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General Introduction

Technological progress, driven by advancements in information processing techniques

and the ongoing revolution in microprocessor systems, has led to the creation of artifi-

cial solutions aimed at addressing various security challenges. These challenges include

embezzlement, forgery, unauthorized access, and the alteration or loss of confidential infor-

mation. Among the most critical innovations are biometric verification and identification

systems, which play a vital role in mitigating these risks[5].

Authentication and identification are two key processes within modern security sys-

tems. Authentication verifies the identity of a person or machine, granting access to

controlled environments or information systems. It ensures that only authorized individ-

uals or devices can enter secure areas or access sensitive data. Identification, on the other

hand, determines an individual’s identity efficiently and accurately, allowing for proper

recognition and tracking. Both processes are crucial for maintaining security and pre-

venting unauthorized access in areas such as banking, government systems, and digital

platforms[6][5].

Biometric systems utilize unique biological characteristics (such as fingerprints, facial

features, or voice patterns) to provide fast and reliable identification or verification. Com-

pared to traditional methods like passwords, biometric systems offer enhanced security

since they rely on traits that are difficult to forge or steal. The European Union’s AI Act

also emphasizes the importance of regulating biometric systems, especially in areas like

emotion recognition and categorization.

Currently, biometric authentication is widely used in sectors requiring secure access,

such as banking, government offices, and electronic commerce. These systems are also

critical in forensic investigations and immigration services, where they provide reliable

1



General Introduction

methods of identifying individuals and controlling access. The integration of biometric

systems into these fields significantly enhances security measures and ensures the reliabil-

ity of both access and identification processes.

In recent years, kinship verification has emerged as a vital area within biometric iden-

tification. This field focuses on determining familial relationships based on facial features,

with applications ranging from family reunification and social media to forensic investi-

gations. In this study, we aim to implement kinship verification systems using advanced

machine learning (ML) and deep learning (DL) techniques. Specifically, we employ Con-

volutional Neural Networks (CNNs) for feature extraction and Support Vector Machines

(SVM) for classification. Additionally, we explore other methods and fusion of algorithms

to improve feature extraction and overall accuracy. By integrating multiple approaches,

this research seeks to develop more robust and accurate kinship verification systems for

real-world applications.
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Chapter 1
Kinship Verification

1.1 Introduction

This chapter delves into the procedural aspects of facial kinship verification, be-

ginning with foundational theories, definitions, and essential terminology necessary to

elucidate this field. It provides an overview of automatic kinship verification methods,

detailing the technological advancements and methodologies involved. Additionally, the

chapter explores the design of facial kinship verification systems, highlighting their struc-

ture, components, and operational frameworks.

Kinship verification (KV) from facial images is an emerging and challenging technique

with many potential applications in computer vision. It involves the automatic process

of verifying whether two or more individuals are blood relatives (kin) by analyzing their

facial images. KV is a significant research field with applications such as finding missing

persons, organizing family albums, and enhancing online image searches. Despite sub-

stantial progress in kinship verification over the past decade, there remain challenges such

as intrinsic issues (e.g., differences in facial appearance) and extrinsic issues (e.g., varying

imaging conditions). Additionally, there is a continuing need for more diverse datasets to

improve the robustness and accuracy of KV systems.

In this work, we propose a new approach to kinship verification utilizing convolutional

neural network (CNN) models. We employ the KIN Face II dataset, which includes

four relationships: father-son, mother-son, mother-daughter, and father-daughter. Our

approach leverages pre-trained deep CNN architectures to extract features from parent-

child image pairs.

3



Chapitre 1 Kinship Verification

Specifically, we consider all different relationships proposed in the dataset, establishing

kinship relations between them using various distance metrics. We then concatenate these

distances into a single measure, calculated using four types of distance measurements.

This method integrates similarity computation and feature extraction into a cohesive

process, enhancing the efficiency and accuracy of kinship verification.

Our approach aims to address the intrinsic and extrinsic challenges by utilizing ad-

vanced deep learning techniques and a comprehensive feature extraction strategy. By

leveraging the capabilities of CNNs and a robust dataset, we strive to push the bound-

aries of kinship verification, making it more reliable and applicable in real-world scenarios.

1.2 The Kinship

1.2.1 What is it ?

Kinship (KIN), is the most universal and fundamental of all human relationships,

based on ties of blood, marriage, or adoption.

There are two primary types of kinship ties:

• Those based on blood, tracing descent.

• Those based on marriage, adoption, or other connections.

Some sociologists and anthropologists argue that kinship extends beyond familial ties

to include social bonds,According to Encyclopaedia Britannica, kinship is a ”system of

social organization based on real or putative family ties.” However, in sociology, kinship

encompasses more than family ties. The Sociology Group describes kinship as one of the

most important organizing components of society[7], stating:

KIN is one of the most important organizing components of society ,This social institu-

tion ties individuals and groups together and establishes a relationship among them,this

can involve relationships between individuals unrelated by lineage or marriage, David

Murray Schneider, a renowned professor of anthropology at the University of Chicago,

emphasized this broader perspective in his studies of kinship,at its core, kinship refers

to ”the bond of marriage and reproduction,” according to the Sociology Group. How-

ever, it can also encompass a wide range of groups or individuals based on their social

relationships.
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1.2.2 Importance

Kinship is important to a person and a community’s well-being. Because different

societies define kinship differently, they also set the rules governing kinship, which are

sometimes legally defined and sometimes implied. At its most basic levels, according to

the Sociology Group

1.3 Kinship in Computer Vision

The objective of kinship verification [8] is to determine whether a pair of given images

of faces belong to individuals in a related relationship. Recent studies in psychology have

shown that facial appearance plays a crucial role in identifying familial relationships.

This is because biologically related individuals generally exhibit greater facial similarity

compared to unrelated individuals.

Unfortunately, even for humans, predicting relatedness based solely on facial features

can be challenging. However, advancements in machine learning and computer vision have

made it possible for machines to tackle this problem effectively. Parental classification

from facial images is a relatively new challenge in shape recognition and computer vision,

with numerous potential applications in various real-world scenarios.

1.4 Kinship, its applications, and the motivations

Automated kinship verification using facial images has numerous applications. It can

help locate relatives in public databases, determine the kinship of victims or suspects

for law enforcement, validate asylum claims where family ties must be confirmed, and

organize photo albums by identifying family members. This verification has significant

security implications, such as identifying relatives of individuals deemed security threats.

Moreover, automated kinship determination can enhance facial recognition systems by

using kinship traits as soft biometrics. The field of automated kinship verification in videos

remains relatively unexplored but holds potential for security, surveillance, and immigra-

tion control. For example, during the investigation of the Boston Marathon bombing,

video surveillance identified two male suspects who were later found to be brothers. An

automated kinship verification system could have expedited their identification.
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Another application is border control, where surveillance videos can verify the rela-

tionship between adults and children, preventing illegal child trafficking. Additionally,

video-based kinship verification can validate or refute refugee and asylum seekers’ famil-

ial claims. Currently, the U.S. Department of State uses DNA testing for family reuni-

fication; however, an automated kinship verification algorithm could provide real-time,

cost-effective results.

Kinship information can also manage multimedia on social media platforms like Face-

book and YouTube. Families often have different YouTube channels for uploading daily

videos. Kinship data can automatically tag these videos and identify family members,

aiding in the automatic indexing and organization of videos for easy searching.

There are several applications for kinship verification, including:

• Photo Organization: Organizing and resolving identities in photo albums by

accurately identifying and tagging family members.

Figure 1.1: Illustration of photo organization

• Missing Children Search: Assisting in the search for missing children by identi-

fying potential family connections.

6



Chapitre 1 Kinship Verification

Figure 1.2: Illustration of missing children search

• Surveillance: Utilizing automated kinship verification in videos to aid security and

surveillance efforts.

Figure 1.3: Illustration of surveillance

• Genealogical Research: Creating detailed and accurate family trees.

7
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Figure 1.4: Illustration of genealogical research

1.5 Automatic recognition of kinship

Automated kinship recognition from face is a relatively recent problem that is mainly

studied by the application of Deep Learning techniques. Despite the impact that an accu-

rate kinship recognition algorithm can reach in a controlled environment, its applicability

in smart environments is limited due to the degradation of performances. In this study

we investigate the limitations of recent approaches that lead to a difficult applicability

in a real case use. We present several tests on Siamese Neural Networks (SNN) based

on a VGGFace architecture to solve both the kinship-vs-not-kinship recognition and the

kind-of-kinship recognition. To perform our tests we used two popular kinship recogni-

tion Datasets that are Faces in the Wild and KinFace-II, respectively. To examine the

behavior of the SNNs in a real scenario, we applied them, properly trained on the above

mentioned datasets, to a popular TV show in which the aim is to discover kinship in a

set of people. The weaknesses demonstrated in those tests have confirmed that the recent

literature and algorithm to solve the kinship recognition problem are still far to achieve

the high performances required in a smart environment [9].

8
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1.6 Kinship verification and face verification

They are two distinct problems, but they share similarities in terms of image processing

and facial feature analysis. Here’s a brief overview of each

1.6.1 Face Verification

Face verification is a critical step in facial recognition systems, including kinship

verification, as it relies on accurate face detection as a preliminary process. The verifica-

tion process begins with capturing an image of a scene that contains a face. Subsequently,

the face is extracted using a detection method, which isolates the region containing facial

components such as the eyes, nose, and mouth. This extracted region is then refined

through preprocessing procedures to enhance its quality. Accurate face verification is

vital, as it directly impacts the reliability and performance of subsequent identification

tasks, ensuring that kinship verification can be conducted effectively.

1.6.2 Kinship verification

Kinship verification involves extracting features from images of different individ-

uals and verifying the relationship between them, typically by comparing the features

extracted from different query images (image 1 and image 2) to determine if they belong

to individuals who are related as per kinship[10].

1.7 Kinship verification system structure

The structure of a Kinship Verification System typically involves several key compo-

nents and processes aimed at automatically confirming biological relationships based on

facial images. Here’s an outline of its structure:

Due to the difficulty and complexity of kinship verification, a framework must be estab-

lished to manage various approaches. This framework consists of four main components:

Preprocessing, Feature Extraction, Similarity Measurement, and Verification.

9
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Kinship Verification Face Verification

• Extract features from differ-

ent images of persons

• Verify the relationship

• Different traits of query im-

age 1 and query image 2

• Highest level system

• In decision stage: Kin or

not Kin

• Accuracy is around 90%

practically

• Extract features from the

same person image

• Verify or identify

• Same traits of query image

1 and query image 2

• High level system

• In decision stage: matched

or not matched

• Performance of the machine

is roughly as accurate as hu-

man

Table 1.1: Comparison between Kinship Verification and Face Verification [3]

Figure 1.5: General Kinship verification system structure
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1.7.1 Preprocessing

The goal of the preprocessing stage is to make it easy to measure kinship similarity by

extracting kin faces from photos and reducing the influences of various variations. This

involves techniques such as face detection as MTCNN[11],YOLO[12] and alignment to

ensure accurate extraction of facial features essential for kinship analysis. Additionally,

optimizing lighting conditions and image quality can enhance the reliability of kinship

measurements, facilitating more robust and precise results in familial relationship studies.

1.7.2 The features extraction phase

In image processing technology, whether it is binary, colored or gray. Image process-

ing may be performed by extracting features for identification, classification, diagnosis,

classification, clustering, recognition and detection. Feature extraction method are uti-

lized to obtain much information as possible of image. The selection and effectiveness of

feature chosen and extraction are a major challenge now [13] . Many methods used to

extract features, which may depend on Geometric features, Statistical features, Texture

features, and Color features. Each main type of feature divided into many subdivided

types such as Color features divided into three types (Color moment, Color histogram

and Average GBR). this Figure 1.6 shows the most important features methods.

11
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Figure 1.6: Features Extraction Methode[1]

1.7.3 Similarity measurement

Measuring similarity between feature vectors is indeed crucial in various applica-

tions such as machine learning, information retrieval, and recommendation systems. Here

are some common methods used to measure similarity, such as Euclidean Distance, Man-

hattan Distance, Mahalanobis Distance, fusion of these, and other measuring methods.

The choice of similarity measure depends on the nature of the data and the specific

problem you are trying to solve. Different measures have different computational require-

ments and assumptions about the data distributions.

1.7.4 Verification Phase

Next, these labeled feature vectors are used as input for a classification system, such

as a Support Vector Machine (SVM) [14] or a Convolutional Neural Network (CNN) [15].

The classification system utilizes these inputs to learn and train the model, effectively
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distinguishing between kin and non-kin based on the provided features.

In this step, the dataset is divided into two sets: training and testing. After the model

is trained, it can be evaluated by testing it on the test set and calculating the precision

and accuracy percentages. The evaluation involves two cases: kin and non-kin, which

helps verify how well the model generalizes to new, unseen data, ensuring that it can

reliably identify kinship relationships in real-world scenarios.

1.8 Problems and challenges of kinship verification

Kinship verification faces several challenges, particularly in testing system performance

with open datasets in real-world scenarios.

1.8.1 Pose variations

Head movements, including pitch, roll, and yaw, as well as changes in camera view-

points, can cause substantial alterations in facial appearance and shape, posing challenges

for automated face recognition across different poses. Correcting for pose is crucial and

can be accomplished through effective techniques for rotating and aligning the face to the

image’s axis, thereby improving the accuracy and reliability of face recognition systems

across varying angles and perspectives[16],[17].

(a) (b) (c)

Figure 1.7: Illustration of pose variations
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1.8.2 Presence or absence of structuring elements and occlu-

sions

Face images captured in an unconstrained environment often necessitate the effective

recognition of faces disguised or altered by accessories and/or occlusions. As illustrated

in Fig I.3, elements such as hats, glasses, or beards can contribute to occlusions. Texture-

based algorithms can assist in addressing these challenges [16] .

(a) (b) (c)

(d)

Figure 1.8: Illustration of Presence/absence of structuring elements/occlusions

1.8.3 Facial expression changes

Human expressions consist of macro-expressions, such as anger, disgust, fear, happi-

ness, sadness, or surprise, as well as involuntary, rapid facial patterns known as micro-

expressions. These expressions create non-rigid motions of the face, which are crucial for

both evaluating emotional states and automated face recognition. Fig I.4 illustrates the

variability in facial appearance caused by changes in emotional states.

14
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(a) Expression 1 (b) Expression 2

(c) Expression

3

(d) Expression 4

Figure 1.9: Illustration of Facial Expression Changes

1.8.4 Ageing of the face:

Face appearance changes can be caused by aging, which can significantly impact the face

recognition process [17]. To overcome this issue, methods need to take into account facial

aging patterns [10]. Additionally, integrating advanced machine learning algorithms that

can adapt to these changes over time can enhance the robustness and accuracy of face

recognition systems[16].

(a) (b) (c)

Figure 1.10: Illustration of pose variations

1.8.5 Varying illumination conditions

Large variations of illuminations can degrade
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the performance of AFR systems, with low levels of lighting making face detec- tion

and recognition difficult. Too high levels of lighting can lead to overexposure

and indiscernible facial patterns. Image processing techniques such as illumination

normalization and machine learning are used to deal with these variations[16].

(a) (b) (c)

Figure 1.11: Illustration of illumination variation

1.8.6 Image resolution and modality

AFR performance is influenced by the quality and resolution of the face image, the setup

and modalities of digital equipment, and the use of different photographic hardware. Faces

acquired in real-world conditions can present further challenges due to multiple modalities.

Incorporating advanced preprocessing techniques and leveraging high-resolution sensors

can mitigate some of these issues, ensuring more reliable face recognition even in diverse

and uncontrolled environments [16].

Figure 1.12: Illustration of variations of the image scale and resolution[2].
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1.9 Conclusion

In this chapter, we provided a comprehensive discussion of the important concepts

needed to understand kinship verification through still facial images. We assessed former

approaches to the kinship problem in most aspects. Through the presentation of literature,

we explored the problems and issues that affect the efficiency of a kinship verification

model’s performance.

17



Chapter 2
Kinship Verification Methods

2.1 Introduction

Automatic kinship verification is a burgeoning area of research that has garnered signif-

icant interest in recent years. This chapter focuses on face to explain detection methods,

feature extraction, and classification process techniques essential for kinship verification.

A facial image serves as a crucial indicator, containing numerous features that aid in

identifying relationships. Accurately representing these features is vital for determining

kinship, making this a major challenge in the field. Therefore, it is imperative to con-

centrate on the feature extraction step, as it notably impacts the performance of kinship

verification systems.

This chapter begins with a discussion of the available facial databases pertinent to

this field, followed by a review of related work. We then delve into deep learning and face

detection methods, which constitute the initial steps of our system. Subsequently, we focus

on feature extraction methods, emphasizing both handcrafted and deep features. Next,

we explore feature reduction techniques that enable us to minimize the number of features

without sacrificing essential information. Finally, we address deep learning approaches,

specifically convolutional neural networks (CNNs), and classification methods, which are

critical for achieving our objective of kinship verification.

18



Chapitre 2 Kinship Verification Methods

2.2 Face detection

Over the past decade, numerous physiological studies have explored human capacity in

facial recognition and verification. Researchers in computer vision and machine learning

have developed various automatic approaches with differing performance levels. However,

direct comparisons are challenging due to their use on distinct datasets. Additionally,

consider the reference by Lu et al[18]

Pre-processing can detect facial landmarks, align facial data, and crop the facial area.

It can filter irrelevant information such as hair, background, and reduce facial variations

due to the change in pose. In 2D images, landmarks such as eyes, eyebrows, mouth,

etc., can be reliably detected, while the nose is the most important landmark in 3D facial

recognition. The 3D information (depth and texture maps) corresponding to the surface of

the face can be acquired using different alternatives: a multi-camera system (stereoscopy),

remote cameras or laser devices, and 3D scanner[19].

With the rapid increase in video and image databases, there is a growing need for

intelligent systems to automatically understand and analyze this information, as manual

processing has become impractical. Faces are crucial for conveying identity and emo-

tions in social interactions. Humans excel at recognizing faces, but machines have be-

come increasingly capable in this area. Automatic face detection systems are essential

for various applications, including face recognition, facial expression analysis, head-pose

estimation, and human-computer interaction. Face detection technology determines the

location and size of human faces in digital images and is a prominent topic in computer

vision literature[20].

2.2.1 YOLO

YOLO [69] is a state-of-the-art deep learning framework for real-time object detec-

tion. This enhanced model outperforms region-based detectors and has achieved superior

results on standard detection datasets such as PASCAL VOC [56] and COCO [78]. Un-

like traditional methods that treat object detection as a classification problem, YOLO

approaches it as a regression problem. It performs all the necessary steps for object de-

tection using a single neural network, resulting in both high detection performance and

real-time speed. Additionally, YOLO has excellent generalization capabilities and can be
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easily trained to detect various objects.

The operation of YOLO is as follows: an image is divided into an SxS grid, and within

each grid cell, m bounding boxes are considered. For each bounding box, the network

predicts a class probability and offset values. Bounding boxes with class probabilities

above a certain threshold are selected and used to locate objects in the image. YOLO is

significantly faster (45 frames per second) than other object detection algorithms. How-

ever, it struggles with detecting small objects within the image, such as a flock of birds,

due to spatial constraints.

Figure 2.1 illustrates the YOLO architecture.

[]

Figure 2.1: YOLO architecture)[3]

2.2.2 MTCNN

MTCNN is a multitask neural network model for face detection, in order to take into

account the performance and accuracy, and avoid the huge performance consumption

caused by traditional ideas such as sliding window and classifier, it first uses small model

to generate target region candidate box with certain possibility [21], and then uses more

complex model for fine classification and higher precision region box regression, and makes

this step recursive to form a three-layer network, namely p-net , R-Net, o-net, to achieve

fast and efficient face detection. In the input layer, image pyramid is used to transform

the scale of the initial image, and p-net is used to generate a large number of candidate

target area frames. After that, R-Net is used for the first selection and border regression

of these target area frames, and most of the negative examples are excluded. Then, the

more complex and higher precision network o-net is used to discriminate and regress the

20



Chapitre 2 Kinship Verification Methods

remaining target area frames.

The Three Stages of MTCNN: The first step is to take the image and resize it to

different scales in order to build an image pyramid, which is the input of the following

three-staged cascaded network[1].

[]

Figure 2.2: image pyramid exemple[1]

• Stage 1: The Proposal Network (P-Net):This first stage is a fully convolu-

tional network (FCN). The difference between a CNN and a FCN is that a fully

convolutional network does not use a dense layer as part of the architechture. This

Proposal Network is used to obtain candidate windows and their bounding box

regression vectors.

Bounding box regression is a popular technique to predict the localization of boxes

when the goal is detecting an object of some pre-defined class, in this case faces.

After obtaining the bounding box vectors, some refinement is done to combine

overlapping regions. The final output of this stage is all candidate windows after

refinement to downsize the volume of candidates.
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[]

Figure 2.3: P-Net [4]

• Stage 2: The Refine Network (R-Net):All candidates from the P-Net are fed

into the Refine Network. Notice that this network is a CNN, not a FCN like the

one before since there is a dense layer at the last stage of the network architecture.

The R-Net further reduces the number of candidates, performs calibration with

bounding box regression and employs non-maximum suppression (NMS) to merge

overlapping candidates.

The R-Net outputs wether the input is a face or not, a 4 element vector which is the

bounding box for the face, and a 10 element vector for facial landmark localization.

[]

Figure 2.4: R-Net[4]

• Stage 3: The Output Network (O-Net):

This stage is similar to the R-Net, but this Output Network aims to describe the

face in more detail and output the five facial landmarks’ positions for eyes, nose and

mouth.
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[]

Figure 2.5: O-Net [4]

2.3 Features Extraction:

Feature extraction methods for kinship verification can be classified into two categories:

shallow (handcrafted) features and deep learning-based features. Initially, shallow feature

extraction methods dominated the field. These handcrafted features involve manually

designed algorithms to identify specific characteristics in images, such as textures, edges,

and shapes.

However, the advent of deep learning has revolutionized feature extraction by auto-

matically learning hierarchical features from raw data. Despite its potential, deep learning

was not widely applied in the field of automatic kinship verification due to the lack of

sufficient data to train these models effectively.

Recent advancements in data augmentation and transfer learning techniques have

started to mitigate this limitation, enabling deep learning models to perform better even

with limited data. These models can now capture more complex patterns and relationships

in the data, leading to improved accuracy and robustness in kinship verification tasks.

2.3.1 Shallow Features:

For over a decade, shallow features have been extensively used in various computer

vision applications, including object detection and image classification. These handcrafted

features rely on manually designed algorithms to extract specific characteristics from

images, such as textures, edges, and shapes. In the context of parentage verification,

several descriptors can be employed, such as:
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2.3.1.1 Local Binary Patterns (LBP)

LBP encodes the local differences in gray levels. We consider a circular neighborhood

of radius R (a circle consisting of P points), around the central point with coordinates

(xc, yc) and gray level gc.

LBP(xc, yc) =
P−1∑
p=0

2pδ(gp − gc)

where δ is the Heaviside function, such that δ(gp − gc) = 1 if gp ≥ gc and 0 otherwise.

For a neighborhood of 8 points with a radius R = 1, the LBP values are encoded between

0 and 255. A texture can be characterized by the histogram of these LBPs[22].

Figure 2.6: texture extraction using Local Binary Pattern (LBP)[?, 5]

2.3.1.2 Binarized Statistical Image Features (BSIF)

Unlike LBP , which can be used to calculate label statistics in local pixel neighborhoods,

the local descriptor called BSIF (Binarized Statistical Image Features), which was recently

proposed by Kannala and Rahtu, uses a predefined set of manually designed linear filters

and binarizes the filter responses [23].

Given a patch image X of size l × l pixels and a linear filter Wi of the same size, the
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filter response si is obtained by:

si =
∑
u,v

Wi(u, v)X(u, v) = wT
i x (2.5)

Given n linear filtersWi, we can stack them into a matrixW and compute all responses

at once.

Where vector notation is introduced in the last step, namely, vectors w and x contain

the pixels of Wi and X, respectively. The binarized function bi is obtained by:

bi =

1 if si > 0

0 otherwise

(2.6)

Where bi is the i-th element of b. This way, an n-bit binary code can be computed for

each pixel, and subsequently, the image region can be represented by histograms of these

binary codes of the pixels.

Figure 2.7: Sample images of Binarized statistical image features (BSIF) descriptor.With:

a) Input Image, b-c-d-e)result of BSIF with filterof 3x3, 7x7 and 11x11 dimension respec-

tively. [5]

2.3.1.3 Local Optimal Oriented Patterns (LOOP)

The Local Optimal Oriented Patterns (LOOP) [24], a recent texture descriptor, encodes

local structures and repeated patterns within images. Compared to commonly used fea-

ture descriptors such as Local Directional Pattern (LDP) and Local Binary Pattern (LBP),

LOOP has shown superior performance in various image recognition tasks. It excels in

capturing intricate local information, making it suitable for applications like facial recog-

nition.
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To derive the final codes, three steps are involved. First, edge responses of pixels with

gray values gi (i = 0, 1, . . . , 7) in eight directions are determined using Kirsch masks.

Second, binarization weights wi are assigned to pixels based on the rank of the mask

response value. Finally, these weights are integrated into the LBP formula to compute

the final code relative to the center pixel:

LOOP(xc, yc) =
7∑

i=0

ξ(gi − gc) · 2wi (2.7)

where the function ξ is defined as:

ξ(η) =

1, if η ≥ 0

0, if η < 0

(2.8)

Here, gc refers to the gray level of the center pixel located at (xc, yc).

Figure 2.8: Standard test image (rice.png) and the LOOP output[6].

While these shallow features have shown effectiveness in many applications, the emer-

gence of deep learning has introduced more sophisticated and automated feature extrac-

tion methods. Deep learning models, with their ability to learn hierarchical features

directly from data, are gradually becoming more prominent in kinship verification as data

availability and computational power increase.

2.3.2 Feature Extraction Using Deep Learning

Deep neural networks (DNNs) can serve as powerful feature extractors. For instance,

you can take a pre-trained CNN (such as VGG16 or ResNet) and remove its fully connected
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(FC) layers, leaving only the convolutional layers.

2.3.2.1 VGG

This method is initially based on a deep convolutional neural network (ConvNet) archi-

tecture first proposed by K. Simonyan and A. Zisserman [25] from the Visual Geometry

Group at the University of Oxford in 2014. The VGG architecture forms the basis of

revolutionary object recognition models. Developed as a deep neural network, VGGNet

also surpasses benchmark performances in various tasks and datasets beyond the network

itself. Furthermore, it remains one of the most popular image recognition architectures

today.

VGG Architecture

• Input: VGGNet takes an input image of 224×224. For the ImageNet competition,

the model’s creators cropped the central 224×224 patch of each image to maintain

consistent input size.

• Convolutional Layers: VGG’s convolutional layers utilize a minimal receptive

field, i.e., 3×3, the smallest size possible to capture top/bottom and left/right fea-

tures. Additionally, there are 1×1 convolution filters acting as a linear transfor-

mation of the input. These are followed by a ReLU unit, a major innovation of

AlexNet that reduces training time. ReLU stands for ”rectified linear unit activa-

tion function”; it is a piecewise linear function that outputs the input if positive;

otherwise, the output is zero. The convolution stride is set to 1 pixel to preserve

spatial resolution after convolution (stride is the number of pixel shifts over the

input matrix).

• Hidden Layers: All hidden layers of the VGG network use ReLU. VGG typically

does not use Local Response Normalization (LRN) because it increases memory

consumption and training time without improving overall accuracy.

• Fully Connected Layers: VGGNet includes three fully connected layers. Among

these, the first two layers have 4096 channels each, and the third has 1000 channels,

one for each class.
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Figure 2.9: VGG Neural Network Architecture

• VGG16: The VGG model, or VGGNet, supporting 16 layers is also known as

VGG16. It is a convolutional neural network model proposed by A. Zisserman

and K. Simonyan from the University of Oxford. The VGG16 model achieves an

accuracy of nearly 92.7

• VGG19: The concept of the VGG19 model (also VGGNet-19) is similar to VGG16,

except that it supports 19 layers. The numbers ”16” and ”19” denote the number

of weight layers in the model (convolutional layers). This means VGG19 has three

more convolutional layers than VGG16. The VGG network is constructed with

very small convolutional filters. VGG-16 consists of 13 convolutional layers and

three fully connected layers.

2.3.2.2 Residual Networks (ResNets)

: Residual Networks, or ResNets, learn residual functions with reference to the layer

inputs, instead of learning unreferenced functions. Instead of hoping each few stacked

layers directly fit a desired underlying mapping as H(x), ResNets let the stacked nonlinear

layers fit another mapping F (x) = H(x)−x. The original mapping is recast into F (x)+x

[26].
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Figure 2.10: Residual Network Architecture [7]

.

2.4 Classification Algorithms

A classification algorithm is a supervised learning technique used to identify the cate-

gory of new observations based on a training dataset. In classification, a program learns

from a labeled dataset and then classifies new observations into one of several predefined

classes. For example, classes can be ”Yes” or ”No,” ”0” or ”1,” ”Spam” or ”Not Spam,”

”cat” or ”dog,” etc. These classes can also be referred to as targets, labels, or categories.

Unlike regression, where the output variable is a continuous value, the output variable

in classification is categorical, such as ”green or blue,” ”fruit or animal,” etc. As a su-

pervised learning technique, classification algorithms require labeled input data, meaning

the input data comes with corresponding output labels.

In a classification algorithm, a discrete output function (y) is mapped to an input

variable (x). The primary goal of the classification algorithm is to identify the category of

a given dataset, and these algorithms are mainly used to predict the output of categorical

data. The algorithm that implements classification on a dataset is known as a classifier.

Below, we list some of the most commonly used classification algorithms:

2.4.1 The k-NN algorithm

Definition: The k-NN algorithm, also known as KNN, is a non-parametric supervised

learning method. It uses proximity to perform classifications or predictions for an indi-

vidual data point. Specifically, it identifies the k nearest neighbors to a given data point
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and assigns a class label based on a majority vote. For classification problems, the most

frequently represented class label around the data point is used. Note that the term “ma-

jority vote” is commonly used, even if it technically requires a majority above 50%. In

multi-class scenarios, a label can be assigned with a vote exceeding 25%[27].

• Regression: In regression problems, k-NN computes the average of the k near-

est neighbors’ values to make predictions. Unlike classification (which deals with

discrete labels), regression handles continuous values.

• Distance Metric: Before classification, a distance metric must be defined. The

Euclidean distance is commonly used for this purpose.

• Lazy Learning: KNN is part of the “lazy learning” family, meaning it stores only

the training data and performs calculations during classification or prediction. It

relies heavily on memory and is sometimes called an instance-based or memory-

based learning method.

Figure 2.11: An example of k-NN classification..
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2.4.2 A decision tree

A decision tree is a classifier represented as a recursive partition of the instance space.

The decision tree [28] consists of nodes forming a rooted tree, meaning it is a directed tree

with a node called the ”root” that has no incoming edges. All other nodes have exactly

one incoming edge. A node with outgoing edges is called an internal or test node. All

other nodes are called leaves (also known as terminal or decision nodes). In a decision

tree, each internal node splits the instance space into two or more sub-spaces according

to a discrete function of the input attributes. The root and internal nodes are associated

with attributes, while the leaf nodes are associated with classes.

Essentially, each non-leaf node has an outgoing branch for every possible value of the

attribute associated with the node. To determine the class for a new instance using a

decision tree, starting from the root, successive internal nodes are visited until a leaf

node is reached. At the root node and each internal node, a test is applied. The result

of the test determines the branch traversed and the next node visited. The class of the

instance is the class of the final leaf node. The estimation criterion [29] in the decision tree

algorithm involves selecting an attribute to test at each decision node of the tree. The goal

is to select the most useful attribute for classifying the examples. A good quantitative

measure of an attribute’s value is a statistical property called information gain, which

measures the ability of a given attribute to separate training examples based on their

target classification. This measure is used to select among the candidate attributes at

each step during the tree’s growth [30].

The following figure (2.12) shows an example of a decision tree used to predict ”yes”

or ”no” in response to the question ”Is the weather suitable for playing outside?”
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Figure 2.12: An example of a decision tree predicting ”yes” or ”no” for playing outside

based on the weather[8].

2.4.3 Support Vector Machine (SVM)

A support vector machine (SVM) is machine learning algorithm that analyzes data for

classification and regression analysis. SVM is a supervised learning method that looks

at data and sorts it into one of two categories. An SVM outputs a map of the sorted

data with the margins between the two as far apart as possible. SVMs are used in text

categorization, image classification, handwriting recognition and in the sciences[31],

noindent An SVM is a supervised machine learning algorithm used for classification

and regression analysis. Here’s how it works:

• Classification: Given labeled data (examples with known categories), SVM finds

an optimal hyperplane that separates the data into different classes. The goal is

to maximize the margin (distance) between the hyperplane and the nearest data

points of each class.

• Regression: In regression tasks, SVM predicts a continuous output based on input

features. It aims to find a hyperplane that best fits the data while minimizing errors.
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The equation for Support Vector Machine (SVM) depends on the specific variant and

formulation. Let’s focus on the most common case: linear SVM for binary classification.

Objective Function: The optimization formula aims to find the optimal hyperplane

that maximizes the margin between classes. It involves minimizing the following objective

function:
1

2
∥w∥2 + C

n∑
i=1

max(0, 1− yi(w
Txi + b))

Here:

• w represents the weight vector.

• b is the bias term.

• xi are the feature vectors of the data points.

• yi are the corresponding class labels (yi ∈ {−1,+1}).

• C is the regularization parameter that balances margin maximization and training

error.

Decision Function: The decision function for linear SVM is given by:

f(x) = wTx+ b

If f(x) > 0, the data point is classified as one class; otherwise, it belongs to the other

class.

Kernel Trick: SVMs can handle non-linear data by using the kernel trick. The kernel

function transforms the input features into a higher-dimensional space, making it possible

to find a linear hyperplane in that space.

Common kernel functions include:

• Polynomial Kernel: K(x, x′) = (a+ xTx′)b

• Radial Basis Function (RBF) Kernel: K(x, x′) = exp(−γ∥x− x′∥2)
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Figure 2.13: SVM[8].

2.4.4 pretrained CNN models for the Kinship System

Convolutional Neural Networks (CNNs) pretrained on large-scale datasets have been

instrumental in advancing kinship verification systems. These models leverage deep learn-

ing architectures that have been trained on extensive image datasets such as ImageNet.

By utilizing pretrained CNNs, researchers benefit from features learned through millions

of images, which enhances the model’s ability to extract meaningful features relevant to

kinship verification.

Popular pretrained CNN models used in kinship verification include:

• VGG16 and VGG19: These models are known for their deep architectures and

high performance on image classification tasks. They have been adapted and fine-

tuned for kinship verification by extracting features from facial images of relatives.

• ResNet (Residual Networks): ResNets introduce skip connections to address

the vanishing gradient problem in deep networks. They have shown improved per-

formance in various computer vision tasks, including kinship verification, by learning

residual functions with reference to layer inputs.

• Inception (GoogLeNet): The Inception models are known for their inception

modules that use multiple filter sizes within the same convolutional layer. This
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design allows them to capture features at different scales, which can be beneficial

for kinship verification where subtle facial similarities are important.

• MobileNet: MobileNets are lightweight CNN architectures designed for mobile

and embedded vision applications. They offer a good balance between accuracy and

computational efficiency, making them suitable for real-time kinship verification

systems.

Figure 2.14: Common Pretrained CNN Models for Kinship Verification

These pretrained models provide a robust foundation for kinship verification systems,

enabling efficient extraction of discriminative features from facial images to determine

familial relationships.[52].

2.5 Decision:

After classification, decision making involves interpreting the results and taking actions

based on the model’s predictions. This process includes the following steps:

• Performance Evaluation: Use various metrics to evaluate the model’s perfor-

mance comprehensively. These metrics provide different aspects of how well the

model is performing:

– Accuracy: Measures the ratio of correctly predicted instances to the total

instances.

Accuracy =
TP + TN

TP + TN+ FP + FN
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– Recall (Sensitivity or True Positive Rate): Reflects the ability of the

model to correctly identify positive instances.

Recall =
TP

TP + FN

– Precision: Indicates the ratio of correctly predicted positive observations to

the total predicted positives.

Precision =
TP

TP + FP

– F1-Score: The harmonic mean of precision and recall.

F1-Score = 2 · Precision · Recall
Precision + Recall

– AUC-ROC (Area Under the Receiver Operating Characteristic Curve):

Measures the ability of the model to distinguish between classes.

AUC-ROC =

∫ 1

0

TPR(fpr) d(fpr)

where TPR is the True Positive Rate and fpr is the False Positive Rate.

• Results Interpretation: Analyze the predictions to understand the decisions

made by the model. This involves several aspects:

– Confusion Matrix: A table that summarizes the performance of a classifica-

tion model.

– Feature Importance: Determine which features or variables had the most

significant influence on the model’s predictions.

– Error Analysis: Investigate instances where the model made incorrect pre-

dictions.

• Implementation of actions: Take practical decisions based on the model’s pre-

dictions. This involves deploying the model’s outputs to make informed decisions:

– Automated Decision Systems: Integrate the model into automated systems

to make real-time decisions.

– Human-in-the-Loop Systems: Use the model’s predictions to assist human

decision-makers.

– Policy Making: Utilize the model’s insights to inform policy and strategy

decisions within an organization.
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2.6 Related work

The early research on kinship verification laid the foundation for subsequent advance-

ments in this field. The use of the “Cornell KinFace” database allowed researchers to

explore the similarity between parent-child pairs. Since then, the field has evolved signif-

icantly, and larger and more diverse datasets have become available for studying kinship

relationships. When we looked into this and examined the papers on ‘Facial Kinship

Verification’ published in 2022, we learned that the first kinship verification study was

conducted in 2010, using traditional methods alongside machine learning. This figure

shows the evolution of studies on kinship, highlighting how modern techniques like deep

learning and neural networks have further propelled the accuracy and application of kin-

ship verification systems.

Figure 2.15: The first facial kinship verification study[9]

They initially focused on confirming the similarity between parent-child pairs by ex-

tracting 22 facial features, including skin color, eyes, mouth, distance features, and statis-

tical features like the Histogram of Gradients (HOG). They used either a Support Vector

Machine (SVM) with a radial basis function or the K-Nearest Neighbor (KNN) classifier

with an Euclidean metric to identify pairs of faces. Although this method produced pos-

itive results, it had limitations in proving kinship verification due to physical and genetic

differences, such as age gaps between parents and children or gender differences between

siblings. Subsequent research has explored more sophisticated techniques, including deep

learning, to address these challenges and improve the accuracy and reliability of kinship

verification systems.

Statistical-based genetic studies have demonstrated a critical observation: the faces

of parents when they were young resemble those of their children more than the images
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captured when they are older. This insight prompted the creation of the UB KinFace

database, which includes images of children’s faces, young parents, and elderly parents,To

address the significant distribution divergence between children and elderly parents, Xia et

al, proposed the transfer learning method (TSL) [32]. This method uses an intermediate

distribution close to both distributions and employs Gabor wavelets for feature extrac-

tion,This approach improved the overall accuracy of kinship verification and enhanced

the discriminative power of the task [33].

Additionally, recent advancements in deep learning and convolutional neural networks

have further refined feature extraction and classification processes, leading to even higher

accuracy and robustness in kinship verification systems.

Afterwards, Lu et al. [34] collected the KinFaceW-I and KinFaceW-II databases to

support larger-scale research, further motivating researchers to contribute to this topic.

They also proposed the Neighborhood Repelled Metric Learning (NRML) method. Met-

ric learning allows for the development of a distance metric that minimizes the distances

between pairs of positive images with kinship links while pushing apart pairs of images

without such links. This method was tested using various local feature descriptors, in-

cluding Local Binary Pattern (LBP), Histogram of Oriented Gradients (HOG), and Scale-

Invariant Feature Transform (SIFT) [12]. Additionally, this approach has paved the way

for incorporating advanced machine learning techniques, such as deep metric learning,

which continues to improve the accuracy and efficiency of kinship verification systems.

Fang et al. proposed a novel approach for kinship verification using their “Family101”

dataset [35], modeling the problem as reconstructing a face from shuffled parts of a set

of families, inspired by the biological process of inheritance. Instead of analyzing the

whole face, their approach segments the face into parts (eyes, nose, mouth, etc.) and

reconstructs each part as a linear combination of corresponding parts from the database.

To evaluate this approach, they used a dense SIFT descriptor on resized facial images of

61 x 49 pixels [[36].
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2.7 Conclusion

The aim of this chapter was to provide a comprehensive overview of existing solu-

tions in automatic kinship verification. We began by discussing various publicly available

databases and outlining the diverse approaches adopted by researchers in this domain.

The chapter commenced with an exploration of face preprocessing and feature extraction

methods. Subsequently, we delved into the intricacies of feature reduction techniques, as

well as the learning and classification algorithms employed in this context, culminating

in a thorough examination of current methodologies and their applications in kinship

verification.
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Chapter 3
Proposed Methods

3.1 Introduction

Currently, deep learning models can achieve human-scale precision in image analysis

and segmentation. Motivated by the impressive success of deep learning approaches in

representing and classifying various images, we have proposed a method for the automatic

verification of kinship links. Our approach combines deep features and shallow features

to enhance the system’s performance. Additionally, extracting features from images using

patch-based methods and statistical features can further augment the verification system’s

capacity.

In this chapter, we will detail the various stages necessary for implementing our kinship

verification system with the proposed method.

3.2 Proposed Method

The importance of robust facial features for identifying and verifying relationships

between individuals is widely recognized. In image classification tasks, the quality of the

representative encoding of images is a crucial factor that affects the effectiveness of the

approach. These encodings can be local textural details or learned features.

40



Chapitre 3 Proposed Methods

Figure 3.1: Proposed kinship verification system.

We propose a novel method to extract effective and discriminative features from facial

images by leveraging prior knowledge. The choice of feature extraction method plays a

significant role in enhancing the accuracy of our system. Our approach involves using

pre-trained models such as VGG16 and ResNet, patch-based methods, and statistical

features. Additionally, we incorporate distance measurements to represent relationships

between images.

By integrating these diverse methods, we can extract complementary information that

aids in determining kinship relationships with higher precision.
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Figure 3.2: Proposed kinship verification system.

3.2.1 Face detcetion

For this task, using the MTCNN (Multi-task Cascaded Convolutional Neural Network)

detection method is advantageous. It allows precise detection of faces in images, ensuring

accurate focus specifically on the individual’s face.

3.2.2 Feature Extraction

3.2.2.1 Static Patch Extraction for Feature Extraction

Static patch extraction involves selecting fixed, equal-sized regions of an image, called

patches, and extracting features from these sub-images. This method assumes that the

selected patches contain significant information, resulting in N×N patches. In other words,

there will be N×N sets of static features, this 3.3 can explain the methode of patches.

Patch Selection:

• Fixed patches are defined either manually

• Patches can be of different sizes and shapes,
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Figure 3.3: image patched

3.2.2.2 Feature Extraction from Patches and Combining

In this step, we will calculate 07 static features (such as mean, standard deviation, vari-

ance, etc.) for each patch. This will result in 07×N×N features.

Various feature extraction methods can be applied to each patch to obtain descrip-

tors. Features extracted from all patches are combined to form a single feature vector

representing the entire image,to be used for further processing, such as classification.
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Figure 3.4: vector of static features for the image

We combine these two images of father and child using measurements as it appears in

this figure when we use the characteristic array for one vector.
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Figure 3.5: The process of feature extraction from two images and distance measurement

For this second approach, we utilize one of the pre-trained CNN models for feature

extraction from images, such as ResNet or VGG16, as explained in Chapter 2. These

models are widely recognized for their ability to capture complex features from images

due to their deep architectures and training on large datasets. For example, VGG16 is a

particularly effective model, consisting of 16 convolutional layers that progressively detect

more abstract patterns at each level. In our use case, we leverage VGG16 without the

final classification layers, focusing solely on the convolutional layers to extract relevant

features from the images. The following illustration below show the layers of the VGG16

model used in this approach, highlighting the different stages of image processing.

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

input_7 (InputLayer) [(None, 224, 224, 3)] 0

block1_conv1 (Conv2D) (None, 224, 224, 64) 1792

block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
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block1_pool (MaxPooling2D) (None, 112, 112, 64) 0

block2_conv1 (Conv2D) (None, 112, 112, 128) 73856

block2_conv2 (Conv2D) (None, 112, 112, 128) 147584

block2_pool (MaxPooling2D) (None, 56, 56, 128) 0

block3_conv1 (Conv2D) (None, 56, 56, 256) 295168

block3_conv2 (Conv2D) (None, 56, 56, 256) 590080

block3_conv3 (Conv2D) (None, 56, 56, 256) 590080

block3_pool (MaxPooling2D) (None, 28, 28, 256) 0

block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160

block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808

block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808

block4_pool (MaxPooling2D) (None, 14, 14, 512) 0

block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808

block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
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flatten (Flatten) (None, 25088) 0

fc1 (Dense) (None, 4096) 102764544

fc2 (Dense) (None, 4096) 16781312

_________________________________________________________________

Kinship verification is a binary classification problem. Given we have 250 pairs of

children and their fathers, we label these pairs as kinship cases with a class label of 1. To

create negative examples, we form false cases of no kinship by pairing each father with a

child who is not their own, resulting in 250 such pairs labeled as class 0.

To create training and testing datasets, we generate both positive and negative exam-

ples. For the negative examples, we pair each father with a different child (not their own)

to ensure no kinship. Specifically, we create a list of fathers ordered from first to last

and a list of children ordered from last to first, pairing them sequentially. This ensures

that each pairing is unique and that no father is paired with their biological child. We

conduct fivefold cross-validation on each example and calculate the mean accuracy across

the five folds. As a measure of system success, we report the mean verification accuracy

for the four kinship subsets: child-father, child-mother, sibling-sibling, and grandparent-

grandchild.

(a) Kinship Case: Child and Father (b) No Kinship Case: Unrelated Child and

Father

Figure 3.6: KIN And NO KIN List

In this approach, after preprocessing (which includes face detection), we train the
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two labeled images as RGB images with three channels in one of the pre-trained Convo-

lutional Neural Network (CNN) models. The model, with this architecture, can extract

the features and classify the images .

Here, we also perform pixel-by-pixel subtraction of the image of the father and the

son as shown in the figure below ,Then, we label these images and split the data into two

subsets: training and testing

(a) Image 1 (b) Image 2

(c) Image 3

Figure 3.7: subtract two color images (RGB).

Convolutional Neural Networks (CNNs) classify images through a series of steps in-

volving convolutional layers, pooling layers, and fully connected layers. Here’s a high-level

overview of the process:

• Convolutional Layers: The input image is passed through multiple convolutional
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layers. Each layer applies a set of filters (kernels) to the image to create feature

maps. These filters can detect features such as edges, textures, and patterns.

• Activation Function: After each convolution, an activation function (usually

ReLU) is applied to introduce non-linearity, allowing the network to learn more

complex patterns.

• Pooling Layers: Pooling layers (often max pooling) are used to reduce the spatial

dimensions of the feature maps, retaining the most important information while

reducing computational complexity and helping to prevent overfitting.

• Flattening: After several convolutional and pooling layers, the feature maps are

flattened into a single vector.

• Fully Connected Layers: The flattened vector is passed through one or more fully

connected (dense) layers. These layers combine the features to make a prediction

about the image class.

• Output Layer: The final fully connected layer produces the output, typically

using a softmax activation function for multi-class classification. This layer outputs

a probability distribution over the possible classes.

• Classification: The class with the highest probability is selected as the predicted

class for the image.

Here’s a visual representation of these steps:

1. Input Image: RGB image with three channels (e.g., 224x224x3).

2. Convolutional Layers + Activation Functions: Apply filters and ReLU to

generate feature maps.

3. Pooling Layers: Reduce the dimensions of the feature maps.

4. Flattening: Convert the 2D feature maps into a 1D vector.

5. Fully Connected Layers: Combine the features to form a final prediction.

6. Output Layer: Use softmax to produce a probability distribution over the classes.
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7. Classification: Select the class with the highest probability.

3.3 Conclusion

In this chapter, we clarified the approaches proposed in our study. also this provides a

clear overview of our work, showcasing our contributions through the conceptual aspects

of our system. After completing this work, we demonstrate the performance and positive

impact of our kinship system verification.
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Chapter 4
Experimentation, results and discussion

4.1 Introduction

In this chapter, we conduct extensive research to apply the theories presented in

this dissertation to kinship verification,We report the results obtained when using our

approaches, including deep learning models such as CNN models (like VGG16) and the

notion of image patches with statistical features. We performed parentage verification

tests using machine learning approaches. We explored various image filters like LBP, LPQ,

and 2DFFT, each providing a different percentage of accuracies. These tests were carried

out on a set of parentage pairs found in the database freely available on the Internet,

called KinFaceW-II, which includes 500 images, or 250 pairs, each pair consisting of a

parent and their child. The results show the effectiveness of our methods in verifying

kinship thanks to the various approaches and models used. You can access the database

via the following link: https://www.kinfacew.com/download.html.

There are four kinship relationships in two datasets: Father-Son (F-S), Father-Daughter

(F-D), Mother-Son (M-S) and Mother-Daughter (M-D) included in this database. For the

usage process, we labeled 250 pairs for positive cases (father and son) and 250 pairs for

negative cases (father and false son). The images are of low resolution, i.e. 64x64 pixels,

which can be beneficial for learning models in case of poor image quality.
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This figure shows an example of image pairing including ...

Figure 4.1: The figure shows the F-S relationship database based on KinFaceW-II.

4.2 Development Environment

4.2.1 Hardware Environement

we use these Hardware capacities during our development work

• Computer: Asus ZenBook 14 UX434F

• Processor: Intel Core i5-10210U Processor (6M Cache, 1.6 GHz up to 4.2 GHz)

• RAM: 8 GB

• Hard Drive: 512 GB SSD

• Graphics: 14.0 (1920×1080) FHD IPS Display

• Operating System: Windows 11 (64 bit)

4.2.2 Devlopement Tools Presentation

During the development of these kinship systems, the following software tools were

used:
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4.2.2.1 The Programming languages used

In our approaches, we use Python as the programming language because of its rich

libraries and strong performance in the field of artificial intelligence.

Python: Python is an interpreted, object-oriented, high-level programming language

known for its dynamic semantics. Python code is executed line by line by the interpreter,

eliminating the need for explicit compilation steps. It supports object-oriented program-

ming principles, enabling developers to create and manipulate objects easily. Python’s

high-level nature abstracts away low-level details, offering built-in data structures that

simplify coding and enhance readability. Python’s dynamic semantics, including dynamic

Figure 4.2: Python Logo

typing and dynamic binding, provide flexibility at runtime, allowing for efficient develop-

ment and rapid prototyping. Its versatility makes it suitable for various applications:

In web development, Python is widely used for server-side scripting, building web

applications, and creating APIs. It powers frameworks like Django and Flask.

Python is favored in software development for its ability to develop desktop applica-

tions, games, and scientific software due to its extensive libraries and tools.

In mathematics and scientific computing, Python is a preferred choice for numerical

computations, data analysis, and machine learning applications. Libraries such as NumPy,

Pandas, and TensorFlow support these functionalities.

For system scripting and automation, Python excels in automating tasks and system

administration, making it a robust tool for DevOps and IT operations.

Overall, Python’s versatility, ease of use, and extensive community support make it a

powerful language for a wide range of applications across different domains.
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4.2.2.2 The IDEs and text editors used

We use notebook editors like Jupyter and Google Colab for writing our Python AI

model code.

Google Colab: Google Colab, short for Google Colaboratory, is a cloud-based platform

by Google designed for writing and executing Python code directly in a web browser. It

offers a versatile environment with integrated access to Google Drive, allowing seamless

collaboration and sharing of notebooks. Colab provides free GPU and TPU acceleration,

making it ideal for training machine learning models efficiently. It comes pre-installed

with popular Python libraries like NumPy, Pandas, Matplotlib, and TensorFlow.

Figure 4.3: google collab logo

facilitating data analysis and machine learning tasks. Users can interactively write

and execute code cells, view outputs, and document their work using markdown text,

similar to Jupyter notebooks. This platform supports real-time collaboration, enabling

teams to work together on projects and share insights effortlessly. Overall, Google Colab

is a powerful tool for researchers, educators, and data scientists seeking a cloud-based

solution for prototyping, developing, and deploying machine learning projects without

the need for local hardware resources.
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Jupyter: Jupyter Notebook, an open-source web application, provides an interactive

environment for writing and executing Python code, markdown text, and visualizations.

It allows users to create and share documents (notebooks) containing live code, equations,

visualizations, and narrative text.

Figure 4.4: jupyter logo

Jupyter supports over 40 programming languages, including Python, and is widely

used in data science, scientific computing, and machine learning for its flexibility and ease

of use. Notebooks can be run on local machines or hosted on cloud platforms like Google

Colab, offering a versatile solution for data exploration, prototyping, and collaborative

research.

4.2.2.3 The programming language libraries used

We have used the following libraries in our approaches

OpenCV: OpenCV (Open Source Computer Vision Library) is an open-source com-

puter vision and machine learning software library. It provides a wide range of algorithms

and tools for tasks such as image and video processing, object detection, feature extrac-

tion, motion tracking, and more. OpenCV is widely used in research, academia, and

industry due to its comprehensive functionality and efficient implementation in C++,

Python, and other programming languages. It supports various platforms including Win-

dows, Linux, macOS, Android, and iOS, making it versatile for developing computer

vision applications across different environments.

55



Chapitre 4 Experimentation, results and discussion

Figure 4.5: OpenCV

NumPy: NumPy (Numerical Python) is a fundamental package for numerical comput-

ing in Python. It provides support for large, multi-dimensional arrays and matrices, along

with a collection of mathematical functions to operate on these arrays. NumPy’s primary

object is the ndarray (N-dimensional array), which is a flexible data structure that al-

lows efficient computation with large datasets. NumPy also includes tools for integrating

C/C++ and Fortran code, making it suitable for scientific and numerical computations.

It is widely used in areas such as machine learning, data science, engineering, and scientific

research due to its efficiency and ease of use.

Figure 4.6: NumPy logo

Matplotlib: Matplotlib is a comprehensive library for creating static, animated, and

interactive visualizations in Python. It is designed to generate plots, histograms, power

spectra, bar charts, error charts, scatterplots, etc., with just a few lines of code. Matplotlib

is highly customizable and supports various output formats, including PNG, PDF, SVG,

and interactive web-based graphics. It is widely used for data visualization in fields such

as data science, machine learning, engineering, and scientific research due to its flexibility

and extensive capabilities
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Figure 4.7: Matplotlib logo

TensorFlow: TensorFlow is an open-source machine learning platform originally cre-

ated by researchers at Google. It is a library of symbolic mathematics that utilizes data

flow and differentiable programming to perform various tasks focused on training and in-

ference of deep neural networks. TensorFlow enables developers to build machine learning

applications using a variety of tools, libraries, and community resources [2].

Figure 4.8: TensorFlow ogo

4.2.2.4 APIs

Keras: Keras is a Python-based neural network API. It is an open-source library that

seamlessly integrates with TensorFlow, facilitating the creation of neural network layers

and the implementation of complex architectures with ease [8].

Figure 4.9: Keras Logo

4.2.2.5 Cloud

Cloud computing refers to the delivery of computing services over the internet, in-

cluding storage, processing power, databases, networking, software, and analytics. These

services are provided by cloud service providers like Amazon Web Services (AWS), Google

Cloud Platform (GCP), and Microsoft Azure, allowing users to access and use resources
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on-demand, without the need to manage physical hardware or infrastructure. Cloud com-

puting offers scalability, flexibility, and cost-efficiency, enabling businesses and individuals

to deploy and manage applications and services with ease, pay only for what they use,

and access their data from anywhere with an internet connection.

Google Drive: Google Drive is a cloud-based file storage and synchronization service

provided by Google. It allows you to store files and folders, share them with collaborators,

and access them from any device. Whether you’re using it for personal use or as part

of a business (Google Workspace), Google Drive offers seamless integration with other

tools and applications. You can sign in to Google Drive using your Google account or

Google Workspace account12. It’s a convenient platform for managing and collaborating

on documents, spreadsheets, presentations, and more![37]

Figure 4.10: Google Drivelogo

4.3 Databases for kinship verification

Cornell Kinship[38]: The Cornell Kinship Database is a collection of 286 facial images

related to 143 subject pairs. Here are some key details about this dataset:

• Number of Images: 286

• Subject Pairs: 143

• Pose: Frontal

• Expression: Neutral

The KinFaceW-I[34]: database is a collection of 1066 facial images corresponding to

533 kin pairs. Here’s a breakdown of the kin pair images:
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• Father-Son: 156 pairs

• Father-Daughter: 134 pairs

• Mother-Son: 116 pairs

• Mother-Daughter: 127 pairs

KinFaceW-II[34]: The KinFaceW-II dataset is designed such that images of kin pairs

are acquired from the same photograph. Here are the key details:

• Number of Images: 1000 kin pair images

• Kinship Relationships:

– Father-Son (F-S)

– Father-Daughter (F-D)

– Mother-Son (M-S)

– Mother-Daughter (M-D)

UB KinFace [39]: database is a valuable resource for kinship verification and recogni-

tion algorithms. Here are the key details:

• Number of Groups: 200

• Total Images: 600

• Composition of Each Group:

– Child image

– Young parent image

– Old parent image

• Kinship Relationships:

– Father-Son: 91 pairs

– Father-Daughter: 79 pairs

– Mother-Son: 15 pairs

– Mother-Daughter: 21 pairs
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Family 101 [36]: The Family101 dataset is a large-scale collection of families across

several generations. Here are the key details:

• Number of Families: 101

• Distinct Family Names: Included

• Nuclear Families: 206

• Individuals: 607

• Total Images: 14,816

Family101e [36]: The Family101 dataset is a large-scale collection of families across

several generations. It contains 101 different families with distinct family names, including

206 nuclear families and 607 individuals. In total, there are 14,816 images in this dataset.

Researchers often use this dataset for family classification tasks

TSKinFace[40]: The TSKinFace database is a valuable resource for tri-subject kinship

verification. Here are the key details:

• Number of Images (FM-S): 513 (Father, Mother, and Son groups)

• Number of Images (FM-D): 502 (Father, Mother, and Daughter groups)

Dataset

Number

of Fami-

lies

Number

of Per-

sons

Number

of Faces
Resolution

Age Vari-

ation

Family

Tree

CornellKin 150 300 300 100*100 No No

UB Kinface 200 400 600 89*96 Yes No

KinfaceW-I - 533 1066 64*64 No No

KinfaceW-II - 1000 2000 64*64 No No

TS kinface 787 2589 - 64*64 Yes Yes

Family101 101 607 14816 100*100 Yes Yes

Table 4.1: Summary of kinship datasets in the literature [4].
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Figure 4.11: Sample images from six different data sources: Cornell KinFace, TSKinFace,

KinFaceW, Family 101, and UBKinFace.

4.3.1 Database Used

We utilized the KinFaceW-II database. The facial images were collected from the

internet, including those of public figures as well as their parents or children. These

images were captured in uncontrolled environments without any restrictions on pose,

lighting, background, expression, age, ethnicity, or partial occlusion. The dataset includes

four kinship relations: Father-Son (F-S), Father-Daughter (F-D), Mother-Son (M-S), and

Mother-Daughter (M-D). Each relationship in the KinFaceW-II dataset contains 250 pairs
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of kinship images. To facilitate usage, we manually labeled the coordinates of the eye

positions for each facial image, then aligned and cropped the face region to 64x64 pixels

to remove the background. Figures 4.1 below show some cropped face images from the

KinFaceW-II dataset[41].

Figure 4.12: Different types of relationships.

In addition to these steps, we implemented advanced preprocessing techniques to en-

hance the quality of the images, ensuring better performance for kinship verification tasks.

This comprehensive dataset is invaluable for research in facial recognition and kinship ver-

ification, providing a robust benchmark for developing and testing new algorithms.

4.4 Evaluation

4.4.1 Methodology for Evaluation

4.4.1.1 The holdout method:

the data set is divided into two subsets: the training subset and the test subset[2].
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Figure 4.13: Holdout method

-This method has some disadvantages:

• Test error rates are highly variable and depend totally on observations which are

found in the training set and the test set.

• Only part of the data is used to construct the model.

One of the main advantages of this method is that it is inexpensive in terms of calcu-

lation compared to other cross-validation techniques.

4.4.1.2 K-fold cross validation:

• The data set is divided into k sets of almost equal sizes.

• The first set is selected as the test set and the model is trained on the remaining

k-1 sets.

• In the second iteration, the second set is selected as test set and the remaining k-1

sets are used to learning.

• This process continues for all k sets.[2]
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Figure 4.14: K-fold cross validation[2]

Evaluation Methods

Accuracy

• Definition: Accuracy measures how often the model correctly predicts the outcome.

It is calculated as the ratio of correct predictions to the total number of predictions

made.

• Formula: Accuracy = Number of Correct Predictions
Total Number of Predictions

• Usage: Accuracy is suitable when the classes are balanced, meaning there is an

equal number of instances for each class.

Precision

• Definition: Precision measures the proportion of true positive predictions among

the instances predicted as positive. It focuses on the accuracy of positive predictions.

• Formula: Precision = True Positives
True Positives+False Positives

• Usage: Precision is useful when the cost of false positives is high, and we want to

ensure that the positive predictions are accurate.

4.5 Experiment

Due to the significant variations in faces between parents and sons, verifying kinship is

particularly difficult. Accurate feature extraction can alleviate this difficulty.
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Chapitre 4 Experimentation, results and discussion

Different feature extraction methods were applied in our experiment. Among these,

we used approaches based on the application of filters, histogram descriptors, and some-

times techniques involving image patches. We also explored feature fusion and algorithm

combination.

The resulting elements of these approaches have been examined in detail. Additionally,

some of the solutions proposed to resolve this issue have been summarized.
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- In our research, we have incorporated a novel kinship verification learning approach

to enhance the accuracy and robustness of our system. This approach involves several

key components and methodologies:

(a) -First, extract image characteristics using histograms after applying filters such as

LBP (Local Binary Patterns), LPQ (Local Phase Quantization), and 2DFFT (2-

dimensional Fast Fourier Transform) (HOG....) . Next, label these characteristics

and input them into a classification algorithm (SVM ...). Finally, evaluate the

model’s performance.

(b) -In this, extract image features using patches of the images and combine static

features into a single concatenated vector. After labeling these concatenated vectors,

input them into the SVM classification algorithm, followed by the classification step.

(c) -In this system, we use a pretrained model such as VGG16 or ResNet for feature

extraction using deep learning neural networks. We discard the last layers of these

models and input the features into an SVM after labeling them. Following the

evaluation step.

(d) -In this expriment, we explore the fusion of extracted features from VGG16 with

patches, VGG16 with HOG (Histogram of Oriented Gradients), patches with filters,

and HOG with patche.

(e) -In this expriment, we explore the fusion of extracted features from VGG16 with

patches, VGG16 with HOG (Histogram of Oriented Gradients), patches with filters,

and HOG with patche.

(f) -Finally, we utilize VGG16 as a pretrained model to fuse two images into one image,

assign labels, train the model, and evaluate its performance.

4.5.1 Experiment Setting:

For our methods, we initially evaluate precision or accuracy. Subsequently, we adjust

several settings, such as varying the number of image patches, The size of the local window

(usually a square, e.g., 3x3, 5x5) that is used to compute the local phase information in

LBP ,LPQ,Frequency Spread,Fourier Transform.. .
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modifying the distance between images, and exploring different SVM types like linear

and polynomial kernels with varying degrees. We also adjust the number of iterations for

training the CNN model to prevent overfitting. We observe changes in these settings and

their impact on the F-S relationship, and subsequently apply them to other relationships

like F-D, M-D, and M-S.

4.6 Test and Result

To check the operation of our system and evaluate its performance, we applied the eval-

uation methods mentioned above. We will show in the tables below the divergence of re-

sults for various parameters with several feature extraction models, including hand-crafted

features like LBP, BSIF, FFT, as well as deep learning features like CNN (Convolutional

Neural Network), VGG16, ResNet50, and patches with statistical features

In this table, we show all our approach tables during our study in the KinFaceW-II

dataset for father-son relationships.

Databases Ref. Approach Accuracy

KinFaceW-II

[42] NRCLM 65.80%

[43] DKV 66.90%

[34] MNRML 69.90%

[44] CJLBP 54.075%

[45] LPQ-ML 75.98%

[11] SSL 75.00%

[46] GLCM 69.4%

[47] SSL 78.00%

[46] ALEXNET+KNN 74.05%

[48] LBP+PML 76.36%

KinFaceW-II

Proposed Approach PATCH+STATIC+SVM 78.05%

Proposed Approach VGG16+SVM 67.85%

Proposed Approach CNN (VGG16) 79.09%

Table 4.2: Comparison of different approaches on the KinFaceW-I and KinFaceW-II

databases
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Here,show how to use the k-fold method for measuring accuracy using a combina-

tion of patch , feature extraction (static features), and Support Vector Machine (SVM)

classification

illustrate a learning curve

(a) FD (b) FS

(c) MD (d) MS

Figure 4.15: Learning curve for 04 relationship for SVM
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Figure 4.16: Learning curve for FS relationship for SVM

4.7 Conclusion

Our experiments, conducted on the KinFaceW-II dataset, confirmed the robustness of

these approaches in different kinship pairings (Father-Son, Father-Daughter, Mother-Son,

Mother-Daughter), despite challenges such as low-resolution images. We also presented

a detailed comparison of our results with those obtained from other approaches, demon-

strating that our methods outperformed others in terms of accuracy and reliability. These

findings underscore the potential of deep learning and machine learning models in suc-

cessfully verifying kinship from visual data, offering promising avenues for future research

and application in this domain.
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General Conclusion

The objective of this memory was to develop an automated system for determining

familial relationships between individuals. This task is critical in various domains, in-

cluding biometrics, where facial verification serves as a soft biometric method. Our focus

was specifically on verifying parentage automatically using machine learning techniques.

We explored several analytical approaches, particularly leveraging pretrained models for

feature extraction from facial patches, followed by SVM classification.

The methods were validated using the Kin Face in the Wild-II (KinFaceW-II) dataset

and implemented in Python. Our system employed deep learning architectures like

VGG16 and ResNet for CNN-based classification, which are adept at extracting com-

plex features from image patches, thus achieving high precision performance.

Parentage verification plays a vital role in social applications such as genealogy con-

struction, family album organization, image annotation, missing children identification,

and forensics. While DNA testing remains the gold standard for accuracy, it is impracti-

cal for scenarios involving automatic facial image verification, such as surveillance footage

analysis.

Our work aimed to deploy a convolutional neural network (CNN) based system for au-

tomated parentage verification, offering a robust alternative in scenarios where traditional

methods are not feasible.
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Abstract

Kinship verification from facial images has emerged as a significant area of research

in computer vision, with growing interest due to its wide range of applications. Auto-

matically determining whether two individuals share a biological relationship based solely

on their facial features holds potential in fields such as family tree reconstruction, orga-

nizing family photo albums, annotating images, locating missing persons, and forensic

investigations.

This project aims to design and implement a robust artificial intelligence model for

kinship verification by leveraging biometric traits, particularly facial features. Utilizing

advancements in machine learning, pattern recognition, and statistical analysis, the goal

is to accurately determine familial relationships between individuals. The key stages

of the project include data collection, preprocessing, feature extraction, model training,

and evaluation. Our approach focuses on the KIN Face II dataset, employing advanced

preprocessing techniques to enhance image quality, followed by deep CNN-based feature

extraction to identify kinship-related patterns. The final model is trained to learn dis-

criminative features that effectively distinguish kin from non-kin.

The expected outcome of this work is a reliable and high-performing model for kinship

verification, contributing to the broader scope of biometric identification systems and

offering practical solutions for various real-world applications.

Keywords: Kinship Verification, CNN, Feature Extraction, Machine Learn-

ing, KIN Face II Dataset.
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