Université A. MIRA - Bejaia Faculté des Sciences Exactes Département de Chimie

Mémoire de Master

Présenté par :

CHALAL Ryma

En vue de l'obtention du diplôme de Master en Chimie Spécialité : Chimie Analytique

Thème :

Soutenu le : 29/06/2024

Devant le jury composé de :

Nom	Prénom	Département d'affiliation	Qualité
BELABBAS	Imad	Chimie	Président
BERKANI	Madjid	Chimie	Examinateur
SIFAOUI	Hocine	Chimie	Encadrant

Remerciements

Sans se vanter d'avoir remercié notre Dieu unique qui a permis aux piètres personnes que nous sommes d'accomplir ce modeste travail, je le remercie par l'expression de mes sentiments les plus profonds et les plus intenses.

Je remercie très vivement mon encadreur **Mr SIFAOUI Hocine**, pour sa patience, ces encouragements et pour son amour du Travail bien fait.

Que tous les membres du jury puissent trouver ici l'expression de ma gratitude et ma reconnaissance, pour avoir accepté de faire partie du jury.

Je remercie très chaleureusement toutes les personnes ayant contribué, de près ou de loin, à la réalisation de ce travail.

Dédicaces

Je dédie ce modeste mémoire de master A celle qui a fait de moi une femme forte, Ma mère NORA A l'être le plus cher de ma vie, Mon père BOUALEM A ma chère sœur, SIHAM A mon cher frère, LYES A mes meilleures copines, LYNDA, FAIZA et FERIEL Et n'oubliez pas ma famille, CHALAL

SYMBOLES

А	Surface molaire
A _i	Paramètre de lissage
A _i	Surface total des molécules du constituant i
A_{ss}	Aire des surfaces du contact de type ss
A_{st}	Aire des surfaces du contact de type st
A _s	Aire total des surfaces du type s
А	Aire total de toutes les molécules
a _{mn}	Paramètres d'interactions entre le groupement m et le groupement n
F	Energie libre
F _i	Energie libre partielle
F^{E}	Energie libre molaire d'excès
F_i^E	Energie libre molaire partielle d'excès
g	Facteur combinatoire
g_i	Enthalpie libre molaire partielle
$g^{\scriptscriptstyle E}$	Enthalpie libre molaire d'excès
g_i^E	Enthalpie libre molaire partielle d'excès
$g^{E}(comb)$	Enthalpie libre molaire d'excès combinatoire
$g^{E}(disp)$	Enthalpie libre molaire d'excès dispersive
g ^E (quac)	Enthalpie libre molaire d'excès quasichimique
g_{st}	Enthalpie libre molaire d'interéchange du contact st
$g^{E}(exp)$	Enthalpie libre molaire expérimentale
$g^{E}(cal)$	Enthalpie libre molaire calculée
h	Facteur correctif
h_i	Enthalpie molaire partielle
h^E	Enthalpie molaire d'excès
h_i^E	Enthalpie molaire partielle d'excès
$h^{E}(comb)$	Enthalpie molaire d'excès combinatoire
$h^{E}(disp)$	Enthalpie molaire d'excès dispersive
h ^E (quac)	Enthalpie molaire d'excès quasichimique

h _{st}	Enthalpie molaire d'interéchange du contact st
$h^{E}(exp)$	Enthalpie molaire d'excès expérimentale
h ^E (cal)	Enthalpie molaire d'excès calculée
ΔH_f	Enthalpie molaire de formation
K	Constante d'étalonnage du calorimètre
N _A	Le nombre d'Avogadro
n _t	Le nombre de moles total
n_i	Le nombre de moles du constituant i
Q	Surface absolue
Q_K	Surface du groupement k
q_i	Surface relative de la molécule i
q_{si}	Fraction de surface de type s sur la molécule i
R	Constante des gaz parfaits
R _K	Volume du groupement k
r_i	Volume relatif de la molécule i
S	Entropie configurationnelle molaire
S _i	Entropie configurationnelle partielle molaire
Т	Température
T_f	Température de fusion
Р	Pression
P_i^*	Pression de vapeur de i pur
x_i	Fraction molaire dans la phase liquide
\mathcal{Y}_i	Fraction molaire dans la phase vapeur
t	Temps
U	Energie configurationnelle molaire
U _{st}	Energie molaire d'interéchange
$x_{s,x_{st}}$	Solution du système de Barker
Z	Nombre de coordinations
α_{ai}	Fraction de surface de type s dans la molécule i
γ_i	Coefficient d'activité du constituant i
γ_i^c	Coefficient d'activité de la partie combinatoire constituant i

γ_i^R	Coefficient d'activité de la partie résiduelle constituant i
Γ_{K}	Coefficient d'activité du groupement k
E _{st}	Energie molaire d'interéchange
η_{st}	Facteur de Boltzmann
Ω	Fonction de la partie molaire
ε_i	Fraction de surface du constituant i
$arphi_i$	Fraction de volumique du constituant i
θ_m	Fraction de surface du groupement m dans la solution
x_m	Fraction molaire du groupement m dans la solution
σ	Déviation standard

ABREVIATIONS

comb	Combinatoire
int	Interaction
disp	Dispersive
quac	Quasichimique
exp	Expérimentale
cal	Calculé
DISQUAC	Dispersive-Quasichimique

Liste des tableaux

Tableau 1	Groupe et sous-groupe des molécules étudiées.
Tableau 2	Valeurs des paramètres géométriques (UNIFAC Originale)
Tableau 3	Valeurs des paramètres géométriques (UNIFAC Modifié).
Tableau 4	Valeurs des paramètres d'interaction entre chaque paire de groupement (UNIFAC Originale)
Tableau 5	Valeurs des paramètres d'interaction entre chaque paire de groupement (UNIFAC Modifié)
Tableau 6	Volume relative et Surface relative, des groupements fonctionnels.
Tableau 7	Les paramètres géométriques des molécules étudiées (DISQUAC).
Tableau 8	Valeurs des paramètres interactionnels.
Tableau 9	Valeurs expérimentales de h^E , à 293.15K [22] et les valeurs de calculées pour benzène (1) + toluène (2).
Tableau 10	L'écart entre les valeurs expérimentales et les valeurs calculées de $\Delta h^E = h^E(\exp) - h^E(\operatorname{cal}) \operatorname{en j.mol}^{-1}$ pour benzène (1) + toluène (2).
Tableau 11	Valeurs expérimentales des P=f(x_1, y_1) [23] et les valeurs calculées pour benzène (1) + toluène (2).
Tableau 12	L'écart entre les valeurs expérimentales et les valeurs calculées de $\Delta P= P(exp)-P(cal) $ en mmHg pour benzène (1) + toluène (2)
Tableau 13	Valeurs expérimentales de h^E , à 298.15K [24] et les valeurs de calculées pour toluène (1) + n-heptane (2).
Tableau 14	L'écart entre les valeurs expérimentales et les valeurs calculées de $\Delta h^E = h^E(\exp) - h^E(\operatorname{cal}) \text{ en j.mol}^{-1}$ pour toluène (1) + n-heptane (2).
Tableau 15	Valeurs expérimentales des P=f(x_1, y_1) [24] et les valeurs calculées pour toluène (1) + n-heptane (2)
Tableau 16 $\Delta P = P (exp) - P$	L'écart entre les valeurs expérimentales et les valeurs calculées de (cal) en mmHg pour toluène (1) + n-heptane (2).

Tableau 17 Valeurs expérimentales de h^E , à 303.15K [11] et les valeurs de calculées pour benzène (1) + n-octane (2).

- **Tableau 18**L'écart entre les valeurs expérimentales et les valeurs calculées de
 $\Delta h^E = |h^E(\exp) h^E(\operatorname{cal}) \operatorname{en j.mol^{-1}}$ pour benzène (1) + n-octane (2).
- **Tableau 19**Valeurs expérimentales des $(T_{f,1})$, à 303.15K [11].
- **Tableau 20** $(T_{f, 1})$ et $(T_{f, 2})$ calculées dans le cas idéal, la méthode UNIFAC originale
UNIFAC Dortmund et DISQUAC pour benzène (1) + n-octane (2).

Tableau 21L'écart entre les valeurs expérimentales et les valeurs calculées de $\Delta T_f = |T_f(exp) - T_f(cal) en K$ pour benzène (1) + n-octane(2).

Liste des figures

Figure 1	Comparaison de la théorie avec l'expérience pour l'enthalpie molaire d'excès à 293.15 K, Benzène (1) + Toluène (2).
Figure 2	Comparaison de la théorie avec l'expérience et le cas idéal et pour le Diagramme d'équilibre Liquide vapeur, à 352.75K, Benzène (1) + Toluène (2).
Figure 3	Comparaison de la théorie avec l'expérience pour l'enthalpie molaire d'excès à 298.15 K, Toluène (1) + n-Heptane (2).
Figure 4	Comparaison de la théorie avec l'expérience et le cas idéal pour le Diagramme d'équilibre Liquide vapeur, à 298.15K, Toluène (1) + n-Heptane (2).
Figure 5	Comparaison de la théorie avec l'expérience pour l'enthalpie molaire d'excès à 303.15 K, Benzène (1) + n-Octane (2).
Figure 6	Comparaison de la théorie avec l'expérience et le cas idéal et pour le Diagramme d'équilibre Liquide solide, à 303.15K, Benzène (1) + n-Octane (2)

Table des matières

Introduction_générale

Chapitre I Les modèle de contribution des groupes.

1.1. Introduction	3
2. Méthode UNIFAC	3
I .2.1. Terme combinatoire (l'expression de STAVERNMANN)	3
I .2.2. Terme résiduel	4
3. La méthode UNIFAC Modifié (Dortmund)	6
1.3.1. La contribution combinatoire	6
1.3.2. La contribution résiduelle	7
1.4. Le Modèle dispersif quasichimique (DISQUAC).	7
I .4.1 Modèle du réseau rigide dans l'approximation dispersive	8
I .4.1.1. Enthalpie molaire d'excès	8
I .4.1.2. Enthalpie libre molaire d'excès	9
I .4.1.3. Coefficient d'activité	10

Chapitre II Application de ces modèles

II .1. Application de la méthode UNIFAC	12
II .1.1. Les paramètres géométriques	12
II .1.2. Paramètres d'interactions	13
II .1.3. Détermination de l'expression de h ^E	14
II .1.4. Equilibre liquide-vapeur	14
II .1.4.1. Equilibre liquide-vapeur à température constante	14
II .1.4.2. Equilibre liquide-vapeur à pression constante	15

II .1.5. Equilibre liquide-solide	15
Il .1.6. Equations de calculs pour les différents systèmes	16
II .1.6.1. Benzène (1) + Toluène (2)	16
II .1.6.2. Toluène (1) + n-Heptane (2)	18
II .1.6.3. Benzène (1) + n-Octane (2)	21
Il .2. Application de modèle DISQUAC	24
Il .2.1. Paramètres géométriques	24
II .2.2. Paramètres thermodynamiques	25
II .2.3. Détermination de l'expression de h ^E	26
Il .2.4. Equations de calculs pour les différents systèmes	26
II .2.4.1. Benzène (1) + Toluène (2)	26
A. L'enthalpie molaire d'excès	
B. L'enthalpie libre molaire d'excès	27
C. Les coefficients d'activité	
II .2.4.2. Toluène (1) + n-Heptane	
A. L'enthalpie molaire d'excès	
B L'enthalpie libre molaire d'excès	29
C Les coefficients d'activité	29
II .2.4.3. Benzène (1) + n-Octane	
A L'enthalpie molaire d'excès	30
R. L'enthalpie libre molaire d'excès	30
C. Les coefficients d'activité	
Chapitre III Résultats et discussions	
III.1. Introduction	
III.2. Benzène (1) + Toluène (2)	33
III. 2. 1. Les enthalpies molaires d'excès h ^E	33
III 2.2. Equilibre liquide company (ELV) à terre facture equatorit	25
III.2.2. Equilibre inquide-vapeur (ELV) a temperature constant	
III.2.3 Discussion	36

III.3. Toluène (1) + n-heptane (2)	37
III.3.1. Les enthalpies molaires d'excès h^E	37
III.3.2. Equilibre liquide-vapeur (ELV)à température constant	38
III.3.3 Discussion	39
III.4. Benzène (1) + n-octane (2)	40
III.4.1. Les Enthalpie molaire d'excès h ^E	40
III.4.2. Equilibre liquide-solide	42
III.4.3 Discussion	44

Conclusion_générale46

Introduction générale

Introduction générale

La connaissance des propriétés thermodynamiques (les diagrammes d'équilibres liquide-vapeur, les diagrammes d'équilibre liquide-solide, les grandeurs d'excès) des mélanges de composés liquides organiques présentent un intérêt pratique et théorique considérable.

L'intérêt pratique résulte de l'importance de ces propriétés dans l'industrie, pour l'élaboration de procédés de séparation, d'extraction, de purification et du transport des composés organiques.

L'intérêt théorique de l'étude de ces différentes propriétés, ressort quand celles-ci sont interprétées à l'aide de modèles théoriques reliant les propriétés à la structure des constituants et aux interactions moléculaires.

Depuis le développement de la programmation informatique, les chercheurs dans les différents domaines et en particulier dans le domaine de la thermodynamique des solutions, ont recours à la modélisation au détriment de l'expérience pour prévoir les différentes propriétés. L'avantage de la modélisation c'est qu'elle est rapide et moins couteuse par apport à l'expérience qui nécessite beaucoup de temps, du matériel et un budget considérable.

Dans la modélisation thermodynamique des solutions moléculaires, il existe plusieurs modèles : les modèles empiriques (modèle de Van Laar, modèle de Margules, modèle de Redlich-Kister,etc.), les modèles semi-empiriques (modèle de Wilson, méthode NRTL, méthode UNIQUAC,etc.) et les modèles prédictifs (méthode ASOG, la méthode UNIFAC avec ses différentes variantes, le modèle dispersif quasi-chimique (DISQUAC) et le modèle COSMO-RS).

Dans le présent travail, nous proposons d'utiliser trois modèles basés sur la notion de contribution de groupements fonctionnels, à savoir la méthode UNIFAC Originale, la méthode UNIFAC modifiée type Dortmund et le modèle dispersif quasi-chimique (DISQUAC) pour la prévision de deux diagrammes d'équilibre liquide-vapeur à température constante, d'un diagramme d'équilibre liquide-solide et des enthalpies molaires d'excès des mélange des systèmes binaires suivants : (benzène + toluène, benzène + n-octane et toluène + n-heptane).

En plus de l'introduction et de la conclusion, le mémoire est organisé en trois chapitres : Chapitre I : Les modèles de contribution des groupes.

Chapitre II : Application de ces modèles.

Chapitre III : Résultats et discussions

1

Chapitre I

I.1. Introduction

Dans ce chapitre nous exposons la méthode UNIFAC (UNIversal quasi- chemical Functional group Activity Coefficients) originale, UNIFAC modifiée type Dortmund et le modèle thermodynamique DISQUAC (DISpersive QUAsi-Chemical)

I .2. Méthode UNIFAC

La méthode nécessite la connaissance de données de coefficients d'activité obtenus expérimentalement pour obtenir des paramètres caractérisant les interactions entre les paires de groupes structuraux dans les systèmes non électrolytiques, et l'utilisation de ces paramètres pour prédire les coefficients d'activité pour d'autres systèmes qui n'ont pas été étudiés expérimentalement mais contiennent les mêmes groupes fonctionnels. Le modèle UNIFAC a été proposé par Fredenslund et al. [1] en 1975. Plusieurs modifications de ce modèle ont été développées par plusieurs auteurs. Parmi celles-ci le modèle UNIFAC modifié de type Dortmund [2] utilisé dans ce travail.

Cette méthode découle directement du modèle UNIQUAC, et utilise le même formalisme. L'enthalpie libre d'excès est décomposée en un terme combinatoire et un terme résiduel. Elle permet d'exprimer le coefficient d'activité du constituant i par :

$$ln\gamma_i = ln\gamma_i^{\mathcal{L}} + ln\gamma_i^{\mathcal{R}} \tag{1}$$

 $ln\gamma_i^{\mathcal{L}}$: Terme combinatoire ou entropique et basé sur la diférence entres les tailles et formes des molécules.

 $ln\gamma_i^R$: Terme résiduel ou enthalpique dû aux interactions inter-groupements.

I .2.1. Terme combinatoire (l'expression de STAVERNMANN)

Dans le modèle UNIFAC, le terme combinatoire émane directement de l'expression de l'enthalpie libre d'excès de Stavernmann-Guggenheim (1950) [3, 4], applicable à des molécules de taille et de formes arbitraire :

$$ln\gamma_i^{\mathcal{C}} = ln\frac{\varphi_i}{x_i} + \frac{z}{2}q_i ln\frac{\theta_i}{\varphi_i} + l_i - \frac{\varphi_i}{x_i}\sum_j x_j l_j$$
(2)

Aves : Z est le nombre de coordination (Z=10).

$$l_i = \frac{z}{2}(r_i - q_i) - (r_i - 1)$$
(3)

 θ_i : La fraction surfacique moléculaire.

$$\theta_i = \frac{q_i x_i}{\sum_j q_j x_j} \tag{4}$$

 ϕ_i : La fraction volumique moléculaire.

$$\varphi_i = \frac{r_i x_i}{\sum_j r_j x_j} \tag{5}$$

x_i: La fraction molaire du constituant i dans le mélange.

 r_i et q_i : respectivement, sont le volume et la surface de Van Der Waals du constituant(i). Ils sont calculés à partir des paramètres de volume et de surface de chaque groupe R_k et Q_k et du nombre de groupes k, γ_k présent dans la molécule de type (i), par les règles d'additivité suivantes :

$$q_i = \sum_k \gamma_k^{(i)} Q_k \tag{6}$$

$$\Gamma_{i} = \sum_{k} \gamma_{k}^{(i)} R_{k}$$
⁽⁷⁾

 R_k et Q_k : paramètre de volume et surface du groupes k, ils sont déterminés à partir de données concernant les structures atomiques et moléculaires :

$$R_k = \frac{\nu_k}{15.17} \tag{8}$$

$$Q_k = \frac{A_k}{2.5 \ 10^9} \tag{9}$$

 V_k et A_k : sont les volumes et surfaces de groupe de Van Der Waals calculés par la méthode de BONDI [5, 6] à partir des distances intramoléculaires.

15.17 et 2.5 10^9 : facteurs de normalisation calculés par D. S. ABRAMS et J. M. PRAUSNITZ [7, 8] à partir du volume et de la surface du groupement (-CH₂) unité du polyéthylène.

On notera que la contribution combinatoire du coefficient d'activité d'un constituant (i), présent dans la solution, est indépendante de la température, mais dépend uniquement des tailles et formes des molécules présentes dans le mélange, et que pour des molécules à large chaine $(\frac{ri}{qi} \rightarrow 1)$, dans cette limite l'équation se réduira à l'équation de FLORRY-HUGGINS utilisée dans la méthode ASOG.

I.2.2. Terme résiduel

La partie résiduelle est donnée par la somme des contributions dues aux interactions de chaque groupement dans la solution moins la somme des contributions de ces mêmes groupements dans une solution de référence ne contenant que des molécules du même type (corps pur). Ceci se traduit par l'expression suivante :

$$ln\gamma_i^R = \sum_k \gamma_k^{(i)} \left[ln\Gamma_k - ln\Gamma_k^{(i)} \right]$$
(10)

k : nombre de groupement.

Expression dans laquelle Γ_k est le coefficient d'activité du groupement k dans la solution et $\Gamma_k^{(l)}$ est le coefficient d'activité du groupement k dans une solution de référence contenant uniquement des molécules de type i.

Le terme $\ln \Gamma_k^{(i)}$ est nécessaire pour normaliser les coefficients d'activité des corps purs ($\gamma_i = 1$ quand $x_i = 1$).

Avec :

 Γ_k : Le coefficient d'activité résiduel du groupe k dans le mélange.

 $\Gamma_k^{(i)}$: Le coefficient d'activité résiduel du groupe k dans une solution de référence ne contenant que des molécules i.

Les logarithmes de ces coefficients d'activité (Γ_k et $\Gamma_k^{(i)}$) d'un groupement k sont des fonctions de la température et de la fraction de surface des groupements, θ_m , définies de la manière suivante :

$$ln\Gamma_{k} = Q_{k} [1 - ln(\sum_{m} \theta_{m} \Psi_{mk}) - \sum_{m} \frac{\theta_{m} \Psi_{km}}{\sum_{n} \theta_{n} \Psi_{nm}}]$$
(11)

$$\ln \Gamma_k^{(i)} = Q_k \left[1 - \ln \left(\sum_m \theta_m^{(i)} \Psi_{mk} \right) - \sum_m \frac{\theta_m^{(i)} \Psi_{km}}{\sum_n \theta_n^{(i)} \Psi_{nm}} \right]$$
(12)

 θ_m : La fraction de surface du groupe m dans le mélange, elle est exprimée par :

$$\theta_m = \frac{Q_m x_m}{\sum_n Q_n x_n} \tag{13}$$

 x_m : La fraction molaire du groupe m dans le mélange, elle est exprimée par :

$$\boldsymbol{x}_{\boldsymbol{m}} = \frac{\sum_{j} \boldsymbol{v}_{\boldsymbol{m}}^{(i)} \boldsymbol{x}_{j}}{\sum_{j} \sum_{n} \boldsymbol{v}_{\boldsymbol{n}}^{(i)} \boldsymbol{x}_{j}} \tag{14}$$

 $\theta_m^{(i)}$: La fraction de surface du groupe m dans le corps i pur, elle est exprimée par :

$$\boldsymbol{\theta}_{m}^{(i)} = \frac{\boldsymbol{\varrho}_{m} \boldsymbol{x}_{m}^{(i)}}{\sum_{n} \boldsymbol{\varrho}_{n} \boldsymbol{x}_{n}^{(i)}} \tag{15}$$

 $x_m^{(i)}$: La fraction molaire du groupe m dans le corps i pur, elle est exprimée par :

$$x_m^{(i)} = \frac{v_m^{(i)}}{\sum_n x_n^{(i)}}$$
(16)

Les paramètres Ψ_{mn} et Ψ_{nm} entre les groupes m et n sont donnés par :

$$\Psi_{mn} = exp - \left[\frac{a_{mn}}{T}\right] \tag{17}$$

$$\Psi_{nm} = exp - \left[\frac{a_{nm}}{T}\right] \tag{18}$$

Où a_{mn} est le paramètre d'interaction de groupements. Il mesure la différence entre l'énergie d'interaction d'un couple n-m et celle d'un couple m-m. On a deux paramètres d'interactions distincts pour chaque paire de groupes puisque anm est différent de amn.

$$a_{mn} = \frac{u_{mn} - u_{nn}}{R}$$
(19)
$$a_{nm} = \frac{u_{nm} - u_{mm}}{R}$$
(20)

R : la constante des gaz parfait.

 U_{mn} , U_{nm} représentent l'énergie d'interaction entre les groupes m et n.

On a : $\ln\Gamma_k = \ln\Gamma_k^{(i)}$

Pour le corps i pur.

1.3. La méthode UNIFAC Modifiée (Dortmund)

Différents auteurs, Skjold-Jorgensen et al (1979) [9], Larsen et al (1987) [10] et Weidlich et Gmehling (1987) [11] ont apporté des améliorations au modèle. Pour ce travail nous avons retenu les modifications apportées par Weidlich et Gmehling (1987) ensuite par Gmehling et al (1993) [8], qui se situe au niveau du terme combinatoire et du terme celui résiduel. Cette version du modèle est appelée UNIFAC Dortmund.

I.3.1. La contribution combinatoire

Amélioration de l'expression permettant d'optimiser la prédiction du coefficient d'activité à dilution infini du mélange contenant des molécules de taille très différentes, par introduction d'un exposant (=3/4) dans le terme de FLLORY-HUGGINS.

$$ln\gamma_i^{\mathcal{L}} = 1 - \frac{\varphi_i'}{x_i} + ln\frac{\varphi_i'}{x_i} - \frac{1}{2}zq_i\left(1 - \frac{\varphi_i}{\theta_i} + ln\frac{\varphi_i}{\theta_i}\right)$$
(21)

Où :

Z : nombre de coordination (Z=10)

 θ_i : La fraction de surface du constituant i dans le mélange défini par la relation (4).

 φ_i : La fraction de volume du constituant i dans le mélange défini par la relation (5)

 φ'_i : La fraction de volume modifiée, elle est calculer par :

$$\varphi_i' = \frac{r_i^{3/4} x_i}{\sum_j r_j^{3/4} x_j}$$
(22)

Les paramètres structuraux sont calculés par les relations (8) et (9).

1.3.2. La contribution résiduelle

L'expression du Terme résiduel du coefficient d'activité est :

$$ln\gamma_{i}^{R}=\sum_{k}\gamma_{k}^{(i)}\left[ln\Gamma_{k}-ln\Gamma_{k}^{(i)}\right]$$

Avec :

$$ln\Gamma_{k} = Q_{k} [1 - ln(\sum_{m} \theta_{m} \Psi_{mk}) - \sum_{m} \frac{\theta_{m} \Psi_{km}}{\sum_{n} \theta_{n} \Psi_{nm}}]$$

$$ln\Gamma_k^{(i)} = Q_k [1 - ln(\sum_m \theta_m^{(i)} \Psi_{mk}) - \sum_m \frac{\theta_m^{(i)} \Psi_{km}}{\sum_n \theta_n^{(i)} \Psi_{nm}}]$$

 θ_m : La fraction de surface du groupement m dans le mélange, elle est donnée par la relation (13) $\theta_m^{(i)}$: La fraction de surface du groupement m dans le corps pur, elle est donnée par la relation (15)

Dans la seconde modification, la dépendance des paramètres d'interaction binaire avec la température est prise en compte. On a alors :

$$\Psi_{mn} = exp - \left[\frac{a_{mn} - b_{mn}T - c_{mn}T^2}{T}\right]$$
(23)

 a_{mn} , b_{mn} et c_{mn} représentent les coefficients d'interaction entre les groupes, sont optimisés à partir de données expérimentales. Dans UNIFAC modifié Dortmund [8], il en est de même des paramètres R_k et Q_k .

1.4. Le Modèle dispersif quasichimique (DISQUAC).

Purement physique ce modèle statistique est décrit par plusieurs auteurs [11-15], l'origine de ce modèle de contribution de groupes est mise au point et développé par KEHIAIAN et al (1978, 1985) [16-20].

Élaboré à partir de la théorie du réseau rigide de Guggenheim (1952) [4] pour les mélanges liquides. Ces équations générales sont pratiquement les mêmes que celles utilisées dans la théorie quasi-chimique de Barker (1952, 1954) [21], optimisées par KEHIAIAN et al (1978) [16] en faisant intervenir la notion d'interaction entre groupements fonctionnels par l'intermédiaire de surfaces de contact et non par des points de contact. Généralisé par KEHIAIAN (1987) [20], avec l'énergie configurationnelle U= $U^{DIS} + U^{QUAC}$.

U^{DIS}: qui prend en compte les interactions du type dispersif U^{QUAC}: qui prend en compte les interactions de type polaire

La fonction de partition est le produit de deux termes, alors les fonctions d'excès sont calculées comme la somme de deux contributions : une contribution dispersive (DIS) due aux forces dispersives, et un contribution quasi-chimique (QUAC) résultant de l'anisotropie du champ de forces que créent les molécules de la solution, l'équation de Flory-Huggins permet de représentée l'entropie combinatoire nécessaire au calcul de G^E et les paramètres d'interaction dépendent de la structure moléculaire. Il en résulte l'expression des fonctions thermodynamiques d'excès, on aura ainsi généralement un terme dispersif et un terme quasi-chimique.

I.4.1 Modèle du réseau rigide dans l'approximation dispersive

Le modèle du réseau rigide proposé par KEHIAIAN (1978) est une formalisation en termes de contributions de groupes du modèle quasi-chimique de GUGGENHEIM (1952) dans l'approximation zéro.

Dans les solutions réelles on a :

- 1- Les molécules des constituants de la solution sont de formes et de tailles différentes.
- 2- Les interactions intermoléculaires existent.
- 3- Les molécules sont réparties d'une manière aléatoire dans un réseau tridimensionnel quasi-cristallin.

I.4.1.1. Enthalpie molaire d'excès

A partir des énergies d'interactions ε_{ii} , ε_{jj} et ε_{ij} et l'énergie d'inter-échange

$$\Delta \varepsilon_{ij} = \frac{1}{2} |\varepsilon_{ii} + \varepsilon_{jj}| - |\varepsilon_{ij}|$$
(24)

Avec un développement mathématique on détermine l'expression de l'enthalpie d'excès suivante :

$$\frac{h^{E}}{RT} = \frac{1}{2} \left(\sum_{i=1}^{N} q_{i} x_{i} \right) \sum_{i=1}^{N} \sum_{j=1}^{N} \xi_{i} \xi_{J} \frac{h_{ij}}{RT}$$
(25)

Avec :

• q_i : Surface relative du composé (i)

$$q_i = \frac{s_i}{s_{CH4}} \tag{26}$$

- s_{CH4} : surface de la molécule CH₄
- ξ_i et ξ_j sont les fractions de surfaces du composé (i) et du composé (j) dans le mélange.

$$\xi_i = \frac{q_i x_i}{q_i x_i + q_j x_j} \tag{27}$$

$$\xi_j = \frac{q_j x_j}{q_i x_j + q_j x_j} \tag{28}$$

h_{ij} Est l'enthalpie d'inter-échange entre les molécules du composé (i) et les molécules du composé (j).

$$\frac{h_{ij}}{RT} = -\frac{1}{2} \sum_{s} \sum_{t} (\alpha_{si} - \alpha_{sj}) (\alpha_{ti} - \alpha_{tj}) \frac{h_{st}}{RT}$$
(29)

• \propto_{si} : Est la fraction de surface du groupement s dans la molécule i

$$\propto_{si} = \frac{q_s}{q_i} \tag{30}$$

- \propto_{ti} : Est la fraction de surface du groupement t dans la molécule i
- α_{si} : Est la fraction de surface du groupement s dans la molécule j
- α_{tj} : Est la fraction de surface du groupement t dans la molécule j
- q_s : Est la surface relative du groupement fonctionnel s

$$q_s = \frac{s_s}{s_{CH_4}} \tag{31}$$

h_{st} Est l'enthalpie d'inter-échange entre le groupement fonctionnel s et le groupement fonctionnel t.

$$\frac{h_{st}}{RT} = \frac{h_{st}^0}{RT_0} \left(\frac{T_0}{T}\right) \tag{32}$$

• T₀ est une température de référence prise égale à 298,15 K.

I.4.1.2. Enthalpie libre molaire d'excès

L'enthalpie libre molaire d'excès est la combinaison de deux termes, terme combinatoire qui est déterminé par le modèle de Flory-Huggins et d'un terme interactionnel dont l'expression est similaire à celle de l'enthalpie d'excès.

$$g^{E} = g^{E}_{comb} + g^{E}_{int}$$
(33)

Avec :

$$\frac{g_{Comb}^E}{_{RT}} = \sum_{i=1}^N x_i ln \frac{\varphi_i}{x_i}$$
(34)

$$\frac{g_{int}^{E}}{RT} = \frac{1}{2} \left(\sum_{i=1}^{N} q_{i} x_{i} \right) \sum_{i=1}^{N} \sum_{j=1}^{N} \xi_{i} \xi_{j} \frac{g_{ij}}{RT}$$
(35)

Dans :

$$\frac{g^{E}}{RT} = \sum_{i=1}^{N} x_{i} ln \frac{\varphi_{i}}{x_{i}} + \frac{1}{2} \left(\sum_{i=1}^{N} q_{i} x_{i} \right) \sum_{i=1}^{N} \sum_{j=1}^{N} \xi_{i} \xi_{j} \frac{g_{ij}}{RT}$$
(36)

• φ_i : Est la fraction volumique

$$\varphi_1 = \frac{x_i r_i}{\sum_j x_j r_j} \tag{37}$$

• g_{st} Est l'enthalpie libre d'inter-échange entre le groupement fonctionnel s et le groupement fonctionnel t.

$$\frac{g_{ij}}{RT} = -\frac{1}{2} \sum_{s} \sum_{t} (\alpha_{s1} - \alpha_{s2}) (\alpha_{t1} - \alpha_{t2}) \frac{g_{st}}{RT}$$
(38)

g_{st}Est l'enthalpie libre d'inter-échange entre le groupement fonctionnel s et le groupement fonctionnel t.

$$\frac{g_{st}}{RT} = \frac{g_{st}^0}{RT_0} + \left(\frac{h_{st}^0}{RT_0}\right) \left(\frac{T}{T_0 - 1}\right)$$
(39)

I.4.1.3. Coefficient d'activité

$$ln\gamma_i = ln\gamma_i^{comb} + ln\gamma_i^{lnt} \tag{40}$$

Avec :

$$\ln \gamma_i^{\text{Comb}} = \ln \frac{\varphi_i}{x_i} + 1 - \frac{\varphi_i}{x_i}$$
(41)

$$ln\gamma_i^{int} = \sum_{j=1}^N q_i \xi_j^2 \frac{g_{ij}}{RT}$$
(42)

$$ln\gamma_{i} = ln\frac{\varphi_{i}}{x_{i}} + 1 - \frac{\varphi_{i}}{x_{i}} + \sum_{j=1}^{N} q_{i}\xi_{j}^{2}\frac{g_{ij}}{RT}$$
(43)

Chapitre II

I.1. Application de la méthode UNIFAC

L'application de la méthode UNIFAC pour la prévision des chaleurs de mélange nécessite la connaissance des paramètres géométriques R_k et Q_k des groupements constituant les molécules de la solution et leur paramètres d'interactions.

Dans le cadre de ce travail, nous avons applique les modèles utilise sur les systèmes suivant :

Benzène + Toluène Toluène+ n-Heptane Benzène + n-Octane

Les valeurs des paramètres correspondant aux molécules de ces systèmes ont été prié dans la littérature [13, 14], Nous les exposeront dans ce qui suit ces paramètres, ainsi que les formule permettant le calcul des enthalpies d'excès de chaque mélange binaire des systèmes.

I.1.1. Les paramètres géométriques

Les systèmes sont constitués de quatre groupements fonctionnels $(CH_3, CH_2, ACH \ et \ ACCH_3)$ notés respectivement (d,c,a et b).

Toulène	 5 ACH, AC CH_3
Benzène	 6 ACH
n-Heptane	 $2CH_3$, $5CH_2$
n-Octane	 $2CH_3$, $6CH_2$

Les valeurs des paramètres géomètriques $R_k et Q_k$ de tous ces groupements sont représentées dans les tableaux (2-3) :

 Tableau 1: Groupes et sous-groupes des molécules étudiées selon les tables de Gmehling.

N°	Groupe principal	Sons groupe
1	CH ₂	CH_3 CH_2 CH C
2	ACH	ACH AC
3	ACCH ₂	ACCH ₃ ACCH ₂ ACCH

N°	Sous-groupe	Groupe principal	R _k	Q_k	Type de surfaces
1	CH ₃	CH ₂	0.9011	0.8480	D
2	CH ₂	CH ₂	0.6744	0.5400	С
3	ACH	ACH	0.5313	0.4000	А
4	ACCH ₃	ACCH ₂	1.2663	0.9680	В

Tableau 2 : Les valeurs des paramètres Géométriques (UNIFAC originale) [Annexe 1].

Tableau 3 : Les valeurs des paramètres Géométriques (UNIFAC modifié) [Annexe 2].

N°	Sous-groupe	Groupe principal	R_k	Q_k	Type de surfaces
1	CH ₃	CH ₂	0.6325	1.0608	D
2	CH ₂	CH ₂	0.6325	0.7081	С
3	ACH	ACH	0.3763	0.4321	А
4	ACCH ₃	ACCH ₂	0.9100	0.9490	В

I.1.2. Paramètres d'interactions

Les valeurs des paramètres d'interactions entre groupements intervenant dans les mélanges étudiés sont représentées dans les tableaux (4-5) :

Tableau 4 : les valeurs des paramètres d'interactions entre chaque paire de groupements(UNIFAC originale) [Annexe 1].

Groupe (n)	Groupe (m)	a_{nm}	a_{mn}
1	3	61.13	-11.12
1	4	76.5	-69.7
3	4	167	-146.8

Tableau 5 : les valeurs des paramètres d'interactions entre chaque paire de groupements(UNIFAC modifiée) [Annexe 2].

Groupe (n)	Groupe (m)	a _{nm}	a _{mn}	b _{nm}	b _{mn}
1	3	114.2	16.07	0.0933	-0.2998
1	4	7.339	47.2	-0.4538	0.3575
3	4	139.2	-45.330	-0.65	0.4223

II .1.3. Détermination de l'expression de h^E

La détermination de la chaleur de mélange h^E se fait par l'application de la relation de GIBBS HELMOLTZ à l'enthalpie libre molaire d'excès g^E , qu'on calcul par la méthode UNIFAC.

$$\frac{h^{E}}{RT} = -T \left[\frac{\left(\frac{\partial g^{E}}{RT} \right)}{\partial T} \right]_{P}$$

I.1.4. Equilibre liquide-vapeur

II.1.4.1. Equilibre liquide-vapeur à température constante

• Dans le cas idéal

On applique la loi de Raoult :

$$P_i = P_i^* x_i$$

 P_i^* : Pressions de vapeur de (i) pur.

La pression totale :

$$P_{totale} = \sum_{i=1}^{n} p_i^* x_i$$

On applique la loi de Dalton :

$$P_i = y_i P$$

Puisque :

$$P_i = P_i^* x_i$$

 $y_i = \frac{P_i^* x_i}{P}$

On tire :

• Dans le cas réel

On applique la loi :

$$P_i = P_i^* a_i$$
$$a_i = x_i \gamma_i$$

La pression totale :

$$P_t = \sum_{i=1}^n P_i^* a_i = \sum_{i=1}^n P_i^* x_i \gamma_i$$
$$P_i = y_i P$$

Puisque :

$$P_i = P_i^* x_i \gamma_i$$

 $y_i = \frac{P_i^* x_i \gamma_i}{P}$

On tire :

I.1.4.2. Equilibre liquide-vapeur (ELV) à pression constante

• Dans le cas idéal

On a

:
$$P_i^* x_i = y_i P \implies y_i = \frac{P_i^*}{P} x_i$$

Comme P_i^* sont des fonctions de température exprimées par la relation de Clausius-Clapeyron.

$$lnP_i^* = \frac{\Delta H_i^v}{R} \left[\frac{1}{T_i^{eb}} - \frac{1}{T}\right]$$
$$T = 1/\left[\frac{1}{T_i^{eb}} - \frac{RlnP_i^*}{\Delta H_i^v}\right]$$

Dans :

• Dans le cas réel

On a : $P_i^* x_i \gamma_i = y_i P \implies y_i = \frac{P_i^* \gamma_i}{P} x_i$

On applique la relation de Clausius-Clapeyron.

$$lnP_i^*\gamma_i = \frac{\Delta H_i^v}{R} [\frac{1}{T_i^{eb}} - \frac{1}{T}]$$

Dans :

$$T_i = 1/\left[\frac{1}{T_i^{eb}} - \frac{R}{\Delta H_i^{v}}(lnP_i^* + ln\gamma_i)\right]$$

I.1.5. Equilibre liquide-solide

• Dans le cas idéal

On applique la relation suivante :

$$lnx_i = \frac{\Delta H_{f,i}}{R} \left[\frac{1}{T_{f,i}} - \frac{1}{T} \right]$$

• Dans le cas réel

$$lna_{i} = \frac{[\Delta H_{f,i} - C_{p}^{f,i}]}{R} \left[\frac{1}{T_{f,i}} - \frac{1}{T} \right] + C_{p}^{f,i} ln \frac{T}{T_{f,i}}$$

On a : $a_i = x_i \gamma_i$

Alors:
$$lnx_i = \frac{[\Delta H_{f,i} - C_p^{f,i}]}{R} \left[\frac{1}{T_{f,i}} - \frac{1}{T}\right] + C_p^{f,i} ln \frac{T}{T_{f,i}} - ln\gamma_i$$

Et : $ln\gamma_i$ est calculé par les modèle utilise

I.1.6. Equations de calculs pour les différents systèmes

I.1.6.1. Benzène (1) + Toluène (2)

Deux types de groupements (ACH et $ACCH_3$).

Benzène \rightarrow 6 ACH, noté a

Toluène
$$\rightarrow$$

$$\begin{array}{c}
5 \text{ ACH, noté a} \\
1 \text{ ACCH}_3, \text{ noté b} \\
\frac{g^E}{RT} = x_1 ln\gamma_1 + x_2 ln\gamma_2 \\
ln\gamma_1 = ln\gamma_1^C + ln\gamma_1^R \quad \text{et} \quad ln\gamma_2 = ln\gamma_2^C + ln\gamma_2^R
\end{array}$$

A. La méthode UNIFAC originale.

• Calcul des termes combinatoires

Dans le modèle UNIFAC original ces termes s'écrivent :

$$ln\gamma_{1}^{C} = ln\frac{\phi_{1}}{x_{1}} + \frac{z}{2}q_{1}ln\frac{\theta_{1}}{\phi_{1}} + l_{1} - \frac{\phi_{1}}{x_{1}}(l_{1}x_{1} + l_{2}x_{2})$$
$$ln\gamma_{2}^{C} = ln\frac{\phi_{2}}{x_{2}} + \frac{z}{2}q_{2}ln\frac{\theta_{2}}{\phi_{2}} + l_{2} - \frac{\phi_{2}}{x_{2}}(l_{1}x_{1} + l_{2}x_{2})$$

Avec :

$$l_1 = \frac{z}{2}[r_1 - q_1] - [r_1 - 1]$$
$$l_2 = \frac{z}{2}[r_2 - q_2] - [r_2 - 1]$$

Z : nombre de coordination (Z=10)

Les surfaces et volumes de Van Der Waals des groupements constituent ce système sont :

$$r_1 = 6R_a \qquad , \qquad r_2 = 5R_a + R_b$$
$$q_1 = 6Q_a \qquad , \qquad q_2 = 5Q_a + Q_b$$

Les fractions volumiques des constituants de ce mélange sont :

$$\varphi_1 = \frac{r_1 x_1}{r_1 x_1 + r_2 x_2} \qquad , \qquad \qquad \varphi_2 = \frac{r_2 x_2}{r_1 x_1 + r_2 x_2}$$

Les fractions surfaciques des constituants de ce mélange sont :

$$\theta_1 = \frac{q_1 x_1}{q_1 x_1 + q_2 x_2} , \qquad \qquad \theta_2 = \frac{q_2 x_2}{q_1 x_1 + q_2 x_2}$$

• Calcul des termes résiduels

Ils sont calculés comme suit :

$$ln\gamma_1^R = 6[ln\Gamma_a - ln\Gamma_a^{(1)}]$$
$$ln\gamma_2^R = 5[ln\Gamma_a - ln\Gamma_a^{(2)}] + [ln\Gamma_b - ln\Gamma_b^{(2)}]$$

Les logarithmes des coefficients d'activité résiduels des groupements s'écrivent :

$$ln\Gamma_{a} = Q_{a}[1 - \ln(A) - \left(\frac{\theta_{a}\Psi_{aa}}{A} + \frac{\theta_{b}\Psi_{ab}}{B}\right)]$$
$$ln\Gamma_{b} = Q_{b}[1 - \ln(B) - \left(\frac{\theta_{a}\Psi_{ba}}{A} + \frac{\theta_{b}\Psi_{bb}}{B}\right)]$$

Avec :

$$A = \theta_a \Psi_{aa} + \theta_b \Psi_{ba}$$
$$B = \theta_a \Psi_{ab} + \theta_b \Psi_{bb}$$

Les fractions superficielles des groupements constituant ce système sont :

$$\theta_a = \frac{Q_a x_a}{Q_a x_a + Q_b x_b} \qquad , \qquad \qquad \theta_b = \frac{Q_b x_b}{Q_a x_a + Q_b x_b}$$

Les fractions molaires des groupements sont :

$$x_a = \frac{6x_1 + 5x_2}{6x_1 + 5x_2 + x_2}$$
 , $x_b = \frac{x_2}{6x_1 + 5x_2 + x_2}$

Les paramètres d'interactions entre groupement sont :

$$\Psi_{ab} = \exp(-\frac{a_{ab}}{T})$$

 $\Psi_{ba} = \exp(-\frac{a_{ba}}{T})$
 $\Psi_{aa} = \Psi_{bb} = 1$

Avec :

Les logarithmes des coefficients d'activité résiduels des groupements dans le cas du corps pur :

$$ln\Gamma_{a}^{(2)} = Q_{a}\left[1 - \ln\left(\theta_{a}^{(2)}\Psi_{aa} + \theta_{b}^{(2)}\Psi_{ba}\right) - \left(\frac{\theta_{a}^{(2)}\Psi_{aa}}{\theta_{a}^{(2)}\Psi_{aa} + \theta_{b}^{(2)}\Psi_{ba}} + \frac{\theta_{b}^{(2)}\Psi_{ab}}{\theta_{a}^{(2)}\Psi_{ab} + \theta_{b}^{(2)}\Psi_{bb}}\right)\right]$$
$$ln\Gamma_{b}^{(2)} = Q_{b}\left[1 - \ln\left(\theta_{a}^{(2)}\Psi_{ab} + \theta_{b}^{(2)}\Psi_{bb}\right) - \left(\frac{\theta_{a}^{(2)}\Psi_{ba}}{\theta_{a}^{(2)}\Psi_{aa} + \theta_{b}^{(2)}\Psi_{ba}} + \frac{\theta_{b}^{(2)}\Psi_{bb}}{\theta_{a}^{(2)}\Psi_{ab} + \theta_{b}^{(2)}\Psi_{bb}}\right)\right]$$

 $ln\Gamma_a^{(1)} = 0$ Pour benzène pur.

Les fractions superficielles des groupements, dans le corps pur sont :

$$\theta_a^{(2)} = \frac{Q_a x_a^{(2)}}{Q_a x_a^{(2)} + Q_b x_b^{(2)}} \qquad , \qquad \qquad \theta_b^{(2)} = \frac{Q_b x_b^{(2)}}{Q_a x_a^{(2)} + Q_b x_b^{(2)}}$$

Les fractions molaires des groupements, dans le corps pur sont :

$$x_a^{(2)} = \frac{5x_2}{5x_2 + x_2} = \frac{5}{6}$$
 , $x_b^{(2)} = \frac{x_2}{5x_2 + x_2} = \frac{1}{6}$

B. La méthode UNIFAC modifié.

• Calcul des termes combinatoires

Dans la méthode UNIFAC modifié de type Dortmund ces termes s'écrivent :

$$ln_{1}^{C} = 1 - \frac{\varphi_{1}'}{x_{1}} + ln\frac{\varphi_{1}'}{x_{1}} - \frac{1}{2}zq_{1}(1 - \frac{\varphi_{1}}{\theta_{1}} + ln\frac{\varphi_{1}}{\theta_{1}})$$
$$ln_{2}^{C} = 1 - \frac{\varphi_{2}'}{x_{2}} + ln\frac{\varphi_{2}'}{x_{2}} - \frac{1}{2}zq_{2}(1 - \frac{\varphi_{2}}{\theta_{2}} + ln\frac{\varphi_{2}}{\theta_{2}})$$

Les fractions volumiques modifiées des constituants de ce mélange sont :

$$\varphi_1' = \frac{r_1^{3/4} x_1}{r_1^{3/4} x_1 + r_2^{3/4} x_2} \qquad , \qquad \varphi_2' = \frac{r_2^{3/4} x_2}{r_1^{3/4} x_1 + r_2^{3/4} x_2}$$

• Calcul des termes résiduels

Les paramètres d'interactions entre groupement sont :

$$\Psi_{ab} = \exp(-\frac{a_{ab} + b_{ab}T + c_{ab}T^2}{T})$$
$$\Psi_{ba} = \exp(-\frac{a_{ba} + b_{ba}T + c_{ba}T^2}{T})$$
$$\Psi_{ca} = \Psi_{cb} = 1$$

Avec :

$$aa = 1_{bb} =$$

I.1.6.2. Toluène (1) + n-Heptane (2)

Quatre types de groupements (ACH, $ACCH_3$, CH_3 et CH_2).

Toluène
$$\rightarrow$$

$$\begin{cases}
5ACH noté a \\
ACCH_3 noté b \\
2CH_3 noté c \\
5CH_2 noté d \\
\frac{g^E}{RT} = x_1 ln\gamma_1 + x_2 ln\gamma_2 \\
ln\gamma_1 = ln\gamma_1^C + ln\gamma_1^R \quad \text{et} \quad ln\gamma_2 = ln\gamma_2^C + ln\gamma_2^R
\end{cases}$$

A. La méthode UNIFAC originale.

• Calcul des termes combinatoires

Dans le model UNIFAC Originale ces termes s'écrivent :

$$ln\gamma_{1}^{C} = ln\frac{\phi_{1}}{x_{1}} + \frac{z}{2}q_{1}ln\frac{\theta_{1}}{\phi_{1}} + l_{1} - \frac{\phi_{1}}{x_{1}}(l_{1}x_{1} + l_{2}x_{2})$$
$$ln\gamma_{2}^{C} = ln\frac{\phi_{2}}{x_{2}} + \frac{z}{2}q_{2}ln\frac{\theta_{2}}{\phi_{2}} + l_{2} - \frac{\phi_{2}}{x_{2}}(l_{1}x_{1} + l_{2}x_{2})$$

Avec :

$$l_1 = \frac{z}{2}[r_1 - q_1] - [r_1 - 1]$$
$$l_2 = \frac{z}{2}[r_2 - q_2] - [r_2 - 1]$$

Z : nombre de coordination (z=10)

Les surfaces et volumes de Van Der Waals des groupements constituent ce système sont :

$$r_1 = 5R_a + R_b$$
 , $r_2 = 2R_c + 5R_d$
 $q_1 = 5Q_a + Q_b$, $q_2 = 2Q_c + 5Q_d$

Les fractions volumiques des constituant de ce mélange sont :

$$\varphi_1 = \frac{r_1 x_1}{r_1 x_1 + r_2 x_2} \qquad , \qquad \qquad \varphi_2 = \frac{r_2 x_2}{r_1 x_1 + r_2 x_2}$$

Les fractions surfaciques des constituants de ce mélange sont :

$$\theta_1 = \frac{q_1 x_1}{q_1 x_1 + q_2 x_2} \qquad , \qquad \qquad \theta_2 = \frac{q_2 x_2}{q_1 x_1 + q_2 x_2}$$

• Calcul des termes résiduels

Ils sont calculés comme suit :

$$ln\gamma_1^R = 5[ln\Gamma_a - ln\Gamma_a^{(1)}] + [ln\Gamma_b - ln\Gamma_b^{(1)}]$$
$$ln\gamma_2^R = 2[ln\Gamma_c - ln\Gamma_c^{(2)}] + 5[ln\Gamma_d - ln\Gamma_d^{(2)}]$$

Les logarithmes des coefficients d'activité résiduels des groupements s'écrivent :

$$ln\Gamma_{a} = Q_{a}\left[1 - \ln(A) - \left(\frac{\theta_{a}\Psi_{aa}}{A} + \frac{\theta_{b}\Psi_{ab}}{B} + \frac{\theta_{c}\Psi_{ac}}{C} + \frac{\theta_{d}\Psi_{ad}}{D}\right)\right]$$
$$ln\Gamma_{b} = Q_{b}\left[1 - \ln(B) - \left(\frac{\theta_{a}\Psi_{ba}}{A} + \frac{\theta_{b}\Psi_{bb}}{B} + \frac{\theta_{c}\Psi_{bc}}{C} + \frac{\theta_{d}\Psi_{bd}}{D}\right)\right]$$
$$ln\Gamma_{c} = Q_{c}\left[1 - \ln(C) - \left(\frac{\theta_{a}\Psi_{ca}}{A} + \frac{\theta_{b}\Psi_{cb}}{B} + \frac{\theta_{c}\Psi_{cc}}{C} + \frac{\theta_{d}\Psi_{cd}}{D}\right)\right]$$
$$ln\Gamma_{d} = Q_{d}\left[1 - \ln(D) - \left(\frac{\theta_{a}\Psi_{da}}{A} + \frac{\theta_{b}\Psi_{db}}{B} + \frac{\theta_{c}\Psi_{dc}}{C} + \frac{\theta_{d}\Psi_{dd}}{D}\right)\right]$$

Avec :

$$A = \theta_a \Psi_{aa} + \theta_b \Psi_{ba} + \theta_c \Psi_{ca} + \theta_d \Psi_{da}$$
$$B = \theta_a \Psi_{ab} + \theta_b \Psi_{bb} + \theta_c \Psi_{cb} + \theta_d \Psi_{db}$$
$$C = \theta_a \Psi_{ac} + \theta_b \Psi_{bc} + \theta_c \Psi_{cc} + \theta_d \Psi_{dc}$$
$$D = \theta_a \Psi_{ad} + \theta_b \Psi_{bd} + \theta_c \Psi_{cd} + \theta_d \Psi_{dd}$$

Les fractions superficielles des groupements constituant ce système sont

$$\theta_{a} = \frac{Q_{a}x_{a}}{Q_{a}x_{a} + Q_{b}x_{b} + Q_{c}x_{c} + Q_{d}x_{d}} , \qquad \theta_{b} = \frac{Q_{b}x_{b}}{Q_{a}x_{a} + Q_{b}x_{b} + Q_{c}x_{c} + Q_{d}x_{d}}$$
$$\theta_{c} = \frac{Q_{c}x_{c}}{Q_{a}x_{a} + Q_{b}x_{b} + Q_{c}x_{c} + Q_{d}x_{d}} , \qquad \theta_{d} = \frac{Q_{d}x_{d}}{Q_{a}x_{a} + Q_{b}x_{b} + Q_{c}x_{c} + Q_{d}x_{d}}$$

Les fractions molaires des groupements sont :

$$\begin{aligned} x_a &= \frac{5x_1}{5x_1 + x_1 + 2x_2 + 5x_2} & , \qquad x_b &= \frac{x_1}{5x_1 + x_1 + 2x_2 + 5x_2} \\ x_c &= \frac{2x_2}{5x_1 + x_1 + 2x_2 + 5x_2} & , \qquad x_d &= \frac{5x_2}{5x_1 + x_1 + 2x_2 + 5x_2} \end{aligned}$$

Les paramètres d'interaction entre groupement sont :

$$\begin{split} \Psi_{ab} &= \exp[-\frac{a_{ab}}{T}] \qquad , \qquad \Psi_{bc} &= \exp[-\frac{a_{bc}}{T}] \\ \Psi_{ac} &= \exp[-\frac{a_{ac}}{T}] \qquad , \qquad \Psi_{ca} &= \exp[-\frac{a_{ca}}{T}] \\ \Psi_{ad} &= \exp[-\frac{a_{ad}}{T}] \qquad , \qquad \Psi_{da} &= \exp[-\frac{a_{da}}{T}] \\ \Psi_{bc} &= \exp[-\frac{a_{bc}}{T}] \qquad , \qquad \Psi_{cb} &= \exp[-\frac{a_{cb}}{T}] \\ \Psi_{bd} &= \exp[-\frac{a_{bd}}{T}] \qquad , \qquad \Psi_{db} &= \exp[-\frac{a_{db}}{T}] \end{split}$$

Avec :

$$\Psi_{aa} = \Psi_{bb} = \Psi_{cc} = \Psi_{dd} = \Psi_{cd} = \Psi_{dc} = 1$$

Les logarithmes des coefficients d'activité résiduels des groupements de référence :

$$\begin{split} \ln \Gamma_{a}^{(1)} &= Q_{a} [1 - \ln \left(\theta_{a}^{(1)} \, \Psi_{aa} + \theta_{b}^{(1)} \, \Psi_{ba} \right) - \left(\frac{\theta_{a}^{(1)} \, \Psi_{aa}}{\theta_{a}^{(1)} \, \Psi_{aa} + \theta_{b}^{(1)} \, \Psi_{ba}} + \frac{\theta_{b}^{(1)} \, \Psi_{ab}}{\theta_{a}^{(1)} \, \Psi_{ab} + \theta_{b}^{(1)} \, \Psi_{bb}} \right)] \\ \ln \Gamma_{b}^{(1)} &= Q_{b} [1 - \ln \left(\theta_{a}^{(1)} \, \Psi_{ab} + \theta_{b}^{(1)} \, \Psi_{bb} \right) - \left(\frac{\theta_{a}^{(1)} \, \Psi_{ba}}{\theta_{a}^{(1)} \, \Psi_{aa} + \theta_{b}^{(1)} \, \Psi_{ba}} + \frac{\theta_{b}^{(1)} \, \Psi_{bb}}{\theta_{a}^{(1)} \, \Psi_{ab} + \theta_{b}^{(1)} \, \Psi_{bb}} \right)] \\ \ln \Gamma_{c}^{(2)} &= Q_{c} [1 - \ln \left(\theta_{c}^{(2)} \, \Psi_{cc} + \theta_{d}^{(2)} \, \Psi_{dc} \right) - \left(\frac{\theta_{c}^{(2)} \, \Psi_{cc}}{\theta_{c}^{(2)} \, \Psi_{cc}} + \theta_{d}^{(2)} \, \Psi_{dc}} + \frac{\theta_{d}^{(2)} \, \Psi_{cd}}{\theta_{c}^{(2)} \, \Psi_{cd} + \theta_{d}^{(2)} \, \Psi_{dd}} \right)] \\ \ln \Gamma_{d}^{(2)} &= Q_{d} [1 - \ln \left(\theta_{c}^{(2)} \, \Psi_{cd} + \theta_{d}^{(2)} \, \Psi_{dd} \right) - \left(\frac{\theta_{c}^{(2)} \, \Psi_{dc}}{\theta_{c}^{(2)} \, \Psi_{cc}} + \theta_{d}^{(2)} \, \Psi_{dc}} + \frac{\theta_{d}^{(2)} \, \Psi_{dd}}{\theta_{c}^{(2)} \, \Psi_{cd} + \theta_{d}^{(2)} \, \Psi_{dd}} \right)] \end{split}$$

Les fractions superficielles des groupements, dans le corps pur sont :

$$\begin{aligned} \theta_a^{(1)} &= \frac{Q_a x_a^{(1)}}{Q_a x_a^{(1)} + Q_b x_b^{(1)}} & , \qquad \theta_b^{(1)} &= \frac{Q_b x_b^{(1)}}{Q_a x_a^{(1)} + Q_b x_b^{(1)}} \\ \theta_c^{(2)} &= \frac{Q_c x_c^{(2)}}{Q_c x_c^{(2)} + Q_d x_d^{(2)}} & , \qquad \theta_d^{(2)} &= \frac{Q_d x_d^{(2)}}{Q_c x_c^{(2)} + Q_d x_d^{(2)}} \end{aligned}$$

Les fractions molaires des groupements, dans le corps pur sont :

$$x_{a}^{(1)} = \frac{5x_{1}}{5x_{1}+x_{1}} = \frac{5}{6} , \qquad x_{b}^{(1)} = \frac{1x_{1}}{5x_{1}+x_{1}} = \frac{1}{6}$$
$$x_{c}^{(2)} = \frac{2x_{2}}{2x_{2}+5x_{2}} = \frac{2}{7} , \qquad x_{d}^{(2)} = \frac{5x_{2}}{2x_{2}+5x_{2}} = \frac{5}{7}$$

B. La méthode UNIFAC modifié.

• Calcul des termes combinatoires

Dans la méthode UNIFAC modifié de type Dortmund ces termes s'écrivent :

$$ln_{1}^{C} = 1 - \frac{\varphi_{1}'}{x_{1}} + ln\frac{\varphi_{1}'}{x_{1}} - \frac{1}{2}zq_{1}(1 - \frac{\varphi_{1}}{\theta_{1}} + ln\frac{\varphi_{1}}{\theta_{1}})$$
$$ln_{2}^{C} = 1 - \frac{\varphi_{2}'}{x_{2}} + ln\frac{\varphi_{2}'}{x_{2}} - \frac{1}{2}zq_{2}(1 - \frac{\varphi_{2}}{\theta_{2}} + ln\frac{\varphi_{2}}{\theta_{2}})$$

Les fractions volumiques modifiées des constituants de ce mélange sont :

$$\varphi_1' = \frac{r_1^{3/4} x_1}{r_1^{3/4} x_1 + r_2^{3/4} x_2} \qquad , \qquad \varphi_2' = \frac{r_2^{3/4} x_2}{r_1^{3/4} x_1 + r_2^{3/4} x_2}$$

• Calcul des termes résiduels

Les paramètres d'interaction entre groupement sont :

$$\begin{split} \Psi_{ab} &= \exp[-\frac{a_{ab}+b_{ab}T+c_{ab}T^{2}}{T}] \qquad , \qquad \Psi_{bc} &= \exp[-\frac{a_{bc}+b_{bc}T+c_{bc}T^{2}}{T}] \\ \Psi_{ac} &= \exp[-\frac{a_{ac}+b_{ac}T+c_{ac}T^{2}}{T}] \qquad , \qquad \Psi_{ca} &= \exp[-\frac{a_{ca}+b_{ca}T+c_{ca}T^{2}}{T}] \\ \Psi_{ad} &= \exp[-\frac{a_{ad}+b_{ad}T+c_{ad}T^{2}}{T}] \qquad , \qquad \Psi_{da} &= \exp[-\frac{a_{da}+b_{da}T+c_{da}T^{2}}{T}] \\ \Psi_{bc} &= \exp[-\frac{a_{bc}+b_{bc}T+c_{bc}T^{2}}{T}] \qquad , \qquad \Psi_{cb} &= \exp[-\frac{a_{cb}+b_{cb}T+c_{cb}T^{2}}{T}] \\ \Psi_{bd} &= \exp[-\frac{a_{bd}+b_{bd}T+c_{bd}T^{2}}{T}] \qquad , \qquad \Psi_{db} &= \exp[-\frac{a_{db}+b_{db}T+c_{db}T^{2}}{T}] \end{split}$$

Avec :

$$\Psi_{aa} = \Psi_{bb} = \Psi_{cc} = \Psi_{dd} = \Psi_{cd} = \Psi_{dc} = 1$$

I.1.6.3. Benzène (1) + n-Octane (2)

Trois types de groupements (ACH, CH_3 et CH_2).

Benzène \rightarrow 6 ACH, noté a

n-Octane
$$\rightarrow \begin{bmatrix} 2CH_3 \text{ note } c \\ \\ 6CH_2 \text{ note } d \\ \\ \frac{g^E}{RT} = x_1 ln\gamma_1 + x_2 ln\gamma_2 \\ ln\gamma_1 = ln\gamma_1^C + ln\gamma_1^R \quad \text{et} \quad ln\gamma_2 = ln\gamma_2^C + ln\gamma_2^R \end{bmatrix}$$

A. La méthode UNIFAC originale.

• Calcul des termes combinatoires

Dans le model UNIFAC Originale ces termes s'écrivent :

$$ln\gamma_{1}^{C} = ln\frac{\varphi_{1}}{x_{1}} + \frac{z}{2}q_{1}ln\frac{\theta_{1}}{\varphi_{1}} + l_{1} - \frac{\varphi_{1}}{x_{1}}(l_{1}x_{1} + l_{2}x_{2})$$
$$ln\gamma_{2}^{C} = ln\frac{\varphi_{2}}{x_{2}} + \frac{z}{2}q_{2}ln\frac{\theta_{2}}{\varphi_{2}} + l_{2} - \frac{\varphi_{2}}{x_{2}}(l_{1}x_{1} + l_{2}x_{2})$$

Avec :

$$l_1 = \frac{z}{2}[r_1 - q_1] - [r_1 - 1]$$
$$l_2 = \frac{z}{2}[r_2 - q_2] - [r_2 - 1]$$

Z : nombre de coordination (z=10)

Les surfaces et volumes de Van Der Waals des groupements constituent ce système sont :

$$r_1 = 6R_a$$
 , $r_2 = 2R_c + 6R_d$
 $q_1 = 6Q_a$, $q_2 = 2Q_c + 6Q_c$

Les fractions volumiques des constituants de ce mélange sont :

$$\varphi_1 = \frac{r_1 x_1}{r_1 x_1 + r_2 x_2} \qquad , \qquad \qquad \varphi_2 = \frac{r_2 x_2}{r_1 x_1 + r_2 x_2}$$

Les fractions surfaciques des constituants de ce mélange sont :

$$\theta_1 = \frac{q_1 x_1}{q_1 x_1 + q_2 x_2} \qquad , \qquad \qquad \theta_2 = \frac{q_2 x_2}{q_1 x_1 + q_2 x_2}$$

• Calcul des termes résiduels

Elle est calculée comme suit :

$$ln\gamma_1^R = 6[ln\Gamma_a - ln\Gamma_a^{(1)}]$$
$$ln\gamma_2^R = 2[ln\Gamma_c - ln\Gamma_c^{(2)}] + 6[ln\Gamma_d - ln\Gamma_d^{(2)}]$$

Les logarithmes des coefficients d'activité résiduels des groupements s'écrivent :

$$ln\Gamma_{a} = Q_{a}\left[1 - \ln(A) - \left(\frac{\theta_{a}\Psi_{aa}}{A} + \frac{\theta_{c}\Psi_{ac}}{C} + \frac{\theta_{d}\Psi_{ad}}{D}\right)\right]$$
$$ln\Gamma_{c} = Q_{c}\left[1 - \ln(C) - \left(\frac{\theta_{a}\Psi_{ca}}{A} + \frac{\theta_{c}\Psi_{cc}}{C} + \frac{\theta_{d}\Psi_{cd}}{D}\right)\right]$$
$$ln\Gamma_{d} = Q_{d}\left[1 - \ln(D) - \left(\frac{\theta_{a}\Psi_{da}}{A} + \frac{\theta_{c}\Psi_{dc}}{C} + \frac{\theta_{d}\Psi_{dd}}{D}\right)\right]$$

Avec :

$$A = \theta_a \Psi_{aa} + \theta_c \Psi_{ca} + \theta_d \Psi_{da}$$
$$C = \theta_a \Psi_{ac} + \theta_c \Psi_{cc} + \theta_d \Psi_{dc}$$
$$D = \theta_a \Psi_{ad} + \theta_c \Psi_{cd} + \theta_d \Psi_{dd}$$

Les fractions superficielles des groupements constituant ce système sont

$$\theta_a = \frac{Q_a x_a}{Q_a x_a + Q_c x_c + Q_d x_d}$$
$$\theta_c = \frac{Q_c x_c}{Q_a x_a + Q_c x_c + Q_d x_d} \quad , \quad \theta_d = \frac{Q_d x_d}{Q_a x_a + Q_c x_c + Q_d x_d}$$

Les fractions molaires des groupements sont :

$$x_a = \frac{6x_1}{6x_1 + 2x_2 + 6x_2}$$
$$x_c = \frac{2x_2}{6x_1 + 2x_2 + 6x_2} , \qquad x_d = \frac{6x_2}{6x_1 + 2x_2 + 6x_2}$$

Les paramètres d'interaction entre groupement sont :

$$\Psi_{ac} = \exp\left[-\frac{a_{ac}}{T}\right] , \qquad \Psi_{ca} = \exp\left[-\frac{a_{ca}}{T}\right]$$

 $\Psi_{ad} = \exp\left[-\frac{a_{ad}}{T}\right] , \qquad \Psi_{da} = \exp\left[-\frac{a_{da}}{T}\right]$

Avec :

$$\Psi_{aa} = \Psi_{cc} = \Psi_{dd} = \Psi_{cd} = \Psi_{dc} = 1$$

Les logarithmes des coefficients d'activité résiduels des groupements de référence :

$$ln \Gamma_{a}^{(1)} = 0$$

$$ln \Gamma_{c}^{(2)} = Q_{c} \left[1 - \ln\left(\theta_{c}^{(2)} \Psi_{cc} + \theta_{d}^{(2)} \Psi_{dc}\right) - \left(\frac{\theta_{c}^{(2)} \Psi_{cc}}{\theta_{c}^{(2)} \Psi_{cc} + \theta_{d}^{(2)} \Psi_{dc}} + \frac{\theta_{d}^{(2)} \Psi_{cd}}{\theta_{c}^{(2)} \Psi_{cd} + \theta_{d}^{(2)} \Psi_{dd}}\right)\right]$$

$$ln \Gamma_{d}^{(2)} = Q_{d} \left[1 - \ln\left(\theta_{c}^{(2)} \Psi_{cd} + \theta_{d}^{(2)} \Psi_{dd}\right) - \left(\frac{\theta_{c}^{(2)} \Psi_{dc}}{\theta_{c}^{(2)} \Psi_{cc} + \theta_{d}^{(2)} \Psi_{dc}} + \frac{\theta_{d}^{(2)} \Psi_{dd}}{\theta_{c}^{(2)} \Psi_{cd} + \theta_{d}^{(2)} \Psi_{dd}}\right)\right]$$

Les fractions superficielles des groupements, dans le corps pur sont :

$$\theta_c^{(2)} = \frac{Q_c x_c^{(2)}}{Q_c x_c^{(2)} + Q_d x_d^{(2)}} \qquad , \qquad \theta_d^{(2)} = \frac{Q_d x_d^{(2)}}{Q_c x_c^{(2)} + Q_d x_d^{(2)}}$$

Les fractions molaires des groupements, dans le corps pur sont :

$$x_c^{(2)} = \frac{2x_2}{2x_2 + 6x_2} = \frac{2}{8}$$
 , $x_d^{(2)} = \frac{6x_2}{2x_2 + 6x_2} = \frac{5}{8}$

B. La méthode UNIFAC modifiée.

C. Calcul des termes combinatoires

Dans la méthode UNIFAC modifié de type Dortmund ces termes s'écrivent :

$$ln_{1}^{C} = 1 - \frac{\varphi_{1}'}{x_{1}} + ln\frac{\varphi_{1}'}{x_{1}} - \frac{1}{2}zq_{1}(1 - \frac{\varphi_{1}}{\theta_{1}} + ln\frac{\varphi_{1}}{\theta_{1}})$$
$$ln_{2}^{C} = 1 - \frac{\varphi_{2}'}{x_{2}} + ln\frac{\varphi_{2}'}{x_{2}} - \frac{1}{2}zq_{2}(1 - \frac{\varphi_{2}}{\theta_{2}} + ln\frac{\varphi_{2}}{\theta_{2}})$$

Les fractions volumiques modifiées des constituants de ce mélange sont :
$$\varphi_1' = \frac{r_1^{3/4} x_1}{r_1^{3/4} x_1 + r_2^{3/4} x_2} \qquad , \qquad \varphi_2' = \frac{r_2^{3/4} x_2}{r_1^{3/4} x_1 + r_2^{3/4} x_2}$$

• Calcul des termes résiduels

Les paramètres d'interactions entre groupement sont

$$\Psi_{ac} = \exp\left[-\frac{a_{ac}+b_{ac}T+c_{ac}T^{2}}{T}\right] , \qquad \Psi_{ca} = \exp\left[-\frac{a_{ca}+b_{ca}T+c_{ca}T^{2}}{T}\right]$$
$$\Psi_{ad} = \exp\left[-\frac{a_{ad}+b_{ad}T+c_{ad}T^{2}}{T}\right] , \qquad \Psi_{da} = \exp\left[-\frac{a_{da}+b_{da}T+c_{da}T^{2}}{T}\right]$$

Avec :

$$\Psi_{aa} = \Psi_{cc} = \Psi_{dd} = \Psi_{cd} = \Psi_{dc} = 1$$

I.2. Application de modèle DISQUAC

L'application de ce modèle nécessite la connaissance des paramètres géométriques $(r_i, q_i$ et α_{si}) et énergétiques (d'interèchange g_{st} et h_{st}).

Les paramètres géométriques ont été calculés par la méthode de Bond [6, 7], à partir des rayons et des distances interatomiques des atomes de chaque groupement et nous les avons exprimés par rapport au volume, V_{CH_4} , et à la surface, Q_{CH_4} de la molécule de méthane. Les paramètres thermodynamiques d'interéchange ont été pris de la littérature [11].

I.2.1. Paramètres géométriques

Les systèmes étudiés sont considérés comme possédant deux type de groupement :

Les surfaces Q_G et les volumes V_G de ces groupements ont été calculé par la méthode de bondi. Dans nos calculs, nous avons utilisé les surfaces et les volumes relatives définis par les relations suivantes :

$$r_G = rac{V_G}{V_{CH_4}}$$
 , $q_G = rac{Q_G}{Q_{CH_4}}$

Les surfaces q_i et les volumes r_i de ces molécules, ont été calculés à partir des valeurs des groupements fonctionnels des constituants. Les fractions de surfaces α_{si} sont calculées à partir de la relation suivante :

$$\alpha_{si} = \frac{q_{si}}{q_i}$$
 Avec (s= a, b)

Les valeurs des paramètres géométriques des groupements fonctionnels et des molécules sont rassemblées respectivement dans les tableaux (6-7) [11]. Surface relative :

 $q_G = \frac{Q_G}{Q_{CH_4}}$

Volume relatif :

$$r_G = \frac{V_G}{V_{CH_4}}$$

Avec :

$$V_{CH_4} = 17,12 \ 10^{-6} m^3 mol^{-1}$$
 et $Q_{CH_4} = 2,9 \ 10^5 m^2 mol^{-1}$

Tableau 6 : Volume relative et Surface relative, des groupements fonctionnels [11].

Groupements fonctionnels	r _G	q_{G}	Type de surfaces
CH_4	1.00000	1.00000	В
CH ₃ -	0.79848	0.73103	В
CH ₂ -	0.59755	0.46552	В
$C_6H_5^-$	2.67757	1.83793	А

Tableau7 : Les paramètres géométriques des molécules étudiées [11].

Composé	Formule chimique	r _i	\boldsymbol{q}_i	α_{ai}	α_{bi}
Benzène	C_6H_6	2.8248	2.0724	1.0000	0.0000
Toluène	$C_6H_5 - CH_3$	3.4760	2.5690	0.7154	0.2846
n-Heptane	CH_3 - $(CH_2)_5$ - CH_3	4.5847	3.7897	0.0000	1.0000
n-Octane	CH_3 - $(CH_2)_6$ - CH_3	5.1822	4.2552	0.0000	1.0000

I.2.2. Paramètres thermodynamiques

Les paramètres thermodynamiques d'interéchange intervenant dans les mélanges étudiés ont été déterminés par ajustement sur des mélanges ayant les mêmes types de surface de contact. Dans les systèmes étudiés nous avons un seul type de contact.

• Contact aliphatique-aromatiques (ab)

Les paramètres $\frac{g_{ab}}{RT}$ et $\frac{h_{ab}}{RT}$ ont été ajustés dans la littérature sur les mélanges benzène+ alcanes normaux avec une contribution totalement dispersive. Leurs valeurs sont regroupées dans le tableau (8) [11].

	Paramètre dispersif				
Contact	$\frac{g_{st}}{RT}$	$\frac{h_{st}}{RT}$			
Ab	0.26	0.56			

Tableau (8) : valeurs des paramètres interactionnels [11]

I.2.3. Détermination de l'expression de h^E

La détermination de la chaleur de mélange se fait par application de la relation suivant :

$$\frac{h^E}{RT} = \frac{h^E_{(disp)}}{RT}$$

I.2.4. Equations de calculs pour les différents systèmes

I.2.4.1. Benzène (1) + Toluène (2)

- Molécule de benzène (1), est composée d'un seul groupement aromatique qu'on note
 (a)
- Molécule de toluène (2), est composée de deux groupements fonctionnels, un groupement aromatique qu'on note (a) et un groupement aliphatique qu'on note (b)
- > On retrouve d'un seul d'interaction deux ce système :
 - Une interaction de type (ab) entre le groupement aliphatique du toluène et le groupement aromatique (b).

A. L'enthalpie molaire d'excès

A partir des énergies d'interactions ε_{11} , ε_{22} et ε_{12} et l'énergie d'inter-échange $\Delta \varepsilon_{12} = \frac{1}{2}|\varepsilon_{11} + \varepsilon_{22}| - |\varepsilon_{12}|$, avec un développement mathématique, on détermine l'expression de l'enthalpie d'excès suivante :

$$\frac{h^E}{RT} = \frac{q_1 q_2 x_1 x_2}{q_1 x_1 + q_2 x_2} \frac{h_{12}}{RT}$$

Alors :

$$\frac{h^E}{RT} = (q_1 x_1 + q_2 x_2) \xi_1 \xi_2 \frac{h_{12}}{RT}$$

• q_1 et q_2 : surfaces relatives du composés (1) et (2) :

$$q_1 = \frac{S_1}{S_{CH_4}}$$
 , $q_2 = \frac{S_2}{S_{CH_4}}$

ξ₁ et ξ₂: sont les fractions de surfaces du composé (1) et du composé (2) dans le mélange.

$$\xi_1 = \frac{q_1 x_1}{q_1 x_1 + q_2 x_2} \qquad , \quad \xi_2 = \frac{q_2 x_2}{q_1 x_1 + q_2 x_2}$$

*h*₁₂ : L'enthalpie d'intre-échange entre la molécule de compose (1) et la molécule de compose (2).

$$\begin{aligned} \frac{h_{12}}{RT} &= -\frac{1}{2} \left[(\alpha_{a1} - \alpha_{a2})(\alpha_{b1} - \alpha_{b2}) \frac{h_{ab}}{RT} + (\alpha_{b1} - \alpha_{b2})(\alpha_{a1} - \alpha_{a2}) \frac{h_{ab}}{RT} \right] \\ \frac{h_{12}}{RT} &= -\left[(\alpha_{a1} - \alpha_{a2})(\alpha_{b1} - \alpha_{b2}) \frac{h_{ab}}{RT} \right] \end{aligned}$$

• Les fractions des surfaces du groupement a et b dans la molécule (1) et (2)

$$\begin{aligned} \alpha_{a1} &= \frac{q_a}{q_1} = 1 \qquad , \qquad \alpha_{b1} = \frac{q_{CH_3}}{q_1} = 0 \\ \alpha_{a2} &= \frac{q_a}{q_2} \qquad , \qquad \alpha_{b2} = \frac{q_{CH_3}}{q_2} \\ \frac{h_{12}}{RT} &= -[(1 - \alpha_{a2})(-\alpha_{b2})\frac{h_{ab}}{RT}] \end{aligned}$$

Alors

B. L'enthalpie libre molaire d'excès

$$g^{\scriptscriptstyle E} = g^{\scriptscriptstyle E}_{comb} + g^{\scriptscriptstyle E}_{int}$$

$$\begin{bmatrix} \frac{g_{comb}^E}{RT} = x_1 ln \frac{\varphi_1}{x_1} + x_2 ln \frac{\varphi_2}{x_2} \\ \frac{g_{int}^E}{RT} = (q_1 x_1 + q_2 x_2) \varepsilon_1 \varepsilon_2 \frac{g_{12}}{RT} \end{bmatrix}$$

• φ_1 et φ_2 Sont des fractions volumiques :

$$\varphi_1 = \frac{r_1 x_1}{r_1 x_1 + r_2 x_2}$$
 , $\varphi_2 = \frac{r_2 x_2}{r_1 x_1 + r_2 x_2}$

g₁₂: L'enthalpie libre d'intre-échange entre la molécule de compose (1) et la molécule de compose (2).

$$\frac{g_{12}}{RT} = -\frac{1}{2} \left[(\alpha_{a1} - \alpha_{a2})(\alpha_{b1} - \alpha_{b2}) \frac{g_{ab}}{RT} + (\alpha_{b1} - \alpha_{b2})(\alpha_{a1} - \alpha_{a2}) \frac{g_{ab}}{RT} \right]$$
$$\frac{g_{12}}{RT} = -\left[(\alpha_{a1} - \alpha_{a2})(\alpha_{b1} - \alpha_{b2}) \frac{g_{ab}}{RT} \right]$$

• Les fractions des surfaces du groupement a et b dans la molécule (1) et (2)

$$\begin{aligned} \alpha_{a1} &= \frac{q_a}{q_1} = 1 \qquad , \qquad \alpha_{b1} = \frac{q_{CH_3}}{q_1} = 0 \\ \alpha_{a2} &= \frac{q_a}{q_2} \qquad , \qquad \alpha_{b2} = \frac{q_{CH_3}}{q_2} \\ \frac{g_{12}}{RT} &= -[(1 - \alpha_{a2})(-\alpha_{b2})\frac{g_{ab}}{RT}] \end{aligned}$$

Alors :

C. Les coefficients d'activité

$$\begin{split} &ln\gamma_1 = ln\gamma_1^{comb} + ln\gamma_1^{int} \\ &ln\gamma_2 = ln\gamma_2^{comb} + ln\gamma_2^{int} \end{split}$$

Avec :

$$\begin{cases} ln\gamma_1^{comb} = ln\frac{\varphi_1}{x_1} + 1 - \frac{\varphi_1}{x_1} \\ ln\gamma_2^{comb} = ln\frac{\varphi_2}{x_2} + 1 - \frac{\varphi_2}{x_2} \end{cases}$$

$$\begin{bmatrix} ln\gamma_1^{int} = q_1 \varepsilon_2^2 \frac{g_{12}}{RT} = q_1 (1 - \varepsilon_1)^2 \frac{g_{12}}{RT} \\ ln\gamma_2^{int} = q_2 \varepsilon_1^2 \frac{g_{12}}{RT} = q_2 (1 - \varepsilon_2)^2 \frac{g_{12}}{RT} \end{bmatrix}$$

Alors :

$$ln\gamma_{1} = ln\frac{\varphi_{1}}{x_{1}} + 1 - \frac{\varphi_{1}}{x_{1}} + q_{1}(1 - \varepsilon_{1})^{2}\frac{g_{12}}{RT}$$
$$ln\gamma_{2} = ln\frac{\varphi_{2}}{x_{2}} + 1 - \frac{\varphi_{2}}{x_{2}} + q_{2}(1 - \varepsilon_{2})^{2}\frac{g_{12}}{RT}$$

I.2.4.2. Toluène (1) + n-Heptane.

- La molécule de toluène, est composée de deux groupement fonctionnels un groupement aromatique, qu'on note (a) et un groupement aliphatique, qu'on note (b)
- La molécule de n-heptane, est composée d'un seul groupement aliphatique, qu'on note
 (b)
- > On retrouve d'un seul d'interaction deux ce système :
- Une interaction de type (ab) entre le groupement aliphatique est le groupement aromatique (a).

A. L'enthalpie molaire d'excès

$$\frac{h^E}{RT} = (q_1 x_1 + q_2 x_2) \varepsilon_1 \varepsilon_2 \frac{h_{12}}{RT}$$

*h*₁₂: L'enthalpie d'intre-échange entre la molécule de compose (1) et la molécule de compose (2).

$$\frac{h_{12}}{RT} = -\frac{1}{2} [(\alpha_{a1} - \alpha_{a2})(\alpha_{b1} - \alpha_{b2})\frac{h_{ab}}{RT} + (\alpha_{b1} - \alpha_{b2})(\alpha_{a1} - \alpha_{a2})\frac{h_{ab}}{RT}]$$
$$\frac{h_{12}}{RT} = -[(\alpha_{a1} - \alpha_{a2})(\alpha_{b1} - \alpha_{b2})\frac{h_{ab}}{RT}]$$

• Les fractions des surfaces du groupement a et b dans la molécule (1) et (2)

$$\alpha_{a1} = \frac{q_a}{q_1} \qquad , \qquad \alpha_{b1} = \frac{q_{CH_3}}{q_1}$$

$$\begin{aligned} \alpha_{a2} &= \frac{q_a}{q_2} = 0 \quad , \qquad \alpha_{b2} = \frac{q_b}{q_2} = 1 \\ &\frac{h_{12}}{RT} = -[(\alpha_{a1})(\alpha_{b2} - 1)\frac{h_{ab}}{RT}] \end{aligned}$$

Alors :

B. L'enthalpie libre molaire d'excès

$$g^{E} = g^{E}_{comb} + g^{E}_{int}$$

$$\frac{g^{E}_{comb}}{RT} = x_{1}ln\frac{\varphi_{1}}{x_{1}} + x_{2}ln\frac{\varphi_{2}}{x_{2}}$$

$$\frac{g^{E}_{int}}{RT} = (q_{1}x_{1} + q_{2}x_{2})\varepsilon_{1}\varepsilon_{2}\frac{g_{12}}{RT}$$

Avec :

g₁₂: L'enthalpie libre d'intre-échange entre la molécule de compose (1) et la molécule de compose (2).

$$\frac{g_{12}}{RT} = -\frac{1}{2} [(\alpha_{a1} - \alpha_{a2})(\alpha_{b1} - \alpha_{b2})\frac{g_{ab}}{RT} + (\alpha_{b1} - \alpha_{b2})(\alpha_{a1} - \alpha_{a2})\frac{g_{ab}}{RT}]$$
$$\frac{g_{12}}{RT} = -[(\alpha_{a1} - \alpha_{a2})(\alpha_{b1} - \alpha_{b2})\frac{g_{ab}}{RT}]$$

• Les fractions des surfaces du groupement a et b dans la molécule (1) et (2)

$$lpha_{a1} = rac{q_a}{q_1}$$
 , $lpha_{b1} = rac{q_{CH_3}}{q_1}$
 $lpha_{a2} = rac{q_a}{q_2} = 0$, $lpha_{b2} = rac{q_b}{q_2} = 1$

Alors :

$$\frac{g_{12}}{RT} = -[(\alpha_{a1})(\alpha_{b1} - 1)\frac{g_{ab}}{RT}]$$

C. Les coefficients d'activité

$$\begin{split} &ln\gamma_1 = ln\gamma_1^{comb} + ln\gamma_1^{int} \\ &ln\gamma_2 = ln\gamma_2^{comb} + ln\gamma_2^{int} \end{split}$$

Avec :

$$\begin{bmatrix} ln\gamma_{1}^{comb} = ln\frac{\varphi_{1}}{x_{1}} + 1 - \frac{\varphi_{1}}{x_{1}} \\ ln\gamma_{2}^{comb} = ln\frac{\varphi_{2}}{x_{2}} + 1 - \frac{\varphi_{2}}{x_{2}} \end{bmatrix}$$

$$\begin{cases} ln\gamma_1^{int} = q_1\varepsilon_2^2 \frac{g_{12}}{RT} = q_1(1-\varepsilon_1)^2 \frac{g_{12}}{RT} \\ ln\gamma_2^{int} = q_2\varepsilon_1^2 \frac{g_{12}}{RT} = q_2(1-\varepsilon_2)^2 \frac{g_{12}}{RT} \end{cases}$$

Alors :

$$\begin{split} & ln\gamma_1 = ln\frac{\varphi_1}{x_1} + 1 - \frac{\varphi_1}{x_1} + q_1(1-\varepsilon_1)^2\frac{g_{12}}{RT} \\ & ln\gamma_2 = ln\frac{\varphi_2}{x_2} + 1 - \frac{\varphi_2}{x_2} + q_2(1-\varepsilon_2)^2\frac{g_{12}}{RT} \end{split}$$

I.2.4.3. Benzène (1) + n-Octane.

- Molécule de benzène (1), est composée d'un seul groupement aromatique qu'on note
 (a)
- La molécule de n-octane, est composée d'un seul groupement aliphatique, qu'on note
 (b)
- > On retrouve d'un seul d'interaction deux ce système :
- Une interaction de type (ab) entre le groupement aliphatique est le groupement aromatique (a).

A. L'enthalpie molaire d'excès

$$\frac{h^E}{RT} = (q_1 x_1 + q_2 x_2)\varepsilon_1 \varepsilon_2 \frac{h_{12}}{RT}$$

 h_{12} : L'enthalpie d'intre-échange entre la molécule de compose (1) et la molécule de compose (2).

$$\frac{h_{12}}{RT} = -\frac{1}{2} [(\alpha_{a1} - \alpha_{a2})(\alpha_{b1} - \alpha_{b2})\frac{h_{ab}}{RT} + (\alpha_{b1} - \alpha_{b2})(\alpha_{a1} - \alpha_{a2})\frac{h_{ab}}{RT}]$$
$$\frac{h_{12}}{RT} = -[(\alpha_{a1} - \alpha_{a2})(\alpha_{b1} - \alpha_{b2})\frac{h_{ab}}{RT}]$$

Les fractions des surfaces du groupement a et b dans la molécule (1) et (2)

$$\begin{aligned} \alpha_{a1} &= \frac{q_a}{q_1} = 1 \\ \alpha_{a2} &= \frac{q_a}{q_2} = 0 \\ \frac{h_{12}}{RT} &= \frac{h_{ab}}{RT} \end{aligned}$$

Alors :

B. L'enthalpie libre molaire d'excès

$$g^{\scriptscriptstyle E} = g^{\scriptscriptstyle E}_{comb} + g^{\scriptscriptstyle E}_{int}$$

$$\begin{cases} \frac{g_{comb}^E}{RT} = x_1 ln \frac{\varphi_1}{x_1} + x_2 ln \frac{\varphi_2}{x_2} \\ \frac{g_{int}^E}{RT} = (q_1 x_1 + q_2 x_2) \varepsilon_1 \varepsilon_2 \frac{g_{12}}{RT} \end{cases}$$

Avec :

g₁₂: L'enthalpie libre d'intre-échange entre la molécule de compose (1) et la molécule de compose (2).

$$\frac{g_{12}}{RT} = -\frac{1}{2} [(\alpha_{a1} - \alpha_{a2})(\alpha_{b1} - \alpha_{b2})\frac{g_{ab}}{RT} + (\alpha_{b1} - \alpha_{b2})(\alpha_{a1} - \alpha_{a2})\frac{g_{ab}}{RT}]$$
$$\frac{g_{12}}{RT} = -[(\alpha_{a1} - \alpha_{a2})(\alpha_{b1} - \alpha_{b2})\frac{g_{ab}}{RT}]$$

• Les fractions des surfaces du groupement a et b dans la molécule (1) et (2)

$$\begin{aligned} \alpha_{a1} &= \frac{q_a}{q_1} = 1 \qquad , \qquad \alpha_{b1} = \frac{q_b}{q_1} = 0 \\ \alpha_{a2} &= \frac{q_a}{q_2} = 0 \qquad , \qquad \alpha_{b2} = \frac{q_b}{q_2} = 1 \\ &= \frac{g_{12}}{RT} = \frac{g_{ab}}{RT} \end{aligned}$$

Alors :

C. Les coefficients d'activité

$$\begin{split} &ln\gamma_1 = ln\gamma_1^{comb} + ln\gamma_1^{int} \\ &ln\gamma_2 = ln\gamma_2^{comb} + ln\gamma_2^{int} \end{split}$$

Avec :

$$\begin{cases} ln\gamma_1^{comb} = ln\frac{\varphi_1}{x_1} + 1 - \frac{\varphi_1}{x_1} \\ ln\gamma_2^{comb} = ln\frac{\varphi_2}{x_2} + 1 - \frac{\varphi_2}{x_2} \end{cases}$$

$$\begin{cases} ln\gamma_1^{int} = q_1 \varepsilon_2^2 \frac{g_{12}}{RT} = q_1 (1 - \varepsilon_1)^2 \frac{g_{12}}{RT} \\ ln\gamma_2^{int} = q_2 \varepsilon_1^2 \frac{g_{12}}{RT} = q_2 (1 - \varepsilon_2)^2 \frac{g_{12}}{RT} \end{cases}$$

Alors :

$$\begin{split} & ln\gamma_1 = ln\frac{\varphi_1}{x_1} + 1 - \frac{\varphi_1}{x_1} + q_1(1-\varepsilon_1)^2\frac{g_{12}}{RT} \\ & ln\gamma_2 = ln\frac{\varphi_2}{x_2} + 1 - \frac{\varphi_2}{x_2} + q_2(1-\varepsilon_2)^2\frac{g_{12}}{RT} \end{split}$$

ChapitreШ

III.1. Introduction

Ce chapitre, est consacré à la présentation des résultats obtenus après traitement de nos trois systèmes binaires à l'aide de la méthode UNIFAC Originale, UNIFAC Dortmund et le modèle DISQUAC.

Tous les calculs (UNIFAC Originale, UNIFAC Dortmund et DISQUAC) ont été effectués à l'aide du logiciel Excel.

III.2. Mélange : Benzène (1) + Toluène (2)

III.2.1. Les enthalpies molaires d'excès (h^E)

Les résultats expérimentaux et ceux calculés par la méthode UNIFAC Originale, UNIFAC Dortmund et le modèle DISQUAC, de l'enthalpie molaire d'excès (h^E) sont présentés dans le tableau (9) et représentés sur la figure (1). Les calculs d'écarts sont rassemblés dans le tableau (10).

Tableau 9 : Valeurs expérimentales de h^E à 293.15 K [22] et les Valeurs calculées	,
pour benzène (1) + toluène (2) en J mol ⁻¹ .	

X 1	$h^{E}(\text{Exp})$	h^{E} (UNIFAC.O)	h^{E} (UNIFAC.D)	h^{E} (DISQUAC)
0	0	0	0	0
0.1	26.0	25.9	18.1	21.0
0.2	45.0	47.1	32.5	38.10
0.3	59.0	63.4	43.2	51.1
0.4	66.0	74.5	50.1	59.6
0.5	68.0	79.8	52.9	63.4
0.6	64.0	78.9	51.5	62.2
0.7	55.0	71.1	45.7	55.7
0.8	41.0	55.9	35.3	43.4
0.9	23.0	32.4	20.2	25.0
1	0	0	0	0

X 1	Δh^{E} (UNIFAC.O)	Δh^{E} (UNIFAC.D)	Δh^{E} (DISQUAC)
0.1	0.21	7.99	4.97
0.2	2.06	12.52	6.87
0.3	4.44	15.77	7.93
0.4	8.52	15.91	6.41
0.5	11.85	15.09	4.60
0.6	14.90	12.49	1.80
0.7	16.13	9.28	0.64
0.8	14.88	5.66	2.36
0.9	9.44	2.83	1.96
$\Delta h^{E}(moyen)$	9.2	10.8	4.2

Tableau 10 : L'écart entre les valeurs expérimentales et les valeurs calculées $\Delta h^E = |h^E(\exp) - h^E(\operatorname{cal})|$ en J.mol⁻¹ pour benzène (1) + toluène (2).

Figure 1 : Comparaison de la théorie avec l'expérience pour l'enthalpie molaire d'excès à 293.15 K, benzène (1) + toluène (2).

III.2.2. Equilibre liquide-vapeur (ELV) à température constant

Les résultats d'ELV expérimentaux, ceux du cas idéal, ainsi que ceux calculés par la méthode UNIFAC Originale, UNIFAC Dortmund et le modèle DISQUAC, sont présentés dans le tableau (11) et représentés sur la figure (2). Les écarts entre les valeurs expérimentales et les valeurs calculées par les trois modèles sont rassemblés dans le tableau (12).

Tableau 11 : Valeurs expérimentales de $P=f(x_1,y_1)$ [23] et les Valeurs calculées.Pour benzène (1) + toluène (2)	

<i>x</i> ₁	<i>y</i> ₁	P/mmHg (Exp)	<i>y</i> ₁	P/mmHg (Idéal)	<i>y</i> ₁	P/mmHg (UNIFAC.O)	<i>y</i> ₁	P/mmHg (UNIFAC.D)	<i>y</i> ₁	P/mmHg (DISQUAC)
0	0	287.2	0	287.2	0	287.2	0	287.2	0	287.2
0.1871	0.3594	366.4	0.37	373.5	0.36	367.6	0.37	372.60	0.37	373.0
0.2669	0.4380	393.7	0.48	410.3	0.48	403.7	0.48	409.2	0.48	409.7
0.3107	0.4713	404.1	0.54	430.5	0.53	423.7	0.53	429.4	0.53	429.8
0.3738	0.4789	411.5	0.60	459.6	0.6	452.8	0.6	458.4	0.60	458.9
0.3907	0.4802	416.6	0.62	467.4	0.62	460.6	0.62	466.2	0.62	466.6
0.4081	0.6028	474.4	0.64	475.4	0.64	468.6	0.64	474.3	0.64	474.7
0.4905	0.6865	509.0	0.71	513.4	0.71	507.0	0.71	512.3	0.71	512.6
0.4933	0.6710	513.0	0.72	514.7	0.72	508.3	0.72	513.6	0.72	513.9
0.7326	0.8747	622.7	0.87	625.0	0.87	621.3	0.87	624.4	0.87	624.5
0.9030	0.8594	689.6	0.96	703.6	0.96	702.3	0.96	703.3	0.96	703.4
1	1	748.3	1	748.3	1	748.3	1	748.3	1	748.3

Tableau 12 : L'écart entre les valeurs expérimentales et les valeurs calculées de $\Delta P = |P(exp) - P(cal)|$ en mmHg pour benzène (1) + toluène (2).

<i>x</i> ₁	ΔP (Idéal)	ΔP (UNIFAC O.)	ΔP (UNIFAC D.)	ΔP (DISQUAC)
0.1871	7.1	1.2	6.2	6.6
0.2669	16.6	10.1	15.5	16
0.3107	26.4	19.6	25.3	25.7
0.3738	48.1	41.3	46.9	47.4
0.3907	50.8	44.0	49.6	50
0.4081	0.9	5.7	0.1	0.3
0.4905	4.4	1.9	3.3	3.6
0.4933	1.7	4.6	0.6	0.9
0.7326	2.3	1.3	1.6	1.8
0.9030	13.9	12.7	13.7	13.8
$\Delta P(moyen)$	17.2	14.2	16.3	16.6

Figure 2 : Comparaison de la théorie avec l'expérience et cas idéal pour le diagramme d'équilibre liquide vapeur à 352,75 K du benzène (1) + Toluène (2).

III.2.3 Discussion

Les résultats des enthalpies molaires d'excès calculés et représentés sur la figure (1), du mélange benzène-toluène, montrent que l'écart entre les valeurs calculées par le modèle DISQUAC et les valeurs expérimentales est très faible. Par contre l'écart entre les valeurs calculées par la méthode UNIFAC originale et celles calculées par la méthode UNIFAC Dortmund, par apport aux valeurs expérimentales est très important, ceci est dû certainement au phénomène de proximité des groupements fonctionnels qui n'est pas pris en considération dans la méthode Unifac et à la nature du système qui est faiblement polaire.

Les résultats de calcul et de représentation de diagramme d'équilibre liquide-vapeur, de mélange binaire : benzène - toluène sur la figure (2), montrent que les courbes d'ébullition et les courbes de Rosés calculées dans le cas idéal et par les trois modèles sont superposables. Ceci est dû à la nature de ce mélange qui est proche de l'idéalité.

III.3. Mélange : Toluène (1) + n-heptane (2)

II.3.1. Les enthalpies molaires d'excès (h^E)

Pour ce système les résultats expérimentaux et ceux calculés par la méthode UNIFAC Originale, UNIFAC Dortmund et le modèle DISQUAC, de l'enthalpie molaire d'excès (h^E) sont présentés dans le tableau (13) et représentés sur la figure (3). Les écarts entre les valeurs expérimentales et les valeurs calculées par les trois modèles sont rassemblés dans le tableau (14).

X 1	$h^{E}(\text{Exp})$	h^{E} (UNIFAC.O)	h^{E} (UNIFAC.D)	h^{E} (DISQUAC)
0	0	0	0	0
0.1	181	198.4	297.53	169.73
0.2	327	349.36	535.13	312.13
0.3	438	453.75	709.61	424.28
0.4	514	512.61	817.81	502.82
0.5	552	527.18	856.82	543.88
0.6	548	498.94	824.31	542.97
0.7	497	429.70	719.05	494.86
0.8	394	321.61	541.99	393.39
0.9	231	177.29	298.08	231.32
1	0	0	0	0

Tableau 13 : Valeurs expérimentales de h^E à 298.15 K [24], et les Valeurs calculées:Pour toluène (1) + n-heptane (2).

Tableau 14 : L'écart entre les valeurs expérimentales et les valeurs calculées $\Delta h^E = |h^E(\exp) - h^E(\operatorname{cal})|$ en j.mol⁻¹ pour le mélange toluène (1) + n- heptane (2).

X 1	Δh^{E} (UNIFAC.O)	Δh^{E} (UNIFAC.D)	Δh^{E} (DISQUAC)
0.1	17.4	116.5	11.3
0.2	22.3	208.1	14.9
0.3	15.7	271.6	13.7
0.4	1.3	303.8	11.2
0.5	49.0	304.8	8.1
0.6	49.0	276.3	5.0
0.7	67.3	222.0	2.1
0.8	72.38	147.9	0.6
0.9	53.7	67.1	0.3
Δh ^E (moyen)	38.7	213.1	7.5

III.3.2. Equilibre liquide-vapeur (ELV) à température constante (T=298.15 K)

Les résultats expérimentaux, ceux du cas idéal, ainsi que ceux calculés par la méthode UNIFAC Originale, UNIFAC Dortmund et le modèle DISQUAC de l'ELV du mélange binaire : toluène (1) + n-heptane (2), sont présentés dans le tableau (15) et représentés sur la figure (4). Les écarts entre les valeurs expérimentales et les valeurs calculées par les trois modèles sont rassemblés dans le tableau (16).

x_1	<i>y</i> ₁	P/mmHg (Exp)	<i>y</i> ₁	P/mmHg (Idéal)	<i>y</i> ₁	P/mmHg (UNI)	<i>y</i> ₁	P/mmHg (Dor)	<i>y</i> ₁	P/mmHg (DIS)
0	0	45.6	0	45.6	0	45.6	0	45.6	0	45.6
0.161	0.138	44.6	0.11	42.8	0.14	44.9	0.14	45.1	0.13	44.3
0.261	0.216	43.9	0.18	41.1	0.21	44.1	0.22	44.4	0.21	43.3
0.377	0.303	43.0	0.27	39.0	0.3	43	0.3	43.3	0.30	41.9
0.564	0.442	40.4	0.44	35.8	0.43	40.3	0.43	40.8	0.44	39.3
0.623	0.49	39.5	0.5	34.7	0.48	39.3	0.48	39.8	0.49	38.3
0.751	0.605	36.8	0.65	32.5	0.6	36.5	0.59	37.0	0.61	35.8
0.86	0.734	33.5	0.79	30.6	0.73	33.4	0.72	33.8	0.74	33.1
0.971	0.929	30.4	0.95	28.6	0.93	29.4	0.93	29.5	0.93	29.4
1	1	28.1	1.	28.10	1	28.1	1	28.1	1	28.1

Tableau 15 : Valeurs expérimentales de $P=f(x_1, y_1)$ [24] et valeurs calculées,Pour le mélange toluène (1) + n-heptane (2).

<i>x</i> ₁	ΔP (Idéal)	ΔP (UNIFAC O.)	ΔP (UNIFAC D.)	ΔP (DISQUAC)
0.161	1.8	0.4	0.5	0.3
0.261	2.8	0.3	0.5	0.6
0.377	4.0	0	0.3	1.1
0.564	4.7	0.1	0.4	1.1
0.623	4.8	0.3	0.2	1.2
0.751	4.3	0.3	0.2	0.9
0.86	3.0	0.1	0.3	0.4
0.971	1.7	1	0.9	1
$\Delta P(moyen)$	3.4	0.3	0.4	0.8

Tableau 16 : L'écart entre les valeurs expérimentales et les valeurs calculées de $\Delta P=|P(exp)-P(cal)|$ en mmHg pour le mélange toluène (1) + n-heptane (2).

Figure 4 : Comparaison de la théorie avec l'expérience et cas idéal pour le diagramme d'équilibre liquide vapeur à 298.15 K, Toluène (1) + n-heptane (2).

III.3.3 Discussion

Les résultats de calcul et de représentation des enthalpies molaires d'excès sur la figure (3) du système toluène-n-heptane, montrent que :

Le modèle DISQUAC dans sa version dispersive est le modèle adéquat pour représenter les valeurs expérimentales.

L'écart entre les valeurs calculées par la méthode UNIFAC originale et les valeurs expérimentales est très faible. L'écart très important entre les valeurs expérimentales et les valeurs calculées par la méthode UNIFAC modifié de type Dortmund.

Les résultats de calcul et de représentation de diagramme d'équilibre liquide-vapeur, de mélange binaire : toluène-n-heptane sur la figure (4), montrent que :

Le mélange est fortement non idéal.

Les courbes d'ébullitions et les courbes de rosée calculées par la méthode UNIFAC Originale et la méthode UNIFAC Dortmund sont proches des valeurs expérimentales.

Les courbes calculées par le modèle DISQUAC présentent un léger écart par rapport aux valeurs expérimentales.

III.4. Benzène (1) + n-octane (2)

II.4.1. Les Enthalpie molaire d'excès (h^E)

Pour ce système les résultats expérimentaux et ceux calculés par la méthode UNIFAC Originale, UNIFAC Dortmund et le modèle DISQUAC des enthalpies molaires d'excès (h^E) sont présentés dans le tableau (17) et représentés sur la figure (5). Les écarts entre les valeurs expérimentales et les valeurs calculées par les trois modèles sont rassemblés dans le tableau (18).

X 1	$h^{E}(\text{Exp})$	h^{E} (UNIFAC.O)	h^{E} (UNIFAC.D)	h^{E} (DISQUAC)
0	0	0	0	0
0.1056	274.969	179.38	386.15	274.96
0.2002	517.33	318.12	680.89	517.33
0.2999	729.437	438.38	932.27	729.43
0.4089	888.4792	534.34	1127.75	888.47
0.5035	958.806	582.33	1220.35	958.80
0.5462	968.698	591.70	1235.82	969.69
0.6292	953.11	585.09	1213.67	953.11
0.6556	936.964	575.48	1191.01	936.96
0.7999	740.247	447.80	914.52	740.24
0.8934	483.999	284.39	575.31	483.99
0.9504	259.225	146.78	295.11	256.23
1	0	0	0	0

Tableau 17 : Valeurs expérimentales de h^E à 303.15 K [11] et les valeurs calculé	ées:
Pour benzène (1) + n- octane (2) en J mol ⁻¹ .	

X 1	Δh^{E} (UNIFAC.O)	Δh^{E} (UNIFAC.D)	Δh^{E} (DISQUAC)
0.1056	95.59	111.18	12.52
0.2002	199.21	163.56	3.57
0.2999	291.06	202.83	15.05
0.4089	354.14	239.27	7.90
0.5035	376.48	261.54	11.54
0.5462	378.00	266.12	21.69
0.6292	368.02	260.56	38.71
0.6556	361.49	254.04	42.48
0.7999	292.44	174.27	41.23
0.8934	199.61	91.31	22.15
0.9504	109.44	38.89	8.60
ΔP (moyen)	275.0	187.6	20.5

Tableau 18 : L'écart entre les valeurs expérimentales et les valeurs calculées de $\Delta h^E = |h^E(\exp) - h^E(\operatorname{cal})|$ en j.mol⁻¹ Pour benzène (1) + n-octane (2).

Figure 5 : Comparaison de la théorie avec l'expérience pour l'enthalpie molaire d'excès à 303.15 K, benzène (1) + n-octane (2).

III.4.2. Equilibre liquide-solide

Les résultats expérimentaux et ceux calculés dans le cas idéal, ainsi que ceux calculés par la méthode UNIFAC Originale, UNIFAC Dortmund et le modèle DISQUAC de l'ELS du mélange binaire : benzène (1) + n-octane (2), sont présentés dans les tableaux (19-21) et représentés sur la figure (6).

Tableau 19 : Valeurs expérimentales des (T_f) à pression atmosphérique [11].

X 1	Tf,exp/K	T _E /K
0	216.4	
0.132	215.1	
0.380	214.8	
0.525	216.7	
0.581	229.9	2146
0.6478	248.9	214.0
0.754	264.3	
0.846	270.0	
0.927	274.9	
1	278.6	

Tableau 20 : (T_{f_1}) et (T_{f_2}) calculées dans le cas idéal, la méthode UNIFAC Originale, UNIFAC Dortmund et DISQUAC.

	I	déal	UNIF	FAC O.	UNI	FAC D.	DISC	QUAC
x_1	T _{f,1} /K	T _{f,2} /K	T _{f,1} / K	T _{f,2} /K	T _{f,1} /K	T _{f,2} /K	T _{f,1} /K	T _{f,2} /K
0		216.4		216.40		216.4		216.4
0.1		214.44		213.90		214.3		212.6
0.15		212.29		212.7-		213.1-	209.8	210.6
0.2	210.51	211.13		211.40		211.80	219.5	
0.3	217.50	209.91		208.40		208.8	233.7	
0.35	229.53		202.8	206.60	203.2	207.0	239.1	
0.4	239.82		210.7	204.60	211.1	205.0	243.8-	
0.5	248.93		225.4		225.8		251.3	
0.6	257.20		238.6		239.0		257.3	
0.7	264.81		250.5		250.9		262.2	
0.8	271.92		261.1		261.6		266.7	
0.9	278.60		270.5		270.9		271.6	
1	278.6		278.6		278.6		278.6	

<i>x</i> ₁	ΔT_{f} (Idéal)	$\Delta T_{\rm f}$ (UNIFAC O.)	$\Delta T_{\rm f}$ (UNIFAC D.)	ΔT_{f} (DISQUAC)
0.132	1.55	15.45	15.49	61.83
0.38	139.11	92.74	92.78	340.05
0.525	293.69	123.66	123.7	463.71
0.581	200.94	61.83	61.87	340.06
0.6478	30.91	61.82	61.86	123.65
0.754	30.81	92.74	92.78	1.55
0.846	15.46	61.83	61.87	1.15
0.927	1.54	15.35	15.39	0.12
$\Delta T_{\rm f}({\rm moyen})$	89.25	65.68	65.72	166.52

Tableau 21 : L'écart entre les valeurs expérimentales et les valeurs calculées de
$\Delta T_f = T_f(exp) - T_f(cal) $ en K Pour benzène (1) + n-octane (2).

III.4.3 Discussion

Les résultats de calcul et de représentation des enthalpies molaires d'excès sur la figure (5), de système benzène – n-octane, montrent que :

- L'écart entre les valeurs calculées par le modèle DISQUAC et les valeurs expérimentales est très faible.
- Un l'écart très important entre les valeurs expérimentales et les valeurs calculées par la méthode UNIFAC originale.

Les résultats de calcul et de représentation de diagramme d'équilibre liquide-solide, de mélange binaire : benzène-n-octane sur la figure (6), montrent que :

- Un écart plus moins important, est enregistré entre les branches de liquidus calculées dans le cas idéal et les valeurs expérimentales.
- Les branches calculées par le modèle DISQUAC sont superposables sur les valeurs expérimentales dans le domaine 0.7 à 1 en fonction de la fraction molaire de benzène, par contre dans le domaine de 0 à 0.7 l'écart est très important.
- Les branches calculées par la méthode UNIFAC originale et UNIFAC modifiée type Dortmund sont presque superposables, est sont plus proches des valeurs expérimentales dans tout le domaine de composions.

Conclusion générale

Conclusion générale

Dans ce travail, nous avons exposé la théorie des trois modèles : la méthode UNIFAC Originale, UNIFAC Modifiée de type Dortmund et le modèle du réseau rigide dans sa nouvelle version dispersive et quasi-chimique (DISQUAC).

Nous avons ensuite, développé pour les trois modèles, toutes les équations spécifiques aux trois systèmes étudiés :

- •Benzène (1) + Toluène (2).
- Benzène (1) + n-Octane (2).
- •Toluène (1) + n-Heptane (2).

Dans ce travail, nous nous sommes intéressés à l'étude de trois propriétés très importantes dans la thermodynamique des solutions moléculaires, à savoir l'équilibre liquide-vapeur, l'équilibre liquide-solide et les enthalpies de mélanges, qui sont nécessaires aux applications dans les domaines de l'extraction, de séparation et de purification des mélanges de composés organiques.

L'utilisation de ces trois modèles ne peut avoir lieu, sans la connaissance d'un minimum de données expérimentales des mélanges de quelques systèmes binaires, qui permettent d'ajuster les paramètres interactionnels et même les paramètres géométriques dans le cas de la méthode UNIFAC Dortmund, pour pouvoir par la suite à l'aide de ces paramètres prévoir les propriétés des autres mélanges qui possèdent les mêmes groupements fonctionnels.

Dans ce travail nous avons calculé et tracer : les enthalpies d'excès des trois systèmes étudiés, les diagrammes d'équilibre liquide-vapeur des systèmes, benzène + toluène, toluène + n-heptane et le diagramme d'équilibre liquide-solide du mélange, benzène + n-octane.

Les résultats obtenus montrent que le modèle DISQUAC dans sa version dispersive est en bonne cohérence avec les valeurs expérimentales des enthalpies d'excès des trois systèmes par contre la méthode UNIFAC originale et la méthode UNIFAC Dortmund même si leurs courbes des enthalpies d'excès ont la même allure et la même symétrie que les valeurs expérimentales, un écart très important les sépare des valeurs expérimentales. Dans les résultats des équilibres liquide-vapeur des deux systèmes étudiés les trois modèles sont globalement en bon accord avec les valeurs expérimentales. Les résultats du calcul de l'équilibre liquide-solide du système benzène + n-octane par les trois modèles montrent un écart plus au moins important par rapport aux valeurs expérimentales.

En conclusion quel que soit les résultats obtenus, la méthode UNIFAC modifiée type Dortmund grâce à la richesse de sa banque de données en termes de valeurs de paramètres géométriques et des paramètres interactionnels est la méthode de contribution de groupes la plus développée par rapport aux autres méthodes.

BIBLIOGRAPHIE

[1] J. RASMUSSEN P. FREDENSLUND, A. GMEHLING. Groupcontribution estimation of activity coefficient in nonideal liquid mixtures. American Institute of Chemical Engineers Journal, 21 :1086–1099, 1975.

[2] GMEHLING, J; FISHER K.; Li, J.; SCHILLER, M. Status and results of group contribution methods. Pure & Appl. Chem.,65, 919-926,1993.

[3] A.J STAVERMAN. The entropy of High polymer solutions. Generalization of formulae. Recueil des Travaux Chimiques des Pays-Bas, 69 :163–174, 1950.

[4] E.A. GUGGENHEIM. Mixtures. Oxford University Press, 1952.

[5] A. BONDI, VAN DER WAALS, volumes and radii. The Journal of Physical Chemistry, 68 (3) : 441–451, March 1964.

[6] A. BONDI, Physical Properties of Molecular Crystals, Liquids, and Glasses. John Wiley and Sons, Inc., 605 Third Ave., New York, N. Y., 1968.

[7] JOHN M. ABRAMS, DENIS S. PRAUSNITZ. Statistical thermodynamics of liquid mixtures : A new expression for the excess Gibbs energy of partly or completely miscible systems. American Institute of Chemical Engineers Journal, 21 :116–128, 1975.

[8] G. MAURER and J. M. PRAUSNITZ. On the derivation and extension of the uniquac equation, Fluid Phase Equilibria, 2(2):91–99, 1978.

[9] LARSEN, B. L.; RASMUSSEN, P.; FREDENSLUND, A. A modified UNIFAC group contribution model for prediction of phase equilibria and heats of mixing. Ind. Eng. Chem. Res. 26, 2274-2286,1987.

[10] WEIDLICH, U.; GMEHLING, J. Ind. Eng. Chem. Res. 26, 1372 – 1381,1987.

[11] H. SIFAOUI, Thèse de Magister, UMM Tizi-Ouzou, 1999.

[12] F. DERGAL, Thèse de Magister, UABB, Tlemcen, 2006.

[13] A. AIT-KACI, Thèse d'état, UCB Lyon I, 1982.

[14] H. BENMAKHLOUF, Thèse de Magister, USTHB Alger 1989.

[15] A. YAHYAOUI, Thèse de Magister, USTHB Alger, 1992.

[16] H.V. KEHIAIAN, J.P.E. GROLIER, G.CBENSON, J-Chim Phys, 75, 1031-1048, 1978.

 [17] H.V. KEHIAIAN The Thermodynamic of Organic Mixtures Research project TOM-80, Status Report, 6th International conference on Thermodynamics, IUPAC, Merseburg, 51, 1980. [18] H.V.KEHIAIAN, J.P.E GROLIER, M.R. KECHAVARZ, G.C.BENSON, O.KIYOHARA, Y.P.HANDA, Fluid Phase Eq, 7, 95,1981.

[19] H.V. KEHIAIAN, J.P.E GROLIER, M.R. KECHAVARZ G.C. BENSON, Fluid Phase Eq, 5, 159,1980.

[20] H.V. KEHIAIAN, B. MARONGIU, Thermochimica ACTA, 45, 122,1987.

[21] J. A. BARKER, J. Chem. Phys, 20, 10, 1528,1952

[22] Coon, John Edward, "Classical and Statistical Thermodynamics of Solid-Liquid Equilibria.". LSU Historical Dissertations and Theses. 4629,1988.

[23] G. W. LUNDBERG, Thermodynamics of Solutions XI. Heats of Mixing of Hydrocarbons, JOURNAL OF CHEMICAL AND ENGINEERING DATA 193-198,1954.

[24] Stanley J. Ashcroft," Andrew D. Clayton, and Ronald B. Shearn, Isothermal
 Vapor-Liquid Equilibria for the Systems Toluene-n-Heptane, Toluene-Propan-2-ol,
 Toluene-Sulfolane, and Propan-2-01-Sulfolane, Journal of Chemical and Engineering Data,
 24, 195-199,1979

Paramètres du modèle UNIFAC original

Cette page présente les paramètres **publiés** pour l'UNIFAC d'origine. De nombreux paramètres nouveaux, mis à jour et révisés peuvent être obtenus auprès <u>du Consortium UNIFAC</u>.

[Liste des références]
[Liste des paramètres d'interaction]
[Liste des sous-groupes et de leurs surfaces et volumes de groupe]
[Liste des groupes principaux]
[Matrice des paramètres d'interaction]

Liste des références

Les paramètres présentés ici ont été publiés dans les articles

- Skjold-Joergensen S., Kolbe B., Gmehling J., Rasmussen P., « Equilibres vapeur-liquide par contribution du groupe UNIFAC. Révision et extension », Ind.Eng.Chem. Process Des.Dev., 18(4), 714-722, 1979
- Gmehling J., Rasmussen P., Fredenslund Aa., « Equilibres vapeur-liquide par contribution du groupe UNIFAC. Révision et extension. 2 », Ind.Eng.Chem. Process Des.Dev., 21(1), 118-127, 1982
- Macedo EA, Weidlich U., Gmehling J., Rasmussen P., « Equilibres vapeur-liquide par contribution du groupe UNIFAC. Révision et extension. 3 », Ind.Eng.Chem. Process Des.Dev., 22(4), 676-678, 1983
- Tiegs D., Gmehling J., Rasmussen P., Fredenslund A., « Équilibres vapeur-liquide par contribution du groupe UNIFAC. 4. Révision et extension », Ind.Eng.Chem.Res., 26(1), 159-161, 1987
- Hansen HK, Rasmussen P., Fredenslund A., Schiller M., Gmehling J., « Équilibres vapeurliquide par contribution du groupe UNIFAC. 5. Révision et extension », Ind.Eng.Chem.Res., 30(10), 2352-2355, 1991
- Wittig R., Lohmann J., Gmehling J., « Équilibres vapeur-liquide par contribution du groupe UNIFAC. 6. Révision et extension », Ind.Eng.Chem.Res., 42(1), 183-188, 2003

Liste des paramètres d'interaction

i	j	Aij	Aji
1	2	86.0200	-35.3600
1	3	61.1300	-11.1200
1	4	76.5000	-69.7000

1	5	986.5000	156.4000
1	6	697.2000	16.5100
1	7	1318.0000	300.0000
1	8	1333.0000	275.8000
1	9	476.4000	26.7600
1	10	677.0000	505.7000
1	11	232.1000	114.8000
1	12	507.0000	329.3000
1	13	251.5000	83.3600
1	14	391.5000	-30.4800
1	15	255.7000	65.3300
1	16	206.6000	-83.9800
1	17	920.7000	1139.0000
1	18	287.7700	-101.5600
1	19	597.0000	24.8200
1	20	663.5000	315.3000
1	21	35.9300	91.4600
1	22	53.7600	34.0100
1	23	24.9000	36.7000
1	24	104.3000	-78.4500
1	25	11.4400	106.8000

1	26	661.5000	-32.6900
1	27	543.0000	5541.0000
1	28	153.6000	-52.6500
1	29	184.4000	-7.4810
1	30	354.5500	-25.3100
1	31	3025.0000	139.9300
1	32	335.8000	128.0000
1	33	479.5000	-31.5200
1	34	298.9000	-72.8800
1	35	526.5000	50.4900
1	36	689.0000	-165.9000
1	37	-4.1890	47.4100
1	38	125.8000	-5.1320
1	39	485.3000	-31.9500
1	40	-2.8590	147.3000
1	41	387.1000	529.0000
1	42	-450.4000	-34.3600
1	43	252.7000	110.2000
1	44	220.3000	13.8900
1	45	-5.8690	30.7400
1	46	390.9000	27.9700

1	47	553.3000	-11.9200
1	48	187.0000	39.9300
1	49	216.1000	-23.6100
1	50	92.9900	-8.4790
1	51	699.1300	456.1900
1	55	808.5900	245.2100
1	84	-1243.0000	125.3600
1	85	637.6500	221.5600
2	3	38.8100	3.4460
2	4	74.1500	-113.6000
2	5	524.1000	457.0000
2	6	787.6000	-12.5200
2	7	270.6000	496.1000
2	8	526.1000	217.5000
2	9	182.6000	42.9200
2	10	448.7500	56.3000
2	11	37.8500	132.1000
2	12	333.5000	110.4000
2	13	214.5000	26.5100
2	14	240.9000	1.1630
2	15	163.9000	-28.7000

2	16	61.1100	-25.3800
2	17	749.3000	2000.0000
2	18	280.5000	-47.6300
2	19	336.9000	-40.6200
2	20	318.9000	1264.0000
2	21	-36.8700	40.2500
2	22	58.5500	-23.5000
2	23	-13.9900	51.0600
2	24	-109.7000	160.9000
2	25	100.1000	70.3200
2	26	357.5000	-1.9960
2	28	76.3000	16.6230
2	30	262.9000	82.6400
2	33	183.8000	174.6000
2	34	31.1400	41.3800
2	35	179.0000	64.0700
2	36	-52.8700	573.0000
2	37	-66.4600	124.2000
2	38	359.3000	-131.7000
2	39	-70.4500	249.0000
2	40	449.4000	62.4000

2	41	48.3300	1397.0000
2	44	86.4600	-16.1100
2	46	200.2000	9.7550
2	47	268.1000	132.4000
2	48	-617.0000	543.6000
2	49	62.5600	161.1000
2	55	200.9400	384.4500
2	84	-861.4600	-391.8100
2	85	424.9300	629.9600
3	4	167.0000	-146.8000
3	5	636.1000	89.6000
3	6	637.3500	-50.0000
3	7	903.8000	362.3000
3	8	1329.0000	25.3400
3	9	25.7700	140.1000
3	10	347.3000	23.3900
3	11	5.9940	85.8400
3	12	287.1000	18.1200
3	13	32.1400	52.1300
3	14	161.7000	-44.8500
3	15	122.8000	-22.3100

3	16	90.4900	-223.9000
3	17	648.2000	247.5000
3	18	-4.4490	31.8700
3	19	212.5000	-22.9700
3	20	537.4000	62.3200
3	21	-18.8100	4.6800
3	22	-144.4000	121.3000
3	23	-231.9000	288.5000
3	24	3.0000	-4.7000
3	25	187.0000	-97.2700
3	26	168.0400	10.3800
3	27	194.9000	1824.0000
3	28	52.0680	21.4970
3	29	-10.4300	28.4100
3	30	-64.6900	157.2900
3	31	210.3660	221.4000
3	32	113.3000	58.6800
3	33	261.3000	-154.2000
3	34	154.2600	-101.1200
3	35	169.9000	-2.5040
3	36	383.9000	-123.6000

3	37	-259.1000	395.8000
3	38	389.3000	-237.2000
3	39	245.6000	-133.9000
3	40	22.6700	140.6000
3	41	103.5000	317.6000
3	42	-432.3000	787.9000
3	43	238.9000	234.4000
3	44	30.0400	-23.8800
3	45	-88.1100	167.9000
3	47	333.3000	-86.8800
3	49	-59.5800	142.9000
3	50	-39.1600	23.9300
3	55	360.8200	47.0500
4	5	803.2000	25.8200
4	6	603.2500	-44.5000
4	7	5695.0000	377.6000
4	8	884.9000	244.2000
4	9	-52.1000	365.8000
4	10	586.8000	106.0000
4	11	5688.0000	-170.0000
4	12	197.8000	428.0000

4	13	213.1000	65.6900
4	14	19.0200	296.4000
4	15	-49.2900	223.0000
4	16	23.5000	109.9000
4	17	664.2000	762.8000
4	18	52.8000	49.8000
4	19	6096.0000	-138.4000
4	20	872.3000	89.8600
4	21	-114.1400	122.9100
4	22	-111.0000	140.7800
4	23	-80.2500	69.9000
4	24	-141.3000	134.7000
4	25	-211.0000	402.5000
4	26	3629.0000	-97.0500
4	27	4448.0000	-127.8000
4	28	-9.4510	40.6750
4	29	393.6000	19.5600
4	30	48.4900	128.8000
4	31	4975.0000	150.6400
4	32	259.0000	26.4100
4	33	210.0000	1112.0000

4	34	-152.5500	614.5200
4	35	4284.0000	-143.2000
4	36	-119.2000	397.4000
4	37	-282.5000	419.1000
4	38	101.4000	-157.3000
4	39	5629.0000	-240.2000
4	40	-245.3900	839.8300
4	41	69.2600	615.8000
4	44	46.3800	6.2140
4	47	421.9000	-19.4500
4	49	-203.6000	274.1000
4	50	184.9000	2.8450
4	55	233.5100	347.1300
5	6	-137.1000	249.1000
5	7	353.5000	-229.1000
5	8	-259.7000	-451.6000
5	9	84.0000	164.5000
5	10	-203.6000	529.0000
5	11	101.1000	245.4000
5	12	267.8000	139.4000
5	13	28.0600	237.7000
5	14	8.6420	-242.8000
---	----	-----------	-----------
5	15	42.7000	-150.0000
5	16	-323.0000	28.6000
5	17	-52.3900	-17.4000
5	18	170.0290	-132.3000
5	19	6.7120	185.4000
5	20	199.0000	-151.0000
5	21	75.6200	562.2000
5	22	65.2800	527.6000
5	23	-98.1200	742.1000
5	24	143.1000	856.3000
5	25	123.5000	325.7000
5	26	256.5000	261.6000
5	27	157.1000	561.6000
5	28	488.9000	609.8000
5	29	147.5000	461.6000
5	30	-120.4600	521.6300
5	31	-318.9300	267.6000
5	32	313.5000	501.3000
5	33	202.1000	524.9000
5	34	727.8000	68.9500

5	35	-202.1000	-25.8700
5	36	74.2700	389.3000
5	37	225.8000	738.9000
5	38	44.7800	649.7000
5	39	-143.9000	64.1600
5	41	190.3000	88.6300
5	42	-817.7000	1913.0000
5	43	-1712.8000	430.0600
5	44	-504.2000	796.9000
5	45	72.9600	794.4000
5	46	-382.7000	394.8000
5	47	-248.3000	517.5000
5	49	104.7000	-61.2000
5	50	57.6500	682.5000
5	55	215.8100	72.1900
5	84	-1840.8000	111.6500
5	85	56.2980	122.1900
6	7	-180.9500	289.6000
6	8	-101.7000	-265.2000
6	9	23.3900	108.6500
6	10	306.4200	-340.1800

6	11	-10.7200	249.6300
6	12	179.7000	227.8000
6	13	-128.6000	238.4000
6	14	359.3000	-481.6500
6	15	-20.9800	-370.3000
6	16	53.9000	-406.8000
6	17	489.7000	-118.1000
6	18	580.4800	-378.2400
6	19	53.2800	162.6000
6	20	-202.0000	339.8000
6	21	-38.3200	529.0000
6	22	-102.5400	669.9000
6	23	-139.3500	649.1000
6	24	-44.7600	709.6000
6	25	-28.2500	612.8000
6	26	75.1400	252.5600
6	27	457.8800	511.2900
6	28	-31.0900	914.2000
6	29	17.5000	448.6000
6	30	-61.7600	287.0000
6	31	-119.2000	240.8000

6	32	212.1000	431.3000
6	33	106.3000	494.7000
6	34	-119.1000	967.7100
6	35	-399.3000	695.0000
6	36	-5.2240	218.8000
6	37	33.4700	528.0000
6	38	-48.2500	645.9000
6	39	-172.4000	172.2000
6	41	165.7000	171.0000
6	45	-52.1000	762.7000
6	48	37.6300	420.0000
6	49	-59.4000	-89.2400
6	50	-46.0100	597.8000
6	55	150.0200	265.7500
7	8	324.5000	-601.8000
7	9	-195.4000	472.5000
7	10	-116.0000	480.8000
7	11	72.8700	200.8000
7	12	233.8700	124.6300
7	13	540.5000	-314.7000
7	14	48.8900	-330.4000

7	15	168.0000	-448.2000
7	16	304.0000	-598.8000
7	17	243.2000	-341.6000
7	18	459.0000	-332.9000
7	19	112.6000	242.8000
7	20	-14.0900	-66.1700
7	21	325.4400	698.2400
7	22	370.4000	708.6900
7	23	353.6800	826.7600
7	24	497.5400	1201.0000
7	25	133.9000	-274.5000
7	26	220.6000	417.9000
7	27	399.5000	360.7000
7	28	887.1000	1081.0000
7	30	188.0260	23.4840
7	31	12.7200	-137.4000
7	33	777.1000	79.1800
7	35	-139.0000	-240.0000
7	36	160.8000	386.6000
7	39	319.0000	-287.1000
7	41	-197.5000	284.4000

7	42	-363.8000	180.2000
7	44	-452.2000	832.2000
7	46	835.6000	-509.3000
7	47	139.6000	-205.7000
7	49	407.9000	-384.3000
7	55	-255.6300	627.3900
8	9	-356.1000	-133.1000
8	10	-271.1000	-155.6000
8	11	-449.4000	-36.7200
8	12	-32.5200	-234.2500
8	13	-162.8742	-178.5461
8	14	-832.9700	-870.8000
8	17	119.9000	-253.1000
8	18	-305.5000	-341.6000
8	20	408.9000	-11.0000
8	22	517.2700	1633.5000
8	24	1827.0000	10000.0000
8	25	6915.0000	622.3000
8	27	-413.4800	815.1200
8	28	8483.5000	1421.3000
8	31	-687.1000	838.4000

8	41	-494.2000	-167.3000
8	44	-659.0000	-234.7000
8	50	1005.0000	810.5000
9	10	-37.3600	128.0000
9	11	-213.7000	372.2000
9	12	-190.4000	385.4000
9	13	-103.6000	191.1000
9	15	-174.2000	394.6000
9	16	-169.0000	225.3000
9	17	6201.0000	-450.3000
9	18	7.3410	29.1000
9	19	481.7000	-287.5000
9	20	669.4000	-297.8000
9	21	-191.6900	286.2800
9	22	-130.3000	82.8600
9	23	-354.5500	552.1000
9	24	-39.2000	372.0000
9	25	-119.8000	518.4000
9	26	137.5000	-142.6100
9	27	548.5000	-101.5000
9	28	216.1380	303.6570

9	29	-46.2800	160.6000
9	30	-163.7000	317.5000
9	31	71.4600	135.4000
9	32	53.5900	138.0000
9	33	245.2000	-142.6000
9	34	-246.6000	443.6150
9	35	-44.5800	110.4000
9	36	-63.5000	114.5500
9	37	-34.5700	-40.9000
9	39	-61.7000	97.0400
9	41	-18.8000	123.4000
9	42	-588.9000	992.4000
9	47	37.5400	156.4000
9	50	-162.6000	278.8000
10	11	-110.3000	185.1000
10	12	766.0000	-236.5000
10	13	304.1000	-7.8380
10	19	-106.4000	224.6600
10	20	497.5000	-165.5000
10	21	751.9000	-47.5100
10	22	67.5200	190.6000

10	23	-483.7000	242.8000
10	32	117.0000	245.9000
10	34	2.2100	-55.8700
10	36	-339.2000	354.0000
10	37	172.4000	183.8000
10	39	-268.8000	13.8900
10	41	-275.5000	577.5000
11	12	-241.8000	1167.0000
11	13	-235.7000	461.3000
11	15	-73.5000	136.0000
11	16	-196.7000	2888.6001
11	17	475.5000	-294.8000
11	18	-0.1300	8.8700
11	19	494.6000	-266.6000
11	20	660.2000	-256.3000
11	21	-34.7400	35.3800
11	22	108.8500	-132.9500
11	23	-209.6600	176.4500
11	24	54.5700	129.4900
11	25	442.4000	-171.1000
11	26	-81.1300	129.3000

11	28	183.0460	243.7750
11	30	202.2500	-146.3100
11	31	-101.7000	152.0000
11	32	148.3000	21.9200
11	33	18.8800	24.3700
11	34	71.4800	-111.4500
11	35	52.0800	41.5700
11	36	-28.6100	175.5300
11	37	-275.2000	611.3000
11	39	85.3300	-82.1200
11	41	560.2000	-234.9000
11	47	151.8000	-3.4440
12	13	-234.0000	457.3000
12	18	-233.4000	554.4000
12	19	-47.2500	99.3700
12	20	-268.1000	193.9000
12	22	31.0000	80.9900
12	23	-126.2000	235.6000
12	24	179.7000	351.9000
12	25	24.2800	383.3000
12	29	103.9000	201.5000

12	33	298.1300	-92.2600
12	37	-11.4000	134.5000
12	39	308.9000	-116.7000
12	41	-122.3000	145.4000
13	14	-78.3600	222.1000
13	15	251.5000	-56.0800
13	16	5422.2998	-194.1000
13	17	-46.3900	285.3600
13	18	213.2000	-156.1000
13	19	-18.5100	38.8100
13	20	664.6000	-338.5000
13	21	301.1400	225.3900
13	22	137.7700	-197.7100
13	23	-154.3000	-20.9300
13	24	47.6700	113.9000
13	25	134.8000	-25.1500
13	26	95.1800	-94.4900
13	27	155.1100	220.6600
13	28	140.8960	112.3820
13	29	-8.5380	63.7100
13	30	170.1000	-87.3100

13	31	-20.1100	9.2070
13	32	-149.5000	476.6000
13	33	-202.3000	736.4000
13	34	-156.5700	173.7700
13	35	128.8000	-93.5100
13	37	240.2000	-217.9000
13	38	-273.9500	167.3000
13	39	254.8000	-158.2000
13	40	-172.5100	278.1500
13	41	417.0000	-247.8000
13	42	1338.0000	448.5000
14	15	-107.2000	127.4000
14	16	-41.1100	38.8900
14	17	-200.7000	-15.0700
14	19	358.9000	-157.3000
14	21	-82.9200	131.2000
14	24	-99.8100	261.1000
14	25	30.0500	108.5000
14	29	-70.1400	106.7000
14	35	874.1900	-366.5100
14	39	-164.0000	49.7000

14	42	-664.4000	961.8000
14	43	275.9000	-125.2000
15	16	-189.2000	865.9000
15	17	138.5400	64.3000
15	18	431.4900	-207.6600
15	19	147.1000	-108.5000
15	24	71.2300	91.1300
15	25	-18.9300	102.2000
15	31	939.0700	-213.7400
15	38	570.9000	-198.8000
15	39	-255.2200	10.0300
15	41	-38.7700	284.5000
15	42	448.1000	1464.2000
15	43	-1327.0000	1603.8000
16	17	287.4300	-24.4600
16	19	1255.1000	-446.8600
16	21	-182.9100	151.3800
16	22	-73.8500	-141.4000
16	23	-352.9000	-293.7000
16	24	-262.0000	316.9000
16	25	-181.9000	2951.0000

16	35	243.1000	-257.2000
16	38	-196.3120	116.4780
16	39	22.0500	-185.2000
17	18	89.7000	117.4000
17	19	-281.6000	777.4000
17	20	-396.0000	493.8000
17	21	287.0000	429.7000
17	22	-111.0000	140.8000
17	24	882.0000	898.2000
17	25	617.5000	334.9000
17	27	-139.3000	134.9000
17	31	0.1004	192.3000
17	39	-334.4000	343.7000
17	41	-89.4200	-22.1000
18	19	-169.6700	134.2800
18	20	-153.7000	-313.5000
18	22	-351.6000	587.3000
18	23	-114.7300	18.9800
18	24	-205.3000	368.5000
18	25	-2.1700	20.1800
18	27	2845.0000	2475.0000

18	33	-60.7800	-42.7100	
18	37	160.7000	281.6000	
18	38	-158.8000	159.8000	
18	50	-136.6000	221.4000	
19	20	205.2700	92.0700	
19	21	4.9330	54.3200	
19	22	-152.7000	258.6000	
19	23	-15.6200	74.0400	
19	24	-54.8600	491.9500	
19	25	-4.6240	363.5000	
19	26	-0.5150	0.2830	
19	28	230.8520	335.7430	
19	29	0.4604	161.0000	
19	31	177.5000	169.6000	
19	33	-62.1700	136.9000	
19	34	-203.0200	329.1200	
19	36	81.5700	-42.3100	
19	37	-55.7700	335.2000	
19	39	-151.5000	150.6000	
19	41	120.3000	-61.6000	
19	47	16.2300	119.2000	

20	21	13.4100	519.1000
20	22	-44.7000	543.3000
20	23	39.6300	504.2000
20	24	183.4000	631.0000
20	25	-79.0800	993.4000
20	30	-208.9000	570.6000
20	32	228.4000	616.6000
20	33	-95.0000	5256.0000
20	35	-463.6000	-180.2000
20	37	-11.1600	898.2000
20	39	-228.0000	-97.7700
20	41	-337.0000	1179.0000
20	46	-322.3000	-70.2500
21	22	108.3100	-84.5300
21	23	249.1500	-157.1000
21	24	62.4200	11.8000
21	25	153.0000	-129.7000
21	26	32.7300	113.0000
21	27	86.2000	1971.0000
21	28	450.0880	-73.0920
21	29	59.0200	-27.9400

21	30	65.5600	-39.4600
21	32	2.2200	179.2500
21	33	344.4000	-262.3000
21	37	-168.2000	383.2000
21	39	6.5700	-55.2100
21	41	63.6700	182.2000
22	23	0.0000	0.0000
22	24	56.3300	17.9700
22	25	223.1000	-8.3090
22	26	108.9000	-9.6390
22	30	149.5600	-116.2100
22	32	177.6000	-40.8200
22	33	315.9000	-174.5000
22	35	215.0000	-215.0000
22	37	-91.8000	301.9000
22	39	-160.2800	397.2400
22	41	-96.8700	305.4000
22	47	361.1000	-194.7000
23	24	-30.1000	51.9000
23	25	192.1000	-0.2266
23	28	116.6120	-26.0580

23	30	-64.3800	48.4840
23	32	86.4000	21.7600
23	33	168.8000	-46.8000
23	35	363.7000	-343.6000
23	37	111.2000	-149.8000
23	41	255.8000	-193.0000
23	44	-35.6800	-196.2000
23	48	565.9000	-363.1000
24	25	-75.9700	248.4000
24	26	490.8800	-34.6800
24	27	534.7000	514.6000
24	28	132.2000	-60.7100
24	30	546.6800	-133.1600
24	32	247.8000	48.4900
24	33	146.6000	77.5500
24	35	337.7000	-58.4300
24	36	369.4900	-85.1480
24	37	187.1000	-134.2000
24	38	215.2000	-124.6000
24	39	498.6000	-186.7000
24	41	256.5000	335.7000

24	43	233.1000	70.8100
24	47	423.1000	3.1630
24	48	63.9500	-11.3000
24	50	108.5000	-79.3400
24	55	585.1900	75.0400
25	26	132.7000	132.9000
25	27	2213.0000	-123.1000
25	33	593.4000	-185.3000
25	35	1337.3700	-334.1200
25	39	5143.1401	-374.1600
25	40	309.5800	33.9500
25	41	-71.1800	956.1000
25	44	-209.7000	161.5000
25	47	434.1000	7.0820
26	27	533.2000	-85.1200
26	28	320.2000	277.8000
26	31	139.8220	481.3480
26	32	304.3000	64.2800
26	33	10.1700	125.3000
26	34	-27.7010	174.4330
26	37	10.7600	379.4000

26	39	-223.1000	223.6000	
26	41	248.4000	-124.7000	
26	45	-218.9000	844.0000	
26	50	-4.5650	176.3000	
27	32	2990.0000	2448.0000	
27	33	-124.0000	4288.0000	
28	32	292.7000	-27.4500	
28	37	-47.3700	167.9000	
28	41	469.8000	885.5000	
29	35	31.6600	85.7000	
29	39	78.9200	-71.0000	
29	44	1004.2000	-274.1000	
29	48	-18.2700	6.9710	
30	41	43.3700	-64.2800	
31	35	-417.2000	535.8000	
31	39	302.2000	-191.7000	
31	41	347.8000	-264.3000	
31	44	-262.0000	262.0000	
31	47	-353.5000	515.8000	
32	33	6.3700	37.1000	
32	41	68.5500	288.1000	

33	35	32.9000	-111.2000	
33	37	-48.3300	322.4200	
33	39	336.2500	-176.2600	
33	41	-195.1000	627.7000	
34	37	2073.2000	631.5000	
34	39	-119.8000	6.6990	
35	39	-97.7100	136.6000	
35	41	153.7000	-29.3400	
36	37	-208.8000	837.2000	
36	39	-8.8040	5.1500	
36	41	423.4000	-53.9100	
37	39	255.0000	-137.7000	
37	41	730.8000	-198.0000	
37	44	26.3500	-66.3100	
37	48	2429.0000	148.9000	
38	39	-110.6500	50.0600	
38	40	-117.1700	185.6000	
39	40	-5.5790	55.8000	
39	41	72.3100	-28.6500	
40	45	111.8000	-32.1700	
41	47	122.4000	101.2000	

42	43	-2166.0000	745.3000
84	85	1517.5000	-1869.9000

Liste des sous-groupes et de leurs surfaces et volumes de groupe

No.	Subgroup Name	Maingroup	R	Q
1	СНЗ	[1]CH2	0.9011	0.8480
2	CH2	[1]CH2	0.6744	0.5400
3	СН	[1]CH2	0.4469	0.2280
4	С	[1]CH2	0.2195	0.0000
5	CH2=CH	[2]C=C	1.3454	1.1760
6	CH=CH	[2]C=C	1.1167	0.8670
7	CH2=C	[2]C=C	1.1173	0.9880
8	CH=C	[2]C=C	0.8886	0.6760
9	ACH	[3]ACH	0.5313	0.4000
10	AC	[3]ACH	0.3652	0.1200
11	ACCH3	[4]ACCH2	1.2663	0.9680
12	ACCH2	[4]ACCH2	1.0396	0.6600
13	ACCH	[4]ACCH2	0.8121	0.3480
14	ОН	[5]OH	1.0000	1.2000
15	СНЗОН	[6]CH3OH	1.4311	1.4320
16	H2O	[7]H2O	0.9200	1.4000
17	АСОН	[8]ACOH	0.8952	0.6800
18	СНЗСО	[9]CH2CO	1.6724	1.4880
19	CH2CO	[9]CH2CO	1.4457	1.1800
20	СНО	[10]CHO	0.9980	0.9480
21	СНЗСОО	[11]CCOO	1.9031	1.7280

22	CH2COO	[11]CCOO	1.6764 1.4200
23	НСОО	[12]HCOO	1.2420 1.1880
24	СНЗО	[13]CH2O	1.1450 1.0880
25	CH2O	[13]CH2O	0.9183 0.7800
26	СНО	[13]CH2O	0.6908 0.4680
27	THF	[13]CH2O	0.9183 1.1000
28	CH3NH2	[14]CNH2	1.5959 1.5440
29	CH2NH2	[14]CNH2	1.3692 1.2360
30	CHNH2	[14]CNH2	1.1417 0.9240
31	CH3NH	[15]CNH	1.4337 1.2440
32	CH2NH	[15]CNH	1.2070 0.9360
33	CHNH	[15]CNH	0.9795 0.6240
34	CH3N	[16](C)3N	1.1865 0.9400
35	CH2N	[16](C)3N	0.9597 0.6320
36	ACNH2	[17]ACNH2	1.0600 0.8160
37	C5H5N	[18]PYRIDINE	2.9993 2.1130
38	C5H4N	[18]PYRIDINE	2.8332 1.8330
39	C5H3N	[18]PYRIDINE	2.6670 1.5530
40	CH3CN	[19]CCN	1.8701 1.7240
41	CH2CN	[19]CCN	1.6434 1.4160
42	СООН	[20]COOH	1.3013 1.2240
43	НСООН	[20]COOH	1.5280 1.5320
44	CH2CL	[21]CCL	1.4654 1.2640
45	CHCL	[21]CCL	1.2380 0.9520
46	CCL	[21]CCL	1.0106 0.7240
47	CH2CL2	[22]CCL2	2.2564 1.9880
48	CHCL2	[22]CCL2	2.0606 1.6840

49	CCL2	[22]CCL2	1.8016 1.4480
50	CHCL3	[23]CCL3	2.8700 2.4100
51	CCL3	[23]CCL3	2.6401 2.1840
52	CCL4	[24]CCL4	3.3900 2.9100
53	ACCL	[25]ACCL	1.1562 0.8440
54	CH3NO2	[26]CNO2	2.0086 1.8680
55	CH2NO2	[26]CNO2	1.7818 1.5600
56	CHNO2	[26]CNO2	1.5544 1.2480
57	ACNO2	[27]ACNO2	1.4199 1.1040
58	CS2	[28]CS2	2.0570 1.6500
59	СНЗЅН	[29]CH3SH	1.8770 1.6760
60	CH2SH	[29]CH3SH	1.6510 1.3680
61	FURFURAL	[30]FURFURAL	3.1680 2.4840
62	DOH	[31]DOH	2.4088 2.2480
63	I	[32]I	1.2640 0.9920
64	BR	[33]BR	0.9492 0.8320
65	CH=-C	[34]C=-C	1.2920 1.0880
66	C=-C	[34]C=-C	1.0613 0.7840
67	DMSO	[35]DMSO	2.8266 2.4720
68	ACRY	[36]ACRY	2.3144 2.0520
69	CL-(C=C)	[37]CLCC	0.7910 0.7240
70	C=C	[2]C=C	0.6605 0.4850
71	ACF	[38]ACF	0.6948 0.5240
72	DMF	[39]DMF	3.0856 2.7360
73	HCON([39]DMF	2.6322 2.1200
74	CF3	[40]CF2	1.4060 1.3800
75	CF2	[40]CF2	1.0105 0.9200

76	CF	[40]CF2	0.6150 0.4600
77	COO	[41]COO	1.3800 1.2000
78	SIH3	[42]SIH2	1.6035 1.2632
79	SIH2	[42]SIH2	1.4443 1.0063
80	SIH	[42]SIH2	1.2853 0.7494
81	SI	[42]SIH2	1.0470 0.4099
82	SIH2O	[43]SIO	1.4838 1.0621
83	SIHO	[43]SIO	1.3030 0.7639
84	SIO	[43]SIO	1.1044 0.4657
85	NMP	[44]NMP	3.9810 3.2000
86	CCL3F	[45]CCLF	3.0356 2.6440
87	CCL2F	[45]CCLF	2.2287 1.9160
88	HCCL2F	[45]CCLF	2.4060 2.1160
89	HCCLF	[45]CCLF	1.6493 1.4160
90	CCLF2	[45]CCLF	1.8174 1.6480
91	HCCLF2	[45]CCLF	1.9670 1.8280
92	CCLF3	[45]CCLF	2.1721 2.1000
93	CCL2F2	[45]CCLF	2.6243 2.3760
94	AMH2	[46]CON(AM)	1.4515 1.2480
95	АМНСН3	[46]CON(AM)	2.1905 1.7960
96	AMHCH2	[46]CON(AM)	1.9637 1.4880
97	AM(CH3)2	[46]CON(AM)	2.8589 2.4280
98	AMCH3CH2	[46]CON(AM)	2.6322 2.1200
99	AM(CH2)2	[46]CON(AM)	2.4054 1.8120
100	C2H5O2	[47]OCCOH	2.1226 1.9040
101	C2H4O2	[47]OCCOH	1.8952 1.5920
102	CH3S	[48]CH2S	1.6130 1.3680

103 CH2S	[48]CH2S 1.3863 1.0600
104 CHS	[48]CH2S 1.1589 0.7480
105 MORPH	[49]MORPH 3.4740 2.7960
106 C4H4S	[50]THIOPHEN 2.8569 2.1400
107 C4H3S	[50]THIOPHEN 2.6908 1.8600
108 C4H2S	[50]THIOPHEN 2.5247 1.5800
109 NCO	[51]NCO 1.0567 0.7320
118 (CH2)2SU	[55]SULFONES 2.6869 2.1200
119 CH2CHSU	[55]SULFONES 2.4595 1.8080
178 IMIDAZOL	[84]IMIDAZOL 2.0260 0.8680
179 BTI	[85]BTI 5.7740 4.9320

List of Main Groups

This table shows the list of main groups and the sub group belonging to every main group.

No.	Maingroup Name	Subgroups
1	CH2	[1]CH3 [2]CH2 [3]CH [4]C
2	C=C	[5]CH2=CH [6]CH=CH [7]CH2=C [8]CH=C [70]C=C
3	ACH	[9]ACH [10]AC
4	ACCH2	[11]ACCH3 [12]ACCH2 [13]ACCH
5	ОН	[14]OH
6	СНЗОН	[15]CH3OH
7	H2O	[16]H2O
8	АСОН	[17]ACOH
9	CH2CO	[18]CH3CO [19]CH2CO
10	СНО	[20]CHO
11	ссоо	[21]CH3COO [22]CH2COO
12	НСОО	[23]HCOO
13	CH2O	[24]CH3O [25]CH2O [26]CHO [27]THF

14	CNH2	[28]CH3NH2 [29]CH2NH2 [30]CHNH2
15	CNH	[31]CH3NH [32]CH2NH [33]CHNH
16	(C)3N	[34]CH3N [35]CH2N
17	ACNH2	[36]ACNH2
18	PYRIDINE	[37]C5H5N [38]C5H4N [39]C5H3N
19	CCN	[40]CH3CN [41]CH2CN
20	СООН	[42]COOH [43]HCOOH
21	CCL	[44]CH2CL [45]CHCL [46]CCL
22	CCL2	[47]CH2CL2 [48]CHCL2 [49]CCL2
23	CCL3	[50]CHCL3 [51]CCL3
24	CCL4	[52]CCL4
25	ACCL	[53]ACCL
26	CNO2	[54]CH3NO2 [55]CH2NO2 [56]CHNO2
27	ACNO2	[57]ACNO2
28	CS2	[58]CS2
29	СНЗЅН	[59]CH3SH [60]CH2SH
30	FURFURAL	[61]FURFURAL
31	DOH	[62]DOH
32	I	[63]I
33	BR	[64]BR
34	C=-C	[65]CH=-C [66]C=-C
35	DMSO	[67]DMSO
36	ACRY	[68]ACRY
37	CLCC	[69]CL-(C=C)
38	ACF	[71]ACF
39	DMF	[72]DMF [73]HCON(
40	CF2	[74]CF3 [75]CF2 [76]CF

- 41 COO [77]COO
- 42 SIH2 [78]SIH3 [79]SIH2 [80]SIH [81]SI 43 SIO [82]SIH2O [83]SIHO [84]SIO 44 NMP [85]NMP [86]CCL3F [87]CCL2F [88]HCCL2F [89]HCCLF [90]CCLF2 [91]HCCLF2 [92]CCLF3 45 CCLF [93]CCL2F2 [94]AMH2 [95]AMHCH3 [96]AMHCH2 [97]AM(CH3)2 [98]AMCH3CH2 46 CON(AM) [99]AM(CH2)2 47 OCCOH [100]C2H5O2 [101]C2H4O2 48 CH2S [102]CH3S [103]CH2S [104]CHS 49 MORPH [105]MORPH
- 50 THIOPHEN [106]C4H4S [107]C4H3S [108]C4H2S
- 51 NCO [109]NCO
- 55 SULFONES [118](CH2)2SU [119]CH2CHSU
- 84 IMIDAZOL [178]IMIDAZOL
- 85 BTI [179]BTI

Parameters of the Modified UNIFAC (Dortmund) Model

This page shows the *published* parameters for modified UNIFAC (Dortmund). Many new, updated and revised parameters can be obtained from <u>UNIFAC Consortium</u>.

[List of References] [List of Interaction Parameters] [List of Sub Groups and their Group Surfaces and Volumes] [List of Main Groups] [Interaction Parameters Matrix]

List of References

The parameters shown here have been published in the articles

- 1. Weidlich, Gmehling, Ind.Eng.Chem.Res., 26, 1372 (1987)
- 2. Gmehling, Li, Schiller, Ind.Eng.Chem.Res., 32, 178 (1993)
- 3. Gmehling, Lohmann, Jakob, Li, Joh, Ind.Eng.Chem.Res., 37, 4876-4882 (1998)
- 4. Gmehling, Wittig, Lohmann, Joh, Ind.Eng.Chem.Res., 41, 1678-1688 (2002)
- 5. Wittig, Lohmann, Joh, Horstmann, Gmehling, Ind.Eng.Chem.Res., 40, 5831-5838 (2001)
- 6. Lohmann, Joh, Gmehling, Ind.Eng.Chem.Res., 40, 957-964 (2001)
- 7. Lohmann, Gmehling, J.Chem.Eng.Jpn., 34, 43-54 (2001)
- 8. Wittig, Lohmann Gmehling, AIChE Journal 49, 2, 530-537 (2003)
- 9. Jakob, Grensemann, Lohmann, Gmehling, Ind.Eng.Chem.Res. 45, 7924-7933 (2006)
- 10. Hector, Gmehling, Fluid Phase Equilib. 371, 82-92 (2014)
- 11. Constantinescu, Gmehling, J.Chem.Eng.Data, 61(8), 2738-2748 (2016)

List of Interaction Parameters

i	j	aij	bij	cij	aji	bji	cji
1	2	189.66	-0.27232		-95.41801	0.061708	
1	3	114.2	0.0933		16.07	-0.2998	
1	4	7.339	-0.4538		47.2	0.3575	
1	5	2777	-4.674	0.001551	1606	-4.746	0.0009181
1	6	2409.4	-3.0099		82.593	-0.48575	
1	7	1391.3	-3.6156	0.001144	-17.253	0.8389	0.0009021
1	8	1381	-0.9977		1987	-4.615	
1	9	433.6	0.1473		199	-0.8709	

_							
1	10	875.85			256.21		
1	11	98.65601	1.9294	-0.0031331	632.22	-3.3912	0.0039282
1	12	508.4	-0.6215		238.5	-0.5358	
1	13	233.1	-0.3155		-9.654	-0.03242	
1	14	-164.04	4.9683	-0.010252	326.04	-2.6348	0.0033576
1	15	350.58	0.066729		207.26	-1.0916	
1	16	-175.7	1.857		205.65	-1.4436	
1	17	958.74	-0.14836		2257.3	-5.6676	
1	18	1802.3	-17.171	0.036	-436.15	3.4225	-0.0087
1	19	593.07	0.7335		293.81	-1.3979	
1	20	1182.2	-3.2647	0.009198	2017.7	-9.0933	0.010238
1	21	401	-0.72772		-65.68501	0.074091	
1	22	-233.66	1.2561		311.55	-1.1856	
1	23	-653.74	4.5311	-0.008735	1302.6	-8.427	0.014417
1	24	267.51	-1.7109	0.003388	-148.07	1.0927	-0.002416
1	25	-1385	15.89	-0.04831	3264	-20.84	0.03317
1	26	2345	-13.2	0.02156	-396.5	3.092	-0.006266
1	27	2383	-2.693		1744	-4.082	
1	28	24.33	1.521		72.12	-1.126	
1	29	465.9	-0.8557		-59.9	-0.008313	
1	30	577.7	0.9384		210.5	-1.081	
1	31	897.7			28.17		
1	32	559.9	-0.3564		166	-0.7116	
1	33	527.7	-0.499		-62.08	-0.3658	
1	34	477.5	-0.6581		-22.04	-0.1018	
1	35	-547.5	3.457		477.1	-2.175	
1	36	1662			-291.9		
1	37	334.5	0.009102		3.202	-0.6894	
1	38	468.5	-1.042		-160.3	-0.0108	
1	39	406.2	0.6525		151	-0.9023	
1	40	342	-1.679		-484.3	2.467	
1	41	1312	-3.643		-314.6	1.287	
1	42	-117.1	0.5481	-0.00098	170.9	-0.8062	0.001291
1	43	79.507	0.70892	-0.0020983	186.71	-1.3546	0.0024016

1	44	1935.7			-21.23		
1	45	164.25	-0.26834		-44.069	0.027778	
1	46	677.32	-2.0066		-249.85	1.7054	
1	47	3150.86	-3.1003		189.911	-0.9413	
1	48	1529.52	-6.2025	0.00975	82.6	-0.615	-0.000623
1	49	-923.282	7.80959	-0.008808	183.02	-1.22588	0.000583
1	52	24.432	0.2915		-16.034	-0.5337	
1	53	269.67			-41		
1	55	407.47	-0.2037	-0.00016	-0.067	-0.3935	4e-05
1	56	1058.31	-1.1856		438.76	-1.2256	
1	61	860.51	-1.96009		-309.943	0.64856	
1	84	70.38	0.24511		77.7793	0.83298	
1	85	1260.02	-4.55446	0.0067607	996.5333	-5.48462	0.0095873
1	87	283.8202	-3.9547	0.0103753	907.3842	0.46568	-0.0055872
1	89	360.8016	2.05302	-0.0166992	454.5569	-1.47382	0.0010454
1	90	656.528	-4.2237	0.0074475	-307.8627	3.60996	-0.0081757
1	91	1094.303	-1.11888		243.462	-1.03559	
1	93	468.398	-2.55668		2660.16	-6.86512	
1	98	1859.374	4.06308		1131.305	-0.93175	
1	99	4041.479	-3.90698	-0.0254482	3504.325	2.66288	-0.0330202
2	3	174.1	-0.5886		-157.2	0.6166	
2	4	117.3	-0.8552		-113.1	1.172	
2	5	2649	-6.508	0.004822	1566	-5.809	0.005197
2	6	-628.07	10	-0.014972	-96.297	0.6304	-0.0018
2	7	778.3	0.1482		-1301	4.072	
2	8	1207	-1.955		191.6	0.4936	
2	9	179.8	0.69911		91.811	-0.71715	
2	10	476.25			202.49		
2	11	980.74	-2.4224		-582.82	1.6732	
2	12	309.8			-28.63		
2	13	733.3	-2.509		-844.3	2.945	
2	14	1857	-8.653001	0.01088	498.8	-5.148	0.01039
2	15	224.8			-124.32		
2	16	165.3			-131.5		

2	17	2800	-10.72	0.01339	3982	-19.72	0.02783
2	18	13.502			-13.317		
2	19	634.85			-181.93		
2	20	-2026.1	8.1549		-347.5	1.216	
2	21	498.9	-1.487		-359.6	1.238	
2	22	-44.958			55.881		
2	23	-204.51			255.41		
2	24	616.62	-2.1164		-663.45	2.3281	
2	25	-56.69	9.805		215.5	-1.519	
2	26	417.6	0.08726		452.2	-1.997	
2	28	46.06	1.545		70.88	-1.09	
2	30	470.4			-146.1		
2	33	-19.82	0.5941		160.4	-0.5148	
2	34	642.27	-3.8641	0.0055	-197.06	1.8723	-0.0027
2	35	-174.6	1.96		154	-1.303	
2	36	179.7			-113.8		
2	37	967.9	-0.03862		-300.6	-0.09576	
2	38	141.1	-0.3025		-139.5	0.9076	
2	39	388.4			-152.2		
2	41	-339.8	1.297		698.5	-2.159	
2	42	2.406	-0.1882		60.2	0.1565	
2	43	-322.1	-0.20367	0.004517	1182.6	-5	0.0037455
2	45	389.28			-174.41		
2	46	491.23	-1.8285		-734.87	3.3463	
2	47	673.2271	1.9523		92.7	-0.8135	
2	48	249.18			-81.79		
2	49	1171.32	3.92127		90.0134	-0.920017	
2	52	-86.231			-39.373		
2	53	9.389999			57.86		
2	55	-456.08	2.4334		298.55	-1.4153	
2	56	775.56			-65.66		
2	61	324.316			-156.458		
2	84	-44.3408	-0.65212		1753.135	-3.112	
2	85	566.2915	-0.14057		-1213.93	5.14012	

2	87	-92.7302	-0.25088		-1151.296	4.7125	
2	89	1230.781	0.17033	0.0141503	4896.219	-1.86077	-0.0254894
2	90	1625.909	-2.40107		159.8103	1.85317	
2	91	2979.973	4.82369	-0.0272505	724.9113	-4.79411	0.0056279
2	93	-740.2421			232.905		
2	98	2487.632	-3.28182		1804.025	-5.18107	
2	99	-2399.738	-0.27451	0.0329518	658.1962	0.57714	-0.0078001
3	4	139.2	-0.65		-45.33	0.4223	
3	5	3972	-13.16	0.01208	3049	-12.77	0.01435
3	6	1604.3	-2.0299		13.733	-0.11768	
3	7	792	-1.726		332.3	1.158	
3	8	1356	-2.118		2340	-5.043	
3	9	146.2	-1.237	0.004237	-57.53	1.212	-0.003715
3	10	-365.5	1.874		1011	-2.167	
3	11	-274.54	0.91491		622.73	-1.7605	
3	12	170.5	-0.02393		108.3	-0.262	
3	13	-87.08	-0.1859		179	0.05615	
3	14	2036	-8.729	0.008138	-121	-1.901	0.006999
3	15	139.67	0.037692		105.63	-0.60667	
3	16	-71.4	0.7078		16.29	-0.6022	
3	17	1044.7	-1.7112		154.39	1.2458	
3	18	-1553.9	0.1615	0.0082	1810.8	-5.7594	0.0023
3	19	-17.44	0.9437		111.8	-0.5959	
3	20	69.561	1.8881		613.32	-1.595	
3	21	73.04601	-0.21322		-58.972	0.1046	
3	22	133.66	-0.46141		-142.2	0.39662	
3	23	66.214	-0.63629		-78.116	0.69975	
3	24	269	-1.776	0.002645	-305.5	2.12	-0.003239
3	25	595.2	3.309	-0.02844	1885	-10.98	0.01661
3	26	134.1	-0.8156	0.00145	-330	3.066	-0.005376
3	27	936.3391	-4.4141	0.012232	1866.23	-9.28137	0.008299
3	28	3736	-25	0.04593	574.6	-3.702	0.003682
3	29	77.083	-0.3094		-2.1662	0.1196	
3	30	331.6	0.3778		0.4086	-0.4601	

_							
3	31	-148.14	2.2658	-0.00353	-93.18999	1.5036	-0.00141
3	32	-82.28	0.5677		298.9	-0.8374	
3	33	-248.2	1.214		187.5	-0.9020001	
3	35	347.6	-1.43		-345.6	1.545	
3	37	602.1	-7.798	0.01966	1887	-8.707001	0.007813
3	38	808	-5.331	0.006077	-1367	7.883	-0.007754
3	39	-81.68999	1.1229	-0.00105	58.76	-0.6263	0.000668
3	40	123.26	-0.6133		419.04	-0.1703	
3	41	-126.2	0.386		670.8	-1.807	
3	42	134.6	-1.231	0.001488	-2.619	1.094	-0.001557
3	43	-26.852	-0.44215		47.23	0.64039	
3	44	-1172	10.106	-0.01428	-1141.6	8.656199	-0.015439
3	45	380.02	-0.23326		-201.52	-0.068774	
3	46	313.79	-1.1552		-258.12	1.4084	
3	47	1083.63	0.9144	-0.002141	160.13	-1.3578	0.001331
3	48	92.5	1.4186	1.8e-05	-14.89	-0.8126	2e-06
3	49	-103.146	2.6565	-0.002819	45.4296	-0.570848	0.000281
3	52	1412	-3.9917		-660.25	1.4602	
3	53	392.56			-260.22		
3	55	849.08	-6.5044	0.01219	-358.06	3.6831	-0.00782
3	56	-522.32	3.8856	-0.004212	562.72	-2.4316	0.00242
3	61	454.316	-1.21943		-388.19	1.04305	
3	84	277.4415	-0.1843		-223.7499	0.2781	
3	85	825.9189	-4.35541	0.0085572	20.2719	-0.33187	0.0025793
3	87	-1304.107	3.87435	0.0039496	26.3894	0.38631	-0.0027586
3	89	626.9603	-4.30606		2116.398	-2.11062	
3	90	161.7745	-0.56713		785.4488	-3.09114	
3	91	1690.065	-3.38808	0.0202432	-15.3556	-0.15571	-0.0001404
3	93	-630.416			-72.2694		
3	98	1014.686	-1.73087		877.6001	-1.96581	
3	99	4899.846	-3.53433	-0.0358313	-969.6266	3.81305	0.0028389
4	5	3989	-14.09	0.0153	2673	-5.765	-0.000332
4	6	436.21	1.9094		145.54	-0.48799	
4	7	1050.2	-1.9939		24.144	1.6504	
4	8	1375	-1.702		1825	-3.743	
---	----	---------	----------	-------------	---------	----------	-------------
4	9	1001	-1.871	0.000239	-146.6	0.2419	0.0001133
4	10	683.6	-1.02	0.000869	1963	2.656	-0.01355
4	11	-242.5	2.72	-0.003449	1624	-9.409	0.01338
4	12	136.98			377.26		
4	13	-595.1	2.978		375	-1.57	
4	14	2977	-19.16	0.03333	-45.44	5.141	-0.0142
4	15	1250			-316.22		
4	16	-2631	13.56	-0.007036	978.3	-6.481	0.007088
4	17	4000	-16.68	0.02112	3969	8.497001	-0.005945
4	18	135.3	-2.369	0.0039	1698.1	-9.8887	0.0153
4	19	208.1	1.333		170.1	-0.8218	
4	20	1352.5			29.747		
4	21	-46.994	0.30443		113.07	-0.59569	
4	22	213.85	0.19998		-75.01	-0.42684	
4	23	192.52	-0.25363		-38.939	-0.19378	
4	24	-106.2	0.6081		107.8	-0.6785	
4	25	-113.6	19.72		-69.23	-0.7359	
4	26	1358	-9.968	0.02093	1014	-4.702	0.004381
4	27	391.044	0.196357	2.24992e-05	1931.39	-5.15065	4.51638e-07
4	28	2586	-9.5	0.008819	-1494	7.679	-0.01225
4	30	157.9	1.408		181.2	-1.081	
4	31	1856.45	5.9959	-0.01862	1041.33	-5.2068	0.00717
4	32	69	0.4317		448.8	-0.9919	
4	33	277	-0.5955		-156.7	0.1221	
4	35	88.93	0.2236		178.6	-0.7113	
4	37	234.2	-0.2311		-115.9	-0.02925	
4	38	-172.2	0.2257		-13.15	0.001763	
4	39	444.29	0.1947		64.28	-0.5839	
4	40	29.57			153.32		
4	41	2303	-6.346		-736.8	3.332	
4	42	-107.1	0.2564		191.5	-0.5561	
4	43	-26.486	-0.29519		199.48	0.033695	
4	44	-514.79	4.9372		291.65	-1.2039	

4	45	297.73	-0.24204		-248.3	0.25471	
4	46	72.26	-0.1919		763.57	-1.3961	
4	47	1696.96	-0.7064		340.91	-1.008	
4	48	76.73	0.9394	-0.00045	246.08	-0.8198	-0.000137
4	49	-182.325	3.36729	-0.004625	119.767	-0.608934	0.000607
4	52	1000.8	-2.5194		-139.78	0.1146	
4	53	164.05			102.04		
4	55	558.08	0.565	-0.00331	562.34	-3.4373	0.00633
4	56	-307.42	4.1819	-0.007723	1661.26	-8.697001	0.01424
4	61	629.463	-1.39039		-305.273	0.669085	
4	84	930.7075	-4.30401	0.007841	365.3965	-1.20387	-0.0007792
4	85	-313.9384	2.06128		-134.6708	1.38462	
4	87	-935.3928	1.26386	0.0041351	4101.374	-1.19824	-0.0186009
4	89	524.3056	-4.26859		1259.47	-1.91791	
4	90	453.4621	-2.03845		3997.18	-2.994	
4	91	1077.47	-2.43883		-998.0735	4.48792	
4	93	-478.068			15.0501		
4	98	1113.436	-0.428312		-281.4692	1.00738	
4	99	335.1104	2.26653	0.0239277	3792.062	-2.55407	-0.0217293
4	99 6	335.1104 346.31	2.26653 -2.4583	0.0239277 0.0029287	3792.062 -1218.2	-2.55407 9.7928	-0.0217293 -0.016158
4 5 5	99 6 7	335.1104 346.31 -801.9	2.26653 -2.4583 3.824	0.0239277 0.0029287 -0.007514	3792.062 -1218.2 1460	-2.55407 9.7928 -8.673	-0.0217293 -0.016158 0.01641
4 5 5 5	99 6 7 8	335.1104 346.31 -801.9 83.91	2.26653 -2.4583 3.824 -1.262	0.0239277 0.0029287 -0.007514	3792.062 -1218.2 1460 465.4	-2.55407 9.7928 -8.673 -1.841	-0.0217293 -0.016158 0.01641
4 5 5 5 5	99 6 7 8 9	335.1104 346.31 -801.9 83.91 -250	2.26653 -2.4583 3.824 -1.262 2.857	0.0239277 0.0029287 -0.007514 -0.006022	3792.062 -1218.2 1460 465.4 653.3	-2.55407 9.7928 -8.673 -1.841 -1.412	-0.0217293 -0.016158 0.01641 0.000954
4 5 5 5 5 5	99 6 7 8 9 10	335.1104 346.31 -801.9 83.91 -250 -281.4	2.26653 -2.4583 3.824 -1.262 2.857 2.379	0.0239277 0.0029287 -0.007514 -0.006022 -0.006668	3792.062-1218.21460465.4653.31590	-2.55407 9.7928 -8.673 -1.841 -1.412 -24.57	-0.0217293 -0.016158 0.01641 0.000954 0.06212
4 5 5 5 5 5 5	99 6 7 8 9 10 11	335.1104346.31-801.983.91-250-281.4973.8	2.26653 -2.4583 3.824 -1.262 2.857 2.379 -5.633	0.0239277 0.0029287 -0.007514 -0.006022 -0.006668 0.00769	3792.062-1218.21460465.4653.31590310.4	-2.55407 9.7928 -8.673 -1.841 -1.412 -24.57 1.538	-0.0217293 -0.016158 0.01641 0.000954 0.06212 -0.004885
4 5 5 5 5 5 5 5 5	 99 6 7 8 9 10 11 12 	335.1104346.31-801.983.91-250-281.4973.8235.9	2.26653 -2.4583 3.824 -1.262 2.857 2.379 -5.633 -0.5874	0.0239277 0.0029287 -0.007514 -0.006022 -0.006668 0.00769	3792.062-1218.21460465.4653.31590310.4839.6	-2.55407 9.7928 -8.673 -1.841 -1.412 -24.57 1.538 -1.215	-0.0217293 -0.016158 0.01641 0.000954 0.06212 -0.004885
4 5 5 5 5 5 5 5 5 5 5 5	 99 6 7 8 9 10 11 12 13 	335.1104 346.31 -801.9 83.91 -250 -281.4 973.8 235.9 816.7	2.26653 -2.4583 3.824 -1.262 2.857 2.379 -5.633 -0.5874 -5.092	0.0239277 0.0029287 -0.007514 -0.006022 -0.006668 0.00769 0.006065	3792.062-1218.21460465.4653.31590310.4839.6650.9	-2.55407 9.7928 -8.673 -1.841 -1.412 -24.57 1.538 -1.215 -0.7132	-0.0217293 -0.016158 0.01641 0.000954 0.06212 -0.004885 0.000815
4 5 5 5 5 5 5 5 5 5 5 5 5 5	99 6 7 8 9 10 11 12 13 14	335.1104346.31-801.983.91-250-281.4973.8235.9816.7-923.7	2.26653 -2.4583 3.824 -1.262 2.857 2.379 -5.633 -0.5874 -5.092 2.468	0.0239277 0.0029287 -0.007514 -0.006022 -0.006668 0.00769 0.006065	3792.062 -1218.2 1460 465.4 653.3 1590 310.4 839.6 650.9 -75.63	-2.55407 9.7928 -8.673 -1.841 -1.412 -24.57 1.538 -1.215 -0.7132 -0.1511	-0.0217293 -0.016158 0.01641 0.000954 0.06212 -0.004885 0.000815
4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 99 6 7 8 9 10 11 12 13 14 15 	335.1104 346.31 -801.9 83.91 -250 -281.4 973.8 235.9 816.7 -923.7 -355.1	2.26653 -2.4583 3.824 -1.262 2.857 2.379 -5.633 -0.5874 -5.092 2.468 0.58	0.0239277 0.0029287 -0.007514 -0.006022 -0.006668 0.00769 0.006065	3792.062 -1218.2 1460 465.4 653.3 1590 310.4 839.6 650.9 -75.63 -660.2	-2.55407 9.7928 -8.673 -1.841 -1.412 -24.57 1.538 -1.215 -0.7132 -0.1511 1.743	-0.0217293 -0.016158 0.01641 0.000954 0.06212 -0.004885 0.000815
4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 99 6 7 8 9 10 11 12 13 14 15 16 	335.1104 346.31 -801.9 83.91 -250 -281.4 973.8 235.9 816.7 -923.7 -355.1 104.6	2.26653 -2.4583 3.824 -1.262 2.857 2.379 -5.633 -0.5874 -5.092 2.468 0.58 -5.014	0.0239277 0.0029287 -0.007514 -0.006022 -0.006668 0.00769 0.006065 0.006065	3792.062-1218.21460465.4653.31590310.4839.6650.9-75.63-660.21876	-2.55407 9.7928 -8.673 -1.841 -1.412 -24.57 1.538 -1.215 -0.7132 -0.1511 1.743 11.5	-0.0217293 -0.016158 0.01641 0.000954 0.06212 -0.004885 0.000815 0.009
4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 99 6 7 8 9 10 11 12 13 14 15 16 17 	335.1104 346.31 -801.9 83.91 -250 -281.4 973.8 235.9 816.7 -923.7 -355.1 104.6 -1114	2.26653 -2.4583 3.824 -1.262 2.857 2.379 -5.633 -0.5874 -5.092 2.468 0.58 -5.014 5.916	0.0239277 0.0029287 -0.007514 -0.006022 -0.006668 0.00769 0.006065 0.006065 0.008854 -0.007126	3792.062 -1218.2 1460 465.4 653.3 1590 310.4 839.6 650.9 -75.63 -660.2 1876 1325	-2.55407 9.7928 -8.673 -1.841 -1.412 -24.57 1.538 -1.215 -0.7132 -0.1511 1.743 11.5 -6.263	-0.0217293 -0.016158 0.01641 0.000954 0.06212 -0.004885 0.000815 0.000815 0.009 0.007584
4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 99 6 7 8 9 10 11 12 13 14 15 16 17 18 	335.1104 346.31 -801.9 83.91 -250 -281.4 973.8 235.9 816.7 -923.7 -355.1 104.6 -1114 -3061.2	2.26653 -2.4583 3.824 -1.262 2.857 2.379 -5.633 -0.5874 -5.092 2.468 0.58 -5.014 5.916 9.5413	0.0239277 0.0029287 -0.007514 -0.006022 -0.006668 0.00769 0.006065 0.006065 0.008854 -0.007126 0.1842	3792.062-1218.21460465.4653.31590310.4839.6650.9-75.63-660.218761325-643.09	-2.55407 9.7928 -8.673 -1.841 -1.412 -24.57 1.538 -1.215 -0.7132 -0.1511 1.743 11.5 -6.263 2.9346	-0.0217293 -0.016158 0.01641 0.000954 0.06212 -0.004885 0.000815 0.000815 0.009 0.007584 -0.0055
4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 99 6 7 8 9 10 11 12 13 14 15 16 17 18 19 	335.1104346.31-801.983.91-250-281.4973.8235.9816.7-923.7-355.1104.6-1114-3061.2123.5	2.26653 -2.4583 3.824 -1.262 2.857 2.379 -5.633 -0.5874 -5.092 2.468 0.58 -5.014 5.916 9.5413 0.8503	0.0239277 0.0029287 -0.007514 -0.006022 -0.006668 0.00769 0.00769 0.006065 0.008854 -0.007126 0.1842 -0.002478	3792.062 -1218.2 1460 465.4 653.3 1590 310.4 839.6 650.9 -75.63 -660.2 1876 1325 -643.09 -46	-2.55407 9.7928 -8.673 -1.841 -1.412 -24.57 1.538 -1.215 -0.7132 -0.1511 1.743 11.5 -6.263 2.9346 4.415	-0.0217293 -0.016158 0.01641 0.000954 0.06212 -0.004885 0.000815 0.000815 0.009 0.007584 -0.0055 -0.00878

5	21	238.1	-0.7077		2177	-4.363	
5	22	-126	0.1322		2389	-4.509	
5	23	1314.8			963.37		
5	24	925.6	-2.027		3139	-5.964	
5	25	1862	32.07	-0.009397	3664	34.13	0.002987
5	26	741.8	-2.098		1091	-1.274	
5	27	2100			316.6		
5	30	738.4	-1.771		616.5	-0.1457	
5	31	499.8	-2.41		-468.8	2.421	
5	32	838.8			774.7		
5	33	699.7	-1.767		1439	-1.673	
5	34	-148.9	1.034		1255	-2.538	
5	35	190.4	-1.2		-452.3	1.956	
5	36	1117	-2.196		1072	-1.248	
5	37	439.4			959.3		
5	38	848.6			1253		
5	39	1036	-2.995		-366.4	1.129	
5	41	403.8	-0.9346		703.4	-1.383	
5	42	3121	-13.69	0.01446	2601	-1.25	-0.006309
5	43	401.89	-0.43627	-0.002004	-238.36	5	-0.008186501
5	45	-32.643	-0.010434		2985.8	-6.227	
5	46	1201.3	-4.6803		-516.99	2.1888	
5	47	186.24	-3.1349	0.007737	1460.82	-5.962	0.004691
5	48	1627.81	-5.8598	0.005497	-808.4	3.8321	-0.005877
5	49	-150.961	0.527951		868.681	-2.20103	
5	52	-3745	4.5137	0.0636	7712.2	-7.6896	-0.035
5	53	495.28	-2.6496	0.00159	700.05	0.2237	-0.00244
5	56	34.94	1.0075	-0.002547	942.22	-2.3183	0.001188
5	61	1105.94	-1.68763		1343.95	-2.16488	
5	84	292.6468	-1.59145		147.0663	2.08434	
5	85	1026.29	-3.17777		-792.988	3.87681	
5	87	-348.7564	1.92474		1003.498	-2.48421	
5	89	-2448.212	-2.13997	0.0332832	-234.3916	4.01945	-0.0134709
5	90	1178.048	5.33766		1044.876	-3.71273	

5	91	-159.8631	2.41804		662.1286	-3.28127	
5	93	-367.321			34.7132		
5	98	225.0235	-4.3271	0.0030855	448.381	-1.61662	0.000518
5	99	-352.184	-1.58363	0.0090199	1751.43	-1.09998	-0.0148923
6	7	-328.5	1.0823	-0.0022	-524.3	4.6065	-0.004
6	8	-867	-1.258	0.02998	265.5	-2.905	0.002283
6	9	86.439	-0.46505		394.78	-0.36048	
6	10	-392.5	2.256		-158.4	-0.6469	
6	11	299.23	-1.2702		294.76	0.3745	
6	12	220.7	-0.6402		444.7	-0.06819	
6	13	-87.48	-0.5522		475.2	0.1198	
6	14	-495.25	1.0807		-467.95	0.65743	
6	15	-1508.5	4.4917		-278.09	-0.39888	
6	16	-1039	5.603	-0.006551	39.33	-3.354	0.006714
6	17	-2012	13.46	-0.02004	251.2	-1.274	0.002214
6	18	-341.34	-5.8042	0.0141	-230.38	-0.3825	0.0023
6	19	97.97301	-0.28666		615.01	-0.9444399	
6	20	-733.07	2.3351		1075.5	-3.4339	
6	21	-16.521	-0.28137		1831.2	-2.9694	
6	22	-85.926	-0.26371		1904.4	-2.7981	
6	23	-139.58			893.38		
6	24	-40.13	-0.06709		2150	-2.813	
6	25	3000	-11.81		2955	-6.383	
6	26	374.2	-2.212	0.002688	1079	-1.766	0.001238
6	28	-332.4	4.419	-0.007797	2645	-9.172001	0.01177
6	29	75.71	-0.3753		1334	-1.863	
6	30	-369.8	2.203		662	-1.903	
6	31	33.19	-0.2074		-3.428	0.483	
6	32	180.5	0.3161		1965	-3.858	
6	33	28.95	-0.3303		648.8	0.8050001	
6	35	-185.9	0.03906		145	-0.6343	
6	36	164			135.9		
6	37	-43.88			2421		
6	38	-99.57999			1235		

	20	101.0	1.070		2(0.7	1 722	
6	39	101.2	-1.078		-269.7	1.732	
6	41	308.7	-1.175		678.1	-1.335	
6	42	68.972	-0.41997		2540.7	-3.5236	
6	43	-308.7	1.7454	-0.00335	952.24	-3.3287	0.0053598
6	45	-242.6	0.29562	-9.0055e-05	4519.3	-19.456	0.025981
6	47	-119.08	0.9938		-52.69	-0.7465	
6	48	210.91	-2.4953	0.0048	-132.93	0.6584	-0.00208
6	49	197.395	-0.985958		-195.127	1.17652	
6	52	673.72	-2.3567		2676.7	-5.4899	
6	53	137.95	-1.4112	0.00172	524.52	0.4314	-0.00166
6	56	166.42	0.994	-0.003346	1683.48	-8.003099	0.01159
6	61	34.7884			641.041		
6	84	-704.2285	-1.26236	0.0149627	152.7192	2.17856	-0.0098745
6	85	-348.9494	1.41462		2127.895	-4.14737	
6	87	-1230.497	3.91001		1142.897	-2.92427	
6	89	-671.2604	1.58636	-0.0048637	985.4429	-2.42145	-0.0062036
6	90	53.7776	-0.9791		94.629	0.30192	
6	91	1741.061	-4.73718		-558.6751	1.11398	
6	93	1216.71	-5.44835		-386.355	3.77874	
6	98	1037.56	-5.46099		1421.557	0.34143	
7	8	-2686	19.44	-0.02702	148.4	-2.757	0.002329
7	9	190.5	-3.669	0.008838	770.6	-0.5873	-0.003252
7	10	-1545	6.512		512.6	-2.145	
7	11	-433.288	3.0862	-0.002012	311.974	-1.3412	0.001074
7	12	140.71			53.28		
7	13	177.665	-3.72906	0.010763	433.207	-0.605276	-0.000914
7	14	798.5	-5.869	0.01032	-980.6	3.671	-0.005908
7	15	1524	-2.531		-851	1.034	
7	16	274.5	-0.5905	0.002205	-446	-0.7738	0.002634
7	17	158.4	0.5246		-131	-0.7957	
7	18	-3178.5	9.8213	-0.0034	-393.18	0.5546	-0.0029
7	19	-634.1	3.59		509.6	-1.916	
7	20	-1795.2	12.708	-0.015455	624.97	-4.6878	0.0052371
7	21	86.68999	1.592		313.3	-0.5041	

7	22	134.1	0.9495		748.2	-1.319	
7	24	1008	-1.795		1282	-2.815	
7	25	-1895	9.303		591.6	-3.08	
7	26	-595.7	2.634		882.6	-2.606	
7	30	-123.8	3.847		501.4	-1.939	
7	31	372.5	-0.9091		-368.8	0.7775	
7	33	822.2			-17.99		
7	35	117	-0.611		-370.8	0.1043	
7	36	419.8	2.436		276.9	-0.9948	
7	39	-494.2	2.826		-121.8	-0.6029	
7	41	676	-0.9909		808.4	-2.929	
7	42	274.37	-0.5861	-0.00030011	1632.9	-2.8719	0.003455
7	43	-75.7467	-0.98514	0.0033318	717.485	-1.48515	-7.437899e-14
7	44	-804.28	2.828		594.45	-2.2535	
7	45	509.3	-0.29		-523.8	3.158	
7	46	659.22	-1.8841		-588.21	0.9707	
7	47	934.67	-4.4232	0.006054	-649.31	1.3487	-0.001586
7	48	64.43999	-0.0094		-439.58	0.3142	
7	49	-1119.8	7.95909	-0.008555	-128.903	-0.468519	-0.000916
7	53	499.44	-6.6553	0.01656	952.57	-0.8437	-0.0048
7	56	-302.93	0.5975		652.86	-1.8013	
7	61	1038.3			-270.53		
7	84	659.2109	-0.59252	0.0451602	151.31	-3.00895	0.0019814
7	85	2770.851	-2.00944		1996.724	-5.47448	
7	89	2707.161	-2.51124	-0.0022558	-399.1902	0.16195	-0.0067585
7	90	-1616.174	5.32305		275.7479	-1.97057	
7	91	318.2128	-1.42376		385.0068	-2.49001	
7	93	4878.28	-6.38758		-444.615	-0.776483	
7	98	206.2641	-2.57259	0.0032526	-371.2031	0.99046	-0.000807
8	9	-145.2	-0.738		-666.8	1.918	
8	10	5.604			-410.21		
8	11	-212.9			-224.4		
8	13	-329.3			-80.58		
8	17	542	-6.792	0.01655	-131.1	-0.9399	0.000469

8	18	-4080.9	12.859	-0.0101	-41.594	-3.5887	0.004
8	20	401.88			281.08		
8	24	2356	-3.347		2157	-3.718	
8	25	555.5			1554		
8	31	-309			191.7		
8	42	391.2	-0.8799		3630	-6.23	
8	52	4911.4	9.8501		2332.5	-4.0832	
9	10	197.6			-93.07999		
9	11	-16.486	-0.27924		33.415	0.21913	
9	12	-83.57			101.3		
9	13	3645	-26.91	0.04757	695.8	-0.9619	-0.002462
9	15	-47.97			119.5		
9	16	-389.6	0.1944	0.001863	2831	-13.01	0.01558
9	17	1732	-9.896001	0.0141	1460	-13.73	0.02917
9	18	-1908.7	4.1057		307.16	-0.8161	
9	19	-191	0.6835		79.08	-0.3808	
9	20	-109.51	0.96888		178.22	-0.91676	
9	21	-99.97601			55.27		
9	22	-18.695	-0.52606		-218.94	1.0749	
9	23	810.17	-3.2209	0.0021443	-48.641	-0.79498	0.0037129
9	24	-208.71	0.8293	-0.0014	155.73	1.4412	-0.0025
9	25	1297	-1.365	-0.02253	1375	2.499	0.006309
9	26	-35.89	-0.1009		-32.6	0.0847	
9	27	-169.6	2.986		-328.1	0.3045	
9	28	419.9	0.09772		315.3	-0.5617	
9	29	2.714			64.41		
9	30	-986	3.847		277	-1.357	
9	31	478.5	-1.148		-72.58	0.4909	
9	32	346.6	-0.7017		-182	0.7905	
9	33	-717.76	2.9431		319.69	-1.4362	
9	34	-62.43	-0.8977		-481.2	9.604	
9	35	-76.87	0.5372		38.06	-0.5189	
9	37	64.01	-1.077		-153.4	3.143	
9	39	80.79201	-3.702	0.011586	1955.5	-10	0.011386

9	41	64.21			-148.3		
9	42	437.739	-2.7983	0.00364	364.423	2.1022	-0.004653
9	43	-62.857	0.2898		80.038	-0.10124	
9	45	-497.98	0.79715	0.00029817	945.14	-3.8168	0.0045351
9	47	502.1	0.3401		141.01	-0.9829	
9	48	37.37			-116.4		
9	49	410.655	-1.1056		-201.105	0.7123	
9	52	-153.7	0.242		2311.5	-6.6054	
9	84	173.4451	-5.52695	0.0160979	958.3726	-4.73012	0.0047161
9	85	824.1235	-2.88368	0.0041569	670.0023	-5.05233	0.0074865
9	87	99.5504	0.45575		-1504.191	4.63058	
9	89	147.2528	-2.74448		177.8232	-2.24998	
9	90	331.1518	-1.11421		-30.955	-0.71244	
9	91	571.6566	-4.43975		-1449.573	4.44554	
9	98	519.4855	-5.4673	0.0068391	3306.365	0.15196	-0.0082641
10	11	-208.4			389.7		
10	12	-160.7			226.6		
10	13	209	-0.6241		235.7	0.1314	
10	20	435.64			-188		
10	21	985.7	-2.986		-888.3	3.426	
10	22	-41.537			354.71		
10	29	-373.7			-397.5		
10	30	-742.7			-214.8		
10	32	114.3			293.5		
10	34	236.6			-93.066		
10	37	-43.56			945.6		
10	39	2371			-225.3		
10	42	716.7	-1.516		1161	-0.5724	
11	12	342.4			-251.7		
11	13	195.3	-9.75	0.04051	824.2	-6.009	0.008271
11	15	3168	-24.07	0.04303	3329	-13.78	0.01193
11	16	152.8	-1.099		160.8	0.8719	
11	17	-1355	7.683001	-0.01012	3499	-22.96	0.03543
11	18	87.6	1.4109		45.309	-1.4281	

11	19	-193.23	0.43006		139.55	-0.43665	
11	20	62.031	1.0567		59.594	-0.71198	
11	21	-49.339			48.852		
11	22	168.17	-1.0536		-461.35	1.8569	
11	24	-5.71	-0.2724		223.4	0.1237	
11	25	3351	-14.54		-788.6	1.693	
11	26	9.222	-0.3292		-50.36	0.02448	
11	28	861.1	-1.693		280	-0.9491	
11	30	80.68999			-136.3		
11	31	-72.07			69.25		
11	32	82.96			11.62		
11	33	-386.3	1.892		248.3	-1.198	
11	35	296.8	-1.264		-337.1	0.8843	
11	36	-92.12	0.9031		503.5	-1.792	
11	37	-201.4	0.5487		-320	1.052	
11	39	96.77	0.4827		16.69	-0.5966	
11	41	-338.8	1.837		3.924	-1.174	
11	42	374.1	-1.976	0.001682	460.8	-0.06206	4.1e-05
11	43	-28.231			36.948		
11 11	43 44	-28.231 745.4			36.948 -447.04		
11 11 11	43 44 45	-28.231 745.4 -579.11	0.9455		36.948 -447.04 966.35	-2.1861	
11 11 11 11	43 44 45 47	-28.231 745.4 -579.11 758.13	0.9455		36.948 -447.04 966.35 32.71	-2.1861 -0.8641	
11 11 11 11	43 44 45 47 48	-28.231 745.4 -579.11 758.13 611.47	0.9455 -0.2593 -2.4783		36.948 -447.04 966.35 32.71 -1031.78	-2.1861 -0.8641 3.9906	
11 11 11 11 11	43 44 45 47 48 49	-28.231 745.4 -579.11 758.13 611.47 2973.58	0.9455 -0.2593 -2.4783 -5.45555		36.948 -447.04 966.35 32.71 -1031.78 81.6384	-2.1861 -0.8641 3.9906 -1.3111	
11 11 11 11 11 11	43 44 45 47 48 49 56	-28.231 745.4 -579.11 758.13 611.47 2973.58 -1336.2	0.9455 -0.2593 -2.4783 -5.45555 6.7742	-0.0082	36.948-447.04966.3532.71-1031.7881.63841915.2	-2.1861 -0.8641 3.9906 -1.3111 -9.9994	0.0126
11 11 11 11 11 11 11	 43 44 45 47 48 49 56 61 	-28.231 745.4 -579.11 758.13 611.47 2973.58 -1336.2 -1366.59	0.9455 -0.2593 -2.4783 -5.45555 6.7742 5.90673	-0.0082 -0.007325	36.948-447.04966.3532.71-1031.7881.63841915.22622.04	-2.1861 -0.8641 3.9906 -1.3111 -9.9994 -11.7013	0.0126
11 11 11 11 11 11 11 12	 43 44 45 47 48 49 56 61 18 	-28.231 745.4 -579.11 758.13 611.47 2973.58 -1336.2 -1366.59 -9.2978	0.9455 -0.2593 -2.4783 -5.45555 6.7742 5.90673	-0.0082 -0.007325	36.948-447.04966.3532.71-1031.7881.63841915.22622.04-123.73	-2.1861 -0.8641 3.9906 -1.3111 -9.9994 -11.7013	0.0126
11 11 11 11 11 11 11 11 12 12	 43 44 45 47 48 49 56 61 18 19 	-28.231 745.4 -579.11 758.13 611.47 2973.58 -1336.2 -1366.59 -9.2978 92.21	0.9455 -0.2593 -2.4783 -5.45555 6.7742 5.90673	-0.0082 -0.007325	36.948-447.04966.3532.71-1031.7881.63841915.22622.04-123.73-33.64	-2.1861 -0.8641 3.9906 -1.3111 -9.9994 -11.7013	0.0126
11 11 11 11 11 11 11 12 12 12	 43 44 45 47 48 49 56 61 18 19 24 	-28.231 745.4 -579.11 758.13 611.47 2973.58 -1336.2 -1366.59 -9.2978 92.21 -142.2	0.9455 -0.2593 -2.4783 -5.45555 6.7742 5.90673 0.572	-0.0082 -0.007325	36.948 -447.04 966.35 32.71 -1031.78 81.6384 1915.2 2622.04 -123.73 -33.64 465.8	-2.1861 -0.8641 3.9906 -1.3111 -9.9994 -11.7013 -0.7730001	0.0126
$ \begin{array}{c} 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 12\\ 12\\ 12\\$	 43 44 45 47 48 49 56 61 18 19 24 25 	-28.231 745.4 -579.11 758.13 611.47 2973.58 -1336.2 -1366.59 -9.2978 92.21 -142.2 1894	0.9455 -0.2593 -2.4783 -5.45555 6.7742 5.90673 0.572	-0.0082 -0.007325	36.948-447.04966.3532.71-1031.7881.63841915.22622.04-123.73-33.64465.818.79	-2.1861 -0.8641 3.9906 -1.3111 -9.9994 -11.7013 -0.7730001	0.0126
$ \begin{array}{c} 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 12\\ 12\\ 12\\$	 43 44 45 47 48 49 56 61 18 19 24 25 29 	-28.231 745.4 -579.11 758.13 611.47 2973.58 -1336.2 -1366.59 -9.2978 92.21 -142.2 1894 161.8	0.9455 -0.2593 -2.4783 -5.45555 6.7742 5.90673 0.572	-0.0082 -0.007325	36.948-447.04966.3532.71-1031.7881.63841915.22622.04-123.73-33.64465.818.7913.97	-2.1861 -0.8641 3.9906 -1.3111 -9.9994 -11.7013 -0.7730001	0.0126
$ \begin{array}{c} 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 12\\ 12\\ 12\\$	 43 44 45 47 48 49 56 61 18 19 24 25 29 37 	-28.231 745.4 -579.11 758.13 611.47 2973.58 -1336.2 -1366.59 -9.2978 92.21 -142.2 1894 161.8 745.4	0.9455 -0.2593 -2.4783 -5.45555 6.7742 5.90673 0.572 0.572 -0.622	-0.0082 -0.007325	36.948-447.04966.3532.71-1031.7881.63841915.22622.04-123.73-33.64465.818.7913.97-479.1	-2.1861 -0.8641 3.9906 -1.3111 -9.9994 -11.7013 -0.7730001 0.8031	0.0126
$ \begin{array}{c} 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 12\\ 12\\ 12\\$	 43 44 45 47 48 49 56 61 18 19 24 25 29 37 39 	-28.231 745.4 -579.11 758.13 611.47 2973.58 -1336.2 -1366.59 -9.2978 92.21 -142.2 1894 161.8 745.4 580.3	0.9455 -0.2593 -2.4783 -5.45555 6.7742 5.90673 0.572 0.572 -0.622	-0.0082 -0.007325	36.948-447.04966.3532.71-1031.7881.63841915.22622.04-123.73-33.64465.818.7913.97-479.1-285.5	-2.1861 -0.8641 3.9906 -1.3111 -9.9994 -11.7013 -0.7730001 0.8031	0.0126

12 44	4 489.15			-441.01		
12 43	5 260.64	-1.2868		-597.09	2.5295	
13 13	8 -199.94	-6.9867	0.0193	-430.49	-0.728	0.004
13 19	9 1987	-8.022	0.01065	-588.8	1.481	-0.002636
13 20	0 521.48			-310.82		
13 2	1 -208.6	-0.2571	0.002418	872	-2.939	0.001269
13 22	2 492.9	-6.475	0.01806	215.3	-2.482	0.002745
13 23	3 -607.35	2.3467		97.12801	-0.64386	
13 24	4 -425.4	0.9514		641.2	-1.486	
13 23	5 974	-1.368	-0.01983	381.1	-5.682	0.01675
13 2	6 -305.1	0.7063		319.6	-1.368	
13 23	8 35.02	1.702		198.5	-1.434	
13 2	9 102.6			-210.1		
13 3	0 513.7			-299.6		
13 32	2 -104.8			464		
13 34	4 -137.87			169.27		
13 3'	7 -422.7	2.23		-326.4	0.24	
13 3	8 155.7	-1.578		-528.8	2.822	
13 42	2 397	-1.379		-214.1	1.134	
13 43	3 -124.33	-0.29398		561.14	-0.7058	
13 44	4 -454.92			310.75		
13 43	5 -515.93	0.3835		1368	-2.6254	
13 43	8 1321.52			-361.25		
13 49	9 3858.07	-9.278001	7e-06	-224.782	-0.410609	-4e-06
13 5	6 -209.209	-0.470423	0.006918	1163.91	-7.1332	0.00839
13 93	3 -584.728			178.501		
14 1:	5 1517	-12.72	0.02557	-1074	9	-0.01795
14 1	6 -472.4	-0.2051	0.01058	836.6	-5.208	0.004801
14 19	9 -412.38	-0.49092	0.0062553	2412.2	-10.495	0.0097411
14 24	4 -65.76	-0.3148		333.9	-0.1415	
14 2:	5 2553	-11.9		3873	-9.315001	
14 2	9 -205.1			244.4		
14 3	9 162.14			-112.76		
14 42	2 124.3	-1.147		621.9	0.258	

14	43	-143.07			182.58		
14	47	413.11			-293.93		
14	56	190.882			14.9127		
15	16	402.6	-1.614		-639.9	2.561	
15	19	242.2			-131.9		
15	24	-3.28			43.83		
15	25	3888	-16.26		-868.8	2.948	
15	38	-330.2			904.1		
15	39	-88.49			-230.55		
15	42	-131.9	-0.007369		1248	-2.79	
15	43	-186.98			295.07		
15	47	444.67	0.8351		-196.23	-0.0511	
15	56	1178.79	-9.99911	0.020758	1667.89	-7.58704	0.008006
16	22	-473	0.8883		406.8	-1.524	
16	24	215.9	-1.399		-825.9	3.15	
16	25	1622	-4.812	-0.01856	-94.87	-9.612	0.03722
16	38	-7.532001	-0.8077		35.16	0.09722999	
16	39	965			-311.9		
16	42	324.15	-1.4264		-198.32	1.452	
16	45	-420.24	0.26315		-1035.8	3.078	
16	47	-729.5	6.2811		-66.61	-0.696	
16	48	2111.24			-235.61		
16	56	2662.02	-13.9855	0.017738	-1780.41	5.71975	-0.00165
17	18	74.285	14.613	-0.0283	-558.39	1.2436	-0.0007
17	19	393.9	-4.703	0.009003	2987	-9.336	0.007147
17	21	582.1	-2.33	0.000377	-338	3.372	-0.003676
17	24	3986	-16.15	0.01635	2626	-10.59	0.01466
17	25	3709.2			1583.8		
17	27	3770	1.686		1.655	-1.164	
17	31	1268	-3.042		-818.8	3.229	
17	39	-391.9			650.7		
17	42	1371	-3.323		1091	-0.2657	
17	47	1271.42	-6.4373	0.006451	-2476.18	10.9894	-0.009617
18	19	746.12	-2.1937		-2307.8	5.8186	

18 20	-451.49	-0.4031		-2617.7	4.614	
18 21	-67.106	-0.4933		-1592.8	2.8397	
18 22	-978.25	2.1884		946.79	-4.9886	
18 24	229.66	-1.5005		-2111	6.3625	
18 33	-713.65	1.9191		-763.19	0.603	
18 38	197.95	-0.3316	-0.0004	-1052.5	1.6854	0.0027
18 42	268.23	-1.4137		-5894.1	13.088	
18 43	-250.25	0.3811		-1269.7	2.6335	
18 45	-516.31	1.6943		-1646.8	2.7237	
18 47	489.93	-0.5591	-0.00102	-2250.64	5.4638	-0.00015
18 52	-674	1.8854		4998.6	1.1962	
19 21	176.5	-1.237		-368.7	1.992	
19 22	-78.96			14.76		
19 24	65.82	-0.6265		357.6	0.7676	
19 25	1283	3.361	-0.02978	2331	-9.238001	0.01158
19 26	117.53	-0.44692		-128.21	0.50349	
19 28	468.8			434.8		
19 29	-18.8	-0.3652		41.54	0.646	
19 31	506.6	-1.263		11.72	0.7004	
19 33	-211.2			362.6		
19 34	11.65	-1.229		-1428	7.698	
19 36	267.1			-144.7		
19 37	61.96	-0.4161		-19.1	1.195	
19 39	57.08	-0.7417		-160.48	1.0644	
19 41	-75.67			26.8		
19 42	256.2	-1.526	0.001118	1336	-3.395	0.004586
19 43	-28.653	-0.48152		56.754	0.89781	
19 45	237.42	-1.2928		-642.44	2.8574	
19 49	297.646	-0.66206		-116.794	0.54754	
19 56	-50.8443	-0.025287		180.813	-0.0641231	
20 21	27.618			702.4		
20 22	94.606			425.97		
20 24	701.95	-1.7576		213.34	2.1861	
20 25	-1398.7			1000		

					Ĩ.		
20	32	146.06			780.71		
20	33	-18.328			753.21		
20	37	-447.95	1.5141		283.64	1.5491	
20	39	-421.21			93.773		
20	41	-271.176	1.4107		218.974	-0.8061	
20	42	1060	-2.822		578.3	1.493	
20	43	720.45	-1.5187		-140.77	0.309	
20	44	-65.631			-14.016		
20	45	508.72	-1.4005		-386.93	2.3961	
20	47	-369.31			-0.29		
20	48	-400.86			-244.69		
21	22	70.79			-66.21		
21	23	592.4	-4.2459	0.0069046	603.29	-3.977	0.0062484
21	24	16.34	0.07287		95.05	-0.2348	
21	25	3985	-15.7		15.62	-1.099	
21	26	24.44	-0.4713		142.1	-0.153	
21	27	1248	-2.04		1295	-4.224	
21	28	295.9			-137.7		
21	30	666			-390.6		
21	33	128.8	-0.2077		-92.68	-0.01307	
21	37	280			-207.3		
21	39	-70.45			-59.29		
21	42	-31.42	-0.248		370.6	-0.322	
21	43	-325.77	2.0412		70.075	-1.149	
21	44	530.3			17.052		
21	45	207.12	-0.43964		-175.29	0.32745	
21	49	955.8281	-1.00012		-151.036	-0.458824	
21	56	842.486	-1.8434		-313.202	0.4139	
22	23	187.43	-3.446	0.0067179	1468.9	-5	0.003701
22	24	46.29	-0.2115		46.03	0.05388	
22	25	3353	-14.2		368.6	-1.748	
22	26	822.4	-2.05		-423.1	0.8154	
22	30	-174.6			106.3		
22	32	132.7	-0.1183		-23.81	-0.09203999	

22	33	-139.6	1.022		96.4	-0.776	
22	35	-178.3	0.7426		-39.45	-0.8556	
22	37	160.7			-135.9		
22	39	-147.64			75.45		
22	42	10.7	-0.2702		224.4	-0.1399	
22	43	108.83	-0.86059		-358.57	1.3307	
22	45	7.3664	0.40456		-1.6641	-0.37825	
22	48	102.8	-0.0879		-446.86	0.4276	
22	49	-1017.26	3.0909		894.509	-2.93164	
22	56	262.138			-229.081		
23	24	-323.17	1.1973		350.92	-1.3456	
23	33	599.82			-364.76		
23	37	325.81			-199.87		
23	42	289.08	-0.5852		-69.60101	-0.4274	
23	56	401.698			157.634		
24	25	-131.8	9.802	-0.03582	972.1	-6.82	0.009219
24	26	441.5	-0.5353		-65.74	0.0967	
24	27	3286			167.5		
24	28	9.362	1.033		52.01	-0.9095	
24	30	750.2	0.8165		100.5	-0.8269	
24	32	49.51	0.6829		186.4	-0.7294	
24	33	203.2	-1.328		-1360	7.402	
24	35	325.2	0.4405		-60.89	-0.6321	
24	36	902			-194.9		
24	37	220.6	0.3756		-134.4	-0.3226	
24	38	197.4	-0.4858		-98.98	-0.02128	
24	39	512.7	0.02702		-168.4	-0.123	
24	42	-37.183	-0.047827		60.78	0.024262	
24	43	190.45	0.012716		-131.87	-0.014204	
24	45	22.779	0.042145		14.947	-0.11086	
24	49	516.966	0.19471	0.001855	-198.677	0.435084	-0.001271
24	52	1366.3	-3.8385		-580.46	1.1653	
24	56	120.59	1.2816		261.15	-0.8815	
25	26	3986	25		3638	-14.25	

25 27	-184.5	2.2806	2926.02	-1.8141	
25 33	-69.88		981.5		
25 39	-12.71	-0.4758	472.49	-0.5503	
25 42	207.16	-1.2206	223.782	-0.5826	
25 43	96.855	-1.2993	2991.9	-9.3959	
25 45	-27.161	0.611	4235.3	-16.954	
25 49	593.203	-0.7904	88.32201	0.1605	
26 27	85.6		986		
26 28	68.87	3.217	655.7	-2.203	
26 32	643.8	-0.7376	17.81	-0.2245	
26 33	9.258	-0.1079	121.4	0.05397	
26 34	-70.24		132.2		
26 37	159		108.4		
26 39	606.9		-340.9		
26 42	119.3	-0.5691	522.9	-0.2485	
26 43	53.75		-47.089		
26 52	324.62	-1.1828	11.442	0.7866	
		L			
27 33	505.4		81.44501		
27 33 27 42	505.4 2004	-4.5	81.44501 2600	-4.8	
27 33 27 42 28 32	505.4 2004 212.4	-4.5 -0.3692	81.44501 2600 200.6	-4.8 -0.228	
27 33 27 42 28 32 28 37	505.4 2004 212.4 -93.31	-4.5 -0.3692 -0.1286	81.44501 2600 200.6 319.4	-4.8 -0.228 0.03419	
27 33 27 42 28 32 28 37 28 42	505.4 2004 212.4 -93.31 29.45	-4.5 -0.3692 -0.1286 -0.9194	81.44501 2600 200.6 319.4 92.4	-4.8 -0.228 0.03419 1.191	
27 33 27 42 28 32 28 37 28 42 28 43	505.4 2004 212.4 -93.31 29.45 166.56	-4.5 -0.3692 -0.1286 -0.9194 -1.0407	81.44501 2600 200.6 319.4 92.4 1.0902	-4.8 -0.228 0.03419 1.191 1.5927	
27 33 27 42 28 32 28 37 28 42 28 43 28 43	505.4 2004 212.4 -93.31 29.45 166.56 89.744	-4.5 -0.3692 -0.1286 -0.9194 -1.0407 -1.0122	81.44501 2600 200.6 319.4 92.4 1.0902 40.987	-4.8 -0.228 0.03419 1.191 1.5927 1.1526	
27 33 27 42 28 32 28 37 28 42 28 43 28 45 29 35	505.4 2004 212.4 -93.31 29.45 166.56 89.744 467.1	-4.5 -0.3692 -0.1286 -0.9194 -1.0407 -1.0122	81.44501 2600 200.6 319.4 92.4 1.0902 40.987 -360	-4.8 -0.228 0.03419 1.191 1.5927 1.1526	
27 33 27 42 28 32 28 37 28 42 28 43 28 45 29 35 29 39	505.4 2004 212.4 -93.31 29.45 166.56 89.744 467.1 356.6	-4.5 -0.3692 -0.1286 -0.9194 -1.0407 -1.0122	81.44501 2600 200.6 319.4 92.4 1.0902 40.987 -360 -247.6	-4.8 -0.228 0.03419 1.191 1.5927 1.1526	
27 33 27 42 28 32 28 37 28 42 28 43 28 45 29 35 29 39 29 42	505.4 2004 212.4 -93.31 29.45 166.56 89.744 467.1 356.6 -7.465	-4.5 -0.3692 -0.1286 -0.9194 -1.0407 -1.0122 -0.4151	81.44501 2600 200.6 319.4 92.4 1.0902 40.987 -360 -247.6 439.73	-4.8 -0.228 0.03419 1.191 1.5927 1.1526 -0.2619	
27 33 27 42 28 32 28 37 28 42 28 43 28 45 29 35 29 39 29 42 30 37	505.4 2004 212.4 -93.31 29.45 166.56 89.744 467.1 356.6 -7.465 -277.6	-4.5 -0.3692 -0.1286 -0.9194 -1.0407 -1.0122 -0.4151	81.44501 2600 200.6 319.4 92.4 1.0902 40.987 -360 -247.6 439.73 1168	-4.8 -0.228 0.03419 1.191 1.5927 1.1526 -0.2619	
27 33 27 42 28 32 28 37 28 42 28 43 28 45 29 35 29 35 29 39 29 42 30 37 30 42	505.4 2004 212.4 -93.31 29.45 166.56 89.744 467.1 356.6 -7.465 -277.6 96.59	-4.5 -0.3692 -0.1286 -0.9194 -1.0407 -1.0122 -0.4151 -0.7691	81.44501 2600 200.6 319.4 92.4 1.0902 40.987 -360 -247.6 439.73 1168 846.7	-4.8 -0.228 0.03419 1.191 1.5927 1.1526 -0.2619 0.2545	
27 33 27 42 28 32 28 37 28 42 28 43 28 45 29 35 29 35 29 39 29 42 30 37 30 42 30 44	505.4 2004 212.4 -93.31 29.45 166.56 89.744 467.1 356.6 -7.465 -277.6 96.59 778.78	-4.5 -0.3692 -0.1286 -0.9194 -1.0407 -1.0122 -0.4151 -0.7691	81.44501 2600 200.6 319.4 92.4 1.0902 40.987 -360 -247.6 439.73 1168 846.7 -384.29	-4.8 -0.228 0.03419 1.191 1.5927 1.1526 -0.2619 0.2545	
27 33 27 42 28 32 28 37 28 42 28 43 28 45 29 35 29 39 29 42 30 37 30 42 30 44 31 35	505.4 2004 212.4 -93.31 29.45 166.56 89.744 467.1 356.6 -7.465 -277.6 96.59 778.78 -228.4	-4.5 -0.3692 -0.1286 -0.9194 -1.0407 -1.0122 -0.4151 -0.7691	81.44501 2600 200.6 319.4 92.4 1.0902 40.987 -360 -247.6 439.73 1168 846.7 -384.29 -47.81	-4.8 -0.228 0.03419 1.191 1.5927 1.1526 -0.2619 0.2545	
27 33 27 42 28 32 28 37 28 42 28 43 28 45 29 35 29 39 29 42 30 37 30 42 30 44 31 35 31 39	505.4 2004 212.4 -93.31 29.45 166.56 89.744 467.1 356.6 -7.465 -277.6 96.59 778.78 -228.4 373.8	-4.5 -0.3692 -0.1286 -0.9194 -1.0407 -1.0122 -0.4151 -0.7691	81.44501 2600 200.6 319.4 92.4 1.0902 40.987 -360 -247.6 439.73 1168 846.7 -384.29 -47.81 -231.6	-4.8 -0.228 0.03419 1.191 1.5927 1.1526 -0.2619 0.2545	
27 33 27 42 28 32 28 32 28 37 28 42 28 43 28 43 28 45 29 35 29 39 29 42 30 37 30 42 31 35 31 39 31 47	505.4 2004 212.4 -93.31 29.45 166.56 89.744 467.1 356.6 -7.465 -277.6 96.59 778.78 -228.4 373.8 -210.34	-4.5 -0.3692 -0.1286 -0.9194 -1.0407 -1.0122 -0.4151 -0.7691 -0.7691 0.9103	81.44501 2600 200.6 319.4 92.4 1.0902 40.987 -360 -247.6 439.73 1168 846.7 -384.29 -47.81 -231.6 106.79	-4.8 -0.228 0.03419 1.191 1.5927 1.1526 -0.2619 0.2545 0.2545 -0.9536999	

32	45	-47.772	-0.009201		92.429	0.17437	
33	35	-83.7	0.1436		-116.7	-0.06775	
33	41	-378.1	2.56		13.78	-0.936	
33	42	-122.5	0.0913		476.9	-0.61	
33	43	-186.4			265.42		
33	56	2459.01			-271.226		
34	39	1025			-416.5		
35	39	-133.35	0.1022		221.74	-0.5021	
35	45	-322.46	-0.020828		67.069	0.23965	
35	49	-3.44708			-72.16901		
36	37	-74.88			1004		
36	39	-110.34			97.36		
37	39	967.74			-306.22		
37	41	-211.1			516.5		
37	42	-24.82	-0.5324		81.56	0.7293	
37	43	321.62	-4.9963	0.013871	713.9	-2.7759	0.00091722
37	45	185.82			-139		
38	39	190.06			-229.97		
38	40	-57.38			110.4		
38	42	112.7	-0.4103		21.04	-0.1288	
38	43	-22.572			-7.56		
39	42	141.2	-0.8783		666.5	-0.1555	
39	43	53.871	-0.67747		-54.26	1.0612	
39	44	-310.13			-367.48		
39	49	-18.3768	-0.450261		-2.27584	0.601128	
40	42	165.6			-109		
41	42	683.3	6.321		865	-2.89	
42	43	242.49	-0.038323		20.834	-0.34718	
42	45	183.79	-0.15182		-61.922	-0.059442	
42	46	298.46	-0.6823		499.59	-0.8158	
42	47	2187.67	-1.057		165.66	-0.9151	
42	48	499.19	0.5131		148.66	-1.0328	
42	49	-49.6851	3.86633		159.179	-1.11479	
42	52	313.43	0.0911		-30.564	-0.2455	

42	55	373.49	0.0647		75.45	-0.6572	
42	56	-581.16	4.1194		660.47	-2.0132	
42	61	509.274	-0.533745		-108.172	-0.132539	
42	84	-883.9302	4.0287		360.0808	-1.37211	
42	85	493.7747	-4.10779	0.0119213	986.9591	-2.85003	0.0018563
42	87	-501.6695	1.6261		-935.6061	4.67403	
42	89	-381.9636	-3.00577	0.0076136	2358.513	-1.30922	0.0137839
42	90	-1078.495	3.65154		1039.753	-3.51543	
42	91	1654.642	-4.24837		-171.2349	0.62135	
42	93	246.348	-1.9006		1120.89	-3.1028	
42	98	449.5142	2.1727	0.0360498	4258.272	0.34026	-0.029654
43	45	-523.96	0.4945		1414	-2.8776	
43	56	19.221	0.4413		117.208	-0.3946	
43	84	-617.0431	2.40181		-323.6833	-0.13058	
43	85	826.0889	-0.93908		-450.7675	0.94786	
43	89	580.1045	-2.24427	-0.0080098	4927.307	-0.63511	-0.0351738
43	90	277.9974	0.25973		122.9861	-1.96464	
43	91	-312.4461	1.126		186.7351	-0.9786	
45	56	184.792			-76.1382		
46	52	-1423.7	3.9162		1738.5	-3.9729	
47	48	-91.65	-0.3411		117.57	0.7114	
47	49	-188.913			308.235		
53	56	912.2161	-2.02314		-604.897	1.04748	
55	56	-9.63211	0.555403	-6.5e-05	125.526	0.289226	-0.000969
56	61	200.04	0.1979	-0.0016	742.31	-4.1234	0.0078
84	85	-103.0519	-1.42845	0.0094424	283.1673	-5.14586	0.0208006
84	89	-107.3735	-3.90856	0.0005537	1094.895	-4.10982	2.63e-05
84	91	133.3952	-2.64806	-0.0025991	-591.0368	0.45605	-0.0035024
84	98	-113.0145	-1.48378		-35.932	-1.52136	
84	99	4542.127	0.85207	-0.0518203	-4116.333	-1.71395	-0.0073933
85	87	-1403.31	-4.02583	0.0382461	-516.843	-3.5941	0.0160959
85	90	855.7144	-1.14021		-254.6989	-0.46519	
87	91	-1138.034	0.70013		1824.841	-4.26948	
89	90	-1679.977	4.40837	-0.0092342	4209.48	-0.75036	-0.0356672

List of Sub Groups and their Group Surfaces and Volumes

No.	Subgroup Name	Main Group No.	Main Group Name	R	Q
1	CH3	1	CH2	0.6325	1.0608
2	CH2	1	CH2	0.6325	0.7081
3	СН	1	CH2	0.6325	0.3554
4	С	1	CH2	0.6325	0.0000
5	CH2=CH	2	C=C	1.2832	1.6016
6	CH=CH	2	C=C	1.2832	1.2489
7	CH2=C	2	C=C	1.2832	1.2489
8	CH=C	2	C=C	1.2832	0.8962
9	ACH	3	ACH	0.3763	0.4321
<mark>10</mark>	AC	<mark>3</mark>	ACH	<mark>0.3763</mark>	<mark>0.2113</mark>
11	ACCH3	4	ACCH2	0.9100	0.9490
12	ACCH2	4	ACCH2	0.9100	0.7962
13	ACCH	4	ACCH2	0.9100	0.3769
14	OH (P)	5	ОН	1.2302	0.8927
15	СНЗОН	6	СНЗОН	0.8585	0.9938
16	H2O	7	H2O	1.7334	2.4561
17	АСОН	8	АСОН	1.0800	0.9750
18	CH3CO	9	CH2CO	1.7048	1.6700
19	CH2CO	9	CH2CO	1.7048	1.5542
20	СНО	10	СНО	0.7173	0.7710
21	CH3COO	11	CCOO	1.2700	1.6286
22	CH2COO	11	CCOO	1.2700	1.4228
23	НСОО	12	НСОО	1.9000	1.8000
24	CH3O	13	CH2O	1.1434	1.6022
25	CH2O	13	CH2O	1.1434	1.2495
26	СНО	13	CH2O	1.1434	0.8968
27	THF	43	CY-CH2O	1.7023	1.8784
28	CH3NH2	14	CH2NH2	1.6607	1.6904
29	CH2NH2	14	CH2NH2	1.6607	1.3377
30	CHNH2	14	CH2NH2	1.6607	0.9850

This table also shows the assignment of sub groups to the coressponding main groups.

31	CH3NH	15	CH2NH	1.3680	1.4332
32	CH2NH	15	CH2NH	1.3680	1.0805
33	CHNH	15	CH2NH	1.3680	0.7278
34	CH3N	16	(C)3N	1.0746	1.1760
35	CH2N	16	(C)3N	1.0746	0.8240
36	ACNH2	17	ACNH2	1.1849	0.8067
37	AC2H2N	18	PYRIDINE	1.4578	0.9022
38	AC2HN	18	PYRIDINE	1.2393	0.6330
39	AC2N	18	PYRIDINE	1.0731	0.3530
40	CH3CN	19	CH2CN	1.5575	1.5193
41	CH2CN	19	CH2CN	1.5575	1.1666
42	СООН	20	СООН	0.8000	0.9215
43	НСООН	44	НСООН	0.8000	1.2742
44	CH2CL	21	CCL	0.9919	1.3654
45	CHCL	21	CCL	0.9919	1.0127
46	CCL	21	CCL	0.9919	0.6600
47	CH2CL2	22	CCL2	1.8000	2.5000
48	CHCL2	22	CCL2	1.8000	2.1473
49	CCL2	22	CCL2	1.8000	1.7946
50	CHCL3	45	CHCL3	2.4500	2.8912
51	CCL3	23	CCL3	2.6500	2.3778
52	CCL4	24	CCL4	2.6180	3.1836
53	ACCL	25	ACCL	0.5365	0.3177
54	CH3NO2	26	CNO2	2.6440	2.5000
55	CH2NO2	26	CNO2	2.5000	2.3040
56	CHNO2	26	CNO2	2.8870	2.2410
57	ACNO2	27	ACNO2	0.4656	0.3589
58	CS2	28	CS2	1.2400	1.0680
59	CH3SH	29	CH3SH	1.2890	1.7620
60	CH2SH	29	CH3SH	1.5350	1.3160
61	FURFURAL	30	FURFURAL	1.2990	1.2890
62	DOH	31	DOH	2.0880	2.4000
63	Ι	32	Ι	1.0760	0.9169
64	BR	33	BR	1.2090	1.4000

65	CH=-C	34	C=-C	0.9214	1.3000
66	C=-C	34	C=-C	1.3030	1.1320
67	DMSO	35	DMSO	3.6000	2.6920
68	ACRY	36	ACRY	1.0000	0.9200
69	CL-(C=C)	37	CLCC	0.5229	0.7391
70	C=C	2	C=C	1.2832	0.4582
71	ACF	38	ACF	0.8814	0.7269
72	DMF	39	DMF	2.0000	2.0930
73	HCON(39	DMF	2.3810	1.5220
74	CF3	40	CF2	1.2840	1.2660
75	CF2	40	CF2	1.2840	1.0980
76	CF	40	CF2	0.8215	0.5135
77	COO	41	COO	1.6000	0.9000
<mark>78</mark>	CY-CH2	<mark>42</mark>	CY-CH2	<mark>0.7136</mark>	<mark>0.8635</mark>
79	СҮ-СН	42	CY-CH2	0.3479	0.1071
80	CY-C	42	CY-CH2	0.3470	0.0000
81	OH (S)	5	ОН	1.0630	0.8663
82	OH (T)	5	ОН	0.6895	0.8345
83	CY-CH2O	43	CY-CH2O	1.4046	1.4000
84	TRIOXAN	43	CY-CH2O	1.0413	1.0116
85	CNH2	14	CH2NH2	1.6607	0.9850
86	NMP	46	CY-CONC	3.9810	3.2000
87	NEP	46	CY-CONC	3.7543	2.8920
88	NIPP	46	CY-CONC	3.5268	2.5800
89	NTBP	46	CY-CONC	3.2994	2.3520
91	CONH2	47	CONR	1.4515	1.2480
92	CONHCH3	47	CONR	1.5000	1.0800
93	HCONHCH3	49	HCONR	2.4617	2.1920
94	HCONHCH2	49	HCONR	2.4617	1.8420
100	CONHCH2	47	CONR	1.5000	1.0800
101	AM(CH3)2	48	CONR2	2.4748	1.9643
102	AMCH3CH2	48	CONR2	2.2739	1.5754
103	AM(CH2)2	48	CONR2	2.0767	1.1866
104	AC2H2S	52	ACS	1.7943	1.3400

105	AC2HS	52	ACS	1.6282	1.0600
106	AC2S	52	ACS	1.4621	0.7800
107	H2COCH	53	EPOXIDES	1.3601	1.8031
108	СОСН	53	EPOXIDES	0.6830	0.3418
109	НСОСН	53	EPOXIDES	0.9104	0.6538
110	(CH2)2SU	56	SULFONE	2.6870	2.1200
111	CH2SUCH	56	SULFONE	2.4600	1.8080
112	(CH3)2CB	55	CARBONAT	2.4200	2.4976
113	(CH2)2CB	55	CARBONAT	2.4200	2.0018
114	CH2CH3CB	55	CARBONAT	2.4200	2.2497
119	H2COCH2	53	EPOXIDES	1.0630	1.1230
122	CH3S	61	CH2S	1.6130	1.3680
123	CH2S	61	CH2S	1.3863	1.0600
124	CHS	61	CH2S	1.1589	0.7480
153	H2COC	53	EPOXIDES	0.9104	0.6538
178	C3H2N2+	84	IMIDAZOL	1.3662	0.6797
179	BTI-	85	BTI	5.6210	5.9463
184	C3H3N2+	84	IMIDAZOL	1.8430	1.6997
189	C4H8N+	87	PYRROL	2.7867	2.7723
195	BF4-	89	BF4	3.9628	0.6214
196	C5H5N+	90	PYRIDIN	2.1094	2.5106
197	OTF-	91	OTF	3.3710	2.0001
201	-S-S-	93	-S-S-	1.0678	2.2440
209	SO4	98	SO4	0.9903	3.5249
210	HSO4	98	SO4	1.5654	3.8076
211	PF6	99	PF6	3.8183	3.6018
220	C5H4N+	90	PYRIDIN	2.4873	2.4457

List of Main Groups

This table shows the list of main groups and the sub group belonging to every main group.

No.	Main Group Name	List of Subgroups
1	CH2	[1]CH3 [2]CH2 [3]CH [4]C
2	C=C	[5]CH2=CH [6]CH=CH [7]CH2=C [8]CH=C [70]C=C

3	ACH	[9]ACH [10]AC
4	ACCH2	[11]ACCH3 [12]ACCH2 [13]ACCH
5	ОН	[14]OH (P) [81]OH (S) [82]OH (T)
6	СНЗОН	[15]CH3OH
7	H2O	[16]H2O
8	АСОН	[17]ACOH
9	CH2CO	[18]CH3CO [19]CH2CO
10	СНО	[20]CHO
11	CCOO	[21]CH3COO [22]CH2COO
12	НСОО	[23]HCOO
13	CH2O	[24]CH3O [25]CH2O [26]CHO
14	CH2NH2	[28]CH3NH2 [29]CH2NH2 [30]CHNH2 [85]CNH2
15	CH2NH	[31]CH3NH [32]CH2NH [33]CHNH
16	(C)3N	[34]CH3N [35]CH2N
17	ACNH2	[36]ACNH2
18	PYRIDINE	[37]AC2H2N [38]AC2HN [39]AC2N
19	CH2CN	[40]CH3CN [41]CH2CN
20	СООН	[42]COOH
21	CCL	[44]CH2CL [45]CHCL [46]CCL
22	CCL2	[47]CH2CL2 [48]CHCL2 [49]CCL2
23	CCL3	[51]CCL3
24	CCL4	[52]CCL4
25	ACCL	[53]ACCL
26	CNO2	[54]CH3NO2 [55]CH2NO2 [56]CHNO2
27	ACNO2	[57]ACNO2
28	CS2	[58]CS2
29	CH3SH	[59]CH3SH [60]CH2SH
30	FURFURAL	[61]FURFURAL
31	DOH	[62]DOH
32	Ι	[63]I
33	BR	[64]BR
34	C=-C	[65]CH=-C [66]C=-C
35	DMSO	[67]DMSO
36	ACRY	[68]ACRY

37	CLCC	[69]CL-(C=C)
38	ACF	[71]ACF
39	DMF	[72]DMF [73]HCON(
40	CF2	[74]CF3 [75]CF2 [76]CF
41	COO	[77]COO
42	CY-CH2	[78]CY-CH2 [79]CY-CH [80]CY-C
43	CY-CH2O	[27]THF [83]CY-CH2O [84]TRIOXAN
44	НСООН	[43]HCOOH
45	CHCL3	[50]CHCL3
46	CY-CONC	[86]NMP [87]NEP [88]NIPP [89]NTBP
47	CONR	[91]CONH2 [92]CONHCH3 [100]CONHCH2
48	CONR2	[101]AM(CH3)2 [102]AMCH3CH2 [103]AM(CH2)2
49	HCONR	[93]HCONHCH3 [94]HCONHCH2
52	ACS	[104]AC2H2S [105]AC2HS [106]AC2S
53	EPOXIDES	[107]H2COCH [108]COCH [109]HCOCH [119]H2COCH2 [153]H2COC
55	CARBONAT	[112](CH3)2CB [113](CH2)2CB [114]CH2CH3CB
56	SULFONE	[110](CH2)2SU [111]CH2SUCH
61	CH2S	[122]CH3S [123]CH2S [124]CHS
84	IMIDAZOL	[178]C3H2N2+ [184]C3H3N2+
85	BTI	[179]BTI-
87	PYRROL	[189]C4H8N+
89	BF4	[195]BF4-
90	PYRIDIN	[196]C5H5N+ [220]C5H4N+
91	OTF	[197]OTF-
93	-S-S-	[201]-S-S-
98	SO4	[209]SO4 [210]HSO4
99	PF6	[211]PF6