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Introduction

Radio systems have undergone significant technological advancements in the past two

decades, propelled by the burgeoning number of subscribers, and evolving user expectations.

This evolution in mobile communication began with the introduction of analog cellular phones

in the first generation (1G), which offered only unsecured public voice services, and progressed

to the second generation (2G), which introduced digital systems capable of supporting both text

messaging and data services. [1]. To enhance data connectivity, third-generation (3G) was in-

troduced, offering videoconferencing capabilities and data transfer speeds of up to 200 Kbps.

The wideband code division multiple access (WCDMA) technique [2] was used to transmit

a large amount of data across a wide frequency band. The advent of fourth generation (4G)

has brought ultra-broadband Internet access with speeds of up to 100 Mbps [3, 4]. The 4G is

an IP (Internet Protocol)-based technology that uses the orthogonal frequency division multi-

ple access (OFDMA) technique [5]. Following the global success of 4G, the fifth generation

(5G) has been explored to introduce a progressive version of the 4G/IMT (International Mobile

Telecommunications)-Advanced standards [6].

5G and future networks are ushering in a new era of the Internet of Intelligence. The number

of interconnected devices is expected to be more than 30 billion by 2025 and exceed 100 bil-

lion by 2030, encompassing both human and machine communications e.g. drones, sensors,

vehicles [7] and an average achievable data rate of over 100 Mbps. In this context, several key

enabling technologies have been identified to successfully drive 5G including millimeter-wave

(mmWave) communications, multiuser Multiple-Input-Multiple-Output (MU MIMO), beam-

forming, [8–13] and energy harvesting [14].

The major challenge for 5G cellular networks is to provide seamless and widespread coverage,

along with dependable, long-lasting, and reliable connectivity. Inadequate coverage planning

can adversely affect the performance of low-latency applications. Wireless networks that rely

on mmWave communication are highly susceptible to attenuation caused by increased prop-

agation loss and shadow effects resulting from physical obstacles such as building blockages

and human-body blockages. These factors can significantly deteriorate coverage performance.

Therefore, it is important to consider the impact of both natural and man-made obstacles on the
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coverage area. Additionally, in emergency and hotspot scenarios or any temporary events that

necessitate the intensive use of network resources such as popular sporting events or outdoor

concerts, or following a natural disaster that requires emergency measures, the network becomes

congested. In such scenarios, it is necessary to guarantee a sufficient bandwidth to the majority

of users to provide continuous wireless connectivity promptly and efficiently, within reasonable

limits. Providing reliable coverage in remote and isolated regions is another complex challenge

that mobile networks must address.

Early efforts focused on improving network capacity and coverage by using ultra-dense small

cell networks [15–17] and device-to-device (D2D) communications [18, 19]. Nevertheless,

these solutions have limitations despite their benefits. For instance, ultra-dense small cell net-

works encounter challenges with backhaul, interference, and network modeling. Furthermore,

relying on terrestrial infrastructure can be challenging due to its high operational costs and

vulnerability to volatile environments [20]. To achieve successful D2D communication, better

frequency planning and resource utilization in cellular networks are required. Furthermore, the

short communication range of devices limits D2D communication performance.

Technological advances in recent years have enabled the rapid expansion of the use of UAVs

(Unmanned Aerial Vehicles) in various sectors including telecommunications, traffic monitor-

ing and remote sensing [21–25]. UAVs can be integrated into the wireless infrastructure as aerial

base stations (UBSs) [26, 27], a promising technological innovation that can assist ground base

stations (GBSs) in overcoming their shortcomings and enhancing coverage, thereby creating a

vertical heterogeneous network (VHetNet). The low cost, maneuverability, hovering capability,

and high line-of-sight (LoS) connectivity of UBSs enable them to enhance the quality of ser-

vices (QoS), can compensate for cell congestion during peak hours and emergency situations,

and compared to traditional fixed infrastructure, they provide autonomous and highly dynamic

architectures for new infrastructure, especially in isolated regions [28].

UBSs can play a crucial role in enabling mmWave communications by reducing propagation

loss. They can be viewed as flying antenna systems that facilitate MU-MIMO due to their

antenna positions and their ability to be deployed to specific locations on demand. In addition,

combining UBSs with beamforming techniques can greatly reduce the inter-cell interference

(ICI). However, the literature has not fully analyzed the incorporation of three-dimensional

(3D) beamforming techniques into UAV networks to enhance coverage by leveraging both the

vertical and horizontal dimensions [29].

The Wyner model used in the literature [30,31], is not an appropriate tool for network modeling.

Its oversimplification and one-dimensionality result in significant fluctuations in the signal-to-
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interference-plus-noise ratio (SINR) value. Stochastic geometry has become a powerful tool for

comprehensive mathematical modeling and performance analysis of cellular networks, due to

the irregularity of BS (Base Station) and user locations [32–36]. This approach helps to char-

acterize network operation and understand behavior across multiple spatial realizations, where

the network’s nodes are positioned based on a probability distribution. In cellular network mod-

eling, Andrews et al. [37] were the first to use stochastic geometry tools with a Poisson point

process (PPP)-based modeling method. This approach has since become popular for extracting

average network performance trends [38–41]. PPP-based modeling is commonly used in infi-

nite regions when there are no specific constraints on BS distribution. However, unlike GBSs,

which are deployed over a wide area, UBSs are typically deployed regionally, making the Bi-

nomial Point Process (BPP) model more appropriate for UBS use cases [42]. In the other hand,

Ying et al. [43] concluded that the Poisson cluster process (PCP) was the best stochastic model

for users in densely populated urban areas.

Therefore, a comprehensive study is necessary to accurately model systems, analyze coverage,

and develop new techniques for mmWave UAV-assisted cellular networks, which is the thesis’

primary focus.

Several research projects have focused on the stochastic geometry analysis of UAV-assisted

cellular networks. Alzenad and Yanikomeroglu [44] and Turgut et al. [45] analyzed the perfor-

mance of VHetNets in dense urban environments using the PPP-based model, however without

taking into account the blockage and shadowing effects. Wang et al. [46] analyzed the downlink

performance of UAV-assisted cellular networks considering probabilistic LoS/NLoS propaga-

tion without adopting any technology to boost the channel propagation. Cherif et al. [47] have

adopted a directive beamforming and have analyzed the coverage of an aerial user in VHet-

Nets. Although these aforementioned works assumed a finite number of UBSs modeled as BPP,

they did not analyze the coverage in congested networks. To the best of our knowledge, few

studies have addressed the 3D blockage effect. Recently, Tang et al. [48, 49] have analyzed

the 3D blockage effects of buildings in urban UAV networks. Nevertheless, the authors did not

consider the shadowing effects and they only considered the UBS tier in LoS propagation.

In this thesis, motivated by the aforementioned considerations, we elaborate tractable an-

alytical frameworks for analyzing downlink 3D mmWave cellular networks in two different

scenarios with a special focus on enhancing the 3D coverage probability and spectral efficiency.

To this end, we focus on three stochastic geometry tools: PPP for GBS location modeling, BPP

for UBS location modeling and PCP for user location modeling in hotspot areas. In particular,

two new 3D space models for UAV-assisted cellular networks are proposed that adopt various
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new technologies to mitigate interference and improve the performance. The analysis is con-

ducted under the Nakagami-m fading model, which incorporates both LoS and non-line-of-sight

(NLoS) transmissions. This approach allows for the capture of the distinctive characteristics of

mmWave communications, which are particularly susceptible to fading and path loss.

• The first model considers a single swarm of UBSs using 3D beamforming technology in

an isolated region where wireless connectivity cannot be achieved with traditional GBSs.

The number of simultaneously active UBSs reusing the same resource block is determined

to enhance the spectral efficiency.

• The second model introduces a 3D blockage model on VHetNets in hotspot areas where

the users are clustered around the GBSs. New formulas for LoS/NLoS probabilities were

developed that accurately characterizes the 3D blockage effects. The combination of

2D/3D beamforming and MU-MIMO technologies is adopted.

This thesis adopts the max-power association policy and includes a detailed derivation of the

probability density function (PDF) of distances, association probabilities, overall coverage prob-

ability, and spectral efficiency. Monte Carlo simulations are presented to confirm the accuracy

of our framework and the advantages of each proposed network model are investigated.

Thesis Organization

The remainder of this thesis is organized as follows

Chapter 1 provides an overview of existing coverage methods and network architectures. It

also discusses the advantages of UAV communications over terrestrial networks, as well as their

applications in academia and industry. Finally, it covers the tools, theorems, and applications of

stochastic geometry in the context of wireless communication.

Chapter 2 presents the criteria and factors to be considered when deriving the coverage proba-

bility based on the stochastic geometry theory. It encompasses a variety of channel propagation

models and their respective characteristics. Analytical and simulation methods for deriving and

evaluating performance are discussed.

Chapter 3 introduces the UBS swarm model, which is applied to a finite, isolated region. It

provides a comprehensive description of the new beamforming technologies that are included

in the model. The chapter describes the system model and assumptions, and then proceeds to

present the SINR formulation and a derivation of the relevant distance distributions.
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Chapter 4 proposes a VHetNet model in hotspot areas under the 3D blockage effects of build-

ings. It exposes the limitations of mmWave communications and their sensitivity to blockages

and details the MU-MIMO technology in UAV networks. The system model and the SINR

model were provided, and the derivation of the serving and interfering distance distributions

was presented.

Chapter 5 provides a performance analysis of the two proposed models. First, the derivation of

downlink coverage probability and spectral efficiency based on the association probabilities and

the conditional coverage probabilities is presented. Subsequently, the analytical results, which

have been validated by Monte Carlo simulations, are presented and discussed in detail.

Finally, general conclusions and perspectives are provided.
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Chapter 1. Deployment and Coverage Analysis of Heterogeneous Cellular Networks

1.1 Introduction

The deployment of the dense cellular infrastructure has led to the use of aerial networks or

non-terrestrial networks (NTN). The mobility and highly flexible deployment of UAV networks

enable them to enhance the probability of having a direct connection with users in the face of

obstacles. In comparaison to typical terrestrial networks, UAVs have the potential to enhance

wireless network coverage and increase capacity as needed. Additionally, they facilitate a mul-

titude of innovative applications.

In this chapter, we provide an overview of the coverage concept and the existing coverage meth-

ods in cellular networks. We then illustrate the different network architectures of 5G and future

networks, which include heterogeneous networks. Furthermore, we present the advantages and

limitations of aerial networks over terrestrial networks and discuss the fundamentals of UAV

communications and their applications in both academia and industry. Finally, we introduce

the various stochastic geometry tools (Point processes and random shape theory) used in the

literature for wireless communication modeling and describe the main mathematical properties

and the useful theorems that can be applied.

1.2 Coverage Concept in Cellular Networks

Several companies, such as DOCOMO, Ericsson, Vodafone, and Huawei, have made note-

worthy investments in the development of 5G networks. According to IMT-2020, 5G use cases

can be divided into three categories [50]

— Enhanced Mobile Broadband (eMBB): facilitate large-scale data applications and enable

support for extensive device and user capacity for wireless broadband services.

— Massive Machine Type Communication (mMTC): enables a significant number of wireless

device connections, while also enhancing energy efficiency and reducing the cost per device.

— Ultra-Reliable Low Latency Communication (URLLC): such as unmanned vehicles and

smart factories, are capable of maintaining full coverage and operating times.

The coverage network is provided through BS antennas located worldwide, which allow a wire-

less telecommunications to reach end-users [51]. The concept of cellular networks allows for

efficient use of the radio spectrum and enables seamless handover as users move between cells,

ensuring continuous connectivity [52]. The coverage of each BS is determined by its configu-

ration and extends to a particular surrounding area. The range of the BS serving area is strongly
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Table 1.1: 5G’s main performance indicators [53].

Performance indicators Requirement Category

User experienced Data Rate 50 Mbps (UL), 100 Mbps (DL) eMMB

Peak Data Rate 10 Gbps (UL), 20 Gbps (DL) eMMB

Spectral Efficiency 15 bit/s/Hz (UL), 30 bit/s/Hz (DL) eMMB

Connection Density 106 devices/Km2 mMTC

Latency 4 ms for eMMB, 1 ms for URLLC eMMB, URLLC

Reliability 1-10−5 URLLC

Mobility up to 500 Km/h eMMB

affected by the BS’s transmit power, carrier frequency, antenna tilt, deployment type, and envi-

ronmental conditions. Moreover, it is important to consider the impact of natural and man-made

obstacles, such as trees, buildings, hills, and mountains, in the coverage area.

The cell densification in 5G terrestrial networks requires an expensive installation with a high

degree of latency. Therefore, providing reliable coverage remains an important challenge to be

addressed. Technical requirements and deployment scenarios are important considerations for

5G technical concept. For instance, in high population density areas, cells are usually smaller

and have less coverage and significant traffic capacity is crucial, while mobility may be less of

a priority. Furthermore, the user data rate should be higher than that of wide area coverage.

Conversely, in sparsely populated rural areas, cells tend to be larger and have wider coverage. It

is important to note that as cell size decreases, the quantity of data sent between BSs increases.

Table 1.1 lists the key performance indicators required for 5G cellular networks.

1.3 Coverage Methods in Cellular Networks

Two distinct approaches may be employed to investigate the coverage problem in cellular

networks: heuristic methods and stochastic geometry-based methods.

1.3.1 Heuristic Methods

Heuristic approaches are employed to identify approximate solutions to complex prob-

lems, based on practical procedures or rules of thumb. These methods include "heuristic al-

gorithms," which can be applied to optimize the service coverage of cellular networks. This

can be achieved by optimizing the BS locations, the minimum number of BSs, the resource

allocation, the handover, or by dynamically adjusting the transmit power levels of BSs and
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devices. Among the various metaheuristic methods, we find the simulated annealing method,

which involves improving a single solution. In contrast, population-based metaheuristics, such

as particle swarm algorithms (PSO), genetic algorithms (GA) and grey wolf optimizer (GWO),

involve a set of solutions called a population, that evolve in parallel as iterations progress to ex-

ploit the search space [54]. Heuristic methods are distinguished by their simplicity compared to

complex mathematical models. However, their ability to come up with the best solution may be

limited, leading to suboptimal results. Furthermore, the initial parameters may influence their

performance.

1.3.2 Stochastic Geometry Based Methods

Stochastic geometry is a useful discipline of applied probability for investigating stochas-

tic processes and random phenomena. It is a widely used tool in cellular network analysis, it

applies mathematical models and relevant statistical techniques to analyze and evaluate random

spatial models generated from Point Process (PP) [55–57] or random shape theory [58]. The

stochastic geometry-based methods facilitate the comprehension of network behavior by aver-

aging over all network topologies observed from a generic node, weighted by their probability

of occurrence. The distribution of nodes in a wireless network (e.g., BSs, access points, user

equipment, buildings etc.) is random in space or Euclidean plane and the locations’ geometry of

the nodes is critical as it affects interference, coverage performance, and determines the signal-

to-interference-plus-noise ratio (SINR) at the receiver [32]. The positions of the nodes can be

viewed as a realization of certain PPs, therefore, the stochastic geometry tools are perfectly

suited for modeling cellular networks to estimate coverage probability performance.

In complex network contexts, stochastic geometry-based methods are more appropriate for

comprehensive analysis and optimization, as they frequently yield more accurate estimates of

coverage probability in cellular networks in comparison to heuristic methods.

In this thesis, we focus on applying the stochastic geometry-based methods. Section 1.7 pro-

vides a detailed analysis of the available stochastic geometry tools.

1.4 Heterogeneous Networks

This section introduces 5G and future network architectures. It focuses on those archi-

tectures with the greatest potential for coverage and QoS. Heterogeneous Networks (HetNets)

are composed of multiple nodes that operate simultaneously in frequency bands with varying

transmission power levels, capabilities, and coverage areas.
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Figure 1.1: Terrestrial heterogeneous network architecture composed of a macro, micro, pico, and femto cell.

1.4.1 Terrestrial Heterogeneous Networks

Terrestrial HetNets (THetNets) offer a distinct advantage over traditional homogeneous

terrestrial networks, namely its capacity to facilitate small-cell cooperation within macrocell

networks. This enhances the user QoS and increases the possibility of geographic resource

reuse. The most straightforward approach to enhancing coverage is the deployment of small

cells [17]. This can be achieved by incorporating low-power BSs into the network to address

areas that remain uncovered by the macro network. The outcome is a substantial THetNet

comprising both large macro cells and smaller cells. The THetNet is comprised of macro,

micro, pico, and femto cells, each of which is based on the GBS power, as shown in Figure 1.1.

• Macrocell networks : They are capable of providing radio coverage through the use of

a high-power BS, which is a common feature of contemporary communication systems.

Macro BSs are characterized by sectored antennas, a long transmission distance and a

wide coverage area, with cell radii that can extend from approximately 1 km to 25 km

[59]. Macro BSs can be used in both rural and urban areas.

• Microcell networks : Low-power BSs are used to serve microcell networks, which are

typically deployed to increase the network capacity and cover both indoor and outdoor

dense areas. The microcells have a transmission radius that is more limited than that of

the macro BSs. This typically ranges from a few meters to approximately one kilometer.
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• Picocell networks : Picocells are defined by their omnidirectional antennas and a max-

imum power output of 130 milliwatts. Additionally, they exhibit a maximum cell radius

of 200 meters. These networks are typically used in outdoor hotspots or office buildings.

In addition, they are widely used in Aircraft and Marine.

• Femtocell networks : also called home BSs, they comprise small BSs that can be de-

ployed at home or in a small business for very short-range coverage, less than 30 me-

ters [59]. Femtocells feature omnidirectional antennas with a transmit power of approxi-

mately 50 milliwatts. The installation of femtocells is significantly more straightforward

and more cost-effective than that of macrocells.

1.4.2 Vertical Heterogeneous Networks

5G and future cellular networks are anticipated to comprise a combination of traditional

BSs (including macrocells and small cells ...) and aerial BSs operating simultaneously, which

we refer to as vertical heterogeneous networks (VHetNets). This is driven by advancements in

cellular technologies and the widespread deployment of dense cellular infrastructure. Further-

more, future networks are also expected to integrate terrestrial, aerial, and satellite networks,

thereby creating a novel, multi-layered VHetNet architecture, as illustrated in Figure 1.2.

Aerial network

Satellite network

Terrestrial Network

Figure 1.2: Multi-layered VHetNet architecture comprised of aerial, satellite and terrestrial networks [60].
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UAVs also known as drones are aircraft that can be controlled remotely or programmed to oper-

ate autonomously, without a human pilot on board. In contrast to THetNets, the coexistence of

UAV-mounted base stations (UBSs) and GBSs has not been extensively studied in the literature.

The most significant advantages of using VHetNet are the potential for increased capacity and

the ability to provide extensive 3D coverage, particularly in dynamic and challenging environ-

ments.

Despite the numerous advantages that the VHetNets offer, they are currently confronted with

several challenges. One such challenge is the differing behavior of propagation channels in

aerial and terrestrial networks. Another challenge is the potential for vertical altitude variations

in UBSs, even for static UBSs, which could result in changes to their geometry. Therefore, it is

important to fully understand the impact of UBS altitude on VHetNet performance. In addition,

VHetNets must have mechanisms that can easily adapt to changes in their workplace.

1.5 Aerial Networks vs Terrestrial Networks

UAV networks and terrestrial networks operate in different environments. Therefore, exten-

sively researched findings on terrestrial networks may not be directly applicable to forthcoming

3D UAV wireless networks. The UBS tier and GBS tier differ in their transmit powers, densities,

distributions, path loss exponents, fading parameters, and association schemes. An advantage

of aerial BSs is that their altitude can be increased to mitigate signal blockage caused, for ex-

ample, by high-rise buildings. UBSs can serve multiple purposes, including offloading GBSs

in densely populated areas and extending coverage to remote regions, typically underserved by

cellular networks due to limited operator incentives [61].

Fotouhi et al. [62] conducted a thorough study on integrating UAVs into cellular networks,

addressing major challenges such as deploying aerial BSs, developing UAV communication

prototypes, and ensuring security. Table 1.2 summarizes the various advantages and challenges

of UAV networks compared to terrestrial networks.

1.6 Unmanned Aerial Vehicles Communication

It is anticipated that the global market for commercial UAVs will undergo substantial

growth, from $19.3 billion in 2020 to $45.8 billion in 2025 [26]. The projected value of the

global UAV payload market, encompassing military drones, is anticipated to reach $3 billion

by 2027. This payload comprises various equipment carried by UAVs, including cameras, sen-
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Table 1.2: A brief comparison of UAV networks and terrestrial networks.

UAV networks Terrestrial networks

Operate in the air. Operate in the ground.

Mostly unrestricted locations. Selected locations.

Highly mobile with adaptive altitude. Static and fixed infrastructure.

Easy deployment with low cost installation. Complex infrastructure and costly installation.

High LoS communications. Prone to blockages.

Restricted flight time and payload capacity. Extensive and long-term network coverage.

Adaptable coverage range. Fixed coverage area.

Deployed rapidly to specific locations. Limitations in reaching remote areas.

Temporary communication needs. Continuous communication needs.

sors, radars, communications devices, among others [63]. UAV-based solutions are increasingly

competitive in emerging markets and have sparked substantial interest from both academia and

industry. In this section, we discuss the various categories and applications of UAVs.

1.6.1 UAV Categories

Federal aviation regulations and the environmental characteristics must be carefully eval-

uated when determining the most suitable type of UAV for a specific application, especially

to meet QoS, requirements. To attain this objective, it is essential to analyze the UAVs’ flight

mechanism and their maximum altitude.

In some countries, such as Australia and China, the practical authorization for small UAVs to

fly cannot exceed an altitude of 120 meters to reduce the potential danger to manned aircraft

[64, 65]. The literature typically categorizes UAVs according to their flying mechanism, and

operational altitude. The following classification is detailed accordingly.

Figure 1.3: UAV classification based on flying mechanism and structure [66].
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Types of UAV based on Flying Mecanism

1. Rotary-wing UAVs

Also called multirotor UAVs, they use multiple rotor blades, and take off and land in a

vertical position such as quadrotor drones. They can hover and remain stationary over

a specified area [64]. Consequently, the use of multirotors as aerial BSs is an attractive

solution for mobile network support in emergencies. However, because these UAVs are

constantly battling gravity, their energy consumption is high and their mobility is limited

[62]. In addition, their structure is relatively complex.

2. Fixed-wing UAVs

They feature a simple structure with rigid wings, allowing them to have enhanced flex-

ibility, mobility, and endurance, such as small airplanes. However, unlike rotary-wing

UAVs, they are heavier and faster, and they cannot hover over a fixed area, they need a

runway to take off and land, which puts them at a disadvantage [67].

3. Hybrid fixed/rotary-wing UAVs

Hybrid fixed/rotary-wing UAVs have recently emerged in the market to balance the capa-

bilities of fixed-wing and rotary-wing UAVs. These types of UAVs are capable of vertical

takeoff, swift traversal through gliding, and seamless switching to hovering mode with

the assistance of four rotors.

Figure 1.3 shows examples of rotary-wing, fixed-wing, and hybrid fixed/rotary-wing UAVs.

Types of UAV based on Altitude

1. High Altitude Platforms (HAPs)

These UAVs are typically conceived for long-term service (can be kept in the air for

several months) and are mostly quasi-stationary, flying at relatively high altitudes as bal-

loons and large UAVs. They typically operate in the stratosphere, dozens of miles above

the Earth’s surface [68]. More precisely, their altitude ranges from 15Km to 25Km. HAPs

are intended to provide Internet connectivity, a long communication persistence and wide

bandwidth to ensure extensive coverage of wide geographic areas such as rural environ-

ments, that are not currently served by cellular networks. In addition, despite the advan-

tage that HAPs offer in ensuring a high probability of unblocked links, they are still com-
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HAP
15-25 Km

MAP
5-15 Km

     LAP
    < 5 Km

Figure 1.4: Network architecture of HAPs, MAPs, and LAPs.

plex to deploy, as they can generate large-scale ICI that can cause network failure [69].

Consequently, the literature on UAV-based cellular networks rarely tackles them.

2. Medium Altitude Platforms (MAPs)

MAPs operate at altitudes higher than LAPs but lower than HAPs. These platforms typi-

cally operate between 5 Km and 15 Km above ground level. MAPS can remain airborne

for extended periods and carry heavier payloads to serve as relays between HAPS and

LAPS. Their coverage area radius may extend up to 5 Km [61]. Compared to LAPs,

MAPs offer an extended coverage range, longer flight endurance capabilities, enhanced

stability, and connectivity. They are extensively used for military aerial surveillance and

reconnaissance operations.

3. Low Altitude Platforms (LAPs)

LAPs are extensively studied in the literature [65,70–72]. They are the most widely used

to assist cellular communications in time-limited operations, such as emergency services,

where flexibility, high mobility or rapid deployment is required. LAPs fly in the lower
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troposphere at an altitude of no more than a few kilometers. They suffer from limited bat-

tery power, so their lifespan is shorter and their coverage is less than that of HAPs. Con-

versely, they are less expensive, and their batteries can be easily recharged. Additionally,

the use of LAPs reduces shadow effect and provides a significant performance-enhancing

advantage due to their ability to establish better LoS communication links over traditional

terrestrial networks, and allows for lower path loss than HAPs due to the short-range links

that can be achieved. Generally, cooperative small drones dominate LAPs.

Figure 1.4 illustrates the differences between HAPs, MAPs and LAPs.

1.6.2 UAV Applications

UAVs have recently received significant attention in the field of wireless communica-

tion [62, 64, 73]. They find extensive application across various domains, serving varied ob-

jectives. The use of UAV-mounted wireless equipment depends on the specific application

context. They may function as aerial user within cellular-connected UAVs, harmoniously coex-

isting with ground users relying on existing cellular networks, or may be incorporated into the

wireless infrastructure as flying BSs or aerial relays, as illustrated in Figure. 1.5.

Aerial User

UAVs serve as mobile terminals in cellular networks to establish dependable and secure

connection in several applications, including surveillance, package delivery and real-time data

transmission. For example, a UAV equipped with a sensor can be a cost-effective solution for

monitoring, delivery and data collection. The prime benefit of UAV-users lies in their capacity

to rapidly navigate and streamline their trajectory to effectively accomplish their missions [64].

Studies [74–77] have investigated the coexistence of aerial and ground users in a cellular net-

work. The authors analyzed design specifications that would allow cellular network operators

to modify their networks to accommodate aerial users.

In our recent work [78] we have proposed a model featuring up-tilted antennas applied in ter-

restrial BSs to serve the aerial users instead of using traditional down-tilted antennas.

Aerial Base Station

UBSs represent a prospective technological innovation with the potential to deliver reliable

and cost-effective wireless connectivity and a diverse range of services to ground users. The use

of UBSs applies to VHetNets, where additional capacity can be provided on demand to extend
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UAV Relay
UAV BS UAV User

Ground BS Ground User

Figure 1.5: Main UAV applications.

coverage in congested terrestrial networks. Furthermore, they can be employed in situations

where terrestrial wireless communications are not accessible by ground users.

The literature extensively examines UBSs, optimizing their optimal location [79] and analyzing

their 3D deployment [80]. Enayati et al. [81] have investigated the optimal altitude of the UBS

overlaying a terrestrial network with an energy harvesting system. This study aims to improve

the battery life of the UBSs, the channel propagation, and eventually maximize the coverage.

Aerial Relay

Mobile UAVs can serve as aerial relays in mmWave environments that have unfavorable

transmission conditions. UAV relays create air-to-air (A2A) communications to enhance trans-

mission between two nodes and ultimately, expand the coverage network. Relative to terrestrial

relays, aerial relays have a great ability to establish LoS connections and are exceedingly ma-

neuverable. Furthermore, the backhaul link must be considered for UAV relaying.

In [82], the UAVs have been adopted as relays between the GBS and the user. They used the

Friis transmission equation to calculate the received power for the relay path.

The study [83] examined the use of multi-hop UAV relay nodes to connect with ground nodes.

It calculated the cascaded propagation loss of the relay link and evaluated the channel capacity.

1.6.3 UAV Communications in Industry

Several companies, including Huawei, China Mobile and Ericsson have conducted UAV

experiments using advanced 5G technologies. During exhibitions and commercial events, they

have demonstrated various test rigs and prototypes of wireless infrastructure UAVs. These

testing platforms aim to enhance user experience and extend coverage to areas lacking terrestrial

wireless infrastructure. The projects using UAVs to bring wireless coverage listed in Table 1.3.
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Table 1.3: Prototypes of UAV communication and their key features [84]

Prototypes Year Main Features

Facebook Aquila 2016-2018 Provide Internet access to remote areas

China Mobile and Ericsson

Prototype
2016

Conduct World’s First 5G Drone Prototype

Field Trial

Nokia F-Cell 2016
Self-configuring and auto-connecting UAV

and provides support for NLoS

Eurecom Perfume 2015-2020 For relay services

Huawei SkySite 2019
5G BS remote radio unit to provide signal

coverage to 20-30 km2 area

1.7 Stochastic Geometry Tools

Stochastic geometry may be applied to assess the effectiveness of 2D and 3D cellular net-

works in various scenarios, using realistic PPs and random shape theory. This section presents

the fundamental tools and concepts of stochastic geometry for modeling VHetNets, THetNets

and traditional homogeneous networks. It also includes useful properties and theorems for de-

riving analytical expressions.

1.7.1 Point Process Theory

Practical geometry applications rely on a set of points randomly distributed in a Euclidean

space Rd of dimension d ≥ 1, referred to as in the mathematical context as point fields, random

point patterns, or point processes. PP theory is recognized as the primary subfield in stochastic

geometry and is commonly used in stochastic models. The literature has demonstrated the

validity of the PP approximation for real-world cellular networks [85].

PP theory enables the evaluation of the following aspects [32–34, 86]

— Statistical properties of a given set of points,

— The ability to fix a point at a specific location,

— Describe, in general terms, random geometric objects consisting of random unitary ele-

ments,

— Minimize error hypotheses based on an empirical set of points.
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Assuming that {Xi} represents the points of PP Φ which are random variables, Φ can be ex-

pressed as a discrete sum of Dirac measures on Rd [87]

Φ =
∑
i

δXi
, (1.1)

The intensity measure or expectation measure is an essential feature of PP, it refers to the ex-

pected number of points within any given set A ⊂ Rd.

Veronoi Tesslation

The Voronoi tessellation, named after the mathematician Georgy Voronoi, is a valuable ge-

ometric tool used in finite element analysis, computational geometry, and spatial pattern anal-

ysis. The geometry of the network is divided into distinct, non-uniform zones bounded by the

perpendicular bisectors of the line segments connecting each pair of neighboring points. The

Voronoi tessellation model differs from hexagonal models in which the BSs are arranged in

a deterministic grid, each covering a hexagonal cell of equal coverage area [88], as shown in

Figure. 1.6. In reality, sites often deviate from their theoretical positions, making the hexago-

nal model too idealized. Another drawback, they present mathematical intractability due to the

complex numerical calculations involved [37, 89]. In cellular networks, the stochastic model

uses the Voronoi tessellation principle to define points representing BSs, which can be ran-

domly or strategically distributed. Each point creates a polygonal region in the Euclidean space

known as a Voronoi polygon or Voronoi cell. This makes it a fundamental paradigm for PP

theory.

PP can be a mixture of three spatial distribution of network nodes: independent, repulsive, and

attractive [90].

◦ Independant Distribution

The transmitters’ locations are independently distributed. To describe this distribution,

spatial point process models such as Poisson point process and binomial point process models

are used.

◦ Repulsive Distribution

In this distribution, wireless transmitters that transmit simultaneously should not be located

in close proximity to each other. Repulsion can be caused by various factors, including planned

deployment and physical restrictions such as geographic exclusion and terrain occlusion. PP
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models, such as lattice processes, Ginibre point processes, and Matérn hardcore point processes,

are commonly used to describe this repulsive behavior.

◦ Attractive Distribution

Wireless transmitters can be clustered strategically in certain regions, such as in BS-centric

user gathering, which creates an attractive distribution that is different from the uniform distri-

bution across the entire plane. To model these attractive spatial distributions, various represen-

tative PPs can be used, such as the Thomas cluster process, Matérn cluster process, and Poisson

hole process.

In the following, we detail the basic PPs used in this thesis to model the nodes in cellular

networks. Additionally, we present some useful theorems used in the derivation of our analytical

expressions.

1.7.1.1 Poisson Point Process

The Poisson point process (PPP) is a set of randomly distributed points in a mathematical

space. It is the commonly employed PP for cellular network modeling and analysis due to its

analytical flexibility, simplicity, and traceability [32, 33], and can provide relevant closed-form

expressions. The PPP-based abstraction model is used in cases where there are no specific

constraints on the nodes’ distribution in the network. Typically, when nodes are not close to

each other. This model assumes that wireless nodes are independently distributed without any

repulsion or spatial correlation between them.

PPP has key mathematical properties that lead to feasible results. A PP Φ measuring intensity Λ
and density λ is a PPP if and only if for any compact set A ⊂ Rd, the number of points k inside

A is a Poisson random variable, and the number of points in disjoint sets are independent.

P{Φ(A) = k} = Λ(A)k
k! exp (−Λ(A)), (1.2)

where Λ(A) = λ|A| =
∫
A λ(y)dy, with |A| being the Lebesgue measure (area of A).

Special case : If A denotes a circle with radius r, the intensity measure becomes Λ(A) = λπr2,

therefore the Poisson distribution can be written as

P{Φ(A) = k} = (λπr2)k

k! exp
(
−λπr2

)
, (1.3)

A PPP with a uniform density of λ and an intensity measure Λ(A), i.e. all the points are inde-

pendently and uniformly distributed inA, is referred to as a homogeneous Poisson point process
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(HPPP) which is a stationary and the simplest PP. Otherwise, it’s called an inhomogeneous Pois-

son point process (IHPPP), which can model non-uniform user distributions in space. In this

thesis, we are interested in HPPP.

Figure 1.6 displays both the hexagonal model and the PPP-based model with veronoi cells,

where the nodes represents the BS location.

In the context of cellular networks, the HPPP model is commonly used to represent the GBS’

positions and the corresponding Voronoi diagram as a structural representation of the cells to

illustrate the network planning concept, because GBSs tend to be positioned far apart from each

other, and no correlation between them is necessary.

Several research studies have adopted the PPP-based abstraction model and demonstrated that

it is capable of accurately reproducing the main structural characteristics of operational cellular

networks [91–93].

In [91], the authors compare the deployment of GBSs in urban regions using the PPP model and

the grid model. The results demonstrate that the PPP-based abstraction model provides upper

bounds for coverage probabilities in urban areas and is more accurate than the hexagonal grid

approach.

In [35, 94], Baccelli et al., extensively researched the economic models and architecture of

networks, using PPP for the spatial distribution of GBSs.

The PPP-based spatial distribution of GBSs was also adopted in [37] and [38] to analyze and

evaluate the key performance metrics of a single-tier network and a multi-tier network, respec-

tively.

Most studies on UAV-assisted cellular networks [95–97] have used the HPPP to depict the

arbitrary location of UBSs, without any specific constraints on their distribution. However,

this distribution is not suitable for UBSs, which are typically deployed regionally to provide

temporary communication services.

We now turn to the fundamental theorems of a PPP, which are very useful for computing the

analytical expressions of the network performance.

Probability Generating Functional and Campbell’s Theorems

The PP’s distribution is characterized by the Laplace functional, which is similar to a char-

acteristic function of a random variable. The Laplace functional of a PP Φ denoted by LΦ is
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(a) (b)

Figure 1.6: A comparison between a stochastic geometry-based deployment and a hexagonal deployment where

the red squares indicate the BS location. (a) The hexagonal model represents the coverage area of the BS as an

hexagon, (b) PPP-based BS distribution, the Voronoi cells are presented by polygonal regions.

expressed by the following formula

LΦ(g) =E

exp
−

∑
yi∈Φ

g(yi)
 = E

[
exp

(
−
∫
Rd
g(y)Φ(dy)

)]

= exp
(

−
∫
Rd

(
1 − exp (−g(y))

)
Λ(dy)

)
, (1.4)

where g is a positive function defined on Rd.

Denoting G a random variable that is a sum of positive functions f in R given as

G =
∑
yi∈Φ

f(yi), (1.5)

The probability generating functional (PGFL) and Campbell’s theorems are vital mathematical

techniques for modeling aggregate interference in cellular networks. Campbell’s theorem is

a valuable tool in probability theory, mainly used to calculate the expectation of a random

variable. It is also useful for converting the expectation of a sum of functions to an integral if

the random value is equal to a sum such that G in (1.5). Using the expression (1.4), Campbell’s

and PGFL’s theorems for the PPP Φ, can be given as follows

Theorem 1.7.1. Campbell’s theorem for a random variable G can be written as follows

E (G) = E

∑
yi∈Φ

f(yi)
 =

∫
Rd
f(y)Λ(dy) =

∫
Rd
λf(y)dy, (1.6)

It is worth noting that the integration limits indicate the boundaries of the area where the PPP

exists [39].
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Theorem 1.7.2. The PGFL of a PPP Φ is expressed in a simple, closed-form. This is derived

from the expectation of the product of the values of the function G at every point yi in Φ

E

∏
yi∈Φ

f(yi)
 = exp

(
−λ

∫
Rd

(1 − f(y))dy
)
, (1.7)

1.7.1.2 Poisson Cluster Process

The Poisson cluster process (PCP) is a PP constructed from a set of parent points distributed

according to HPPP Φ with a set of daughter points clustered around these parent points. In re-

alistic networks, users are not uniformly distributed. For instance, in shopping malls, railway

stations, and special events like festivals and soccer matches, users tend to congregate in re-

stricted spaces. In this case, the PPP model cannot accurately represent the geometry of the

networks, where correlation between nodes exists.

Ying et al. [43] compared the performance of several user modeling methods to find a modeling

method that is closer to the real world and depict more realistic scenarios. They concluded that

the PCP was the best stochastic model in dense urban and hotspot areas. In this context, the

daughter points represent the locations of the users, and the parent point represents the location

of the GBSs, as adopted by Chiranjib et al. [98]. Daughter points can also depict the location

of UAVs assisting an overloaded cellular network, as used by Yao et al. [99].

Two specific PCP models are constructed and are commonly used in academic literature: the

Thomas cluster process (TCP) and the Matérn cluster process (MCP).

Thomas Cluster Process

In the TCP, daughter points x ∈ ΦC are normally and symmetrically distributed around

each parent point y ∈ Φ with a standard deviation σ. The probability density function (PDF)

for the distance between a daughter point and a parent point is expressed as follows [100]

fTX(x) = 1
2πσ2 exp

(
−∥x− y∥2

2σ2

)
, (1.8)

Matern Cluster Process

In the MCP, daughter points are uniformly distributed in a disk D(y,R) of radius R cen-

tered on each parent point y ∈ Φ. The PDF of the distance between a daughter point and the

parent point can be expressed as follows [101]
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(a) TCP (b) MCP

Figure 1.7: Realization of TCP and MCP through Voronoi tessellation. The red squares represent the parent points,

which are GBSs distributed according to the PPP. The green points represent the daughter points, which are users

clustered around the parent points.

fMX (x) =


1

πR2 (R − ∥x− y∥) if ∥x− y∥ ≤ R,

0 otherwise,

(1.9)

Figure 1.7 depicts the difference in the distribution of daughter points in TCP and MCP.

TCP and MCP were initially developed by Ganti and Haenggi [102] to simulate node positions

in clustered wireless ad hoc networks. Since then, they have been adopted in various networks,

including D2D networks [103], THetNets [104, 105], cognitive networks [106], and UAV net-

works [107]. However, research on the use of PCP in VHetNets is still in its early stages.

Wang et al. [14] adopted both TCP and MCP for the distribution of the users in UAV-assisted

mmWave cellular networks and the ground projections of the UAVs are the parent nodes. The

performance was evaluated using both models, and the numerical results showed that TCP and

MCP generally lead to similar network performance trends. This demonstrates the insight that

considering PCP rather than PPP is key to capturing the user distribution.

Mankar et al. [108] have analyzed the coverage in random wireless networks, considering a

correlation between the ground users and the BSs. The study demonstrated that TCP is a more

appropriate method for distributing users when the standard deviation is small. Furthermore, it

was shown that as the standard deviation tends to infinity (i.e. users are not clustered around

BSs), the TCP model transitions to the PPP model.
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Figure 1.8: A top view snapshot of UAV-assisted cellular network. The black triangles represent the UAVs dis-

tributed by BPP in a finite circular region and the GBSs shown as red squares generated by PPP.

Yang et al. [105] have analyzed the wireless THetNets in dense areas, with interference man-

agement. The macro BSs and small BSs are distributed following a HPPP and the users are

clustred around the macro BSs and small BSs forming two TCPs respectively.

1.7.1.3 Binomial Point Process

A binomial point process (BPP) is a PP typified by finite-dimensional distributions. Within

a bounded set A ⊂ Rd, a fixed number of points N are independently and identically dis-

tributed. The BPP originates from the HPPP, as demonstrated in [36]. This derivation focuses

on restricting HPPP Φ to a subset W ⊂ A that contains precisely k points, i.e. Φ(W ) = k. It

is worth noting that every realization of a finite PPP is a BPP with a specific number of realized

points [34]. Accordingly, Ψ is a BPP if the number of points k included in any bounded subset

W is a binomial random variable, and the numbers of points in disjoint sets are related via a

multinomial distribution.

P{Ψ(W ) = k} =

N
k

( | W |
| A |

)k (
1 − | W |

| A |

)N−k

, (1.10)

The binomial process is straightforward; all points are isolated. BPP is suitable when there is

a predetermined number of nodes in a delimited area. For instance, it is suitable to be used

to model the position of a group of UBSs in areas with a high clustering of users, where N
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represents a given number of UBSs. A top view snapshot of UAV-assisted cellular network

with BPP model is illustrated in Figure 1.8.

Chetlur and Dhillon [109] were the first to consider BPP for aerial networks. Some studies have

suggested a predefined number of UBSs distributed within a finite area as BPP [46, 47, 110].

Nevertheless, we observe a lack of precise user clustering models in this studies.

Recently in [111], the authors modeled the spatial locations of the aerial users as a 3D BPP

and evaluated the performance of a typical aerial user in a 3D UAV network using the truncated

octahedron concept.

1.7.2 Random Shape Theory

Random shape theory is a branch of advanced geometry with the goal of modeling shapes in

multiple dimensions and orientations. This theory allows for the organization of any arbitrary

objects in space, which can be represented as a random object process (ROP) [112]. In this

thesis, we focus on a straightforward class of object processes called "Boolean model".

1.7.2.1 Boolean Model

Also called Poisson germ–grain model or Boolean scheme, is a straightforward example

of a random closed set and can be defined as a combination of sets that emerge from a PP.

The Boolean model is based on a PPP Φ, where the points {Xi} are called germs, and on an

independent sequence of i.i.d. compact sets {Ki}, referred to as grains [87]. It is a useful tool

for describing various objects, such as blockages. However, analyzing these objects can become

more complex when correlations exist between them. The Boolean model can be expressed as

follows

Θ =
⋃
i

(Xi +Ki), (1.11)

The Boolean scheme offers an advantage in assuming the independence of objects and their

attributes, enabling a more straightforward evaluation of the model. It is commonly considered

as the null hypothesis in stochastic geometry modeling. This model is marked by the following

properties [113]

• The central points of objects in the 2D plane create a PPP. Thus, PPP simulation is crucial

for enabling boolean scheme simulation.

• Objects are distributed independently, and their size, location and orientation are deter-

mined independently.
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• The shape parameters (such as length, width, orientations and height), volume and loca-

tion of any object are also independent.

Xiao [114] introduced the basic concepts of the Boolean scheme and described the analysis and

simulation techniques used for this model.

In the context of communication networks, Bai et al. [113] developed a mathematical blockage

model for mmWave terrestrial networks using the random shape theory as an alternative to the

ray tracing approach covered in [115]. The Boolean scheme has also been adopted in [48, 49]

to model the location of obstacles in UAV networks with a single tier.

1.8 Conclusion

In this chapter, we have presented the coverage concept and its associated methods that can

be employed in cellular networks. These include heuristic methods and stochastic geometry-

based methods. Additionally, the architecture of terrestrial HetNets and VHetNets is discussed,

with particular emphasis on the advantages of aerial networks over terrestrial networks. The

chapter also introduces UAV wireless communication in both academic and industrial contexts.

Finally, the stochastic geometry tools are introduced. In particular, we have addressed the main

mathematical properties and the useful theorems of the PPP, which is regarded as the standard

and most commonly used PP due to its valuable mathematical characteristics. Additionally, we

have also presented the BPP and PCP, which are powerful tools in our modeling process. The

next chapter focuses on the use of stochastic geometry in channel modeling and performance

metric measurement and introduces current methods for deriving coverage probability.
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2.1 Introduction

While capacity and data rates are undoubtedly important for 5G and beyond networks, it is

equally crucial to ensure comprehensive network coverage. Coverage probability is an impor-

tant factor that distinguishes network operators from one another as it directly affects the QoS

experienced by users and has a significant impact on other system performance (Spectral effi-

ciency, Energy efficiency, ...). The propagation channel has the greatest impact on the design

of a wireless receiver among all impairments, which significantly impacts network coverage.

Wireless propagation results in a loss of received signal power and the presence of multipath,

which creates frequency selectivity in the channel. In this chapter, based on stochastic geometry

models, we characterize propagation channel models for terrestrial and aerial networks. Addi-

tionally, we define various approaches to user association and present performance metrics, as

well as simulation methods for calculating and evaluating these performances.

2.2 Channel Propagation

2.2.1 Channel Characterization

The design process of every wireless technology necessitates a comprehensive modeling

of the propagation channel, as the characteristics of the latter significantly influence the net-

work coverage. Air-to-ground (A2G) channel modeling of UAV-based networks has received

considerably less attention compared to terrestrial networks, where ground-to-ground (G2G)

channels have already been extensively studied and modeled.The A2G channel designates that

UAVs communicate with ground users, while the G2G channel refers to the channel between the

ground BS and ground users, as shown in figure 2.1. These two types of channels exhibit dis-

tinct characteristics. Specifically, the characteristics of A2G channels demonstrate a significant

correlation with the elevation angles and altitudes of UAVs. For example, channels designated

for LAP cannot be utilized for HAP due to differences in their channel diffusion environments.

Moreover, the complexity of 3D environments and the multitude of parameters that needs to be

considered continue to pose challenges for these channels. It is imperative to explore the spe-

cific characteristics of the propagation channel to promote the development of multiple antenna

techniques such as MIMO [116].

Channel models for mmWave communications in aerial contexts are currently undergoing in-

tensive research due to encountering various constraints. The flying capability of UAVs enables

to achieve higher LoS probability compared to G2G links. However, due to the presence of
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Figure 2.1: Illustration of Various Propagation Channels.

obstacles, the A2G link cannot frequently remain in LoS. To capture these characteristics, we

mostly adopt probabilistic path loss model and fading model with different occurrence proba-

bilities of LoS and NLoS.

In cellular-connected UAVs, the channel propagation between the GBS and an aerial user cannot

be the same as the A2G channel which is intended for ground users at heights of 1.5 meters.

Therefore, new channel model was developed for aerial users is called cellular-to air (C2A)

channel (see figure 2.1). In addition, there exists the A2A channel, denoting the communication

link between two aerial platforms without direct connectivity to ground infrastructure as in UAV

relay communication. In this thesis, we focus on the A2G and G2G channels.

Several propagation models exist in the literature. Accurate A2G channel models regarding

the considered environment have been analyzed in [65, 70, 71, 116], to conceive and evaluate

UAV communication links, especially for emerging UAV applications requiring high-speed data

transfer.

2.2.2 Propagation Effects

In all the above-mentioned channel models, the propagated signals experience effects such

as path loss, shadowing, and small-scale fading, which are outlined as follows.

2.2.2.1 Path loss

Path loss refers to the attenuation of average signal power due to long signal propagation

distances and environmental parameters. Path loss is a fundamental element in the design and

analysis of a telecommunication network. The research reported in [117] found that in A2G
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scenarios and urban environments, a small elevation angle can meaningfully alter path loss

independently of the distance, i.e. increasing the elevation angle will result in reduced path

loss at the same propagation distance [118]. In the majority of models, this phenomenon is

represented by an exponential decay function with distance, as shown in Figure 2.2.

2.2.2.2 Shadowing

Large obstacles relative to wavelength such as buildings, vehicles, and trees can cause

signal attenuation through diffraction and reflection, resulting in path obstruction. This phe-

nomenon is commonly referred to as shadowing and can also originate from the UAV itself

while flying. Shadowing is highly correlated at a larger time and space scale compared to

small-scale fading. This means that several signals can be blocked by the same object, result-

ing in greater signal loss than expected. Communication path obstacles in urban environments

can cause geographically correlated shadowing on a scale ranging from 50 to 200 meters [90].

For a tractable analysis, researchers generally neglect the correlation between obstacles [113].

In reality, as the transmit-receive distance increases, the intensity of shadowing is expected to

increase, especially in mmWave communications, where signals are more susceptible to block-

ages and experience high attenuation. However, the distance dependency of blockage effects is

not accounted for in shadowing models that use random variables. In this thesis, we propose

more sophisticated models of the wireless propagation channel, to capture 3D blockage model-

ing as Boolean scheme.

The log-normal distribution is a common model for the shadowing effect, which is given by

fS(w) = 1
w
√

2πσ2
S

exp
(

−(lnw − µ)2

2σ2
S

)
, (2.1)

where µ(dB), σS are the mean and the variance of w(dB).
Shadow fading lasts tens of seconds or minutes, longer than multipath fading, which lasts a few

milliseconds.

2.2.2.3 Small-scale Fading

The small-scale fading phenomenon, commonly referred to as fast fading, results from

the combination of multiple replicas of the same signal, each exhibiting slight variations in

delays and phase shifts. Furthermore, it models the communication link, which undergoes rapid

fluctuations due to node mobility or the existence of nearby diffusers. In multipath propagation,

fading amplitude statistics play a crucial role in analyzing small-scale variations. First-order
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statistics, including cumulative distribution function (CDF) and PDF, assist in understanding

the random behavior of fading channels. Due to small-scale fading, the signal power variation

may reach up to 40 dB over only a fraction of a wavelength. In the UAV channel, multipath

fading may originate from the UAV itself. Although these reflections are generally weak and

have a low delay [119].

In what follows, we’ll look at several frequently used models for small-scale fading distribu-

tions.

Rician Fading

Rician distribution is used when there is a single, distinguished component in the commu-

nication link, commonly approximates the variation in the fading channel with LoS. The Rician

K-factor quantifies the extent of multipath fading in a quantitative way. The literature [120]

indicates that in UAV communication, as the altitude of a UAV increases, the effect of ground-

reflected multipath fading decreases. To characterize the Rician fading channel, two metrics

are required: the Rician factor and the average signal power. Consequently, this model is more

complex and challenging to apply. Additionally, the lack of a closed-form formula for the PDF

and CDF of the signal strength complicates modeling and mathematical analysis. The Rician

fading model is most applicable to environments where the LoS component is important and

can be discerned, such as rural or wide-open areas. The PDF of the Rician fading gain is given

as follows [121]

fH(g) = g(k + 1)
µ

exp
(

−k − g(k + 1)
µ

)
I0

2
√
g(k + 1)k

µ

 , (2.2)

Rayleigh Fading

Rayleigh fading is particularly suited to scenarios where there is no dominant path among

the various multipath components in the link, which is typically the case in NLoS communi-

cations, such as in urban or indoor areas. One of the principal benefits of the Rayleigh fading

model is its simplicity and ease of use, it necessitates only the average signal power to charac-

terize the fading channel. Research [122, 123] has indicated that Rayleigh fading is unsuitable

for mmWave networks due to their poor scattering properties. The signal strength is distributed

according to a Rayleigh distribution with scale parameter σ, exhibiting a high probability of

being near zero and varying from very low to very high values. The complementary cumulative

distribution function (CCDF) and PDF of the channel power gain are closed-form expressions,
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respectively given by

F̄H(g) = exp
(

− g2

2σ2

)
, (2.3)

fH(g) = g

σ2 exp
(

− g2

2σ2

)
, (2.4)

Nakagami-m Fading

The Nakagami-m fading is a crucial factor in modeling land-mobile and indoor-mobile

multipath propagation used to accurately reproduce the channel behavior. It can simulate mul-

tiple scenarios, allowing us to control the severity of multipath fading and maintain analytical

tractability [109]. The Nakagami-m distribution is a more general representation of multipath

distributions than the Rayleigh, Rice, and Gaussian distributions. It provides greater flexibility

and accuracy in matching experimental data than other distributions.

In fact, Rayleigh, Recian and Gaussian distributions are special cases of Nakagami-m fading

environments. This can be achieved by an appropriate choice of the shape parameter m. For ex-

ample, when m = 0.5 we find Gaussian distribution, for m = 1 the model converge to Rayleigh

distribution, for m = (1+k)2

1+2k we obtain the Rician distribution, and finally when m → ∞ the

model converges to the no-fading environments which are defined by a system with no small-

scale fading.
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Figure 2.2: Effects of Path loss, Shadowing, and Fading [124].
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The Nakagami-m channel fading gain follows a gamma distribution, and its CCDF and PDF are

respectively given by [125]

F̄H(g) =
m−1∑
q=1

(mx)q
q! e−mg, (2.5)

fH(g) =m
mgm−1

Γ(m) exp(−mg), (2.6)

Nakagami-m fading is widely used in the open literature. Previous research [14, 96, 126, 127]

has adopted the Nakagami-m fading channel for small-scale fading to capture the features

of the mmWave communications in UAV Networks and terrestrial networks. Chetlur and

Dhillon [109] have investigated the performance of “no-fading” environments in a finite 3D

UAV network applying the asymptotic expansion of incomplete gamma function.

Figure 2.2 shows the combined effects of large-scale propagation and small-scale propagation

by plotting three distinct realizations of the received signal power. It indicates that the attenua-

tion of radio signals can be explained by the combination of path loss, shadowing, and multipath

effects as a function of distance from the source [124]. Signal strength variations caused by mul-

tipath occur within the signal wavelength range, while log-normal shadowing affects the total

loss.

2.3 Cell Association Strategies

The user association process has to cope with the growing heterogeneity of cellular net-

works. In VHetNets, the coverage of each network entity depends on its type, (a Ground or an

Aerial BS), and the network geometry, which refers to its location in relation to other network

entities. Identifying the BS that the user is associated with is crucial for evaluating their per-

formance. Two main approaches have been proposed for cell association in the literature, as

shown in Figure 2.3.

• The Nearest BS Association Rule

It is a commonly used approach due to its mathematical tractability. This rule selects the BS

with the shortest distance, which corresponds to the lowest path loss. Which can be formulated

as

Serving BS = arg min{d−α
j }, (2.7)
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Figure 2.3: Cell association rules.

where dj is the distance between the BS j and the user.

• The Max-Power Association Policy

This approach is based on the strongest received signal power. The process of assigning users

to the access network is based on measuring the power received by each of the BSs adjacent to

the user. This measurement is used to select the station to which the user should be assigned to

ensure good service continuity. The strongest received signal power is reflected in the minimum

values of both path loss and small-scale fading across all BSs.

Serving BS = arg max{Pj}, (2.8)

where Pj is the received power at the user from the BS j.

It is worth noting that, the received signal power may be affected by the LoS/NLoS parameters.

In practice, a user may connect to a BS with LoS transmission even if it is farther away than

a closer BS that is blocked. Therefore, it is important to separately consider the occurrence of

LoS and NLoS transmissions and analyze the association probabilities of LoS/NLoS BSs. It

can be concluded that the second approach may be more practical.
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2.4 Network Performance Measurement

Several methods exist in the literature to accurately measure and assess wireless network

coverage as part of network performance evaluation. Most performance measures in stochastic

geometry models in various scenarios depend on the node locations and rely on signal-to-noise

ratio (SNR), signal-to-interference ratio (SIR) or SINR at the receiver level, and are also based

on the random variable statistics. Coverage probability is the basis for several performance

metrics, such as average throughput, spectral efficiency and energy efficiency and is therefore

recognized as a key system-level metric. The coverage probability can be defined as the proba-

bility that a user in a specific area can establish and maintain a connection with the network at

a given signal strength or quality level. Outage probability is another commonly used method

for evaluating coverage.

2.4.1 SINR

The SINR enables the measurement of link quality. It refers to the ratio of the power of the

desired signal received by the user to the power of the interference and noise signals received by

the user. Downlink interferences are typically defined as the sum of signal powers from BSs that

are not currently serving the user. In particular, if a BS increases its transmission power, it will

cause an increase in interference for all other communicating users. When users are randomly

distributed in space, the received signal power becomes random, and the interference power is

determined by various stochastic processes, such as the random spatial distribution of nodes,

shadowing, and fading. The impact of interference and noise on the overall quality of the signal

should be carefully considered, and mitigating their effects is a common goal in many fields.

Therefore, it is crucial to characterize the stochastic geometry of the network as it is the primary

determinant of the SINR. Mathematically, the SINR at the receiver located at the origin in 2D

or 3D Euclidean space can be expressed as

SINR = Pr
I +N0

, (2.9)

where Pr is the received power and I and N0 are the aggregate interference and the additive

white Gaussian noise signal power, respectively.

The SNR metric is used to measure the ratio of signal to noise when interference is eliminated

or not considered, and the SIR metric is used when the thermal noise is negligible as compared

to the received interference. The SNR can vary significantly among different users in a wireless
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Figure 2.4: Intercell interference.

system due to differences in path loss, shadowing caused by obstructions, and fading due to

constructive or destructive wave interference. It is crucial to note that these variations can range

from ten to hundreds of decibels.

2.4.1.1 Inter-cell interference

Inter-cell interference (ICI) is a challenge that is commonly encountered in traditional cellu-

lar networks where multiple cells operate nearby. ICI occurs when multiple base stations (BSs)

share the same frequency band, and their coverage areas overlap, leading to interference in the

overlapping regions, as illustrated in Figure 2.4. The matter can become even more crucial in

ultra-dense small cell networks, and D2D communications, potentially resulting in a reduction

of service quality for users and limiting performance improvements. To reduce interference,

one solution is to allocate additional resources. However, this may decrease spectral efficiency

and increase operating costs. On the one hand, the use of aerial BSs can reduce interference.

By deploying a predefined number of UAVs, we can control the number of links needed to

communicate with ground users. Several advanced antenna technologies have been proposed to

address ICI, including directional beamforming and 3D beamforming technologies. Combined

with UAV technology, these technologies deliver even better performance.

The main performance metrics that can be derived using the SINR to evaluate a stochastic

geometry-based model are presented in Figure 2.5, where Th refer to the SINR threshold. In

this thesis, we focus on evaluating the SINR coverage probability and spectral efficiency based

on association probability.
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Figure 2.5: Key performance measures based on the SINR, employed in the abstraction of stochastic geometry.

2.4.2 SINR Coverage Probability

The SINR coverage probability is the probability that the received SINR at the user is

greater than a predefined SINR threshold T .

Pc(T ) = P(SINR > T ), (2.10)

The coverage probability is the probability that the typical user can successfully decode the

incoming signal transmitted at a specified rate R = B log2(1 + T )) over a bandwidth B.
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2.4.3 SINR Outage Probability

The outage probability is defined as the probability that the SINR performance metric will

drop below a predefined SINR threshold.

Oc(T ) = P(SINR ≤ T ) = 1 − P(SINR > T ) = 1 − Pc(T ), (2.11)

Therefore,

Pc(T ) = 1 −Oc(T ), (2.12)

It’s important to highlight that the outage probability and the coverage probability are equivalent

to the CDF and the CCDF of the SINR at the typical user.

2.4.4 Spectral Efficiency

The spectral efficiency (SE), spectrum efficiency, or bandwidth efficiency is a crucial factor

in measuring the frequency band. It is defined as the data rate that can be communicated over a

normalized bandwidth to optimize the use of the spectrum. The modulation order could poten-

tially be increased to enhance it. Moreover, channel capacity can be increased by increasing the

SE of a system. MIMO, beamforming, power control, and multi-carrier modulation (MCM) are

techniques commonly used to enhance spectral efficiency. The expression for measuring SE in

bits/s/Hz is as follows.

SE = R
B

= log2(1 + T ), bits/s/Hz, (2.13)

In this study, we focus on two types of spectral efficiency: Area Spectral Efficiency (ASE) and

Network Spectral Efficiency (NSE).

2.4.4.1 Area Spectral Efficiency

The initial evaluation of the ASE was in [128]. This metric can be defined as the average

number of bits transmitted per unit time per unit bandwidth per unit finite area (bit/s/Hz/m2)

[109]. To compute the ASE, it is crucial to determine the number of simultaneously active links

per unit area. The general expression of the ASE can be formulated as

ASE = 1
|A|

NU∑
n=1

E [SE] , bits/s/Hz, (2.14)

where NU is the number of active users within the target area |A|. The mathematical expecta-

tion is averaged among several fading realizations.
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Using the concept of stochastic geometry, (2.14) can be written as [129]

ASE = λ SE P (SINR > T ) , bits/s/Hz/m2, (2.15)

where λ is the density of active BSs.

2.4.4.2 Network Spectral Efficiency

The NSE is typically evaluated for a finite network with a fixed number of transmitting

nodes (as UAVs), it can be defined as the total number of bits transmitted per unit time over a

given bandwidth across the entire network. The general expression of NSE can be written as

NSE = N SE P (SINR > T ) , bits/s/Hz, (2.16)

where N is the number of maximum active links in the network.

2.5 Monte Carlo Simulations

Monte Carlo simulations, named after the Monte Carlo Casino in Monaco due to the ran-

domness inherent in gambling games, are frequently used to gain insight into network perfor-

mance without making restrictive assumptions and can provide an estimation of the complete

network statistics (resolve a statistical issue).

The Monte Carlo method is a stochastic method involves running a large number of random

iterations to obtain numerical results to estimate for example the coverage probability, outage

probability, and spectral efficiency based on stochastic geometry tools. Firstly, each variable

with intrinsic uncertainty is represented by a probability distribution. Subsequently, the findings

are recalculated on each iteration, with a new set of random numbers drawn from within the

expected range. As the number of inputs increases, the outputs become more accurate. To

put it another way, the various results create a bell curve or normal distribution, with the most

frequent result falling somewhere in the middle of the curve.

Monte Carlo simulations are provided to verify the correctness of the mathematical framework.

However, carrying out this task can be very time-consuming or require considerable computing

resources. Developing tractable analytical methods based on stochastic geometry enables a

straightforward analysis and evaluation of the network performance. To confirm the validity of

the analytical investigation, it is crucial that the analytical results precisely match the Monte

Carlo simulations.
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The Monte Carlo methodology for estimating coverage probability with stochastic geometry

can be summarized by the following steps

1. Define the area of interest, e.g., circular area of radius R.

2. Generate the spatial distribution of the nodes e.g., PPP, BPP, PCP.

3. Generate the parameters related to the coverage model.

4. Computig the coverage probability based on the SINR.

5. Repeat steps 2 to 4 for a large number of iterations.

6. Estimate the coverage probability by computing the ratio between the result of all itera-

tions and the total number of iterations.

2.6 Conclusion

In this chapter, we have presented the channel propagation models (A2G and G2G chan-

nels). We have shown that wireless mmWave propagation, specifically, is susceptible to path

loss, shadowing, and multipath fading. These factors have a significant impact on the received

signal power and SINR, which in turn affect the cell association and network performance. On

the other hand, we have provided the key performance metrics and highlighted the advantages

of using Monte Carlo simulations to validate them. In the following chapters, 3 and 4, we pro-

vide a comprehensive description of our two contributions and present the two new proposed

UAV-assisted cellular network models with different scenarios and environmental contexts.
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3.1 Introduction

Providing reliable coverage in remote and isolated regions represents a complex challenge

in 5G cellular networks, that must be addressed. One logical approach to increasing trans-

mission bands and capacity and providing Gigabit wireless services in uncovered regions is to

combine mmWaves with UAV communications. These systems use narrow beams to provide

highly direct communication. However, network coverage can be affected by several factors, in-

cluding the terrain, weather conditions, and the presence of obstacles. With the development of

beamforming technology, the integration of UBSs with 3D beamforming has become a promis-

ing method for enhancing coverage performance. Nevertheless, UAV communications are still

in the early stages of development, and there are several significant issues that remain open and

require thorough investigation.

In this chapter, we propose a 3D single-tier model of mmWave enabled UBS swarm networks

that use the developed 3D beamforming technology technique to enhance signal quality and

mitigate interference. The model is implemented in a limited isolated area to provide coverage

to users not currently served by traditional terrestrial networks. In this context, we present the

system model and define the user association approach and the SINR model that have been

adopted. Finally, we derive the expressions of the probability density function of the distances

from the typical user to the served and the interfering UBS.

3.2 UBS Deployment in Isolated Regions

The integration of UBSs into cellular networks has been studied for numerous communi-

cation scenarios. Nevertheless, there remain certain scenarios that have not yet been addressed

or studied in sufficient depth. When aiming for universal coverage, it is important to consider

reaching remote areas, or geographically challenging areas characterized by shadow zones, also

known as isolated regions particularly with 5G mmWave wireless communications. In this case,

the necessity to cover vast distances may present a significant challenge to traditional BSs, and

wireless communication links remain difficult to establish. The US Federal Communications

Commission recommends several frequency spectrums within the mmWave for 5G networks.

These include the local multi-point distribution service (LMDS) band ranging from 28 to 30

GHz, the unlicensed 60 GHz band, and the 12.9 GHz band located from 71–76 GHz, 81–86

GHz, and 92–95 GHz in the E-band [130, 131]. However, mmWaves have smaller coverage

areas compared to frequencies below 6 GHz [11]. The deployment of mmWave aerial networks

43



Chapter 3. Single-Tier Networks: UBS Swarms Modeling

represents a potential solution to the spectrum crunch crisis and can offer the prospect of multi-

gigabit communication services, thereby overcoming the limitations of traditional infrastructure

and extending connectivity to remote or inaccessible areas.

Few studies have analyzed coverage in isolated regions using stochastic geometry approach.

Wang et al. [132] considered a single UBS centered on a circular, isolated region. However,

this scenario is not realistic as a single UBS cannot ensure seamless coverage due to its limited

charge and battery life.

3.3 Beamforming Technology in Aerial Networks

The use of mmWave technology supports the functionality of beamforming techniques.

The integration of UBSs with innovative beamforming techniques for downlink channels can

effectively mitigate the intensified shadow effects and elevated propagation losses observed in

mmWave bands, thereby reduces the network’s vulnerability to interference. Notably, boosting

spatial beamforming gain is an effective strategy for increasing the capacity and coverage of

wireless networks. In this thesis, we focus on two types of beamforming directional beamform-

ing and 3D beamforming.

3.3.1 Directional Beamforming

Directional beamforming, also known as 2D beamforming, is a crucial technique for mmWave

communications. Generally, the elements used in beamforming systems are arranged at half-

wavelength intervals to preserve directional control and avoid unwanted secondary grating

lobes. This technique is designed to direct the beam dynamically in a specific direction within

the horizontal plane without the need to physically move the antennas. Ground and aerial BSs

can use antenna arrays with a fixed geometry to direct transmitted signals towards mobile users,

thereby alleviating the received interference signals’ power. However, 2D beamforming ne-

glects the array’s gain in the vertical plane.

The subject of directional beamforming has been discussed in numerous existing works in the

scientific literature. Cherif et al. [47] and Pengshan et al. [133] have incorporated the directional

antenna array at the aerial BSs with a sectored antenna model.

3.3.2 3D Beamforming

The use of 3D beamforming enables the creation of distinct beams in a 3D spatial do-

main simultaneously by adjusting the antenna’s radiation pattern in the horizontal and vertical
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Figure 3.1: Illustration of 2D beamforming and 3D beamforming [64].

planes [134], resulting in a significant concentration of beamforming gain in the target area.

This is achieved through extensive sky access, resulting in more precise and efficient signal

transmission with reduced ICI. This enables accommodating a greater number of users and

ensuring improved coverage performance. 3D beamforming plays an important role in 3D

network models such as aerial networks or NTNs (e.g. satellite communications) where 3D

coverage is essential. The mobility and flexibility of UAVs in addition to the conditions of the

LoS channel in A2G communications permit the practical implementation of 3D beamforming

due to the effective mechanical beam steering in any 3D direction. Figure 3.1 displays the main

differences between 2D and 3D beam steering.

The results of the analysis carried out in [134] show that incorporating 3D beamforming into

fixed-height GBSs maximizes coverage. However, the incorporation of this technology into

UAV networks [135] is not fully analyzed in the literature. Therefore, expanding this to UBSs

that can easily modify their tilt angle and altitude would be beneficial. However, implementing

3D beamforming at UBSs still poses challenges, especially in controlling the required number

of simultaneously active links to effectively reduce interference and ensure wide coverage.

3.4 UBS Swarm

The UBSs are often deployed regionally rather than in a large-scale manner. The current

study aims to employ a predefined number of UBSs in a finite region. In fact, reliance on a

single UBS cannot ensure consistent service or guarantee continuous coverage in finite areas,

as it is inherently limited in terms of both load and battery life. Specifically, when considering
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blockage effects, they can worsen the irregularity of network topology and cause fluctuations in

users’ rates. Consequently, deploying a swarm of UBSs in a finite region is more efficient. The

number of UBSs in a swarm can be modified to meet the needs of a specific task and should

be selected thoughtfully to minimize interference. In a realistic scenario, a mobile operator

would deploy UBSs one by one until a satisfactory coverage is achieved in the target area to be

assisted. Since the deployment of a given UBS can be modeled using the Bernoulli distribution,

we can see that the deployment of a finite number of UBSs is then naturally modeled using the

binomial distribution. Therefore, the BPP is a suitable stochastic geometry tool for modeling

the location of a UBS swarm when covering a limited area.

UBS swarms can potentially enhance system robustness by offering redundancy. This implies

that in the event of UBS failure or compromise, the entire swarm can still function effectively.

Furthermore, interference can be considerably reduced by rolling out a predefined number of

UBSs, thus controlling the required number of links to communicate with ground users.

3.5 System and Channel Modeling

3.5.1 UAV Network Model and Assumptions

We investigate an isolated region where conventional GBSs are unable to establish wireless

connectivity [136]. Our proposal involves deploying a swarm of N transmitting UBSs that

operate in mmWave bands to provide 3D downlink coverage. The isolated region is represented

as a finite disk, Br(O, ra), centered at the origin O with a radius of ra, and will be referred to

as the "target area". We assume that all UBSs transmit with equal powers, denoted by PU and

use the 3D beamforming technique. The time is assumed to be stationary.

Let ΦU = {Ai, i ∈ 1 : N} be the set of 3D UBS point locations; {Ai} are assumed to be

independent and identically distributed (i.i.d.) in a finite disk Ba(O, ra) according to BPP.

The use of this disk assumption in modeling finite networks is a common approach in the

literature [42, 46, 109] due to its expositional simplicity. For theoretical tractability, the UBSs

are regarded as stationary LAP [137], that hover at the same altitude h above the ground, from

which the center of the circular disk is O′ = (0, 0, h), as illustrated in Figure 3.2.

However, even though there may be slight differences in altitude among the UBSs, this variation

can significantly complicate the derivation process. Nevertheless, the same level of performance

can be achieved using the same deterministic UBS altitude scenario, as demonstrated in [109].

Therefore, we exclude the variation in UBS altitudes in our analytical derivation and discuss its
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Simultaneously  active
UBSs Desired Signal Interference

O

h

raBa(O', ra)

O'
Ai

 Isolated region

Typical user

Ground BS

Br(O, ra)

x0

Figure 3.2: Single UBS swarm deployed in Ba to cover random users within a finite isolated area Br. Ba and Br

are parallel concentric disks with the same radius ra.

impact in Chapter 5.

To evaluate the network spectral efficiency, we assume that K out of N UBSs with location

denoted by ΦK ⊂ ΦU are simultaneously active (SA) and reusing the same resource block. The

users are randomly distributed in Br. We perform our analysis on a typical user u located at

x0 ≡ (y0, 0, 0) in the disk Br, who is assumed to be at a distance y0 from the origin O.
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3.5.2 Air-To-Ground Channel Model

Al-Hourani et al. [70] developed a common approach to consider the features of UBSs

that can maintain LoS communication with the ground user, resulting in lower propagation

attenuation compared to NLoS links. This widely used A2G approach identifies the link type

based on the probability of its occurrence related to the elevation angle. However, it does not

consider blockage characteristics, such as the size and height of the building. Therefore, it may

be suitable for an isolated region, but it may not be appropriate for a densely populated urban

area. In section 4.5, we develop a new A2G channel that takes into account the characteristics

of blockages.

In this work, the A2G channel displays both large-scale fading and small-scale fading.

Large-scale path loss

Considering probabilistic LoS and NLoS transmissions, the path loss model is presented as

follows

Υl
U(Xi) =


φLoSXi

αLoS
U w.p. PLoS

U (Xi),

φNLoSXi
αNLoS

U w.p. PNLoS
U (Xi),

(3.1)

where Xi =
√
Y 2
i + h2 is the distance between the typical user u and the UBS located at

Ai, h is the UBS altitude, Yi is the distance between u and the projection of UBS Ai on the

plane. φLoS and φNLoS are the additional path loss for LoS and NLoS links, respectively,

with φNLoS > φLoS , αLoS and αNLoS are the path loss exponent for LoS and NLoS links,

respectively.

PLoS
U (Xi) and PNLoS

U (Xi) denote the probability that a link is in LoS or NLoS state, respectively

given by [70]

PLoS
U (Xi) =

[
1 + c1 exp

(
−c2

(
180
π

sin−1
(
h

Xi

)
− c1

))]−1

, (3.2)

PNLoS
U (Xi) = 1 − PLoS

U (Xi), (3.3)

Note that the LoS/NLoS probabilities depend on the environmental constant c1 and c2 and the

elevation angle sin−1
(
h
Yi

)
. The elevation angle is the angle from the user u at x0 to an arbitrary

UBS Ai.

This model supports the notion that transmission links are less likely to be obstructed by obsta-

cles as the elevation angle increases.
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Small-scale fading

With the assumption of probabilistic LoS/NLoS propagation, the Nakagami-m fading model

is the most suitable due to its ability to control the severity of multipath fading and simulate var-

ious scenarios while maintaining analytical tractability. We assume that each link is affected by

Nakagami-m fading, such that the channel power fading is a normalized gamma random vari-

able Γ(mLoS
U , 1

mLoS
U

), Γ(mNLoS
U , 1

mNLoS
U

) where mLoS
U and mNLoS

U are distinct fading parameters,

for LoS and NLoS links, respectively. The CCDF of the channel power fading, denoted by hlU ,

can be expressed as

F̄hl
U
(ð) =

ml
U −1∑
g=1

(ml
Uð)x
x! e−ml

Uð, (3.4)

where l ∈ {LoS,NLoS}.

3.5.3 Vertical Antenna Pattern Gain

The vertical antenna pattern gain of UBS Ai is denoted by Ω(ω, θ(Xi)),which can be ex-

pressed as follows [134]

Ω(ω, θ(Xi)) = 10
−0.1×min

[
12

(
ω − θ(Xi)

θd

)2

,SLL

]
, (3.5)

where ω is the down tilt angle of the UBS antenna pattern Ai and θ(Xi) is the vertical user’s an-

gle of arrival given by θ(Xi) = tan−1 h√
(X2

i − h2)
, as illustrated in Figure 3.3. θd and SLL are

the half-power beamwidth and the side lobe level of the vertical antenna pattern, respectively.

We assumed that the tilt angle remains constant for all transmitting UBSs.

3.5.4 User Association and SINR Model

The cell association strategy employed in this study takes into account both LoS and NLoS

propagation by selecting the strongest received signal power. It is worth noting that the events

of the UBS being in either LoS or NLoS links are mutually exclusive. This is due to the UBS

swarm being designed to follow a BPP distribution. The location of the serving UBS is indicated

by A0 where A0 ⊂ ΦK .

According to [138], it could be assumed that the Nakagami-m fading gain expectation is one,

E(hLoSU ) = E(hNLoSU ) = 1. The received signal power at a typical user from UBS Ai can be

calculated as

ξU = PUφ
−1
l Xi

−αl
U , (3.6)

49



Chapter 3. Single-Tier Networks: UBS Swarms Modeling

h
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Xr

l
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ω

Serving UBS in l link

ω
θ(Xr

l) θ(Xi)

Yi
y0

x0

UBS Ai

Figure 3.3: Illustration of the system and the 3D beamforming parameters. The down tilt angle ω is identical for all

UBSs’ antenna pattern. Ai represents the location of an arbitrary UBS and A0 represents the serving UBS, which

can be in LoS or NLoS connection. The typical user is situated at the point x0, which is located at a distance y0

from the origin.

where l ∈ {LoS,NLoS}. Based on the aforementioned assumptions, the serving UBS can be

written as

A0 = arg max
i=1:N

{
PUφ

−1
LoSXi

−αLoS
U ∪ PUφ

−1
NLoSXi

−αNLoS
U

}
, (3.7)

To calculate the coverage probability, it is necessary to determine the SINR received at the typ-

ical user. We assume that the SA UBSs, except for the serving UBS, will cause interference to

the typical user u, regardless of whether they are in LoS or NLoS states. The number of inter-

fering UBSs is determined by K − 1. Let denote by Zi the distance from a random interfering

UBS to user u. The aggregate interference is represented by I and can be expressed as follows

I =
K−1∑
i=1

(
PUΩ(ω, θ(Zi))hLoSU φLoS

−1Z
−αLoS

U
i ∪ PUΩ(ω, θ(Zi))hNLoSU φNLoS

−1Z
−αNLoS

U
i

)
,

(3.8)

where l ∈ {LoS,NLoS}, Ω(ω, θ(Zi)) denotes the vertical antenna pattern gain of the interfer-

ing UBS.

Let denote by XLoS
r and XNLoS

r the distance between u and the serving UBS A0 in LoS and

NLoS states, respectively. The SINR received at u is formulated as follows

SINR = PUΩ(ω, θ(X l
r))hlUφl−1X l

r
−αl

U

I +N0
, (3.9)

where l ∈ {LoS,NLoS}, Ω(ω, θ(X l
r)) denotes the vertical antenna pattern gain of the UBS A0

and N0 is the additive white Gaussian noise signal power.
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3.6 Probability Density Function

The characterization of the distribution of distances is a crucial step in achieving the asso-

ciation probability and coverage probability. Obtaining the distance distribution for BPP-based

finite networks is more challenging compared to PPP due to the derivation area sometimes be-

ing an intersection of two disks when the location x0 of the typical user is not at the center of

the target area. The PDF of the distance Xi between u and an arbitrary UBS Ai conditioned on

the distance y0 is provided by Lemma 3.6.1.

Lemma 3.6.1. The PDF of Xi conditioned on y0 is

fXi
(x | y0) =



2x
r2
a

, h ≤ x ≤ xm,

2x
πr2

a

arccos
(
x2 − h2 + y2

0 − r2
a

2y0(x2 − h2) 1
2

)
, xm ≤ x ≤ xu,

(3.10)

where xm =
√

(ra − y0)2 + h2 and xu =
√

(ra + y0)2 + h2.

Proof: The CDF of each distance Xi can be written as

FXi
(xi) = P(Xi ≤ xi) =P(Y 2

i + h2 ≤ x2
i )

=FYi
(
√
x2
i − h2), (3.11)

Since x0 is random within the Br(O, ra) area, we need to determine the intersection area of the

two discs Br(O, ra) and Br(x0, yi) to calculate the conditional CDF of Yi. There are two possi-

ble cases depending on the range of yi: (i) the discBr(x0, yi) is completely contained within the

discBr(O, ra), and (ii)Br(x0, yi) partially overlaps withBr(O, ra). This results in a piece-wise

conditional CDF of Yi, as shown below [139]

FYi
(yi | y0) =



y2
i

r2
a

, 0 ≤ yi ≤ ym,

y2
i

πr2
a

(
θ∗ − sin 2θ∗

2

)
+ 1
π

(
ϕ∗ − sin 2ϕ∗

2

)
, ym ≤ yi ≤ yu,

(3.12)

where θ∗ = arccos
(
y2
i + y2

0 − r2
a

2yiy0

)
, ϕ∗ = arccos

(
r2
a + y2

0 − y2
i

2ray0

)
, ym = ra − y0 and

yu = ra + y0.
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By substituting (3.12) into (3.11), we can obtain the conditional CDF of Xi as follows

FXi
(xi | y0) =



x2
i − h2

r2
a

, h ≤ xi ≤ xm,

x2
i − h2

πr2
a

(
θ∗ − sin 2θ∗

2

)
+ 1
π

(
ϕ∗ − sin 2ϕ∗

2

)
, xm ≤ xi ≤ xu,

(3.13)

where θ∗ = arccos
(
x2
i − h2 + y2

0 − r2
a

2yiy0

)
, ϕ∗ = arccos

(
r2
a + y2

0 − x2
i + h2

2ray0

)
,

xm =
√

(ra − y0)2 + h2 and xu =
√

(ra + y0)2 + h2. Taking the derivative of FXi
(xi | y0)

w.r.t. xi yields (3.10).

3.6.1 Conditional Serving Distance Distribution

The conditional serving and interfering distance distributions provide intermediate results

for obtaining the statistical characteristics of the desired signal and aggregate interference,

which are necessary to derive the coverage probability.

We refer to the conditional distance from the typical user to LoS/NLoS UBS by ˆXLoS
r , ˆXNLoS

r

respectively. The PDF of X̂ l
r conditioned on y0, denoted by fX̂krl(r | y0) is given in the follow-

ing Lemma.

Lemma 3.6.2. The conditional PDF of the distances X̂ l
r is

f
X̂l

r
(r | y0) =NP

l
U(r)

AlU(y0)

∫ xu

RNLoS
LoS (r)

fXi
(x | y0)PLoS

U (x)dx+
∫ xu

RLoS
NLoS(r)

fXi
(x | y0)PNLoS

U (x)dx
N−1

,

(3.14)

Proof: The CDF of X̂ l
r can be written as

FX̂l
r
(r | y0) = P

(
X l
r < r|u is associated with UBS in l link

)
=

P
(
X l
r < r, u is associated with UBS in l link

)
P(u is associated with UBS in l link)

= N

AlU(y0)

∫ r

xu

P l
U(q)fXi

(q | y0)

×

∫ xu

RNLoS
LoS (r)

fXi
(x | y0)PLoS

U (x)dx+
∫ xu

RLoS
NLoS(r)

fXi
(x | y0)PNLoS

U (x)dx
N−1

dq,

(3.15)

where l ∈ {LoS,NLoS}. Deriving FX̂l
r
(r | y0) w.r.t. q yields (3.14).
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3.6.2 Conditional Interfering Distance Distribution

For networks based on PPPs, PGFL is a well-developed tool for efficiently dealing with

aggregate interference as shown in Chapter 1. However, PGFL cannot be used in BPP-based

network.

To accomplish this, we derive the PDF of the distance Zi from an arbitrary interfering UBS to

u located at x0. Wang et al. [46] have demonstrated that when UBSs are i.i.d. in a finite disk

according to BPP, the distance Zi between any two interfering UBSs is independent.

Lemma 3.6.3. The conditional PDF of the interference distance Zi

We denote by BRv
l

(r) the event that the interfering UBS being in v ∈ {LoS,NLoS} is located

Rv
l (r) away from u and assume that r be the distance between u and its associated UBS in

l ∈ {LoS,NLoS}. The conditional PDF of Zi is then given by

fZi

(
z|BRv

l
(r), y0

)
= fXi

(z | y0)P v
U(z)∫ xu

Rv
l

(r) fXi
(z | y0)P v

U(z)dz , (3.16)

Proof: It’s worth noting that Zi is the distance Xi conditioned on BRv
l

(r), then we begin by

presenting the conditional CDF of Xi as follows

FXi

(
x|BRv

l
(r), y0

)
=P

(
Xi < x|BRv

l
(r), conditioned on the distance y0

)
=
P
(
Xi < x,BRv

l
(r), y0

)
P
(
BRv

l
(r), y0

)
=
∫ x
Rv

l
(r) fXi

(z | y0)P v
U(z)dz∫ xu

Rv
l

(r) fXi
(z | y0)P v

U(z)dz , (3.17)

After deriving (3.17) and substituting Xi with Zi, we obtain the desired result in (3.16).

3.7 Conclusion

This chapter proposed a 3D model of a mmWave UBS swarm in a finite isolated region

where wireless connectivity cannot be achieved with traditional GBSs. In this context, the

network and channel models are described, with the pertinent assumptions delineated. The

number of simultaneously active UBSs reusing the same resource block can be controlled, and

the 3D beamforming technique is implemented to mitigate interference and further improve

the network performance. Stochastic geometry is employed as the modeling tool, in which the

BPP is used for the UBS spatial distribution. A cell association strategy based on the strongest
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received signal power is adopted, and the formulation of the SINR is provided. Finally, the

expressions of the probability density function of the serving and interfering distances, which

are crucial for the derivation of the coverage probability, are derived.
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4.1 Introduction

A significant challenge currently facing 5G network operators is to provide seamless and

ubiquitous coverage in dense urban areas characterised by high-rise buildings, while ensuring

that all users have access to reliable and high-quality services. Moreover, the static infrastruc-

ture of the terrestrial network can fail to keep up with the huge demand from users, creating a

congested and saturated network. To address this issue, a novel network infrastructure must be

considered. In the literature, VHetNets [44–47,99,140] have been investigated to enable global

3D communication network coverage, overcoming the limitations of traditional terrestrial net-

works. However, there are still unaddressed issues in this context, including the impact of 3D

blockages.

In this chapter, we propose a new 3D model of mmWave VHetNets in which the aerial tier is de-

ployed to assist the terrestrial tier in dense urban areas with high user density and 3D blockage

effects. We adopt a new combination of technologies consisting of MU-MIMO beamforming

with UAV-enabled mmWave communications. In this context, we present the system model

and assumptions based on the BPP, PPP, and PCP stochastic geometry tools, we define the user

association approach and derive the SINR. Finally, we compute the probability density function

of the distances between the typical user and the BS in each tier.

4.2 UBS Deployment in Hotspot Scenarios

In situations of high user concentration, such as festivals, concerts, and the olympic games,

traditional BSs may not have the capacity to meet the user demand and sudden surge of broad-

band, creating an overloaded infrastructure area. Therefore, it is important to consider alter-

native solutions in these temporary areas. The deployment of multiple UBSs is a promising

solution to assist and complement terrestrial networks. These UBSs will be autonomously con-

trolled, dispatched as a network requires, cheaply maintained, and easily manoeuvred. The

backhaul bit rates required for each UBS radio access node could be several Gbps, depending

on the traffic load.

On the other hand, VHetNets can also offer an intriguing opportunity during natural disasters,

e.g., floods, tornadoes, earthquakes, and violent snowstorms, where dependable and adaptable

communications are crucial for search and rescue operations [141]. A rotary-wing UBS can

carry out high-risk missions, creating resilient communication networks. In addition, coverage

gaps can also occur due to man-made phenomena such as subsystem failures. It is worth noting
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that, users congregate in these particular regions, resulting in the formation of clusters. Conse-

quently, the PCP is commonly employed. UAV-assisted cellular networks with PCP-based user

distribution in a post-disaster situation were studied in [140–142].

4.3 mmWave Communication Issues in Dense Cities

The combination of VHetNets with mmWave communications offers several benefits. These

include spatial sparsity, flexible beamforming, increased resistance to the Doppler effect when

used with mobile UBSs, and cost reduction of wired backhaul in terrestrial networks. Never-

theless, the propagation of these waves is considerably susceptible in densely populated urban

areas, and this phenomenon has not been extensively studied by researchers.

Sensitivity to Blockage

mmWave communications experience significant propagation loss due to beam misalign-

ment [143] and blockage effects, such as building blockages [113], human-body blockages

[144] and self-blockages [145], that may limit the performance. These waves are easily and

rapidly attenuated by significant obstructions due to their short range, leading to intricate prop-

agation conditions in the channel. For instance, at a frequency of 60 GHz, the wavelength

measures only 5 millimeters, while the size of a building is significantly larger. As a result, the

wave encounters significant difficulty in penetrating or diffusing through a building and com-

munication can be severely disrupted. In reality, mmWaves primarily rely on LoS transmission.

Geng et al. [146] noted that the channel characterization of NLoS experiences greater attenu-

ation than that of LoS. Deploying UAV networks can help address this issue more effectively

than terrestrial networks. According to the results obtained in [70] and the measurements re-

ported in [147], the higher altitude of UBSs leads to a higher probability of establishing LoS

links than GBSs, which improves channel quality.

Hotspots frequently arise in dense urban areas where multiple buildings can interfere with com-

munication links. Therefore, when analyzing coverage in hotspot areas, it is crucial to consider

the 3D blockage effect of buildings. Performance analysis has been conducted on hotspots in

mmWave cellular networks with only ground tier in [148,149]. Recent studies have focused on

the integration of UBSs into mmWave cellular networks in crowded hotspot areas using cluster-

based model [45, 96, 133, 138]. However, the blockage effect of buildings on the coverage

performance has not been addressed in the aforementioned works.
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Compared to 2D blockage models where the presence of a building results in a blocked link,

3D models can facilitate unobstructed connections by considering building height. However,

3D blockages can create spatial constraints for UBS distribution since they cannot be deployed

inside building areas and affect the cell association strategy. Previous works have not taken

into account this dependent deployment, where UBSs are distributed to BPP [110, 126, 127].

The investigation of 3D blockage effects on UAV-based communication has not received much

attention in the open literature [48, 49] and has not been addressed in the VHetNets.

4.4 Multiuser MIMO Communication Systems

MIMO technology was developed as an ideal solution to the limited frequency spectrum

available and the increasing demand for higher data transmission rates without the need for

extra bandwidth. MIMO provides the advantage of spatial multiplexing, allowing for the simul-

taneous transmission of multiple data streams using different antennas. This makes it a viable

solution for dealing with heavy propagation losses in mmWave links. Traditional MIMO or

single user MIMO (SU-MIMO) increases the capacity of a single user by directing all transmit

antennas towards it. However, when multiple users are present, each one must wait their turn to

receive the signal in a round-robin fashion.

The MU-MIMO system is a promising technology for congested networks with a high density

of users. It can significantly improve system capacity by using MIMO channels in combination

with multiuser multiplexing schemes. This technology enables a BS to serve multiple users

simultaneously using the same frequency resources, as shown in Figure 4.1. This provides spa-

tial degrees of freedom of the channel leading to substantially increased spectral efficiency and

User 1

User 2 User 3

User Nu

 UAV with Na antennas
...

...

Single user MIMO

User 1

User 2 User 3

User Nu

...

 UAV with Na antennas
...

Na≫Nu

Multiuser MIMO

Figure 4.1: Illustration of downlink UBS with SU-MIMO and MU-MIMO systems.
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Figure 4.2: Downlink MU-MIMO beamforming.

thus expands upon traditional MIMO capabilities. The integration of MU-MIMO technology

with UBSs offers new opportunities and advantages compared to its use with fixed GBSs. This

approach allows for adaptive beamforming and dynamic deployment, especially in disaster-

affected areas or crowded public events, improving thus coverage and connectivity.

The capacity of multiuser communication systems is restricted by interference. Several precod-

ing techniques have been developed to address the interference issue such as zero forcing beam-

forming (ZFBF) [150] in which the simultaneously active users receive informations without

interferences through the transmission signal being projected into the interference subspace’s

null space, minimum mean square error (MMSE) [151] which combines consideration of noise

and channel uncertainty with channel state information (CSI), and interference alignment [152]

in which multiple users’ interference is oriented into orthogonal subspaces.

MIMO UAV-cellular communication in a geometry-based stochastic model have been widely

analyzed in the literature [153, 154]. However, the literature has not extensively analyzed the

performance in a MU-MIMO system for UAV networks.

The 3D model proposed in this chapter explores the use of a combination of MU-MIMO and

directional beamforming in mmWave aerial networks as illutrated in Figure 4.2, to enhance

signal quality and improve the received SINR at the user. To the best of our knowledge, this

combination has not been previously studied in the literature in the context of coverage analysis

using stochastic geometry.
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4.5 System and Channel Modeling

The work presented in this section [155] represents an evolution of our previous work,

provided in [156].

4.5.1 Network Model and Assumptions

We focus on more realistic ground hotspots, considering a densely populated city, with the

presence of buildings causing 3D blockage effects. To alleviate traffic congestion and enhance

coverage on mmWave cellular networks, we employ a predefined number N of UBSs in a finite

circular region to establish VHetNets, as illustrated in Figure 4.3. The UBS tier and the infinite

GBS tier share the same frequency band. The time is assumed to be stationary.

The set of GBS locations is denoted by ΦG = {Mj, j ∈ N}. The locations Mj are assumed

to be spatially distributed according to HPPP with a spatial density of λG ≥ 0. All GBSs

transmit with equal power, denoted by, PG. The modeling of UBS locations follows the BPP

distribution, as described in the previous chapter 3 (section 3.5). We assume that both UBSs

and GBSs incorporate directional beamforming. We consider that GBSs and users are equipped

with a single antenna. MU-MIMO is considered at the UBSs, where each UBS is equipped with

an Na antenna array serving Nu users (1 < Nu ≪ Na).

The users are clustered around the GBSs, and their locations form a TCP denoted by ΦC . There-

fore, the users are i.i.d. around the cluster centers, following a Gaussian distribution with a zero

mean and a variance σ2
u. Our analysis is conducted on a typical user u in the target area Bg,

which is the projection of Ba onto the plane. To ensure clarity, we randomly selected u within

a random cluster (termed a representative cluster) and set it as the origin. The link between a

UBS or GBS and u can be in either a LoS or NLoS state.

The UBS deployment in our model mainly depends on the capacity of GBSs (cluster center) to

cover user hotspots, that’s why the position of the UBSs relative to the hotspot is irrelevant.

4.5.2 3D Blockage Model

In this study, we aim to investigate the impact of LoS/NLoS propagation to fit the charac-

teristics of mmWave communication, where the existing studies on 3D blockage consider only

the LoS propagation channel and a nearest UBS-based user association, such an approach is

impractical and doesn’t reflect the emission power and neglects the randomness in the channel

propagation. We propose more sophisticated models of the wireless propagation channel to
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Figure 4.3: Illustration of the VHetNet with 3D blockages of buildings.

capture the 3D blockage. UBS’s flying capability creates unobstructed A2G channels, resulting

in a higher LoS probability compared to G2G connections, as shown in Figure 4.4. We use

a Boolean scheme of rectangles to model randomly located buildings [36]. The buildings are

distributed according to an HPPP ϕB with a density of λB ≥ 0, ensuring that their locations,

sizes, and orientations are independent. The buildings’ length LB and width WB are i.i.d. with

mean values of E[LB] and E[WB], respectively. As per [113], the buildings can be considered
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Figure 4.4: 3D blockage model and view of the benefit of the UBSs’s altitude to prevent obstructed connection.

symmetric, eliminating the need to specify their orientations. We neglect the overlapping of

buildings and consider that building height HB follows an exponential distribution with param-

eter µ, the CDF of HB can be expressed as follows

FHB
(hB) = 1 − e−µhB hB ≥ 0, (4.1)

Note that the buildings average height is then given by HB = 1
µ

.

4.5.3 Channel Propagation Model

Large Scale Path loss

Blockages in A2G and G2G links cause significant differences in path losses between LoS

and NLoS scenarios, particularly in mmWave communications. To account for the greater im-

pact of NLoS compared to LoS, we assume that NLoS has the highest path loss exponent. The

UBS path loss model is formulated as follows [46]

Υl
U(Xi) =


ΥLoS
U (Xi) = Xi

−αLoS
U ,

ΥNLoS
U (Xi) = Xi

−αNLoS
U ,

(4.2)

where Xi =
√
Y 2
i + h2 is the distance between u and the UBS Ai, h is the UBS altitude, Yi is

the distance between u and Âi, which is the projection of Ai on the plane. αLoSU and αNLoSU are

the path loss exponents for LoS/NLoS cases in the UBS tier.
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For the terrestrial links, we adopt the following 3GPP path loss function [109]

Υl
G(Wj) =


ΥLoS
G (Wj) = Wj

−αLoS
G ,

ΥNLoS
G (Wj) = Wj

−αNLoS
G ,

(4.3)

where Wj is the distance between u and GBS Mj , αGLoS and αGNLoS are the path loss exponents

for LoS and NLoS links in the terrestrial tier, respectively.

Small Scale Fading

We assume that LoS and NLoS links in each tier experience Nakagami-m fading, with shape

and scale parameters given by
(
ml
t,

1
ml

t

)
, where t ∈ {U,G}, l ∈ {LoS,NLoS}. Additionally,

as the UBSs are equipped with MIMO antennas serving multiple Nu users, we use zero-forcing

beamforming with perfect CSI in UBS tier. The Nakagami fading gains in the UBS tier, de-

noted by hlU , and in the ground tier, denoted by hlG, follow the gamma distribution, and can be

expressed as follows hlU ∼ Γ
(
ml
UM, 1

ml
U

)
and hlG ∼ Γ

(
ml
G,

1
ml

G

)
, where M = Na −Nu + 1

denotes the array gain for zero forcing beamforming transmission [112].

Shadowing

The log-normal shadowing power S may be expressed by Slt = 10− Sl
tdB
10 , where SltdB has a

normal distribution with zero mean and σSl
2
t variance and l ∈ {LoS,NLoS}. The variance in

the UBS tier depends on the elevation angle and environment type, as reported in [73]. There-

fore, the variance of LoS and NLoS UBS can be written as

σS
LoS
U (h) = b1 exp

(
−b2 sin−1

(
h

Yi

))
, (4.4)

σS
NLoS
U (h) = b′

1 exp
(

−b′
2 sin−1

(
h

Yi

))
, (4.5)

where b1, b2, b′
1 and b′

2 are constants that depend on the environment and sin−1
(
h

Yi

)
is the

elevation angle between the typical user and the UBS located in Ai.

LoS and NLoS Probabilities

In practice, not all multipath components may be obstructed by buildings. Therefore, in

this study we classify a blocked link as an NLoS link. The LoS and NLoS probabilities (3.2),

(3.3) applied in the isolated regions model presented in the preceding chapter are not suitable
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for application to dense urban environments due to the presence of multiple 3D buildings that

can interfere with the communication link between the user and the UBS. To this end, we

develop new probability formulas for LoS and NLoS, which will be based on the exponential

distribution of building heights. The formulas provide a more precise representation of the

impact of buildings on communication links.

We denote by OAi and OÂi the link from u to UBS Ai and the link from u to Âi, respectively.

Similarly, the link from GBS Mj to u is denoted as OMj .

• 2D Blockage Effect

The terrestrial network model has only been limited to the R2 plane (2D G2G channel), neglect-

ing the height of GBSs and users, as well as the height of buildings. Consequently, the presence

of a building obstructs the G2G link. The A2G channel is considered in 3D. However, to obtain

the expressions in the 3D model, we must first derive the expressions in 2D model.

K̂i and Bj , the number of buildings crossing the links OÂi and OMj respectively, are Poisson

distributed random variables, as demonstrated in [113]. Their means are E[K̂i] = βYi + p,

and E[Bj] = βWj + p. Here, Yi and Wj represent the horizontal distance from UBS to u

and from GBS to u, respectively. β and p are parameters of blockage processes, where β =
2λB(E[WB ]+E[LB ])

π
, and p = λBE[WB]E[LB]. p represents the index of city blockage density. A

low p-value indicates that blockages are not widely distributed, and vice versa. By using the

properties of the Poisson distribution, the derived corollary results enable the expression of the

probabilities of horizontal LoS and NLoS for the link OÂi and OMj as follows

P l
U(2D)

(Yi) =


PLoS
U(2D)

(Yi) = e−(βYi+p),

PNLoS
U(2D)

(Yi) = 1 − e−(βYi+p),

(4.6)

P l
G(Wj) =


PLoS
G (Wj) = e−(βWj+p),

PNLoS
G (Wj) = 1 − e−(βWj+p),

(4.7)

• 3D Blockage Effect

In the UBS tier, the presence of a building along the OAi link does not always lead to a NLoS

link, unless the building’s height is significant enough to block the connection. This intuitively

enhances the probability of establishing a direct A2G communication link. Figure 4.4 shows

that the obstruction of the path is dependent on the height of the building that intersects it,
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which is determined by HB > hy = yi

Yi
h, where yi is the horizontal distance between u and the

building.

The LoS and NLoS probabilities in the UBS tier are given in Lemma. 4.5.1.

Lemma 4.5.1. The probability of LoS and NLoS of the A2G channel are expressed as follows

PLoS
U (Xi) = exp

−1 − e−H−1
B h

H
−1
B h

(
β
√
X2
i − h2 + p

) , (4.8)

PNLoS
U (Xi) = 1 − PLoS

U (Xi), (4.9)

Proof : Consider Ki the number of buildings intersecting the link OAi, which follows a

Poisson distribution. The conditional probability of Ki obstructing the OAi link can be written

as follows

η = 1
Yi

∫ Yi

0
P[HB > hy] dyi

= 1
Yi

∫ Yi

0

(
1 − FHB

(hy)
)
dyi

= 1
Yi

∫ Yi

0
e

−µ yi
Yi
h
dyi

(a)= 1 − e−H−1
B h

H
−1
B h

, (4.10)

where (a) follows from µ = 1
HB

. Then the mean of Ki is E[Ki] = η E[K̂i]. Based on equation

(4.6), the probability of LoS in the 3D model can be expressed as

PLoS
U (Xi) = exp

(
−η

(
β
√
X2
i − h2 + p

))
, (4.11)

Substituting the expression of η in (4.11) yields (4.8).

By examining (4.8), we observe that the probability of LoS link occurrence is influenced by

various factors such as building density, height, area, and the altitude of UBSs. This differs

from the conventional equation used in the scenario of isolated region (3.2), which primarily

hinges on the elevation angle between the UBS and the user.

To get an overview of the 3D blockage effects on the aerial communication link, we plotted in

Figure 4.5, the new LoS probability given in (4.8) and the LoS probability given in (3.2) as a

function of UBS altitude h with different values of λB. From Figure 4.5, it can be seen that

there is a direct relationship between the probability to have a LoS link and the UBS altitude

h. Furthermore, it can be observed that when a simple A2G channel is considered, without

accounting for 3D building characteristics, the LoS probability rapidly approaches 1, in contrast
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Figure 4.5: LoS probability vs. UBS height for different blockage densities.

to the new channel with 3D blockages. Indeed, the higher altitude of UBSs promotes higher

LoS probability in contrast, the increase in building height or in blockage density decreases the

LoS probability.

4.5.4 Directional Beamforming Gain

Given the nature of mmWave transmissions, we employ directional beamforming to re-

duce interference. Subsequently, the analysis will be extended with 3D beamforming and a

comparison will be made between the two techniques. The sector antenna model was used to

approximate the array patterns, as illustrated in Figure 4.6, with characteristics including main

lobe beamwidth θt, main lobe gain gt, and side lobe gain st, where (t ∈ {U,G}). The sectored

antenna model assumes constant array gains, gt, for all angles in the main lobe and another

constant, st, in the side lobe. However, it is important to note that gt represents the maximum

antenna gain that can be achieved between the typical user and the serving BS. The directional

gain of the BS antenna, denoted by Gt is provided by

Gt =


gt, Pgt = θt

2π ,

st, Pst = 1 − Pgt ,

(4.12)
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Figure 4.6: Illustration the sectored antenna model used to approximate the beamforming patterns. The red line

shows a more realistic antenna model. The blue line shows the approximation taken into consideration [40].

where Pgt and Pst are the probabilities of the main lobe and the side lobe, respectively. We

adopt perfect beam alignment therefore gt is the received gain from the serving BS.

4.5.5 User Association and SINR Model

Since the users cluster around GBSs based on TCP, the distance distribution between the

typical user and the representative cluster center differs from the distance distribution between

the typical user and the center of any other cluster. Consequently, we devide the ground tier into

two tiers: 0th tier (GBS0), which represents the cluster center, and 1st tier (GBS1), which rep-

resents the other GBSs. Therefore, the typical user u can be associated with either LoS/NLoS

UBS, LoS/NLoS GBS0, or LoS/NLoS GBS1, whichever provides the strongest long-term aver-

aged received power.

To distinguish between GBS0 and GBS1, we use W0 to denote the distance from u to GBS0 and

Wj to denote the distance from u to GBS1, as illustrated in Figure 4.7, while maintaining the

same propagation channel.

With the assumption that E[hlU ] = E[hlG] = 1 [138], the received power at u from UBS, GBS0,

and GBS1 can be expressed as follows

ξU =PUMGUΥl
U(Xi)−1, (4.13)

ξG0 =PGGGΥl
G(W0)−1, (4.14)

ξG1 =PGGGΥl
G(Wj)−1, (4.15)

In the infinite network, the HPPP is used for the location of the GBSs. With the assumption

that the Nakagami-m fading gain is equal to one, the GBS1 with the shortest distance provides

the strongest received power in the 1st tier. However, in the 0th tier the event that the GBS0 be

the serving BS is mutually exculsif as the GBS0 can be in LoS or NLoS with u. Furthermore,
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the events of the UBS being in either LoS or NLoS links are also mutually exclusive as they

are i.i.d. in a finite disk as a BPP. As a result, the serving UBS cannot be the closest one. In

this scenario, the serving UBS can be any of the N UBSs that can be in the LoS or NLoS

link. If UBSs are distributed according to HPPP, the serving UBS will be the closest one to the

user [44].

Of the three tiers, the serving BS, denoted by S0, can be summarized by the following expression

S0 = arg max

 max
i=1:N

(
PUMgtXi

−αLoS
U ∪ PUMgtXi

−αNLoS
U

)
, PGgtW0

−αLoS
G ∪ PGgtW0

−αNLoS
G ,

PGgt
(
minWLoS

j

)−αLoS
G , PGgt

(
minWNLoS

j

)−αNLoS
G

, (4.16)

Nearest Interfering Base Station

To derive the analytical expressions for the association probability, it is required to specify

the excluded zone where there are no interfering BSs. Let r be the distance between u and its

associated BS. Bearing that "xBS" is the serving BS in l link, there exists a minimum distance

Ryv

xl (r) between u and the closest interfering "yBS" in v link, where l, v ∈ {LoS,NLoS} and

x, y ∈ {U,G0, G1}.

Remark 1. Note that if xBS and yBS are simultaneously either UBSs or GBSs with the same

link state,
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RU l

U l(r) = R
Gl

1
Gl

0
(r) = R

Gl
0

Gl
1
(r) = R

Gl
1

Gl
1
(r) = r,

Remark 2. If xBS and yBS are simultaneously either UBSs or GBSs with a different link state,

RUb

U l (r) = r

αl
U

αb
U , l ̸= b

R
Gb

1
Gl

0
(r) = R

Gb
0

Gl
1
(r) = R

Gb
1

Gl
1
(r) = r

αl
G

αb
G , l ̸= b

Remark 3. If xBS and yBS are either UBSs or GBSs but not simultaneously,

R
Gv

0
U l (r) = R

Gv
1

U l (r) =
(
PGGG

PUMGU

) 1
αv

G
r

αl
U

αv
G ,

RUv

Gl
0
(r) = RUv

Gl
1
(r) =

(
PUMGU

PGGG

) 1
αv

U
r

αl
G

αv
U ,

LetX l
r,W

l
0 andW l

r be the distance between the serving UBS, GBS0 and GBS1 in l ∈ {LoS,NLoS},

respectively. The SINR at u is defined as follows

SINR =



PUgUh
l
UX

l
r

−αl
U

I +N0
, if u is associated with UBS

PGgGh
l
GW

l
0

−αl
G

I +N0
, if u is associated with GBS0

PGgGh
l
GW

l
r

−αl
G

I +N0
, if u is associated with GBS1

(4.17)

where N0 is the additive white gaussian noise signal power.

In this study, all BSs are considered to be interfering BSs, with the exception of the serving BS.

Consequently, the aggregate interference encompasses the aggregate interference from UBSs

denoted by IU , GBS0 denoted by IG0 , and GBS1 denoted by IG1 , which can be expressed as

follows

I = IU + IG0 + IG1 , (4.18)

We denote by IUi
the interference received from an arbitrary UBS. IUi

, IG0 and IG1 are given as

follows

IUi
=PUGU ĥ

v
UZi

−αv
U , (4.19)

IG0 =PGGGh
v
GW0

−αv
G , (4.20)

IG1 =
∑
v

∑
Mj∈ΦG\ψ

Gv
1

tl

PGGGh
v
GWj

−αv
G , (4.21)

where ĥvU ∼ Γ
(
mv
UNu,

1
mv

U

)
is the channel fading gain of the interfering UBSs. Zi is the

distance from u to a random interfering UBS. ψG
v
1

tl is a disk with radius RGv
1

tl (r) indicating the

excluded area without any GBS1 interference.

Remark 4. If u is served by the GBS0, IG0 = 0 since there is only one GBS0.
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4.5.6 Extension to A Model With 3D Beamforming

Since we have constrained the terrestrial network model to operate within a 2D plane, 3D

beamforming will exclusively be implemented in UBSs, where we adjust the antenna radiation

pattern in both the horizontal and vertical planes. The SINR received by the typical user from

the UBS Ai will be formulated as follows

SINR = PUgUΩ(ω, θ(X l
r))hlUX l

r
−αl

U

I +N0
, (4.22)

where Ω(ω, θ(Xl
r)) is the vertical antenna pattern gain of the serving UBS, given by

Ω(ω, θ(X l
r)) = 10

−0.1×min

12

(
ω − θ(X l

r)
θd

)2

,SLL


, (4.23)

where θ(X l
r) = tan−1 h√

(X l
r

2 − h2)
.

The singular modification in the aggregate interference I = IU + IG0 + IG1 , lies in IU which is

formulated as

IUi
= PUGUΩ(ω, θ(Zv

i ))ĥvUZi−α
v
U , (4.24)

4.6 Probability Density Function

We derive relevant distance distributions while considering the probabilities of occurrence

of the LoS/NLoS links for both A2G and G2G channels.

4.6.1 Distance Distribution in the UBS Tier

Based on the Lemma 3.6.1 given in the previous chapter, for a typical user u located at the

origin i.e. y0 = 0, the PDF of the distance Xi from u to an arbitrary UBS Ai reduces to a simple

expression, as shown in the following Corollary.

Corollary 4.6.1. The PDF of Xi is

fXi
(xi) = 2xi

r2
a

, h ≤ xi ≤ xu, (4.25)

where xu =
√
r2
a + h2.
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4.6.2 Distance Distribution in the 0th Tier

Given that the user distribution is based on TCP with a variance σ2
u, the CCDF and PDF of

the distance W0 between u and GBS in the representive cluster are respectively, given by

F̄Wo(w) = exp
(

− w2

2σ2
u

)
w ≥ 0, (4.26)

fWo(w) = w

σ2
u

exp
(

− w2

2σ2
u

)
w ≥ 0. (4.27)

4.6.3 Distance Distribution in the 1st Tier

Recall that W l
r is the serving distance in the 1st tier i.e. the nearest distance from u to the

LoS/NLoS GBS1.

Lemma 4.6.1. The CCDF and PDF of W l
r , can be written as

F̄W l
r
(r) =Ql

G

−1 exp
(

−2λGπ
∫ r

0
P l
G(q)qdq

)
, (4.28)

fW l
r
(r) =Ql

G

−12λGπrP l
G(r) exp

(
−2λGπ

∫ r

0
P l
G(q)qdq

)
, (4.29)

where Ql
G = 1 − e−2λGπ

∫∞
0 pl

G(q)qdq is the probability that u is surrounded by at least one l

GBS1.

Proof: Given that at least one GBS1 exists in l ∈ {LoS,NLoS} state, F̄W l
r
(r) can be

defined as the probability that all GBSs in the 1st tier are located at a distance greater than r.

F̄W l
r
(r) = P(W l

r > r | ∃ at least one GBS1 is in l link)

= P(W l
r > r, the link is l)

P(∃ at least one GBS1 is in l link)

= P(there is no GBS1 closer that r )
Ql
G

(a)= Ql
G

−1 exp
(

−
∫ ∫

λGp
l
G(q)qdqdθ

)
= Ql

G

−1 exp
(

−2λGπ
∫ r

0
plG(q)qdq

)
, (4.30)

where (a) results from the null probability of the PPP [37], by integrating the area of the circle

with radius r using polar coordinates. The PDF of W l
r , can be simply computed by fW l

r
(r) =

− d

dr
F̄W l

r
(r) which completes the proof.

4.6.4 Conditional Serving Distance Distribution

Let denote by X̂ l
r, Ŵ

l
0 and Ŵ l

r the conditional distances given that u is associated with a

UBS, GBS0 or GBS1 in a LoS/NLoS link, respectively.
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Lemma 4.6.2. The conditional PDF of the distances X̂ l
r, Ŵ

l
0 and Ŵ l

r are respectively expressed

by

fX̂l
r
(r) =

N 2r
r2

a
P l
U(r)

AlU

(∑
v

∫ xu

RUv

Ul
(r)

2x
r2
a

P v
U(x)dx

)N−1∑
v

Qv
0F̄Wo

(
R
Gv

0
U l (r)

)∏
v

Qv
GF̄W v

r

(
R
Gv

1
U l (r)

)
,

(4.31)

fŴ l
0
(r) =fW0(r)P l

G(r)
AlG0

∑
v

∫ xu

RUv

Gl
0

(r)

2x
r2
a

P v
U(x)dx


N∏

v

Qv
GF̄W v

r
(r) , (4.32)

fŴ l
r
(r) =Q

l
GQ

b
Gf

l
Wr

(r)
AlG1

∑
v

∫ xu

RUv

Gl
1

(r)

2x
r2
a

P v
U(x)dx


N

F̄W b
r

(r)
∑
v

Qv
0F̄W0 (r) , (4.33)

where l, v, b ∈ {LoS,NLoS} and l ̸= b.

Proof : The proof follows the same steps as in Lemma 3.6.2.

4.6.5 Conditional Interfering Distance Distribution

Let denote by B
Ryv

tl
(r) the event that the interfering BS y ∈ {U,G0, G1} in v ∈ {LoS,NLoS}

link is locatedRyv

tl (r) away from u and that the serving BS t ∈ {U,G0, G1} in l ∈ {LoS,NLoS}
link is located at a distance r from u.

The conditional PDF of the interference distance Zi and W0 are given by

fZi

(
z|BRUv

tl
(r)

)
= fXi

(z)P v
U(z)∫ xu

RUv

tl
(r) fXi

(z)P v
U(z)dz , (4.34)

fW0

(
w0|B

R
Gv

0
tl

(r)

)
= fW0(w0)
F̄W0(RGv

0
tl )

, (4.35)

The proof follows the same steps as in Lemma 3.6.3.

4.7 Conclusion

In this chapter, we have proposed a new VHetNet framework model operating in mmWave

bands under the assumption of a probabilistic LoS/NLoS propagation, and max-power associa-

tion approach. The model consisted of multi-tier networks in which the GBSs are assisted by a

finite number of UBSs in the context of hotspot scenarios and high-rise building environments.

It was assumed that the UBSs are downlink MU-MIMO beamforming capable and that users are

clustered around the GBSs following the TCP model. The buildings are modeled by a Boolean

scheme of rectangles. We have developed formulas for LoS/NLoS probabilities, that take into
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account the density, height, and area of blockages. Furthermore, we have extended our model

to a MU-MIMO 3D beamforming model. Based on this, we derive the SINR expression and the

relevant distance distributions for each tier. The subsequent chapter is dedicated to the analysis

and evaluation of the performances of the two elaborated network models.
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5.1 Introduction

This chapter provides a detailed downlink performance analysis and evaluation for the pro-

posed frameworks, based on the system models described in chapter 3 and chapter 4. First,

we derive the analytical expressions for the association probability of a typical user at each

tier based on the distance distribution and LoS/NLoS probabilities. Subsequently, we calculate

Laplace transform of the aggregate interference to obtain the conditional coverage probabilities

using the gamma approximation. From there, we derive the overall coverage probability and

spectral efficiency analytical expressions. Finally, we evaluate and confirm the validity of these

expressions through numerical and simulation results.

5.2 Downlink Performance Analysis of Single-Tier Aerial Net-

works

Recall that the aim of this study is to evaluate the downlink performance of mmWave

aerial networks in an isolated region where traditional GBSs are unable to provide wireless

connectivity. In this scenario, we analyze coverage probability and network spectral efficiency

as performance metrics through the association probability to LoS and NLoS UBSs based on

the greater received power.

5.2.1 Coverage Probability

We set a SINR threshold T above which coverage can be assumed. The overall coverage

probability can be defined as

Pc(y0) =
∑
l

P(SINR > T |u is connected to l UBS )AlU(y0),

Pc(y0) =PLoS
c,U (y0)ALoSU (y0) + PNLoS

c,U (y0)ANLoSU (y0), (5.1)

where PLoS
c,U (y0) and PNLoS

c,U (y0) are the conditional coverage probabilities and ALoSU (y0) and

ANLoSU (y0) are the association probabilities given that the typical user is served by the UBS in

LoS and NLoS states, respectively.
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Association Probability

Using the PDF of the distances given in Chapter 3, section 3.6, the association probability

with UBS being transmitting in a LoS link can be derived by Lemma 5.2.1.

Lemma 5.2.1. The probability of the typical user being connected to LoS UBS is given by

ALoSU (y0) =N
∫ xu

h

(∫ xu

r
fXi

(x | y0)PLoS
U (x)dx+

∫ xu

RNLoS
LoS (r)

fXi
(x | y0)PNLoS

U (x)dx
)N−1

× PLoS
U (r)fXi

(r | y0)dr, (5.2)

where l, v ∈ {LoS,NLoS}, Rv
l (r) =

(
φl
φv

) 1
αv

U

r
αl

U
αv

U is the separation distance between u and

the nearest UBS in the v state assuming that the serving UBS is in the l state. N implies the fact

that there are N ways to choose the serving UBS from all UBSs.

Proof of Lemma 5.2.1:

Recall that the N transmitting UBSs in a single swarm are i.i.d. with arbitrary locations

{Ai}i=1:N according to the BPP distribution, and Xi ≤ xu is the distance between an arbitrary

UBS Ai and the typical user. Therefore, there is only one serving UBS, which is the one that

provides the strongest received power. Let ALoS denotes the probability that the service UBS

located at A0 is in LoS connection with the user, the distance between the two being noted as r.

ALoSU can be defined as [136]

ALoSU =NE
[
PLoS
U (Xi)ALoS

]
ALoSU =N

∫ xu

h
PLoS
U (r)ALoSfXi

(r)dr (5.3)

where ALoS can be given as

ALoS =P

 max
i=1:N

(
PUφ

−1
LoSX

−αLoS
U

i ∪ PUφ
−1
NLoSX

−αNLoS
U

i

)
ALoS

(a)=
∏

i′=1:N−1
i′ ̸=i

P
(
PUφ

−1
LoSX

−αLoS
U

i > PUφ
−1
LoSX

−αLoS
U

i′ ∪ PUφ
−1
LoSX

−αLoS
U

i > PUφ
−1
NLoSX

−αNLoS
U

i′

)

=
∏

i′=1:N−1
i′ ̸=i

P (Xi′ > Xi) + P

Xi′ > Xi

αLoS
U

αNLoS
U



=
∏

i′=1:N−1
i′ ̸=i

P (Xi′ > r) + P

Xi′ > r

αLoS
U

αNLoS
U


(b)=
(∫ xu

r
PLoS
U (x)fXi

(x)dx+
∫ xu

RNLoS
LoS (r)

PNLoS
U (y)fXi

(x)dx
)N−1

, (5.4)
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where (a) follows from the event that the strongest UBS can be LoS or NLoS are mutually

exclusive. (b) means that there is no UBS in NLoS located at a distance less than RNLoS
LoS (r).

The proof is complete by substituting (5.4) into (5.3).

Corollary 5.2.1. The probability of the typical user being connected to NLoS UBS can be

written as

ANLoSU (y0) = 1 − ALoSU (y0) (5.5)

Lemma 5.2.1 demonstrates the need for an additional numerical integral fold to be included

in the association probabilities to manage the LoS and NLoS characteristics of the channel

propagation model. For a deterministic channel model, this is not necessary.

Conditional Coverage Probability

The coverage probability given that the typical user is connected to either LoS UBS or

NLoS UBS is referred to as the conditional coverage probability. The calculation of the condi-

tional coverage probability of the typical user is based on the conditional distribution of service

and interference distance, which was previously calculated in Chapter 3 and the Laplace trans-

form of the total interference. The latter is given in the following lemma.

Lemma 5.2.2. The Laplace transform of the aggregate interference I conditioned on the serv-

ing UBS being at a distance r is given by

LI(δ, RLoS
l (r), RNLoS

l (r)) =

∑
v

∫ xu

Rv
l

(r)

(
mv
U

mv
U + δPUΩ(ω, θ(z))φ−1

v z−αv
U

)mv
U P v

U(z)fXi
(z | y0)dz∑

q

∫ xu

Rq
l
(r) fXi

(z | y0)P q
U(z)dz


K−1

, (5.6)

Proof: See Appendix A.

After we have obtained the Laplace transform of the interference power, we present the main

theorem on the conditional coverage probability. Including the high-order derivative calculation

that depends on the Nakagami-m parameter in the coverage probability expression may consid-

erably increase the evaluation time. To address this issue, we use the gamma approximation

instead of the exact function to simplify the expression and reduce evaluation time.

Theorem 5.2.1. The conditional coverage probability of the typical user is defined as

P l
c,U(y0) =

∫ xu

h

ml
U∑

n=1
(−1)n+1

ml
U

n

 e−δN0LI(δ, RLoS
l (r), RNLoS

l (r))fX̂l
r
(r | y0)dr, (5.7)
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where δ = nεlUm
l
UT φlrα

l
U

PUΩ(ω, θ(r)) , εlU =
(
ml
U !
) 1

ml
U and the binomial coefficient

a
b

 = a!
b!(a−b)! .

Proof: See Appendix B.

Substituting (5.2), (5.5) and (5.7) into (5.1) gives the overall coverage probability Pc(y0).

Pc(y0) =
∑
l

∫ xu

h

ml
U∑

n=1
(−1)n+1

ml
U

n

 e−δN0LI(δ, r, Rv
l (r))fX̂l

r
(r | y0)drN

∫ xu

h
P l
U(r)fXi

(r | y0)

×
(∫ xu

r
fXi

(x | y0)PLoS
U (x)dx +

∫ Xu

RNLoS
LoS (r)

fXi
(x | y0)PNLoS

U (x)dx
)N−1

dr, (5.8)

5.2.2 UBSs Number Optimization

The overall coverage probability expression is a function of the total number of UBSs and

the number of SA UBSs. An optimization problem is formulated to determine the optimal

number of SA UBSs within the single swarm [136], with the coverage probability serving as

the objective function, which can be formulated as

Kopt = arg maxPc(y0) (5.9)

5.2.3 Network Spectral Efficiency

Determining the number of simultaneously active links is crucial for computing the NSE.

Firstly, it is important to note that we are examining a specific, isolated region with a low user

density. Therefore, it is not necessary to activate all the UBSs, as in hotspot scenarios. We

assume that the K UBSs are simultaneously serving K different ground users. The NSE is

computed by scaling the spectral efficiency of a link by the number of active transmitters in the

network, as given in the following Lemma.

Theorem 5.2.2. The network spectral efficiency can be formulated as

NSE(y0) = K log2 (1 + T )Pc(y0) Bits/s/Hz, (5.10)

Proof: We have K out of N UBSs that are transmitting simultaneously in the network.

Subsequently, by applying Shannon’s capacity we could determine the spectral efficiency of a

fully reliable communication link, given by log2(1 + T )P(SINR > T ) where P(SINR > T )
is the overall coverage probability. By scaling this result with the SA UBSs we obtain (5.10).
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Table 5.1: 3D beamforming based UAV swarm networks simulation parameters.

Parameter Value

ra 500 m

PU 5 W

y0 200 m

c1, c2 11.95, 0.136

αLoSU , αNLoSU 3, 3.5
φLoS , φNLoS 1, 10

Parameter Value

mLoS
U ,mNLoS

U 2, 1
θd 6°

SSL 18 dB

N0 −90 dBm

T −5 dB

Monte Carlo runs 105 - 106 runs

5.2.4 Simulation and Performance Evaluation

In this subsection, we validate our findings and assess the accuracy of the proposed math-

ematical framework. We evaluate the performance as a function of the down tilt angle and

the UBS altitude, and we determine the optimal number of SA UBSs in a given finite region.

Specifically, we use the computational software Wolfram Mathematica 12 to evaluate the an-

alytical expressions, while MATLAB 2015 is employed for Monte Carlo simulations. These

computations are performed on PCs equipped with an Intel(R) Core(TM) i5-5200U CPU @

2.20GHz processor and 8GB of RAM. The system parameters are listed in Table 5.1.

5.2.4.1 Model Validation

Before proceeding with the coverage probability analysis, we verified the accuracy of our

analytical findings. We performed our simulations within a circular area Br with radius ra =
500m. To ensure precision, we aggregated the outcomes over 100,000 simulation iterations. All

Monte Carlo simulations are represented by "black" circular markers, while curves of varying

colors depict the mathematical frameworks [136]. Figure 5.1 illustrates the coverage probability

plotted against the SINR threshold for varying numbers of SA UBSs K, while maintaining a

fixed number of transmitting UBSs (N = 8). Initially, it is evident that the simulation results

exhibit complete congruence with the analytical results for various SINR thresholds, thereby

affirming the accuracy of our analytical expressions. On the other hand, increasing the number

of SA UBSs leads to an increase in interference received from UBSs operating within the same

time-frequency band, consequently diminishing the coverage probability.
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Figure 5.1: Coverage probability vs. SINR threshold with different number of SA UBSs (h = 80 m).
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Figure 5.2: Coverage probability vs. UBS’s altitude with different radius ra.

5.2.4.2 Impact of h

In Figure 5.2, we depict the coverage probability as a function of UBS altitude across vari-

ous surfaces of the finite target region, while maintaining a constant number of UBSs. It can be

noticed that the altitude of the UBSs correlates with the area of the isolated region to achieve

maximum coverage. In fact, enlarging the radius of the disks Ba and Br exacerbates the cover-

age probability while requiring a high altitude. This is due to the expanded distribution area of
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(a) Impact of tilt angle with UBS’s altitude (N = 8, K = 4).
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(b) Impact of tilt angle with the number of SA UBSs (h = 80 m).

Figure 5.3: Coverage probability vs. Tilt angle ω.

the UBS swarm, leading to a weakened signal reception at the user level. Consequently, rais-

ing the altitude of the UBSs becomes imperative to mitigate multipath phenomena and achieve

improved LoS communications.
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5.2.4.3 Impact of the Tilt Angle

Figure 5.3 delve into the examination of 3D beamforming’s impact on the coverage prob-

ability, aiming to determine the optimal tilt angle for various parameters. In Figure 5.3(a), we

analyze the coverage probability concerning tilt angle variation across different UBS altitudes.

A general observation regarding this result is that the coverage probability decreases at low tilt

angles, increases at moderate values, and then decreases again beyond the optimal threshold.

This decrease is due to an excessively large tilt angle, where the UBS’s antenna fails to extend

its reach adequately. Moreover, we observe that varying UBS altitudes correspond to signifi-

cantly different optimal tilt angles, exhibiting a direct relationship between them. Specifically,

the optimal tilt angle increases as h increases (ω = 16° for h = 40 m and ω = 48° for h = 160
m). This highlights the importance of considering UBS altitude when adjusting the tilt angle

for enhanced coverage probability.

Figure 5.3(b) illustrates the impact of using multiple SA UBSs on the optimal tilt angle. It can

be observed that with a small number of SA UAVs, the coverage probability improves with

a reduced tilt angle ranging from ω = 6° to ω = 20°. This improvement stems from the

reinforcement of the vertical antenna pattern gain and the expansion of the antenna coverage

area associated with a smaller tilt angle. Additionally, owing to the restricted number of UBSs,

the resultant interference experienced by the user remains minimal. However, in scenarios

where the number of SA UBSs is elevated (K = 8), it becomes necessary to elevate the tilt

angle (exceeding ω = 30°) through 3D beamforming. This adjustment aims to mitigate the

vertical antenna pattern gain received from interfering UBSs and enhance the SINR.

5.2.4.4 Impact of the User’s Location

To discern the discrepancy in performance between the typical user located at the origin

and an arbitrarily-positioned typical user, Figure 5.4 illustrates the coverage probability of the

typical user within the finite circular zoneBr with radius ra = 500m, plotted against its distance

from the origin with different UBS altitudes. As evident from Figure 5.4, the coverage prob-

ability is significantly affected by the user’s location. As the user approaches the boundary of

the circular zone, there is a marked decrease in coverage probability, primarily attributed to the

diminished probability of the serving UBS being in LoS with the user. This phenomenon arises

from the greater distance of many UBSs from the user compared to the fewer UBSs in close

proximity, particularly evident when the UBS altitude is elevated. Consequently, this degrades

the received signal power.
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Figure 5.4: Coverage probability vs. the distance from the typical user to origin with different UBS altitudes.

200 400 600 800 1000 1200 1400 1600 1800 2000

Radius of the isolated region ra (m)

0

20

40

60

80

100

120

140

O
p
ti
m
a
l
N
u
m
b
er

o
f
S
A

U
B
S
s
K

o
p
t

h = 80 m

h = 100 m

h = 120 m

Figure 5.5: Optimal Number of SA UBSs Kopt vs. the isolated region radius (ω = 30°).

5.2.4.5 SA UBSs Optimization

To determine the optimal number of SA UBSs that maximize the coverage probability,

we conducted an analysis across various radii ra of the disk Br and Ba. For each radius, we

extracted the optimal number of UBSs corresponding to different altitudes. The results obtained

from this analysis are presented in Figure 5.5. It is evident that Kopt increases with ra. In fact,

the distribution of UBSs is contingent upon the surface of Br. Consequently, the larger the
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Figure 5.6: Network spectral efficiency vs. the number of SA UBSs K with different tilt angle ω (h = 80 m).

area to be covered, the greater the number of UBSs that must be deployed, as this increases

the probability that the randomly located users will receive signal information in a LoS link

and of high quality from one of the UBSs, guaranteeing comprehensive coverage. It is worth

noting that deploying a large number of SA UBSs at low altitudes is recommended to mitigate

interference caused by LoS SA UBSs. This approach strikes a trade-off between the optimal

number of SA UBSs operating within the same frequency band and the resulting interference

generated.

5.2.4.6 Impact of K and ω on the NSE

The performance of NSE was evaluated based on the number of SA UBSs with different

tilt angle values, as shown in Figure 5.6. The figure indicates that NSE initially increases with

an increase in the number of UBSs, but declines beyond the optimal value of K. This decline

is due to the growing aggregate interference, which significantly reduces the received SINR.

This highlights the trade-off between reusing spectrum resources and the resulting interference.

Additionally, it was observed that the optimal number of SA UBSs increases with an increasing

tilt angle value, resulting in improved NSE performance. For example, when ω = 40°, K = 42,

and when ω = 20°, K = 12. This relationship exists because a larger tilt angle results in a

smaller coverage area, which requires multiple UBSs to achieve maximum coverage and NSE.

This finding supports the observations presented in Figure 5.3(b).
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5.3 Downlink Performance Analysis of VHetNets under 3D

Blockage Effects

In this section, we aim to evaluate the downlink performance of mmWave VHetNet with

3 tiers under 3D blockage effects caused by buildings for a typical user u assumed to be at

the origin of the target area. In this study, we analyze coverage probability and area spectral

efficiency as performance metrics through association probability based on the strongest long-

term averaged received power in each tier.

5.3.1 Coverage Probability

We set a SINR threshold T above which coverage can be assumed. The overall coverage

probability Pc of u is expressed as follows

Pc =
∑
t

∑
l

P (SINR > T |u is connected to tBS in l link )Alt,

Pc =
∑
l

P l
c,UA

l
U +

∑
l

P l
c,G0A

l
G0 +

∑
l

P l
c,G1A

l
G1 , (5.11)

where l ∈ {LoS,NLoS}, P l
c,t and Alt are the conditional coverage probability and the associa-

tion probability of the typical user in each tier t ∈ {U,G0, G1}.

We will delve into the analysis of coverage probability both with and without shadowing effect.

This decision stems from the anticipated high cost associated with incorporating shadowing

into our coverage analysis model. This comprehensive approach will allow us to gain deeper

insights into the combined effects of shadowing and blockages on the coverage probability.

In the following, we derive the mathematical expressions for the association probability and

the conditional coverage probability in each tier and in the next subsection we determine the

expression of the Area spectral efficiency.

Association Probability

Using the distribution functions for relevant distances in each tier derived in the previous

Chapter 4, the analytical expressions for the association probability considering the probabilities

of occurrence of the LoS and NLoS links, are given in the following Lemmas [155].

Lemma 5.3.1. The probability that the typical user is associated with LoS/NLoS UBS can be

expressed as
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AlU =N
∫ xu

h
P l
U(r)

(∑
v

∫ xu

RUv

Ul
(r)

2x
r2
a

P v
U(x)dx

)N−1∑
v

Qv
0F̄Wo

(
R
Gv

0
U l (r)

)∏
v

Qv
GF̄W v

r

(
R
Gv

1
U l (r)

)

× 2r
r2
a

dr, (5.12)

where l, v ∈ {LoS,NLoS} Qv
0 =

∫∞
0 P v

G(q)fW0(q)dq, is the probability of a v link in GBS0.

Proof of Lemma 5.3.1:.

Let Al
UU , Al

UG0 , and Al
UG1 be the probabilities that the l UBSAi provides stronger received

power than the power received from the other UBSs, GBS0 and the nearest GBS in the 1st tier,

respectively. AlU can be written as [155]

AlU =NE

P l
U(r)

Al
UU × Al

UG0 × Al
UG1

, (5.13)

where

Al
UU =

∏
i′=1:N−1
i′ ̸=i

P

PUMgUX
−αl

U
i > PUMgUX

−αl
U

i′ ∪ PUMgUXi
−αl

U > PUMgUXi′
−αb

U



=
P

Xi′ > r

+ P

Xi′ > r

αLoS
U

αNLoS
U

N−1

=
(∑

v

∫ xu

RUv

Ul
(r)
P v
U(x)fXi

(x)dx
)N−1

, (5.14)

Al
UG0 =P

PUMgUX
−αl

U
i > PGgGW

−αl
G

0 ∪ PUMgUX
−αl

U
i > PGgGW

−αb
G

0


=
∑
v

P

W0 >

(
PGgG
PUMgU

) 1
αv

G

r
αl

U
αv

G


=
∑
v

Qv
0F̄Wo

(
R
Gv

0
U l (r)

)
, (5.15)

Al
UG1 =

∏
v

P

PUMgUX
−αl

U
i > PGgGW

v
r

−αv
G


=
∏
v

P

W v
r >

(
PGgG
PUMgU

) 1
αv

G

r
αl

U
αv

G


=
∏
v

Qv
GF̄W v

r

(
R
Gv

1
U l (r)

)
, (5.16)

where l, b, v ∈ {LoS,NLoS} and l ̸= b.

Finally, substituting the expressions of (5.14), (5.15), and (5.16) into (5.13) and integrating over

the disk region Ba yields to (5.12).
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Lemma 5.3.2. The probability that the typical user is associated with LoS/NLoS GBS in the 0th

tier is given by

AlG0 =
∫ Rl

0

0
P l
G(r)

∑
v

∫ xu

RUv

Gl
0

(r)

2x
r2
a

P v
U(x)dx


N∏

v

Qv
GF̄W v

r
(r) fW0(r)dr, (5.17)

where Rl
0 = max

(
R
Gl

0
Uv (xu)

)
.

Proof : The proof follows the same steps as in Lemma 5.3.1.

Lemma 5.3.3. The probability that the typical user is associated with LoS/NLoS GBS in the 1st

tier is given by

AlG1 =Ql
G

∫ Rl
1

0

∑
v

∫ xu

RUv

Gl
1

(r)

2x
r2
a

P v
U(x)dx


N

Qb
GF̄W b

r
(r)

∑
v

Qv
0F̄W0 (r) fW l

r
(r)dr, (5.18)

where Rl
1 = max

(
R
Gl

1
Uv (xu)

)
.

Proof : The proof follows the same steps as in Lemma 5.3.1.

Conditional Coverage Probability

Before we start to derive the coverage probability conditioned on that u is associated with

LoS/NLoS UBS, LoS/NLoS GBS in the 0th tier and LoS/NLoS GBS in the 1st tier, we need to

derive first the Laplace transform of the aggregate interference providing from each tier, which

are given in the following Lemmas.

Lemma 5.3.4. The Laplace transform of the interference IUi
from an arbitrary interfering UBS

Ai is expressed as follows

LIUi
(δ, RUv

tl (r)) =
∑
v

∫ xu

RUv

tl
(r)

(
mv
U

mv
U + δPUGU

I z
−αv

U

)mv
UNu fXi

(z)P v
U(z)dz∑

k

∫ xu

RUk

Ul
(r)
fXi

(z)P k
U(z)dz , (5.19)

where l, v, k ∈ {LoS,NLoS}, t ∈ {U,G0, G1} and GU
I = gUPgU

+ sUPsU

gU
.

Proof: The proof follows the same steps as in Lemma 5.2.2.

The Laplace transform of the aggregate interference IU is expressed by [155]

LIU
(δ, RUv

tl (r)) =



N−1∏
i=1

LIUi
(δ, RUv

U l (r)), if u is connected with UBS
N∏
i=1

LIUi
(δ, RUv

Gl
0
(r)), if u is connected with GBS0

N∏
i=1

LIUi
(δ, RUv

Gl
1
(r)), if u is connected with GBS1

(5.20)
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Lemma 5.3.5. The Laplace transform of the interference IG0 from the GBS0 can be written as

LIG0
(δ, RGv

0
tl (r)) =

∑
v

∫ ∞

R
Gv

0
tl

(
mv
G

mv
G + δPGGG

I w0
−αv

G

)mv
G Qv

0fW0(w0)dw0∑
k
Qk

0F̄W0(RGk
0

tl (r))
, (5.21)

where GG
I = gGPgG

+ sGPsG

gG
.

Proof: The proof follows the same steps as in Lemma 5.2.2.

Lemma 5.3.6. The Laplace transform of the interference IG1 from the GBSs in the 1st tier can

be written as

LIG1
(δ, RGv

1
tl ) =

∏
v

exp
− 2λGπ

∫ ∞

R
Gv

1
tl

(r)

1 −
(

mv
G

mv
G + δPGGG

I w
−αv

G

)mv
G

wP v
G(w)dw

,
(5.22)

Proof: See Appendix E.

Using the gamma approximation and based on the conditional distance distribution and the

Laplace transform of the interference, we provide in Theorem 5.3.1 the eventual expressions of

the conditional coverage probability [155].

Theorem 5.3.1. Applying the gamma approximation, the conditional coverage probabilities are

given as follows

P l
c,U =

∫ xu

h

ml
UM∑
n=1

(−1)n+1

ml
UM

n

 e−δN0LIU
(δ, RUv

U l (r))LIG0
(δ, RGv

0
U l (r))

× LIG1
(δ, RGv

1
U l (r))


δ=

nεl
U

ml
U

T r
αl

U

PU gU

fX̂l
r
(r)dr, (5.23)

P l
c,G0 =

∫ Rl
0

0

 ml
G∑

n=1
(−1)n+1

ml
G

n

 e−δN0LIU
(δ, RUv

Gl
0
(r))LIG1

(δ, r)

δ=

nεl
G

ml
G

T r
αl

G

PGgG

fŴ l
0
(r)dr,

(5.24)

P l
c,G1 =

∫ Rl
1

0

 ml
G∑

n=1
(−1)n+1

ml
G

n

 e−δN0LIU
(δ, RUv

Gl
1
(r))LIG0

(δ, r)LIG1
(δ, r)


δ=

nεl
G

ml
G

T r
αl

G

PGgG

× fŴ l
r
(r)dr, (5.25)

where εlU =
(
(ml

UM)!
) 1

ml
U

M , εlG =
(
ml
G!
) 1

ml
G .

Proof: The proof follows the same steps as in Theorem 5.2.1.
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Now that we have obtained the expressions for both association and conditional coverage prob-

abilities, we can obtain the overall coverage probability without shadowing, Pc, by substituting

(5.12), (5.17), (5.18), (5.23), (5.24), (5.25) into (5.11).

5.3.2 Coverage Probability With Shadowing

In this subsection, we focus to derive the coverage probability including the effect of shad-

owing. To accomplish this, we require the PDF of the log-normal shadowing power SltdB.

Given that SltdB follows a normal distribution with a mean of zero and a variance of σSlt
2, the

expression for its PDF is as follows [155]

fS
l
t(S) = 1√

2πσSlt
2

exp
(

−S2

2σSlt
2

)
(5.26)

Theorem 5.3.2. The conditional coverage probabilities with shadowing given that u is con-

nected with UBS, GBS0, and GBS1 are given respectively by

P Shad,l
c,U =

∫ xu

h

ml
UM∑
n=1

(−1)n+1

ml
UM

n

∫ ∞

0
e−δN0fSl

U
(S)LIU

(δ, RUv

Gl
1
(r))LIG0

(δ, r)

×LIG1
(δ, r)dS


δ=

nεl
U

ml
U

T r
αl

U

PU gU
10

S
10

fX̂l
r
(r)dr, (5.27)

P Shad,l
c,G0 =

∫ Rl
0

0

ml
G∑
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ml
G

n

∫ ∞

0
e−δN0fSl

G
(S)LIU

(δ, RUv

Gl
0
(r))

× LIG1
(δ, r)dS


δ=

nεl
G

ml
G

T r
αl

G

PGgG
10

S
10

fŴ l
0
(r)dr, (5.28)

P Shad,l
c,G1 =

∫ Rl
1

0

ml
G∑

n=1
(−1)n+1

ml
G

n

∫ ∞

0
e−δN0fSl

U
(S)LIU

(δ, RUv

Gl
1
(r))LIG0

(δ, r)

× LIG1
(δ, r)dS


δ=

nεl
G

ml
G

T r
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G

PGgG
10

S
10

fŴ l
r
(r)dr, (5.29)

Proof: The proof follows the same steps as in Theorem 5.2.1.

The expression of the overall coverage probability with shadowing denoted by P Shad
c can be

written as

P Shad
c =

∑
l

P Shad,l
c,U AlU +

∑
l

P Shad,l
c,G0 AlG0 +

∑
l

P Shad,l
c,G1 AlG1 , (5.30)
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5.3.3 Coverage Probability With 3D Beamforming

The implementation of 3D beamforming is constrained to the UBS tier. Consequently,

the sole modification to the coverage probability formula derived in (5.11) is the conditional

coverage probability, which accounts for the typical user being connected to the UBS tier. By

employing the identical methodology as outlined in Theorem 5.3.1, the conditional coverage

probability with MU-MIMO 3D beamforming, denoted by P 3DBeam,l
c,U can be expressed as fol-

lows

P 3DBeam,l
c,U =

∫ xu

h

ml
UM∑
n=1

(−1)n+1

ml
UM

n

 e−δN0LIU

(
δ, RUv

U l (r)
)

LIG0

(
δ, R

Gv
0

U l (r)
)

× LIG1

(
δ, R

Gv
1

U l (r)
) 

δ=
nεl

U
ml

U
T r

αl
U

PU gU Ω
(

ω,θ

(
r

αl
U

))fX̂l
r
(r)dr, (5.31)

The expression of the overall coverage probability with 3D beamforming model and without

shadowing denoted by P 3DBeam
c can be written as

P 3DBeam
c =

∑
l

P 3DBeam,l
c,U AlU +

∑
l

P l
c,G0A

l
G0 +

∑
l

P l
c,G1A

l
G1 , (5.32)

5.3.4 Coverage Probability With Manageable Scenario

Closed-form expressions provide computational efficiency and precise mathematical repre-

sentation of the system under study. They enable researchers to accurately analyze the system’s

behavior without relying on numerical simulations. They serve as a foundation for theoretical

investigations, allowing researchers to examine more intricate scenarios or expand the analysis

to various network configurations.

To identify a mathematically manageable scenario we derive closed-form expressions for cov-

erage probability, we streamline our model by making the assumption that the typical user u is

connected to GBS0 the GBS in the cluster center of the representative cluster and experiences

aggregate interference solely from GBS1, while excluding consideration of the UBS tier.

Special case: We assume a Rayleigh fading (mG = 1), (αG = 4).
Using a change of variables µ = w0

rT 1/αG
. The Laplace transform of the interference can be

written as

LIG1
(r) = exp

(
−πr2λGT

2
αG

∫ ∞

T
− 2

αG

1
1 + µ

αG
2
dµ

)
, (5.33)
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when αG = 4, the Laplace transform become a closed-form expression given by

LCF
IG1

(r) = exp
(

−πr2λG
√

T
(
π

2 − tan−1
(

1√
T

)))
, (5.34)

Based on the definition of the coverage probability and the exponential distribution of the

Rayleigh fading, the coverage probability of a typical user can be written as

P ∗
c =

∫ ∞

0
LCF
IG1

(r) exp
(

−T N0r
4

PGgG

)
fW0(r)dr, (5.35)

Using a change of variables r2 → d the coverage probability expression allows a form that can

be evaluated according to∫ ∞

0
exp (−bd) exp

(
−cd2

)
dd =

√
π

c
exp

(
b2

4c

)
Q

(
b√
2c

)
, (5.36)

Therefore the closed-form expression of the coverage probability, denoted by, PCF
c is expressed

as

PCF
c =

√
πT

2σ2
u

exp


(
πλGL+ 1

2σ2
u

)2
T

4

Q

(
πλGL+ 1

2σ2
u

)√
T

√
2

 , (5.37)

where Q(.) is the standard Gaussian tail probability. L =
√

T
(
π
2 − tan−1

(
1√
T

))
and T =

PGgG

T N0
. This expression is quite simple, where only a simple Q(.) value needs to be calculated.

In the next subsection, we compute the area spectral efficiency based on the overall coverage

probability in the absence of shadowing.

5.3.5 Area Spectral Efficiency

In this scenario, it’s pertinent to reiterate that we’re examining a densely populated hotspot

area. Consequently, we make the assumption that all GBSs and a total of N UBSs are concur-

rently operational within the surveyed region.

Theorem 5.3.3. The expression of ASE can be formulated as follows

ASE =
(
NNu

πr2
a

∑
l

PU
c,lA

l
U + λG

(∑
l

PG0
c,l A

l
G0 +

∑
l

PG1
c,l A

l
G1

))
log2(1 + T ), (5.38)

Proof: The average density of active UBSs is calculated by dividing the number of UBSs,

N , by the disk area, Ba. Since UBSs have MIMO antennas that serve Nu users concurrently,

the result is multiplied by Nu. The ASE may be expressed as log2(1 + T )Pc, as derived by

Shannon’s theorem. Finally, (5.38) is obtained by scaling the formula log2(1 + T )Pc with the

densities of the GBSs and UBSs.
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Table 5.2: VHetNets with a 3D blockage model simulation parameters.

Parameter Value

λG
2

π5002

N 15
ra 1 Km

PG 20 W

PU 5 W

Na 4
Nu 2
αLoSG , αNLoSG , αLoSU , αNLoSU 2.5, 4, 2.5, 4
mLoS
G ,mNLoS

G , mLoS
U ,mNLoS

U 2, 1, 2, 1
b1, b2, b′

1, b′
2 (urban environment ) 10.39, 0.05, 29.06, 0.03

E[WB], E[LB] 15 m, 20 m

gt, st, θt, 40 dBm, 20 dBm, π/6
θd, SSL 6°, 18 dB

N0 −90 dBm

T 15 dB

Monte Carlo Runs 105

5.3.6 Simulation and Performance Evaluation

In this subsection, we assess the analytical expressions developed in this study and confirm

the analytical findings using Monte Carlo simulations. The aim is to analyze the influence

of 3D blockage effects on VHetNet performance under the assumption of a hotspot scenario.

Furtheremore, we investigate the advantage of adopting MU-MIMO beamforming system in

the UBS tier. The parameters used in this analysis are listed in Table 5.2.

5.3.6.1 Impact of σu on the Association Probability

The total association probability to each tier is given by At = ALoSt +ANLoSt . Figure 5.7(a)

illustrates the effect of the standard deviation of user distribution σu on the association proba-

bility. It is evident that with a small σu, the serving BS remains GBS0. This occurs because the

typical user is near to the cluster center in the representive cluster, thereby reducing the proba-

bility of encountering a blocked link or NLoS link. However, with an increase in σu, denoting

a broader dispersion of users around the cluster center, the association probability with GBS0
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(a) Impact of standard deviation σu (h = 250 m, p = 0.4).
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Figure 5.7: Association probability vs. user distribution’s standard deviation and UBS altitude h (HB = 20 m).

deteriorates while the association probability with UBSs increases. This is due to the increased

distance between u and GBS0, resulting in increased path loss and subsequently, a degrada-

tion of the received signal power from GBS0. Consequently, the received power provided by

UBSs is amplified. Moreover, the association probability to GBS1, exhibits a slight increase,

indicating that the typical user is more inclined to be associated with UBSs rather than GBS1.
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5.3.6.2 Impact of h and p on the Association Probability

We examine the impact of UBS altitude h on user association, for varying city blockage

densities p in Figure 5.7(b). First, for the association probability with the UBS tier, in suburban

areas (p = 0.2), the association probability increases rapidly as altitude increases. This arises

from the ability to establish LoS connections with the typical user at low altitudes. However,

the probability of maintaining LoS begins to decrease beyond an altitude of 150 m. In dense

urban areas with multiple buildings (p = 0.6), the association probability increases gradually

and starts to decrease at altitudes over 400 m. It can be inferred that the optimal UBS altitude

can be affected by the environmental conditions. The association probability with the 0th tier

and the 1st tier decreases as long as the UBS does not exceed its optimal altitude. Beyond this

altitude, the A2G channel weakens due to the significant distance between the UBS and the user.

As a result, the association probability with GBS0 and GBS1 begins to increase. Nevertheless,

connecting to GBS0 remains more favorable then GBS1 as it is closer to the typical user. This

finding concludes that in a dense city, the probability of association with the UBS level remains

the highest, which may make UBSs an asset in tackling the problem of 3D blockages.

5.3.6.3 Model Validation

We validate our analytical expressions for the coverage probability as a function of the

SINR threshold under different main lobe gain gt, main lobe beamwidth θt and a fixed side lobe

gain st = 20 dBm in Figure 5.8(a). We performed our Monte Carlo simulations in a circular

target area Bg with radius ra = 1 Km, concentric to a large circular simulation area with radius

10 Km [155]. To guarantee result accuracy, the simulation results are averaged over 100, 000
independent drops. Monte Carlo simulations are represented by "black" circular markers, while

curves depict the mathematical frameworks. It is observed in Figure 5.8(a) that the simulation

results exactly match the analytical curves, confirming the validity of our proposed framework

and derivation. The use of beamforming significantly enhances the coverage probability. By

choosing a larger main lobe gain and a narrower main lobe beamwidth, the coverage probability

can be further enhanced.

5.3.6.4 Model Validation under Fixed/Random h

The coverage probability versus the SINR threshold for various number of UBSs with σu =
30 is illustrated in Figure 5.8(b). The simulation findings using the 2D BPP at a fixed altitude

of h = 100 m represented by "black" circular markers precisely match the analytical curves for

various numbers of UBSs and under different SINR threshold. The research may be extended
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Figure 5.8: Coverage probability without shadowing vs. SINR threshold T (dB) (HB = 30 m).

to include UBS networks at varying altitudes using 3D BPP, but this would result in more

complex analytical expression derivations. To illustrate the accuracy of our approximation, the

Monte Carlo simulations were used to compare 2D BPP with 3D BPP as it is not possible to

acquire analytical findings for 3D BPP. We assume that h ranges between hmax = 200 m and

hmin = 100 m for 3D BPP and mantain h = hmin + hmax
2 i.e., h = 150 m for 2D BPP. The
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Figure 5.9: Coverage probability vs. SINR threshold with manageable scenario (α = 4, Rayleigh fading).

simulations results with 3D BPP are represented by "red" pentagram markers. It is clear from

Figure 5.8(b) that the results with fixed altitude closely match the results with varying atitude.

As a result, for tractable analysis a fixed altitude can be assumed for all the UBSs. Figure 5.8(b)

makes it evident that as the number of UBSs rises, the coverage probability declines because

the user experiences more interference, which lowers the received SINR.

Figure 5.9 illustrates the closed-form expression for coverage probability with exponential in-

terference (Rayleigh fading) where GBS0 is the serving BS under different user distribution’s

standard deviation σu. It is evident that a higher σu, which indicates that the user is moving

away from GBS0, results in a lower coverage probability. This is due to the large path loss as

the user gets farther away from GBS0, which lowers the SINR.

5.3.6.5 Impact of h on the Coverage Probability

In this part, we investigate the effect of UBS altitude on coverage probability under high

and small city blockage densities. In Figure 5.10(a), we plotted the coverage probability vs. h

at various SINR thresholds. As can be shown, increasing the UBS altitude initially improves

the coverage probability. However, at a specific altitude, the coverage probability starts to

decrease, indicating the existence of an optimal h that maximizes the coverage probability.

Increasing the altitude above the optimal level increases the propagation loss of the received

signal. This occurs because, at peak coverage probability, most UBSs are already transmitting

in a LoS connection with users. On the other hand, the optimal h is greater in the ultra-dense
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Figure 5.10: Coverage probability vs UBS altitude.

city (p = 0.8) than it is in the suburban city (p = 0.2) to ensure LoS connectivity and prevent

blocked connections. Furthermore, it is asserted that the optimal h varies based on the SINR

threshold.

The coverage probability as a function of h, under different building height and transmit antenna

number Na, is displayed in Figure 5.10(b). The optimal h is also influenced by the height
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Figure 5.11: Coverage probability with/without shadowing vs UBS altitude h for different variance of the shadow

power σl
G (H̄B = 30 m).

of the buildings. UBS must be sufficiently higher than the buildings to maximize coverage.

For example, the optimal h for Na = 4 with low building height (HB = 20 m) stays low

at around 52 m, but rises to 225 m with tall buildings (HB = 100 m). Furthermore, taller

buildings increase the probability of blocked connections, which slightly reduces coverage. It

is important to note that increasing Na increases the optimal h and significantly improves the

coverage probability. This is because MU-MIMO system boosts the received signal power and

increases the LoS probability.

5.3.6.6 Correlation between Shadowing, h and N

Our model shows that the variance of shadow power in the UBS tier is dependent on the

elevation angle between the typical user and the UBS. To examine the shadowing effect, we

plotted the coverage probability with and without shadowing as a function of h in Figure 5.11,

while varying the variance of the shadow power in the GBS tier σlG. Note that when σlG = 0 dB,

the GBS shadow is neglected. We can see that increasing σlG leads to a decrease in the coverage

probability P Shad
c , as the user’s received power decreases, resulting in a lower received SINR.

At high UBS altitudes and when σlG = 0, the coverage probability is nearly the same with or

without shadowing. This is because the path loss has a much greater effect than shadowing.

Figure 5.12, illustrates the correlation between shadowing, h, and the number of assisting UBSs

N , where p = 0.4 and HB = 30 m. Clearly, the coverage probability P Shad
c and Pc increases
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as the N increases until it reaches its maximum at a certain optimal N . Beyong this number the

interference from multiple UBSs lowers the received SINR, thus greatly decreasing coverage

probability, especially when shadowing is present. Aditionnaly, Figure 5.12 demonstrates that

the optimal N decreases with increasing h and also with the presence of shadowing. For an

altitude around 200 m N = 15 without shadowing and N = 10 with shadowing, while at

h = 150 m N = 35 without shadowing and N = 25 with shadowing, which shows that we

99



Chapter 5. Downlink Performance Analysis of UAV-assisted Cellular Networks

need to assist a large number of UBSs at low altitudes and a small number at high altitudes.

Figure 5.13 shows the coverage probability as a function of N with various city blocage density

indexes p. For low-density urban areas (p = 0.2), it is optimal to have only 15 UBSs (ra=800m).

This is because most UBSs are already in LoS connection with the user. Increasing N will just

cause substantial interference. When p = 0.4, the optimal N is 55, as more blockages increase

the probability of NLoS propagation, and assisting more UBSs increases the LoS probability. It

is important to note that the optimal N increases as ra increases. This is because the UBSs are

more widely distributed throughout a larger, finite area, which increases the distance between

them and the typical user. Consequently, the probability of buildings obstructing the communi-

cation path becomes greater. Adding more UBSs can boost the LoS probability and ultimately

improve the coverage probability.

5.3.6.7 Blockage Effects on the Coverage Probability

The impact of 3D blockage density on the coverage probability is examined in Figure 5.14.

Figure 5.14(a) illustrates the coverage probability as a function of blockage density at different

UBSs’s altitude. The coverage probability increases at first, even with higher blockage density

λB, and then decreases at a certain value of λB and this value increases with altitude. The cov-

erage probability’s early improvement is due to blockages generating dominating interference

in the NLoS connection, which produces an enhanced received SINR. However, a significant

increase in λB reduces interference in LoS connections, but also result in NLoS transmission of

the dominating serving signals, which deteriorates the coverage probability. A relevant finding

from Figure 5.14(a) is that in areas with few blockages the coverage probability is maximized

by deploying UBSs at low altitude, and in areas with numerous blockages the coverage prob-

ability is maximized by deploying UBSs at high altitude. We can point out that blockages can

enhance coverage by minimizing interference, although this advantage is restricted.

Figure 5.14(b) illustrates the coverage probability vs. blockage density with various path loss

exponents on LoS/NLoS links. We first examine the impact of the LoS link path loss exponent

under a fixed value of αNLoSt = 4. When αLoSt decreases, coverage performance deteriorates at

very low λB, while it increases at high λB. This is because a low αLoSt will increase both the

received signal power and the interference power from LoS BSs (GBSs and UBSs). With the

presence of several blockages, the interferences from NLoS BSs will predominate and improve

the received SINR and with the presence of few blockages, the interferences from LoS BSs will

predominate. On the other hand, increasing the value of αNLoSt with a fixed value of αLoSt = 2.5
significantly improves coverage performance, because this reduces the interference power in
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Figure 5.14: Coverage probability. vs blocage density.

LoS link. An important finding to note from Figure 5.14(b) is that for a dense or ultra-dense

city (λB > 0.002), a higher coverage probability is achieved when αLoS = 2.5 and αNLoS = 4.

5.3.6.8 Impact of N and Na on the ASE

The performance of ASE is investigated in Figure 5.15. Figure 5.15(a) shows the ASE as

a function of the number of assisting UBSs at different altitudes and with different numbers of
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Figure 5.15: Area spectral efficiency vs. the number of assisting UBS N and the number of antennas Na.

transmit antennas Na. The ASE exhibits a staircase shape. The optimal N that maximizig the

ASE decreases as UBS altitude increases. This analysis can be used to determine the optimal

altitude for ASE enhancement when the number of assisting UBSs is limited. Moreover, in-

creasing Na significantly improves ASE compared to the results obtained in [46]. This is due

to the increased coverage probability, as shown in Figure 5.10(b).
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Figure 5.15(b) shows the impact of increasing the number of antennasNa on ASE performance.

The study demonstrates that the ASE increases with Na up to a certain point, after which it

remains constant, because greater Na improves the SINR. It is important to note that ASE can

be greatly improved by deploying a small number of UBSs equipped with a few MIMO antennas

(less than 8) while deploying a large number of UBSs equipped with large MIMO antennas due

to the better spatial multiplexing created.

5.3.6.9 Comparaison between 2D and 3D Beamforming

Figure 5.16 illustrates the impact of using a 3D beamforming model versus a 2D beamform-

ing model on coverage probability. The graph displays the coverage probability as a function

of the downtilt angle in suburban and ultra-dense cities, with diffrent UBS altitude. The dot-

ted plots correspond to 2D beamforming and the solid plots correspond to 3D beamforming.

It is evident that there exists an optimal tilt angle that maximizes coverage and is dependent

on the altitude of the UBS. This angle, is not affected by the environment type and remains

fixed for suburban and dense urban environments. To enhance the coverage probability, it is

recommended to adjust the antenna radiation pattern in both the horizontal and vertical planes

by carefully selecting the downtilt angle especially at low altitude. As seen in Figure 5.16 the

3D beamforming brings 36% coverage gain when UBS altitude h = 100m and city blockage

density p = 0.2 and brings 9% coverage gain when UBS altitude h = 300m and city blockage
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density p = 0.2. The results additionally indicate that, when operating at low UBS altitudes, it

is recommended to use a low downtilt angle for optimal performance.

5.4 Conclusion

In this chapter, the downlink performance analysis of mmWave UAV-assisted cellular net-

works in isolated regions and in hotspot areas with 3D blockages of buildings are introduced.

First we have derived the association probabilities and the conditional coverage probabilities

relying on the serving and interfering distance distribution and integrating the randomness in

LoS/NLoS link. After that, we have obtained the overall coverage probability and the spectral

efficicency expressions. Monte Carlo simulations results have confirmed the analytical deriva-

tions. The findings of the single-tier model indicated the importance of meticulously adjusting

the downtilt angle in relation to the altitude and the number of SA UBSs. The findings of the

VHetNets model in hotspot areas indicated that the combination of mmWave UBSs networks

with MU-MIMO beamforming significantly enhanced performance, even in the presence of 3D

blockages, by selecting the optimal number and altitude of UBSs, and the optimal tilt angle.
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Providing universal coverage by the currently installed terrestrial cellular networks seems

inconsequential mostly because of significant ICI, severe shadowing and path loss attenuation,

high user demand in hotspots, and static infrastructure. UAV networks and VHetNets are im-

plemented as new network architectures which are currently the focus of a great deal of interest

to address the coverage issues in 5G networks. However, a number of significant issues re-

main open and in need of further investigation, citing the importance of accurately modeling

communication behavior in these new networks.

In this thesis, new analytical frameworks for system modeling, mathematical analysis, per-

formance assessment and optimization were developed. The work is based on the use of the

stochastic geometry approach, which is the optimal tool for coverage analysis in 5G networks.

The adoption of an appropriate topological model is of vital relevance to performance analysis.

The analysis focused on the assistance of a finite 3D UAV network in two scenarios where the

most modern and up-to-date technologies were incorporated.

The introduction of this thesis outlines the problem statement, motivations, related works, ob-

jectives, and contributions. Two contributions are investigated, in which different network

topologies are considered.

In Chapter 1, we presented the coverage analytical and evaluative techniques for 5G cellu-

lar networks that have been developed in the literature. We delineated the disparate network

architectures and the new UAV networks that are being developed to enhance performance.

Furthermore, we provided an overview of the mathematical tools of stochastic geometry.

In Chapter 2, the propagation channel modeling of aerial and terrestrial networks and their char-

acteristics were meticulously delineated. The various user association strategies were presented

and discussed. The stochastic geometry theory was employed to present an analytical mea-

surement of performance metrics such as coverage probability and spectral efficiency, with a

focus on the crucial factor, the SINR. The fundamental principles of Monte Carlo optimization

algorithm simulation were elucidated.

In chapter 3, the first topology was presented, comprising a single swarm of UBSs, designed

to provide communications assistance in isolated regions that were not covered by traditional
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networks. These regions were considered to be finite circular disks. In this specific scenario,

the PPP cannot accurately characterize UBSs’ deployment as they are deployed in a finite re-

gion with a predefined number. To capture this feature, the BPP is used for the UBS spatial

distribution. The number of SA UBSs reusing the same resource block is determined and the

3D beamforming technique is implemented, searching for the optimum down tilt angle to mit-

igate interference and overcome the high propagation loss of mmWave communications. The

relevant distance distributions between a randomly selected user located at a certain distance

from the origin to a UBS were obtained.

In Chapter 4, the second topology is defined as a congested network of GBSs, assisted by a

finite number of UBSs in dense cities. This VHetNet topology depicts hotspot scenarios by

distributing users around GBSs in a TCP model. The dense urban areas are distinguished by

the prevalence of high-rise buildings, which can impede the transmission of communication

links. This phenomenon has not been extensively studied by researchers. Consequently, we in-

vestigated the constraints imposed by 3D blockages, represented by buildings, using a Boolean

scheme. In this context, we developed new A2G and G2G channel models different from the

widely used models, by computing new formulas for the probability of LoS and NLoS paths,

taking into account the characteristics of 3D blockages. To cope with the high user density,

we employed the new MU-MIMO beamforming technology. This technology enables a UBS

to serve multiple users simultaneously using the same frequency resources while mitigating

intensified shadow effects.

The downlink performance assessment of the two proposed mathematical frameworks, vali-

dated by the Monte Carlo simulation results, is detailed in Chapter 5. Initially, we derived the

overall coverage probability as a function of the association probabilities and the conditional

coverage probabilities. Subsequently, we obtained the spectral efficiency expression. The find-

ings of the single-tier model emphasized the importance of meticulously adjusting the downtilt

angle in relation to the altitude and the number of SA UBSs to improve the performance. The

findings of the VHetNets model in hotspot areas indicated that the addition of UBSs combined

with MU-MIMO beamforming can establish a dynamic flying cellular network to provide high-

coverage wireless services even in the presence of 3D blockages.
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Future Works

It is of the utmost importance to propose new avenues for future research endeavors to

investigate the challenges and potentialities that have not yet been addressed by previous studies.

The work described in this thesis can be pursued along several lines of research.

• The consideration of various types of users for a more comprehensive understanding of

the model. These include, for example, D2D communicating users, the users served by

UBSs are distinct from those served by GBSs, or the coexistence of aerial and ground

users in VHetNets.

• Modeling the UBS distribution in correlation with hotspot locations.

• The use of a more realistic directional pattern model in 3D mmWave networks, which

incorporates a shaped main beam and secondary lobes. A Gaussian beam steering error

may be included.

• The integration of heterogeneous UAV networks, comprising UAVs with varying power

transmission, altitudes, and flying capabilities, as well as analyzing how the combined

capabilities of different UAV types can improve coverage.
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Appendix A

Proof of Lemma 5.2.2

Recall that BRv
l

(r) is the event that the interfering UBS being in v ∈ {LoS,NLoS} is

located Rv
l (r) away from the typical user. Since the number of UBSs is fixed we can write

BRv
LoS(r) ∪ BRv

NLoS(r). Hereafter we denote by QLoS
l , QNLoS

l the probability that the interfering

UBS is in LoS, NLoS link respectively conditioned on the two events BRv
LoS(r) and BRv

NLoS(r)

are mutually exclusive and given that the service UBS is in l connection with user. Qv
l can be

defined as

Qv
l =P(BRv

l
(r)|BRv

l
(r) ∪ BRb

l
(r))

=
P(BRv

l
(r)|the serving UBS is in l link)

P(BRv
l

(r)|the serving UBS is in l link + BRv
l

(r)|the serving UBS is in l link)

=
∫ xu

Rv
l

(r) fXi
(z)Pv(z)∑

q

∫ xu

Rv
l

(r) fXi
(z)Pq(z)dz

, (5.39)

where l, v, b ∈ {LoS,NLoS} and b ̸= v.

Using the aggregate interference equation in (3.8) and applying the Laplace transform defini-

tion, L(δ, RLoS
l (r), RNLoS

l (r)) can be written as follows
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LI(δ,RLoS
l (r), RNLoS

l (r)) = EI|ILoS∪INLoS

[
exp (−δI)

]

=EZi,hv
U |ILoS∪INLoS
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U |Iv

 exp
(
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U
i QsL
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(r) fXi
(z)P v

U(z)∑
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(r) fXi
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(
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)mv
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Rv
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(z)P v

U(z)∑
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∫ xu

Rv
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(r) fXi
(z)Pq(z)dz

fZi

(
z|BRv

l
(r), y0

)
dz

K−1

, (5.40)

where (a) follows from the gamma distribution of the channel gain hvU using the moment gen-

erating function. The K − 1 comes from the number of SA UBSs that are interfering with the

serving UBS. Substitution of the equation (3.16) in (5.40) results in (5.6).
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Appendix B

Proof of Theorem 5.7

The serving distance conditioned on the event that UBS Ai is l link is denoted by X̂ l
r = r,

PU
c,l can be defined as follows

P l
c,U(y0) =P

SINR > T |the serving UBS is in l link



=EXl
r

P
PUΩ(ω, θ(X l

r))hlUφ−1
l X l

r
−αl

U

I +N0
> T |the serving UBS is in l link


=EX̂l

r

P(hlU > T φlX̂ l
r
αl

U

PUΩ(ω, θ(X̂ l
r))

(I +N0)
)

=EX̂l
r

F̄hl
U

(
T φlX̂ l

r
αl

U

PUΩ(ω, θ(X̂ l
r))

(I +N0)
), (5.41)

where F̄hl
U
(ð) is the CCDF of hlU Since hlU is a normalized gamma random variable, we can

write F̄hU
(ð) = Γu(m,mð)

Γ(m) , where ð > 0 and Γu(m,mð) is the upper incomplete gamma

function. Following [157] F̄hl
U
(ð) can be approximated using the gamma approximation to

simplify the evaluation process, which can be formulated as
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where (a) comes from the binomial theorem and δ = nεlUm
l
UT φlrα

l
U

PUΩ
(
ω, θ(r)

) . This completes the proof

of (5.7).

110



Appendices

Appendix C

Proof of Lemma 5.3.6

The Laplace transform LIG1
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1
tl ) can be written as follows
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where ψG
v
1

tl is a disk with radius RGv
1

tl (r) denoting the excluded region where no interfering

GBS1 exists, (a) follows from hvG ∼ Γ
(
mv
G,

1
mv

G

)
and (b) is achieved by applying the PGFL of

PPP [34].
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Résumé  

 Le principal défi auquel sont actuellement confrontés les opérateurs de réseaux 5G est de fournir une couverture 
transparente et omniprésente dans les villes denses remplies de bâtiments de grande hauteur, et de combler les 
vides de couverture dans les zones éloignées tout en veillant à ce que tous les utilisateurs aient accès à des services 
fiables et de haute qualité. L'utilisation de stations de base montées sur drones (UBSs) est considérée comme une 
avancée significative dans les réseaux 5G et au-delà. Cette technologie permet une couverture globale des réseaux 
de communication 3D surmontant ainsi les limites de couverture des réseaux terrestres traditionnels. L'objectif de 
cette thèse est de mener une étude complète en utilisant la géométrie stochastique pour modéliser avec précision 
les systèmes, développer de nouvelles technologies, analyser et évaluer la performance des réseaux 3D à ondes 
millimétriques dans divers scénarios de déploiement. Dans ce contexte, deux modèles ont été proposés : le premier 
consiste à un essaim d’UBSs à un seul niveau dans des régions isolées où les UBSs utilisent le 3D beamforming 
et le deuxième consiste à un réseau hétérogène vertical (VHetNet) dans des zones de points chauds avec des 
blocages 3D de bâtiments et des systèmes de beamforming MIMO multi-utilisateurs (MU-MIMO). Les résultats 
ont indiqué que l’assistance des UBSs dans les régions isolées avec un angle de tilt optimal permet de fournir une 
couverture maximale. En outre, les VHetNets avec le beamforming MU-MIMO peuvent faciliter l'établissement 
d'un réseau cellulaire volant dynamique, permettant la fourniture de services sans fil à couverture élevée, même 
en présence de blocages 3D. 

Mots clés : Analyse des performances, Géométrie stochastique, Onde millimétrique, Réseaux hétérogènes 
verticaux, Véhicules Aériens sans Pilote. 

Abstract 

The main challenge currently facing 5G network operators is to provide seamless, ubiquitous coverage in dense 
cities filled with high-rise buildings, and to fill coverage gaps in remote areas while ensuring that all users have 
access to reliable, high-quality services. The use of UAV-mounted base stations (UBSs) is considered a significant 
advancement in the 5G and beyond networks. This technology enables global 3D communication network 
coverage overcoming the coverage limitations of traditional terrestrial networks. This thesis aims to conduct a 
comprehensive study using stochastic geometry to accurately model systems, develop new technologies, analyze 
and evaluate the performance of 3D millimeter-wave (mmWave) networks in various deployment scenarios. In 
this context, two models have been proposed: the first consists of a swarm of single-tier UBSs in isolated regions 
where the UBSs use 3D beamforming, and the second consists of a vertical heterogeneous network (VHetNet) in 
hotspot areas with 3D blockages of buildings and multiuser multiple-input-multiple-output (MU-MIMO) 
beamforming systems. The results indicated that the assistance of UBSs in isolated regions with optimum tilt angle 
can provide maximum coverage. In addition, VHetNets with MU-MIMO beamforming can facilitate the 
establishment of a dynamic flying cellular network, enabling the provision of high-coverage wireless services, 
even in the presence of 3D blockages. 

Keywords : Millimeter-wave, Performance analysis, Stochastic geometry, Unmanned aerial vehicles, Vertical 
heterogeneous networks (VHetNets). 

 ملخص

مشغلي شبكات الجیل الخامس حالیًا في توفیر تغطیة سلسة وشاملة في المدن المزدحمة الملیئة بالمباني الشاھقة،  یتمثل التحدي الرئیسي الذي یواجھ
یعتبر استخدام المحطات الأساسیة  وسد فجوات التغطیة في المناطق النائیة مع ضمان حصول جمیع المستخدمین على خدمات موثوقة وعالیة الجودة.

تتیح ھذه التقنیة تغطیة شبكة اتصالات  .) بمثابة تقدم كبیر في شبكات الجیل الخامس وما وراءھاUBS( جویة بدون طیارال مركباتالالمثبتة على 
تھدف ھذه الأطروحة إلى إجراء دراسة شاملة باستخدام الھندسة العشوائیة  طیة للشبكات الأرضیة التقلیدیة.عالمیة ثلاثیة الأبعاد للتغلب على قیود التغ

) في سیناریوھات النشر mmWaveلنمذجة الأنظمة بدقة، وتطویر تقنیات جدیدة، وتحلیل وتقییم أداء شبكات الموجات الملیمتریة ثلاثیة الأبعاد (
تشكیل الحزم  UBSsأحادیة الطبقة في مناطق معزولة حیث تستخدم  UBSsفي ھذا السیاق، تم اقتراح نموذجین: الأول یتكون من سرب من  المختلفة.

أنظمة  لمباني و) في مناطق النقاط الساخنة مع عوائق ثلاثیة الأبعاد من اVHetNetثلاثي الأبعاد، والثاني یتكون من شبكة رأسیة غیر متجانسة (
في المناطق المعزولة بزاویة المیل  UBSsأشارت النتائج إلى أن مساعدة  ).MU-MIMOتشكیل الشعاع متعددة المدخلات والمخرجات المتعددة (

أن تسھل إنشاء شبكة  MU-MIMOالمزودة بتقنیة  VHetNetsالمثلى یمكن أن توفر أقصى قدر من التغطیة. بالإضافة إلى ذلك، یمكن لشبكات 
 تى في ظل وجود عوائق ثلاثیة الأبعاد.خلویة طائرة دینامیكیة، مما یتیح توفیر خدمات لاسلكیة عالیة التغطیة، ح

  .الھندسة العشوائیة ,موجة مللیمتر ,مركبة جویة بدون طیار  ,الشبكات العمودیة غیر المتجانسة ,تحلیل الأداء  : المفتاحیةالكلمات 
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