TM) atom prefers to occupy 
surface positions for n<9 and endohedral positions for n≥9, and comparing between the (TM) 
doped Gen clusters the Ni show higher stability as in front of Mn and Co atoms and that the 
magnetic moment is mainly localized at the TM site and neighbouring Ge atoms. Zhao and 
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Wang [94] in DFT investigation of MnGen (n=2–16) clusters found that doping of one Mn 
atom contributes to strengthening the stability of the germanium framework and they also 
found that charge always transfers from manganese to germanium atoms in all sized MnGen 
clusters and the magnetic moment of the Mn atom does not quench when embedded in all 
sized Gen (n = 2–16) clusters.  

Hou et al [95] in chromium-doped germanium Clusters CrGen (n=1-5) study, show 
that most of the clusters considered prefer structures with high-spin ground state and large 
magnetic moments whereas the Cr atom acts as a general electron donor in neutral CrGen 
clusters. Tang and co-workers [96] study using the relativistic all-electron density functional 
theory, the 3d transition-metal endohedral Ge12M (M = Sc–Ni) clusters, they found that the 
optical gaps of Ge12M are blue-shifted whereas the magnetic moment of the M@Ge12 cluster 
are mainly comes from the doped transition metal atom (TMA), while the local magnetic 
moment of the TMA mainly originate from the unpaired electrons of the 3d state, and that the 
reactions to synthesize them are exothermic and favorable in the energy point. Ju-Guang Han 
[97] in his paper investigate GenF – and GenF  (n=3–6) clusters, and show that all of the, 
electron affinities, fragmentation energies and even the populations and geometric parameters 
are influenced by the extra charge. Lu and Nagase [98] in an investigation of a metal-doped 
germanium clusters MGens (M=Hf, W, Os, Ni, and Zn) in the sizes of n=12 and 10 prefer 
irregular structures compared with the MSin clusters partially due to the dynamic instability 
and comparing with others clusters WGe12, OsGe12 and ZnGe12 turn out to be chemically 
stable and are maybe the smallest MGen building block of cluster-assembled materials. The 
interaction between the Zn atom and the Gen cage is much weaker than that between the W or 
Os atom and the Gen cage owing to a complete occupation of the Zn 3d orbitals.  

A study of photoelectron spectroscopy (PES) of germanium- fluorine binary cluster 
anions had made by Negishi et al [99], they show that compared between the PES of GenF

- 
and those of the Gen

-, it was found that the doped F atom in GenF
- deprives each Gen

- cluster 
of the excess electron without any serious rearrangement of the Gen framework. The F doping 
method estimate the HOMO-LUMO gap of the corresponding neutral Gen clusters (n = 4-11). 
For a diatomic GeF- cluster, furthermore, the vibrational structures could be resolved to 
determine its vibrational frequency. Han and co-workers [100] studied GenSn (n=1–4) clusters 
and show that the natural populations of the most stable GenSn (n=1–4) clusters indicate that 
charges are transferred from Sn atom to Ge atoms, while enthalpy of reactions at the 
B3LYP/LanL2DZ level is in good agreement with those of the third law of enthalpy change. 
In another study of germanium clusters at medium size, Ma and Wang [101] show that from n 
≥19, the atoms of the medium size germanium clusters are organized into two shells and the 
core atoms increase with the cluster size, the ionization potentials and HOMO–LOMO gaps 
are decreased with the cluster size. And conclude that the structures obtained by the two 
methods (B3LYP/LANL2DZ) are similar.  

As well, in the same field Wang and Han [102] study the growth behaviours of the Zn-
doped different sized germanium clusters and reveal that the Zn atom is encapsulated in caged 
germanium clusters at n = 10 while the icosahedral ZnGe12 cluster has stronger relative 
stability as compared to other sized clusters, and that charges in the Zn-doped Gen clusters 
transfer from the Zn atom to the Gen frame, which is different from other clusters that are 
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being changed at certain size of cluster. In the case of FeGen (n = 9–16) clusters, Zhao and 
Wang [103] have shown that the strongest stability of FeGe14 might stem from its highest 
symmetry (Oh), and that the HOMO–LUMO gaps are obviously reduced when the Fe atom is 
doped into the Gen clusters. They also found that charge always transfers from iron to 
germanium atoms in all sized FeGen clusters and the magnetic moment of the Fe atom does 
not quench when embedded in large-sized Gen clusters. Goswami et al [104] investigated the 
GexCy (x+y=2–5) nanoclusters by B3LYP-DFT method and they concluded that the most 
stable structures are those which contain the maximum number of carbon atoms while the 
nanoclusters containing even number of carbon atoms have large HOMO–LUMO gap and 
those containing odd number of carbon atoms have small HOMO–LUMO gap. And 
comparing to Ge-C bond the C-C bond has important role in stabilizing the clusters. In 
another work King et al [105] have studied using density functional theory the 10-atom 
germanium clusters: effect of electron count on cluster geometry and found that the 
isoelectronic Ge10

2- use to be the global minimum by more than 15kcal/mol. The global 
minima found for electron-rich clusters Ge10

4- and Ge10
6- are not those known experimentally. 

While the global minimum for Ge10 is the C3v-tetracapped trigonal prism predicted by the 
Wade−Mingos rules and found experimentally in isoelectronic Ni@Ga10

10-.  

Deng et al [106] on photoelectron spectroscopy and density functional calculations of 
VGen

− (n = 3−12) clusters. For both anionic and neutral VGen clusters, with n ≤ 7, the 
dominant geometries are exohedral structures whereas at n=8, the VGen

−/0 clusters show half-
endohedral boat-shaped structures. Thus, from n = 9 to 11 the additional Ge atoms form Gen 
cage. At n=12, a D 3d distorted hexagonal prism cage structure is formed. The electron 
transfer from the Gen framework to the V atom and the magnetic moments is decreasing to the 
lowest values at n=8−12, and that both of them are caused by the structural evolution. King 
and co-authors [107] investigate the Endohedral Nickel, Palladium, and Platinum Atoms in 
10-Vertex Germanium Clusters. For the neutral clusters M@Ge10 the global minima are 
singlet bicapped square antiprisms. However, triplet regular pentagonal prismatic structures 
become increasingly energetically competitive in the series Ni,Pd and Pt. The pentagonal 
prismatic dianions M@Ge10

2- (M=Ni, Pd, Pt) appear to have closed shell structures and are the 
global minima for palladium and platinum. However, the global minimum for Ni@Ge10

2- is 
the capped square antiprism suggested by the Wade-Mingos rules. In an investigation of 
experimental detection and theoretical characterization of germanium doped lithium clusters 
LinGe0,+(n = 1-7), Ngan et al [108] show that clusters having from 4 to 6 valence electrons 
prefer high spin states, and low spin ground states are derived for the others because valence 
electron configurations are formed by filling electrons to the shells 1s/1p/2s/2p based on 
Pauli’s and Hund’s rules. Thus, both the 8- and the 10-electron systems are more stable than 
the others because of the closed electronic shells, while the 8-electron species is more 
favoured than the 10-electron clusters. And comparing to C, Ge was behaving differently in 
their doped lithium clusters and that because of the difference in atomic radii. Additionally, Li 
atoms do not bond to each other but through Ge or pseudo-atoms, and an essentially ionic 
character can be attributed to the cluster chemical bonds.  

Nagendran and co-workers [109] study the reduction of the chloride 
[PhC(NtBu)2]GeCl with potassium in THF. The X-ray structure and DFT calculation indicate 
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that the Ge-Ge bond possesses an unusual gauche-bent geometry. Furthermore, the Ge-Ge 
bond length is 2.570 Å, which is very close to the single Ge-Ge interaction. In an 
investigation of neutral and anion ZrGen (n = 1–21) clusters, Jaiswal and Kumar [110] found 
that the strongly magic cluster with high symmetry structure and large HOMO–LUMO gap 
was for n = 16. As well they have noticed that ZrGen anion cluster may also be present in 
experiments but often the neutral clusters of such anions are found to have the lowest energy. 
Further, the addition of an electron to the neutral ZrGe11 cluster changes its geometrical 
configuration drastically, while, the Zr atom is encapsulated in a cage-like structure at a size 
of thirteen or more Ge atoms. Jin et al [111] investigate the Ruthenium-Doped Germanium 
Clusters, going from the size of n = 2 to n = 12, it is perceived that the cluster growth is 
directed toward the formation of an endohedral aggregate. For the n= 2-6 they obtained small 
open-shell geometries, and for n=9-12 the endohedral geometries. The endohedral 
constructions contain the Ru atoms at their interstitial positions. In the case of positive values 
of highest occupied molecular orbital energies of global minimum anions depict the electronic 
instability, while the counter-cation effect is discussed to show the compensation of coulomb 
repulsion among excess negative charges. The transfer of negative charge from the Gen 
framework to the Ru atom decreases with increasing ionization. 

 

3.2   Computational Methodology 

 The spin-polarized DFT implemented in the SIESTA package [18] are used in all 
calculations performed in this work. Under the generalized gradient approximation formulated 
by Perdew, Burke, and Ernzerhof [112] (PBE), the exchange−correlation energy functional 
was described. In the case of norm-conserving Troullier−Martins nonlocal pseudo-potentials 
[45], a flexible basis set of localized numerical-type atomic orbitals were used together and a 
Mesh Cut-Off of 150 Ry was taken and the Energy-Shift is taken equal to 50 meV. 
Furthermore, core electrons were replaced by nonlocal, norm-conserving pseudo-potentials 
factorized in the Kleinman− Bylander form [113]. We used 4d3 and 4f14 5d9 6s1 configurations 
for Pd and Pt respectively and 4s2 4p2 for Ge. In this study the geometries were optimized 
without any symmetry constraints, and by solving the Kohn−Sham equations [30] the 
optimization of electronic structure was obtained, using self- consistent with a convergence 
criterion of 1 × 10−4 a.u. on the energy and electron density. For Brillouin zone sampling we 
used the k = 0 (Γ) point approximation. We used the double ζ (DZ) basis for Ge atoms and 
double ζ (DZP) basis with polarization function for Pd and Pt atom. In the optimization 
process, the volume of the system was kept constant, and a big super-cell of 40 Å was used to 
avoid interaction between the neighboring clusters. Structural optimizations were performed 
using conjugate gradient algorithm, and the convergence criterion on the Hellmann−Feynman 
forces imposed that the residual forces were less than 10–2 eV/Å. Several spin multiplicity 
states were tested. The Mulliken population analyses were done to obtain the atomic charge 
and the unpaired spin population. In order to find the global minimum structures of MGen 

(M=Pd,Pt) clusters. Firstly, we have used several optimized isomers of pure germanium 
clusters with size of 2–21 atoms [73]. Moreover, a great number of isomers doped MGen+1 
from 1-20 were considered. Supplemental analysis and investigation of the electronic 
properties and molecular orbitals has been performed with the software Gaussian09 [114] 



 
 

  41 

using PBE and the Gaussian-type basis sets cc-pvtz for Ge and LanL2DZ for Ir. They include 
the electron population analysis, the plot of density of states, as well as the prediction of 
optical absorption spectra calculated in the framework of the Time-Dependent DFT 
(TDDFT). 

 The stability of Pd- and Pt-doped germanium clusters can be studied by the calculation 
of the binding energy, HOMO–LUMO gap, and the second-order energy difference. The 
binding energies per atom of MGen (M = Pd, Pt) are defined by the following formula: 

          Eb(MGen)(eV/atom) = (n E(Ge) + E (M) – E(MGen)) / ( n + 1)                   (3.1) 

Where E (Ge) is the total energy of free Ge atom, E(M) is the total energy of free M atom and 
E(MGen) is the total energy of the MGen cluster. The HOMO–LUMO gap is calculated from 

the energy of the orbitals: 

                       ΔE (eV) = E (LUMO) −E (HOMO)                                    (3.2) 

The second-order energy difference for the ground-state MGen (M = Pd, Pt) clusters can be 
calculated by: 

  Δ2E = E (MGen+1) + E (MGen−1) – 2 E (MGen2)                                      (3.3) 

where E is the total energy of the most stable structure for each species. At the present level of 
calculation, the bond lengths of Ge2 were found to be 2.450 Å, and it is in good agreement 
with the experimental results of the literature [115]. The binding energy per atom was 
calculated to be 1.44 eV, which is also in good agreement with both theoretical [77, 90, 95] 
and experimental (~1.35 eV) [116] data. 

 

3.3   Results and discussion  

The ground state isomers of PdGen and PtGen clusters were established using the 
earlier described method. In atomistic simulation investigation, the determination of the 
ground-state of the initial structures is very important tasks which will allow us after that to 
unveil the other properties by modifying distinguish parameters. As a beginning we looked 
into the doped germanium clusters and compare them and see the important changes in order 
to bring the most remarkable improvement and why not to manage a useful way to be 
indented for. 
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Fig (3.2): Low energy structures and their corresponding isomers for PdGen (n=1-20) clusters.   

 

3.3.1    Structural properties 

 The doped germanium clusters MGen (M=Pd,Pt) in our calculations show a growth 
pattern in which the planar structures only appears in the very small clusters, while the 
tridimensional structures dominate from n + 1 = 5. Up to n + 1 = 21, prolate type structures 
compete with nearly spherical structures, and almost all atoms are located in surface. Many of 
the obtained best structures are in agreement with the previous theoretical studies of the 
literature. Our lowest-energy isomers are shown in Figure 3.1 and 3.2 for each size, data for 
most stable isomers are reported in bold character. The symmetry group, binding energy Eb 
(eV/atom), HOMO–LUMO gap ΔE (eV), the vertical ionization potential VIP (eV), the 
vertical electron affinity VEA (eV), the chemical hardness η (eV) and the average Ge–Ge and 
M–Ge bond lengths are summarized in Table 1 and Table 2 for all PdGen and PtGen clusters, 
respectively, and as they appear the most stable structures of PdGen clusters are generally 
similar to those of PtGen clusters.  

First of all, the dimers MGe (M=Pd and Pt) had a bond length of 2.349 and 2.364 Å, 
respectively. In the case of binding energy (per atom) was 1.292 and 1.201 eV for PdGe and 
PtGe, respectively. For the trimers PdGe2 and PtGe2 clusters, the bond length was 2.475 and 
2.533 Å, respectively and 2.141 and 2.064 eV for the binding energy. The triangular structure 
with C2v symmetry is found to be the lowest-energy structure. Low laying isomers of PdGe3 
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and PtGe3 have obtained and their structure had C3v symmetry for both of them with 2.574 
and 2.629Å bond length. The binding energy for this lowest-energy structure was 2.530 and 
2.477eV respectively. A tri-dimensions structure was assigned to PdGe4 and PtGe4 with a 
symmetry group of C2v, 2.698 and 2.757 Å was found for the bond length. The analyzing of 
binding energy per atom had given us 2.738 and 2.703 eV respectively.  

The bipyramidal geometry with Cs symmetry is found to be the lowest-energy 
structure for PdGe5 and PtGe5 with 2.959 and 3.001 Å bond lengths respectively, 2.846 and 
2.802 eV for the binding energy per atom. For the PdGe6 and PtGe6 a geometry of a bicapped 
pentagonal with C5v symmetry were found for both of them with  2.824 and 2.740 Å bond 
length along of 2.924 and 2.902 eV for the binding energy per atom. In the case of PdGe7 and 
PtGe7 have had the capped pentagonal bipyramid structure-like with Cs symmetry shown to be 
the ground state structure. 2.535 and 2.719 Å was their bond length and for the binding energy 
per atom a 2.992 and 2.9596eV were presented, respectively. The lowest-energy structure of 
the PdGe8 and PtGe8 clusters was tricapped trigonal prism geometry without any symmetry 
(C1). The bond length was respectively 2.596 and 2.656 Å and for their binding energy per 
atom its 2.987 and 2.9598eV. In the case of PdGe9 and PtGe9 clusters, the lowest-energy 
structure can be viewed as a pentagonal bipyramid face-capped with C1 symmetry and bond 
length of 2.586 and 2.648 Å while the binding energy was 3.041 and 3.014 eV, respectively. 
The doped germanium clusters from n=10~20 atom show an encapsulated metal atom for the 
all low-lying isomers structure.  

For the PdGe10 and PtGe10 clusters, we see that the most stable isomer was for PdGe10 
a partially encapsulated metal atom in an open cage with D4d symmetry. Toward the PtGe10 

the low-lying structure-like was an open cage with C1 symmetry where the metal atom 
localized on the periphery. The bond length was 2.608 and 2.605Å for the stable isomers 
where their binding energy per atom was 3.096 and 3.064eV. The PdGe11 cluster presents a 
capped pentagonal bipyramid structure with a centered metal atom with C5vsymmetry, while 
the PtGe11 cluster shows a bipyramid near hexagonal base geometry of Cs symmetry. The 
stable isomer bond length was 2.716 and 2.806Å which the binding energy was 3.126 and 
3.086eV, respectively. The stable structure for both doped germanium clusters was a capped 
pentagonal bipyramid for n = 12 size, with a symmetry group of S4, present a bond length of 
2.834 and 2.856Å and a binding energy per atom of 3.184 and 3.169 eV, respectively. A 
compact near hexagonal geometry was preferred to PdGe13 with a lack of symmetry (C1) 
where the PtGe13 cluster shows a prolate-type structure-like with Cs symmetry. The bond 
length for stable isomer and the binding energy respectively was 2.880 and 2.888Å as well 
3.171 and 3.146 eV. The shape of PdGe14 cluster shows a capped pentagonal bipyramid 
structure with Cs symmetry. However, PtGe14 present a compact near capped spherical 
geometry when the symmetry was absent. The bond length for the stable isomers was 2.925 
and 2.947Å when the binding energy for this lowest-energy structure was 3.172 and 3.176eV, 
respectively. Let's move on the next clusters, which are PdGe15 and PtGe15, they presents an 
augmented tridiminished icosahedrons like-structure with an encapsulated metal atom in Cs 
symmetry. Moving into the bond length for the stable isomer we noticed 2.801 and 2.892 Å, 
respectively, while the binding energy per atom was 3.196 and 3.189 eV.  

For PdGe16 and PtGe16, a near cage prolate-type geometry was obtained with C2 and 
C1 symmetry, respectively. Concerning the bond length structure and the binding energy per 
atom we mentioned 2.877 and 2.906Å with 3.204 and 3.188 eV. An irregular cage-like 
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structure was found for PdGe17 and PtGe17, when the symmetry was absent (C1). 2.933 and 
2.956Å, respectively, was the bond length for stable isomer, while the respective binding 
energy was 3.162 and 3.151 eV. Thereafter, comes PdGe18 and PtGe18, they present a near 
prolate-like structure with also a lack of a symmetry (C1). By the same way, the bond length 
structure was 2.891 and 2.919Å, although the 3.170 and 3.159 eV have been mentioned for 
the respective binding energy. In the case of PdGe19 a near compact hexagonal structure was 
identified and for PtGe19 a compact near cage-like structure was the one reached. The 
symmetry obtained for each clusters was C3v and C1, respectively. In the subject of bond 
length structure and binding energy per atom, 2.917 and 2.971Å with 3.142 and 3.134 eV 
have been pulled, respectively. Cage-like structures without any symmetry (C1) was revealed 
for the last clusters isomers, PdGe20 and PtGe20. When the bond length for the stable isomers 
was 2.844 and 2.949 Å while the binding energy has been mentioned 3.155 and 3.143 eV.  
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Fig (3.3): Low energy structures and their corresponding isomers for PtGen (n=1-20) clusters 

 

Table (Ⅲ.1): Symmetry group, binding energy Eb(eV/atom), HOMO-LUMO gap ΔE (eV),  
vertical ionization potential VIP (eV), vertical electron affinity VEA (eV), chemical hardness 

η (eV) and average bond length aGe-Ge (Å) and aPd-Ge(Å) for PdGen clusters. 

 
Size (n) 

 
Sym. 

Eb 
(eV/atom) 

 
∆E (eV) 

 
VIP (eV) 

 
VEA (eV) 

 
η(eV) 

 
aGe-Ge(Å) 

 
aPd-Ge(Å) 

PdGe1 C∞ 1.292 0.597 6.599 0.693 5.906 / 2.349 

PdGe2-3 C2v 2.141 0.758 7.309 1.217 6.092 2.456 2.475 

PdGe2-2 C∞ 1.821 0.410 6.818 1.435 5.384 2.450 2.359 

PdGe3-6 C2v 2.530 1.331 7.338 0.999 6.340 2.420 2.574 

PdGe3-4 C3v 2.425 0.601 6.979 1.428 5.551 2.652 2.592 

PdGe4-1 C2v 2.738 1.328 7.450 1.259 6.191 2.610 2.698 

PdGe4-14 Cs 2.626 1.009 7.236 1.404 5.832 2.613 2.458 

PdGe4-11 Cs 2.553 0.627 6.950 1.452 5.498 2.574 2.663 

PdGe5-1 Cs 2.846 1.413 7.566 1.367 6.199 2.759 2.959 

PdGe5-17 C1 2.791 1.086 7.155 1.466 5.689 2.696 2.667 
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PdGe5-12 Cs 2.721 0.856 7.054 1.675 5.378 2.631 2.594 

PdGe6-4 C5v 2.924 1.007 7.458 2.027 5.431 2.737 2.824 

PdGe6-25 C2v 2.904 1.291 7.215 1.431 5.784 2.774 2.710 

PdGe6-6 C1 2.895 1.224 7.104 1.527 5.578 2.756 2.696 

PdGe6-21 Cs 2.848 0.647 6.888 1.944 4.944 2.675 2.597 

PdGe7-3 Cs 2.992 1.400 7.248 1.605 5.643 2.800 2.535 

PdGe7-7 C3v 2.982 1.908 7.294 1.195 6.099 2.766 2.512 

PdGe7-10 C1 2.953 1.097 6.977 1.671 5.306 2.759 2.630 

PdGe7-5 C1 2.950 0.788 6.840617 1.893 4.947 2.746 2.695 

PdGe8-8 C1 2.987 0.933 6.976 2.160 4.816 2.788 2.596 

PdGe8-1 Cs 2.984 1.194 6.807 1.758 5.049 2.773 2.630 

PdGe8-9 Cs 2.980 1.092 7.148 2.230 4.918 2.679 2.757 

PdGe8-7 C1 2.954 1.026 6.936 2.036 4.810 2.836 2.633 

PdGe9-23 C1 3.041 1.401 6.964 1.842 5.122 2.784 2.586 

PdGe9-15 C1 3.032 1.610 7.098 1.734 5.364 2.718 2.651 

PdGe9-1 Cs 3.024 0.846 6.863 2.256 4.607 2.793 2.628 

PdGe9-25 Cs 3.021 0.942 6.970 2.251 4.719 2.824 2.689 

PdGe9-10 Cs 3.011 0.964 6.946 2.196 4.750 2.798 2.612 

PdGe10-9 D4d 3.096 1.282 7.504 2.463 5.041 2.823 2.608 

PdGe10-13 C1 3.091 1.737 7.227 1.647 5.581 2.794 2.533 

PdGe10-2 Cs 3.090 1.007 7.115 2.332 4.784 2.699 2.678 

PdGe10-6 Cs 3.076 1.670 7.051 1.505 5.546 2.784 2.689 

PdGe11-1 C5v 3.126 1.054 6.958 2.158 4.800 2.766 2.716 

PdGe11-9 C2v 3.117 0.807 7.103 2.532 4.571 2.664 2.741 

PdGe11-13 Cs 3.113 1.071 7.074 2.300 4.774 2.742 2.696 

PdGe11-6 Cs 3.091 1.068 6.768 2.038 4.731 2.781 2.656 

PdGe12-22 S4 3.184 1.004 7.065 2.431 4.634 2.630 2.834 

PdGe12-16 Cs 3.154 0.937 6.997 2.372 4.626 2.738 2.809 

PdGe12-24 Cs 3.142 1.340 6.864 1.869 4.995 2.718 2.761 

PdGe12-1 D3d 3.128 0.968 6.280 2.489 3.791 2.609 2.889 

PdGe13-2 C1 3.171 0.959 6.739 2.236 4.503 2.727 2.880 

PdGe13-7 Cs 3.156 0.934 6.562 2.081 4.481 2.682 2.867 

PdGe13-1 Cs 3.151 1.158 6.685 2.005 4.681 2.742 2.787 

PdGe13-4 Cs 3.128 0.952 6.550 2.063 4.488 2.736 2.776 

PdGe14-19 Cs 3.172 0.766 6.679 2.461 4.218 2.659 2.925 

PdGe14-14 Cs 3.169 0.810 6.667 2.377 4.290 2.785 2.917 

PdGe14-11 C4v 3.164 0.747 6.682 2.398 4.284 2.757 2.862 

PdGe14-20 C1 3.163 0.692 6.574 2.449 4.126 2.661 2.860 

PdGe15-18 Cs 3.196 1.142 6.638 2.092 4.546 2.739 2.801 

PdGe15-1 C1 3.187 1.211 6.666 2.076 4.589 2.722 2.955 

PdGe15-6 Cs 3.184 1.038 6.797 2.345 4.451 2.733 2.879 

PdGe15-21 Cs 3.172 0.996 6.596 2.248 4.349 2.767 2.878 

PdGe16-3 C2 3.204 1.674 6.779 1.845 4.934 2.772 2.877 

PdGe16-19 C1 3.177 0.892 6.466 2.280 4.185 2.784 2.906 

PdGe16-12 C1 3.174 1.132 6.696 2.255 4.441 2.767 2.910 

PdGe16-13 C1 3.163 0.944 6.612 2.391 4.220 2.729 2.870 

PdGe17-21 C1 3.162 1.141 6.590 2.248 4.343 2.787 2.933 

PdGe17-23 C1 3.146 0.962 6.554 2.383 4.171 2.789 2.876 

PdGe17-8 C1 3.143 1.179 6.555 2.128 4.427 2.787 2.936 

PdGe17-9 C1 3.129 0.992 6.647 2.430 4.217 2.740 2.845 

PdGe18-18 C1 3.170 1.206 6.618 2.262 4.356 2.765 2.891 

PdGe18-8 C1 3.156 1.074 6.656 2.427 4.229 2.776 2.926 

PdGe18-6 C1 3.155 0.730 6.576 2.708 3.869 2.660 2.844 
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PdGe18-21 C1 3.136 1.054 6.429 2.227 4.202 2.742 2.964 

PdGe19-6 C3v 3.142 1.008 6.415 2.305 4.110 2.703 2.917 

PdGe19-22 Cs 3.139 0.952 6.408 2.377 4.030 2.750 2.892 

PdGe19-24 C1 3.134 0.887 6.484 2.511 3.973 2.770 2.875 

PdGe19-12 C1 3.133 0.511 6.352 2.761 3.590 2.769 2.884 

PdGe20-25 C1 3.155 1.068 6.625 2.548 4.076 2.723 2.844 

PdGe20-18 C1 3.146 0.976 6.387 2.350 4.037 2.822 2.894 

PdGe20-23 Cs 3.134 0.954 6.643 2.631 4.012 2.793 2.911 

PdGe20-11 C1 3.132 0.859 6.302 2.420 3.883 2.817 2.787 

 

     3.3.2    Electronic properties 

          3.3.2.1    Binding energy 

By using formula (3.1) we calculated the binding energy per atom. In the Figure 3.3, 
we plotted the evolution of binding energy with cluster size. The binding energy gradually 
increases with increasing size of clusters, when the curve of doped one is higher than the non-
doped at n > 6. This means that doping with Pd and Pt atoms has no immediate effects on 
enhancing the stability of germanium cluster at small size. An increase in binding energy is 
observed for the very small size (n < 6), then the binding energy increases more smoothly. We 
also observe that the binding energies of PdGen and PtGen clusters from n > 6 are with 3D 
structure-like and had exactly the same behavior toward the size dependence for both of them. 
Remarkable peaks were identified on n = 12 and 16 for both of doped clusters, which mean 
that they are more stable than the neighboring clusters. The great stability is enhanced for the 
endohedral structures in which Pd and Pt is encapsulated in a quasi-perfect Gen cage. This 
behavior is due to the absorption of the dangling bonds of the germanium cage by the doping 
palladium and platinum atoms located in a central position.     

 

 

 

 

 

 

 

 

 

 
 

 

Fig (3.4): Binding energy per atom (Eb) for the ground-sate isomers of Gen [73] and MGen 
(M=Pd,Pt and n=1-20) clusters                                         
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          3.3.2.2    Second-order difference 

   

 

 

 

 

 

 

 

 

 

 

Fig (3.5): Second energy differences (∆2E) for the ground-sate isomers of MGen (M=Pd,Pt 
and n=1-20) clusters. 

 

In cluster physics, the second-order difference in energy (Δ2E) defined by the relation (3.3), 
can well reflect the relative stabilities of the corresponding clusters.It is generally compared 
with the relative abundances determined in mass spectroscopy experiments and the lowest-
energy isomer second-order of different species studied here are calculated shown in Figure 
3.4. We reported that if the values of Δ2E are positive this means that the dissociation of Pd 
and Pt atoms is an unfavorable process and the clusters are particularly stable. The 
pronounced positive values of Δ2E are observed for Pd-PtGe2,3,4, and Pd-PtGe7,10,12,15,16,18 , 
indicating that these clusters may have special stabilities. This suggests these clusters to be 
more favorable than their neighbors. 

 

          3.3.2.3    HOMO–LUMO gaps 

 In the intention of having more information about the small clusters kinetic stability 
we investigate the energy difference between highest occupied molecular orbital (HOMO) 
and the lowest unoccupied molecular orbital (LUMO), which can also characterize the 
chemical activity of clusters. According to the literature, large HOMO−LUMO gap implies a 
low chemical activity and a high chemical stability, while the latter decreases as the 
HOMO−LUMO gap decreases. The corresponding Pd and Pt doped germanium 
HOMO−LUMO gap was presented in Figure 3.5, using formula (3.2). In contrast to the 
roughly decreasing tendency of the evolution of HOMO-LUMO gaps for pure Gen clusters, an 
oscillating behavior is observed for Pd- and Pt-Gen clusters. As expected, the gap of very 
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small metal-doped Gen is lower than that of the pure germanium clusters, but for n ≥ 10 the 
presence of the metal generally increases the HOMO-LUMO gap.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig (3.6): HOMO-LUMO gaps (∆E) for the ground-sate isomers of [73] and MGen (M=Pd,Pt 
and n=1-20) clusters. 

 

This somewhat surprising behavior is due to the encapsulation of the metal into the Ge 
structure which stabilizes the electronic structure by absorbing the dangling bonds. Values 
oscillate in the 0.5−2.0 eV range, but the evolution with cluster size shows a non-monotonic 
behavior. Very noticeable or marked values are introduced, especially for PdGe7,9,16,18 and 
PtGe7,10,16,18. Indicate that these clusters may have a relative low reactivity comparing to 
others. The apparition of the near-metallic behavior was defined for small clusters whereas in 
the growth process, this characteristic was vanishing except for PtGe19. 

 

          3.3.2.4    Vertical ionization potential and vertical electron affinity 

 In the attention of having good perception about small clusters we plotted the size 
dependence on vertical ionization potential (VIP) and vertical electron affinity (VEA) in 
Figure 3.6 and 3.7. They are two important parameters that can determine the chemical 
stability and the behavior of the small clusters. They are defined as following: 

    VIP = E (MGen)
+ − E (MGen)                                                (3.4) 

    VEA = E (MGen) − E (MGen)
-                                               (3.5) 

The VIP is defined by the energy difference between the cationic E(MGen )+ and neutral 
clusters calculated at the equilibrium geometry of the neutral MGen cluster, while that the 
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VEA is the energy difference between the neutral E(MGen) and the anionic clusters calculated 
at the geometry of the neutral cluster. The VIP can give information about the capacity of a 
cluster to lose a valence electron. We notice an oscillating behavior governing in both curves. 
Values are in the 6.2-7.6 eV range. For n < 6 the VIP increases with clusters size than for n ≥6 
the decreasing process was the apparent except for some pronounced one, for example n = 10, 
12, 16 and for both Pd and Pt doped germanium clusters.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig (3.7): Vertical ionization potential (VIP) for the ground-sate isomers of [73] and MGen 
(M=Pd,Pt and n=1-20) clusters 

 

On behalf the VIP becomes smaller; the cluster will be more close to a half-metallic behavior 
which means these clusters can more easily lose one electron comparatively to other clusters. 
While for the big values of VIP and for sharp peaks, the loss of one electron is more difficult 
and then the half-metallic character is less important. 

In the case of VEA, which give us information about the capacity of a cluster to get a new 
valence electron. We distinguish an increasing tendency curve with a dependence on clusters 
size. This indicates that the clusters with large size will capture an electron more easily. The 
values of all species increase from 0.6 to 2.6 eV. As we can deduce for n = 7, 9, 13, 15, 16. 
The VEA had a local minimum for both Pd and Pt doped germanium, further PtGe10, 16 and 
PdGe11, 16. This means that they are less able to acquire an electron. As well, we can perceive 
the behavior of pure germanium for both VIP and VEA figure that show an overall and 
overlapping curve which states that these doping clusters had a weak feedback towards doped 
metal atoms. 
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Fig (3.8): Vertical electron affinities (VEA) for the ground-sate isomers of [73] and MGen 
(M=Pd,Pt and n=1-20) clusters. 

 

  3.3.2.5    Chemical hardness  

Another parameter that can be used to give more information about the relative 
stability of molecules and small clusters is the chemical hardness defined through the 
principle of maximum hardness (PMH) of Pearson [117-118] as:  

 
            η = VIP−VEA        (3.6) 

where VIP and VEA are the vertical ionization potential and electron affinity of the 
corresponding cluster. It considered as a good parameter to unveil the reactiveness of small 
clusters where the highest value is viewed to be less reactive cluster. The relationships of η 
and the size n are shown in Figure 3.9 for both species. The value of η presents a roughly 
decreasing evolution with increasing size for both PdGen and PtGen clusters A relative high 
value is observed for PdGe5,7,16,18 and PtGe7,10,16,18suggesting that these clusters should be less 
reactive than their neighbors. Beyond the pure germanium clusters an overlapping behavior 
was noted.     
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Fig (3.9): Chemical hardness (η) for the ground-sate isomers of [73] and MGen (M=Pd,Pt and 
n=1-20) clusters.  

 

Table (Ⅲ.2): Symmetry group, binding energy Eb(eV/atom), HOMO-LUMO gap ΔE (eV),  
vertical ionization potential VIP (eV), vertical electron affinity VEA (eV), chemical hardness 

η (eV) and average bond length aGe-Ge (Å) and aPt-Ge(Å) for PtGen clusters. 

 
Size (n) 

 
Sym. 

Eb 
(eV/atom) 

 
∆E (eV) 

 
VIP (eV) 

 
VEA (eV) 

 
η (eV) 

 
aGe-Ge(Å) 

 
aPt-Ge(Å) 

PtGe1 C∞ 1.201 0.219 6.826 0.624 6.202 / 2.364 

PtGe2-3 C2v 2.064 0.785 7.293 1.272 6.021 2.468 2.533 

PtGe2-2 C∞ 1.738 0.392 6.875 1.537 5.338 2.460 2.411 

PtGe3-3 C2v 2.477 1.329 7.308 1.011 6.297 2.427 2.629 

PtGe3-5 Cs 2.392 1.068 7.336 1.159 6.177 2.461 2.675 

PtGe3-4 C3v 2.367 0.603 6.982 1.465 5.517 2.657 2.657 

PtGe4-5 C2v 2.703 1.393 7.451 1.224 6.227 2.615 2.757 

PtGe4-13 Cs 2.555 0.944 7.235 1.548 5.689 2.561 2.498 

PtGe4-15 Cs 2.466 0.389 6.869 1.756 5.113 2.444 2.644 

PtGe5-7 Cs 2.802 1.326 7.519 1.431 6.088 2.833 3.001 

PtGe5-13 C1 2.752 1.104 7.141 1.459 5.682 2.705 2.728 

PtGe5-12 Cs 2.678 0.852 7.025 1.670 5.355 2.634 2.658 

PtGe6-4 C5v 2.902 1.049 7.440 1.982 5.458 2.741 2.740 

PtGe6-7 Cs 2.895 1.284 7.314 1.658 5.656 2.723 2.683 

PtGe6-5 Cs 2.883 1.669 7.301 1.296 6.005 2.777 2.599 

PtGe6-25 C2v 2.864 1.335 7.204 1.418 5.786 2.769 2.778 

PtGe7-15 Cs 2.9596 1.574 7.242 1.456 5.787 2.772 2.719 

PtGe7-3 C3v 2.953 2.025 7.432 1.263 6.169 2.755 2.588 

PtGe7-1 C1 2.922 0.781 6.794 1.871 4.923 2.747 2.754 

PtGe7-6 C2v 2.912 1.425 7.344 1.688 5.656 2.762 2.515 
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PtGe8-25 C1 2.9598 0.958 7.067 2.067 5.000 2.795 2.656 

PtGe8-5 Cs 2.956 1.188 6.888 1.705 5.183 2.781 2.690 

PtGe8-12 Cs 2.952 1.076 7.173 2.133 5.040 2.685 2.813 

PtGe8-17 C1 2.946 1.000 6.933 1.949 4.983 2.756 2.716 

PtGe9-23 C1 3.014 1.395 7.046 1.795 5.252 2.769 2.648 

PtGe9-1 Cs 2.994 0.832 6.894 2.171 4.723 2.781 2.685 

PtGe9-12 Cs 2.986 0.986 6.975 2.121 4.854 2.772 2.798 

PtGe9-9 Cs 2.984 1.183 6.987 1.952 5.035 2.751 2.823 

PtGe10-13 C1 3.064 1.753 7.243 1.640 5.603 2.795 2.605 

PtGe10-16 C3v 3.045 1.322 7.067 1.975 5.092 2.765 2.576 

PtGe10-3 Cs 3.041 0.599 6.887 2.523 4.364 2.726 2.782 

PtGe10-7 C1 3.040 1.543 7.147 1.853 5.294 2.800 2.611 

PtGe11-13 Cs 3.086 0.919 7.008 2.370 4.638 2.672 2.806 

PtGe11-22 C5v 3.085 1.07001 6.988 2.190 4.799 2.785 2.750 

PtGe11-1 C5v 3.085 1.07121 6.989 2.190 4.799 2.797 2.750 

PtGe11-9 C2v 3.072 0.728 7.009 2.563 4.446 2.694 2.784 

PtGe12-22 S4 3.169 0.9789 7.069 2.471 4.598 2.653 2.856 

PtGe12-24 C1 3.114 1.354 6.895 1.953 4.943 2.864 2.795 

PtGe12-13 Cs 3.102 0.913 6.810 2.338 4.472 2.657 2.795 

 PtGe12-1 Cs 3.096 0.158 6.160 2.574 3.587 2.612 2.902 

PtGe13-7 Cs 3.146 0.954 6.560 2.064 4.495 2.696 2.888 

PtGe13-5 C1 3.138 0.609 6.610 2.477 4.133 2.770 2.855 

PtGe13-4 C3v 3.130 1.178 6.746 2.020 4.726 2.678 2.900 

PtGe13-1 Cs 3.126 1.093 6.636 2.036 4.600 2.860 2.823 

PtGe14-20 C1 3.176 0.857 6.519 2.247 4.272 2.664 2.947 

PtGe14-19 Cs 3.164 0.693 6.651 2.518 4.133 2.645 2.945 

PtGe14-14 Cs 3.156 0.840 6.651 2.340 4.312 2.799 2.935 

PtGe14-11 C4v 3.144 0.728 6.648 2.396 4.252 2.775 2.883 

PtGe15-18 Cs 3.189 1.179 6.615 2.037 4.578 2.751 2.892 

PtGe15-6 Cs 3.167 1.073 6.788 2.299 4.489 2.745 2.900 

PtGe15-21 C1 3.153 0.997 6.508 2.182 4.326 2.766 2.937 

PtGe15-1 C1 3.148 0.756 6.691 2.580 4.111 2.704 2.934 

PtGe16-1 C1 3.188 1.544 6.808 1.952 4.856 2.742 2.906 

PtGe16-19 C1 3.146 1.065 6.673 2.281 4.391 2.793 2.909 

PtGe16-8 C4v 3.137 1.325 6.713 2.096 4.617 2.722 2.913 

PtGe16-17 C1 3.135 0.696 6.687 2.724 3.963 2.659 2.825 

PtGe17-21 C1 3.151 1.145 6.571 2.235 4.337 2.800 2.956 

PtGe17-19 C1 3.145 1.006 6.537 2.327 4.211 2.698 2.928 

PtGe17-8 C1 3.140 0.965 6.440 2.249 4.191 2.757 2.971 

PtGe17-25 C1 3.134 0.896 6.670 2.601 4.069 2.676 2.912 

PtGe18-18 C1 3.159 1.178 6.612 2.276 4.336 2.764 2.919 

PtGe18-6 Cs 3.141 1.140 6.640 2.335 4.305 2.761 2.939 

PtGe18-21 C1 3.129 1.032 6.427 2.251 4.175 2.726 2.992 

PtGe18-8 C1 3.127 1.072 6.415 2.212 4.204 2.819 2.903 

PtGe19-12 C1 3.134 0.543 6.240 2.638 3.602 2.816 2.917 

PtGe19-6 C3v 3.131 0.953 6.407 2.357 4.050 2.710 2.935 

PtGe19-21 C1 3.118 0.675 6.334 2.610 3.725 2.744 2.909 

PtGe19-22 C1 3.117 0.845 6.353 2.436 3.917 2.778 2.911 

PtGe20-25 C1 3.143 0.809 6.415 2.592 3.824 2.704 2.949 

PtGe20-1 C1 3.128 0.884 6.491 2.574 3.917 2.758 2.932 

PtGe20-23 C1 3.125 1.042 6.580 2.482 4.098 2.780 2.940 

PtGe20-11 C1 3.119 0.926 6.391 2.447 3.943 2.830 2.837 
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3.3.2.6    Density of states and the Kohn-Sham orbitals  

 Using the shame described earlier implemented in the Gaussian software, density of 
states (DOS) of PdGe16 was figure out as well as the Kohn-Sham orbitals. We can distinguish 
the character of the orbitals which the organization in shell structure as well as the pooling of 
electrons contributes to the high stability of the cluster. The electronic structure shows a shell 
filling with the following sequence: 1S2 1P6 1D10 1F14 2D10 2S2 2P6 1G18 1H6. Same 
properties were found for PtGe16 as well.  

 

 

Fig (3.10): Density of states (DOS) of PdGe16 for alpha spin electrons. For each band, the 
Kohn-Sham orbitals are plotted. The electronic structure shows a shell filling with the 
following sequence: 1S2 1P6 1D10 1F14 2D10 2S2 2P6 1G18 1H6.  

 

3.3.2.7    Absorption spectra of PdGe10 and PdGe16 clusters 

 Moreover, the UV-Visible absorption spectra of both cage-like and surface-bond 
structure is presented in figure 3.11, for PdGen n=10 and 16. Spectra are calculated with both 

PBE and B97x density-functional. The calculated absorption spectra shown in the Figure 
(3.11), give the oscillator strength as a function of the excitation energy together with a curve 
obtained by a Lorentz broadening with a full width at half-maximum (fwhm) of 0.08 eV. The 
main purpose was to discriminate the endohedral from exohedral structure, but we found that 
the absorption was few dependent on the position of the metal atom. 



 
 

 

 

Fig (3.11): Absorption spectra of PdGe
isomers: isomer (a) the lowest
lowest-energy isomer with a surface

and B97x density-functional. 
oscillator strength as a function of the excitation energy together with a curve obtained by a 
Lorentz broadening with a full width at half

 

Absorption spectra of PdGe10 and PdGe16 clusters calculated for the two low
isomers: isomer (a) the lowest-energy isomer is a cage-like structure, and isomer (b) the 

energy isomer with a surface-bound Pd structure. Spectra are calculated with both PBE 

functional. The calculated absorption spectra shown in the Figure give the 
oscillator strength as a function of the excitation energy together with a curve obtained by a 
Lorentz broadening with a full width at half-maximum (fwhm) of 0.08 eV. 
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clusters calculated for the two low-lying 
like structure, and isomer (b) the 

bound Pd structure. Spectra are calculated with both PBE 

The calculated absorption spectra shown in the Figure give the 
oscillator strength as a function of the excitation energy together with a curve obtained by a 
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3.3.2.8    Atomic charge and electron configuration of Pd and Pt 
atoms 

 Using natural population analysis we made the electronic configuration and the atomic 
charge of Pd and Pt metal atoms (see table Ⅲ.3). As the metal atoms goes from exohedral to 
endohedral position the relative atomic charge is clearly affected. It goes from about -0.5 to -
2.5 au. The main reason which makes the atomic charge increases was the behavior of the 
metal atom which get more bonding to Ge atoms, which every captured electron was mainly 
associated to 5p or 6p electron configuration for Pd and Pt respectively.  

 

Table (Ⅲ.3): Atomic charge (in a.u., |e|) and electron configuration on the metal atom from 
the natural population analysis. 

 

Cluster qPd/Pt Electron configuration on 
Pd/Pt atom 

PdGe -0.44 5s1.02 4d9.40 5p0.02 
PdGe10 a (endohedral structure) -2.76 5s0.39 4d9.63 5p2.72 

PdGe10 b (exohedral structure) -0.09 5s0.34 4d9.57 5p0.20 

PdGe11 a -2.31 5s0.37 4d9.56 5p2.21 
PdGe12 a -1.83 5s0.36 4d9.48 5p1.98 
PdGe13 a -1.75 5s0.37 4d9.51 5p1.86 
PdGe14 a -1.65 5s0.37 4d9.49 5p1.78 
PdGe15 a -1.49 5s0.37 4d9.49 5p1.61 
PdGe16 a(endohedral structure) 
 

-1.68 5s0.37 4d9.56 5p1.74 

PdGe16 b (exohedral structure) -0.48 5s0.34 4d9.56 5p0.61 

PdGe17 a -1.62 5s0.37 4d9.55 5p1.68 
PdGe18 a -1.57 5s0.38 4d9.57 5p1.61 
   
PtGe -0.62 6s1.34 5d9.25 6p0.03 
PtGe10 a -0.35 6s0.66 5d9.42 6p0.28 
PtGe11 a -2.05 6s0.63 5d9.50 6p2.04 
PtGe12 a -2.05 6s0.63 5d9.47 6p1.95 
PtGe13 a -1.90 6s0.65 5d9.47 6p1.78 
PtGe14 a -1.74 6s0.64 5d9.47 6p1.63 
PtGe15 a -1.57 6s0.63 5d9.49 6p1.44 
PtGe16 a -1.75 6s0.65 5d9.56 6p1.55 
PtGe17 a -1.68 6s0.61 5d9.56 6p1.51 
PtGe18 a -1.69 6s0.64 5d9.57 6p1.47 
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3.4   Discussion  

 Our results highlight a transition from exohedral to endohedral structures of PdGen and 
PtGen occurring at n = 10 and 11 respectively. This structural modification strongly affects 
the electronic properties. The atomic charges on metal atoms have been estimated through a 
natural population analysis (NPA) [119]. When Pd is located on a surface site, its atomic 
charge is relatively low (between −0.5 and −0.1 a.u.), but when the M atom move to an 
endohedral position to be encapsulated inside the germanium, its charge strongly increases to 
about −1.6 a.u. or more (Table Ⅲ.3). Similarly, the atomic charge on Pt in PtGen goes from 
about −0.4 to about −1.7 a.u. for the exohedral and endohedral structures respectively. The 
additional electrons captured by the metal atom in cage-like structure are mainly associated to 
5p or 6p electron configurations. The large atomic charge indicates that the metal interacts 
with several Ge atoms, thus playing a stabilizing role of the Gen cage.  

The transition from exohedral to endohedral structure has been already observed at n = 
12 in the case of AgGen and AuGen [72], at n = 10 for CuGen [72, 81], VGen  [73,106], WGen 
[84], NbGen and TaGen [120], and at n = 9 for NiGen [83,88]. The encapsulated transition 
metal eliminates the dangling bonds of germanium atoms. In the present work, the cage-like 
structures enhance the binding energy, in particular for n = 12–16.  

Interestingly, PdGe16 and PtGe16 present a relatively high stability. They have the 
highest stability from both the binding energy (Fig 3.4) and the second-order energy 
difference (Fig 3.5). They also show a relatively high HOMO-LUMO gap (Fig 3.6), and a 
large chemical hardness (Fig 3.9). In Fig (3.10), we show the density of states (DOS) and the 
Kohn-Sham orbitals calculated at PBE/cc-pvtz level with the software Gaussian09 [114] in 
the case of PdGe16. The 10 valence electrons of Pd, the 3s and 3p valence electrons of Ge 
exhibit a shell structure associated to the somewhat spherical structure. We can easily 
distinguish the character of the orbitals, though there are some little deviations from a perfect 
sphere due to explicit location of atoms and the Cs symmetry instead of Kh (the symmetry of 
the atom). The 74 valence electrons of the cluster are organized with the following 
occupations: 1S2 1P6 1D10 1F14 2D10 2S2 2P6 1G18 1H6. The number of electrons does not fit 
with shell closings numbers, but the pooling of electrons and the organization in shell 
contributes to the high stability of the cluster. Similar results are found for PtGe16.  

In experiment, the geometrical structure is most often inaccessible, and the 
discrimination between endohedral and exohedral structures is generally highlighted by a 
measurement of discriminated physical or chemical properties. For example, the expected 
relatively low reactivity of endohedral structures has been used to highlight the formation of 
metal-doped germanium or silicon cages [121]. Neukermans et al. [122] have used the mass 
spectroscopy and interpret the high abundance CuGe10 in terms of peculiarly stable dopant-
encapsulated cage-like structures. More recently, several groups have used the photoelectron 
spectroscopy [79,106,123]. Here, we have calculated the UV–visible absorption spectra of 
both cage-like and surface-bound metal structures in order to discriminate endohedral and 
exohedral structures. Spectra are given in Fig (3.11) for PdG16 and PdGe10. Unfortunately, 
they are found to be only few dependent on the position of the metal atom, while the density 
of states is much higher in the case of surface-bound metal due to a lower symmetry of the 
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structure. Spectra show a slowly increasing response in the visible and near UV domain, and a 
strong signal above 7 eV (above the ionization potential). This low dependency of the 
absorption spectra on the geometrical can be explained by the electronic arrangement which 
tends to favor the pooling of valence electrons and the organization in shells where electrons 
occupy orbitals fully delocalized over the whole volume of the cluster. The shells are clearly 
visible in the case of symmetric structures, like cage-like structures (Fig 3.10 for example), 
but are no easily identifiable in the case of geometries without any symmetry like exohedral 
structures. The pooling of electrons is likely to be somewhat independent of the details of the 
structure, and consequently the optical absorption as well. 

 

Conclusions 

 We systematically carry out a first-principles DFT calculations of structural, energetic 
absorption spectra and electronic properties of MGen (M= Pd and Pt) quantum computations. 
The lowest-energy structures and some low-lying isomers have been identified for all 
germanium doped clusters. The growth pattern for MGen (M = Pd, Pt) shows that the M atom 
occupies a peripheral position for very small clusters (n < 10), while for n ≥ 10 endohedral 
structures in which the germanium cage encapsulates the metal atom in shall structure are 
strongly favoured. As an explanation the rigidity of Gen framework toward the M atom 
doping is originated from the covalent character of Ge atom. The binding energy increases 
with the increasing cluster size for all MGen (M = Pd, Pt) clusters and the influence of M 
atoms on these clusters making them a little more stable compared to the corresponding pure 
germanium cluster. This stability is related to the pooling of valence electrons from both 
germanium and metal atoms. Our results show that measurements of optical absorption 
spectra are likely unable to discriminate the endohedral and exohedral structures. The 
HOMO−LUMO gaps of the doped clusters are presenting an overlapping behavior than those 
of the corresponding Gen+1 cluster. The calculated binding energy, the second-order energy 
difference, the HOMO−LUMO gaps, vertical ionization potential, and chemical hardness 
manifest the large stability of the PdGen and PtGen clusters with specific sizes n = 10, 12, 16 
and 18. Amongst, PdGe16 and PtGe16 are the most stable clusters. These clusters can be 
considered as a good candidate to be used as building blocks to make cluster assembled 
materials for eventual applications in the news nanotechnologies.  
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Chapter 4 

Theoretical investigation of IrGen Clusters  

 

4.1   Introduction  

 Nowadays, the domain of nanotechnology has recognized a very fast development 
because of the large number of researchers interested in this fascinating science. 
Nanotechnology has inspired several areas namely technologies and information services, 
transportation and constructions, giving us many promises for a very healthy life and a 
greener world. Such technologies which study the infinitely small, faces very important 
challenges especially in the manufacturing process which are avoidable if theoretical studies 
are well defined. Clusters are nanomaterials range among atoms and bulk, their structural, 
electronic and optical properties are much related to their size. Germanium and transitional 
metals are widely used in electronics, optoelectronics and cancer treatment. Furthermore, 
many researchers in experimental and theoretical fields had interested in studying the ability 
of using them in different innovative ideas worth spreading in the worldwide. 

The trend towards miniaturization in electronics, while increasing performance, has 
triggered interest in small nanoparticles [124]. The properties (electronic, optical, structural, 
etc.) of nanoparticles and nanoclusters strongly depend on size, shape, and chemical 
composition. In particular, they may change dramatically with the addition or substitution of 
one or few atoms in the cluster. Accordingly, clusters, used as building blocks, could offer 
great opportunities to develop self-assembly of nanocrystals and materials with tuned 
properties [124]. Especially, ultra-stable clusters, e.g, ligand-coated clusters or endohedrally 
doped cage clusters, are highly desired [125, 126, 127, 121].  

Germanium is an important semiconductor material widely used in the electronics 
industry and for nano technology applications. At the nanoscale, small- and medium-sized 
germanium clusters have been extensively studied in both theoretical and experimental fields 
[13, 67, 101, 57, 65]. Also, much experimental and theoretical research on Gen clusters doped 
with different transition metals has been reported [126, 128, 129]. The presence of a foreign 
atom often leads to enhance the stability, as it saturates the dangling bonds, particularly in 
endohedral structures where the metal atom is encapsulated inside a germanium cage. Also, 
the metal induces significant changes in electronic and magnetic properties [130].  

Among recent studies on metal-doped clusters, one can cite the works of Deng et al. 
[79, 106] where the structural and magnetic properties of CoGen 

− and VGen
−/0 (n = 2–12) 

clusters were investigated using anion photoelectron spectroscopy combined with density 
functional theory (DFT) calculations. The structural evolution was found to be much related 
to the electron transfer pattern and the minimization of the magnetic moments for most of 
these clusters. Several computational studies, mainly at DFT level, have investigated the 
geometries, stabilities, and electronic properties of NiGen (n = 1–20) [98, 83, 107, 88, 96, 93]; 
WGen (n = 1–17) [84]; ZnGen (n = 1–13) [102]; CrGen (n < 30) [95-74]; CoGen (n = 1–13) 
[93, 78]; FeGen (n ≤ 16) [103, 91]; Mo2- doped Gen (n = 9–15) [85]; MnGen (n = 2–16) [94]; 
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TiGen, ZrGen, and HfGen, (n ≤ 21) [80, 110]; RuGen (n ≤ 12) [111]; VGen (n < 20) [73]; 
NbGen and TaGen (n < 20) [120]; PdGen and PtGen (n ≤ 20) [131-132], and noble metal-
doped Gen clusters  [77, 81, 92, 72, 133]. A more extensive review can be found in Ref  [126, 
120]. These studies highlight the dependence of the growth patterns as well as magnetic and 
electronic properties on the nature of the doping metal. While doping with Cr, Fe, Co, and Mn 
seems to favor high-spin states, the magnetic moment is generally quenched for the other 
foreign atom. Most often, the doping atom contributes to strengthen the stability of the 
germanium framework and adopts an endohedral position when the number of atoms is 
enough to form a cage covering the metal atom. This is, e.g., the case for the vanadium atom, 
for which VGe14 shows a relatively high stability in an Oh symmetry cage-like geometry [73]. 
Similarly, NbGe15 and TaGe15 adopt a cage-like structure which present a high stability [120]. 
However, the energetics also depend on the metal, as the early transition metals seem to 
increase the stability of the germanium framework more strongly than noble metals do.  

Iridium presents an unfill atomic 5d shell and is known to be low reactive. Ir-based 
alloys are widely used in industry. Recently, germanium- and iridiumbased bulk alloys were 
synthesized and characterized [134-135]. Superconductivity was reported for the compound 
TaIr2Ge2, which surprisingly displays a structure based on endohedral Ta@Ir7Ge4 clusters 
[134]. Also, small iridium–germanium complexes were synthetized in solution [136]. 

Here, we investigate the structural and electronic properties of IrGen clusters, for 
which, to the best of our knowledge, no previous study has been reported in the literature. Our 
purpose in this work is to investigate with ab initio DFT calculations the effect of one iridium 
atom on the structural and electronic properties of small germanium cage clusters and their 
evolution as a function of the size and shape. We hope that our work would be constructive to 
understand the properties and the growth behavior of IrGen clusters and will guide further 
theoretical and experimental investigations. This manuscript is organized as follows: the 
computational details are described in the “Computational methodology” section, the 
structural and energetic properties are presented in the “Results and discussion” section 
following by a discussion about the electronic and optical properties. 

 

4.2   Computational Methodology 

 The spin-polarized DFT implemented in the SIESTA package [18] are used in all 
calculations performed in this work. Under the generalized gradient approximation formulated 
by Perdew, Burke, and Ernzerhof [112] (PBE), the exchange−correlation energy functional 
was described. In the case of norm-conserving Troullier−Martins nonlocal pseudo-potentials 
[45], a flexible basis set of localized numerical-type atomic orbitals were used together and 
Mesh Cut-Off of 150 Ry was taken and the Energy-Shift is taken equal to 50 meV. 
Furthermore, core electrons were replaced by nonlocal, norm-conserving pseudo-potentials 
factorized in the Kleinman− Bylander form [113]. We used 4f14 5d7 6s2configurations for Ir 
and 4s2 4p2 for Ge. In this study the geometries were optimized without any symmetry 
constraints, and by solving the Kohn−Sham equations [30] the optimization of electronic 
structure was obtained, using self- consistent with a convergence criterion of 1 × 10−4 a.u. on 
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the energy and electron density. For Brillouin zone sampling we used the k = 0 (Γ) point 
approximation. We employed the double ζ (DZ) basis for Ge atoms and double ζ (DZP) basis 
with polarization function for iridium atom. In the optimization method, the volume of the 
system was kept constant, and a big super-cell of 40 Å was used to avoid interaction between 
the neighboring clusters. Structural optimizations were performed using conjugate gradient 
algorithm, and the convergence criterion on the Hellmann−Feynman forces imposed that the 
residual forces were less than 10–2 eV/Å. Several spin multiplicity states were tested. The 
Mulliken population analyses were done to obtain the atomic charge and the unpaired spin 
population. So as to find the global minimum structures of IrGen clusters, firstly, we have used 
several optimized isomers of pure germanium clusters with size of 2–21 atoms [73]. 
Secondly, a great number of isomers doped IrGen+1 from 1-20 were considered. Further 
analysis of the electronic properties and molecular orbitals has been performed with the 
software Gaussian09 [114] using PBE and the Gaussian-type basis sets cc-pvtz for Ge and 
LanL2DZ for Ir. They include the electron population analysis, the plot of density of states, as 
well as the prediction of optical absorption spectra calculated in the framework of the Time-
Dependent DFT (TDDFT). Despite all these works a complete exploration of geometrical 
configurations is most fundamental challenging and practical problems in clusters physical 
technology due to the existence of numerous possibilities.   

 The firmness of Ir doped germanium clusters can be inquired by the calculation of the 
binding energy, HOMO–LUMO gap, and the second-order energy difference. The binding 
energies per atom of IrGen are defined by the following formula: 

       Eb(MGen)(eV/atom) = (n E(Ge) + E (M) – E(MGen)) / ( n + 1)                         (4.1) 

 

Where E(Ge) is the total energy of free Ge atom, E(M) is the total energy of free M atom and 
E(MGen) is the total energy of the MGen cluster. The HOMO–LUMO gap is calculated from 
the energy of the orbitals: 

           ΔE (eV) = E (LUMO) −E (HOMO)                               (4.2) 

 

The second-order energy difference for the ground-state MGen clusters can be calculated by: 

                    Δ2E = E (MGen+1) + E (MGen−1) – 2 E (MGen2)                              (4.3) 

 

Where E is the total energy of the most stable relaxed structure for each species. At the 
present level of calculation, the bond lengths of Ge2 were found to be 2.450 Å, and it is in 
good agreement with the experimental results [115]. As that, in the case of Ir2, the 
calculations showed a value of 2.353 Å, compared to the experimental value of 2.35 Å [137]. 
The binding energy per atom for Ge2 was calculated to be 1.44 eV, which is in good 
agreement with the experimental (~1.35 eV) [116] data. 

 



 
 

  65 

4.3   Results and discussion  

 The first goal in cluster atomistic simulation investigation is to determine the ground-
state of our initial structures, which will allow us after that to unveil the other properties. As a 
beginning we looked into the doped germanium clusters and compare them to the relaxed 
pure clusters, and if there is any important or remarkable changes, we will try to figure out the 
origin of this evolution in order to understand the phenomena happening, so that, to bring the 
most outstanding improvement and why not to manage a useful way to be indented for. 

 

     4.3.1    Structural properties 

 Using the computational method described earlier basing on the pillars of quantum 
physics, the doped germanium clusters MGen  in our calculations show a growth pattern in 
which the planar structures only appears in the very small clusters, while the tridimensional 
structures dominate from n + 1 = 4. Up to n + 1 = 21, prolate type structures compete with 
nearly spherical structures, and almost all atoms are located in surface. Many of the obtained 
best structures are in agreement with the previous theoretical studies of the literature. Our 
lowest-energy isomers are shown in Figure 1. For each size, data for most stable isomers are 
reported in bold character. The symmetry group, binding energy Eb (eV/atom), HOMO–
LUMO gap ΔE (eV), the vertical ionization potential VIP (eV), the vertical electron affinity 
VEA (eV), the chemical hardness η (eV) and the average Ge–Ge and M–Ge bond lengths are 
summarized in Table 1 for all IrGen clusters. First of all, the dimers MGe had a bond length of 
2.256 Å. In the case of binding energy (per atom) a 1,778eV was found. For the trimer IrGe2 
cluster, the bond length was 2.410Å, and 2,368 eV for the binding energy. The triangular 
structure with C2v (2mm) symmetry is found to be the lowest-energy structure. Low laying 
isomers of IrGe3 have obtained and the structure had C3v (3mm) symmetry with 2.555Å bond 
length. The binding energy for this lowest-energy structure was 2,755eV. A tri-dimensions 
structure was assigned to IrGe4 with a symmetry group of Cs (m), 2.655 Å was found for the 
bond length. The analyzing of binding energy per atom had given us 2,879 eV for the 
respective cluster. The bicapped tetrahedron structure with C1 symmetry is found to be the 
lowest-energy structure for IrGe5 with 2.627Å bond length, 2,985 eV for the binding energy 
per atom. For the IrGe6 a geometry of a bicapped pentagonal with C5v symmetry were found 
with 2.662 Å bond length along of 3,129 eV for the binding energy per atom. In the case of 
IrGe7 cluster, he had the capped pentagonal bipyramid structure-like; Cs symmetry was shown 
to be the ground state structure. 2.739Å was the bond length and for the binding energy per 
atom a 3,136eV was presented. The lowest-energy structure of the IrGe8 cluster was a oblate 
edge-capped pent bipyramid geometry with Cs symmetry. The bond length was 2.663 Å and 
for the binding energy per atom it’s 3,177eV. In the case of IrGe9 cluster, the lowest-energy 
structure can be viewed as a capped prismatic structures with C2 symmetry and bond length of 
2.728 Å while the binding energy was 3,221 eV for the respective cluster. The doped 
germanium clusters from n=10~20 atom show an encapsulated metal atom for the all low-
lying isomers structure. For the IrGe10 cluster, we see that the most stable isomer was a 
partially encapsulated metal atom in capped prismatic structures without any symmetry (C1). 
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The bond length was 2.809 Å for the stable isomer where the binding energy per atom was 
3,248 eV. 

                               

 

                                     

 
 

                                                               
 

                                           

                                                  
 

 

                                                                
 

 

                                                          

 

 

IrGe1   C∞ IrGe2-2  C∞   

(-0.492 eV) 
IrGe2-3  C2v (mm2) 

(-0 eV) 
IrGe3-3  C2v (mm2) 

(-0 eV) 

IrGe3-4  C3v (3m) 

(-0.08 eV) 

IrGe5-17 C1 

(-0 eV) 

IrGe3-5 Cs (m)     

(-0.108 eV) 
IrGe4-1 C2v (mm2) 

(-0.017 eV) 
IrGe4-2  Cs (m)    

(-0 eV) 

IrGe4-3  (C2v (mm2) 

(-0.14 eV) 

IrGe7-1 Cs (m) 

(-0.043 eV) 
IrGe7-3 C3v (3m) 

(-0.029 eV) 
IrGe7-5 Cs (m) 

(-0.109 eV) 

IrGe7-14 Cs (m) 

(-0 eV) 

IrGe8-20 Cs (m)  

(-0 eV) 

IrGe8-3 Cs (m) 

(-0.039 eV) 

IrGe8-12 Cs (m) 

(-0.051 eV) 

IrGe8-16  C1      

(-0.024 eV) 
IrGe9-12 Cs (m) 

(-0.03 eV) 

IrGe9-24 C2 

(-0 eV) 

IrGe9-9 Cs (m)  
(-0.083 eV) 

IrGe9-26 Cs (m) 

(-0.111 eV) 

IrGe10-2 C2v (mm2) 

(-0.015 eV) 

IrGe10-3 Cs (m) 

(-0.018 eV) 

IrGe10-5 C1 

(-0 eV) 

IrGe6-2 Cs (m)  

(-0.1 eV) 
IrGe5-1  C1   
(-0.005 eV) 

IrGe5-4 C4v (4mm) 

(-0.019 eV) 
IrGe6-11  Cs (m) 

(-0.087 eV) 
IrGe6-19  C5v 

(-0 eV) 
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IrGe11-9 C1 

(-0 eV) 

IrGe11-1 C2 

(-0.049 eV) 

IrGe11-4 C1 

(-0.029 eV) 

IrGe11-25 Cs (m) 

(-0.131 eV) 
IrGe12-7 C2 

(-0 eV) 

IrGe12-1 Cs (m) 

(-0.035 eV) 

IrGe12-13 C1 

(-0.052 eV) 

IrGe12-16 Cs (m) 

(-0.089 eV) 

IrGe13-7 Cs (m) 

(-0.024 eV) 

IrGe13-11 C4v (4mm) 

(-0 eV) 

IrGe13-1 C1 

(-0.043 eV) 

IrGe13-10 Cs (m) 

(-0.044 eV) 

IrGe14-11 C4v (4mm)   

(-0 eV) 

IrGe14-14 C2v (mm2) 

(-0.006 eV) 

IrGe14-19 Cs (m) 

(-0.007 eV) 

IrGe15-18 Cs (m) 

(-0 eV) 

IrGe15-19 C1 

(-0.008 eV) 
IrGe14-17 C1 

(-0.042 eV) 

IrGe15-6 Cs (m) 

(-0.01 eV) 
IrGe15-25 C1 

(-0.068 eV) 

IrGe16-2 Cs (m) 

(-0.01 eV) 

IrGe16-3 C2 

(-0.025 eV) 

IrGe16-8 C4v (4mm) 

(-0 eV) 

IrGe16-17 C1 

(-0.063 eV) 

IrGe17-22 C1 

(-0 eV) 

IrGe17-8 C1 

(-0.032 eV) 

IrGe17-21 C1 

(-0.066 eV) 

IrGe17-25 C1 

(-0.047 eV) 

IrGe18-2 Cs (m) 

(-0 eV) 

IrGe18-8 Cs (m) 

(-0.02 eV) 
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Fig (4.1): Low energy structures and their corresponding isomers for IrGen (n=1-20) clusters 

 

The IrGe11 cluster presents a pentacapped tetragonal prism structure with a centered metal 
atom with C1 symmetry. The stable isomer bond length was 2.796 Å which the binding energy 
was 3,307 eV. The stable structure for the doped germanium clusters was a capped pentagonal 
bipyramid for n = 12 size, with a symmetry group of C2, present a bond length of 2.830Å and 
a binding energy per atom of 3,329 eV. Pentagonal-dodecahedron geometry was preferred to 
the most stable cluster in this study, IrGe13 with symmetry of C4v (4mm). The bond length for 
stable isomer and the binding energy respectively was 2.865 Å as well 3,347 eV. The shape of 
IrGe14 cluster shows a rhombic dodecahedron structure with C4v (4mm) symmetry. The bond 
length for the stable isomers was 2.872 Å when the binding energy for this lowest-energy 
structure was 3,322eV. Let's move on the next cluster, which is IrGe15, he present an 
augmented tridiminished icosahedrons like-structure with an encapsulated metal atom in Cs 
symmetry. Moving into the bond length for the stable isomer we noticed 2.960 Å, while the 
binding energy per atom was 3,328 eV. For IrGe16, a tricapped trigonal prism was obtained 
with C4v (4mm) symmetry. Concerning the bond length structure and the binding energy per 
atom we mentioned 2.939Å with 3,305 eV. An irregular cage-like structure was found for 
IrGe17, when the symmetry was absent (C1). 2.869 Å was the bond length for stable isomer, 
while the respective binding energy was 3,277 eV. Thereafter, comes IrGe18, he present a face-
sharing pentagonal bipyramid structure with a Cs symmetry. By the same way, the bond length 
structure was 2.933Å, although the 3,269 eV have been mentioned for the respective binding 
energy. In the case of IrGe19 a distorted square-antiprism structure was the one reached. The 
symmetry obtained for the cluster was Cs. In the subject of bond length structure and binding 
energy per atom, 2.904Å with 3,271 eV have been pulled, respectively. Face-sharing distorted 
tetra-capped pentagonal prism structures without any symmetry (C1) was revealed for the last 
clusters isomers, IrGe20. When the bond length for the stable isomers was 2.939 Å while the 
binding energy has been mentioned 3,254 eV. 

 

IrGe18-21 Cs (m) 

(-0.032 eV) 

IrGe18-24 C2v (mm2) 

(-0.034 eV) 

IrGe19-1 Cs (m) 

(-0 eV) 

IrGe19-4 C1 

(-0.034 eV) 

IrGe19-12 C1 

(-0.011 eV) 

IrGe20-12 C1 

(-0.015 eV) 

IrGe19-24 C1 

(-0.051 eV) 

IrGe20-3 C1 

(-0.025 eV) 

IrGe20-5 Cs (m) 

(-0.024 eV) 

IrGe20-6 C1 

(-0 eV) 
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Table (Ⅳ.1): Symmetry group, binding energy Eb(eV/atom), HOMO-LUMO gap ΔE (eV),  
vertical ionization potential VIP (eV), vertical electron affinity VEA (eV), chemical hardness 

η (eV) and average bond length aGe-Ge (Å) and aIr-Ge(Å) for IrGen clusters. 

 
Size (n)  

 
Sym. 

Eb 
(eV/atom) 

 
∆E (eV) 

 
VIP (eV) 

 
VEA (eV) 

 
η(eV) 

 
aGe-Ge(Å) 

 
AIr-Ge(Å) 

IrGe1 C∞ 1,778 0.705 6,546 0,441 6,105 / 2.256 

IrGe2-3 C2v  2,368 0.302 6,903 1,357 5,546 2.617 2.410 

IrGe2-2 C∞ 1,876 0.262 6,974 1,464 5,510 2.435 2.327 

IrGe3-3 C2v  2,755 0.506 7,196 1,600 5,596 2.475 2.555 

IrGe3-4 C3v  2,675 1.757 7,010 1,446 5,564 2.6921 2.5313 

IrGe3-5 Cs  2,647 0.571 6,765 1,519 5,246 2.710 2.532 

IrGe4-2 Cs  2,879 0.452 6,938 1,707 5,231 2.682 2.655 

IrGe4-1 C2v  2,862 0.146 6,984 1,993 4,991 2.628 2.653 

IrGe4-3 C2v  2,739 0.585 6,899 1,776 5,123 2.519 2.552 

IrGe5-17 C1 2,985 0.254 6,558 1,730 4,827 2.742 2.577 

IrGe5-1 C1 2,980 0.551 6,602 1,747 4,855 2.731 2.615 

IrGe5-4 C4v  2,966 0.498 7,049 2,242 4,807 2.742 2.577 

IrGe6-19 C5v  3,129 0.875 7,075 2,341 4,734 2.708 2.662 

IrGe6-11 Cs  3,042 0.519 6,995 2,242 4,753 2.737 2.585 

IrGe6-2 Cs  3,029 0.599 6,518 1,907 4,611 2.522 2.731 

IrGe7-14 Cs  3,136 0.572 6,600 2,197 4,403 2.741 2.739 

IrGe7-3 C3v  3,107 0.669 6,514 2,217 4,297 2.744 2.589 

IrGe7-1 Cs  3,093 0.558 6,579 2,108 4,471 2.734 2.696 

IrGe7-5 Cs  3,027 0.564 6,759 2,209 4,550 2.804 2.616 

IrGe8-20 Cs  3,177 0.284 6,784 2,708 4,076 2.748 2.663 

IrGe8-16 C1 3,153 0.731 6,708 2,603 4,104 2.682 2.726 

IrGe8-3 Cs  3,138 0.275 6,718 2,671 4,048 2.713 2.730 

IrGe8-12 Cs  3,126 0.661 6,871 2,700 4,172 2.697 2.644 

IrGe9-24 C2 3,221 0.960 6,368 2,427 3,941 2.699 2.728 

IrGe9-12 Cs  3,191 0.483 6,914 2,823 4,091 2.691 2.726 

IrGe9-9 Cs  3,146 0.534 6,698 2,614 4,084 2.742 2.749 

IrGe9-26 Cs  3,110 0.574 6,525 2,396 4,129 2.755 2.640 

IrGe10-5 C1 3,248 0.860 6,648 2,605 4,043 2.708 2.809 

IrGe10-2 C2v  3,233 0.394 6,647 2,718 3,929 2.769 2.801 

IrGe10-3 Cs  3,230 0.484 6,702 2,663 4,039 2.690 2.774 

IrGe11-9 C1 3,307 0.762 6,619 2,777 3,842 2.746 2.796 

IrGe11-4 C1 3,278 0.733 6,561 2,748 3,813 2.662 2.829 

IrGe11-1 C2  3,258 0.293 7,162 3,219 3,943 2.684 2.751 

IrGe11-25 Cs  3,176 0.708 6,506 2,630 3,876 2.783 2.637 

IrGe12-7 C2 3,329 0.349 7,068 3,233 3,835 2.619 2.830 

IrGe12-1 Cs  3,294 0.211 6,025 2,324 3,702 2.834 2.868 

IrGe12-13 C1 3,277 0.573 6,712 2,931 3,781 2.668 2.776 

IrGe12-16 Cs  3,240 0.658 6,614 2,836 3,778 2.722 2.837 

IrGe13-11 C4v  3,347 0.443 6,808 3,066 3,742 2.602 2.865 

IrGe13-7 Cs  3,323 0.685 6,507 2,838 3,669 2.660 2.850 

IrGe13-1 C1 3,304 0.786 6,377 2,685 3,692 2.702 2.826 

IrGe13-10 Cs 3,303 0.606 6,573 2,917 3,656 2.759 2.821 

IrGe14-11 C4v  3,322 0.495 6,098 2,325 3,773 2.669 2.872 

IrGe14-14 C2v  3,316 0.608 6,300 2,637 3,663 2.767 2.939 

IrGe14-19 Cs  3,315 0.385 6,495 2,952 3,542 2.614 2.918 

IrGe14-17 C1 3,280 0.564 6,544 2,974 3,570 2.736 2.836 
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IrGe15-18 Cs  3,328 0.580 6,494 2,961 3,533 2.692 2.960 

IrGe15-19 C1 3,320 0.488 6,107 2,690 3,417 2.744 2.593 

IrGe15-6 Cs  3,318 0.713 6,218 2,653 3,565 2.722 2.925 

IrGe15-25 C1 3,260 0.662 6,283 2,858 3,425 2.719 2.864 

IrGe16-8 C4v  3,305 0.472 5,901 2,531 3,370 2.767 2.939 

IrGe16-2 Cs  3,295 0.524 6,300 2,798 3,503 2.638 2.955 

IrGe16-3 C2 3,280 0.649 6,143 2,704 3,439 2.698 2.895 

IrGe16-17 C1 3,242 0.544 6,452 2,926 3,526 2.721 2.716 

IrGe17-22 C1 3,277 0.677 6,519 2,944 3,575 2.662 2.869 

IrGe17-8 C1 3,245 0.566 6,273 2,938 3,335 2.793 2.908 

IrGe17-25 C1 3,230 0.675 6,042 2,787 3,256 2.959 2.871 

IrGe17-21 C1 3,211 0.382 5,868 2,651 3,218 2.660 2.883 

IrGe18-2 Cs  3,269 0.499 6,021 2,809 3,212 2.693 2.933 

IrGe18-8 Cs  3,249 0.354 6,350 3,199 3,151 2.788 2.825 

IrGe18-21 Cs  3,237 0.442 6,286 3,052 3,234 2.780 2.885 

IrGe18-24 C2v  3,235 0.321 6,645 3,293 3,352 2.806 2.890 

IrGe19-1 Cs  3,271 0.592 6,151 2,900 3,251 2.747 2.904 

IrGe19-12 C1 3,260 0.349 6,218 3,047 3,171 2.709 2.919 

IrGe19-4 C1 3,237 0.568 6,026 2,851 3,175 2.712 2.913 

IrGe19-24 C1 3,220 0.779 6,176 2,992 3,184 2.789 2.831 

IrGe20-6 C1 3,254 0.573 5,990 2,853 3,137 2.825 2.939 

IrGe20-12 C1 3,239 0.586 6,133 2,939 3,194 2.782 2.913 

IrGe20-5 Cs  3,230 0.392 5,834 2,666 3,167 2.814 2.793 

IrGe20-3 C1 3,229 0.559 6,146 2,883 3,262 2.777 2.935 

 

     4.3.2    Electronic properties  

          4.3.2.1   Binding energy 

Figure 2 shows the evolution of the binding energy per atom (formula (4.1)) with the 
size n, for IrGen and compared to that of Gen. The binding energy of IrGen clusters gradually 
increases with n, rapidly for very small clusters up to n=6 and then the size dependence 
become very smooth from n= 7 to 13. Starting from n=14, the binding energy per atom 
decreases slowly from 3.347 eV for n=13 down to 3.254 eV for n=20.The curve of the 
average binding energy presents a local maximum value at n = 13 and 15, implying that these 
clusters are more stable than their neighbors. The binding energies of IrGen clusters are 
always larger than the corresponding pure germanium clusters with the same size. These 
results indicate that the substitution of Ge by a Ir atom in IrGen clusters leads to improve their 
stabilities which suggesting a higher Ir-Ge bond strength compared with the Ge-Ge bond one. 
Particularly, a strong improvement of the stability, comparatively to the corresponding pure 
Gen+1, is observed from n>8. This behavior is due to the absorption of the dangling bonds of 
the germanium cluster by the doping iridium atoms encapsulated inside of the Gen cage.   
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Fig (4.2): Binding energy (eV/atom) of the lowest energy structures of Gen+1 [73] and IrGen 
(n=1-20) clusters 

  

          4.3.2.2   Second-order energy difference 

 In cluster physics, the second-order difference in energy (Δ2E) defined by the relation 
(4.3), can well reflect the relative stabilities of the corresponding clusters. It is generally 
compared with the relative abundances determined in mass spectroscopy experiments. The 
second-order difference of energy for the lowest-energy isomers of IrGen clusters are shown 
in Figure 4.3 The pronounced positive values of Δ2E are observed for n = 3, 6, 13 and 15, 
indicating that these clusters may have special stabilities more favorable than their neighbors. 
 

          4.3.2.3   HOMO–LUMO gaps 

In the intention of having more information about the small clusters kinetic stability 
we investigated the energy difference between highest occupied molecular orbital (HOMO) 
and the lowest unoccupied molecular orbital (LUMO), which can also characterize the 
chemical activity of clusters. According to the literature, large HOMO−LUMO gap implies a 
low chemical activity and a high chemical stability, while the latter decreases as the 
HOMO−LUMO gap decreases. The size dependence of the HOMO-LUMO gap of IrGen 
clusters is shown in figure 4.4, (using formula 4.2). We observe an oscillating behavior for 
both Gen+1 and IrGen clusters, with a pronounced decreasing tendency for pure Gen+1with the 
increasing size of clusters. The gaps of IrGen clusters are generally much smaller than those 
for pure Gen+1 clusters. Local maxima are found for n= 6, 9, 15 and 17, while the very small 
values observed for n= 2, 8 and 12, reminds a metallic character. Interestingly, all closed 
cage-like structures, i.e. n≥12, have a similar HOMO-LUMO gap (about 0.5 eV).  
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Fig (4.3): Second-order energy difference (eV) of the lowest energy structures of Gen+1[73] 
and IrGen (n=1-20) clusters 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (4.4): HOMO-LUMO gap (eV) of the lowest energy structures of Gen+1[73] and IrGen 
(n=1-20) clusters 
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4.3.2.4   Vertical ionization potential, vertical electron affinity 

 The size dependence on vertical ionization potential (VIP) and vertical electron 
affinity (VEA) was displayed in Figures 4.5 and 4.6. They are two important parameters that 
can determine the chemical stability and the behavior of the small clusters. They are defined 
as following: 

                     VIP = E (MGen)
+ − E (MGen)                                                     (4.4) 

          VEA = E (MGen) − E (MGen)
-                                                    (4.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (4.5): Vertical ionization potential VIP (eV) of the lowest energy structures of Gen+1 [73] 
and IrGen (n=1-20) clusters. 

 

The VIP is defined by the energy difference between the cationic E(MGen )+ and neutral 
clusters calculated at the equilibrium geometry of the neutral MGen cluster, the VEA is the 
energy difference between the neutral E (MGen ) and the anionic clusters calculated at the 
geometry of the neutral cluster. The size dependence of VIP shows an oscillating behavior with a 

global decreasing behavior with increasing size. Remarkable values are found for n = 3, 6, 13, 
15 and 17, corresponding to the more pronounced local maxima. The VIP exhibits obvious 
odd-even oscillations from the size 13 to 20.The size dependence of VEA shows a non-
monotone increasing from ~0.4 to ~3.0 eV. The largest values of VEA are generally observed 
for large clusters, indicating an increase of the chemical stability. Also, the values of VEA 
corresponding to IrGe6, IrGe13 and IrGe15 clusters are larger than their neighbors indicating 
their special stability.  
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Fig (4.6): Vertical electron affinity VEA (eV) of the lowest energy structures of Gen+1 [73] 
and IrGen (n=1-20) clusters 

 

This means that they are less able to acquire an electron. Another thing that we can deduce is 
the behavior of pure germanium for the both VIP and VEA that show an overlapping curve 
which states that these doping clusters had a weak feedback towards doped metal atoms.  

 

          4.3.2.5   Chemical hardness 

 For the latest parameter we investigate the difference between VIP and VEA in the 
following formula: 

             η = VIP−VEA                                                            (4.6) 

 

Through the principle of maximum Pearson hardness (MPH) [118-119], it has been 
established that chemical hardness given by η = VIP−VEA is an important quantity which can 
be used to characterize the relative stability of small systems. The obtained results and their 
evolution as a function of the size for the most stable structures of IrGen clusters are shown in 
Figure (07). Except for n = 7, 10, 16 when they present local maximum which means they are 
more stable than their neighboring clusters. Beyond the pure germanium clusters an 
overlapping behavior was noted.     
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Fig (4.7): Chemical hardness η (eV) of the lowest energy structures of Gen+1 [73] and IrGen 
(n=1-20) clusters 

 

4.3.2.6    Density of states and the Kohn-Sham orbitals 

 We also made an investigation on density of states (DOS) and the Kohn-Sham orbitals 
(K-H orbitals) using Gaussian09 calculated at PBE/cc-pvtz(Ge)/LanL2DZ(Ir) level, for IrGe13 
(see figure 4.8). Electronic shells can easily be identified, with their S, P, D, F, and G 
characters. We have found that the valance electrons from Ge and Ir leads to a shell structure 
where the orbitals are delocalized on the whole cluster. Hence, the 61 electrons fill the 
sequence 1S2 1P6 1D10 1F14 2S2 2D10 2P6 1G11 

 

 

 

 

 

 

 

 

 

Fig (4.8): Density of states (DOS) of IrGe13 for alpha spin electrons. For each band, the 
Kohn-Sham orbitals are plotted. Plotted with the software Gabedit [138]. 
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 4.3.2.7    Absorption spectra of PdGen and PtGen clusters 

To further characterize the clusters, we present in Figure 4.9 and 4.10 the optical 
absorption spectra of IrGen. Spectra are calculated by a TDDFT method. The calculated 
absorption spectra give the oscillator strength as a function of the excitation energy together 
with a curve obtained by a Lorentz broadening with a full width at half-maximum (fwhm) of 
0.08 eV. Generally speaking, we found that a strong response was in the UV range of energy 
almost for all the low lying clusters, which correspond to transitions from dIr to sIr + pGe 
orbitals.   

 

 

 

Fig (4. 9): Absorption spectra of IrGen (n=1-15). More detailed spectra are available in Figure 
(4.10) for IrGen (n=1-20).  
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Fig (4. 10): Absorption spectra of IrGen. The calculated absorption spectra shown in the 
figure give the oscillator strength as a function of the excitation energy together with a curve 
obtained by a Lorentz broadening with a full width at half-maximum (fwhm) of 0.08 eV.  
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4.3.2.8    Atomic charge and electron configuration of Ir atom  

 

Table (Ⅳ.2): Atomic charge qIr (in a.u., |e|) and electron configuration on Ir atom from the 
natural population analysis. 

Cluster qIr Electron configuration on Ir 

IrGe -0.53 6s1.46 5d8.05 6p0.04 

IrGe2 -0.72 6s1.06 5d8.54 6p0.12 7s0.01 

IrGe3 -0.66 6s0.84 5d8.54 6p0.29 7p0.01 

IrGe4 -0.61 6s0.71 5d8.64 6p0.25 7p0.01 

IrGe5 -0.81 6s0.78 5d8.63 6p0.41 7p0.01 

IrGe6 -0.88 6s0.74 5d8.62 6p0.52 7p0.02 

IrGe7 -1.06 6s0.75 5d8.68 6p0.63 7p0.01 

IrGe8 -2.10 6s0.72 5d8.91 6p1.47 6d0.01 

IrGe9 -2.44 6s0.61 5d9.04 6p1.89 7s0.01 6d0.01 

IrGe10 -2.11 6s0.62 5d8.91 6p1.58 6d0.01 

IrGe11 -2.54 6s0.61 5d9.04 6p1.89 7s0.01 6d0.01 

IrGe12 -2.59 6s0.57 5d9.03 6p1.98 7s0.01 6d0.01 

IrGe13 -2.36 6s0.58 5d8.97 6p1.80 7s0.01 6d0.01 

IrGe14 -2.59 6s0.57 5d9.11 6p1.91 7s0.01 

IrGe15 -2.18 6s0.58 5d9.01 6p1.59 7s0.01 

IrGe16 -2.33 6s0.57 5d9.10 6p1.66 7s0.01 

IrGe17 -2.26 6s0.57 5d9.03 6p1.66 6d0.01 

IrGe18 -2.07 6s0.57 5d9.02 6p1.48 7p0.01 

IrGe19 -2.33 6s0.57 5d9.13 6p1.64 

IrGe20 -2.12 6s0.57 5d9.05 6p1.51 7p0.01 
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 Atomic charge and electron configuration of Ir metal atom was investigated using 
natural population analysis. . As we can distinguish for small clusters the atomic charge is 
relatively low, but starting from n=8 the charge strongly increases to about -2.5 au. All this, 
was originated from each additional bonding with the Ge atoms in the endohedral structure. 
Each additional electron captured by the metal atom are mainly associated to 5d and 6p 
electron configuration. 

  

4.4   Discussion 

Our results highlight a transition from exohedral to endohedral structures occurring at 
n = 8-12. From n=8, Ir is located at an endohedral site, but the encapsulating cage of 
germanium is fully closed at n = 12. This structural modification strongly affects the 
electronic properties. The atomic charge and the electron configuration on the metal atom 
have been estimated through a natural population analysis [139] (Table Ⅳ.2). For smaller 
cluster, Ir is located on exohedral site, and its atomic charge is relatively low (between -0.5 
and -1 |e|). But, starting from n = 8, the charge strongly increases to about -2.5 a.u. The 
transition at n = 8 appears clearly, as qIr increases from -1.06 to -2.10|e| for n = 7 and 8 
respectively. Each additional bonding with Ge leads to an increase of the electronic charge on 
Ir. In the doublet state, the electron configuration of the isolated atom Ir is 6s15d8. The 
additional electrons captured by the metal atom are mainly associated to 5d and 6p electron 
configurations. In cage-like structure, the gain on 6p becomes dominant. The large atomic 
charges indicate that the metal interacts with several Ge atoms, thus playing a stabilizing role 
of the Gen cage. 

 Among all IrGen clusters, IrGe13 presents a relatively high stability. It has the larger 
binding energy (Figure 4.2), a relatively high second-order energy difference (Figure 4.3), and 
relatively high values for VIP, EAV, and chemical hardness (Figures 4.5-4.7). Beside its 
atomic structure belongs the C4v symmetry group. In Figure 4.8, we give the density of states 
(DOS) together with the Kohn-Sham orbitals calculated at PBE/cc-pvtz(Ge)/LanL2DZ(Ir) 
level. Electronic shells can easily be identified, with their S, P, D, F, and G character. 
Actually, the reorganization of the valence electrons from Ge and Ir atoms, i.e. 3sGe, 3pGe and 
5dIr, 6sIr electrons, leads to a shell structure where orbitals are delocalized on the whole 
cluster. Hence, the 61 electrons fill the sequence 1S2 1P6 1D10 1F14 2S2 2D10 2P6 1G11. Such a 
pooling of electrons has been already found for VGe14 [73], CuGe10 [72], PdGe16 [131]. 

 To further characterize the clusters, we present in Figure 4.9 and Figure 4.10 the 
absorption spectra of IrGen. For the molecule IrGe, the first optical transition is found at 3.6 
eV, it corresponds to the excitation from dIr to sIr + pGe orbitals. Then, there is a transition at 
4.75 eV with very low oscillator strength, and the absorption becomes intense from 5.7 eV. 
Most of excitations between 5 and 10 eV correspond to transitions from dIr to sIr + pGeorbitals 
as well. To our knowledge, no experimental and theoretical data is available. For all clusters, 
a strong response in found in the UV range of energy. When the number of Ge atoms and the 
number of Ir-Ge bonds increase, the density of states become much higher. Thus, the 
absorption spectra of endohedral structures show an increasing response in the UV. For 
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IrGe13, a first optical excitation is calculated at 3.55 eV, which corresponds to the transitions 
from the shells 2P and 2D to the unfilled 1G shell. Between 4 and 5 eV, several excitations 
from the super shell 1G to 1H are observed. In a very recent work, we have showed that the 
absorption spectra of PdGen and PtGen are few dependent on the position of the metal atom 
(exo versus endohedral position), while the density of states is much higher in the case of 
surface-bound metal due to a lower symmetry of the structure. The low dependency of the 
absorption spectra on the geometrical structure can be explained by the electronic 
arrangement which tends to favor the pooling of valence electrons and the organization in 
shells where electrons occupy orbitals fully delocalized over the whole volume of the cluster. 
The pooling of electrons is likely to be somewhat independent of the details of the structure, 
and consequently the optical absorption as well. 

 

Conclusions 

We have performed a systematic investigation of the geometry and the electronic 
properties of the iridium-doped germanium clusters by using DFT calculations. The growth 
pattern shows that the iridium atom occupies a peripheral position for very small clusters (n < 
8). For n ≥ 8, Ir moves to the endohedral position and becomes highly coordinated. From 
n = 12, it is completely encapsulated by the germanium cage. The substitution of one Ge atom 
by one Ir atom enhances considerably the stability of the host cluster. The calculated binding 
energy, the second-order energy difference, the HOMO−LUMO gaps and vertical ionization 
potential and electron affinities manifest the large stability of the IrGe6,13,15 clusters. The 
HOMO-LUMO gap calculations show that the chemical activity of IrGen clusters is generally 
higher than that of the corresponding pure Gen+1clusters. The optical absorption spectra 
highlight a strong response in the UV domain. 
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4.5   Comparative study on germanium doped clusters   

 Big number of studies are available in the literature which made investigations on 
different metal substituted in germanium clusters as presented previously which analyzed 
several properties, the thing that show us the significant attention that have Ge-based 
materials garnered recently. 

V    Cu 
Nb Ru Rh Pd Ag 
Ta  Ir Pt Au 

 

The table above collects some of the transition metals which were used as doping 
agent in germanium clusters made by our group and will be our candidate in this comparative 
study. As it is clear we will examined the effect of the substitution of the Ge atoms by a 
transition atom situated in the same column in the periodic table (Z    ). The most majority of 
these studies were made at the DFT level using the Perdew-Burke-Ernzerhof (PBE) 
exchange-correlation density functional [112] using GGA approximation, all packaged in 
Siesta simulation code [18]. As known, germanium atoms interact with each other through sp3 
hybridization, which assume that pure germanium clusters are not able to form cage 
structures; thus, the suggestion to be doped with transition atom or substituted by an atom like 
our case will be somehow very helpful in improving stability of making cages and tailor their 
properties to be used as building blocks for cluster-assembled materials. 

Systematic study was made by substituting vanadium atom into germanium clusters 
(n=1-19) and compared to the germanium pure clusters [73]. The study enhances the large 
stability of the VGe14 cluster, which presents an Oh symmetry cage-like geometry and a 
peculiar electronic structure in which the valence electrons of V and Ge atoms are delocalized 
and exhibit a shell structure associated with the quasi-spherical geometry. Furthermore, an 
investigation on noble doped germanium clusters was realized [72], whereas results highlight 
the great stability of the CuGe10 cluster in a D4d structure. While that of AgGe15 and AuGe15 
which also presenting a hollow cage high stability but are less stable comparing to CuGe10 
cluster.  

In the same size and class range of transition doped clusters MGen (M= Nb and Ta) 
[120], endohedral structures in which the metal atom is encapsulated are favored for the most 
stable clusters namely, NbGe15 and TaGe15 which BE (NbGen) < BE (TaGen). In the case of 
Ru and Rh doped germanium clusters a good stability was obtained for RuGe11, RhGe12 and 
RhGe14 [140]. Moreover, in this thesis we showed of the remarkable most stable clusters 
which was in the case of MGen (M=Pd,Pt) with n =10, 12, 16 and 18 [131] and n=13 in the 
case of Ir doped germanium, which presents a high-symmetry cage-like geometry and a 
peculiar electronic structure in which the valence electrons of Ir and Ge atoms are delocalized 
and exhibit a shell structure[141]. 

The figure (4.11) shows the binding energy of different metal doped germanium 
clusters, it is clear that the growth pattern gain stability for n ≤ 6 and referring to nature of the 
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metal we have particular behavior. As n grow over 6 we see a slow rate until n =19. 
According to binding energy Ag and Au doped Gen atoms reveal a low stability among all 
other clusters, so for Ru, Ir and Ta doped germanium clusters they shows high stability 
comparing to the rest of clusters. Likewise, among all the clusters seeing here, TaGe15 
appeared to be the most stable one. Common characteristics in TMGen can be drawn; almost 
the most stable germanium doped clusters present an endohedral cage-like structure which the 
metal atoms occupy the center of the cage. Electronically, a peculiar structure is noticed in 
which the valance electron of the metal and Ge atoms are delocalized and exhibit a shell 
structure. 
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Fig (4. 11): Binding energy per atom (Eb) for the ground-sate isomers of Gen [73] and MGen 
(M=V [73], Nb, Ta [120], Ru, Rh [140], Pd, Pt [131], Ir [141], Au, Ag and Cu [72] and n=1-19) 
clusters. 
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 In the case of the Homo-Lumo Gap we distinguish an oscillating behavior for the 
entire candidates, in which the electronic gap is oscillating between 0.15 eV and 2.45 eV 
which means between a near metallic and semiconductor behavior. Pronounced clusters with 
large gap are easy to be pulled, naming for PdGen we have n= 5, 7, 9 and 16, and for PtGen 
we have n= 1, 4, 7, 10 and 16. 1.5eV gap was gotten for VGe14. In the near metallic nature of 
MGen clusters we can distinguish MGe2 (with M= Cu, Au, Ag) and for MGe5 we have M=Ir 
and Rh as well as IrGe8, other clusters such as MGe12 (M= Ag, Ta, Cu), a gap of 0.15 eV was 
noticed for NbGe13 which making him very easy to be exited. Moreover, MGe14 (M= Au and 
Ag), AgGe16 and NbGe18 shows low HOMO-LUMO Gap.  
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Fig (4. 12): HOMO-LUMO gaps (∆E) for the ground-sate isomers of [73] and MGen (M=V [73], 
Nb, Ta [120], Ru, Rh [140], Pd, Pt [131], Ir [141], Au, Ag and Cu [72] and n=1-19) clusters. 
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Further in the literature, several investigations were made to study the effect of doping 
germanium clusters with different transition metal using various methods. Jin Wang and Ju-
Guang Han [77] affirmed the high stability of CuGe10 investigated theoretically at the 
UB3LYP level employing [142, 143] LanL2DZ basis sets, which is confirmed by the 
experimental measurement of the CoGe10−isomer [116]. In another work and using the same 
approach, investigating Ni-doped germanium clusters [83] they found that the most stable 
cluster was for n=10. Furthermore, in a work which looked into cobalt doped germanium 
clusters where the exchange-correlation interaction was treated within the generalized 
gradient approximation (GGA) using PW91 functional [144], several properties of the GenCo 
clusters was evaluated and find that the Ge10Co cluster show the strongest stability among 
these clusters [78], which agrees very well with the experimental results [145]. In an 
application of germanium clusters doped with dual transition metal for CO oxidation, Zhou et 
al [12] investigated for the first time M2Ge12 (M=Cr, Mn, Fe, Co and Ni) and were proved to 
be a good candidate in CO oxidation catalysts on being rigid to segregation, stable in the 
reactions and exhibit a satisfied thermal stability. In another research paper, using linear 
combination of atomic orbital’s where the exchange-correlation potential was incorporated by 
GGA proposed by Lee, Yang and Parr popularly known as B3LYP [143] using multiple bases 
sets. Different properties was studied on MoGen clusters [146] which announce the MoGe12 
with hexagonal prism like structure to be the most stable isomer possesses strong aromatic 
character and predicted to be a good candidate Mo-based cluster assembled materials.        
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General conclusion 

In this thesis work we have presented a comprehensive investigation of the structural, 
electronic and optical properties of Pd, Pt and Ir atoms substituted in two-dimensional and 
three-dimensional structures of germanium clusters in range size of 2 to 21 atoms. Applying 
ab initio calculation methods with the use of DFT tool basing on different approximation 
under the use of SIESTA code, we described the physical and the chemical properties linked 
to such of semiconductor which include transition metals as impurities successfully. 

 In the case of Pd and Pt atoms in the MGen clusters a transition from exohedral to 
endohedral structures of PdGen and PtGen was remarked for n=10 and n=11, respectively, 
which leads to totally different electronic properties related to the variation in the structure. 
The atomic charges on metal atoms have been estimated through a natural population analysis 
(NPA). For instance, when the Pd atom move from a surface site to an endohedral position the 
atomic charge increases from −0.1 to −1.6 a.u., which in the case of Pt atom is about −0.4 to 
about −1.7 a.u. for the exohedral and endohedral structures, respectively. Further and as 
shown before the electrons captured are mainly associated to 5p or 6p electron configurations 
after interacting with several Ge atoms, which to say that the transition metal atom eliminates 
the dangling bonds of germanium atoms.  

Interestingly, PdGe16 and PtGe16 present a relatively high stability. They have the 
highest stability from both the binding energy and the second-order energy difference. They 
also show a relatively high HOMO-LUMO gap, and a large chemical hardness. In the case of 
PdGe16 a density of states (DOS) and the Kohn-Sham orbitals were calculated. Its spherical 
structure was an exhibition of a shell structure due to the 10 valence electrons of Pd and the 3s 
and 3p valence electrons of Ge. We also distinguished easily the character of the orbitals, 
though there are some little deviations from a perfect sphere due to explicit location of atoms 
and the Cs symmetry instead of Kh (the symmetry of the atom). The 74 valence electrons of 
the cluster are organized with the following occupations: 1S2 1P6 1D10 1F14 2D10 2S2 2P6 1G18 
1H6. The number of electrons does not fit with shell closings numbers, but the pooling of 
electrons and the organization in shell contributes to the high stability of the cluster. Similar 
results are found for PtGe16. As well and in order to discriminate endohedral and exohedral 
structures, we have calculated the UV–visible absorption spectra of both cage-like and 
surface-bound metal structures. Spectra are made for PdG16 and PdGe10. Unfortunately, they 
are found to be only few dependent on the position of the metal atom, while the density of 
states is much higher in the case of surface-bound metal due to a lower symmetry of the 
structure. Spectra show a slowly increasing response in the visible and near UV domain, and a 
strong signal above.  

In the sample of Ir atom substituted in Gen clusters with the same size range, we 
highlight a transition from exohedral to endohedral structures occurring at n = 8-12. From 
n=8, Ir is located at an endohedral site, but the encapsulating cage of germanium is fully 
closed at n = 12. And as it is shown previously, the electronic properties of the cluster are 
strongly affected by the structural modification. Thus, the atomic charge and the electron 
configuration on the metal atom have been estimated through a natural population analysis 
(NPA). For smaller cluster, Ir is located on exohedral site, and its atomic charge is relatively 
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low (between -0.5 and -1 |e|). But, starting from n = 8, the charge strongly increases to about  
-2.5 a.u. The transition at n = 8 appears clearly, as qIr increases from -1.06 to -2.10|e| for n = 7 
and 8 respectively. Each additional bonding with Ge leads to an increase of the electronic 
charge on Ir. In the doublet state, the electron configuration of the isolated atom Ir is 6s15d8. 
The additional electrons captured by the metal atom are mainly associated to 5d and 6p 
electron configurations. In cage-like structure, the gain on 6p becomes dominant. The large 
atomic charges indicate that the metal interacts with several Ge atoms, thus playing a 
stabilizing role of the Gen cage. Among all IrGen clusters, IrGe13 presents a relatively high 
stability. It has the larger binding energy, a relatively high second-order energy difference, 
and relatively high values for VIP, EAV, and chemical hardness. Beside its atomic structure 
belongs the C4v symmetry group. Furthermore, we made the density of states (DOS) together 
with the Kohn-Sham orbitals calculated at PBE/cc-pvtz(Ge)/LanL2DZ(Ir) level. Electronic 
shells can easily be identified, with their S, P, D, F, and G character. Actually, the 
reorganization of the valence electrons from Ge and Ir atoms, i.e. 3sGe, 3pGe and 5dIr, 6sIr 
electrons, leads to a shell structure where orbitals are delocalized on the whole cluster. Hence, 
the 61 electrons fill the sequence 1S2 1P6 1D10 1F14 2S2 2D10 2P6 1G11. To further characterize 
the clusters, we presented the absorption spectra of IrGen. For the molecule IrGe, the first 
optical transition is found at 3.6 eV, it corresponds to the excitation from dIr to sIr + pGe 
orbitals. Then, there is a transition at 4.75 eV with very low oscillator strength, and the 
absorption becomes intense from 5.7 eV. Most of excitations between 5 and 10 eV correspond 
to transitions from dIr to sIr + pGe orbitals as well. To our knowledge, no experimental and 
theoretical data is available. For all clusters, a strong response is found in the UV range of 
energy. When the number of Ge atoms and the number of Ir-Ge bonds increase, the density of 
states become much higher. Thus, the absorption spectra of endohedral structures show an 
increasing response in the UV. For IrGe13, a first optical excitation is calculated at 3.55 eV, 
which corresponds to the transitions from the shells 2P and 2D to the unfilled 1G shell. 
Between 4 and 5 eV, several excitations from the super shell 1G to 1H are observed. And as 
we have showed in the absorption spectra of PdGen and PtGen that they are few dependent on 
the position of the metal atom (exo versus endohedral position), while the density of states is 
much higher in the case of surface-bound metal due to a lower symmetry of the structure. The 
low dependency of the absorption spectra on the geometrical structure can be explained by the 
electronic arrangement which tends to favor the pooling of valence electrons and the 
organization in shells where electrons occupy orbitals fully delocalized over the whole 
volume of the cluster. The pooling of electrons is likely to be somewhat independent of the 
details of the structure, and consequently the optical absorption as well. 

Perspectives  

Our main goal in the realization of this thesis was to have a look into the richness of 
germanium clusters properties and as well the modifications when substituting transition 
atoms into it. We tried to understand and explain the origin of the remarkable stability and 
varied like structures with the capability of such clusters to respond to an optical excitation 
with variant super shell excitation to predict eventual building blocks in purpose to use them 
as assembled units for nanomaterials. One of the perspectives is to make studies about the 
previous clusters or the most remarked one on the adsorption on different monolayer’s 
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surfaces of chosen element or even compounds with specific uses in the nano-industry. 
Further investigation on the possible use of stable clusters of Pd, Pt and Ir doped germanium 
cage-like in opto-catalytic application and why not to use them on oxydo-reduction of nitric 
oxide (NO), and carbon monoxide (CO). At the attention to make an experimental work 
according to this class of matter and developing new areas of application.      
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Abstract  

Structural, electronic and optical properties of germanium clusters doped with palladium, 
platinum and Iridium atoms MGen (M= Pd, Pt and Ir , n=1–20) are investigated in the framework 
of the density functional theory. From n≥10 for Pd or 11for Pt or n≥12 for Ir, the cage like 
structures where the doping atom is totally encapsulated inside a Gen cage are favored. Relative 
stabilities of different MGen clusters have been analyzed from the average binding energies, 
second energy differences, HOMO–LUMO gap, and the vertical ionization potential and 
electronic affinity. Our results show that the clusters of MGen (M= Pd, Pt) with n=10, 12, 16 and 
18 exhibit relative high stability, in which for Ir we highlight the great stability of IrGe13 which 
presents a high-symmetry cage-like geometry and a peculiar electronic structure in which the 
valence electrons of Ir and Ge atoms are delocalized and exhibit a shell structure. Optical 
absorption spectra are predicted to be unable to discriminate the endohedral and exohedral 
structures. 

Resumé 

Les propriétés structurales, électroniques et optiques des clusters de germanium dopés avec des 
atomes de palladium, de platine et d'iridium MGen (M = Pd, Pt et Ir, n = 1–20) sont étudiées dans 
le cadre de la théorie de la fonctionnel de densité. A partir de n ≥ 10 pour Pd ou 11 pour Pt ou n 
≥ 12 pour Ir, les structures en forme de cage où l'atome dopant est totalement encapsulé à 
l'intérieur d'une cage Gen sont favorisées. Les stabilités relatives de différents groupes de MGen 
ont été analysées à partir des énergies de liaison moyennes, des différences d'énergie secondaire, 
de l'écart HOMO – LUMO et du potentiel d'ionisation verticale et de l'affinité électronique. Nos 
résultats montrent que les clusters de MGen (M = Pd, Pt) avec n = 10, 12, 16 et 18 présentent des 
stabilités relatives élevées. Dans le cas de Ir, nous soulignons la grande stabilité d'IrGe13 qui 
présente une haute symétrie en forme de cage géométrie et une structure électronique particulière 
dans laquelle les électrons de valence des atomes Ir et Ge sont délocalisés et présentent une 
structure de coque. Les spectres d'absorption optique ne permettent pas de distinguer les 
structures endohédriques et exohédriques. 

 ملخص

ة بواسطة ذرات البلاديوم والبلاتين دعمتمت دراسة الخواص التركيبية والإلكترونية والبصرية لمجموعات الجرمانيوم الم
 Ptلـ  ≤n 11و  Pdلـ  n≥10من . في إطار نظرية الكثافة الوظيفية MGen (M = Pd و Pt و n = 1-20 ،Ir(  والإيريديوم

تات باتم تحليل الث. Gen من بالكامل داخل قفص دعةذرة المالحيث يتم تغليف القفص  لمث الهياكلفضل ت،  Irلـ  n≥12أو 
-HOMOالثانية ، وفجوة  من الدرجة طاقات الربط ، واختلافات الطاقةالمختلفة من متوسط  MGenالنسبية لمجموعات 

LUMO تظهر نتائجنا أن مجموعات . ، وإمكانات التأين الرأسي والتقارب الإلكترونيPdGen  وPtGen \ معn = 10  12و 
الذي يقدم قفصًا  IrGe13على الاستقرار الكبير لـ  Ir حالة الحيث نسلط الضوء بالنسبة لـ نسبيًا،تظُهر ثباتاً عاليًا  18و  16و 

رض بنية حيث يع Geو Ir يتم فيه فصل إلكترونات التكافؤ لذرات دريفوهيكل إلكتروني  ياهندسكرة عالي التماثل يشبه ال
 .من المتوقع أن تكون أطياف الامتصاص البصري غير قادرة على التمييز بين الهياكل الداخلية والخارجية. يةغلاف

Agzul 

Nexdemtazrawt i wayla n tsekka taliketrunit d usekdan i wegraw n jirmaniyum s ubelkam n 
bladinyum, blatinyum akked iridyum MGen (M=Pd, Pt, Ir, n=1-20) degukatay n tezri n tanezzi 
tawurant seg n ≥ 12 i Ir, tisekkiwin yesɛan talɣa n ukatayneɣ abelkam yesɣaɣen ɣument akk 
zedaxel n ukatay Gensnirfent. Arkad n yigrawen yimgaraden n MGe selḍent s wafud n wassaɣ 
alemmas, ifuden yemgaraden isnayen n uceqqiq HOMO- LUMO, s tawil n ubeddel s tbeddi d 
uqerreb aliktruni tbanen-d igmaḍ belli MGen (M=Pd, Pt) d n=10, 12, 16, 18 tbeyyinen-d arkad d 
ameqqran cwiṭ, iban-d s telqay. Deg tegnit n Ir iban-d urkad d ameqqran i IrGe13 itebyyin-d 
azamul anǧi s talɣa n ukatay amenzag d tsekka taliktrunit anda izarumayen n umsawi n 
yibelkimen Ir d Ge bedlen yerna beynen-d tasekka n yiqcer. Aylalen n useblaɛ asekdan ur 
aɣtaǧan ara ad nsemgired tisekkiwin n zdaxel d berra.  


