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1.7.4 The Poincaré Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Some classes of two-dimensional Kolmogorov systems 36

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 On the class of two dimentional Kolmogorov systems . . . . . . . . . . . . . . . 37

2.2.1 Example of Kolmogorov system . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Invariant algebraic curves and first integral of a class of Kolmogorov systems . . 46

3 Some classes of planar differential systems 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Explicit expression for a first integral for a class of two-dimensional differential

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Examples of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Polynomial differential systems with explicit expression for limit cycles . . . . . 58

3.3.1 Examples of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



LIST OF FIGURES

1.1 Node point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Saddle point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Focus point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Center point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Equilibrium points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Phase plane of example 1.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Stable limit cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.8 Unstable limit cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.9 Semi-stable limit cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.10 Phase plane of example 1.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.11 Dulac’s creterion of non existence. . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.12 Existence of a limit cycle between C and C’. . . . . . . . . . . . . . . . . . . . . 31
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INTRODUCTION

Differential equations and dynamical systems appear naturally in the description of many phe-

nomena for which local processes are known. For instance, most physical laws, such as conser-

vation of mass, energy, and momentum are local laws. The central problem is then to obtain

global information on these phenomena. These elementary processes are typically nonlinear

and, assuming continuity of the states of the system (the dependent variables) in time and

space (the independent variables), their evolution is governed by nonlinear differential equa-

tions. For example, in classical physics, the gravitational forces between masses is nonlinear as

are the electromagnetic interactions. In hydrodynamics, the nonlinearity of the Navier-Stokes

equation comes from inertial effects. Also, autocatalytic chemical reactions are described by

nonlinear differential equations through the massaction law. These nonlinear effects give rise

to complex structures whose complete description can be extremely difficult. Once the local

equations are formulated in a particular context, the next problem is to solve these equations.

Already, in this simple statement, there is an ambiguity. For the physicist, the applied mathe-

matician or the chemist, to solve an equation means to obtain global information on the solution

and if possible, derive a closed-form solution for which the state of the dependent variables may

be predicted for all given independent variables. In this sense, an equation can be solved if it

can be locally represented by known functions. The mathematician, however, is often inter-
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ested in a more fundamental problem related to the existence and uniqueness of the solutions,

a prerequisite of any subsequent analytical approach.

The basic idea underlying these works is that the solution can always be represented by the

combination of known functions or by perturbation expansions. The notion of integrability was

then introduced to describe the property of equations for which all local and global information

can be obtained either explicitly from the solutions or implicitly from the constants of the

motion.

Integrability and dynamical systems have become such important theories that they have ac-

quired over the years different meanings for different people.

The first attempt to solve differential equations either explicitly or by series expansions goes

back to Euler, Newton, and Leibniz. The theory of integration for the equations of motion

was subsequently expanded by the work of the analysts and mechanicians associated with the

names of Lagrange, Poisson, Hamilton, and Liouville in the late 18th and 19th centuries.

Clearly, Hilbert formulated his 16th problem by dividing it into two parts. The first part, which

studies the mutual disposition of the maximal number (in the sense of Harnack) of separate

branches of an algebraic curve, and also the corresponding investigation for nonsingular real

algebraic varieties; and the second part, which poses the question of the maximal number and

relative position of the limit cycles of the polynomial system
ẋ =

dx

dt
= P

(
x(t), y(t)

)
,

ẏ =
dy

dt
= Q

(
x(t), y(t)

)
,

where P and Q are polynomials of degree n. For this problem, Lloyd [1988] stated that the

striking aspect is that the hypothesis is algebraic, while the conclusion topological. Nonlinear

dynamics, which plays an important role in the study of almost all disciplines of science and

engineering, including mathematics, mechanics, aeronautics, electrical circuits, control systems,

population problems, economics, financial systems, stock markets, ecological systems, etc. The

phenomenon of limit cycle was first discovered and studied by Poincaré [71] who presented the
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breakthrough qualitative theory of differential equations. In order to determine the existence

of limit cycles for a given differential equation and the properties of limit cycles, Poincaré

introduced the well-known method of Poincaré Map, which is still the most basic tool for

studying the stability of periodic orbits. The driving force behind the study of limit cycle

theory was the invention of triode vacuum tube which was able to produce stable self-excited

oscillations of constant amplitude. It was noted that such a kind of oscillation phenomenon

could not be described by linear differential equations. At the end of the 1920s Van der Pol [76]

developed a differential equation to describe the oscillations of constant amplitude of a triode

vacuum tube. Later a more general equation called Liénard equation [58] was developed, for

which Van der Pol’s equation is a special case.

There exist three main open problems in the qualitative theory of real planar differential systems

[9, 15, 13, 19, 36, 61, 64], the distinction between a centre and a focus, the determination of

the number of limit cycles and their distribution, and the determination of its integrability.

The determination of the number of limit cycles is the most important topics that related to

the second part of the unsolved Hilbert 16th problem [50]. The importance for searching first

integrals of a given system was already noted by Poincaré in his discussion on a method to

obtain polynomial or rational first integrals [72].

This thesis is structured in three chapters, the first chapter is devoted to reminders of some

preliminary notions on planar differential systems used subsequently in the second and third

chapters. These last two chapters are mainly devoted to our results.

The second chapter is devided in two parts:

In the first part, we will determine the first integral, the non-existence of limit cycles and we

give the curves which are formed by the orbits of a class of Kolmogorov systems of the form:
x′ = x

(
P (x, y) +R (x, y) ln

∣∣∣∣A (x, y)

B (x, y)

∣∣∣∣) ,
y′ = y

(
Q (x, y) +R (x, y) ln

∣∣∣∣A (x, y)

B (x, y)

∣∣∣∣) ,
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where A, B, P, Q, and R are homogeneous polynomials of degree a, a, n, n, and m respectively.

The results obtained for this class was a subject of our publication [21].

In the second part, we will determine the first integral and we give the formula of the curves

which are formed by orbits of a class of Kolmogorov systems of the form:
x′ = x(1 + ax2 + bxy + cy2 − (a+ 1)x4 − bx3y − (c+ n+ 2)x2y2 −mxy3 − (s+ 1)y4),

y′ = y(1 + nx2 +mxy + sy2 − (a+ 1)x4 − bx3y − (c+ n+ 2)x2y2 −mxy3 − (s+ 1)y4),

where a, b, c, n, m and s are real constants, the results obtained of this class was a subject of

our publication [77].

The third chapter is devided in two parts:

In the first part, we will determine the first integral of a class of planar differential system of

the form: 
x′ = P (x, y) + x

(
λx exp

(
M(x, y)

N(x, y)

)
+ βy exp

(
R(x, y)

S(x, y)

))
,

y′ = Q(x, y) + y

(
λx exp

(
M(x, y)

N(x, y)

)
+ βy exp

(
R(x, y)

S(x, y)

))
,

where P, Q, M, N, R, and S are homogeneous polynomials of degree a, a, b, b, c, and c

respectively, and λ, β ∈ R, the results obtained for this class was a subject of our publication

[20].

In the second part, we will determine the first integral and limit cycles of a class of planar

differential systems of the form:
x′ = x+ P5(x, y) + xR8(x, y),

y′ = y +Q5(x, y) + yR8(x, y),

where P5, Q5, R8 are homogeneous polynomials, the results obtained for this class was a

subject of our publication [78].
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CHAPTER 1

SOME PRELIMINARY NOTIONS

Introduction

The objective of this chapter is to give some general notions used throughout this work and

recalling essential notions with classical results. More precisely, the first section is about some

general notions. The second section concerns some basic notions of dynamical systems, namely,

we recall some basic notions for the qualitative study of dynamical systems. We start by defining

dynamical systems, autonomous differential systems, solutions and periodic orbits, equilibrium

points, phase portrait, limit cycles, the classification of the equilibrium points and the limit

cycles in the plane R2 and the integrability of differential systems. We will also introduce

a reminder of the fundamental theorems and criteria on the existence and non-existence of

periodic solutions.

We present the most basic results on limit cycles. In particular, any topological configuration

of a finite number of limit cycles is realizable by a suitable polynomial differential system. We

present some results on the stability.
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1.1. Dynamical systems

1.1 Dynamical systems

A dynamical system is a system that changes over time according to a set of fixed rules that

determine how one state of the system moves to another state. It gives a functional description

of the solution of a physical problem or the mathematical model describing the physical problem.

Definition 1.1.1. A dynamical system consists of a phase (state) space E, I = R+ and a

fuction φ : E × I → E , where the time t ∈ I. For arbitrary states the following must hold:

1) φ(x, 0) = x (identity),

2) φ
(
φ(x, t), s)

)
= φ(x, t+ s) (additivity).

In other words, a dynamical system may be understood as a mathematical prescription for

evolving the state of a system in time.

For each x ∈ E, the set {φ(x, t) | t ∈ I} is called the orbit (or trajectory) of the system through

the point x.

1.1.1 Autonomous differential systems

An autonomous differential system is a system of ordinary differential equations which does not

explicitly depend on the independent variable, when the variable is the time t, they are also

called time-invariant systems.

Definition 1.1.2. A system in the plane of the form:
ẋ =

dx

dt
= P

(
x(t), y(t)

)
,

ẏ =
dy

dt
= Q

(
x(t), y(t)

)
,

(1.1)

is called autonomous planar differential system, where P and Q are functions depend solely on

x, y.

Assume that P and Q are functions of class C1 (so the conditions of Cauchy-Lipchitz

are satisfied at any ordinary point in the system (1.1)). If P and Q are polynomials, then

the number d = max
(
deg(P ), deg(Q)

)
is called the degree of system (1.1). On the curve

P (x, y) = 0, we say vertical isocline, the vector field is parallel to the y axis and on the curve

Q(x, y) = 0, we say horizontal isocline, the vector field is parallel to the x axis.
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1.1. Dynamical systems

1.1.2 Kolmogorov system

Definition 1.1.3. The autonomous differential system on the plane given by
x′ =

dx

dt
= xP (x, y),

y′ =
dy

dt
= yQ(x, y),

(1.2)

where x and y represent the population density of two species at time t. P and Q are the capita

growth rate of each specie, usually, such systems are called Kolmogorov systems.

Many mathematical models in biology science and population dynamics, frequently involve

the systems of ordinary differential equations having the form Kolmogorov models are widely

used in ecology to describe the interaction between two populations.

1.1.3 Vector fields, orbit, phase portrait

Definition 1.1.4. [30] We say that X is a polynomial vector field of degree d on R2 if it can

be written in the form

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
, or X = (P,Q),

where P and Q are polynomials in R[x, y] such that the maximum degree of P and Q is d.

Definition 1.1.5. [30] We call that if a solution x = f(t), y = g(t) of system (1.1) is a non-

constant periodic function of t, then γ = {(x, y) : x = f(t), y = g(t)} is called a periodic orbit

of system (1.1).

Corollary 1.1.1. The orbits of a vector field X form a partition of the phase plane Ω.

Definition 1.1.6. A phase portrait is a geometric representation of the trajectories of a dy-

namical system in the phase plane.

The phase portrait of a vector field X is a subset of the orbits in the phase plane.

1.1.4 Linear, Bernoulli and Riccati equations

Linear equation

Definition 1.1.7. A differential equation of type

y
′
+ a(x)y = f(x),

7



1.1. Dynamical systems

where f and a are continuous functions of x, is called a linear non-homogeneous differential

equation of first order.

We consider two methods of solving linear differential equations of first order:

1. Using an integrating factor.

2. Method of variation of a constant.

• Using an integrating factor: If a linear differential equation is written in the standard

form:

y
′
+ a(x)y = f(x),

the integrating factor is defined by the formula

u(x) = exp

(∫
a(x)dx

)
.

Multiplying the left side of the equation by the integrating factor u(x) converts the left

side into the derivative of the product y(x)u(x).

The general solution of the differential equation is expressed as follows:

y(x) =

∫
u(x)f(x)dx+ c

u(x)
,

where c is an arbitrary constant.

• Method of variation of a constant: This method is similar to the previous approach.

First it’s necessary to find the general solution of the homogeneous equation:

y
′
+ a(x)y = 0,

The general solution of the homogeneous equation contains a constant of integration c. We

replace the constant c with a certain (still unknown) function c(x). By substituting this

solution into the nonhomogeneous differential equation, we can determine the function

c(x).

The described algorithm is called the method of variation of a constant. Of course, both

methods lead to the same solution.

8



1.1. Dynamical systems

Bernoulli equation

Definition 1.1.8. Bernoulli equation is one of the well known nonlinear differential equa-

tions of the first order. It is written as

y′ + a(x)y = b(x)ym,

where a(x) and b(x) are continuous functions.

Solving method:

– If m = 0, the equation becomes a linear differential equation. In case of m = 1, the

equation becomes separable.

– In general case, when m /∈ {0, 1}, Bernoulli equation can be converted to a linear

differential equation using the change of variable

z = y1−m.

The new differential equation for the function z(x) has the form:

z
′
+ (1−m)a(x)z = (1−m)b(x).

Easy to solve it.

Riccati equation

Definition 1.1.9. Riccati equation is one of the most intersting nonlinear differential

equations of the first order. It is written in the form

y′ = a(x)y + b(x)y2 + c(x),

where a(x), b(x), c(x) are continuous functions of x.

The Riccati equation is used in different areas of mathematics (for example, in algebraic

geometry and the theory of conformal mapping), and physics. It also appears in many

9



1.1. Dynamical systems

applied problems.

Solving method: The differential equation given above is called the general Riccati

equation. It can be solved with help of the following cases:

If a particular solution y1 of a Riccati equation is known, the general solution of the

equation is given by y = y1 + u. Indeed, substituting the solution y = y1 + u into Riccati

equation, we have

(y1 + u)
′

= a(x)(y1 + u) + b(x)(y1 + u)2 + c(x),

y
′

1 + u
′

= a(x)y1 + a(x)u+ b(x)y2
1 + 2b(x)y1u+ b(x)u2 + c(x).

The underlined terms in the left and in the right side can be canceled because y1 is a

particular solution satisfying the equation. As a result we obtain the differential equation

for the function u

u
′
= b(x)u2 + [2b(x)y1 + a(x)]u,

which is a Bernoulli equation. Substitution of z =
1

u
converts the given Bernoulli equation

into a linear differential equation that allows integration.

1.1.5 Solutions and periodic solutions

Definition 1.1.10. We call that (x(t), y(t)), t ∈ I where I ⊂ R, is a solution of the

system (1.1) if the vector field X = (P,Q) is tangent to the trajectory representing this

solution in the phase plane.i.e :

∀t ∈ I : P (x(t), y(t)) x′ +Q(x(t), y(t)) y′ = 0

Definition 1.1.11. A periodic solution of system (1.1) is defined by
(
x(t), y(t)

)
if there

exists a real T > 0 such as ∀t ∈ R:{
x(t+ T ) = x(t)

y(t+ T ) = y(t).

The smallest number T > 0 is called the period of this solution.

10



1.2. Equilibria

The interest in periodic solutions of non-linear systems goes back to the beginning of this

century. Already Poincaré (1912) investigated periodic solutions of non-linear dynamical

systems. He studied fixed points of area-preserving one-to-one transformations of simply

connected areas on the plane. However, he could not prove his well known last geometric

problem” himself. Birkhoff solved this problem some years later and extended it to an

arbitrary dimension of the state space. Based on this theorem, Birkhoff, Lewis (1933)

have proved the existence of an infinite number of periodic solutions of a conservative

system in the neighborhood of a known periodic solution, which could also be a fixed

point of the ”general stable type”.

1.1.6 Flow

Definition 1.1.12. [70] Let E be an open subset of R2 and let f ∈ C1(E). For x0 ∈ E,

let φ(t, x0) be the solution of the initial value of problem (1.1) defined on its maximal

interval of existence I(x0). Then for t ∈ I(x0), the set of mappings φt defined by

φt(x0) = φ(t, x0).

is called the flow of the differential system (1.1) or the flow defined by the differential

system (1.1), φt is also referred to as the flow of the vector field f(x).

1.2 Equilibria

To know the aspect of the trajectories of system (1.1), at least locally, we must look for

its equilibrium points.

Definition 1.2.1. [70] A trajectory that reduces to a point, or a constant solution{
x(t) = x0,

y(t) = y0

11



1.2. Equilibria

is called an equilibrium solution. The equilibrium solutions or equilibria are found by

solving the nonlinear equations {
P (x0, y0) = 0,

Q(x0, y0) = 0.

Each such (x0, y0) in Ω is a trajectory whose graphic in the phase plane is a single

point, called an equilibrium point. In applied literature, it may be called a critical point,

stationary point or rest point.

1.2.1 Stability of an equilibrium point

Let (x0, y0) be an equilibrium point of the system (1.1). Notes by

Y (t) =
(
P
(
x(t), y(t)

)
, Q
(
x(t), y(t)

))
and Y0 =

(
P (x0, y0), Q(x0, y0)

)
.

Definition 1.2.2. We say that (x0, y0) is stable if and only if

∀ε > 0,∃η > 0, ‖(x, y)− (x0, y0)‖ < η =⇒ ‖Y (t)− Y0‖ < ε, ∀t > 0.

The point (x0, y0) is asymptotically stable if and only if (x0, y0) is stable and

lim
t→∞
‖ Y (t)− Y0 ‖= 0.

1.2.2 Linear homogeneous system

Let a second order linear homogeneous system with constant coefficients be given in

cartesian coordinates as 
dx

dt
= a11x+ a12y,

dy

dt
= a21x+ a22y,

this system of equations is autonomous since the right hand sides of the equations do not

explicitly contain the independent variable t.

In matrix form, the system of equations can be written as

X ′ = AX, where X =

[
x

y

]
, A =

[
a11 a12

a21 a22

]
.

12



1.2. Equilibria

The equilibrium positions can be found by solving the stationary equation

AX = 0.

This equation has the unique solution X = 0 if the matrix A is nonsingular, i.e. provided

that detA 6= 0. In the case of a singular matrix, the system has an infinite number of

equilibrium points.

Classification of equilibrium points is determined by the eigenvalues λ1, λ2 of the matrix

A. The numbers λ1, λ2 can be found by solving the auxiliary equation

λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0.

There are four different types of equilibrium points:

Node: Let λ1, λ2 ∈ R and λ1λ2 > 0.

Figure 1.1: Node point.

Saddle: Let λ1, λ2 ∈ R and λ1λ2 < 0.

13



1.2. Equilibria

Figure 1.2: Saddle point.

Focus: Let λ1, λ2 ∈ C and Reλ1 = Reλ2 6= 0.

Figure 1.3: Focus point.

Center: Let λ1 and λ2 are purely imaginary numbers and Reλ1 = Reλ2 = 0.
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1.2. Equilibria

Figure 1.4: Center point.

Figure 1.5: Equilibrium points.
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1.3. Integrating factor

1.2.3 Invariant algebraic curves

Definition 1.2.3. A real polynomial U is called algebraic solution of the polynomial

differential system (1.1) if

∂U(x, y)

∂x
P (x, y) +

∂U(x, y)

∂y
Q(x, y) = K(x, y)U(x, y),

for some polynomial K, called the cofactor of U . The corresponding cofactor of U is

always polynomial whether U is algebraic or nonalgebraic.

Remark 1.2.1. The curve U(x, y) = 0 is an invariant under the flow of differential

system (1.1) and the set {(x, y) ∈ R2, U(x, y) = 0} is formed by orbits of system (1.1).

Definition 1.2.4. [30] If the algebraic curve U = 0 is invariant by a vector field X

of degree d, then K is a polynomial of degree at most d − 1. We say that U(x, y) = 0,

∀(x, y) ∈ R2, is an algebraic curve of X, it is a polynomial of variables x and y, otherwise

it is said non-algebraic.

Remark 1.2.2. One of the main applications of invariant algebraic curves is in con-

structing first integrals and integrating factors of Darboux type: that is, functions which

are expressible as products of invariant algebraic curves and exponential factors.

1.3 Integrating factor

1.3.1 Exact equation

Definition 1.3.1. A differential equation of type P (x, y)dx + Q(x, y)dy = 0 is called an

exact differential equation if there exists a function of two variables u(x, y) with continuous

partial derivatives such that

du(x, y) = P (x, y)dx+Q(x, y)dy.

The general solution of an exact equation is given by u(x, y) = c, where c is an arbitrary

constant.

Let functions P and Q have continuous partial derivatives in a certain domain Ω. The

differential equation P (x, y)dx+Q(x, y)dy = 0 is an exact equation if and only if

∂Q

∂x
=
∂P

∂y
.
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1.3. Integrating factor

1.3.2 Integrating factor

Definition 1.3.2. [36] Consider a differential equation of type P (x, y)dx+Q(x, y)dy = 0,

where P and Q are functions of two variables x and y continuous in a certain region

Ω ⊆ R2, if
∂Q

∂x
6= ∂P

∂y
,

the equation is not exact. However, we can try to find so-called integrating factor, which

is an analytic function R : Ω→ R that is notidentically zero on Ω such that the equation

becomes exact after multiplication by this factor. If so, then the relationship

∂
(
RQ(x, y)

)
∂x

=
∂
(
RP (x, y)

)
∂y

, (1.3)

is true.

Remark 1.3.1. The condition 1.3 can be written in the form:

Q
∂R

∂x
+R

∂Q

∂x
= P

∂R

∂y
+R

∂P

∂y
.

The last expression is the partial differential equation of first order that defines the inte-

grating factor R.

Remark 1.3.2. Unfortunately, there is no general method to find the integrating factor.

However, we can mention some particular cases for which the partial differential equation

can be solved and as a result we can construct the integrating factor.

Proposition 1.3.1. [37] Let Ω be an open subset of R2 i.e Ω ⊆ R2 and let R : Ω→ R be

an analytic function which is not identically zero on Ω. The function R is an integrating

factor of the system (1.1) on Ω if one of the following equivalent conditions hold

∂(RP )

∂x
= −∂(RQ)

∂y
,

div(RP,RQ) = 0,

P
∂R

∂x
+Q

∂R

∂y
= −Rdiv(P,Q),

where div(P,Q) is the divergence of vector field (P,Q) given by

div(X) = div(P,Q) =
∂P

∂x
+
∂Q

∂y
.
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1.4. First integral

The first itegral H associated to the integrating factor R is given by

H(x, y) =

∫
R(x, y)P (x, y)dy + h(x),

where h is chosen such that
∂H

∂x
= −RQ. Then

ẋ = RP =
∂H

∂y
,

ẏ = RQ = −∂H
∂x

.

1.4 First integral

Definition 1.4.1. System (1.1) is integrable on an open set Ω of R2 if there exists a non

constant C1-function H : Ω → R, called a first integral of the system on Ω, which is

constant on the trajectories of the system (1.1) contained in Ω, i.e. if

dH (x, y)

dt
=
∂H (x, y)

∂x
P (x, y) +

∂H (x, y)

∂y
Q (x, y) ≡ 0 in the points of Ω.

It is well known that for differential systems defined on the plane R2 the existence of a

first integral determines their phase portrait.

Example 1.4.1. The polynomial system{
ẋ = −y − b(x2 + y2),

ẏ = x,

where b ∈ R, has the first integral H(x, y) = e2by(x2 + y2),

and has the integrating factor R(x, y) = e2by. From it we can obtain the first integral, and

the other way around, see [37].

Proposition 1.4.1. [37]

1. If system (1.1) has two integrating factors R1 and R2 defined in Ω, then the functions

R1/R2, which is defined in Ω− {R2 = 0}, and R1R2/(R
1
2 +R2

2), which is defined in

Ω−
(
{R1 = 0} ∩ {R2 = 0}

)
, are first integrals of (1.1).

2. If system (1.1) has an integrating factor R and a first integral H, both defined in Ω,

then the function RH is another integrating factor defined in Ω.
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1.5. Limit cycles

1.5 Limit cycles

1.5.1 Periodic orbits

Definition 1.5.1. A periodic orbit of (1.1) is any closed solution curve of (1.1) which is

not an equilibrium point of (1.1).

The system (1.1) correspond to periodic solutions of (1.1) since φ(., x0) defines a closed

solution curve of (1.1) if and only if for all t ∈ R,

φ(t+ T, x0) = φ(t, x0)

for some T > 0.

The minimal T for which this equality holds is called the period of the periodic orbit

φ(., x0).

1.5.2 Limit cycles

Definition 1.5.2. [74] A limit cycle of a vector field X in dimension 2 is a periodic orbit

Γ which is isolated on one side, i.e., not approached by periodic orbits, all belonging to

one side of Γ. (If X is analytic a limit cycle is necessarily isolated on both sides). The

limit cycle is algebraic if it is contained in an algebraic curve in the plane, otherwise it

is said non-algebraic.

Remark 1.5.1. Limit cycles appears only in the non-linear differential systems.

The interest of the limit cycle, as an isolated periodic orbit, appears often in several

branches of science and technology. The fact when the system admits a limit cycle implies

the existence of an isolated periodic solution. The general problem of finding the number

of limit cycles for dynamical systems is a complicated problem that has a linking with

the 16th problem of Hilbert that it’s not yet solved. The intensive study of the existence

of limit cycles for dynamical systems is well justified because the existence and properties

of limit cycles for a dynamical system gives the important information and introduce the

interesting properties of solutions of the dynamical system studied.

Example 1.5.1. [51] Consider the nonlinear system
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1.5. Limit cycles


x′ =

1

2
x− y − 1

2
(x3 + yx2),

y′ = x+
1

2
y − 1

2
(y3 + xy2).

We change to polar coordinates, the equations becomes much simpler. We compute
r′ cos θ − rθ′ sin θ =

1

2
(r − r3) cos θ − sin θ,

r′ sin θ + rθ′ cos θ =
1

2
(r − r3) sin θ + cos θ,

from which we conclude, after equating the coefficients of cosθ and sinθ, r′ =
1

2
r(1− r2),

θ′ = 1.

We can now solve this system explicitly, since the equations are decoupled. Rather than do

this, we will proceed in a more geometric fashion. From the equation θ′ = 1, we conclude

that all nonzero solutions spiral around the origin in the counterclockwise direction. From

the first equation, we see that solutions do not spiral toward ∞. Indeed, we have r′ = 0

when r = 1, so all solutions that start on the unit circle stay there forever and move

periodically around the circle. Since r′ > 0 when 0 < r < 1, we conclude that nonzero

solutions inside the circle spiral away from the origin and toward the unit circle. Since

r′ < 0 when r > 1, solutions outside the circle spiral toward it.

Figure 1.6: Phase plane of example 1.6.1
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1.5. Limit cycles

1.5.3 Classification of limit cycles

There are three types of limit cycles: stable limit cycle, unstable limit cycle and semi-

stable limit cycle, see [70].

Stable limit cycles

A stable limit cycle has a physic interpretatioun such as limit oscillation of the system

studied. It is a periodic solution which the other solutions tend to it.

Figure 1.7: Stable limit cycle.

Unstable limit cycles

An unstable limit cycle does not appear physicly such as an oscillation. It constitutes a

separation on each side which the trajectories move away towards other singular points

or towards infinity.

Figure 1.8: Unstable limit cycle.
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1.6. The inverse integrating factor

Semi-stable limit cycles

A semi-stable limit cycle is a closed trajectory such as the trajectories tend on one side

but move away on the other side.

Figure 1.9: Semi-stable limit cycle.

Theorem 1.5.1. Let γ(t) a periodic orbit of the system (1.1) of period T . γ is a stable

limit cycle if ∫ T

0

div(γ(t))dt < 0,

where div(γ(t)) is the divergence of the system, defined by

div(γ(t)) =
(∂P
∂x

+
∂Q

∂y

)
γ(t),

γ is a unstable limit cycle if ∫ T

0

div(γ(t))dt > 0.

In the case that the amount
∫ T

0
div(γ(t))dt equal zero, an advanced study is necessary to

determine if the orbit γ is a stable limit cycle, or unstable limit cycle or semi-stable limit

or it is only a periodic orbit belonging to continuous band of closed orbits.

1.6 The inverse integrating factor

Another important tool in the study of planar differential systems is the inverse integrating

factor.
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1.6. The inverse integrating factor

Definition 1.6.1. Consider the planar differential system{
x′ = P (x, y),

y′ = Q(x, y),

where P and Q are C2-functions in the variables x and y. Let X be its associated vector

field and let

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
. (1.4)

Let Ω be the domain of definition of system (1.1), and let W be an open subset of Ω. A

non-zero C1-function V : W → R is an inverse integrating factor of system (1.1) on W

if it is a solution of the linear partial differential equation

P
∂V

∂x
+Q

∂V

∂y
=

(
∂P

∂x
+
∂Q

∂y

)
V, (1.5)

also written XV = V divX. As we deduce from this equation, the gradient (∂V/∂x, ∂V/∂y)

of the set of curves V −1(0) = Σ is orthogonal to the vector field X. So X is tangent to

{V = 0}, and then this curve is formed by trajectories of X. Moreover, V −1(0) is an

invariant algebraic curve of (1.1) with cofactor divX.

Proposition 1.6.1. [37] Let V be an inverse integrating factor of system (1.1) defined

in the open subset W ⊆ R2. Then,

1. The function
1

V
, defined in W − {V = 0}, is an integrating factor of system (1.1).

Moreover, the function

H(x, y) = −
∫

P (x, y)

V (x, y)
dy +

∫ (
Q(x, y)

V (x, y)
+

∂

∂x

∫
P (x, y)

V (x, y)
dy

)
dx, (1.6)

is a first integral of (1.1).

2. If system (1.1) has a first integral H, then the function

VH(x, y) =
P (x, y)

−∂H(x, y)

∂y

=
Q(x, y)

∂H(x, y)

∂x

,

is an inverse integrating factor of (1.7). Moreover, the system
x′ =

P (x, y)

VH
= −∂H(x, y)

∂y
,

y′ =
Q(x, y)

VH
=
∂H(x, y)

∂x
,

(1.7)

is Hamiltonian in W − {V = 0}.
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1.6. The inverse integrating factor

Proof. The first part of the proposition follows from the computation

X
1

V
= P

(
1

V

)
x

+Q

(
1

V

)
y

= −XV
V 2

= − 1

V
divX.

The expression of H can be obtained as in previous section.

To prove the second part, we note that
1

VH
is an integrating factor of (1.1),

so system (1.7) is Hamiltonian in W − {V = 0}.

Remark 1.6.1. [37] Proposition (1.4.1) can be applied also to inverse integrating factors.

The following lemma (see [37]) gives a linear property of the inverse integrating factors.

Lemma 1.6.2. [37] Let V1, ..., Vp be inverse integrating factors of system (1.1), a1, ..., ap ∈
R. Then, the function V =

∑p
i=1 aiVi is an inverse integrating factor of system (1.1).

The function V is an inverse integrating factor of the system (1.1) on open set Ω ⊆ R2 if

V ∈ C l(Ω), V 6= 0 on Ω and

P
∂V

∂x
+Q

∂V

∂y
= RV, (x, y) ∈ Ω. (1.8)

It is easy to verify that the function R =
1

V
defines an integrating in Ω−{V = 0} of the

system (1.1).

Corollary 1.6.3. [51] Let H be a first integral of a planar system. If H is not constant

on any open set, then there are no limit cycles.

Proof. Suppose there is a limit cycle γ, let c ∈ R be the constant value of H on γ. If X(t)

is a solution that spirals toward γ, then H(X(t)) = c by continuity of H. In corollary

(1.7.3) we found an open set whose solutions spiral toward γ, thus H is constant on an

open set.

The inverse integrating factor is among the tools that are used in the study of the existence

and non-existence of limit cycles, we even can determine their formulas using the inverse

integrating factor. This method is introduite by Giacomini, Llibre and Viano in 1996 and

is based on the following Criteria:
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1.6. The inverse integrating factor

Criterion 1. [43] Let (P,Q) be a C1 vector field defined in the open subset U of R2,

(x(t), y(t)) a periodic solution of (P,Q) of period T , R : U → R a C1-map such that∫ T
0
R(x(t), y(t))dt 6= 0, and V = V (x, y) is a C1-solution of linear partial differential

equation (1.8) then the closed trajectory

γ = {(x(t), y(t)) ∈ U : t ∈ [0, T ]}

is contained in

Σ = {(x, y) ∈ U : V (x, y) = 0},

and γ is not contained in a period annulus of (P,Q). Moreover, if the vector field (P,Q)

is analytic, then γ is a limit cycle.

Let W be an open subset of R2. A C1-vector field (P,Q) defined in W is a C1-map which

associates to each point (x, y) ∈ W a vector
(
P (x, y), Q(x, y)

)
in R2 based at (x, y).

The system {
x′ = P (x, y),

y′ = Q(x, y),
(1.9)

is called the differential system associated to the vector field (P,Q). If the solution

x = x(t), y = y(t) of system (1.9) is a nonconstant periodic function of t, it is called

periodic. Then the locus of this solution in W is a closed trajectory of system (1.9). If a

closed trajectory of (1.9) is isolated in the set of all closed trajectories of (1.9), it is called

a limit cycle. A period annulus for system (1.9) is a closed annulus fulfilled of closed

trajectories of system (1.9).

Proof. We define R(t) = R
(
x(t), y(t)

)
and V (t) = R

(
x(t), u(t)

)
.

We consider the differential equation ż = R(t)z. Its general solution is

z(t) = z(0) exp

∫ t

0

R(s)ds.

Since V (x, y) is a solution of (1.9) and (x(t), y(t)) is a solution of (1.1), it follows that

z = V (t) is a solution of ż = R(t)z. So

V (t) = V (0) exp

(∫ t

0

R(s)ds

)
,

since (x(t), y(t)) is a periodic solution of period T , V (T ) = V (0).

Hence, since
∫ t

0
R(t)dt 6= 0 , we get that V (0) = 0, and consequently V (t) = 0.
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1.6. The inverse integrating factor

Now we suppose that γ is contained in a period annulus, then there is a closed annulus

neighbourhood A of γ fulfilled of closed trajectories.

We note that perhaps γ is in the boundary of A. Since
∫
γ
Rdt 6= 0, if A is sufficiently

narrow, then
∫
γ′
Rdt 6= 0 for any closed trajectory γ

′
in A. So A ⊂ Σ, in contradiction

with the fact that Σ is a locally 1-dimensional manifold, except perhaps in finitely many

points.

Hence γ is not contained in a period annulus.

It is well known in the theory of planar analytic vector fields that a periodic orbit is either

a limit cycle, or it is contained in a period annulus, see [53]. Since the second possibility

cannot occur, γ is a limit cycle.

Criterion 2. [37] Let (P.Q) a C l-class vector field defined in the open subset U of R2.

Let V = V (x, y) be a C1 solution of the linear partial differential equation:

P
∂V

∂x
+Q

∂V

∂y
= (

∂P

∂x
+
∂Q

∂y
)V.

If γ is a limit cycle of (1.1), then γ is contained in:

Σ = {(x, y) ∈ U : V (x, y) = 0}.

Definition 1.6.2 (Hyperbolic limit cycle). If
∫ T

0
div(γ(t))dt is different of 0, we say that

the limit cycle is hyperbolic.

Example 1.6.1. [41] The Liénard system, x′ = y − x(x2 − 2)(x2 − 1)(x2 − 1

4
),

y′ = −x,

has exactly three limit cycles. Furthermore they are concentric and hyperbolic, see [41].
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1.6. The inverse integrating factor

Figure 1.10: Phase plane of example 1.7.1

Corollary 1.6.4. [51] A compact set K that is positively or negatively invariant contains

either a limit cycle or an equilibrium point.

Corollary 1.6.5. [51] Let γ be a closed orbit and let U be the open region in the interior

of γ. Then U contains either an equilibrium point or a limit cycle.

Theorem 1.6.6. [26] If a quadratic system has an algebraic limit cycle of degree 2, then

after an affine change of variables, the limit cycle becomes the circle

Γ = x2 + y2 − 1 = 0,

Moreover, Γ is the unique limit cycle of the quadratic system which can be written in the

form {
x′ = −y(ax+ by + c)− (x2 + y2 − 1),

y′ = x(ax+ by + c),

with a 6= 0, c2 + 4(b+ 1) > 0 and c2 > a2 + b2.

General case: The number of limit cycles of a polynomial differential equation is the

subject of the second part of Hilbert’s sixteenth problem. The Poincaré-Bendixson the-

orem and that of Bendixson-Dulac predict the existence, respectively the non-existence,

of limit cycles for nonlinear differential equations in two dimensions.
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1.7. Criteria for existence, non existence of limit cycles

1.7 Criteria for existence, non existence of limit cy-

cles

1.7.1 Green’s theorem

Definition 1.7.1. Let Γ be a planar simple closed curve. Suppose that P and Q are two

continuously differentiable functions defined on the interior of Γ; called D, then∫∫
D

(
∂P

∂x
+
∂Q

∂y

)
dxdy =

∮
Γ

Pdy −Qdx.

1.7.2 Bendixon criterion

The search for periodic solutions (limit cycles) is conditioned by the Bendixon’s criterion

that there can be no closed orbit content in a simply related region of the plan, if the

divergence of the field vectors keep a constant sign.

In this paragraph, we give results that allow to demonstrate the non-existence of periodic

solutions for a two-order autonomous differential system.

Theorem 1.7.1 (Bendixon criterion). Let P and Q two functions owned at C1(Ω,R),

where Ω is a simply connected region in R2. Considering the autonomous system (1.1).

If
∂P

∂x
+
∂Q

∂y
is not identically zero and does not change sign in Ω, then (1.1) has no closed

orbit lying entirely in Ω.

Proof. Suppose that Γ : X = X(t), 0 ≤ t ≤ T is a closed orbit of (1.1) lying entirely in

Ω. If D denotes the interior of Γ, it follows from Green’s theorem that∫∫
D

(
∂P

∂x
+
∂Q

∂y

)
dxdy =

∮
Γ

(Pdx−Qdy)

=

∮
Γ

(P ẏ −Qẋ)dt

=

∮
Γ

(PQ−QP ) = 0,

and if
∂P

∂x
+
∂Q

∂y
is not identically zero and does not change sign in D, then it follows

from the continuity of
∂P

∂x
+
∂Q

∂y
in D that the above double integral is either positive or

negative. In either case this leads to a contradiction. Therefore, there is no closed orbit

of (1.1) lying entirely in Ω.
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A more general result of this type, which is also proved using Green’s theorem, given by

the following theorem:

1.7.3 Dulac criterion

Theorem 1.7.2 (Dulac criterion). [70] Consider the system: x′ = f(x), x = (x1, x2) ∈
R2,

f = (f1, f2). Let Ω is a simply connected region in R2 and µ ∈ C1(Ω), if

div
(
µ(x)f(x)

)
=
∂
(
µ(x)f1(x)

)
∂x1

+
∂
(
µ(x)f2(x)

)
∂x2

,

does not vanish on any open subset of Ω, then the system does not admit a periodic orbit

in Ω.

Proof. Let φ be a periodic solution in Ω which surrounds a region A ⊂ Ω, div
(
µ(x)f(x)

)
not identically zero and does not change sign in A then∫∫

A

div(µf)dA 6= 0,

using Green’s theorem: ∫∫
A

div(µf)dA =

∮
φ

µf−→n dl,

−→n is the normal to outward

f−→n = 0, because φ is a periodic orbit then the vector field is tangent to φ, the normal is

perpendicular to f and: ∮
φ

µf−→n dl = 0,

on the other hand ∫∫
A

div(µf)dA 6= 0,

and ∫∫
A

div(µf)dA 6= 0 =

∮
φ

µf−→n dl = 0.

This leads to a contradiction. Therefore, there is no periodic orbit lying entirely in Ω
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1.7. Criteria for existence, non existence of limit cycles

Figure 1.11: Dulac’s creterion of non existence.

Theorem 1.7.3 (Poincaré-Bendixson). Suppose that Ω is a nonempty, closed and bounded

limit set of a planar system of differential equations that contains no equilibrium point.

Then Ω is a closed orbit.

Theorem 1.7.4 (Existence). Let C and C ′ two closed curves, the second surrounds the

first.

If in each point of C the speed vector (P,Q) of trajectory that passes through towards

outside and if each point of C ′, it is led towards the interior, so there is at least a limit

cycle between C and C ′.
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1.7. Criteria for existence, non existence of limit cycles

Figure 1.12: Existence of a limit cycle between C and C’.

Theorem 1.7.5. [29] Let f = 0 be a non-singular algebraic curve of degree m, and D a

first degree polynomial, chosen so that the line D = 0 lies outside all bounded components

of f = 0. Choose the constants α and β so that

αDx + βDy 6= 0,

then the polynomial vector field of degree m,{
ẋ = αf −Dfy,
ẏ = βf +Dfx,

has all the bounded components of f = 0 as hyperbolic limit cycles. Furthermore, the

vector field has no other limit cycles.

Theorem 1.7.6 (Poincaré-Bendixon). [3] Let P and Q two functions belonging to C1(Ω,R),

where Ω is a closed bounded of R2. Suppose that:

– The system (1.1) does not admit a fixed point in Ω.

– The solution Γ = {(x, y) = (Φ(t),Ψ(t)), t ≥ t0} remains inside of Ω.

So one of the two following propositions is satisfied:

1. Γ is a limit cycle,
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1.7. Criteria for existence, non existence of limit cycles

2. Γ rolls up in spirals over a limit cycle.

In both cases, the system (1.1) admits a periodic solution.

1.7.4 The Poincaré Map

The most basic tool for studying the stability of periodic orbits is the Poincaré map or

first return map, defined by Henri Poincaré in 1881.

The idea of Poincaré’s map is quite simple: If γ is a periodic orbit of the system:

x
′
= f(x) (1.10)

through the point x0 and Σ is a hyperplane perpendicular to Γ at x0, then for any point

x0 ∈ Σ sufficiently near to x0, the solution of (1.10) through x at t = 0, φt(x) will cross

Σ again at a point P (x) near x0, the function x→ P (x) is called the Poincaré map.

The Poincaré map can also be defined when x0 ∈ Γ, which is not tangent to Γ at x0.

In this case, the surface Σ is said to intersect the curve Γ transversally at x0.

The next theorem establishes the existence and continuity of the Poincaré map P (x) and

of its first derivative DP (x).

Figure 1.13: The Poincaré Map.
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1.7. Criteria for existence, non existence of limit cycles

Theorem 1.7.7. [70] Let E be an open subset of Rn and let f ∈ C1(E), suppose that,

φt(x0) is a periodic solution of (1.10) of period T and that the cycle:

Γ = {x ∈ Rn/x = φt(x0), 0 ≤ t ≤ T},

is contained in E. Let Σ the hyperplane orthogonal to Γ at x0, i.e, let:

Σ = {x ∈ Rn/(x− x0).f(x0) = 0},

then there is a δ > 0 and a unique function τ(x), defined and continuously differentiable

for x ∈ Nδ(x0), such that: τ(x0) = T and

φτ(x)(x) ∈ Σ,

for all x ∈ Nδ(x0).

Proof. The proof of this theorem is an immediate application of the implicit function

theorem. For a given point x0 ∈ Γ ⊂ E, define the function

F (t, x) = [φt(x)− x0].f(x0)

It then follows that F ∈ C1(R × E) and it follows from the periodicity of φt(x0) that

F (T, x0) = 0.

Furthermore, since φ(t, x0) = φt(x0) is a solution of (1.1) which satisfies φ(T, x0) = x0,

it follows that

∂F (T, x0)

∂t
=
∂φ(T, x0)

∂t
.f(x0) = f(x0).f(x0) = |f(x0)|2 6= 0,

since x0 ∈ Γ is not an equilibrium point of (1.1). Thus, it follows from the implicit function

theorem, that there exists a δ > 0 and a unique function τ(x) defined and continuously

differentiable for all x ∈ Nδ(x0) such that τ(x0) = T and such that

F (τ(x), x) = 0

for all x ∈ Nδ(x0). Thus, for all x ∈ Nδ(x0),

[φ(τ(x), x)− x0].f(x0) = 0, i.e., φτ(x)(x) ∈ Σ.

Definition 1.7.2. [70] Let Γ, Σ, δ and τ(x) be defined as in the previous theorem, then

for x ∈ Nδ(x0) ∩ Σ, the function P (x) = φτ(x)(x) is called the Poincaré map for Γ at x0.
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1.7. Criteria for existence, non existence of limit cycles

Theorem 1.7.8. [70] Let E be an open subset of R2 and suppose that f ∈ C1(E). Let

γ(t) be a periodic solution of (1.10) of period T . Than the derivative of the Poincaré map

P (s) along a straight line Σ normal to Γ = {x ∈ R2/x = γ(t)− γ(0), 0 ≤ t ≤ T} at x = 0

is given by:

P ′(0) = exp

∫ T

0

5.f(γ(t))dt.

Corollary 1.7.9. [70] Under the hypotheses of the previous theorem, the periodic solution

γ(t) is a stable limit cycle if ∫ T

0

5.f(γ(t))dt < 0,

and it is an unstable limit cycle if∫ T

0

5.f(γ(t))dt > 0.

It may be a stable, unstable or semi-stable limit cycle or it may belong to a continuous

band of cycles if this quantity is zero.

In other words [67]. When plotting the solutions to some nonlinear problems, the

phase space can become overcrowded and the underlying structure may become obscured.

To overcome these difficulties, a basic tool was proposed by Henri Poincaré at the end

of the nineteenth century. As a simple introduction to the theory of Poincaré (or first

return) maps consider two-dimensional autonomous systems of the form (1.1) that there

is a curve or straight line segment, say, Σ, that is crossed transversely (no trajectories are

tangential to Σ). Then Σ is called a Poincaré section. Consider a point r0 lying on Σ. As

shown in next figure, follow the flow of the trajectory until it next meets Σ at a point r1.

This point is known as the first return of the discrete Poincaré map P : Σ → Σ, defined

by

rn+1 = P (rn),

where rn maps to rn+1 and all points lie on Σ. Finding the function P is equivalent to

solving the differential equations(1.1).Unfortunately, this is very seldom possible, and one

must rely on numerical solvers to make any progress.

Theorem 1.7.10. [67] Define the characteristic multiplier M to be

M =
dP

dr

∣∣∣∣∣
r0

,
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1.7. Criteria for existence, non existence of limit cycles

where r0 is a fixed point of the Poincaré map P corresponding to a limit cycle, say, Γ.

Then if

1. |M | < 1, Γ is a hyperbolic stable limit cycle,

2. |M | > 1, Γ is a hyperbolic unstable limit cycle,

3. |M | = 1 and
d2P

dr2
6= 0, then the limit cycle is stable on one side and unstable on the

other, in this case Γ is called a semistable limit cycle.
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CHAPTER 2

SOME CLASSES OF

TWO-DIMENSIONAL KOLMOGOROV

SYSTEMS

2.1 Introduction

This chapter is composed of two parts: in the first part, we determine the conditions

for the non-existence of periodic orbits as well as the non-existence of limit cycles of

Kolmogorov systems of the form
x′ = x

(
P (x, y) +R (x, y) ln

∣∣∣∣A (x, y)

B (x, y)

∣∣∣∣) ,
y′ = y

(
Q (x, y) +R (x, y) ln

∣∣∣∣A (x, y)

B (x, y)

∣∣∣∣) ,
where A, B, P, Q and R are homogeneous polynomials of degree a, a, n, n and m respec-

tively, the results obtained for this class was a subject of our publication [21].

In the second part, we introduce an explicit expression of invariant algebraic curves of
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2.2. On the class of two dimentional Kolmogorov systems

the multi-parameter planar Kolmogorov system of the form{
x′ = x(1 + ax2 + bxy + cy2 − (a+ 1)x4 − bx3y − (c+ n+ 2)x2y2 −mxy3 − (s+ 1)y4),

y′ = y(1 + nx2 +mxy + sy2 − (a+ 1)x4 − bx3y − (c+ n+ 2)x2y2 −mxy3 − (s+ 1)y4),

where a, b, c, n,m and s are real constants. Then we proved that this system is integrable

and we introduced an explicit expression for a first integral. The results obtained for this

class was a subject of our publication [77].

2.2 On the class of two dimentional Kolmogorov sys-

tems

We are intersted in studying the integrability and the periodic orbits of the 2-dimensional

Kolmogorov systems of the form
x′ = x

(
P (x, y) +R (x, y) ln

∣∣∣∣A (x, y)

B (x, y)

∣∣∣∣) ,
y′ = y

(
Q (x, y) +R (x, y) ln

∣∣∣∣A (x, y)

B (x, y)

∣∣∣∣) , (2.1)

where A(x, y)B(x, y) 6= 0 and A, B, P, Q and R are homogeneous polynomials of degree

a, a, n, n and m respectively. Our first result on the existence of algebraic curve of system

(2.1) is the following:

Theorem 2.2.1. Consider the Kolmogorov system (2.1),

The curve U(x, y) = xyQ(x, y) − xyP (x, y) = 0 is an invariant algebraic curve of the

differential system (2.1).

Proof. We prove that U(x, y) = xyQ(x, y) − xyP (x, y) = 0 is an invariant algebraic

curve of the differential system (2.1).

Indeed, we have

∂U(x, y)

∂x
x′ +

∂U(x, y)

∂y
y′ =

∂U(x, y)

∂x

(
P (x, y) +R(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣)
+
∂U(x, y)

∂y

(
Q(x, y) +R(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣)
=

∂U(x, y)

∂x
xR(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣+
∂U(x, y)

∂y
yR(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣
+
∂U(x, y)

∂x
xP (x, y) +

∂U(x, y)

∂y
yQ(x, y).
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2.2. On the class of two dimentional Kolmogorov systems

Then, taking into account that if P and Q are homogeneous polynomials of degree n, we

have

x
∂P (x, y)

∂x
+ y

∂P (x, y)

∂y
= nP (x, y) and x

∂Q(x, y)

∂x
+ y

∂Q(x, y)

∂y
= nQ(x, y).

Then, we have

∂U(x, y)

∂x
xR(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣+
∂U(x, y)

∂y
yR(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣
=

∂
(
xyQ(x, y)− xyP (x, y)

)
∂x

xR(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣
+
∂
(
xyQ(x, y)− xyP (x, y)

)
∂y

yR(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣
= xy

(
2Q(x, y)− 2P (x, y) + (xQx + yQy)− (xPx + yPy)

)
R(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣
= (n+ 2)xy

(
Q(x, y)− P (x, y)

)
R(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣
= (n+ 2)U(x, y)R(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣ .
On the other hand, substituting

y
∂P (x, y)

∂y
= nP (x, y)− x∂P (x, y)

∂x
and y

∂Q(x, y)

∂y
= nQ(x, y)− x∂Q(x, y)

∂x
,

in what follows, we get

∂U(x, y)

∂x
xP (x, y) +

∂U(x, y)

∂y
yQ(x, y) =

∂
(
xyQ(x, y)− xyP (x, y)

)
∂x

xP (x, y)

+
∂
(
xyQ(x, y)− xyP (x, y)

)
∂y

yQ(x, y)

=
(
yQ(x, y)− yP (x, y) + xyQx − xyPx

)
xP (x, y)

+
(
xQ(x, y)− xP (x, y) + xyQy − xyPy

)
yQ(x, y)

= xy

((
Q(x, y) + P (x, y)

)(
Q(x, y)− P (x, y)

)
+

n
(
Q(x, y)− P (x, y)

)
Q(x, y)− x

(
Q(x, y)

−P (x, y)
)
Qx + x

(
Q(x, y)− P (x, y)

)
Px

)
=

(
(n+ 1)Q(x, y) + P (x, y)− xQx + xPx

)
U(x, y).

In short, we have

∂U(x, y)

∂x
x

(
P (x, y) +R(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣)+
∂U(x, y)

∂y
y

(
Q(x, y) +R(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣)
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2.2. On the class of two dimentional Kolmogorov systems

=

(
(n+ 1)Q(x, y) + P (x, y)− xQx + xPx + (n+ 2)R(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣)U(x, y).

Therefore,

U(x, y) = xyQ(x, y)− xyP (x, y) = 0

is an invariant algebraic curve of the polynomial differential systems (2.1) with the cofactor

K(x, y) = (n+1)Q(x, y)+P (x, y)−x ∂
∂x
Q(x, y)+x

∂

∂x
P (x, y)+(n+2)R(x, y) ln

∣∣∣∣A(x, y)

B(x, y)

∣∣∣∣ .
Our second result on the existence of first integral of system (2.1) is the following

Theorem 2.2.2. Consider a Kolmogorov system (2.1), then the following statements

hold.

1. If n 6= m, then system (2.1) has the first integral

H (x, y) =
(
x2 + y2

)n−m
2 exp

(
(m− n)

∫ arctan y
x

0

M (ω) dω

)
−

(n−m)

∫ arctan y
x

0

exp

(
(m− n)

∫ w

0

M (ω) dω

)
N (w) dw,

where M (θ) =
f1 (θ)

f3 (θ)
, N (θ) =

f2 (θ)

f3 (θ)
,

f1 (θ) = P (cos θ, sin θ) (cos θ)2 +Q (cos θ, sin θ) (sin θ)2 ,

f2 (θ) = R (cos θ, sin θ) ln

∣∣∣∣A (cos θ, sin θ)

B (cos θ, sin θ)

∣∣∣∣ , and

f3 (θ) = (cos θ sin θ) (Q (cos θ, sin θ)− P (cos θ, sin θ)) ,

and the curves which are formed by the trajectories of the differential system (2.1),

in cartesian coordinates are written as

x2 + y2 =


h exp

(
(n−m)

∫ arctan y
x

0
M (ω) dω

)
+

(n−m) exp
(

(n−m)
∫ arctan y

x

0
M (ω) dω

)
∫ arctan y

x

0
exp

(
(m− n)

∫ w
0
M (ω) dω

)
N(w)dw


2

n−m

,

where h ∈ R. Moreover, system (2.1) have no limit cycle.

2. If n−m = 1 then system (2.1) has the first integral

H(x, y) = (x2 + y2)
1
2 exp

(
−
∫ arctan y

x

0

M (ω) dω

)

−
∫ arctan y

x

0

exp

(
−
∫ w

0

M (ω) dω

)
N (w) dw,
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2.2. On the class of two dimentional Kolmogorov systems

where M(θ) =
f1(θ)

f3(θ)
, N (θ) =

f2(θ)

f3(θ)
, and the curves which are formed by the trajec-

tories of the differential system (2.1), in cartesian coordinates are written as

x2 + y2 =

 h exp
(
−
∫ arctan y

x

0
M (ω) dω

)
+ exp

(∫ arctan y
x

0
M (ω) dω

)
∫ arctan y

x

0
exp

(
−
∫ w

0
M (ω) dω

)
N (w) dw

2

,

where h ∈ R. Moreover, the system (2.1) has no limit cycle.

3. If n = m then system (2.1) has the first integral

H (x, y) =
(
x2 + y2

) 1
2 exp

(
−
∫ arctan y

x

0

(M (ω) +N (ω)) dω

)
,

and the curves which are formed by the trajectories of differential system (2.1), in

cartesian coordinates are written as

(
x2 + y2

) 1
2 − h exp

(∫ arctan y
x

0

(M (ω) +N (ω)) dω

)
= 0,

where h ∈ R. Moreover, the system (2.1) has no limit cycle.

4. If f3 (θ) = 0 for all θ ∈ R, then system (2.1) has the first integral H =
y

x
, and

the curves which are formed by the trajectories of the differential system (2.1), in

cartesian coordinates are written as y − hx = 0, where h ∈ R. Moreover, system

(2.1) has no limit cycle.

Proof. In order to prove our results we write the polynomial differential system (2.1) in

polar coordinates (r, θ) , defined by x = r cos θ and y = r sin θ, then system (2.1) becomes{
r′ = f1 (θ) rn+1 + f2 (θ) rm+1,

θ′ = f3 (θ) rn,
(2.2)

where the trigonometric functions f1(θ), f2(θ), f3(θ) are given, and

r′ =
dr

dt
, θ′ =

dθ

dt

Proof of statement (1) of Theorem2.2.2

Assume that: n 6= m.

Taking as independent variable the coordinate θ, the differential system (2.2) writes

dr

dθ
= M (θ) r +N (θ) r1+m−n, (2.3)
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2.2. On the class of two dimentional Kolmogorov systems

where M (θ) =
f1 (θ)

f3 (θ)
and N (θ) =

f2 (θ)

f3 (θ)
, which is a Bernoulli differential equation. By

introducing

the standard change of variables ρ = rn−m we obtain the linear differential equation

dρ

dθ
= (n−m) (M (θ) ρ+N (θ)) . (2.4)

The general solution of the differential linear equation (2.4) is

ρ (θ) = exp

(
(n−m)

∫ θ

0

M (ω) dω

)
×(

µ+ (n−m)

∫ θ

0

exp

(
(m− n)

∫ w

0

M (ω) dω

)
N (w) dw

)
,

where µ ∈ R, which has the first integral

H (x, y) =
(
x2 + y2

)n−m
2 exp

(
(m− n)

∫ arctan y
x

0

M (ω) dω

)

+ (m− n)

∫ arctan y
x

0

exp

(
(m− n)

∫ w

0

M (ω) dω

)
N (w) dw.

Let Γ be a periodic orbit surrounding an equilibrium located in one of the open quadrants,

and let hΓ = H (Γ) .

The curves H = h with h ∈ R, which are formed by trajectories of the differential system

(2.1), in cartesian coordinates are written as

x2 + y2 =


h exp

(
(n−m)

∫ arctan y
x

0
M (ω) dω

)
+

(n−m) exp
(

(n−m)
∫ arctan y

x

0
M (ω) dω

)
∫ arctan y

x

0
exp

(
(m− n)

∫ w
0
M (ω) dω

)
N (w) dw


2

n−m

,

where h ∈ R. Therefore the periodic orbit Γ is contained in the curve

x2 + y2 =


hΓ exp

(
(n−m)

∫ arctan y
x

0
M (ω) dω

)
+

(n−m) exp
(

(n−m)
∫ arctan y

x

0
M (ω) dω

)
∫ arctan y

x

0
exp

(
(m− n)

∫ w
0
M (ω) dω

)
N (w) dw


2

n−m

.

But this curve cannot contain the periodic orbit Γ and consequently no limit cycle con-

tained in the realistic quadrant (x > 0, y > 0), because this curve in realistic quadrant has

at most a unique point on every straight line y = ηx for all η ∈ ]0,+∞[ .
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To be convinced by this fact, one has to compute the abscissa points of intersection of this

curve with straight line y = ηx for all η ∈ ]0,+∞[ , the abscissa is given by

x =
1√

1 + η2


hΓ exp

(
(n−m)

∫ arctan η

0
M (ω) dω

)
+

(n−m) exp
(

(n−m)
∫ arctan η

0
M (ω) dω

)
∫ arctan η

0
exp

(
(m− n)

∫ w
0
M (ω) dω

)
N (w) dw


2

n−m

,

at most a unique value of x on every half straight OX+, consequently at most a unique

point in realistic quadrant (x > 0, y > 0). So this curve cannot contain the periodic orbit.

Hence statement (1) of theorem (2.2.2) is proved.

Proof of statement (2) of Theorem 2.2.2

Assume that: n−m = 1.

Taking as independent variable the coordinate θ, the differential system (2.2) writes

dr

dθ
= M (θ) r +N (θ) , (2.5)

where M (θ) =
f1 (θ)

f3 (θ)
and N (θ) =

f2 (θ)

f3 (θ)
, which is a linear equation. The general solution

of linear equation (2.5) is

ρ (θ) = exp

(∫ θ

0

M (ω) dω

)(
µ+

∫ θ

0

exp

(
−
∫ w

0

M (ω) dω

)
N (w) dw

)
,

where µ ∈ R, which has the first integral

H (x, y) =
√
x2 + y2 exp

(
−
∫ arctan y

x

0

M (ω) dω

)
−
∫ arctan y

x

0

exp

(
−
∫ w

0

M (ω) dω

)
N (w) dw.

Let Γ be a periodic orbit surrounding an equilibrium located in one of the open quadrants,

and let hΓ = H (Γ) . The curves H = h with h ∈ R, which are formed by trajectories of

the differential system (2.1), in cartesian coordinates are written as

x2 + y2 =

 h exp
(∫ arctan y

x

0
M (ω) dω

)
+ exp

(∫ arctan y
x

0
M (ω) dω

)
∫ arctan y

x

0
exp

(
−
∫ w

0
M (ω) dω

)
N (w) dw

2

,

where h ∈ R. Therefore the periodic orbit Γ is contained in the curve

x2 + y2 =

 hΓ exp
(∫ arctan y

x

0
M (ω) dω

)
+ exp

(∫ arctan y
x

0
M (ω) dω

)
∫ arctan y

x

0
exp

(
−
∫ w

0
M (ω) dω

)
N (w) dw

2

.
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2.2. On the class of two dimentional Kolmogorov systems

But this curve cannot contain the periodic orbit Γ and consequently no limit cycle con-

tained in the realistic quadrant (x > 0, y > 0), because this curve in realistic quadrant has

at most a unique point on every straight line y = ηx for all η ∈ ]0,+∞[ .

To be convinced by this fact, we compute the abscissa points of intersection of this curve

with straight line y = ηx for all η ∈ ]0,+∞[ , the abscissa is given by

x =
1√

1 + η2

 hΓ exp
(∫ arctan η

0
M (ω) dω

)
+ exp

(∫ arctan η

0
M (ω) dω

)
∫ arctan η

0
exp

(
−
∫ w

0
M (ω) dω

)
N (w) dw

2

,

at most a unique value of x on every half straight OX+, consequently at most a unique

point in realistic quadrant (x > 0, y > 0). So this curve cannot contain the periodic orbit.

Hence statement (2) of theorem (2.2.2) is proved.

Proof of statement (3) of theorem 2.2.2

Assume that: n = m.

Taking as independent variable the coordinate θ, this differential system (2.2) writes

dr

dθ
= (M (θ) +N (θ)) r. (2.6)

The general solution of equation (2.6) is

r (θ) = µ exp

(∫ θ

0

(M (ω) +N (ω)) dω

)
,

where µ ∈ R, which has the first integral

H (x, y) =
(
x2 + y2

) 1
2 exp

(
−
∫ arctan y

x

0

(M (ω) +N (ω)) dω

)
.

Let Γ be a periodic orbit surrounding an equilibrium located in one of the realistic quadrant

(x > 0, y > 0), and let hΓ = H (Γ) . The curves H = h with h ∈ R, which are formed by

trajectories of the differential system (2.1), in cartesian coordinates are written as

(
x2 + y2

) 1
2 − h exp

(∫ arctan y
x

0

(M (ω) +N (ω)) dω

)
= 0,

where h ∈ R. Therefore the periodic orbit Γ is contained in the curve

(
x2 + y2

) 1
2 = hΓ exp

(∫ arctan y
x

0

(M (ω) +N (ω)) dω

)
.
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2.2. On the class of two dimentional Kolmogorov systems

But this curve cannot contain the periodic orbit Γ, and consequently no limit cycle con-

tained in the realistic quadrant (x > 0, y > 0), because this curve in realistic quadrant has

at most a unique point on every straight line y = ηx for all η ∈ ]0,+∞[ .

To be convinced by this fact, one has to compute the abscissa points of intersection of this

curve with straight line y = ηx for all η ∈ ]0,+∞[ , the abscissa is given by

x =
hΓ√

(1 + η2)
exp

(∫ arctan η

0

(M (ω) +N (ω)) dω

)
,

at most a unique value of x on every half straight OX+, consequently at most a unique

point in realistic quadrant (x > 0, y > 0). So this curve cannot contain a periodic orbit.

Hence statement (3) of Theorem 2.2.2 is proved.

Proof of statement (4) of Theorem 2.2.2

Assume that f3 (θ) = 0 for all θ ∈ R, then from system (2.2) it follows that θ′ = 0. So the

straight lines through the origin of coordinates of the differential system (2.1) are invariant

by the flow of this system. Hence,
y

x
is a first integral of the system, then curves which

are formed by the trajectories of the differential system (2.1), in cartesian coordinates are

written as y − hx = 0, where h ∈ R, since all straight lines through the origin are formed

by trajectories, clearly the system has no periodic orbits, consequently no limit cycle.

This completes the proof of statement (4) of Theorem 2.2.2.

2.2.1 Example of Kolmogorov system

The following example is given to illustrate our results.

Example

If we take A(x, y) = 5x2 + 4y2, B(x, y) = x2 + y2,

P (x, y) = x4 + x3y + 2x2y2 + xy3 + y4, Q(x, y) = x4 + 2x3y + 2x2y2 + 2xy3 + y4,

and R(x, y) = 3x2 − xy + 3y2, then system (2.6) writes
x′ = x

(
(x4 + x3y + 2x2y2 + xy3 + y4) + (3x2 − xy + 3y2) ln

∣∣∣∣5x2 + 4y2

x2 + y2

∣∣∣∣) ,
y′ = y

(
(x4 + 2x3y + 2x2y2 + 2xy3 + y4) + (3x2 − xy + 3y2) ln

∣∣∣∣5x2 + 4y2

x2 + y2

∣∣∣∣) ,
(2.7)
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2.2. On the class of two dimentional Kolmogorov systems

the Kolmogorov system (2.7) in polar coordinates (r, θ) becomes
r′ =

(
1 +

3

4
sin 2θ − 1

8
sin 4θ

)
r5 + (3− cos θ sin θ) ln

(
9

2
+

1

2
cos 2θ

)
r3,

θ′ =
(
cos2 θ sin2 θ

)
r4,

where
f1 (θ) = 1 + 3

4
sin 2θ − 1

8
sin 4θ,

f2 (θ) = (3− cos θ sin θ) ln
(

9
2

+ 1
2

cos 2θ
)

and

f3 (θ) = cos2 θ sin2 θ.

In the realistic quadrant (x > 0, y > 0) it is the case (1) of the Theorem 2.2.2, then the

Kolmogorov system (2.7) has the first integral

H (x, y) =
(
x2 + y2

)
exp

(
−2

∫ arctan y
x

0

M (ω) dω

)

−2

∫ arctan y
x

0

exp

(
−2

∫ w

0

M (ω) dω

)
B (w) dw,

where

M(ω) =
1 +

3

4
sin 2ω − 1

8
sin 4ω

cos2 ω sin2 ω
,

N(w) =

(
3− cosw sinw

)
ln

(
9

2
+

1

2
cos 2w

)
cos2w sin2w

.

The curves H = h with h ∈ R, which are formed by trajectories of the differential system

(2.7), in cartesian coordinates are written as

x2 + y2 = 2 exp

(
2

∫ arctan y
x

0

M (ω) dω

)∫ arctan y
x

0

exp

(
−2

∫ w

N (ω) dω

)
N (w) dw

+h exp

(
2

∫ arctan y
x

0

M (ω) dω

)
,

where h ∈ R. The system (2.7) has no periodic orbits, and consequently no limit cycle.
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2.3. Invariant algebraic curves and first integral of a class of Kolmogorov systems

2.3 Invariant algebraic curves and first integral of a

class of Kolmogorov systems

In the second part we introduce an explicit expression of invariant algebraic curves of the

multi-parameter planar Kolmogorov system of the form x′ = x(1 + ax2 + bxy + cy2 − (a+ 1)x4 − bx3y − (c+ n+ 2)x2y2 −mxy3 − (s+ 1)y4),

y′ = y(1 + nx2 +mxy + sy2 − (a+ 1)x4 − bx3y − (c+ n+ 2)x2y2 −mxy3 − (s+ 1)y4),

(2.8)

where a, b, c, n, m and s are real constants.

Our first result of the existence of algebraic curve of the system (2.8) about the algebraic

curves is the following

Theorem 2.3.1. Consider a multi-parameter planar Kolmogorov system (2.8), then the

curve

U(x, y) = xy(nx2 +mxy + sy2)− xy(ax2 + bxy + cy2)

is an invariant algebraic curve of system (2.8) .

Proof. We prove that

U(x, y) = xy(nx2 +mxy + sy2)− xy(ax2 + bxy + cy2),

is an invariant algebraic curve of the differential system (2.8).

Denoting by P (x, y) = ax2 + bxy + cy2, Q(x, y) = nx2 +mxy + sy2 and

R(x, y) = 1− (a+ 1)x4 − bx3y − (c+ n+ 2)x2y2 −mxy3 − (s+ 1)y4

Indeed, we have

∂U(x, y)

∂x
x(1 + ax2 + bxy + cy2 − (a+ 1)x4 − bx3y(c+ n+ 2)x2y2 −mxy3 − (s+ 1)y4) +

∂U(x, y)

∂y
y(1 + nx2 +mxy + sy2 − (a+ 1)x4 − bx3y(c+ n+ 2)x2y2 −mxy3 − (s+ 1)y4)

=

(
∂U(x, y)

∂x
x+

∂U(x, y)

∂y
y

)
R(x, y) +

∂U(x, y)

∂x
xP (x, y) +

∂U(x, y)

∂y
yQ(x, y)

And,(
∂U(x, y)

∂x
x+

∂U(x, y)

∂y
y

)
R(x, y) = 4xy

(
Q(x, y)− P (x, y)

)
R(x, y) = 4R(x, y)U(x, y)
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2.3. Invariant algebraic curves and first integral of a class of Kolmogorov systems

On the other hand,

∂U(x, y)

∂x
xP (x, y) +

∂U(x, y)

∂y
yQ(x, y) = xy

(
− P 2(x, y) +Q2(x, y) + x(2nx+my)P (x, y)

−x(2ax+ by)P (x, y) + y(mx+ 2sy)Q(x, y)− y(bx+ 2cy)Q(x, y)

)
.

Taking into account that

y(bx+ 2cy) = 2P (x, y)− x(2ax+ by) and y(mx+ 2sy) = 2Q(x, y)− x(2nx+my).

Then, we have
∂U(x, y)

∂x
xP (x, y) +

∂U(x, y)

∂y
yQ(x, y) =(

3Q(x, y) + P (x, y) + (b−m)xy + 2(a− n)x2

)
U(x, y).

In short, we have(
∂U(x, y)

∂x
x+

∂U(x, y)

∂y
y

)
R(x, y) +

∂U(x, y)

∂x
xP (x, y) +

∂U(x, y)

∂y
yQ(x, y)

=

(
3Q(x, y) + P (x, y) + (b−m)xy + 2(a− n)x2 + 4R(x, y)

)
U(x, y).

Therefore,

U(x, y) = xy(nx2 +mxy+ sy2)− xy(ax2 + bxy+ cy2) = 0 is an invariant algebraic curve

of the polynomial differential system (2.8) with the cofactor

K(x, y) = (b−m)xy + 2(a− n)x2 + 3Q(x, y) + P (x, y) + 4R(x, y).

Hence, Theorem 2.3.1 is proved.

Our second results of the existence of first integral of the system (2.8) are the following

Theorem 2.3.2. Consider a multi-parameter planar Kolmogorov system (2.8), then the

following statements hold.

1. If f3(θ) 6= 0, then system (2.8) has the first integral

H(x, y) =
exp

( ∫ arctan y
x

0
D(w)dw

)
+ (x2 + y2 − 1)

∫ arctan y
x

0
exp(−

∫ s
0
D(w)dw)C(s)ds

x2 + y2 − 1
.

where

A(θ) =
2

f3(θ)
, B(θ) =

2f1(θ)

f3(θ)
, C(θ) =

2f2(θ)

f3(θ)
, D(w) = B(w) + 2C(w).
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2.3. Invariant algebraic curves and first integral of a class of Kolmogorov systems

f1(θ) = acos4θ + ssin4θ + bcos3θsinθ +mcosθsin3θ + (n+ c)cos2θsin2θ,

f2(θ) = −1− acos4θ − ssin4θ − bcos3θsinθ −mcosθsin3θ − (n+ c)cos2θsin2θ, and

f3(θ) = (n− a)cos3θsinθ + (s− c)cosθsin3θ + (m− b)cos2θsin2θ.

Moreover the phase portrait of the differential system (2.8), in cartesian coordinates

is given by

x2 + y2 =
h+ exp

( ∫ arctan y
x

0
D(w)dw

)
−
∫ arctan y

x

0
exp(−

∫ s
0
D(w)dw)C(s)ds

h−
∫ arctan y

x

0
exp(−

∫ s
0
D(w)dw)C(s)ds

,

where h ∈ R.

2. If f3(θ) = 0 for all θ ∈ R, then system (2.8) has the first integral

H(x, y) =
y

x
.

Moreover the phase portrait of the differential system (2.8), in cartesian coordinates

is given by

y − hx = 0,

where h ∈ R.

Proof. In order to prove our results we write the polynomial differential system (2.8)

in polar coordinates (r, θ), defined by x = r cos θ and y = r sin θ, then the system (2.8)

becomes 
r′ =

dr

dt
= r + f1(θ)r3 + f2(θ)r5,

θ′ =
dθ

dt
= f3(θ)r2,

(2.9)

where the trigonometric functions f1(θ), f2(θ) and f3(θ) are given.

Proof of statement (1) of Theorem (2.3.2).

Assume that f3(θ) 6= 0, ∀θ ∈ R.
Taking as independent variable the coordinate θ, the differential system (2.9) writes

dr

dθ
=

1

f3(θ)

1

r
+
f1(θ)

f3(θ)
r +

f2(θ)

f3(θ)
r3. (2.10)

Via the change of variables ρ = r2 , this equation is transformed into Riccati equation

dρ

dθ
= A(θ) +B(θ)ρ+ C(θ)ρ2, (2.11)
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2.3. Invariant algebraic curves and first integral of a class of Kolmogorov systems

Fortunately, the equation (2.11) is integrable, since it possesses the particular solution

ρ = 1, by introducing the standard change of variables ρ = z + 1, we obtain the Bernoulli

equation
dz

dθ
= D(θ)z + C(θ)z2, (2.12)

By introducing the standard change of variables u =
1

z
we obtain the linear equation

du

dθ
= −D(θ)u− C(θ). (2.13)

The general solution of linear equation (2.13) is

u(θ) = exp

(
−
∫ θ

0

D(w)dw

)(
λ−

∫ θ

0

exp

(
−
∫ s

0

D(w)dw

)
C(s)ds

)
,

where λ ∈ R.
Then the general solution of linear equation (2.12) is

z(θ) =

exp

(∫ θ
0
D(w)dw

)
λ−

∫ θ
0

exp

(
−
∫ s

0
D(w)dw

)
C(s)ds

,

where λ ∈ R.
The general solution of linear equation (2.11) is

ρ(θ) =

λ+ exp

(∫ θ
0
D(w)dw

)
−
∫ θ

0
exp

(
−
∫ s

0
D(w)dw

)
C(s)ds

λ−
∫ θ

0
exp

(
−
∫ s

0
D(w)dw

)
C(s)ds

,

where λ ∈ R.
Then the general solution of linear equation (2.10) is

r2(θ) =

λ+ exp

(∫ θ
0
D(w)dw

)
−
∫ θ

0
exp

(
−
∫ s

0
D(w)dw

)
C(s)ds

λ−
∫ θ

0
exp

(
−
∫ s

0
D(w)dw

)
C(s)ds

,

where λ ∈ R.
By passing to cartesian coordinates, we deduce the first integral is

H(x, y) =

exp

(∫ arctan y
x

0
D(w)dw

)
+ (x2 + y2 − 1)

∫ arctan y
x

0
exp

(
−
∫ s

0
D(w)dw

)
C(s)ds

x2 + y2 − 1
,
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The curves H = h with h ∈ R, which are formed by trajectories of the differential system

(2.8), in cartesian coordinates are written as

x2 + y2 =

h+ exp

(∫ arctan y
x

0
D(w)dw

)
−
∫ arctan y

x

0
exp

(
−
∫ s

0
D(w)dw

)
C(s)ds

h−
∫ arctan y

x

0
exp

(
−
∫ s

0
D(w)dw

)
C(s)ds

,

where h ∈ R.

Hence statement (1) of Theorem 2.3.2 is proved.

Proof of statement (2) of Theorem 2.3.2.

Assume now that f3(θ) = 0 for all θ ∈ R. Then from system (2.9) it follows that θ
′

= 0.

So the straight lines through the origin of coordinates of the differential system (2.8) are

invariant by the flow of this system. Hence,
y

x
is a first integral of the system, then

curves which are formed by the trajectories of the differential system (2.8), in cartesian

coordinates are written as y − hx = 0, where h ∈ R.

This completes the proof of statement (2) of Theorem 2.3.2.
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CHAPTER 3

SOME CLASSES OF PLANAR

DIFFERENTIAL SYSTEMS

3.1 Introduction

This chapter is contained of two parts: In the first part we are interested in studying the

existence of a first integral and the curves which are formed by the trajectories of a class

of a two-dimensional planar differential system of the form:
x′ = P (x, y) + x

(
λx exp

(
M(x, y)

N(x, y)

)
+ βy exp

(
R(x, y)

S(x, y)

))
,

y′ = Q(x, y) + y

(
λx exp

(
M(x, y)

N(x, y)

)
+ βy exp

(
R(x, y)

S(x, y)

))
,

where P, Q, M, N, R and S are homogeneous polynomials of degree a, a, b, b, c, c respec-

tively, and λ, β ∈ R, the results obtained for this class was a subject of our publication

[20].

In the second part, we are interested to give an explicit expression of invariant algebraic

curves of multi-parameter polynomial differential systems planar of degree nine, then we

proved that these systems are integrable and we introduce an explicit expression of a first
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3.2. Explicit expression for a first integral for a class of two-dimensional differential systems

integral. Moreover, we determine sufficient conditions for these systems to possess two

limit cycles: one of them is algebraic and the other one is non-algebraic, we consider the

differential system 
x′ =

dx

dt
= x+ P5(x, y) + xR8(x, y),

y′ =
dy

dt
= y +Q5(x, y) + yR8(x, y),

where P5, Q5 and R8 are polynomials of variables x, y.

3.2 Explicit expression for a first integral for a class

of two-dimensional differential systems

First, we are studying the existence of a first integral of the two-dimensional differential

system of the form
x′ = P (x, y) + x

(
λx exp

(
M(x, y)

N(x, y)

)
+ βy exp

(
R(x, y)

S(x, y)

))
,

y′ = Q(x, y) + y

(
λx exp

(
M(x, y)

N(x, y)

)
+ βy exp

(
R(x, y)

S(x, y)

))
,

(3.1)

where P, Q, M, N, R and S are homogeneous polynomials of degree a, a, b, b, c and

c respectively and λ, β ∈ R. Concrete examples exhibiting the applicability of our result

are introduced.

Our main results on the existence of first integral of the system (3.1) are the following

Theorem 3.2.1. Consider a differential system (3.1), then the following statements hold.

1. If a 6= 2 then system (3.1) has the first integral

H (x, y) =
(
x2 + y2

)a−2
2 exp

(
(2− a)

∫ arctan y
x

A (ω) dω

)

− (a− 2)

∫ arctan y
x

exp

(
(2− a)

∫ w

A (ω) dω

)
B (w) dw,

where,

A (θ) =
f2 (θ)

f3 (θ)
, B (θ) =

f1 (θ)

f3 (θ)
,
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f1 (θ) = λ (cos θ) exp

(
M(cos θ, sin θ)

N(cos θ, sin θ)

)
+ β (sin θ) exp

(
R(cos θ, sin θ)

S(cos θ, sin θ)

)
,

f2 (θ) = P (cos θ, sin θ) cos θ +Q (cos θ, sin θ) sin θ and

f3 (θ) = (cos θ)Q (cos θ, sin θ)− (sin θ)P (cos θ, sin θ) ,

are trigonometric functions.

The curves which are formed by the trajectories of the differential system (3.1), in

cartesian coordinates are written as

x2 + y2 =


h exp

(
(a− 2)

∫ arctan y
x

0
A (ω) dω

)
+

(a− 2) exp
(

(a− 2)
∫ arctan y

x

0
A (ω) dω

)
∫ arctan y

x

0
exp

(
(2− a)

∫ w
0
A (ω) dω

)
B (w) dw


2

a−2

,

where h ∈ R.

2. If a = 0 then system (3.1) has the first integral

H (x, y) =
(
x2 + y2

) 1
2 exp

(
−
∫ arctan y

x

0

(A (ω) +B (ω)) dω

)
,

and the curves which are formed by the trajectories of the differential system (3.1),

in cartesian coordinates are written as(
x2 + y2

) 1
2 − h exp

(∫ arctan y
x

0

(A (ω) +B (ω)) dω

)
= 0,

where h ∈ R.

3. If f3 (θ) = 0 for all θ ∈ R, then system (3.1) has the first integral H =
y

x
, and

the curves which are formed by the trajectories of the differential system (3.1), in

cartesian coordinates are written as y − hx = 0, where h ∈ R.

Proof. In order to prove our results we write the polynomial differential system (3.1) in

polar coordinates (r, θ) , defined by x = r cos θ and y = r sin θ, then system (3.1) becomes{
r′ = f1 (θ) r2 + f2 (θ) ra,

θ′ = f3 (θ) ra−1,
(3.2)

where the trigonometric functions f1(θ), f2(θ) and f3(θ) are given in introduction.

Proof of statement (1) of Theorem 3.2.1

Assume that a6= 2.

Taking as independent variable the coordinate θ, the differential system (3.2) writes

dr

dθ
= A (θ) r +B (θ) r3−a, (3.3)
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which is a Bernoulli equation.

By introducing the standard change of variables ρ = ra−2 we obtain the linear equation

dρ

dθ
= (a− 2) (A (θ) ρ+B (θ)) . (3.4)

The general solution of linear equation (3.4) is

ρ (θ) = exp

(
(a− 2)

∫ θ

A (ω) dω

)
×(

µ+ (a− 2)

∫ θ

exp

(
(2− a)

∫ w

A (ω) dω

)
B (w) dw

)
,

where µ ∈ R, which has the first integral

H (x, y) =
(
x2 + y2

)a−2
2 exp

(
(2− a)

∫ arctan y
x

A (ω) dω

)

+ (a− 2)

∫ arctan y
x

exp

(
(2− a)

∫ w

A (ω) dω

)
B (w) dw.

Let Γ be a periodic orbit surrounding an equilibrium located in one of the open quadrants,

and let hΓ = H (Γ) .

The curves H = h with h ∈ R, which are formed by trajectories of the differential system

(3.1), in cartesian coordinates are written as

x2 + y2 =


h exp

(
(a− 2)

∫ arctan y
x A (ω) dω

)
+

(a− 2) exp
(

(a− 2)
∫ arctan y

x A (ω) dω
)

∫ arctan y
x exp

(
(2− a)

∫ w
A (ω) dω

)
B (w) dw


2

a−2

,

where h ∈ R.
Hence statement (1) of theorem 3.2.1 is proved.

Proof of statement (2) of Theorem 3.2.1

Assume that a = 2.

Taking as independent variable the coordinate θ, this differential system (3.2) writes

dr

dθ
=
(
A(θ) +B(θ

)
r. (3.5)

The general solution of equation (3.5) is

r (θ) = µ exp

(∫ θ

(A (ω) +B (ω)) dω

)
,
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where µ ∈ R, which has the first integral

H (x, y) =
(
x2 + y2

) 1
2 exp

(
−
∫ arctan y

x

(A (ω) +B (ω)) dω

)
.

The curves H = h with h ∈ R, which are formed by trajectories of the differential system

(3.1), in cartesian coordinates are written as

(
x2 + y2

) 1
2 − h exp

(∫ arctan y
x

(A (ω) +B (ω)) dω

)
= 0,

where h ∈ R.
Hence statement (2) of Theorem 3.2.1 is proved.

Proof of statement (3) of theorem 3.2.1

Assume now that f3 (θ) = 0 for all θ ∈ R, then from system (3.2) it follows that θ′ = 0.

So the straight lines through the origin of coordinates of the differential system (3.1) are

invariant by the flow of this system. Hence,
y

x
is a first integral of the system, then

curves which are formed by the trajectories of the differential system (3.1), in cartesian

coordinates are written as y − hx = 0, where h ∈ R, since all straight lines through the

origin are formed by trajectories.

This completes the proof of statement (3) of Theorem 3.2.1.

3.2.1 Examples of the system

The following examples are given to illustrate our result

Example 1

If we take λ = 1, β = −2, P (x, y) = 2x− 3y, Q(x, y) = 3x+ 2y, M (x, y) = x2 + 2y2,

N (x, y) = x2 + y2, R (x, y) = x4 + 3x2y2 + y4 and S (x, y) = x4 + 2x2y2 + y4 then system

(3.1) writes
x′ = (2x− 3y) + x

(
x exp

(
x2 + 2y2

x2 + y2

)
− 2y exp

(
x4 + 3x2y2 + y4

x4 + 2x2y2 + y4

))
,

y′ = (3x+ 2y) + y

(
x exp

(
x2 + 2y2

x2 + y2

)
− 2y exp

(
x4 + 3x2y2 + y4

x4 + 2x2y2 + y4

))
,

(3.6)
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The differential system (3.6) in polar cordinates (r, θ) becomes r′ =

(
(cos θ) exp(1 + sin2 θ)− 2(sin θ) exp

(9

8
− 1

8
cos 4θ

))
r2 + 2r,

θ′ = 3,

(3.7)

where f1(θ) = (cos θ) exp(1+sin2 θ)−2(sin θ) exp
(9

8
− 1

8
cos 4θ

)
, f2(θ) = 2 and f3(θ) = 3,

it is the case (1) of theorem (3.2.1).

The differential system (3.6) has the first integral

H (x, y) =
(
x2 + y2

)−1
2 exp

(
2

3
arctan

y

x

)
−
∫ arctan y

x

0

exp

(
2

3
ω

)
B (w) dw,

where B(w) =
(cosw) exp(1 + sin2w)− 2(sinw) exp(

9

8
− 1

8
cos 4w)

3
.

The curves H = h with h ∈ R, which are formed by trajectories of the differential system

(3.6) in cartesian coordinates are written as

x2 + y2 =

[(
h+

∫ arctan y
x

0

exp

(
2

3
ω

)
B (w) dw

)
exp

(
−2

3
arctan

y

x

)]−2

,

where h ∈ R.

Example 2

If we take λ = 1, β = −2,

P (x, y) = 5x2 + 2xy, Q(x, y) = −2xy + 5y2, M(x, y) = x2 + 2y2,

N(x, y) = x2 + y2, R(x, y) = y and S(x, y) = x, then system (3.1) writes
x′ = (5x2 + 2xy) + x

(
x exp

(
x2 + 2y2

x2 + y2

)
− 2y exp

(
y

x

))
,

y′ = (−2xy + 5y2) + y

(
x exp

(
x2 + 2y2

x2 + y2

)
− 2y exp

(
y

x

))
.

(3.8)

The differential system (3.8) in polar cordinates (r, θ) becomes r′ =

[
7 cos3 θ + 3 sin3 θ − 2(sin θ)(−1 + exp tan θ) + (cos θ)

(
− 2 + exp(1 + sin2 θ)

)]
r2,

θ′ = (3 cos θ sin2 θ − 7 cos2 θ sin θ)r,
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where

A(w)+B(w) =
7 cos3w + 3 sin3w − 2(sinw)(−1 + exp tanw) + (cosw)

(
− 2 + exp(1 + sin2w)

)
3 cosw sin2w − 7 cos2w sinw

,

it is the case (2) of Theorem 3.2.1.

The the differential system (3.8) has the first integral

H (x, y) =
(
x2 + y2

) 1
2 exp

(∫ arctan y
x

0

(
A(w) +B(w)

)
dw

)
,

where h ∈ R. The curves H = h with h ∈ R, which are formed by trajectories of the

differential system (3.8) in cartesian coordinates are written as

(x2 + y2)
1
2 − h exp

(∫ arctan y
x

0

(
A(w) +B(w)

)
dw

)
= 0,

where h ∈ R.

Example 3

If we take λ = 1, β = −2,

P (x, y) = x3 + xy2, Q(x, y) = y3 + yx2, M(x, y) = x2 + 2y2,

N(x, y) = x2 + y2, R(x, y) = x4 + 3x2y2 + y4 and S(x, y) = x4 + 2x2y2 + y4,

then system (3.1) writes
x′ = (x3 + xy2) + x

(
x exp

(
x2 + 2y2

x2 + y2

)
− 2y exp

(
x4 + 3x2y2 + y4

x4 + 2x2y2 + y4

))
,

y′ = (y3 + yx2) + y

(
x exp

(
x2 + 2y2

x2 + y2

)
− 2y exp

(
x4 + 3x2y2 + y4

x4 + 2x2y2 + y4

))
,

(3.9)

The differential system (3.9) in polar cordinates (r, θ) becomes r′ = r3 +

(
(cos θ) exp(1 + sin2 θ)− 2(sin θ) exp

(9

8
− 1

8
cos 4θ

))
r2,

θ′ = 0,

(3.10)

it is the case (3) of theorem (3.2.1), then from system (3.10) it follows that θ′ = 0. Hence,
y

x
is a first integral of the system, then curves which are formed by the trajectories of the

differential system (3.9), in cartesian coordinates are written as y−hx = 0, where h ∈ R,
since all straight lines through the origin are formed by trajectories.
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3.3 Polynomial differential systems with explicit ex-

pression for limit cycles

In the second part, we obtain by a more intuitive and understandable method a new

result for an another class of differential systems of degree 9.
x′ =

dx

dt
= x+ P5(x, y) + xR8(x, y),

y′ =
dy

dt
= y +Q5(x, y) + yR8(x, y),

(3.11)

where

P5(x, y) = − (a+ 2)x5 + (4 + 4b)x4y − (2a+ 4)x3y2 + (8 + 4b)x2y3 − (a+ 2)xy4 + 4y5,

Q5(x, y) = −4x5 − (a+ 2)x4y + (4b− 8)x3y2 − (2a+ 4)x2y3 + (4b− 4)xy4 − (a+ 2) y5,

and

R8(x, y) = (a+ 1)x8 − 4bx7y + (4a+ 4)x6y2 − 12bx5y3 + (6a+ 6)x4y4 − 12bx3y5

+ (4a+ 4)x2y6 − 4bxy7 + (a+ 1) y8,

where a, b are real constants.

First, we introduce an explicit expression of invariant algebraic curves of a multi-parameter

polynomial differential planar system of degree nine (3.11), then we proved that this sys-

tem is integrable and we introduce an explicit expression of a first integral. Moreover, we

determine sufficient conditions for these systems to possess two limit cycles: one of them

is algebraic and the other one is showen to be non-algebraic, explicitly given. Concrete

examples exhibiting the applicability of our result are introduced.

Our main results on the existence of critical points and algebraic curve are the following:

Theorem 3.3.1. Consider a multi-parameter polynomial differential planar system (3.11),

then the following statements hold.

1. The origin O (0, 0) is the unique critical point at finite distance.

2. The curve

U (x, y) = x4 + y4 + 2x2y2 − 1
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3.3. Polynomial differential systems with explicit expression for limit cycles

is an invariant algebraic curve of system (3.11) with cofactor

K (x, y) = (−4)
(
x2 + y2

)2
(

(−a− 1)
(
x2 + y2

)2
+ 4bxy

(
x2 + y2

)
+ 1
)
.

Proof. Proof of statement (1) of theorem 3.3.1

The point A (x0, y0) ∈ R2 is a critical point of system (3.11) , if{
x0 + P5 (x0, y0) + x0R8 (x0, y0) = 0,

y0 +Q5 (x0, y0) + y0R8 (x0, y0) = 0,

we have

y0P5(x0, y0)− x0Q5(x0, y0) = 4x6
0 + 4y6

0 + 12x2
0y

4
0 + 12x4

0y
2
0 = 0,

then x0 = 0, y0 = 0, is the unique solution of this equation. Thus the origin is the unique

critical point at finite distance of the system (3.11).

This completes the proof of statement (1) of theorem (3.3.1).

Proof of statement (2) of theorem 3.3.1

An computation shows that U (x, y) = x4 + y4 + 2x2y2− 1 satisfy the linear partial differ-

ential equation in definition (1.2.3) of chapter 1, the associated cofactor being

K(x, y) = (−4)
(
x2 + y2

)2
(

(−a− 1)
(
x2 + y2

)2
+ 4bxy

(
x2 + y2

)
+ 1
)
,

then the curve U(x, y) = 0 is an invariant algebraic curve of system (3.11) with cofactor

K(x, y).

This completes the proof of statement (2) of theorem3.3.1.

Our second results on the existence of first integral of the system (3.11) are the following:

Theorem 3.3.2. The system (3.11) has the first integral

H (x, y) =
(x2 + y2)

2
+
(

1− (x2 + y2)
2
)

exp
(
a arctan y

x
+ b cos

(
2 arctan y

x

))
f(arctan y

x
)(

(x2 + y2)2 − 1
)

exp
(
a arctan y

x
+ b cos

(
2 arctan y

x

)) ,

where f(arctan
y

x
) =

∫ arctan y
x

0
exp(−as− b cos 2s)ds.

Proof. In order to prove our result, we write the polynomial differential system (3.11)

in polar coordinates (r, θ) , defined by x = r cos θ and y = r sin θ, then the system (3.11)

becomes
r′ =

dr

dt
= r + (−2− a+ 2b sin 2θ) r5 + (1 + a− 2b sin 2θ) r9,

θ′ =
dθ

dt
= −4r4.

(3.12)
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3.3. Polynomial differential systems with explicit expression for limit cycles

Since θ′ is negative for all t ∈ R, the orbits
(
r(t), θ(t)

)
of system (3.12) have the opposite

orientation with respect to those
(
x(t), y(t)

)
of system (3.11). Taking θ as an independent

variable, we obtain the equation

dr

dθ
=
−1

4r3
+

(
1

4
a+

1

2
− 1

2
b sin 2θ

)
r +

(
−1

4
− a

4
+

1

2
b sin 2θ

)
r5. (3.13)

Via the change of variables ρ = r4, this equation (3.13) is transformed into the Riccati

equation
dρ

dθ
= (−a− 1 + 2b sin 2θ)ρ2 + (a+ 2− 2b sin 2θ)ρ− 1. (3.14)

This equation is integrable, since it possesses the particular solution ρ = 1. By introducing

the standard change of variables y = ρ− 1 we obtain the Bernoulli equation

dy

dθ
= (−a+ 2b sin 2θ)y + (−1− a+ 2b sin 2θ)y2. (3.15)

By introducing the standard change of variables z =
1

y
we obtain the linear equation

dz

dθ
= (a− 2b sin 2θ) z + (1 + a− 2b sin 2θ) . (3.16)

The general solution of linear equation (3.16) is

z(θ) = 1,

z(θ) =

λ+
∫ θ

0
(1 + a− 2b sin 2w) exp

(∫ w
0

(−a+ 2b sin 2s)ds

)
dw

exp

(∫ θ
0

(−a+ 2b sin 2s)ds

) ,

where λ ∈ R.

Then the general solution of equation (3.15) is

y (θ) = 1,

y (θ) =

exp(
∫ θ

0
(−a+ 2b sin 2s)ds

)
λ+

∫ θ
0

(1 + a− 2b sin 2w) exp

(∫ w
0

(−a+ 2b sin 2s)ds

)
dw

,

where λ ∈ R.
Then the general solution of equation (3.14) is

ρ(θ) = 1,

ρ(θ) =
exp

(
aθ + b cos 2θ

)(
h+ f(θ)

)
−1 + exp

(
aθ + b cos 2θ

)(
h+ f(θ)

) ,
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where h = (1 + λ) exp(−b) ∈ R.

Consequently, the general solution of (3.13) is

r(θ, h) = 1,

r(θ, h) =

(
exp

(
aθ + b cos 2θ

)(
h+ f(θ)

)
−1 + exp

(
aθ + b cos 2θ

)(
h+ f(θ)

)) 1
4

,

where h ∈ R.

From these solution we obtain a first integral in the variables (x, y) of the form

H(x, y) =

(x2 + y2)2 +

(
1− (x2 + y2)2

)
exp

(
a arctan y

x
+ b cos(2 arctan y

x
)

)
f(arctan y

x
)(

(x2 + y2)2 − 1

)
exp

(
a arctan y

x
+ b cos(2 arctan y

x
)

) .

Hence, Theorem 3.3.2 is proved.

Our third results on the existence of limit cycles of the system (3.11) are the following:

Theorem 3.3.3. Consider a multi-parameter polynomial differential planar system (3.11),

then:

1. The system (3.11) has an explicit limit cycle, given in cartesian coordinates by

(Γ1) : x4 + y4 + 2x2y2 − 1 = 0.

2. If a > 0 and b ∈ R − {0}, then system (3.11) has non-algebraic limit cycle (Γ2),

explicitly given in polar coordinates (r, θ), by the equation

r (θ, r∗) =

 exp (aθ + b cos 2θ)

(
e2πa

1− e2πa
f(2π) + f(θ)

)
−1 + exp (aθ + b cos 2θ)

(
e2πa

1− e2πa
f(2π) + f(θ)

)


1
4

,

where

f(θ) =

∫ θ

0

exp(−as− b cos 2s)ds .

Moreover, the non-algebraic limit cycle (Γ2) lies inside the algebraic limit cycle (Γ1).

Proof. Proof of statement (1) of theorem 3.3.3

The curves H = h with h ∈ R, which are formed by trajectories of the differential system
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(3.11), in cartesian coordinates are written as(
x2 + y2

)2
= 1,(

x2 + y2
)2

=

(
exp

(
a arctan y

x
+ b cos

(
2 arctan y

x

)) (
h+ f(arctan y

x
)
)

−1 + exp
(
a arctan y

x
+ b cos

(
2 arctan y

x

)) (
h+ f(arctan y

x
)
)) ,

where h ∈ R. Notice that system (3.11) has a periodic orbit if and only if equation (3.13)

has a strictly positive 2π periodic solution. This, moreover, is equivalent to the existence

of a solution of (3.13) that fulfills r (0, r∗) = r (2π, r∗) and r (θ, r∗) > 0 for any θ in [0, 2π] .

The solution r (θ, r0) of the differential equation (3.13) such that r (0, r0) = r0 is

r (θ, r0) =

 exp (aθ + b cos 2θ)

(
r4

0

(r4
0 − 1) exp (b)

+ f(θ)

)
−1 + exp (aθ + b cos 2θ)

(
r4

0

(r4
0 − 1) exp (b)

+ f(θ)

)


1
4

,

where r0 = r (0) .

We have the particular solution ρ (θ) = 1 of the differential equation (3.13) , from this so-

lution we obtain r4 (θ, 1) = 1 > 0, for all θ ∈ [0, π] is particular solution of the differential

equation (3.13).

This is an algebraic limit cycle for the differential systems (3.11), corresponding of course

to an invariant algebraic curve U (x, y) = 0.

More precisely, in cartesian coordinates r2 = x2 + y2 and θ = arctan
(y
x

)
, the curve (Γ1)

defined by this limit cycle is

(Γ1) : x4 + y4 + 2x2y2 − 1 = 0

Hence, statement (1) of theorem (3.3.3) is proved.

Proof of statement (2) of theorem 3.3.3

A periodic solution of system (3.11) must satisfy the condition r (2π, r0) = r (0, r0) , which

leads to a unique value r0 = r∗, given by

r∗ = 4

√
ebf(2π)

1− e−2πa + ebf(2π)
,

r∗ is the intersection of the periodic orbit with the OX+ axis. After the substitution of

these value r∗ into r (θ, r0) we obtain

r (θ, r∗) =

 exp (aθ + b cos 2θ)

(
e2πa

1− e2πa
f(2π) + f(θ)

)
−1 + exp (aθ + b cos 2θ)

(
e2πa

1− e2πa
f(2π) + f(θ)

)


1
4

.
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In what follows it is proved that r (θ, r∗) > 0. Indeed, we have

r (θ, r∗) =

 exp (aθ + b cos 2θ)

(
1

1− e2πa
f (2π)−

∫ 2π

θ
exp (−aw − b cos 2w) dw

)
−1 + exp (aθ + b cos 2θ)

(
1

1− e2πa
f (2π)−

∫ 2π

θ
exp (−aw − b cos 2w) dw

)


1
4

,

According to a > 0 and b ∈ R− {0}, hence

1

1− e2πa
< 0, f (2π) > 0,

∫ 2π

θ

exp (−aw − b cos 2w) dw ≥ 0, ∀ [0, π] ,

then we have

r (θ, r∗) > 0, ∀θ ∈ [0, π] .

This is a limit cycle for the differential system (3.11) . It is not algebraic, due to the

expression

exp
(
a arctan

y

x
+ b cos

(
2 arctan

y

x

))
More precisely, in cartesian coordinates r2 = x2 + y2 and θ = arctan

(y
x

)
, the curve (Γ2)

defined by this limit cycle is (Γ2) : F (x, y) = 0 where

F (x, y) = (x2+y2)2−
exp

(
a arctan

y

x
+ b cos(2 arctan

y

x
)

)(
r4
∗

(r4
∗ − 1) exp b

+ f(arctan
y

x
)

)

−1 + exp

(
a arctan

y

x
+ b cos(2 arctan

y

x
)

)(
r4
∗

(r4
∗ − 1) exp b

+ f(arctan
y

x
)

) .

If the limit cycle is algebraic this curve must be given by a polynomial, but a polynomial

F in the variables x and y satisfies that there is a positive integer n such that

∂(n)F (x, y)

(∂x)n
= 0,

and this is not the case, therefore the curve

(Γ2) : F (x, y) = 0

is non-algebraic and the limit cycle will also be non-algebraic.

According to a > 0 and b ∈ R− {0}, hence

1

1− e2πa
< 0, f (2π) > 0,

∫ 2π

θ

exp (−aw − b cos 2w) dw ≥ 0, ∀ [0, π] ,
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we get

exp (aθ + b cos 2θ)

(
1

1− e2πa
f (2π)−

∫ 2π

θ

exp (−aw − b cos 2w) dw

)
< 0, ∀ [0, π] ,

then we have r (θ, r∗) < 1, ∀θ ∈ [0, π] . We conclude that system (3.11) has two limit

cycles, the non-algebraic (Γ2) lies inside the algebraic one (Γ1).

This completes the proof of theorem (3.3.3).

3.3.1 Examples of the system

The following examples are given to illustrate our result.

Example 1

If we take a = 3 and b = 1, then system (3.11) writes
x′ = x− 5x5 + 8x4y − 10x3y2 + 12x2y3 − 5xy4 + 4y5 + 4x9 − 4x8y+

16x7y2 − 12x6y3 + 24x5y4 − 12x4y5 + 16x3y6 − 4x2y7 + 4xy8,

y′ = y − 4x5 − 5x4y − 4x3y2 − 10x2y3 − 5y5 + 4x8y − 4x7y2 + 16x6y3−
12x5y4 + 24x4y5 − 12x3y6 + 16x2y7 − 4xy8 + 4y9.

(3.17)

The system (3.17) has the first integral

H (x, y) =
(x2 + y2)

2
+
(

1− (x2 + y2)
2
)

exp
(
3 arctan y

x
+ cos

(
2 arctan y

x

))
f(arctan y

x
)(

(x2 + y2)2 − 1
)

exp
(
3 arctan y

x
+ cos

(
2 arctan y

x

)) ,

where

f
(

arctan
y

x

)
=

∫ arctan y
x

0

exp(−3s− cos 2s)ds.

The system (3.17) has an algebraic limit cycle (Γ1) whose expression is

(Γ1) : x4 + y4 + 2x2y2 − 1 = 0.

This system (3.17) has a non-algebraic limit cycle (Γ2) whose expression in polar coordi-

nates (r, θ) is

r (θ, r∗) =

 exp (3θ + cos 2θ)

(
e6π

1− e6π
f(2π) + f(θ)

)
−1 + exp (3θ + cos 2θ)

(
e6π

1− e6π
f(2π) + f(θ)

)


1
4

,
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3.3. Polynomial differential systems with explicit expression for limit cycles

where θ ∈ R, with

f (θ) =

∫ θ

0

exp(−3s− cos 2s)ds,

and the intersection of the limit cycle with the OX+ axis is the point having r∗

r∗ = 4

√√√√ e
∫ 2π

0
exp(−3s− cos 2s)ds

1− e−6π + e
∫ 2π

0
exp(−3s− cos 2s)ds

= 0.764 60

We conclude that system (3.17) has two limit cycles. Since r∗ = 0.764 60 < 1, the non-

algebraic lies inside the algebraic one.

Figure 3.1: Phase plane of example 1

Example 2

If we take a = 5 and b = −2, then system (3.11) writes
x′ = x− 7x5 − 4x4y − 14x3y2 − 7xy4 + 4y5 + 6x9 + 8x8y + 24x7y2 + 24x6y3+

36x5y4 + 24x4y5 + 24x3y6 + 8x2y7 + 6xy8,

y′ = y − 4x5 − 7x4y − 16x3y2 − 14x2y3 − 12xy4 − 7y5 + 6x8y + 8x7y2+

24x6y3 + 24x5y4 + 36x4y5 + 24x3y6 + 24x2y7 + 8xy8 + 6y9,

(3.18)

The system (3.18) has the first integral

H (x, y) =
(x2 + y2)

2
+
(

1− (x2 + y2)
2
)

exp
(
5 arctan y

x
− 2 cos

(
2 arctan y

x

))
f(arctan y

x
)(

(x2 + y2)2 − 1
)

exp
(
5 arctan y

x
− 2 cos

(
2 arctan y

x

)) ,
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where

f
(

arctan
y

x

)
=

∫ arctan y
x

0

exp(−5s+ 2 cos 2s)ds.

The system (3.18) has an algebraic limit cycle (Γ1) whose expression is

(Γ1) : x4 + y4 + 2x2y2 − 1 = 0.

This system (3.18) has a non-algebraic limit cycle (Γ2) whose expression in polar coordi-

nates (r, θ) is

r (θ, r∗) =

 exp (5θ − 2 cos 2θ)

(
e10π

1− e10π
f(2π) + f(θ)

)
−1 + exp (5θ − 2 cos 2θ)

(
e10π

1− e10π
f(2π) + f(θ)

)


1
4

,

where θ ∈ R, with

f (θ) =

∫ θ

0

exp(−5s+ 2 cos 2s)ds,

and the intersection of the limit cycle with the OX+ axis is the point having r∗

r∗ = 4

√√√√ e−2
∫ 2π

0
exp(−5s+ 2 cos 2s)ds

1− e−10π + e−2
∫ 2π

0
exp(−s+ 2 cos 2s)ds

= 0.584 60

We conclude that system (3.18) has two limit cycles. Since r∗ = 0.584 60 < 1, the non-

algebraic limit cycle lies inside the algebraic limit cycle.

Figure 3.2: Phase plane of example 2
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CONCLUSION

In this thesis we are interested in the qualitative study of the planar differential polynomial

systems as well as that of the planar differential systems of the Kolmogorov type. It is

important for a differential system to know if it admits or not a first integral, a periodic

solution, moreover if this periodic solution is isolated, one speaks by definition of a limit

cycle. On the other hand, the calculation of the first integral of a planar differential

system completely determines the phase portrait of the system. For models resulting from

practice, it is important to study these questions: first integral, periodic solution, limit

cycle, phase portrait. The results obtained in this thesis revolve around these questions.

In the first chapter we presented some basic notions, concerning the qualitative theory of

differential systems, in particular planar differential systems.

In the second chapter we have dealt with classes of planar differential systems of the

Kolmogorov type. This chapter is divided into two parts, in the first part we have

determined the exact expression of the first integral and the formula of the curves which

are formed by the orbits of a class of planar differential systems. In the second part we

have determined the exact expression of the first integral and the formula of the curves

which are formed by the orbits of a class of planar differential systems of Kolmogorov

type we used the Riccati equation.

In the third chapter we have treated a class of planar differential systems. This chapter

is divided into two parts, in the first part we have determined the exact expression of the

first integral and we have demonstrated the non-existence of limit cycles for a class of

planar differential systems. In the second part of this chapter, we have determined the
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exact expression of the first integral and the formula of the curves which are formed by

the orbits of a class of planar polynomial differential systems. Then we determined the

conditions so that these differential systems have two cycles limiting an algebraic cycle

and not algebraic given explicitly. To our knowledge, it is rare to find, in the literature of

differential systems, a differential system with a non-algebraic limit cycle given explicitly.

For the perspectives, given the techniques that we have used to find a class of systems with

a non-algebraic limit cycle, it is possible to hope to find a class of quadratic differential

systems which admit a non-algebraic limit cycle and given it explicitly. Note that this

issue is an open issue so far.

On the other hand, we have studied classes of Kolmogorov systems from the point of view

of integrability and non-existence of limit cycles. There remains the problem of existence

of limit cycle given explicitly for a class of system of Kolmogorov type. To our knowledge

there is not an example of a Kolmogorov system with a non-algebraic limit cycle given

explicitly.

Our investment in the future is in this direction and this thesis serves as a powerful tool

in the search for the first integral and the existence of limit cycle.

68



BIBLIOGRAPHY

[1] Al-Dosary. Khalil, Non-algebraic limit cycles for parameterized planar polynomial sys-

tems, Int. Journal of Mathematics, vol. 18, No. 02. 179-189, 2007.

[2] Yu. A. Alkhutov, Dynamical systems and linear algebra, J. Math. Sci., vol.3, 142,

2021-2032, 2007.

[3] A. Andronov, E. A. Leontovich, I. Gordon and A. L. Maier, Qualitative theory of

second-order dynamical systems, Wiley, New York, 1973.

[4] B. Aminu, A. H. Fati, and M. A. Bala, On the existence of limit cycle of quadratic

systems, ATBU, Journal of Science, Technology Education (JOSTE), vol. 3, 2015.

[5] A. Bendjeddou, A. Berbache and R. Cheurfa, Exact algebraic and non-algebraic limit

cycles for a class of integrable quintic and planar polynomial differential systems, An.

Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tomul LXIV, vol. 2, 253-2579, 2018.

[6] A. Bendjeddou and R. Boukoucha, Explicit limit cycles of a cubic polynomial differ-

ential systems, Stud. Univ. Babes-Bolyai Math, vol. 1, 61, 77-85, 2016.

[7] A. Bendjeddou and R. Cheurfa, Coexistence of algebraic and non-algebraic limit cycles

for quintic polynomial differential systems, Elect. J. of Diff. Equ, no. 71, 1-7, 2017.

[8] A. Bendjeddou and R. Cheurfa, On the exact limit cycle for some class of planar

differential systems, Nonlinear differ. equ.appl, vol. 14, 491-498, 2007.

69



BIBLIOGRAPHY

[9] A. Bendjeddou, J. Llibre and T. Salhi, Dynamics of the differential systems with

homogenous nonlinearity and a star node, J. Differential Equations, vol. 254, 3530-

3537, 2013.

[10] R. Benterki and J. Llibre, Polynomial differential systems with explicit non-algebraic

limit cycles, Elect. J. of Diff.Equ , no. 78, 1-6, 2012.

[11] R. Boukoucha, Explicit expression for a first integral for some classes of two-

dimensional differential systems, Siberian Electronic Mathematical Reports, 903-913,

2017.

[12] R. Boukoucha, Explicit form of first integral and limit cycles for a class of planar

Kolmogorov systems, Proceedings of the YSU A: Physical and Mathematical Sciences,

vol. 55, no. 1 (254) (2021), pp. 1-11.

[13] R. Boukoucha, Explicit expression for a hyperbolic limit cycles of a class of poly-

nomial differential systems, Trudy Inst.Mat. iMekh. UrO RAN, vol. 23, vo 3. 2017,

300-307.

[14] R. Boukoucha, Explicit limit cycles of a family of polynomial differential systems,

Elect. J. of Diff. Equ,vol.2, no.217, 2017, 1-7.

[15] R. Boukoucha, Integrability and invariant algebraic curves for a class of Kolmogorov

systems, Trudy Inst. Mat.iMekh. UrO RAN, vol. 23, no 2, 2017, 311-318.

[16] R. Boukoucha, Limit cycles explicitly given for a class of a differential systems,

Nonlinear studies, vol. 28, no. 2, pp. 375-387, 2021.

[17] R. Boukoucha, On the dynamics of a class of Kolmogorov systems, Journal of

Siberian Federal University. Mathematics and Physics, vol. 9, no. 1, 2016, 11-16.

[18] R. Boukoucha, On the non-existence of limit cycles for a class of Kolmogorov sys-

tems, Eng. Math. Lett., vol. no. 1. 2017.

[19] R. Boukoucha and A. Bendjeddou, On the dynamics of a class of rational Kolmogorov

systems, J. Nonlinear Math. Phys., vol. 23, 2016, 21-27.

[20] R. Boukoucha and M. Yahiaoui, Explicit expression for a first integral for a class

of two-dimensional differential system, General Letters in Mathematics, vol. 6, No. 1,

10-15, 2019.

[21] R. Boukoucha and M. Yahiaoui, On the class of two dimensional Kolmogorov sys-

tems, Eng. Math. Lett. vol. 4, 2019.

70



BIBLIOGRAPHY

[22] F. H. Busse, Transition to turbulence via the statistical limit cycle route, Synergetics,

Springer-Verlag, berlin, 39, 1978.

[23] L. Cairo and J. Llibre, Phase portraits of cubic polynomial vector fields of

Lotka–Volterra type having a rational first integral of degree 2, J. Phys, A 40, 6329–6348,

2007.

[24] M. Carbonell, B. Coll and J. Llibre, Limit cycles of polynomial systems with homo-

geneous nonlinearities, J. of Math. Anal. and Appl, vol. 142, 573–590, 1989.

[25] J. Chavarriga and M. Crau, A family of non Darboux integrable quadratic polynomial

differential systems with algebraic solution of arbitrarily high degree, Appl. Math. Lett,

vol. 16, 833-837, 2003.

[26] J. Chavarriga and I A. Garcia, Existence of limit cycles for real quadratic differential

systems with an invariant cubic, Pac. J. Math. vol. 223, no 2, 201-218, 2006.

[27] J. Chavarriga, I A. Garcia and J. Sorolla, Resolution of the Poincaré problem and
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[39] I. A. Garćıa and M. Grau, A survey on the inverse integrating factor, Qual. Theory

Dyn. Syst., 115–166, 2010.
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 في  دودالح اتريطروحة هي الدراسة النوعية لبعض الفئات من النظم التفاضلية كثالأالهدف من هذه   الملخص

  ولالحلستوي و وجود الم فيلول الح وسلوكيات هذه الدراسة متعلقة بتصرفات فيتحصل عليها المستوي. النتائج الم

     تيةيغة الرياضياى ذلك تمكنا من تحديد الص، بالاضافة التفاضلية الدورات النهائية لبعض النظم الالدورية بصفة خاصة 

  يةرجبلار يغالو أية رجبلا نهائيةالودورات  الأولية تكاملاتاللكل 

  يربجريغ ل، ح يربج حل صامد ، حل دوري ، منحىتفاضلي ، نظام كلمات مفتاحية : 

………………………………………………………………………………………………. 

Abstract The objective of this thesis is the qualitative study of some classes of planar 

polynomial differential systems. The results obtained in this study concerns the integrability, 

the phase portraits and the existence of limit cycles of some classes of differential systems. In 

addition, we give an explicitly expression of the first integrals and limits cycles algebraic or 

non-algebraic found for all the classes studied.  

Keywords: Differential system, invariant curve, periodic solution, algebraic limit cycle, non-

algebraic limits cycle.  

…………………………………………………………………………………………. 

Résumé L’objectif de cette thèse est l'étude qualitative de quelques classes des systèmes 

différentiels planaires polynômiaux. Les résultats obtenus dans cette étude concernent 

l'intégrabilité, les portraits de phase et l'existence des cycles limites de quelques classes des 

systèmes différentielles. De plus on détermine explicitement l’expression des intégrales 

premières et des cycles limites algébriques ou non algébriques trouvés pour toutes les classes 

étudiées.  

Mots clés: Système différentiel, courbe invariante, solution périodique, cycle limite 

algébrique, cycle limite non algébrique. 
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