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Chapter 1
Introduction

Contents

1.1 Wireless sensor networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Wireless sensor and actuator networks . . . . . . . . . . . . . . . . . . . 2

1.3 Time synchronization in WSANs . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Publications arising from this thesis . . . . . . . . . . . . . . . . . . . . 5

1.7 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

This chapter is a general introduction to this thesis. It gives an overview of the work

presented in this manuscript and summarizes the different contributions.

1.1 Wireless sensor networks

A Wireless Sensor Network (WSN) is a set of inexpensive and autonomous sensor nodes

equipped with wireless transmission interfaces. Usually, these sensor nodes are de-

ployed in hundreds or thousands to cover a given territory and take measurements on

their environment. These measurements are then transmitted to a base station for pro-

cessing (see figure 1.1). To route the collected information to the base station, and since

this station is often far from the sensors’ transmission range, the sensors self-organize to

form a multi-hop wireless network. Today WSNs are used in a variety of fields such as

environmental monitoring [1], precision agriculture [2, 3], smart cities [4], and military

applications [5, 6]. However, WSNs have several constraints. Indeed, the decentral-

ized nature of these networks requires the use of distributed algorithms which are more
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1.2. Wireless sensor and actuator networks

complicated to develop than centralized ones. Also, the resources such as computing

power, memory, and energy, must be used optimally. Currently, power consumption is

the most important factor to consider in any WSNs application to maximize network

lifetime and avoid crashes.

Figure 1.1: Wireless sensor network.

1.2 Wireless sensor and actuator networks

A wireless sensor and actuator network (WSAN) is a WSN with several actuators that

can act on their environment. Unlike sensors, the actuators are rich in resources, in-

deed, they have more energy capacity and transmission range [82]. However, it should

be noted that, due to their relatively high cost, there are typically much fewer actuators

than sensors in the WSANs.

In WSANs applications, the sensors detect events in their environment and inform

the actuators (see figure 1.2). These latter cooperate and take appropriate actions de-

pending on the nature of the events. The WSANs are useful for monitoring environ-

ments exposed to critical conditions. For example, in forest monitoring applications [7,

8], when a fire starts, the sensors can detect the location of this fire and immediately

inform the nearest actuators. These will then extinguish the fire before it spreads. Also,

in the water distribution systems monitoring [9], sensors can detect water contamination

and alert the actuators. Then, the actuators will react quickly to isolate the contaminated

area and prevent its spread. Another application of WSANs is border surveillance and

2



1.2. Wireless sensor and actuator networks

Figure 1.2: Wireless sensor and actuator network.

intruder detection. Indeed, the actuators can coordinate their actions to neutralize po-

tential intruders detected by the sensors.

In any WSANs application, in addition to the WSN-related constraints, such as the

limited resources of the sensors, and the multi-hop communication, some additional

characteristics have to be considered. These characteristics include the following :

• Nodes heterogeneity : In WSANs, actuators have much more energy than sensors.

This is an advantage since WSANs applications can put more load on the actua-

tors and avoid using the sensors, which can increase the lifetime of the network.

Another point is the transmission range of the actuators. Indeed, actuators are

equipped with more expensive transmission antennas, which have a greater trans-

mission range than sensor antennas. Obviously, this creates asymmetrical links

between sensors and actuators. Unfortunately, most of the WSNs protocols do not

support this characteristic and are no longer usable in WSANs. However, new

protocols can take advantage of the actuators’ transmission range to improve net-

work performance. This is the case of our time synchronization protocol, called

SanSync [9], which will be presented in chapter 4.

• Communication delay constraints (Network latency): An important characteristic of

WSANs applications is that they require a fast response to events. For example,

the actuators must coordinate their actions and respond immediately to extinguish

3



1.3. Time synchronization in WSANs

a fire or prevent contamination. For this reason, the WSANs must guarantee a very

short communication delay between nodes.

1.3 Time synchronization in WSANs

As seen previously, the actuators in WSANs applications need to cooperate and respond

quickly to events. To coordinate their operations, the actuators require a common time

reference used by all the nodes in the network (sensors and actuators). Indeed, the time

reference is necessary to know exactly when an event has been detected by the sensors,

and also to plan the actuators’ actions. In this context, the purpose of time synchro-

nization in WSANs is to provide an accurate common time reference to the network

nodes while taking into account their specificities, particularly the limited resources of

the sensors.

1.4 Thesis motivation

Accurate time synchronization of clocks is crucial for various WSNA protocols and

applications. However, synchronizing the clocks is problematic due to the delays in de-

livering the synchronization messages, which are often non-deterministic. Currently, to

our knowledge, most of the time synchronization protocols used to synchronize WSANs

clocks are those developed for WSNs. Unfortunately, these protocols consider the actu-

ators as simple sensors and do not take into account their additional resources. These

additional resources can be counterproductive. For example, the difference in power

between sensor and actuator antennas can generate asymmetric links between nodes,

which hinders the proper functioning of WSNs protocols. However, it may be inter-

esting to take advantage of the additional resources of the actuators to improve time

synchronization accuracy. Our goal is to develop new time synchronization protocols

specifically for WSANs. These protocols must exploit the available resources of the ac-

tuators, especially their extended transmission range, to increase time synchronization

accuracy. This can indirectly improve the performance of WSANs applications that use

the clocks.

1.5 Contributions

The scientific contributions of this thesis can be summarized as follows :

4



1.6. Publications arising from this thesis

1. We developed a new time synchronization protocol for WSANs, namely Sensor

and Actuator Networks Synchronization Protocol (SANSync), which organizes the

network into clusters to fully exploit the transmission capacity of the actuators,

and minimize synchronization errors. Indeed, inside the clusters, synchronization

errors caused by the non-deterministic delays including the send time, the receive

time, and the access time are eliminated, which is very advantageous compared to

exiting protocols.

2. We developed another time synchronization protocol, namely Optimized Sensor

and Actuator Networks Synchronization Protocol (OSANSync), which combines

the strong points of SANSync and FCSA protocols. Indeed, OSANSync applies

both an intra-cluster synchronization mechanism used by SANSync to synchro-

nize the nodes inside the clusters, and a clock speed agreement mechanism used

by FCSA to synchronize the nodes outside the clusters. This combination consid-

erably improved time synchronization accuracy compared to SANSync and FCSA.

3. We proposed a heuristic method to select the best ROOT nodes for time synchro-

nization in WSNs and WSANs. The ROOT node is the one that synchronizes all

other nodes in the network. The proposed method is fully distributed and can

be easily integrated with existing time synchronization protocols to improve their

performance.

1.6 Publications arising from this thesis

The contributions of this thesis have resulted in the following publications :

1. Nadhir Boukhechem , Nadjib Badache. SANSync: An Accurate Time Synchronization

Protocol for Wireless Sensor and Actuator Networks. Published in Wireless Personal

Communications Journal, volume 105, pages951?972. (2019).

2. Nadhir Boukhechem , Nadjib Badache. An optimized time synchronization protocol

for WSANs. Accepted in the 5th International Conference on Networking and

Advanced Systems (ICNAS 2021).

3. Nadhir Boukhechem , Nadjib Badache. A Fully Distributed Heuristic method to select

the ROOT node in WSNs. Submitted to the International Conference on Information

Processing in Sensor Networks (IPSN 2022).
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1.7. Thesis outline

1.7 Thesis outline

The remainder of this thesis is organized as follows. chapter 2 introduce the theoretical

concepts used in the manuscript. In chapter 3, we study the main time synchronization

protocols developed for WSNs and WSANs. chapters 4 and 5 describe, respectively, the

SANSync and OSANSync protocols and present the simulation results. In chapter 6, we

propose a ROOT selection method, which has been tested in both WSNs and WSANs

according to different parameters. Finally, we close up this thesis with a conclusion that

summarizes the main contributions of our work and highlights some research perspec-

tives and potential extensions for future work.
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Chapter 2
Time synchronization in WSNs and

WSANs

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Time and clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Coordinated universal time . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Physical clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Logical clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.4 Events ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.5 Physical clock and logical clock in WSNs and WSANs . . . . . . 9

2.3 Importance of time synchronization in computer networks . . . . . . . 10

2.4 Importance of time synchronization in WSNs and WSANs . . . . . . . 11

2.5 Difficulties of time synchronization in WSNs and WSANs . . . . . . . 12

2.6 Time synchronization mechanisms in WSNs and WSANs . . . . . . . 13

2.6.1 Sender-receiver synchronization mechanism . . . . . . . . . . . . 13

2.6.2 Receiver-receiver synchronization mechanism . . . . . . . . . . . 15

2.6.3 Sender synchronization mechanism . . . . . . . . . . . . . . . . . 15

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Introduction

In this chapter, we first present the theoretical concepts used overall in the thesis.

Then, we explain the importance and difficulties of time synchronization in WSNs and
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2.2. Time and clock

WSANs. Finally, we detail three fundamental mechanisms used to synchronize the

clocks in these networks.

2.2 Time and clock

2.2.1 Coordinated universal time

The coordinated universal time (UTC), also known as real time, is a very accurate time

reference by which the world synchronizes clocks. In fact, the UTC is based on high-

precision atomic clocks, which are the most precise and expensive clocks in the world.

In the rest of this thesis, the UTC is called universal time, and we define a perfect clock

as a clock that are synchronized with the UTC.

2.2.2 Physical clock

The physical clock, also known as hardware clock consists of an electronic oscillator (usually

based on quartz crystal) and a register. The oscillator periodically generates electrical

pulses which are counted in the register. In fact, each oscillator pulse corresponds to a

predetermined time interval, and the time (hours, minutes, and seconds), shown by the

clock, is calculated based on the register value.

The accuracy of a physical clock depends mainly on the stability of its oscillator. This

stability is measured by calculating the ratio between its real and nominal frequency. For

example, if the nominal frequency of the oscillator is 1 MHz while its real frequency is

1.0001 MHz, then it has a drift of 100 ppm (parts per million). The frequency of the

oscillator depends on the form and the size of its quartz crystal which is very sensitive

to climatic variations.

2.2.3 Logical clock

Generally, the physical clock rate and value cannot be modified by software. Therefore,

the physical clock cannot be synchronized with the reference clock. A solution to this

problem is to use a logical clock to determine the current time. This latter is calculated

as a function of the physical clock value. Unlike the physical clock, the logical clock can

be synchronized with a reference clock by changing its parameters. We take note that

synchronized means that both clocks indicate the same time at any moment.

8
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There are two options for synchronizing the logical clocks in a network :

1. External synchronization : it consists of synchronizing all network clocks with a

reference clock outside the network, usually with the coordinated universal time.

This approach is widely used in the literature.

2. Internal synchronization : it consists of synchronizing all network clocks with a

reference clock inside the network. The clocks in this approach can also be syn-

chronized with each other, by consensus, without using any reference clock.

2.2.4 Events ordering

In distributed systems, we also refer to a logical clock, which differs from the one seen

above. This logical clock does not indicate the time but allows the global ordering of

events. Indeed, it is often not necessary to know when an event has occurred, but only

to determine the order of events. Among the most well-known algorithms for events-

ordering are the Lamport clock [84] and Vector clock [85].

2.2.5 Physical clock and logical clock in WSNs and WSANs

The sensors and actuators in WSANs are usually equipped with inexpensive clocks.

However, the accuracy of these clocks varies by manufacturer. Typically, the sensor and

actuator clocks exhibit a drift between 30 and 100 ppm [19]. In WSANs, the physical

clock of a node i at universal time t , denoted Hi(t), is generally defined as follows:

Hi(t) =
∫ t

t0

hi(τ) dτ (2.1)

Where t0 is time when the physical clock of node i started. hi represent the rate

(speed) of the physical clock. The clock drift is assumed to be bounded [19 ,17]. So, for

each time t, we have:

1− ε ≤ hi(t) ≤ 1 + ε , (0 < ε≪ 1) (2.2)

Each node i in the WSANs, besides its physical clock Hi(), maintains a logical clock

denoted Li(). This latter is calculated each time a node i read its logical clock. The

logical clock of a node i at universal time t is defined as follows:

Li(t) =
∫ t

t0

li(τ) hi(τ) dτ + θi(t0) (2.3)

9



2.3. Importance of time synchronization in computer networks

Where θi(t0) represents the logical clock offset of node i, at universal time t0, with

respect to the reference clock. li is called rate multiplier. Modifying the value of li allow

to accelerate or reduce the speed of the logical clock.

The offset of a clock Li() with respect to another clock Lj() at universal time t is

defined as follows: Li(t)− Lj(t). Also, the offset of a clock Li() with respect to a perfect

clock, at universal time t, is defined as follows: Li(t)− t. This last offset is illustrated in

figure 2.1. It should be noted that in the remainder of this thesis, the term "clock" refers

to the logic clock.

Figure 2.1: Clock offset illustration

2.3 Importance of time synchronization in computer networks

Time synchronization plays an important role in networks and distributed systems. In-

deed, many critical services use different timestamps to ensure their operation. Here

are some examples :

• Log files and monitoring : A log file records chronologically the events that have oc-

curred. For example, they record the date and time of connections, system errors,

machine and router failures, and user actions. This information can be used to

understand the source of errors and correct them. It is also used by administrators

to provide statistics and monitor networks. However, to exploit the information

10
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contained in the log files, accurate timestamps are required.

• Accurate Transaction : Time synchronization is crucial in networks to perform si-

multaneous commercial transactions. Indeed, when systems are geographically

distant, an accurate time reference is needed to execute the request in a correct

sequence.

• Schedule operations : Sometimes the system administration requires the schedul-

ing of certain tasks that need to be performed at specific times, for example, data

backup and recovery. In this case, time synchronization between machines be-

comes crucial to ensure that the scheduled tasks are properly coordinated.

• Access Security and Authentication : Currently, the authentication protocols use do-

main time in their authentication processes. The timestamps used in a session

between two machines are considered valid only if the time difference between

them is less than the maximum time difference specified in the protocol policy.

2.4 Importance of time synchronization in WSNs and WSANs

Various WSNs and WSANs applications and protocols require the presence of an accu-

rate time reference to function correctly. Below are some examples :

• Node localization: Many localization protocols use the transmission delay of a radio

signal, and its propagation speed, to calculate the distance between nodes in the

WSANs, then they use it to determine the position of each node. However, the

accuracy of the time reference used by these localization protocols has a direct

influence on their performance [14], it also affects related applications such as

detection and tracking systems.

• Data aggregation : In WSANs, data aggregation consists of grouping sensors data

into the same packets. The purpose of this is to minimize the number of packets

transmitted by the sensors and thus minimize energy consumption. For example,

we can merge humidity and temperature data that were collected in the same place

at the same time, to avoids data redundancy. In this case, an accurate common time

reference is necessary to determine the temporally-related data.

• Sleep scheduling : A scheme for energy conservation in WSANs is to periodically

disable network nodes. To do this, all nodes in the WSANs must switch on and

11
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off at specific times based on a common time reference. This scheme is suitable

for applications that do not require continuous environmental monitoring such as

precision farming.

• Transmission channel access: A method of accessing the transmission channel in

wireless networks is TDMA (Time-division multiple access). This method allows

multiple traffic streams on a single frequency band. Indeed, TDMA distributes

the available time between the different nodes, each one receives a fraction of the

time. However, TDMA requires an accurate time reference to avoid collisions and

ensure equitable exploitation of the transmission channel.

2.5 Difficulties of time synchronization in WSNs and WSANs

The physical clocks of the sensors and actuators use crystal oscillators to generate the

clock’s signals. The frequency of these oscillators determines the clock’s speed. We note

that this frequency is not stable due to manufacturing imperfections, and environmental

changes, such as temperature, pressure, battery voltage, etc [11, 12, 13]. Therefore, the

physical clocks of the sensors and actuators do not run at the same speed, and need to

be periodically re-synchronized.

To explain the difficulties of time synchronization in WSNs and WSANs, we consider

two nodes A and B and assume that node A has to synchronize the clock of node B. To

do this node A send a message containing its clock value to node B, this one will then

synchronize its clock according to the received value. However, the main problem that

arises here is that before node B receives the clock value of node A, this one changes

because of the delay between sending the message by node A and receiving it by node

B (figure 1.1). This delay has been studied in [15, 16, 17,18], and it is decomposed as

follows :

• Send time : it is the time the operating system takes to prepare and send the mes-

sage. The send time is non-deterministic.

• Access time : it is the time the node A takes to access the transmission channel,

it depends on the availability of the channel which is shared between multiple

nodes. The access time is non-deterministic.
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• Transmission/Reception time : the transmission time is the time needed for transmit-

ting the message by the antenna of node A. On the other side, the reception time

is the time needed for receiving the message by the antenna of node B. Unlike the

previous delays, the transmission/reception time is deterministic and depends on

the message size and data rate.

• Propagation time : it is the time the message takes to travel from node A to node B.

The propagation time is deterministic and depends on the distance between the

two nodes.

• Receive time : it is the time needed for receiving the message by node B. This delay

is similar to the send time.

Figure 2.2: Transmission delays between two nodes

Another characteristic of WSANs, which complicates more the time synchroniza-

tion, is the multi-hop communication between the nodes. Indeed, the synchronization

message between node A and node B may eventually pass through intermediate nodes.

This generates additional delays that must be taken into account.

2.6 Time synchronization mechanisms in WSNs and WSANs

The time synchronization protocols in WSNs and WSANs use three basic mechanisms

to synchronize the clocks, including the sender-receiver, the receiver-receiver, and the

sender synchronization mechanism [17, 20, 24]. These mechanisms are explained below.

2.6.1 Sender-receiver synchronization mechanism

The sender-receiver synchronization mechanism uses a bi-directional exchange of time

information between nodes to synchronize their clocks. A well-known example of

sender-receiver protocols is the Timing-sync Protocol for Sensor Networks (TPSN) [34].
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To synchronize the nodes’ clocks, TPSN constructs a spanning tree from a given reference

node. At the start, the reference node synchronizes the clocks of its son nodes. Then, the

synchronized nodes, in turn, synchronize the clocks of their son nodes in the tree. This

process continues until all the node clocks in the network are synchronized. TPSN use

a pairwise synchronization scheme (figure 2.2). Indeed, if a node A has to synchronize

the clock of a son node, say B, it first sends to node B a start message to initiate the

synchronization process. After that, node B sends to node A a synchronization message

containing its clock value T1. Node A receives the message at time T2. Then, node A

sends a response message to node B containing values T1, T2, and T3, where T3 is the

clock value of node A when it sends the response message. At last, node B receives the

response message at time T4 and calculates its clock offset as follows:

Clock_o f f set = [(T2− T1)− (T4− T3)]/2

Where :

T2 = T1 + Propagation_Time + Clock_O f f set

T4 = T3 + Propagation_Time− Clock_O f f set

Figure 2.3: Pairwise synchronization

We note that the pairwise synchronization supposes that bidirectional message ex-

change between two nodes is temporally symmetric.

Since the velocity of the electromagnetic wave is very high, the propagation time of

the messages between nodes A and B is negligible and does not have a great influence

on time synchronization accuracy. Contrary to the send time, the receive time, and the

access time, which must be considered.
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2.6.2 Receiver-receiver synchronization mechanism

The receiver-receiver synchronization mechanism takes advantage of the broadcast na-

ture of the wireless medium to synchronize the clocks of a set of receiver nodes simul-

taneously (see Figure 2.3). A well-known example of receiver-receiver protocols is the

Reference Broadcast Time Synchronization (RBS) [36]. The latter allows synchronizing

the clocks of several receiver nodes that are in the transmission range of a sender node.

We note that the sender node clock is not synchronized. To do this, the sender node

in RBS first broadcasts a beacon to the receiver’s nodes. The reception time of the bea-

con is considered as a reference by the receiver nodes. Then, each receiver records the

reception time of the beacon and sends it to the other receivers. At last, each receiver

estimates its clock offset with respect to other receiver node clock values. RBS assumes

that the antennas of the receiver nodes receive the beacon at the same time. In this way,

the time synchronization errors due to the send time and the access time delays are

eliminated. Indeed, the only remaining source of error is the receive time. We note that

the authors of RBS also proposed an extension of this protocol to a multi-cluster-based

network. Another protocol called R4Sync[83] includes timestamps with the beacons and

distributes the referencing function among all nodes. This eliminates the single point of

failure (the sender node), the weak point of RBS, and reduces the overhead.

Figure 2.4: Reference Broadcast Time Synchronization

2.6.3 Sender synchronization mechanism

The sender synchronization mechanism use unidirectional synchronization messages to

synchronize the node clocks. A well-known example of sender protocols is the Flood-

ing Time Synchronization Protocol (FTSP) [15], which allows synchronizing all the node

clocks in the network with the clock of a reference node. The latter periodically broad-
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casts a synchronization message containing its clock value to nodes in its transmission

range. Then, each receiver node records the time reception of the message and the

clock value of the reference node as a pair in a least-squares table. Each entry in the

least-squares table provides a synchronization point. After recording enough points in

its least-squares table, each receiver node uses the least-squares regression to adjust its

clock offset and drift with respect to the reference node clock. After being synchronized,

each node synchronizes, in turn, the nodes’ clocks in its transmission range using the

same mechanism, and so on until all the nodes’ clocks in the network are synchronized.

In FTSP, the sender node records its clock value in the MAC layer just before trans-

mitting the synchronization message. This eliminates the send time and the access time

delays. Indeed, the only remaining source of error is the receive time. By estimating

clocks speeds, FTSP avoids frequent re-synchronization of the clocks, which reduces the

time synchronization overhead.

2.7 Conclusion

In this chapter, we have shown the importance of time synchronization in networks, in

particular in WSNs and WSANs. However, synchronizing the clocks is constrained by

the non-deterministic delays in the transmission of the synchronization messages. Also,

due to the limited resources of the sensors, synchronization methods used in traditional

networks, such as NTP (Network Time Protocol) and GPS (Global Positioning System),

are not suitable for WSNs and WSANs. In the next chapter, we will examine the different

time synchronization protocols developed for WSNs and WSANs.
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3.1 Introduction

This chapter focuses on the literature review. First, we describe in detail the time syn-

chronization protocols for WSNs. These have been classified according to different as-

pects. Next, we present the time synchronization protocols for WSANs. Currently, very

few protocols have been proposed exclusively for WSANs. Finally, we conclude the

chapter by indicating the type of protocols suitable for WSAN.
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3.2 Time synchronisation protocols in WSNs

3.2.1 Protocols based on spanning trees

Many protocols in literature use spanning trees to synchronize the node clocks in WSNs

[16, 25, 26, 70]. Greunen and Rabaey [16] proposed the lightweight tree-based synchro-

nization protocol (LTS). As in TPSN, LTS builds a spanning tree from a given reference

node and uses the pairwise synchronization scheme to periodically synchronize the

node clocks. However, in LTS a new spanning tree is created for each new synchroniza-

tion session. This allows adapting the spanning-tree if the network topology changes.

Due to the drift of the node clocks, they must be periodically re-synchronized. In

LTS the re-synchronization interval can be adapted according to the accuracy required

by applications. We note that the synchronization accuracy of a node clock depends

mainly on the number of hops that separate it from the reference node and on the clock

drift. In LTS, each time the nodes are synchronized, the reference node determines the

maximum depth of the spanning tree used to synchronize the node clocks. Based on

this parameter, and on the required accuracy, and on the maximum drift of the clocks,

LTS adjusts the re-synchronization interval. Therefore the overhead in LTS is relative to

the application needs, which is an advantage compared to previous protocols.

Rahamatkar and Agarwal [35] proposed a Reference Based, Tree-Structured Time

Synchronization Approach (TSRT). Unlike TPSN and LTS, This protocol assigns for each

node a unique clock channel different from all its neighbors, which reduces the variation

in the transmission delay. Also, TSRT allows the use of several reference nodes.

Zhehan Ding and Yamauchi [25] designed another synchronization protocol for

WSNs based on a spanning tree. The latter is built from a given reference node. The

objective of this protocol is to reduce power consumption and increase the lifetime of

sensor nodes rather than to increase the accuracy of time synchronization. To do this,

the reference node selects its child node that has the most energy, e.g. node 1. Then, the

clock of node 1 is synchronized using a pairwise synchronization scheme. The reference

node uses broadcast messages to communicate with node 1. So the other child nodes

of the reference node also receive the messages transmitted to node 1. Then, these mes-

sages are used by the child nodes to synchronize their clocks. We note that only the

reference node and node 1 transmit messages. Indeed, the child nodes only receive the
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messages transmitted by the reference node. This preserves the energy of the nodes

and increases their lifetime. To explain the synchronization scheme of this protocol, we

consider a spanning tree composed of a reference node and three child nodes (nodes 1,

2, 3). We note that this scheme can be used in the case of several child nodes. Figure

3.1 illustrate the exchange of synchronization messages. We assume that node 1 has

more energy than nodes 2 and 3. In our case, the clocks synchronization is performed

as follows:

1) At time t1, the reference node broadcast to its child nodes (nodes 1, 2, 3) a syn-

chronization message containing the identifier of node 1. It’s assumed that the message

will be received at the same time by the child nodes.

2) After Node 1 receives the synchronization message, it records the receiving time

t2Node1 and sends back a message to the reference node containing the values t2Node1

and t3Node1. This latter value is the time when node 1 sends back the message.

3) When the reference node receives the message from Node 1, it records the receiv-

ing time t4 and calculate the time offset θre f ,Node1 with Node 1 as follows :

θre f ,Node1 = [(t2Node1 − t1)− (t4− t3Node1)]/2. (3.1)

After calculating the offset, the reference node broadcast a message to its child nodes

containing the values θre f ,Node1 and t2Nodel .

4) When nodes 2 and 3 receive the message from the reference node, they calculate

their time offsets θre f ,Node2 and θre f ,Node3 as follows :

θre f ,Node2 = θre f ,Node1 − (t2Node1 − t2Node2), (3.2)

θre f ,Node3 = θre f ,Node1 − (t2Node1 − t2Node3). (3.3)

In this schema, nodes 2 and 3 synchronize their clocks without sending any message,

which saves their energy.

Tie Qiu et al. [26] proposed the Spanning Tree-based Energy-efficient Time Synchro-

nization (STETS) protocol. The latter uses both sender-receiver and receiver-receiver
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Figure 3.1: Broadcasting synchronization based on spanning tree

synchronization mechanisms. In STETS, backbone nodes form a spanning tree and

synchronize their clock using a sender-receiver mechanism. The Other nodes are syn-

chronized using a receiver-receiver mechanism. The strong point of STETS is in the way

he builds the spanning tree. Indeed, this protocol ensures that only small number of

nodes (backbone nodes) form the spanning tree. These nodes have the right to send

synchronization messages. By contrast, the other nodes (passive nodes) do not belong

to the spanning tree, and they only listen to backbone nodes to synchronize their clocks.

Figure 3.2 gives an example of a spanning tree formed by STETS.

The approach used by STETS is advantageous for densely connected network as it

reduces communication overheads while maintaining a high level of accuracy. However,

there is a defect in the construction phase of the spanning tree. Indeed, some nodes (the

isolated nodes) are out of the transmission range of the backbone nodes, and remains

unsynchronized. To solve this problem, the same authors of STETS designed the R-

Sync protocol [27]. The latter adds a phase to detect the isolated nodes. However, this

phase, which is executed before starting the time synchronization, involves an additional

overheads.
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Figure 3.2: Spanning tree structure formed by STETS [26].

3.2.2 Protocols based on clustering

In cluster-based protocols, such as [21, 28, 29, 30 32, 33, 71, 72, 73, 74], the network

is organized into clusters. Each one is composed of a cluster head and several cluster

members. The cluster heads generally synchronize their clocks with a reference clock or

with other cluster head clocks. And the cluster members synchronize their clocks with

the associated cluster head clock. Thus, using clustering has the advantage of prolong-

ing the network lifetime and offering better scalability [32, 42].

The Scalable Lightweight Time-synchronization Protocol for wireless sensor net-

works (SLTP) [28] organizes the network into cluster heads, cluster members, and gate-

ways nodes. In this protocol, a random node in the network becomes a cluster head and

broadcasts its status to its neighbors. Each node that receives the status message from

the cluster head becomes a cluster member and broadcasts its new status to its neigh-

bors. Next, each neighbor that receives a status message from a cluster member, and

doesn’t have a status yet, becomes a cluster head. This procedure is continued until the

whole network is covered. The nodes that receive status messages from more than one

cluster head become gateway nodes. Each gateway node will inform its cluster heads

that it has become a gateway. It will also provide a list of its neighboring cluster heads.

This allows cluster heads to select the gateways between clusters.

After the cluster construction phase, each cluster head broadcasts several synchro-

nization messages containing its clock value to its cluster members. The latter, after
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receiving several clock values, used the linear regression method to adjust their clock

offset and drift with respect to the cluster head clock. Note that the gateways synchro-

nize with multiple cluster heads. SLTP assumes that cluster members communicate

only with their corresponding cluster heads and do not need to communicate with each

other. Therefore, SLTP does not employ a global time. Indeed the nodes use local times

(cluster head times) to timestamp events. If a packet containing a timestamp is transmit-

ted through different clusters, this timestamp is converted by the gateways to the local

cluster times. The accuracy of SLTP method is the same as RBS, but for large area and

long life clusters SLTP is a better choice [28].

A protocol similar to SLTP is the L-SYNC time synchronization protocol [29]. The

latter used the same synchronization method as SLTP except that L-SYNC selects the

cluster heads based on the degree of the nodes (the number of their neighbors). This

minimizes the number of cluster heads and therefore minimizes cluster overlap. Indeed,

fewer clusters and overlaps will decrease the channel competition between clusters and

improve algorithm efficiency [29].

The Cluster-Based Time Synchronization Protocol for Wireless Sensor Networks (CTS)

[30] used a multi-level clustering method [31] to organize the network in a top-down hi-

erarchical structure. In CTS the cluster heads are organized into different levels and

synchronized using the pairwise synchronization scheme as in the TPSN protocol. To

do that, the sink (level-0) synchronizes all the clocks of the level-1 cluster heads. Then,

the level-1 cluster heads in turn synchronize the clocks of the level-2 cluster heads,

and so on until all the cluster head clocks are synchronized. To synchronize the clus-

ter member clocks, each cluster head broadcasts its clock value to its cluster members.

These latter adjust their clocks according to the received value. The CTS protocol, un-

like SLTS and L-SYNC protocols, synchronizes all the node clocks of the network to the

sink clock (global synchronization), so no time conversion is needed. However, the time

synchronization accuracy remains dependent on the depth of the hierarchical topology

used to synchronize the cluster heads.

The protocol (Synchronization through Piggybacked Reference Timestamps) [32]

tries to minimize the power consumption of the time synchronization in clustered WSNs.

As in CTS protocol, the cluster heads in SPiRT are synchronized using the pairwise syn-
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chronizations schema. However, SPiRT profit of the synchronization phase of the cluster

heads to also synchronize the cluster members. Indeed, the cluster members only catch

the synchronization messages sent by their cluster head and used the timestamps con-

taining in these messages to synchronize their clocks. We note that is not necessary for

the cluster members to capture the synchronization messages sent to their cluster head.

Also, it is not necessary to send additional synchronization messages to the cluster mem-

bers. This cuts on energy consumption and increases the synchronization efficiency of

SPiRT [32]. We note that SPiRT adjusts clock offset and drift using the Maximum Like-

lihood Estimators (MLE) and the corresponding CramerRao Lower Bounds (CRLB).

3.2.3 Protocols based on flooding

The protocols based on flooding, such as [19, 38, 50, 79], do not require any organization

of the network topology. To synchronize the node clocks, these protocols disseminate

time information through the network via flooding. This makes them robust to node

mobility and failure. A well-known protocol in this category is FTSP which is described

previously. However, the latter exhibits a synchronization error that grows exponen-

tially with the network diameter [19, 38]. This is due to errors in estimating clock drifts,

and the fact that the nodes in FTSP do not immediately broadcast the clock value of the

reference node. Indeed, in FTSP, each node uses a periodic timer to determine when

the data is broadcasted. This amplifies the clock estimation error at each hop. To over-

come this problem, PulseSync protocol [39] floods the network with short, fast pulses.

The time information from the reference node is propagated as fast as possible. Also,

PulseSync uses an experimental test to estimate the mean of pulse delay and compen-

sate for the clock offset estimation. Consequently, the synchronization error grows with

the square root of the network diameter rather than being exponential. However, one

of the drawbacks of PulseSync is that the rapid flooding in WSN can also be slow due

to neighborhood contention because the nodes cannot propagate the flood until their

neighbors have finished their transmissions [19]. Also, reliable rapid flooding in sensor

networks is difficult due to packet losses [19].

The FCSA [19] protocol employed a clock speed agreement method that forces all

node cocks in the network to run at the same speed. This reduces the amplification of

synchronization errors at each hop while allowing periodic broadcasting of time infor-

mation. The synchronization error in FCSA grows with the square root of the network
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diameter. The clock speed agreement method is based on averaging the time informa-

tion received from neighbors, it will be detailed in chapter 5. FCSA exhibits similar

performance to PulseSync on the line topology, but it is superior on the grid topology

where contention and congestion are not negligible [19].

Shi et al. [50] proposed a rapid flooding multiple one-way broadcast time-synchronization

(RMTS) protocol for large-scale wireless sensor networks. In the latter, several synchro-

nization packets are broadcasted by the nodes at a very short time in a single synchro-

nization period. After several synchronization periods, the clock drift and the clock

offset of each node are calculated using the maximum likelihood estimation (MLE). By

broadcasting multiple packets in a single period, RMTS ensures rapid convergence and

improved accuracy. However, this generates an additional load on the network, so RMTS

consumes more energy.

3.2.4 Protocols based on consensus

The consensus-based protocols are fully distributed and do not require a reference node

or gateways. Indeed, the nodes’ clocks are synchronized with each other by exchang-

ing synchronization messages between neighboring nodes. Figure 3.3 illustrates how

synchronization messages are exchanged in a network composed of 7 nodes. Figure

3.3(a) represents the protocols that synchronize the clocks from a reference node (Node

0), such as FTSP and TPSN. On the other hand, figure 3.3(b) represents the consensus-

based protocols where no reference node is required. In this case, the synchronization

messages are exchanged between neighboring nodes.

Figure 3.3: Reference node (a), and consensus based (b) synchronisation protocols

24



3.2. Time synchronisation protocols in WSNs

Many protocols in literature are based on consensus algorithms [40, 42, 43, 44, 45,

46, 47, 75, 76, 77, 78]. In gradient time synchronization protocol (GTSP) [40], each node

periodically broadcasts to its neighboring nodes a synchronization message containing

its current logical clock value Li(t) and its rate multiplier li(t). Each node i that receives

clock values from its neighbors, updates its own clock as follows :

θi(tk+1) = θi(tk) +
∑j∈Ni

Lj(tk)− Li(tk)

|Ni|+ 1
. (3.4)

After several iterations, all the logical clocks converge to the same value.

GTSP also define the absolute logical clock rate, noted xi(t), of a node i at universal

time t as follows:

xi(t) = hi(t) li(t). (3.5)

The logical clock is therefore defined as follows :

Li(t) =
∫ t

0
xi(τ) dτ + θi(t0). (3.6)

To synchronize the nodes’ clocks, the absolute logical clock rate of each clock Li() is

iteratively updated as follows:

xi(tk+1) =

(
∑j∈Ni

xj(tk)
)
+ xi(tk)

|Ni|+ 1
, (3.7)

where Ni is the set of neighbors of node i.

Theoretically, all the absolute logical clock rates will converge to the same value.

However, in practice, nodes cannot estimate their hardware clock rate hi and conse-

quently cannot update their absolute logical clock rate xi(t). To overcome this problem,

each node i in GTSP uses the following equation to update its clock rate multiplier. After

several iterations, all the absolute logical clock rates will converge to the same value.

li(tk+1) =

(
∑j∈Ni

(xj(tk)/hi(tk))
)
+ li(tk)

|Ni|+ 1
. (3.8)

GTSP has the advantage of being fully distributed and robust to node failures. Also,

GTSP achieves a better local synchronization. Indeed, in the protocols seen previously

such as FTSP et TPSN, the geographically close nodes can be far in terms of path-length
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in the constructed tree. This has a direct impact on synchronization errors between these

nodes. This is particularly harmful to many applications such as target tracking or time

division medium access (TDMA) scheduling, for which it is really important that clock

errors between one node and the others degrade sufficiently smoothly as a function of

geographic distance [42].

The External Gradient Time Synchronization Protocol (EGSync) [41] aims to mini-

mize the synchronization error between nodes that are geographically close and at the

same time allows to synchronize the nodes’ clocks with a predefined reference node.

Indeed, the consensus-based protocols seen above do not allow a global synchroniza-

tion with a specific clock or an external clock. To do this, each node j in the network

periodically broadcasts to its neighbor nodes a synchronization message containing its

physical clock value Hj, its logical clock value Lj, its logical clock rate multiplier lj, the

latest rate multiplier of the reference node clock lre f
j , and the latest difference between

the reference node logical clock and the reference node physical clock ∆re f
j . Each time

a node i receives a new synchronization message from a neighbor node j, estimate the

relative physical clock rate hj
i of the neighbor node j using the least-squares regression

method. We note that each node i in the network maintains a repository to keep track of

the relative physical clock rates and rate multipliers of its neighbors. These values are

then used by the node i to update its rate multiplier li as follows:

li(t+) =
li(t) + ∑j∈Ni

hj
i(t) l j

i (t)
|Ni|+ 1

, (3.9)

where t+ represents the time immediately after the update operation. Ni and |Ni|
represent the set and the number of neighbor nodes of node i, respectively.

Also, node i update its logical clock offset θi(t+) as follows:

θi(t+) = θi(t) +
∑j∈Ni

(Lj
i(t)− Li(t))
|Ni|+ 1

, (3.10)

where Lj
i(t) represents an estimation of the logical clock value of node j.

With this execution, it can be proven theoretically that all nodes agree on a common

logical clock speed and value. After that, for all times t, for each node i, we have :
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hre f (t) = hi(t)
li(t)

lre f (t)
. (3.11)

The logical clock of node i is therefore calculated as follows :

Li(t) =
∫ t

0
hi(τ)

li(τ)

lre f
i (τ)

dτ + θi(t). (3.12)

Each node i can also calculate the hardware clock value of the reference node Hre f
v ,

as follows:

Hre f
v (t) = Li(t) + ∆re f

i (t). (3.13)

In this way, EGSync allows at the same time to have a good local synchronization

while allowing a global synchronization with a reference clock.

Schenatoa and Fiorentin [42] designed a consensus-based protocol for clock syn-

chronization in wireless sensor networks (ATS: Average TimeSynch). Unlike GTSP and

EGSync protocols, ATS is asynchronous, which makes it more resistant to packet loss

and node failure. To achieve this, when a node j in ATS transmits a packet in the net-

work this latter contains the node identifier idj, its physical clock value Hj, its logical

clock rate multiplier lj, and its logical clock offset θj. Each time a node i receive a new

message from node j, it stores the received time H j
i (the physical clock value of node i),

and updated its logical clock offset as follows:

θi(t+) = θi(t) + (1− po)(Hj(t)− Hi(t)), (3.14)

where po is a design parameter that can be set between 0 and 1.

Also node i estimate the rate multiplier l j
i relative to the physical clock of node j, and

updated its logical clock rate multiplier li as follows :

l j
i (t+) =

Hj − H(old)
j

H j
i − H j(old)

i

, (3.15)

li(t+) = pv li(t) + (1− pv) l j
i (t+) li(t), (3.16)
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where pv is a design parameter that can be set between 0 and 1. In practice, the

necessary conditions for asymptotic convergence are that the communication graph is

connected and that each node transmits sufficiently often [42].

Lamonaca et al. [45] proposed a clock synchronization protocol for wireless sensor

networks with a selective convergence rate. The latter is based on a revised version

of ATS protocol. The proposed protocol makes a compromise between synchroniza-

tion accuracy and network life-time by increasing or decreasing the rate of exchange

of the synchronization messages. Indeed the protocol focuses on the parts of the net-

work where events are detected. And assumes that only the nodes in that part require a

high synchronization accuracy. This is the case for measurement applications. This can

significantly preserve the node energy and consequently increase the lifetime of the net-

work. However, this approach is limited to specific applications such as environmental

measurement systems.

Wu et al. [43] proposed the clustered consensus time synchronization protocol

(CCTS). The latter combines the consensus-based time synchronization approach with

clustering. This to obtain faster convergence and better energy efficiency. To do that,

CCTS uses intra-cluster and inter-cluster time synchronization. In the intra-cluster syn-

chronization, each cluster-head exchanges multiple messages with its cluster members

to estimate the cluster clock’s compensation parameters (to compensate the average

clock offsets and the average clock drifts within the cluster). These compensation pa-

rameters are then transmitted to the cluster members to update their clocks. After that,

in the inter-cluster time synchronization, the cluster-heads exchange with each other the

compensation parameters and attribute to each one a weight according to the size of

each cluster. In the end, the cluster-heads updates their clocks according to the received

parameters. This process is repeated until all the clocks in the network converge to the

same value and the same speed.

The network topology is an important parameter that affects the convergence of the

consensus-based protocols. Indeed, the more the degree of connectivity is, the more the

convergence is fast. Panigrahi and Khilar [44] designed a multi-hop consensus time syn-

chronization protocol, called SATS (multi-hop Selective Average Time Synchronization).

Unlike the previous consensus-based protocols that used single-hop information (di-
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rect neighbor information) to update their clock, SATS extends the perimeter to several

hops (multi-hop communication). This can increase significantly the convergence speed

compared to single-hop protocols. However, the use of multi-hop communication not

only increases connectivity but also increases the end-to-end communication delay. The

latter harms synchronization accuracy and consequently affects the consensus conver-

gence. Therefore, each node must carefully select the neighboring nodes to consider for

clock synchronization. SATS used a distributed dynamic programming-based approach

to select these neighbors. The simulation results show that SATS increase significantly

the convergence speed compared to single-hop protocols.

Another alternative to increase the convergence speed of the consensus-based pro-

tocol has been presented by Jianping He et al. [46]. The latter proposed to converge the

logical clocks to the maximum value among all nodes instead of considering the aver-

age. Indeed, the average consensus-based time synchronization algorithms converge to

global synchronization asymptotically, while MTS converges to global synchronization

in a finite time [46]. This is an interesting property that has been studied in detail in

[47]. Two versions of the protocol have been proposed. The maximum time synchro-

nization (MTS), which ignores the communication delays. And the weighted maximum

time synchronization (WMTS) consider that the random communication delay follows

a normal distribution.

3.2.5 Temperature-Aware Compensation protocols

Temperature variation is the main reason that desynchronizes the clocks in WSANs In-

deed, the clocks are equipped with quartz oscillators. The frequency of the oscillator

depends on the form of its crystal, which in turn depends on the ambient temperature.

The temperature-aware Compensation protocols [60], [61], [62], [48], [37] tries to calcu-

late, according to the ambient temperature, the changes in clocks frequency, and then

update the clocks to compensate for this changes. This allows to reduce the clock drift,

and prolong the re-synchronization intervals without losing synchronization accuracy.

The Temperature-Compensated Time Synchronization Protocol (TCTS) [60] assumes

that a set of sensor nodes in the network (called slave nodes) receive precise timestamps

from remote nodes, called master nodes. These slave nodes must compensate for their

clock frequency errors caused by temperature change. The TCTS protocol consists of

29



3.2. Time synchronisation protocols in WSNs

two phases. During the first phase (calibration phase), each slave node learns the re-

lationship between its clock frequency error and the temperature. To do this, the slave

node receives calibration messages from the master nodes at regular intervals. Each

time the slave node receives a calibration message it records in a regression table its cur-

rent local time and temperature. During the second phase (Compensation phase), the

slave node periodically measures the temperature. Knowing the time offset between the

timestamp and local time, the slave node uses linear regression to estimate its current

frequency error and compensate its local offset estimation. Other protocols use different

estimators to dynamically compensate the clock drift according to the ambient temper-

ature. For example, The temperature-assisted clock self-calibration (TACSC) [37], used

the maximum likelihood estimators. And the temperature-compensated Kalman-based

distributed synchronization protocol (TKDS) [37] used the Kalman filter. We note that

temperature-Aware compensation protocols can be combined with the protocol seen

above to extend their re-synchronization period and thus improve their efficiency.

3.2.6 On demand synchronization protocols

In contrast to the proactive protocols seen above, the on-demand (or reactive) synchro-

nization protocols synchronize the node clocks only when an event occurs. This schema

makes the on-demand protocols much more efficient in terms of communication and

energy consumption but requires a delay to synchronize the node clocks. This delay

may constrain some WSANs applications such as detection and tracking systems. In the

literature, few time synchronization protocols are reactive [58],[59]. Huang et al. [58]

proposed the accurate on-demand time synchronization protocol (AOTSP). The latter

assumes that the network forms a breadth-first search from the ROOT node. When an

event occurs, the nodes use their local clocks to timestamps this event. Then this times-

tamp is converted as he is transmitted to the ROOT. To explain this conversion process

we assume that a node, which has detected an event, wants to inform the ROOT. This

node will then send a message M to the ROOT containing the information concerning

the event, and also special fields that allow calculating the elapsed time to transfer the

message. These fields are updated by each intermediary node through which the mes-

sage is transmitted. When the message M reaches the ROOT, it converts the time of

the received event to its local time (the global time) by subtracting the transfer time.

This process is repeated for each new event. Liua et al. [59] used the same principle as

AOTSP and adds a drift compensation mechanism. This allows him to minimize error
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accumulation during the transfers of the timestamps of the events.

3.3 Time synchronisation protocols in WSANs

In the literature, very few time synchronization protocols have been proposed specifi-

cally for WSANs [21, 22]. Martirosyan and BoukercheIn [21] designed the clustered or-

dering by confirmation protocol (COBC), for preserving temporal relationships of events

in WSANs. This protocol is composed of two modules, the first one treats the problem

of temporal event ordering, and the second one treats the problem of time synchroniza-

tion. These problems are linked because to keep the chronological order of events the

nodes must be synchronized. By considering temporal event ordering and time synchro-

nization together, the authors want to reduce the protocol’s overhead compared to what

exists in the literature. To do this, after forming clusters, the cluster heads are synchro-

nized with each other using RBS protocol. Also, the cluster members are synchronized

with their corresponding cluster heads using TPSN protocol. To reduce the overhead,

COBC combines time synchronization messages with routing and event ordering mes-

sages. This preserves the energy of nodes, but can adversely affect time synchronization

accuracy. However, if there is not enough activity in the network (routing and event

ordering messages) the nodes will not be synchronized correctly.

The approach of considering time synchronization with another related problem has

also been employed in [22] and [23]. But this time the authors have integrated the time

synchronization with the localization of nodes to minimize the overhead. However, in

the protocols using this approach, generally, the time synchronization process can be

thwarted, and give less accuracy compared to dedicated protocols.

In addition to the two previous protocols, several time synchronization protocols de-

veloped for WSNs can be used for WSANs. However, an important constraint specific

to WSANs must be considered. Indeed, in WSANs, the actuators’ transmission range is

much greater than the one of the sensors. This can generate asymmetric links between

actuators and sensors. The sender-receiver protocols, such as TPSN, LTS, TSRT, STETS,

CTS, and SPiRT assume that all the links between nodes in the network are symmet-

ric, which is not true in WSANs. However, these protocols can be adapted to WSANs

such that the asymmetric links do not negatively influence their time synchronization
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mechanism. This is also the case for the recipient-recipient protocols, such as RBF and

R4Sync, where nodes use symmetric links to exchange time reception of the beacon. In

contrast, the sender protocols, such as FTSP, GSTP, FCSA, and RMTS do not require the

bidirectional exchange of time information and can be used in the presence of asymmet-

ric links. However, all the protocols designed for WSNs do not consider the additional

transmission capacity of actuators and see them as sensors. Of course, this additional

capacity can be exploited advantageously to increase time synchronization accuracy.

3.4 Conclusion

In this chapter, we have presented different synchronization protocols for WSNs and

WSANs. We note that very few protocols have been proposed for WSANs. However,

several protocols designed for WSNs can be used in WSANs, including protocols based

on the seder mechanism. Indeed, the latter is not affected by the asymmetric link be-

tween sensors and actuators. In the next chapter, we propose a new time synchroniza-

tion protocol specially designed for WSANs.
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4.1 Introduction

We propose, in this chapter, a novel time synchronization protocol, namely Sensor

and Actuator Networks Synchronization Protocol (SANSync), specifically designed for

WSANs. The actuator in SANSync forms clusters. The protocol takes benefits from

the large transmission capacity of the actuators to minimize the synchronization error

inside the clusters. This significantly increases the accuracy of time synchronization in

the whole network. In the following, we describe the idea and the pseudo-code of our

protocol and present the simulation results.
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4.2 Idea of the proposed protocol

In this section, we describe the idea of the SANSync protocol. We assume that :

• A node in the network can be a sensor or an actuator. The number of sensors is

much greater than the number of actuators.

• The transmission range of actuators is greater than the transmission range of sen-

sors.

• Each sensor or actuator node has a unique identifier.

We also assume that a reference node re f has to synchronize the global clocks of all

nodes in the network with a reference clock Lre f (). For that, SANSync forms clusters in

the network, each one is composed of : (i) an actuator acting as cluster head, and (ii) a

set of sensors and actuators members that are in the transmission range of the cluster

head. We note that there are nodes outside the clusters. SANSync use two different

mechanisms to synchronize the nodes’ clocks, an extra-cluster mechanism and an intra-

cluster mechanism. The first one is used to synchronize the global clocks of nodes

outside the clusters. The second is used to synchronize the global clocks of nodes inside

the clusters. The intra-cluster mechanism allows reducing time synchronization error of

nodes inside clusters. This increases greatly the accuracy of the time synchronization in

the whole network. The protocol proceeds as follows :

• Step 1 (Formation of clusters): Each actuator node in the network broadcasts a Clus-

ter formation message (CFM) to nodes in its transmission range. A node that

receives a CFM from an actuator will consider this latter as its cluster head (if it

does not have a cluster head yet), otherwise, the received message will be ignored.

• Step 2 (Synchronization of the clusters clocks) : In addition to its physical clock Hi()

and its global clock Li(), each node i inside a cluster maintains another logical

clock Ci() called cluster clock, which will be synchronized with the physical clock

of its cluster head. The nodes within clusters, therefore, will have common local

time references (the cluster clocks) which will be used in the next step of the pro-

tocol to synchronize the global clocks.
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• Step 3 (Synchronization of the global clocks): In this step, the reference node syn-

chronizes all the global clocks of nodes with a reference clock. The nodes inside

clusters are synchronized using the intra-cluster mechanism, the other nodes are

synchronized using the extra-cluster mechanism. The main contribution of this

paper lies in the use of the local time references (the cluster clocks) to estimate

the global clocks in the intra-cluster mechanism, this allows to avoid amplification

of time synchronization error inside the clusters and consequently increases the

accuracy of time synchronization in the whole network.

To explain the operations of the protocol, we consider, without loss of generality,

the WSANs described in figure 4.1. The network is composed of a reference node de-

noted re f , n− 1 sensors denoted successively from 1 to n− 1, and an actuator denoted n.

Each node i can only communicate with its direct neighbors i − 1 and i + 1 if any,

except for the actuator node which may additionally broadcast messages directly to

sensors nodes p to n − 1 , (1 < p < n − 1). Therefore, there are asymmetric links

between the actuator node n and the sensors nodes p to n − 2, and symmetric links

between adjacent nodes. In the following, we detail the different steps of the protocol.

Figure 4.1: A WSANs composed of a reference node denoted re f , n− 1 sensors denoted
successively from 1 to n− 1 and an actuator denoted n.

4.2.1 Formation of clusters

The actuator node n broadcasts a Cluster formation message (CFM) to all nodes i, i =

p, · · · n− 1. p is the identifier of the farthest node from actuator n (see figure 4.1). When

a node i receives the CFM message from node n, it sets this latter as its cluster head.
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4.2.2 Synchronization of the cluster clocks

After forming the cluster, the cluster head n periodically broadcasts its physical clock

value to all nodes i, i = p, · · · n− 1. Each node i, i = p, · · · , n− 1, receiving a new value

Hn from the cluster head n, records the synchronization point (Hi, Hn) as a pair (x, y) in

a least-squares table calledcluster least-squares table (CLST), where Hi is the physical clock

value of node i when it receives the value Hn from the cluster head n. After recording

several points in its CLST, each node i, i = p, · · · , n− 1, estimates the rate multiplier of

its cluster clock Ci() so that it runs at the same speed as the physical clock of the cluster

head n.

Assuming that a node i has recorded m points (x, y) in its CLST, the rate multiplier

of its logical clock Ci() noted chead
i is calculated as follows:

chead
i =

∑m
j=1((xj

i − x)(yj
i − y))

∑m
j=1(xj

i − x)2
, (4.1)

where (xj
i , yj

i) is the jth point recorded by the node i in its CLST. We note that for a

given variable x, x represents the empirical mean ( x = 1
n ∑n

i=1(xi) ).

The rate multiplier of a node i , i = p, · · · , n − 1, is updated each time the node

adds a new point in its CLST. In cases where there is a single point in the CLST, the rate

multiplier is equal to 1. It should be noted that the more points are recorded, the rate

estimation is accurate. But since the sensors’ storage capacity is limited only the last

points are recorded.

After estimating the rate multiplier of its cluster clock, the cluster clock value of a

node i at universal time t is calculated as follows :

Ci(t) = ylast
i + chead

i (Hi(t)− xlast
i ), (4.2)

where xlast
i and ylast

i are the latest values recorded by the node i in its CLST.

Inside the cluster there are no intermediate nodes between the cluster head and the

nodes p to n− 1, the lasts ones will receive the messages from the cluster head approxi-

mately at the same time. After calculating the rates multipliers of the cluster clocks, we
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shall have Ci(t) ≈ Cj(t) for each pair i and j of nodes inside the cluster at each instant t.

At the end of this step, the cluster clocks of nodes p to n− 1 will be synchronized

with the cluster-head physical clock and will be used in the next step of the protocol.

We note that the least-squares method is used by several protocols in the literature

[15, 19,41,63,64,66] and provides good results. Also, a performance analysis aimed at

highlighting the sensitivity of this method to estimate the nodes’ clocks is given in [41].

However, other methods can be used, such as maximum-likelihood estimators [32,37,67,

69] or nonlinear Gaussian regression synchronization model [68].

4.2.3 Synchronization of the global clocks

In the last steps of the protocol, the reference node synchronizes the global clocks

Li(), i = 1, · · · , n, of nodes 1 to n with its reference clock Lre f (). In doing so, the

protocol uses an extra-cluster mechanism to synchronize the nodes outside the cluster

(1 to p− 1), and an intra-cluster mechanism to synchronize the nodes inside the cluster

(p to n).

4.2.3.1 Synchronization of nodes 1 to p− 1 (the extra-cluster mechanism) :

The reference node periodically transmits its reference clock value to node 1. The node

1 receiving a new value Lre f from the reference node, records the synchronization point

(H1, Lre f ) as a pair (x, y) in a least-squares table called global_least-squares_table (GLST) .

H1 is the physical clock value of node 1 when it receives the value Lre f from the reference

node.

After recording enough points in its GLST the node 1 estimates the rate multiplier

of its global clock L1() so that it runs at the same speed as the reference clock Lre f ().

Assuming that the node 1 has recorded m points in its GLST, then the rate multiplier of

its global clock L1() noted lre f
1 is calculated as follows:

lre f
1 =

∑m
i=1((xi − x)(yi − y))

∑m
i=1(xi − x)2 , (4.3)

where (xi, yi) is the ith point recorded by the node 1 in its GLST.

The rate multiplier of node 1 is updated each time it adds a new point in its GLST.

In the cases where there is a single point in the GLST, the rate multiplier is equal to 1.
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After estimating the rate multiplier, the global clock value of node 1 at universal time t

is calculated as follows :

L1(t) = ylast + lre f
1 (H1(t)− xlast), (4.4)

where xlast and ylast are the latest values recorded by the node 1 in its GLST.

After the node 1 has synchronized its global clock L1(t), it, in turn, synchronize the

global clock of node 2 using the same mechanism, and so on, until the last node p− 1

is synchronized.

4.2.3.2 Synchronization of nodes p to n (the intra-cluster mechanism) :

After being synchronized, the node p − 1 periodically transmits the estimation of the

reference clock value (its global clock value) to node p. The node p receiving a new

value L̂re f from the node p − 1, records the synchronization point (Hp, L̂re f ) as a pair

(x, y) in its global_least-squares_table (GLST). Hp is the physical clock value of node p

when it receives the value L̂re f from the node p− 1. The node p then transmits values

(Cp, L̂re f ) to node p + 1. Cp is the cluster clock value of node p when it receives the

value L̂re f from the node p − 1. The node p + 1 in turn transmits values (Cp, L̂re f ) to

node p + 2, and so on, until the last node n receives these values.

A node i, i = p + 1, · · · , n, which receives a new value (Cp, L̂re f ), records the syn-

chronization point (Ĥold
i , L̂re f ) as a pair (x, y) in its GLST. Ĥold

i is an estimation of the

physical clock value of node i when the node p receives the value L̂re f . It is calculated

as follows :

For a node i, i = p + 1, · · · , n− 1, we have:

Ĥold
i = Hi(t)−

(
Ci(t)− Cp

chead
i

)
. (4.5)

For the cluster head n we have:
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Ĥold
n = Hn(t)−

(
Cn(t)− Cp

chead
n

)
= Hn(t)−

(
Hn(t)− Cp

1

)
(4.6)

= Cp.

After recording enough points in their GLST each node i, i = p, · · · , n, estimates the

rate multiplier of its global clock Li() so that it run at same speed as the reference clock

Lre f ().

Assuming that a node i has recorded m points in its GLST, then the rate multiplier

of its global clock Li() noted lre f
i is calculated as follows:

lre f
i =

∑m
j=1((xj

i − x)(yj
i − y))

∑m
j=1(xj

i − x)2
, (4.7)

where (xj
i , yj

i) is the jth point recorded by the node i in its GLST.

The global clock value of a node i at universal time t is calculated as follows:

Li(t) = ylast
i + lre f

i (Hi(t)− xlast
i ), (4.8)

where xlast
i and ylast

i are the latest values recorded by the node i in its GLST.

At the end of this steps, the global clocks Li(), i = 1, · · · , n, of nodes 1 to n will

be synchronized with the reference clock. Existing time synchronization protocols do

not take into account the asymmetric links between the actuator node n and the sensors

nodes p to n− 1. To synchronize global clocks of nodes 1 to n in these protocols, the

reference node transmits synchronization messages to node 1. The node 1 synchronizes

its global clock L1() and in turn transmit synchronization messages to node 2, and so on

until all global clocks in the network be synchronized. The time synchronization error,

in this case, is amplified at each hop. This is essentially due to the message reception

delays. In SANSync, synchronization messages also passe through the nodes 1 to n as

the existing time synchronization protocols however in our case the time synchroniza-

tion error is not amplified at the nodes p to n, since the values (Cp, L̂re f ) are recorded at

the node p, and the nodes p + 1 to n will only receive and transmit these values to their
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neighbors without change. The error caused by message reception delay at nodes p + 1

to n is thus avoided.

4.3 Pseudo-code of the protocol

In the following, we give the pseudo-code of SANSync. It is assumed that the reference

node identifier is ROOT, and Lre f () is the reference clock. Each node i in the network

maintains the following functions and variables:

Functions :

• Hi():it returns the physical clock value of node i.

• Ci() : it returns the cluster clock value of node i.

• Li() : it returns the global clock value of node i.

Variables :

• IdClusteri : It is the cluster identifier where the node i is a member. We note that

the cluster identifier takes the value of the cluster head identifier. If the node i is

not a member of any cluster, then IdClusteri takes the value NOCLUSTER.

• NodeTypei : It determines the type of node i (SENSOR or ACTUATOR).

• lre f
i : It is the rate multiplier of node i global clock.

• chead
i : It is the rate multiplier of node i cluster clock.

• seqi : It is the last sequence number received by the node i.We note that the ROOT

node increments its sequence number each time it broadcasts a new reference clock

value.

• GLSTi : It is the least-squares table used to estimate the global clock of node i.

• CLSTi : It is the least-squares table used to estimate the cluster clock of node i.

• GlobalTimePointi and ClusterTimePointi : These two variables are used by the node

i to record, respectively, the last received reference clock value, and its cluster clock

value when it received the reference clock value.

The protocol uses the following three types of messages :
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• ClusterFormation : This message is used by actuators to form clusters and synchro-

nize the cluster clocks of the nodes inside the clusters. It contains the identifier of

the actuator and its physical clock value.

• ExtraClusterSync : This message is used by nodes that are outside the clusters

to synchronize the global clocks of their neighbors with the reference clock. It

contains the node identifier, the last received sequence number, and the estimated

value of the reference clock.

• IntraClusterSync : This message is used by nodes that are inside the clusters

to synchronize the global clocks of their neighbors with the reference clock. It

contains the node identifier, the last received sequence number, the estimated

value of the reference clock, and the values of the variables GlobalTimePoint and

ClusterTimePoint.

Each actuator or sensor node in the network maintains a timer (GlobalTimer) which

will fire every T1 seconds, it allows the nodes to periodically re-synchronize the global

clocks of their neighbor nodes. The actuator nodes maintain additional timers (ClusterTimer)

which will fire every T2 seconds, it allows the actuator nodes to periodically re-synchronize

cluster clocks of the nodes inside the clusters.

The pseudo-code of the protocol is as follows:

1: Initialisation of node i

2: idclusteri ← NOCLUSTER;

3: seqi← 0;

4: lre f
i ← 1; chead

i ← 1;

5: GlobalTimePointi ← 0;

6: ClusterTimePointi ← 0;

7: if (i = ROOT) then

8: Set periodic timer with period T1 (GlobalTimer);

9: endif;

10: if (NodeTypei = ACTUATOR) and (i ̸= ROOT) then

11: Set periodic timer with period T2 (ClusterTimer);

12: endif;
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13: Upon ClusterTimer of node i time-out

14: if (IdClusteri = NOCLUSTER ) then

15: IdClusteri ← i;

16: endif;

17: Broadcast < i, Hi > in ClusterFormation message;

18: Upon node i receiving CusterFormation message < j, Hj > from node j

19: if ( i ̸= ROOT) then

20: if ( IdClusteri = NOCLUSTER ) then

21: IdClusteri ← j;

22: endif;

23: if (IdClusteri = j) then

24: x ← Hi;

25: y← Hj;

26: Store (x, y) in CLSTi and estimate chead
i ;

27: endif;

28: endif;

29: Upon GlobaleTimer of node i time-out

30: if (i = ROOT) then

31: seqi ← seqi + 1;

32: endif;

33: if (IdClusteri = NOCLUSTER) then

34: Broadcast < i, seqi, Li > in ExtraClusterSync message

35: else

36: Broadcast < i, seqi, IdClusteri, Li, GlobalTimePointi,

ClusterTimePointi > in IntraClusterSync message;

37: endif;

38: Upon node i receiving ExtraClusterSync message < j, seqj, Lj > from node j

39: if (seqj > seqi ) then

40: seqi ← seqj;

41: if ( IdClusteri ̸= NOCLUSTER) then

42: GlobalTimePointi ← Lj;
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43: ClusterTimePointi ← Ci;

44: endif;

45: x ← Hi;

46: y← Lj;

47: Store (x, y) in GLSTi and estimate lre f
i ;

48: Set periodic timer with period T1 (GlobalTimer) if it is not started yet;

49: endif;

50: Upon node i receiving IntraClusterSync message < j, seqj, IdClusterj, Lj

, GlobalTimePointj, ClusterTimePointj > from node j

51: if (seqj > seqi ) then

52: seqi ← seqj;

53: if ( IdClusteri ̸= IdClusterj ) then

54: x ← Hi;

55: y← Lj;

56: if ( IdClusteri ̸= NOCLUSTER) then

57: GlobalTimePointi ← Lj;

58: ClusterTimePointi← Ci;

59: endif;

60: else

61: x ← Hi − ((Ci − ClusterTimePointj)/chead
i );

62: y← GlobalTimePointj;

63: GlobalTimePointi ← GlobalTimePointj;

64: ClusterTimePointi ← ClusterTimePointj;

65: endif;

66: Store (x, y) in GLSTi and estimate lre f
i ;

67: Set periodic timer with period T1 (GlobalTimer) if it is not started yet;

68: endif;

In the beginning, each node initializes its variables (lines 2-6). The ROOT node in

addition start its GlobalTimer (lines 7-9), and the actuators nodes start their ClusterTimer

(lines 10-12).

The ClusterTimer is used by the actuator nodes to form the clusters and synchronize

the cluster clocks of the nodes inside the clusters. The ROOT node does not belong
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to any cluster. Each time the ClusterTimer of an actuator node fires, it broadcasts in

a ClusterFormation message its physical clock value to nodes in its transmission range

(line 17). A node that receives a ClusterFormation message from an actuator will con-

sider the actuator as its cluster head (if it does not have a cluster head yet), and the

identifier of the actuator as its cluster identifier (lines 20-22). Otherwise, this node al-

ready belongs to another cluster, or it is the ROOT node, the received message will be

ignored. Each node that receives a new physical clock value of its cluster head will add

a new synchronization point to its CLST (lines 23-27). Once there are enough points in

its CLST, each node inside a cluster can estimate the rate multiplier of its cluster clock

using equation 4, and can then calculate the cluster clock value using equation 5.

The GlobalTimer is used to synchronize global clocks of all nodes in the network

with the reference clock. Each time the GlobalTimer of the ROOT node fires, it incre-

ments its sequence number (lines 30-32), and broadcasts a new value of the reference

clock to its neighbor nodes in a ExtraClusterSync message (line 34). Each neighbor node

that receives a new value of the reference clock will add a new synchronization point

to its GLST (lines 45-47). Once there are enough points in its GLST, each neighbor

node inside a cluster can estimate the rate multiplier of its global clock using equation

8, and can then calculate the global clock value using equation 9. If this node belongs

to a cluster, it records the received reference clock values and its cluster clock value,

respectively, in the variables GlobalTimePoint and ClusterTimePoint (lines 41-44). After

their logical clocks are synchronized, each neighbor node of the ROOT node will in turn

synchronizes the global clocks of its neighbors, and so on until all global clocks of nodes

in the network will be synchronized.

To synchronize the global clocks of its neighbors, a node uses either an ExtraClusterSync

message or an IntraClusterSync message. If the node does not belong to any clus-

ter, it broadcasts only the estimated reference clock value to its neighbor nodes in a

ExtraClusterSync message (line 34) which was previously the case of the ROOT node.

In contrast, if the node belongs to a cluster, it broadcasts in a IntraClusterSync mes-

sage, the estimated reference clock value and also, the values recorded in the variables

GlobalTimePoint and ClusterTimePoint (line 36). A node that receives an IntraClusterSync

message from a node in its cluster uses the values GlobalTimePoint and ClusterTimePoint

contained in the message to calculate and add a new synchronization point to its GLST
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(lines 60-66), using equation 6. This node also records the two values GlobalTimePoint

and ClusterTimePoint in order to send them later to its neighbors. If the node receiving

a IntraClusterSync message does not belong to the same cluster as the sender node, it

processes the message as a ExtraClusterSync message (lines 53-58).

4.4 Simulation

We evaluate the efficiency of SANSync through simulations, as well we compare it with

the FTSP and FCSA protocols. FTSP is among the first protocols developed for WSNs

and remains a reference to compare new protocols. FCSA is a more recent protocol and

remains one of the most performant at the moment. Also, these two protocols can be

used, without adaptation, to synchronize node clocks in WSANs.

The purpose of SANSync, FTSP, and FCSA is to allow the different nodes’ logical

clocks to show relatively close values at any moment. To measure the accuracy of time

synchronization, we consider the following metrics :

- Global skew : It is the maximum difference between the logical clock value of a

node i and the logical clock values of the other nodes in the network at a given

time instant.

- Maximum global skew : It is the maximum of global skews of all nodes at a given

time instant.

- Average global skew : It is the average of global skews of all nodes at a given time

instant.

To the best of our knowledge existing simulators designed for WSNs do not allow

the implementation of heterogeneous nodes (sensor and actuator) or have a serious

problem of scalability. For these reasons we have developed our simulator based on the

C++ language and implemented the three protocols. The variance in the message delay

is modeled with a normally distributed random variable. The physical clock drifts were

uniformly distributed between -50 ppm and 50 ppm. The re-synchronization period for

the three protocols is set to 30 seconds, and the number of entries for the least-squares

tables is set to 8. These parameters are the same as those used by the authors of the

FCSA protocol in their simulations[19]. Also, the sensor’s transmission range is set to

50m, and the actuator’s transmission range is set to 200m. In what follows, we will
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present different simulation scenarios :

Scenario 1 : We first simulated a line topology with 20 nodes from 1 to 20 (see figure

4.2) where the node 10 is an actuator, and the other nodes are sensors. The distance

between adjacent nodes is 50 m, and hence each node i can communicate with adjacent

nodes i− 1 and i + 1 if any, and the actuator can directly send messages to nodes 6 to 9,

and nodes 11 to 14. We recall that the actuator transmission range is four-time greater

than the transmission range of the sensors. Also, sensor node 1 is the reference node,

and its physical clock is the reference clock. We simulated the three protocols during

10 hours, and recorded during the last hour, for each node, the maximum difference

observed between its global clock and the reference clock. figure 4.3 shows the synchro-

nization error obtained for each node.

Figure 4.2: A line topology that consists of 20 nodes (19 sensors and an actuator).

From the obtained results, we can see that the synchronization error of nodes 2 to 20

in FTSP and FCSA grows every time we move away from the reference node. This is due

to the accumulation of synchronization errors at each hop. These errors are caused es-

sentially by message reception delay. However, we notice that SANSync is distinguished

by the fact that the synchronization error does not increase in nodes 7 to 10. This is a

significant advantage since it reduces the synchronization error in all the nodes coming

after the actuator node 10 compared to FTSP and FCSA. In SANSync, nodes that are

inside the same cluster have almost the same synchronization error. In our case, the

46



4.4. Simulation

cluster is formed by nodes 6 to 14, with node 10 as cluster head. We can see that the

synchronization error of node 14, which is at the far right of the cluster, is almost equal

to the synchronization error of node 6 which is at the far left of the cluster. This is due

to the intra-cluster synchronization mechanism of SANSync which allows it to signifi-

cantly improve the accuracy of clock synchronization inside the clusters.

Figure 4.3: Synchronization error of nodes 1 to 20 for SANSync, FTSP and FCSA.

Scenario 2 : To evaluate SANSync performance on a network with a large diam-

eter, we then, simulated a line topology with 50 nodes from 1 to 50 where the nodes

10,20,30,40,50 are actuators, and the other nodes are sensors. Also, sensor node 1 is the

reference node, and its physical clock is the reference clock. We simulated the three

protocols during 30 hours, and recorded during the last hour, for each node, the max-

imum difference observed between its global clock and the reference clock. From the

obtained results (see figure 4.4 and 4.5), we note that the synchronization error of FTSP

grows exponentially with the network diameter, in the most recent FCSA protocol that

uses a clock speed agreement method, the synchronization error grows with the square

root of the network diameter. Concerning SANSync, we notice that it is more efficient

than FCSA and FTSP. In fact, in SANSync, the synchronization error inside the clusters

remains stable which allows it to have good results over long distances.

Scenario 3 : To evaluate SANSync performance on a more general network, we then,

generated 15 different networks (1 to 15). Each network consists of 20 actuators and
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1000 sensors (one actuator for 50 sensors), which are randomly distributed over an area

of 1000m x 1000m. The reference node is placed in the center of the simulation area.

Each simulation is performed for each network for 48 hours. We recorded, during the

last hour, the maximum values observed of the average global skew and the maximum

global skew for each network. The obtained results (see figure 4.6, 4.7, 4.8, and 4.9) con-

firm SANSync performance. SANSync significantly minimizes the time synchronization

errors compared to FTSP and FCSA. The average value of the maximum global skew

and the average global skew obtained from the 15 different networks are reduced by

over 80% compared to FTSP. Also, compared to FCSA, the maximum global skew and

the average global skew are reduced by 36% and by 31% respectively.

Scenario 4 : In this last scenario, we tried to vary the number of actuators in the

network. For that, we generated 5 different networks (1 to 5). Each network consists

of 1000 sensors and several actuators (resp. 5, 10, 20, 40, and 80 actuators), which are

randomly distributed over an area of 1000m x 1000m. The reference node is placed in

the center of the simulation area. Each simulation is performed for each network for 48

hours. We recorded, during the last hour, the maximum values observed of the aver-

age global skew and the maximum global skew for each network. From the obtained

results (see figure 4.10, 4.11, 4.12 and 4.13), it can be observed that the performance of

the three protocols becomes closely equal by increasing the number of actuators. This

can be explained by the fact that the more the number of actuators increases, the more

the diameter of the network decreases. In this case, the synchronization errors for the

three protocols are not amplified and therefore remain close. Another observation is the

fact that SANSync significantly improves the accuracy of the clock synchronization even

in cases where there is a limited number of actuators. This is the case for the network

with only 5 actuators where the maximum global skew and the average global skew are

reduced by over 96% (resp. 62%) compared to FTSP (resp. FCSA).

From the simulations, we can see that SANSync provides a good synchronization

quality for small and large-scale WSANs. However, it is more advantageous on net-

works with large diameters, when the number of actuators and their distribution is

appropriate. Nevertheless, since SANSync does not use a clock speed agreement, the

synchronization error grows exponentially outside the clusters.
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Figure 4.4: The maximum values of the average global skew observed for FTSP, FCSA
and SANSync, for networks 1 to 15.

Figure 4.5: The maximum values of the average global skew observed for FCSA and
SANSync, for networks 1 to 15.

49



4.4. Simulation

Figure 4.6: The maximum values of the maximum global skew observed for FTSP, FCSA
and SANSync, for networks 1 to 15.

Figure 4.7: The maximum values of the maximum global skew observed for FCSA and
SANSync, for networks 1 to 15.
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Figure 4.8: The maximum values of the average global skew observed for FTSP, FCSA
and SANSync, considering networks : 1 (1000 sensors + 5 actuators), 2 (1000 sensors +
10 actuators), 3 (1000 sensors + 20 actuators), 4 (1000 sensors + 40 actuators), and 5 (1000

sensors + 80 actuators).

Figure 4.9: The maximum values of the average global skew observed for FCSA and
SANSync, considering networks : 1 (1000 sensors + 5 actuators), 2 (1000 sensors + 10

actuators), 3 (1000 sensors + 20 actuators), 4 (1000 sensors + 40 actuators), and 5 (1000

sensors + 80 actuators).
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Figure 4.10: The maximum values of the maximum global skew observed for FTSP,
FCSA and SANSync, considering networks : 1 (1000 sensors + 5 actuators), 2 (1000

sensors + 10 actuators), 3 (1000 sensors + 20 actuators), 4 (1000 sensors + 40 actuators),
and 5 (1000 sensors + 80 actuators).

Figure 4.11: The maximum values of the maximum global skew observed for FCSA and
SANSync, considering networks : 1 (1000 sensors + 5 actuators), 2 (1000 sensors + 10

actuators), 3 (1000 sensors + 20 actuators), 4 (1000 sensors + 40 actuators), and 5 (1000

sensors + 80 actuators).
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4.5 Conclusion

In this chapter, we presented a new time synchronization protocol designed especially

for WSANs. Unlike existing time synchronization protocols, the proposed protocol,

namely SANSync, exploits the asymmetric links between actuators and sensors to create

accurate local time references (cluster clocks). These references were then used to syn-

chronize the global clocks of the nodes. According to the simulation results, SANSync

greatly increases the time synchronization accuracy compared with FTSP and FCSA. We

note that the performance of SANSync is insured by the intra-cluster mechanism which

is used to synchronize nodes inside the clusters.
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Chapter 5
An optimized time synchronization

protocol by combining SANSync and

FCSA protocols
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5.1 Introduction

As seen in Chapter 4, the strong point of SANSync is its inter-cluster synchronization

mechanism used to synchronize the nodes inside the clusters. Nevertheless, outside the

clusters, the clocks of nodes are synchronized using an extra-cluster mechanism similar

to the one used in FTSP. Therefore, the time synchronization error in SANSync grows

exponentially outside the clusters. In this chapter, we propose an optimized time syn-

chronization protocol for WSANs. This latter combines the intra-cluster synchronization

mechanism of SANSync with a clock speed agreement mechanism used by FCSA. This

combination improves the synchronization accuracy of the nodes outside the clusters
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and gives better results compared to SANSync and FCSA. In the following, we first de-

scribe the speed agreement mechanism of FCSA. This later allows the nodes to agree

on a common clock speed. Secondly, we provide a detailed pseudo-code of our proto-

col. Thirdly we propose a multi-ROOTs version of the protocol. Finally, we present the

simulation results.

5.2 The clock speed agreement mechanism

In this section, we describe the clock speed agreement mechanism of FCSA. As was said

in the introduction, this mechanism allows all nodes in the network to agree on common

logical clock speed. This has the effect of reducing the amplification of the time synchro-

nization error. The synchronization error, in this case, grows with the square root of the

network diameter [2]. To do this, each node j in the network periodically broadcasts to

its neighbor nodes (nodes which are in its transmission range) a synchronization mes-

sage containing its physical value Hj, its logical clock value Lj, and the rate multiplier

lj. Each time a node i receives a new synchronization message from a neighbor node

j, it records the synchronization point (Hi, Hj) as a pair (x, y) in the least-squares table

(LST). Hi is the physical clock value of node i when it receives the value Hj from the

neighbor node j. We note that there is an LST for each neighbor node. After recording

several points in the LST related to the neighbor node j, the node i estimates the relative

physical clock rate hj
i of the neighbor node j using the least-squares regression method

as follow :

hj
i =

∑m
k=1((xk

i − x)(yk
i − y))

∑m
k=1(xk

i − x)2
, (5.1)

where (xk
i , yk

i ) is the kth point recorded by the node i in the LST related to the neigh-

bor node j. m is the number of points recorded in the LST.

We note than each node i in the network maintains a repository to keep track of the

relative physical clock rates and rate multipliers of its neighbors. These values are then

used by the node i to update its rate multiplier li as follow :

li(t+) =
li(t) + ∑j∈Ni

hj
i(t) li(t)

|Ni|+ 1
, (5.2)

where t+ represents the time immediately after the update operation. Ni and |Ni|
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represents the set of neighbor nodes and the number of neighbor nodes of node i, re-

spectively.

With this execution, it can be proven theoretically that all nodes agree on a common

logical clock speed hi.li [19].

5.3 An optimised time synchronization protocol

In this section, we propose the Optimized Sensor and Actuator Networks Synchroniza-

tion Protocol (OSANSync). This latter combines the advantages of SANSync and FCSA

protocols. We assume that the actuators nodes have already divided the network into

clusters. Each cluster is composed of a cluster head (which is an actuator), and a set of

members nodes. We note that there are also nodes outside the clusters.

Each node i in the network maintains the following functions and variables:

• seqi : is the last sequence number received by the node i. We note that the refer-

ence node (ROOT) increments its sequence number each time it broadcasts a new

reference clock value.

• IdClusteri : is the cluster identifier of the node. We note that the cluster identifier

takes value of the cluster head identifier. If the node i is not a member of any

cluster, then IdClusteri takes the value NOCLUSTER.

• Li() ,Hi() and Ci() : are functions that return the logical clock value, the physical

clock value, and the cluster clock value, respectively.

• lre f
i and chead

i : are the rate multipliers of the logical clock and the cluster clock,

respectively.

• For each neighbor node j, the variable hj
i stor the physical clock rate of this neigh-

bor.

• GLSTi and CLSTi : are the least-squares tables used to estimate the logical clock

and the cluster clock, respectively.

• For each neighbor node j, the node i maintains a least-squares table LST j
i . This

table is uses to estimate the physical clock rate hj
i .

• LogicalTimePointi and ClusterTimePointi : are two variables used to store the syn-

chronization points.
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Also, each node in the network maintains a timer T. This latter will fire periodically

to re-synchronize the clocks. The pseudo-code of the proposed protocol is as follows :

1: Initialisation of the node i

2: lre f
i ← 1; chead

i ← 1;

3: For each neighbor node j : hj
i ← 1;

4: LogicalTimePointi ← 0;

5: ClusterTimePointi ← 0;

6: seqi ← 0;

7: Set periodic timer T with period P;

8: Upon timer T of the node i time-out

9: if (i = ROOT) then

10: seqi ← seqi + 1;

11: endif;

12: Broadcast to neighbor nodes < i, IdClusteri, Li,

Hi, lre f
i , LogicalTimePointi, ClusterTimePointi, seqi >

13: Upon node i receiving < j, IdClusterj, Lj, Hj, lre f
j ,

LogicalTimePointj, ClusterTimePointj, seqj > from node j

14: if (IdClusteri = NOCLUSTER) then

15: x ← Hi;

16: y← Hj;

17: store (x, y) in LST j
i and estimate hj

i using Eq.(5.1);

18: estimate lre f
i using Eq.(5.2);

19: if (seqj > seqi ) then

20: seqi ← seqj;

21: y← Lj;

22: store (x, y) in GLSTi;

23: endif;

24: else (IdClusteri ̸= NOCLUSTER)

25: if (IdClusteri = j) then

26: x ← Hi;

27: y← Hj;
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28: store (x, y) in CLSTi and estimate chead
i using Eq.(3.1);

29: endif;

30: if (seqj > seqi ) then

31: seqi ← seqj;

32: if (IdClusteri = IdClusterj) then

33: x ← Hi − ((Ci − ClusterTimePointj)/chead
i )Eq.(3.5);

34: y← LogicalTimePointj;

35: LogicalTimePointi ← LogicalTimePointj;

36: ClusterTimePointi ← ClusterTimePointj;

37: else (IdClusteri ̸= IdClusterj)

38: x ← Hi;

39: y← Lj;

40: LogicalTimePointi ← Lj;

41: ClusterTimePointi ← Ci;

42: endif;

43: store (x, y) in GLSTi and estimate lre f
i

44: using Eq.(3.7);

45: endif;

46: endif;

In the beginning, each node in the network initializes its logical clock rate multiplier,

its cluster clock rate multiplier, and its sequence number (lines 1-7). After that, each

node periodically broadcast its synchronization variables to its neighbor nodes (line 12).

Thereafter, each node that receives a new synchronization message from a neighbor

node, estimate its logical clock rate multiplier using the clock speed agreement mecha-

nism of FCSA (lines 14-23) or the intra-cluster synchronization mechanism of SANSync

(lines 24-45). This depends if the node is inside or outside a cluster. Also, each node

record a synchronization point in its GLST (lines 22 and 43). We note that a node can at

any time calculate its logical clock value using Eq.(3.8).

5.4 Multi-ROOTs synchronization

In WSANs, actuators, more expensive than sensors, can be equipped with a Global Po-

sitioning System (GPS). This allows them to synchronize their clocks through satellites.
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So we will have several actuators in the network that are synchronized (several ROOTs).

The question is how to use these different ROOTs to efficiently synchronize all the node

clocks in the network. One approach [35], is to divide the network into several clusters,

each cluster is synchronized by one ROOT. A sensor will then join the cluster with the

closest ROOT . This approach has several drawbacks. Indeed, the maintenance of the

clusters generates an additional load. For example, if a ROOT moves or fails, the entire

network has to be reconfigured. In addition, synchronizing the nodes with the nearest

ROOT is not always the best solution. Indeed the accuracy depends on the distance

between the node and the ROOT but also on the latency of the network. This later is

non-deterministic and depends on the network congestion. In the following, we will

propose a solution to this problem. Our ideal is to use the propagation speed of the

synchronization messages to choose the ROOT instead of using the distances that sep-

arate the ROOT from the nodes. In fact, the most accurate time reference for a node is

the one that arrives first. In this section, we will modify the previous protocol so that it

takes into account several ROOTs simultaneously. In the modified protocol, a node can

synchronize with any ROOT according to the propagation speed of the synchronization

messages. To do that, in addition to the variables seen previously, each node i in the

network maintains the variables TimeO f Di f f usioni. This is the initial send time of the

latest synchronization message received by node i (time when the ROOT send the syn-

chronization message). The pseudo-code of the proposed becomes as follows (changes

are underlined) :

1: Initialisation of the node i

2: lre f
i ← 1; chead

i ← 1;

3: For each neighbor node j : hj
i ← 1;

4: LogicalTimePointi ← 0;

5: ClusterTimePointi ← 0;

6: TimeO f Di f f usioni ← 0;

7: Set periodic timer T with period P;

8: Upon timer T of the node i time-out

9: if (i = ROOT) then

10: TimeO f Di f f usioni ← Li;

11: endif;
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12: Broadcast to neighbor nodes < i, IdClusteri, Li,

Hi, lre f
i , LogicalTimePointi, ClusterTimePointi >

13: Upon node i receiving < j, IdClusterj, Lj, Hj, lre f
j ,

LogicalTimePointj, ClusterTimePointj, TimeO f Di f f usionj > from node j

14: if (IdClusteri = NOCLUSTER) then

15: x ← Hi;

16: y← Hj;

17: store (x, y) in LST j
i and estimate hj

i using Eq.(5.1);

18: estimate lre f
i using Eq.(5.2);

19: if (TimeO f Di f f usionj > TimeO f Di f f usioni ) then

20: TimeO f Di f f usioni ← TimeO f Di f f usionj;

21: y← Lj;

22: store (x, y) in GLSTi;

23: endif;

24: else (IdClusteri ̸= NOCLUSTER)

25: if (IdClusteri = j) then

26: x ← Hi;

27: y← Hj;

28: store (x, y) in CLSTi and estimate chead
i using Eq.(3.1);

29: endif;

30: if (TimeO f Di f f usionj > TimeO f Di f f usioni ) then

31: TimeO f Di f f usioni ← TimeO f Di f f usionj;

32: if (IdClusteri = IdClusterj) then

33: x ← Hi − ((Ci − ClusterTimePointj)/chead
i ) Eq.(3.5);

34: y← LogicalTimePointj;

35: LogicalTimePointi ← LogicalTimePointj;

36: ClusterTimePointi ← ClusterTimePointj;

37: else (IdClusteri ̸= IdClusterj)

38: x ← Hi;

39: y← Lj;

40: LogicalTimePointi ← Lj;

41: ClusterTimePointi ← Ci;

42: endif;
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43: store (x, y) in GLSTi and estimate lre f
i

44: using Eq.(3.7);

45: endif;

46: endif;

In the beginning, each node in the network initializes its TimeO f Di f f usion (line 6)

which allows to identify the priority of the synchronization messages. In fact, a node will

only take into account synchronization messages that have a higher TimeO f Di f f usion

than the previous received message (line 19). After that, each node periodically broad-

cast its synchronization variables TimeO f Di f f usioni to its neighbor nodes (line 13).

Then the neighbors synchronize their clocks and update their TimeO f Di f f usioni (line

30 & 31) We note that the ROOT nodes update the TimeO f Di f f usion with their current

time before transmitting it (line 10). This modified protocol allow multi-ROOTs syn-

chronization and has a high tolerance to nodes failures. In fact, even if several ROOTs

are lost, it continues to synchronize the node clocks.

5.5 Simulation

In this section, we compare OSANSync protocol with SANSync and FCSA. We have

developed our own simulator based on the C++ language and implemented the three

protocols. The variance in the message delay is modeled with a normally distributed

random variable. The physical clocks drifts were uniformly distributed between - 50

ppm and 50 ppm. The sensors transmission range is set to 50 m. The actuators trans-

mission range is set to 200 m. In what follows, we will present two simulation scenarios:

Scenario 1: In the first scenario we simulated a line topology with 70 sensor nodes

from 1 to 70 (we note that there are no actuators in the network). The distance be-

tween the adjacent node is 50 m, and hence each node i can communicate with adjacent

nodes i - 1 and i + 1 if any. The sensor node 1 is the ROOT. We simulated the three

protocols during 48 h, and recorded during the last hour, for each node, the maximum

difference observed between its logical clock and the ROOT clock. Figure 5.1 shows the

synchronization error obtained for each node.

From the obtained results, we note that the synchronization error of SANSync grows

exponentially with the network diameter. In FCSA and OSANSync, which use the clock
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Figure 5.1: Synchronization error of nodes 1 to 70 for SANSync, FCSA and OSANSync.

speed agreement mechanism, the synchronization error grows with the square root of

the network diameter.

Scenario 2: In the second scenario we vary the number of actuators in the network.

We generated 5 different networks (1-5). Each network consists of 1000 sensors and a

number of actuators (resp. 5, 10, 20, 40, and 80 actuators), which are randomly dis-

tributed over an area of 1000 m x 1000 m. The ROOT is placed in the upper left corner

of the simulation area. To measure the accuracy of the time synchronization we consid-

ered the maximum global skew and the average global skew.

Each simulation is performed for each network during 48 h. We recorded, during

the last hour, the maximum values observed of the average global skew and the maxi-

mum global skew for each network. From the obtained results (see figures 5.2 and 5.3),

it can be observed that the performance of the three protocols become closely equal by

increasing the number of actuators. This is because the more the number of actuators

increases, the more the network diameter decreases. In this case, the synchronization

error for the three protocols is not amplified and remain close. We also note that OS-

ANSync outperforms FCSA and SANSync in all simulated networks. This is normal

since OSANSync combines the advantages of FCSA and SANSync. However, OSAN-

Sync greatly improves the time synchronization accuracy when the network diameter is

large. For example, in the network 1, the maximum global skew and the average global

skew are reduced by over 60% and 35% compared to FCSA, and SANSync, respectively.
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Figure 5.2: The maximum values of the maximum global skew observed for OSAN-
Sync,FCSA and SANSync, considering networks: 1 (1000 sensors + 5 actuators), 2 (1000

sensors + 10 actuators), 3 (1000 sensors + 20 actuators),4 (1000 sensors + 40 actuators),
and 5 (1000 sensors + 80 actuators).

Figure 5.3: The maximum values of the average global skew observed for OSAN-
Sync,FCSA and SANSync, considering networks: 1 (1000 sensors + 5 actuators), 2 (1000

sensors + 10 actuators), 3 (1000 sensors + 20 actuators),4 (1000 sensors + 40 actuators),
and 5 (1000 sensors + 80 actuators).
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5.6 Conclusion

In this chapter, we presented an optimized time synchronization protocol for WSANs.

The proposed protocol, namely OSANSync, combines the advantages of FCSA and

SANSync protocols. In OSANSync, the intra-cluster synchronization mechanism reduce

the error amplification inside the clusters, and the clock speed agreement mechanism

reduces the error amplification outside the clusters. This significantly improved time

synchronization accuracy. We also provide a multi-ROOTs version of the protocol. This

later, which can exploit several ROOTs simultaneously to synchronize the node clocks,

can considerably improve time synchronization accuracy. However, it is necessary to im-

plement the multi-ROOTs version of OSANSync in real environments to confirm these

assumptions.
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Chapter 6
A fully distributed heuristic method

for selecting ROOT nodes in WSNs

and WSANs
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6.1 Introduction

In the literature, many time synchronization protocols [15, 26, 27, 28, 19, 39, 51, 52] initi-

ate the clocks synchronization process from a given reference node called ROOT. In this

case, the synchronization accuracy of a node clock depends on the number of hops that

separate it from the ROOT. Indeed, as the number of intermediate nodes increases, the

accuracy decreases. This is due to the accumulation of synchronization errors at each

hop. For example, in classic FTSP protocol [15], the synchronization error increases ex-

ponentially with the network diameter, and in the more recent protocols PulseSync [39]
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and FCSA [19], the synchronization error increases with the square root of the network

diameter. Therefore, the choice of the ROOT is very important since it has a direct influ-

ence on time synchronization accuracy. Indeed, choosing a ROOT located in the center

of the network will give better results than choosing one in the periphery. This is be-

cause, the number of hops between the ROOT and the other nodes is reduced when the

ROOT is located at the center of the network. Unfortunately, in the literature, the time

synchronization protocols generally do not specify how to select the ROOT or select it

without considering the location of the nodes. For example, in FTSP protocol, the ROOT

is the node with the lower identifier. In RTSP [51] and RSync [27] protocols, the ROOT

is elected according to the energy level of the nodes. In STETS [26] protocol, the ROOT

is elected randomly.

In OTSP protocol [52], unlike the previous protocols, the ROOT is selected according

to the location of nodes in the networks. Indeed, the ROOT is selected to minimize

the maximum distance (number of hops) between the ROOT and any other node in the

network. To do this OTSP proceeds as follows:

1. All nodes in the network run a discovery phase to identify their neighbors.

2. After the discovery phase, each node sends the list of its neighbors to the base

station.

3. Based on the information received from all the sensor nodes, The base station

builds the topology of the entire network and selects the ROOT. This latter is the

node with the highest number of neighbors and the lowest number of hops from

the base station.

The OTSP protocol selects the ROOT intelligently according to the network topology.

However, to do this, OTSP requires the base station to know the complete topology of

the network. This centralized approach is not suitable for large distributed networks

with limited resources like WSNs. In this chapter, we propose a distributed heuristic

method to select ROOT in WSNs. The objective is to minimize the average distance

and the maximum distance between the ROOT and all other nodes in the network.

The proposed method is fully distributed and may be integrated into different time

synchronization protocols to improve their performance. According to the simulation

results, our method allows, on average, to select the ROOT among the 5% best nodes in

the network that can be set as ROOT.
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6.2 The best ROOT node for time synchronization

A WSN is modeled by a random geometric graph G = (V; E) [10], where the set

V = {i : i = 1, ..., N} represents sensor nodes, and the edges set E = {(i, j) : i, j ∈ V}
represents bidirectional communication channels. The neighbors of a node i ∈ V , de-

noted Ni = {j ∈ V : (i, j) ∈ E}, are the set of nodes in the transmission range of i.

As seen above, the position of a node relative to the other nodes is an important

parameter for selecting the ROOT. Several metrics exist in the literature to characterize

the position of the nodes. For example, the degree centrality of a node i is calculated

based on the number of its neighbors, the betweenness centrality is calculated based on

the number of distinct paths in the network that include the node i. The closeness central-

ity is calculated based on the distance of node i from all other nodes in the network. The

algorithms used to calculate these metrics are generally centralized and are not adapted

to a distributed and resource-limited system such as WSNs. In the following, we will

define a list of these metrics [54, 55, 56, 57] :

• The distance between any nodes i and j in G , denoted by d(i, j), is the number of

edges on the shortest path between i and j.

• The eccentricity e(i) of a node i in G , is the maximal distance between the node i

and the other nodes in G. The eccentricity of a node i is calculated as follows :

e(i) = max{ d(i, j) | j ∈ V}. (6.1)

• The closeness centrality measures how close a node is to all other nodes in the

network. The closeness centrality of a node i in G, noted C(i), is calculated as

follows :

C(i) =
1

∑ {d(i, j) | j ∈ V} . (6.2)

To measure the accuracy of time synchronization in WSNs, we have considered max-

imum global skew and the average global skew. The choice of the best ROOT node for

time synchronization depends on the location of the nodes and the objective of the syn-

chronization protocol. Indeed, if the objective is to minimize the maximum global skew,

then the best node to choose is the one with the minimum eccentricity. On the other

hand, if the objective is to minimize the average global skew, then the best choice, in
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this case, is the node with the maximal closeness centrality. In Figure 1, we show the ec-

centricity (Figure 6.1a) and the closeness centrality (Figure 6.1b) of each node in a WSN.

In (Figure 6.1a) the red nodes have the lowest values, and blue nodes have the highest.

In (Figure 6.1b) the blue nodes have the lowest values, and red nodes have the highest.

The black node in the center has the minimum value among all the other nodes. We can

notice that the best choice of the ROOT can differ depending on the metric used.

Figure 6.1: The eccentricity (Figure 6.1a), and the closeness centrality (Figure 6.1b) of
each node in a WSN .
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6.3 The proposed ROOT Selection Method

In this section, we describe a heuristic-based method to select the ROOT node in WSNs.

This heuristic is itself based on a distributed average consensus algorithm. The con-

sensus algorithms allow a set of nodes in a network that initially measures some scalar

values to know the average of measurements in a distributed way [80]. In our case, the

scalars are generated randomly. The average consensus algorithm is iterative, it pro-

ceeds as follows:

1) Initially, each node i in the WSN generates randomly a consensus number xi(0).

2) Periodically, each node of the network broadcasts its consensus number to its

neighbors.

3) A node i which receives all the consensus numbers xj(t)|{j ∈ Ni} from its neigh-

bors, updates its consensus number xi(t + 1) as follows :

xi(t + 1) =
xi(t) + ∑{xj(t)|j ∈ Ni}

|Ni|+ 1
, (6.3)

|Ni| is the number of neighbors of node i.

4) After several iterations, the consensus numbers of all nodes in the network con-

verge to a single consensus value x∗ where :

x∗ = ∑{xi(0)|i ∈ V}
|V| , (6.4)

|V| is the number of nodes in the network. The Proofs of convergence of average

consensus algorithms similar to this algorithm have been detailed in [19, 40, 53].

We simulated this algorithm several times for different networks to calculate the

average of the consensus numbers generated initially. During these simulations, we no-

ticed that, for the nodes located in the center of the network, the values of the consensus

numbers are relatively stable and changes slowly compared to the other nodes. So, our

idea is to exploit this characteristic to select the ROOT for time synchronization. Indeed,

after several iterations, our method chooses as ROOT the node with the most stable

consensus number (which changes the least). To measure the stability of a consensus

number of a node i, we calculate at each iteration the difference (in percent) between
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the new value of the consensus number xi(t + 1) and the old value xi(t). Figure 6.2

shows, after 1000 iterations, the percentage of change of the consensus numbers in a

WSN composed of 1000 nodes. The red nodes have the lowest percentages, and the blue

nodes have the highest percentages. The black node has the minimum percentage of

change among all the other nodes. Therefore, this latter is selected as ROOT.

Figure 6.2: The percentage of change of the consensus values in a WSN composed of
1000 nodes.

From Figure 6.2, we can note that the selected ROOT is not located in the center of

the network. Indeed, if we use only one initial consensus number for each node, the

results are not satisfactory. However, by generating several initial consensus numbers,

we will get better results. The algorithm in this case becomes as follows:

1) Each node i generate randomly an initial consensus vector Ui containing n con-

sensus numbers {xk
i |k = 1, · · · , n}.

2) Periodically, each node in the network broadcasts its consensus vector to its neigh-

bors.

3) A node i which receives all the consensus vectors Uj(t)|{j ∈ Ni} from its neigh-

bors, updates each consensus numbers {xk
i |k = 1, · · · , n } in its consensus vector Ui(t+ 1)

as follows :
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xk
i (t + 1) =

xk
i (t) + ∑{xk

j (t)|j ∈ Ni}
|Ni|+ 1

. (6.5)

4) After several iterations, the initial consensus vectors of all nodes in the network

converge to a single consensus vector U∗.

To choose the ROOT, we average, for each node i, the percentage of change of each

consensus number xk
i |k = 1, · · · , n in the consensus vector Vi. We select as ROOT the

node that has the vector with the minimum average (which changes the least). Figure

6.3 shows the results obtained from the same network as in Figure 6.2, but this time,

each node initially generates a vector containing three consensus numbers. We can see

that the selected ROOT is located in the center of the network. It is also shown in Figure

6.4 that the percentage of change of the consensus vector of a node is globally correlated

to its closeness centrality and eccentricity. Indeed, the pearson correlation coefficients

[81] for closeness centrality and eccentricity are +0, 85 and −0, 89 respectively.

Figure 6.3: The percentage of change of the consensus vectors in a WSN composed of
1000 nodes.

After several iterations, each node i records the percentage of change of its consensus

vector in a variable denoted Mi and begins the final phase of ROOT selection. This phase

is described by the following algorithm :
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Figure 6.4: Correlation between the ROOT selection metric and the node eccentricity.

1: Initialisation of node i

2: ROOTi ← i;

3: Mroot
i ← Mi;

4: Set timer with period T;

5: Upon the timer of node i time-out

6: Broadcast to neighbors < Mroot
i , ROOTi >;

7: Upon node i receiving values < Mroot
j , ROOTj > from node j

8: if (Mroot
j < Mroot

i ) then

9: Mroot
i ← Mroot

j ;

10: ROOTi ← ROOTj;

11: Set timer with period T;

12: endif;

72



6.4. Simulation

ROOTi is the identifier of the ROOT selected by node i, and the Mroot
i is the percent-

age of change of its consensus vector. In the beginning, each node i considers itself as

ROOT. So, ROOTi is set to the node identifier i, and Mroot
i is set to Mi (lines 2 and 3).

Afterward, these two values are broadcasted to the neighbors (line 6). Each node j that

receives the values ROOTi and Mroot
i from the node i chooses as ROOT the node with

the lowest Mroot value (lines 7 and 10). If the ROOT of node j changes, it arms the timer

to broadcast the new information to its neighbors (line 11). After a while, all nodes in

the network select as ROOT the node with the lowest M value.

6.4 Simulation

6.4.1 Case of WSNs networks

To evaluate our method we generated using C++ language 1000 different networks.

Each network consists of 1000 sensor nodes randomly distributed over an area of 1000

m x 1000 m. The sensors’ transmission range is 50 m. We compared, for each net-

work, the selected ROOT node with the other nodes according to its closeness centrality

and eccentricity. We have varied the size of the consensus vectors (table I and II) and

the number of iterations (table III and VI). The obtained results are described in the

following:

Table 6.1: Closeness centrality

Number Size of
of consensus Better(1) Worst(2) Equivalent(3)

iterations vector
1000 3 11.2859 88.6041 0.11

1000 5 6.5234 93.3664 0.1102

1000 10 4.8551 95.0351 0.1098

(1)Percentage of nodes with a closeness centrality less than the ROOT eccentricity (aver-
age for 1000 networks), (2)Percentage of nodes with a closeness centrality greater than
ROOT eccentricity (average for 1000 networks), (3) Percentage of nodes with a closeness
centrality equal to the ROOT eccentricity (average for 1000 networks).

We can see from the obtained results that our ROOT selection method, with a suffi-

cient number of iterations, gives very satisfactory results. Indeed, with 1000 iterations,

and ten initial consensus numbers, our method selects the ROOT among the 5% best-

positioned nodes in the network (nodes with minimum closeness centrality and eccen-

tricity). We can improve these results by increasing the size of the consensus vector.
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Table 6.2: Eccentricity

Number Size of
of consensus Better(1) Worst(2) Equivalent(3)

iterations vector
1000 3 11.3052 85.6108 3.084

1000 5 6.4954 90.9183 2.5863

1000 10 4.632 93.0308 2.3372

(1)Percentage of nodes with a eccentricity less than the ROOT eccentricity (average for
1000 networks), 2)Percentage of nodes with a eccentricity greater than ROOT eccentricity
(average for 1000 networks), (3) Percentage of nodes with a eccentricity equal to the
ROOT eccentricity (average for 1000 networks).

Table 6.3: Closeness centrality

Number Size of
of consensus Better(1) Worst(2) Equivalent(3)

iterations vector
250 10 29.121 70.7665 0.1121

500 10 14.0616 85.8286 0.1098

1000 10 4.8551 95.0351 0.1098

2000 10 4.8237 95.0659 0.1104

(1)Percentage of nodes with a closeness centrality less than the ROOT closeness central-
ity (average for 1000 networks), 2)Percentage of nodes with a closeness centrality greater
than ROOT v (average for 1000 networks), (3) Percentage of nodes with a closeness
centrality equal to the ROOT closeness centrality (average for 1000 networks).

Table 6.4: Eccentricity

Number Size of
of consensus Better(1) Worst(2) Equivalent(3)

iterations vector
250 10 31.1857 63.5675 5.2468

500 10 15.0211 81.094 3.8849

1000 10 4.632 93.0308 2.3372

2000 10 4.0312 93.7851 2.1837

(1)Percentage of nodes with a eccentricity less than the ROOT eccentricity (average for
1000 networks), 2)Percentage of nodes with a eccentricity greater than ROOT eccentricity
(average for 1000 networks), (3) Percentage of nodes with a eccentricity equal to the
ROOT eccentricity (average for 1000 networks).
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However, the number of iterations needed to select the ROOT depends on the number

of nodes and the depth of the network. Indeed, large networks with a higher number of

nodes require more iterations than small ones.

6.4.2 Case of WSANs networks

To evaluate our ROOT selection method in WSANs, we generated 1000 different net-

works. Each network consists of 1000 sensors and 20 actuators randomly distributed

over an area of 1000 m x 1000 m. The sensors’ transmission range is 50 m, and the actu-

ators’ transmission range is 200 m. We note that the WSANs are modeled as a directed

graph. We compared, for each network, the selected ROOT node with the other nodes

in the network according to its closeness centrality and eccentricity. We have set the

size of the consensus vectors to 10 and the number of iterations to 2000. The obtained

results are described in Figure 5. We show that our method also provides good results

for WSANs. Indeed, in this configuration, the ROOT is chosen among the 5% best-

positioned nodes in the network (nodes with maximal closeness centrality and minimal

eccentricity). This result is similar to that of WSNs. We conclude that the presence of

asymmetric links does not negatively affect the ROOT selection method.

Figure 6.5: ROOT selection in WSANs according to the closeness centrality and eccen-
tricity

We notice that actuators can also have better quality clocks than sensors. For these

reasons, it may be judicious to choose the ROOT from the actuators. Indeed, having

a more stable reference clock improves synchronization accuracy. Our ROOT selection

method allows selecting the ROOT node from all the nodes in WSANs, or only from the

actuators. It depends on the chosen strategy.
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6.5 Conclusion

In this chapter, we proposed a new ROOT selection method for time synchronization

protocols. We can integrate this method into existing or future time synchronization

protocols to choose the best ROOT node. In the simulated networks, we successfully

selected the ROOT from the 5% best-positioned nodes. The proposed method is fully

distributed and robust to node failures and topology changes. It is also possible to

increase the size of the consensus vectors and the number of iterations depending on

the network size and topology. The more you increase these two parameters the better

the results are, but also the network load increases.
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Chapter 7
Conclusions and perspectives

In this thesis, we considered the time synchronization problem in WSANs. First, we have

thoroughly studied the time synchronization protocols proposed in the literature. The

main difficulty of these protocols is how to avoid or compensate for the synchronization

message delays. Indeed, these delays are often non-deterministic and cumulative. Then,

we proposed a new time synchronization protocol specifically designed for WSANs.

Our protocol, called SANsync, exploits the large transmission range of the actuators

to reduce the negative impact of the intermediate nodes used in the synchronization

process. This strategy has significantly improved the accuracy of time synchronization.

Afterward, we combined SANSync with the FTSP protocol, which allowed us to reduce

the error amplification, especially when the network diameter is large. And as a re-

sult, we have improved the accuracy of the synchronization throughout the network.

However, the resulting protocol requires additional resources to store information from

neighboring nodes. In the end, we were interested in how to choose the ROOT node

used to synchronize all the other nodes of the network. This choice is very important

since it directly influences the performance of the synchronization protocols. Indeed,

the synchronization accuracy of a node depends on its distance from the ROOT. Surpris-

ingly, this question has not been much discussed in the literature. Thus, we proposed a

fully distributed method to solve this problem. Our method can be integrated into the

synchronization protocols to choose the ROOT from the best-positioned nodes in the

network.

The works presented in this thesis are in progress and can be improved. As perspec-

tives, it will be interesting to work on the following issues:
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• Integrate a temperature compensation algorithm into the proposed protocols. This

will extend their re-synchronization period and thus improve their efficiency.

• Use the quadratic approach to model clocks. Of course, this approach requires

more computation but is more accurate than the linear one.

• Better manage node mobility, in particular the ability to quickly reconfigure clus-

ters.

We also believe that the proposed ROOT selection method can be used to solve other

problems such as routing or load balancing. Indeed, it gives an important centrality

metric that can be easily exploited by different protocols.
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Abstract
The purpose of time synchronization is to allow the different nodes’ clocks in a network to get relatively
close values at any moment. Currently, time synchronization is a fundamental problem in wireless sensor
and actuator networks (WSANs). Indeed, many WSANs applications,  including node localization, sleep
schedule, and data aggregation, require accurate time synchronization to function properly. In this thesis, we
propose  two  cluster-based  time  synchronization  protocols  for  WSANs,  namely  Sensor  and  Actuator
Networks  Synchronization  Protocol  (SANSync),  and  Optimized  Sensor  and  Actuator  Networks
Synchronization Protocol (OSANSync). These protocols, contrary to existing protocols, fully exploit the
available  resources  of  the  actuators,  particularly  their  large  transmission  range,  to  improve  time
synchronization accuracy.  We also propose a heuristic-based method to select  the ROOT node through
which all the other nodes in the network are synchronized. The proposed method is fully distributed and can
be easily integrated into time synchronization protocols to improve their performance.

Keywords:  Time  synchronization,  Wireless  sensor  and  actuator  networks,  Clustering,  Heuristic-based
methods.

Résumé
Le but de la synchronisation temporelle est de permettre aux horloges des différents noeuds d’un réseau
d’indiquer des valeurs relativement proches à tout moment. Actuellement, la synchronisation temporelle est
un  problème  fondamental  dans  les  réseaux  de  capteurs  et  actionneurs  sans  fil  (WSAN).  En  effet,  de
nombreuses applications des WSANs, notamment la localisation des noeuds, la planification de mise en
veille  et  l’agrégation  des  données,  nécessitent  une  synchronisation  temporelle  précise  pour  fonctionner
correctement.  Dans cette thèse, nous proposons deux protocoles de synchronisation temporelle pour les
WSANs basés sur le clusterisation du réseau, à savoir "Sensor and Actuator Networks Synchronization
Protocol  (SANSync)",  et  "Optimized  Sensor  and  Actuator  Networks  Synchronization  Protocol
(OSANSync)". Ces protocoles, contrairement aux protocoles existants, exploitent pleinement les ressources
disponibles des actionneurs, en particulier leur grande portée de transmission, pour améliorer la précision de
la  synchronisation temporelle.  Nous proposons également une méthode heuristique pour sélectionner le
noeud racine à partir duquel tous les autres noeuds du réseau sont synchronisés. La méthode proposée est
entièrement distribuée, et peut être facilement intégrée dans les protocoles de synchronisation temporelle
pour améliorer leurs performances. 
Mots-clefs:  Synchronisation temporelle, Réseaux de capteurs avec actionneurs, Clusterisation, Méthodes
heuristiques.

ملخص الأطروحة
الغرض من مزامنة الوقت هو تمكين مختلف ساعات الأجهزة الموجودة في شبكة معينة من عرض قيم قريبة نسبياً من بعضها البعض في

(. في الواقع ، كثير منWSANs)أي لحظة. في الوقت الحالي ، تعد مزامنة الوقت مشكلة أساسية في شبكات الاستشعار اللاسلCكية 
للوقت لتعملWSANsتطبيقات  تزامناً دقيقاً  البيانات ، تتطلب  الأجهزة و تجميع  برمجة توقف  بما في ذلك تحديد مواقع الأجهزة و   ،  

شبكات  في  الوقت  لمزامنة  يقتين  طر نطور   ، الأطروحة  هذه  في  صحيح.  التزامن WSANsبشكل  بروتوكول  وهما   ،  SANSyncو  ،  
. تعمل البروتوكولات المقترحة على تجميع الأجهزة في حزم ، وخلافاً للبروتوكولات الحالية ، فإنها تستغلOSANSyncالبروتوكول المحسن

بشكل كامل الموارد المتاحة لCلأجهزة الموجودة في الشبكة ، ولا سيما نطاق الإرسال الCكبير ، لتحسين مزامنة الوقت بشكل كبير. نقترح
بالكامل المقترحة هي موزعة  يقة  الطر الشبكة.  في  الأخرى  تتم من خلاله مزامنة جميع الأجهزة  التي  المركزي  يقة لتحديد الجهاز  أيضًا طر

ويمكن دمجها بسهولة في بروتوكولات مزامنة الوقت لتحسين أدائهم.
.مزامنة الوقت ، شبكات الاستشعار اللاسلCكية، تجميع الأجهزة  الكلمات  المفتاحية:
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