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Abstract

Abstract

Diabetes is a critical global health issue affecting millions worldwide, with cases steadily
increasing. Our research focuses on blood glucose levels prediction using a CRNN (Convolu-
tional Recurrent Neural Network) model applied to a newly accessible and extensive dataset,
”HUPA-UCM Diabetes,” aiming to identify hyperglycemia and hypoglycemia events to en-
hance diabetes management accurately. This hybrid model integrates CNN and LSTM layers
to effectively capture spatial and temporal dependencies in the data, achieving superior accu-
racy. It utilizes variables such as time, glucose, calories, heart rate, steps, basal rate, bolus
volume delivered, and carb input. Our model demonstrated an RMSE value of 3.20 on the test-
ing set, outperforming our state-of-the-art. Furthermore, real-time processing, implemented at
five-minute intervals, ensures immediate responses to blood sugar variations with an RMSE of
4.63, improving patient outcomes.

Keywords: Diabetes, hyperglycemia, hypoglycemia, blood glucose levels prediction, CRNN
model, CNN, LSTM layers, real-time processing, glucose monitoring system.

Résumé

Le diabète est un problème de santé mondial critique qui touche des millions de personnes
dans le monde et dont le nombre de cas ne cesse d’augmenter. Notre recherche porte sur la
prédiction de la glycémie à l’aide d’un modèle CRNN (Convolutional Recurrent Neural Net-
work) appliqué à un ensemble de données étendu et nouvellement accessible, ”HUPA-UCM Di-
abetes”, visant à identifier les événements d’hyperglycémie et d’hypoglycémie afin d’améliorer
la gestion du diabète de manière précise. Ce modèle hybride intègre des couches CNN et
LSTM pour capturer efficacement les dépendances spatiales et temporelles dans les données et
atteindre une précision supérieure. Il utilise des variables telles que le temps, le glucose, les
calories, la fréquence cardiaque, les pas, le débit de base, le volume de bolus délivré et l’apport
en glucides. Notre modèle a démontré une valeur de l’erreur quadratique moyenne de 3,20 sur
l’ensemble des tests, surpassant l’état de l’art. En outre, le traitement en temps réel, mis en
œuvre à des intervalles de cinq minutes, garantit des réponses immédiates aux variations de la
glycémie avec une erreur quadratique moyenne de 4,63, ce qui améliore les résultats pour le
patient.

Mots-clés: Diabète, hyperglycémie, hypoglycémie, prédiction du glycémie, modèle CRNN,
CNN, couches LSTM, traitement en temps réel, système de surveillance du glucose.
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General Introduction

Diabetes, a complex metabolic disease, has emerged as one of the leading global public health
concerns, affecting millions of individuals worldwide. This chronic disorder, characterized by
imbalanced blood sugar levels, manifests in various forms, yet its devastating impact on indi-
vidual health is universally recognized. Its complications, including cardiovascular diseases,
nerve damage, and vision problems, can significantly impair patients’ quality of life and even
threaten their lives.[39]

Over the past decade, the prevalence of diabetes has sharply increased in Algeria. A sub-
stantial portion of the population is either diabetic or at high risk of developing the disease due
to the numerous risk factors prevalent within the community, such as obesity, inactivity, and
hereditary vulnerability to the disease.[35]

Since its first description by the Greek physician Aretaeus of Cappadocia in the first century
AD, to the contemporary work of eminent researchers like Sir Frederick Banting and Dr. Elliot
Joslin, this silent killer has been at the center of extensive research aimed at understanding its
mechanisms, improving treatments, and devising effective prevention strategies.[11]

In this context, it becomes crucial to take proactive measures to manage this disease effec-
tively. This includes not only regular monitoring of blood glucose levels but also the ability to
predict hyperglycemia and hypoglycemia episodes before they occur. Such anticipation would
empower individuals with diabetes to take timely preventive actions, thereby reducing the risks
of severe complications.

It is against this backdrop that our project takes on its significance. We are committed to
developing a hyperglycemia and hypoglycemia prediction model, aiming to facilitate the daily
management of this chronic disease. Our objective is to provide diabetic individuals with a
reliable and accessible tool, capable of alerting them to potential abnormal glycemic events.

Several studies focus on this objective, with meta-analyses highlighting the power of ma-
chine learning and deep learning capabilities and their evaluation performances. In 2018, Ganjar
Alfian et al.[10] obtained Root Mean Square Error (RMSE) of ’25.621’. In 2020, Kezhi Li et
al.[27] achieved an RMSE of ’9.38’. In 2023, Francesca Iacono, Lalo Magni, and Chiara Tof-
fanin [19] demonstrated an RMSE value prediction of ’6.45’. There are many other studies,
each with its specific dataset and key findings.

Our work investigates the development of a practical and dependable machine learning-
based prediction tool to enhance the quality of life for diabetic patients. We hope to contribute,
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to making diabetes management more effective and less burdensome for those affected by this
condition.

The chapters of our thesis are:

chapter 1: This chapter contains notions and subjects that concern our study, diabetes and it’s
types, its complications, diabetes in numbers, machine learning and deep learning.

chapter 2: This chapter discusses various works made on the prediction of diabetes, we explain
the approaches of the studies and their results by developing a state of art.

chapter 3: This chapter focuses on our contribution for predicting hypoglycemia and hyper-
glycemia for diabetes patients. We begin by explicating the theoretical foundations that
underpin our proposed approach, followed by the methodological framework and reasons
of the selected evaluation techniques.

chapter 4: This chapter provides both the experimental phase and the evaluation of our pro-
posed prediction model. It includes a detailed description of the dataset used, hardware
and software environment, and a comprehensive explanation of the phases involved in
implementing our approach.
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1
From Diabetes in Clinical Context to Blood
Glucose Prediction using Machine Learning

Introduction
In the medical field, diabetes represents a major public health challenge, affecting over 500
million people worldwide, a number that is projected to more than double to reach 1.3 billion
cases over the next 30 years. This chronic disease, characterized by a dysfunction in glucose
metabolism, requires constant and precise management to prevent its complications. In re-
sponse to this challenge, machine learning is emerging as a revolutionary tool, offering new
perspectives for the prevention and treatment of diabetes[38].

Machine learning refers to a set of techniques that enable a machine to learn from data with-
out being explicitly programmed. This field of artificial intelligence has its origins as far back
as the 1950s with the emergence of the first neural network algorithms. Since then, numerous
advancements have been made with the development of deep learning in the 2000s [24]. Al-
gorithms now analyze patient data to predict the onset of diabetes or detect its complications.
Machine learning also enables the analysis of the influence of various factors on the disease to
improve treatments and the quality of life of patients.

In this chapter, we focus on the medical description of diabetes, its various types, its com-
plications, as well as the analysis of blood glucose results and its distribution. Finally, we
will present a summary of the methodological approach to predicting hyperglycemia and hypo-
glycemia through machine learning.



2023-2024
U

A
M
B

Data Sciences master thesis

1.1 Problematic 4

1.1 Problematic
Diabetes, a serious disease that can provoke a lot of long-term complications such as cardiovas-
cular diseases, kidney damage, vision problems, nerve damage, and foot ulcers. Consequently,
rapid and accurate diagnosis and treatment are the main points to diabetes management.

In 2014, 8.5% of adults aged 18 and older had diabetes. In 2019, diabetes around the globe
was the direct cause of 1.5 million deaths, and 48% of all diabetes-related deaths occurred be-
fore the age of 70. Additionally, 460,000 other deaths from kidney disease were caused by
diabetes, and hyperglycemia is responsible for about 20% of deaths from cardiovascular dis-
eases [36].

For these reasons, this work focuses on developing a robust predictive model to forecast
episodes of hyperglycemia and hypoglycemia before they occur. How can we further improve
the accuracy of these predictions? What are the next steps in integrating these systems into
daily medical practice?

1.2 Diabetes

1.2.1 Definition
Diabetes is a chronic disease that occurs either when the pancreas does not produce enough
insulin or when the body cannot effectively use the insulin it produces [39]. Insulin, discovered
in 1921 by Canadian researchers Frederick Banting and Charles Best, as detailed in Michael
Bliss’s book ”The Discovery of Insulin,” is a hormone produced by the beta cells of the pan-
creas, a gland located behind the stomach. Insulin acts like a key, allowing glucose to enter
cells, where it is used as an energy source or stored as glycogen in the liver and muscles. When
there is insufficient insulin production or resistance to this hormone, the body cannot prop-
erly regulate blood glucose, resulting in abnormally high blood glucose levels, also known as
hyperglycemia.[11]

According to the World Health Organization, diabetes mellitus is defined as a state of per-
manent hyperglycemia with fasting blood glucose levels greater than or equal to 1.26 g/l (7
mmol/l) on two occasions and/or greater than or equal to 2 g/l (11 mmol/l) at any time of the
day.[39]

1.2.2 History
For 2,000 years, diabetes has stood as a formidable and often fatal disease. As far back as the
first century A.D., Greek physician Aretaeus recognized its devastating effects, coining the term
”diabetes” from the Greek word for ”siphon.” Despite this early understanding, ancient physi-
cians like Aretaeus lacked effective treatments for the condition.[50]

In the mid-17th century, London physician Dr. Thomas Willis diagnosed diabetes melli-
tus by tasting his patients’ urine for sweetness—a method that persisted until the 20th century.
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Figure 1.1: Pancreas Location [2]

Before the discovery of insulin, treatment options were limited. While low-calorie diets could
extend life, they often left patients weakened and on the brink of starvation.[50]

However, a pivotal moment arrived in 1921 when Canadian doctors administered insulin
to patients in critical condition, successfully normalizing their blood sugar levels. This break-
through marked the beginning of a series of medical advancements aimed at improving the lives
of those with diabetes.[50]

In the 1950s, researchers identified two distinct types of diabetes: ”insulin-sensitive” (type
I) and ”insulin-insensitive” (type II). Despite millennia of progress, the quest for a cure remains
ongoing. From the mysterious sickness described by Aretaeus to the groundbreaking discovery
of insulin in a Canadian laboratory, each generation of physicians and scientists has contributed
to our understanding of diabetes.[50]

As we enter the 21st century, diabetes researchers continue to push forward, uncertain of the
exact path ahead. Whether through another revolutionary discovery akin to insulin or through
incremental progress, the journey toward a cure for diabetes persists.

1.2.3 Hyperglycemia and Hypoglycemia
Understanding the phenomena of hyperglycemia and hypoglycemia relies on a thorough under-
standing of the basics of carbohydrate metabolism and the action of insulin.

After food consumption, carbohydrates are broken down into glucose molecules in the in-
testine, which are then absorbed into the bloodstream, elevating blood glucose levels. This
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increase in blood sugar stimulates the secretion of insulin by the pancreatic beta cells. Insulin
is crucial for most cells to take up glucose. It binds to specific cellular receptors and facilitates
glucose entry into the cell, where it is utilized as an energy source.

Figure 1.2: The Normal Use of Glucose [5]

The increased insulin secretion by the pancreas and subsequent utilization of glucose by
cells lead to a decrease in blood glucose levels. Lower glucose levels then result in a decrease
in insulin secretion. If insulin production and secretion are altered by disease, blood glucose
dynamics will also change. A decrease in insulin production will hinder glucose entry into cells,
resulting in hyperglycemia. The same effect occurs if insulin is secreted by the pancreas but not
utilized properly by target cells. If insulin secretion is increased, blood glucose levels can be-
come very low (hypoglycemia) as large amounts of glucose enter tissue cells and little remains
in the bloodstream. Several hormones can affect glycemia, but insulin is the only hormone that
lowers blood glucose levels. Counter-regulatory hormones such as glucagon, catecholamines,
growth hormone, thyroid hormone, and glucocorticoids all act to increase blood glucose levels,
alongside their other effects.

Figure 1.3: Glucose Levels in The Blood [3]

1.2.4 Analysis of blood sugar results
Blood glucose, the level of glucose in the blood, is an essential parameter to analyze in any
patient suspected of or already diagnosed with diabetes. Its regular measurement through self-
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monitoring or in a laboratory is indispensable for disease management.

In a non-diabetic patient, fasting blood glucose should be below 1.26 g/L (7 mmol/L). Be-
tween 1.26 g/L and 2 g/L (11.1 mmol/L), fasting hyperglycemia indicates prediabetes. Beyond
2 g/L, the diagnosis of diabetes is confirmed. After an oral glucose tolerance test, a blood glu-
cose level above 2 g/L also confirms diabetes.
[39]

In monitoring, analyzing capillary blood glucose results through self-monitoring 3 to 4 times
a day, or even continuously for some patients, is crucial. It guides dosage adjustments of treat-
ments (insulin or oral antidiabetic agents), adjustments to diet, and physical exercise.

Analyzing results of glycated hemoglobin (HbA1c), reflecting the overall glycemic balance
of the past three months, is also crucial every 3 to 6 months. A level below 7% is recom-
mended by many medical organizations to minimize the risk of long-term complications asso-
ciated with diabetes. However, exceeding this target level increases the risk of developing these
complications.[39]

Thus, precise and regular analysis of glycemic indicators is the key to optimal diabetes
management.

1.2.5 Classification of diabetes
Diabetes is a complex disease that manifests in various forms. The two main types of diabetes,
known as type 1 and type 2 diabetes, differ in their etiology, pathophysiology, and management.
While type 1 diabetes results from autoimmune destruction of the pancreatic beta cells, leading
to insulin deficiency, type 2 diabetes is characterized by insulin resistance and decreased insulin
secretion. In addition to these two main types, there are other less common forms of diabetes,
such as gestational diabetes and monogenic forms.

Figure 1.4: Types of Diabetes [1]
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Type 1 Diabetes

Type 1 diabetes, also known as insulin-dependent or juvenile diabetes, is characterized by low
insulin production, requiring daily insulin injections. This autoimmune diabetes typically af-
fects children and young adults, caused by the destruction of pancreatic cells that produce
insulin. This leads to an absolute insulin deficiency, requiring lifelong insulin injections for sur-
vival. Without insulin, the body cannot use glucose as an energy source. While not preventable
or curable, optimal control of diet, physical activity, and blood sugar can help prevent compli-
cations. According to the WHO, in 2017, 9 million people were affected by type 1 diabetes.[20]

Type 2 Diabetes

This is the most common form (90% of cases) resulting from the body’s poor use of insulin
(insulin resistance) and progressive depletion of pancreatic cells. This leads to chronic hyper-
glycemia with devastating complications (renal, ocular, neurological, cardiovascular). Often
diagnosed late, this diabetes can sometimes be prevented by lifestyle changes. Type 2 diabetes
is often preventable by adopting a healthy lifestyle. Contributing factors to its development
include overweight, lack of exercise, and genetic predisposition. Symptoms of type 2 diabetes
may be mild and unnoticed for several years. Although they may resemble those of type 1 dia-
betes, they are generally less pronounced. Therefore, the disease diagnosis may be delayed by
several years, allowing complications to develop before being detected.[20]

Gestational Diabetes

It occurs during pregnancy in women with no known diabetes. Caused by hormonal changes, it
exposes complications during pregnancy and childbirth. After delivery, it usually disappears but
is associated with a high risk of developing type 2 diabetes in the following years. Screening
is recommended during pregnancy. Gestational diabetes is characterized by the occurrence
of hyperglycemia, meaning an elevation of glucose concentration in the blood above normal
values, but at levels lower than those leading to the diagnosis of diabetes. Gestational diabetes
is very often diagnosed during prenatal screening and not due to the onset of symptoms.[20]

1.2.6 Diabetes Complications
According to the International Diabetes Federation, the following statistics highlight the com-
plications associated with diabetes:

• People with diabetes are up to three times more likely to develop cardiovascular disease.

• One in three people with diabetes will develop some form of vision loss during their
lifetime

• Kidney failure is ten times more common in diabetics.

• Every 30 seconds, a lower limb is lost due to diabetes somewhere in the world

Diabetes leads to various serious complications, underscoring the risks associated with this
chronic disease.
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Cardiovascular Disease (CVD):

Such as heart attacks and strokes, are the leading cause of death among people with diabetes.
Risk factors such as hypertension, hypercholesterolemia, and hyperglycemia significantly in-
crease cardiovascular complications.

Eye Disease:

Including diabetic retinopathy, can lead to vision loss up to blindness. Hyperglycemia, hy-
pertension, and hypercholesterolemia are key factors in the development of this complication,
emphasizing the importance of regular eye checks.

Kidney Disease:

Resulting from damage to small blood vessels in the kidneys, leads to inefficient kidney function
or kidney failure. Maintaining normal glucose and blood pressure levels significantly reduces
the risk of kidney disease in people with diabetes.

Non-Alcoholic Fatty Liver Disease (NAFLD/NASH):

Non-alcoholic fatty liver disease (NAFLD) is linked to obesity and increased risk of type 2
diabetes. It can progress to non-alcoholic steatohepatitis (NASH), inducing inflammation and
liver damage.

Nerve Disease:

Or Diabetic Neuropathy is caused by hyperglycemia and hypertension, damages nerves and
affects digestion, erectile function, and extremities. However, preventing amputations requires
comprehensive management and regular examinations.

Oral Complications:

Such as periodontitis (gingivitis), increase the risk of cardiovascular diseases. Regular oral
examinations help detect these complications in a timely manner.

Diabetes during Pregnancy:

increases risks for the fetus, with potential complications, highlighting the need to achieve
glycemic goals in women with type 1 and type 2 diabetes before conception to minimize risks.
Additionally, high blood sugar can lead to fetal overweight and delivery complications, and in-
crease the risk of the child developing diabetes in the future.

These elements emphasize the crucial importance of proactive diabetes management to pre-
vent these potentially serious complications.
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1.2.7 Diabetes in numbers
Based on the International Diabetes Federation’s statistics in 2021, along with other sources,
the following figures can be highlighted:

Diabetes Worldwide

• Approximately 537 million adults (aged 20-79) are living with diabetes.

• The total number of people with diabetes is projected to reach 643 million by 2030 and
783 million by 2045.

• Three out of four adults with diabetes live in low- to middle-income countries.

Diabetes in the MENA Region (Middle East and North Africa)

A total of 31 data sources from 18 countries were used to estimate the prevalence of diabetes
among adults aged 20 to 79 in the region. Afghanistan, Bahrain, Egypt, Jordan, Lebanon,
Morocco, Pakistan, and Tunisia were studied over the past five years.

• The MENA region has the highest regional prevalence, at 16.2%, and the second-highest
projected increase (86%) in the number of people with diabetes, reaching 136 million by
2045.

• The MENA region records the highest percentage (24.5%) of diabetes-related deaths
among working-age people.

• Only $32.6 billion USD has been spent on diabetes in the MENA region, representing
3.4% of the global total, despite the region being home to 13.6% of people with diabetes
worldwide.

Diabetes in Algeria

According to the International Diabetes Federation´s latest figures, the incidence of diabetes
in Algeria has increased to 7.2% of people aged from 20 to 79, or one adult every 16 people.
Algeria is one of the top ten countries in the world for both the number of children with type 1
diabetes and the number of new cases of type 1 diabetes [35]. As a result, improving diabetes
management remains a national public health priority.

1.3 Machine learning

1.3.1 Definition
Across history, human ingenuity has driven the creation of diverse tools – from machines that
facilitate transportation and industrial processes to those that power computation – all in pursuit
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Figure 1.5: Global distribution of diabetes [20]

of a better quality of life. Among these advancements, machine learning stands out as a trans-
formative force.

Arthur Samuel defines machine learning as ”the scientific discipline that enables computers
to learn without being explicitly programmed.” Samuel gained renown for his checkers-playing
program, which exemplified this concept. Machine learning (ML) is employed to teach ma-
chines how to efficiently handle data. At times, despite our efforts to analyze data, deciphering
its meaning remains elusive. In such cases, machine learning comes into play, addressing the
need to glean insights from complex datasets. The demand for machine learning algorithms has
surged in response to the proliferation of datasets [28].

1.3.2 Types of Machine learning
There are several types of machine learning, each suited to specific situations and goals. Here
are some described in the figure 1.6

Supervised Learning

Supervised learning involves learning a function that maps input parameters to an outcome us-
ing sample input-output pairs. It is a machine learning approach that relies on labeled training
data, comprising examples with known outcomes, to deduce a function. Algorithms falling
under supervised machine learning require external guidance. Train and test datasets are de-
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rived from the input data, with the output variable in the train dataset requiring prediction or
categorization[22].

Unsupervised Learning

Unsupervised learning is characterized by the absence of labeled data and external guidance,
contrasting with supervised learning. In this approach, algorithms autonomously identify and
reveal patterns within data. Unsupervised learning algorithms extract features from the data,
and when new data is introduced, they utilize previously learned features to recognize data
classes. It is often employed for dimensionality reduction and clustering[22].

Semi-Supervised Learning

Semi-supervised machine learning integrates aspects of both supervised and unsupervised meth-
ods. It is particularly beneficial in scenarios where obtaining labeled data is challenging or
resource-intensive. With the prevalence of supervised machine learning techniques, algorithms
are trained on labeled datasets, but leveraging existing unlabeled data. Various algorithms exist
within the realm of semi-supervised learning, offering a hybrid approach[47].

Reinforcement Learning

Reinforcement learning explores how software agents should act within environments to max-
imize cumulative rewards. It is one of the fundamental paradigms of machine learning, along-
side supervised and unsupervised learning. Reinforcement learning agents learn through trial
and error, receiving feedback based on actions taken within an environment, aiming to optimize
long-term outcomes[22].
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Figure 1.6: Machine Learning Types [29]
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1.4 Deep learning

Figure 1.7: Deep learning

Among machine learning techniques, one of the subgroups that has emerged in recent years
is deep learning (DL). Deep learning, known as deep neural networks, is a machine learning
approach that emulates the structure of the human brain. Thus, deep neural networks can be
used to solve complex problems in a very precise way.

Traditional ML algorithms often rely on handcrafted features, requiring domain expertise
for tasks like spam email classification. This process can be time-consuming and limit us-
ability. Deep learning models, on the other hand, bypass this step. By employing layers of
interconnected neurons, DL models can automatically extract relevant features directly from
raw data, such as email text.

The rise of deep learning can be attributed to two key factors: advancements in computing
power and the increasing availability of data. Powerful hardware, particularly graphics pro-
cessing units (GPUs) and distributed computing architectures, has significantly accelerated the
training process for deep learning models. Additionally, the development of large datasets and
advanced software libraries like TensorFlow and PyTorch has empowered researchers and prac-
titioners to develop and train these models more efficiently.

DL has shown its effectiveness in various fields, such as medicine, computer vision, natural
language processing, speech recognition and many others. For example, convolutional neural
networks (CNN) are frequently used to extract local features from time series, while recurrent
neural networks (RNN) and transformers are particularly well-suited to sequential tasks, cap-
turing long-range dependencies and time series analysis.

Conclusion
This chapter has provided a comprehensive overview of the general concepts related to diabetes
and its different types, complications, diabetes in numbers, definition of machine learning and
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deep learning. Machine learning and deep learning, two innovative and very promising areas to
advance our understanding of diabetes, improve its fluctuations and treatment, and ultimately
improve the quality of life of people affected by this omnipresent disease. In the next chap-
ter, we will examine the vast body of research and studies that have been conducted in the
area of blood sugar prediction. Diabetes is a global health concern, and its early detection and
prediction plays a central role in effective management and management. prevention of compli-
cations. To gain a comprehensive understanding of the current state of the field, we review and
analyze various approaches, methodologies, and technologies used in predicting hypoglycemia
and hyperglycemia.
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State of The Art

Introduction
The rise of artificial intelligence (AI) in healthcare has spurred research into intelligent patient
care systems, with diabetes prediction being a particularly active area. This chapter reviews
existing research on predicting hypoglycemia and hyperglycemia in diabetes patients, focusing
on the methodologies employed in various studies.

Machine learning algorithms, particularly deep learning, play a crucial role in identifying
risk factors and predicting blood sugar fluctuations. This chapter explores these methods and
their performance criteria, aiming to provide a comprehensive overview of the current state-of-
the-art in diabetes prediction.

2.1 Related Works
The aim of Machine Learning is to provide the machine with the ability to efficiently process
large quantities of data and perform complex tasks in real time. This capability represents a ma-
jor challenge for traditional algorithms, which are frequently limited in their ability to execute
such processes within such tight timeframes.

Different studies have focused on the prediction of hypoglycemia and hyperglycemia from
a variety of wearable smart devices. These include the work of:

Ioannis Kavakiotis et al. [22], this study explores the use of data mining and machine learn-
ing in diabetes research, highlighting the critical role these techniques play in turning massive
volumes of data, including genetic and clinical data from Electronic Health Records (EHRs)
into useful insights. Prediction and diagnosis, diabetic complications, genetic background and
environment, and healthcare and management are its four main areas of focus.
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The authors discovered that machine learning algorithms, in particular supervised learning
techniques (85% of the cases), were widely used in diabetes research through a systematic
literature review (focusing on articles from 2011 to 2016). Support Vector Machines (SVM)
were the most widely used type of algorithm.

Notably, these methods have demonstrated potential in forecasting hyper- and hypoglycemia,
comprehending problems associated with diabetes, investigating genetic and environmental fac-
tors related to diabetes, and improving healthcare.

Ganjar Alfian et al.[10], using Bluetooth Low Energy (BLE)-based sensors, the authors of
this paper provide a personalized healthcare monitoring framework that gathers vital sign data,
including blood pressure, heart rate, weight, and blood glucose (BG). Through the integration
of real-time data processing made possible by the Apache Kafka streaming platform and Mon-
goDB data storage solution, the system offers timely insights that enable the proper treatment
of chronic illnesses, especially hyperglycemia and hypoglycemia.

The authors demonstrate through experimentation the effectiveness of the suggested real-
time data processing system using commercial BLE-based sensors for tracking vital sign data
in diabetes patients. Additionally, they investigate the use of machine learning algorithms for
forecasting blood glucose levels and predicting diabetes using sensor data, showing the promise
of Long Short-Term Memory RMSE = 25.621 and Multilayer Perceptrons Accuracy = 77.083%
for precise BG level prediction and early diabetes diagnosis, respectively.

To proactively improve patient health and prevent future serious illnesses, the authors sug-
gest combining these predictive algorithms with tailored dietary and exercise advice.

Michael Mayo, Lynne Chepulis and Ryan G. Paul[32], said that different strategies
showed variable accuracies across certain glycemic subranges. Significantly, blood glucose lev-
els within the normal and hyperglycemic ranges were best predicted by a linear Support Vector
Regression (Linear SVR) model trained with normal and polynomial features, while predic-
tions within the hypoglycemic range were best performed by a Multilayer Perceptron (MLP)
trained on oversampled data; a technique used to address class imbalance to enhance accuracy
on particular glycemic subranges.

It is imperative to emphasize that the dataset utilized in the studies is derived from industry
standard benchmark datasets, which most likely represent a range of patient demographics and
features associated with Type 1 Diabetes.

In 2020, Kezhi Li et al. [27] proposed a deep learning approach, specifically a convolutional
recurrent neural network (CRNN), for BGLs in individuals with T1D, which was validated
using the OhioT1DM dataset. The convolutional neural network (CNN) and recurrent neural
network (RNN) feature extraction and temporal modeling capabilities, especially long short-
term memory (LSTM) are combined in the CRNN model, which is trained on a dataset that
includes data on insulin administration, carbohydrate intake, and CGM.

With a root mean squared error (RMSE) of 9.38±0.71 mg/dL over a 30-minute horizon and
18.87±2.25 mg/dL over a 60-minute horizon for simulated cases, as well as 21.07±2.35 mg/dL
for 30-minute prediction and 33.27±4.79% for 60-minute prediction on real patient data, the
model achieves a leading accuracy in glucose prediction. Furthermore, the model outperforms
numerous conventional machine learning methods in terms of effective prediction horizons (P
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Heff) with little temporal latency.

Yue Ruan et al.[45], this study aimed to assess the risk of hypoglycemia in hospitalized
diabetic patients using machine learning algorithms. Its four years’ worth of data, taken from
the electronic records (CGMs) of a major teaching hospital, were analyzed. Between July
2014 and August 2018, the 17,658 patients and 32,758 admissions were used to compare 18
prediction models, based on the performance measure (AUROC).

Results showed that the XGBoost model, a machine learning model, outperformed tradi-
tional logistic regression models, with an AUROC of 0.96 versus 0.75. Predictive factors in-
cluded items such as intervention submission, weight, diabetes type, oxygen saturation level,
and use of specific medications.

Darpit Dave et al.[12], developed an optimized random forest (RF) model for probabilistic
prediction of hypoglycemia risk in young people with T1D. The final model was derived after
carefully considering linear models such as logistic regression (58% sensitivity and 92% speci-
ficity for a 60-minute horizon) and non-linear models such as random forests (91% sensitivity
and 89% specificity for a 60-minute horizon) using a rich combination of extracted features.
Other models such as decision trees (DT), gradient boosting and SVM were developed, but
their results were at best similar to the two methods chosen.

In between, Amine Rghioui et al.[44] present an innovative system for remotely monitoring
diabetes patients, leveraging contemporary technology like artificial intelligence and smart de-
vices to optimize monitoring procedures and minimize related costs. An intelligent algorithm at
the heart of this technology is intended to identify significant alterations in patients’ vital signs
and alert users to possible crises (emergencies). The authors have developed a portable device
that can measure a diabetic patient’s body temperature and blood glucose levels. It can safely
connect to smartphones to provide data to healthcare professionals.

By utilizing many sensors and wireless connectivity, the system demonstrates its strength in
aiding diabetic patient management and guaranteeing better results. The system also includes a
data classification model that improves accuracy by automating the detection and classification
of glucose level data.

Crucially, a variety of machine-learning algorithms, such as naı̈ve Bayes, J48, ZeroR, ran-
dom tree, SMO, and OneR, are used in the study to assess the system’s performance. The results
show that the J48 algorithm has a remarkable 99.17% accuracy, 99.47% sensitivity, and 99.32%
precision in classification. High-performance indicators like these highlight how revolutionary
the system can be in the treatment of diabetic patients.

Satoru Kodama et al.[23], looked at ML systems trained for hypoglycemia diagnosis or
prediction through a meta-analysis of 33 papers. The findings showed that while current ML
algorithms (SVM, XGBoost, RF, LR, ANN. . . ) showed moderate potential in predicting im-
pending hypoglycemia, with sensitivity and specificity averaging 0.80, they were limited in
their capacity to detect continuing hypoglycemia. These algorithms showed some proficiency
in correctly detecting genuine positive and true negative situations, but there appears to be po-
tential for improvement in terms of dependability based on the positive and negative likelihood
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ratios.
The review emphasizes how important it is to take patients’ unique risk profiles and hypoglycemia-

related consequences into account when assessing the clinical value of machine learning algo-
rithms. The authors suggest combining large amounts of diabetes-related data with machine
learning (ML)-based decision support systems to increase the precision of hypoglycemia detec-
tion and prediction.

The research team, Micheal O. Olusanya 1, Ropo Ebenezer Ogunsakin, Meenu Ghai
and Matthew Adekunle Adeleke[37], performed a comprehensive search of the literature and
examined pertinent articles that were released between 2010 and 2021. Numerous machine
learning models, including LR, ANN, DTs, RFs, SVMs, and NBayes, were used in the chosen
studies. AUC, specificity, sensitivity, and accuracy were among the metrics used to assess these
models’ performance.

The meta-analysis’s conclusions demonstrated that ML models in particular, DTs and neural
networks (NN) exhibited good predictive accuracy for T2D. DT models had a reached accuracy
of 0.88 and NN models an accuracy of 0.85. Its conclusion noted that it is crucial to remember
that different machine learning models reveal heterogeneity, and more study is required to de-
velop standards for choosing the best ML models for use in diabetes care.

According to Christopher Duckworth et al.[13], CGM data is used to predict hypoglycemia
and hyperglycemia episodes through the use of machine learning models. With an AUROC of
0.998 and an average accuracy of 0.953 in hypoglycemia prediction, the XGBoost model per-
formed excellently. Similarly, the model’s average accuracy for hyperglycemia prediction was
0.931 and its AUROC was 0.989. These outperform both the logistic regression model and the
simple heuristic model in terms of results.

Moreover, with an average prediction horizon of 44 minutes, the created models provide
precise forecasts up to 60 minutes ahead of time. Techniques like SHAP values (SHapley Ad-
ditive exPlanations) were used to improve comprehension of these forecasts. The latter provide
thorough, local explanations for every prediction by figuring out the marginal impact of each
input characteristic.

Another approach proposed by Francesca Iacono, Lalo Magni and Chiara Toffanin[19],
highlight the importance of warning systems while examining the significant problem of pre-
venting hypoglycemia and hyperglycemia in the management of T1D. The work investigates
the prediction of future blood glucose levels using deep learning models, such as personal-
ized Long Short-Term Memory (LSTM) models. Based on LSTM models, promising outcomes
from individualized alarms sent out within a 40-minute time frame demonstrate an RMSE value
prediction of 6.45 and precise identification of F1 = 78.79% of instances of hypoglycemia and
F1 = 83.87% of cases of hyperglycemia.

The goal of successfully integrating these systems with T1D control devices—like artificial
pancreases—is to enhance patient welfare and efficiency. Despite the limits of the results, this
potential strategy requires more investigation, especially in actual clinical trials, to assist T1D
patients in managing stressful circumstances.

The purpose of the present study of Guangyu Wang et al.[54] is to enhance individualized
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insulin titration in the treatment of T2D using a model-based reinforcement learning framework
called RL-DITR. This framework analyzes the benefits of glycemic status using model-patient
interaction to determine the ideal insulin prescription. In the development stage, RL-DITR
achieved a mean absolute error of 1.10 ± 0.03 U, which was superior to other deep learning
models and conventional clinical techniques for optimizing insulin titration. With a mean ab-
solute error of 1.18 ± 0.09 U, a step-by-step clinical validation showed that inpatient glycemic
management was improved in comparison to junior and intermediate physicians.

A proof-of-concept feasibility experiment including 16 T2D patients is also included in the
study. In this trial, the mean daily blood glucose levels significantly decreased without any se-
vere episodes of hyperglycemia or hypoglycemia with ketosis. This strategy could have a major
positive clinical impact by enhancing glycemic control in hospitalized T2D patients by utilizing
artificial intelligence (AI) to optimize insulin therapy. The investigators are convinced that to
validate the tool’s generalizability, more extensive and varied clinical trials are required.

The goal of this recent research study by Mai ShiI and al.[48] was to create a machine
learning model that could forecast a probability that older persons with diabetes would expe-
rience severe hypoglycemia (SH) and require hospitalization. In order to train the ML model,
they selected 258 predictors related to medical history, drugs, laboratory tests, and demograph-
ics using EHRs data from a sizable sample of older persons in Hong Kong.

Six distinct ML algorithms were evaluated for performance, and the findings showed that
the XGBoost model performed the best (AUROC = 0.978). This performed better than an 11-
variable conventional logistic-regression model (AUROC = 0.906) that included blood glucose,
kidney function measures, age, sex, history of SH, hypertension, blood glucose, and use of oral
glucose-lowering medications (GLDs). The top predictors of SH included factors such as non-
use of lipid-regulating drugs, hospital admissions, urgent emergency triage, insulin use, and
history of previous SH.

The scientists concluded that older persons who are at a high risk of experiencing severe
hypoglycemia could benefit from preventive intervention by having this machine learning model
integrated into electronic health record systems.

2.2 Comparative Analysis
Previously, we have presented the main prediction approaches within the healthcare domain,
specifically addressing the prediction of hypoglycemia and hyperglycemia among diabetes pa-
tients. In the forthcoming , a comprehensive comparative analysis of the approaches will be
conducted, structured following 6 factors:

Approach: designates the proposed approach.

Target: refers to the specific type of diabetes that is the focus of the evaluation or prediction.

Dataset: indicates the data sources used for the implementation of the approach.

Optimal Model Performance: describe the optimal technique or model applied to predict hy-
po/hyperglycemia.

Advantages: advantages of the approach discussed.
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Challenges: challenges or limitations of the approach discussed.

Approach Type of
DM

Dataset Optimal
Model Per-
formance

Advantages Challenges

Ioannis
Kavaki-
otis et
al.[22]

T1D /

T2D
Several
clinical
datasets,
diagnostic
data and
electronic
health
record sys-
tem (EHR)
(different
articles
from 2011
to 2016)

SVM (85%
of the
cases)

- Predictive
techniques
for hyper and
hypoglycemia.
- Understand-
ing diabetic
complications.
- Exploring
genetic and
environmental
factors linked
to diabetes.
- Enhancing
healthcare and
management
strategies.

- Availabil-
ity of data
”difficult and
expensive to
generate”. -
Lack of data
concerning:
a)-lifestyle
and behavior,
b)-inheritance,
and c)-linkage
with other
pathophysio-
logical con-
ditions, e.g.
Alzheimer’s
disease.
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Approach Type of
DM

Dataset Optimal
Model Per-
formance

Advantages Challenges

Ganjar
Alfian et
al.[10]

T1D /

T2D
Blood Glu-
cose (UCI),
PIMA [21]

BG based
on LSTM
(RMSE =

25.62%)
/ Classi-
fication:
Multilayer
Perceptron
(MLP)
(Preci-
sion=76.6%,
Re-
call=77.1%,
Accu-
racy=77.08%)

- The system
helps dia-
betic patients
manage their
condition
using BLE
sensors and
real-time data
processing. -
BLE sensors
wirelessly col-
lect vital signs
data like blood
pressure and
BG for smart-
phones. -
Real-time data
processing:
using Apache
Kafka and
MongoDB.
- ML-based
algorithms:
MLP pre-
dicts diabetes
early, while
LSTM fore-
casts BGLs
accurately. -
Potential for
personalized
recommenda-
tions.

- Data man-
agement and
scalability. -
Data accuracy
and reliabil-
ity: ensuring
quality and
addressing
inaccuracies
are essential. -
Further valida-
tion on diverse
datasets is
needed. -
Seamless in-
tegration and
user-friendly
interfaces
are vital for
widespread
adoption
among dia-
betic patients.
- Privacy
and security
of sensitive
health data is
paramount.
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Approach Type of
DM

Dataset Optimal
Model Per-
formance

Advantages Challenges

Michael
Mayo et
al.[32]

T1D OhioT1D
dataset [31]

Linear
SVR
(Hyper-
glycemia
epidodes):
MARD
= 10.19
/ MLP
(Hypo-
glycemia):
MARD=12.46

- ML appli-
cation. - It
stresses the
importance of
considering
performance
metrics and
preprocessing
techniques
for accu-
rate model
selection.
- Different
regression
model/pre-
processing
combina-
tions exhibit
varying accu-
racies across
glycemic
subranges.

- Imbalanced
data. - Limited
research. -
Missing CGM
data due to
difficulties in
imputing it
and potential
biases with
existing meth-
ods. - Metric
selection, like
computing
accuracy
over the en-
tire range
may lead to
misleading
conclusions.
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Approach Type of
DM

Dataset Optimal
Model Per-
formance

Advantages Challenges

Kezhi Li
et al. [27]

T1D OhioT1D
dataset[31]

CRNN
(RMSE =

9.38 over
a PH =

30-min and
18.87 over
a PH = 60-
minute for
simulated
cases)

- RMSE =

21.07±2.35
mg/dL for
30-minute
prediction and
33.27±4.79%
for 60-minute
prediction on
real patient
data. - A lead-
ing accuracy
in glucose
prediction. -
The model
outperforms
numerous
conventional
ML meth-
ods in terms
of effective
prediction
horizons (P
Heff) with
little temporal
latency.

- Performance
Degradation
on Real Pa-
tient Data.
- Clinical
data quality
issuesUnaccounted-
for factors on
what affects
your blood
glucose. -
Need for
Personal-
ized Models.
- Com-
putational
demands.
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Approach Type of
DM

Dataset Optimal
Model Per-
formance

Advantages Challenges

Yue Ruan
et al.[45]

All
types

Data from
a hospital
EHR sys-
tem (17658
patients)

XGBoost
(Classi-
fication):
AUROC
= 96%
(factors:
submission
of inter-
ventions,
weight,
type of
diabetes,
oxygen
saturation
level, and
use of
specific
medica-
tions.)

- ML Ap-
plication. -
Utilization of
Large Dataset.
- Researchers
evaluated 18
ML algo-
rithms. - High
Predictive
Performance.

- Historical
information. -
Necessity of
validation in
diverse patient
populations. -
The accuracy
and complete-
ness of EHRs
used may
affect model
performance.
- Real-time
trials to assess
the models’
effectiveness.



2023-2024
U

A
M
B

Data Sciences master thesis

2.2 Comparative Analysis 26

Approach Type of
DM

Dataset Optimal
Model Per-
formance

Advantages Challenges

Darpit
Dave et
al.[12]

T1D CGM
data (112
patients)

RF model
(Sensitiv-
ity=95%,
Speci-
ficity=89%
for a 60
minute
horizon.)

- Large
Dataset. -
Feature Ex-
traction: A
comprehen-
sive set of
26 features
relevant to
hypoglycemia
prediction
was extracted
from the CGM
signal. - High
Prediction
Performance.
- Evaluation
of the impact
of contextual
information
on insulin and
carbohydrate
intake in the
prediction
model.

- Pump data,
which pro-
vides details
on insulin
administration
and carbohy-
drate count,
was available
only for 19
out of the 112
patients. - The
findings may
not directly
extrapolate
to other age
groups or dia-
betes types. -
The actual im-
plementation
and real-world
feasibility
were not
evaluated in
this research.
- Lack of
a detailed
Comparative
Analysis.
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Approach Type of
DM

Dataset Optimal
Model Per-
formance

Advantages Challenges

Amine
Rghioui
et al.[44]

Not
specified

55 diabetic
patients (65
days)

In classifi-
cation:J48
algorithm
(Accu-
racy=99.17%,
Sensitiv-
ity=99.47%,
Preci-
sion=99.32%)

- Use of AI,
smart gad-
gets, and
information
and com-
munication
technology
(ICTs) to cut
costs for all.
- Enables
doctors to
keep an eye on
their diabetic
patients. -
incorporates
a clever al-
gorithm to
determine
when a pa-
rameter has
surpassed a
threshold.

- A complete
evaluation or
validation of
the suggested
system’s
functionality
in an actual
environment is
not included
in the paper.
- No details
about the
potential dif-
ficulties with
the real-world
application
and deploy-
ment of the
smart glucose
monitoring
system.
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Approach Type of
DM

Dataset Optimal
Model Per-
formance

Advantages Challenges

Satoru
Kodama
et al.[23]

T1D (25
studies),
T2D(3
studies)
and not
speci-
fied (5
studies)

33 stud-
ies (14
studies for
detecting
hypo-
glycemia
and 19
studies for
predicting
hypo-
glycemia)

Sensitivity /
Specificity
(80%)
using ML
models.

- Meta-
analysis
methodology
enables a
comprehen-
sive evaluation
of ML al-
gorithms.
- Inclusion
of diverse
studies. -
Performance
metrics assess-
ment. - Focus
on clinical
relevance.

- Insufficient
algorithm
performance,
underscoring
the necessity
for further
research and
development.
- Lack of de-
tailed analysis
(strengths,
weaknesses,
and potential
sources of
heterogene-
ity). - The
article’s liter-
ature search
is constrained
to a specific
timeframe.

Micheal
O. et
al.[37]

T2DM 34 studies
(2011-
2021)

DTs (Accu-
racy=88%),
NNs
(Accu-
racy=85%)

- Promising
prediction
techniques
in assisting
clinicians in
interpreting
data and im-
plementing
effective mod-
els for T2DM
prediction.

* Further
research is
needed to
establish
guidelines for
selecting the
most suitable
ML models
due to hetero-
geneity among
the models.
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Approach Type of
DM

Dataset Optimal
Model Per-
formance

Advantages Challenges

Christopher
Duck-
worth et
al.[14]

T1DM 153 partici-
pants aged
14 to 24
years

XGBoost:
AU-
ROC(hypoglycemia)
= 99.8%
/ mean
precision
= 95.3%
and AU-
ROC(hyperglycemia)
= 98.9%
/ mean
precision =
93.1%.

- Real-time
prediction. -
Explainable
ML using
“SHAP”
technique. -
Comparative
analysis. -
Potential for
personalized
recommenda-
tions.

- Limited
demographic
diversity.
- Lack of
external vali-
dation. - Data
availability
and selection
bias. - Limited
prediction
horizon. -
Lack of long-
term outcome
evaluation.

Francesca
Iacono et
al. [19]

T1D 100 sim-
ulated
patients of
the UVA/-
Padova
simulator.

LSTM (De-
tection of
the alarm
system):
F1( hyper-
glycemia)
= 83.87%
and F1
(hypo-
glycemia)
= 78.79%.
Prediction
( person-
alized
LSTM):
RMSE =

6.45

- Personalized
Approach.
- Neural
Network
Techniques
which are
specialized
in analyzing
sequential
data. - In
Silico Patient
Simulator:
an approved
metabolic
simulator. -
Promising
Results and
effectiveness
in alerting
patients to
critical glu-
cose levels.

- Dataset
Limitations.
- Lack of
External Val-
idation. - It
does not pro-
vide insights
for systems
in a clinical
setting. - Brief
description
of the evalu-
ations. - No
considera-
tion to time
horizon.
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Approach Type of
DM

Dataset Optimal
Model Per-
formance

Advantages Challenges

Guangyu
Wang et
al.[54]

T2D 16 hos-
pitalized
patients

RL-DITR
(Mean
Absolute
Error =

1.10±0.03
U)

- Model-based
RL-DITR for
optimizing
insulin regi-
mens, which
is a unique
and innovative
approach. -
Comprehen-
sive evalua-
tion, ensuring
a thorough
assessment
of the pro-
posed system.
- Using a
large dataset
of EHRs
of hospital-
ized patients
with T2D.
- Superior
performance.

- Limited
sample size
(16 patients).
- Absence
of long-term
results. -
Potential risks
and safety
concerns:
Although the
AI system
underwent
comprehen-
sive evaluation
events is
necessary. -
The size and
features of
the external
validation
dataset are not
provided in
the paper.

Mai ShiI
et al.[48]

Not
specified

1,456,618
records
(older
adults)

XGBoost
(AU-
ROC=0.978)

- Enhanced
Accuracy. -
Personalized
risk evalua-
tion for each
individual. -
Integration
with EHRs.

- Limited
transporta-
bility of the
model. -
Lack of ge-
ographically
independent
validation.

2.3 Interpretation of the Table
Several AI approaches can be used to build an early prediction system for hypo- and hyper-
glycemia, according to an analysis of the previously described research. At the moment, DL
techniques, ANN, and ML algorithms are the most widely used methodologies. The studies
presented in this part demonstrate various techniques for anticipating hypo- and hyperglycemia;
algorithm selection and data preprocessing strategies significantly impact the predictive model’s
efficacy.
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These papers show how machine learning, deep learning in particular algorithms can be
used effectively to predict and manage diabetes using a variety of addresses and evaluation cri-
teria. AI propositions provide inspiration for much ongoing research in this area in terms of
improving accuracy or earlier prediction of hypo and hyperglycemia in diabetes patients. Much
research is going toward these conditions being able to anticipate the two cases early enough to
help in health management, which is fast getting close in reality to happening in the near future.

After an extensive review of related works, which included various models. Building upon
the earlier research of Kezhi Li et al. [27] reaching an RMSE of 9.38 over a prediction of 30
minutes, the objective of this research is to create a framework for combining various data types
such as genetic information, clinical records, wearable device data, and real-time sensor data, to
obtain a comprehensive understanding and a comprehensive picture of the patient’s health state.
In addition, advanced machine learning algorithms as LSTM networks, will be implemented to
build accurate predictive models for forecasting hyperglycemia and hypoglycemia episodes.

For our thesis, we have opted to employ a hybrid deep learning model, Convolutional Re-
current Neural Network (CRNN) as a pivotal element in our model. As we strive to further
enhance it by employing the optimal architecture to outcome more accurate hypo and hyper-
glycemia predictions. Our primary objective is to enhance the accuracy of blood glucose levels
prediction, advancing the existing performances.

Conclusion
We conducted a state-of-the-art review in this chapter, showcasing some of the most important
publications that used data mining, machine learning, deep learning, and artificial neural net-
works concepts and techniques to predict blood glucose levels. We read carefully over each
article in these volumes, analyzing the authors’ methodologies, assessing the models’ output,
summarizing the researchers’ conclusions, and considering their suggestions for additional re-
search. Every model exhibited its own set of strengths and limitations; some featured less-
known machine learning methods like reinforcement learning, while others used more tradi-
tional algorithms like RF and SVM. Some even put forth novel deep learning strategies. Each
of these methods contributed significantly to the early prediction of both hyperglycemia and
hypoglycemia. Additionally, the research targets varied, encompassing different types of dia-
betes. Some studies focused solely on one type, such as Type 2 diabetes, Type 1 diabetes, or
gestational diabetes, while others addressed multiple types, covering all three of them.

In the next chapter, we will present our approach for hypoglycemia and hyperglycemia
prediction in detail.



2023-2024
U

A
M
B

Data Sciences master thesis

3
Contributions

Introduction
Chronic diseases, such as diabetes, are an incurable illnesses that affect millions of people ev-
ery year worldwide. Its treatment generally begins with the step of predicting blood glucose
episodes, including hypoglycemia and hyperglycemia, before they occur. We are now in a situ-
ation where prediction is essential, primarily to avoid potentially very serious health complica-
tions due to inadequate diabetes management. The challenge then lies in distinctly predicting
episodes of blood glucose fluctuation, but this remains to be clarified. With a multitude of vari-
ables, prediction becomes complex. The selection of the most representative characteristics and
the choice of the right machine learning models for the most accurate prediction play a key role
in the prediction phases.

After comparing, in the previous chapter, several works already carried out, we found that
the hybrid CRNN model offers more effective results due to its ability to combine the extrac-
tion of spatial characteristics of the data with convolutional layers and the capture of temporal
dependencies using recurrent layers. This combination allows the model to better understand
and predict variations in glucose levels in time series, thus outperforming traditional approaches
that only consider one aspect of the data.

This chapter explores the conceptual subtleties of our approach, detailing the use of the
CRNN algorithm for the prediction of glycemic episodes.

3.1 Proposed approach
In this section, we describe in detail our approach to developing our prediction system related to
the health field, aiming to help diabetic patients to take early action by developing an accurate
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algorithm, based on individual health profiles using CRNN algorithm for prediction. The overall
architecture is presented in Figure 3.1 and involves three main steps. Before detailing the steps
of our proposed approach, it is essential to present the deep learning models that form the
foundation of our system. These models are crucial for understanding the architecture and
functionality of our hypo and hyperglycemia prediction system.

Figure 3.1: Proposed Approach

3.1.1 Deep Learning for Blood Glucose Prediction
Deep learning is a significantly strong area for forecasting blood glucose levels, so as we move
forward with predictive analytics for diabetes. Common methods of deep learning are a re-
ally great improvement over existing traditional methods, simply because of their automatic
potential of learning appropriate features coming out of data. By these advanced algorithms for
the prediction of blood glucose levels, we aim to provide more accurate and reliable outputs
to aid in the effective management of diabetes. We will describe some of these deep learning
algorithms. We start by:

Recurrent Neural Networks (RNNs)

Deep learning in neural networks (NNs) is an emerging method that allows the NN to learn
automatically the characteristics of data by selecting the relevant features [55], contrary to the
classical NNs that require feature’s selection based on domain knowledge [34].

Blood glucose, however, depends upon many factors and follows sequential patterns. Tra-
ditional deep learning architectures may not efficiently capture these long-term dependencies
within the data. This is where RNNs come into play, providing a framework to model these
temporal sequences effectively.
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Definition of RNN : A special kind of artificial neural network designed to process time series
or sequence-based data is the recurrent neural network (RNN). Standard feedforward
neural networks are designed for independent data points only.

However, we must adjust the neural network to take into account the dependencies be-
tween the data points if the data are presented in a sequence where one data point depends
on the preceding data point. In order to store the states or data from previous inputs and
generate the next output in the sequence, RNNs are equipped with the idea of ”memory.”

RNN memorizes previous data. While making a decision, it takes into consideration the
current input and also what it has learned from the inputs it received previously. Output
from previous step is fed as input to the current step creating a feedback loop.

Let’s see its basic structure in figure 3.2. Where the block ‘A’ captures input pattern xt,
and delivers a hidden pattern ht as well as a final forecast value yt. The arrow pointing
in the block ‘A’ indicates that the information inside the block is recursively used. Once
unfolded the structure, it looks like a chain of networks, as illustrated in 3.2 [26].

Figure 3.2: Basic illustration of an RNN

The different types of RNN are:
- One to One RNN
- One to Many RNN
- Many to One RNN
- Many to Many RNN

Vanishing and Exploding Gradients : A gradient is a partial derivative for its inputs. It mea-
sures how much the output changes with slight changes in the inputs. It, in essence,
represents:

• Steeper slope = faster learning

• Near zero slope = no learning

When training a Recurrent Neural Network, gradients sometimes can become:
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Exploding Gradients : When gradients grow exponentially due to large weight importance –
”too large”, thus unstable. This can be reduced by:

• Identity Initialization
• Truncated Back-Propagation
• Gradient Clipping

Vanishing Gradients : The gradients become too small, and the model stops learning or is
learning very slowly. Thus, solutions include:

• Weight Initialization
• Choosing the Right Activation Function
• Using Long Short-Term Memory (LSTM) networks, which are especially good at

solving the vanishing gradient problem.

These issues result : Three main points

1. Poor Performance
2. Low Accuracy
3. Long Training Periods

Strengths and Weaknesses of RNNs : Let’s see them in the summarizing table 3.1

Table 3.1: Strengths and Weaknesses of RNNs for Blood Glucose Prediction

Feature Strengths Weaknesses
Sequential Data Handling Captures sequential nature of readings, understands past influence on future levels
Memory of Previous Inputs Retains information from past readings (meals, insulin) Short-Term Memory: Difficulty capturing long-term dependencies (LSTM networks address this)
Flexibility Handles variable-length sequences (continuous vs. intermittent monitoring)
Real-Time Processing Enables real-time prediction systems for immediate feedback

RNN Architectures : Various RNNs are being used in practice to solve machine learning prob-
lems:

Bidirectional Recurrent Neural Networks (BRNNs): Future time step inputs are uti-
lized in BRNN to increase the network’s accuracy. Predicting the middle words of a
sentence is similar to knowing its beginning and ending words.

Gated Recurrent Units (GRUs): Address the vanishing gradient problem, a common
challenge in RNNs. GRUs utilize update and reset gates to control which information is
retained for future predictions.

Long Short Term Memory (LSTM): To solve the vanishing gradient issue in RNNs,
LSTMs were also created. LSTMs use three gates: the input, output, and forget gates.
These gates determine which information to keep, similar to GRU architecture. We will
get deeper in the next section.



2023-2024
U

A
M
B

Data Sciences master thesis

3.1 Proposed approach 36

Long Short-Term Memory (LSTM)

LSTM neural networks (NNs) are deep RNNs that Hochreiter and Schmidhuber introduced [17]
to overcome the problem of exploding or vanishing gradient encountered with traditional RNNs
[51]. The LSTM NNs are suitable for sequential data such as speech, video and time series as
they can capture long term dependencies [15].

Definition of LSTM : An LSTM NN relies on special building blocks called memory cells. In
principle, the cell state can memorize information over time due to a particular internal
state. In addition, it has a sophisticated gate system for controlling information inflow
and outflow from the cell state, which lets the network learn how to select relevant infor-
mation and forget useless ones. Simply, the gates decide which data is important and can
be useful in future and which data has to be erased.

- The memory cell contains 3 gates:

1. Input gate selects the information to be retained in the cell;

2. Forget gate decides about the information to be ignored; and

3. Output gate calculates the output and updates the hidden vector.

Squashing / Activation Functions in LSTM : Are

1. Logistic (sigmoid): Outputs range from 0 to 1.

2. Hyperbolic Tangent (tanh): Outputs range from -1 to 1.

A typical LSTM cell is illustrated as follows [58] :

The index t refers to time or sequence.
Xt : the input,
ht : the output,
hn

t : the hidden vector,
vt : the input vector,
ft : the forget gate,
it : the input gate,
tanh : hyperbolic tangent,
ot : the output gate activation values, and
st : the memory cell state for t.

These operations are obtained as follows:

1. Forget Gate, ( ft):

ft = σ(W f · [ht−1, Xt] + b f ) (3.1)
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Figure 3.3: LSTM Memory Cell Structure

Where:
σ : Sigmoid activation function, this will give an output between 0 and 1,
W f : Weight matrix for forget gate,
ht−1 : Hidden state from previous time step,
Xt : The current input vector,
b f : The forget gate bias vector.

This equation tells how much information from previous memory cell state, st−1 to forget.
A value near 1 means more remember and a value close to 0 means more forget.

2. Input Gate:

it = σ(Wi · [ht−1, Xt] + bi) (3.2)

Wi : Weight matrix of input gate,
ht−1 : Past hidden state,
Xt : Present input vector, and
bi : Bias Vector of Input gate.

The output of the input gate, it, ranges from 0 to 1. A value close to 0 indicates blocking
new information, while a value closer to 1 allows more information to flow into the cell.

3. Candidate Cell State, Ĉ

Ĉ = tanh(Wc · [ht−1, Xt] + bc) (3.3)

The tanh function, which produces output between -1 and 1, is applied to a linear combina-
tion of the previous hidden state (ht1), current input vector (Xt), and the candidate cell state bias
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vector (bc). This weight matrix Wc controls the influence of each element. The formula creates
a new candidate cell state (Ĉ) based on the current input and the previous hidden state.

4. Cell State, st

st = ftst−1 + itĈ (3.4)

The cell state is updated by combining information from the previous cell state (controlled
by the forget gate) and the current information (controlled by the input gate). Essentially, the
forget gate decides which past information to retain, while the input gate controls how much
new information is integrated.

5. Output Gate, ot

ot = σ(Wo · [ht−1, Xt] + bo) (3.5)

Output gate value (ot) is computed using the sigmoid function () applied to a linear combi-
nation of the previous hidden state (ht−1), current input vector (Xt), and bias vector (bo). If one
desires some elements to have more influence, this can be achieved through the weight matrix
Wo.

How much of the current cell state (st) will be used as output (ht) from the LSTM unit during
this time step will be decided by this formula.

Convolutional Neural Networks (CNNs)

In our goal of developing a deep learning model for predicting blood glucose levels in diabetic
patients, we now explore the basics behind Convolutional Neural Networks, ConvNet or CNNs
for short. Traditionally, CNNs are known to be at the very core of image recognition tasks, as
their convolutional layers excel in capturing spatial relationships between pixels. Their power,
however, goes beyond images. Over the last few years, CNNs have been applied to a great
extent in attempts for time series forecasting and have demonstrated impressive performance in
feature extraction from sequential data.

This capability exploits the fact that time series data is treated like one-dimensional images.
Therefore, CNNs can learn very complex patterns and temporal dependencies in sequential
data. This makes them good for any kind of task related to forecasting, much more powerful
than traditional methods such as ARIMA or exponential smoothing. Indeed, these traditional
techniques are often unable to capture the non-linear relationships and intricate patterns that
may be in the data.

In the context of blood glucose prediction for patients with diabetes, the ability of CNNs
to process large amounts of data, recognize complex patterns, and develop accurate predictions
makes them applicable in the case under consideration.

The section bellow will discuss in detail their architecture and considerations that need to
be considered for their use in our particular application of blood glucose levels prediction.
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Definition of CNNs : CNNs are a type of deep learning algorithms particularly made to pro-
cess data that contains a grid structure, generally associated with images. They are char-
acterized by the use of convolutional layers for applying filters on input data, which au-
tomatically and adaptively learns and extracts spatial hierarchies of features. That makes
them effective at visual tasks and sequential data analysis[25].

CNN Architecture : Building up from the intrinsic strengths of CNNs in time series forecast-
ing, we can now go on to see how that takes the form of an architecture for blood glucose
level prediction. The typical CNN architecture for this task includes a sequence of layers
with the purposes of feature extraction and accurate prediction.

Core Layers :

◦ Convolutional Layers: These are the heart of the CNN, designed to convolve fil-
ters, much like sliding windows, over the input data for the identification of local
patterns and dependencies across the blood glucose measurements and other fea-
tures of interest, such as insulin intake, carbohydrate consumption, physical activi-
ties, sleep patterns or others. All these filters are specialized in extracting different
features to add up for a richer understanding of the underlying relationships.

Pooling layers : With convolutional layers comes the pooling layers, which reduce
the dimensionality of the data. This prevents overfitting; a common challenge in ma-
chine learning, and allows the system to be more computationally efficient. Com-
monly used techniques include max-pooling and average-pooling, in which most
information is summarized for a local region of the data.

◦◦ Fully Connected Layers : These are the last layers of the CNN, where every neu-
ron is connected to every neuron in the previous and next layers. These layers take
care of high-level features that are extracted by the convolutional layers only to be
integrated at the very end. So, in our case, they put information on blood glucose
measurements, the intake of insulin, or other general confounding factors together
to come up with the final prediction for future blood glucose readings. It may be de-
signed for an output layer to return a single value, such as an hour’s predicted blood
sugar, or a sequence of values, such as the next few hours of blood sugar levels to
be predicted.

A Schematic diagram of a basic CNN architecture model for time series data forecasting
is presented in 3.4 [43].

Multivariate CNN Models : Blood glucose levels are influenced by many factors. Multivari-
ate CNNs will handle these complex inter-relationships. Such models extend every vital
architecture, taking multiple time series as input. It will, therefore, let the CNN capture
relationships between features and not only patterns within a feature, such as blood sugar
readings. For instance, it would learn how specific intake of carbohydrates affects further
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Figure 3.4: Basic CNN Architecture for Time Series Forecasting.

blood sugar levels concerning past insulin intake of the patient.

By implementing this multivariate capability, the CNN is then able to gain full insight
into the factors influencing blood glucose levels to result in a more accurate prediction.

Hybrid Model : Convolutional Recurrent Neural Network (CRNN)

The Convolutional Neural Network and the Recurrent Neural Network are combined into a pow-
erful hybrid deep learning model, called the Convolutional Recurrent Neural Network (CRNN),
specifically created for time series forecasting tasks. It exploits the power of the two following
established architectures:

- CNNs : One major use of convolutional neural networks is in learning extraction for se-
quential data’s features. CRNN follows exactly on this because, within the model, connections
of a CNN will learn relevant features in a time series input in a self-supervised manner.

- RNNs, mainly LSTMs : RNNs are used for modeling temporal dependencies that are
part of the series. LSTMs deal with the problem of vanishing gradients in RNNs so that one can
model long-term dependencies.

This will allow all spatial features to be extracted by CNNs—and temporal relationships,
captured by LSTMs—fairly against multivariate time series data. Accordingly, complex fore-
casting problems, such as blood glucose level prediction, CRNN can be well-suited for complex
forecasting areas.

3.1.2 Proposed approach steps
1. First step: “Data collection”

Data collection is the foundation of any machine learning project. The quality and relevance
of the data directly impact the performance and effectiveness of the resulting model. In re-
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sult, data collection is our initial step in hyperglycemia/hypoglycemia prediction and diabetes
management, serving as a cornerstone for accurate model predictions. Adding to that, having
an important row number is good, but understanding it is better. The comprehensiveness of
the collected medical data serve as fundamental factors influencing the precision of predictive
models and making good decisions.

In this study, the dataset used, is recently publicly available and sourced from Mendeley
Data. It’s under the name of HUPA-UCM Diabetes Dataset [16] , it encompasses 25 individu-
als, 14 various medical and demographic predictive variables.

Comprehensively, data collection for hyper/hypoglycemia for diabetes patients prediction,
encompassing clinical and nonclinical factors associated with diabetes risk plays a pivotal role
in building accurate prediction models. In essence, the more complete and representative of the
data is the target population, the more reliable the model is in its predictions. Here are some
key aspects of data collection for predicting hyper/hypoglycemia; we gathered all the features
studies in our research’s state or art collection, we have arrived to class them according their
affect to the glycemia level:

Strongly Affects:

• HbA1c level: This is a key indicator of long-term blood sugar control. Higher HbA1c
indicates a greater risk of both hyperglycemia and hypoglycemia.

• Physical Activity: Regular exercise helps manage blood sugar levels, reducing the risk of
both hyperglycemia and hypoglycemia.

• Physical health: Illness and injuries can elevate blood sugar levels, leading to hyper-
glycemia.

• Consume Vegetables: Vegetables are generally low in carbohydrates and can help regulate
blood sugar, reducing the risk of both hyperglycemia and hypoglycemia.

• Consume Fruit: Fruits contain carbohydrates, and while some fruits are good for blood
sugar management, excessive fruit intake can contribute to hyperglycemia.

May Affect:

• Body mass index (BMI): Being obese raises the risk of hyperglycemia by increasing
insulin resistance.

• Smoking history: Smoking can cause insulin sensitivity problems and blood vessel dam-
age, which can result in hyperglycemia.

• High Cholesterol: Although not a direct cause, elevated cholesterol levels may increase
the likelihood of developing various disorders that trigger high blood sugar levels.

• Mental health: Stress and depression can have an impact on eating habits and exercise
levels, which can then have an indirect impact on blood sugar regulation.
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Less Likely to Affect:

• Age

• Gender

• Hypertension (high blood pressure)

• Heart disease

• Cholesterol level

• Stroke

• General health perception

• Cost of healthcare

• Health insurance coverage

2. Second step ”Pre-processing and cleaning”

Following data collection, data pre-processing and cleaning takes center stage. Pre-processing
step transforms raw data into a format suitable for machine learning algorithms, aims to enhance
data quality and address issues that can hinder model performance. Real-world data often con-
tains inconsistencies such as missing values, outliers, and redundancies. These imperfections
can lead to inaccurate or misleading models. Pre-processing techniques tackle these challenges,
ensuring the data is clean, consistent, and ready for robust analysis.

Common pre-processing tasks include:

Missing Value Imputation: Techniques like mean/median imputation or more sophisticated
methods fill in missing entries strategically.

Outlier Treatment: Outliers can be addressed through techniques like winsorization (capping
extreme values) or removal if justified.

Data Cleaning: This involves identifying and correcting inconsistencies, formatting errors,
and potentially removing duplicates.

Data Scaling/Normalization: Scaling ensures all features are on a similar range, preventing
features with larger scales from dominating the model. Normalization transforms data to
a specific range (often 0-1) for improved model convergence.

Data Transformation: This encompasses various techniques like encoding categorical vari-
ables, binning continuous variables, and creating new features based on existing ones.
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3. Third step Prediction process

The main objective of this phase is to predict glucose levels in patients using the CRNN model, a
powerful machine learning algorithm that combines the strengths of convolutional and recurrent
neural networks (CNN+RNN). The CRNN model excels at capturing complex patterns in time
series data, making it very powerful for regression and classification tasks. In fact the prediction
made by CRNN can fall into two categories:

Regression: used when the prediction involves continuous values. For example, predicting
blood glucose levels over time.

Classification: used when the prediction involves discrete labels or classes. For example,
predicting if a patient is in a state of hypoglycemia, normoglycemia, or hyperglycemia.

In this model, convolutional layers first extract meaningful features from the input se-
quences. These features are then passed to the recurrent layers, which learn the temporal dy-
namics of glucose levels. The final prediction is made by a dense layer, which produces the
predicted glucose level. This continuous value is then classified into discrete categories (Hy-
poglycemia, Normal, Hyperglycemia) based on predefined thresholds,ensuring accurate and
exploitable information for patient management.

Figure 3.5: Our Proposed CRNN Model Architecture

Generally, the process follows this structure:
Phase 1: CRNN Model Construction

1. Data Preprocessing:

• Normalization: Scale input data to a suitable range (0 to 1).

• Reshaping: Organize data into a format suitable for the CRNN, typically a 3D
array (samples, timesteps, features).

2. Feature Extraction:

• Convolutional Layers: Apply convolutional layers to extract spatial features from
the input data.
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• Pooling Layers: Reduce the dimensionality of feature maps while retaining impor-
tant information, it is optional.

3. Sequence Learning:

• Recurrent Layers: Use LSTM layers to capture temporal dependencies and pat-
terns in the sequential data.

4. Prediction Layer:

• Fully Connected Layers: Connect the output of recurrent layers to fully connected
layers.

• Activation Function: Use the ReLU activation function to introduce non-linearity.

5. Output Layer:

• Linear Activation: Apply a linear activation function in the output layer to produce
continuous values for regression tasks.

• Loss Function: Use Mean Squared Error (MSE) for regression tasks.

• Optimizer: Choose an optimizer Adam to update model weights during training.

6. Compile Model:

• Loss Function: Use Mean Squared Error (MSE) for regression tasks.

• Optimizer: Choose an optimizer Adam to update model weights during training.

Phase 2: Prediction Generation

1. Input New Data:

• Preprocess Data: Normalize and reshape the testing data similarly to the training
data.

2. Generate Predictions:

• Forward Pass: Pass the preprocessed data through the trained CRNN model.

• Output: Obtain continuous predicted values from the output layer.

3. Post-processing (if needed):

• Rescale Predictions: Convert the normalized predictions back to the original scale
if necessary.

• Evaluation: Compare predictions with true values using appropriate metrics (RMSE).

At the conclusion of these phases, a decision is made by evaluating the continuous values pre-
dicted by the model relative to predefined thresholds. In the context of our study, the decision
involves determining whether the predicted values are within the range of normal glucose levels,
or whether they indicate hypoglycemia or hyperglycemia.
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Conclusion
In this chapter, we have introduced our approach to BGL prediction using advanced CRNN
deep learning technique. Our system encompasses several crucial steps, including data col-
lection, model training with CRNN, and prediction. Additionally, we explained the algorithm
structure employed, demonstrating how it efficiently processes data and generates accurate pre-
dictions.

Our blood sugar prediction system represents a significant advancement in the health field.
Its primary goal is to promote early detection and intervention for diabetic patient, leading to
improved overall public health outcomes.

In the next chapter, we will take our research to the next level by implementing and rigor-
ously evaluating our approach in the context of blood glucose levels prediction. Additionally,
we will present the tools and development environment used in our study.

In conclusion, our BGL prediction system stands as a vital tool in the quest for proactive
healthcare management. By applying cutting-edge technology to predict and prevent blood
sugar fluctuations, our goal is to provide diabetic patients with the information needed to make
informed decisions and, therefore, alleviate the burden of this prevalent chronic disease.
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4
Experiment and Evaluation

Introduction
The overarching goal of this project is to create an advanced predictive model tailored for the
early detection of hyperglycemia and hypoglycemia in T1D patients. To achieve this objective,
we have chosen to leverage the Covolutional Recurrent Neural Network model, a highly re-
garded hybrid model renowned for its exceptional accuracy and resilience in handling complex
time series data analysis.

Creating a hyperglycemia and hypoglycemia prediction system that performs excellently in
term of accuracy carries profound implications for the field of diabetes management. It has the
potential to substantially enhance the quality of care provided to diabetic people at risk of devel-
oping high or low blood glucose level and causing serious health complications if is unchecked
earlier. By harnessing the synergistic power of cutting-edge ensemble learning, our objective
is to equip healthcare professionals with a valuable and precise tool. This tool will facilitate
early identification and intervention, contributing significantly to the overall well-being of T1D
patients during crucial periods in their life, every good moment is precious.
Ultimately, our project aspires to revolutionize diabetes care by offering an accurate tool for
early detection of blood glucose swings in T1D patients, leading to better healthtech outcomes.

This chapter is dedicated to providing a description of two interesting datasets, widely used
in diabetes research. We will then discuss the development environment details, followed by
an explanation of the model’s algorithm and we conclude with a performance analysis of our
proposed model.
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4.1 Data Description

4.1.1 Description
The HUPA-UCM Dataset [16] has been created to support and ease studies Kick-only aimed
at the prediction of blood glucose level, analysis of hypoglycemic and hyperglycemic events,
and exploring the relationships between different physiologic variables and glucose values. It
contains data from 25 T1D patients, of which there are continuous glucose monitoring and in-
sulin delivery data, as well as physiological data, gathered for several weeks. The ages of the
participants were between 18 and 65 years.

From this period, years were subject to anonymous assignment of ID numbers. Each patient
either had an insulin pump therapy or multiple daily injections with CGM. They had patients
perform their assessment on glucose using the FreeStyle Libre 2 CGM sensors, which measured
variations in blood glucose every 15 minutes and Fitbit Ionic smart watches that provided data
on physical activity levels, heart rate, sleeping quality during that period of data collection.
Structured reporting was used to monitor the intake of insulin and carbohydrates.

First made available in April 2024, the HUPA-UCM Dataset [16]is intended to facilitate a
range of scientific investigations and research initiatives. The collection consists of:

• Continuous Glucose Monitoring (CGM) Data: Recorded every 15 minutes using FreeStyle
Libre 2 sensors.

• Insulin Data: Including basal and bolus insulin doses, recorded at 5-minute intervals.

• Physical Activity Data: Steps, calories burned, and heart rate data collected from Fitbit
Ionic smartwatches.

• Carbohydrate Intake: Self-reported and estimated by participants, recorded at 5-minute
intervals.

Key Variables
• Participants:

– Number: 25 individuals with type 1 diabetes.

– Clinical Characteristics: 52% female, average age 39.23 ± 11.84 years, average
weight 69.06 ± 14.12 kg, average height 169.04 ± 10.41 cm, average HbA1c 7.37
± 0.82%, average disease duration 17.8 ± 10.5 years.

– Therapies: 56% on insulin pump therapy (CSII), 44% on multiple daily injections
(MDI).

• Data Types Collected:

– Continuous Glucose Monitoring (CGM): Data collected every 15 minutes using
FreeStyle Libre 2.
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– Physical Activity: Data on steps, calories burned, heart rate, and sleep quality col-
lected via Fitbit Ionic smartwatches.

– Insulin: Administration of insulin (basal and bolus) and carbohydrate consumption.

– File Format: Data organized in CSV files for each patient, with recordings every 5
minutes.

• Variables Included:

– time: Timestamp of data recording (format yyyy-MM-dd’T’HH:mm:ss).

– glucose: Blood glucose value (mg/dL).

– calories: Calories burned during the time interval.

– heart rate: Heart rate.

– steps: Number of steps taken during the time interval.

– basal rate: Basal insulin infusions during the time interval.

– bolus volume delivered: Bolus insulin injections during the time interval.

– carb input: Carbohydrate intake during the time interval (1 portion = 10 g).

• Output:

Classifying a time series of glucose readings highlights areas that may call for certain inter-
vention measures or lifestyle adjustments to maintain good health. We can deduce that the
primary output will be the three classes: ’Hyperglycemia’, ’Hypoglycemia’, and ’Normal’,
whereby one can have a pattern of changes in glucose over time.

The classification will be based on predefined thresholds: above 180 mg/dL is classified as
hyperglycemia, otherwise below 70 mg/dL are classified as hypoglycemia, which represents
a dangerous-low blood sugar level and needs immediate attention. Those readings within these
limits are considered normal.

4.1.2 Exploratory Data Analysis (EDA)
Overview of the dataset

First of all let’s have an overview on the HUPA-UCM diabetes dataset[16] showed in the figure
4.1:

After combining the 25 patients CSVs in one dataframe, we get a dataset composed of
309,392 rows and 8 columns. Some of the captured information includes time, glucose levels,
calories burned, heart rate, steps taken, basal insulin rate, bolus volume delivered, and carbo-
hydrate input. There are uniquely different rows of entries, each timestamped, thereby giving
the elaborate record of health metrics of a person over some time. The data has a varying range
of glucose levels together with corresponding parameters of health, hence allowing an in-depth
trend and pattern analysis.
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Figure 4.1: Overview of The Dataframe

Statistical summary of the Data Frame

First, we examine the ’time’ variable in Figure 4.1. It is formatted as ”yyyy-MM-dd HH:mm:ss”,
combining both date and time. To standardize the data type, we convert this timestamp to min-
utes, resulting in a float data type for all entries.

Figure 4.2 shows the data types of all variables after this conversion.

Figure 4.2: Data Types

Next, we generate a summary of the dataset, as shown in Figure 4.3. This summary pro-
vides a quick quantitative overview, including fundamental statistical measures such as mean,
standard deviation (std), minimum (min), and other relevant metrics. To obtain these statistics,
we typically use the Pandas library with the ”describe” method.

A detailed summary statistics shown in figure 4.3:

Statistical summary interpretation
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Figure 4.3: Detailed Summary Statistics

In short, with 309,392 entries, the dataset provides a robust sample size for analysis.
- The mean glucose level is 141.43 mg/dL with a standard deviation of 57.09, indicating vari-
ability in glucose levels among the recorded instances.
- Calories burned average at 8.81, heart rate at 76.99 bpm, and steps taken at 30.83, each show-
ing significant ranges and standard deviations, reflecting diverse activity levels.
- Basal rate, bolus volume delivered, and carb input show lower averages but with notable vari-
ability, highlighting the fluctuations in insulin administration and carbohydrate intake.
- Importantly, there are no missing values in the dataset, ensuring a complete and reliable foun-
dation for subsequent modeling efforts.

Data Distribution Visualization

• Histograms of numerical variables:

Figure 4.4 represents the histograms of numerical variables that show the frequency distri-
bution of all the numeric type columns:

Our numerical variables histograms interpretation :
- There are fewer instances of higher glucose levels, indicating that higher glucose levels
are less common in the dataset.
- The calories burned show a highly right-skewed distribution, with most values con-
centrated between 0 and 20 calories. This indicates that in many instances, the calories
burned are quite low, with a few instances of higher calorie burn.
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Figure 4.4: Histograms of Numerical Variables

- The heart rate data is approximately normally distributed, with a peak around 70 to 80
beats per minute (bpm). Most values lie between 50 and 120 bpm, indicating the typical
resting and active heart rates.
- The steps data shows a large number of instances having between 0 and 100 steps and
there are fewer instances of higher step counts.
- The basal rate shows a distribution concentrated around 0.05 to 0.15 units.
- In the bolus volume delivered visual, the vast majority of values are clustered around 0
units. This indicates that in many instances, no bolus insulin was delivered, with a few
instances of higher bolus volumes.
- There are fewer instances of higher carb inputs, suggesting that higher carbohydrate
intake is less common.
- The hour in minutes data shows a uniform distribution, indicating that the data points
are evenly distributed throughout the 24-hours. This approve data collection across dif-
ferent times of the day.

Overall, these histograms provide a clear view of the distributions of various features in the
dataset, highlighting the skewness and common ranges for each variable.

• Correlation Matrix:

A correlation matrix is a table that displays the correlation coefficients between many vari-
ables. Each cell in the table shows the correlation between two variables. Correlation coeffi-
cients quantify the strength and direction of a linear relationship between two features. Figure
4.5 represents a Heatmap, a correlation matrix visualization tool, where we see :
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Figure 4.5: Correlation Heatmap

Correlation analysis interpretation :

Glucose
- Shows very weak correlations with all other features.
- The highest correlation is with heart rate (0.098), but it’s still very weak.

Calories
- Has a moderate positive correlation with heart rate (0.57) and a strong positive correla-
tion with steps (0.8).
- Indicates that as the number of calories burned increases, both the heart rate and the
number of steps taken tend to increase.

Heart Rate
- Moderately positively correlated with calories (0.57) and steps (0.5).
- Also shows a weak positive correlation with heure en minutes (0.38), suggesting that
heart rate tends to be higher at certain times.

Steps
- Strongly positively correlated with calories (0.8) and moderately with heart rate (0.5).
- Indicates that taking more steps is strongly associated with burning more calories and
having a higher heart rate.
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Basal Rate
- Shows negligible correlations with other features.
- The highest (but still weak) correlation is with calories (0.055).

Bolus Volume Delivered
- Shows very weak correlations with all other features.
- The highest correlation is with carb input (0.17), suggesting a weak relationship be-
tween the amount of bolus insulin delivered and carbohydrate intake.

Carb Input
- Weakly correlated with bolus volume delivered (0.17).
- Indicates a slight increase in carb input is associated with an increase in bolus volume
delivered.

Hours in Minutes
- Weak to moderate positive correlations with heart rate (0.38) and calories (0.23).
- Suggests that certain times of the day might be associated with higher heart rates and
more calories burned.

Overall, the results of the correlation analysis indicate that variables such as the number of
steps and calories burned, although closely related to each other, do not have a strong correlation
with glucose levels. This observation is essential for the modeling phase, as it drives us to
adopt an approach that takes into account temporal and sequential dependencies to capture the
complex dynamics influencing glucose levels.

Data cleaning

• Not available Number (NaN) values removal

As mentionned in the previous sections, it was essential to preprocess the database before
utilizing it.

Figure 4.6: Missing Percentage Plot

As illustrated in 4.6, we have a clean data, no missing values in all our features.
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4.2 Software, libraries and hardware
This section presents the main software, libraries and hardware that supported our current re-
search on hyperglycemia and hypoglycemia prediction with deep learning.

4.2.1 Software
Python : Python, a versatile, open-source, high-level programming language known for its

readability, extensive libraries, and large developer community. It was created in 1989 by
Guido van Rossum in the Netherlands. The name Python comes from a tribute to the TV
series Monty Python’s Flying Circus, of which G. van Rossum is a fan. The first public
version of the language was published in 1991.[7]

Python offers a robust foundation for developing and deploying deep learning models.
It supports different programming paradigms like object-oriented, imperative, functional,
and procedural. It was among the pioneering languages offering libraries and machine
learning tools. In our implementation, we rely on several frequently used libraries [33].

Kaggle Environment : Kaggle as they say is “Your Home for Data Science”. Kaggle is a web
platform that hosts the largest Data Science community in the world, with over 536,000
active members in 194 countries and receives nearly 150,000 submissions per month,
providing powerful tools and resources to help achieve all advancements in data science.
Similar to Datascientest, Kaggle offers a customizable, no-setup Jupyter Notebooks en-
vironment. Free access to GPUs and a vast amount of data and code published by the
community is available. Within Kaggle, you will find all the code and data you need
to complete your data science projects. There are more than 50,000 public datasets and
400,000 public notebooks available to everyone[4].

4.2.2 Deep Learning Libraries
TensorFlow: Developed by Google and freely available at [8], TensorFlow is an open-sourced

software library for performing numerical computation using data flow graphs. Tensor-
Flow is mainly used in the domain of large-scale computations and machine learning
tasks. Being powerful, it offers tools and resources for building, training, and deploying
deep learning models[8].

Keras: Is an open-source library that provides a Python interface for artificial neural networks.
Keras was first independent software, then integrated into the TensorFlow library, and
later supporting more[52].

4.2.3 Machine Learning Libraries
Scikit-learn: This bundle of machine learning algorithms is[?]:

- Simple and efficient tools for predictive data analysis.
- Accessible to everybody, and reusable in various contexts.
- Built on NumPy, SciPy, and matplotlib includes everything from data preprocessing,
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feature engineering to model selection, evaluation, and visualization.
- Open source, commercially usable - Berkeley Source Distribution (BSD) license. [?]

Though Scikit initially concerns itself with areas of classical machine learning.

4.2.4 Data Analysis Libraries
NumPy: The base for scientific computing with Python [6], efficiently provides multidimen-

sional arrays and operations, functions for linear algebra, and random number generation;
it forms the basis for many other scientific Python packages, like Scikit-learn [?] and Ten-
sorFlow [8].

Pandas: Built for data manipulation and analysis [40], pandas offers high-performance, easy-
to-use data structures and data manipulation of the said structures - Series and DataFrames
for working with structured/tabular data. It’s ideal for data cleaning and transformation
building in EDA stage.

Matplotlib: General purpose plotting library for Python [?], Matplotlib provides an object-
oriented interface to create a wide range of visualizations, everything from simple line
plots and bar charts to complex statistical plots and histograms. Effective visualizations
are needed to understand the data, the model’s performance but also to be able to com-
municate results.

Seaborn: abbreviated as sns, seaborn is a Python data visualization library based on Matplotlib.
It provides a high-level interface for creating informative and attractive statistical graph-
ics. Seaborn is particularly useful for visualizing complex datasets and statistical rela-
tionships in a concise and aesthetically pleasing manner [56].

4.2.5 Hardware
Personal computer 1 Machine:

◦ Type: HP.
Processeur: Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz 2.30 GHz.

◦◦ Random access memory (RAM): 8,00 Go.

◦ Exploitation system: 64 bits, processor x64.

◦ Operating system: Windows 10 Professional.

Personal computer 2 Machine:

◦ Type: DELL Latitude E7470.

Processor: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz 2.40 GHz.

◦◦ RAM: 8.00 GB.
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◦ Exploitation system: 64 bits, processor x64.

◦ Operating system: Windows 10 Professional.

4.3 Model Development and Evaluation

4.3.1 CRNN Model Algorithm
We will outline the parts of our CRNN model code, including the training, optimizer, and fit
phases, as well as the our optimal hyperparameters that enabled the performance which we
will present in the next sections of evaluation:

1 # Divide data into training and test sets

2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size

=0.2, random_state=42)

3

4 # Define and train the CRNN model

5 model = Sequential()

This line of model = Sequential() makes an instance of a Sequential model. A Sequential
model in Keras refers to a linear stack of layers where you create a layer and then add another
to the previous one.

1 model.add(Conv1D(filters = 64, kernel_size = 3, activation = ’relu’,

input_shape = (seq_length , scaled_features.shape[1] + 1))) #+1 for

the glucose column

This adds a 1Dimentionnal Convolutional layer to the model:

• filters = 64: The layer shall learn 64 different filters.

• kernel size = 3 : each filter will see 3 time steps at a time.

• activation = ’relu’: it uses ReLU, stands for the Rectified Linear Unit activation function.
input shape = (seq length, scaled features.shape[1] + 1): This specifies the shape of input
data.

1 model.add(MaxPooling1D(pool_size=2))

This adds a Max Pooling layer, which reduces the spatial dimensions of the output from the
previous layer. pool size = 2 means it will take the maximum value over each 2 adjacent values.

1 model.add(LSTM(50, return_sequences=True))
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It adds an LSTM layer, with a number of 50 units as parameters. The returning of sequences,
return sequences = True, from this layer, that is, the full sequence of outputs for every input
sequence, is necessary to be considered in the case of stacking LSTM layers.

1 model.add(LSTM(50))

This will also add another LSTM layer, with 50 units. This layer will return the last output
only for each of the input sequences.

1 model.add(Dense(1))

This adds a fully connected (Dense) layer with 1 unit, which will be the output of the model.

1 # Compile the model with Adam optimizer and mean squared error loss

2 model.compile(optimizer=Adam(learning_rate=0.001), loss=’

mean_squared_error’)

It will compile the model, setting the applied optimizer to Adam with a learning rate of
0.001, and the loss function to the MSE

Adam Optimizer is chosen to adjust model weights and minimize the loss function effectively.

MSE (Mean Squared Error) is utilized as the measure of prediction accuracy, ensuring the
model minimizes the squared differences between predicted and actual values during
training.

1 # validation_split: fraction of training data to use as validation data

2 model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split

=0.2)

This trains the model on the data. It uses:
- X train and y train as the training data.
- 50 epochs (full passes through the dataset).
- A batch size of 32 (number of samples processed before the model is updated).
- 20/80% splitting, 20% of the training data is used for validation.

In summary, the combination of CNN and LSTM layers allows the model to capture both
short-term patterns and long-term trends in BGLs as we mentioned above. This architecture
aims to create a model that can effectively learn from our glucose time series data, ”HUPA-
UCM Diabetes dataset,” to predict future events for hyperglycemia and hypoglycemia.

These architectural choices and hyperparameters were selected after long experimentation
with various configurations to optimize performance. We have tried several combinations of
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hyperparameters iteratively to finally get the one best for our prediction task. Figures 4.8, 4.9
summarize our various findings when adjusting the values of the chosen hyperparameters.

4.3.2 Evaluation metrics
The main evaluation techniques for forecasting goals are listed in this table??, then we will
provide the metrics to be employed in our evaluation:

Category Metric
Error Metrics Mean Squared Error (MSE)

Average squared difference between predicted and actual values. Lower MSE indicates better performance.
Root Mean Squared Error (RMSE)
Square root of MSE; error in the same units as the original data. Easier to interpret.
Mean Absolute Error (MAE)
Average absolute difference between predicted and actual values. Less sensitive to outliers than MSE.
Mean Absolute Percentage Error (MAPE)
Average error as a percentage of the actual values. Useful for comparing across datasets with varying scales.

Loss Functions Binary Cross-Entropy (BCE)
Commonly used for binary classification tasks (e.g., hyper vs. normoglycemia). Measures difference between predicted probability and true binary labels.
Categorical Cross-Entropy (CE)
Extension of BCE for multi-class classification (e.g., predicting different blood sugar levels). Average CE across all classes.

Correlation Metrics Pearson Correlation Coefficient (PCC)
Measures linear correlation between predicted and actual values. 1: perfect positive correlation, 0: no correlation, -1: perfect negative correlation.
Spearman Rank Correlation Coefficient (SRCC)
Similar to PCC but assesses monotonic relationship between rankings. Less sensitive to outliers than PCC.

Informative Metrics F1-Score
Harmonic mean of precision and recall, useful for imbalanced datasets. Balances true positive identification and avoiding false positives.
Area Under the ROC Curve (AUC)
Probability that the model ranks a random positive instance higher than a random negative instance. 1: perfect performance, 0.5: random guessing.

Table 4.1: Key Performance Metrics for Forecasting

In our study, since a single indicator is insufficient to offer a thorough analysis, five criteria
are used to assess the testing performance and measuring the error between predicted BGLs and
original values.

Specifically, we employ the :

• Mean Squared Error (MSE): MSE measures the average of the squares of the er-
rors—that is, the average squared difference between the estimated values (ŷi) and the
actual value (yi). A smaller MSE value indicates better model performance. The formula
for MSE is depicted in Equation (4.2).

• Root Mean Squared Error (RMSE): RMSE is the square root of the average of the
squares of the errors. It provides an aggregate measure of the magnitude of the errors in
a set of predictions. The formula for RMSE is depicted in Equation (4.3).

• Mean Absolute Error (MAE): MAE measures the average of the absolute differences
between the predicted values (ŷi) and the actual values (yi). It is a measure of the average
magnitude of the errors in a set of predictions, without considering their direction. A
smaller MAE value indicates better model performance. The formula for MAE is depicted
in Equation (4.1).

MAE =
1
N

N∑
i=1

|yi − ŷi|, (4.1)



2023-2024
U

A
M
B

Data Sciences master thesis

4.3 Model Development and Evaluation 59

MSE =
1
N

N∑
i=1

(ŷi − yi)2 (4.2)

And,

RMSE =

√√
1
N

N∑
i=1

(ŷi − yi)2 (4.3)

Where N denotes the total number of BG points in the dataset, ŷi is the prediction value and
yt is the original (actual) value.

• R-squared (R²) Score: Tells us how well the model explains the variance within our data;
that gives an idea of the goodness of fit our model has. Equation (4.4) shows how the R²
score is calculated.

R2 = 1 −
∑N

i=1(yi − ŷi)2∑
i = 1N(yi − ȳ)2

, (4.4)

Where ȳ is the mean of the actual values.
The R² score is a value between 0 and 1, where 1 is perfect prediction. The higher the R²

score, the more fitted the model is to the data.

• F1 Score: The F1 score is a measure of a model’s accuracy, calculated as the harmonic
mean of precision and recall. It balances the trade-off between precision and recall and
gives a score between 0 and 1. A higher F1 score indicates better model performance.
The formula for the F1 score is depicted in Equation (4.5).

F1 Score = 2 ·
True Positives

2 · True Positives + False Positives + False Negatives
(4.5)

- True Positives (TP): The number of correct predictions that an instance is positive.
- False Positives (FP): The number of incorrect predictions that an instance is positive.
- False Negatives (FN): The number of incorrect predictions that an instance is negative.

4.3.3 CRNN Model Evaluation
In the previous studies of Kezhi Li et al. [27] and Francesca Iacono Et al.[19], it was CRNN
algorithm outperformed the other approaches in 2020 and Francesca Iacono Et al.[19] study,
they found that LSTM was their optimal model in BGLs prediction. Nevertheless, to enhance
and ensure the CRNN model’s performance noting that LSTMs are powerfull, we opted to
employ a new real dataset [16] of BG records of T1D patients, using a new CRNN model
architecture.
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In addition, we tried training the model on cloud accessible GPU of Kaggle plateform [4].
It is noteworthy that we applied the CRNN model to a recently released public dataset (in april,
2024) that has not yet been employed for CRNN modeling by other researchers, described in
the preceding titles.

Combining CNNs + RNNs, particularly “LSTM”, can offer several advantages in many
applications, especilly in deep learning and prediction tasks. This combination, often referred
to as Convolutional LSTM or ConvLSTM, covering the strengths of both architectures. Here
are some key advantages:

1. Feature extraction and temporal dynamics:

• CNN: Excels at extracting spatial features from the input data.

• LSTM: Good at capturing time dependencies and long-term patterns in sequential
data.

• Combined: It can effectively handle the spatiotemporal data; it is very much fit for
tasks that have spatial and temporal elements.

2. Handling multidimensional and multivariate series of time data.

3. Fewer parameters: CNN layers can lower the dimensionality of the input fed into LSTM
layers; this might lead to fewer parameters as compared to an approach only based on
LSTMs.

4. Feature representation: CNNs learn hierarchical features which are a better input to
LSTMs in modeling their temporality.

5. Flexibility, like using equential data.

6. Variable-length input handling: The combination, like standard LSTMs, also can handle
variable-length inputs.

7. Capturing both global and local patterns: CNNs may capture the local patterns, while
LSTMs are capable of capturing longer-range dependencies.

8. Better generalization: Spatial and temporal feature learning provide a combination that
can be leveraged to enroll better generalization of the model on unseen data.

These benefits make CNN+LSTM combinations particularly useful in areas like time series
forecasting with spatial components, for our context, in complex medical data analysis like
glucose level prediction.

To evaluate the effectiveness of our CRNN model architecture and it’s chosen hyperparam-
eters, we conducted a thorough analysis using the Kaggle environment [4]. Our evaluation
process involved using the HUPA-UCM Diabetes Dataset, which we divided into two distinct
sets: one consisting of 80% of the data for training and the other containing 20% for testing.

The evaluation consisted of two main phases:
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Prediction with CRNN model with different parameters

In this phase, we employed the Convolutional Recurrent Neural Network algorithm to make
predictions on the main dataset. Here is our principal CRNN architecture

1. Input: Sequential data with shape (seq length, number of features + 1), where the +1
accounts for the glucose column.

2. Conv1D layer:

• 64 filters to learn various local patterns

• Kernel size of 3 to look at 3 time steps at once

• ReLU activation for non-linearity

3. MaxPooling1D layer:

• Pool size of 2 to reduce spatial dimensions and computational load

4. Two LSTM layers:

• 50 units each for capturing long-term dependencies.

• First layer returns sequences, allowing stacking.

5. Dense output layer:

• unit for predicting future glucose levels.

Figure 4.7: Prediction with CRNN Model

Then we follow up with two experiments with two different hyperparameters for each:

1. First Experiment using :

• Learning rate: 0.001

• Loss function: MSE

• Epochs: 50

• Batch size: 32
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Figure 4.8: CRNN Model Predictions Results ”RMSE” on HUPA-UCM Dataset with 50 Epochs

• Validation split: 0.2

And these are the performances we get, see figure 4.8:

The obtained results suggest that our model is well-fitted to the data and capable of pre-
dicting glucose levels with high accuracy, evidenced by :

• A low RMSE of 3.20 indicating precise glucose level predictions. Furthermore,
there is a negligible difference between the RMSE of the test set and the training
set, indicating that there is no overfitting or underfitting.

• A high R2 = 99.6% signifies that our model effectively captures relationships be-
tween features and the target variable (glucose).

2. Second Experiment using :

• Learning rate: 0.001

• Loss function: MSE

• Epochs: 100

• Batch size: 32

• Validation split: 0.2

These are the performances we get with Epochs = 100, see figures 4.9 and 4.10:

Figure 4.9: CRNN Model Predictions Results on HUPA-UCM Dataset with 100 Epochs

In our second experiment we obtained the following results :
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• RMSE = 3.20

• R2 = 99.6%

Comparison between the two experiences and Observations

• Training Set RMSE: In the second experiment, our model achieved a slightly lower
training set RMSE (2.48) compared to the first experiment (2.63). This indicates that
our model slightly improved its ability to fit the training data with this longer training
configuration (100 epochs instead of 50).

• Testing Set RMSE: The testing set RMSE remained unchanged between the two ex-
periments (3.20). This suggests that our model maintains a consistent accuracy when
predicting test data, regardless of the number of epochs used.

• R-squared (R2): The R2 value remains high and identical (0.99) in both experiments,
demonstrating that our model continues to effectively capture relationships between fea-
tures and the target variable (glucose).

Thus, extending the training to 100 epochs in the second experiment did not lead to a sig-
nificant improvement in testing set RMSE compared to the first experiment with 50 epochs.
However, it did slightly enhance performance on the training set. This indicates that our model
achieves sufficient convergence with 50 epochs for the task of predicting glucose levels, without
requiring a significant increase in the number of epochs.

Figure 4.10: CRNN Model Predictions Results ”F1-score” on HUPA-UCM Dataset with 100
Epochs

- The model performed well on all three classes, with F1-scores above 0.95 for each class.

4.4 Real-time Processing in BGL Prediction
In this work, the system is represented through a Convolutional Recurrent Neural Network
model that will help it in doing the estimation of future glucose levels based on trained histori-
cal glucose information. The model can process sequential data and is therefore appropriate for
the time-series prediction, which is necessary in monitoring such dynamic variations in glucose
levels throughout the day.
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For that, if data is captured and transmitted every 5 minutes, it is essential to manage this
data stream efficiently to update our CRNN model regularly and sustainably. Here is a detailed
plan for handling real-time predictions with updates every 5 minutes:

Data Capture: Continuous monitoring devices capture glucose levels, heart rate, and other
relevant parameters every 5 minutes.

Preprocessing: The incoming data is immediately cleaned and preprocessed. This includes
handling missing values, outlier detection, and normalization to ensure consistency with the
training data.

Prediction Pipeline: The preprocessed data is fed into the prediction model. Given the tempo-
ral nature of the data, a model capable of handling sequences, such as a CRNN, is ideal.

Specify the classification: Based on the predictions, alerts are generated for potential hypo or
hyperglycemia events. This feedback is crucial for immediate medical interventions.

Model Retraining: The system periodically retrains the model using a combination of histor-
ical and recent data to adapt to any changes in the patient’s condition or behavior.

4.4.1 Implementation
Data Capture

Using function to simulate data capture every 5 minutes

Temporary Storage

Initialize new data with existing data

1 new_data = data.copy()

In the main loop, new data chunk represents the newly captured data, which is appended
to new data, a DataFrame initially copied from our data. This variable accumulates all data
points captured over time. Sorting new data by timestamp ensures that data is processed in
chronological order, which is essential for time-series data analysis and prediction tasks.

1 while True:

2 new_data_chunk = capture_new_data()

3 new_data = pd.concat([new_data, new_data_chunk], ignore_index=True)

4 new_data[’time’] = pd.to_datetime(new_data[’time’])# time column to

datetime format

5 new_data.sort_values(’time’, inplace=True)# Sort by timestamp

6 ...

Real-time Prediction

During each iteration of the main loop, the code prepares scaled data, scaler glucose , and
scaler features using the prepare data()function. These variables scale and transform the
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data to fit the model’s input requirements. The model then predicts glucose levels using the
most recent sequence of data (sequence), providing real-time predictions (y pred) and inverse
transforms them back to original units for interpretation. y pred list and y true list.

1 scaled_data , scaler_glucose , scaler_features = prepare_data(new_data)

2 for i in range(len(new_data_chunk)):

3 if len(new_data) < seq_length:

4 continue

5 sequence = scaled_data[-seq_length:].reshape(1, seq_length ,

scaled_data.shape[1])

6 y_pred_scaled = model.predict(sequence)

7 y_pred = scaler_glucose.inverse_transform(y_pred_scaled.reshape(-1,

1))

8

9 y_pred_list.append(y_pred[0][0])

10 y_true_list.append(new_data.iloc[-1][’glucose’])

Periodic Model Update

Every update interval iterations, typically set to capture a day’s worth of data, the model is
retrained with updated X train and y train sequences. This retraining keeps the model uptodate
with the latest data trends and variations in glucose levels. The model architecture, including
convolutional and LSTM layers, is defined and compiled with an optimizer and loss function.
Training occurs on a subset of the data (X train, y train) split for validation (X test, y test).
Finally, the trained model is saved for future use (’crnn model.h5’).

1 update_interval = 288 # 24 hours of data captured every 5 minutes

2

3 if len(new_data) % update_interval == 0:

4 scaled_data , scaler_glucose , scaler_features = prepare_data(

new_data)

5 X, y = create_sequences(scaled_data , seq_length)

6 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size

=0.2, random_state=42)

7 #CRNN model

8 model = Sequential()

9 model.add(Conv1D(filters=64, kernel_size=3, activation=’relu’,

input_shape=(seq_length , scaled_data.shape[1])))

10 model.add(MaxPooling1D(pool_size=2))

11 model.add(LSTM(50, return_sequences=True))

12 model.add(LSTM(50))

13 model.add(Dense(1))

14

15 model.compile(optimizer=Adam(learning_rate=0.001), loss=’

mean_squared_error’)

16 model.fit(X_train, y_train, epochs=5, batch_size=32,

validation_split=0.2)

17 model.save(’crnn_model.h5’)
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Minute Pause

To simulate real-time data flow, the main loop includes a 5-minute pause (timeṡleep(300)) be-
tween each iteration. This delay mimics the interval between data captures and model updates
in our real-time prediction system. It ensures that the system operates at a realistic pace and al-
lows continuous monitoring and adaptation to changes in glucose levels and other physiological
parameters.

1 time.sleep(300)

4.4.2 Simulation test
To test this program, we need to simulate a data stream. We created a dataset named
HUPA0028P1000ligne.csv, which contains the first 1000 rows of the dataset from patient
HUPA0028.

Using our pre-trained CRNN model and the data from HUPA0028P1000ligne.csv:

1. Loading and Preparing Simulated Data: We progressively read the data from
HUPA0028P1000ligne.csv, prepare it, and use it to make predictions at each time step.

2. Using our Model for Real-Time Predictions: At each time step, we use the model to
predict future glucose levels.

3. Classifying Predictions: We classify the predictions into hypoglycemia, hyperglycemia,
or normal.

4. Displaying the real Glucose Value ’True Value’: We display the true glucose value to
compare the classification result with the actual value.

1 import numpy as np

2 import pandas as pd

3 from sklearn.preprocessing import MinMaxScaler

4 from tensorflow.keras.models import load_model

5 import time

6 from sklearn.metrics import mean_squared_error , mean_absolute_error ,

classification_report

7

8 # Load the model

9 model = load_model(’crnn_model.h5’)

10

11 # Load the data

12 data = pd.read_csv(’HUPA0028P_1000firstlignes.csv’, delimiter=’;’)

13 # Time in minutes

14 data[’hour’] = data[’time’].apply(lambda x: x.split(’T’)[1])

15

16 # Convert time to minutes as float

17 def hour_to_minutes(hour):

18 h, m, s = map(int, hour.split(’:’))

19 return h * 60 + m + s / 60
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20

21 data[’hour_in_minutes’] = data[’hour’].apply(hour_in_minutes)

22

23 # Drop the ’time’ column

24 data = data.drop(columns=[’time’])

25 # Separate features and target

26 features = data.drop(columns=[’glucose’])

27 glucose = data[[’glucose’]]

28

29 # Scale the features

30 scaler_features = MinMaxScaler()

31 scaled_features = scaler_features.fit_transform(features)

32

33 # Scale the glucose column

34 scaler_glucose = MinMaxScaler()

35 scaled_glucose = scaler_glucose.fit_transform(glucose)

36

37 # Combine the scaled features and target

38 scaled_data = np.hstack((scaled_glucose , scaled_features))

39

40 # Sequences of 60 time steps

41 def create_sequences(data, seq_length):

42 xs, ys = [], []

43 for i in range(len(data) - seq_length):

44 x = data[i:i + seq_length]

45 y = data[i + seq_length , 0] # Predict the glucose level

46 xs.append(x)

47 ys.append(y)

48 return np.array(xs), np.array(ys)

49

50 seq_length = 60

51

52 # Define the glucose level classifier

53 def classify_glucose_levels(values, hyper_threshold = 180, hypo_threshold =

70):

54 classifications = []

55 for value in values:

56 if value > hyper_threshold:

57 classifications.append(’Hyperglycemia’)

58 elif value < hypo_threshold:

59 classifications.append(’Hypoglycemia’)

60 else:

61 classifications.append(’Normal’)

62 return classifications

63

64 # To store predictions and true values

65 y_pred_list = []

66 y_true_list = []

67

68 # Simulate real-time data stream

69 for i in range(seq_length , len(scaled_data)):

70 # Create a sequence of data

71 sequence = scaled_data[i-seq_length:i].reshape(1, seq_length ,

scaled_data.shape[1])

72
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73 # Prediction

74 y_pred_scaled = model.predict(sequence)

75 y_pred = scaler_glucose.inverse_transform(y_pred_scaled.reshape(-1, 1))

76

77 # Add predictions and true values to the lists

78 y_pred_list.append(y_pred[0][0])

79 y_true_list.append(glucose.iloc[i, 0])

80

81 # Display prediction result and classification

82 y_pred_class = classify_glucose_levels(y_pred)

83 print(f"Prediction: {y_pred[0][0]:.2f}, Classification: {y_pred_class

[0]}, True Value: {glucose.iloc[i, 0]:.2f}")

84

85 # Alert logic

86 if y_pred_class[0] in [’Hyperglycemia’, ’Hypoglycemia’]:

87 print(f"ALERT: {y_pred_class[0]} detected at {pd.Timestamp.now()}")

88

89 # Simulate a 1-second pause for code to execute rapidly

90 time.sleep(1)

91

92 # Performance metrics

93 mse = mean_squared_error(y_true_list , y_pred_list)

94 mae = mean_absolute_error(y_true_list , y_pred_list)

95

96 print(f"Mean Squared Error: {mse}")

97 print(f"Mean Absolute Error: {mae}")

98

99 # Classify true glucose levels

100 y_true_class = classify_glucose_levels(np.array(y_true_list).reshape(-1, 1)

)

101

102 # Classification report

103 report = classification_report(y_true_class , classify_glucose_levels(np.

array(y_pred_list).reshape(-1, 1)))

104 print(report)

After executing this code we obtained the following results:

Figure 4.11: Hyperglycemia Detection
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Figure 4.12: Hypoglycemia Detection

Figure 4.13: Real Time Results

The model shows very high performance, particularly in classifying normal glucose levels.
It also performs very well in identifying hyperglycemic and hypoglycemic states, with high
precision, recall, and F1 scores. The overall accuracy of 99% is excellent, indicating that the
model is reliable for predicting glucose levels.

In this chapter, we have conducted an extensive review of experiment and results from the
existing literature on blood glucose prediction. Additionally, we have implemented a CRNN
model architecture on a new dataset that has not previously been tested with CRNN modeling,
achieving the highest level of accuracy recorded thus far.

In this study, we adopted a different CRNN model architecture with the aid of a new large
dataset in order to compare our results with the recent findings from this paper [27]. Our pri-
mary goal was to attain the highest level of accuracy in the early prediction of hypoglycemia
and hyperglycemia events, as well as implementing a real time system. The potentials of the
hybrid model in using CNN and RNN —especially LSTM—have been able to show robustness
in solving deep learning challenges across a very wide spectrum.

To evaluate the performance of our model, we used a dataset with several variables, includ-
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ing: ’time’, ’glucose’, ’calories’, ’heart rate’, ’steps’, ’basal rate’,’bolus volume delivered’,
’carb input’ [16], to make accurate predictions and real time processing for low and high blood
sugar episodes concerning T1D patients. We developed a Python program for the real time
processing of the CRNN model where the simulated data captured and transmitted every five
minutes, as well as a generated feedback classification as a trigger for patient’s hypo or hyper-
glycemia events.

After achieving an excellent RMSE value of 3.20 on our original data, our findings consis-
tently demonstrated that the combined CRNN model outperformed as well on simulated data,
resulting RMSE value equals to 4.63 and F1-score of: hypoglycemia = 91%, normal = 99%
and hyperglycemia = 88%. The process is a feedback system, so it learns constantly after each
24 hours data generated and the model gets improved continuously.

Based on these highly promising findings, we assert that our method to have further po-
tential applications in various diseases prediction technologies belonging to a wide range of
domains. Application of machine learning, specifically deep learning, to medical diagnostics
has been becoming crucial in recent times. It can certainly expedite the diagnosis process and
patient triage, especially in disease prediction.

In the following general conclusion, we will draw final conclusions based on the project and
present our future visions and perspectives.



2023-2024
U

A
M
B

Data Sciences master thesis

General Conclusion and Perspectives

Diabetes is one of the most serious global health issues, affecting millions of people worldwide.
It crosses the lives of people in several countries, the number of these cases has increased in
millions of people gradually in time, which demonstrates that diabetes is now a global disease.
This has created an international research initiative with the aim of the collective fight against
the disease. Our work is part of an initiative that has been implemented research and one of var-
ious means of addressing this worldwide issue. We opened by pointing out some of the primary
contributors in the field of diabetes prediction, focusing on blood glucose level prediction.

Our approach involved employing a CRNN (Convolutional Recurrent Neural Network)
model on a large, newly available dataset ”HUPA-UCM Diabetes Dataset[16]” that had not
been previously used for CRNN modeling. Our target was to spot out the glucose highs and
lows with high accuracy, which could lead to better daily management of diabetes. Both the pri-
mary CRNN architecture and its real time implementation were developed and carefully tested
with different hyperparameters for accurate performance.

The hybrid model with both CNN and LSTM layers had robust capabilities to capture spatial
and temporal dependencies in data, attaining the highest accuracy level ever recorded. It used
variables like time, glucose, calories, heart rate, steps, basal rate, bolus volume delivered, and
carb input. Using these variables, our model could easily make accurate predictions and process
real-time data for T1D patients. This was enhanced by a Python program that enabled real-time
processing for the patient and thus enabled feedback implementation to learn continuously on
the generated data within 24 hours.

Our model demonstrated excellent performance with an RMSE value of 2.48 on the training
set, and 3.20 on the test set, significantly outperforming previous studies, in contrast to the [27]
in particular. In addition, it achieved an remarquable RMSE value of 4.63 on the simulated data.
These results underscore the potential of our CRNN model in improving diabetes management
through accurate and timely predictions of glycemic events.

Real-time processing refers to the capability whereby data input is immediately processed
into results upon receipt in a system, five minutes in our case. When we use machine learning
in our case of glucose-level prediction with real-time processing, it is a constant feed of the in-
formation about the patient’s glucose levels to the machine that manages the selection of correct
interventions for hypoglycemia and hyperglycemia. The CRNN model is designed to operate
on sequential data, enabling more accurate time-series predictions of glucose level variations
throughout the day. This is crucial for tracking dynamic fluctuations in glucose levels over time.
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This real-time processing capability is essential for managing diabetes effectively because it
proactively initiates immediate responses to possibly dangerous variations in blood sugar levels,
potentially averting major health consequences. By utilizing deep learning to provide predictive
insight and improve patient outcomes, integrating such a system with CGM equipment would
mark a substantial improvement in the treatment of diabetes.

In conclusion, our research has demonstrated the effectiveness of using dL methods into
medical diagnostics, namely in the area of diabetes event prediction. But rather than being a
goal unto itself, this project is a stage in the continuous battle against diabetes. This project may
go in the following paths in the future:

• Developing a comprehensive real-time glucose monitoring system for diabetic patients,
which integrates a wearable device (like a smartwatch with a glucose sensor), a mobile
application, and cloud-based data storage. The wearable device collects glucose data and
transmits it to the mobile application, which then uploads the data to secure cloud stor-
age. Our advanced hybrid CRNN model analyzes the data in real-time to detect abnormal
glucose levels and send immediate alerts to the person through the mobile application.
This system ensures continuous monitoring, timely intervention, personalized health rec-
ommendations, and improved patient outcomes.

• Creating a database of patient glucose level information in Algeria to facilitate national
diabetes research and care.

Through a combination of modern technology and machine learning innovations our aim is
to make diabetes treatment more efficient and less health taxing for individuals suffering with
the condition. Building on these findings, we want to pursue more extensive applications and
all-encompassing solutions in medical diagnostics realm in our future initiatives.
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