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Chapter 1

Introduction

1.1 Background

The Internet of Things concept has been established since the founding of the Auto-

ID Center at the Massachusetts Institute of Technology (MIT) in 1999. The Auto-ID

Center created the electronic product code (EPC) number, which depends on radio

frequency identification (RFID), in 2003. This idea is the crucial technology of the

Internet of Things (IoT)[10]. In the IoT concept, everything real becomes virtual,

which means that every person and physical object has a locatable, addressable, and

readable counterpart on the Internet. These virtual entities are interconnected with

each other exploiting their standard underlying technologies, such as ubiquitous

and pervasive computing, embedded devices, communication technologies, sensor

networks, and Internet protocols [11][12]. Besides, the entities in IoT can produce

and consume services and collaborate toward a common goal thus allowing providing

various applications.

Actually, IoT is used in almost all fields such as assisted living, e-health, automa-

tion and industrial manufacturing, logistics, intelligent transportation of people and

goods, prediction of natural disasters, agriculture application, etc. It has been pre-

dicted that there will be billions of IoT smart objects connected to the Internet

generating more than 45% of the entire Internet traffic [11][3]. The report by For-

rester 1 states that in 2010 the number of devices connected to the Internet surpassed

the earths human population. It predicts that there will be a huge growth in the IoT

industry in the next years. Furthermore, the report by Symantec 2 states that there

will be up to 21 billion connected devices by 2020 where cities and companies will

start adopting smart technologies in their operations. Garner 3 reports that more

than 26.66 billion IoT devices were active in 2020, and it is expected that there will

1https://www.forrester.com
2https://us.norton.com/
3https://www.gartner.com
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be 75 billion IoT devices in the world by 2025.

Noticeably, the numerous noise presences across almost all industrial scenarios

make the use of Low-Power and Lossy Networks (LLNs) inevitable for IoT. Indeed,

LLNs are one of the main building blocks of the IoT [2]. They are made of a collec-

tion of interconnected embedded resource-constrained devices, such as sensor nodes

with low computational and storage capabilities and are often battery operated. In

addition, communication technologies are subject to high packet loss, frame size

limitations, low data rates, short communication ranges, and dynamically changing

network topologies. Another challenge faced by LLNs is their isolation from the IP

world, as IP was not developed to be used considering the LLNs’ limitations. To ad-

dress this issues, the IPv6 Low Power Wireless Personal Area Network (LoWPAN)

Working Group (WG) has been created by the Internet protocols standardisation

body IETF (Internet Engineering Task Force) to introduce the IPv6 over Low-power

Wireless Personal Area Network (6LoWPAN) standard, thus allowing the support

of IP-based networking over constrained communication technologies such as the

IEEE 802.15.4 standard [13][14][15][16][17].

Given that routing protocol is one of the main pillars of networking architecture,

and because the development of efficient routing solutions for LLNs is crucial [16] [18]

[17], several attempts have been proposed like the Collection Tree Protocol (CTP)

[19] and the Hybrid Routing Protocol for LLNs (Hydro) [20]. It has been found that

these protocols are too inefficient for satisfying requirements of overhead, power,

reliability and latency [18]. Ultimately, the IETF Routing Over LLNs (ROLL) WG

has designed and standardised the Routing Protocol for LLNs, namely the Routing

Protocol for Low-Power and Lossy Networks (RPL) [21] [22]. The ROLL WG focuses

only on routing for general IPv6 and 6LoWPAN networks. Thus, the terminology

used in ROLL differs from 6LoWPAN terminology, for example LLN instead of

LoWPAN and (LLN) Border Router instead of (LoWPAN) Edge Router.

RPL is a distance vector routing protocol that organises the physical network into

a logical representation. It builds and maintains a Destination Oriented Directed

Acyclic Graph (DODAG) topology using new ICMPv6 control messages. Besides,

RPL provides self-organising and self-healing mechanisms. Nonetheless, RPL is

characterised by its resource-constrained nature and the lack of tamper resistance.

Furthermore, it does not consider nor ensure the network security through routing

repair mechanisms, and the network will be unable to respond in a timely manner

after an attack. Consequently, malicious nodes can exploit the RPL’s operations to

trigger several attacks that can damage severely the LLNs.
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1.2 Motivation and Problem Statement

LLNs is a key actor in the realisation of the IoT concept allowing the deployment

of a wide spectrum of services and applications that would make the human life

easier and more flexible. However, though IoT inherits all the advantages of LLNs

and sensor networks, unfortunately, it inherits the disadvantages being vulnerable

to external attacks from the Internet and internal attacks from the LLNs [11]. In-

deed, compromising a single object and/or communication channel in an LLN can

paralyse the part or complete network. Specifically, a compromised device may ex-

ploit RPL control messages and operations to cause other devices perform heavy

computations and disrupt the established network routes. Clearly, the increasing

deployment of IoT in all emerging sectors and the danger exposed by these connected

things render enabling reliable, secure, and intrusion-tolerant routing inevitable in

such unpredictable environment [11][23]. Actually, security and manageability are

extremely important as LLNs are typically autonomous.

Since the introduction of RPL, several studies have reported that it suffers from

various limitations and weaknesses that make it vulnerable to a large spectrum

of attacks (i.e., intrusions) [24][25][26][27]. The traditional mechanisms such as

cryptography can be used to protect RPL from outside attackers. However, they are

insufficient and inadequate to protect RPL from inside attackers. As a consequence,

intrusion detection and tolerance mechanisms are required to secure RPL.

Indeed, objects should be able to defend themselves against network attacks. As

a result, routing protocols such as RPL should incorporate mechanisms that respond

to abnormal situations and allow objects to be able to use intrusion detection systems

(IDSs) and other defensive mechanisms to ward off attacks. Thus, IDSs should be

used as the last line of defence. Besides, IDSs can be adaptable depending on needs

and can be enhanced with Machine Learning (ML) techniques in addition to other

advanced technologies.

Therefore, the aim of this thesis is to address the security gaps of the RPL

standard as it is one of the most popular routing protocol for resource constrained

networks in the context of IoT. The main objective is to enhance RPL with intrusions

detection and tolerance mechanisms that are based on ML and RPL specification

to immediately detect and/or respond to potential threats.

1.3 Contributions

Considering the need for a standardised and secure IoT ecosystem especially with

the significant growth in the number of connected devices, RPL has emerged as a

key protocol to maintain routing for IoT-LLNs. Nevertheless, the latter has many
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security issues that need to be tackled. Therefore, we focus our contributions on

the RPL standard security enhancement. We began by conducting a comprehen-

sive review of the IoT and RPL security issues that results in the three following

contributions:

• F. Medjek, D. Tandjaoui, M. R. Abdmeziem, and N. Djedjig, Analytical

evaluation of the impacts of sybil attacks against rpl under mobility, in: 2015

IEEE 12th International Symposium on Programming and Systems (ISPS),

2015, pp. 1–9. [28] .

• F. Medjek, D. Tandjaoui, I. Romdhani, N. Djedjig, Performance evaluation of

rpl protocol under mobile sybil attacks, in: 2017 IEEE Trustcom/BigDataSE/ICESS,

2017, pp. 1049–1055. doi:10.1109/Trustcom/BigDataSE/ICESS.2017.351. [29].

• F. Medjek, D. Tandjaoui, I. Romdhani, N. Djedjig, Security threats in the

internet of things: Rpl’s attacks and countermeasures, in: Security and Privacy

in Smart Sensor Networks,IGI Global, 2018, pp. 147–178. doi:10.4018/978-1-

5225-5736-4.ch008. [27].

In the first and second papers we introduced a new attack against RPL, named

SybM attack, and evaluated its impacts on the RPL-based networks analytically [28]

and with simulation [29]. The third paper is a book chapter that provides necessary

details to understand IoT and its security issues, while focussing on RPL security.

It starts by presenting the IoT applications, characteristics, standardised protocols,

and security requirements. Then, it lists the attacks corresponding to each layer

of the IoT three-layer architecture with a particular focus on the network layer

and the routing protocol. Furthermore, the paper surveys, analyses, and classifies

the existing and new threats against RPL. It discusses countermeasures and IDS

solutions to tackle RPL attacks.

We proposed a first IDS approach for RPL security based on trust that has been

the subject of the following publication:

• F. Medjek, D. Tandjaoui, I. Romdhani, and N. Djedjig, A trust-based in-

trusion detection system for mobile rpl based networks, in: 2017 IEEE 10th

International Conference on Internet of Things (iThings-2017), 2017 [30].

In this work, we proposed an architecture for a trust-based IDS for RPL under

mobility constraint, named T-IDS. The key focus of the IDS is to detect and counter

the SybM attack defined in our previous works. We introduced the actors in T-IDS

and detailed each module of our IDS strategy. First, we described the identity and

mobility management modules. Then, we presented the IDS module that is enriched

with three appending: i) a trust-based RPL scheme to select only trusted nodes for
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routing, ii) a multicast defence scheme to prevent and tolerate multicast-related

attacks such as SybM, and iii) a cross-layer scheme to eliminate malicious nodes at

the link layer.

As T-IDS is a specification-based IDS, it can only detect specific attacks. Nev-

ertheless, there are continues novelties in terms of threats against RPL, which ne-

cessitates a more sophisticated IDS such as the anomaly-based one. The next step

was the following journal paper:

• F. Medjek, D. Tandjaoui, N. Djedjig, I. Romdhani, Fault-tolerant ai-driven

intrusion detection system for the internet of things, International Journal of

Critical Infrastructure Protection (IJCIP) 34 (2021) 100436.

In this work, we defined the RPL attacks that threaten the most its functionali-

ties. In order to implement a security mechanism based on ML, we needed a dataset

to use for the classifiers training. However, there is a lack of availability or privacy

of developed RPL related datasets. Consequently, we implemented different attacks

and generated one-class and multi-class datasets for RPL. In order to choose the

best ML algorithm for our needs, we experimented various algorithms in a binary

and multiple classification using the generated dataset. In addition, we designed

RF-IDSR, the intrusions detection and tolerance system for RPL. RF-IDSR has two

parts; intrusion detection part and intrusion tolerance part. On the one hand, the

intrusion detection part implements the ML-based IDS to detect several routing

attacks. On the other hand, the intrusion tolerance part implements mechanisms

(algorithms) to tolerate specific routing attacks against RPL. The latter allow RPL

itself to reduce or eliminate the effects of the attacks on the network’s performance.

As continuity to our work, we introduced and implemented an intrusion toler-

ance mechanism named RPL-MRC to mitigate multicast-related attacks. Our last

contribution was the following:

• F. Medjek, D. Tandjaoui, N. Djedjig, I. Romdhani, Multicast DIS Attack

Mitigation in RPL-Based IoT-LLNs, Journal of Information Security and Ap-

plications (JISAS) 61 (2021) 102939.

The proposed approach introduces a response delay mechanism and an RPL’s

timer readjustment mechanism to tolerate and counter Multicast related attacks.

1.4 Organisation of the Thesis

The remainder of this thesis is organised into four chapters as follows:
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Chapter 2: Background: The Internet of Things, Intrusion

Detection Systems, and Machine Learning

Chapter 2 presents a background on the IoT paradigm; definitions and applications,

characteristics and standardised protocols, and its security challenges. In addition,

this chapter provides the preliminary information about the definitions relevant

to IDSs, the different types of IDSs and the detection techniques used in these

systems. Finally, the chapter enables the reader to gain the necessary background

for understanding the machine learning concepts and the algorithms used in this

thesis.

Chapter 3: The IPv6 Routing Protocol for LLNS (RPL):

Overview, Security Issues, and State-of-the-art Solutions

This chapter presents an overview of the RPL protocol and a taxonomy of attacks

specific to the RPL protocol. In addition, it discusses different defence solutions to

tackle RPL attacks while focusing on intrusion detection systems.

Chapter 4: RPL’s Performance under DIS and SybM Attacks

and New Approach for the Intrusions Tolerance

As a response to the fact that there is a lack of study of the RPL performance

under mobile attack, this chapter introduces SybM, a DIS-Sybil attack against RPL

with mobile Sybil nodes. The chapter presents an analytical and a simulation-

based performance evaluations of RPL under SybM attack and a discussion on how

the network performance can be affected. Furthermore, the chapter describes and

assesses a novel approach, namely RPL-MRC, to improve the RPL’s resilience to

both DIS and SybM intrusions.

Chapter 5: Intrusion Detection and Tolerance Systems for

RPL’s Security

This chapter introduces two IDS solutions to detect and tolerate attacks against

RPL networks. The first approach, named T-IDS, is a specification-based cross-

layer trust-based IDS that copes with the RPL’s security issues related to the lack

of mobility and identity management mechanisms for RPL. The second approach

that represents our main contribution is named RF-IDSR. It is an anomaly-based

intrusion detection and tolerance system that uses machine learning techniques.
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Chapter 6: Conclusions and Perspectives

This chapter concludes the dissertation by summarising the key contributions and

discussing some directions for future work.
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Chapter 2

Background: The Internet of

Things, Intrusion Detection

Systems, and Machine Learning

This chapter presents a thorough background on the IoT paradigm and its security

issues. Besides, it provides the preliminary information about the definitions relevant

to IDSs, the different types of IDSs and the detection techniques used in these

systems. Finally, the chapter enables the reader to gain the necessary background

for understanding the machine learning principle.

2.1 The Internet of Things (IoT)

2.1.1 IoT Definition

The Internet of Things (IoT) concept was coined in 1999 by Kevin Ashton. The

basic idea is that smart, low-power and low-processing objects (things) are able to

interconnect, interact, cooperate with each other, and transfer sensing data to the

Internet using compatible and heterogeneous wireless technologies, where computing

and communication systems are seamlessly embedded [31]. Thus, any electronic de-

vice and anything such as mobile devices, home objects (e.g., fridges, dish washers,

etc.), temperature control devices, cloth, food, animals and trees are now equipped

with sensing, communication, computing and/or processing capabilities. The fact

of building a digital counterpart to any entity and/or phenomena in the physical

realm enables IoT objects to communicate and interact via wireless technologies

such as RFID (Radio Frequency IDentification), ZigBee, WSN (Wireless sensor net-

work), WLAN (wireless local area network), NFC (Near Field Communication),

DSL (Digital Subscriber Line), GPRS (General Packet Radio Service), LTE (Long

Term Evolution), Bluetooth, or 3G/4G [32][12].

8
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Indeed, there exist different IoT definitions and architectures provided by various

standards and industrial organisations. The Institute of Electrical and Electronics

Engineers (IEEE) defines the IoT as a collection of items with sensors that form

a network connected to the Internet [33][34]. The European Telecommunications

Standards Institute (ETSI) uses ”machine-to-machine (M2M)” rather than using

the expression “Internet of Things”. ETSI defines M2M communications as an

automated communications system that makes decisions and processes data opera-

tions without direct human intervention [35]. Cisco organisation, uses the expression

”Internet of Everything (IoE)” and defines it as a network that consists of people,

data, things, and processes, where information and actions are created in and moved

through this network [36].

This last decade, several IoT architectures have been proposed in the literature

[3]. For instance, the middleware-based architecture, the Service Oriented Architec-

ture (SOA-based) and the five-layer architecture. This latter divides the structure

of IoT into five layers: the perception, sensing or device layer, the network, trans-

mission or communication layer, the middleware/service management layer, the ap-

plication layer, and the business layer as illustrated in Figure 2.1 [32]. Nevertheless,

from the pool of the proposed architectures, the basic (general) common model is the

one in Figure 2.2, known as the three-layer architecture consisting of the perception

layer, the network layer, and the application layer [3][12][32].

Figure 2.1: IoT five-layer architecture [1].

2.1.1.1 Perception/Sensing Layer

It is the core layer of IoT as it allows perceiving and collecting all kinds of information

from the physical world, using technologies such as sensors, WSN, tags and reader-
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writers, RFID system, camera, global position system (GPS), objects, and so on.

2.1.1.2 Network Layer

This layer is also called transport layer as it provides transparent data transmission

capability. It is an intermediary layer that provides an efficient, reliable, trusted

network infrastructure platform to send information from the perception layer to the

upper layer and large scale industry application using existing mobile communication

network, radio access network, WSN and other communications equipment, such

as GSM (global system for mobile communications), GPRS, WiMax (worldwide

interoperability for microwave access), WiFi, Ethernet, etc.

2.1.1.3 Application/Service Layer

This layer relies on SOA, cloud computing , and other technologies to process com-

plex data and uncertain information, such as restructuring, cleaning and combining,

and provides directory service, market to market (M2M) service, Quality of Service

(QoS), facility management, etc. Furthermore, the application transforms informa-

tion to content and provides good user interface for upper level enterprise application

and end users, such as logistics and supply, disaster warning, environmental moni-

toring, agricultural management, production management, and so on.

Figure 2.2: IoT three-layer architecture.
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2.1.2 IoT’s Applications

One of the main building blocks of the IoT are the Low-power and Lossy Net-

works (LLNs). LLNs are made of a collection of interconnected embedded resource-

constrained devices, such as RFID and sensor nodes with low computational and

storage capabilities and are often battery operated. The LLNs-IoT has a great

impact on several aspects of everyday business and personal lives, where sensor

measurements can be read, processed, and analysed. Indeed, IoT applications serve

different users needs in different contexts, as illustrated in Figure 2.3. Applications

for personal lives range from advanced health monitoring, smart leaving, enhanced

learning, to improved security. For example, in an e-health application, a patient

(inside or outside the hospital) wears a heart rate monitor, wrapped around the

chest or a smart watch on the wrist, which is continuously reading and transmitting

the heart rate sensor readings to another IoT node. Hence, the doctor can monitor

conditions of his patients in real-time, and thus, emergencies can be handled on the

fly. In a smart home, smart refrigerators can display information on ingredients to

buy or to throw away. Windows, doors and cameras can signal intrusion. Smart

televisions enable users to surf the Internet, make purchases, and share photos. Also

lights, heaters, air conditioners, and washing machines can be manipulated remotely

[3][12][31][37].

From another side, applications for business include smart cities and energy,

smart environment, smart industry and Industry 4.0 [38][39], smart health and smart

agriculture. Applications can be smarter energy management systems (smart grid)

to monitor and manage energy consumption. Smart surveillance to ensure safety.

Automated transportation by introducing smart roads. Vehicular and Industrial au-

tomation (e.g., predictions on equipment malfunction). Environmental monitoring

such as water quality monitoring and water distribution, air pollution monitoring

and fire detection. For smart tracking in supply chain management, IoT technolo-

gies such as RFID tags can be used for tracking objects from production, all the way

to transportation. Besides, in green houses, micro-climate conditions are controlled

to maximize the production and the quality of products. Also, in smart grid, effi-

cient energy consumption can be achieved through continuous monitoring of electric

consumption. In fact, smart home and e-health are the biggest potential markets

for IoT networks [3][12][31].

2.1.3 LLNs-IoT Characteristics

In the literature, there is no common definition of IoT. It is highly related to the

vision of each academic or business entity [40]. To get the IoT concept closer to

reality, the following characteristics need to be addressed
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Figure 2.3: IoT application domains.

• Heterogeneity. One important characteristic of IoT is the large heterogeneity

of devices and technologies taking part in the system. The IoT’s devices are

deployed using several hardware platforms and have different computational

and communication capabilities.

• Scalability. Since anything can be connected, the number of entities partic-

ipating in the network will dramatically increase. In this context, scalability

should be considered for identification and addressing, communication and

networking, data and information management, and security management.

• Connectivity and Ubiquity. The ubiquitous connectivity to the Internet in

IoT enables objects to access the network and exchange data using the wireless

medium. Nonetheless, these characteristics rise several challenging problems

that need to be addressed such as security and QoS.

• Self-organisation and Self-healing. Since the number of IoT objects and

their connection and location states change dynamically, IoT smart objects are

equipped with embedded intelligence allowing them to autonomously react and

self-organise themselves into transient ad hoc networks according to specific

situations, states, and to the current context. Intruders can exploit these

characteristic to trigger several attacks against IoT networks.

12



CHAPTER 2. BACKGROUND: THE INTERNET OF THINGS, INTRUSION
DETECTION SYSTEMS, AND MACHINE LEARNING

• Resources limitation. As IoT objects are characterised by their heterogene-

ity, they are different in term of energy, storage and computation capabilities.

Therefore, IoT platforms development needs to optimise and minimise the

objects energy, storage and computation usage as much as possible.

• Interoperability. In realm of IoT there are many largely distributed and

heterogeneous objects and things, with different power, processing and storage

capacities, that co-existent and need to communicate and cooperate in order to

achieve common goals. This heterogeneity and diversity in terms of capacities,

vendors/manufactures and services increases the need of conceiving systems

and protocols able to work in an interoperable way. In this context, standards

are particularly important.

• Mobility. Most of the smart devices and IoT actors are mobile. This char-

acteristic causes several changing to the network conditions, which makes it

difficult to communicate with each other. Furthermore, not handling mobility

can generate more security breach.

• Security and Privacy. As IoT is going to affect every aspect of human and

business lives, and as IoT devices generate a huge amount of data, IoT entities

should be equipped with strong security and privacy policies. This includes

securing the devices themselves (i.e., hardware), exchanged data and informa-

tion, communications and networks, and endpoints. Several complex security

mechanisms and protocols exist for different networks; however, because of

the constrained nature of IoT devices and networks only lightweight protocols

can be used to keep the balance between maximizing security and minimizing

resource consumptions.

2.2 Internet of Things Protocols

In IoT, different entities communicate over the network using a diverse set of proto-

cols and standards. Obviously, there is no one technology that is able to cover all use

cases. Different groups such as the Internet Engineering Task Force (IETF) worked

and are still working to provide and standardise protocols in support of LLNS in

the context of IoT. The following subsections outline some standards underpinning

LLNs in the field of IoT.

2.2.1 IEEE 802.15.4

The IEEE 802.15.4 standard defines low-power wireless embedded radio communi-

cations at 2.4 GHz, 915 MHz and 868 MHz. It specifies a sub-layer for Medium
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Access Control (MAC) and a physical layer (PHY) for low-rate wireless private area

networks (LR-WPAN). Due to the low power consumption, low data rate, low cost,

and high message throughput specifications, the IEEE 802.15.4 standard is used

by several IoT protocols such as ZigBee, Wireless HART, MiWi, ISA 100.11a, and

6LoWPAN. IEEE 802.15.4 has been enhanced to be the most common 2.4 GHz

wireless technology to address the emerging needs of embedded networking applica-

tions. The first version of the standard was released in 2003, and was then revised

in 2006. This later was then revised in 2011 and then in 2015. IEEE 802.15.4 at

2.4 GHz is used almost exclusively today as it provides reasonable data rates, reli-

able communication, can handle a large number of nodes, and can be used globally.

IEEE 802.15.4 networks can form various topologies, such as star, cluster-tree or

mesh (peer-to-peer). The IEEE 802.15.4 standard defines two kinds of devices in

the network: Full Function Devices (FFD) and Reduced Function Devices (RFD).

The FFD may function as a common node or it can serve as the coordinator of

a Personal Area Network (PAN or PAN Coordinator). The FFD is an extremely

simple device with very modest resource and communication requirements, and thus

cannot act as coordinator. The maximum transmission unit is 127 bytes [2][14][15].

2.2.2 IPv6 Over LoW Power Wireless Area Networks (6LoW-

PAN)

Given the potentially huge number of connected objects, IPv4 cannot be used be-

cause of its limited address space. Thus, a much better choice is to use IPv6 with

its 128-bit addresses and its ability to allow network auto-configuration and state-

less operation. Using IPv6, every smart object can be connected to other IP-based

networks, without the need for gateways or proxies. Hence, objects can define

their addresses in very autonomous manner. This enables to reduce drastically the

configuration effort and cost. Because of the limited packet size, the low power

capacity, and other constraints of IoT, the research community (6LoWPAN IETF

Working group) developed a compressed version of IPv6, named 6LoWPAN (IPv6

over LoWpower Wireless Area Networks) [13]. It is a simple and efficient mechanism

to shorten the IPv6 address size for constrained devices, while border routers can

translate those compressed addresses into regular IPv6 addresses. The 6LoWPAN

standard allows the extension of IPv6 into the wireless embedded environment. Due

to the resource constrained nature of the devices or things, 6LoWPAN network use

compressed IPv6 protocol for networking and mostly use IEEE 802.15.4 as data-

link and physical layer protocol. 6LoWPAN defines an adaptation layer between

IPv6 and IEEE 802.15.4 (MAC/PHY layer). It defines IPv6 header compression by

removing a lot of IPv6 overheads, and specifies how packets are routed in wireless
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networks that use the IEEE 802.15.4 protocol. It also defines fragmentation of IPv6

datagram when the size of the datagram is more than the IEEE 802.15.4 Maximum

Transmission Unit (MTU) of 127 bytes [13]. Figure 2.4 and Figure 2.5 show the

6LoWPAN architecture and protocol stack, respectively.

Figure 2.4: 6LoWPAN architecture [2].

Figure 2.5: 6LoWPAN protocol stack.

2.2.3 Routing Protocol for Low-Power and Lossy Networks

(RPL)

The Routing Protocol for Low-Power and Lossy Networks (RPL) is the first stan-

dardised routing protocol mainly targeting 6LoWPAN. Nevertheless, RPL is not

restricted to use with 6LoWPAN as it provides solutions for low-power, wireless,
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and unreliable networks such as LLNs. RPL deals with the constrained nature of

such networks by considering limitations both in energy power and computational

capabilities. Besides, RPl operates within the LLN (6LoWPAN) domain, and ter-

minates at the border router. An in-depth overview of RPL is presented in Chapter

3.

2.2.4 Constrained Application Protocol (CoAP)

In IoT networks, the connection-less User Datagram Protocol (UDP) is mostly used

as the transport layer. This is due to the fact that it is hard to maintain a continuous

connection between low-powered devices using lossy links. In these circumstances,

the Constrained Application Protocol (CoAP) was proposed by the IETF Con-

strained RESTful Environments (CoRE) working group. CoAP is an application

layer protocol for IoT that modifies some HTTP functionalities to meet low power

consumption and lossy and noisy links characteristics of IoT. CoAP protocol is a

standardised, lightweight and efficient web transfer protocol specifically designed for

low-power networks, with high packet error rates and relatively small throughput,

such as 6LoWPAN networks. It works on constrained devices on top of the unreliable

UDP transport layer to provide good interface for the standard Internet services.

When CoAP is used with 6LoWPAN as defined in RFC4944 [14], messages fit into

a single IEEE 802.15.4 frame to minimise fragmentation. By introducing CoAP,

application layer and applications themselves do not need to be re-engineered to

run over low-power embedded networks. This is because CoPA protocol implements

a set of techniques to compress application layer protocol metadata without com-

promising application interoperability, in conformance with the REpresentational

State Transfer (REST) architecture of the web. Figure 2.6 demonstrates the overall

functionality of CoAP protocol [3][41].

With the introduction of CoAP, a complete networking stack of open standard

protocols that are suitable for constrained devices and environments become avail-

able [42]. Furthermore, since CoAP is used in the IoT as an application protocol then

end-to-end security between two applications can be provided with the Datagram

Transport Layer Security (DTLS). The secure version of CoAP is CoAPs that uses

compressed version of DTLS to protect CoAP messages between two applications

in the IoT. Reliability in CoAP is achieved through the use of acknowledgements

messages [43][44].
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Figure 2.6: CoAP functioning within an IoT environment [3].

2.3 Security Challenges in IoT

The security of IoT systems is a serious issue due to the resource limitation, mobility

and identification gaps, and easy capture of IoT’s devices. In addition, because more

devices/things become connected every day and more smart devices are installed in

homes, hospitals and building, the number of vulnerabilities an intruder could use

to compromise IoT networks increase continuously.

Furthermore, the 6LoWPAN relaying on IEEE 802.15.4 and IPv6 causes vul-

nerabilities and creates several new threats from the two sides, thus targeting the

different layers of an IoT architecture ranging from the application/service layer to

the perception physical layer. According to [3], the three-layer architecture borrows

layers and concepts from the network stacks and thus their respective threats such

as the unauthorised access to data and DoS or availability attacks.

Nawir et al. [45] proposed a taxonomy of attacks on IoT as follows: (1) device

property (low-end device class, high-end device class), (2) access level (passive, ac-

tive), (3) adversary location (internal, external), (4) strategy (physical attacks, log-

ical attacks), (5) information damage level (interruption, eavesdropping, alteration,

fabrication, message replay, MITM), (6) host-based (user, software, hardware), (7)

protocol-based (deviation from protocol attacks, protocol disruption attacks), and fi-

nally, (8) communication stack protocol (layer-based: physical, link, network, trans-

port, and application). From another hand, the authors in [4] classified the IoT’s

threats by design challenges according to the IoT’s characteristics, as in Figure 2.7.

Indeed, the security challenges in IoT systems are related to security issues aris-

ing from the different IoT layers. In the following subsections, we present attacks

corresponding to each layer, while focussing on the network layer.
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Figure 2.7: IoT security challenges according to [4].

2.3.1 Perception/Sensing Layer

The perception layer also called sensing or even device layer represents the physical

world where heterogeneous, resource constrained and highly distributed IoT devices

co-exist. In this layer data/information is sensed, collected and then sent to the

upper layers for further processing. Different technologies and protocols can be

used in the perception layer, such as RFID technology, Wi-Fi, Long Term Evolution

(LTE), WiMax, Near Field Communication (NFC), Bluetooth, and ZigBee, where

communication channels are extra susceptible to several breach and attacks. An

intruder can easily access physical sensing devices in order to damage or reprogram

illegal actions on them.

Besides unauthorized access to data, DoS and DDoS attacks, several other at-

tacks can be triggered against the sensing layer depending on the communication

technology [45][46].

2.3.1.1 Side-Channel Attacks

Any attack based on information gained from the physical implementation of a cryp-

tosystem. It consists on the evaluation of leakage information that emanates from a

physical implementation to recover the key the device is using. These could be tim-

ing or power traces of inner operations of the device, or faulty outputs produced by

it. Because of the increased openness in IoT, different possible side channel attacks

can be triggered such as: timing attacks, power analysis attacks, electromagnetic

analysis attacks, fault induction attacks, optical side channel attacks, traffic analysis

attack, acoustic attacks, and thermal imaging attacks [47].
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2.3.1.2 Brute Force Attack

It is a cryptanalytic attack that can be used to attempt to decrypt any encrypted

data. Ling et al. [48] demonstrated that some smart home plugs are very vulnerable

to this attack.

2.3.1.3 Man-In-The-Middle (MITM) Attacks

In these attacks, an attacker is looking to interrupt and breach communications

between two things. Thus, two parties belief that they are communicating directly

with each other when they are not. Actually, the attacker secretly intercepts and

transmits messages between the two entities tricking them into thinking they are

still getting legitimate messages. Many cases have already been reported within this

threat. Authors in [49] found that IoT hubs can be attacked using simple MITM

attacks. Griffin [50] proposed biometric-based cryptographic techniques to counter

this kind of attacks.

2.3.1.4 Unfairness Attacks

Malicious nodes misbehave and break the standard communication rules of the IoT

IEEE 802.15.4 MAC layer to capture the channel with higher priority utilisation.

Thus attackers get a dominating position and hold unfair advantages over the other

nodes. In [51], the authors presented new algorithms to counter the GTS (Guaran-

teed Time Slots) MAC unfairness attack.

2.3.1.5 Masquerading Attacks

The attacker steels and tries to use the identity of the authorised node in the network.

Actually, this attack can be triggered at the network layer (Sybil and/or ClonID

attacks).

2.3.1.6 Other Attacks

There are several other attacks such as, node tampering and physical attacks, col-

lision attacks (e.g., back-off manipulation attack), jamming attacks, battery exhaus-

tion attacks, replay attacks, traffic sniffing/eavesdropping attacks, data-corruption/message-

alteration attacks, key sniffing attacks, proof-of-concept attacks, tag modification

and tag cloning attacks, RFID authentication attacks, and so on.

2.3.2 Network Layer

Almost known as Wireless Sensor Networks (WSNs), the network layer represents

an intermediate layer that is used to aggregate and transmit sensed data from the
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perception layer to the application layer using existing wired and wireless commu-

nication networks like the Local Area Network (LAN) such as WiFi, the Personal

Area Network (PAN) such as ZigBee, or even the Wide Area Network (WAN) such

as LTE and GPRS (see Figure 2.2). According to Kumar and Patel [52], it is the

”Central Nervous System” of the IoT. WSNs are the most popular networks for IoT

regarding their ability to cover large areas of things and to retain adequate consump-

tion of energy. It is important to pinpoint that the network layer should support

the communication requirement for latency, bandwidth and security. Nevertheless,

the characteristics of IoT environments cause several security and privacy concerns,

especially associated to the network layer. It should be pointed out that in 6LoW-

PAN networks, this layer is composed of two sub-layers: the 6LoWPAN adaptation

layer and the routing protocol, probably RPL. The fact that RPL supports MP2P

and P2MP traffic patterns makes 6LoWPAN networks more vulnerable to routing

attacks. A variety of attacks targeting the two sub-layers of the network layer have

been identified in the following subsections.

2.3.2.1 Adaptation Layer Attacks

The adaptation layer is implemented at the border router for translating packets

between the 6LoWPAN network and Internet. The adaptation layer is mandatory

as the size of IEEE 802.15.4 frames (limited to 127 bytes) do not permit to use

conventional IPv6 packets (1280 bytes). In this condition, header compression,

fragmentation and reassembling are handled by the adaptation layer. The authors

in [25] presented a survey on 6LoWPAN related attacks.

2.3.2.1.1 Fragmentation Attacks The border router is normally a wired node

and has strong security protection. However, the packet fragmentation and reassem-

bly progress still have some vulnerabilities. In these attacks the attacker can modify

or reconstruct the packet fragmentation fields like datagram size, datagram tag or

datagram offset. These attacks can cause critical damage to a node, for instance,

reassemble buffer overflow because of packet re-sequence, exhausting resource be-

cause of processing unnecessary fragmentation, or shutting down and rebooting.

Also, as there is no authentication mechanism at the receiver side for checking that

received fragment is not a spoofed or duplicated one, the attacker may put his own

fragments in the fragmentation chain. The fact that integrity checksums and sig-

natures are calculated over whole packets instead of over intermediate fragments,

the validity of the fragmented packets cannot be verified before packet reassembly.

As a consequence, an attacker can fill up the limited buffer space of IoT devices

with invalid fragments by flooding the resource constrained objects with few large

packets [43][25].
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2.3.2.1.2 Authentication Attacks Unfortunately, there are no mechanisms

for 6LoWPAN nodes to authenticate before joining the network. So, it is obvious

that malicious nodes can easily join the network and trigger other internal attacks,

which is very harmful for IoT applications. Many authentication protocols have been

proposed in the literature. The authors in [53] surveyed authentication protocols

for IoT according to their mechanisms. The proposed authentication protocols for

6LoWPAN networks are used to check the identity of each device in the network and

authenticate it. Providing strong authentication mechanisms can help to mitigate

several attacks such as Sybil and CloneID attacks.

2.3.2.1.3 Confidentiality Attacks Only legal and authorised nodes can ac-

cess, watch and control data in the network. Providing confidentiality in 6LoWPAN

can help to mitigate various attacks such as eavesdropping, MITM, spoofing attacks,

and so on. As for authentication, identity management represents a key factor to

assure confidentiality [54]. Besides, cryptography is considered the first line for solv-

ing the confidentiality and authentication issues. In fact, Internet Protocol Security

(IPSec) provides an end-to-end network layer security by enabling the authentica-

tion and encryption of exchanged IP packets, using Authentication Header (AH)

to provide integrity and authentication, and Encapsulating Security Payload (ESP)

headers to provide integrity and confidentiality. Ssince IPSec is very greedy and sup-

plies energy and space, some research works proposed compressed version of IPsec

headers to secure the 6LoWPAN adaptation layer [55][56].

2.3.2.1.4 Internet Side Attacks 6LoWPAN IoT devices and Internet hosts

differ strongly regarding their available resources. Indeed, objects in 6LoWPAN

networks have limited memory, computational power and very limited security pro-

vision. Whereas Internet hosts are equipped with CPUs in the GHz range and

huge memory. These capacities differences, in addition to the openness of IoT make

6LoWPAN networks vulnerable to several attacks from Internet. For avoiding such

attacks a firewall could be installed on the edge router (see Figure 2.4) to control the

malicious packets from Internet. An adaptation layer-based approach has been pro-

posed for enabling security bootstrapping between the IoT domain and the Internet

with existing IP security protocols such as DTLS [43].

The authors in [25] classified authentication, confidentiality, and Internet attacks

as adaptation layer attacks; however, we believe that these attacks can target any

layer of the three-layer architecture.
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2.3.2.2 Routing Attacks: RPL Threats

As RPL’s security is the main focus of our contributions, we present an in-depth

analysis of the protocol and its vulnerabilities in Chapter 3.

2.3.3 Application/Service Layer

The application layer consists on business solutions that allow the final users to

interact remotely with the physical world composed of things, devices and people.

Furthermore, it provides services to manage, analyse and visualise measurements

and outputs using users specific interfaces. It defines various applications in which

the IoT can be deployed, for instance, smart health, smart cities, smart environment

and smart home. Furthermore, it allows building business models, graphs, flow-

charts based on the received data. Because IoT devices have specific characteristics,

instead of using HTTP, lightweight protocols such as CoAP has been developed to

support application layer communications. As IoT network is directly connected to

the unsecured Internet, it can undergo attacks from it (Internet) such as transactions

replays, traffic congestion generation, and DoS and DDOS attacks. Indeed, attackers

may trigger the overwhelm attack to destroy the routing by generating huge traffic to

the edge router, and the path-based DoS attack to deplete resources by injecting false

messages [57]. For avoiding application-layer attacks, a firewall could be installed

on the edge router to control the malicious packets from Internet. From another

hand, Datagram Transport Layer Security (DTLS) may provide end-to-end security

since it represents a solution to confidentiality, integrity, authentication and non-

repudiation security problems for application layer communications using CoAP

[55][58]. Additionally, replay attacks may be mitigated with DTLS, using a different

nonce value for each secured CoAP packet [59].

2.4 Intrusion Detection Systems (IDSs)

There are vulnerabilities from inside the network and from the Internet that go

beyond the encryption and authentication first lines of defence for the IoT com-

munications. Thus, IDSs are required as a second line of defence. An IDS is a

powerful tool for collecting, monitoring and analysing user information, networks,

and services to identify and protect against intrusions that threaten the confiden-

tiality, integrity, and availability of an information system [60]. The operations of

an IDS can be summarised on three stages: i) The monitoring stage, which relies

on network-based or host-based sensors. ii) The analysis stage, which uses feature

extraction or pattern identification methods. iii) The detection stage, which relies

on methods for intrusion detection.
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2.4.1 IDSs Types

There are two types of IDSs: i) A host-based IDS (HIDS) is designed to be imple-

mented on a single system and to protect that system from intrusions or malicious

attacks, which will harm its operating system or data. ii) A network-based IDS

(NIDS) sniffs network traffic to detect intrusions and malicious attacks. NIDS 1

are primarily used to counter attacks against the network. They analyse activities

and nodes behaviours in the network and aim to detect intruders that are trying to

disrupt the network. IDSs can be classified depending on their location or on the

method used for detection.

2.4.2 IDSs Locations and Methods

2.4.2.1 IDSs over Networks

2.4.2.1.1 Centralised (Monolithic) In this approach, each node monitors the

operation of all of its neighbours in the network and transfer collected information

to a central intrusion detection node to be analysed. It suffers from the following

deficiencies:

• Scalability: It is difficult to guarantee scalability as a network size grows.

Furthermore, because lots of information need to be transferred from monitor-

ing nodes to a central node, this creates heavy overhead, which causes severe

degradation of the network performance.

• Robustness: The central node represents a single point of failure making the

overall IDS crippled in case of its failure or if it is attacked.

2.4.2.1.2 Distributed (Cooperative)/Host-based In this approach, the IDS

is placed on each node within the network. Each host-based IDS monitors only a

small portion of the network (neighbours). The distributed host-based IDSs cooper-

ate to analyse and detect intruders. They can make a coherent inference and make

a global decision. Monitoring host-based nodes are called watchdogs.

• It is the most used approach in the literature because it resolves most of

security breach in the network. Nevertheless, it is hard to repair and maintain

the overall system in addition to the generated overhead on the monitored

parts of the network. Furthermore, it requires a lot of memory and calculation

resources.

1In this thesis, we use IDS instead of NIDS, for short.
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2.4.2.1.3 Hierarchical/Hybrid In this approach the network is divided on a

number of hierarchical monitoring areas, where each IDS monitors a single area.

Instead of transferring all the collected information from monitoring nodes to a

central IDS, each single IDS at each level of monitoring area performs local analysis

and sends its local analysis results up to the IDS at the next level in the hierarchy.

Thus, IDSs at higher levels only need to analyse transferred local reports collectively.

• Scalability: Shows better scalability by allowing local analyses at distributed

local monitoring areas.

• Robustness: If the topology of the network changed the network hierarchy

changes as well and the whole mechanisms to aggregate monitored information

must be changed. Furthermore, when a monitoring node residing at the highest

level is attacked or fails, the sub-network related to this node easily escape

detection.

2.4.2.2 IDSs over Detection Method

2.4.2.2.1 Signature-based This IDS is also known as misuse-based IDS. In

this IDS, signatures of malicious activities or codes are stored in a database or a

list. The signature patterns in packets are matched with the stored ones. If match

founds then the IDS raises alarm for the attack. The IDS compares the current

activities in a network or in a device against predefined and stored attack patterns

(signatures). This approach cannot detect new attacks, needs specific knowledge of

each attack, has a significant storage cost that grows with the number of attacks,

and has a high false negative but low false positive rate.

2.4.2.2.2 Anomaly-based This type of IDS determines the ordinary behaviour

of a network or a device, uses it as a baseline, and detects anomalies when there

are deviations from the baseline. This approach can detect new attacks but has

comparatively high false positive and false negative rates because it may raise false

alarms and/or cannot detect attack when attacks only show small deviations from

the baseline. There exist various anomaly-based detection techniques that have been

summarised in Figure 2.8 [1].

2.4.2.2.3 Event-based In this IDS system, the malicious events patterns are

defined, a priori, and stored in a database. Thus, the event based IDS captures the

events triggered in the network and analyses them. If an event is suspicious, the

IDS raises alarm for attack detection.
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Figure 2.8: Advantages and disadvantages of anomaly-based detection techniques
[1].

2.4.2.2.4 Specification-based This type of IDS is also known as software en-

gineering based IDS or Finite State Machine (FSM) based IDS. It defines a typical

behaviour of the protocol (e.g., a routing protocol as an FSM) and uses it as a

baseline for detecting abnormal behaviour. If an abnormal behaviour is detected,

the IDS raises alarm.

2.4.2.2.5 Hybrid-based This type of IDS combines the types above to get bet-

ter detection results with less negative impacts on the network performances.

2.5 Machine Learning Concept

Machine Learning (ML) is a subset of Artificial Intelligence (AI). ML has emerged

as the method of choice for developing practical solutions in many areas of tech-

nology and science such as, text or document classification, computer vision (e.g.,

objects recognition and identification, face detection, etc.), speech processing (e.g.,

speech recognition and synthesis, speaker verification and identification, etc.), nat-

ural language processing (e.g., part-of-speech tagging, context-free parsing, etc.),

robotics and autonomous vehicle control, and other applications like fraud detec-

tion for credit card and intrusion detection. Indeed, application areas of ML keep

expending as most prediction problems can be cast as learning problems [61].

2.5.1 ML Common Terminology

There are a terminology that is commonly used in ML [61].

• Items are examples, samples, or instances of labelled or unlabelled data used

for learning or testing (evaluation).
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• Features are the set of attributes associated to an item. The features are

often represented as a vector.

• Labels are values or categories assigned to the items. For instance, in clas-

sification problems, items are assigned specific classes (categories) such as

malicious and normal.

• Training (Fitting) sample is the set of items used to train (fit) the ML

algorithm. In a classification problem, the training data consist of a set of

items with their associated labels.

• Testing sample is the set of items used to evaluate the performance of the

ML algorithm. The testing sample is different from the training sample as it

represents the unseen data.

2.5.2 ML Tasks

The main objectives of ML consist of generating accurate predictions for unseen

items and of designing efficient and robust algorithms to produce these predictions.

ML techniques are used for several tasks as follows [61].

• Classification consists of assigning a category for each item. For instance,

classifying a document as business, politics, sports, etc. Another example is

classifying traffic packets as malicious or normal.

• Regression consists of predicting a real value for each item, such as the

prediction of stock values, variation of economic variables, etc.

• Ranking consists of learning to order items according to some criterion, such

as Web search.

• Clustering consists of partitioning a set of items into homogeneous subsets.

An example is identifying natural communities within large groups of people

in the context of social network analysis.

• Dimensionality Reduction consists of transforming an initial representa-

tion of items into a lower-dimensional representation while preserving some

properties of the initial representation. An example is preprocessing digital

images in computer vision tasks.

2.5.3 ML Algorithms

There exist four groups of ML algorithms: supervised, unsupervised, semi-supervised,

and reinforcement learnings. In this chapter, we focus on the supervised algorithms,
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which consist of a training phase and a testing phase. At the training phase, the

algorithms learn the relationship between the input values (i.e., training sample)

and the labels (e.g., the label 0 for normal behaviour, and the label 1 four malicious

behaviour). At the testing phase, the algorithms try to predict the output values

(i.e., classes, labels) of the testing sample.

Since the aim of an IDS is to decide whether a packet either belongs to normal

or attack traffic, intrusion detection is considered as a classification problem. Thus,

IDS implementation can be based on different ML classifiers. Indeed, ML-based

IDS can change its execution strategy as it acquires new information. This property

makes ML desirable to use for any situation. In the following, we present the ML

classifiers and the Deep Learning (DL) model investigated in this study. The ML

classifiers represent the frequently applied algorithm for intrusion detection. DL is a

particular technique of ML that groups generic algorithms mimicking the biological

functioning of a brain [62], as it is presented in Section 2.5.3.7.

2.5.3.1 Decision Tree (DT)

DT classifier represents the standard for partition-based models. DT main idea is to

“break up a complex decision to into a union of several simpler decisions, hoping the

final solution obtained would resemble the intended desired solution” [63]. Hence,

DT splits data into many branch-like segments such as in the tree structure, leaves

represent classifications also known as labels, intermediate nodes represent features,

and branches are conjunctions of features that lead to classifications, as depicted in

Figure 2.9.

Figure 2.9: Decision tree technique illustration.

2.5.3.2 Random Forests (RF)

RF classifier [64] constructs a figured large number of uncorrelated DTs, as illus-

trated in Figure 2.10. Each DT predicts a classification for a sampled input data
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from the original dataset. Furthermore, each DT selects a subset of features from

the original set for the fullest growing at each node randomly. Finally, RF collects

the predictions and selects the most voted one as the final classification. RF is ex-

tensively used in data science since it has high accuracy level, speed, and stability,

it is easy to parametrise, robust against overfitting, it can be applied to large-scale

datasets, and is not sensitive to noise in datasets. RF is also handy for feature se-

lection as it determines the importance of different features during the classification

process.

Figure 2.10: Random forests technique.

2.5.3.3 K-Nearest Neighbour (KNN)

KNN classifier [65] is a non-parametric supervised ML technique that relies on sim-

ilarity or distance in feature space to classify samples. In KNN, testing sample (i.e.,

unlabelled data) is assigned to the class that is most frequently occurred amongst

the K nearest neighbours in the training set (see Figure 2.11). The number K, as the

square root of the total number of samples in the training dataset. KNN is widely

used because it is simple, very scalable, and very fast to converge.

Figure 2.11: K-nearest neighbour (KNN) technique.
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2.5.3.4 Näıve Bayes (NB)

NB or Bayesian learning [66] is a probabilistic classifier based on probabilities of

hypotheses. NB applies Bayes’ theorem to calculate probabilities, with the strong

assumption that features are independent given class variable, which means that the

probability of one feature does not affect the probability of the other one. A prior

probability is assigned to each candidate hypothesis based on prior knowledge. NB

uses training samples to increase or decrease the probability of a hypothesis to be

correct. It classifies a testing sample by assigning the most probable target class, as

presented in Figure 2.12.

Figure 2.12: Näıve Bayes technique.

2.5.3.5 Multi-Layer Perceptron (MLP)

MLP Classifier [67] is a feed-forward Artificial Neural Network (ANN) model con-

necting multiple hidden layers in a directed graph, where each layer is fully connected

to the next one. An MLP consists of at least three layers of nodes: an input layer, a

hidden layer and an output layer. Except for the input nodes, each node is a neuron

that uses a non-linear activation function. MLP employs the back-propagation su-

pervised learning technique for training the network. It maps the set of input data

to a suitable output set inspired by the way biological nervous systems of the brain

process information. Figure 2.13 is an example of MLP operations.

2.5.3.6 Logistic Regression (LR)

LR classifier [68] is a mathematical modelling approach used to describe the relation-

ship of a dependent variable (i.e., outcome) and one or more independent variables

(i.e., predictors). LR is applicable when the outcome is a binary variable that con-

tains data coded as 1 (yes, success) or 0 (no, failure). Thus, the LR model predicts

P(Y=1) as a function of X, as illustrated in Figure 2.14.
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Figure 2.13: MLP technique.

Figure 2.14: Logistic regression technique.

2.5.3.7 Deep learning Classifier (DL)

DL is a particular ML technique that implements the learning process elaborat-

ing the data through Artificial Neural Networks (ANNs) [62][69]. ANNs have self-

learning capabilities that enable them to produce better results as more data be-

comes available. An ANN has artificial neurons interconnected through at least

three layers: the input layer, one or many hidden layers, and the output layer. Each

neuron has inputs (e.g., features from a dataset or outputs from other nodes) and

produces a single output which can be sent to multiple other neurons. The outputs

of the neurons in the output layer return the final result, such as the classification of

a sample as an attack or not. Each connection in the network is assigned a weight

that represents its relative importance. The weights are adjusted during training

to find patterns and make better predictions. Several hyper-parameters need to be

set before the learning process begins, such as the number of hidden layers and the

number of neurons per layer, the activation function, the learning rate, batch size,

and the number of epochs. ANNs are categorised into supervised (e.g., MLP) and

unsupervised learning (e.g., DL) [69].

The adjective ”deep” in DL comes from the fact that the classification is con-

ducted by training data, with many layers in hierarchical networks with unsupervised
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learning. Figure 2.15 depicts the difference between a shallow model (e.g., MLP)

and a DL model.

Figure 2.15: Shallow vs DL.

There are several DL models based on the used architectures and techniques

[70]. The Deep Recurrent Neural Network (RNN), the Deep Auto-Encoder, the

Deep Boltzmann Machine (DBM), and the Deep Believe networks (DBN) belong to

the Generative Architecture (GA) class, whereas, the Deep Convolutional Neural

Network and the Deep Recurrent Neural Network (when the output is taken to be

the predicted input data in the future) belong to the Discriminative Architecture

(DA) class. GA models are graphical models that ”are intended to characterise the

high-order correlation properties of the observed or visible data for pattern analysis

or synthesis purposes, and/or characterise the joint statistical distributions of the

visible data and their associated classes.” [70]. DA models ”are intended to directly

provide discriminative power for pattern classification, often by characterising the

posterior distributions of classes conditioned on the visible data.” [70].

2.6 Summary

In this chapter, we gave definitions, characteristics, and applications of IoT. More-

over, we addressed the most leading IoT security challenges and issues to be resolved.

Besides, we provided an overview of IDS focusing on its definition, types and meth-

ods. Finally, we provided an overview of the ML concept, its common terminology

and tasks, and we concluded by presenting the different ML algorithms experimented

for our IDS.

In the next chapter, we will focus on the RPL protocol and its security issues.

We will conclude by giving a synthesis of the existing research works on IDSs for

RPL security.
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Chapter 3

The IPv6 Routing Protocol for

LLNs (RPL): Overview, Security

Issues, and State-of-the-art

Solutions

RPL is a proactive distance-vector IPv6-based routing protocol designed and stan-

dardised by the IETF Routing Over Low-power and Lossy networks (ROLL) working

group to overcome the routing challenges underpinning LLNs-IoT networks. The

RPL specification considers limitations in both the energy power and the computa-

tional capabilities of such networks [22]. This chapter provides an overview of RPL’s

operations (i.e., control messages, upward and downward routes construction, the

objective functions to optimise and select routes, and the mechanism for routing

maintenance). Besides, it analyses the RPL’s security vulnerabilities and presents

the state-of-the-art works that address the lack of RPL’s security.

3.1 RPL Topology Construction

RPL organises the physical network into a logical representation as a Directed

Acyclic Graph (DAG) to route traffic/packets. The DAG comprises one or multi-

ple DODAGs (Destination Oriented DAGs) with one root per DODAG. Each root,

called border router (BR), is connected to the Internet and other potential BRs via

a backbone. Each device/node in the DODAG has many attributes such as an IPv6

address (ID), a list of parents with one preferred parent, a list of discovered neigh-

bours, and a Rank. The Rank of a node identifies the node’s position relative to

the BR. In the RPL topology, two conditions have to be checked from nodes along

the route. Firstly, the Rank values should increase from the BR towards the leaf
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nodes, and decrease from the leaf nodes toward the BR. Secondly, packets should be

transmitted upward towards the BR, or downward towards leaf nodes, respecting

the Rank rule defined in [22]. In other words, when a node receives a packet upward,

the sender must have a Rank higher than that node and vice versa, when a node

receives a packet downward, the sender must have a Rank lower than that node.

An LLN may run multiple logically independent instances of RPL concurrently.

Each such instance may serve different and potentially antagonistic constraints and

Objective Functions (OF). An RPL node may belong to various RPL Instances, and

it may act as a router in some and as a leaf in others. An RPL Instance is a set of one

or more DODAGs that share the same RPL Instance Identifier (RPLInstanceID).

DODAGs with the same RPLInstanceID share the same OF (the details of OF are

presented in Section 3.2).

RPL supports three communication patterns; the point-to-point (P2P) pattern in

which every node may communicate with other nodes in the network, the multipoint-

to-point (MP2P) pattern in which data is gathered by a group of nodes and transmit-

ted to one destination that is the BR, and the point-to-multipoint (P2MP) pattern

in which the BR sends data to the in-network nodes. MP2P traffic is carried through

upward routes, whereas P2MP traffic is carried through downward routes. Figure

3.1 shows a typical RPL topology using two RPL instances running their respec-

tive objective functions (i.e., OF1 and OF2) and three DODAGS; two in the first

instance and one in the second instance. The figure highlights the different control

messages and communication patterns that will be detailed in the next subsections.

Figure 3.1: The routing protocol for low power and lossy networks.
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3.1.1 RPL Control Messages

RPL uses the following specific Internet Control Message Protocol (ICMPv6) control

messages to exchange routing information, construct and maintain the DODAG.

• The DODAG Information Object (DIO) message conveys the relevant infor-

mation and configuration parameters that enable a node to join a DODAG,

select a set of candidate parents, construct and maintain the DODAG. Among

others, the DIO message conveys node and link metrics and constraints (e.g.,

node energy, hop count, throughput, latency, link colour, and ETX; Expected

Transmission Count) [71]. Besides, DIOs carry the OF that the nodes should

use to optimise the path construction and calculate their Rank values [72] [73].

Figure 3.2 portrays the DIO message format.

Figure 3.2: DIO format.

• The DODAG Destination Advertisement Object (DAO) messages allow nodes

to propagate their destination information upward along the DODAG to the

BR using the end-to-end approach. Consequently, the downward routes from

the BR to its associated nodes (MP2P) can be constructed and updated (i.e.,

routing tables’ construction and update). Figure 3.3 illustrates a DAO message

format.

Figure 3.3: DAO format.
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• The Destination Advertisement Object Acknowledgement (DAO-ACK) may

be unicast by a node to the DAO sender to acknowledge that DAO’s reception.

• The DODAG Information Solicitation (DIS) messages aim to discover the

neighbourhood and network topology. Precisely, nodes seeking to join a DODAG

use DIS messages to solicit a DIO from their neighbours. Figure 3.4 depicts a

DIS message format.

Figure 3.4: DIS format.

3.1.2 Upward routes

The DIO messages control the construction and maintenance of the RPL DODAG

and upward routes that support MP2P traffic [22]. Figure 3.5 portrays an example

of the process to build the DODAG. (a) The BR multicast an initial DIO message

announcing configurations (see Figure3.2), such as its Rank (R=0), the RPLInstan-

ceID, the DODAG ID, the DODAG Version, Trickle timer variables, the mode of

operation (see Section 3.1.3), the OF, and the metrics/constraints that should be

used. (b) When a node receives a DIO message from the BR, it selects the BR as

its parent, calculates its Rank (R=1), sends a DAO to its parent, and broadcasts an

updated DIO to its neighbours. (c) On receiving DIOs from nodes of Rank 1, each

neighbour adds the sender address to its candidate parents set, selects a preferred

parent of Rank 1, calculates its Rank (R=2), sends a DAO to its parent (as in Sec-

tion 3.3), and multicast an updated DIO with its own Rank to its neighbours. The

nodes may discard a received DIO as specified in Section 3.3. (d) All neighbouring

nodes repeat the process until each node joins the RPL network. Thus, when a node

needs to send a packet to the BR, it will forward the packet to its own parent, which

in turns will forward it upward until it reaches the BR. Figure 3.6a is an example of

a simple network before routes construction, while Figure 3.6b illustrates the data

packets forwarding following the constructed upward routes. After the construction

of the RPL DODAG, the maintenance begins respecting the Trickle timer defined

in Section 3.3.

3.1.3 Downward routes

Downward routes are constructed to support P2MP and P2P traffic flows. RPL uses

DAO messages that are propagated upwards in the DODAG topology via a parent
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Figure 3.5: RPL DODAG and upward routes construction.

to construct and maintain downward routes. A node that wants to be reachable by

the BR unicasts a DAO to its preferred parent with its own destination prefix [22].

The received DAO by the parent will be processed according to one of two modes

of operation: storing and non-storing.

3.1.3.1 Storing Mode

In the storing mode, each node keeps a routing table of all destinations reachable via

its sub-DODAG and their respective next-hop nodes from received DAOs. Indeed,

when a parent receives a DAO from one of its children, it stores the announced

destination in its routing table along with the DAO sender address as the next

hop to reach that destination. Next, the parent forwards the received DAO to its

preferred parent to ensure the advertised destination’s propagation upward to the

BR. Each intermediate node repeats the process until the BR finally receives the

DAO [22][74]. In this mode, data packets are forwarded upwards until they reach a

node with routing information about the destination. Once a common ancestor is

reached, the packets proceed downwards following the routes previously established

by the DAO messages, as illustrated in Figure 3.6c and Figure 3.6d.

3.1.3.2 Non-Storing Mode

In the non-storing mode, a parent receiving a DAO does not store any routing

state. The BR is the only node maintaining routing information. It exploits the

information in DAOs for source routing (i.e., the BR includes routing information

directly into the packet itself). The intermediate nodes (parents) simply forward

the received DAO messages to their respective preferred parents until the BR finally
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receives the DAOs [22][74]. In this mode of operation, data packets must travel

upwards all the way to the BR as it is the only node maintaining routing information

before being redirected to their destination (Figure 3.6e).

Figure 3.6: Routing in RPL. Existing routes are shown next to the network nodes
[5].

3.2 Objective Functions

The Objective Function (OF) is a route selection and optimization mechanism to-

wards the root node (BR). Principally, OF is made of a set of rules that combine

the nodes and links metrics and constraints to calculate the Rank and define how

this latter should be used for selecting the preferred parent. RPL may use differ-

ent OF to meet different applications’ requirements, such as minimizing the energy

consumption or maximizing reliability. There exist two standardised OFs, which

are the Objective Function Zero (OF0) [72] and the Minimum Rank with Hysteresis

Objective Function (MRHOF) [73].

3.2.1 The Objective Function Zero (OF0)

According to OF0, each node selects as the preferred parent the node with the

minimum value of hops to reach the DODAG root [72]. Furthermore, each node

calculates its Rank (Rn) as the sum of its selected preferred parent’s Rank (Rp)

and a strictly positive scalar value (rank increase) as depicted in Equation 3.1 and

Equation 3.2. In Equation 3.2, Sp is the step-of-Rank representing a value related

to the parent link metric and other properties such as the hop-count. Rf and Sr are

normalisation factors called the Rank factor and the stretch of Rank, respectively.

MinHopRankIncrease is the minimum increase in Rank between a node and any of

its DODAG parents [72]. The OF0 does not specify which metric should be involved

in the calculation of Rank increase. In OF0, each node considers the parent with

the least possible Rank as its preferred parent for parent selection. It also selects
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another parent as a backup if the connectivity with its preferred parent is lost [72].

Rn = Rn + rank increase (3.1)

rank increase = (Rf ∗ Sp + Sr) + MinHopRankIncrease (3.2)

3.2.2 Minimum Rank with Hysteresis Objective Function

(MRHOF)

In MRHOF, each node selects the route that minimises a metric, while using hys-

teresis to reduce the frequent change of the preferred parent in response to small

metric changes [73]. The metrics to use are advertised in the DAG Metric Container

in the DIO messages. The standard MRHOF uses the energy constraint or the Ex-

pected Transmission Count (ETX) metric to calculate the node’s Rank and select

the preferred parent in the DODAG formation. ETX represents the number of ex-

pected transmissions and retransmission of a packet necessary for it to be received

without error at its destination. ETX aims to select routes with high end-to-end

throughput and is defined as in Equation 3.3, where df is the forward delivery ratio

(i.e., the probability that a packet is received by a neighbour) and dr is the reverse

delivery ratio (i.e., the probability that an acknowledgement packet is successfully

received).

ETX =
1

df ∗ dr

(3.3)

After calculating the path costs through all candidate parents, a node selects

the parent with the lowest path cost as its preferred parent. Nonetheless, MRHOF

allows a node to change its parent only when the new path differs from the old one by

at least PARENT SWITCH THRESHOLD, which is the hysteresis part of MRHOF.

MRHOF hysteresis yields a trade-off between route stability and optimality. Thus, if

the threshold is too high, parents are less likely to change and routes are more stable;

nonetheless, their quality may degrade significantly before they are reconfigured [73].

3.2.3 Routing Metrics for Path Calculation

OF needs to use one or multiple metrics and constraints to determine the best

path and calculate Rank. The RFC 6551 [71] specifies a set of link and node routing

metrics and constraints that can be used by RPL to meet LLNs applications’ require-

ments. The metrics and constraints are carried within the DAG Metric Container

object (MC) of the DIO [22]. Besides, they can be used separately or combined

within the OF. An example of using separated metrics, an OF can use the aggrega-

tion of the remaining node energy metric along the path by applying a Min function
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to select the minimum energy value at each hop. Afterwards, the OF use a Max

function that compares the energy from several paths and selects the best path as

the one with the maximum energy value.

Another example is with an OF that combines a link metric (ETX) and a node

constraint (Energy). In the case of a DODAG where all nodes must be mains-

powered and the best path is the one with lower aggregated ETX, the MC will

carry two routing objects; one is an ETX metric object and the second one is a

Node Energy constraint object. Indeed, an RPL instance may use the metric object

to report a maximum, a minimum or the aggregation. Consequently, if the best path

is the one avoiding low-quality links, then the path metric reports a maximum (i.e.,

the higher the ETX, the lower the link quality). Thus, when a node processes the

DIO message reporting the link metric (ETX), each node selecting the advertising

node as a parent updates the value carried in the metric object by replacing it with

its local link ETX value if and only if the latter is higher. On the other hand, if the

constraint object indicates that nodes must be mains-powered and the constraint

signalled in the DIO message is not satisfied, the advertising node is just not selected

as a parent by the node that processes the DIO message.

3.3 Trickle Timer

RPL uses a Trickle algorithm that regulates DIO control messages’ transmission rate

according to the current network conditions. Trickle increases the transmission rate

when a change in routing information is detected (e.g., altered DIO messages, a node

joining the DODAG, etc.) to update the network rapidly with new information. In a

steady case, Trickle exponentially reduces the transmission rate to limit the number

of transmissions when there is no update to propagate. On the other hand, Trickle

maintains a suppression mechanism in which a node limits redundant messages.

Hence, the node suppresses the scheduled control packets if it detects that enough

of its neighbours have transmitted the same piece of information [75][6].

The Trickle algorithm involves three configuration parameters: 1) the maximum

interval size (Imax); 2) the minimum interval size (Imin); 3) the redundancy constant

(k). Furthermore, it maintains three variables: 1) the size of the current interval

(I); 2) a counter (c); 3) a specific time within the current interval (t). Each node is

responsible for handling its interval. The interval boundaries are [Imin, Imax]. This

interval is divided into sub-intervals (periods). The first sub-interval starts with

Istart = Imin and ends with Iend = Istart*2. Each time the first sub-interval is finished,

a new sub-interval starts until reaching the end of the primary interval (i.e., Imax), as

illustrated in Figure 3.7. In the case of RPL, whenever a node hears a consistent DIO

transmission from its neighbours, it increments the counter ’c’. At time t, the node
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transmits Multicast DIO if the counter ’c’ is less than the redundancy constant ’k’.

If not, the node suppresses the scheduled DIO transmission, waits until the current

sub-interval ’I’ has expired, and then doubles the sub-interval length. Each time the

node needs to check if it reaches the maximum of the interval Imax [6][75].

Figure 3.7: The Trickle algorithm for a node [6].

3.4 RPL Tools

This section presents the most used open-source OSs, simulator and hardware by

the RPL research community in the IoT domain.

3.4.1 Operating Systems

3.4.1.1 ContikiOS

ContikiOS is a lightweight and portable open-source operating system designed

specifically for low-power resource-constrained IoT objects [76][77]. Contiki has

two main partitions the core and the loaded programs, as illustrated in Figure 3.8

[7]. The core contains the kernel, libraries, the program loader, device drivers, and

the communication stack for the communication hardware. Two types of event

are supported within the Contiki kernel: asynchronous and synchronous events.

Thus, Contiki provides the real-time clock for synchronisation purposes and real-

time applications. Contiki supports the uIPv6 stack in addition to several other

IoT standards such as 6LoWPAN and CoAP. It also implements the RPL stan-

dard operations via the ContikiRPL library and both OF0 and MRHOF. However,

ContikiRPL does not include any RPL security features [78].
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Figure 3.8: ContikiOS’s core and loaded programs [7].

3.4.1.2 TinyOS

TinyOS [79] is an open-source operating system designed for WSNs. TinyOS im-

plements TinyRPL, the RPL library that provides all basic features of the RPL

standard. It is designed to be used with the Berkeley Low-power IPv6 stack (BLIP)

provided in TinyOS. TinyRPL supports both storing and non-storing modes with

the default upward routes, in addition to both the OF0 and MRHOF. Nevertheless,

similarly to ContikiRPL, TinyRPL lacks any support for RPL security features.

3.4.1.3 RIOT

RIOT [80] is an operating system for memory-constrained low-power wireless IoT

devices. RIOT has its own implementation of the RPL standard named RIOTRPL

[81]. RIOTRPL supports the two downward RPL’s modes (storing and non-storing).

Nonetheless, it only implements the OF0 and does not support any security modes.

3.4.2 Cooja Simulator

The Cooja simulator [82] is a java-based network cross-level simulator based on

Contiki OS and specifically designed for LNNs. Unlike other simulators such as NS2

and OMNET, Cooja is an emulation and simulation tool where the software of the

sensor node itself can be run either on the simulator as compiled native code for

the platform or on the emulator as an actual sensor node MSP430 at the hardware

level. Furthermore, Cooja has the particularity that the same experimenting code

running on the emulator will run on real IoT devices. Besides, the simulation can

be conducted for various types of motes within a single simulation. Otherwise, as

an emulator, Cooja gives a lot of specifics regarding the mote’s hardware.
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3.4.3 Hardware

Figure 3.9 depicts a list of various types of nodes that are used in IoT application

domains. the Tmote Sky also known as TelosB nodes are widely used among the

research community of IoT.

Figure 3.9: Specifications of typical constrained devices [8].

3.5 RPL Security

The current RPL specification includes a few self-healing mechanisms, like loop

detection and avoidance, global and local repair mechanisms. Furthermore, it de-

fines security features like cryptographic security modes that are presented in the

following subsections.

3.5.1 Self-healing and Fault Tolerance Mechanisms

3.5.1.1 Loop Detection and Avoidance

Loops may form for several reasons, such as control messages loss or malicious

behaviour. RPL includes a reactive loop detection and avoidance technique that uses

RPL Packet Information, which transported with data packets, and the Rank rule

presented in Section 3.1 [22]. The RPL Packet Information placed in an IPv6 Hop-

by-Hop option-header includes the Rank of the sender field along with the direction

of the packet flag (i.e., upward or downward). If a Rank rule inconsistency is detected

(e.g., if a node receives a packet flagged as moving in the upward direction, and if

that packet carries that the sender is of a lower Rank than the receiver, then the
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latter must conclude that it may be a loop.), the receiver node must trigger the local

repair mechanism.

3.5.1.2 Global and Local Repairs

RPL provides global repair (GR) and local repair (LR) mechanisms to fix links and

node failures and detect loops and other inconsistencies. GR is only triggered by

the BR (DODAG root). Each time the BR decides to form a new version of the

DODAG it initiates a GR by incrementing the DODAG Version Number field within

the DIO message. Note that a GR starts the reconstruction of the whole topology

from scratch. On the other hand, any non-root node that detects an inconsistency

(e.g., loop or link failure) can start an LR. In the LR mechanism, the node should

poison its routes by announcing a Rank of INFINITE RANK. Therefore, it detaches

itself from the DODAG and then re-attaches to the DODAG as a new joining node

using a DIS message [22].

3.5.2 Security Features

The self-organising, self-healing, and resource-constrained, as well as unreliable links,

limited physical security, and dynamic topology of RPL networks, expose them to

various internal and external threats. The RFC 6550 [22] states that RPL could

use link-layer security mechanisms when they are available to secure message trans-

mission. Furthermore, the RPL specification defines the following optional cryp-

tographic security modes that nodes within an RPL network can adopt to ensure

communication security.

3.5.2.1 Unsecure Mode

In this mode, RPL control messages presented in Section 3.1.1 are transmitted

without any additional security features [22]. In this case, RPL relies on other

layer security primitives, such as the MAC layer, to satisfy the network’s security

requirements [22].

3.5.2.2 Pre-installed Security Mode

In this mode, the nodes use a secured version of control messages. Accordingly, the

nodes have pre-installed keys to generate and process RPL secured messages and

thus provide control messages confidentiality, integrity, and authenticity [22].
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3.5.2.3 Authenticated Security Mode

Like the pre-installed mode, the nodes use a secured version of control messages

and have pre-installed keys. Nevertheless, they may only use the keys to join the

network as a leaf. A router that needs to enter an RPL network requires another

key from an authentication authority [22].

3.6 RPL Vulnerabilities

3.6.1 RPL Security Limitations

As presented in the sections above, the RPL specification defines some fault tolerance

mechanisms and secure versions of the different RPL control messages (i.e., control

messages encryption). The defined security mechanisms ensure control messages

integrity and confidentiality against outsider attackers [22]. However, on the one

hand, the proposed security mechanisms are not clearly defined; for instance, it

is not specified how asymmetric cryptography may be employed to support node

authentication and key retrieval. On the other hand, the objects are not tamper-

resistant, which means that an adversary can compromise some of them, reprogram

and redeploy them into the network as insider attackers. The insider attacker can

bypass the defined security mechanisms by gaining access to shared keys and trigger

several attacks against RPL to break routing operation rules and cause network

disruption for different IoT applications. Actually, attacker nodes can exploit RPL’s

mechanisms to compromise the legitimate nodes. Malicious nodes may falsify or lie

the advertisement of link and node routing metrics to disturb traffic routing. Besides,

they may exploit both global and local repairs to trigger specific attacks against

RPL networks (see Section 3.6.2). Accordingly, in RPL, each node selects only one

preferred parent through which all traffic will be forwarded, as long as it is reachable.

An adversary can easily identify the preferred parent, target it and trigger different

attacks. Furthermore, RPL have two further gaps that are the lack of identification

mechanisms and the lack of supporting mobility. For instance, the fact that RPL

uses IPv6 addresses as nodes’ identifiers makes the routing protocol vulnerable to

Sybil attacks, in which an adversary creates easily fake IPv6 addresses to participate

in the network operations as legitimate nodes. Furthermore, because RPL does not

handle mobility when routing, malicious nodes could trigger mobility-based attacks.

Section 3.6.2 gives details on how an adversary can exploit the limitations of RPL

to trigger attacks and harm the network.
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3.6.2 Attacks against RPL

Attacks against RPL networks can be passive or active. Passive attackers eavesdrop

on communications to intercept data packets or information on the network, whilst

active attackers exploit RPL weaknesses to break into the network in order to intro-

duce, alter, or delete data, and could also destroy part or even the whole network.

Except for the eavesdropping attack, this section classifies attacks against RPL as

active since they aim to disrupt and/or destroy the network.

Several classifications for RPL threats exist in the literature. Pongle and Chavan

put all attacks in the same category, namely attacks on RPL topology [25]. The au-

thors in [26] have classified RPL attacks into three categories; attacks on resources,

attacks on topology and attacks on traffic. Based on the resource-constrained nature

of IoT nodes, we consider that both attacks on topology and traffic affect directly

or indirectly the network resources, which means that all attacks can be classified

as attacks on resources. Tsao et al. proposed four categories of RPL attacks un-

der the ISO 7498-2 model; attacks due to failures to authenticate, attacks due to

failures to keep routing information confidential, attacks on integrity, and attacks

on availability [24]. Like in the work of Tsao et al. [24], Airehrour et al. presented

a summary of attacks against RPL and classified these attacks as confidentiality,

integrity and/or availability attacks [83].

From our point of view, attacks against RPL can be classified into two main

classes: the Novel RPL Specification-based attacks, such as Rank, neighbour, and

version number attacks, and the Existing routing attacks tailored to the context of

RPL, such as spoofing, hello flood, homing, selective forwarding, Sybil, wormhole,

acknowledgement flooding, eavesdropping, impersonation, relay, and replay attacks.

In the following, we present an exhaustive study of existing attacks against RPL.

3.6.2.1 Novel RPL Specification-Based Attacks

This class includes new threats exploiting some operating rules in the RPL specifica-

tion. This kind of attacks may cause control messages overhead, discard downward

routing state, and exhaust nodes resources.

3.6.2.1.1 Rank attacks In the literature, there are several variants of the Rank

attack. These variants are termed Rank attacks, Increased Rank attacks, Decreased

Rank Attacks, and Worst Parent Attacks. Every one of these variants can be simply

called Rank attack because they are based on the malicious manipulation and/or

exploitation of the Rank field and/or rules.

• In [84] and [85] Rank attack, two or more malicious nodes may misbehave

and cooperate on skipping the Rank checking function. This leads to break
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the Rank rule and create un-optimised routes, or undetectable loops, or even

never discovering existing optimised paths.

• In [86] Rank attack, the attacker chooses a random parent with a Rank higher

than the preferred parent’s Rank (worst parent attack). This attack creates

un-optimised routes, which leads to poor performance.

• In the Rank attack defined in [87], [88] and [89], an adversary node illegiti-

mately advertises a better Rank equal to a lower Rank value (decreased Rank

attack) to attract the traffic.

• Rehman et al. [90] introduced a new variant of this attack termed the Rank

Attack using Objective Function (RAOF attack), where the advertised Rank

value is bounded. In this variant, the attacker announces a Rank value less

than its neighbours’ minimum Rank and greater than its preferred parent. In

addition, because RPL suggests no measures to monitor the change in routing

metric values, the attacker announces in the DIO message a drastically lowered

value of the routing metric compared to the minimum observed among its

neighbours. In both attacks, the honest neighbours will select the attacker as

their new preferred parent, and thus allowing it to manage and manipulate

more network traffic. Consequently, they enable the malicious node to trigger

other attacks (e.g., eavesdropping, deleting and modifying data).

• In [26] Rank attack, the attacker voluntarily increases its Rank value (i.e.,

increased Rank attack), which leads to generate loops in the network, exhaust

node resources, and congest the network.

3.6.2.1.2 Neighbour attack In the Neighbour attack, misbehaving nodes re-

send replicated DIO messages (without updates) to honest nodes [86]. Hence, honest

nodes can consider the owners of the message as neighbours. Consequently, they can

update their routes to the out range neighbours, which leads to creating false routes,

disrupting the network, or consuming more resources. As described, the Neighbour

attack is more like a Routing information replay attack where the attacker forwards

outdated DIO messages inducing honest nodes to update their routing tables with

stale routes [26]. This attack has also been termed DIO replay attack.

3.6.2.1.3 Routing Choice Intrusion attack Nodes use DIO messages met-

rics and objective function rules to decide whether to join the DODAG or not. The

authors in [91] defined a new RPL internal attack where the attacker learns RPL’s

routing rules (i.e., choices to route packets), captures control messages and broad-

casts fake ones. According to the authors, this attack is hard to detect because
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the intruder has only to ignore the legitimate RPL internal detection and work as

normal. One or more attackers may participate in the attack. This attack can gen-

erate un-optimised routes, create loops, and exhaust resources. In a variant of this

attack, attackers tamper the DIO metric value and ignore inside legitimate metric

detection. This variant is identical to the RAOF attack.

3.6.2.1.4 DAO attacks The DAO messages are used to build and maintain the

downward routes to carry the traffic from the BR to the respective nodes. Thus,

after a node joins a DODAG, it advertises a DAO message for its neighbours to

update their routing tables. Besides, parents can use DIO messages to request DAO

from sub-DODAG. Attackers can exploit the DAO mechanisms to trigger several

variants of DAO attacks as follows.

• In the DAO-Inconsistency attack, the attackers can use the Forwarding-Error

F flag to make a node discard available downward routes [92]. This attack aims

to make the DODAG’s topology sub-optimal and to isolate the sub-DODAG

bound the attacker.

• In the Routing Table Overload and the Routing Table Falsification attacks, the

malicious nodes announce fake routes by modifying or forging DAO messages

[26], leading to build false downward routes and overload the targeted nodes’

routing tables with these false paths. Consequently, honest nodes will be

prevented from building new legitimate routes. Additionally, used paths can

be longer, resulting in delay, packet drops and/or network congestion.

• In the DAO Insider attack [93][94], the attackers repeatedly replay eaves-

dropped DAO messages from legitimate nodes. This attack aims to drain

the network resources. The authors proposed SecRPL, a solution to address

the attack. SecRPL restricts the number of forwarded DAOs by a parent per

destination.

• In the DAO Induction attack [95], the attackers repeatedly send DAO messages

while incrementing the DAO-DTSN field. In fact, the number of time an

attacker can increment DTSN is unlimited.

3.6.2.1.5 DIS attacks RPL is based on the IPv6 Neighbour Discovery mecha-

nism. It relies on Multicast operations to set up the network topology. A node within

an RPL network sends a DIS message to solicit DIO messages from neighbouring

nodes and join the DODAG. The DIS transmission interval varies from one RPL’s

implementation to another. For instance, in the RPL Cooja-Contiki simulator [82], it

is handled using RPL CONF DIS START DELAY and RPL CONF DIS INTERVAL
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constants. After booting, a node delays the transmission of its first DIS message

according to the RPL CONF DIS START DELAY value. A node aiming to join the

network continuously transmits DIS messages within the RPL CONF DIS INTERVAL

fixed interval until it receives a DIO message from its neighbours. Upon receiving a

DIO message, it stops transmitting DIS messages and joins the network by sending

a DAO message to its selected parent. The DIS message transmission can be unicast

or multicast. A malicious node can exploit the DIS mechanisms to trigger the next

attacks.

• In the DIS Multicast attack, the malicious node multicasts periodically or

continuously DIS messages to its neighbours. On receiving a DIS multicast, the

neighbouring nodes have to reset their Trickle timers and transmit multicast

DIO messages more frequently. The repeated forced rest of the Trickle timer

leads to increase the number of control messages sent by the nodes, flood the

network with fake messages, disrupt the network operation, exhaust resources,

and further reduce the network lifetime [86][96][97][98]. These attacks were

defined in [26] as flooding attacks.

• In the DIS Unicast attack, the malicious node sends periodically or continu-

ously unicast fake DIS messages to the nodes in its neighbour list or a target

node. On receiving a unicast DIS message, the normal node replies to the

sender with a unicast DIO message without resetting its Trickle timer. This

attack affects the control packet overhead and overall power consumption of

the network. Nevertheless, the DIS Unicast attack’s impact on the network is

less compared to the DIS Multicast attack.

The authors in [96] conducted extensive simulation experiments to evaluate the per-

formance of RPL under the Spam DIS attack. According to their results, the attack

significantly increases energy consumption and decreases the node lifetime. They

concluded that the DIS attack is an extremely severe Denial of Service (DoS) attack

for RPL-based LLNs. It has been demonstrated that the DIS attack negatively im-

pacts the usage of nodes’ resources with a decrease of 2% in LPM and an increase of

226%, 1275%, 81%, and 171% in the CPU Time, TX (transmitting) Time, RX (re-

ceiving) Time, and battery consumption, respectively [99]. In another work [100],

the DIS attack’s effects on energy efficiency and the DODAG construction have

been examined. The simulations results demonstrated that the malicious node’s

neighbours are highly affected by the attack in terms of power consumption, then

the nodes present at extreme boundaries. Indeed, the interference increases for all

nodes with the presence of a malicious node. Accordingly, the ON and transmission

periods increase, especially for the neighbours of the malicious node. Furthermore,
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the attack affects the DODAG construction in the malicious node’s transmission

range.

3.6.2.1.6 Version number attack The DIO message version number field is set

and updated only by the BR. Each time a rebuilding of the DODAG is necessary, the

DODAG version number is incremented by the BR and propagated unchanged down

the DODAG graph. This process is known as global repair. As there is no mechanism

in RPL to protect the version number field from modifications, an adversary can

illegitimately increase the version number of the DOGAG, which triggers the global

repair mechanism and thus the reconstruction of the RPL topology from scratch.

This attack leads to increase the control messages overhead, generate loops and un-

optimised topology, and hence exhaust resources. According to the state-of-the-art,

the version number attack is more effective when the attacker is located far from

the BR [87][101][102].

3.6.2.1.7 Local repair attack An attacker can repeatedly trigger a local re-

pair by changing the DODAG ID field or broadcasting infinite Rank, which leads

to update the network topology, and thus consume more resources [72][84][85]. Fur-

thermore, to trigger a local repair attack, compromised nodes can modify the Down

‘O’ flag and Sender-Rank field. Indeed, this attack may be triggered just by mod-

ifying flags or adding new flags in the header. The latter attack is defined in [24]

as the DAG inconsistency attack. As defined, the local repair attack is more like a

poisoning or detaching attack.

3.6.2.1.8 Resource depleting attacks Le et al. defined the resource depleting

attacks as being the ones triggered when an adversary initiates greedy activities

aiming to exhaust the nodes’ resources [84][85]. From our point of view, all attacks

against RPL affect directly or indirectly nodes resources. The fact that attacks

create un-optimised routes, generate loops or congest the network, all these factors

lead honest nodes to consume more resources.

3.6.2.2 Existing Attacks Tailored to the Context of RPL

This class includes well-known routing attacks, which have already been studied by

the research communities and have been tailored to the context of RPL.

3.6.2.2.1 HELLO Flood Attacks In the literature, there exist several forms

of the hello flooding attack against RPL.

• In an RPL network, an attacker can introduce itself as a neighbour to nodes

within the network by broadcasting DIO messages -as a HELLO message- with
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strong signal power and a favourable routing metric. If nodes send packets to

the attacker, their messages may get lost because the attacker might be out

of range [103]. From our point of view, this attack looks like the neighbour

attack.

• As already said, nodes aiming to join an RPL topology could send DIS mes-

sages to solicit DIOs from their neighbours. In a second form of the hello

flooding attack, a malicious RPL node could flood the network with a massive

amount of DIS messages, causing the recipient nodes to respond by sending

DIO messages [97][104].

3.6.2.2.2 Sinkhole attack In this attack, the malicious node advertises itself

as the best path with the aim to be chosen as a preferred parent by its neighbours

and thus route traffic through it. In our opinion, this attack is similar to the Rank

attack, where a malicious node advertises an artificial beneficial Rank to be selected

as a preferred parent. As it is, this attack does not appear to be harmful (i.e.,

passive attack). However, it becomes harmful (i.e., active attack) if combined with

other attacks [105].

3.6.2.2.3 Black-hole attacks An intruder triggers a black-hole attack by drop-

ping all data packets routed through it. This attack can be considered a DoS at-

tack. Indeed, the black-hole attack is more dangerous if combined with the Rank

or sinkhole attacks since the attacker is in a position where huge traffic is routed

through it. This attack increases the number of exchanged DIO messages lead-

ing to the network’s instability, data packets delay and thus resources exhausting

[105][106][107][108].

3.6.2.2.4 Selective-forwarding attacks In the selective-forwarding attacks,

a misbehaving node can either aggressively filter RPL control messages or drop

data packets and forward only the control messages traffic. The first attack affects

negatively the topology construction and the network functions, which leads to

disrupt routing. In comparison, the second attack leads to a DoS attack because

no data will be transmitted to destination nodes. These attacks are also known

as grey-hole attacks that are a special case of black-hole attack. These attacks are

more dangerous and cause great harm if combined with other attacks such as the

sinkhole or Rank attacks [106][58][87][103].

3.6.2.2.5 Wormhole attack Two or multiple attackers have to connect via

wired or wireless links called tunnels to trigger a wormhole attack. A wormhole
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attack permits an attacker to replay the network traffic in the other ends of the tun-

nels. In RPL, some attackers can be outside the 6LoWPAN and thus can bypass the

BR. If control messages are replayed to another part of the network, distant nodes

see each other as if they are neighbours, which leads to distort routing paths and

create un-optimised routes [26]. The wormhole attack is highly harmful especially

if combined with other attacks [103].

3.6.2.2.6 Sybil and CloneID attacks Sybil and CloneID attacks are similar

and known as identity attacks [24]. In the CloneID attack (or spoofing attack),

an attacker copies the same logical identity on several physical nodes. In a Sybil

attack (or impersonation attack), an attacker copies several logical identities on one

physical node. A malicious node can trigger these attacks to access the traffic, take

control of the network, or overcome a voting scheme [58][103]. The Sybil attack

can be combined with other attacks to affect the network operations harmfully. In

the next chapter we introduce and analyse a new attack, named SybM attack. In

SybM, the attackers use periodically new fabricated identities (i.e., Sybil identities)

and trigger a Sybil-mobile attack to overload the network with fake messages and

thus exhaust nodes’ resources [28][29].

3.6.2.2.7 Denial of Service attacks DoS and DDoS attacks aim to make nodes

and/or the network unavailable. These attacks can be triggered against any layer

of the IoT architecture. These attacks are simple to implement and very common

because they have devastating consequences on the network [57]. From our perspec-

tive, the attacks mentioned above may be categorised as DoS or DDoS attacks since

they overload the network with fake messages and exhaust resource, which makes

parts of the network isolated and unavailable.

3.6.2.2.8 Indirect attacks Flooding, jamming and overwhelming are attacks

that indirectly affect RPL routing operations, and perform DoS attacks against the

network. Indeed, these attacks downgrade the node operation by resource consuming

or destroy the network traffic. Flooding and overwhelming attacks are initiated by

sending a large amount of traffic to a specific destination network to consume devices’

resources. A jamming attack is triggered when an attacker exploits the transmission

of a radio signal to interfere with radio frequencies being used by the network. It is

initiated by sending forged packets to create collisions; thereby, dropping legitimate

packets. Other indirect passive attacks are eavesdropping (i.e., sniffing) and traffic

analysis attacks. In both attacks, attackers listen to the packets transmitted over the

network. These packets could be data packets, routing data (i.e., DIO, DAO, etc.),

and/or partial topology (i.e., parent-child relations). By analysing the gathered
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information, attackers may trigger more harmful attacks [24][26][109][110][111].

3.7 Security Enhancements for RPL

3.7.1 Cryptography-based Solutions

The RPL specification introduces data confidentiality using Message Integrity Code,

data authenticity using encryption, and replay protection using the Consistency

Check (CC) message [72] for DIO, DAO and DIS control messages. Perazzo et al.

[112] implemented and evaluated the different RPL security modes; the unsecured

mode, the pre-installed mode with light-security configuration, and the pre-installed

mode with full-security configuration. The authors reported that the network forma-

tion time, the overhead introduced by the replay protection, and the power consump-

tion introduced by the security features increase with the network size. However,

globally the RPL security mechanisms have a negligible impact on the performances

if there is no replay attack. Otherwise, if there is a need to protect the network

against replay attacks, the impact on performances is more pronounced.

As pointed out in [53] and [50], node authentication can solve most of the prob-

lems that may be caused by unauthorised use such as Sybil and CloneID attacks.

However, securely managing, processing, and storing cryptographic keys inside a

resource-constrained and tamper-resistant embedded device deployed in an unstruc-

tured, distributed and untrusted environment is a challenging problem. In this

context, several works focused on secure key management mechanisms for IoT. For

instance, the authors in [55] proposed Internet Key Exchange (IKE) compression

scheme to provide a lightweight automatic way to establish security associations for

IPsec. Abdmeziem et al. [113] proposed a compression scheme for the MIKEY-

Ticket key exchange protocol to provide a lightweight and energy-aware version for

e-health application use.

VeRA (Version Number and Rank Authentication) [87] is a security scheme

that has been proposed to provide defence against version number and rank change

attacks. VeRA proposes to use hash chains for authenticating the nodes whose

rank or version number is changed. The main drawback of VeRA is that it can be

bypassed using rank forgery and replay attacks.

3.7.2 Trust-based Solutions

The existing cryptographic mechanisms will fail in safeguarding all network aspects

since several RPL-based attacks, such as selective-forwarding and black-hole at-

tacks could not be prevented. In this context, tamper-resistant modules and trusted

computing technologies are required. A growing number of works exist to secure
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RPL based on trust computation. For instance, authors in [114][115][116] intro-

duced a new trust-based metric to use when constructing the RPL topology. In this

trust-based RPL, nodes cooperate to calculate the trust metric of their respective

neighbours based on nodes behaviours and some trust components (e.g., energy,

ETX, and honesty). If a node is detected as untrusted, it will be discarded from

the list of parent and a local repair is triggered. Airehrour et al. [83][108] proposed

SecTrust-RPL: a trust-aware RPL routing protocol to secure RPL from routing at-

tacks. In SecTrust, the trustworthiness of a node is calculated relaying on direct

and indirect packet forwarding behaviour between linked and 2-hops nodes, respec-

tively. Although SecTrust uses indirect trust observation, a node recommendation

depends only on the neighbour of its indirectly linked neighbours (i.e., the parent

of its parent). In other words, the indirect trust of a node is calculated based only

on one recommendation of the intermediate neighbour, which makes it vulnerable

to Bad-mouthing and Good-mouthing attacks. Khan et al. [117] proposed a cen-

tralised trust-based model for managing the reputation of every node participating

in RPL-based networks. Every node relies on packets routed across the network to

calculate direct trust for other nodes, thus elaborating positive and negative expe-

riences with other nodes. The gathered trust information is then transmitted to

a central entity, which evaluates the interactions between network nodes and gives

them a global reputation. This solution is vulnerable to a single point of failure.

3.7.3 IDS-based Solutions

The mechanisms above can be considered as the first line for solving some RPL

security issues. However, they need to cooperate with Intrusion Detection Systems

(IDSs), which can monitor and detect malicious nodes from the early phase to elim-

inate further damage of the attacks. Some pieces of information can be monitored

and used to mitigate and/or minimise some attacks impacts on RPL-based networks

[72]. For instance, the following numbers can be bounded within a given time in such

a way the attacks cannot be triggered several times and to quarantine neighbours

having suspicious activities at unacceptable rates.

• The number of times a local repair procedure was triggered (Local repair

attack).

• The number of times a global repair was triggered by the BR (Version number

attack).

• The number of received malformed messages (Local repair attack).

• The number of times a node request to join a DODAG (DIS attacks).

53



CHAPTER 3. THE IPV6 ROUTING PROTOCOL FOR LLNS (RPL):
OVERVIEW, SECURITY ISSUES, AND STATE-OF-THE-ART SOLUTIONS

• The number of times routing tables are overflowed and the cause of overflow

(DAO attacks).

• The number of RPL control messages sent and received (Resource depleting

attacks).

In the following sections, we present the IDSs for RPL according to the IDSs’ classi-

fication in Chapter 2-Section 2.4. Table 3.1 summarises the most relevant IDSs for

RPL threats and categorises them according to detection method, used algorithms,

addressed attacks, used dataset, evaluation metrics, and drawbacks.

3.7.3.1 Specification-Based IDSs

Le et al. [84] proposed a hybrid lightweight specification-based IDS idea for securing

RPL against topology attacks. In this approach, nodes monitor routing information

conveyed in control messages to detect attackers. As a continuation to this work,

the authors implemented the proposed IDS using an Extended Finite State Machine

(EFST) with statistic information about transitions and states for RPL (i.e., RPL

normal profile) [118]. A cluster head requests its members to report its topology

information periodically and process these pieces of information using EFST. In-

formation used are: DIS sequence, number of DIS received, DIO sequence, number

of DIO received, list of neighbours (i.e., Node ID, Rank, sequence of the DIO that

provides this info, DIS sequence, number of DIS received, DAO sequence, number of

DAO received, and a parent bit), and preferred parent ID. The IDS aims to detect

Rank, sinkhole, local repair, neighbour, and DIS attacks. Zhang et al. [91] pro-

posed a specification-based IDS with distributed Monitoring Nodes (MNs) to detect

the routing choice attack. The detection data is network-based where in each MN

is implemented a Finite-State-Machine (FSM) of RPL profile and used to detect

intruders that deviate from RPL’s normal behaviours. The attack is detected in

the case when any malicious node multicast the DIO with lower ETX value, which

consequently leads to a large fluctuation in the number of its child nodes than a set

threshold. This node is marked as an attacker node. Surender et al. [119] proposed

a constraint-based specification IDS for 6LoWPAN-based IoT networks to detect

sinkhole attack (InDReS). This IDS depends on a FSM and behavioural rules to

detect and isolate malicious nodes. In InDReS, sensor nodes are grouped into clus-

ters with supervisor nodes. The latter track the number of dropped packets of their

adjacent nodes and assign a score to each of them to detect malicious nodes. Once

a malicious node is detected, it will be announced to all other nodes.
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3.7.3.2 Signature-Based IDSs

Liu et al. [120] presented a signature-based IDS that uses Artificial Immune System

mechanisms aiming to detect IoT attacks. The authors mapped the detectors to

immune cells, antigens to the signature of datagram, malicious datagram to non-

self-element, and normal datagram to self-element. In [121], a centralised signature-

based IDS to detect DoS attacks in 6LoWPAN networks has been introduced. The

proposed IDS has been integrated into the network framework ebbits developed

within an EU FP7 project. In this IDS, non-6LoWPAN monitoring nodes located

in the network send periodically the 6LoWPANs sniffed traffic through wired connec-

tion to the IDS. Thus, if a DoS attack occurs and degrades the wireless transmission

quality, IDS data transmission would not be affected. The IDS collaborates with a

DoS protection manager to confirm the attack using jamming information. Oh et

al. [122] proposed a misuse-based IDS, which uses a lightweight pattern-matching

algorithm, that has low computational complexity and requires small amount of

memory to protect IoT networks. The authors suggested two matching techniques

to match predefined attack signatures and IoT packet payloads, with the purpose

to decrease the number of matches needed for detecting attacks. The proposed ap-

proach is faster than the Wu-Manber algorithm; one of the fastest pattern-matching

algorithms.

3.7.3.3 Anomaly-based IDSs

A growing number of studies have been conducted to investigate anomaly-based

IDS for IoT and especially RPL-based networks. Data mining, machine learning,

statistical model, payload model, protocol model, rule model, and signal processing

model are techniques that have been used in the literature for anomaly-based IDSs

(see Figure 2.8). We classify the existing IDS for RPL as Machine learning (ML)-

based, Deep learning (DL)-based and rule/statistical model-based.

3.7.3.3.1 Rule/Statistical model-based IDSs Raza et al. [58] introduced

SVELTE, the first anomaly-based IDS for securing the RPL protocol. SVELTE

modules were placed both in the BR and in the constrained nodes. At the first stage,

the BR requests the network nodes to send information about themselves and their

neighbours. These pieces of information are: RPL Instance ID, the DODAG ID, the

DODAG Version Number, Rank, parent ID, neighbours list and their correspond-

ing Ranks, and a timestamp. At the second stage, the BR analyses the collected

data and makes decisions. SVELTE targets spoofed or altered information, sink-

hole, and selective-forwarding attacks. It requires a low overhead to achieve a high

detection rate. Pongle and Chavan [123] proposed an anomaly-based IDS to detect
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packet relay and encapsulation types of wormhole attack, using Neighbor Discov-

ery/Verification based techniques. Like SVELTE, the BR gathers information from

constrained nodes to detect the attack. In this solution, four centralised modules are

implemented on the BR and four distributed modules on the monitoring in-network

nodes. The monitoring nodes gather information about their respective neighbours

and changes on the network (RSSI), and send them to the BR. The latter analyses

the received data to detect intruders and makes decisions. The simulation results

showed that the energy overhead, the packet overhead, and the memory consump-

tion were acceptable for constrained nodes. Cervantes et al. [124] proposed INTI,

an IDS for sinkhole attacks over 6LoWPAN for IoT. INTI combines watchdogs, rep-

utation and trust to detect sinkhole attackers. It organises the network on clusters

where each node uses four modules to detect sinkhole attackers; cluster configura-

tion, routing monitoring, attack detection and attack isolation. After monitoring

the traffic, if a node detects an attacker it alerts other nodes to isolate the attacker.

Thanigaivelan et al. [125] presented a cross-layer anomaly-based detection system

for IoT. The proposed IDS is composed of three sub-systems located at the network

and the link layers as follow: both the monitoring/grading subsystem (MGSS) and

the reporting subsystem (RSS) operate at the network layer, whilst the isolation

subsystem (ISS) operates at the link layer. If a node is detected to have abnormal

behaviour, the ISS is used to avoid packets from that node at the link layer level.

When anomalies and network changes are detected, they are communicated from

the node to the edge-router through subsequent parents. The edge-router analyses

reports and makes decisions. In particular, the approach monitors packet size and

data rate. Gara et al. [126] introduced an anomaly-based IDS to detect the selec-

tive forwarding attack in IPv6-based Mobile IoT networks. This IDS works using

two modules: a centralised module on the sink node (BR) and a distributed one

on the routing nodes. Each monitoring node calculates periodically the number of

packets received and the number of packets sent from each neighbour, and sends

the collected data to the BR. These pieces of information are processed by the BR

to detect malicious behaviour and decide wither a node is an attacker or not. If an

attacker is detected, a global repair is triggered. In [127], a hybrid threshold-based

IDS has been proposed to detect the DIS attack. The IDS uses the packet rate

(i.e., DIS message sending rate) and the packet interval to detect the attack (see

Section 3.6.2.1.5). In addition, the nodes’ traffic is forwarded to the border router

that will decide on the stat of a node (i.e., malicious or not). An anomaly-rule-based

lightweight IDS using threshold values has been proposed in [128] to deal with the

neighbour and DIS attacks. Unlike the work cited above [118], the IDS is fully dis-

tributed in every node of the RPL network where each node monitors its neighbours

to detect the attacks. A profile of normal behaviour for networks with different
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sizes (i.e., 20, 30, and 40 nodes) has been defined. Every node stores the number

of DIS messages received from its neighbours at specific time intervals. Afterwards,

the maximum number of DIS messages received in all networks is calculated as the

threshold to use. If the number of DIS messages received from a neighbour at spe-

cific time intervals is more than the threshold, that neighbour is considered as an

attacker. Secure-RPL has been proposed in [97] to mitigate the effect of DIS flooding

attacks. The Secure-RPL approach suggests discarding all DIS messages received

before the expiry of the RPL CONF DIS INTERVAL from a particular neighbour.

Many data items such as sender IP address, previous DIS message receiving time,

and the total number of DIS messages received since the last reset are collected and

used to detect the intruder.

3.7.3.3.2 ML-based IDSs Sheikhan et al. [129] proposed a hybrid distributed

IDS for real-time detection of the sinkhole, selective forwarding and Wormhole at-

tacks using the NSL-KDD dataset. The model is based on the Map-Reduce ap-

proach that uses the Optimum-Path Forest (OPF), the Modification of Supervised

Optimum-Path Forest (MOPF), and the Optimum Path Forest Clustering (OPFC),

to classify nodes as normal or attacker. McDermott et al. [130] presented an exper-

imental comparison of a Multi-Layer Perceptron Backpropagation Neural Network

(BPN) and a Support Vector Machine (SVM) classifier to detect Denial of Service

(DoS) attacks in WSNs using the NSL-KDD dataset. The authors concluded that

both techniques offer a high true-positive rate and a low false positive rate, making

both of them useful for intrusion detection. In [131], a compression header analyser

based IDS (CHA-IDS) has been proposed to detect HelloFlood (i.e., DIS), sinkhole,

and Wormhole attacks in an RPL network. The authors used Cooja-Contiki simu-

lator to generate a dataset of 77 features. They used the Best First Search (BFS)

and Greedy Stepwise (GS) to perform the features searching, then the Correlation-

based Features Selection (CFS) algorithm to evaluate the most significant features.

MLP, SVM, J48 (i.e., DT), NB, Logistic, and RF classifiers were compared and the

results showed that J48 performs better than other classifiers for that specific con-

figuration. Anthi et al. [132] proposed an IDS to detect network scanning probing

and simple forms of DoS attacks in IoT networks. To generate the dataset, the

authors used the software Wireshark to sniff network traffic. They tested several

ML classifiers and used the NB classifier as it gave the best performance. Hasan et

al. [133] presented a study comparing several ML methods to detect threats and

attacks in IoT infrastructures. The authors concluded that RF classifier performs

better than the other one. An open-source dataset of 13 features from kaggle4 was

used. The dataset was gathered from a day of capture from the application layer

using four simulated IoT sites. Although this work demonstrated the effectiveness
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of RF classifier in the context of kaggle’s dataset, further studies need to take place

to assess its performance for traffic from the network layer.

3.7.3.3.3 Random Forests-Based IDSs for IoT Primartha et al. [134] used

three datasets, namely, NSL-KDD, UNSWNB15, and GPRS, to evaluate the per-

formance of RF for IDS use. The authors assessed 10 RF classifiers with different

number of trees (10, 40, 50, 80,..., 800) and RF-800 gave better results. Comparing

RF-800 to Random tree+NB tree, DMND, MLP, and NBTree, RF-800 outperforms

the other classifiers with 99.57% for accuracy and 0.34% for false alarm rate. In

[1], the authors proposed a cloud-based IDS using RF and Neural Network, and the

UNSW-NB15 dataset. The IDS receives IoT traffic from the network device, per-

forms features extraction, and classification on the extracted features. RF is used

to detect if the data point is classified as an intrusion or not. Whereas, the Neural

Network (i.e., one input layer, several hidden layers and one output layer) is used

to categorise the detected intrusion. RF gives good results for precision, recall, and

f1-score (99%, 98%, and 98%, respectively). Authors in [135] proposed TR-IDS, an

IDS that uses word embedding and text-convolutional neural network (Text-CNN)

techniques to extract features from the payloads in network traffic automatically,

and RF for the classification. The authors used ISCX2012 dataset, from which they

extracted 27 features to classify infiltration, BFSSH, HttpDoS, and DDOS attacks.

They obtained the following performance: 99.13%, 99.26%, and 1.18% for accuracy,

DR (Detection Rate), and false alarm rate, respectively. Tama et al. [136] proposed

an IDS that uses particle swarm optimisation (PSO) for feature selection and RF

classifier for attack detection. They used NSL-KDD dataset, where 37 features were

selected to obtain an accuracy of 99.67%. The model outperformed rotation forest

(RoF) and deep neural network (DNN) classifiers. The authors in [137] introduced

AD-IoT, an RF-based IDS that monitors IoT traffic in a distributed fog layer to

detect IoT Botnets at fog node, and alert the administrator. The authors used

UNSW-NB15 dataset and ExtraTreesClassifier to reduce the number of features to

12. RF classifier achieved good performance with values of 99.34%, 98%, 98%, 98%,

0.2% for accuracy, precision, recall, F1-score, and false alarm rate, respectively.

3.7.3.3.4 DL-based IDSs One application of DL for intrusion detection in the

IoT network is the work in [138]. The authors discussed the detection of Prob,

DoS, U2R, and R2L attacks using fog-to-things architecture. They used NSL-KDD

dataset with 128 features for detecting four classes of attacks. They also gave a

comparison study of a deep neural network model with three hidden layers and

a shallow neural network with as results 98.27% and 96.75% in term of accuracy,

respectively. Authors in [139] have also applied a DL approach with five hidden
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layers to detect RPL routing attacks. The authors generated datasets for decreased

rank, HelloFlooding, and version number attacks relaying on several topologies. The

obtained performance results in terms of F1-score for each dataset are 94.7%, 99%,

and 95%, respectively. Qureshi et al. [140] proposed a deep random neural network-

based heuristic intrusion detection system (RNN-IDS) for IoT. They trained RNN-

IDS using the Gradient Descent Algorithm (GD). The authors used KDDTrain20

from NSL-KDD dataset to train the classifier with variant learning rates, and with

both reduced features (29) and all features (41). The RNN-IDS accuracy reached

up to 95.2% and gave better performance than SVM, NB, DT, MLP, and others.

3.8 Comparison and Discussion

As presented in the section above, several studies revolving around IoT and more

specifically RPL security have attempted to design IDS systems tailored for it. Con-

cerning the detection methodology, specification, signature and anomaly detections

are deployed. Each method has its advantages and its drawbacks. The main and

common drawback for the specification-based solutions is that human creates and

develops protocol specifications, which means incorrect specifications, can result in

false detections and might compromise the network. Besides, each solution has other

specific disadvantages. For instance, the IDS proposed in [118] is energy efficiency

but showed less accurate when it works for a long time. The one proposed in Zhang

et al. [91] relies on unrealistic assumptions such as the stable state of LLN en-

vironment, secure network initialization, and static environment, which limits the

practicality of the IDS. Although InDReS [119] performed well compared to INTI

[124] in terms of packet drop ratio, PDR, control packet overhead, and average

energy consumption, INTI considered only homogeneous nodes within a static net-

work. In addition, the IDS may fail if the leader node itself is compromised. The

above-solutions target specific attacks and are not capable of detecting new and

unknown attacks in IoT. Moreover, if any situation invades the predefined system

behaviour, the IDS decides that there is an intrusion.

Similar to the specification-based solutions, although signature-based IDSs have

high detection accuracy and very low false alarm rate, they are not capable of

detecting unknown attacks. In addition, it is complicated and time-consuming to

build the signatures rules database since such IDSs are designed to detect malicious

attacks and intrusions based on previous knowledge. Other common drawbacks for

the signature-based solutions are the network packet overload and the challenge

of frequently updating the signatures database, the high storage cost that grows

with the number of attacks, and the requirement to compare the input with all the

existing signatures. As already said, every solution has specific disadvantages. For
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example, in [120], the authors did not discuss neither how the proposed immune-

based IDS would be deployed in IoT networks, nor how the storage of signatures

on low capacity IoT devices would be handled. The IDS proposed in [121] targets

only DoS attack and is not compatible to a generic RPL architecture. It depends

on developed rules to detect different other attacks and is not able to detect new

and unknown attacks. The solution in [122] has several interesting features, such

as the reduced memory size required for matching operations, the reduced workload

for processing on smart objects, the increased speed of processing, and its scalable

performance for a large number of patterns. Nevertheless, an attacker may try a

unique pattern each time, making it difficult for the node to detect an attack.

As presented in the previous section, there exist several anomaly-based IDSs

that have been proposed to detect intrusions against IoT and RPL-based networks.

SVELTE [58] generates a high false positive, precisely when the number of attacks

increases. Besides, SVELTE suffers from a synchronisation issue. For instance, the

reported Rank information of a given node from the node itself and from its neigh-

bours to the BR are not the same because the recording time was not synchronised.

The IDS proposed in [123] targets only the wormhole attack and puts much com-

munication and computational burden on resource-constrained nodes. Although

INTI [124] is better than SVELTE [58] as it gives importance for node mobility

and network self-repair, it targets mainly one attack, imposes extra network deploy-

ment cost, and the authors did not present the impact on the energy consumption.

Moreover, the IDS placement change over the time can lead to consuming more

resources. In the IDS proposed in [125] the parents themselves can be compromised

and anomalies notifications can be avoided. Consequently, the solution may be not

effective. In addition, no details were provided about the method of determining

the normal behaviour of the network. Although the IDS in [126] deals with the

mobility issue and offers good performance on attack detection, it generates high

overhead, network congestion due to large number of ‘Hello’ packets and detects

only two routing attacks.

The results from the IDS in [127] depend on the number of detectors within

the network. Furthermore, the IDS introduces communication overhead where the

higher the detectors, the higher the communication overhead. Besides, it is designed

for static networks and the performance depends on threshold values. Likewise,

the IDS in [128] deals with the DIS attack within a static network only and the

performance depends on threshold values. The solution proposed in [97] has several

drawbacks. A Sybil attacker can use different identities to avoid the mitigation

mechanism. Moreover, even though all non-attacker nodes are configured with the

same DIS interval, they need to be synchronised to detect the DIS attack (in which

malicious node sends DIS after the expiry of DIS interval). Furthermore, the authors
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tested their solution for small networks of 8 and 16 nodes with one attacker.

In our point of view, the IDSs mentioned above ([58][123][97][124][125][126][127][128])

are more likely seen as rule-based and/or statistic model-based IDSs since the BR

gathers information from other nodes and decides the security status of the network

relying on predefined rules, or nodes gather information from each other and detect

the intruder relaying on statistics and thresholds. Although these IDSs offer good

performance on attack detection, they would generate high overhead and high false-

positive rate if the number of nodes and/or attackers within the network increases.

Besides, specific information need to be used to detect specific attacks. As a result,

new rules need to be added to deal with unknown attacks.

One drawback for the solutions that use a threshold parameter to detect the

routing attacks is how to set a threshold for different configurations and topolo-

gies, especially for a dynamic network? The second one is that several solutions

assume that the attack is triggered after the DODAG stability is reached; however,

an attacker can start the attack before the setup of the DODAG like a zero-day

attack. While the nodes make statistics and count the number of specific messages

to compare them with thresholds, the malicious nodes affect the performance of the

network, which is another disadvantage for such solutions. Besides, the detection

time related to the counting and the comparison with the threshold values will be

higher with the growing size and the network’s dynamic, which negatively influences

the network’s performance and goes against the real-time nature of the solution.

We suppose that ML and DL based solutions are more appropriate to handle

some gaps of the above-cited solutions. It should be noted that even ML and

DL IDSs have their own disadvantages in the specific case of RPL-based networks.

For instance, the IDS presented in [129] has several drawbacks such as its high

false positive and false negative rates compared to other IDSs in the literature.

The authors consider a static network, which makes the results limited. Finally,

despite the authors’ goal to propose an IDS for real-time detection, they presented

an execution time of 837 s (i.e., approximately 13 min), what goes against real-

time characteristic. The IDS in [130] is evaluated using NSL-KDD dataset that

is not specific to IoT networks. Even though the approach in [131] presents a

good background for IoT ML-based IDS, the authors considered one topology and

a small network of eight nodes. Furthermore, although the study in [132] is based

on a testbed to generate datasets and detect intrusions, the authors used a small

network composed of nine devices and the results present a low precision for DoS

attack detection, which is not promising. The IDS in [133] targets threats from the

application layer and further studies need to take place to assess its performance

for traffic from the network layer. The works in [1], [134], and [135] are not specific

to IoT networks, and the IDSs for IoT in [1] and [137] are evaluated using datasets
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that are not specific to IoT and precisely to RPL-based networks.

The IDSs based on DL techniques such as [138] and [140] use NSLKDD, which

is not specific to RPL-based networks. The work in [139] has fairly good results

on an RPL-based datasets; nevertheless, the authors did not provide much detailed

description of the simulation settings used to generate the datasets. In addition,

they did not provide a multi-class evaluation.

As it can be noticed, most of the works deploy hybrid (hierarchical) architectures

with a distributed network information gathering and/or analysis and a centralised

detection. Furthermore, most of the existing IDSs have been tested on small network

scenarios, but in the practical world, IoT is enabled by a large network of resource-

constrained nodes. Therefore, the performance of the proposed IDSs may degrade

in the case of large networks. Besides, almost all the proposed IDSs are designed

for static networks. Besides the works in [139] and [131], one major drawback of the

other works is using datasets from open-sources that are not designed explicitly for

IoT and RPL-based networks. In addition, the studies did not use features that are

relevant for RPL-based routing attacks detection.

A very important observation is the fact that all the proposed IDSs present

solutions to detect intrusions against a network; nevertheless, no one present a

solution to tolerate the intrusions.
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c
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OVERVIEW, SECURITY ISSUES, AND STATE-OF-THE-ART SOLUTIONS
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CHAPTER 3. THE IPV6 ROUTING PROTOCOL FOR LLNS (RPL):
OVERVIEW, SECURITY ISSUES, AND STATE-OF-THE-ART SOLUTIONS

3.9 Summary

In this chapter, we provided an in-depth overview of the RPL standard operations.

We outlined the RPL’s topology construction while providing definitions of its con-

trol messages, routes construction, modes of operations, the standardised objective

functions, and the most used RPL tools by the research community. We presented

the RPL’s security features and focused on the RPL’s security gaps. We elaborated

on how an adversary can exploit RPL vulnerabilities to trigger harmful attacks

against the network and introduced a new classification of such attacks. We pre-

sented how the research community has responded to the RPL’s security issues.

Finally, we concluded the chapter with a discussion on the major drawbacks of the

IDSs proposed to overcome the RPL’s security gaps.

The first major identified gap in the literature review of RPL’s vulnerabilities is

the lack of RPL’s performance evaluation under attack when the malicious nodes

are mobile. In response, an analytical and a simulation-based evaluation of the RPL

protocol under mobile Sybil attacks have been introduced in Chapter 4. In addition,

a mitigation mechanism has been introduced.
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Chapter 4

RPL’s Performance under DIS and

SybM Attacks and New Approach

for the Intrusions Tolerance

As presented in Chapter 3, RPL is subject to several attacks that have been anal-

ysed for static networks. The research community did not consider the malicious

node mobility. Nevertheless, IoT supports both static and dynamic-mobile applica-

tions. In response, this chapter introduces SybM, a DIS-Sybil attack against RPL

with mobile Sybil nodes. We present an analytical and a simulation-based perfor-

mance evaluations of RPL under SybM attack and a discussion on how the network

performance can be affected. We propose a novel approach, namely RPL-MRC, to

improve the RPL’s resilience and thus its tolerance to both DIS and SybM intru-

sions. Finally, we assess the RPL-MRC performance under both static and dynamic

RPL-based networks.

4.1 The Multicast DIS Attack (M-DIS): Reminder

RPL is based on the IPv6 Neighbour Discovery mechanism. It relies on Multi-

cast operations to set up the network topology. A node within an RPL network

sends a DIS message to solicit DIO messages from neighbouring nodes and join the

DODAG. The DIS transmission interval varies from one RPL’s implementation to

another. In the RPL Cooja-Contiki simulator [82], it is handled using two con-

stants; RPL CONF DIS START DELAY and RPL CONF DIS INTERVAL . After

a node starts (i.e., after booting), it delays the transmission of its first DIS message

according to RPL CONF DIS START DELAY. A node aiming to join the network

continuously transmits DIS messages within the RPL CONF DIS INTERVAL fixed

interval until it receives a DIO message from its neighbours. Upon receiving a DIO
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message, it stops transmitting DIS messages and joins the network by sending a

DAO message to its selected parent.

LLNs are not tamper-resistant, and nodes do not have a significant security de-

fence. Hence, an adversary can compromise some nodes, reprogram and redeploy

them into the network. As a consequence, even in the case of a secure RPL, the

compromised nodes can use the pre-configured group key [22], and can normally

participate in the network operations, and thus trigger attacks. In the M-DIS at-

tack, the attacker exploits the RPL features mentioned above and frequently sends

multiple Multicast DIS messages to its neighbours. Upon receiving a Multicast

DIS message, the neighbouring nodes reset their DIO (Trickle) timers to the mini-

mal value defined in the RPL implementation (212 seconds) and send an excessive

amount of Multicast DIO messages containing the up-to-date routing information

[22], as illustrated in Figure 4.1. The repeated forced rest of the DIO timer leads

to the wastage of the legitimate nodes’ energy, and thus to shorten the network

lifetime.

Figure 4.1: Multicast DIS attack illustration.

4.2 The Sybil Attacks

4.2.1 Sybil Attacks Overview

The most well-known definition of the Sybil attack is that a node claims multiple

fake identities [141] called Sybil nodes [142]. The authors in [142] have analysed and

classified Sybil attacks in sensor networks as follows.

• Direct & Indirect Communication. In the direct case, legitimate nodes

communicate directly with Sybil nodes. In the indirect case, the communica-

tion is done through malicious nodes, which claim reaching the Sybil nodes.
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• Fabricated & stolen identities. In the fabricated identities case, the ma-

licious node creates a new identity for itself based on the identities of the

legitimate nodes. For instance, if legitimate nodes have IPv6 addresses as ID,

it randomly creates an IPv6 address. In the stolen identities case, the ma-

licious node spoofs, and then uses identities of legitimate nodes which have

been destroyed or disabled. For example, the attacker steals the IPv6 address

of legitimate node.

• Simultaneous & non-simultaneous. In the simultaneous case, the mali-

cious node involves all its Sybil identities in the network at the same time. In

the non-simultaneous case, the malicious node alternately presents a subset of

its identities over a period of time.

4.2.2 RPL under Sybil Attacks

The fact that RPL uses IPv6 addresses as nodes’ identifiers, makes the routing

protocol vulnerable to various Sybil attacks [24][141]. Once the adversary gains

access to the network using a Sybil identity, it can exploit RPL other vulnerabilities

to trigger different attacks. On the one hand, the malicious node can exploit the

fact that RPL does not support mobility when routing to trigger a mobility-based

attack. On the other hand, the adversary can exploit the functioning rules of RPL

to trigger RPL related attacks (see Chapter 3). Both gaps can be combined and

exploited by Sybil nodes to disturb RPL.

Sybil attacks are widely treated for different networks such as P2P, Ad-hoc and

WSNs. Nevertheless, to the best of our knowledge, there are only few works that

address Sybil attacks on RPL-based network without providing in-depth evaluation,

which is worth to be investigated. For instance, in [143] and [144], the authors

presented three types of Sybil attacks and their respective countermeasures. How-

ever, their analysis focus on SIoT (Social Internet of Things). The authors in [145]

presented a method to detect a community of Sybil nodes. In [146], the authors

presented a classification of existing Sybil attacks defence approaches, highlight-

ing the effectiveness of LSD (Lightweight Sybil Attack Detection Framework). The

aforementioned works stated that Sybil attacks are harmful for IoT networks, yet

they did not present quantitative evaluation of the network especially for RPL per-

formances. They focused only on Sybil detection approaches. In this chapter, we

introduce three Sybil attacks against RPL and investigate the RPL’s behaviour in

the presence of one specific Sybil attack we named the Sybil Mobile attack (SybM

for short).

For the proposed attacks, we assume each node can be mobile and automatically

calculates its IPv6 address, which is used as identifier. It is assumed that in a
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network of N nodes, an adversary can deploy M malicious mobile nodes (with M

< N). Each malicious node m has K Sybil identities. These identities are either

fabricated IPv6 addresses or stolen identities. Each Sybil node i can join or leave

the RPL topology any time.

SybM1. In SybM1 (SybM for short) attack, the Sybil nodes communicate directly

with legitimate nodes. They operate independently and do not cooperate dur-

ing the attack. As depicted in Figure 4.2, in SybM attack, each node is initially

placed at a random location and sends periodically data packets to the BR.

Malicious nodes pause for a period of time behaving the same way of honest

nodes (sending data packets to the BR). Indeed, each adversary involves a set

of its Sybil identities alternately and periodically, while moving through the

network. Thus, after the pause time, malicious nodes choose a new location

across neighbouring nodes towards the BR, and move physically there. When

malicious nodes arrive, they repeat the process of pausing and then selecting a

new destination to which they intend to move. Upon moving, malicious nodes

multicast DIS messages within the network. In macro-mobility, normally, the

IPv6 address of the node remains unchanged. Nevertheless, as in SybM mobile

nodes are malicious, they multicast DIS messages using new IPv6 addresses

corresponding to new Sybil identities. The number of Sybil identities corre-

sponds to the number of time an attacker moves. As a result, neighbourhood

connectivity will change, and obviously more DIO messages will be exchanged.

Figure 4.2: SybM model, where 6 attackers move periodically across their neighbours
towards the BR while multicast DIS messages.

SybM2. SybM2 is a Sybil attack based on stolen identities. RPL is based on IPv6,

thus, it uses the IPv6’s Neighbour Discovery mechanism, and Duplicate Ad-

dress Detection Algorithm. However, the method for detecting duplicates is
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not completely reliable, and it is possible that duplicate addresses will still

exist [147]. Therefore, we can introduce a second Sybil attack, SybM2, ex-

ploiting this gap. In this attack, a node m moves near to a parent and uses

its identity (i.e., steals the parent IPv6 address) to broadcast a poison, which

is a DIO message with infinite Rank (i.e., Rank = INFINITE RANK). By

sending a poison message, the parent (i.e., the malicious node) tells that it

leaves the DODAG. As a result, the children of this parent could stay in its

current DODAG through an alternative parent, which leads to the use of un-

optimised route (increases packet delay), or might follow the leaving parent,

which is more serious because it leads to break the sub-DODAG. When differ-

ent attackers participate simultaneously in SybM2, damages on the network

will be more important.

SybM3. SybM3 is triggered at the initial construction of the RPL topology. In

this attack, the different attackers involve their different Sybil identities si-

multaneously (i.e. M*K Sybil identities at the same time). The Sybil nodes

participate in the calculation of ETX aggregated metrics to choose the best

and/or optimised route. This creates several wrong paths. As well, some

correct routes can never be discovered. SybM3 leads to data loss or even an

increase in packet delay.

4.3 Analytical-based RPL’s Performance Evalua-

tion under SybM Attack

In Section 4.2.2 we presented SybM, SybM2 and SybM3, and gave briefly the im-

pacts of SybM2 and SybM3 on the network performance. On the one hand, SybM

increases the DIO messages overhead, which is known to directly affect the energy

consumption. On the other hand, the energy consumption is a critical concern for

the IoT’s devices. Therefore, as a first contribution, we provided an analytical eval-

uation of the RPL’s performance under SybM attack [28]. Specifically, the impacts

on messages overhead, packets delivery and energy consumption. Table 4.1 sum-

marises the different notations used for the analysis.

In the analysis, we consider a network of 50 nodes (N = 50). We consider

different scenarios where the number of malicious nodes M increases from 2, 4, 6,

8 to 10, and for each malicious node m, the number of Sybil identities K increases

from 1, 3 to 5 (i.e., K Sybil nodes per attacker m). Thus, M ∗K malicious mobile

nodes will participate in the attack alternately for K cycles in groups of M. The lists

of neighbours change from one Sybil node to another. We consider Lmi, the ith Sybil

70



CHAPTER 4. RPL’S PERFORMANCE UNDER DIS AND SYBM ATTACKS
AND NEW APPROACH FOR THE INTRUSIONS TOLERANCE

Table 4.1: Terminology

Notation Description

Syb Sybil attack over multiple cycles {1,2,3 . . . j . . . K}
j jth cycle of the attack, which corresponds to the j-1th move-

ment of an attacker

N Number of nodes in the network

M Number of mobile malicious nodes in the network

m A mobile malicious node (mth attacker)

K Number of Sybil nodes per malicious node m (fabricated
and/or stolen identities) which also corresponds to the num-
ber of cycles of Syb1 attack

i A Sybil node (ith Sybil identity)

Lmi Size of the ith Sybil node neighbors list -Number of neighbors
of the ith Sybil node for the mth attacker- (corresponding to
the i-1th move)

Lm List of all neighbours for all Sybil nodes of one attacker m
-Number of neighbours of the mth attacker for all its Sybil
nodes- which corresponds to the number of neighbours for all
K-1 moves

I, Imin, Imax Trickle timer variables

DIO(j) Number of exchanged DIO for cycle j of the attack

NDIO Number of exchanged DIO for the whole attack

NDISsent Number of transmitted DIS for the whole attack

NDISreceived Number of received DIS for the whole attack

NDAOsent Number of transmitted DAO for the whole attack

NDAOreceived Number of received DAO for the whole attack

NDIOsent Number of transmitted DIO for the whole attack

NDIOreceived Number of received DIO for the whole attack

node neighbours list of the mth malicious node, is smaller when the attacker is closer

to the leaf nodes or to the BR, and increases between them. Hence, we estimate for

one attacker m an average sum, Lm, of all its Sybil-nodes neighbours will take values

4, 9 and 20 for 1, 3 and 5 Sybil identities, respectively. Lm is calculated following

Equation 4.1.

Lm =
K∑
i=1

Lmi (4.1)

4.3.1 Control messages overhead

When a Sybil node joins a DODAG, depending on its location, all or a part of

the network topology will need to be updated. As a result, DIO messages will be

exchanged more frequently between neighbours. Authors in [86] highlighted that,
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when the number of attackers increases, control messages overhead increases too. In

their experiments, they considered the DIS attack (see Section 4.1) where nodes are

static. Under the constraint that the attacker nodes remain in the same location,

their experiments show that, in a network of 50 nodes, the number of control mes-

sages doubles when the number of attackers is 4% of the total nodes, and increases

5 times more when the number of attackers is 20% of the total nodes.

We consider the DIS attack as a special case of the SybM attack. In fact, when

nodes are static, the DIS attack corresponds to one cycle of SybM. In our analysis, we

take DIS attack as the first cycle of SybM. Consequently, considering SybM, where

M mobile malicious nodes move toward the BR and use their K Sybil identities

to advertise repeatedly DIS messages, the number of control messages will increase

substantially, exceeding the values reported in [86]. Indeed, for M Sybil nodes and

cyclically (i.e., K cycles), the topology has to be rebuilt almost from the BR towards

the leaf nodes. We conduct our analysis on messages overhead on three steps. At

the first step, we estimate the number of DIS and DAO messages exchanged during

SybM as follows.

• Each malicious node m can send at least K DIS, and K DAO messages in

broadcast transmission mode, using its different Sybil nodes. Based on the

above assumption (i.e., receivers are listening at the time of sending without

loss), we estimate that DIS and DAO messages are sent once per cycle j for each

Sybil node i. In SybM there are M ∗K Sybil nodes; therefore, the numbers of

DIS and DAO messages sent in the network are calculated following Equation

4.2.

NDISsent = NDAOsent = M ∗K (4.2)

• Likewise, all the Sybil nodes neighbours receive both DIS and DAO messages in

broadcast reception mode. Each node n ∈ Lmi neighbours list will receive one

DIS at the beginning of the cycle j, and one DAO at the end. Therefore, the

total number of DIS and DAO messages received for the whole SybM attack

is equal to the number of neighbours directly affected by the M attackers,

during the whole attack. Numbers of these messages are calculated following

Equation 4.3.

NDISreceived = NDAOreceived =
M∑

m=1

K∑
i=1

Lmi =
M∑

m=1

Lm = M ∗ Lm (4.3)

At the second step, we estimate the number of DIO generated by SybM. DIO mes-

sages are controlled using Trickle timer variables: I I, Imin and Imax with I ∈ [ Imin,

Imax]. When the topology is not in a steady state (i.e., a node joins the network),
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nodes will reset the timer to I= Imin [22], and send more DIO messages. From

one cycle j to another, malicious nodes move towards the BR. As a consequence, I

decreases and the number of DIO messages (DIO(j)) increases. The total number

NDIO of DIO messages exchanged during SybM is the sum of the exchanged DIO(j)

messages for each cycle j of the attack (see Equation 4.4).

NDIO =
k∑

j=1

DIO(j) (4.4)

NDIO includes DIO messages in broadcast transmission and reception. When a

Sybil node sends a DIS message, all its neighbours are affected. An affected node n

(which is not a leaf node), upon receiving DIS or DIO messages, sends in broadcast

transmission one DIO message to its neighbours, and receives in broadcast reception

DIO messages from all its neighbours (i.e., transmitting nodes). The process is

repeated for all neighbours. For example, as seen in Figure 4.3, in the network there

are 4 leaf nodes and 6 transmitting nodes. Thus, there are only 6 DIO messages sent

and 18 DIO messages received (i.e., number of arrows), which represents
2

3
of the

exchanged DIO messages. We have selected several scenarios to estimate the ratio

between NDIOsent (i.e., the number of DIO sent) and NDIOreceived (i.e., the number

of DIO received) during RPL topology reconstruction. Based on our benchmark

results, we could assume that NDIOsent represents approximately
1

3
of NDIO and

NDIOreceived represents approximately
2

3
of NDIO. Therefore, In our analysis, we rely

on Equation 4.5 and Equation 4.6 to calculate NDIOsent and NDIOreceived, respectively.

NDIOsent ≈
1

3
∗ NDIO (4.5)

NDIOreceived ≈
2

3
∗ NDIO (4.6)

Finally, the total control traffic overhead is calculated following Equation 4.7.

Figure 4.3: NDIOsent and NDIOreceived within the network.
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Control traffic overhead = NDIOsent +NDISsent +NDAOsent+

NDIOreceived +NDISreceived +NDAOreceived (4.7)

Figure 4.4 represents DIS and DAO messages overheads for our different scenarios.

The number of DIS messages is calculated as the sum of NDISsent and NDISreceived.

Likewise, the number of DAO messages is calculated as the sum of NDAOsent and

NDAOreceived. As well, Figure 4.5 and Figure 4.6 represent DIO messages and control

traffic overhead, respectively.

Figure 4.4: DIS/DAO messages overhead.

Figure 4.5: DIO messages overhead.

Figure 4.6: Control messages overhead.
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4.3.2 Packets delivery

For packet delivery, we can highlight two cases. In the first case, there is no limitation

on the number of joining nodes; the network is never in a steady state. In this case,

control messages will take an important part in the network data flow. Therefore,

data packets transmitted will be hindered due to their longer waiting in queues,

which leads to their removal, and hence to a denial of service. In the second case,

there is configured limitation on the number of joining nodes (e.g., only 20 joining

requests per 1h). In this case, the network will be periodically stable allowing more

data packets transmissions. Nevertheless, data packets could be lost in two possible

ways. The first one, if they travel through Sybil nodes, which are moving. The

second one, if the Sybil nodes deliberately remove them. As a result, the number of

packet loss will increase.

4.3.3 Energy consumption

The energy consumption is directly related to control messages overhead. Hence,

we have to calculate the energy cost of DIO, DIS and DAO overheads to estimate

the energy consumption caused by SybM. For this purpose, we rely on messages

overheads calculated following Equations 4.2, 4.3, 4.4, 4.5 and 4.6, and on the energy

model of TelosB constrained nodes defined in [9], and summarised in Table 4.2.

In this model, a node consumes 178 µJ for one broadcast message reception, and

Table 4.2: Energy consumption on constrained node [9].

Activity Energy (µJ)

Broadcast reception 178

Broadcast transmission 1790

1790 µJ for one broadcast message transmission. In Table 4.3 and Table 4.4, we

summarise the energy cost for two scenarios (i.e., the first one when K=5 and M=10,

and the second one when K=1 and M=10) for each control message type (DIO, DIS

and DAO), and the total energy consumption due to SybM.

Table 4.3: Energy cost for SybM (K=5 and M=10).

``````````````̀Activity
Control Type

DIO DIS DAO Total (µJ)

Broadcast reception 8000*178 200*178 200*178 1495200

1424000 35600 35600

Broadcast transmission 4000*1790 50*1790 50*1790 7339000

7160000 89500 89500

Total(µJ) 8584000 125100 125100 8834200
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Table 4.4: Energy cost for SybM (K=1 and M=10) corresponding to the energy
cost of DIS attack.

``````````````̀Activity
Control Type

DIO DIS DAO Total (µJ)

Broadcast reception 1600*178 40*178 40*178 299040

284800 7120 7120

Broadcast transmission 800*1790 10*1790 10*1790 1467800

1432000 17900 17900

Total(µJ) 1716800 25020 25020 1766840

Table 4.5 and Figures 4.7 and 4.8 illustrate the energy cost generated by all

presented scenarios of SybM.

Table 4.5: Energy cost (J) for SybM attack depending on numbers of Sybil nodes
and attackers.

H
HHH

HHK
M

2 4 6 8 10

1 (DIS attack) 0,782565 1,099454 1,274704 1,48429 1,76684

3 2,28548 3,17606 3,63744 4,206264 4,9894

5 3,6274 4,92858 5,51512 6,279778 8,8342

Figure 4.7: SybM’s energy cost.

4.3.4 Discussions

Figures 4.5, 4.6 and 4.8 show that DIO, control overhead and energy cost evolve

similarly. We notice that the energy cost increases in the same way as control

messages overhead. Also, the energy cost increases in the same way as DIO messages

overhead.
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Figure 4.8: SybM’s energy cost for K=1, K=3 and K=5.

According to Tables 4.3 and 4.4, the highest rate of energy consumption is caused

by DIO messages, which represents about 97% of the total energy consumption. Fur-

thermore, it can be seen clearly in Figures 4.4, 4.5, 4.6 and 4.8, where blue curves

(i.e., K=1) represents the evolutions of messages overhead and energy cost for DIS

attack, that the estimated messages overhead and the energy cost caused by SybM

exceed by almost K times (i.e., number of Sybil identities per attacker) the ones

caused by the DIS attack. Moreover, as seen in Figures 4.5, 4.6, 4.7 and 4.8, mes-

sages overhead and energy consumption increase steadily when the number of Sybil

nodes is less or equal to 3 (i.e., K ≤ 3), or when the number of Sybil nodes exceeds 3

and the number of attackers is less or equal to 8 (i.e., K > 3 and M ≤ 8). However,

when the number of attackers exceeds 8 (i.e., K > 3 and M > 8), messages over-

head and energy consumption increase considerably compared to the other cases.

Likewise, according to Table 4.5 and to Figures 4.4, 4.5, 4.6, 4.7 and 4.8, messages

overhead and energy cost almost double when the number of Sybil nodes increases

(the gap in the figures between K=3 and K=5). For 10 attackers, the DIS attack

(i.e., K=1) causes an energy consumption of 1,76684J. However, SybM with 5 Sybil

identities (i.e., K=5) causes an energy consumption of 8,8342J. Thus, there is an

energy cost difference of approximately 7J between the two attacks, which signifi-

cantly reduces the lifetime of the network. These observations are due to the fact

that the number of Sybil nodes becomes too close or equal to the number of the

nodes in the network, which means that almost the whole topology is affected.

4.4 Simulation-based RPL’s Performance Evalu-

ation under SybM Attack

Our first contribution and other works in the state-of-the-art stated that Sybil at-

tacks are harmful for IoT networks, but they did not present quantitative evalu-
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ation of the RPL network performance. In our second contribution, we present a

simulation-based study and analysis of RPL’s performance under the SybM attack.

4.4.1 Simulation Settings

We simulated a network of 50 TelosB nodes (Sky motes) with one BR placed in the

centre and 49 senders placed randomly around the BR. Each Sky mote is powered

by an 8MHz, 16-bit Texas Instruments MSP430 microcontroller with 10kB of RAM

and 48kB of flash memory. Table 4.6 shows the simulation parameters.

Table 4.6: Simulation parameters for SybM attack’s effects on RPL

Parameter Value

Simulator Cooja-Contiki 2.7

Simulation time (s) 330

Number of nodes 50

Network area 300x300m2

Transmission range 50m

Radio medium UDGM : Distance Loss

Traffic rate 1 packet sent every 10 seconds

Number of mobile/attacker nodes 0, 2, 4, 6, 8, 10

Number of Sybil nodes per attacker 1, 3, 5

We simulated four scenarios as summarised in Table 4.7. The first and second

scenarios are used as benchmarks. As the DIS attack represents a special case of

SybM where attackers are static nodes, the third scenario represents the implemen-

tation of the DIS attack and is also used as a benchmark [86]. The fourth scenario

represents the SybM attack.

We conducted the simulations on Cooja-Contiki-2.7. To handle nodes mobil-

ity, we used the Cooja-Mobility-Plugin. Furthermore, to handle Sybil identities

we rely on the work in [148]. For more accurate evaluation, each simulation was

executed 5 times with random seeds and simulations outputs were averaged. To

study the impacts of SybM attack on RPL performances, we focused on control

messages overhead, packets delivery and energy consumption parameters. For the

control messages overhead and the energy consumption analysis, we used the radio

messages and collect-view tools from Cooja. For the packets loss analysis, we used

the simulation script editor from Cooja. Figure 4.9a represents the experimental

network topology for SybM attack in the case of 10 malicious nodes before trigger-

ing the attack. Whereas Figure 4.9b represents the topology evolution of the same

network after triggering the attack. The mobility issue is seen clearly even without

attacker. Once the node 28 moves, the node 45 becomes isolated from the network.
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Table 4.7: Scenarios

Scenario Description

Fist A network with no attacker and no mobility

Second A network with no attacker and some mobile nodes. We varied the
number of mobile nodes from 2, 4, 6, 8, to 10. Each mobile node
moves towards the BR 1, 3 then 5 times (noted 1Move, 3Move and
5Move, respectively). The special case of 0 mobile node and 0 move
corresponds to the first scenario

Third A network with attackers (Sybil nodes) and no mobile nodes. In
this scenario the attackers multicast periodically DIS messages from
the same locations. We varied the number of attacker nodes from
2, 4, 6, 8, to 10. For each attacker the number of Sybil identities
increases from 1, 3, to 5 (noted 1DIS, 3DIS and 5DIS, respectively)

Fourth SybM attack scenario. We varied the number of Sybil mobile at-
tacker from 2, 4, 6, 8, to 10 attackers. Likewise, the number of
Sybil identities per attacker increases from 1, 3, to 5 (noted 1SybM,
3SybM and 5SybM, respectively)

4.4.2 Simulations Results

4.4.2.1 Control Overhead

Figure 4.10 depicts the control overhead under SybM attacks and the first scenario

(i.e., no attack). When we compare SybM with one Sybil node per attacker (i.e.,

1SybM) with the No-attack scenario, we notice that the extra control overhead after

triggering 1SybM is about 6% for 2 moving attackers, and increases until reaching

32 % for 10 moving attackers. Likewise, for SybM with 3 Sybil nodes per attacker

(i.e., 3SybM), the extra control overhead is about 24% for 2 moving attackers, and

increases until reaching 66% for 10 moving attackers. In the case of SybM with

5 Sybil nodes per attacker (i.e., 5SybM), the extra control overhead is about 45%

for 2 moving attackers, and increases until reaching 133% for 10 moving attackers.

In the case of 1SybM and 3SybM, when the number of mobile attackers increases,

the control overhead increases steadily, while it increases considerably in the case of

5SybM until being doubled. Furthermore, by increasing the number of Sybil mobile

nodes within the network, the control overhead increases significantly. The extra

control overhead from 3SybM is 2 times the one from 1SybM (in the case of 4 and

6 moving attackers the overhead almost doubles). In addition, the extra control

overhead from 5SybM is almost 2,5 times the one from 3SybM (in the case of 8 and

10 attackers the overhead exceeds the double).

In the second scenario (see Figure 4.11), we notice that even when the number

of moving nodes increases, the overhead generated by 1 or 3 moves per moving

node remains almost the same. However, when the number of moves exceeds 3 (i.e.,
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(a) Before triggering SybM. (b) After triggering SybM.

Figure 4.9: The experimental network topology under SybM attack in the case of
10 malicious nodes.

Figure 4.10: SybM attacks control overhead

is equal to 5), the overhead is more significant. It is almost the same overhead

for 1SybM. Moreover, in the second and fourth scenarios, when the number of

moves/Sybil-nodes exceeds 3 (i.e., 5Move and 5SybM cases) the control overhead

increases because mobile and Sybil nodes are more close to the BR, and thus can

be detected by it; which means the whole DODAG needs to be reconstructed from

scratch. Furthermore, even if the mobile nodes in the two scenarios move in the same

way (same positions), we notice that the overhead generated by SybM is almost twice

the second scenario. This is due to the nature of SybM and the RPL Trickle timer

mechanism. In the second scenario there is no mechanism to detect mobile nodes

and thus, the Trickle timer interval is not updated accordingly. Nevertheless, in

SybM scenario, in addition to mobility, submission of DIS messages from different
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locations resets the Trickle timer and fasten the exchange of more control messages.

In Figure 4.11, we see that in both the third and fourth scenarios, when the

number of Sybil nodes increases, the extra overhead increases too. Likewise, when

the number of malicious nodes increases, the extra overhead increases too. Indeed,

when the number of Sybil nodes increases, in the case of 2 attackers, the extra

overhead of SybM almost doubles compared with the DIS attack. Furthermore, in

the case of 10 attackers, the extra overhead of SybM almost triple compared with

the DIS attack. This is due to the fact that DIS attack (i.e., 0 move) represents a

static environment while varying the number of attackers. Whereas, SybM attack

represents a dynamic environment where the mobility of malicious nodes causes the

number of nodes affected by the attack to increase, and hence, the control overhead

as well. For SybM attack, we notice that the overhead is almost the same in the

case of 8 and 10 attackers. Besides, it is almost the same in the case of 4 and

6 attackers. This can be explained by the fact that attackers are moving almost

in the same area, and thus, affect the same neighbouring nodes. In addition, the

attackers can be close to the BR, which involves reconstructing the whole topology.

As seen in Figure 4.9b, from 6 attackers the node 45 is completely isolated and do

not participate any more in the network. This also partly explains why the overhead

do not increase as expected when increasing the number of attackers.

Figure 4.11: Control overhead vs number of attacker
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4.4.2.2 Packets Delivery and Energy Consumption

In Figure 4.12 and Figure 4.13, we see that in the presence of SybM attackers, the

energy cost increases whilst PDR reduces remarkably, as the number of attackers

and Sybil nodes increase. This could be due to the growth of affected nodes within

the network. Consequently, the number of exchanged control messages is increased,

which rises the probability of collisions and packets retransmission, and in turn

increases the power consumption and lowers the PDR. In addition, we notice that

damaging effects from SybM in terms of energy cost and PDR outpace the one from

DIS attack by up to 33%. The effect of DIS attack on PDR is smaller even when

compared with the second scenario. This is because in DIS attack, nodes are not

mobile, and thus only few packets will be lost due to probable collisions. However,

In the case of SybM and even in the second scenario, packets sent to mobile nodes

will systematically be lost if nodes are moving, which reduces PDR. On the other

hand, the energy cost occasioned by DIS attack is more important than the one in

the second scenario. This is due to the fact, in DIS attack there is more control

overhead and thus more energy consumption. PDR is more important in SybM

scenarios and in the second scenario because of the RPL’s mobility handling gap.

Figure 4.12: Energy cost vs number of attacker

4.5 The Proposed Approach: RPL-MRC

As it can be seen in Table 3.1, a few solutions have been proposed in the literature

to deal with the DIS attack. One drawback for the solutions that use a threshold

parameter to detect the DIS attack is how to set a threshold for different configu-

rations and topologies, especially for a dynamic network. The second one is that
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Figure 4.13: Packet delivery ratio vs number of attacker

several solutions assume that the attack is triggered after the DODAG stability is

reached; however, an attacker can start the attack before the setup of the DODAG.

While the nodes count the number of DIS messages to compare it with a threshold,

the malicious nodes affect the performance of the network, which is another disad-

vantage for such solutions. Besides, the detection time (related to the counting and

the threshold) will be higher with the growing size and the network’s dynamics.

To address the M-DIS and SybM attacks and remedy the aforementioned short-

comings, we propose a new mitigation and intrusion tolerance approach that is

composed of two complementary mechanisms: Response Delay and Timer Read-

justment. We integrate the Response Delay mechanism into the dis input function

of the RPL implementation, whereas the Timer Readjustment is integrated into the

new dio interval function responsible for the timer’s reset.

4.5.1 Response Delay

With RPL-MRC, RPL itself is adapted to reduce the response to Multicast mes-

sages, thus reducing the impact of the attacks on RPL-based LLNs. RPL-MRC is

inspired by the Multicast Listener Queries (MLQ) principle described in the RFC

3810 [149]. Multicast routers send MLQ Messages in Querier State to query the mul-

ticast listening state of neighbouring interfaces. In the Queries format, a two-bytes

field named the Maximum Response Code (MRC) specifies the maximum time al-

lowed before sending a responding Report. It represents a floating-point value. The

actual permitted time to respond is called the Maximum Response Delay (MRD).

MRD is expressed in units of milliseconds and is derived from the MRC.
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As the MLQ messages presented in RFC 3810, RPL-MRC uses an MRC field

to reduce responses to Multicast DIS messages. To this end, we redefined the DIO

Base Object as follows. We use the one-byte Reserved field as an MRC field set

by the border router, as depicted in Figure 4.14. The MRC value must be greater

than the Imin value of the Trickle timer and smaller than the Imax value (i.e., Imin

plus the redundancy value k), as defined in Chapter 3, Section 3.3. On receiving

a Multicast DIS message, instead of responding immediately with a Multicast DIO

message, the legitimate node delays its response by a random amount of time in the

range [MRD/2, MRD], where the MRD value is calculated as in Equation 4.8. The

value 3 is chosen according to several simulations that demonstrated its effectiveness

in tolerating the intrusions. In addition, we restricted the number of Multicast

responses as follows. While delaying the response, every node tracks the number

of DIO messages responding to the DIS Multicast. Suppose their number exceeds

a pre-specified threshold less than the one allowed by the Trickle timer (i.e., the

redundancy variable defined in Chapter 3, Section 3.3). In that case, the node

cancels its pre-programmed response.

Figure 4.14: New DIO Message

MRD =

 2MRC if Imin < MRC < Imin + k, and k > 3

2Imin+3 else.
(4.8)

4.5.2 Timer Readjustment

As explained in Chapter 3 (Section 3.3), the Trickle algorithm involves three config-

uration parameters and three variables to govern transmission of the control traffic

used to construct and maintain the DODAG. The idea behind the timer is to adjust

and regulate the frequency of DIO messages transmission based on network condi-

tions. Firstly, the timer changes adaptively the transmission rate where it increases

the transmission rate when a change in routing information is discovered (i.e., re-

ceiving a DIS message, a new version number, changes in the link layer quality, etc.)

in order to propagate up-to-date information rapidly. As the network approaches its

steady phase, the timer exponentially reduces the transmission rate as there is no
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update to propagate. Secondly, the timer uses a suppression mechanism in which a

node suppresses the transmission of its control packet if it detects that enough of its

neighbours have transmitted the same piece of information, thus limiting redundant

transmissions.

When a node receives a Multicast DIS message, and the transmission period I is

greater than Imin, it terminates (i.e., suppresses) the scheduled transmission of DIO

messages (i.e., at the current sub-interval I). It reinitialises the DIO Trickle timer

from a sub-interval of a minimum length (i.e., sets I to Imin), as shown in Figure

4.15. If I is equal to Imin when the node hears the Multicast DIS transmission, it

does nothing (i.e., it waits for the scheduled DIO at time t) [75].

Figure 4.15: The Trickle Timer on Receiving Multicast DIS Message

With the RPL-MRC approach, the node reinitialises the Trickle timer following

the MRD value, as in Equation 4.9. Indeed, the aim is to reduce the number of

exchanged DIO messages, stabilise the network, and thus tolerate the attack.

Timer =

 Reset to MRD if MRD < Current-interval I

Do not reset else.
(4.9)

The pseudocode in Algorithm 1 summarises the proposed approach.

4.6 Approach Evaluation

4.6.1 Performance Metrics

As presented in the literature [96] [100][118], the DIS attack influences significantly

the control overhead, especially the number of DIO messages and energy consump-

tion. Hence, the performance metrics used to evaluate RPL-MRC are as follows.

• Control packer overhead: It is the total number of DIO messages transmitted

during the simulation.
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Algorithm 1 M-DIS and SybM Attacks Prevention (Tolerance)

Require: MRC, I (Current-interval)
Calculate Maximum Response Delay (MRD) using MRC as defined in Equation
4.8
if a node receives a Multicast DIS message then

if MRD < I then
I=MRD (i.e., Reset I to MRD)
Select t in [MRD/2, MRD] (i.e., Delay the response by a random amount of
time in the range [MRD/2, MRD])
if the number of response from its neighbours reaches the threshold defined
by the border router then

Cancel the pre-programmed response
else

Send a Multicast DIO once the delay has expired
end if

end if
end if

• Power consumption (mW): It is the average power consumed by all the nodes in

the network during the simulation. The calculation of the power consumption

for each node is done by adding up the energy consumed on CPU (listening

state), LPM (low power idle state), RX (radio listen state), and TX (radio

transmit state).

In addition to the control overhead and power consumption metrics, we evaluated

the data packets overhead.

• Data packets overhead: It is the total number of data packets received by

the border router during the simulation. We also recorded the number of

duplicated data packets to highlight the instability of the network.

4.6.2 Simulation Settings

Using the Cooja-Contiki simulator, we simulated three topologies of 30 nodes each,

where 29 sender nodes transmit their packets to one sink node (i.e., a multipoint-

to-point traffic). We used Tmote sky nodes and the radio protocol UDGM (Unit

Disk Graph Radio Medium) with distance loss as a link failure model as it provides

a real-world emulation of the lossy links and shared media collision among RPL’s

nodes. Additionally, we used the CSMA/CA for the link layer and the ContikiMAC

as the radio duty cycling (RDC) protocol. Because the sender nodes are lossy by

nature, the reception ratio (RX) was set to 70%, whereas the transmission ratio

(TX) for all nodes was set to 100%, which means a loss-free transmission. The

transmission range was set to 70m and interference range to 80m.
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We set up three main scenarios: (1) RPL without attack, (2) RPL under attack,

and (3) RPL with RPL-MRC. We implemented sub-scenarios, where we varied the

number of attackers. We also varied the attack’s frequency and the MRC values. We

run every simulation for 15 minutes. The nodes were distributed in an area of 300m

x 250m. We used the RPL-collect package for packets generation, where each node

sends one packet of 46 bytes every 60 seconds. For the performance metrics, we used

radio messages and collect-view tools. Five runs were conducted for each scenario,

and values were averaged. Besides, the proposed solution has been evaluated for the

SybM attack defined in [29] and for low data packet rate. Table 4.8 summarises the

parameters used for the simulations.

4.6.3 The M-DIS Attack Frequency Effect

To evaluate the effect of the attack frequency on the RPL performance, five malicious

nodes were distributed uniformly in the network to ensure covering the vast majority

of benign nodes and maximise the network’s damage. MRC is set to 15 (which is

equivalent to MRD equal to 32,768 seconds). We selected MRC=15 because it gives

the best results as it can be seen in Section 4.6.5. The attack is triggered within

intervals of 3, 6, 10, 15, and 30 seconds. For instance, attack frequency 3 means that

each attacker sends a Multicast DIS message every 3 seconds, which means it sends

20 Multicast DIS messages per minute. In the case of attack frequency 30, each

attacker sends a Multicast DIS message every 30 seconds, which means it sends 2

Multicast DIS messages per minute. Native RPL (RPL), RPL under M-DIS attack

(RPL-DIS), and RPL under M-DIS attack with MRC countermeasure (RPL-MRC)

were evaluated in terms of the metrics in Section 4.6.1.

4.6.3.1 Control Overhead

Figure 4.16 shows the performance of the network in terms of DIO messages overhead

following different attacking intervals. It is noticed that the number of DIO messages

sent in the RPL-DIS scenario is very high compared to the native RPL and RPL-

MRC regardless of the frequency of the attack. We can observe that in the RPL-

MRC scenario, the DIO overhead has been decreased by 86%, 84%, 84%, 81%, and

79% for 3, 6, 10, 15, and 30 seconds intervals, when compared to the RPL-DIS

scenario. Indeed, RPL-MRC has performed very well, reducing the overhead to

almost the one generated in the native RPL. This is because RPL-MRC is executed

every time a Multicast DIS message is received, even from legitimate nodes. We

notice that in some cases (e.g., 10s and 30s intervals) the overhead is lower than with

native RPL. This could be because the nodes did not reset their timers according to

the rule in equation 4.9 (i.e., the current time is less than MRD), in addition to the
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Table 4.8: Simulation Parameters

Parameter Value

Simulator Cooja-Contiki 3.0

Simulation time (mn) 15

Network area 300x250m2

Node type Tmote Sky (telosB)

N of nodes 30 (1 destination and 29 senders)

N Malicious nodes 2, 5, 10

Attack frequency (s) 3, 6, 10, 15, 30

MRC Values 13, 14, 15, 16, 17

Transmission range 70m

Interference range 80m

TX, RX 100%, 70%

MAC ContikiMAC

Link failure model UDGM with Distance Loss

Traffic rate 1pkt per 60s per sender

Packet size 46 bytes

execution of RPL-MRC that reduces DIOs response to legitimate DIS Multicast.

Figure 4.16: Control overhead vs attack frequency.

4.6.3.2 Power Consumption

As observed in Figure 4.17, the RPL-DIS network suffers heavily in terms of power

consumption due to the attackers being able to flood the network with many DIS

and DIO messages. However, following the RPL-MRC mitigation mechanism, the

average power consumption has been reduced by 53%, 48.5%, 48%, 41%, and 34%

for attack frequency of 3, 6, 10, 15, and 30 seconds, respectively. Indeed, the decline

in the number of transmitted DIOs has resulted in lower power consumption. Both
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results (i.e., control overhead and power consumption) are justified by executing the

RPL-MRC mechanism that redefines how to respond to a DIS Multicast.

Figure 4.17: Power consumption vs attack frequency.

4.6.3.3 Data Packets Overhead

The results in Figure 4.18 demonstrate that the data packets overhead increases

under the M-DIS attack. This is due to the increase of DIO overhead, which sup-

presses communication channel availability, forms a locally unstable network, and

thus induces generating duplicate data packets. We notice that both the number

of duplicate data packets and the number of delivered packets have been reduced

using RPL-MRC countermeasure. In fact, under RPL-MRC, the network is more

stable because the DIO overhead is reduced significantly.

Figure 4.18: Delivered and duplicate data packets vs attack frequency.
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4.6.4 The Number of Attackers Effect

To evaluate how RPL-MRC performs according to the number of attackers present in

the network, we implemented the M-DIS attack with different numbers of malicious

nodes (2, 5, and 10), an attack frequency of 3 seconds and an MRC set to 15.

4.6.4.1 Control Overhead

Figure 4.19 shows the impact of varying the number of malicious nodes on the

amount of control message exchanged in the network. In the RPL-DIS scenario,

the control overhead increases when the number of attackers increases because the

attackers were distributed uniformly in the network. Thus, a large number of legiti-

mate nodes are affected by the attack. In RPL-DIS, all nodes in a malicious node’s

radio range reset their Trickle timers every time they receive a DIS Multicast, and

hence, send frequently DIO messages that are propagated in the network. However,

RPL-MRC mechanism regulates the reset of the Trickle timer and the transmission

of DIO messages in a way to reduce the overhead in the network. As a result, the

overhead was decreased by 79%, 98.7%, and 90% in the presence of 2, 5, and 10

attackers, when compared to RPL-DIS.

Figure 4.19: Control overhead vs number of attackers.

4.6.4.2 Power Consumption

By analysing Figure 4.20, we realise that as the number of malicious nodes increases,

the energy consumption increases significantly in the RPL-DIS scenario. Considering

that more attackers exist in the network, more legitimate nodes respond to the

attack by resetting their Trickle timers and sending more DIO messages, resulting

in larger power consumption. Albeit the energy consumption under the RPL-MRC

scenario is more than under the native network (the RPL scenario), it remains very
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good compared to the network under attack (the RPL-DIS scenario). The RPL-

MRC mechanism was able to decrease the control overhead for a different number of

attackers and, consequently, the network’s overall power consumption. Although the

number of DIOs has decreased, we notice that the energy increases as the number of

attackers increases. Indeed, malicious nodes consume more energy on transmitting

DIS messages (frequency of 3 seconds per attacker), which means that the network’s

average power consumption increases.

Figure 4.20: Power consumption vs number of attackers.

4.6.4.3 Data Packets Overhead

Under M-DIS attack (for both RPL-DIS and RPL-MRC scenarios), the border router

receives a larger number of original and duplicate data packets, as shown in Figure

4.21. When the node does not receive the acknowledgement, it schedules retransmis-

sion, leading to a duplicate packet. It is evident that data packets may be correctly

received, and the corresponding acknowledgement may be lost or even may collide

due to transmissions unreliability resulted from the increase of control overhead.

However, regardless of the number of malicious nodes, RPL-MRC makes the net-

work more stable. As a result, the number of duplicate packets is reduced.

4.6.5 The MRC Parameter Effect

This section investigates the MRC parameter setting’s effect on the RPL network

performance by increasing the MRC value, starting with 13 and incrementing it by

one to a maximum of 17 (i.e., 13, 14, 15, 16, and 17). The MRC values correspond

to MRD values of 213, 214, 215, 216, and 217, respectively.
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Figure 4.21: Delivered and duplicate data packets vs number of attackers.

4.6.5.1 Control Overhead

It is clear from Figure 4.22 that RPL-MRC reduces the control overhead significantly,

whatever the MRC value. Indeed, the control overhead has been decreased by 56%,

74%, and 86% for MRC equal to 13, 14, and 15, respectively. We notice that setting

a small value for MRC getting closer (approximates) to the Trickle timer minimum

interval (i.e., 13 and 14) induces more control overhead. Whereas, MRC values from

15 give approximately the same results and an overhead close to the native RPL

one.

Figure 4.22: Number of DIO under different MRC values.
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4.6.5.2 Power Consumption

Similarly to all of the above cases, the decrease in power consumption under RPL-

MRC is a logical consequence of reducing control messages overload. It is evident

from Figure 4.23 that the MRC values from 15 give better results in terms of energy

consumption. The following points can explain the results for both control messages

overhead and energy consumption:

• The nodes reset their timers but suppress the delayed DIOs because the thresh-

old of transmissions is reached.

• The nodes do not reset their timers because the current interval (period) is

less than the response delay value. It could occur for MRC values of 15, 16,

and 17.

• The nodes reset their timer to a value greater than the Imin defined by the

Trickle timer.

As in Section 4.6.4, malicious nodes consume more energy on transmitting DIS

messages, which implies an increase in the overall network’s average power con-

sumption. However, the results remain satisfactory with a decrease between 35%

and 53% compared to RPL-DIS.

Figure 4.23: Power consumption under different MRC values.

4.6.5.3 Data Packets Overhead

The results from Figure 4.24 have also demonstrated that the DIS attack may mod-

erately affect data packets’ delivery. RPL-MRC has improved the network’s stability

for all MRC values and consequently decreased the data packets overhead.
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Figure 4.24: Delivered and duplicate data packets for different MRC values.

4.6.6 The Data Packet Rate Effect

In this section, we investigate the effect of RPL-MRC on RPL under the M-DIS

attack by increasing the data packet rate to 1 packet every 10 seconds (i.e., 6 packets

per minute, which results in approximately 6*15*29 packets generated for the whole

simulation time). We set the number of attackers to 5, the attack frequency to 3

seconds, and MRC to 15.

4.6.6.1 Control Overhead

Figure 4.25 demonstrates that the control overhead increases with the increase of the

data packets sent during the simulation for the three scenarios. However, RPL-MRC

reduces the control overhead significantly regardless of the data rate.

Figure 4.25: Number of DIO vs data packet rate.
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4.6.6.2 Power Consumption

From Figure 4.26, we notice that the average power consumption increases for all

scenarios following the data packet rate. This is because the nodes consume more

energy on transmitting both data and control packets. RPL-MRC mechanism was

able to decrease the average power consumption as a consequence of decreasing the

control overhead even in the case of an increased data packet rate.

Figure 4.26: Power consumption vs data packet rate.

4.6.6.3 Data Packets Overhead

As it can be seen in Figure 4.27, the increase in the packet rate affects the packet

loss in all scenarios, especially in the presence of attackers (RPL-DIS and RPL-

MRC). Nonetheless, the RPL-MRC approach reduces significantly the packets loss

and duplication as it enhances the network’s stability compared to RPL-DIS. As a

conclusion, RPL-MRC is efficient even in the case of high packet rate.

4.7 Approach Evaluation under Mobility: SybM

Case

As illustrated in Figure 4.2, SybM attack is a combination of Sybil and M-DIS

attacks where malicious nodes are mobile. In this section, we study the effect of

the proposed solution (RPL-MRC) on RPL under SybM attack. We simulated a

network of 50 TelosB nodes (Sky motes) with one border router and 49 senders.

Table 4.9 highlights the simulation parameters specific for SybM attack.
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Figure 4.27: Delivered, duplicate and lost data packets vs data packet rate.

Table 4.9: Simulation Parameters for RPL-MRC under SybM Attack

Parameter Value

Simulation time (s) 330

Network area 300x200m2

N of nodes 50 (1 destination, 49 senders)

N of malicious nodes 10

Attack frequency (s) 3

N of moves (identities) 5 per attacker

MRC Value 15

4.7.1 Control Overhead

Figure 4.28 demonstrates that the overhead generated in all scenarios exceeds the

one generated in the previous sections, even if the simulation duration is 5 minutes.

Actually, we used a larger network of 50 nodes that generate more traffic to construct

and maintain the RPL topology. As depicted in the figure, SybM attack caused

an extra overhead of 55.7%, which is more than the double compared to the one

generated from native RPL. Nonetheless, RPL-MRC behaves like in the static case

(RPL-DIS) and reduces the attack’s effect (RPL-SybM) on control overhead by 55%.

In conclusion, RPL-MRC is very efficient to reduce the response to a DIS Multicast

in a dynamic (mobile) network.
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Figure 4.28: Control overhead under SybM attack.

4.7.2 Power Consumption

The power consumption increases with the size of the network following the increase

in control overhead. The Figure 4.17, Figure 4.20, Figure 4.23, and Figure 4.29 reveal

that the power consumption for native RPL with 50 nodes and 5 minutes simulation

time increased by 21% compared to 30 nodes and 15 minutes simulation time. RPL-

SybM generated an extra power consumption of 42%, and RPL-MRC reduced it by

33.6%. Hence, RPL-MRC additional overhead is about 8.4%, which is acceptable

as the first line of defence.

Figure 4.29: Power consumption under SybM attack.

4.7.3 Data Packets Overhead

As shown in Figure 4.30, in the presence of SybM attack, the duplicate data packets

increase, hence increasing the delivered ones. This can be explained by the mobility

of the attackers and the Multicast of DIS messages that render the network unstable.

RPL-MRC succeeds in reducing the number of duplicate packets by 91%.

97



CHAPTER 4. RPL’S PERFORMANCE UNDER DIS AND SYBM ATTACKS
AND NEW APPROACH FOR THE INTRUSIONS TOLERANCE

Figure 4.30: Data packets overhead under SybM attack.

4.8 Summary

In this chapter, we demonstrated that a simple DIS Multicast can significantly in-

crease the number of exchanged control messages. The abrupt increase of control

overhead increases the overall power consumption of the network and further re-

duces the network lifetime. Besides, we introduced SybM, a novel attack against

RPL that combines the Multicats DIS attack, the Sybil attack and the node mo-

bility. We presented an evaluation of the RPL’s performance under both attacks.

We introduced a solution to tolerate M-DIS and SybM intrusions. The results high-

lighted the efficiency of the proposed RPL-MRC mechanism for reducing control

overhead, power consumption, and data packet overhead. We studied the effect of

the approach for different scenarios (e.g., varying the attack frequency, varying the

number of attackers, varying the proposed parameter MRC, varying the data rate,

and under mobility). We conclude that RPL-MRC achieves high performance in

all cases. We demonstrated the RPL-MRC scalability as it presents good fulfilment

for a larger network (i.e., case of SybM attack). RPL-MRC can reduce the M-DIS

and SybM attacks’ effect before the attackers are detected and discarded from the

network. We suggest that our solution could be combined with IDSs such as the

specification-based or the anomaly-based to protect RPL-LLNs.

In the next chapter, we introduce two IDSs that can be used to detect intrusions

against RPL networks.
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Chapter 5

Intrusion Detection and Tolerance

Systems for RPL’s Security

Successful deployment of Low power and Lossy Networks (LLNs) requires self-

organising, self-configuring, and security support. In this chapter, we introduce two

IDS solutions to detect attacks against RPL networks. The first approach, named

T-IDS is a specification-based IDS. T-IDS is a cross-layer trust-based IDS that copes

with the RPL’s mobility and identity issues. The second approach, named RF-IDS,

is an anomaly-machine-learning-based intrusion detection and tolerance system that

uses the Random Forests classifier to detect attacks and other mechanisms to toler-

ate attacks.

5.1 A Trust-based Intrusion Detection System for

Mobile RPL Based Networks

Each IDS proposed in the literature has its advantages and disadvantages. The

main weakness of the majority of them is the lack of mobility and secure identity

handling that can be exploited by SybM attackers [28][29].

Indeed, the impacts caused by RPL attacks and especially the SybM ones require

developing new mitigating mechanisms. Different approaches have been proposed to

address the Sybil attacks issue [142]. However, these solutions are not desirable for

several reasons. Some of the proposed solutions are energy costly, or limited to some

types of networks (i.e., Sensor Networks or Ad hoc Networks), or primarily designed

for non-mobile nodes. In the context of IoT, other approaches have been proposed

in [143]. What makes SybM attack more difficult to detect by existing approaches is

the fact that malicious nodes intend to use one of their identities (i.e., IP addresses)

at a time in one location. Hence, one Sybil identity is seen as one legitimate physical

node. To overcome this type of attack, we propose a distributed, cooperative and
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hierarchical trust-based IDS architecture that integrates three cooperative modules:

IdentityMod, MobilityMod and IDSMod as illustrated in Figure 5.1.

Figure 5.1: T-IDS architecture.

T-IDS is a hybrid-IDS because both the BR and in-network nodes collaborate

in defending against internal attackers. Furthermore, T-IDS is trust-based for two

reasons. First, a Trusted Platform Module is integrated to each in-network node.

Second, nodes rely on a new collaborative trust metric evaluation when routing

[114][115][116]. In the following sections we introduce the hybrid trust-based IDS

actors and components and demonstrate how they can be used.

5.1.1 T-IDS Characteristics

1. RPL is based on the IPv6 Neighbuor Discovery mechanism. It relies on multi-

cast operations to setup the network topology. As discussed in 4, a simple mul-

ticast DIS message can affect the whole network. The problem associated with

multicast NS (Neighbor Solicitation) and NA (Neighbor Advertisement) mes-

sages are more frequent in large-scale radio environments with mobile devices,

which exhibit intermittent access patterns and short-lived IPv6 addresses [150].

The works proposed in [150] enables to lower the rate of RA (Router Adver-

tisement) messages by extending the Address Registration Option (ARO), but

does not solve the multicast associated problems. In T-IDS, RPL itself will

be adapted to reduce the response to multicast messages in the case of mobile

nodes as discussed in Chapter 4, Section 4.5.
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2. RPL relies on IPv6 addresses to identify nodes within the network. The same

node can change its IPv6 address (i.e., Sybil attack) and try to join the network

using the new address as a new identity. In T-IDS we propose a centralised

beforehand registration of nodes. Each node has an associated unique identi-

fier, which will be conveyed within the control messages along with its IPv6

address (see Figure 5.2). The identifier will be used by T-IDS’s modules to de-

tect and report intruders. This is inline with the IETF approach to introduce

registrars [150].

Figure 5.2: New DIO message format.

3. In the trust-based RPL scheme [114][115][116], the in-network nodes collab-

orate to detect intruders using a trust-based routing scheme. In T-IDS, a

mitigation method is induced as a third line of defence. The IDS reacts in

a corrective action. This is done by executing trust-based RPL where nodes

avoid malicious and suspicious nodes when selecting their routing paths. In

T-IDS, trust calculation is enhanced by adding a new trust component; Mo-

bility.

5.1.2 T-IDS Actors

T-IDS is composed of a centralised Backbone Station (BS) that federates multiple

6LoWPAN/LLN sub-networks. The BS may be part of anycast group for redun-

dancy issue. Each 6LoWPAN/LLN sub-network is attached to the BS via a Border

Router (BR). BRs are responsible of monitoring the in-network nodes and make the

global intrusion detection decisions by associating and aggregating intrusion alerts

from in-network nodes. Each in-network node monitors in a trusted-collaborative

way its neighbours to detect intrusions. The BS and the BR are both supposed

to be trusted entities. Figure 5.3, Figure 5.4, and Figure 5.5 depict BS, BR and

in-network nodes operations, respectively.
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5.1.2.1 Backbone Station (BS)

maintains the list of all Network Nodes (NNs) and their respective states. The BS

handles the list of nodes authorised to access the network. In NNs, to each node is

associated a TPM-ID, a Node-ID associated to the TPM-ID, the Node-Status flag

(i.e., Mobile, Static), and the BR prefix associated to the node after deployment.

When a node wants to join the network, it must be first registered at the NNs list.

In addition, the BS maintains a list of potential MAlicious Nodes (MAN) for all BR

sub-networks.

Figure 5.3: The backbone station operations.

5.1.2.2 6LoWPAN/LLN Border Router (BR)

maintains three dynamic lists: the first list contains BR Area Nodes (BRAN) within

the BR’s IPv6 prefix. BRAN is elaborated and updated by the BS and transferred

to the BR using a secure channel. The second one contains MObile Nodes (MON)

and the third list contains the MAlicious Nodes (MAN). The BR is responsible for

setting the MRC field in the DIO message as presented in Chapter 4, Section 4.5.
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Figure 5.4: The border router operations.

5.1.2.3 Monitoring Nodes (MNs)

each in-network node is a MN by default. MNs maintain a list of SUspicious Nodes

(SUN) and a list of malicious nodes (MAN). They also keep a copy of MON list

elaborated by the BR. The lists are stored in the TPM. It is assumed that a node

is already registered with one BR in the BRAN list.

5.1.3 T-IDS Modules

5.1.3.1 Module for identity management (IdentityMod)

The Identity Module (IdentityMod) is used to control access to the network. Each

node, which is part of the network or try to join the network must have a unique

identity to limit exposure of the network to attacks from unauthorised nodes. To

the handle identity issue and off-load security feature, each node is equipped with

a Trusted Platform Module (TPM), which provides uniquely unforgeable identity

for the node (TPM-ID). TPM is a cryptographic co-processor chip known to be

used in building hardware support identification, storing security parameters, and

handling cryptography calculation. In our approach, manufacturers are required to
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Figure 5.5: In-network nodes operations.

equip each device with a TPM chip before factory. One component of a TPM is the

Endorsement Key (EK); a public-private RSA key pair created during manufacture.

The public EK value will not change during the TPM’s lifetime and it represents

the TPM-ID (i.e., Node-ID). Besides EK, each node within the network uses two

different symmetric keys: a Long Term Key (LSK) shared with the BR, and a

Group-Key (GK) shared between all nodes. All symmetric keys are stored in the

TPM chip. GK will be used to secure RPL’s control messages. If an insider attacker

compromises one node it gains access to the GK, and the security of the whole

network is compromised. As a consequence, LSK will be used to send securely data

packets and security related messages to the BR. The authenticity and integrity of

exchanged messages between the BR and a particular node can be secured using

lightweight IPsec with LSK [55].

After nodes’ deployment, and before starting the construction of the RPL topol-

ogy, the BS uses IdentityMod to set-up the BRAN list for each BR within the

network. This list will be used to control access and authenticate nodes. To authen-

ticate a node at any stage of the network execution, RPL control messages should

convey besides the IPv6 address of the node, its unique identifier. In other word, the

identifier of each node has to be embedded in the 6LoWPAN packets. In addition,

each node records the identifier associated to the IPv6 address in its routing table.

In this way, even if the nodes autonomously calculate their IP addresses while mov-

ing, they could be authenticated using their identifiers Node-IDs. Once an attack is
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detected, the responsible nodes will be known. If a node detects that another node

is malicious, it updates the SUN list with the identity of the suspicious node and

sends it securely to the BR using LSK.

The BS uses IdentityMod to associate to each TPM-ID 20 bytes long Node-

ID. Thus, the Node-ID is a cryptography-based unique representation of a node

derived from the TPM-ID. For RPL networks, the MAC Maximum Transmission

Unit (MTU) size is about 127 bytes. And the size of the TPM-ID varies from 64

to 254 bytes depending on manufacturing. To handle control overhead issue caused

by a large number of fragments for the same message, we propose to shorten the

size of the node’s identifier from 64-254 bytes to 20 bytes long using the SHA1 hash

function. In the proposed solution, we extend DIO, DIS and DAO control messages

with 20 Bytes before Options Object to carry Node-ID [22]. Figure 5.2 depicts how

DIO is extended. DIS and DAO are extended in the same way.

In [151], the authors proposed to extend the address registration option (ARO)

for 6LoWPAN ND with a cryptographic identifier field. However, nodes compute

themselves a cryptographically unique identifier and associate it with one or more of

their IPv6 registered addresses, which leads to computation overhead. In addition,

their solution is mainly designed to handle addresses duplication, and thus can be

used to mitigate CloneID attacks.

5.1.3.2 Module for mobility management (MobilityMod)

Mobility is also handled according to a hierarchical manner with the collaboration

of the BS, BR and in-network nodes. MobilityMod is used by the different actors to

maintain the state of the network regarding mobile nodes. Indeed, BRAN contains

the mobility status of each node. Upon receiving BRAN from the BS, the BR

defines a new list by keeping only the mobile nodes; MON: MObile Nodes. After

the construction of RPL, the BS broadcasts MON to all nodes. Hence, mobile

nodes are known by all in-network nodes, and thus using its identity (Node-ID)

the presence of the mobile node is determined by the neighbouring nodes. In other

words, when a node constructs its routing table, it uses the MON list to check and

monitor the mobility status of each neighbour. From this point, if any moving node

sends a DIS message using a new IPv6 address, its neighbours can detect it as a

suspicious node (i.e., same Node-ID with a different IPv6 address) and add it to

their respective SUN lists. Furthermore, if any moving node sends a DIS message

using a new Node-ID and a new IPv6 address, its neighbours can check the MON

list. If the node does not exist on the MON list, it will be detected as suspicious (i.e.,

node not registered within BRAN) and add it to SUN lists. In addition to MON

list, and to handle mobility, each node verifies the RSSI (Received Signal Strength

Indication) of its respective neighbours. If the RSSI value of a monitored node has
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degraded or has been null, this could be due to the fact that it is a malicious mobile

node that has not been added in the MON list. In all cases, the monitoring node

considers that node as suspicious, updates SUN list and unicast it to the BR using

LSK.

If a mobile node sends packets with an identifier not known by the BR (i.e.,

not present in the BRAN list); the BR sends a request to the BS to ask if the new

mobile node belongs to the network. If the mobile node is a legitimate node, the

BS replies by sending an updated BRAN list containing the identity of this node.

Nevertheless, if the node is not previously registered in the NNs list, the BS informs

the BR that the node is an intruder. If there is any node that joins or leaves the

BR’s network, the BR will update the MON list, and triggers a global repair with

the new MON list. In the same way, if there are any intruders, the BR will update

the MAN list and broadcast it to its 6LoWPAN/LLN’s nodes.

MobilityMod can be used to obtain the localisation of the mobile malicious node

in the network. This can be done by gathering mobility information from the neigh-

bour list (i.e., routing table) of different static nodes.

5.1.3.3 Module for intrusion detection (IDSMod)

To detect attacks, each time the IDSMod will query the IdentityMod and the Mo-

bilityMod to verify if the node belongs to the network and if it is a mobile node.

From the one hand, there is no mechanism in RPL for the nodes to monitor the

behaviour of their neighbours. From the other side, attackers generally focus on

specific behaviours and repeat them in high or low rates. Consequently, with mini-

mal knowledge, and by observing and collaborating, nodes can detect misbehaving

nodes. In this context, we propose to consider some appending for RPL to be used

in IDSMod:

1. The first one consists on the integration of the new trust-based RPL scheme

(named MRTS as Metric-based RPL Trustworthiness Scheme) proposed in

our previous work for attacks countering [114][115][116]. In T-IDS, an en-

hancement of MRTS is proposed to detect misbehaving nodes in a dynamic

environment. In MRTS, nodes within the network collaborate to detect ma-

licious nodes according to specification-based behaviours. Periodically, each

node calculates trust values of its one hop neighbours; Trustij(t). Moreover,

the node receives trust values evaluations of other nodes from its neighbours

and aggregates all received and calculated trust values. The final trust val-

ues represent the result of collaboration of different participating nodes. In

IDSMod, if a trust value of a node is less than a threshold, the node identity

will be added to the SUN list, the list will be encrypted (using LSK), and sent

106



CHAPTER 5. INTRUSION DETECTION AND TOLERANCE SYSTEMS FOR
RPL’S SECURITY

in unicast to the BR. Upon receiving SUN lists, the BR processes them and

creates a new list containing malicious nodes; MAN. MAN list will be then

broadcast to all nodes. MRTS uses four components to assess each node trust-

worthiness; honesty, unselfishness, energy and ETX. In the IDSMod solution,

we propose to use a new trust component namely mobility when calculating

trust values as in Equation 5.1.

Trustij(t) = w1Trust
honesty
ij (t)

+w2Trust
energy
ij (t)

+w3Trust
mobility
ij (t)

w1 + w2 + w3 = 1

(5.1)

Where Trust represents the trust value evaluation of the node i for its neigh-

bour j at time t, and takes values between 0 and 1. w1, w2 and w3 are weights

associated respectively to the three trust components: honesty, energy and

mobility. Trusthonestyij (t) is calculated by IDSMod, where the node is evaluated

as malicious or not according to its behaviour. Trustmobility
ij (t) is calculated by

MobilityMod using MON list and RSSI. In a very dynamic environment, the

weight of the mobility component (w3) can have the biggest value.

2. The second appending consists of dealing with security related multicast mes-

sages such as the DIS and SybM attacks, as introduced in Chapter 4. This

solution can be extended to be used for different kinds of multicast messages

within the RPL network. Each of which may require its own delayed response.

Thereby, control overhead can be reduced especially in the presence of an at-

tacker.

3. The third appending consists on introducing a cross-layer scheme, where in-

formation collected from the network layer is used to discard malicious nodes

from the link layer. Because IDSMod is a cross-layer based IDS, if a suspicious

node is set as malicious by the BS or the BR, the BR will broadcast MAN

list to the whole network. Upon receiving MAN by WPAN (Wireless PAN)

Coordinator associating the malicious node, the coordinator sends a disassoci-

ation notification to remove the malicious node from the WPAN. As a result,

the malicious node will be totally isolated from participating in the network

operations.

Our proposed scheme can deal with SybM attack as depicted in Algorithm 2.
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Algorithm 2 SybM tolerance, detection and countering

Require: MON, MAN, SUN
Upon receiving a multicast DIS message
Step 1 (Tolerating the intrusion): The receiving node delays responding to
the message according to the RPL-MRC approach defined in Chapter 4, Section
4.5
Step 2 (Detecting and countering the intrusion): Meanwhile, receiving
node uses the Node-ID field in the DIS message and queries IdentityMod and
MobilityMod to verify if the node belongs to the network (using the routing table
and/or querying the BR), and if it is a mobile node (checking if the sender is in
MON list)
if Node-ID∈MON then

Evaluate Node-ID trust value (Trust) in collaboration with neighbouring nodes

if Trust < Threshold then
1. Add Node-ID to SUN list
2. Send encrypted SUN list to the BR
3. Execute trust-based RPL routing by avoiding Node-ID

else
1. Querying BR and Waiting for a δ time
2. If BRAN not yet updated, BR query the BS
if Newly deployed mobile node then

1. BR updates MON and Broadcasts it to its 6LoWPAN/LLN area
2. Upon receiving MON, in-network nodes update RPL routing

end if
if Newly deployed static node then

If not receiving MON or MAN by BR after the δ time, update RPL routing
end if
if Malicious node then

1. Add Node-ID to MAN list by the BR
2. Broadcast MAN list by the BR
3. Upon receiving MAN list:
if malicious Node-ID associated WPAN Coordinator then

Store MAN and Send a disassociation request to discard the malicious
node

else
Store MAN list

end if
end if

end if
end if
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5.1.4 T-IDS Advantages and Limitations

In T-IDS, in the presence of a unique identification mechanism handled by a single

entity (BS), the network can be protected easily from outsider attackers. In ad-

dition, the ability of the network to react by self-organising and working properly

in the presence of attackers, using the enhanced trust-based RPL scheme by iden-

tity and mobility management, allows it to be protected from both insider mobile

and static attackers. In term of computing and storage, T-IDS has the advantage

of off-loading security-related computations and storage into TPM co-processor of

each node. In fact, using TPM allows T-IDS to have greater processing power to

implement strong security scheme. In addition, the generation of Node-ID is done

by the BS, which is a powerful and trusted entity. However, we believe that an

additional storage cost is needed for node’s routing table to keep track of Node-

ID in RPL routing processes. Furthermore, an additional communication overhead

can come from the extension of control messages with Node-ID field, which leads

to more fragmentation. Moreover, the size of DIO messages are likely to be more

important when executing the collaborative RPL construction using the new trust

metric [114][115][116]. Nevertheless, there is a need to a trade-off between strong

security mechanism and extra overhead. Besides, T-IDS is a specification-based IDS

that inherits the disadvantages of this type of IDSs (see Chapter 3-Section 3.8), and

thus can only detect specific attacks.

In the next section, we introduce RF-IDS, a fault-tolerant artificial-intelligence-

based IDS for RPl’s security. Actually, ML-based IDSs are known for their high

detection accuracy, especially for massive data volumes.

5.2 Fault-Tolerant AI-Driven Intrusion Detection

System for the Internet of Things

Even though there are several methods to implement an IDS, artificial intelligence-

based technologies, such as Machine Learning (ML) techniques are highly recom-

mended. From the one hand, researchers are exploiting ML algorithms in IDS

development because they are ideal for classification problems, especially with the

good results that they achieve in the different domains. From the other hand, ML

methods have an interesting potential in detecting unknown/zero day attacks that

bypass traditional IDSs such as the signature-based and specification-based ones.

Furthermore, an ML-based IDS employs statistical, genetic and heuristics or a com-

bination of them to learn from previous experiences without explicit programming.

Therefore, ML can be applied at RPL nodes, fog/edge/BR nodes and (or) cloud

nodes to extract and analyse from large-scale data, and hence detect malicious
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behaviour. In this study, new RPL attacks based datasets are generated. Besides,

different ML algorithms and a Deep Learning (DL) model are explored to develop an

efficient IDS for RPL to detect and classify unseen routing attacks. A comprehensive

evaluation of several experiments of these ML and DL classifiers are shown on the

developed datasets.

5.2.1 RPL Intrusions

As presented in Chapter 3, various RPL attacks have been analysed in the literature,

precisely, Rank attacks, Neighbour attack, DAO attacks, DIS attack, Version num-

ber attack, Local repair attack, HelloFlooding attacks, Selective forwarding attack,

Sinkhole and Blackhole attacks, Wormhole attack, and Sybil and CloneID attacks

[27]. Most of the efforts to secure RPL focused on detecting and/or countering

Rank, HelloFlooding, Selective forwarding, Sinkhole, Blackhole, Version number,

and Wormhole attacks as they represent the most harmful attacks [152]. In this

contribution, we investigate the detection of the following six attacks: Decreased

Rank (DR), Sinkhole (SH), Blackhole (BH), Selective Forwarding (SF), HelloFlood-

ing (HF), and Version Number (VN).

5.2.2 ML Methods

In order to choose the best ML method for our needs, we evaluated the perfor-

mance of various algorithms in a binary and multi-classification on the developed

datasets. These classifiers are Decision Tree (DT), Random Forests (RF), K-Nearest-

Neighbour (KNN), Logistic Regression (LR), Naive Bayes (NB), and Multi-Layer

Perceptron (MLP) classifiers, in addition to a sequential Deep Learning (DL) model

presented in Chapter 2-Section 2.5.

Regarding the parameters of the ML algorithms, we tried different configurations

and chose the default parameters from the Python3’s Scikit-learn library, as there

are no big changes in results. We implemented the following classifiers from Scikit-

learn:

• DecisionTreeClassifier,

• RandomForestClassifier with number of estimators (i.e., the number of trees

in the forest) equal to 100,

• KNeighborsClassifier with k=10,

• Gaussian Naive Bayes classifier (GaussianNB),

• MLPClassifier with one hidden layer, 100 neurons, and the ‘relu’ activation

function,
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• and LogisticRegression (Logit) classifier with ‘sag’ solver.

For the DL model, we implemented a sequential Deep Neural Network (DNN)

using the Python3’s Keras1 library. DNN is an application of ANNs with multiple

hidden layers, which uses backpropagation technique for training. The training

is about feedforward and back-propagation phases. In the first phase, the hidden

and output nodes calculate their activation functions. The second phase aims to

propagate back the error, which is the difference between the output and the target

value, from the output to the input. This step is about adjusting the different

weights of the different neurons composing the network.

The implemented model includes 1 input layer, 5 hidden layers and 1 output

layer. 50 neurons are used in the first and fifth layers, whereas 100 neurons are used

in the second and fourth layers, and 300 neurons in the third layer. The DL model

is the same as the one in [139]. We choose the model proposed in [139] to compare

it with other ML models as the authors presented good results on RPL’s attacks

detection.

5.2.3 Performance Evaluation Metrics

A clean and unambiguous way to present the prediction results of a classifier is to

use a Confusion Matrix (CM). For a binary classification problem such as intrusion

detection, the matrix has two rows and two columns as depicted in Table 5.1, where 0

and 1 are labels for normal and attack, respectively. Across the top are the predicted

class labels and down the side are the observed class labels. Each cell contains the

number of predictions made by the classifier that fall into that cell.

TP that represents the normal RPL traffic correctly classified as normal, TN

that represents RPL attack samples correctly classified as intrusions, FN that rep-

resents RPL attack samples incorrectly classified as normal RPL traffic, and FP

that represents normal RPL samples incorrectly classified as intrusions are used to

determine the different metrics to assess the performance of a classifier [153]. In our

study, we focus on accuracy, precision, recall and F1-score metrics to compare the

classifiers presented in Section 2.5.

Table 5.1: Confusion matrix

Predicted 0 Predicted 1

Actual 0 True Positive (TP) False Negative (FN)

Actual 1 False Positive (FP) True Negative (TN)

1Keras is an open-source neural-network library written in Python
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5.2.3.1 Accuracy

The accuracy is defined as the ratio of correct predictions to the total number of all

predictions, as in Equation 5.2.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.2)

5.2.3.2 Precision

The precision, also called the Positive Predictive Value (PPV), is the number of

positive predictions divided by the total number of positive class values predictions,

as in Equation 5.3.

Precision =
TP

TP + FP
(5.3)

5.2.3.3 Recall

The recall, also called sensitivity, True Positive Rate (TPR), or Detection Rate

(DR), is defined as the ratio of positive predictions to the number of positive class

values in the test data, as in Equation 5.4. Recall is one of the most important

metrics in the security context as it has the ability to calculate successfully detected

intrusions.

Recall = DR =
TP

TP + FN
(5.4)

5.2.3.4 F1-Score

The f1-score, also called the F Score or the F Measure, is defined as the harmonic

mean of precision and recall. It, thus, conveys the balance between the precision

and the recall as in Equation 5.5.

F1− score =
2 ∗ Precision ∗ Recall

Precision + Recall
(5.5)

5.2.4 Dataset Generation

There exist datasets available publicly that are commonly used for intrusion detec-

tion research such as KDDCUP 99, ISCX and NSL-KDD. Nevertheless, one gap in

the field of IoT networks is the unavailability or privacy of developed RPL related

datasets such as the IRAD dataset [139]. Indeed, building an RPL ML-based IDS

requires one or multiple RPL-related datasets, where the model can learn from.

The datasets shall represent normal and malicious RPL-based traffic. In our exper-

iments, we elaborated two types of datasets: one dataset for each attack and one

multi-class dataset for all the six attacks in Section 5.2.1.
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5.2.4.1 Simulations Setting

We used the simulator Cooja-Contiki for our experiments. Contiki is a powerful tool

for building 6LoWPAN-IoT networks and has realistic results. Because the simu-

lation of large topologies requires high memory and computing power, we deployed

the simulator on a virtual machine with 48 GB RAM and 8 VCPUs on a server.

We simulated three topologies of 25, 50 and 100 TelosB nodes (Sky motes) with

one root. Firstly without any attack, and then with 2, 4, and 10 malicious nodes,

respectively. We implemented each attack separately. We used UDGM with dis-

tance loss as link failure propagation model as it provides a real-world emulation

of the lossy links and shared media collision among RPL’s nodes. The simulations

duration is one hour with one packet of 46 bytes sent every 10 seconds. We used

RPL-collect package for packets generation. Furthermore, we used the cooja-radio-

logger-headless plug-in to capture traffic and generate PCAP files. We exploited the

PCAP files to generate the datasets and extract features. Table 5.2 summarises the

parameters used for the simulations.

Table 5.2: Simulation Parameters

Parameter Value

Simulator Cooja-Contiki 3.0

Simulation time 3600s (1 Hour)

MAC ContikiMAC

Number of nodes 25, 50, 100

Number of malicious nodes 2, 4, 10

Transmission range 50m

Interference range 60m

TX, RX 100%, 90%

Network area 300x300m2

Propagation model UDGM with Distance Loss

Traffic rate One packet every 10 seconds

Packet size 46 bytes

5.2.4.2 Feature Engineering and Selection

We implemented Python scripts for datasets’ generation. We used Pandas, Numpy,

and Scikit-learn libraries for features engineering, extraction and selection, Mat-

plotlib and Seaborn libraries for data visualisation and plotting, and Scikit-learn

and Keras libraries for data analysis.

5.2.4.2.1 Features Extraction and Transformation. We used Wireshark

tool to transform the generated PCAP files to CVS files. The latter were pre-
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processed using Python scripts. Initially, each CVS dataset includes six features:

the packet sequence number (N o), simulation time (Time), source IPv6 address of

the node (Source), destination IPv6 address of the node (Destination), the packet

length (Length), and the packet information (Info).

Firstly, we simplified data in the CVS files such that nominal attributes are

converted into discrete ones. For instance, source and destination IPv6 addresses

were reduced to nodes’ ID, and the broadcast address to the value 9999. In addition,

the packet information DIS, DAO, DIO, Ack, and UDP was encoded 1, 2, 3, 4, and

5, respectively. To calculate datasets’ feature values correctly, we first sorted the

CVS files by simulation time. Then, we divided all the simulation time into periods

of one-second duration (i.e., 1000 ms windows); to make better use of the extracted

features for intrusion detection.

• In the DR and SH attacks, the malicious node advertises a Rank lower than

the other nodes or a Rank equal to the BR’s using a DIO message. When DR

and SH attacks are triggered, normal nodes add the malicious node to their

routing table and send their packets through it. Consequently, the number

of received packets of the malicious node increases, as well as DIO and DAO

counts. Accordingly, features such as Reception Rate, Reception Average

Time, Received Packets Counts, Total Reception Time, DIO and DAO packets

count should be added to the dataset.

• When VN attack is performed, the malicious node sends illegitimacy a DIO

message with a new version number, thus triggering a global repair and pushing

all nodes to exchange control messages. As a result, the DIO and DAO packets

counts increase and should be used as features for the attack detection.

• When HF attack is performed, the malicious node sends illegitimacy DIS mes-

sage pushing the neighbouring nodes to exchange control messages. As a

result, the number of transmitted packets increases, as well as DIS packets

count. Hence, the dataset should be extended with features such as Transmis-

sion Rate, Transmission Average Time, Transmitted Packets Counts, Total

Transmission Time and DIS packets count.

• When BH and SF attacks are triggered, the number of DIO and DAO increases

while the number of data packets (i.e., transmitted and received packets) de-

creases. As a consequence, the same extra features from DR and SH attacks

can be used to detect BH attack.

From the four points above, the extra features in Table 5.3 have been calculated

per one-second window duration, and have been added to the datasets.
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Fist, we calculate transmitted and received packets counts (SrcCount and Dest-

Count) for each node for 1s duration. Then, we calculate Transmission Rate (TR)

and Reception Rate (RR) for each node by dividing SrcCount and DestCount per

1000ms, respectively. We calculate duration time for each packet transmission and

reception. Transmission Total Time (TTT) and Reception Total Time (RTT) are

calculated by adding up duration time of each transmission and reception packet

in 1000ms. Afterwards, Transmission Average Time (ATT) and Reception Average

Time (ART) for each node are calculated. Besides, number of transmitted control

packets (DAO packets count (DAO), DIS packets count (DIS), and DIO packets

counts (DIO)) of each node are calculated within the window size of 1000 ms.

Table 5.3: Features to be used for RPL’s intrusions detection

Name Description

No. Packet Sequence Number

Time Simulation Time

Source Source Node IP

Destination Destination Node IP

Length Packet Length

Info Packet Information

TR Transmission Rate

RR Reception Rate

TR/RR Transmission Rate / Reception Rate

SrcCount Transmitted Packets Count

DestCount Received Packets Count

TTT Transmission Total Time

RTT Reception Total Time

ATT Transmission Avgerage Time

ART Reception Avg. Time

DAO DAO Packets Count

DIS DIS Packets Count

DIO DIO Packets Count

Label Label takes values 0 or 1

The normal traffic was labelled as 0 while the traffic with malicious behaviour

(i.e., each attack related dataset) was labelled as 1. The datasets generated from

networks where an attack was triggered were labelled 1 as the entire networks were

affected by the malicious activities.

Feature normalisation is used to make convergence quicker and limit the influ-

ence of small or large values in the training set, thus increasing the performance of

the learning algorithm. We implemented a Python script to mix the normal and ma-

licious datasets for each topology. We firstly applied quantile transformation to the

datasets to adjust feature values distribution to normal distribution. We secondly

115



CHAPTER 5. INTRUSION DETECTION AND TOLERANCE SYSTEMS FOR
RPL’S SECURITY

used min-max scaling to scale all feature values to the range [0,1]. Afterwards, we

concatenated all datasets resulting from different topologies (i.e., the three topolo-

gies) of each routing attack. As a result, we got six datasets, as detailed in Table

5.4.

Table 5.4: The generated datasets for the IDS use

Datasets Scenarios Nb
Nodes

Attackers Packets Counts

Decreased
Rank (DR)

DR 25
DR 50
DR 100

25
50
100

2
4
10

503232
5134640
7466588
Total = 13104460

Sinkhole
(SH)

SH 25
SH 50
SH 100

25
50
100

2
4
10

513653
873932
2735976
Total = 4123561

Blackhole
(BH)

BH 25
BH 50
BH 100

25
50
100

2
4
10

499951
899333
6727132
Total = 8126416

Selective
Forwarding
(SF)

SF 25
SF 50
SF 100

25
50
100

2
4
10

506444
891441
3409921
Total = 4807806

HelloFlooding
(HF)

HF 25
HF 50
HF 100

25
50
100

2
4
10

842548
2088476
10263539
Total = 13194563

Version
Number
(VN)

VN 25
VN 50
VN 100

25
50
100

2
4
10

2718314
3585999
15205283
Total = 21509596

Multi-Class MC 25/50/100 2/4/10 Total = 51326396

5.2.4.2.2 Features Selection. After the features extraction stage, CVS files are

processed to select relevant attributes, which is one of the core concepts in ML. This

stage identifies and removes unneeded, irrelevant, weakly relevant, and redundant

features from the dataset that do not contribute to the accuracy of the classifier

or may decrease its accuracy. In other words, this step would permit to increase

accuracy while reducing training time2 and avoiding bias and model overfitting.

2Throughout this chapter, we use the terms ”training time” and ”fitting time” interchangeably.
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There exist several feature selection methods in the literature; the filter methods,

the wrapper methods, and the embedded methods. We avoid using wrapper methods

because they are computationally costly and are not the most efficient in massive

datasets. In this study, we combined an embedded method using the Random

Forests classifier, and a filter method applying Pearson correlation, where correlation

states how the features are related to each other and to the output variable. Pearson

coefficient correlation has a value within 1 and -1, where 1 means total positive

linear correlation, -1 means total negative linear correlation and 0 means non-linear

correlation. Figure 5.6 summarises the features selection process.

Figure 5.6: Feature selection process.

Step 1. We first carried out RF-feature-importance function to highlight the ten

most important features for each dataset. When RF classifier is trained, it

evaluates each attribute to create splits and gives a score for each feature of the

dataset; the higher the score more relevant is the feature towards the output

variable (i.e., Label 0 or 1). In this approach, for the tree building process,

only a subset of the data samples is chosen with replacement, which is known

as bootstrap aggregating or bagging. Nevertheless, this is a biased approach,

as it tends to inflate the importance of continuous features or high-cardinality

categorical variables. To reduce selection bias, we used cross-validation for

feature selection, as reported in [154]. In the cross-validation process, the

data is splitting into k equal folds (k=5). The model is trained on k-1 folds

and evaluated on the remaining holdout fold. These two steps are performed

k times, each time holding out a different fold. Finally, the performance are

aggregated across all k folds.

In Figure 5.7, the red bars depict the features’ importance of the Forests,

along-with their inter-trees variability for the Selective-Forwarding dataset,

where the x-axis represents the features indexes, and the y-axis represents the

importance values.
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Figure 5.7: Feature importance datagram for SF dataset.

Step 2. Secondly, we applied the correlation matrix using the Pearson correlation

method on the original features set. Figure 5.8 portrays the correlation ma-

trix for the Selective-Forwarding dataset. We checked the correlation of each

feature with the output variable, and we selected a subset of features using a

threshold of correlation specific for every attack dataset.

Figure 5.8: Correlations between different features for the SF dataset.

Step 3. Afterwards, we selected a new subset of features that represents the inter-

section of both subsets from the previous two steps.

Step 4. According to [155], redundant features should be eliminated since they

affect the speed and the accuracy of learning algorithms. Consequently, in the
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final step, we checked the correlation of selected features subset with each other

using a threshold of 0.8 for the correlation. If these attributes are correlated

with each other, we kept only one of them and dropped the rest.

Initially, in each dataset, there are 17 features: Time, Source, Destination,

Length, Info, TR, RR, TR/RR, SrcCount, DestCount, TTT, RTT, ATT, ART,

DAO, DIS, DIO. After performing the steps mentioned above, the total number of

attributes is reduced for each dataset, as presented in Table 5.5.

Table 5.5: Features per dataset after data pre-possessing

Datasets Features Count Discard

DR DAO, Length, TTT, RR, Dst, TR, Src 7 10

SH Dst, Time, TAR, ATT, Src, RTT, TTT,
TR/RR, RR, TR

10 7

BH Dst, Length, RR, DIS, DIO, TR/RR,
TTT

7 10

SF Time, ART, ATT, Src, RTT, TTT, Dst,
RR, TR, DAO

10 7

HF RR, DIS, DAO, Length, Dst, TR 6 11

VN ART, RR, TR/RR, Dst, RTT, TTT, DAO 7 10

Multi-class Dst, Time, ART, ATT, Src, RTT, TTT,
TR/RR, RR, TR, DAO, DIO, DIS

13 4

5.2.4.3 Multi-class Dataset Generation

To generate a multi-class dataset, firstly, we performed the features extraction steps

from Section 5.2.4.2. Secondly, we labelled the normal traffic as 0, and the traffic

with malicious behaviour as 1, 2, 3, 4, 5, and 6 for BH, SH, HF, DR, VN, and

SF, respectively. Afterwards, we performed the features transformation steps. We

mixed the normal and malicious datasets of all attacks for each topology. We then

applied quantile transformation to the datasets to adjust feature values distribution

to normal distribution. We used min-max scaling to scale all feature values to the

range [0, 1]. Next, we concatenated all datasets resulting from different topologies

and got one 7-class dataset for all attacks and topologies, as in Table 5.4. Finally,

we performed the features selection steps and got the ones in Table 5.5.

5.2.5 Classifiers Evaluation and Discussion

To determine the best performing algorithm to classify RPL routing attacks using

our datasets, we evaluated the performance of the ML and DL algorithms for 2-class

(i.e., normal and attack) and 7-class (i.e., normal and six attacks) datasets.
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5.2.5.1 Two-Class Classification Results

For ML models, we applied 5-fold cross-validation on the datasets. For the DL

model, we used 90% of the data for training and 10% for model evaluation. We

saved all trained models for possible future use. We assessed the accuracy, precision,

recall, and f1 score performance metrics for each algorithm and obtained the results

on each dataset, as presented in Figure 5.9.

(a) DR dataset. (b) SH dataset.

(c) BH dataset. (d) SF dataset.

(e) HF dataset. (f) VN dataset.

Figure 5.9: Classifiers performance per dataset for 60 minutes simulation time.
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We observe that DT, RF and KNN showed better performance for all metrics as

compared to NB, MLP, Logit, and DL. We also notice that the same three algorithms

achieved a classification accuracy rate of more than 99% for both 2-class and 7-class

classifications, as shown in Figure 5.9 and Figure 5.13.

Nevertheless, compared with DT and RF, KNN is very slow to converge and

gets significantly slower as the number of independent variables increases (i.e., the

dataset size increases), as shown in Figure 5.10. Besides, the MLP classifier also

required a longer fitting time but gave better performance when the size of the

dataset decreases, as can be seen in Figure 5.11. On the other hand, the DL classifier

takes the longest training time, and the training time increases with the dataset size.

Figure 5.10: Fitting time for BH dataset vs VN dataset for 10mn simulation time.

When we compare the two ANN-based classifiers (i.e., the MLP classifier with

one hidden layer and 100 neurons, and the DL model in Figure 5.9), we find that

for almost all datasets, the latter gives slightly better performance except for BH

attack where the former gives relatively better results (88.56% vs 87.6%). These

results are due to the fact that the DL model has more capacity than MLP (i.e., the

number of layers and neurons in the DL model is higher than in MLP classifier).

From another side, a DL model with increased capacity tends to yield better

accuracy up to a point at which the model stops improving [156]. As an example,

Figure 5.12a and Figure 5.12b draw the DL model’s loss and accuracy, respectively,

of the VN dataset for 10 minutes’ simulation time. We notice that the accuracy of

the DL model for a larger dataset (60 minutes’ simulation time in Figure 5.9f) is

higher compared to a smaller dataset (10 minutes’ simulation time in Figure 5.12b).

Nevertheless, although DL methods are getting lots of attention lately because of

their promising results in several areas, such as signal processing, natural language

processing, and image recognition, the biggest the DL model, the more computa-
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Figure 5.11: MLP performance for VN datasets: 10mn vs 60mn simulation time.

tional resources it requires and the longer it takes to train which is not suitable

for intrusion detection in IoT networks. Furthermore, the present evaluation re-

sults confirm that the DL methods are not desirable for intrusion detection for IoT

networks.

5.2.5.2 Multi-Class Classification Results

We used the multi-class dataset in Table 5.4. Because the 7-class dataset is too

large (51326396 packets), we shuffled it and used half of the generated dataset to

test the ML and DL classifiers. We got the performance plotted in Figure 5.13. The

results show that KNN has an accuracy of 99% with a detection rate of 98%. RF

and DT take the second position with an accuracy of 98% and a detection rate of

98%. On one other hand, compared with 2-class classification, MPL, Logit, and

NB gave a mediocre performance with precision, recall and F1-score around 35%.

Regarding DL, the model did not converge after three weeks of execution, which

makes it impractical as IDS for IoT networks, especially for real-time needs.

From the obtained results, we conclude that in terms of performance and fitting

time, RF is more suitable for intrusion detection for RPL-based networks.

5.2.6 RF-Based Intrusion Detection System for RPL (RF-

IDSR)

5.2.6.1 System Model and Assumption

As presented in Chapter 2, IoT networks play an important role in the establishment

of Industry 4.0 and other daily humain’s applications and thus need to be secure.

Because RPL is the de facto routing protocol for IoT networks, we introduce an AI-

driven IDS for RPL, namely, RF-IDSR. RF-IDSR is an anomaly-based IDS that uses
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(a) Model loss.

(b) Model accuracy.

Figure 5.12: DL-model for VN dataset.

Figure 5.13: 7-class classification performance.

the Random Forest model (see Section 2.5) to detect routing attacks. Figure 5.14

depicts a graphical representation of the IDS architecture. RF-IDSR is a hybrid-IDS
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(i.e., distributed and centralised) relying on the collaboration of three actors: the

DODAG border router (BR) or edge node, the Monitoring Nodes (MNs), and the

sensor nodes. The following assumptions are considered.

• The BR is a powerful node, which has not processing and energy consumption

constraints.

• The BR is always trusted and cannot be compromised by an adversary.

• The BR shares a secret key with each node to encrypt and secure data packets.

• Two RPL instances coexist:

– The first instance, called sensor network (SN), is an RPL-based network

composed of both resource-constrained sensor devices and more powerful

devices. The SN is used to route the sensed data to the BR. Indepen-

dently of the RF-IDSR, to prevent attacks and failures, each sensor node

implements lightweight appending for the RPL protocol, as presented in

Section 5.2.6.3.

– The second instance, called the monitoring network, is composed of a

few more powerful nodes (i.e., monitoring nodes). The MNs are powerful

machines and devices, which have not resource-constraints. Notably, the

MNs do not have battery depletion issues.

• We assume the MNs are synchronised with each other and with the BR. The

MNs are selected based on the geographical location of the nodes in the first

RPL instance. Indeed, the architecture can be seen as a set of virtual clusters

of nodes from both RPL instances, where MNs are cluster heads with enough

resources (e.g., energy power) for intrusion detection purpose.

5.2.6.2 Attacks Detection using RF Model

One objective of this work is to create a predictive model to classify the RPL-based

network packets into two classes: Normal or Attack and identify the attack using the

multi-class dataset. In this paper, we select RF as the classifier to be used to detect

RPL routing attacks because of its high accuracy of prediction, computational and

time efficiency, and its ability to select features according to their importance [64].

Indeed, in the next sections we demonstrate that the RF model gives better results

compared to other classifiers. Besides, compared to KNN (see Section 2.5) that gives

better accuracy than RF, the latter returns predictions in a shorter time, especially

for large datasets (see Section 5.2.5). As presented in Figure 5.14, RF-IDSR is

composed of three modules defined as follows.
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Figure 5.14: RF-IDSR architecture.

• Distributed Module: is a module placed at each MN of the second RPL in-

stance.

1. Traffic Sniffer Module (TSM): TSM implements Algorithm 3. The MNs

use TSM to sniff the traffic from the first RPL instance. MNs must

timestamp packets as they are received by their radio, generate PCAP

files each 1-minute window (one PCAP file per MN), and send the PCAP

files to the BR through the second RPL instance paths.

Algorithm 3 Monitoring Algorithm

1. Sniff packets
2. Timestamp packets
3. Generate a PCAP file for the last 1-minute window of the sniffed packets
4. Send the PCAP file to the BR
return PCAP

• Cenralised Modules: are modules placed at the BR.

1. Feature Extraction Module (FEM): FEM implements Algorithm 4. FEM

allows the BR to gather all received PCAP files from the MNs, concate-

nate them, and process them to extract features and generate new data
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(equivalent to the testing data in the dataset) as presented in Section

5.2.4.2. The BR may use the cloud to store and process the data.

Algorithm 4 Datasets Generation Algorithm

Require: PCAP files received from MNs
1. New-PCAP = Concatenate PCAP files
2. New-PCAP = Delete duplicate packets from New-PCAP
3. dataset.csv = Ttransform New-PCAP to CSV format
4. New-Data = Execute steps in Section 5.2.4.2
a. Sorting dataset.csv by Time attribute
b. Feature Transformation (Source, Destination, Info, etc.)
c. Feature Extraction within 1-second window size
d. Feature Selection as summarised in Figure 5.6
5. Store New-Data in the cloud (optional)
return New-Data

2. Random Forests Module (RFM): RFM implements the trained RF model

(from Section 4.6) and Algorithm 5. The BR uses RFM to evaluate the

new data generated from FEM using the trained RF model and gives

predictions. Furthermore, RFM implements an update process to update,

periodically, the RF model using the new data from FEM. The last point

permits to enrich the learning algorithm, and thus to detect new threats.

RFM may use the cloud to update the RF model and execute Algorithm

5 (see Figure 5.14). The alarm may be sent to the end-user (e.g., the

network administrator) and notifications to the sensor nodes to discard

the malicious nodes from participating in the network operations.

Algorithm 5 Anomaly Detection Algorithm

Require: New-Data from FEM
1. Load trained RF model
2. Scores = Predict outcomes on New-Data
5. If Intrusion, raise an alarm and send notifications
return Scores

5.2.6.3 Attacks and Failure Prevention

In addition to the presented RF-IDSR, we propose considering three lightweight ap-

pending to RPL aiming to prevent and tolerate the HelloFlooding, version number,

and global repair attacks, as well as network failure.

5.2.6.3.1 HelloFlooding, DIS , and SybM Attacks Prevention. HelloFlood-

ing, DIS and SybM attacks can be prevented and tolerated relaying on our contri-

bution in Chapter 4-Section 4.5.
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5.2.6.3.2 Global Repair and Version Number Attacks Prevention and

Detection. The BR increments the version number in case of inconsistency. This

leads to the initiation of a global repair and the DODAG is rebuilt from scratch.

A malicious node can post a false version number in its control message to force

a global repair. Unfortunately, there is no security macanism currently available

in RPL to protect it against this intrusion or to check the integrity of the version

number field.

There exist some work that propose solutions to detect the VN attack; never-

theless, they rely on statistics and other nodes verifications to detect or prevent

the intrusion. Authors in [87] propose a double autentication scheme for the version

number and the Rank field; however, they did not gave a simulation based evaluation

of their proposal.

To tolerate and detect the version number and global repair attacks, we authen-

ticate the DODAG version field of the DIO message. In our approach, the BR uses

a one-way hash chain to generate sequence numbers for the DODAG version field.

A one-way hash chain is a sequence of numbers, Vi (0 ≤ i ≤ n), generated by a one-

way hash function F as in Equation 5.6, where Vi is a random number generated by

the BR, and the F function is the same for the BR and all nodes in the network.

∀i, 0 ≤ i < n : Vi = F(Vi+1) (5.6)

In our appraoch, the one-way hash chain is stocked in the BR. In addition,

the first value of the one-way hash chain used to generate the DODAG versions is

uploaded securely into the nodes before deployment. Besides, when a new node is

deployed in the network, it is pre-loaded with the first unused value of the chain.

In this work, every global repair is identified with a DODAG version (Vi) that

is the last delivered value of the one-way hash chain. Consequently, the nodes of

the network can verify the new DODAG version Vi+1 through checking whether

Vi = F (Vi+1), where Vi is the previous DODAG version. On the other hand, the

nodes cannot calculate the following DODAG version since the security of the one-

way hash chain concept is based on the fact that knowing Vi, it is computationally

infeasible to determine Vi+1.

In the DIO, the version number is an 8-bit unsigned integer. As our solution is

hash-based, we know that the larger the size of the hash result, the more difficult

is for the attacker to breack the hash. Therefore, we extended the size of the

version number to 32 bits. Furthermore, we chose to use multiple hashing algorithms

simultaneously and randomised the number of rotation of the calculations to make

the solution difficult to break.

The pseudocode in Algorithm 6 summarises the proposed solution.
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Algorithm 6 Global Repair and Version Number Attacks Prevention

Require: V0 (i.e., the first value of the hash chain uploaded in all nodes before
deployment) Vi (i.e., the DODAG version of the ith global repair and the last
delivered value of the one-way hash chain); F (i.e., the one-way hash function
implemented in both the BR and the in-network nodes); Vi (0 ≤ i ≤ n) (i.e., the
one-way hash chain stocked in the BR);
if a node receives a DIO with a new DODAG version value Vi+1 knowing that Vi
is the current DODAG version then

The node calculates F (Vi+1)
if Vi = F (Vi+1) then

(the node is sure that the BR updated the DODAG version)
The node reinitialises its Trickle timer
It updates the DODAG version field to Vi+1 and broadcasts a DIO message
with the new version number

else
The node discards the received DIO and considers the node from which it
receives the DIO as malicious

end if
end if

We simulated a network of 30 zolertia nodes (Z1 motes) with one BR and 29

senders placed randomly. Actually, the Z1 resources, although limited, are sufficient

for our solution. Table 5.6 shows the simulation parameters.

Table 5.6: Simulation parameters for VN attack tolerance and detection

Parameter Value

Simulator Cooja-Contiki 3.0

Simulation time (mn) 10

Number of nodes 30

Network area 100x100m2

Transmission range 35m

Interference range 55m

TX, RX 100 %, 80 %

Radio medium UDGM : Distance Loss

Traffic rate 1 packet sent every 60 seconds

Attacker nodes 2

We simulated six scenarios; (1) native RPL, (2) RPL with solution (RPL+sol),

(3) RPL with global repair (RPL+GR), (4) RPL with solution and global repair

(RPL+Sol+GR), (5) RPL under VN attack (RPL+VNA), and (6) RPL with so-

lution under VN attack (RPL+Sol+VNA). Like in RPL-MRC evaluation, we used

PDR, control overhead and the average energy consumption as performance metrics

to evaluate our approache.

• Packet Delivery Ratio. The results obtained in Figure 5.15 show that the
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PDR takes almost identical values in the first four scenarios, which means

that our solution has no negative effect on RPL’s PDR in the absence of the

intrusion. However, when the VN attack is in place, we can see that the PDR

starts to drop to 32% in the scenario without solution. This is evident as the

attackers cause packets to be dropped or lost due to various reasons such as

packet collision, link break, etc. On the other hand, with the solution, almost

all the packages were delivered to the BR successfully.

Figure 5.15: Packet delivery ratio vs scenarios.

• Control Overhead. Referring to Figure 5.16, the control messages overhead

in the third and fourth scenarios increases when a global repair is initiated,

which is normal as the nodes in the network broadcast DIOs to reconstruct

the DODAG graph. In the presence of malicious nodes, the overhead increases

by 2346 messages due to the characteristics of the version number attack.

In contrast, the proposed scheme prevents the diffusion of suspect DIOs to

reconstruct DODAG, therefore, the control overhead is much less than that of

RPL under VN attack.

Figure 5.16: Control overhead vs scenarios.
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We did another more in-depth study of this metric for the neighbouring nodes

of the malicious node (in this case the node 17). The number of outgoing DIO

messages from each neighbour for the three scenarios RPL, RPL+VNA and

RPL+Sol+VNA, is shown in Figure 5.17. We can observe that as soon as the

node 17 turns into an attacker, the overhead produced by its neighbours can

increase up to 3 times within a short time (i.e., 3 mn). This causes a significant

increase in control packets across the network. Indeed, we can clearly see that

our approach was able to reduce the number of DIO messages transmitted by

the attacker’s neighbours. Actually, our approche couters the intruders and

discard them from participating in the network operations and thus stabilises

the control messages transmission.

Figure 5.17: Control overhead for the neighbours of the intrusder 17.

• Average Power Consumption. The average energy consumption for the

different scenarios is shown in Figure 5.18. From the second and fourth scenar-

ios, we conclude that the hash functions consumed very little power making

the obtained results acceptable. In the case of RPL under attack, we observe

that VN attack can significantly affect the power consumption of the nodes

and reduce their life time. Nevertheless, in the case of RPL with solution and

under attack, we can see that the energy consumed is lower, which allows us

to say that our approach has been successful in tolerating and detecting the

intrusion while conserving the energy.

Besides, Figure 5.19 shows that the neighbours of the malicious node 17 con-

sumed little power to discover and stop the attacker. As a result, the VN

attack did not affect their power consumption.

5.2.6.3.3 Fault and Intrusion Tolerance. In RPL, a preferred parent (PP)

is used by children nodes to forward traffic until detection of a better route, a path
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Figure 5.18: Average power consumption vs scenarios.

Figure 5.19: Average power consumption for the neighbours of the intrusder 17.

failure or an intrusion (i.e., the PP is detected as a malicious node). Thus, other

potential parents are rarely used. To enhance the resiliency and security of RPL, our

approach merges intrusion-tolerance with fault-tolerance solutions by considering a

multi-path strategy for RPL. We propose to redefine the RPL’s objective function

in a way to select two random parents through which the traffic is routed. Choosing

only two paths reduces the network overhead while increasing the packet delivery

ratio and preventing attacks, such as Wormhole, blackhole, selective forwarding and

sinkhole. Indeed, a packet at each hop is routed through two potential parents. On

the one hand, the parents are selected randomly, and thus, cannot be specifically

targeted by an attacker; because, the attacker has no way to know the parents that

will forward the traffic. On the other hand, our solution prevents path and node

failure because, at each hop, the traffic is forwarded through two random parents.

In RPL, nodes ignore any DIO message from nodes of higher or equal ranks

aiming to avoid loops [22]. However, in some cases, a node could have only one or

two potential parents. To expand the parents’ list and the selection choice, if the

number of potential parents is less than or equal to two, our solution adds nodes
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with the same rank in the parents’ list as supplementary parents.

5.3 Summary

In this chapter, as a first step, we introduced a new Trust-based IDS (T-IDS) to

deal with the mobility, identity and security gaps of the RPL routing protocol. T-

IDS is hierarchical where three layers cooperate to handle the routing attacks: the

backbone station, the border router, and the in-network nodes. Furthermore, T-

IDS uses three modules: IdentityMod, MobilityMod, and IDSMod to detect and

avoid malicious nodes. We presented a demonstrative algorithm to show how T-IDS

can deal with SybM attack introduced in Chapter 4. Even if T-IDS seems to be

resources costly, we believe that off-loading security computations and data-storage

using TPM reduces the cost. Nevertheless, T-IDS is not able to detect new attacks.

To overcome the above-cited inconvenient, as a second step, we studied the

applicability of ML and DL techniques for intrusion detection in RPL-based IoT

networks. We demonstrated that with the selection of the appropriate features,

high performance had been achieved. In the 2-class classification, the decision tree

(DT), random forests (RF), and K-Nearest Neighbours (KNN) classifiers recorded

more than 99% for each of the following metrics: accuracy, precision, recall, and

f1-score. The recorded detection rate (Recall), precision, and f1-score for multi-class

classification were more than 98% for the three classifiers, while the KNN accuracy

was 99%. Besides, RF recorded the lowest fitting time. On the other hand, the DL

model, MLP, Näıve Bayes (NB), and Logistic Regression (LR) classifiers recorded

lower performance.

The evaluation results showed that RF is a good classifier for RPL networks

threats detection. Consequently, we introduced the RF-based IDS, named RF-

IDSR, to provide both fault tolerance and intrusion tolerance and detection for

RPL LLNs. RF-IDSR uses RF classifier to categorise RPL-based attacks using a

multi-class dataset. Furthermore, we presented lightweight appending to RPL to

prevent (tolerate) the HelloFlooding, version number, global repair attacks, and

network failure. The mechanism for HelloFlooding tolerance has been introduced in

Chapter 4.
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Conclusions and Perspectives

6.1 Thesis Summary and Contributions Review

The first objective of this thesis has been to consider the security fault tolerance

aspect of the Internet of Things (IoT) environment as it is profoundly inclined to

threats and faults dangers. Because the intrusions are considered as faults, fault

tolerance in the context of IoT security consists on making: i) all nodes secure by

default, ii) all nodes able to know the state of the network, and iii) protocols such

as the routing protocol embody intrusion detection systems (IDSs) and tolerance

mechanisms to ward off attacks.

Therefore, the main focus of this thesis has been to introduce new IDSs and

intrusion tolerance schemes to enhance the security of the de-facto routing protocol,

named IPv6 Routing Protocol over Low Power and Lossy Networks (RPL), which

has been standardised for IoT Low-Power and Lossy Network (LLNs). LLNs are

considered as a key enabling component of IoT. RPL effectively organises and main-

tains the IoT-LLNs taking into consideration limitations of such networks. Though

RPL provides some cryptographic security features aiming to counter external at-

tacks, it is vulnerable to many insider attacks. It has been shown in the literature

that the attacks that exploit RPL’s control messages, rules, and operations have

evolved in terms of diversity, thus disrupting the established LLNs routes, causing

normal devices perform heavy computations, degrading the network performance,

and shortening the network lifetime often resulting in denial of service. Subse-

quently, more attention needed to be paid to the analysis of these intrusions and

their detection methods.

The first objective of the thesis was to have a solid background on the IoT, IDSs,

and machine learning (ML) concepts, which has been achieved, as documented in

Chapter 2. The chapter presented the IoT’s definitions and applications, characteris-

tics and standardised protocols, and its security challenges. In addition, it provided
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the preliminary information about the definitions relevant to IDSs, the different

types of IDSs and their detection methods. Finally, the chapter elaborated on the

ML concepts and the algorithms studied in this thesis.

The second objective was to analyse the security issues of the RPL protocol, as

RPL is the main focus of this thesis. Therefore, more details and discussions have

been given in Chapter 3 to usher the essential background for better understanding

the research problems within this thesis. In consequence, a variety of defence so-

lutions for RPL were surveyed, especially IDSs as they are a relevant point for the

security fault tolerance.

Based on the literature review from Chapter 3, a security issue related to the

gaps in mobility and identity management in RPL was identified. Accordingly, an

analytical study of the RPL performance under a new Sybil-mobile attack, named

SybM attack, was achieved. Hence, the third objective was to implement SybM

attack and evaluate the RPL performance with simulations. The fourth objective

was to develop a new mitigation mechanism for RPL to tolerate SybM and multicast

related attacks, named RPL-MRC. In RPL-MRC, RPL itself is adapted to reduce

the response to multicast messages in static or dynamic networks regardless of the

sender node identity. The solution is promising as it has achieved high performance

by reducing significantly the control overhead, power consumption, and data packet

overhead. These objectives were documented in Chapter 4

The state-of-the-art from Chapters 3 and 4 revealed the significant consequences

of vulnerabilities on RPL, and the need for more solutions in this regards. Conse-

quently, the last objective was to propose IDSs solutions for RPL, which is docu-

mented in Chapter 5. Hence, our first contribution to secure RPL was to introduce

T-IDS a cross-layer trust-based IDS that relies on the RPL specification to detect

intrusions. It uses specific modules to counter mobility-based and identity-based

attacks like SybM attack. Besides, it reorganises the network according to the

trustworthiness of the participating nodes.

Because T-IDS is not able to detect unknown attacks, our second contribution

was to introduce RF-IDSR. RF-IDSR is an ML-based IDS extended with three

mechanisms for intrusions tolerance. As its name suggests, RF-IDSR is based on

the Random Forests algorithm to detect intrusions. To evaluate the IDS, the RPL

attacks that threaten the most its functionalities were implemented, then one-class

and multi-class datasets were generated. Several ML classifiers and a deep learning

model were implemented and compared to select the one with the best detection

rate. The proposed HelloFlooding, DIS , and SybM attacks prevention mechanism

is able to reduce the effects of the DIS and SybM attacks as presented in Chapter 4.

The global repair and version number attacks prevention mechanisms eliminates the

effects of the discussed attacks as demonstrated in the simulations results. Further-
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more, the fault and intrusion tolerance mechanism is able of preventing the selective

forwarding attack.

6.2 Limitations and Future directions

In this section, we outline some limitations of our contributions and propose future

directions to address them.

• Our RF-IDSR is only proposed for the six specification-based attacks. It would

be interesting to test the model with other RPL related attacks as almost all

the attacks impact the same performance metrics (i.e., features) used in the

developed datasets.

• As stated above, the created RPL threats datasets aim to detect only six

specification-based attacks. It would be interesting to incorporate other threats

to the multi-class dataset to allow better training and testing of the detection

model. Indeed, with the continuous modification on the attacks’ strategies,

both the dataset and IDS need to be extended dynamically, which is a chal-

lenge that must be investigated. For instance, the dataset could be extended

with attacks from other layers, such as the the 6LoWPAN adaptation layer.

• The assembly of RF-IDSR and T-IDS into one IDS will be a promising en-

hancement for RF-IDSR. Having an RF-based IDS for detecting attacks that

is augmented with mobility and identity management modules, a trust-based

module for self-organising, and intrusions tolerance mechanisms for reducing or

eliminating the attacks’ effects on the network, while taking into consideration

the limitations of RPL and LLNs is very interesting to investigate.

• Another interesting direction is the deployment and assessment of the proposed

intrusion detection and tolerance mechanisms in a real testbed.
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Abstract 

The Internet of Things (IoT) consists of physical objects that sense, collect, and might process data. These objects are resource-

constrained as they are powered by batteries and have limited computation and storage capability. Billions of these devices are 

interconnected and connected to the Internet under lossy and noisy communication environments such as ZigBee and Bluetooth. 

IoT applications have emerged in several socio-economic sectors such as healthcare, industry, and energy. Nevertheless, the 

IoT's Low-Power and Lossy Networks (LLNs) rise challenges in designing efficient and secure routing protocols that fulfil the 

routing requirements in such networks. In this regards, the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) 

was designed and standardised to overcome the routing challenges underpinning the LLNs. RPL considers limitations in both 

the energy power and the computational capabilities of LLNs. Besides the different characteristics of the IoT components, the 

rapid growth of IoT applications and the increasing number of smart objects result in producing a massive amount of data and 

traffic leading to increase the IoT's vulnerabilities. The research community studies the security challenges of the IoT from 

many different points of view, one of which is the security vulnerability of IoT communication protocols at the network layer, 

and consequently, the RPL's threats given that it represents one of the main pillars of LLNs. Although the RPL specification 

introduces mechanisms aiming to achieve confidentiality, integrity and replay protection, RPL is still susceptible to internal 

attacks that go beyond the encryption and authentication defence. In response to the RPL's security issues, intrusions tolerance 

and detection systems are proposed in this work as the last line of defence for RPL. On the one hand, intrusion detection systems 

(IDSs) have been proposed to analyse the network's activities and nodes' behaviour in order to detect the intrusions. On the 

other hand, intrusion tolerance mechanisms have been introduced to respond immediately to the intrusions, thus reducing the 

effects of the attacks on the LLNs. 

Keywords: IoT, LNN, RPL, RPL security, Intrusion Tolerance, Intrusion Detection Systems, Machine Learning. 

Résumé 

L'Internet des objets (IoT) se compose d'objets physiques qui détectent, collectent et peuvent traiter des données. Ces objets 

sont limités en ressources car ils sont alimentés par des batteries et ont une capacité de calcul et de stockage limitée. Des 

milliards de ces objets sont interconnectés et connectés à Internet dans des environnements de communication bruyants et avec 

perte tels que ZigBee et Bluetooth. Les applications IoT ont émergé dans plusieurs secteurs socio-économiques tels que la 

santé, l'industrie et l'énergie. Néanmoins, les réseaux à faible consommation et avec perte (LLN) de l'IoT posent des défis dans 

la conception de protocoles de routage efficaces et sécurisés qui répondent aux exigences de routage de ces réseaux. À cet 

égard, le protocole de routage IPv6 pour les réseaux à faible consommation et avec perte (RPL) a été conçu et normalisé pour 

surmonter les défis de routage qui sous-tendent les LLN. Le RPL prend en compte les limites à la fois de la puissance 

énergétique et des capacités de calcul des LLN. Outre les différentes caractéristiques des composants IoT, la croissance rapide 

des applications IoT et le nombre croissant d'objets intelligents entraînent la production d'une quantité massive de données et 

de trafic, ce qui augmente les vulnérabilités de l'IoT. La communauté de recherche étudie les défis de sécurité de l'IoT sous de 

nombreux points de vue, dont l'un est la vulnérabilité des protocoles de communication IoT au niveau de la couche réseau, et 

par conséquent, les menaces de sécurité du RPL étant donné qu'il représente l'un des principaux piliers des LLN. Bien que la 

spécification RPL introduise des mécanismes visant à assurer la confidentialité, l'intégrité et la protection contre la relecture, 

RPL est toujours sensible aux attaques internes qui vont au-delà du cryptage et de la défense d'authentification. Par conséquent, 

en réponse à de tels problèmes de sécurité du RPL, des systèmes de tolérance et de détection d'intrusions sont proposés dans 

ce travail comme dernière ligne de défense du RPL. D'une part, des systèmes de détection d'intrusion (IDS) ont été proposés 

pour analyser les activités du réseau et le comportement des nœuds afin de détecter les intrusions. D'autre part, des mécanismes 

de tolérance aux intrusions ont été introduits pour répondre immédiatement aux intrusions, réduisant ainsi les effets des attaques 

sur les LLN. 

Mots-clés : IoT, LNN, RPL, sécurité RPL, tolérance aux intrusions, systèmes de détection d'intrusions, apprentissage automatique. 

 الملخص

 على محدودة قدرة ولديها بالبطاريات تعمل لأنها الموارد محدودة الأشياء هذه. تعالجها وقد وتجمعها البيانات تستشعر مادية أشياء من( IoT) الأشياء إنترنت تكونت

. Bluetooth و ZigBee مثل وصاخبة ضائعة اتصال بيئات ظل في بالإنترنت ومتصلة البعض ببعضها متصلة الأجهزة هذه من المليارات. والتخزين الحساب

 الأشياء إنترنت شبكات فإن ذلك ومع. والطاقة والصناعة الصحية الرعاية مثل والاقتصادية الاجتماعية القطاعات من العديد في الأشياء إنترنت تطبيقات ظهرت

 تم الصدد، هذا في. الشبكات هذه مثل في التوجيه متطلبات تلبي وآمنة فعالة توجيه بروتوكولات تصميم في التحديات من تزيد( LLNs) والمفقودة الطاقة منخفضة

 الاعتبار في RPL أخذي. LLN شبكات تدعم التي التوجيه تحديات على للتغلب( RPL) وفقدان الطاقة منخفضة للشبكات IPv6 توجيه بروتوكول وتوحيد تصميم

 الأشياء إنترنت لتطبيقات السريع النمو يؤدي الأشياء، إنترنت لمكونات المختلفة الخصائص جانب إلى. LLNs لـ الحسابية والقدرات الطاقة قوة من كل في القيود

 التحديات البحثي المجتمع يدرس. الأشياء إنترنت ضعف نقاط زيادة إلى يؤدي مما المرور وحركة البيانات من هائلة كمية إنتاج إلى الذكية الأجهزة من المتزايد والعدد

 على الأمنية تهديداتال وبالتالي الشبكة، طبقة في الأشياء إنترنت اتصالات لبروتوكولات الأمني الضعف هو أحدها نظر، وجهات عدة من الأشياء لإنترنت الأمنية

RPL لـ الأساسية الركائز أحد تمثل لأنها نظرًا LLNs .مواصفات أن من الرغم على RPL إلا التشغيل، إعادة وحماية والنزاهة السرية تحقيق إلى تهدف آليات تقدم 

 تحمل أنظمة اقتراح العمل هذا في تم ،RPL بـ الخاصة الأمن لقضايا استجابةً . والمصادقة التشفير دفاع تتجاوز التي الداخلية للهجمات عرضة زالي لا RPL أن

 عن الكشف أجل من العقد وسلوك الشبكة أنشطة لتحليل( IDSs) الاختراقات كشف أنظمة اقتراح تم ناحية، من. RPL لـ أخير دفاع كخط عنها والكشف الاختراقات

 .LLNs على الهجمات آثار تقليل وبالتالي ، الاقتحام عمليات على الفوري للردالاختراقات  تحمل آليات إدخال تم أخرى، ناحية من. الاختراقات عمليات

   .الآلي التعلم الاختراقات، كشف أنظمة الاختراقات، تحمل ،RPL أمان ،IoT، LNN، RPL الرئيسية: الكلمات
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