
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University of Béjaia

Faculty of Exact Sciences

Informatics Department

This thesis is submitted in partial fulfillment of the requirements

for the diploma of Master of Software Engineering

Thesis theme:

Intelligent Cloud Computing Solution
for Real Time Object Recognition

Authors:

AITOUAKLI Hichem

MEKHAZNI Fouad

Supervisors:

Dr. BELAID Ahror

Dr. AKILAL Abdellah

Members of the Jury:

Dr. ALOUI Soraya

Dr. MOKTEFI Mohand

Academic year 2021/2022

ACKNOWLEDGEMENTS

Above all else, we would like to thank Allah for giving us the strength and his blessings through-

out our lives, allowing us to complete to thesis.

We wish to express our sincerest gratitude to Dr. BELAID Ahror and Dr.AKILAL Abdellah,

our supervisors, for providing us the opportunity to learn and gain valuable expertise that will

hopefully serve us in the future and for sharing with us their knowledge and guiding us throughout

this project.

Our gratitude goes also the the members of the jury who accepted to examine and evaluate

our work.

Finally, we express our deepest gratitude to our family for their love and encouragement.

TABLE OF CONTENTS

Table of Contents

List of Figures

List of Tables

Abbreviations

Introduction 1

I) Machine Learning Operations 2

1 - Introduction . 3

2 - The evolution of software development related infrastructure 3

3 - Cloud Computing . 3

a) Types of cloud services . 3

b) Machine learning on the cloud . 5

4 - The challenges of traditional software development 5

5 - Machine learning engineering . 6

6 - MLOps and its workflow: . 7

a) What is MLOps: . 7

b) Workflow: . 7

7 - Conclusion . 8

II) Conception and development 9

1 - Introduction . 10

2 - Requirements analysis: . 10

a) Functional requirements: . 10

TABLE OF CONTENTS

b) Non-functional requirements: . 11

3 - Design and conception: . 12

a) Use case diagram . 12

b) Use cases textual description: . 13

c) Class Diagram . 16

d) Sequence Diagrams . 17

e) The system’s activity diagram . 21

4 - Implementation . 22

a) WebRTC Implementation . 22

b) Stage 1: Proof of Concept . 26

c) Stage 2: Kubernetes cluster deployment . 28

5 - Deployment configurations: . 30

a) Back-end configuration: . 30

b) STUN/TURN server configuration: . 32

c) Front-end configuration: . 35

6 - Testing . 37

7 - Conclusion: . 39

III)Resources and tools used 40

1 - Introduction . 41

2 - Front-end . 41

a) Next.js . 41

b) Material UI . 42

3 - Back-end . 43

a) FastAPI . 43

b) OpenCV . 44

c) aiortc . 44

d) Node.js . 45

4 - Database / Authentication . 45

a) Firebase . 45

5 - DevOps tools . 47

a) GitHub . 47

b) Github Actions . 47

c) Docker . 48

d) Kubernetes . 49

6 - Cloud services . 49

TABLE OF CONTENTS

a) Heroku . 49

b) Vercel . 50

c) Microsoft Azure . 50

7 - Testing tools: . 52

a) Apache JMeter . 52

8 - Conclusion . 52

IV) Custom model deployment 53

1 - Introduction . 54

2 - Front-end interfaces: . 54

a) Video streaming interface . 54

b) Authentication interface . 55

c) Custom model configuration editor interface 57

3 - Deep learning and neural networks . 58

4 - OpenCV Deep Neural Network frameworks: . 59

a) Caffemodel: . 59

b) Tensorflow: . 59

c) Darknet: . 60

d) LBPH Face recognition: . 61

5 - Conclusion . 61

Conclusion 62

Bibliography 63

Appendix A 67

LIST OF FIGURES

1.1 ”as-a-Service” infrastructures per type . 4

1.2 MLOps Components . 7

1.3 MLOps workflow . 8

2.1 Use case diagram of the system . 12

2.2 Class diagram of the system . 16

2.3 WebRTC Signaling Sequence Diagram . 17

2.4 Webcam capture detection sequence diagram . 18

2.5 Real time detection sequence diagram . 19

2.6 Upload custom model sequence diagram . 20

2.7 Activity diagram of the system . 21

2.8 The problem with symmetric NATs . 23

2.9 Example of a SDP answer . 24

2.10 Diagram of the WebRTC transmission behind an asymmetric NAT 25

2.11 Diagram of the WebRTC transmission behind an symmetric NAT 26

2.12 Deployment diagram of the deployed FastAPI Heroku application 27

2.13 AKS Deployment Center Workflow . 28

2.14 Deployment diagram of the application deployed in a K8s cluster 29

2.15 K8s deployment file for the STUN/TURN Server 34

2.16 K8s service file for the STUN/TURN Server . 34

2.17 Thread group panel . 37

2.18 View results tree . 38

2.19 Graph results . 38

LIST OF FIGURES

3.1 Next.js web application . 41

3.2 Minimal FastAPI Endpoint . 43

3.3 Node.js logo . 45

3.4 Firebase Authentication Console . 46

3.5 GitHub logo . 47

3.6 Microsoft Azure User Portal . 51

4.1 Application media streaming page . 54

4.2 Login Page . 55

4.3 Register Page . 56

4.4 Custom model input . 57

4.5 The layers of an artificial neural network . 58

4.6 YOLO object detection example . 60

4.7 LBP Computation . 61

LIST OF TABLES

II).1 Textual Description of the Authentication use case 13

II).2 Textual Description of the Realtime Detection use case. 13

II).3 Textual Description of the Webcam Capture Detection use case. 14

II).4 Textual Description of the Upload custom model use case 15

II).5 Textual Description of the remote SSH web console use case 15

ABBREVIATIONS

• ML : Machine Learning

• MLOps : Machine Learning Operations

• IaaS : Infrastructure as a Service

• PaaS : Platform as a Service

• SaaS : Software as a Service

• FaaS : Function as a Service

• CPU : Central Processing Unit

• GPU : Graphics Processing Unit

• TPU : Tensor Processing Unit

• WebRTC : Web Real Time Communication

• SSH : Secure Shell Protocol

• UML : Unified Modelling Language

• UI : User Interface

• HTTP : Hypertext Transfer Protocol

• API : Application Programming Interface

• RFC : Request For Comment

• ICE : Interactive Connectivity Establishment

• STUN : Session Traversal Utilities for NAT

• NAT: Network Address Translator

• TURN : Traversal Using Relays around NAT

• SDP : Session Description Protocol

• AKS : Azure Kubernetes Service

• CI / CD : Continuous Integration / Continuous Deployment

• K8S : Kubernetes

• SDK : Software Devlopment Kit

• ANN : Artificial Neural Network

• DNN : Deep Neural Network

• YOLO : You Only Look Once

• LBPH : Local Binary Pattern Histogram

INTRODUCTION

A common problem data scientist and machine learning experts are facing emerge from deploy-

ing a model in production, which is extremely difficult. As it is reported by[1], 87 percent of data

science projects never make it into production.

These scientists put considerable time and effort into developing models and algorithms. How-

ever, their efforts are vain, their projects are abandoned due to the lack of production environments

and tooling.

To help data scientists excel in their roles, companies don’t only need to direct resources in the

right direction, and also understand what machine learning models are all about. One possible

solution is that leaders get some introductory training to data science themselves, so they can put

this knowledge into practice at their companies. That’s where MLOps comes in.

MLOps allows companies to easily deploy, monitor, and update ML models in production.

The goal of this project is to develop a cloud based web application that uses machine learning

models to perform real time video processing.

1

CHAPTER I)

MACHINE LEARNING OPERATIONS

2

1 - Introduction

In this chapter, we will describe the evolution software development and its infrastructures,

the challenges of traditional software development, the impact of machine learning in software

development, MLOps and its workflow.

2 - The evolution of software development related infrastructure

There has been a rise in software applications since the coming of the modern internet age,ranging

from operating systems such as Windows 95 to the Linux operating system and websites such as

Google and Amazon, which have been serving the world (online) for over two decades. This has

resulted in a culture of continuously improving services by collecting, storing, and processing a

massive quantity of data from user interactions. These developments have been for long time

shaping the evolution of IT infrastructure and software .

Resource sharing via networks that provide access to on-demand infrastructure, services, plat-

forms and applications is quickly and increasingly becoming important, at the expense of sharing

it through hardwired connections.[2]

3 - Cloud Computing

Cloud Computing is a model for enabling convenient network access to a shared set of con-

figurable computing resources hosted on the internet such as servers, databases, software, virtual

storage, and networking, among others. These resources can be rapidly provisioned and released

with minimal management effort or service provider interaction.

a) Types of cloud services

All software, infrastructure, platforms and technologies that are accessible to users over the

Internet, without the need to download additional software, can be considered cloud services,

including the following ”aaS” (as-a-Service) solutions:

• IaaS (Infrastructure-as-a-Service): provides users with networking, computing and storage

resources.

• PaaS (Platform-as-a-Service): provides users with a platform on which to run applications,

as well as the computing infrastructure needed to run them.

3

• SaaS (Software-as-a-Service): primarily provides users with a cloud application, as well as

the platform on which it runs, in addition to the infrastructure underlying the platform.

• FaaS (Function-as-a-Service): is an event-driven execution model, allows developers to cre-

ate, execute and manage application packages as functions, without having to worry about

maintaining the infrastructure.[3]

The following figure[4] shows the different types:

Figure 1.1: ”as-a-Service” infrastructures per type

4

b) Machine learning on the cloud

Machine learning is one of the most demanded technology that companies chase after. Cloud

computing can solve a lot of problems for machine learning analyists and engineers:

• Requires little to no knowledge of machine learning and data science

• Saves infrastructure cost computing.

• Availability of power resources such as CPUs and GPUs/TPUs.

• Resources are scalable without changing code or environment[5].

4 - The challenges of traditional software development

Software processes have progressed immensely since software engineers began to follow a dis-

ciplined flow of activities to improve quality and productivity during development. Various soft-

ware development process models, methodologies, methods and/or practices have been proposed,

adopted or implemented.

For many years, there has been conflict over whether to follow a completely traditional (”clas-

sical”) model or become more agile. Each approach has its strengths and weaknesses, and each

has its proponents and detractors However, the current diversity of software projects and the ad-

vancement of technology have led to debates about what types of software process approaches are

most effective in the context.

5

5 - Machine learning engineering

Machine learning (ML) is a branch of artificial intelligence (AI) and computer science which

focuses on the use of data and algorithms to imitate the way that humans learn, gradually improv-

ing its accuracy.

ML is a very profitable but using it to solve real world problems is very complex due to the

sheer amount of algorithms, tools and activities involved in building models, which makes it intim-

idating for companies. To solve this complexity problem, Machine Learning Engineering applies a

system that uses a set of tools, processes and methodologies that aims to optimize the chances of

abandoning a ML model project.

Machine learning is an important component of the growing field of data science. Through the

use of statistical methods, algorithms are trained to make classifications or predictions, uncovering

key insights within data mining projects. These insights subsequently drive decision making within

applications and businesses, ideally impacting key growth metrics. As big data continues to expand

and grow, the market demand for data scientists will increase, requiring them to assist in the

identification of the most relevant business questions and subsequently the data to answer them.[6]

6

6 - MLOps and its workflow:

MLOps, an acronym for Machine Learning Operations, is one of the most popular trends in the

industry today. Sometimes referred to as ModelOps, it is an engineering discipline whose workflow

we will see behind it and the steps that are in the workflow pipeline:

a) What is MLOps:

MLOps is an emerging method that allows to fuse machine learning with software develop-

ment.This is done by integrating multiple domains as MLOps combines with ML engineering,

DevOps, and data engineering.

It aims to build, deploy, and maintain ML systems in production reliably and efficiently. The

figure[6] below describes MLOps and its components:

Figure 1.2: MLOps Components

b) Workflow:

Figure[7] shows a generic MLOps workflow. It focuses on optimizing ML solutions or build

proofs of concepts while being modular and flexible:

7

Figure 1.3: MLOps workflow

The workflow is split into two modules or layers: the upper layer is the MLOps pipeline and

the lower layer are the drivers.

The pipeline is enabled by drivers such as data, code, artifacts, middleware and infrastructure.

By using this pipeline, a company can quickly prototype, test, validate and deploy machine

learning models to production at scale very efficiently.

7 - Conclusion

In this chapter, we mainly talked about cloud computing and types of cloud services, MLOps

and its workflow, and machine learning.

In the next chapter, we will discuss the project requirements and the various configurations needed

to implement the anticipated solutions.

8

CHAPTER II)

CONCEPTION AND DEVELOPMENT

9

1 - Introduction

The objective of this chapter is to collect and analyze all assorted ideas related to defining a

systems, its requirements with respect to the project contract. In short, this chapter is going to

provide a detailed overview of the system’s behaviour and dynamics.

We will establish and analyze the functional and non-functional requirements, as well as em-

phasize the behavior, dynamics, and main concept of the system. We will also try to explain

various design decisions and different phases of development, namely how the WebRTC connection

was done and how we deployed the system into the Cloud.

2 - Requirements analysis:

We were able to establish and analyze the functional and non-functional system requirements,

which can be cited as:

a) Functional requirements:

These are the basic functionalities that the system should offer to the end users. They must

be incorporated in the final product:

1) Real time / Webcam Face Capture detection:

The system should allow face detection in real time using a webcam video stream, or a single

capture.

2) Real time / Webcam Gender Capture detection:

Using the previous functionality, the system must deduce a users gender from the detected face.

3) Real time / Webcam Object Capture detection:

Similarly, the system must have the necessary built-in machine learning models that allows the

detection of objects.

4) Upload custom machine learning model:

The most important feature of the system and the purpose of this project, is to offer an interface

to edit/input customised models for the end user (Machine learning expert). Once uploaded, a

10

new container must be created solely for the model.

5) Remote SSH web console:

The system should include a terminal interface in order to allow machine learning experts or

administrators to access a remote SSH terminal.

b) Non-functional requirements:

The final product must adhere and satisfy the following conditions as part of the project

contract. By order of priority, they are:

1) Performance:

Since the system offers a real time processing functionality, it must take into account areas such

as latency, load and resource utilisation such as CPU and GPU capacity (some machine learning

models rely heavily on GPUs).

2) Scalability:

The system must be able to accommodate with a large and ever-increasing user base.

3) Portability:

The system must be able to run efficiently on multiple devices.

4) Flexibility:

The system must adapt to different user expectations, and be able to process a myriad of

machine learning models.

5) Security:

The SSH web console must be protected by a authentication system.

6) Robustness:

The system should function correctly even in case of invalid inputs and under heavy server

stress.

11

3 - Design and conception:

The diagrams shown in this sections are all made in accordance to the UML (Unified Modelling

Language). Their purpose is to present a graphical overview of the functionality provided by the

system in terms of actors, goals, and any dependencies between those use cases.

a) Use case diagram

The figure below represent the use case of the system.

Figure 2.1: Use case diagram of the system

12

b) Use cases textual description:

Authentication:

Table II.1 shows the textual description of the authentication use case.

Use case title : Authentication

Actors: User, admin.

Pre-conditions: - Access to web application

Normal Flow:
Description:

- The user clicks the authentication button.

- Authentication UI is rendered

- The user enters his email/password.

- The user click on the login button

Postconditions: Registered / Logged in.

Alternative flows and exceptions:

Invalid email/password,

connection loss,

backend internal server error

Table II).1: Textual Description of the Authentication use case

Real time detection:

The table below show textual Description of the Realtime Detection use case.

Use case title : Realtime Object Detection

Actors: User

Pre-conditions:

- Access to web application and

selected the video stream

media type and desired ML model

- Webcam connected

Normal Flow:
Description:

The user establishes a webrtc

connection with the backend and sends

a video stream with its metadata.

The backend processes each frame

of the video stream and sends it back processed.

Postconditions: Video stream is processed in real time.

Alternative flows and exceptions:

Connection loss,

backend internal server error,

webcam unavailable.

Table II).2: Textual Description of the Realtime Detection use case.

13

Webcam Capture Face Detection:

The table hereafter presents textual Description of the Webcam Capture Detection use case.

Use case title : Webcam Capture Detection

Actors: User

Pre-conditions:

- Access to web application and

selected the webcam

media type and desired ML model

- Webcam connected

Normal Flow:
Description:

- The user opens the webcam and captures the

desired image to process.

- The image is converted into a

base64 blob and then sent to the

backend via HTTP.

- The backend converts the image into a numpy

frame then processes it with a ML model.

- The frame is converted back into a base64

image blob and then sent back to the front-end

via HTTP.

Postconditions: A processed image is rendered on the UI.

Alternative flows and exceptions:

Connection loss,

backend internal server error,

webcam unavailable.

Table II).3: Textual Description of the Webcam Capture Detection use case.

14

Upload custom model:

The table below show textual Description of the Upload custom model use case.

Use case title : Upload custom model

Actors: User, admin.

Pre-conditions:
- Access to web application.

- User is authenticated.

Normal Flow:
Description:

- User selects the custom model transformation type,

- Custom model editor UI is rendered.

- User selects the model type.

- User either edits the configuration file or inputs his own.

- User inputs the weights file.

- User click on the deploy button.

- The two files are sent to the back-end.

- A new docker image is built and containerized with the custom model

- The IP address of the container is sent to the database along

with ID of the user.

Postconditions: Model deployed.

Alternative flows and exceptions:

Invalid file extension/type,

connection loss,

backend internal server error

Table II).4: Textual Description of the Upload custom model use case

Remote SSH web console

The table below presents textual Description of the remote SSH web console use case.

Use case title : Remote SSH web console

Actors: User, admin.

Pre-conditions:
- Access to web application.

- User is authenticated.

Normal Flow:
Description:

- User clicks the ssh terminal button.

- User is then redirected to the web console page

- The front-end establishes a websockets connection with the back-end server.

- A web console user interface is rendered.

- User enters SSH key.

Postconditions: Remote access to the cluster’s terminal

Alternative flows and exceptions:

SSH key invalid,

connection loss,

backend internal server error

Table II).5: Textual Description of the remote SSH web console use case

15

c) Class Diagram

The figure below represents the class diagram of the system. It shows the different components

needed for the deployment of a machine learning model.

Figure 2.2: Class diagram of the system

16

d) Sequence Diagrams

Due to the numerous sequence diagrams included in the system’s conception prefer to describe

only these following 4 diagrams:

Figure 2.3: WebRTC Signaling Sequence Diagram

17

Figure 2.4: Webcam capture detection sequence diagram

18

Figure 2.5: Real time detection sequence diagram

19

Figure 2.6: Upload custom model sequence diagram

20

e) The system’s activity diagram

The user will first access the web page by entering a URL in a browser and then presented with

a choice on how to proceed. This figure below shows all the possible paths a user can take upon

accessing the web application.

Figure 2.7: Activity diagram of the system

21

4 - Implementation

The three main paradigms used during the development of the system are:

• WebRTC data streaming

• Docker containerization

• Deployment on a cloud-based Kubernetes cluster

The web application will use these technologies to send video frames to a machine learning

processing back end container which will process each frame with a selected model and send them

back in real time. A proof of concept will be developed in order to test this feature before deploying

a managed Kubernetes cluster in Microsoft Azure.

a) WebRTC Implementation

WebRTC is used to add real-time communication capabilities to the application. It works on

top of an open standard. It supports video, voice, and generic data to be sent between peers. It

allows developers to build powerful voice- and video-communication solutions.This technology is

available on all modern browsers as well as on native clients for all major platforms. The technolo-

gies behind WebRTC are implemented as an open web standard and available as regular JavaScript

APIs in all major browsers.[8]

The WebRTC API is built upon these following protocols:

ICE protocol:

The ICE Protocol (Interactive Connectivity Establishment) (RFC5245)[9] is a framework allows

web browsers to generate media traversal candidates to connect with peers. It has two main roles:

gathering candidates and finding the most efficient path for two peers to communicate. ICE

candidates contains the information about the methods available for the peer to use to make a

connection, like the IP address of the peer and available ports. ICE uses STUN and/or TURN

servers to accomplish this, as described below.

STUN protocol:

The Session Traversal Utilities for NAT (STUN) protocol (RFC5389) [10] allows a host ap-

plication to discover the presence of a network address translator on the network, and in such a

22

case to obtain the allocated public IP and port tuple for the current connection. To do so, the

protocol requires assistance from a configured, third-party STUN server that must reside on the

public network.

NAT:

The IP Network Address Translator (NAT) (RFC1631) [11] is a router/firewall function that is

used to assigns a public IP address to a device/group of devices. NAT implementations may vary

in their specific behavior in various addressing cases and their effect on network traffic, notably:

• Normal (Full Cone) NATs (or Asymmetric NATs): all requests sent from the same internal

IP address and port are assigned to the same external IP address and port.

• Symmetric NATs : all requests coming from the same internal IP address and port and going

to a specific destination IP address and port are mapped to a unique external IP address

and port

Symmetric NATs makes establishing a WebRTC difficult: if a device behind a symmetric NAT

were to send a request to two different STUN servers, it will receive the same IP address but two

different ports, which makes this specific type of NAT’s port mapping behaviour inconsistent.

Figure 2.8: The problem with symmetric NATs

23

TURN protocol:

The Traversal Using Relays around NAT (TURN) protocol (RFC5766)[12] allows a host behind

a NAT to obtain a public IP address and port from a relay server residing on the public Internet.

Thanks to the relayed transport address, the host can then receive media from any peer that can

send packets to the public Internet.

SDP standard:

The Session Description Protocol (SDP) (RFC4566)[13] provides a standard representation of

media details, transport addresses, and other session description metadata required in order to

initiate multimedia teleconferences, voice-over-IP calls, streaming video or other media.

It is only a format for session description and not a transport protocol, as it is inteded to be

general purpose so that it can be used in a wide range of network environments and applications.

Figure 2.9: Example of a SDP answer

24

WebRTC transmission behind an asymmetric NAT:

The client first makes a request to a STUN server in order to obtain its public IP address, and

the generates an offer in SDP and send it to the other peer, which in turn this other peer will send

back an answer containing its own local description in SDP format.

Figure 2.10: Diagram of the WebRTC transmission behind an asymmetric NAT

25

WebRTC transmission behind a symmetric NAT:

Figure 2.11: Diagram of the WebRTC transmission behind an symmetric NAT

b) Stage 1: Proof of Concept

A quick PoC is developed in a typical case using pre-built machine learning models to showcase

and validate the use case and prove that the concept is feasible using WebRTC.

In our hypothetical use case, a prototype with Python FastAPI app, is deployed using Heroku,

developed that does the following:

• Fetch video stream from the prototype Nextjs front-end, deployed on Vercel, using WebRTC.

• Execute OpenCV function that uses pre-built machine learning models to process each frame

of the video stream

• Send back the processed frames to the front-end.

26

The proof of concept deployment diagram:

This diagram shows the execution architecture of the system’s proof of concept

Figure 2.12: Deployment diagram of the deployed FastAPI Heroku application

27

c) Stage 2: Kubernetes cluster deployment

For the purpose of testing the application in a K8s (Kubernetes) environment, we used the

Azure Kubernetes Cloud service which allowed us to quickly deploy a multi container application

composed of a Docker container running a Next.js front-end, and another container running a

FastAPI application and a container with a STUN/TURN service and a Node.js application that

acts as a middleman between the front-end and back-end.

To create and deploy a AKS (Azure Kubernetes Service) cluster, we used the Azure CLI that

can be installed in Windows, macOS or in a Docker container.

We will also use the AKS Deployment Center to generate Github action workflows to create

deployment pipeplines for the Github source code into the AKS cluster. The following figure[14]

describes the order of this CI/CD pipeline:

Figure 2.13: AKS Deployment Center Workflow

28

Deployment diagram for the Azure Kubernetes Service cluster

This diagram shows the architecture of the system deployed in a Kubernetes cluster

Figure 2.14: Deployment diagram of the application deployed in a K8s cluster

29

5 - Deployment configurations:

In this section, we will show all the files needed to deploy 3 services(Back-end, STUN/TURN

server and front-end) in a Kubernetes cluster. These files will include Dockerfile files, which are

text documents containing all the commands a user could call on the command line to assemble

an image[15], and the Kubernetes YAML files needed to deploy the services in the cluster.

a) Back-end configuration:

Since there are a lot of python packages that need to be downloaded, we decided to use a

minimal python image. The requirements.txt file may be found in Appendix A.

Dockerfile:

1 # Python base image

2 FROM python:3.10-slim-buster

3

4 # copy source code

5 COPY . /app

6 WORKDIR /app

7

8 # Copy python libraries requirements

9 COPY requirements.txt requirements.txt

10

11 # update linux packages

12 RUN apt-get update

13

14 # Install additional linux packages in order to compile some python librarires

15 RUN apt-get install -y --no-install-recommends gcc libsasl2-dev python-dev \

16 libldap2-dev libssl-dev libsnmp-dev \

17 && rm -rf /var/lib/apt/lists/*

18

19 # Install python libraries

20 RUN pip install -r requirements.txt

21

22 # Delete the additional linux packages since they are no longer needed for compiling

23 RUN apt-get purge -y --auto-remove gcc libsasl2-dev python-dev libldap2-dev \

30

24 libssl-dev libsnmp-dev

25

26 # Expose port

27 EXPOSE 80

28

29 # Launch the fastAPI server

30 CMD ["uvicorn","server:app", "--host", "0.0.0.0","--port", "80"]

Kubernetes deployment yaml file:

1 apiVersion : apps/v1

2 kind: Deployment

3 metadata:

4 name: "recogaks-backend"

5 spec:

6 replicas: 2

7 selector:

8 matchLabels:

9 app: "recogaks-backend"

10 template:

11 metadata:

12 labels:

13 app: "recogaks-backend"

14 spec:

15 containers:

16 - name: "recogaks-backend"

17 image: "recogacr.azurecr.io/recogaks"

18 ports:

19 - containerPort: 80

Kubernetes service yaml file:

1 apiVersion: v1

2 kind: Service

3 metadata:

4 name: "recogaks-backend"

31

5 labels:

6 app: "recogaks-backend"

7 spec:

8 type: LoadBalancer

9 ports:

10 - port: 80

11 targetPort: 80

12 protocol: TCP

13 name: http

14 selector:

15 app: "recogaks-backend"

b) STUN/TURN server configuration:

Dockerfile:

The default port for sending (or listening to) STUN/TURN requests is 3478.

1 # Node.js image

2 FROM node:18

3

4 # Update and upgrade linux packages

5 RUN apt-get update

6 RUN apt-get upgrade -y

7

8 # Install necessary packages for compiling and building

9 RUN apt-get install build-essential checkinstall zlib1g-dev gcc -y

10 RUN apt-get upgrade libstdc++6

11

12 # Install the openSSL package

13 RUN apt-get -y install openssl

14

15 # Install the coturn package

16 RUN apt-get install -y coturn && apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

17

18 # Define environment variables

19 ENV TURN_PORT 3478

20 ENV TURN_PORT_START 10000

32

21 ENV TURN_PORT_END 20000

22 ENV TURN_SECRET mysecret

23 ENV TURN_SERVER_NAME coturn

24 ENV TURN_REALM recog.server

25

26 # Copy source code

27 COPY . .

28

29 # Install node packages

30 RUN npm install

31

32 # Change script bash permissions

33 RUN chmod +x start_coturn.sh

34

35 # Expose ports

36 EXPOSE 3478

37

38 # Execute the script

39 CMD ["./", "start_coturn.sh"]

33

Kubernetes deployment yaml file:

Figure 2.15: K8s deployment file for the STUN/TURN Server

Kubernetes service yaml file:

Figure 2.16: K8s service file for the STUN/TURN Server

34

c) Front-end configuration:

Dockerfile:

1 FROM node:18-alpine

2

3 ENV PORT 3000

4

5 # Create app directory

6 RUN mkdir -p /usr/src/app

7 WORKDIR /usr/src/app

8

9 # Installing dependencies

10 COPY package*.json /usr/src/app/

11 RUN npm install

12

13 # Copying source files

14 COPY . /usr/src/app

15

16 # Building app

17 RUN npm run build

18 EXPOSE 3000

19

20 # Running the app

21 CMD "npm" "run" "dev"

Kubernetes deployment yaml file:

1 apiVersion : apps/v1

2 kind: Deployment

3 metadata:

4 name: "recogaks-front"

5 spec:

6 replicas: 2

7 selector:

8 matchLabels:

9 app: "recogaks-front"

35

10 template:

11 metadata:

12 labels:

13 app: "recogaks-front"

14 spec:

15 containers:

16 - name: "recogaks-front"

17 image: "recogacr.azurecr.io/recogaks"

18 ports:

19 - containerPort: 3000

K8s service yaml file:

1 apiVersion: v1

2 kind: Service

3 metadata:

4 name: "recogaks-front"

5 labels:

6 app: "recogaks-front"

7 spec:

8 type: LoadBalancer

9 ports:

10 - port: 3000

11 targetPort: 3000

12 protocol: TCP

13 name: http

14 selector:

15 app: "recogaks-front"

36

6 - Testing

Since the application will scale according to the number of users, we decided to load test and

stress test the front-end using JMeter performance testing.

We first created a thread group with the following thread properties:

• Number of threads: 100

• Loop count: 10

• Ramp-up period: 100

The number of threads determines the number of concurrent users simulated connecting to a

website. The loop count on the other hand simulates how many times each user connects to the

website. And finally the ramp-up period dictates how long JMeter must wait before starting to

simlate the next user.

Figure 2.17: Thread group panel

37

After that, we added and configured the template HTTP request that each user will send. The

figure below is the result of the test:

Figure 2.18: View results tree

JMeter creates requests and sends it to a server. It will then collect all the responses coming

from it and visualize them in a graph, as the figure below shows:

Figure 2.19: Graph results

38

7 - Conclusion:

During this chapter, we have analysed the system’s requirements, conceptualized its function-

alities, explained the different paradigms adopted for the implementation, described the different

configurations needed to deploy each service and finally, performed performance tests for the front-

end.

39

CHAPTER III)

RESOURCES AND TOOLS USED

40

1 - Introduction

In this chapter, we will introduce all the tools and resources that we used in order to develop

the web application and services.

2 - Front-end

a) Next.js

Next.js is a React.js ”Meta-framework” [16] that pro-

vides additional structures, features and optimizations to

create web applications by handling the tools and config-

urations needed for a React UI.

Next.js solves common application requirements such

as routing, data fetching, integrations - all while improv-

ing the developer and end-user experience.[17]

Figure 3.1: Next.js web application

41

Advantages:

• Short page load time thanks to the HTML static generation (the page is generated at build

time and is used on each request [18]

• Next.js can statically generate pages without data so the static site doesn’t have a direct

connection to user sensitive information like database authentication data, which makes it

safe.

• Since Next.js is a React.js framework, we can migrate an old React app without building

everything from scratch.

b) Material UI

Material UI is a open-source tool developed by Google in 2014. It provides a simple, customiz-

able, and accessible library of React UI components. It can be used with all JavaScript frameworks

like AngularJS, VueJS, and libraries like ReactJS, to have an efficient and responsive application.

Advantages

• Provides powerful tools to build UI Components.

• It has a very detailed documentation to navigate easily in the framework [19].

• It is the most popular React UI Components framework in the world.

42

3 - Back-end

For the backend, we wanted to use Django as our application’s Python web framework, but we

quickly realised that it is far from being the most efficient REST API framework that are available,

especially if we consider the performance requirement our application needs.

a) FastAPI

FastAPI is an open-source,high performance, production ready Python Web Framework used

for building REST API endpoints. It uses ASGI (asynchronous server gateway interface) instead

of the old WSGI. [20] In particular, FastAPI is used for use cases where speed is a priority (Since

our project relies heavily on WebRTC streaming, a very fast API communication is paramount).

Advantages:

• Blazing fast performance (one of the fastest API frameworks[21]).

• Allows the validation of data types even within JSON requests.

• Very easy to learn since it has a simple and intuitive API.

Figure 3.2: Minimal FastAPI Endpoint

43

b) OpenCV

OpenCV(Open Source Computer Vision) is a software library

for computer vision and machine literacy software library. Origi-

nally created to give a common infrastructure for computer vision

related operations and to increase the use of artificial perception

in marketable products.It allows companies to use and modify the

code software. All these algorithms being efficiently optimized. It

supports real-time vision operations. Its algorithms are fluently en-

forced in Java, Python ...etc. It allows the collect of data, perform

data processing, conditioning and eventually train and educate a

model to understand how to distinguish faces according to their size, their eyes etc.[22]

Advantages

• Free of cost

• Low RAM usage

• A vast collection of algorithms

c) aiortc

An open-source Python library that implements WebRTC and

ORTC(Object Real-Time Communication) for Python using asyn-

cio. It allows the exchange of audio, video and data channels

and interoperability is regularly tested against both Chrome and

Firefox.[23]

Advantages

• Enables low-latency sending and receiving of video, audio and

arbitrary data streams over the network by Web servers and

clients.

• Easy to create innovative products by leveraging the multi-

tude of Python packages.

• Extensive test suite to ensure best-in-class code quality

44

d) Node.js

Figure 3.3: Node.js logo

Node.js is an asynchronous even-driven JavaScript

runtime and platform for interpreting JavaScript code

and running scalable network applications. Since Node.js

is built with the Google Chrome JavaScript engine (a tool

used to interpret JavaScript into useful computer com-

mands), it is considered to be powerful and capable of

supporting JavaScript as a server-side language.[24]

Advantages

• Offers high performance for Real-time Applications.

• It is Easy to Learn and Quick to Adapt.

• Offers Extensibility to Meet Customized Requirements.

• Offers Easy Scalability for Modern Applications.

4 - Database / Authentication

In order to allow users to centralize and share their information that can be reliably organized,

queried and improved, we have used the following tool in our project

a) Firebase

Firebase is a database that allows front-end develop-

ers to easily integrate a back-end into their application,

without having to create API routes and other back-end

code. It can also be said that Firebase is not just a

database but a set of tools; often referred to as a back-

end-as-a-service (BaaS) that contains a multitude of ser-

vices, including:[25]

45

• Authentication: Login and user identity

• Real-time database: Real-time NoSQL database, hosted in the cloud.

• Cloud Firestore: Real-time NoSQL database, hosted in the cloud.

• ML Kit: An SDK for common machine learning tasks.

Figure 3.4: Firebase Authentication Console

Advantages

• Fast and secure hosting.

• Real-time database.

• Provides a free start.

• Free use of Firebase dynamic links

46

5 - DevOps tools

To apply a process to install or update our website on its environment we used the following

tools:

a) GitHub

Figure 3.5: GitHub logo

GitHub is a popular website for hosting, developing and sharing software and computer code.

It offers a web interface and provides features and a mix of free and paid services for working with

such repositories .[26]

Advantages

• It facilitates the contribution to open source projects.

• Free service, although it also has paid services.

• Large community and easy to find help.

• In order to present our work. facilitates excellent documentation.

• It offers practical tools for cooperation and good integration with Git.

b) Github Actions

GitHub Actions is a CI/CD platform that automates

software workflows. It allows developers to build, test,

and deploy their code right from GitHub and make code

reviews, branch management, and issue triaging. All

GitHub Actions automations are handled via workflows,

47

which are YAML files placed under the .github/work-

flows directory in a repository that define automated

processes.[27]

Advantages

• Setting-up a CI/CD pipeline is very simple

• Community-powered, reusable workflows

• Support for any platform, any language, and any cloud.

c) Docker

Docker is an open source application container engine, allows developers to package their ap-

plications and dependencies in a portable mirror, And publish them on any Linux Or windows on

machine operating system, virtualization can also be achieved.

Advantages

• Docker containers assure a return on investment and saves cost compared to virtual machines

• Decreases deployment time

• The environment on a container is highly secure since it is isolated

• Highly scalable

• Consistent environment so less configuration/compatibility problems.

48

d) Kubernetes

Kubernetes, also known as K8s, is a portable, extensible, open source platform for managing

containerized workloads and services, that facilitates both declarative configuration and automa-

tion. It has a large, rapidly growing ecosystem. Kubernetes services, support, and tools are widely

available.[28]

Advantages

• Automatic rollouts and rollbacks to ensure the health of all instances at the same time.

• Provides an intuitive service discovery mechanism to pods and automatically load-balance

across them.

• Orchestrates storage.

• Secure configuration management.

• Can automatically scale up or down based on resources usage.[29]

6 - Cloud services

a) Heroku

Heroku is a polyglot cloud application platform that

provides tremendous flexibility in choosing an appropri-

ate programming language to develop web apps. Heroku

provides platform support for Ruby, Ruby on Rails, Java,

Node.js, Clojure, Scala, Python, and PHP as of early

2013.

Advantages

• Heroku supports many programming languages such as python, java, node.js, etc.

• Heroku community is so big that if you have any problem, you can contact people online.

49

• It uses our local computer as a console.

• It offers simple and easy deployment, environment configuration and manageability.

b) Vercel

Vercel is a feature-rich platform that allows develop-

ers to easily create, pre-interface and deploy their sites as

well as serverless features. It provides friction-less devel-

oper experience to take care of the hard things: deploying

instantly, scaling automatically, and serving personalized

content around the globe, and make it easy for frontend

teams to develop, preview, and ship delightful user expe-

riences, where performance is the default.

Advantages

• Requires no configuration and works with any type of web framework.

• Has a generous free tier

• Delivers fast site performance with simple, upgradeable deployments.

c) Microsoft Azure

Microsoft Azure is a cloud computing platform that

was launched on February 2010. It allows its users to

access and manage cloud services and resources provided

by Microsoft. Azure provides more than 200 services,

are divided into 18 categories. These categories include

computing, networking, storage, IoT, migration, mobile,

analytics, containers, artificial intelligence, and other ma-

chine learning, integration, management tools, developer

tools, security, databases, DevOps, media identity, and web services[30]

Advantages

• Microsoft Azure has a strong focus on security.

50

• It outsources the maintenance of our infrastructure to experts who take care of upgrades and

problems.

• Integrated Environment with Other Microsoft Tools.

• Scalability is the backbone of Azure .

Figure 3.6: Microsoft Azure User Portal

51

7 - Testing tools:

a) Apache JMeter

JMeter is a pure Java open source software, designed

to analyze and measure the performance of a web applica-

tion or a variety of services. Performance testing consists

of testing a web application against heavy load, multi-

ple simultaneous user traffic, and for functional testing,

database server testing.[31]

Advantages:

• Completely free.

• Easy to learn and use.

• Test results can be converted into different formats.

• Can also evaluate database performance.

8 - Conclusion

In this chapter we have listed all differents resources and tools that we have used for the

development of our web application, and all the advantages that encouraged us to make these

choices.

52

CHAPTER IV)

CUSTOM MODEL DEPLOYMENT

53

1 - Introduction

This chapter will present the front end of the application and how to use it. It will also describe

the available machine learning model types that could be deployed and used.

2 - Front-end interfaces:

a) Video streaming interface

Figure 4.1: Application media streaming page

• 1) Choose videostream media type

• 2) Choose the machine learning type model to use

• 3) Choose video resolution

• 4) Choose the video codec

• 5) Only uncheck the STUN server option if you think your NAT is symmetric

54

• 6) Click the start button to begin the webRTC video stream and wait for the backend to

process the stream using the machine learning model in real time.

b) Authentication interface

These interfaces are intuitive as it is with most authentication interfaces that websites use

therefore a step guide is not needed in order to understand how to interact with it.

Login page

Figure 4.2: Login Page

55

Register page

Figure 4.3: Register Page

56

c) Custom model configuration editor interface

Figure 4.4: Custom model input

• 1) Select the desired OpenCV framework (or weight type) for the model.

• 2) Input the model file.

• 3) Edit the configuration file or upload it.

• 4) Add classification classes for the model

• 5) Click the ”Upload custom model” button in order to upload the model.

We are going to go in depth about the types of custom models in the next section.

57

3 - Deep learning and neural networks

Before getting into the types of machine learning models OpenCV supports, we must first ex-

plain what neural networks are.

Artificial neural networks (ANN) are a subset of machine learning and are at the heart of deep

learning algorithms. They are computing systems which names and structures are inspired by the

human brain, mimicking the way that biological neurons signal to one another. [32]

They are composed of a node layers, containing an input layer, one or more hidden layers, and

an output layer. Each node, or artificial neuron, connects to another and has an associated weight

and threshold. If the output of any individual node is above the specified threshold value, that

node is activated, sending data to the next layer of the network. Otherwise, no data is passed

along to the next layer of the network.

This figure[33] below illustrates the different layers of an ANN.

Figure 4.5: The layers of an artificial neural network

58

4 - OpenCV Deep Neural Network frameworks:

While it does not support the training of models, the OpenCV DNN module supports deep

learning inference on images and videos.

It also supports many popular deep learning frameworks:

a) Caffemodel:

Caffe is a deep learning framework made with expression, speed, and modularity in mind.

It is developed by Berkeley AI Research (BAIR) and by community contributors. It provides

multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art

deep learning algorithms and a collection of reference models. The framework is a BSD-licensed

C++ library with Python and MATLAB bindings for training and deploying general-purpose

convolutional neural networks and other deep models efficiently on commodity architectures.

Users create and save their models as plain text PROTOTXT files and then trains and refines

their model using the Caffe algorithm, and then it is saved as a .caffemodel file(). ”.caffemodel”

files are binary protocol buffer files (protobuf), thus it is impossible to read or edit them. [34]

Advantages:

• Clear and intuitive architecture that encourages application and innovation

• Can freely switch between using CPU or GPU by setting a single flag

• Huge community thanks to its extensible code that fosters active development

• One of the fastest models: Caffe can process over 60 million images per day with a single

GPU (provided its a high-end GPU).

b) Tensorflow:

TensorFlow is an open source platform created by

Google that provides a high-level and easy-to-use API

to create machine learning models.It is also an execution

engine for Keras, a high-level neural network API written

in Python. [35]

Two files are needed in order to load pre-trained Ten-

sorFlow models: a model weights file and a protobuf text

59

file contains the model configuration. The weight file has

a .pb extension which is a protobuf file containing all the

pre-trained weights.

c) Darknet:

Darknet is an open source neural network framework written in C and CUDA. It is fast, easy

to install, and supports CPU and GPU computation.[36]

YOLO:

YOLO (You only look once) is a fast, real-time, and multi-object detection algorithm that

consists of a single convolutional neural network that predicts simultaneously the bounding boxes

and class probabilities of objects within them. YOLO trains on the full image, and the network is

set up to solve regression problems to detect objects. Therefore, YOLO does not need a complex

processing pipeline, which makes it extremely fast. [37]

Figure 4.6: YOLO object detection example

60

d) LBPH Face recognition:

LBPH (Local Binary Pattern Histogram) is a powerful face recognition algorithm used to

recognize the face of a person from both the front and the side. [38]

Figure 4.7: LBP Computation

5 - Conclusion

In this last chapter, we have presented the most relevant interfaces as well as the different

machine learning model frameworks supported by the system.

61

CONCLUSION

The objective of this thesis was the implementation of a web application designed for facilitat-

ing the deployment of and use them for real time face/recognition.

The key points of this work were:

• Developing a web application that exploits the protocols and standards of WebRTC for the

purpose of transmitting a webcam video and se OpenCV’s image processing functionalities

on each frame of the video.

• Containerization of the application with Docker.

• Deploying the application using cloud services.

In the first chapter, we talked about software development infrastructure and its evolution

and have given a general idea on cloud computing as an infrastructure and the different types of

services it provides. We also talked about machine learning engineering and MLOps. The second

chapter provided an assessment of the system’s requirements and described its expected behaviour.

We mentioned all the ressources and tools we have used in the third chapter. Finally, the fourth

chapter illustrated the different interfaces of the system.

In conclusion, the research carried out in this master’s thesis addresses the feasibility of de-

veloping a system that facilitates the deployment of custom machine learning models for face

recognition, using cloud services as an infrastructure.

62

BIBLIOGRAPHY

[1] VB Staff. Why do 87% of data science projects never make it into production?,

jul 2019. [Accessed: 06/06/2022]. URL: https://venturebeat.com/2019/07/19/

why-do-87-of-data-science-projects-never-make-it-into-production/.

[2] Red Hat. Understanding cloud computing, may 2022. [Accessed: 01/06/2022]. URL: https:

//www.redhat.com/en/topics/cloud.

[3] Inc. Red Hat. What is faas, jan 2020. URL: https://www.redhat.com/fr/topics/

cloud-native-apps/what-is-faas.

[4] Red Hat. What is iaas?, aug 2019. [Accessed: 10/06/2022]. URL: https://www.redhat.

com/en/topics/cloud-computing/what-is-iaas.

[5] Noah Gift. Cloud Computing for Data Analysis, The missing semester of Data Science.

Leanpub, jul 2021.

[6] Ben Wilson. Machine Learning Engineering in Action. Manning Publications Co., 20 Baldwin

Road, PO Box 761, Shelter Island, NY 11964, 2022.

[7] Emmanuel Raj. Engineering MLOps, Rapidly build, test, and manage production-ready ma-

chine learning life cycles at scale. Packt, Livery Place, 35 Livery Street, Birmingham B3 2PB,

UK., first edition, apr 2021.

[8] MDN Contributors. Webrtc api. [Accessed 05/06/2022]. URL: https://developer.mozilla.

org/en-US/docs/Web/API/WebRTC_API.

63

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/en/topics/cloud
https://www.redhat.com/fr/topics/cloud-native-apps/what-is-faas
https://www.redhat.com/fr/topics/cloud-native-apps/what-is-faas
https://www.redhat.com/en/topics/cloud-computing/what-is-iaas
https://www.redhat.com/en/topics/cloud-computing/what-is-iaas
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API

[9] Jonathan Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/Answer Protocols. RFC 5245, April 2010. URL:

https://www.rfc-editor.org/info/rfc5245, doi:10.17487/RFC5245.

[10] Philip Matthews, Jonathan Rosenberg, Dan Wing, and Rohan Mahy. Session Traversal Utili-

ties for NAT (STUN). RFC 5389, October 2008. URL: https://www.rfc-editor.org/info/

rfc5389, doi:10.17487/RFC5389.

[11] Kjeld Borch Egevang and Paul Francis. The IP Network Address Translator (NAT). RFC 1631,

May 1994. URL: https://www.rfc-editor.org/info/rfc1631, doi:10.17487/RFC1631.

[12] Philip Matthews, Jonathan Rosenberg, and Rohan Mahy. Traversal Using Relays around NAT

(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN). RFC 5766, April

2010. URL: https://www.rfc-editor.org/info/rfc5766, doi:10.17487/RFC5766.

[13] Colin Perkins, Mark J. Handley, and Van Jacobson. SDP: Session Description Protocol.

RFC 4566, July 2006. URL: https://www.rfc-editor.org/info/rfc4566, doi:10.17487/

RFC4566.

[14] Microsoft. Deploy using github actions into azure kubernetes service. [Accessed

20/06/2022]. URL: https://azure.github.io/kube-labs/1-github-actions.html#

objective-of-the-lab.

[15] Docker. Dockerfile reference. [Accessed 25/06/2022]. URL: https://docs.docker.com/

engine/reference/builder/.

[16] Michael Rambeau. 2021 javascript rising stars. [Accessed: 11/06/2022]. URL: https://

risingstars.js.org/2021/en.

[17] Vercel. What is next.js? [Accessed: 11/06/2022]. URL: https://nextjs.org/learn/

foundations/about-nextjs/what-is-nextjs.

[18] Vercel. Pages. [Accessed: 11/06/2022]. URL: https://nextjs.org/docs/basic-features/

pages.

[19] Material ui documentation. [Accessed: 11/06/2022]. URL: https://mui.com/material-ui/

getting-started/overview/.

[20] Tiangolo. Fastapi. [Accessed: 12/06/2022]. URL: https://fastapi.tiangolo.com/.

[21] Web framework benchmark. [Accessed: 12/06/2022]. URL: https://www.techempower.com/

benchmarks/.

64

https://www.rfc-editor.org/info/rfc5245
https://doi.org/10.17487/RFC5245
https://www.rfc-editor.org/info/rfc5389
https://www.rfc-editor.org/info/rfc5389
https://doi.org/10.17487/RFC5389
https://www.rfc-editor.org/info/rfc1631
https://doi.org/10.17487/RFC1631
https://www.rfc-editor.org/info/rfc5766
https://doi.org/10.17487/RFC5766
https://www.rfc-editor.org/info/rfc4566
https://doi.org/10.17487/RFC4566
https://doi.org/10.17487/RFC4566
https://azure.github.io/kube-labs/1-github-actions.html#objective-of-the-lab
https://azure.github.io/kube-labs/1-github-actions.html#objective-of-the-lab
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://risingstars.js.org/2021/en
https://risingstars.js.org/2021/en
https://nextjs.org/learn/foundations/about-nextjs/what-is-nextjs
https://nextjs.org/learn/foundations/about-nextjs/what-is-nextjs
https://nextjs.org/docs/basic-features/pages
https://nextjs.org/docs/basic-features/pages
https://mui.com/material-ui/getting-started/overview/
https://mui.com/material-ui/getting-started/overview/
https://fastapi.tiangolo.com/
https://www.techempower.com/benchmarks/
https://www.techempower.com/benchmarks/

[22] OpenCV Maintainers. Opencv. [Accessed 05/06/2022]. URL: https://vovkos.github.io/

doxyrest-showcase/opencv/sphinx_rtd_theme/index.html.

[23] Jeremy Lainé. aiortc. [Accessed: 04/06/2022]. URL: https://aiortc.readthedocs.io/en/

latest/.

[24] OpenJS Foundation. About node.js. [Accessed 15/06/2022]. URL: https://nodejs.org/

en/about/.

[25] Google. Firebase. [Accessed 15/06/2022]. URL: https://firebase.google.com/.

[26] Github. What is github actions? benefits and examples. [Accessed 17/06/2022].

URL: https://resources.github.com/downloads/What-is-GitHub.Actions_

.Benefits-and-examples.pdf.

[27] Github. What is github actions? benefits and examples. [Accessed 17/06/2022].

URL: https://resources.github.com/downloads/What-is-GitHub.Actions_

.Benefits-and-examples.pdf.

[28] Kubernetes. What is kubernetes? [Accessed: 14/06/2022]. URL: https://kubernetes.io/

docs/concepts/overview/what-is-kubernetes/.

[29] Kubernetes. Kubernetes features. [Accessed: 13/06/2022]. URL: https://kubernetes.io/.

[30] Microsoft Co. Azure services platform. [Accessed: 12/06/2022]. URL: http://www.

microsoft.com/azure.

[31] Apache Software Foundation. Apache jmeter™. [Accessed 26/06/2022]. URL: https://

jmeter.apache.org/.

[32] IBM Cloud Education. What are neural networks?, aug 2020. [Accessed 23/06/2022]. URL:

https://www.ibm.com/cloud/learn/neural-networks.

[33] Shamshad Ansari. Building Computer Vision Applications Using Artificial Neural Networks:

With Step-by-Step Examples in OpenCV and TensorFlow with Python. Apress Media, Cen-

treville, VA, USA, first edition, jul 2020.

[34] OpenCV. Load caffe framework models. URL: https://docs.opencv.org/4.x/d5/de7/

tutorial_dnn_googlenet.html.

65

https://vovkos.github.io/doxyrest-showcase/opencv/sphinx_rtd_theme/index.html
https://vovkos.github.io/doxyrest-showcase/opencv/sphinx_rtd_theme/index.html
https://aiortc.readthedocs.io/en/latest/
https://aiortc.readthedocs.io/en/latest/
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://firebase.google.com/
https://resources.github.com/downloads/What-is-GitHub.Actions_.Benefits-and-examples.pdf
https://resources.github.com/downloads/What-is-GitHub.Actions_.Benefits-and-examples.pdf
https://resources.github.com/downloads/What-is-GitHub.Actions_.Benefits-and-examples.pdf
https://resources.github.com/downloads/What-is-GitHub.Actions_.Benefits-and-examples.pdf
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/
http://www.microsoft.com/azure
http://www.microsoft.com/azure
https://jmeter.apache.org/
https://jmeter.apache.org/
https://www.ibm.com/cloud/learn/neural-networks
https://docs.opencv.org/4.x/d5/de7/tutorial_dnn_googlenet.html
https://docs.opencv.org/4.x/d5/de7/tutorial_dnn_googlenet.html

[35] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-

fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz

Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,

Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available

from tensorflow.org. URL: https://www.tensorflow.org/.

[36] Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.com/

darknet/, 2013–2016. [Accessed: 15/06/2022].

[37] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv, 2018.

[38] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary patterns: Appli-

cation to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(12):2037–2041, 2006. doi:10.1109/TPAMI.2006.244.

66

https://www.tensorflow.org/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://doi.org/10.1109/TPAMI.2006.244

APPENDIX A

Python requirements.txt file:

1 absl-py==1.0.0

2 aioice==0.7.6

3 aiortc==1.3.1

4 anyio==3.5.0

5 asgiref==3.5.0

6 astunparse==1.6.3

7 autopep8==1.6.0

8 av==9.1.1

9 cachetools==5.0.0

10 certifi==2021.10.8

11 cffi==1.15.0

12 charset-normalizer==2.0.12

13 click==8.1.2

14 colorama==0.4.4

15 cryptography==36.0.2

16 cvlib==0.2.7

17 dnspython==2.2.1

18 ecdsa==0.17.0

19 email-validator==1.1.3

20 et-xmlfile==1.1.0

21 fastapi==0.75.0

22 flatbuffers==2.0

67

23 gast==0.5.3

24 google-auth==2.6.4

25 google-auth-oauthlib==0.4.6

26 google-crc32c==1.3.0

27 google-pasta==0.2.0

28 grpcio==1.44.0

29 gunicorn==20.1.0

30 h11==0.13.0

31 h5py==3.6.0

32 httptools==0.4.0

33 idna==3.3

34 imageio==2.16.2

35 imutils==0.5.4

36 Jinja2==3.1.1

37 keras==2.8.0

38 Keras-Preprocessing==1.1.2

39 libclang==13.0.0

40 Markdown==3.3.6

41 MarkupSafe==2.1.1

42 netifaces==0.11.0

43 numpy==1.22.3

44 oauthlib==3.2.0

45 opencv-python-headless==4.5.5.64

46 openpyxl==3.0.9

47 opt-einsum==3.3.0

48 passlib==1.7.4

49 Pillow==9.1.0

50 progressbar==2.5

51 protobuf==3.20.0

52 pyasn1==0.4.8

53 pyasn1-modules==0.2.8

54 pycodestyle==2.8.0

55 pycparser==2.21

56 pydantic==1.9.0

57 pyee==9.0.4

58 pylibsrtp==0.7.1

59 pymongo==4.1.0

68

60 python-dotenv==0.20.0

61 python-jose==3.3.0

62 python-multipart==0.0.5

63 PyYAML==6.0

64 requests==2.27.1

65 requests-oauthlib==1.3.1

66 rsa==4.8

67 six==1.16.0

68 sniffio==1.2.0

69 starlette==0.17.1

70 tensorboard==2.8.0

71 tensorboard-data-server==0.6.1

72 tensorboard-plugin-wit==1.8.1

73 tensorflow==2.8.0

74 tensorflow-io-gcs-filesystem==0.24.0

75 termcolor==1.1.0

76 tf-estimator-nightly==2.8.0.dev2021122109

77 toml==0.10.2

78 typing_extensions==4.1.1

79 urllib3==1.26.9

80 uvicorn==0.17.6

81 watchgod==0.8.2

82 websockets==10.2

83 Werkzeug==2.1.1

84 wrapt==1.14.0

69

Github Actions to AKS CI/CD pipeline workflow:

1 # This workflow uses actions that are not certified by GitHub.

2 # They are provided by a third-party and are governed by

3 # separate terms of service, privacy policy, and support

4 # documentation.

5

6 name: Build and deploy to Azure Kubernetes Service

7

8 env:

9 # set this to the name of your container registry

10 AZURE_CONTAINER_REGISTRY: MY_REGISTRY_NAME

11 # set this to your project's name

12 PROJECT_NAME: MY_PROJECT_NAME

13 # set this to the resource group containing your AKS cluster

14 RESOURCE_GROUP: MY_RESOURCE_GROUP

15 # set this to the name of your AKS cluster

16 CLUSTER_NAME: MY_CLUSTER_NAME

17 # set this to the URL of your registry

18 REGISTRY_URL: MY_REGISTRY_URL

19 # If you build using helm:

20 # set this to the path to your helm file

21 CHART_PATH: MY_HELM_FILE

22 # set this to an array of override file paths

23 CHART_OVERRIDE_PATH: MY_OVERRIDE_FILES

24

25 on: [push]

26

27 jobs:

28 build:

29 runs-on: ubuntu-latest

30 steps:

31 - uses: actions/checkout@v3

32

33 - name: Azure Login

34 uses: azure/login@89d153571fe9a34ed70fcf9f1d95ab8debea7a73

70

35 with:

36 creds: ${{ secrets.AZURE_CREDENTIALS }}

37

38 - name: Build image on ACR

39 uses: azure/CLI@7378ce2ca3c38b4b063feb7a4cbe384fef978055

40 with:

41 azcliversion: 2.29.1

42 inlineScript: |

43 az configure --defaults acr=${{ env.AZURE_CONTAINER_REGISTRY }}

44 az acr build -t -t ${{ env.REGISTRY_URL }}/${{ env.PROJECT_NAME }}:${{ github.sha }}

45

46 - name: Gets K8s context

47 uses: azure/aks-set-context@4e5aec273183a197b181314721843e047123d9fa

48 with:

49 creds: ${{ secrets.AZURE_CREDENTIALS }}

50 resource-group: ${{ env.RESOURCE_GROUP }}

51 cluster-name: ${{ env.CLUSTER_NAME }}

52 id: login

53 - name: Configure deployment

54 uses: azure/k8s-bake@773b6144a3732e3bf4c78b146a0bb9617b2e016b

55 with:

56 renderEngine: 'helm'

57 helmChart: ${{ env.CHART_PATH }}

58 overrideFiles: ${{ env.CHART_OVERRIDE_PATH }}

59 overrides: |

60 replicas:2

61 helm-version: 'latest'

62 id: bake

63

64 - name: Deploys application

65 - uses: Azure/k8s-deploy@c8fbd76ededaad2799c054a9fd5d0fa5d4e9aee4

66 with:

67 manifests: ${{ steps.bake.outputs.manifestsBundle }}

68 images: |

69 ${{ env.AZURE_CONTAINER_REGISTRY }}.azurecr.io/${{ env.PROJECT_NAME }}:${{ github.sha }}

70 imagepullsecrets: |

71 ${{ env.PROJECT_NAME }}

71

OpenCV image processing functions:

1 import cv2

2

3 import numpy as np

4

5 import cvlib as cv

6 from cvlib.object_detection import draw_bbox

7

8

9 def face_detect(img):

10 faceCascade = cv2.CascadeClassifier(

11 './utils/cascades/haarcascade_frontalface_default.xml')

12 # Detect faces with Haarcascade

13 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

14 faces = faceCascade.detectMultiScale(

15 gray,

16 scaleFactor=1.2,

17 minNeighbors=5,

18 minSize=(20, 20)

19)

20 for (x, y, w, h) in faces:

21 cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)

22

23 return img

24

25

26 def face_detect_cvlib(img):

27 # apply face detection

28 faces, confidences = cv.detect_face(img)

29 # loop through detected faces

30 for idx, f in enumerate(faces):

31 (startX, startY) = f[0], f[1]

32 (endX, endY) = f[2], f[3]

33 # draw rectangle over face

34 cv2.rectangle(img, (startX, startY),

72

35 (endX, endY), (0, 255, 0), 2)

36 text = "{:.2f}%".format(confidences[idx] * 100)

37 Y = startY - 10 if startY - 10 > 10 else startY + 10

38 # write confidence percentage on top of face rectangle

39 img = cv2.putText(img, text, (startX, Y), cv2.FONT_HERSHEY_SCRIPT_COMPLEX, 0.7,

40 (0, 255, 0), 2)

41 return img

42

43

44 def object_detect_cvlib(img):

45 # Perform the object detection

46 bbox, label, conf = cv.detect_common_objects(

47 img, confidence=0.25, model='yolov3-tiny', enable_gpu=False)

48 return draw_bbox(img, bbox, label, conf)

49

50

51 def gender_recog_cvlib(img):

52 padding = 20

53 # apply face detection

54 faces, confidences = cv.detect_face(img)

55 # loop through detected faces

56 for idx, f in enumerate(faces):

57 (startX, startY) = max(0, f[0]-padding), max(0, f[1]-padding)

58 (endX, endY) = min(

59 img.shape[1]-1, f[2]+padding), min(img.shape[0]-1, f[3]+padding)

60

61 # draw rectangle over face

62 cv2.rectangle(img, (startX, startY),

63 (endX, endY), (0, 255, 0), 2)

64

65 face_crop = np.copy(img[startY:endY, startX:endX])

66

67 # apply face detection

68 (label, confidence) = cv.detect_gender(face_crop)

69

70 idx = np.argmax(confidence)

71 label = label[idx]

73

72

73 label = "{}: {:.2f}%".format(label, confidence[idx] * 100)

74

75 Y = startY - 10 if startY - 10 > 10 else startY + 10

76

77 # write detected gender and confidence percentage on top of face rectangle

78 img = cv2.putText(img, label, (startX, Y), cv2.FONT_HERSHEY_SIMPLEX, 0.7,

79 (0, 255, 0), 2)

80 return img

81

82

83 def edge_detect(img):

84 # perform edge detection

85 return cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR)

86

87

88 def rotate_track(img, time):

89 # rotate image

90 rows, cols, _ = img.shape

91 M = cv2.getRotationMatrix2D(

92 (cols / 2, rows / 2), time * 45, 1)

93 return cv2.warpAffine(img, M, (cols, rows))

94

95

96 def cartoon_effect(img):

97 # prepare color

98 img_color = cv2.pyrDown(cv2.pyrDown(img))

99 for _ in range(6):

100 img_color = cv2.bilateralFilter(img_color, 9, 9, 7)

101 img_color = cv2.pyrUp(cv2.pyrUp(img_color))

102 # prepare edges

103 img_edges = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

104 img_edges = cv2.adaptiveThreshold(

105 cv2.medianBlur(img_edges, 7),

106 255,

107 cv2.ADAPTIVE_THRESH_MEAN_C,

108 cv2.THRESH_BINARY,

74

109 9,

110 2,

111)

112 img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)

113

114 # combine color and edges

115 return cv2.bitwise_and(img_color, img_edges)

75

	=Table of Contents
	=List of Figures
	=List of Tables
	Abbreviations
	Introduction
	Machine Learning Operations
	Introduction
	The evolution of software development related infrastructure
	Cloud Computing
	Types of cloud services
	Machine learning on the cloud

	The challenges of traditional software development
	Machine learning engineering
	MLOps and its workflow:
	What is MLOps:
	Workflow:

	Conclusion

	Conception and development
	Introduction
	Requirements analysis:
	Functional requirements:
	Non-functional requirements:

	Design and conception:
	Use case diagram
	Use cases textual description:
	Class Diagram
	Sequence Diagrams
	The system's activity diagram

	Implementation
	WebRTC Implementation
	Stage 1: Proof of Concept
	Stage 2: Kubernetes cluster deployment

	Deployment configurations:
	Back-end configuration:
	STUN/TURN server configuration:
	Front-end configuration:

	Testing
	Conclusion:

	 Resources and tools used
	Introduction
	Front-end
	Next.js
	Material UI

	Back-end
	FastAPI
	OpenCV
	aiortc
	Node.js

	Database / Authentication
	Firebase

	DevOps tools
	GitHub
	Github Actions
	Docker
	Kubernetes

	Cloud services
	Heroku
	Vercel
	Microsoft Azure

	Testing tools:
	Apache JMeter

	Conclusion

	 Custom model deployment
	Introduction
	Front-end interfaces:
	Video streaming interface
	Authentication interface
	Custom model configuration editor interface

	Deep learning and neural networks
	OpenCV Deep Neural Network frameworks:
	Caffemodel:
	Tensorflow:
	Darknet:
	LBPH Face recognition:

	Conclusion

	Conclusion
	Bibliography
	Appendix A

