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General Introduction

The field of autonomous vehicles has seen tremendous advancements over the past decade,
driven by innovations in artificial intelligence (AI) and machine learning. Autonomous vehicles
alm to revolutionize transportation by providing safer, more efficient, and more accessible mobility
solutions. Central to their operation is the ability to perceive and understand their environment ac-
curately. This is achieved through a combination of sensors, including cameras, LiDAR, and radar,
which collectively contribute to the vehicle’s situational awareness and decision-making processes.
The integration of these sensors allows autonomous vehicles to detect, classify, and track objects
in real-time, enabling them to navigate complex environments and make informed decisions.

Despite these advancements, one of the critical challenges in autonomous vehicle technology
remains sensor fusion, the process of integrating data from multiple sensors to create a cohesive
and accurate representation of the environment. Effective sensor fusion is essential for robust
object detection, tracking, and obstacle avoidance. However, this task is fraught with difficulties
such as sensor calibration, data synchronization, and handling varying data quality and resolution.
Inaccuracies in any of these aspects can significantly affect the vehicle’s ability to make safe and
reliable decisions. Additionally, the differing characteristics of sensor data, such as the dense 3D
point clouds from LiDAR and the high-resolution images from cameras, add to the complexity of
the fusion process. Overcoming these challenges is crucial for advancing the reliability and safety
of autonomous vehicles.

To address these challenges, our project, conducted in collaboration with the Cerist Research
Center and the University of Bejaia, proposes a sensor fusion algorithm that leverages both cam-
era and LiDAR data to improve object detection and tracking accuracy. Our approach focuses on
integrating state-of-the-art object detection algorithms, such as YOLOvS for camera images and
Complex YOLO for LiDAR point clouds, with a tracking framework using DeepSORT and Kalman
Filters. By fusing the outputs from these different sensor modalities, we aim to enhance the overall
performance of the tracking system, ensuring more reliable and precise detection and tracking of
objects in the vehicle’s environment. This fusion approach allows us to exploit the complementary
strengths of each sensor type, providing a more comprehensive understanding of the surrounding
environment, thereby enhancing decision-making capabilities in autonomous driving applications.

Our contributions include the development of a robust sensor fusion algorithm, the imple-
mentation of an Extended Kalman Filter for data fusion, and a comprehensive evaluation of our
approach using the KITTI dataset. This comprehensive approach allows for the accurate fusion
of data from multiple sensors, addressing the challenges of sensor calibration and synchronization,
and providing a more reliable system for autonomous vehicle navigation. Furthermore, our method
incorporates advanced machine learning techniques to adaptively improve the fusion process, en-
suring that the system can handle dynamic and unpredictable driving scenarios effectively.

The organization of this thesis is as follows: In Chapter 1, we provide an overview of au-
tonomous vehicle technology, including the role of Al and sensor fusion. Chapter 2 reviews the
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current state-of-the-art techniques in object detection and tracking for autonomous driving, high-
lighting recent advancements and ongoing challenges. Chapter 3 details our proposed sensor fusion
algorithm, including the methodologies for object detection, tracking, and data fusion. Finally,
Chapter 4 evaluates the performance of our approach using the KITTI MOT Evaluation metrics
and compares our results with existing methods, demonstrating the effectiveness and improvements
offered by our sensor fusion solution. This structured approach ensures a clear and thorough ex-
amination of the topic, leading to a comprehensive understanding of our contributions to the field.



Chapter 1

General Informations in Autonomous
Vehicles

Chapter 1

General Informations in Autonomous
Vehicles

1.1 Introduction

Autonomous vehicles represent a transformative innovation in modern transportation, promis-
ing to revolutionize how people and goods move. By leveraging advanced technologies such as
artificial intelligence, machine learning, and sensor fusion, these vehicles aim to enhance safety,
efficiency, and convenience on the roads. This chapter provides a comprehensive overview of au-
tonomous vehicles and intelligent transportation systems, setting the foundation for the detailed
discussion on sensor fusion for enhanced object tracking in subsequent chapters.

1.2 Autonomous Vehicles

1.2.1 Definition and Overview

Autonomous vehicles, also known as self-driving cars, are vehicles capable of sensing their
environment and operating without human intervention. They utilize a combination of sensors,
cameras, radar, LIDAR, and advanced algorithms to navigate and respond to their surroundings.

12
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1.2.2 History and Evolution

The concept of autonomous vehicles dates back to the early 20th century, but significant
progress began in the late 20th and early 21st centuries. Key milestones include the develop-
ment of early prototypes by companies like Carnegie Mellon University and DARPA’s Grand
Challenges, which spurred significant advancements in autonomous driving technologies [13].

1.2.3 Levels of Autonomy in Autonomous Vehicles

The SAE (Society of Automotive Engineers) [14] defines six levels of driving automation , from
Level 0 (no automation) to Level 5 (full automation). Each level represents a step towards full
autonomy, with increasing capabilities and decreasing reliance on human intervention as shown in

the figure below [L.1]

l Actions under certain conditions. .
L
Level 5
. Full Automation
Level 4
. High Automation
Level 3 .
. Conditional Automation ‘ |
Level 2 @ = =
. Partial Automation =

Level 1

. Driver Assistance @ A
Level 0 ! L = !
= =
No Automation =

L2
" specific -— "'h\
@ ] Q ] o

=
(L=
D
=
I

Figure 1.1: Levels of Vehicle Automation [I]

— Level 0: No Automation
Driver Responsibility: The human driver is responsible for all aspects of driving. The
vehicle may have features that provide warnings or momentary assistance, but these do not
control the vehicle.

Examples: Automatic emergency braking, blind-spot warning.
— Level 1: Driver Assistance

Driver Responsibility: The human driver handles most driving tasks but can be assisted
by the vehicle in specific situations.

Vehicle Capability: The vehicle can assist with either steering or acceleration/deceleration,
but not both simultaneously.

Examples: Adaptive cruise control, lane-keeping assistance.
— Level 2: Partial Automation

Driver Responsibility: The human driver must monitor the driving environment and be
ready to take over at any moment.
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Vehicle Capability: The vehicle can control both steering and acceleration/deceleration
simultaneously under certain conditions.

Examples: Tesla Autopilot, GM Super Cruise.

— Level 3: Conditional Automation
Driver Responsibility: The vehicle handles all aspects of driving in certain conditions,
but the human driver must be available to take control if the system requests.

Vehicle Capability: The vehicle can perform all driving tasks under specific conditions
(e.g., highway driving), but the driver must intervene when the system cannot handle the
situation.

Examples: Audi Traffic Jam Pilot (not widely available).
— Level 4: High Automation

Driver Responsibility: The vehicle can handle all driving tasks within specific conditions
or environments without human intervention.

Vehicle Capability: The vehicle can perform all driving tasks and monitor the driving
environment in designated areas or situations (e.g., geofenced areas, urban environments).

Examples: Waymo self-driving taxis (in limited areas).
— Level 5: Full Automation

Driver Responsibility: The vehicle can handle all driving tasks in all conditions without
any human intervention. The human driver becomes a passenger.

Vehicle Capability: The vehicle is capable of driving autonomously in any environment
and under any conditions that a human driver could manage.

Examples: This level represents the goal of full autonomy and is not yet achieved by any
current vehicles.

1.3 Intelligent Transportation Systems (ITS)

1.3.1 Definition and Components

Intelligent Transportation Systems (ITS) integrate information and communication technolo-
gies with transportation infrastructure and vehicles to improve traffic management, safety, and
efficiency. Key components include traffic management systems, vehicle-to-everything (V2X) com-
munication, and automated enforcement systems.

1.3.2 Benefits and Challenges

ITS offer numerous benefits, such as enhanced road safety, reduced traffic congestion, and
improved environmental sustainability. However, challenges such as high implementation costs,
data privacy concerns, and the need for robust cybersecurity measures must be addressed.
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1.4 Sensor Fusion in Autonomous Vehicles

1.4.1 Definition and Techniques

Sensor fusion involves combining data from multiple sensors to create a more accurate and
comprehensive understanding of the environment. Techniques such as Kalman filtering, Bayesian
networks, and neural networks are commonly used in sensor fusion [15].

1.4.2 Importance in Autonomous Driving

Sensor fusion is crucial for autonomous vehicles as it enhances the accuracy and reliability of
object detection and tracking, leading to safer and more efficient navigation. By integrating data
from various sensors, autonomous systems can compensate for the limitations of individual sensors
and achieve a higher level of situational awareness [2] the figure below shows the different
sensors in an automated vehicle.

. Long-Range Radar
. Short-/Medium-Range Radar

. Camera
B Lioar

Surround View

Blind Spot
Cross Traffic 9 Detection i

Emergency Brakillsr
Adaptive s
Cruise Pedestrian Detection
Control Collision Avoidance

Rear Collision
Warning

Figure 1.2: An example of the type and positioning of sensors in an automated vehicle [2]

1.5 10T for Autonomous Vehicles

The Internet of Things (IoT) plays a crucial role in the development and functioning of au-
tonomous vehicles. IoT enables vehicles to connect and communicate with each other and with
the surrounding infrastructure, creating a more integrated and intelligent transportation system.
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1.5.1 IoT and Vehicle Communication

The figure illustrates how IoT technology facilitates Vehicle-to-Everything (V2X) commu-
nication, which includes Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-
Pedestrian (V2P) communications. These connections [3] enhance situational awareness and safety
by allowing vehicles to exchange information about road conditions, traffic signals, and potential
hazards in real-time.

Footprint of Wireless
Access Infrastructure

@® On-board Sensor @ ECU ® Road Infrastructure

Figure 1.3: Overview of Connected Vehicles [3]

1.5.2 Sensors and Data Collection

Autonomous vehicles are equipped with a variety of sensors, including LIDAR, radar, cameras,
and ultrasonic sensors. These sensors collect vast amounts of data about the vehicle’s surroundings.
IoT systems process this data to provide actionable insights that help the vehicle make informed
decisions.

1.5.3 Cloud Computing and Edge Computing

[oT in autonomous vehicles relies on both cloud computing and edge computing [16]. Cloud
computing provides the infrastructure for data storage and processing, while edge computing allows
for real-time data analysis closer to the source. This dual approach ensures that critical decisions
can be made quickly, while more complex analyses can be handled by the cloud.
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1.6 Al for Autonomous Vehicles

Artificial Intelligence (Al) is the backbone of autonomous vehicle technology. It enables vehicles
to perceive their environment, make decisions, and learn from experience to improve performance
over time.

1.6.1 Machine Learning and Deep Learning

Machine learning algorithms, particularly deep learning, are used to process sensor data and
recognize patterns. These algorithms are trained on large datasets to identify objects such as pedes-
trians, other vehicles, and road signs. Neural networks, a subset of deep learning, are especially
effective in image and speech recognition tasks.

1.6.2 Decision-Making and Path Planning

Al is critical for decision-making and path planning in autonomous vehicles. Algorithms such
as reinforcement learning enable vehicles to navigate complex environments by learning optimal
driving strategies through trial and error. Al systems can evaluate various scenarios and make
real-time decisions to ensure safety and efficiency [17].

1.6.3 Natural Language Processing

Natural Language Processing (NLP) allows autonomous vehicles to understand and respond to
voice commands, enhancing user interaction. NLP technologies enable drivers and passengers to
communicate with the vehicle using natural language, making the experience more intuitive and
user-friendly.

1.7 Databases for Autonomous Vehicles

Databases are essential for storing and managing the vast amounts of data generated by au-
tonomous vehicles. These databases support various functions, including mapping, sensor data
storage, and machine learning model training.

1.7.1 High-Definition Maps

High-definition (HD) maps provide detailed information about road geometry, traffic signs, lane
markings, and other static features of the environment. These maps are continuously updated to
reflect real-time changes in road conditions and construction activities [18].

1.7.2 Sensor Data Storage

Autonomous vehicles generate massive amounts of sensor data, including images, LIDAR point
clouds, and radar signals. Efficient storage solutions are required to manage this data and make
it accessible for real-time processing and long-term analysis [19].
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1.7.3 Training Data for Machine Learning

Large annotated datasets are necessary for training machine learning models used in au-
tonomous vehicles. These datasets include labeled images, videos, and sensor data that help
improve object detection, classification, and tracking algorithms. Examples of such datasets in-
clude the KITTT [20] dataset , which provides a variety of sensor data including stereo images and
3D point clouds, and the Waymo Open Dataset [21], which offers high-resolution sensor data and
annotations for objects, enabling advanced research and development in autonomous driving.

1.8 Leading Companies in Autonomous Vehicles and Their
Approaches

Several major automotive and technology companies are leading the development of autonomous
vehicles, each with its unique approach and technology stack.

— Tesla
Tesla [22] uses a combination of computer vision, radar, and ultrasonic sensors for its au-
tonomous driving technology. Tesla’s Autopilot and Full Self-Driving (FSD) systems rely
heavily on deep learning and neural networks, which are continuously updated through over-
the-air software updates.

=
3

Figure 1.4: Tesla Autopilot

— Waymo

Waymo [23], a subsidiary of Alphabet Inc., focuses on a sensor suite that includes LIDAR,
radar, and high-resolution cameras. Waymo’s approach emphasizes redundancy and safety,
with extensive testing and validation in real-world conditions. Waymo also uses HD maps
to enhance navigation accuracy.
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Figure 1.5: Waymo autonomous car

— Zoox

Zoox [24], acquired by Amazon in 2020, is developing a fully autonomous, bidirectional vehicle
designed specifically for ride-hailing services. Zoox’s approach includes a symmetrical design
that eliminates the need for a front or back, allowing the vehicle to navigate and park more
efficiently in urban environments. The vehicle is equipped with LIDAR, radar, cameras, and
an array of sensors to ensure 360-degree coverage. Zoox focuses on creating a comprehensive,
integrated system that includes custom hardware and software solutions to optimize safety
and performance.
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Figure 1.6: zoox autonmous vehicle

— Mercedes-Benz

Mercedes-Benz has been a pioneer in integrating advanced driver assistance systems (ADAS)
and autonomous driving technologies into their vehicles [25]. The brand’s approach empha-
sizes luxury and safety, combining cutting-edge technology with high-quality engineering.
Mercedes-Benz’s DRIVE PILOT system, which is designed for Level 3 autonomy, allows
hands-free driving in certain conditions. The system uses a combination of LIDAR, radar,
cameras, and ultrasonic sensors to monitor the vehicle’s surroundings and make informed
driving decisions. Mercedes-Benz is also involved in various collaborations and partnerships
to advance autonomous vehicle technology further.
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Figure 1.7: Mercedes-Benz Drive Pilot

1.9 Tesla vs Waymo - Two Opposite Visions

The world of self-driving cars has two giants: Tesla vs Waymo. Each represents one family of
startups, with their own strategies and technical choices [20].

Tesla and Waymo represent two fundamentally different approaches to autonomous driving.
Tesla relies heavily on a vision-based system, utilizing cameras and advanced neural networks
to interpret and navigate the environment. Their approach, known as ”full self-driving” (FSD),
emphasizes incremental improvements through software updates that leverage real-world data from
Tesla’s extensive fleet of vehicles already on the road.

In contrast, Waymo employs a more conservative and comprehensive sensor suite, combining
LIDAR, radar, and high-resolution cameras. Waymo’s strategy focuses on creating highly detailed
3D maps of the areas their vehicles operate in, allowing for precise navigation and obstacle detec-
tion. This approach aims for high levels of safety and reliability before scaling to wider geographic
areas.

While Tesla pursues a scalable vision-based model, betting on the rapid advancement of Al,
Waymo emphasizes robustness and precision with a multi-sensor approach. Both strategies reflect
their distinct philosophies and technological bets on the future of autonomous vehicles.

1.10 Working of Autonomous Vehicles

Autonomous vehicles, or self-driving cars, rely on a complex integration of sensors, algorithms,
and computing technologies to navigate and operate without human intervention. Key components
include sensors such as cameras, LIDAR, radar, and ultrasonic sensors illustrated in the figure
of Waymo’s Hardware Infrastructure [1.8] object detection and tracking systems, sensor fusion
techniques, and Simultaneous Localization and Mapping (SLAM).



22

S @

T Supplemental Sensors Vision System

= ©)
LiDAR System l Radar System

Figure 1.8: Waymo’s Hardware Infrastructure

1.10.1 Sensors

e Cameras
Cameras are essential for visual perception, providing high-resolution images that are cru-
cial for recognizing objects, detecting lane markings, and reading traffic signs. Monocular
and stereo cameras are commonly used in autonomous vehicles to capture detailed visual
information. Monocular cameras provide a single perspective, while stereo cameras use two
lenses to create depth perception, mimicking human vision.

e LIDAR
LIDAR (Light Detection and Ranging) [27] uses laser beams to create detailed 3D maps
of the vehicle’s surroundings as shown in figure [1.9, By measuring the time it takes for the
laser light to return after hitting an object, LIDAR generates precise distance measurements.
This technology excels in detecting and mapping objects in various lighting conditions and
provides a comprehensive view of the environment.
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3D Lidar

Figure 1.9: 3D Lidar Map

e Radar
Radar (Radio Detection and Ranging) uses radio waves to detect objects and measure their
distance, speed, and direction. Radar is highly effective in all weather conditions, including
fog, rain, and snow, where optical sensors like cameras and LIDAR might struggle. It is
particularly useful for detecting moving objects and providing long-range detection.

e Ultrasonic Sensors
Ultrasonic sensors use high-frequency sound waves to detect objects at close range. They are
commonly used for parking assistance and low-speed maneuvers, helping to detect obstacles
that are very close to the vehicle. Ultrasonic sensors provide accurate distance measurements
in short ranges and are effective in various environmental conditions.

1.10.2 Object Detection with CNNs

e Convolutional Neural Networks (CNNs)
CNNs are widely used for image processing tasks due to their ability to automatically learn
spatial hierarchies of features [28]. In autonomous vehicles, CNNs are employed for object
detection, recognizing and classifying objects such as pedestrians, vehicles, and obstacles
from camera images.

— One-Stage Object Detection: YOLO
YOLO (You Only Look Once) is a real-time object detection system that divides the
input image into a grid and applies a single neural network to the entire image [29]. It
predicts bounding boxes and class probabilities directly, making it fast and efficient for
real-time applications in autonomous driving.

— Two-Stage Object Detection: Faster R-CNN
Faster R-CNN is a two-stage object detection framework that first generates region
proposals and then classifies these proposals [30]. It is known for its accuracy and
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is used in scenarios where precision is critical, such as detecting smaller or occluded
objects.

1.10.3 Object Tracking

e Kalman Filters
Kalman filters [31] are used for tracking the state of a moving object over time by predicting
its future position and updating these predictions with new measurements. They are par-
ticularly useful in filtering out noise from sensor data and providing smooth and accurate
object trajectories.

e Deep SORT
Deep SORT (Simple Online and Realtime Tracking with a Deep Association Metric) [32] ex-
tends the SORT algorithm by incorporating appearance information through a deep learning-
based association metric. This enhances the tracker’s ability to maintain consistent identities
of objects across frames, even in crowded scenes.

1.10.4 Lane Tracking

Lane tracking [19] is a critical functionality in autonomous driving systems, enabling the vehicle
to stay within its lane by detecting and following lane markings on the road. This task involves
using various sensors, such as cameras, and applying deep learning algorithms to accurately identify
lane boundaries and predict the vehicle’s path.

Figure 1.10: Lane Detection and Tracking: LaneNet [4]

1.10.4.1 Deep Learning Architectures for Lane Tracking

e Convolutional Neural Networks (CNNs): CNNs [28] are widely used for image pro-
cessing tasks, including lane detection and tracking. They excel at extracting features from
camera images and can be trained to recognize lane markings under various conditions.
Architectures such as VGGNet and ResNet have been effectively applied to lane tracking
problems.

e Recurrent Neural Networks (RNNs): RNNs, particularly Long Short-Term Memory
(LSTM) networks [33], are used in lane tracking to capture temporal dependencies in se-
quences of images. By considering the context of previous frames, RNNs can improve the
stability and accuracy of lane tracking over time.
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e Hybrid Approaches: Combining CNNs and RNNs, hybrid architectures leverage the
strengths of both networks. CNNs are used for feature extraction from individual frames,
while RNNs handle the temporal aspect, ensuring consistent lane tracking across multiple
frames.

1.10.4.2 Examples of Lane Tracking Models

e LaneNet: LaneNet [4] is a popular architecture that combines semantic segmentation and
instance segmentation to detect lanes and separate them into different instances. This dual
approach allows for robust lane detection even in complex driving scenarios.

e LaneATT: LancATT (Lane Attention Network) [34] is a deep learning architecture designed
for precise lane detection in autonomous driving. It uses attention mechanisms to focus on
important lane features, enhancing localization and prediction of lane markings under varying
conditions. LaneATT integrates CNNs with attention modules for robust performance in
complex road environments, ensuring high accuracy and efficiency in real-time applications.

Lane tracking systems employing these deep learning architectures can significantly enhance
the safety and reliability of autonomous driving by ensuring precise and continuous lane adherence.
These models are trained on extensive datasets containing diverse road conditions to achieve
robustness and generalization in real-world scenarios.

1.10.5 Obstacle Avoidance

Obstacle avoidance is a critical component of autonomous driving systems, ensuring safe nav-
igation by detecting and maneuvering around obstacles in real-time [19]. It integrates multiple
functionalities:

e Lane Tracking: Lane tracking provides information about the vehicle’s position relative to
lane boundaries. This data helps in planning safe trajectories and determining permissible
paths around obstacles.

e Object Detection: Object detection identifies obstacles such as vehicles, pedestrians, and
other objects in the vehicle’s path. It utilizes sensors like cameras and LiDAR to perceive
the environment and assess potential collision risks.

e Sensor Fusion: Sensor fusion combines data from multiple sensors (e.g., cameras, LiDAR,
radar) to generate a comprehensive and accurate representation of the surroundings. It
enhances obstacle detection by cross-verifying information from different sensor modalities,
improving reliability and reducing false alarms.

By integrating lane tracking, object detection, and sensor fusion, autonomous vehicles can
effectively detect obstacles in their path, assess potential risks, and make informed decisions to
navigate safely through dynamic environments.

1.10.6 Sensor Fusion: Camera and LIDAR Fusion Systems

Sensor fusion involves combining data from multiple sensors to create a more accurate and
comprehensive understanding of the environment. In autonomous vehicles, camera and LIDAR
fusion are particularly effective as they complement each other’s strengths and mitigate weaknesses.
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1.10.6.1 Camera and LIDAR Fusion

Cameras provide high-resolution color images, which are excellent for recognizing texture and
color but are affected by lighting conditions. LIDAR provides precise 3D spatial information,
regardless of lighting. By fusing data from both sensors like figure shows, autonomous vehicles
can achieve robust object detection and environmental mapping [5].

Camera and LiDAR data

e
T

e

- e

Figure 1.11: Camera and Lidar Fusion [5]

1.10.6.2 SLAM and Its Relation to Sensor Fusion

Simultaneous Localization and Mapping (SLAM) [35] is a critical technique that enables au-
tonomous vehicles to construct a map of an unknown environment while simultaneously keeping
track of their location within it. SLAM integrates data from various sensors, including cameras,
LIDAR, and IMUs (Inertial Measurement Units), to build and update maps in real time.

1.10.6.3 How SLAM Works

SLAM algorithms typically involve two main processes: mapping and localization. Mapping
involves creating a representation of the environment, while localization determines the vehicle’s
position within this map. Advanced SLAM systems use sensor fusion techniques to combine data
from multiple sources, improving accuracy and reliability.
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1.10.6.4 Integration with Sensor Fusion

Sensor fusion enhances SLAM by providing more comprehensive data inputs, leading to more
accurate maps and better localization performance. For instance, combining camera images with
LIDAR point clouds can help resolve ambiguities and improve the robustness of SLAM systems in
complex environments.

1.11 Embedded Systems for Autonomous Driving

Autonomous vehicles rely heavily on embedded systems for processing sensor data, making
real-time decisions, and executing control commands. Key hardware components include micro-
controllers and single-board computers that provide the necessary computational power for these
tasks. This section identifies popular platforms such as Arduino, Raspberry Pi, and Jetson Nano,
and evaluates their suitability for deep learning tasks. Additionally, it discusses NVIDIA’s deep
learning accelerators, including DeepStream, CUDA, and TensorRT.

1.11.1 Arduino

Arduino is an open-source microcontroller platform known for its simplicity and ease of use. It is
widely used in educational projects and prototyping due to its low cost and extensive community
support. However, Arduino lacks the computational power required for complex deep learning
tasks and is not typically used in autonomous driving applications where real-time processing is
critical [36].

1.11.2 Raspberry Pi

Raspberry Pi [37] is a versatile single-board computer that offers greater computational capa-
bilities than Arduino. It supports various operating systems and can run a range of applications,
making it suitable for intermediate projects and some real-time processing tasks. While more
powerful than Arduino, Raspberry Pi still falls short in handling intensive deep learning models
due to its limited processing power and lack of specialized accelerators.

1.11.3 Nvidia Jetson Nano

Jetson Nano, developed by NVIDIA, is a single-board computer specifically designed for Al
and deep learning applications . It features a powerful GPU that supports CUDA, making it
capable of running complex neural networks and handling high-throughput data processing tasks
in real time. Jetson Nano is highly suitable for autonomous driving applications due to its ability
to efficiently execute deep learning algorithms and process multiple sensor inputs simultaneously
[38].

1.12 Deep Learning Accelerators

e CUDA: CUDA (Compute Unified Device Architecture) [39] is a parallel computing platform
and programming model developed by NVIDIA. It allows developers to leverage the power
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of NVIDIA GPUs for general-purpose computing, significantly accelerating deep learning
model training and inference.

e TensorRT: TensorRT is an SDK from NVIDIA designed to optimize deep learning models
for inference on NVIDIA hardware [40]. It provides mixed precision, layer fusion, and kernel
auto-tuning to enhance performance and reduce latency.

e DeepStream: DeepStream is a streaming analytics toolkit from NVIDIA that enables real-
time video and image processing using deep learning. It is optimized for NVIDIA GPUs and
integrates well with CUDA and TensorRT, making it ideal for autonomous vehicle applica-
tions that require high-speed data processing and analysis [41].

Overall, for deep learning tasks in autonomous driving, Jetson Nano stands out as the best op-
tion among the discussed hardware platforms due to its specialized GPU and support for NVIDIA’s
deep learning accelerators. These accelerators, including CUDA, TensorRT, and DeepStream, pro-
vide the necessary tools to optimize and accelerate deep learning models, ensuring efficient and
real-time performance.

1.13 RC Cars as Prototypes for Self-Driving Cars

Remote-controlled (RC) cars serve as valuable prototypes in the development and testing of
autonomous driving technologies, figure [1.12] These scaled-down vehicles offer a cost-effective and
manageable platform for exploring various algorithms and hardware configurations before scaling
up to full-sized autonomous vehicles [42].
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Figure 1.12: Example of an autonomous RC car

1.13.1 Implementation and Modifications

RC cars are typically equipped with miniature versions of sensors used in full-scale autonomous
vehicles, such as cameras, LIDAR, and inertial measurement units (IMUs). These sensors enable
perception of the vehicle’s surroundings, crucial for navigation and obstacle avoidance. The on-
board computational units, often microcontrollers or small embedded systems like Raspberry Pi
or Arduino, process sensor data and execute control algorithms [43].

Modifications to RC cars include integrating actuators for steering, throttle, and braking, which
are controlled autonomously based on sensor inputs. Additionally, GPS modules may be added
to enhance localization accuracy, though this is less common due to the smaller scale and limited
outdoor GPS reception quality.

1.13.2 Testing and Validation

RC cars provide a controlled environment for testing autonomous driving algorithms and hard-
ware configurations. Researchers can simulate various driving scenarios, such as lane following,
obstacle avoidance, and path planning, in a safe and repeatable manner. Real-time data log-
ging allows for performance evaluation and debugging of algorithms, providing insights into their
robustness and reliability.

Moreover, RC cars facilitate rapid prototyping and iterative development cycles. Researchers
can quickly implement and test new algorithms, validate their effectiveness, and iterate on im-
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provements before transitioning to larger-scale prototypes or real-world applications.

1.13.3 Relevance in Autonomous Driving Research

Despite their miniature size, RC cars play a significant role in advancing autonomous driving
research. They serve as practical tools for exploring fundamental concepts in perception, control,
and decision-making algorithms. Insights gained from RC car experiments inform the development
of more sophisticated autonomous systems capable of operating in real-world environments.

In summary, RC cars provide a foundational platform for experimenting with and refining
autonomous driving technologies. Their flexibility, cost-effectiveness, and scalability make them
indispensable in the early stages of autonomous vehicle development, paving the way for innova-
tions in the field of self-driving cars.

1.14 Self-Driving Simulators and Their Implementation

Self-driving simulators are essential tools in the development and testing of autonomous driv-
ing systems as shown in figure [I.13] offering a virtual environment to simulate real-world driving
scenarios. These simulations provide a cost-effective and safe alternative to physical testing, al-
lowing researchers to validate algorithms, assess vehicle performance, and train AI models under
controlled conditions.

Figure 1.13: Simulation environment: CARLA simulator [0]
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1.14.1 Implementation

Self-driving simulators replicate various aspects of the driving environment, including road
layouts, traffic scenarios, weather conditions, and pedestrian behavior. They typically integrate
realistic physics engines to simulate vehicle dynamics accurately. Sensor models such as cameras,
LiDAR, and radar emulate sensor data processing in real-time, enabling perception algorithms to
interpret virtual surroundings.

Simulation platforms often support scripting languages (e.g., Python, C++) for developing
and customizing scenarios. This flexibility allows researchers to create complex driving scenarios,
adjust environmental parameters, and modify vehicle dynamics to evaluate different aspects of
autonomous driving systems.

1.14.2 Why Simulations?

Simulations offer several advantages over physical testing in autonomous driving research:

e Cost-effectiveness: Simulations reduce costs associated with vehicle procurement, main-
tenance, and testing infrastructure. Researchers can conduct extensive testing without the
constraints of physical resources.

e Safety: Virtual environments eliminate risks to personnel and property associated with
real-world testing, especially during early development stages.

e Scalability and Reproducibility: Simulations allow for rapid iteration and scalability.
Researchers can reproduce scenarios consistently, facilitating benchmarking and comparison
of algorithm performance.

e Scenario Diversity: Simulators provide the flexibility to test a wide range of driving
scenarios, including rare or hazardous conditions that are impractical to replicate in physical
tests.

e Algorithm Development: Researchers can iterate algorithms quickly in simulations, fine-
tuning parameters and evaluating performance metrics under diverse conditions before de-
ployment in real-world settings.

1.14.3 Examples of Simulators

Several prominent simulators used in autonomous driving research include:

e CARLA: CARLA [6] is an open-source autonomous driving simulator. It was built from
scratch to serve as a modular and flexible API to address a range of tasks involved in the
problem of autonomous driving. One of the main goals of CARLA is to help democratize
autonomous driving R&D, serving as a tool that can be easily accessed and customized by
users. To do so, the simulator has to meet the requirements of different use cases within
the general problem of driving (e.g. learning driving policies, training perception algorithms,
ete.).

e LGSVL Simulator: The LGSVL Simulator [44] specializes in providing a robust environ-
ment for testing autonomous vehicle algorithms within realistic urban settings. It leverages
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the Unity game engine to offer advanced visualizations and accurate physics simulations.This
simulator is tailored for researchers and developers working on autonomous driving systems,
offering customizable urban environments with dynamic traffic scenarios. It supports a vari-
ety of sensors, including cameras, LiDAR, and radar, allowing for comprehensive testing and
validation of perception and navigation algorithms.

Overall, self-driving simulators are indispensable tools for accelerating the development and
validation of autonomous driving technologies. Their ability to replicate complex driving scenarios
safely and efficiently makes them a cornerstone in advancing the capabilities and reliability of
autonomous vehicles.

1.15 Conclusion

The future of autonomous vehicles promises to transform transportation through advancements
in technology. Achieving Level 5 autonomy depends on progress in machine learning, deep learning,
and hardware capabilities.

Enhanced object detection and tracking technologies, powered by CNNs and sensor fusion,
have improved autonomous systems’ ability to navigate their environment. Hardware platforms
like NVIDIA Jetson Nano, along with accelerators such as NVIDIA DeepStream, CUDA, and
TensorRT, provide the computational power needed for real-time decision-making.

Self-driving simulators like CARLA and LGSVL are essential for developing and validating
autonomous driving systems, allowing for the testing of complex scenarios before real-world appli-
cation. Using RC cars as prototypes offers cost-effective experimentation and innovation, aiding
the development of full-scale autonomous vehicles.

As advanced algorithms, powerful hardware, and realistic simulations converge, the evolution
toward fully autonomous vehicles will continue. This promises significant societal benefits, includ-
ing enhanced safety and increased accessibility.

In the next chapter, we will explore state-of-the-art methods for object detection and tracking
in autonomous driving. These methods are crucial for enabling accurate perception and interaction
with the environment, ensuring safe and efficient navigation.
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2.1 Introduction

In recent years, the field of autonomous driving has seen significant progress, highlighting the
critical importance of multi-sensor fusion for enhanced object detection and tracking. Decision-
making remains a undamental pillar for ensuring the safety and efficiency of autonomous vehicles.
In this chapter, we will explore state-of-the-art of multi-sensor fusion methods, which play an
essential role in the object detection and tracking process in autonomous cars. We will analyze
these methods by highlighting their differences and conduct a comprehensive comparison based on
established criteria

2.2 Problematic

How to develop an optimal multi-sensor fusion system for object detection and tracking in
complex autonomous driving environments, taking into account the real-time and accuracy con-
straints required to ensure the safety and efficiency of autonomous vehicles? Specifically, How can
data fusion from multiple sensors, such as cameras and LiDAR, be optimized to improve object
detection and tracking in autonomous driving systems, contributing to more reliable and secure
decision-making to ensure efficient autonomous driving?

33
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2.3 Why This Research ?

The field of autonomous driving is rapidly expanding, and it is imperative to address a crucial
aspect such as sensor fusion. Autonomous cars depend on a combination of cameras, LiDAR,
and other sensors [19], each offering a unique perspective of the environment. The fusion of these
diverse data sets allows for the creation of a holistic perception, leading to more precise and reliable
decisions.

Our research theme on multi-sensor fusion aims to tackle this challenge by exploring advanced
methods to enhance object detection and tracking. We place particular emphasis on integrating
data from cameras and LiDAR, as this approach holds the promise of opening up new possibil-
ities for more efficient and safer autonomous driving. We are confident that this research will
significantly contribute to the advancement of autonomous driving technology and its extensive
implementation, thereby creating reliable and secure driving systems for the future.

Autonomous vehicles depend on additional sensors with complementary measurement principles
to enhance robustness and reliability through sensor fusion. We will study the LiDAR sensor, its
various types, as well as the relevant criteria for sensor selection. Furthermore, we will learn how
to detect objects in a 3D LiDAR point cloud using a deep learning approach, and then evaluate
detection performance using a set of metrics.

Next, we will address the fusion of detections from the camera and LiDAR, as well as object
tracking over time using an extended Kalman filter.
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2.4 Study of Existing Work in Autonomous Driving

In recent years, the autonomous driving sector has seen significant advancements, highlight-
ing the critical role of object detection and the integration of various technologies for enhanced
tracking and decision-making, vital for the safe and efficient functioning of self-driving cars. This
chapter delves into the latest developments in object detection, 3D object detection, multi-object
tracking (MOT), sensor fusion, and lane tracking. We will explore a wide range of techniques,
emphasizing their advantages, limitations, and practical applications in real-world autonomous
driving scenarios.

Our research will focus on improving object and obstacle detection and tracking. Additionally,
we will explore complementary methods such as sensor fusion and lane tracking. These techniques
will aid us in conducting experiments directly on hardware, facilitating practical validation of our
research findings.

2.4.1 Study of existing work in object detection in autonomous driving

1. A Comprehensive Review of YOLO Architectures in Computer Vision: From
YOLOv1 to YOLOv8 and YOLO-NAS (2023)

This paper [45] presents an extensive examination of the evolution and advancements of the
YOLO (You Only Look Once) object detection models. The authors analyze various versions of
YOLO, detailing their improvements and impact on the field of computer vision, particularly in
real-time object detection applications. the figure below shows the Yolo official architecture:
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Figure 2.1: Yolo Architecture

Object detection models are evaluated using key metrics such as accuracy, speed, and effi-
ciency. The paper highlights the strengths and limitations of each YOLO version, from YOLOv1
to YOLOv8 and YOLO-NAS, as follows:

¢ YOLOvV1 to YOLOvV3: YOLOvVI1 introduced a single regression problem approach for ob-
ject detection, predicting bounding boxes and class probabilities directly from full images.
YOLOvV2 improved with batch normalization, high-resolution classifiers, and anchor boxes,
while YOLOv3 further enhanced detection with a deeper network and feature pyramid net-
works for multi-scale detection.
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¢ YOLOvV4 and YOLOvV5: YOLOvV4 incorporated advanced techniques like the Cross-Stage
Partial (CSP) network, new data augmentation methods, and other optimizations, resulting
in more efficient and accurate models. YOLOv5, while not officially released as a research

paper, brought practical improvements in usability, speed optimization, and ease of deploy-
ment.

¢ YOLOV6 to YOLOVS: These versions integrated state-of-the-art methodologies, including
attention mechanisms and improved loss functions, progressively reducing model size while
enhancing performance, making them suitable for resource-constrained environments.

e YOLO-NAS: The latest development utilizes Neural Architecture Search to discover op-
timal architectures for object detection tasks, balancing performance and efficiency better
than manually designed models.

The YOLO family of models has set benchmarks in speed and accuracy as shown in figure
2.2) making them invaluable for real-time applications such as autonomous driving, surveillance,
and robotics. The continuous evolution of these models highlights their profound influence on
computer vision and underscores the importance of ongoing research to achieve higher levels of
autonomy and precision in various technological domains.
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Figure 2.2: Performance comparison of YOLO object detection models

2. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Net-
works (2016)

This seminal paper [30] introduces Faster R-CNN, a groundbreaking framework that advances
real-time object detection through the integration of Region Proposal Networks (RPN) with Con-
volutional Neural Networks (CNN). The authors propose a method that significantly accelerates
object detection by generating region proposals directly within the network, eliminating the need
for a separate region proposal step used in previous approaches as shown in the figure below.
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Figure 2.3: Faster R-CNN is a single, unified network for object detection. The RPN module
serves as the ‘attention’ of this unified network.

Key contributions and findings of this paper include:

e Region Proposal Network (RPN): The RPN shares convolutional layers with the detec-
tion network, allowing nearly cost-free region proposals. It simultaneously predicts object
bounds and scores, achieving high efficiency and accuracy.

e Integration with CNNs: By combining RPN with Fast R-CNN, the authors create a
unified network that enables end-to-end training and testing, significantly improving the
speed and accuracy of object detection systems.

e Performance Improvements: Faster R-CNN demonstrates state-of-the-art performance
on multiple benchmarks, including KITTI Dataset [20], and is capable of processing images
at near real-time frame rates while maintaining high detection accuracy.

e Scalability and Flexibility: The architecture is scalable to different network depths and
flexible in adapting to various tasks, making it a versatile choice for real-time object detection
applications.

Faster R-CNN’s innovation in combining region proposal and detection within a single network
has set a new standard in the field of object detection. Its impact extends across numerous
applications, from autonomous driving to surveillance, showcasing the potential of deep learning
techniques in achieving real-time, accurate object detection.
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3. Comparative analysis of deep learning image detection algorithms (2021)

In this research paper [46], the authors conduct a comparative analysis of three prominent
image processing algorithms—Single Shot Detection (SSD), Faster Region-based Convolutional
Neural Networks (Faster R-CNN), and You Only Look Once (YOLO). Using the Microsoft COCO
dataset, they assess these algorithms’ performance based on accuracy, precision, and F1 score to
determine the fastest and most efficient approach for object detection. This study aims to identify
strengths and limitations within these methodologies, offering insights into their suitability for
practical applications in image analysis and processing.

Object detection models are evaluated using key metrics like ’Average Precision,” F1 score,
and COCO metrics API. These metrics allow for a comprehensive comparison of the performance
among the three algorithms as follow:

e SSD underperforms compared to Faster R-CNN due to its reliance on higher resolution layers
for small object detection, hindering classification. Additionally, SSD’s complexity in data
augmentation demands substantial training data, potentially increasing cost and time for
training

e Faster R-CNN offers high accuracy but suffers from time complexity, notably slower than
YOLO. Despite advancements, its multi-pass approach and components like ROI pooling
and RPN can create bottlenecks within the algorithm

e YOLOvV3 showcased improvements but faced accuracy limitations in smaller image analy-
sis; YOLOv4 addressed shortcomings with optimized models like CSPDarknet-53, offering
enhanced speed and accuracy while analyzing different object sizes, as indicated by precision-
recall curves using the COCO [49] metric API.

Finally, the authors underscore the pivotal roles of Yolo-v3, SSD, and Faster RCNN in CNN-
based object detection. Yolo-v3 emerges as the fastest and most efficient among the three, notably
displaying minimal false detections, while SSD balances speed and accuracy. Conversely, Faster
RCNN showcases higher accuracy but lacks the efficiency for real-time processing, highlighting the
distinct strengths of each algorithm in object detection tasks.

4. SSD: Single Shot MultiBox Detector (2016)

This paper [47] introduces the Single Shot MultiBox Detector (SSD), an object detection frame-
work that combines the best aspects of previous approaches. SSD eliminates proposal generation
and subsequent pixel or feature resampling stages, simplifying the pipeline and improving speed
while maintaining high accuracy as indicated by the SSD network architecture in the figure [2.4
below.
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Figure 2.4: SSD network architecture

Key features include:

e Single Shot Detection: Detects objects in a single forward pass of the network, making
it significantly faster.

e Multi-scale Feature Maps: Uses multiple feature maps at different scales to detect objects
of various sizes.

e Default Boxes: Employs a set of default boxes of different aspect ratios at each feature
map location, enhancing the detection of objects with varying shapes.

SSD achieves impressive performance on benchmarks like PASCAL VOC [50] , COCO [49], and
ILSVRC [51], demonstrating a good balance between speed and accuracy.

5. FPN: Feature Pyramid Networks for Object Detection (2017)

In this influential paper [4§], the authors propose the Feature Pyramid Network (FPN), a
framework designed to enhance object detection performance by leveraging the inherent multi-
scale, pyramidal hierarchy of deep convolutional networks. The FPN introduces a top-down ar-
chitecture with lateral connections for building high-level semantic feature maps at various scales,
significantly improving detection accuracy across different object sizes as shown in the figure [2.5
below.
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Figure 2.5: SSD network architecture

Key contributions and findings from the paper include:

Top-Down Pathway: The FPN employs a top-down pathway to create higher resolution
feature maps with strong semantics, which enhances the detection of smaller objects.

Lateral Connections: Lateral connections are used to merge higher resolution features
with semantically stronger, lower resolution features, ensuring that the feature maps at all
pyramid levels are semantically rich.

Improved Accuracy: Experiments demonstrate that FPNs, when integrated with baseline
detectors like Faster R-CNN, significantly improve accuracy, especially for small and medium-
sized objects.

Efficiency: Despite the added complexity of the top-down pathway and lateral connections,
the FPN architecture does not introduce a significant computational overhead, making it
efficient for practical applications.

6. Comparative analysis of multiple YOLO-based target detectors and trackers for
ADAS in edge devices (2023)

In this research paper [49], the authors presents a comprehensive analysis of several YOLO-
based object detectors and trackers for ADAS applications on edge devices. The authors explore
the trade-offs between accuracy, inference speed, and resource consumption, and they provide
valuable insights into the performance of different models on real-world dataset.

Here are some of the key takeaways from the paper:

¢ YOLOR-CSP emerges as a promising detector for ADAS on edge devices. It bal-

ances accuracy and speed effectively, achieving high mAP achieving a mAP@50 of 69.70%
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scores while maintaining real-time inference rates on the NVIDIA Jetson AGX Xavier plat-
form.

e DeepSORT performs well as a tracker. It demonstrates robust performance in various
scenarios, including fast-moving targets and occlusions. However, it is sensitive to longer
detector intervals, where NvDCF might be a better choice.

e Multi-camera inference can enhance tracking performance. By utilizing multiple
cameras with longer detector intervals, improved tracking accuracy can be achieved, espe-
cially with trackers like NvDCEF' that are less sensitive to these intervals.

e Dataset quality significantly impacts model performance. The study highlights the
importance of using diverse and challenging datasets for training object detectors and track-
ers.

The paper also sheds light on several limitations and challenges in this area:

e Limited standardization in tracking metrics. Currently, there is no universally ac-
cepted standard for evaluating tracking performance, which makes it difficult to compare
different models directly.

e Need for more comprehensive datasets. Existing datasets often lack diversity in chal-
lenging scenarios, which can limit the generalization ability of models.

e Hardware limitations can hinder real-time performance. While edge devices are be-
coming more powerful, resource constraints can still pose challenges for complex models.

Overall, this paper provides valuable insights into the use of YOLO-based object detectors
and trackers for ADAS applications on edge devices. The findings can guide researchers and de-
velopers in their efforts to create robust and efficient systems for autonomous driving and other
safety-critical applications.

7. EnsembleNet: a hybrid approach for vehicle detection and estimation of traffic
density based on faster R-CNN and YOLO models (2023)

In this research paper [50], the authors focus on traffic congestion due to static regulations and
emphasize the importance of estimating traffic density for efficient management. They explore ve-
hicle recognition methods like motion analysis, handcrafted features, and CNN-based approaches,
leveraging datasets such as MB7500, KITTI, and FLIR. This leads to the development of a hybrid
Faster R-CNN and YOLO model evaluated against base estimators for traffic density estimation.
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The paper introduces an ensemble model, merging Faster R-CNN and YOLOvV5, aiming to
improve overall detection accuracy. Faster R-CNN’s tendency for multiple detections and YOLO’s
struggle with crowded or small objects prompt this approach. Ensemble learning, combining model
results, is implemented via a majority voting approach. Predictions from Faster R-CNN and
YOLOV5, represented by P(faster) and P(yolo) respectively, are compared based on bounding box
coordinates; if predictions align within a threshold, indicating agreement on a vehicle, confidence
scores determine the final bounding box. The difference between the two confidence scores assists
in retaining a single bounding box, refining the ensemble model’s detection output.

Finally, the research introduces EnsembleNet, an ensemble-based deep learning model merging
Faster R-CNN and YOLOvVS5 for vehicle detection. Utilizing majority voting, this hybrid system
improves overall predictions, compensating for YOLOvS’s limitations in dense traffic scenarios
and Faster R-CNN'’s efficiency in dense images. Despite increased computational time, the hybrid
model enhances accuracy and includes traffic density estimation. However, addressing the high
computational or inference time remains pivotal for practical real-time applications.

2.4.2  Study of existing work in Lane Detection and Trakcing in au-
tonomous driving

Lane detection plays a crucial role in autonomous driving, providing essential information
about road structure and vehicle positioning. Over the years, researchers have proposed various
approaches to tackle this challenge, each with its own strengths and weaknesses [19].

Several notable CNN architectures have emerged for lane detection, each offering unique ad-
vantages:

e Segmentation-based: Models like DeepLab and U-Net treat lane detection as a semantic
segmentation problem, directly predicting pixel-wise lane class labels.

e Regression-based: Approaches like LaneNet and BASNet utilize an encoder-decoder ar-
chitecture to extract features and regress lane line coordinates directly.

e Anchor-based: Models like LaneATT employ anchors and learnable offsets to predict re-
fined lane line locations, achieving impressive efficiency and accuracy.

Choosing the right approach and the optimal choice for our specific application depends on
various factors, including;:

e Performance requirements: Accuracy, speed, and robustness are crucial considerations.

e Computational resources: Some models are resource-intensive, while others are tailored
for edge devices.
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e Data availability: Training deep learning models often requires significant amounts of data.

This section critically reviews several state-of-the-art papers exploring diverse lane detection
methodologies.

1. LaneNet: Real-Time Lane Detection Networks for Autonomous Driving(2018)

Published in 2018, the ”"LaneNet” paper [4] by Wang and Ren introduced a groundbreaking
real-time lane detection network tailored for autonomous driving applications. This network em-
ploys a two-stage architecture designed to maximize accuracy and efficiency. In the first stage,
spatial and semantic features are extracted from input images using an encoder-decoder network.
The second stage utilizes a pixel-wise prediction approach, enhanced by learnable anchors and
offsets, to precisely localize lane pixels. This design choice, complemented by multi-level feature
fusion and a customized loss function combining binary cross-entropy and L1 loss, contributes to
LaneNet’s high-performance capabilities.

LaneNet excels in real-time processing, achieving robust lane detection across diverse environ-
mental conditions. However, its effectiveness hinges on substantial amounts of training data, which
may limit its deployment on resource-constrained hardware platforms. Despite these considera-
tions, LaneNet has significantly influenced the field of lane detection, serving as a foundational
model that has inspired numerous subsequent advancements. Its modular architecture and em-
phasis on real-time performance continue to drive innovation in autonomous driving research and
development.

2. Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection(2021)

The paper "Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection” [34]
introduces LaneATT, a model recognized for its efficiency and real-time performance, particularly
suited for edge devices. This model employs an encoder-decoder architecture to extract features
from input images and predict lane probabilities. What sets LaneATT apart is its integration
of an attention mechanism within the decoder, enhancing the localization of lane lines by focus-
ing on pertinent image regions. Its lightweight design, achieved through efficient building blocks
and knowledge distillation techniques, enables real-time operation on resource-constrained devices.

LaneATT further distinguishes itself with an adaptive loss function that adjusts based on lane
marking confidence predictions, enhancing robustness in challenging scenarios. However, compared
to more complex models, LaneATT may not achieve the highest accuracy without additional pre-
processing for lane marking confidence estimation. Despite this, LaneATT has made significant
contributions by providing an effective solution for real-time lane detection, particularly where
efficiency and accuracy are paramount. Its attention mechanism and lightweight design have
spurred further advancements in efficient and robust lane detection methodologies.
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2.4.3 Study of existing work in 3D object detection in autonomous

1.

driving

RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Au-

tonomous Driving (2020)

The paper [51] "RTM3D” presents an innovative approach to real-time monocular 3D object
detection for autonomous driving. This method focuses on detecting 3D bounding boxes from a
single camera image by leveraging object keypoints. Figure [2.6)shows an overview of the proposed
keypoint detection architecture.
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Figure 2.6: An overview of proposed keypoint detection architecture

Key contributions and findings from the paper include:

Monocular 3D Detection: RTM3D uses a single RGB image to predict 3D bounding
boxes, avoiding the complexity and cost associated with LiDAR and stereo camera setups.

Object Keypoints: The approach identifies nine keypoints for each object, corresponding
to the eight corners of the 3D bounding box and the center. These keypoints are used to
derive the 3D dimensions, location, and orientation of the object.

Geometric Constraints: The paper introduces a novel geometric constraint for keypoint
predictions. The 2D-3D geometric relationship ensures accurate and consistent keypoint
localization.

Loss Function: The loss function in RTM3D is designed to minimize the reprojection error
of the 3D bounding box corners and the center keypoint. It combines the keypoint heatmap
loss, the offset loss, and the dimension loss.
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e Backbone Network: RTM3D utilizes FPNResNet18 as its backbone network. FPN (Fea-
ture Pyramid Network) enhances feature extraction at multiple scales, which is crucial for
detecting objects of varying sizes in the image. ResNet18, with its relatively lightweight ar-
chitecture, provides a good balance between accuracy and computational efficiency, making
it suitable for real-time applications.

e Real-time Performance: The RTM3D model is lightweight and optimized for real-time
inference, achieving a balance between accuracy and speed, making it suitable for deployment
in autonomous driving systems.

e Experimental Results: The method is evaluated on the KITTI 3D object detection bench-
mark, demonstrating competitive performance with a significant speed advantage over exist-
ing monocular 3D detection methods.

This approach underscores the potential of monocular vision systems in autonomous driving,
offering a cost-effective and efficient solution for 3D object detection in real-time applications.

2. Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection on
Point Clouds (2018)

The paper ”Complex-YOLO” [52] introduces a novel method for real-time 3D object detection
on point clouds using an Euler-region-proposal technique. This approach enhances the efficiency

and accuracy of detecting objects in 3D space, specifically targeting applications like autonomous
driving where real-time processing is crucial.
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Figure 2.7: Overview of the Complex-YOLO architecture

Key contributions and findings from the paper include:

e Euler-Region-Proposal: Complex-YOLO introduces an Euler-region-proposal network
that significantly reduces the computational load by focusing on regions of interest derived
from Euler angles, thereby enhancing real-time performance.

e 3D Bounding Boxes: The method accurately predicts 3D bounding boxes from point
clouds, providing precise localization and dimensions of objects in the scene.

e Real-time Performance: The model is designed for real-time inference, achieving a bal-
ance between speed and accuracy, making it suitable for applications requiring immediate
processing, such as autonomous driving.
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e Architecture: Complex-YOLO employs a modified YOLO (You Only Look Once) frame-
work tailored for 3D object detection, leveraging the strengths of YOLO in rapid object
detection while adapting it to handle the complexities of 3D data.

e Experimental Results: The method demonstrates competitive performance on benchmark
datasets, showing significant improvements in speed and accuracy over traditional 3D object
detection techniques.

e Applications: While the primary application is autonomous driving, the technique is ver-
satile enough for other domains requiring real-time 3D object detection, such as robotics and
augmented reality.

This approach highlights the potential of using Euler-region-proposals in conjunction with deep
learning frameworks like YOLO to achieve high-performance 3D object detection on point clouds
in real-time scenarios as shown in the figure [2.8] below.
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Figure 2.8: Complex-YOLO is a very efficient model that directly operates on Lidar only based
birds-eye-view RGB-maps to estimate and localize accurate 3D multiclass bounding boxes

2.4.4 Study of existing work in Object Tracking in autonomous driving

1. DeepSORT: Simple Online and Realtime Tracking with a Deep Association Metric
(2017)

This influential paper presents DeepSORT [32], an advanced framework for multi-object track-
ing that integrates deep learning-based appearance descriptors with the SORT (Simple Online and
Realtime Tracking) algorithm. DeepSORT enhances the standard SORT algorithm by incorporat-
ing a deep association metric, which significantly improves tracking performance in scenarios with
occlusions and similar-looking objects.

Key contributions and findings of this paper include:
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e Deep Appearance Descriptor: The integration of a deep appearance descriptor enables
the tracker to effectively distinguish between objects with similar motion patterns but dif-
ferent appearances, enhancing robustness against occlusions and re-identification.

¢ Kalman Filter and Hungarian Algorithm: By utilizing a Kalman filter for motion pre-
diction and the Hungarian algorithm for data association, DeepSORT maintains the efficiency
and simplicity of the original SORT algorithm while significantly improving accuracy.

e Improved Tracking Accuracy: DeepSORT demonstrates superior performance on stan-
dard tracking benchmarks such as MOT16, achieving state-of-the-art accuracy and robust-
ness in challenging multi-object tracking scenarios.

e Real-Time Capability: Despite the enhancements, DeepSORT maintains real-time pro-
cessing capabilities, making it suitable for practical applications in surveillance, autonomous
driving, and sports analytics.

DeepSORT’s contribution to multi-object tracking lies in its ability to combine deep learning
techniques with traditional tracking methods, resulting in a system that balances accuracy and
computational efficiency. This approach has set a new benchmark in the field of object tracking,
enabling more reliable and precise tracking in dynamic and crowded environments.

2. An Introduction to the Kalman Filter (1995)

This foundational paper [31] by Greg Welch and Gary Bishop provides a comprehensive intro-
duction to the Kalman Filter, a powerful mathematical tool for estimating the state of a dynamic
system from a series of noisy measurements. The Kalman Filter is widely used in object tracking
applications due to its effectiveness in handling uncertainties in motion and measurement.

Key contributions and findings of this paper include:

e Recursive Estimation: The Kalman Filter provides a recursive solution to the discrete-
data linear filtering problem, making it efficient for real-time applications.

e State and Measurement Models: The filter uses a state transition model and a mea-
surement model to predict the state of the system and update estimates based on incoming
measurements.

e Error Covariance Matrix: The Kalman Filter maintains an error covariance matrix to
quantify the uncertainty in its estimates, which is crucial for adjusting the filter’s sensitivity
to new measurements.

e Applications in Object Tracking: The paper discusses the application of the Kalman
Filter in tracking objects, such as estimating the position and velocity of moving objects in
radar and computer vision systems.

The Kalman Filter’s ability to provide optimal estimates in the presence of noise and uncer-
tainty has made it a cornerstone technique in various fields, including navigation, control systems,
and signal processing. Its real-time processing capability and robustness in dynamic environments
have established it as a critical component in object tracking systems.
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2.4.5 Study of existing work in Multi-Object Tracking with Camera-
LiDAR Fusion in autonomous driving

1. Joint Multi-Object Detection and Tracking with Camera-LiDAR Fusion for Au-
tonomous Driving (2021)

This paper [53] presents a comprehensive framework for joint multi-object detection and track-
ing using camera-LiDAR fusion specifically tailored for autonomous driving. The proposed system
integrates detection and tracking in a unified pipeline to leverage the complementary strengths of
camera and LiDAR sensors, as shown in Figure below.
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Figure 2.9: System architecture for joint multi-object detection and tracking using camera-LiDAR
fusion.

Key contributions and findings of this paper include:

e Region Proposal Network (RPN): The system utilizes an RPN to generate regions of
interest (Rols) from the sensor data, which are then used to extract multi-modal features.

e Parallel Detection and Correlation Networks: The framework employs parallel net-
works for object detection and correlation, generating detection results and re-identification
(Re-ID) affinities that help maintain object identity across frames.

e Kalman Filter for Motion Prediction: A Kalman filter is used for motion prediction,
incorporating geometric similarities and measurement updates to refine object tracking.

e Data Association and Track Management: The mixed-integer programming module
handles comprehensive data association based on detection results and computed affinities,
ensuring continuous object tracking even in the presence of occlusions.

e Robustness and Accuracy: The system achieves state-of-the-art performance on stan-
dard benchmarks, demonstrating robustness and accuracy in complex multi-object tracking
scenarios typical in autonomous driving.



49

This paper highlights the importance of combining appearance and motion cues through
camera-LiDAR fusion to enhance the reliability and accuracy of multi-object tracking in dynamic
environments.

2.

DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on Camera-

LiDAR Fusion with Deep Association (2022)

The DeepFusionMOT framework [54] introduces an innovative approach to 3D multi-object
tracking that balances tracking accuracy and computational efficiency through effective camera-
LiDAR fusion and deep association techniques. This framework is particularly suited for real-time
applications in autonomous driving, as illustrated in Figure below.
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Figure 2.10: DeepFusionMOT architecture highlighting the deep association mechanism for
camera-LiDAR fusion.

Key contributions and findings of this paper include:

Deep Association Mechanism: The framework employs a deep association mechanism
that integrates 2D camera data and 3D LiDAR data, allowing seamless fusion and accurate
tracking of objects detected by either sensor.

Kalman Filter Integration: A Kalman filter is utilized to maintain continuous tracking
and update object trajectories, ensuring smooth transitions between 2D and 3D domains.

Real-Time Processing: Despite its comprehensive fusion and association processes, Deep-
FusionMOT maintains real-time processing capabilities, making it suitable for practical ap-
plications.

Robust Performance: The system demonstrates superior tracking performance on stan-
dard datasets, achieving a balance between accuracy and speed, and showing significant
improvements over existing multi-object tracking methods.

Publicly Available Code: The authors have made their code publicly available, promoting
further research and development in the field of camera-LiDAR fusion-based multi-object
tracking.

DeepFusionMOT’s contribution lies in its ability to effectively fuse multi-modal data, leveraging

deep

learning techniques to achieve robust and efficient multi-object tracking for autonomous

driving applications.
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2.5 Comparative study

2.5.1 Classification of works reviewed

In the realm of computer vision for autonomous driving, research and development are centered
around key categories: object detection, lane detection, object tracking, and sensor fusion.

Object detection algorithms, such as Faster R-CNN, SSD, FPN and the YOLO series, are
extensively studied for their ability to accurately and efficiently identify objects on the road.

Lane detection research focuses on precise boundary segmentation using deep learning tech-
niques and attention-guided methods to ensure vehicles stay within their designated lanes.

Object tracking algorithms, like DeepSORT and Kalman Filters, are essential for continuously
monitoring moving objects, enabling safe navigation and decision-making.

Sensor fusion techniques integrate data from various sensors, such as cameras, LiDAR, and
radar, to provide a comprehensive understanding of the vehicle’s surroundings. Models like Joint
Multi-Object Detection and Tracking leverage sensor fusion to enhance object detection and track-
ing accuracy, crucial for real-world deployment of autonomous driving systems.

The figure 2.11] below illustrates the classification of articles studied in this section:

Lane Detection & Tracking 2D Object Detection

Terven, Juan et al. [39]
Shaogqing Ren et al. [21]
Srivastava et al. [HO0]
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Usha Mittal et al. [44]

Ze Wang, W. Ren [24]

Lucas Tabelini et al. [26]
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Kemiao Huang and Qi Hao [47]

P. Azevedo, V.Santos [43] Xiyang Wang et al. [48]

Nicolai Wojke et al. [23]
Greg Welch et al. [22]

3D Object Detection

Peixuan Li et al. [45]

Martin Simony et al. [46]

Figure 2.11: Computer Vision methods Classification in Autonomous Driving.
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Table 2.1: A Comparison of Reviewed Articles

2.6 Discussion

In the realm of computer vision for autonomous driving, solutions are diverse, leveraging Convo-
lutional Neural Networks (CNNs) and multi-sensor fusion. Object detection methods like YOLO
series and Faster R-CNN enhance real-time performance. SSD eliminates region proposal step,
achieving high-speed detection. Feature Pyramid Networks (FPNs) enable object detection at
various scales. Comparative studies favor YOLO-based detectors for their speed and accuracy in
edge devices. EnsembleNet combines Faster R-CNN and YOLO for enhanced vehicle detection.

Lane detection relies on LaneNet for precise segmentation, while attention-guided methods
improve focus on relevant lane markers.

For 3D object detection, methods like RTM3D and Complex-YOLO focus on real-time detection
using object keypoints and point clouds respectively.

Multi-object tracking employs DeepSORT, enhancing SORT with deep association metrics, and
Kalman Filter for state estimation. Frameworks like Joint Multi-Object Detection and Tracking
integrate camera and LiDAR data, using Extended Kalman Filter for motion prediction. DeepFu-
sionMOT proposes a 3D multi-object tracking framework through effective sensor fusion and deep
association techniques.

These advancements enhance reliability and efficiency in autonomous driving systems, each
contributing unique strengths in detection, lane detection, and multi-object tracking.

2.7 Conclusion

This chapter has provided an extensive overview of the state-of-the-art methods and techniques
used in computer vision for autonomous driving, specifically focusing on 2D /3D object detection,
and object tracking. By comparing these diverse methodologies, we observed that each approach
offers distinct advantages and presents certain limitations. For instance, while YOLO-based de-
tectors excel in speed and adaptability, Faster R-CNN provides higher accuracy but at the cost of
increased computational complexity. Similarly, in 3D object detection, methods like RTM3D and
Complex-YOLO offer real-time capabilities using object keypoints and point clouds, respectively,
enhancing detection accuracy and efficiency.
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In the next chapter, we will introduce our approach to multi-object tracking with sensor fu-
sion. This approach aims to integrate the strengths of the 2D/3D object detection, and tracking
algorithms reviewed in this chapter. This system will utilize advanced sensor fusion methodologies
to enhance detection and tracking performance, ensuring optimal results for autonomous driving
applications.
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Proposed Approach in Multi- Object
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Fusion

3.1 Introduction

The previous chapter comprehensively reviewed existing research on object detection, tracking,
and sensor fusion techniques for autonomous driving. We identified the critical role of sensor fu-
sion in overcoming the limitations of individual sensors like cameras and LiDAR [27]. While each
sensor provides valuable information about the environment, their strengths and weaknesses are
complementary. Cameras excel at capturing rich visual details but struggle in low-light conditions.
LiDAR excels at providing accurate 3D information but lacks the detailed texture data from cam-
eras. By fusing data from these sensors, we can create a more robust and holistic perception of
the surrounding environment, leading to more accurate object detection and tracking.

This chapter delves into our proposed sensor fusion approach specifically designed for Multi
object detection and tracking in autonomous driving applications. We propose an architecture that
leverages the strengths of both camera and LiDAR data. We will detail the individual processing
pipelines for camera and LiDAR data, including the chosen algorithms. We will then explain the

25
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core of our approach, which is the fusion strategy used to combine the processed data from both
sensors. Finally, we will describe how the fused data will be utilized for object detection and
tracking.

By effectively fusing camera and LiDAR data, we aim to achieve significant improvements
in object detection and tracking performance compared to using individual sensors alone. This
enhanced perception system will be crucial for accurate decision-making and safe navigation in
complex autonomous driving scenarios.

3.2 Project Context and Issue Focus: Smart City Surveil-
lance with Enhanced Autonomy

The ever-growing complexity of urban environments necessitates smarter solutions for public
safety and situational awareness. This project delves into the application of autonomous cars for
smart city surveillance. While autonomous cars offer the potential for continuous monitoring, their
effectiveness hinges on accurate object detection, tracking, and pose estimation. However, current
limitations in these areas restrict autnomous cars ability to fully comprehend the surrounding
environment and interpret human behavior.

3.2.1 Challenges in Smart City Surveillance with self driving cars

e Accurate Pose Estimation for Behavior Understanding: Effective public safety surveil-
lance relies on comprehending human activity. Pose estimation, the process of determining
a person’s posture and body orientation, is crucial for interpreting behavior [55]. Current
pose estimation algorithms often struggle with occlusions (people being partially hidden),
complex backgrounds, and varying lighting conditions, leading to inaccurate assessments.
This hinders robots’ ability to distinguish between harmless actions and potential threats.

e Robust Sensor Fusion for Enhanced Object Detection and Tracking: Cameras provide
rich visual details but struggle in low light. LiDAR excels at 3D information but lacks texture
data. Sensor fusion combines data from these sensors to create a more complete picture of
the environment [5]. However, existing fusion methods can be computationally expensive or
prone to errors in dynamic environments with moving objects. This limits robots’ ability to
reliably track individuals and objects of interest, hindering their ability to effectively monitor
large areas.

e Advanced Decision-Making for Human-Level Response: Autonomous cars in surveillance
applications need to make critical decisions in real-time [I7]. Current decision-making algo-
rithms may struggle with situations requiring nuanced judgment or fail to adapt to unforeseen
circumstances. These limitations can lead to unnecessary interventions or missed threats.
To ensure public safety and trust, autonomous cars need to make decisions with a level of
sophistication comparable to trained professionals.
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3.3 Multi-Object Tracking in Autonomous Driving

3.3.1 Overview

Multi-object tracking (MOT) is a critical component in autonomous driving systems, enabling
vehicles to perceive and navigate complex environments by identifying and tracking multiple ob-
jects such as vehicles, pedestrians, and cyclists. Effective MOT systems enhance situational aware-
ness and decision-making, contributing to safer and more reliable autonomous driving.

3.3.2 Challenges in Multi-Object Tracking

Multi-object tracking [56] in autonomous driving faces several significant challenges. Occlu-
sions, where objects become partially or fully obscured by other objects or environmental features,
make maintaining continuous tracking difficult. The dynamic nature of the environments in which
autonomous vehicles operate, with objects moving unpredictably, necessitates robust tracking al-
gorithms capable of adapting to sudden changes. Sensor limitations also pose a challenge; cameras
may struggle in low-light conditions, and LiDAR, though providing 3D data, often has lower res-
olution and can be adversely affected by weather conditions. Efficiently associating detections
across frames to maintain object identities, known as data association, is another complex task,
particularly in crowded scenes with similar-looking objects. These challenges underscore the need
for advanced techniques and robust systems in multi-object tracking for autonomous vehicles.

3.3.3 Techniques for Multi-Object Tracking

e Kalman Filter: A widely used algorithm that predicts the future state of objects based on
their previous states, helping to smooth out noise and improve tracking accuracy [31].

e Hungarian Algorithm: Employed for data association, it matches detected objects across
consecutive frames to maintain consistent tracking identities [57].

e DeepSORT: An advanced MOT framework that integrates deep learning-based appearance
descriptors with the SORT algorithm, enhancing performance in scenarios with occlusions
and similar-looking objects [32].

e Sensor Fusion: Combining data from multiple sensors, such as cameras and LiDAR, to
leverage their complementary strengths and improve overall tracking performance. This ap-
proach mitigates the limitations of individual sensors and provides more reliable and accurate
object tracking [5].

3.3.4 Applications in Autonomous Driving

e Obstacle Avoidance: MOT systems enable autonomous vehicles to detect and track ob-
stacles, allowing for timely evasive maneuvers.

e Path Planning: Accurate tracking of surrounding objects informs the vehicle’s path plan-
ning algorithms, ensuring safe and efficient navigation.

e Traffic Sign and Signal Recognition: Tracking traffic signs and signals helps autonomous
vehicles comply with traffic laws and respond appropriately to changing road conditions.
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e Pedestrian and Cyclist Safety: By continuously monitoring pedestrians and cyclists,
MOT systems enhance the safety of vulnerable road users.

In the following sections, we will delve into our proposed approach for multi-object tracking
based on camera and LiDAR fusion, integrating the advancements in object detection, 3D object
detection, and tracking algorithms to achieve superior results. Our goal is to combine the benefits
of these techniques to enhance the accuracy and reliability of multi-object tracking in autonomous
driving.

3.4 Description of the Global Proposition of our autonomous
car

This project focuses on a crucial aspect of autonomous cars: sensor fusion for enhanced object
detection and tracking. While our core contribution lies in this specific area, it’s important to
acknowledge the broader ecosystem of technologies required for a fully functional autonomous
system. These include:

e Sensors and Perception Module: autonomous driving rely on a suite of sensors like cam-
eras, LiDAR, radar, IMU, and ultrasonic sensors to gather data about the surrounding
environment. The perception module processes this raw sensory data to create a real-time
understanding of the world.

e SLAM (Simultaneous Localization and Mapping): SLAM [58] allows the robot to build
a map of its surroundings while simultaneously keeping track of its own location within that
map. This is essential for navigation and decision-making.

e World Model: The world model represents the car’s understanding of the environment, in-
cluding objects, obstacles, and their relationships. Sensor fusion plays a critical role in
continuously updating and refining this world model.

e Decision Making: Based on the information from perception and the world model, the self
driving car needs to make critical decisions about navigation, path planning, and interaction
with the environment. This may involve techniques like rule-based systems or reinforcement
learning.

e Control: The decisions made by the car translate into control actions that steer, accelerate, or
brake the vehicle. Precise control is crucial for safe and efficient navigation.

While this project focuses on sensor fusion for object detection and tracking, it acknowledges
the importance of these interconnected technologies for achieving full autonomy. Our proposed
approach aims to contribute to a more robust and reliable perception system, paving the way for
advancements in the broader field of autonomous driving and self-driving cars.

The figure below presents the global schema of the proposed solution.
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3.5 Description of the Proposition of our Multi object
Tracking with sensor fusion Approach

The previous section outlined the various components that work in concert to enable au-
tonomous navigation. This project delves deeper into one critical module: sensor fusion. While
individual sensors like cameras and LiDAR provide valuable information, they have limitations
[59]. Sensor fusion addresses this by intelligently combining data from multiple sensors, creating
a richer and more robust perception of the environment. This enhanced understanding is crucial
for accurate object detection and tracking, which are fundamental to safe and reliable navigation
for autonomous systems and self-driving cars.

The figure [3.2below presents the flowchart of the proposed sensor fusion module for Multi
Object Detection and Tracking.
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Figure 3.2: Flowchart of the proposed MOT with Sensor Fusion

e YOLOvVS8 (Object Detection): The camera captures the scene, and YOLOvS8 [45], a state-
of-the-art object detection algorithm, is applied to detect 2D objects within the frame. The
output is a list of detected objects, including their bounding boxes and confidence scores as

shown in the figure [3.3] below.
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Figure 3.3: YoloV8 detection on A Camera Image

e Kalman Filter (KF) Estimation: The Kalman Filter takes the measurement list and pre-
dicts the state of each detected object. This includes position, velocity, and possibly other
dynamics. The Kalman Filter algorithm will go through the following steps to track an
object over time:

e First measurement: The filter will receive initial measurements of the object’s po-
sition relative to the car. These measurements will come from a camera or LiDAR
Sensor.

e Initialize state and covariance matrices: The filter will initialize the object’s po-

sition
<py)
Vg
Uy

e Predict: The algorithm will predict where the object will be after a time period At.

and velocity:

based on the first measurement.

e Update: The filter compares the ”predicted” location with what the sensor measure-
ment says. The predicted location and the measured location are combined to give an
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updated location. The Kalman Filter will put more weight on either the predicted loca-
tion or the measured location depending on the uncertainty of each value. The update
step is often also referred to as the innovation or correction step.

e Iterate: The car will receive another sensor measurement after a time period At. The
algorithm then does another predict and update step.

The figure [3.4] below demonstrates how the Kalman Filter predicts and updates based on the
new measurements.

State at time f1._ :
N i
xar= (1)

Car 1 Car 2
Prediction to next time [} : 299
Pk = Pr—1 + U1 O """ Pprediction
L Ul—1 '_'_E
P 1 Al .!J‘". l
| 01 Uk
“_i_f_"' Car 1 Car 2
Measurement

(Noisy)

Measurement function at time {}. :
<= Py

-6

H Car 1 Car 2

Figure 3.4: Kalman Filter Prediction and Update[7]

e DeepSORT Tracking:: DeepSORT (Simple Online and Realtime Tracking) uses the KF pre-
dictions along with a deep appearance descriptor to track objects across frames. The output
is a list of tracked objects, each with an assigned track ID and updated bounding boxes like

the figure [3.5] below.



Figure 3.5: DeepSort assigned track ID and updated bounding boxes

e LiDAR Data Processing: The LiDAR sensor captures the environment, producing a point
cloud representing the 3D space around the vehicle, The figure below shows how the 3D
point cloud looks.
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Point Cloud From Lidar Data

Figure 3.6: velodyne Lidar 3D point cloud

e Bird-Eye-View (BEV) from Point-Cloud: The point cloud data as illustrated in figure
is transformed into a bird’s-eye-view (BEV) map [60], which simplifies the 3D data into a
2D representation for easier processing. The transformation involves the following steps:

e Projection: Project the 3D point cloud (z,y, z) onto the BEV plane (x,y) by ignoring
the height z.

e Discretization: Discretize the continuous BEV coordinates into grid cells. Each cell
(,7) in the BEV map corresponds to a small area in the real world.

e Feature Encoding: Encode the features within each grid cell, such as the density of
points, the maximum height, and the intensity of the LiDAR returns.

BEV(i,j) = f ({(zxrs i 21 1) oy

where f is the feature encoding function, (zy, yx, 2k, Ix) are the point cloud coordinates
and intensity, and NN is the number of points within the grid cell.

e Normalization: Normalize the encoded features to ensure they are within a suitable
range for input to the neural network.

e Complex YOLO (Object Detection): Complex YOLO [52] is applied to the BEV map to
detect 3D objects, outputting their bounding boxes and confidence scores. The process of
generating the BEV map is as follows:

First, we define the area to encompass for detection, setting the longitudinal range to 0...50m
and the lateral range to -25...4+25m. This choice is based on considerations from the original
paper and existing implementations of Complex YOLO.
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Next, we divide this area into a grid, configuring the BEV image size to 608 x 608 pixels,
which corresponds to a spatial resolution of approximately 8 cm.

Each grid cell in the BEV map, identified by coordinates (i, ), contains a set of points
P;j. The number of points in each cell, denoted as N;;, determines the content of the three
channels assigned to the cell:

Height H;; = max(P;; - [0,0, 1])

Intensity I;; = max(I(P;;))

log(N;; +1)
64

where P;; represents the points in the cell, I(P;;) denotes the intensity of these points,
and N;; is the count of points. These parameters are derived from the original paper’s
recommendations to optimize object detection accuracy in the BEV map. As you can see, H; ;
encodes the maximum height in a cell, [; ; the maximum intensity, and D; ; the normalized
density of all points mapped into the cell. The resulting BEV image looks like the following
figure (3.7

Density D;; = min (1.0,



Figure 3.7: BEV map Height,Intensity and Density 7]

o Measurement List and Kalman Filter Prediction: Similar to the camera data, the de-
tected 3D objects are compiled into a measurement list, The Kalman Filter predicts the
states of the detected 3D objects based on the measurement list.

e Association and Mahalanobis Distance: An association matrix (A) is constructed to match
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detected objects to existing tracks, ensuring continuity of tracking across frames. The data
association assigns measurements to tracks and decides which track to update with which
measurement. The Mahalanobis distance (d(z,z)) [61] is used as a measure of similarity
between predicted track states (z) and measurements (z), defined by:

d(z,2) = (z — h(2))'S™ 2z — h(x))

where h(z) is the measurement prediction from the track state, S is the measurement co-
variance matrix, and z is the actual measurement.

Say we have N tracks and M measurements. The association matrix A is an N x M matrix
that contains the Mahalanobis distances between each track and each measurement:

d(l'l,zl) d(iUl, 22) d(iUl, ZM)
A d(xe,z1) d(xg,29) -+ d(xe,zy)
dxy,z) d(zy,z2) -+ dlxy,zm)

We also maintain lists for unassigned tracks and unassigned measurements. To perform
association, we select the smallest entry in A to determine which track to update with which
measurement, then remove this row and column from A and update the respective track and
measurement lists. This process repeats until A is empty as shown in the figure below:

Assumptions:

+ Each track
generates at most
one measurement.
Each measurement
originates from at
most one track.

Figure 3.8: Data Association Problem [7]

e Gating: Gating [62] reduces association complexity by excluding unlikely track-measurement
pairs. Since the residual (difference between predicted and measured values) is typically
Gaussian, the Mahalanobis distance follows a x? distribution. A measurement is considered
inside a track’s gate if the Mahalanobis distance is smaller than a threshold calculated from
the inverse cumulative x? distribution, given by:

d(z,z) < F5'(0.995 | dim(z))
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If a measurement lies outside a track’s gate, the distance in A for that pair can be set to
infinity to denote it as an invalid association, for example:

d(1,1) oo 00

A | oo a2 aes)
~d3.1) d3.2) d(3.3)
0o d(4,2) d(4,3)

e Track Management: The system manages the track list, handling the creation, maintenance,

Score

and deletion of tracks as objects enter and exit the scene. A simple way to define a track
score is by setting it as the ratio of detections in the last n frames to n, i.e., score =
detections in last n frames — Hgweyer, there are various methods to define a track score, such as

n
confidence or existence probability, allowing for custom definitions.

Based on the track score, different track states can be defined, such as ”initialized,” ”ten-
tative,” or "confirmed.” For instance, thresholds can be set for transitioning between these
states. An example of thresholding could be:

e Example Track Deletion Criteria:
— Confirmed tracks: Delete if score < 0.6. This applies only to confirmed tracks
that previously had a score above 0.8 and has dropped below 0.6.

— Tentative or initialized tracks: Delete if score < 0.17. This lower threshold
accommodates newly initialized or tentative tracks, ensuring they stabilize before
deletion.

The figure [3.9] below illustrates different track states:

track state = ,.confirmed”

track state = ,tentative”

track state = ,intialized”

0.8 L @ Track1
Time 5 = TraCk 2

Figure 3.9: Track Management
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e Fusion of Camera and LiDAR Results: The final step involves fusing the tracked objects
from both the camera and LiDAR data. By combining the results from both sensor modali-
ties, the system leverages the strengths of each sensor, achieving more robust and accurate
multi-object tracking.

To integrate objects detected in the BEV map and tracked through Kalman filtering and
association into the camera frame for DeepSort, the following transformation process is ap-
plied:

e Transformation from BEV 3D Bounding Boxes to Camera Bounding Boxes:
Objects detected and tracked in the BEV map have 3D bounding box coordinates

(*BEV,YBEV, 2BEV, lBEV, WBEV, hBEV, UBEV), Where (2pEv, YBEV, 2BEV) denote the cen-
ter coordinates, Iggy, wppy, and hggy represent the length, width, and height of the
bounding box in BEV space, and Oggy is the orientation angle relative to the BEV
frame.

To transform these coordinates into the camera frame:

Leam ITBEV tx7cam

Yeam | = Rcam—BEV YpEv | + ZSy,cam

Zeam ZBEV tz,cam
tw,cam

where Reym—ppy is the rotation matrix and | ¢, cem | is the translation vector from
tz,cam
BEV to camera coordinates.
¢ Bounding Box Projection:

Once in the camera frame, project the 3D bounding box onto the 2D image plane using
the camera intrinsic matrix K to obtain the 2D bounding box coordinates

(ucam I vcam I lcam7 wcam7 900/”1)

u xcam/ Zeam
cam
( ) =K Yeam / Zeam

UCCL’I’)’L 1

e Feed to DeepSort:

Finally, the projected 2D bounding box coordinates along with the associated track ID
and confidence score are fed into DeepSort for integrated multi-object tracking across
both camera and LiDAR data. DeepSort utilizes these inputs to refine track associa-
tions and maintain consistent object identities over time, leveraging the complementary
strengths of both sensor modalities.

The figure below demonstrates how the Kalman Filter predicts and updates based on
new measurements, and how the fusion process integrates detections from camera and LiDAR
into a unified tracking framework.
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Figure 3.10: integrates detections from camera and LiDAR into a unified tracking framework

3.6 Algorithm of the Proposed Approach

The proposed approach for multi-object tracking integrates camera and LiDAR data to lever-
age the strengths of each sensor, achieving robust and accurate tracking. This section outlines the
methodology used in our approach, which includes data processing from both camera and LiDAR
sensors, object detection, Kalman Filter-based tracking, and the fusion of results from both sensors.

The process begins with the initialization of sensors and the perception module. The system
continuously processes each frame until the last frame is reached. The camera captures the scene,
and YOLOVS, a state-of-the-art object detection algorithm, is applied to detect 2D objects. These
detected objects are compiled into a measurement list and processed through the Kalman Filter
for state prediction. DeepSORT is then used to track these 2D objects across frames.

Simultaneously, the LIDAR sensor captures the environment to produce a point cloud, which is
transformed into a Bird-Eye-View (BEV) map for easier processing. Complex YOLO is applied to
this BEV map to detect 3D objects. Similar to the camera data, these detected objects are compiled
into a measurement list and processed through the Kalman Filter for state prediction and tracking.

An association matrix is constructed to match detected objects to existing tracks, ensuring
continuity of tracking across frames. The Kalman Filter updates the state of each track based on
new measurements, and the system manages the track list by handling the creation, maintenance,
and deletion of tracks as objects enter and exit the scene.

The final step involves fusing the tracked objects from both the camera and LiDAR data. By
combining the results from both sensor modalities, the system achieves a more robust and accurate
multi-object tracking solution. The detailed steps of the algorithm are as follows:
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Algorithm 1 Multi-Object Tracking Based on Camera and LiDAR Fusion

Input:
Camera images I;
LiDAR point clouds P,
Output:
Fused object tracks with 3D bounding boxes
Step 1: Sensors and Perception Module Initialization
Initialize sensors and perception module.
while last frame not reached do
Step 2: Camera Data Processing
Capture scene with the camera.
B, < YOLOVS8(1;) {Detect 2D objects in camera images}
Compile detected objects into a measurement list M.,.
Step 3: Kalman Filter (KF) Estimation for Camera
Predict the state of each detected object using the Kalman Filter.
Initialize state and covariance matrices based on the first measurement.
Predict where the object will be after time At.
Compare the predicted location with the new measurement.
Update the location based on the predicted and measured values.
T. < DeepSORT(M,) {Track 2D objects}
Step 4: LiDAR Data Processing
Capture the environment with the LiDAR sensor to produce a point cloud F;.
Transform the point cloud data into a Bird-Eye-View (BEV) map:

cosf —sinf 0 t,
P sinf cosf 0 ¢, P,
1 t,
0

0 0
0 0

By < Complex YOLO(Pye,) {Detect 3D objects in BEV map}

Compile detected 3D objects into a measurement list M;.

Step 5: Kalman Filter Prediction for LIDAR

Predict the states of detected 3D objects based on the measurement list M.
Create a list of predicted tracks 7.

Step 6: Association

Construct an association matrix to match detected objects to existing tracks.

Update the state of each track based on association results and new measurements.

Step 7: Track Management
Manage the track list, handling creation, maintenance, and deletion of tracks.
Step 8: Fusion of Camera and LiDAR Results
Trusea < Fuse(T., T;) {Combine 2D and 3D tracks for final fusion}
end while
Transition the vehicle to a parked state and end the process.
Return: Fused object tracks with 3D bounding boxes =0
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3.7 Lane Tracking Using LaneNet for Enhanced Multi-
Object Tracking

Lane tracking is a crucial component in autonomous driving, providing valuable information
for object localization, obstacle detection, and avoidance. LaneNet [4], a real-time lane detection
network, can significantly enhance our sensor fusion algorithm by integrating precise lane informa-
tion into the object detection and tracking pipeline. This integration enables more accurate and
reliable multi-object tracking and enhances the system’s ability to perform obstacle detection and
avoidance.

Integration of LaneNet with Sensor Fusion:

1. Lane Detection with LaneNet: LaneNet processes the camera images to detect lane
lines in real-time. It utilizes a two-stage architecture, where the first stage extracts features from
the image and the second stage localizes lane pixels using learnable anchors and offsets. The output
is a set of lane boundaries and their corresponding confidence scores.

2. Object Detection and Tracking Enhancement: By combining lane information from
LaneNet with object detections from YOLOv8 and Complex YOLO, the system can more accu-
rately localize objects relative to the detected lanes. This spatial context improves the accuracy of
object tracking, especially in dynamic environments where objects may temporarily occlude each
other or move unpredictably.

3. Obstacle Detection and Avoidance: With precise lane information, the system can
better predict potential collisions and plan avoidance maneuvers. The fusion of lane data with
object tracks helps the vehicle understand its surroundings more comprehensively, leading to safer
and more efficient navigation.

The detailed steps of the algorithm are as follows:
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Algorithm 2 LaneNet Integration for Enhanced Multi-Object Tracking

Input:
Camera images I;
LiDAR point clouds P,
Sensor fusion results T'yseq
Output:
Fused object tracks with 3D bounding boxes
Lane boundaries
Step 1: Sensors and Perception Module Initialization
Initialize sensors and perception module.
while last frame not reached do
Step 2: Camera Data Processing
Capture scene with the camera.
B, < YOLOVS8(I;) {Detect 2D objects in camera images}
Compile detected objects into a measurement list M.
Step 3: Lane Detection with LaneNet
Lanes < LaneNet(1;) {Detect lane boundaries}
Step 4: Fusion with Sensor Data
Integrate Lanes with sensor fusion results T, seq-
Step 5: Enhanced Object Tracking
Utilize integrated lane and object data for more accurate tracking.
Step 6: Obstacle Detection and Avoidance
Utilize fused data to predict potential collisions and plan avoidance maneuvers.
Update the world model with the fused object tracks and lane boundaries.
end while
Return: Fused object tracks with 3D bounding boxes and lane boundaries =0

3.8 Conclusion

In this chapter, we have presented our proposition of sensor fusion for enhanced multi-object
tracking in autonomous driving systems. The proposed approach integrates data from both camera
and LiDAR sensors, leveraging their complementary strengths to achieve robust and accurate
object tracking. Our methodology involves the use of advanced object detection algorithms such
as YOLOVS for camera data and Complex YOLO for LiDAR data, coupled with Kalman Filter-
based tracking and DeepSORT for maintaining track continuity across frames. The fusion of
camera and LiDAR data results in more reliable object localization and tracking, significantly
improving the system’s performance in dynamic environments.

Furthermore, we have discussed the integration of LaneNet for lane tracking, which provides
additional contextual information for object detection and tracking. By incorporating precise lane
boundaries into our sensor fusion algorithm, we enhance the system’s ability to perform obstacle
detection and avoidance. This integration allows for more accurate object localization relative to
the detected lanes, improving safety and efficiency in navigation.
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Results and Evaluation

Chapter 4

Results and Fvaluation

4.1 Introduction

In this chapter, we focus on the testing and evaluation of our sensor fusion algorithm. This
phase is crucial for measuring the performance and effectiveness of our approach in multi-object
tracking using camera and LiDAR data. The evaluation process ensures that the algorithm meets
the desired accuracy and robustness required for real-world applications in autonomous driving.
We will discuss the tools and frameworks used for development, followed by detailed evaluation
metrics and datasets employed to assess the algorithm’s performance.

4.2 Tools and Frameworks Used

The development and evaluation of our algorithm were supported by several tools and frame-
works:

e Visual Studio Code: Used for coding and debugging the algorithm. Its extensive plugin
ecosystem and integrated terminal made it an ideal choice for development [63].

e PyCharm IDE: Provided an integrated environment for development and testing, especially
useful for its advanced code analysis, graphical debugger, and test runner [64].

e Jupyter Notebook: Used for interactive data analysis and visualization. Its ability to
combine code execution with rich text annotations made it ideal for exploratory analysis and
visualization tasks [65].

75
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e Python: Programming language used for algorithm implementation, chosen for its simplicity
and extensive libraries for machine learning and data processing [66].

e NumPy: Fundamental package for numerical computations in Python. It was used for
handling arrays and performing mathematical operations required in our algorithm [67].

e TensorFlow: Deep learning framework used for training neural networks. Its comprehensive
ecosystem allowed for efficient model development and deployment [68].

e PyTorch: Deep learning framework used for building and training models. Its dynamic
computation graph and ease of use made it suitable for rapid prototyping and research [69].

These tools and frameworks facilitated efficient development and rigorous testing of our sensor
fusion algorithm.

4.3 Metrics of Evaluation

To evaluate the performance of our algorithm, we utilized the following metrics and datasets:

1. KITTI Dataset: The KITTI Vision Benchmark Suite [20] offers an excellent set of datasets
for automotive applications such as car and pedestrian recognition. These datasets include
optical flow, stereo vision, visual odometry, SLAM, and object detection. KITTI object de-
tection dataset is one of the most common datasets for driving scenes collected in the daytime
and under favorable weather conditions. This dataset contains 7,481 training samples and
7,518 testing samples for both images (with a resolution of 1242 x 375) and point cloud. Like
most other studies, the training dataset is divided into a training part (3,712 samples) and a
validation part (3,769 samples). In addition to the easy-to-use dataset formats, Geiger, Lenz,
and Urtasun provided a vast amount of information on every labeled object and provided
high-quality images. They used the annotation files to apply a filter based on distance, car
type, and orientation to retrieve a total of 1500 rear-view car images. As shown in ,
the camera and the LiDAR utilize two distinct coordinate systems (red for the camera and
blue for the LiDAR). The directions (X,Y, Z) are set as (rightward, downward, forward)
and (forward, leftward, upward) from the camera and LiDAR, respectively. All ground-truth
data is delivered in camera coordinates, but it is not difficult to convert from camera to
LiDAR coordinates and vice versa by using the calibration information. As can be seen in
Figure @, the sensors (red) are positioned with respect to the vehicle body according
to their dimensions. The measurements are carried out according to the road surface and
the height above the ground is indicated in green. The blue indicates transformations among
the sensors.

2. KITTI MOT Benchmark: Specifically, the Multiple Object Tracking (MOT) benchmark
within the KITTI dataset, which includes standardized evaluation metrics for tracking perfor-
mance. This benchmark provides a standardized set of metrics to compare different tracking
algorithms objectively.

3. Evaluation Metrics:
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Figure 4.1: KITTI vehicle setup. @) Fully equipped vehicle (Volkswagen Passat B6); (]EI) Setup
bird’s eye view (BEV).

e HOTA (Higher Order Tracking Accuracy): HOTA [7(]] combines detection and
association accuracy to provide a single unified metric for tracking performance. It
balances the trade-off between detection accuracy and association accuracy.

HOTA = v/DetA x AssA

(Higher HOTA indicates better performance)

¢ MOTA (Multiple Object Tracking Accuracy): MOTA [7I] measures the ratio
of correctly tracked objects, considering false positives, false negatives, and identity

switches.
Zt(FNt + F.Pt + ID_SU}t)

2, GTy
(Higher MOTA indicates better performance)

MOTA =1 —

where F'N; is the number of false negatives, F'P; is the number of false positives, I D_sw;,
is the number of identity switches, and GT; is the number of ground truth objects at
time t.

e MOTP (Multiple Object Tracking Precision): MOTP [72] indicates the local-
ization precision of tracked objects by measuring the average distance between the
predicted and the ground truth positions.

Zi,t di’t
Dot

(Higher MOTP indicates better precision)

MOTP =

where d;; is the distance between the predicted and ground truth positions for object 7
at time ¢, and ¢; is the number of matches at time t.
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DetA (Detection Accuracy): Detection accuracy assesses the accuracy of object
detection, considering both true positives and false negatives.

TP

DetA — —
¢ TP+ FN

(Higher DetA indicates better detection accuracy)

where T'P is the number of true positives and F'N is the number of false negatives.

AssA (Association Accuracy): Association accuracy evaluates the accuracy of ob-
ject associations across frames.

TP

AgsA = — -~
ST TP Y ID sw

(Higher AssA indicates better association accuracy)

where I D_sw is the number of identity switches.

DetRe (Detection Recall): Detection recall measures the proportion of correctly
detected objects out of the total number of ground truth objects.

TP

DetRe — ——+
ethe =75 TN

(Higher DetRe indicates better recall)

DetPr (Detection Precision): Detection precision indicates the accuracy of detected
object positions by measuring the proportion of true positives out of the total detected

objects.
TP

TP+ FP
(Higher DetPr indicates better precision)

DetPr =

where F'P is the number of false positives.

AssRe (Association Recall): Association recall measures the proportion of correctly
associated objects out of the total number of ground truth associations.

TPassoc

A —
SR = B+ FNowe

(Higher AssRe indicates better recall)

AssPr (Association Precision): Association precision evaluates the precision of ob-
ject associations by measuring the proportion of true positive associations out of the
total detected associations.

TP(LSSOC
TPCLSSOC + FP(ISSOC

AssPr =

(Higher AssPr indicates better precision)
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e LocA (Localization Accuracy): Localization accuracy assesses the accuracy of ob-
ject localization, measuring the average distance between predicted and ground truth
object positions.

Zz’,t di,t
Zi,t 1

(Higher LocA indicates better localization accuracy)

LocA =

These metrics provide comprehensive insights into the algorithm’s performance in different
aspects of object detection and tracking. Evaluating our algorithm against these metrics
helps identify its strengths and areas for improvement, ensuring robust performance in real-
world scenarios.

This chapter will present the results of our algorithm’s evaluation based on these metrics and

datasets, highlighting its effectiveness and reliability in multi-object tracking using camera and
LiDAR data.

4.4 Results

In this section, we present the results of our proposed approach using the KITTI Tracking
dataset. The process begins with acquiring the left camera images and LiDAR Velodyne binary
files from the dataset. We detect objects in the camera images using YOLOvVS8 and track them
with the DeepSORT tracker. The figure below shows the results of detection and tracking on
the left camera image data:

(a) Left camera image data results: object de- (b) Left camera image data results: object de-
tection and tracking in sequence data 0 tection and tracking in sequence data 1

Figure 4.2: Left camera image data results: object detection and tracking in sequence data 0 And
1.

Next, we perform point cloud extraction as shown in Figure [4.3
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The point cloud is then converted into a BEV map with three channels: intensity, height, and
density, resulting in an RGB BEV map as illustrated in the figure f.4pelow:



Figure 4.4: Point cloud conversion to BEV map with RGB channels (intensity, height, and density).

Following the BEV map creation, we perform 3D object detection using Complex YOLO. The
results of 3D object detection are shown in the following figure [£.5}




Figure 4.5: 3D object detection results

After obtaining the 3D detection results, we initialize our LiDAR sensor instance with cali-
bration matrices and initialize our Kalman filter with the TrackManager. We then generate our
measurement list using the Measurement class, which includes measurement values, covariance,
timestamp, and sensor information. The Kalman filter prediction is performed for each track,
followed by the association and update of the predicted state with the new measurement. Finally,
we plot the results, as illustrated in the figure below, which demonstrates the results of our 3D
object tracking:
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Figure 4.6: Results of 3D object tracking

x  confirmed track |

% initialised track
tentative track

. measurement

After obtaining the tracking results, we perform a transformation from 3D LiDAR coordinates
to 2D coordinates to feed the missed tracking of DeepSORT with the confirmed tracks of LIDAR
detection. The figure below illustrates the fusion results of the two trackers:
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(b) Fusion results of camera and LiDAR trackers in sequence data 1

Figure 4.7: Fusion results of camera and LiDAR trackers.

As observed in the results, the fused tracking outputs shown in the images are significantly
enhanced compared to the initial results depicted in Figure[£.2] The issues with missed or incorrect
tracking have been rectified, resulting in more accurate and consistent tracking. This fusion process
effectively enhances the DeepSORT tracker, providing superior performance compared to using

only camera-based tracking.

4.5 Results Evaluation in KITTI MOT Evaluation

With the detection, tracking, and fusion processes completed, we proceed to evaluate our results
using the KITTI Multiple Object Tracking (MOT) Evaluation. This evaluation will provide a
comprehensive assessment of the performance and accuracy of our multi-object tracking algorithm.

From all 20 test sequences, our benchmark computes the HOTA tracking metrics (HOTA,
DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA, MOTA, MOTP). The tables below show all of
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these metrics for cars and pedestrians.

4.5.1 Car Benchmark

Table 4.1: Evaluation Metrics for Car Benchmark

Benchmark | HOTA| DetA | AssA | DetRel DetPr| AssRe| AssPr| LocA | MOTA MOTPR

CAR 67.566 | 64.103 | 71.415 | 66.337 | 88.451 | 73.394 | 90.858 | 88.154 | 74.923 | 86.533

HOTA (67.566): The Higher Order Tracking Accuracy (HOTA) score is relatively high,
indicating good overall tracking performance.

DetA (64.103): The detection accuracy suggests that the system is reasonably accurate in
identifying cars.

AssA (71.415): The association accuracy shows strong performance in maintaining the
identity of detected cars across frames.

DetRe (66.337): The detection recall is moderate, meaning that the system successfully
detects a significant portion of cars.

DetPr (88.451): The detection precision is high, implying that most of the detected objects
are actually cars.

AssRe (73.394) & AssPr (90.858): The recall and precision for association indicate that
the system effectively tracks cars once they are detected.

LocA (88.154): The localization accuracy is high, suggesting that the detected cars’ posi-
tions are accurately estimated.

MOTA (74.923): The Multiple Object Tracking Accuracy (MOTA) score reflects a solid
tracking performance, considering false positives, false negatives, and identity switches.

MOTP (86.533): The Multiple Object Tracking Precision (MOTP) is high, indicating
precise location estimates for the tracked cars.
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Figure 4.8: Car Plot Results
4.5.2 Pedestrian Benchmark
Table 4.2: Evaluation Metrics for Pedestrian Benchmark
Benchmark | HOTA | DetA | AssA | DetRe | DetPr | AssRe | AssPr | LocA | MOTA | MOTP
Pedestrian 70.617 | 67.843 | 73.650 | 70.740 86.585 76.209 | 88.739 | 86.869 81.042 84.784

e HOTA (70.617): The HOTA score for pedestrians is slightly higher than for cars, indicating
very good overall tracking performance.

e DetA (67.843): The detection accuracy for pedestrians is better than for cars, showing
reliable identification of pedestrians.

e AssA (73.650): The association accuracy is robust, demonstrating effective tracking of
pedestrian identities over time.

e DetRe (70.740): The detection recall is higher for pedestrians, suggesting the system
detects a larger portion of pedestrians.

e DetPr (86.585): The detection precision for pedestrians is slightly lower than for cars but
still indicates high precision.
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e AssRe (76.209) & AssPr (88.739): Both recall and precision for association are high,
ensuring consistent tracking of pedestrians.

e LocA (86.869): The localization accuracy is high, similar to the results for cars, showing
precise positioning of detected pedestrians.

e MOTA (81.042): The MOTA score for pedestrians is higher than for cars, indicating better
overall tracking performance when considering detection and association errors.

e MOTP (84.784): The MOTP score is slightly lower for pedestrians but still reflects good
location precision for the tracked objects.
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0.6 1
v
o
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0.4 1 —— DetA (0.68)
—— AssA (0.74)
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Figure 4.9: Pedestrian Plot Results

4.5.3 Discussion

The evaluation metrics indicate that the sensor fusion approach performs well for both cars
and pedestrians, with particularly strong performance in tracking pedestrians. The high precision
in detection and association shows that the system is effective in distinguishing between different
objects and maintaining their identities over time. The slightly lower detection recall suggests
room for improvement in detecting all relevant objects, especially for cars. Overall, the results
demonstrate the capability of the sensor fusion system to provide reliable and precise tracking in
dynamic environments.
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Table 4.3: Comparative Evaluation Metrics for Car Benchmark

Benchmark HOTA | DetA | AssA | DetRe | DetPr | AssRe | AssPr | LocA

Our Results 67.566 | 64.103 | 71.415 | 66.337 | 88.451 | 73.394 | 90.858 | 88.154
DeepFusionMOT[54] | 75.46% | 71.54% | 80.05% | 75.34% | 85.25% | 82.63% | 89.77% | 86.70%
JMTOD|[53] 70.73% | 73.45% | 68.76% | 78.67% | 84.02% | 72.46% | 88.02% | 86.95%
pnasMOT[73] 67.32% | 77.69% | 58.99% | 81.58% | 85.81% | 64.70% | 80.74% | 86.94%

4.6 Hardware Implementation

Despite not having a 3D LiDAR for real-world evaluation of our proposed model and assessing
its real-time capabilities, we can still conduct experiments and develop the first prototype of our
self-driving car using the hardware currently available to us.

4.6.1 NVIDIA Jetson Nano

Figure 4.10: NVIDIA Jetson Nano [§]

The NVIDIA Jetson Nano is a small, powerful computer designed for Al and edge computing
applications. It is ideal for running deep neural networks and processing data from various sensors

in real-time.
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4.6.2 Raspberry Pi 4

Figure 4.11: Raspberry Pi 4 [9]

The Raspberry Pi 4 is another popular single-board computer that supports a variety of applica-
tions, including robotics and IoT projects. It offers sufficient computing power for our self-driving
car prototype.

4.6.3 Logitech C170 5MP Camera

Figure 4.12: Logitech C170 5MP Camera [10]

The Logitech C170 is a high-resolution camera capable of capturing detailed images and video,
essential for vision-based tasks such as lane detection and object recognition.
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4.6.4 Ultrasonic HC-SR04 Sensor

Figure 4.13: Ultrasonic HC-SR04 Sensor [11]

The HC-SR04 ultrasonic sensor provides distance measurements based on sound waves, suitable
for detecting obstacles and assisting in navigation and collision avoidance.

4.6.5 DC-DC Converter Step-Down 5A

Figure 4.14: DC-DC Converter Step-Down 5A [12]

The DC-DC converter steps down voltage efficiently, providing stable power to various compo-
nents of our self-driving car prototype.
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4.6.6 Motor Driver L298N

Figure 4.15: Motor Driver L298N

The L298N motor driver controls the speed and direction of DC motors in our prototype,
enabling precise movement and maneuverability.

4.6.7 1/16 Scale RC Car Conquer

Figure 4.16: 1/16 Scale RC Car Conquer
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The 1/16 scale RC car serves as the chassis for our self-driving car prototype, providing a
platform for integrating all components and testing functionalities.

4.6.8 First Prototype V1

Combining all hardware components together, we have successfully developed the first proto-
type of our self-driving car. The prototype integrates the following key components:

e NVIDIA Jetson Nano: for onboard computation and processing of sensor data.
e Raspberry Pi 4; for coordinating overall decision-making and control.

e Logitech C170 5MP Camera: for visual perception tasks such as object detection and
lane tracking.

e Ultrasonic HC-SR04 Sensor:for close-range obstacle detection and avoidance.
e DC-DC Converter Step-Down 5A: to ensure stable power supply to all components.
e Motor Driver L298N: for controlling the speed and direction of the DC motors.

e 1/16 Scale RC Car Conquer: serving as the physical platform for the prototype.
The software stack running on the NVIDIA Jetson Nano includes advanced algorithms for:

e Object detection using YOLOvVS: for camera images and Complex YOLO for LiDAR
point clouds.

e Lane tracking and detection: using deep learning-based models ”LaneNet”.

e Obstacle avoidance strategies: based on sensor fusion and real-time environmental per-
ception.

The NVIDIA Jetson Nano processes sensor data from cameras and ultrasonic sensors, combin-
ing them to create a comprehensive understanding of the vehicle’s surroundings. It then computes
the optimal steering angle and speed based on these inputs.

The decision outputs from the Jetson Nano, including steering angle and speed commands,
are transmitted to the Raspberry Pi 4. The Raspberry Pi 4 handles high-level decision-making
processes, coordinating navigation, route planning, and real-time adjustments based on the envi-
ronmental data received from the Jetson Nano.

This integration allows our prototype to autonomously navigate environments, make decisions
in real-time, and demonstrate fundamental capabilities of autonomous driving technology.



(a) Front side of our self-driving car prototype (b) Back side of our self-driving car prototype

Figure 4.17: Our self-driving car prototype. @ Front side view. (IEI) Back side view.

4.7 Conclusion

In this chapter, we evaluated the performance of our proposed sensor fusion algorithm using
the KITTI dataset. The results demonstrate that our approach significantly enhances object
detection and tracking accuracy by effectively integrating data from both camera and LiDAR
sensors. By employing advanced object detection methods such as YOLOv8 and Complex YOLO,
and combining them with the DeepSORT tracking framework and Extended Kalman Filters, we
achieved robust and reliable tracking performance.

Our evaluation metrics showed substantial improvements in key performance indicators, in-
cluding HOTA, DetA, AssA, and LocA, confirming the efficacy of our fusion approach. This com-
prehensive evaluation underscores the potential of our sensor fusion solution to improve the safety
and reliability of autonomous vehicles, paving the way for future advancements in autonomous
driving technology.
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General Conclusion and Perspectives

The integration of sensor fusion in autonomous vehicles is crucial for ensuring safety and re-
liability, which are fundamental for the future of autonomous driving. Sensor fusion combines
data from various sensors to provide a comprehensive understanding of the vehicle’s surroundings,
enabling precise and accurate object detection, tracking, and decision-making processes. This
technology is vital for the development of autonomous vehicles that can operate safely in diverse
and dynamic environments.

In our project, we proposed a novel sensor fusion algorithm that leverages both camera and
LiDAR data to enhance object detection and tracking accuracy. Our approach integrates state-of-
the-art object detection algorithms, YOLOvVS for camera images and Complex YOLO for LiDAR
point clouds, with a tracking framework using DeepSORT and Kalman Filters. The evaluation
of our approach on the KITTI dataset demonstrated significant improvements in tracking perfor-
mance, showcasing the effectiveness of our sensor fusion method. The comprehensive evaluation
metrics, including HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA, MOTA, and MOTP,
validate the robustness and accuracy of our proposed solution.

Looking ahead, there are several perspectives for enhancing our algorithm. One avenue is to
incorporate more advanced object detection methods to achieve even more robust tracking, as
accurate detection is the cornerstone of reliable tracking systems. Additionally, integrating our
fusion algorithm with Simultaneous Localization and Mapping (SLAM) techniques could further
improve the system’s ability to navigate and understand complex environments.

However, we faced several difficulties during this project, particularly related to hardware lim-
itations. The lack of high-performance hardware for training and validating our models posed
significant challenges, as did the absence of a 3D LiDAR sensor for real-world testing and real-
time application. Addressing these hardware constraints is essential for advancing our research
and implementing our solutions in practical autonomous vehicle systems.

In conclusion, our research highlights the critical role of sensor fusion in autonomous vehicles
and presents a promising solution for improving object detection and tracking. By continuing to
refine our methods and addressing hardware limitations, we can contribute to the development of
safer and more reliable autonomous driving technologies.
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Abstract

The development of autonomous vehicles is heavily reliant on the advancements in artificial intelli-
gence (Al) and sensor fusion technologies. This project, a collaboration between the Cerist Research
Center and the University of Bejaia, addresses the challenge of integrating data from multiple sen-
sors to improve object detection and tracking accuracy. By leveraging state-of-the-art algorithms
such as YOLOvS for camera images and Complex YOLO for LiDAR point clouds, combined with
the DeepSORT tracker and Kalman Filters, we propose a robust sensor fusion algorithm. Our
solution has been evaluated using the KITTI dataset, showing significant improvements in tracking
performance. The results demonstrate the potential of our approach to enhance the safety and
reliability of autonomous vehicles.

Keywords: Autonomous vehicles, artificial intelligence, sensor fusion, object detection, track-
g, YOLOvS, Complex YOLO, DeepSORT, Kalman Filters, KITTI dataset.

Résumé

Le développement des véhicules autonomes repose fortement sur les avancées de [intelligence arti-
ficielle (IA) et des technologies de fusion de capteurs. Ce projet, une collaboration entre le Centre
de Recherche Cerist et I’Université de Bejaia, traite du défi de l’intégration des données provenant
de plusieurs capteurs pour améliorer la précision de la détection et du suivi des objets. En ex-
ploitant des algorithmes de pointe tels que YOLOu8 pour les images de caméra et Complex YOLO
pour les nuages de points LiDAR, combinés avec le tracker DeepSORT et les filtres de Kalman,
nous proposons un algorithme de fusion de capteurs robuste. Notre solution a été évaluée a l’aide
du jeu de données KITTI, montrant des améliorations significatives des performances de suivi.
Les résultats démontrent le potentiel de notre approche pour améliorer la sécurité et la fiabilité des
véhicules autonomes.

Mots-clés: Véhicules autonomes, intelligence artificielle, fusion de capteurs, détection d’objets,
suivi, YOLOvS, Compler YOLO, DeepSORT, filtres de Kalman, jeu de données KITTI.
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