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Introduction

Survival analysis also known as failure time analysis, is one of the most significant advance-

ments of statistics in the last quarter of 20th century. It analysis the expected duration

of time until one or more events happen, such as death in biological organism and failure

in mechanical system. This topic is called ”reliability theory” or ”reliability analysis” in

engineering.

The term ’reliability’ in engineering refers to the probability that a product, or system

will perform its designed functions without failures, under a given set of operating conditions

for a specific period of time. The primary aim of reliability system is the prevention of

these failures that affect the operational capability of the system. Many tools developed in

survival analysis, especially in reliability engineering are naturally formulated via the hazard

rate (HR) called also failure rate (FR) concept. In actuarial and demographic disciplines, it

is usually called ”the mortality rate”.

The HR function has been subject of several works, particulary in parametric and non-

parametric estimation. The main problem with the parametric approach is that existing

classical probability distribution families are limited in the face of a multitude of data struc-

tures. A wrong assumption concerning the underlying distribution model for the data may

lead to misleading interpretations. In situations such these, nonparametric methods may be

more suitable. The nonparametric methods impose only mild assumptions, such as smooth-

ness, on the underlying probability distribution and so avoid the risk of specifying the wrong

model for the data. There are several nonparametric estimation methods, such, maximum

penalized likelihood estimates (de Montricher et al., 1974), orthogonal series estimates (Sil-
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verman, 1986), smoothing splines (Gu, 1993), and the one that received the most important

attention is the kernel method (Rosenblatt, 1956) known by its simplicity and great flexibil-

ity.

Kernel method also known as Parzen-Rosenblatt window method is rooted from the

histogram methodology, introduced firstly by Rosenlatt (1956) for the density function esti-

mation and generalized by Parzen (1962), then developed by Nadaraya (1964) and Ferraty

and Vieu (2003) for regression function estimation. This method is characterized by two es-

sential parameters: the kernel function K which can be symmetric (classical) or asymmetric,

and the smoothing parameter (bandwidth) h. As in all smoothing methods, the inherent

issue is the selection of the smoothing parameter, which can be done by using several tech-

niques such as, cross validation, plug-in and bayesian approach. It is well known from the

literature that the kernel function has less impact than the bandwidth on the resulting esti-

mate. Despite the fact, the kernel should be properly chosen regarding to the support of the

function to be estimated, for instance when the density function of the data have a bounded

support, using the classical kernel leads to an estimator with a large bias near the endpoints,

called ”boundary effect”. This is especially the case in survival analysis, since the survival

time is assumed to be nonnegative variable. So, near zero, the symmetric kernel estimator of

the density and the HR functions underestimates the true ones, and this problem becomes

a serious drawback when a large portion of the sampled data are present in the boundary

region. In fact, many solutions are proposed to avoid the problem of boundary bias, such

as boundary kernel method, see (Jones, 1993; Zhang and Karunamuni, 2000), local linear

method (Lejeune and Sarda, 1992; Cheng, 1997; Zhang and Karunamuni, 1998), local renor-

malization method (Härdle, 1990), pseudo-data method (Cowling and Hall, 1996), reflection

method (Cline and Hart, 1991), ect.

The asymmetric kernels have been proposed as a best solution for avoiding these boundary

effects. This simple idea is due to Chen (2000) by introducing beta and gamma kernels,

Scaillet (2004) by introducing Inverse Gaussian (IG) and Reciprocal Inverse Gaussian (RIG)

kernels and Marchant et al. (2013) with Generalized Birnbaum-Sauders (GBS) kernels.

Reliability analysis mostly deals with positive random variables, which are often called

lifetimes. The analysis of lifetime data by HR function has received considerable attention,
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for instance, Bouezmarni et al. (2011) by using gamma kernel in the context of censored

data, Salha (2013, 2014) using inverse Gaussian (IG), Erlang and weibull kernels, Altun and

Comert (2016) used Weibull-Exponential models to represent the typical L-shaped HR of

electronic products, Moriyama and Maesono (2018) proposing a new kernel estimator of HR

function, that is based on a modification of Čwik and Mielniczuk method and Athayde et al.

(2019) have analyzed the failure rate of generalized Birnbaum–Saunders GBS distributions;

the change-points and statistical robustness are discussed.

Our work focuses on estimation of HR function using the nonparametric kernel method

in the case of complete data, by using the class of GBS kernels. The choice of this class

of kernels is motivated by several points. First, the family of GBS kernels includes various

special cases such as, BS-classical (BS), BS-power-exponential (BS-PE), BS-Student (BS-t)

and BS-laplace (BS-lap) kernels. As second motivation, some applications of GBS kernels

method for HR function estimation can be found in various domains, because of its several

interesting properties and flexibility. In fact, the GBS distribution contains a wider class of

positively skewed densities with nonnegative support that possesses lighter and heavier tails

than the BS distribution. Thus, the GBS distribution is essentially flexible in the kurtosis

level, see Marchant et al. (2013).

Our study is not restricted to HR function alone; two other important reliability measures

related to the HR function are also studied using the class of GBS kernels, as well; reliability

function (survival function) and reversed hazard rate function (RHR). These two functions

have also attracted considerable attention among researchers, for instance, Brunel et al.

(2016) have studied the kernel estimator of reliability function in multiplicative censoring

model, Srivastava (2020) has estimated the reliability Function of Log Gompertz Model,

Desai et al. (2011) have analyzed the nature of RHR and Veres-Ferrer and Pavia (2014) by

studying the relationship between the RHR and elasticity.

We have organized this document in four chapters. In Chapter 1, we present some basic

concepts in reliability theory, in particular the general properties of HR, reliability and RHR

functions. The Chapter 2 presents the kernel method and gives some clarification about

the class of GBS kernel in the case of density function estimation. The Chapter 3 deals

with the HR function estimation using kernel method. First we give an overview of some
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results of kernel estimation of HR function in both cases of complete and censored data,

then we introduce our proposed kernel estimator using the class of GBS kernel and we study

its asymptotic properties, strong consistence and asymptotic normality. Also the bandwidth

parameter h is estimated by two methods: rule of thumb (RT) and unbiased cross validation

(UCV). In addition, simulation and application with real data are investigated to test the

performance of our proposed estimator. In the Chapter 4, we use the class of GBS kernel in

estimation of reliability and RHR functions and establish their asymptotic properties. The

bandwidth is selected by RT and UCV methods, then simulation study is investigated to

test the performance of the estimators of reliability and RHR functions, and selecting the

most appropriate bandwidth method. We finish our document with conclusion and some

perspectives.
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Chapter 1
Reliability analysis

Introduction

The life distribution is characterized by many useful reliability functions such as survival

function (called also reliability function), hazard rate function, reversed hazard rate function,

mean residual life, etc. The behaviour of these functions serves to describe the ageing

properties of a device, and prevent any eventual failures. These elementary functions and

some other basic concepts are illustrated in this introductory chapter. The reader can also

refer to Lai and Xie (2006), Marshall and Olkin (2007), Finkelstein (2008) and O’Connor

(2011).

Usually in reliability analysis, we deal with positive random variable which represents time to

failure of an engineering component. This random variable r.v. is called ”lifetime”, usually

assumed to be continuous. We will restrict ourselves to this case, with density function pdf

(called failure density) and cumulative density function cdf.

1.1 Basic reliability concepts

In this section, we summarize the essential elements in reliability analysis, such as failure

density function, reliability function, residual life distribution, hazard rate function and

reversed hazard rate function.

Let T be a r.v representing lifetime of an item, with pdf f and cdf F .

5



Basic reliability concepts

1.1.1 Failure density function

Generally, the density failure function of the lifetime r.v. T is positively skewed (skewed to

the right or steep on the left–hand side). Thus, f(t) has a flat and relatively long right–hand

tail, meaning that longer lifetimes are less probable than shorter lifetimes and that the mean

life (life expectancy) is greater than the median life.

Especially for a newly born organism or a produced unit, e.g., for a unit starting at age

t = 0, the probability to fail up to an age t > 0, called cumulative distribution function cdf,

is given by

P(T ≤ t) =

∫ t

0

f(u)du, t > 0.

Definition 1.1.1. The failure density function that represents the probability of failure in

the interval [t, t+ dt], with dt is small enough, is defined as

f(t) = F ′(t) = lim
dt→0

F (t+ dt)− F (t)

dt

= lim
dt→0

1

dt
P(t < T < t+ dt), t > 0.

Therefore, when dt is sufficiently small

f(t)dt ' P(t < T < t+ dt).

All probability density functions for the variable ‘lifetime’ satisfies the two popular con-

ditions: f(t) > 0, ∀t > 0 and
∫∞

0
f(t)dt = 1.

The mean time to failure (MTTF), also called average lifetime, expected lifetime, life

expectancy, or mean lifetime, is another important descriptor in lifetime analysis. Thus, the

mean time to failure of the r.v. T is given by

µ = E(T ) =

∫ ∞
0

tf(t)dt.

1.1.2 Reliability function

The reliability function is considered as a very useful indicator in several fields. Reliability

engineers use the reliability function in many types of decision making. In manufacturing,

this function provides a tool for setting warranties. In system safety designs, it provides
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one basis of safety assessment. Thus, accurate estimation of the reliability function is of

importance in many industries. The most common method modeling the reliability function

is the non-parametric Kaplan–Meier estimator proposed by Kaplan and Meier (1958). Many

works are carried out on this function, see for instance, Brunel et al. (2016) and Srivastava

(2020).

The reliability of a device is defined as the probability that this device performs its

intended function for a given period of time under conditions specified for its operation.

When the device does not perform its function satisfactorily, we say that it has failed. When

the random variable T represents the lifetime of a device, the observation on T is realized

as the time of failure.

Definition 1.1.2. The reliability function R, also known as the survival function S, is

defined as

S(t) = R(t) = P(T > t) = 1− P(T ≤ t) = 1− F (t), t > 0.

It represents the probability that the random event (time of failure) occurs after t.

The reliability function R satisfies the following properties

• R(t) is a decreasing function, with t.

• limt→0R(t) = 1 and limt→∞R(t) = 0,

The Figure 1.1 gives the form cdf and reliability function.

The components and the way in which they are arranged within the system, have a direct

effect on the entire system reliability. We consider T1, T2, ...Tn lifetimes of n components,

and suppose they are independent, with reliability function Ri, i = 1, n.

Let Ts and Rs be the lifetime and the reliability function of the system, respectively.

In the case of series system (Figure 1.2), the reliability of this system is always lower

than the reliability of any of its components, it fails if any of its elements fails. Then its

reliability function is obtained simply as the product of probabilities of each elements.

Rs(t) = P(Ts > t) = P(min
i
Ti > t) =

n∏
i=1

P(Ti > t) =
n∏
i=1

Ri(t).
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Figure 1.1: Cumulative density function (cdf) and reliability function.

Figure 1.2: Series system model.

For the case of parallel system (Figure 1.3), it is sufficient that one of its components

work to make the system work, because it fails only if all its parts fail. Its reliability function

is given by

Rs(t) = P(Ts > t) = P(max
i
Ti > t) = 1− P(max

i
Ti ≤ t), i = 1..n,

and as the components are independent, we write

Rs(t) = 1−
n∏
i=1

(Ti ≤ t) = 1−
n∏
i=1

(1−Ri(t)).

1.1.3 Residual life distribution

How much longer will an item of age t live? This question is vital for reliability analysis,

survival analysis, actuarial applications and other disciplines. For example, how much time

does an average person aged 65 have left to live? The residual life is an important measure

in reliability application which summarizes the entire remaining life distribution. Let an

item with a lifetime T and a cdf F (t) start operating at t = 0. The residual lifetime at time
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Figure 1.3: Parallel system model.

t ≥ 0 is the time left up to the failure for a component starting its life at time 0 and it is

still alive at time t.

Definition 1.1.3. Let F be a distribution function such that F (0) = 0. The residual life

distribution of F at t, noted by Ft is defined for all t > 0, s > 0 and such that R(t) > 0, by

Ft(s) = P(T ≤ t+ s |T>t) = 1− R(t+ s)

R(t)
. (1.1)

Clearly, the residual life distribution Ft is a conditional distribution of the remaining life

given survival up to time t. This distribution is of considerable practical importance because

the remaining life of devices (used cars, etc) or of biological entities (people, for example) is

often of interest.

The mean residual life function m(t) is the mean of the residual life distribution Ft as a

function of t, and is given by

m(t) =

∫ ∞
0

R(t+ s)

R(t)
ds, (1.2)

for t such that R(t) > 0.

Other terms have been used for this function; in the context of actuarial science, it has been

called ”the average excess claim” or ”the mean excess function”, see Marshall and Olkin

(2007).

1.1.4 Hazard Rate (HR) function

The major notion in survival analysis is the hazard function called also failure rate function,

noted by λ. It defines the conditional probability that a component fails in a small time
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interval, given that it has survived from time zero until the beginning of the time interval.

Definition 1.1.4. If F is an absolutely continuous cdf with density f , then the hazard rate

function λ is defined by

λ(t) = lim
dt→0

P (t < T ≤ t+ dt |T>t
dt

= lim
dt→0

F (t+ dt)− F (t)

R(t)dt

=
f(t)

R(t)
, t > 0.

Note that R(t) > 0 and the density function f is well defined for all t ≥ 0.

The hazard rate is also called failure rate, death rate, force of mortality and intensity

function in other disciplines such as survival analysis, actuarial science, demography, extreme

value theory and bio-sciences.

The hazard rate measures the propensity to fail depending on the age reached and it thus

plays a key role in characterizing the process of aging and in classifying lifetime distributions.

For instance, when we want to predict the chance of failure at age t for a newly born or

produced unit having F (t) as its cdf we have to use f(t) (failure density), i.e., f(t) is an

unconditional predictor for risk to fail at t. But when we know that a unit has survived up

to t, we have to use λ(t) which is a conditional predictor.

The HR function λ(t) satisfies the following properties

λ(t) ≥ 0, ∀t ≥ 0, and

∫ ∞
0

λ(t)dt =∞.

Care should be taken not to confuse the hazard rate with the Rate of Occurrence of

Failures (ROCOF). The ROCOF is the probability that a failure (not necessarily the first)

occurs in a small time interval. Unlike the hazard rate, the ROCOF is the absolute rate

at which system failures occur and is not conditional on survival to time t. The ROCOF

is using in measuring the change in the rate of failures for repairable systems. (O’Connor,

2011).

As is well-known, the density probability function of a random variable can be integrated

to obtain the cumulative distribution function. Analogously, the hazard rate of a variate can

be integrated to obtain the cumulative hazard rate. Specifically, the cumulative hazard rate

of an r.v. T is given by

Λ(t) =

∫ t

0

λ(x)dx, t > 0,
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and it satisfies three conditions

• Λ(0) = 0,

• limt→∞ Λ(t) =∞;

• Λ(t) is increasing with t.

As the hazard rate can vary over time, then it is useful to find an average value (known

as failure rate average) to represent the behavior of this rate in an interval of fixed time, say

[0, t]. Thus, the failure rate average (FRA) of an r.v. T is given by

FRA(t) =
Λ(t)

t
, t > 0.

Relationship among density, distribution, reliability and hazard functions are presented in

the Table 1.1.

f(t) R(t) λ(t) Λ(t)

f(t) = - −R′(t) λ(t) exp{−
∫ t

0
λ(x)dx} −d{exp[−Λ(t)]}

dt

R(t) =
∫∞
t
f(x)dx - exp{−

∫ t
0
λ(x)dx} exp{−Λ(t)}

λ(t) = f(t)

1−
∫ t
0 f(x)dx

−R′(t)
R(t)

- Λ′(t)

Λ(t) = − ln
∫∞
t
f(x)dx − ln[R(t)]

∫ t
0
λ(x)dx -

Table 1.1: Summary of important functions relationships (O’Connor 2011).

.

The different graphical Shapes of HR function

Hazard rate can take any graphical forms, according to the life time distribution. We dis-

tinguish

• Increasing form: The intuitive content of an increasing hazard rate stems from the

interpretation of λ(t)dt as the conditional probability of failure in the interval [t, t+dt]

given survival up to time t. Thus, with an increasing hazard rate, the probability

of failure in the next instant of time increases as the device or organism ages. In a

very real sense this is a mathematical translation of the intuitive concept of “adverse

ageing,” but it would be unfair to claim that it is the only mathematical translation

of this concept.
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• Decreasing form: An item has a decreasing hazard rate if, as it ages, the chance of

failure (death) in the next instant of time decreases. This is the opposite of wear-

out, and might be called “wear-in.” Humans might exhibit a decreasing probability of

failing at some particular job as they gain experience and practice. But mixtures may

be the most important source of distributions with decreasing hazard rates.

• Bath-Tub form

Definition 1.1.5. (Marshall and Olkin, 2007) A distribution is said to have a bath-tub

hazard rate if for some 0 < a < b, the hazard rate λ(t) is decreasing in t, 0 < t < a, is

constant in the interval a < t < b, and is increasing in t, t > b.

The bath-tub curve is the most popular graph in reliability application, and may be

broadly classified in three distinct time zones, each one corresponds a distinctive failure

mode: infant mortality (wear-in), youth (constant rate) and aging (wear-out) mode,

as shown above in Figure 1.4.

Figure 1.4: Form 01 of bath-tub curve.

The infant mortality or wear-in mode is generally short, with a high but decreasing

rate such as in the case of human life expectancy and the engineered product, for

instance, in Engineering the wear-in mode may be due to defective parts or defects in

materials. To correct this situation, one may resort to design improvement, care in

materials selection and tightened production quality control.
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The youth or constant rate mode is exhibited by those product that have survived the

wear-in period. The rate is generally the lowest; and in some product it maintains a

long and flat behavior.

Random failure can be reduced by improving product design, making it more robust

with respect to the service condition to which it is exposed in real life.

The aging or wear-out mode is usually due to material fatigue. The wear-out mode

is often encountered in mechanical systems with moving parts such as pumps, en-

gines, automobile tires, ect. Onset of rapidly increasing rate requires measures such

as increased regularity of inspection, maintenance, replacement, etc. Since in these

products the youth period is relatively short while the wear-out period is long, such as

depicted in Figure 1.5

Figure 1.5: Form 02 of bath-tub curve.

• Inverted bathtub (upside-down) form

Definition 1.1.6. (Marshall and Olkin, 2007) A distribution is said to have an in-

verted bathtub hazard rate if for some 0 < a < b, the hazard rate λ(t) is increasing

in t, 0 < t < a, is constant in the interval a < t < b, and is decreasing in t, t > b.

Alternatively, such hazard rates are said to be unimodal.

Inverted bathtub hazard rates have not attracted much interest, at least in reliability

theory, perhaps because the bathtub hazard rates have been a focus of attention.

The just described origin of bathtub hazard rates for biological organisms has its

counterpart for mechanical systems. A new system may suffer from “bugs”, that is,

from errors of design or of construction. Moreover, the operators of the system may
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be initially inexperienced. As the system ages, the potential for bugs or human error

diminishes, causing the hazard rate to decrease. But after a while, the effects of aging

cause the hazard rate to rise.

Let T1, T2, ..., Tn lifetimes of n components, distributed as T , and suppose that the compo-

nents are independent.

In the case of the series system, the HR is represented as the sum of the HR of the compo-

nents, that is

λ(t) =
n∑
i=1

λi(t).

In the case of parallel system, we use the fact that

R(t) = 1−
n∏
i=1

{
1− exp

[
−
∫ t

0

λi(u)du

]}
,

and

λ(t) = −R
′(t)

R(t)
.

We obtain the following formula of HR

λ(t) =

∑n
i=1 λi(t) exp

[
−
∫ t

0
λi(u)du

]∏
j 6=i

{
1− exp

[
−
∫ t

0
λj(u)du

]}
1−

∏n
i=1

{
1− exp

[
−
∫ t

0
λi(u)du

]} .

1.1.5 Reversed Hazard Rate (RHR) function

The reversed hazard rate RHR function was introduced by Keilson and Sumita (1982), and

have attracted considerable interest among researchers, see for instance Chandro and Roy

(2001, 2005), and Finkelstein (2002).

Definition 1.1.7. Let T be a r.v. representing lifetime, with density function f and cumu-

lative distribution function F , the reversed hazard rate of T is defined as

ρ(t) = lim
dt→0

P(t− dt < T ≤ t |T≤t)
dt

=
f(t)

F (t)
, t > 0.
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Thus, ρ(t)dt can be interpreted as an approximate probability of a failure in (t − dt, t],

given that the failure had occurred in ]0, t]. We can establish the relation between the hazard

rate function λ and the reversed hazard rate function ρ as

ρ(t) =
λ(t)

exp
{∫ t

0
λ(u)du

}
− 1

, t > 0.

Note that,

lim
t→0

ρ(t) =∞.

In lifetime data analysis, the concepts of reversed hazard rate has potential application when

the time elapsed since failure is a quantity of interest in order to predict the actual time of

failure, and it is more useful in estimating reliability function when the data are left censored

or right truncated.

The RHR function was initially introduced by actuarial research, until now it has mainly

been applied to reliability engineering (Desai et al., 2011). So it plays a vital role in the

analysis of parallel systems, indeed for identical independently distributed components, the

RHR of the system life is proportional to the RHR of each component, and this is not obvious

for the HR function. Reliability engineering, however, is not the only field where this tool

has proved useful. Reversed hazard can be also employed for analyzing right-truncated and

left-censored data. See, for instance Finkelstein (2008) and Desai et al.(2011).

A number of different applications of the RHR function, in the study of lifetime r.v. have

been already investigated in the literature. Thus, Andersen et al.(1993) use the RHR in the

estimation of the survival function in the presence of left censored observations. Block et al.

(1998) characterize some useful properties for k out of n systems in terms of the RHR. Some

properties of the waiting time (time elapsed since the failure of an object till the time of

observation) with respect to the RHR were studied by Chandra and Roy (2001). In addition,

Veres-Ferrer and Pavia (2014) expand the usefulness of RHR in economics.

1.2 Common life distibutions

We use the term ”life distributions” to describe the collection of statistical probability dis-

tributions that we use in reliability engineering and life data analysis. Naturally any distri-
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bution of non-negative random variables could be used to describe durations.

The distributions to be presented here are all continuous and they have appeared more

frequently in the literature, such as Marshall and Olkin (2007), Lai and Xie (2006) and

O’Connor (2011).

Recall that T is a lifetime r.v. with pdf f and cdf F .

1.2.1 Exponential distribution

The exponential distribution is a fairly simple distribution commonly used in reliability

analysis. If the r.v. T follows the exponential distribution, with the parameter λ, T ∼ exp(λ)

then, the corresponding density f , reliability function R, hazard rate λ and reversed hazard

rate ρ are defined respectively for t > 0, by

f(t) = λ exp{λt},

R(t) = exp{−λt},

λ(t) = λ

ρ(t) =
λ

exp{λt} − 1
.

where the parameter λ > 0 acts both as a scale parameter and a frailty parameter. Note

that the hazard rate λ is constant, so the exponential distribution is used to model the

behavior of items that have a constant failure rate (i.e., items that do not degrade with time

or wear out). This is the case of many engineering devices (especially electronic) which have

a constant hazard rate (λ > 0) during the usage period.

The exponential distribution is the only one that possess the memoryless property, in the

continuous case, so

F (t/x) = F (t), ∀x, t ≥ 0,

where F (t/x) is a conditional distribution function.

The following propositions is given in Marshall and Olkin (2007).

Proposition 1.2.1. A distribution has a constant hazard rate if and only if it is an expo-

nential distribution.

page 16



Common life distibutions

Proposition 1.2.2. A distribution F has a mean residual life independent of age if and only

if it is an exponential distribution.

Figure 1.6: HR function of exponential distribution, with λ = 2.

1.2.2 Gamma distribution

Let the r.v. T follows the gamma distribution with shape and scale parameters α > 0, β > 0.

It is characterized by the density

f(t) =
βα

Γ(α)
tα−1 exp(−βt), t > 0.

Where the gamma function is defined in the usual way by

Γ(α) =

∫ ∞
0

tα−1 exp(−t)dt.

Proposition 1.2.3. (Marshall and Olkin, 2007)

The density of the gamma distribution is

• completely monotone, log convex, and decreasing, for 0 < α < 1,

• log concave and unimodal, for α ≥ 1, with mode at the point t = (α− 1)/β.

The reliability function can be given in closed form only when α is an integer. In that

case,

R(t) =
α−1∑
k=0

exp(−βt)k/( !k), t > 0.
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When α is a positive integer, the gamma distribution can be called the Erlang distribution.

The HR and RHR of the gamma distribution do not take a convenient form. Following

Barlow and Proschan (1975, p. 74), we write the survival function as an integral of the

density to obtain

1

λ(t)
=

∫ ∞
t

(z
t

)α−1

exp(−β(z − t))dz =

∫ ∞
0

[
1 +

u

t

]α−1

exp(−βu)du,

where the second integral is obtained from the first by the change of variable u = z − t. By

deriving the expression above, it is easy to see that for all β > 0

• α < 1, λ(t) increases with time.

• α > 1, λ(t) decreases with time.

• α = 1, λ(t) is constant, (case of exponential distribution),

and limt→∞ λ(t) = β, for all α > 0.

The gamma distribution is flexible in shape and can give good approximations to life data.

Figure 1.7: HR function of gamma distribution, with β = 1.

1.2.3 Weibull distribution

The Weibull distribution with parameters η and β denoted by W(η, β) can be viewed as a

generalization of the exponential distribution, it has wide application in reliability analysis
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(e.g., engines, mechanical devices) and in human mortality.

Its density f , reliability R, hazard rate λ, and reversed hazard rate ρ, are given respectively

for t > 0 as

f(t) =
β

η

(
t

η

)β−1

exp

[
−
(
t

η

)β]
,

R(t) = exp

(
− t
η

)β
,

λ(t) =
β

η

(
t

η

)β−1

,

ρ(t) =

β
η

(
t
η

)β−1

exp

[
−
(
t
η

)β]
1− exp

(
− t
η

)β .

Where η > 0 and β > 0 are shape and scale parameter, respectively. Note that the hazard

rate is a function of time, it can be used to model a variety of life behavior. According to

the shape parameter β, one can state that for all η > 0, if (see, O’Connor 2001, page 65)

• β < 1, λ(t) decreases with time, that represent the infant period.

• β > 1, λ(t) increases with time, that represent the wear-out period.

• β = 1, λ(t) is constant, that represents the youth period (case of exponential distribution).

• 1 < β < 2. λ(t) increases less as time increases.

• β = 2, λ(t) increases with a linear relationship to time.

• β > 2, λ(t) increases more as time increases.

• β < 3.447798, the distribution is positively skewed. (Tail to right).

• β ≈ 3.447798, the distribution is approximately symmetrical.

• β > 3.447798, the distribution is negatively skewed (Tail to left).

• 3 < β < 4, the distribution approximates a normal distribution.

• β > 10, the distribution approximates a Smallest Extreme Value Distribution.

It follows that, limt→∞ λ(t) = 0 for β < 1 and limt→∞ λ(t) = +∞ for β > 1.

The Weibull distribution is by far the most popular life distribution used in reliability en-

gineering. This is due to its variety of shapes and generalization or approximation of many

other distributions. Analysis assuming a Weibull distribution already includes the exponen-

tial life distribution as a special case.
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Some applications where the Weibull distribution has been used are: Acceptance sampling,

Warranty analysis, Maintenance and renewal, Strength of material modeling, Wear mod-

eling, Electronic failure modeling, Corrosion modeling, see (O’Connor 2011, p.66) and a

detailed list with references to practical examples is contained in (Rinne 2008, p.275).

Figure 1.8: HR function of Weibull distribution.

1.2.4 Lognormal distribution

It is well known, the normal distribution is the most used in statistics, however it is not a

lifetime distribution as its support is (−∞,+∞). Therefore, the lognormal distribution is

derived from the normal distribution for positive r.v.

The r.v. T follows the lognormal distribution with parameters m,σ2, denoted by LN (m,σ2).

If Y = lnT is normally distributed, Y ∼ N(m,σ2), where m and σ2 are mean and variance

of Y respectively. Its density f , reliability function R, hazard rate λ and reversed hazard
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rate ρ for t > 0 are

f(t) =
1

tσ
√

2π
exp

[
−(ln t−m)2

2σ2

]
,

R(t) = 1− φ
(

ln t−m
σ

)
,

λ(t) =

φ

[
ln(t)−m

σ

]
tσ

{
1− φ

[
ln(t)−m

σ

]} ,

ρ(t) =

1

tσ
√

2π
exp

[
−(ln t−m)2

2σ2

]
φ

(
ln t−m

σ

) ,

where φ denotes the standard normal distribution function. The hazard rate λ is unimodal

with slow decrease to zero as t→ 0.

The lognormal distribution has been found to accurately model many life distributions

and is a popular choice for life distributions. The increasing hazard rate in early life models

the weaker subpopulation (burn in) and the remaining decreasing hazard rate describes the

main population. In particular this has been applied to some electronic devices and fatigue-

fracture data. Its is also considered as a good candidate for modeling the repair time in

engineering system. See O’Connor (2011, p. 56).

Figure 1.9: HR function of lognormal distribution with m = 2 and σ = 1.

page 21



Common life distibutions

1.2.5 Log-logistic distribution

The log-logistic distribution with parameters α and β is the probability distribution of a r.v

whose logarithm has a logistic distribution. It is very useful in a wide variety of applications,

especially in the analysis of survival data, and has been quite frequently to analyze positively

skewed data.

It is characterized by the density f , reliability function R, hazard rate λ and reversed hazard

rate ρ. these are given for t > 0 as follows

f(t) =

β

α

(
t

α

)β−1

[
1 +

(
t

α

)β]2 ,

R(t) =

[
1 +

(
t

α

)β]−1

,

λ(t) =

β

α

(
t

α

)β−1

1 +

(
t

α

)β ,
ρ(t) =

β

t

[
1 +

(
t

α

)β] ,
where α > 0 and β > 0 are scale and shape parameters, respectively. The shape of the

hazard rate function of log-logistic distribution depends on the parameter β; when β > 1

the hazard function is unimodal and when β ≤ 1 it decreases monotonically. The shape of

log-logistic distribution is very similar to those of log-normal distribution. Therefore, often

it is very difficult to discriminate between a log-normal and a log-logistic distribution if the

sample size is not very large. However, due to the symmetry of the log-logistic distribution,

it may be inappropriate for modeling censored survival data, especially for the cases where

the hazard rate is skewed or heavily tailed, (Kissell and Poserina 2017).

1.2.6 Birnbaum Saunders distribution (BS)

The Birnbaum-Saunders (BS) family of distributions was proposed to model the length of

cracks on surfaces. In fact, it is a two-parameter distribution for a fatigue life with unimodal
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Figure 1.10: HR function of log-logistic distribution.

hazard rate function. Considerable amount of work has been done on this distribution.

If the r.v. T follows BS distribution with parameters α and β, T ∼ BS(α, β) then, its

density f and the reliability R are defined for t > 0 as

f(t) =
1

2
√

2παβ

[(
β

t

)1/2

+

(
β

t

)3/2
]

exp

{
−1

2α2

[
t

β
+
β

t
− 2

]}
,

R(t) = 1− Φ

{
1

α

[(
t

β

)1/2

−
(
β

t

)1/2
]}

,

where α > 0 is the shape parameter, β > 0 is the scale parameter, and Φ is the standard

normal distribution function. Its HR and RHR functions do not have a closed form. The HR

function is always unimodal; it increases from 0 to its maximum value and then decreases

to
1

2αβ2
, i.e. it is upside-down bathtub shaped; see Kundu et al. (2008) and O’Connor

(2011). For comprehensive reviews on various developments concerning the BS distribution,

one may refer to Johnson et al. (2005) and Leiva et al. (2008).

1.3 Bathtub life distributions

The class of lifetime distribution having a bathtub shape failure rate function is very impor-

tant because the lifetime of electronic, electromechanical, and mechanical products are often
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Figure 1.11: HR function of BS distribution, with α = 2 et β = 3.

modeled with this feature. Above some of bathtub life distribution are presented.

1.3.1 Modified Weibull distribution

The modified Weibull distribution with parameters α, β and γ, is derived from the basic

Weibull distribution, it is characterized by the density f , the reliability R, hazard rate

function λ and reversed hazard rate function ρ, for t ≥ 0 as

f(t) = α(β + γt)tβ−1 exp(γt) exp[−αtβ exp(γt)],

R(t) = exp[−αtβ exp(γt)],

λ(t) = α(β + γt)tβ−1 exp(γt),

ρ(t) =
α(β + γt)tβ−1 exp(γt) exp[−αtβ exp(γt)]

1− exp[−αtβ exp(γt)]
,

where α > 0, γ > 0 are scale parameters and β > 0 is the shape parameter.

Note that for (See, O’Connor, 2011, p. 81).

• 0 < β < 1 and γ > 0, the HR function λ(t) has a bathtub curve shape.

• β ≥ 1 and γ > 0, the HR function λ(t) is increasing.

• γ = 0, the HR function λ(t) has a same form as a Weibull distribution, with two parameters.
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Bathtub life distributions

Proposition 1.3.1. (Xie et al., 2004)

When the HR function is a bathtub curve (0 < β < 1 and γ > 0), then the minimum hazard

rate point is given by

m =

√
β − β
γ

.

1.3.2 Exponentiated Weibull distribution

The exponentiated Weibull distribution is an extension of the Weibull family obtained by

adding a second shape parameter, its density f , reliability R, hazard rate function λ and

reversed hazard rate ρ are given respectively for t ≥ 0

f(t) =
βνtβ−1

αβ

[
1− exp

{
− t
α

}β]ν−1

exp

{
−
(
t

α

)β}
,

R(t) = 1−

[
1− exp

{
−
(
t

α

)β}]ν
,

λ(t) =
α−1βν(t/α)β−1

[
1− exp

{
−
(
t
α

)β}]ν−1

exp
{
−
(
t
α

)β}
1−

[
1− exp

{
−
(
t

α

)β}]ν ,

ρ(t) =

βνtβ−1

αβ

[
1− exp

{
− t
α

}β]ν−1

exp

{
−
(
t

α

)β}
[

1− exp

{
−
(
t

α

)β}]ν ,

with α is a scale parameter, β and ν are shape parameters.

Note that for (see, O’Connor, 2011, p. 79).

• β ≤ 1 and βν ≤ 1, λ is monotonically decreasing.

• β ≥ 1 and βν ≥ 1, λ is monotonically increasing.

• β < 1 and βν > 1, λ is unimodal.

• β > 1 and βν < 1, λ is bathtub curve.

This distribution is applied to model failure data and extreme value data.
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Bathtub life distributions

Figure 1.12: HR function of exponentiated Weibull distribution, with α = 5.
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Chapter 2
Kernel method and pdf estimation

2.1 Introduction

Kernel estimation is the most popular nonparametric method, introduced firstly by Rosen-

blatt (1956) and Parzen (1962) to estimate un unknown density function pdf f of a univariate

random variable r.v. T , in the support (−∞,+∞). Let T1, T2, .., Tn i.i.d random variables,

the kernel estimator f̃h of f is given by

f̃h(t) =
1

nh

n∑
i=1

K

(
Ti − t
h

)
, ∀t ∈ R,

with t is the target (point where the density is estimated), K is the symmetric kernel and

h (h > 0) is the smoothing parameter (called also bandwidth) which controls the amount

of smoothing of f̃h, satisfying h → 0 when n → ∞. The consistency of the estimator f̃h is

well documented; see Parzen (1962) or Silverman (1986), for a set of regularity conditions

for consistency. However, the estimator above is not appropriate when the density to be

estimated f is supported in positive half-line R+ (nonnegative data), because it causes

problem in the boundary, called ”boundary effect”. The alternative way proposed by Chen

(1999, 2000) is to use asymmetric kernel instead of the symmetric one. See, Hirukawa (2018)

for more details about this type of kernels.

In the next, we give more details about symmetric and asymmetric kernels and we present

the different methods of selection the bandwidth parameter.
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Symmetric (classical) kernel

2.2 Symmetric (classical) kernel

Let T1, T2, ..., Tn a set of independent identically distributed (i.i.d.) r.v. , distributed as T ,

with pdf f supported in R and cumulative distribution function cdf F .

The approximation of the derivative f of F at a given t can be written as

f(t) = lim
h→0

F (t+ h)− F (t− h)

2h
, ∀t ∈ R.

Then, the estimator f̃h of the pdf f is given by

f̃h(t) '
F̃ (t+ h)− F̃ (t− h)

2h
, ∀t ∈ R,

where F̃ is the empirical distribution function estimator of F , with F̃ (t) = 1
n

∑n
i=1 1(−∞,t](Ti),

such that 1(−∞,t] is the indicator function on (−∞, t].

By conducting some simple developments, we obtain the following

f̃h(t) '
1

2nh

n∑
i=1

1
[−1≤Ti−t

h
≤1]
∀t ∈ R.

This kernel estimator f̃h(t) is introduced by Rosenblatt (1956) with a uniform kernel on

[−1, 1] and after any years, Parzen(1962) generalized the above estimator using any proba-

bility density function K instead of the uniform kernel function on [−1, 1].

So, the general expression of symmetric kernel density estimator is given by

f̃h(t) =
1

nh

n∑
i=1

K

(
Ti − t
h

)
∀t, (2.1)

where h is the bandwidth and K is the symmetric kernel which verify the following conditions∫
R
K(u)du = 1,

∫
R
uK(u)du = 0,

∫
R
u2K(u)du = σ2

K <∞. (2.2)

The Table 2.1 gives some examples of symmetric kernels, see (e.g, Scott, 1977), and the

Figure 2.1 displays their shapes.

Asymptotic properties

In this section, we present some properties of the estimator (2.1); bias, variance, mean

squared error (MSE) and integrated mean squared error (MISE). These properties are

established under the conditions (2.2) and by supposing that the derivatives f ′, f ′′ exist

with finite integral on the support R. The bias and the variance are given by Parzen (1962).
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Symmetric (classical) kernel

Kernel Density Support

Epanechnikov 3
4
(1− u2) [−1, 1]

Uniforme 1/2 [−1, 1]

Triangulaire (1− |u|) [−1, 1]

Biweight 15
16

(1− u2)1|u| [−1, 1]

Gaussien 1√
2π

exp(−u2

2
) R

Table 2.1: Some of symmetric kernels.

Figure 2.1: Shapes of some symmetric kernels.

Proposition 2.2.1. (Parzen, 1962)

For a fixed t in R, the bias and the variance of the estimator f̃h defined in (2.1) are

Bias
[
f̃h(t)

]
=

h2

2
f ′′(t)

∫
R
z2K(z)dz + o(h2),

Var
[
f̃h(t)

]
=

f(t)

nh

∫
R
K2(z)dz + o

(
1

nh

)
.
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Symmetric (classical) kernel

In fact, the bias and the variance of f̃h are expressed respectively as

Bias
[
f̃h(t)

]
= E

[
f̃h(t)

]
− f(t)

=
1

h

∫
R
K

(
t− u
h

)
f(u)du− f(t),

and

Var
[
f̃h(t)

]
=

1

(nh)2

E

[
n∑
i=1

K

(
Ti − t
h

)]2

− E2

[
n∑
i=1

K

(
Ti − t
h

)]
=

1

nh2

{∫
R
K2

(
t− u
h

)
f(u)du−

[∫
R
K

(
t− u
h

)
f(u)du

]2
}
.

By conducting the change of variable u = t − hz with z > 0, and the Taylor expansion of

the function f(t− hz) around t, we fined the results shown in Proposition 2.2.1.

By using the formulas of the bias and the variance given above, we deduce the expressions

of MSE and MISE of f̃h as follows

MSE[f̃h(t)] = Var[f̃h(t)] + Bias2[f̃h(t)]

=
1

nh
f(t)

∫
R
K2(z)dz +

h4

4
[f ′′(t)]

2

[∫
R
z2K(z)dz

]2

+ o(h4),

and

MISE[f̃h] =

∫
R

MSE[f̃h(t)]

=
1

nh

∫
R
K2(z)dz +

h4σ4
K

4

∫
R

[f ′′(t)]
2
dt+ o

(
1

nh

)
.

Some convergence results of the symmetric kernel estimator

Different types of convergence results are available, some of them are summarized in the

theorems below. Parzen (1962) and Tiago de Oliviera (1963) show the convergence of MSE

and MISE in Theorem 2.2.1 and 2.2.2, respectively. Strong and weak consistency are estab-

lished by Parzen (1962) and Silverman (1986) in 2.2.3 and 2.2.4 for the estimator f̃h. The

last Theorem 2.2.5 deals with convergence in distribution.

Theorem 2.2.1. (Parzen, 1962)

If the density function f is continuous on R and f̃h its kernel estimator, h → 0, nh → ∞
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Symmetric (classical) kernel

when n→∞ and the symmetric kernel K satisfies the following conditions∫
R
K(u)du = 1, sup

u∈R
|K(u)| <∞,

∫
R
|K(u)|du <∞, (2.3)

then

MSE
[
f̃h(t)

]
P−→ 0, ∀t ∈ R, n→∞.

Where
P−→ denotes the convergence in probability.

Theorem 2.2.2. (Tiago de Oliviera, 1963)

If the density function f is kth power integrable (
∫
|f(t)|k < ∞), f̃h its kernel estimator,

h→ 0, nh→∞ when n→∞ and the symmetric kernel K satisfies the conditions in (2.3),

then

MISE
[
f̃h

]
P−→ 0, n→∞.

Theorem 2.2.3. (Parzen, 1962)

Let f the density function and f̃h its kernel estimator, if nh2 → ∞ when n → ∞, the

symmetric kernel K satisfies the conditions in (2.3) and the Fourier transform T F(t) =∫
exp(−izu)K(u)du is absolutely integrable, then

sup
t∈R

[
f̃h(t)− f(t)

]
P−→ 0, n→∞.

Theorem 2.2.4. (Silverman, 1986)

If the density function f is uniformly continuous and f̃h its kernel estimator. If h→ 0 and

logn
nh
→ 0 when n → ∞ and the symmetric kernel K is positif with bounded variation, then

it follows

sup
t∈R

[
f̃h(t)− f(t)

]
p.s.−→ 0, n→∞.

where
p.s.−→ denotes the convergence almost surely.

Theorem 2.2.5. (Parzen, 1962)

If the density function f is continuous in R and f̃h its kernel estimator, h → 0, nh → ∞

when n→∞ and the symmetric kernel K satisfies the conditions in (2.3), then

f̃h(t)− E
[
f̃h(t)

]
√

Var
[
f̃h(t)

] L−→ N (0, 1), ∀t ∈ R,

where
L−→ denotes the convergence in distribution.
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Efficiency of symmetric kernels

The more efficient symmetric kernel is the one that minimizes the Asymptotic integrated

mean squared error criterion AMISE of the estimator (2.1), given as

AMISE[f̃h] = MISE[f̃h]− o
(

1

nh

)
,

=
1

nh

∫
R
K2(z)dz +

h4σ4

4

∫
R

[f ′′(t)]
2
dt.

Theorem 2.2.6. (Epanchnicov, 1969)

If limn→∞ h = 0, limn→∞ nh = ∞, f ∈ L2,
∫

[f ′′(t)]2dt 6= 0 and
∫

[f ′′(t)]2dt < ∞ the

Epanchnikov kernel defined as 3
4
(1−u2)1[−1,1] is of minimum AMISE, with L2 is a set of reel

functions f such that,
∫
|f(t)|2dt <∞.

In the case of the Epanchnikov kernel, the minimum value of AMISE is 3
5
√

5
and it

is declared more efficient comparing to other symmetric kernels, as shown in the theorem

above. Thus, the efficiency of the other symmetric kernels can be measured based on the

Epanchnikov one, as follow

EFF(K) =

∫
K2(u)du∫
K2
E(u)du

=

∫
K2(u)du

3
5
√

5

.

The Table 2.2 shows the efficiency of some most used symmetric kernels.

Kernel Efficiency

Epanechnikov 1,0000

Uniforme 1.0758

Triangulaire 1,0143

Biweight 1,0061

Gaussien 1,0513

Table 2.2: Efficiency of some symmetric kernels.

According to the Table 2.2, we note that the efficiency of the symmetric kernels is very

closed to that of Epanechnikov one (the values are around 1). That means that the choice

of the symmetric kernels has not significant impact on the quality of estimation.
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2.3 Asymmetric kernel

It is known from the literature that the symmetric kernels are not suitable when the support

of the density f to be estimated is bounded. More specifically, when it lies on the unit

interval [0, 1] or the positive half-line R+ (i.e. when we deal with nonnegative data), then

the consistency of the density estimator at the origin no longer holds because the symmetric

kernel assigns positive weights outside the support when smoothing is carried out near the

origin. So, it causes problem in the boundary called boundary bias or edge effect.

Several methods have been proposed to remove this bias problem, such as boundary kernel

method (Jones 1993; Zhang and Karunamuni, 2000), local linear method (see Lejeune and

Sarda, 1992; Cheng, 1997; Zhang and Karunamuni, 1998), local renormalization method

(see Härdle, 1990), pseudo-data method (see Cowling and Hall, 1996), reflection method

(see Cline and Hart, 1991), and transformation method (see Marron and Ruppert, 1994).

For other methods, see Hall and Park (2002) and Karunamuni and Alberts (2006).

An alternative way to remove the aforementioned boundary bias is to use kernels of asym-

metric distributions with nonnegative support instead of classical kernels, called asymmetric

kernels. This type of kernels has been first introduced by Chen (1999, 2000) using Beta

and gamma density functions as kernels to estimate densities with support [0, 1] and [0,∞)

respectively. Jin and Kawczak (2003) introduced log-normal and Birnbaum–Saunders (BS)

kernels, whereas Scaillet (2004) applied inverse Gaussian (IG) and reciprocal inverse Gaus-

sian kenels and Marchant et al. (2013) introduced a class of Generalized Birnbaum-Saunders

kernls, ect.

The asymmetric kernel estimator do not engender boundary bias, see the Figure 2.2,

and it gave better estimates when data are nonnegative, see for instance, Libengué (2013).

Definition 2.3.1. For nonnegative i.i.d. r.v. T1, T2, ..., Tn distributed as T , with pdf sup-

ported in T, T ⊆ R+, the density kernel estimator of f , using asymmetric kernel as

f̂h(t) =
1

n

n∑
i=1

Kt,h(Ti), t > 0, (2.4)

with h is bandwidth parameter and Kt,h is the asymmetric kernel which intrinsically depends

on the bandwidth h and on the target point t.
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Note that the standard kernel density estimator can also be rewritten as in (2.4), with

Kt,h(·) = (1/h)K(· − t)/h.

The function Kt,h(·) is said to be an asymmetric kernel if it possesses the following two

basic properties, see Hirukawa (2018)

Property 2.3.1. The kernel function is a pdf with support either on the unit interval [0, 1]

or on the positive half-line R+.

Property 2.3.2. Both the location and shape parameters in the kernel are functions of the

design point t where the estimation is made and the smoothing parameter h.

We cite in the Table 2.3 page 51, some of asymmetric kernels with their statistics proper-

ties (where Zt,h is the r.v. obeying the distribution with pdf K, we give more details about

the class of Generalized Birnbaum-Sauders (GBS) kernels in the Section 2.4).

Figure 2.2: Shape of some asymmetric kernels.

Asymptotic properties

In this section, we introduce the bias and the variance of the estimator (2.4) then, we deduce

the expressions of MSE and MISE of the estimator f̂h. We find these results in Zougab (2013).
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Proposition 2.3.1. The bias and the variance of the estimator defined in (2.4) are given

as below

Bias
[
f̂h(t)

]
= f [E(Zt,h)] +

1

2
Var(Zt,h)f ′′(t)− f(t) + o(h2).

Var[f̂h(t)] =
1

n

∫
R+

K2
t,h(u)f(u)du− 1

n

{
Bias[f̂(t)] + f(t)

}2

.

In fact, the bias of f̂h can be written as

Bias
[
f̂h(t)

]
= E[f̂h(t)]− f(t)

= E[Kt,h(T )]− f(t)

=

∫
T
Kt,h(u)f(u)du− f(t)

= E[f(Zt,h)]− f(t),

where Zt,h is the r.v. obeying the distribution with pdf Kt,h, and let E(Zt,h) = m.

Suppose that the function to be estimated f admits derivatives of second-order, and we

conduct a second-order Taylor expansion of f(Zt,h) around m, as

f(Zt,h) = f(m) + (Zt,h −m)f ′(m) +
1

2
(Zt,h −m)2f ′′(m) + o[(Zt,h −m)2].

By developing E[f(Zt,h)], we deduce the following expression of Bias[f̂h(t)]

Bias
[
f̂h(t)

]
= f(m) +

1

2
E
[
(Zt,h −m)2

]
f ′′(mt,h)− f(t) + o(h2)

= f [E(Zt,h)] +
1

2
Var(Zt,h)f ′′(t)− f(t) + o(h2).

In other hand, the variance can be expressed as

Var[f̂h(t)] = Var

[
1

n

n∑
i=1

Kt,h(Ti)

]
=

1

n
Var[Kt,h(T )]

=
1

n

{
[E(K2

t,h(T ))]− E2[Kt,h(T )]
}

=
1

n

∫
T
K2
t,h(u)f(u)du− 1

n

{
Bias[f̂h(t)] + f(t)

}2

.

By using the fact that, MSE[f̂h(t)] = Var[f̂h(t)] + Bias2[f̂h(t)] and MISE[f̂h] =∫
T MSE[f̂h(t)]dt, we deduce the expressions of MSE and MISE of the estimator f̂h as shown

in the proposition above.
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Proposition 2.3.2.

MSE[f̂h(t)] =

{
f [E(Zt,h)] +

1

2
Var(Kt,h)f ′′(t)− f(t)

}2

+
1

n

∫
T
K2
t,h(u)f(u)du− 1

n

{
Bias[f̂(t)] + f(x)

}2

.

MISE[f̂h] =

∫
T

[
f [E(Zt,h)] +

1

2
Var(Kt,h)f ′′(t)− f(t)

]2

dt

+
1

n

∫
T

{∫
T
K2
t,h(u)f(u)du− [Bias(f̂h(t)) + f(t)]2

}
dt.

Some convergence results of the asymmetric kernel estimator

Above, we show the convergence of the two criterion MSE and MISE of the estimator f̂h in

Proposition 2.3.3 and 2.3.4, see for instance Zougab (2013).

Proposition 2.3.3. (Zougab, 2013)

If 1
n

∫
R+
K2
t,h(u)f(u)du→ 0 and h = h(n)→ 0 when n→∞, then

lim
n→∞

MSE[f̂h(t)] = 0 ∀t > 0.

Proposition 2.3.4. (Zougab, 2013)

If 1
n

∫
R+

[∫
R+
K2
t,h(u)f(u)du

]
dt→ 0 and h = h(n)→ 0 when n→∞, then

lim
n→∞

MISE[f̂h] = 0.

The uniforms weak and strong consistency of the estimator (2.4) using beta and gamma

kernels are studied respectively by Bouezmarni and Rolin (2003) and Bouezmarni and Rom-

bouts (2010), as illustrated in Proposition 2.3.1 and 2.3.2.

Theorem 2.3.1. (Bouezmarni and Rolin, 2003)

If f has support on [0, 1], and is continuous and bounded on [0, 1], with f̂B its beta kernel

estimator, and then

sup
t∈[0,1]

|f̂B(t)− f(t)| P−→ 0 if h+ (nh2)−1 → 0, as n→∞.

sup
t∈[0,1]

|f̂B(t)− f(t)| a.s−→ 0 if h+ log n/(nh2)→ 0, as n→∞.
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Theorem 2.3.2. (Bouezmarni and Rombouts, 2010)

If f is supported in R+, continuous and bounded on a compact interval I ⊂ R+, with f̂G its

gamma kernel estimator, then

sup
t∈I
|f̂G(t)− f(t)| P−→ 0 if h+ (nh2)−1 → 0, as n→∞.

sup
t∈I
|f̂G(t)− f(t)| a.s−→ 0 if h+ log n/(nh2)→ 0, as n→∞.

Other convergence results of the estimator (2.4) such as, weak and strong consistencies

in the sense of both uniform and L1 norms are available in Kokonendji and Libengué (2018).

Associated kernel

Kokonendji and Somé (2018) have introduced the associated kernel in the multivariate

case, to unify the two notions; symmetric and asymmetric kernels.

Above, we give the definition in univariate case.

Definition 2.3.2. Let T(⊆ R) be the support of the pdf to be estimated, t ∈ T is a target

and h is a bandwidth parameter. A parameterized pdf Kt,h(·) on support St,h(⊆ R) is called

associated kernel, if the following conditions are satisfied

t ∈ St,h, E(Zt,h) = x+ A(t, h) and V ar(Zx,h) = B(t, h).

Where Zx,h is a real r.v. with density Kt,h and both A(t, h) and B(t, h) tend to 0 when h

goes to 0.

2.4 Case of Generalized Birnbaum-Saunders (GBS)

kernel

This section describes the class of GBS distribution and introduces the asymmetric associated

kernel estimator based on this class of distributions.

Let T be the positive and continuous random variable (r.v.), denoted by

T = β

αZ
2

+

[(
αZ

2

)2

+ 1

] 1
2

2

. (2.5)
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The r.v. T follows the Generalized Birnbaum-Saunders (GBS) distribution, T ∼

GBS(α, β, Z), where α > 0 is the shape parameter, β > 0 is the scale parameter and

Z is a r.v. with symmetric distribution in R characterized by a position parameter µ = 0

and scale parameter σ = 1, Z ∼ SR(0, 1).

The r.v. Z can be expressed in terms of T as Z = 1
α

(√
T/β −

√
β/T

)
, and Z2 be a r.v.

following a generalized chi-squared distribution with one degree of freedom, Z2 ∼ Gχ2(1).

The density function of the r.v. T is defined as follow

fα,β(t) =
cg
2α

(
1√
βt

+

√
β

t3

)
g

[
1

α2

(
t

β
+
β

t
− 2

)]
, t > 0, (2.6)

where g that is, fZ(z) = cgg(z2), z ∈ R, fZ is a density function of a r.v. Z and cg is a

normalization constant that is, cg
∫ +∞
−∞ g(z2)dz = 1.

The mean and the variance of a r.v. T are given by

E(T ) =
β

2

(
2 + u1α

2
)

and Var(T ) = (βα)2

(
u1 +

α2

2
u2 −

α2

4
u2

1

)
,

where uj = E[Zj] are the moments of the r.v. Zj, j = 1, 2

For example, if we consider the r.v. Z is normally distributed with µ = 0 and σ = 1,

denoted by Z ∼ N(0, 1), then T follows a BS distribution (as particular case of GBS dis-

tribution), T ∼ BS(α, β). Therefore Z2 follows a chi-square distribution with one degree of

freedom, Z2 ∼ χ2(1).

In the Table 2.4, page 52, we give some examples of symmetric distributions of the r.v.

Z and the values of cg, g, u1 and u2 corresponding to each distribution. The corresponding

GBS kernel is presented in the Table 2.5, page 53.

Pdf estimation

Marchant et al. (2013) introduced a class of GBS kernels by substituting in the expres-

sion (2.6) the shape and the scale parameters by
√
h and t respectively, so it is defined as

KGBS(t,h)(y) = f√h,t(y).

Considering the random variables T1, T2, .., Tn with an unknown density function. The

estimator of the density function based on the GBS kernel is given in Marchant and al.

(2013) as

f̂GBS(t) =
1

n

n∑
i=1

KGBS(t,h)(Ti), t > 0,
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where t is the target (point where the density is estimated) and h > 0 is the smoothing

parameter.

The expressions of the bias and variance for f̂GBS are derived by Marchant et al. (2013),

under the following conditions

C1. The function f is twice differentiable and its second derivative is continuous and

bounded;

C2. The functions t−
1
2f(t) and t−

3
2f(t) are continuous and bounded;

C3. The bandwidth h = h(n) satisfies limn→∞ h = 0 and limn→∞ nh
1/2 =∞.

The asymptotic bias is given by

bias
[
f̂GBS(t)

]
= m∗ + o(h), (2.7)

where m∗ = hu1(g) [tf ′(t) + t2f ′′(t)] /2.

The asymptotic variance is given by

Var
[
f̂GBS(t)

]
= σ∗2 + o

(
1

nh1/2

)
, (2.8)

where σ∗2 = c2
gt
−1f(t)/

(
cg2nh

1/2
)
, cg = 1/

∫ +∞
−∞ g(y2)dy and cg2 = 1/

∫ +∞
−∞ g2(y2)dy.

Note that, the GBS distribution contains a wider class of positively skewed densities with

nonnegative support that possesses lighter and heavier tails than the BS distribution. Thus,

the GBS distribution is essentially flexible in the kurtosis level; see Marchant et al. (2013).

2.5 Construction of asymmetric kernels: mode-

dispersion method

The majority of asymmetric kernels that exist in the literature are introduced without re-

vealing the method of their construction such as, gamma kernel of Chen (2000), Inverse

Gaussian (IG) and Reciprocal Inverse Gaussian (RIG) kernels of Scaillet (2004), ect.

The associated asymmetric kernel with two parameters (depending on the target t and

bandwidth h) is constructed based on the asymmetric density function with two parame-

ters. Libengué (2013) and Libengué and Kokonendji (2017) have proposed a method for

constructing associated asymmetric kernel, called ” mode-dispersion” method.
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Principal of mode-dispersion method

Let Kθ(a,b) be a type of unimodal kernel on the support Sθ(a,b), with θ(a, b) is a function of

parameters a > 0 and b > 0. Let M(a,b) and D(a,b) represents the mode and the dispersion

parameter respectively of the density kernel Kθ(a,b). For t > 0 and h > 0, the mode-

dispersion method allows the construction of the function Kθ(t,h) by solving in term of a and

b the following system S

S :


M(a,b) = t

D(a,b) = h,

Let θ(t, h) = θ(a(t, h); b(t, h)) where a(t, h) and b(t, h) are solutions of the system S, for

h > 0 and t ∈ T, with T is the support of the density to be estimated.

The following proposition shows that Kθ(t,h) satisfies the definition of associated kernel

given in 2.3.2.

Proposition 2.5.1. (Libengué and Kokonendji, 2017)

Let T be the support of the density f to be estimated. For all t ∈ T and h > 0, the kernel func-

tion constructed by the mode-dispersion method Kθ(t,h) with support Sθ(a,b) = Sθ(a(t,h);b(t,h)), is

such that

t ∈ Sθ(t,h),

E(Zθ(t,h))− t = Aθ(t, h),

var(Zθ(t,h)) = Bθ(t, h),

where Zθ(t,h) is a random variable with pdf Kθ(t,h) and Aθ(t, h) → 0 and Bθ(t, h) → 0 when

h→ 0.

Some examples of construction of kernels

Here, we give some examples of asymmetric kernels to illustrate the mode-dispersion method.
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Gamma kernel

The density function of gamma distribution, with shape parameter a > 0 and scale

parameter b > 0, is defined as

fG(a, b; y) =
b−a

Γ(a)
ya−1 exp

{
−y
b

}
, y > 0,

where Γ is the gamma function defined as

Γ(a) =

∫ ∞
0

ta−1 exp(−t)dt.

Its mode M(a,b) = (a− 1)b and dispersion parameter D(a,b) = b.

By resolving the system S, we obtain a = t
h

+ 1 and b = h, then gamma kernel can be

written as

KG( t
h

+1,h)(y) =
h−( t

h
+1)

Γ( t
h

+ 1)
y
t
h exp

{
−y
h

}
,

with y > 0, t > 0 and h > 0.

Inverse Gamma kernel

The density function of inverse gamma distribution, with shape parameter a > 0 and

scale parameter b > 0, is defined as

fIG(a, b; y) =
ba

Γ(a)
y−(a+1) exp

{
− b
y

}
, y > 0.

Its mode M(a,b) = b
a+1

and dispersion parameter D(a,b) = 1
b
.

By solving the system S, we obtain a = 1
ht
− 1 and b = 1

h
, then the inverse gamma kernel is

expressed as

KIG( 1
ht
−1, 1

h
)(y) =

1

Γ( 1
ht
− 1)

y
−1
ht exp

{
− 1

hy

}(
1

h

) 1
ht
−1

,

with y > 0, t > 0 and h > 0.

Lognormal kernel

The density function of lognormal distribution, with the mean µ and standard deviation

σ is given as

fLG(µ, σ; y) =
1√

2πσy
exp

{
− 1

2σ
(ln(y)− µ)2

}
, y > 0.

Its mode M(a,b) = exp(µ− σ2) and dispersion parameter D(a,b) = σ.

By solving the system S, we get µ = ln(t) + h2 and σ = h. Then the lognormal kernel is
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given by

KLG(ln(t)+h2,h)(y) =
1√

2πhy
exp

{
−1

2h

(
ln(y)− ln(t) + h2

)2
}
,

with y > 0, t > 0 and h > 0.

However, some types of asymmetric kernels do not satisfy the mode-dispersion method,

taking example of Birnbaum-Saunders (BS) kernel which do not have an explicit form of the

mode.

Note that, the kernel generated from a given distribution may not be unique, regardless

of its support on R+. Rather, it is possible to generate different kernels from the same

distribution by changing functional forms of the shape and scale parameters. For example,

the gamma kernels proposed by Igarashi and Kakizawa (2014) and Malec and Schienle (2014)

and the inverse gamma kernels introduced by Mousa et al. (2016) and Igarashi and Kakizawa

(2017), can be obtained via alternative specifications of the shape parameter, see Hirukawa

(2018).

2.6 Bandwidth selection methods

As already pointed out, the smoothness of the density kernel estimator depends on the

smoothing parameter h, so the selection of an appropriate bandwidth h plays a very impor-

tant role on the quality of the estimation, see the Figure 2.3. However, when the parameter

selected h is not suitable, it engenders an under-smoothing (when h is very small), see the

Figure 2.4 or an over-smoothing (when h is very large), see the Figure (2.5) of the estimator.

It exists several methods to select the bandwidth parameter for both symmetric and

asymmetric kernel estimator, see for instance, Jones et al. (1996), Zougab (2013) and Ziane

(2015). These methods can be classified in two categories: classical approaches (plug-in,

cross validation) and Bayesian approach (global, local and adaptative).
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Figure 2.3: Smoothed estimator.

Figure 2.4: Under-smoothed estimator.

Figure 2.5: Over-smoothed estimator.
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2.6.1 Plug-in method

Symmetric kernel case

This method is based on optimization of the following asymptotic mean squared error

AMISE

AMISE(̃f) =
1

nh

∫
R
K2(z)dz +

h4σ4
K

4

∫
R

[f ′′(t)]
2
dt,

The minimization on h of the AMISE gives the following optimal bandwidth

hP =

[ ∫
TK

2(y)dy

σ4
∫
T f
′′2(t)dt

]1/5

n−1/5.

The above optimal bandwidth is not easily usable because it depends on the unknown quan-

tity f ′′2(t).

Many issues have been proposed to overcome this problem, for instance the rule of

thumb method. This method consists in supposing that the unknown function f is nor-

mally distributed with mean 0 and variance σ2
f , where σ2

f is estimated using the observations

T1, T2, ..., Tn by S2
n = 1

n

∑n
i=1(Ti − T )2, with T = 1

n

∑n
i=1 Ti, so the modified version of the

optimal bandwidth is

hRT = 1.06Snn
−1/5.

This bandwidth gives a good result when the observations are really normally distributed.

Otherwise, this method is not efficient, for more details see Silverman (1986).

In another hand, Scott et al. (1977) introduced iterated plug-in method, Park and Marron

(1990) presented modern iterated plug-in and Sheather and Jones (1991) introduced another

method called plug-in in three steps, which is considered the most efficient.

The principal of the method of Sheather and Jones (1991) is to replace
∫
R f
′′2(t)dt by the

following estimator

R̃a =

∫
R
f̃ ′′2h (t)dt =

1

n2a5

n∑
i,i 6=j

L(4)

(
Ti − Tj
a

)
,

where L(4) is a derivative in forth order of the kernel L and a is a new bandwidth called pilot

parameter. This estimator is obtained under sufficient regularity conditions∫
R
f ′′2(t)dt =

∫
R
f (4)(t)f(t)dt.
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The new bandwidth parameter â that minimizes the term E
{[
R̃a −

∫
R f
′′2(t)dt

]2
}

is

represented as

â =

[
2L(4)(0)

σ2
∫
R f
′′′2(t)dt

]1/7

n−1/7.

It appears again in the term above of â an unknown quantity
∫
T f

(3)2(t)dt. So the authors

proposed the following estimator

R̃b =
1

n2b7

n∑
i,j=1

L(6)

(
Ti − Tj

b

)
,

where b = 0.912 λ̂ n−1/9 and λ̂ is the estimator of λ, that represents the scale parameter of

the function f (for example, its interquartile range).

The packages bw.nrd0() and bw.sj() are available in R software, for rule of thumb and

Sheather and Jones methods, respectively.

Asymmetric kernel case

In the case of asymmetric kernel estimator, the optimal bandwidth is obtained also by

the minimization of AMISE. However the bandwidth obtained depends on the unknown

functions f , f ′ and f ′′ that makes the calculations more difficult. Scaillet (2004) proposed

a rule of thumb method and replaced the unknown functions f , f ′ and f ′′ by choosing

lognormal distribution as reference for the density f with the parameters µ and σ, i.e.,

f ∼ LN (µ, σ). The optimal bandwidths obtained by Scaillet (2004) using Inverse Gaussian

(IG) and Reciprocal Inverse Gaussian (RIG) are presented respectively as

hIG =

[
16σ5 exp

{
1
8
(7σ2 − 20µ)

}
12 + 68σ2 + 225σ4

]2/5

n−2/5

and

hRIG =

[
16σ5 exp

{
1
8
(−17σ2 + 20µ)

}
12 + 4σ2 + σ4

]2/5

n−2/5.

In applied work, the unknown parameters µ and σ2 may be estimated by the empirical

mean and empirical variance computed on the algorithm of data. However, the simulation

results obtained by Scaillet (2004) are not satisfactory and tends to provide bandwidths

values which are very small.

The alternative popular method is the cross validation (CV) method.
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2.6.2 Cross validation method (CV)

2.6.2.1 Least squared (unbiased) cross-validation

This method is a popular heuristic for selecting the smoothing parameter in kernel density

estimation, introduced by Rudemo (1982) and Bowman (1984).

The basic idea in CV is to find the value of the parameter h that minimize the integrated

squared error (ISE), given as

ISE(h) =

∫
[f̂h(t)− f(t)]2dt

=

∫
f̂ 2
h(t)dt− 2

∫
f̂h(t)f(t)dt+

∫
f 2(t)dt.

Because the last term does not depend on h, we only need to consider the first two terms.

the optimal bandwidth is obtained by minimizing L given by

L(h) = ISE(h)−
∫
f 2(t)dt =

∫
f̂ 2
h(t)dt− 2

∫
f̂h(t)f(t)dt.

The idea is to find an estimate of L(h) from the data and minimize it over h. Consider the

estimator of L as

CV (h) =

∫ [
1

n

n∑
i=1

Kt,h(Ti)

]2

dt− 2

n

∑
i

f̂h,−i(Ti).

Where f̂h,−i(Ti) = 1
n−1

∑
j 6=iKTi,h(Tj) is the density estimate (unbiased) of

∫
f̂h(t)f(t)dt,

using sample with Ti removed.

Then, the optimal value of the bandwidth h is obtained as

hCV = arg min
h>0

CV (h).

This method suffers from sample variation, that means; when using different samples

from the same distribution, the bandwidths estimated may have large variance.

2.6.2.2 Biased cross-validation

This method was suggested by Scott and Terrell (1987). considers the asymptotic MISE in

the case of symmetric kernel density estimation
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AMISE(f̂h) =
1

nh

∫
T
K2(z)dz +

h4σ4

4

∫
T
f ′′2(t)dt.

Note that R(.) =
∫
T(.)2.

The main idea of this method is to replace the unknown quantity R(f ′′) by its estimator

R̂(f ′′) as

R̂(f ′′) = R(f̂ ′′h )− 1

nh5
R(K ′′).

That gives

BCV (h) =
1

nh
R(K) +

h4

4
σ4

[
R(f̂ ′′h )− 1

nh5
R(K ′′)

]
.

Then, the bandwidth selected is

hBCV = arg min
h
BCV (h).

This selector is considered as a hybrid of cross-validation and plug-in methods, since it

replaces an unknown value in AMISE by a cross validation kernel estimate R̂(f ′′h ).

2.6.3 Bayesian approach

Before presenting the bayesian approach for selection the bandwidth parameter, we first

recall the concept of this approach.

Bayesian approach concepts

Consider T1, T2, .., Tn i.i.d. r.v. with density f and observations t = (t1, t2, .., tn). Let

h ∈ H the parameter to be estimated, with H ⊂ R.

This approach considers the unknown parameter h as a r.v. with a prior distribution

π(h), and combines the both of the information of the parameter h (prior information) and

the information leads by the data, to provide a posterior information of the parameter h to

be estimated.

The posterior distribution π(h/t) is obtained using Bayes’s theorem as

π(h/t) =
π(t/h)π(h)

π(t)
,

where π(t/h) =
∏n

i=1
f(ti, h) represents the maximum likelihood function and π(t) =∫

H
∏n

i=1
f(ti, h)π(h)dh is the marginal distribution.
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In some cases, it is difficult to obtain an explicit form of π(h/t), so Marcov Chain Monte

Carlo MCMC are usually used to overcome this problem.

MCMC methods

MCMC methods are used to approximate the posterior distribution of a parameter of

interest by random sampling. The principle is to generate a Markov chain {M (i)}, (i ∈

(1, .., I), with I is a number of iteration), using the kernel transition (law candidate) and

an arbitrary initial value M (0). After a number of iteration I, sufficiently large, the Markov

chain converges to the interest posterior density. Several algorithm to define such Markov

chains exists, including Gibbs sampling, Metropolis–Hastings, ect. For more details about

this method, see Zougab (2013), Ziane (2015).

The main scope in this approach, is to find an estimator ĥ of the parameter h that

minimizes the mean cost, called also bayesian risk E[C(ĥ − h)], where C(ĥ − h) represents

the cost function, that is defined as

E[C(ĥ− h)] =

∫
H
C(ĥ− h)π(h/t)dh.

The cost function the most used is the quadratic one, that is C(ĥ − h) = (ĥ(t) − h)2. The

estimator ĥ that minimizes the bayesian risk using the mean quadratic cost represents the

posterior mean of h, given by

ĥ = E(h/t) =

∫
H
hπ(h/t)dh.

It exists other types of cost functions such as, the absolute cost C(ĥ − h) = |(ĥ(t) − h)|,

and the cost 0-1 such that, for a given τ .

C(ĥ− h) =


0 if |ĥ(t)− h| ≤ τ

2

1 Otherwise.

Now, for the selection of the optimal bandwidth parameter of the kernel estimator f̂h using

the bayesian approach. It exists three essential technics: global, local and adaptive.
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2.6.3.1 Global bayesian approach

This technic is proposed by Brewer (1998), Zhang et al.(2006) for multivariate kernel

density estimation, and Zougab et al. (2013) by using gaussian kernel estimator in the case

of continuous data and binomial kernel in discrete case. That consists to proceed as the

following steps

1. Define the maximum likelihood estimator of the data t1, t2, .., tn knowing the parameter

h, as given below

π̂(t1, t2, .., tn/h) =
n∏
i=1

f̂h(ti).

By sing the leave-one-out technic to estimate f(ti) excluding the observation ti, we get

π̂(t1, t2, .., tn/h) =
n∏
i=1

1

n− 1

n∑
j=1,j 6=i

Kti,h(tj).

2. Choose the prior distribution of the bandwidth h, noted by π(h).

3. Establish the posterior distribution estimator of h through the Bayes’s theorem, as

given below

π̂(h/t1, t2, .., tn) =
π̂(t1, t2, .., tn/h)π(h)

π̂(t1, t2, .., tn)
(2.9)

Where π̂(t1, t2, .., tn) =
∫
π̂(t1, t2, .., tn/h)π(h)dh. Note that, in many situation it is not

easy to calculate this integral, so the explicite form of (2.9) cannot be obtained.

4. Finally, the bandwidth h is estimated by the posterior mean, mode or median by using

the Marcov Chain Monte Carlo (MCMC). Fore more details see for instance Zougab

(2013) and Ziane (2015).

2.6.3.2 Local bayesian approach

Here, the main idea is to estimate the bandwidth h locally at t, i.e. estimate h on

each point t where the density is estimated. By using the Bayes’s formula, the posterior

distribution of h locally at t gives the following expression

π(h/t) =
f(t)π(h)∫
f(t)π(h)dh

.
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As the model f(t) is unknown, we use its kernel estimator f̂h(t) = 1
n

∑n
i=1Kt,h(Ti). Hence

the posterior distribution of h takes the following form

π̂(h/t, T1, T2, .., Tn) =
f̂h(t)π(h)∫
f̂h(t)π(h)dh

. (2.10)

In the case where the expressions (2.10) is not explicit, we can use the MCMC approxi-

mation methods.

2.6.3.3 Adaptive bayesian approach

Here, the objective is to estimate the bandwidth h for each observation ti, noted by hi. Let

f̂ be the adaptive associated kernel estimator of f , defined as follows

f̂(t) =
1

n

n∑
i=1

Kt,hi(ti),

where Kt,hi is the associated kernel and hi is the adaptive bandwidth parameter associated

for each observation ti.

By using the leave-one-out technic, the function f(ti) is estimated excepting the obser-

vation ti, and can be written as

f̂−i(ti) = f̂(ti/{t−i}, hi) =
1

n− 1

∑
j=1,j 6=i

Kti,hi(tj).

By using the Bayes’s formula, the posterior distribution for each hi takes the following form

π̂(hi/ti, {t−i}) =
f̂(ti/{t−i}, hi)π(hi)∫
f̂(ti/{t−i}, hi)π(hi)dhi

. (2.11)

The expression (2.11) can give the explicit results when using the conjugate priors, see

Brewer (2000), Zougab (2013) and Ziane et al. (2015) for more details.
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Chapter 3
Hazard rate function estimation using kernel

method

3.1 Introduction

In this chapter, we present an overview on hazard rate (HR) function estimation using kernel

method, then we propose an estimator of HR in the context of of positively skewed data

using the class of GBS kernels. This class is considered because of its several interesting

properties and flexibility. Some asymptotic properties, such as bias, variance and mean in-

tegrated squared error (MISE) are established for the proposed estimator. In addition, we

demonstrate that, the GBS-HR estimator is strongly consistent and asymptotically normal.

The choice of bandwidth is investigated by rule of thumb and unbiased cross validation ap-

proaches. Finally, the performances of the HR estimator based on GBS kernels are illustrated

by a simulation study and real applications.

3.2 An overview on kernel estimation of HR function

Recently, the hazard rate function HR function estimation has received considerable atten-

tion in the literature and many applications in several fields, such as, medical, biomedical,

finance, ect. This, in the parametric case, see for instance Azevedo (2012) and Athayde et

al. (2019), or nonparametric case, to cite a few, Bouezmarni et al. (2008) and Bouezmarni
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(2011) by using gamma kernel in the context of censored data, Salha (2012) by using Inverse

Gaussian (IG), Salha et al.(2014) with Weibull and Erlang kernels, Altun and Comert (2016)

used Weibull-Exponential models to represent the typical L-shaped hazard rates of electronic

products, Brazzale et al (2018) introducing a new method for estimating a change point for

hazard function and Moriyama and Maesono (2018) proposed a new kernel estimator of the

hazard ratio. In this section, we summarize some of these results of nonparametric case

using kernel method for either censored and complete data.

3.2.1 Case of censoring data

Let T1, ..., Tn are r.v. representing observed survival times and C1, ..., Cn are r.v. representing

censoring times, be two nonnegative random sequences with distribution functions F and G,

respectively. We assume that the censoring times Ci are i.i.d. and independent of the the

survival times Ti. Considering right censoring, that is instead of observing Ti, we observe the

pair (Xi, δ(i)), where Xi = min(Ti, Ci), δ(i) = I(Ti ≤ Ci) and I(.) is the indicator function.

We denote by f the density function of F and by λ(·) = f(·)
(1−F (·)) the corresponding hazard

function. The hazard rate function estimator in the case of censoring data is defined in

Bouezmarni (2008) as

λ̂(x) =
n∑
i=1

δ(i)

n− i+ 1
K(x,h)(X(i)), x > 0, (3.1)

with X(1) ≤ X(2) ≤ ... ≤ X(n) ≤ are the order statistics of X1, X2, ..., Xn and δ(i) is the

concomitant of X(i), where h is the bandwidth parameter and K is the associated asymmetric

kernel.

Definition 3.2.1. Let (Ti, i ≥ 1) be a sequence of random variables. Given a positive integer

n, set

α(n) = sup
k
|P(A ∩B)− P(A)P(B)|, A ∈ F1

k (T ) and B ∈ Fk+n(T ),

with F ik(T ) be the σ-field of events generated by Tj, i ≤ j ≤ k.

The sequence (Ti) is α-mixing if the mixing coefficient α(n)→ 0 as n→ 0,

Bouezmarni (2008) supposed the survival times Ti are α-mixing (strong dependence),

and established some results of convergence of the HR function estimator defined in (3.1)
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using gamma kernel, see Proposition 3.2.1 and 3.2.2, under the following conditions

B1. The survival times (Tj; j ≥ 1) are stationary α−mixing sequence of random variables.

B2. The censoring time (Cj; j ≥ 1) are i.i.d. random variables and independent of

(Tj; j ≥ 1).

B3. α(n) = O(n−β), for some β > 3.

Proposition 3.2.1. (Asymptotic normality)(Bouezmarni, 2008)

Let λ be twice continuously differentiable. Under the conditions B1-B3 and assume that

h = O(n
2
5 ) . For all x such that f(x) > 0, ∃τ such that, x ≤ τ . As n→∞, we have

n1/2h1/4

(
λ̂(x)− E[λ̂(x)]√

V∗(x)

)
d−→ N(0, 1), n→∞.

with
d−→ denotes the convergence in distribution.

V∗(x) =



1

2
√
π

x−1/2λ(x)

1−H(x)
if x

h
→∞

Γ(2k + 1)h−1/2λ(x)

21+2kΓ2(k + 1)[1−H(x)]
if x

h
→ k,

(3.2)

where H is a distribution function of the r.v. Xi and k is a nonnegative constant.

Proposition 3.2.2. (Convergence almost sure)(Bouezmarni, 2008)

Let f be a continuous density. Assume that the conditions B1-B3 are satisfied and h =

O(n2/5). Then, for all x ≤ τ and as n→∞ we have

λ̂(x)
a.s.−→ λ(x),

where
a.s.−→ denotes the almost sure convergence.

Still in the case of censoring data, Bouezmarni (2011) has studied the HR function

estimator (3.1) using gamma kernel with independent r.v. Ti, and established the mean

integrated squared error MISE given in the following theorem.
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Theorem 3.2.1. (Bouezmarni, 2011)

Assume that f is twice continuously differentiable. If log2n
nh3/2

→ 0 as n → ∞, then the mean

integrated squared error of λ̂ is

MISE(λ̂) = h2

∫
B2(x)dx+ n−1h−1/2

∫
V (x)dx+ o(h2) + o(n−1h−1/2),

where B and V are given by

B(x) =
xf ′′(x)

2(1− F (x))
and V (x) =

x−1/2f(x)

2
√
π(1−G(x))(1− F (x))2

.

3.2.2 Case of complete data

HR function estimation using IG, Erlang and Weibull kernels

Consider T1, T2, ..., Tn be a random sample from a distribution with an unknown probability

density function f defined on [0,+∞). Salha (2012) and Salha et al. (2014a,2014b) studied

the following HR function estimator

λ̂(t) =
1
n

∑n
i=1Kt,h(Ti)

1
n

∑n
i=1

∫ t
0
Kx,h(Ti)dx

, t ≥ 0,

by using: Inverse Gaussian (IG) kernel, Erlang kernel and Weibull kernel, respectively. Some

results of asymptotic convergence are established in the theorems below.

Theorem 3.2.2. Let λ̂ be the HR function estimator using IG kernel and if (i) f is twice

continuously differentiable, (ii)
∫∞

0
[t3f ′′(t)]

2
dt < ∞, h + 1

nh
→ 0 and (iii) nh5/2 → 0 as

n→∞, the following holds

√
nh1/2

[
λ̂(t)− λ(t)

]
d−→ N

(
0,

1√
2π
t−3/2 λ(t)

1− F (t)

)
, ∀t > 0.

Theorem 3.2.3. Let λ̂ be the HR function estimator using Erlang kernel and if (i) the

density f has a continuous second derivative, (ii) 0 <
∫
t4f ′′2(t) <∞ and

∫ f(t)
t
dt <∞ and

(iii) the bandwidth h satisfying, h+ 1
nh5
→ 0 as n→∞. The following holds

21/h

√
nh5

h+ 2

[
λ̂(t)− λ(t)

]
d−→ N

(
0,

λ(t)

8t[1− F (t)]

)
, ∀t > 0.
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Theorem 3.2.4. Let λ̂ be HR function estimator using Weibull kernel, if (i) the density

f has a continuous second derivative, (ii)
∫
t4f ′′2(t)dt < ∞ and

∫ f(t)
t
dt < ∞ and (iii)∫

t4f ′′2(t)dt∫ f(t)
t
dt

> exp(−γ) ln(8)
4nγ

, where γ = 0.5772156649 is Euler’s constant. The following holds

23h/2

√
nh

[Γ(1 + h)]1/h

[
λ̂(t)− λ(t)

]
d−→ N

(
0,

λ(t)

4t[1− F (t)]

)
,∀t > 0.

HR function estimation using new kernel

Moriyama and Maesono (2018) proposed a new kernel estimator of hazard rate function, that

is based on a modification of Čwik and Mielniczuk method (Čwik and Mielniczuk, 1989).

First, we describe the principal of this method. Let X1, X2, ..., Xn be independently and

identically distributed (i.i.d.) random variables with a distribution function F (·), and

Y1, Y2, ..., Yn be i.i.d. random variables with a distribution function G(·), f(·) and g(·) are

the density functions of X and Y variables, and we assume that g(x0) 6= 0, (x0 ∈ R). A naive

estimator of the density ratio f(x0)/g(x0) at the point x0, (x0 ∈ R)is given by f̂(x0)/ĝ(x0)

where

f̂(x0) =
1

h

∫ +∞

−∞
K

(
x0 − w
h

)
dFn(w),

and

ĝ(x0) =
1

h

∫ +∞

−∞
K

(
x0 − z
h

)
dGn(z),

with K(·) is a kernel function, h is a bandwidth that satisfies h → 0 and nh → ∞, as

n → ∞), and Fn(·) and Gn(·) are the empirical distribution functions of X1, ..., Xn and

Y1, ..., Yn, respectively. We call f̂(x0)/ĝ(x0) an ’indirect’ estimator. Čwik and Mielniczuk

(1989) proposed a direct estimator, as

̂f(x0)

g(x0)
=

1

h

∫ ∞
−∞

K

(
Gn(x0)−Gn(w)

h

)
dFn(w).

For more details about this estimator, see Čwik and Mielniczuk (1989), Chen et al. (2009)

and Igarashi (2020).

Moriyama and Maesono (2018) have extend the idea of C´wik and Mielniczuk (1989), by

develop a new ‘direct’ estimator of the hazard ratio function which is defined as

λ̂(x0) =

∫ +∞

−∞
K

(
Mn(x0)−Mn(w)

h

)
dFn(w), (3.3)
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where

Mn(w) = w −
∫ w

−∞
Fn(u)du.

Asymptotic properties are also investigated for this estimator, given in theorems 3.2.5 and

3.2.6.

Theorem 3.2.5. Let us assume that (i) f(.) is three-times differentiable at x0 and f (3)(x0)

is bounded, (ii) K is symmetric and the support is given by a closed interval, (iii) K(3) is

bounded, and (iv) A1,4 and A2,0 are bounded. Then, the MSE of λ̂(x0) is given by

E
[(
λ̂(x0)− λ(x0)

)2
]

=
h4

4
A2

(1,2)

{
[(1− F (x0))(1− F (x0)f ′′ + 4ff ′) + 3f 3]

2

[1− F (x0)]10

}
(x0) +

A(2,0)

nh
λ(x0) +O(h6 +

1

nh1/2
), x0 ∈ R,

note that

Ai,j =

∫ ∞
−∞

ujKi(u)du

Theorem 3.2.6. When h = cn−ε (0 < c, 1
5
≤ ε < 1

2
), the following asymptotic normality of

λ̂(x0) holds:
√
nh
[
λ̂(x0)− λ(x0)

]
d−→ N(B, V1),

where B = limn→∞
√
nh5B1

B1 =
A1,2

2

[
(1− F (x0))(1− F (x0)f ′′ + 4ff ′) + 3f 3

[1− F (x0)]5

]
(x0),

and

V1 = A2,0λ(x0).

In addition, Moriyama and Maesono (2018) have compared the proposed direct estimator

of HR function (3.3) with the naive estimator defined by λn(x0) = f̂(x0)
1−Fn(x0)

, where Fn is the

empirical distribution function. The authors concluded that the direct estimator of HR

function performs asymptotically better than the naive estimator, especially in exponential

or gamma cases, which play a central role in survival analysis and the asymptotic variance

of the new estimator is usually smaller than that of the naive one. Although, the bias of the

direct estimator is large in some cases, and the asymptotic variance is always small when

both bandwidth parameters are the same (see, Moriyama and Maesono, 2018).
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3.3 HR function estimation using GBS kernel

In this section, we develop the HR function estimation based on GBS kernels and we dis-

cuss some properties of this estimator. The bandwidth selection for HR estimator is also

investigated using the popular rule of thumb and unbiased cross validation approaches.

3.3.1 Construction of the estimator

As mentioned previously, the HR function of survival time T (nonnegative random variable)

has the following form

λ(t) = lim
dt→0

Pr(t < T ≤ t+ dt |T>t)
dt

, t > 0,

which can be written as

λ(t) =
f(t)

1− F (t)
, t > 0,

where f is unknown pdf of the r.v. T and F its cumulative distribution function (cdf). Let

f̂GBS be the GBS kernel estimator of the unknown pdf f , and let

F̂GBS(t) =

∫ t

0

f̂GBS(x)dx =

∫ t

0

1

n

n∑
i=1

KGBS(h1/2,x)(Ti)dx

be the GBS kernel estimator of the cdf F . Then, based on a (complete) random sample

T1, T2, . . . , Tn distributed as T , a natural GBS-HR estimator is simply given by

λ̂GBS(t) =

1
n

∑n
i=1

cg

2
√
h

(
1√
tTi

+
√

t
T 3
i

)
g
(

1
h

(
Ti
t

+ t
Ti
− 2
))

1− 1
n

∑n
i=1

∫ t
0

cg

2
√
h

(
1√
xTi

+
√

x
T 3
i

)
g
(

1
h

(
Ti
x

+ x
Ti
− 2
))

dx

, t > 0, (3.4)

where the bandwidth h controls the smoothness of the estimator λ̂GBS as for the case of

the pdf estimation by kernel method. This important issue of bandwidth choice will be

investigated in the Section 3.3.3. Note that for each generator g and constant cg given in

the Table 2.4, we obtain the following specific HR estimator according to each kernel

• BS kernel

λ̂BS(t) =

∑n
i=1

(
1√
tTi

+
√

t
T 3
i

)
exp

[
−1
2h

(
Ti
t

+ t
Ti
− 2
)]

2
3
2n
√
πh−

∑n
i=1

∫ t
0

(
1√
xTi

+
√

x
T 3
i

)
exp

[
−1
2h

(
Ti
x

+ x
Ti−2

)]
dx

, t > 0.
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• BS-PE kernel

λ̂BS−PE(t) =

∑n
i=1

(
1√
tTi

+
√

t
T 3
i

)
exp

[
−1
2hv

(
Ti
t

+ t
Ti
− 2
)]

2
1
2v+1Γ( 1

2v
)n
√
h

v
−
∑n

i=1

∫ t
0

(
1√
xTi

+
√

x
T 3
i

)
exp

[
−1
2hv

(
Ti
x

+ x
Ti
− 2
)v]

dx

, t > 0.

• BS-t kernel

λ̂BS−t(t) =

∑n
i=1

(
1√
tTi

+
√

t
T 3
i

) [
1 + 1

2vh

(
Ti
t

+ t
Ti
− 2
)]−( v+1

2
)

2n
√
hvπΓ( v

2
)

Γ( v+1
2

)
−
∑n

i=1

∫ t
0

(
1√
xTi

+
√

x
T 3
i

)[
1 + 1

vh

(
Ti
x

+ x
Ti
− 2
)]−( v+1

2
)

dx

, t > 0.

• BS-lap kernel

λ̂BS−lap(t) =

∑n
i=1

(
1√
tTi

+
√
tT 3

i

)
exp

[∣∣∣−1
h

(
Ti
t

+ t
Ti
− 2
)∣∣∣]

4n√
h
−
∑n

i=1

∫ t
0

(
1√
xTi

+
√

x
T 3
i

)
exp

[
−
∣∣∣ 1
h

(
Ti
t

+ t
Ti
− 2
)∣∣∣] dx, t > 0.

3.3.2 Convergence properties

In this section, we establish the bias, variance, mean integrated squared error (MISE), of the

proposed GBS-HR kernel estimator using Proposition 3.3.1 and under the conditions C1-C3

(given in page 39) and the following assumptions

A1.
∫∞

0

(
tf ′(t)

1−F (t)

)2

dt <∞;

A2.
∫∞

0

(
t2f ′′(t)
1−F (t)

)2

dt <∞;

A3.
∫∞

0
t−1λ(t)
1−F (t)

dt <∞.

Proposition 3.3.1. Under the conditions C1, C3 and E
[∫ t

0
K

GBS(h
1
2 ,t,g)

(T )dx
]
<∞, for all

n, the following holds

F̂GBS(t)
a.s.−→ F (t), as n→∞ (3.5)

where
a.s.−→ denotes the almost sure convergence.

Proof.

First, we have
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E(F̂GBS(t)) = E
∫ t

0

K
GBS(h

1
2 ,x,g)

(T )dx =

∫ ∞
0

∫ t

0

K
GBS(h

1
2 ,x,g)

(y)f(y)dxdy

=

∫ t

0

∫ ∞
0

K
GBS(h

1
2 ,x,g)

(y)f(y)dydx

=

∫ t

0

E[f(Kx,h)]dx, (3.6)

where Kx,h ∼ GBS(h
1
2 , x, g). The mean and the variance of Kx,h are respectively; see

Marchant et al. (2013)

E(Kx,h) = x+
xhu1(g)

2
, V ar(Kx,h) = x2hu1(g) +

x2h2u2(g)

2
− x2h2u2

1(g)

4
.

By the Taylor expansion around x and using the condition C1, we obtain

E[f(Kx,h)] = f(x) + h

[
u1(g)

2
(xf ′(x) + x2f ′′(x))

]
+ o(h).

By replacing in (3.6), then we have

E(F̂GBS(t)) =

∫ t

0

{
f(x) + h

[
u1(g)

2
(xf ′(x) + x2f ′′(x))

]
+ o(h)

}
dx

=

∫ t

0

f(x)dx+
hu1(g)

2

∫ t

0

(xf ′(x) + x2f ′′(x))dx+ o(h).

= F (t) + h

[
u1(g)(t2f ′(t)− tf(t) + F (t))

2

]
+ o(h)

= F (t) +O(h). (3.7)

Second, note that
∫ t

0
K

GBS(h
1
2 ,x)

(Ti)dx are i.i.d. and E
[∫ t

0
K

GBS(h
1
2 ,x)

(T )dx
]
<∞, ∀n. Hence,

by the strong law of large numbers, we obtain

F̂GBS(t)− E
[∫ t

0

KGBS(Ti)dx

]
a.s.−→ 0 as n→∞. (3.8)

Then, by using (3.7), (3.8) and the following classical decomposition

F̂GBS(t)− F (t) =
[
E(F̂GBS(t))− F (t)

]
+
[
F̂GBS(t)− E(F̂GBS(t))

]
,

we complete the proof of the proposition.

The first theorem presents the asymptotic bias and variance of the GBS-HR estimator

given by the equation (3.4) and the second one gives the mean integrated squared error
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(MISE) (global property) of the estimator λ̂GBS and the optimal bandwidth which minimizes

the MISE criterion.

Theorem 3.3.1. (Bias and variance of λ̂GBS)

Let λ̂GBS be the estimator of the hazard rate function λ with GBS kernels. Under the

conditions C1, C2 given previously, the bias and variance of this estimator are given by

Bias
[
λ̂GBS(t)

]
=

m∗

1− F (t)
+ o(h), (3.9)

and

Var
[
λ̂GBS(t)

]
=

σ∗2

[1− F (t)]2
+ o(n−1h−

1
2 ), (3.10)

where m∗ =
hu1

2
[tf ′(t) + t2f ′′(t)] and σ∗ =

c2
g

(cg2nh1/2)
t−1f(t)/.

Proof

From Proposition 3.3.1, we can write

λ̂GBS(t) =
f̂GBS(t)

1− F̂GBS(t)
=

f̂GBS(t)

1− F (t)
a.s.

Then for n enough large, the mean of λ̂GBS(t) is simply given by

E
[
λ̂GBS(t)

]
=

E
[
f̂GBS(t)

]
1− F (t)

. (3.11)

Hence, the bias is expressed as

Bias
[
λ̂GBS(t)

]
= E

[
λ̂GBS(t)

]
− λ(t) =

E
[
f̂GBS(t)

]
1− F (t)

− f(t)

1− F (t)
=

Bias
[
f̂GBS(t)

]
1− F (t)

.

Similarly, the variance is given by

Var
[
λ̂GBS(t)

]
= Var

[
f̂GBS(t)

1− F (t)

]
=

Var
[
f̂GBS(t)

]
[1− F (t)]2

.

Now, by replacing the expressions of the bias and variance of f̂GBS(t) given in the formulas

(2.7) and (2.8) respectively, we obtain the desired result given in Theorem 3.3.1.

Theorem 3.3.2. (MISE of λ̂GBS)

Under the conditions C3 and A1-A3, we obtain the MISE of λ̂GBS as follows

MISE(λ̂GBS) =
u2

1(g)h2

4

∫ ∞
0

[
(tf ′(t) + t2f ′′(t))

1− F (t)

]2

dt+
c2
g

cg2nh
1
2

∫ ∞
0

t−1λ(t)

[1− F (t)]
dt

+ o

(
h2 +

1

nh
1
2

)
, (3.12)

page 63



HR function estimation using GBS kernel

and the optimal bandwidth h is given by

hopt =

 c2
g

∫∞
0

t−1f(t)

(1−F (t))2
dt

cg2u
2
1(g)

∫∞
0

(
tf ′(t)+t2f ′′(t)

1−F (t)

)2

dt


2
5

n−
2
5 . (3.13)

Proof.

The MISE (3.12) is obtained by substituting the formulas of the bias and variance of the

estimator λ̂GBS(t) in
∞∫
0

Bias2
[
λ̂GBS(t)

]
dt+

∞∫
0

Var(λ̂GBS(t))dt, and by minimizing the MISE

(3.12) on h, we obtain the optimal bandwidth (3.13). Note that the bandwidth (3.13)

depends on the unknown pdf f and on the cdf F , then it can not be directly exploited

in practice. The rule of thumb (RT) using BS distribution as a reference model and the

Unbiased Cross Validation (UCV) approaches, will be developed in the Section 3.3.3.

Now, the two following theorems establish the strong consistency and the convergence in

distribution of λ̂GBS. The first consistency result concerns the almost sure convergence, and

the second theorem deals with the asymptotic normality.

Theorem 3.3.3. (Strong convergence of λ̂GBS)

Let λ̂GBS be the estimator of λ defined in (3.4). Then for fixed t > 0, we have

λ̂GBS(t)
a.s.−→ λ(t), as n→∞.

Proof

Recall that f̂GBS(t) = 1
n

∑n
i=1 KGBS(Ti) and E

[
f̂GBS(t)

]
= E [KGBS(T )], such that

limn→∞ E [KGBS(T )] = f(t). Note that KGBS(Ti) are i.i.d. and E [KGBS(T )] <∞. Then, by

the strong law of large numbers, we have

f̂GBS(t) =
1

n

n∑
i=1

KGBS(Ti)
a.s.→ f(t), n→∞.

Now, from Proposition 3.3.1, we get

λ̂GBS(t)
a.s.→ λ(t).

The proof of Theorem 3.3.3 is complete.

Theorem 3.3.4. (Asymptotic normality of λ̂GBS)

For fixed t > 0, the estimator λ̂GBS converges in distribution to the normal distribution as
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follows

[1− F (t)]σ∗−1n
1
2

[
λ̂GBS(t)− λ(t)− m∗

1− F (t)

]
D−→ N (0, 1),

where
D−→ denotes the convergence in distribution.

Proof

Following Bouezmarni and Rombouts (2010) and using that h = o(n−1), we can write

σ∗−1n
1
2

[
f̂GBS(t)− f(t)−m∗

]
=

n∑
i

Yi +O(n
−1
4 ),

where

Yi = σ∗−1
{
n
−1
2 [KGBS(Ti)− E(KGBS(T ))]

}
.

The central limit theorem asserts that as n→∞, the distribution of Vn =
∑n

i=1 Yi tends to

the normal distribution with zero mean and unit variance, i.e. Vn
D→ N (0, 1), by the fact

that E(Vn) = 0 and Var(Vn) = 1 + o(1). That leads to deduce that

σ∗−1n
1
2

[
f̂GBS(t)− f(t)−m∗

]
D→ N (0, 1), as n→∞.

Now, from Proposition 3.3.1 we can write

λ̂GBS(t)− λ(t) =
f̂GBS(t)− f(t)

1− F (t)
a.s.

Hence, we write explicitly

λ̂GBS(t)− λ(t)− m∗

1− F (t)
=
f̂GBS(t)− f(t)−m∗

1− F (t)
a.s.

Consequently,

[1− F (t)]σ∗−1n
1
2

[
λ̂GBS(t)− λ(t)− m∗

1− F (t)

]
= σ∗−1n

1
2

[
f̂GBS(t)− f(t)−m∗

]
a.s.

Finally, we conclude that [1− F (t)]σ∗−1n
1
2

[
λ̂GBS(t)− λ(t)− m∗

1−F (t)

]
is asymptotically nor-

mally distributed, which gives the desired result.

3.3.3 Bandwidth selection

The performance of the GBS kernel HR estimator given by (3.4) depends on the bandwidth

h, which controls the smoothness of this estimator. Then, we investigate the bandwidth
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choice on the GBS kernel estimator for HR. First, recall that the optimal bandwidth (3.13)

depends on the unknown quantities f , f ′, f ′′ and F . In order to overcome this problem, we

propose to use both of RT with BS reference model and UCV methods, then compare the

results in the simulation study given in Section 3.4.

3.3.3.1 RT method

Here we suggest to use the rule of thumb method that replaces the unknown density f in

(3.13) by a known reference BS parametric model with parameters a and b (T ∼ BS(a, b));

this approach can be called BS-referenced bandwidth (see, e.g., Silverman 1986; Jones and

Henderson 2007; Hirukawa and Sakudo 2014) in the context of density estimation. Note that

the parameters a and b are replaced by the corresponding estimators â and b̂, which can be

obtained in explicit forms, using the modified moment estimation (MME) as

â =

[
2

{(
T̄

S̄

)1/2

− 1

}]1/2

, b̂ =
(
T̄ S̄
)1/2

, (3.14)

with

T̄ =
1

n

n∑
i=1

Ti and S̄ =

[
1

n

n∑
i=1

T−1
i

]−1

.

Therefore, the BS-referenced bandwidth is given by

hRT =



c2
g

∫∞
0

t−1f
BS(â,b̂)

(t)(
1−Φ

[
1
â

{
( t
b̂
)
1
2−
(
b̂
t

) 1
2

}])2dt

cg2u
2
1

∫∞
0

 tf ′
BS(â,b̂)

(t)+t2f ′′
BS(â,b̂)

(t)

1−Φ

[
1
â

{
( t
b̂
)
1
2−
(
b̂
t

) 1
2

}]


2

dt



2
5

n−
2
5 , (3.15)

where Φ

[
1
â

{(
t

b̂

) 1
2 −

(
b̂
t

) 1
2

}]
represents the cdf of BS distribution, with Φ(·) is the standard

normal cdf,

fBS(a,b)(t) =
1

2ab
√

2π

((
b

t

) 1
2

+

(
b

t

) 3
2

)
exp

(
− 1

2a2

[
t

b
+
b

t
− 2

])
, t > 0,

f ′BS(a,b)(t) =

(
3b
√

b
t

2t2
− b

2t2
√

b
t

)
exp

(
−

b
t
+ t
b
−2

2a2

)
2
√

2πab
−

(
1
b
− b

t2

) ((
b
t

)3/2
+
√

b
t

)
exp

(
−

b
t
+ t
b
−2

2a2

)
4
√

2πa3b
, t > 0,
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and

f ′′BS(a,b)(t) =

(
− 3b2

4t4
√

b
t

− b2

4t4( bt )
3/2 −

3b
√

b
t

t3
+ b

t3
√

b
t

)
exp

(
−

b
t
+ t
b
−2

2a2

)
2
√

2πab

+

((
b
t

)3/2
+
√

b
t

) (
1
b
− b

t2

)2
exp

(
−

b
t
+ t
b
−2

2a2

)
8
√

2πa5b
−

((
b
t

)3/2
+
√

b
t

)
exp

(
−

b
t
+ t
b
−2

2a2

)
2
√

2πa3t3

−

(
3b
√

b
t

2t2
− b

2t2
√

b
t

)(
1
b
− b

t2

)
exp

(
−

b
t
+ t
b
−2

2a2

)
4
√

2πa3b
, t > 0.

Note that we can use another reference model, such as gamma, lognormal, etc.

3.3.3.2 UCV method

The UCV method is based on the optimization of the integrated squared error (ISE), that

is given in our case by

ISE(λ̂GBS) =

∫ ∞
0

[
λ̂GBS(t)

]2

dt− 2

∫ ∞
0

λ̂GBS(t)λ(t)dt+

∫ ∞
0

[λ(t)]2 dt.

The last term does not depend on bandwidth h, so we need to minimize the score function

CV given by

CV (h) =

∫ ∞
0

[
λ̂GBS(t)

]2

dt− 2

∫ ∞
0

λ̂GBS(t)λ(t)dt

=

∫ ∞
0

[
f̂GBS(t)

1− F̂GBS(t)

]2

dt− 2E

{
f̂GBS(t)

[1− F (t)][1− F̂GBS(t)]
.

}

We replace F by its estimator F̂GBS, then we get the new expression of CV (h), given by

UCV (h) =

∫ ∞
0

[ ∑n
i=1 KGBS(t,h)(Ti)

n−
∫ t

0

∑n
i=1KGBS(x,h)(Ti)dx

]2

dt−

2(n− 1)

n

n∑
i=1

∑n
j=1,j 6=iKGBS(Ti,h)(Tj)[

(n− 1)−
∫ Ti

0

∑n
j=1,j 6=iKGBS(Xi,h)(Tj)dXi

]2 .

The UCV optimal bandwidth is defined as

hUCV = arg min
h>0

UCV (h).
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3.4 Simulation study

This section investigates the GBS (BS, BS-PE, BS-t and BS-Lap) kernel HR estimators

developed in Section 3.3, and compare their performances with the Reciprocal Inverse Gaus-

sian (RIG) and Gamma kernels HR estimators through simulation study. We note that the

optimal bandwidth of the HR estimator using RIG and gamma kernels is calculated using

RT and UCV methods. The comparison of these two methods is also investigated.

We simulate data from four nonnegative life distributions. We consider the lognormal,

BS, gamma and BS-Student (GBS-t) distributions. The corresponding pdfs are listed in

Table 3.1. For each target density, 100 replications of sample size n =50, 200, 500 and 1000

are generated. We compare the performance of the estimators using the ISE criterion given

by

ISE[λ̂(t)] =

∫ ∞
0

[
λ(t)− λ̂(t)

]2

dt.

Distribution pdf expression, t > 0 Parameters

D1 lognormal 1
tσ
√

2π
exp

(
− 1
σ2 (ln(t)− µ)2

)
(µ, σ) = (2, 3)

D2 gamma 1
βαΓ(α)

tα−1 exp(− t
β
) (α, β) = (3, 0.5)

D3 BS 1
2αβ
√

2π

((
β
t

) 1
2 +

(
β
t

) 3
2

)
exp

(
− 1

2α2

[
t
β

+ β
t
− 2
])

(α, β) = (2, 3)

D4 BS-Student
Γ( ν+1

2
)

2
√
νπΓ( ν

2
)αβ

((
β
t

) 1
2 +

(
β
t

) 3
2

)(
1 +

t
β

+β
t
−2

να2

)− ν+1
2

(α, β, tν) = (1, 2, t5)

Table 3.1: Distributions used in simulation study.

Table 3.2 presents the average ISE based on 100 replications for the HR estimators of

the models D1, D2, D3 and D4. For bandwidth choice, which is an important practical

issue in nonparametric HR kernel estimation, we used RT and UCV procedures, developed

in Section 3.3.3, for the purpose of selecting the one that gives best results.
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Size

XXXXXXXXXKernels

Models
BS(2,3) lognormal(2,3) gamma(3,0.5) GBS(1, 2; tv=5)

hRT hUCV hRT hUCV hRT hUCV hRT hUCV

BS 0.02608 0.05044 0.09258 0.20487 0.03692 0.21300 0.03061 0.11378

BS-PE(ν = 2) 0.05359 0.05628 0.09841 0.26722 0.04060 0.12588 0.07373 0.12567

BS-t(ν = 5) 0.02618 0.05419 0.07130 0.06313 0.03337 0.26009 0.04082 0.07847

n=50 BS-lap 0.03541 0.26491 0.14983 0.12800 0.04767 0.25904 0.04417 0.07411

RIG 0.05507 0.11706 0.13853 0.11592 0.03761 0.09739 0.07605 0.12397

gamma 0.05940 0.06396 0.09339 0.06872 0.03917 0.11679 0.10101 0.14568

BS 0.00807 0.03860 0.02682 0.06756 0.01956 0.19084 0.01564 0.04011

BS-PE(ν = 2) 0.01700 0.09110 0.04774 0.05680 0.02740 0.11424 0.02337 0.02136

BS-t(ν = 5) 0.00981 0,15111 0.04835 0.12515 0.02825 0.26264 0.00990 0.04406

n=200 BS-lap 0.01228 0.27653 0.05037 0.07218 0.04140 0.25695 0.01266 0.04054

RIG 0.01463 0.11497 0.05290 0.12381 0.01026 0.04350 0.02348 0.08176

gamma 0.02040 0.06334 0.03656 0.06668 0.01779 0.11092 0.02316 0.14428

BS 0.00407 0.01056 0.02501 0.04410 0.01819 0.10905 0.00828 0.03865

BS-PE(ν = 2) 0.00740 0.00933 0.06187 0.02362 0.02035 0.10932 0.01137 0.03804

BS-t(ν = 5) 0.00543 0.01086 0.04201 0.03960 0.02447 0.26854 0.00444 0.04167

n=500 BS-lap 0.00583 0.19160 0.02032 0.04062 0.03731 0.26217 0.00865 0.03974

RIG 0.00999 0.09817 0.02525 0.11634 0.00590 0.04961 0.01332 0.16962

gamma 0.00978 0.06189 0.02101 0.06602 0.01289 0.10905 0.01163 0.14297

BS 0.00217 0.00582 0.01200 0.02464 0.01552 0.10242 0.00277 0.02537

BS-PE(ν = 2) 0.00424 0.00444 0.04130 0.01337 0.01874 0.08560 0.00287 0.02244

BS-t(ν = 5) 0.00436 0.00694 0.03491 0.03676 0.02301 0.26688 0.00339 0.03787

n=1000 BS-lap 0.00237 0.12540 0.00884 0.01340 0.03602 0.26209 0.00502 0.03349

RIG 0.00571 0.09860 0.01535 0.11524 0.00380 0.04175 0.00613 0.07871

gamma 0.00526 0.06022 0.01171 0.05954 0.00971 0.10900 0.00702 0.14573

Table 3.2: Some expected values of ISE for HR estimators, based on 100 replications for the

considered models in simulation, using the bandwidths, hRT and hUCV .
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In terms of average ISE, the obtained results based on GBS, RIG and gamma kernels

reveal that:

• In general, the average ISE values, decreases as the sample size n increases, and the

proposed class of GBS kernels outperforms the RIG and gamma kernels, whatever the

bandwidth selection method, the sample size n and the distribution considered in the

simulation study, except for gamma model.

• In the case of RT method, the BS kernel performs better than the other kernels for

BS model, and also for small and moderate sample sizes n for lognormal distribution.

However, the BS-lap kernel works better than the other for large sample size n in

the case of lognormal distribution. In the case of BS-Student model, the BS-t and

BS kernels have presented the best results. The performances of BS-t and BS HR

estimators are mixed depending on the sample size n.

• In the case of UCV method, the BS kernel is better for small and moderate sample sizes

n for BS model. However the BS-PE kernel gives best results for moderate and large

sample sizes n for BS, lognormal and BS-Student distributions. The BS-t and BS-lap

kernels perform well in the case of lognormal and BS-Student models, respectively, in

the case of small sample sizes.

• The RIG kernel seems to be the suitable one in the case of gamma distribution for UCV

method, in particular for moderate and large sample sizes in the case of RT method.

• In addition, the results show that the RT bandwidth selection method is more appro-

priate than UCV method, for the models considered in simulation study excepting the

gamma model.

The comparison is also given in Figures 3.1 and 3.2. These figures indicate the estimates of

the HR function for BS and lognormal models for the sample size n = 200. Globally, we can

see graphically that the smoothing quality of the HR estimators, given in the Figure 3.1,

where the parameter h is selected with RT method, is better compared to those in Figure

3.2, and it is very satisfactory for the GBS kernel compared to RIG and gamma kernels. We
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can also note that the best fit is obtained by using the BS and BS-lap kernels in comparison

with the fit provided by BS-t and BS-PE kernels.
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Figure 3.1: HR estimators for BS and lognormal models with n = 200, using the bandwidth

hRT .
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Figure 3.2: HR estimators for BS and lognormal models with n = 200, using the bandwidth

hUCV .

Computer programs used in this simulation study are given in appendices.

3.5 Exemple with real data

In this section, three real lifetime data sets are analyzed by our proposed approach. These

three data sets are already discussed using the parametric BS and GBS distributions by

Kundu et al. (2008) and Athayde et al. (2019), respectively; see also Paula et al. (2012).

(S1 ) represents survival times (in days) of n = 72 pigs injected with the same dose of

tubercle bacilli, corresponding to 4.0 × 106 bacillary units per 0.5 ml, that is, to a
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regimen number of 237 the base-10 logarithm of bacillary units in 0.5 ml of challenge

solution. These data are discussed by Kundu et al. (2008) using the life BS distribution,

and analyzed more recently by Athayde et al. (2019) with the GBS life distribution.

(S2 ) denotes the total phosphorus 240 (mg/l) in Melides lagoon, Portugal, measured from

05-April-2004 to 26-Jan-2013 with sample size n = 104. Athayde et al. (2019) have

investigated the HR of GBS distributions. Note that in our study, we have multiplied

these data by 10, see Table 3.3.

(S3 ) concerns the claim amounts corresponding to n = 542 injuries paid by an insurance

Australian. These data have been analyzed earlier by using the BS-Student regression

model, and more recently, Athayde et al. (2019) have investigated the HR of GBS

distributions in parametric estimation. Note that in our investigation, we have divided

these data by 1000, see Table 3.3.

Data Mean Median SD CV CS CK Min Max n

S1 99.82 70 81.11 81.26% 1.79 5.61 12 376 72

S2 1.39 0.99 1.49 107.14% 3.52 16.67 0.1 9.91 240

S3 8.99 6.76 8.79 97.71% 5.59 54.31 0.109 116.58 542

Table 3.3: Descriptive statistics for the indicated data set.

Note that

CV: coefficient of variation.

CS: coefficient of skewness.

CK: coefficient of kurtosis.
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The Table 3.3 gives a descriptive statistics for lifetime data sets S1, S2 and S3. We

can see that all these data sets are positively skewed and present a high kurtosis level, in

particular for S2 and S3. Then, we apply the GBS, RIG and gamma kernels to estimate the

density and the HR function for these considered data. Table 3.4 provides the bandwidth

selectors given by the RT method for the density estimator f̂GBS, and both of RT and UCV

methods for the HR function estimator λ̂GBS, respectively, according to the real data sets

S1, S2 and S3. Note that the RT method is based on BS reference model, see Section 3.3.3

for HR estimators. Figures 3.3, 3.4 and 3.5 show the estimates of the pdf and HR function

for S1, S2 and S3 data sets based on GBS (BS, BS-PE, BS-t and BS-lap), RIG and gamma

kernels combined with RT and UCV bandwidth selectors. In general, we can observe that

in term of smoothing quality, the GBS kernel perform better than RIG and gamma kernels

for the data S1 in the case of density estimation, and the data S1, S2 and S3 in the case of

HR estimation using RT bandwidth selection method, see Figures 3.3 and 3.4, respectively.

The first best performance is obtained with BS kernel, and the second best result can be

attributed to BS-t and BS-lap, in particular for HR function estimation. The BS-PE and

gamma kernels tend to under or over smooth the HR function of the considered data sets,

especially in the case of UCV bandwidth selector, see Figure 3.5.
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Data Kernel f̂GBS λ̂GBS

hRT hUCV

BS 0.02800 0.05635 0.00621

S1 BS-PE(ν = 2) 0.01019 0.05954 0.48943

BS-t(ν = 5) 0.01752 0.06873 0.01626

BS-lap 0.02670 0.04237 0.07517

RIG 0.03524 0.63086 1.99782

Gamma 0.02368 0.46079 0.55600

BS 0.02454 0.03992 1.26476

S2 BS-PE(ν = 2) 0.05756 0.04277 0.67289

BS-t(ν = 5) 0.03564 0.87868 1.22220

BS-lap 0.02354 0.03048 0.81522

RIG 0.06524 0.02578 0.48830

Gamma 0.08524 0.02545 1.99708

BS 0.14089 0.03667 0.82671

S3 BS-PE(ν = 2) 0.32045 0.03650 1.81204

BS-t(ν = 5) 0.08463 0.03728 0.99120

BS-lap 0.26548 0.02314 0.61790

RIG 0.12563 0.08665 1.74301

Gamma 0.09648 0.07141 1.83027

Table 3.4: Bandwidth of HR estimators computed with RT and UCV methods, and those

of pdf computed with RT method.
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Figure 3.3: Pdf estimation for S1, S2 and S3 data.
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Figure 3.4: HR function estimation for S1, S2 and S3 data, using RT bandwidth selector.
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Figure 3.5: HR function estimation for S1, S2 and S3 data, using UCV bandwidth selector.
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Chapter 4
Reliability and reversed hazard rate function

estimation using GBS kernel

4.1 Introduction

According to Marchant at al. (2013) and Chekkal et al. (2021), the class of GBS kernels

gives a good estimates for density pdf and hazard rate HR function, respectively. Since these

functions are directly related to the reliability and reversed hazard rate (RHR) functions, it

will be interesting to test if the class of GBS kernels performs in the case of reliability and

reversed hazard rate functions. That is why we propose to study these two functions using

GBS kernels, and establish the asymptotic properties for each estimator. Finally, simulation

study is investigated to test their performance.

4.2 GBS-Reliability estimation

The natural estimator of reliability function of nonnegative r.v. T , is given as

R̂(t) = 1−
∫ t

0

f̂(x)dx, t > 0, (4.1)

with f̂ is the pdf estimator of f .

Let T1, T2, .., Tn be a independent identically distributed (i.i.d.) random sample dis-

tributed as a nonnegative r.v. T . By using the class of GBS kernel, the estimator GBS-
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GBS-Reliability estimation

Reliability can be rewritten as

R̂GBS(t) = 1−
∫ t

0

1

n

n∑
i=1

KGBS(x,h)(Ti)dx, t > 0, (4.2)

where t is the target, h is the bandwidth parameter and KGBS represents the class of GBS

kernels, presented previously in Chapter 2, Section 2.4.

By replacing the expression of the kernel KGBS, we obtain the following GBS-Reliability

estimator

R̂GBS(t) = 1− cg

2n
√
h

n∑
i=1

∫ t

0

(
1√
xTi

+

√
x

T 3
i

)
g

(
1

h

(
Ti
x

+
x

Ti
− 2

))
dx, t > 0. (4.3)

The asymptotic properties and the methods for selecting the bandwidth h of this estimator,

are illustrated in the next.

4.2.1 Asymptotic properties

The propositions above are established under the conditions C1-C3 given in the page 39 and

the following hypothesis

F1.
∫ t−1R(t)2

f(t)
dt <∞;

F2.
∫ [ tf ′(t)R(t)

f(t)

]2

dt <∞;

F3.
∫ [ t2f ′′(t)R(t)

f(t)

]2

dt <∞.

Proposition 4.2.1. Let R̂GBS be the GBS kernel of the reliability function. Under the

conditions C1 and C2, the following holds

Bias[R̂GBS(t)] = m∗
R(t)

f(t)
+ o(h), t > 0.

Var[R̂GBS(t)] = σ∗2
R2(t)

f(t)
+ o

(
1

nh1/2

)
, t > 0.

Where m∗ =
hu1

2
[tf ′(t) + t2f ′′(t)] and σ∗ =

c2
g

(cg2nh1/2)
t−1f(t).

Proof The bias and the variance of R̂GBS are obtained by using Theorem 3.3.3 given in

Section 3.3.2, Chapter 3, (displaying the convergence almost sure of λ̂GBS, λ̂GBS(t)
a.s.−→ λ(t)

as n → ∞), and the fact that R̂GBS(t) = f̂GBS(t)

λ̂GBS(t)
. Then we replace the expressions of

Bias(f̂GBS) and Var(f̂GBS) given in Chapter 2, Section 2.4.
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GBS-Reliability estimation

Proposition 4.2.2. The mean integrated squared error (MISE) of the estimator GBS-R is

given under the conditions C1-C3 and the hypothesis F1-F3 by

MISE[R̂GBS] =
h2u2

1

4

∫ +∞

0

[tf ′(t)+t2f ′′(t)]2
R2(t)

f 2(t)
dt+

c2

cg2nh1/2

∫ +∞

0

t−1R
2(t)

f(t)
dt+o

(
h2 +

1

n
√
h

)
.

(4.4)

The MISE[R̂GBS] is obtained by replacing the Bias[R̂GBS(t)] and Var[R̂GBS(t)] in

MISE[R̂GBS(t)] =
∫ +∞

0
Bias2[R̂GBS(t)] +

∫ +∞
0

Var[R̂GBS(t)]dt, with the expressions of m∗

and σ∗2.

Using the hypothesis F1-F3, h→ 0 and 1
n
√
h
→∞, as n→∞, the MISE[R̂GBS] tend to 0.

4.2.2 Bandwidth selection

For the selection of a bandwidth parameter h, we propose to use the same methods used in

the case of GBS-HR estimator, that are; rule of thumb (RT) and unbiased cross validation

(UCV).

4.2.2.1 RT method

By minimizing the MISE criterion in h, given in (4.4) we obtain the following optimal

bandwidth parameter

h∗ =

 c2
∫
t−1R

2(t)
f(t)

dt

u2
1(g)cg2

∫
[tf ′(t) + t2f ′′(t)]2R

2(t)
f2(t)

dt

2/5

n−2/5.

The main obstacle here is that the bandwidth above depends on the unknown quantities f ,

f ′, f ′′ and R. That makes the calculation more difficult especially in the practical case, see

for instance, Hirukawa and Sakudo (2014) in the case of density function. We propose to use

the BS parametric distribution as a reference model with parameters a and b, T ∼ BS(a, b)

(as in the case of GBS-HR estimator), and replace the unknown functions by fBS, f ′BS, f ′′BS

and RBS, respectively. The parameters a and b are estimated using the modified moment

method (MME) and their estimators â and b̂ are given in the formula (3.14), Section 3.3.3,

Chapter 3.
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Therefore the BS-referenced bandwidth of GBS-R estimator is given by

hRRT =


c2
g

∫ +∞
0

t−1

(
1−Φ

[
1
â

{
( t
b̂
)
1
2−
(
b̂
t

) 1
2

}])2

fBS(t)
dt

u2
1cg2

∫ +∞
0

[tf ′BS(t) + t2f ′′BS(t)]2

(
1−Φ

[
1
â

{
( t
b̂
)
1
2−
(
b̂
t

) 1
2

}])2

f2BS(t)
dt


2/5

n−2/5, (4.5)

where Φ

[
1
â

{(
t

b̂

) 1
2 −

(
b̂
t

) 1
2

}]
represents the cdf of BS distribution, with Φ(·) is the standard

normal cdf and the expressions of fBS, f ′BS, f ′′BS are given previously in Chapter 3, Section

3.3.3.

4.2.2.2 UCV method

This method consists to minimize the integrated squared error (ISE) of the GBS-R estimator,

given by

ISE(R̂GBS) =

∫ ∞
0

[
R̂GBS(t)

]2

dt− 2

∫ ∞
0

R̂GBS(t)R(t)dt+

∫ ∞
0

[R(t)]2 dt.

The last term does not depend on bandwidth h, so we need to minimize the score function

CVR given by

CVR(h) =

∫ ∞
0

[
R̂GBS(t)

]2

dt− 2

∫ ∞
0

R̂GBS(t)R(t)dt

=

∫ ∞
0

(1− F̂GBS)2dt− 2E

[
f̂GBS(t)

λ(t)λ̂GBS(t)

]
.

We replace λ by its estimator λ̂GBS, then we get the new expression of CVR(h), given by

UCVR(h) =

∫ ∞
0

[
1−

∫ t

0

1

n

n∑
i=1

KGBS(x,h)(Ti)dx

]2

−

2(n− 1)

n

n∑
i=1

[
1− 1

n−1

∫ Ti
0

∑
j 6=iKGBS(Xi,h)(Tj)dXi

]2∑
j 6=iKGBS(Ti,h)(Tj)

.

The UCVR optimal bandwidth is

hRUCV = arg min
h>0

UCVR(h).

A simulation study is conducted in the Section 4.4.1, in order to test the performance of

the reliability estimator R̂GBS and select the suitable bandwidth parameter for the samples

considered.
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4.3 GBS-RHR estimator

In this section, we present the reversed hazard rate RHR function estimator based on the

class of GBS kernels. Recall the expression of the reversed hazard rate function of the lifetime

r.v. T

ρ(t) =
f(t)

F (t)
, t > 0,

with pdf f and cdf F .

Let T1, T2, ..., Tn a set of r.v. distributed as T . The kernel estimator GBS-RHR of RHR

function using GBS kernels is given as

ρ̂GBS(t) =
f̂GBS(t)

F̂GBS(t)

=

∑n
i=1

(
1√
tTi

+
√

t
T 3
i

)
g
(

1
h

(
Ti
t

+ t
Ti
− 2
))

∑n
i=1

∫ t
0

(
1√
xTi

+
√

x
T 3
i

)
g
(

1
h

(
Ti
x

+ x
Ti
− 2
))

dx

, t > 0, (4.6)

with f̂GBS(t) and F̂GBS(t) are GBS kernel estimator of pdf f and cdf F , given respectively

by

f̂GBS(t) =
cg

2n
√
h

n∑
i=1

(
1√
tTi

+

√
t

T 3
i

)
g

(
1

h

(
Ti
t

+
t

Ti
− 2

))
, t > 0,

F̂GBS(t) =
cg

2n
√
h

n∑
i=1

∫ t

0

(
1√
xTi

+

√
x

T 3
i

)
g

(
1

h

(
Ti
x

+
x

Ti
− 2

))
dx, t > 0,

and h is the parameter that controls the smoothness of the estimator ρ̂GBS(t). Two methods

will be investigated to select the optimal one, in the Section 4.3.2.

The asymptotic properties of the estimator (4.6) are given in the next section.

4.3.1 Asymptotic properties

The asymptotic properties of the estimator GBS-RHR defined in (4.6) are established under

the conditions C1-C3 and the following assumptions

G1.
∫∞

0

(
tf ′(t)
F (t)

)2

dt <∞;

G2.
∫∞

0

(
t2f ′′(t)
F (t)

)2

dt <∞;

G3.
∫∞

0
t−1f(t)
F 2(t)

dt <∞.
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Proposition 4.3.1. Under the assumptions C1-C3, the bias and the variance of the esti-

mator GBS-RHR are given by

Bias [ρ̂GBS(t)] =
m∗

F (t)
+ o(h), t > 0.

Var [ρ̂GBS(t)] =
σ∗2

F 2(t)
+ o

(
1

n
√
h

)
, t > 0,

where the expressions of m∗ and σ∗ are given in Proposition 4.2.1.

Proof.The bias and the variance of ρ̂GBS are obtained by using Proposition 3.3.1 given

in Chapter 3, Section 3.3.2, displaying the convergence almost sure of the estimator F̂GBS,

F̂GBS(t)
a.s.−→ F (t), as n→∞. Then we replace the expressions of Bias(f̂GBS) and Var(f̂GBS)

given in Chapter 2, Section 2.4, page 36.

Proposition 4.3.2. The mean integrated squared error MISE is given under G1-G3

MISE(ρ̂GBS) =
u2

1(g)h2

4

∫ ∞
0

[
(tf ′(t) + t2f ′′(t))

F (t)

]2

dt+
c2
g

cg2nh
1
2

∫ ∞
0

t−1f(t)

[F (t)]2
dt

+ o

(
h2 +

1

nh
1
2

)
, (4.7)

The MISE (4.7) is obtained by substituting the formulas of the bias and variance of the

estimator ρ̂GBS(t) in
∫∞

0
Bias2[ρ̂GBS(t)]dt+

∫∞
0

Var[ρ̂GBS(t)]dt with the expressions of m∗ and

σ∗2.

Using the hypothesis G1-G3, h→ 0 and 1
n
√
h
→∞, as n→∞, the MISE[R̂GBS] tend to 0.

4.3.2 Bandwidth selection

For the selection of a bandwidth parameter h, we propose to use the same methods used in

the case of GBS-HR estimator; RT and UCV methods.

4.3.2.1 RT method

This method consists to minimize the MISE(ρ̂GBS) given in (4.7), to obtain the following

expression of h

h∗∗ =

 c2
g

∫∞
0

t−1f(t)
F (t)2

dt

cg2u
2
1(g)

∫∞
0

(
tf ′(t)+t2f ′′(t)

F (t)

)2

dt


2
5

n−
2
5 .
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We see clearly that the bandwidth above depends on the unknown quantities f , f ′, f ′′, and

F . That makes the calculation more difficult especially in the practical case, see for instance,

Hirukawa and Sakudo (2014) in the case of density function. This consists to substitute the

unknown functions by those of BS parametric model, i.e., fBS, f ′BS, f ′BS, and FBS, with

parameters a and b (T ∼ BS(a, b)) that are also estimated by modified moment method

(MME), noted by â and b̂ respectively, see their expressions in (3.14), Chapter 3, Section

3.3.3. Finally we obtain the following optimal bandwidth as

hρRT =



c2
g

∫∞
0

t−1f
BS(â,b̂)

(t)(
Φ

[
1
â

{
( t
b̂
)
1
2−
(
b̂
t

) 1
2

}])2dt

cg2u
2
1(g)

∫∞
0

 tf ′
BS(â,b̂)

(t)+t2f ′′
BS(â,b̂)

(t)

Φ

[
1
â

{
( t
b̂
)
1
2−
(
b̂
t

) 1
2

}]


2

dt



2
5

n−
2
5 , (4.8)

where Φ

[
1
â

{(
t

b̂

) 1
2 −

(
b̂
t

) 1
2

}]
represents the cdf of BS distribution, with Φ(·) is the standard

normal cdf. See the expressions of fBS, f ′BS, f ′′BS, FBS in the Chapter 3, Section 3.3.3.

4.3.2.2 UCV method

This method consists in optimization of the integrated squared error (ISE), that is given by

ISE(ρ̂GBS) =

∫ +∞

0

[ρ̂GBS(t)]2 dt− 2

∫ +∞

0

ρ̂GBS(t)ρ(t)dt+

∫ +∞

0

[ρ(t)]2 dt.

The last term does not depend on bandwidth h, so we need to minimize the score function

CVρ given by

CVρ(h) =

∫ +∞

0

[ρ̂GBS(t)]2 dt− 2

∫ +∞

0

ρ̂GBS(t)ρ(t)dt

=

∫ ∞
0

[
f̂GBS(t)

F̂GBS(t)

]2

dt− 2E

[
f̂GBS(t)

F (t)F̂GBS(t)

]
.

We replace F by its estimator F̂GBS, then we get the new expression of CVρ(h), given by

UCVρ(h) =

∫ ∞
0

[ ∑n
i=1KGBS(t,h)(Ti)∫ t

0

∑n
i=1 KGBS(x,h)(Ti)dx

]2

dt−2(n− 1)

n

n∑
i=1

∑n
j=1,j 6=iKGBS(Ti,h)(Tj)[∫ Ti

0

∑n
j=1,j 6=iKGBS(Xi,h)(Tj)dXi

]2 .

The UCV optimal bandwidth is defined as

hρUCV = arg min
h>0

UCVρ(h).
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A simulation study is conducted in the Section 4.4.2 to test the performance of the RHR

function estimator ρ̂GBS, and select the appropriate bandwidth for the corresponding gener-

ated samples.

4.4 Simulation study

In this section, we test the performance of GBS kernels comparing to the RIG gamma kernels

in the case of reliability and RHR estimations, and compare the two methods of bandwidth

selection; RT and UCV.

We proceed as in the case of GBS-HR estimator by using the kernels: BS, B-PE, BS-lap,

BS-t, gamma, RIG and generating sample sizes n = 50, n = 200, n = 500 and n = 1000

from the nonnegative distributions: BS (2,3), lognormal (2,3), gamma (3,1/2) and BS-

Student (1,2; tv=5), using 100 replications. See their corresponding densities in the Chapter

3, Section 3.4, Table 3.1.

4.4.1 GBS-Reliability estimator

We calculate the ISE criterion in both case of RT and UCV bandwidth selection methods

and the results of the average ISE are illustrated in the Table 4.1.

According to the results given in Table 4.1, we can see globally that, the average ISE

values decreases as the sample size n increases, whatever the bandwidth selection method.

GBS and RIG kernels perform well and the results obtained in the case of RT method are

better than those obtained for UCV method, except the case of gamma distribution. In fact

• In the case of BS, lognormal and BS-Student distributions, the values of ISE obtained

for RT method are good comparing to those obtained through UCV method. Indeed,

for RT method and in the case of BS distribution, the values of ISE are nearly closed

for all the kernels, however, the best results are obtained for BS, BS-PE and BS-t

depending on the sample size n. Similarly to lognormal and BS-Student distributions,

the values of ISE are almost closed but the smallest ones are presented in RIG kernel

for all the sizes n, except the small sample size n for BS-Student distribution, where

the BS-PE is the most efficient.
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Size

XXXXXXXXXKernels

Models
BS(2,3) lognormal(2,3) gamma(3,0.5) GBS(1, 2; tv=5)

hRT hUCV hRT hUCV hRT hUCV hRT hUCV

BS 0.04070 0.17779 0.08596 0.08188 2.70045 0.45230 0.08857 0.17573

BS-PE(ν = 2) 0.04354 0.09446 0.06382 0.06527 2.45184 0.26535 0.07415 0.16583

BS-t(ν = 5) 0.05397 0.21528 0.06686 0.17824 2.33854 0.51446 0.09384 0.17407

n=50 BS-lap 0.05336 0.22030 0.06878 0.24423 2.38445 0.52074 0.10135 0.16709

RIG 0.04866 0.26938 0.05370 0.13927 0.03618 0.25433 0.07682 0.33264

gamma 0.04150 0.31413 0.06891 0.27139 0.03833 0.05243 0.07694 0.22923

BS 0.01417 0.01848 0.02379 0.01924 2.71708 0.43191 0.06451 0.11651

BS-PE(ν = 2) 0.01170 0.01424 0.01699 0.01736 2.58081 0.24639 0.05745 0.11902

BS-t(ν = 5) 0.01169 0.02116 0.01795 0.01914 2.45229 0.50392 0.06455 0.12106

n=200 BS-lap 0.01360 0.02957 0.02746 0.01912 2.44789 0.49206 0.07924 0.11638

RIG 0.01497 0.24960 0.01666 0.12814 0.00803 0.23625 0.05298 0.35137

gamma 0.01459 0.29682 0.02453 0.27011 0.01030 0.04857 0.05319 0.22979

BS 0.00580 0.00574 0.01238 0.01249 2.73422 0.43616 0.06414 0.09786

BS-PE(ν = 2) 0.00810 0.00567 0.01141 0.01292 2.53538 0.25031 0.05760 0.11353

BS-t(ν = 5) 0.00565 0.00578 0.01339 0.01221 2.45207 0.50496 0.05856 0.09653

n=500 BS-lap 0.00665 0.01056 0.01345 0.12347 2.41191 0.49603 0.05813 0.10808

RIG 0.00688 0.24870 0.01009 0.11465 0.00368 0.23614 0.05076 0.34616

gamma 0.00665 0.30200 0.01653 0.27481 0.00421 0.05061 0.05086 0.23525

BS 0.00537 0.00586 0.00875 0.00690 2.7098 0.43361 0.05569 0.09219

BS-PE(ν = 2) 0.00459 0.00584 0.00619 0.00781 2.65970 0.24877 0.05567 0.10524

BS-t(ν = 5) 0.00483 0.00585 0.00884 0.00689 2.41113 0.50355 0.05321 0.08333

n=1000 BS-lap 0.00518 0.00585 0.00746 0.00955 2.37221 0.49503 0.05988 0.09389

RIG 0.00544 0.24810 0.00549 0.12616 0.00224 0.23469 0.05390 0.35589

gamma 0.00530 0.30260 0.01034 0.26393 0.00270 0.05186 0.05403 0.22835

Table 4.1: Some expected values of ISE for reliability estimators, based on 100 replications

for the considered models in simulation, using the bandwidths, hRRT and hRUCV .
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• In regards to gamma distribution, the UCV method works well than RT method. In

that case the most efficient kernel is gamma.

The comparison is also given in Figures 4.1 and 4.2. These figures indicate, respectively

the estimates of the reliability function for BS and lognormal models for the sample size

n = 200 for hRRT and hRUCV . Globally, we can see graphically that the smoothing quality of

the reliability estimators in the case of RT method (Figure 4.1) is satisfactory compared to

the case where the bandwidth h is obtained with UCV method (Figure 4.2), and we can

note that the shape of all the estimators are nearly closed to the true reliability function,

for BS and lognormal distributions in the case of RT method.
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Figure 4.1: Reliability estimators for BS and lognormal models with n = 200, using the

bandwidth hRRT .

The computer programs used in this simulation study are given in appendices.

4.4.2 GBS-RHR estimator

According to the results given in Table 4.2, we can see globally that, the average ISE values

decreases as the sample size n increases, and in the case of the class of GBS kernels the

results obtained for RT method are better than those obtained for UCV method. In fact

• In the case of BS distribution, the RT method gives better results than UCV method,

and that is for all the kernels. Thus, in the case RT method, all the kernels perform

well, however, the gamma kernel presents the smallest values of ISE for all the sizes n.

• In the case of lognormal distribution, the smallest values of ISE are obtained mostly

in the case of RT method. In that case, BS kernel is the best one for small sizes n and

BS-lap for moderate and large sample sizes n.

• In the case of BS-Student distribution the RT method is also better than UCV for

all the kernels, except the BS kernel witch gives the best results in the case of UCV

approach. The BS-t kernel is the most efficient in the case of RT method.

• In the case of gamma distribution, The RT method performs well for GBS kernels.
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Figure 4.2: Reliability estimators for BS and lognormal models with n = 200, using the

bandwidth hRUCV .

Hence, BS kernel is the best one for small and large sizes n and BS-t for moderate

sample sizes n.

The comparison is also given in Figures 4.3 and 4.4. These figures indicate the estimates

of the RHR function for BS and lognormal models for the sample size n = 200. Globally,

we can see graphically that the smoothing quality of the RHR estimators in the case of RT

method (Figure 4.1) is satisfactory compared to the case of UCV method (Figure 4.2). In

that case, we remark that the shape of all the estimators are nearly closed to the true RHR

function in the case of lognormal distribution, however the BS-PE kernel does not show a

good fit in the case of BS distribution.

The computer programs used in this simulation study are given in appendices.
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Figure 4.3: RHR function estimators for BS and log-normal models with n = 200, using the

bandwidth hρRT .

Figure 4.4: RHR function estimators for BS and log-normal models with n = 200, using the

bandwidth hρUCV .
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Simulation study

Size

XXXXXXXXXKernels

Models
BS(2,3) lognormal(2,3) gamma(3,0.5) GBS(1, 2; tv=5)

hRT hUCV hRT hUCV hRT hUCV hRT hUCV

BS 0.02070 0.17251 0.01671 0.09621 0.91893 0.28370 0.34567 0.07317

BS-PE(ν = 2) 0.04828 0.11557 0.10153 0.18185 2.23470 0.31090 0.34936 0.51407

BS-t(ν = 5) 0.02401 0.12196 0.15655 0.08449 1.00151 0.35747 0.02898 0.33493

n=50 BS-lap 0.02033 0.05954 0.02025 0.11642 2.03049 0.41204 0.04203 0.52510

RIG 0.03469 1.85236 0.04166 1.41419 2.87615 0.27142 0.23496 0.41791

gamma 0.01572 0.03920 0.02814 0.04165 3.1658 0.84553 0.14702 0.37401

BS 0.00793 0.03698 0.0946 0.02515 0.53728 0.20392 0.08654 0.03767

BS-PE(ν = 2) 0.01488 0.034135 0.03635 0.07228 0.87553 0.28026 0.13980 0.27829

BS-t(ν = 5) 0.00861 0.05142 0.08881 0.02597 0.51246 0.33595 0.01038 0.24630

n=200 BS-lap 0.00741 0.04874 0.00500 0.02599 2.01892 0.41144 0.01081 0.20421

RIG 0.01252 1.12219 0.2967 1.54882 0.77096 0.27010 0.01848 0.45590

gamma 0.00519 0.03365 0.04053 0.04220 1.25365 0.48279 0.10377 0.23919

BS 0.00529 0.014601 0.08393 0.01140 0.26970 0.22698 0.03861 0.02178

BS-PE(ν = 2) 0.00895 0.02343 0.02692 0.04576 0.50043 0.16404 0.08049 0.14724

BS-t(ν = 5) 0.00567 0.03305 0.08026 0.01016 0.24889 0.41624 0.00522 0.09442

n=500 BS-lap 0.00315 0.04954 0.00201 0.01337 1.99272 0.41559 0.00586 0.09379

RIG 0.00617 1.86213 0.01515 1.51131 0.47761 0.33932 0.00894 0.4599

gamma 0.00252 0.03356 0.03095 0.02887 0.55134 0.43483 0.07322 0.10695

BS 0.00311 0.01204 0.00565 0.00750 0.16547 0.30002 0.02139 0.01423

BS-PE(ν = 2) 0.00499 0.01807 0.02292 0.04913 0.29233 0.25919 0.00525 0.058807

BS-t(ν = 5) 0.00324 0.03119 0.08185 0.00673 0.16894 0.42911 0.00371 0.06119

n=1000 BS-lap 0.003954 0.05954 0.00145 0.00672 1.80250 0.44969 0.00571 0.05487

RIG 0.00462 1.85439 0.01242 1.08808 0.23610 0.33796 0.0056 0.39145

gamma 0.00136 0.03771 0.02598 0.03869 0.31158 0.30410 0.05878 0.03962

Table 4.2: Some expected values of ISE for RHR function estimators, based on 100 replica-

tions for the considered models in simulation, using the bandwidths, hρRT and hρUCV .
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Conclusion and perspectives

Our thesis deals with the nonparametric hazard rate function (HR) estimation in the case of

complete data, with kernel method and by using the family of Generalized Birbaum-Sauders

(GBS) kernels. The choice of this class of kernels is motivated by its good properties and

flexibility.

Firstly, we have introduced the basic concepts of reliability theory, in particular the

general properties of HR, reliability and reversed hazard rate RHR functions. Then, we have

presented the kernel method with its two parameters; the kernel K and the bandwidth h.

The kernel is chosen according to the support of the function to be estimated. In fact, when

the unknown function has an unbounded support, the suitable kernel is the symmetric one,

however, when the unknown function has a bounded support in R+, we use an asymmetric

kernel, whose the method of construction is also displayed. In addition, details about the

class of GBS kernel and different methods for selection bandwidth are given too. Afterwards,

we gave an overview of some results of kernel estimation of HR function in both cases of

complete and censored data, and introduced our proposed HR kernel estimator using the class

of GBS kernel. Under some conditions, the convergence properties such as bias, variance and

mean integrated squared error are established. In addition, we have proved that, the GBS-

HR estimator is strongly consistent and asymptotically normal. The choice of bandwidth is

investigated by rule of thumb (RT) and unbiased cross validation (UCV) approaches. The

performance of the proposed estimator compared to RIG and gamma HR kernels estimators,

and the comparison of the two bandwidth selection methods are illustrated by a simulation

study and real applications. In the sense of integrated squared error (ISE), the GBS-HR
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estimator dominates the other HR estimators based in RIG and gamma kernels, and the

bandwidth parameter obtained using the RT method outperforms the one obtained with

UCV.

We have also conducted a study on the reliability and RHR functions with the class of

GBS kernel. Asymptotic properties are investigated for each estimator and the bandwidth

parameter is calculated using RT and UCV methods. Finally, simulation study is investigated

to test the performance of GBS-Reliability and GBS-RHR estimators compared to RIG and

gamma kernel estimators of reliability and RHR functions, respectively. In the sense of

ISE criterion, we have noted globally that, the GBS-Reliability estimator performs well

in the case of RT method compared to UCV method for BS, lognormal, BS-Student and

gamma distributions, and it is also the case for GBS-RHR estimator excepting the gamma

distribution.

From the three simulation studies that we have conducted for GBS-HR, GBS-Reliability

and GBS-RHR, we consider that the class of GBS kernel can be a good candidate for esti-

mating the HR, reliability and RHR for positively skewed data, by using the RT bandwidth

selection method.

As a perspective, we can cite

• Bayesian approach in Generalized Birnbaum-Saunders kernel estimator of the hazard

rate function.

• Application of bias correction technics for GBS hazard rate function estimator.

• Comparison study between the GBS hazard rate function estimator and that based on

the Čwik and Mielniczuk method.

• New kernel estimator of hazard rate function without using the ratio of the density

function and the reliability function.

• Hazard rate function estimation in discrete case.
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Appendix

4.5 Computer programs

The computer programs that we have used in our simulation study are implemented by

using the R software. We illustrated above the computer program used for GBS-HR, GBS-

Reliability and GBS-RHR estimators, that represent hazard rate, reliability and reversed

hazard rate estimators using the class of GBS kernels. That is, in the case of rule of thumb

(RT) and Unbiased Cross Validation (UCV) bandwidth selection methods. In all three cases,

we take an example of BS distribution with BS kernel.

4.5.1 GBS-HR estimator

Case of RT method

n=50

X=rgbs(n, 2 , 3 , nu = 1.0, kernel = "normal")

###BS kernel###

noyau=function(u,x,h){

NBS=1/(2*sqrt(2*h*pi))*((1/sqrt(x*u))+sqrt(x/(u^3)))*exp((-1/(2*h))*((u/x)-2+(x/u)))}

###GBS density estimator###

ESTD=function(X,x,h){

ESTG=mean(noyau(X,x,h))}

###GBS Reliability estimator###

y=runif(1000,0,1)

E=0
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ESTF=function(X,x,y,h){

for (j in 1:length(y)){

E[j]=ESTD(X,x*y[j],h)

E}

E2=1-x*mean(E)}

###################################### RT method for GBS-HR #################################

###Estimate the parameters a and b###

mlegbs(X, kernel = "normal")

a=mlegbs(X)$alphaEstimate

b=mlegbs(X)$betaEstimate

###pdf and cdf of BS distribution###

f=function(x){

ff=dgbs(x, a , b , nu = 1.0, kernel = "normal",log = FALSE)

}

Frep=function(x){FF=pgbs(x, a , b, nu = 1.0, kernel = "normal",lower.tail = TRUE, log.p = FALSE)

}

fprim=function(t){

fp=1/(2*a*b*sqrt(2*pi))*(3*b*sqrt(b/t)/(2*t^2)-b/(2*t^2*sqrt(b/t)))*exp(-1/(2*a^2)*(b/t+t/b-2))

-1/(4*b*a^3*sqrt(2*pi))*(1/b-b/(t^2))*(sqrt(b/t)+(b/t)^(3/2))*exp(-1/(2*a^2)*(b/t+t/b-2))

}

f2prim=function(t){

f2p=1/(2*a*b*sqrt(2*pi))*(-3*b^2/(4*t^4*sqrt(b/t))-b^2/(4*t^4*(b/t)^(3/2))-(3*b*sqrt(b/t)/t^3)

+b/(t^3*sqrt(b/t)))*exp(-1/(2*a^2)*(b/t+t/b-2))+1/(8*sqrt(2*pi)*b*a^5)*(sqrt(b/t)+(b/t)^(3/2))

*(1/b-b/t^2)^2*exp(-1/(2*a^2)*(b/t+t/b-2))-1/(2*sqrt(2*pi)*a^3*t^3)*((b/t)^(3/2)+sqrt(b/t))

*exp(-1/(2*a^2)*(b/t+t/b-2))-1/(4*sqrt(2*pi)*b*a^3)*(-3*b*sqrt(b/t)/(2*t^2)-b/(2*t^2*sqrt(b/t)))

*(1/b-b/t^2)*exp(-1/(2*a^2)*(b/t+t/b-2))-1/(4*sqrt(2*pi)*a^3*b)*(3*b*sqrt(b/t)/(2*t^2)

-b/(2*t^2*sqrt(b/t)))*(1/b-b/t^2)*exp(-1/(2*a^2)*(b/t+t/b-2))

}

u1g=1

c=1/sqrt(2*pi)

cg2=1/sqrt(pi)

###Numerator###

u1=runif(500,0,1)

num=0

for(i in 1:length(u1)){

num[i]=((c^2)*(10*u1[i])^(-1)*f(10*u1[i]))/(1-Frep(10*u1[i]))^2
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num }

Mnum=10*mean(num)

###Denominator###

u2=runif(500,0,1)

deno=0

for(i in 1:length(u2)){

deno[i]=cg2*(u1g^2)*((10*u2[i]*fprim(10*u2[i])+((10*u2[i])^2)*f2prim(10*u2[i]))

/(1-Frep(10*u2[i])))^2

deno

Mdeno=10*mean(deno)

}

###Optimal h###

hplug=(Mnum/Mdeno)^(2/5)*n^(-2/5)

###GBS-HR estiamtor###

tauxdef=function(X,x,y,h){

ESTTD=(ESTD(X,x,hplug))/(ESTF(X,x,y,hplug))

ESTTD}

Case of UCV method

n=50

X=rgbs(n, 2 , 3 , nu = 1.0, kernel = "normal")

###BS kernel###

noyau=function(u,x,h){

NBS=1/(2*sqrt(2*h*pi))*((1/sqrt(x*u))+sqrt(x/(u^3)))*exp((-1/(2*h))*((u/x)-2+(x/u)))}

###GBS density estimator###

ESTD=function(X,x,h){

ESTG=mean(noyau(X,x,h))}

###GBS reliability estimator###

y=runif(1000,0,1)

E=0

ESTF=function(X,x,y,h){

for (j in 1:length(y)){

E[j]=ESTD(X,x*y[j],h)

E}

E2=1-x*mean(E)}

####################################UCV method for GBS-HR estimator ############################
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###terme1###

ter=0

x=runif(100,0,1)

terme1=function(h){

for (j in 1:length(x)){

ter[j]=(ESTD(X,20*x[j],h)/ESTF(X,20*x[j],y,h))^2

ter}

tt=20*mean(ter)

}

#### terme2###

MM1=0

MM2=0

terme2=function(h){

M1=matrix(0,nrow=n, ncol=n)

M2=matrix(0,nrow=n, ncol=n)

for (i in 1:n){

M1[i, ]=(n^2)*ESTD(X,X[i],h)

M2[i, ]=1-ESTF(X,X[i],y,h)

diag(M1)=0

diag(M2)=0

MM1[i]=sum(M1[i,])

MM2[i]=(((n-1)*n^2)-sum(M2[i,]))^2 }

MM3=sum(MM1/MM2)

}

CV=function(h){

U=terme1(h)-((2*(n-1))/n)*terme2(h)

}

hcvopt=optimize(CV, c(0, 2), tol = 0.005, maximum = FALSE )

hucv=hcvopt$minimum

hucv

###GBS-HR estimator###

tauxdef=function(X,x,y,h){

ESTTD=(ESTD(X,x,hucv))/(ESTF(X,x,y,hucv))

ESTTD}
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4.5.2 GBS-Reliability estimator

Case of RT method

n=50

X=rgbs(n, 2 , 3 , nu = 1.0, kernel = "normal")

### BS kernel ###

noyau=function(u,x,h){

NBS=1/(2*sqrt(2*h*pi))*((1/sqrt(x*u))+sqrt(x/(u^3)))*exp((-1/(2*h))*((u/x)-2+(x/u)))}

###GBS density estimator###

ESTD=function(X,x,h){

ESTG=mean(noyau(X,x,h))}

########################################## RT method #########################################

###Estimate the parameters a and b###

mlegbs(X, kernel = "normal")

a=mlegbs(X)$alphaEstimate

b=mlegbs(X)$betaEstimate

### pdf and cdf of BS distribution ###

f=function(x){

ff=dgbs(x, a , b , nu = 1.0, kernel = "normal",log = FALSE)

}

Frep=function(x){

FF=pgbs(x, a , b, nu = 1.0, kernel = "normal",lower.tail = TRUE, log.p = FALSE)

}

###Derivatives###

fprim=function(t){

fp=1/(2*a*b*sqrt(2*pi))*(3*b*sqrt(b/t)/(2*t^2)-b/(2*t^2*sqrt(b/t)))*exp(-1/(2*a^2)*(b/t+t/b-2))

-1/(4*b*a^3*sqrt(2*pi))*(1/b-b/(t^2))*(sqrt(b/t)+(b/t)^(3/2))*exp(-1/(2*a^2)*(b/t+t/b-2))

}

f2prim=function(t){

f2p=1/(2*a*b*sqrt(2*pi))*(-3*b^2/(4*t^4*sqrt(b/t))-b^2/(4*t^4*(b/t)^(3/2))-(3*b*sqrt(b/t)/t^3)

+b/(t^3*sqrt(b/t)))*exp(-1/(2*a^2)*(b/t+t/b-2))+1/(8*sqrt(2*pi)*b*a^5)*(sqrt(b/t)+(b/t)^(3/2))

*(1/b-b/t^2)^2*exp(-1/(2*a^2)*(b/t+t/b-2))-1/(2*sqrt(2*pi)*a^3*t^3)*((b/t)^(3/2)+sqrt(b/t))

*exp(-1/(2*a^2)*(b/t+t/b-2))-1/(4*sqrt(2*pi)*b*a^3)*(-3*b*sqrt(b/t)/(2*t^2)-b/(2*t^2*sqrt(b/t)))

*(1/b-b/t^2)*exp(-1/(2*a^2)*(b/t+t/b-2))-1/(4*sqrt(2*pi)*a^3*b)*(3*b*sqrt(b/t)/(2*t^2)

-b/(2*t^2*sqrt(b/t)))*(1/b-b/t^2)*exp(-1/(2*a^2)*(b/t+t/b-2))

}
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u1g=1

c=1/sqrt(2*pi)

cg2=1/sqrt(pi)

###Numerator###

u1=runif(500,0.01,1)

num=0

for(i in 1:length(u1)){

num[i]=((c^2)*(10*u1[i])^(-1)*(1-Frep(10*u1[i]))^2)/f(10*u1[i])

num }

Mnum=10*mean(num)

###Denominator###

deno=0

for(i in 1:length(u1)){

deno[i]=cg2*(u1g^2)*((1-Frep(10*u1[i]))*(10*u1[i]*fprim(10*u1[i])+((10*u1[i])^2)

*f2prim(10*u1[i]))/f(10*u1[i]))^2

deno

Mdeno=10*mean(deno)

}

###Optimal h###

hplug=(Mnum/Mdeno)^(2/5)*n^(-2/5)

###GBS-Reliability estimator###

y=runif(1000,0,1)

E=0

ESTF=function(X,x,y,h){

for (j in 1:length(y)){

E[j]=ESTD(X,x*y[j],hplug)

E}

E2=1-x*mean(E)}

Case of UCV method

n=50

X=rgbs(n, 2 , 3 , nu = 1.0, kernel = "normal")

###BS kernel###

noyau=function(u,x,h){

NBS=1/(2*sqrt(2*h*pi))*((1/sqrt(x*u))+sqrt(x/(u^3)))*exp((-1/(2*h))*((u/x)-2+(x/u)))}

### GBS density estimator ###
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ESTD=function(X,x,h){

ESTG=mean(noyau(X,x,h))}

###UCV method for GBS-Reliability estimator###

####terme1#####

ter=0

x=runif(100,0,1)

terme1=function(h){

for (j in 1:length(x)){

ter[j]=ESTF(X,20*x[j],y,h)^2

ter}

tt=20*mean(ter)

}

#### terme2###

MM1=0

MM2=0

terme2=function(h){

M1=matrix(0,nrow=n, ncol=n)

M2=matrix(0,nrow=n, ncol=n)

for (i in 1:n){

M1[i, ]= (n-1)-n*ESTF(X,X[i],y,h)

M2[i, ]=n*ESTD(X,X[i],h)

diag(M1)=0

diag(M2)=0

MM1[i]=((1/(n-1))sum(M1[i,]))^2

MM2[i]=(1/(n-1))*sum(M2[i,]) }

MM3=sum(MM1/MM2)

}

CV=function(h){

U=terme1(h)-(2/n)*terme2(h)

}

hcvopt=optimize(CV, c(0, 2), tol = 0.005, maximum = FALSE )

hucv=hcvopt$minimum

hucv

###GBS-Reliability estimator###

y=runif(1000,0,1)

E=0
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ESTF=function(X,x,y,h){

for (j in 1:length(y)){

E[j]=ESTD(X,x*y[j],hucv)

E}

E2=1-x*mean(E)}

4.5.3 GBS-RHR estimator

Case of RT method

n=50

X=rgbs(n, 2 , 3 , nu = 1.0, kernel = "normal")

### BS kernel ###

noyau=function(u,x,h){

NBS=1/(2*sqrt(2*h*pi))*((1/sqrt(x*u))+sqrt(x/(u^3)))*exp((-1/(2*h))*((u/x)-2+(x/u)))}

###GBS density estimator###

ESTD=function(X,x,h){

ESTG=mean(noyau(X,x,h))}

###GBS kernel estimator of cdf###

y=runif(1000,0,1)

E=0

ESTF=function(X,x,y,h){

for (j in 1:length(y)){

E[j]=ESTD(X,x*y[j],h)

E}

E2=x*mean(E)}

########################################### RT method #######################################

###Estimate the parameters a and b###

mlegbs(X, kernel = "normal")

a=mlegbs(X)$alphaEstimate

b=mlegbs(X)$betaEstimate

###pdf and cdf of BS distribution###

f=function(x){

ff=dgbs(x, a , b , nu = 1.0, kernel = "normal",

log = FALSE)
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}

Frep=function(x){

FF=pgbs(x, a , b, nu = 1.0, kernel = "normal",

lower.tail = TRUE, log.p = FALSE)

}

###Derivatives###

fprim=function(t){

fp=1/(2*a*b*sqrt(2*pi))*(3*b*sqrt(b/t)/(2*t^2)-b/(2*t^2*sqrt(b/t)))*exp(-1/(2*a^2)*(b/t+t/b-2))-

1/(4*b*a^3*sqrt(2*pi))*(1/b-b/(t^2))*(sqrt(b/t)+(b/t)^(3/2))*exp(-1/(2*a^2)*(b/t+t/b-2))

}

f2prim=function(t){

f2p=1/(2*a*b*sqrt(2*pi))*(-3*b^2/(4*t^4*sqrt(b/t))-b^2/(4*t^4*(b/t)^(3/2))-(3*b*sqrt(b/t)/t^3)

+b/(t^3*sqrt(b/t)))*exp(-1/(2*a^2)*(b/t+t/b-2))+1/(8*sqrt(2*pi)*b*a^5)*(sqrt(b/t)+(b/t)^(3/2))

*(1/b-b/t^2)^2*exp(-1/(2*a^2)*(b/t+t/b-2))-1/(2*sqrt(2*pi)*a^3*t^3)*((b/t)^(3/2)+sqrt(b/t))

*exp(-1/(2*a^2)*(b/t+t/b-2))-1/(4*sqrt(2*pi)*b*a^3)*(-3*b*sqrt(b/t)/(2*t^2)-b/(2*t^2*sqrt(b/t)))

*(1/b-b/t^2)*exp(-1/(2*a^2)*(b/t+t/b-2))-1/(4*sqrt(2*pi)*a^3*b)*(3*b*sqrt(b/t)/(2*t^2)

-b/(2*t^2*sqrt(b/t)))*(1/b-b/t^2)*exp(-1/(2*a^2)*(b/t+t/b-2))

}

u1g=1

c=1/sqrt(2*pi)

cg2=1/sqrt(pi)

###numérateur###

u1=runif(500,0,1)

num=0

for(i in 1:length(u1)){

num[i]=((c^2)*(10*u1[i])^(-1)*f(10*u1[i]))/(Frep(10*u1[i]))^2

num }

Mnum=10*mean(num)

###Dénominateur###

u2=runif(500,0,1)

deno=0

for(i in 1:length(u2)){

deno[i]=cg2*(u1g^2)*((10*u2[i]*fprim(10*u2[i])+((10*u2[i])^2)*f2prim(10*u2[i]))/(Frep(10*u2[i])))^2

deno

Mdeno=10*mean(deno)

}
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Computer programs

###Optimal h###

hplug=(Mnum/Mdeno)^(2/5)*n^(-2/5)

###GBS-RHR estimator###

tauxdef=function(X,x,y,h){

ESTTD=(ESTD(X,x,hplug))/(ESTF(X,x,y,hplug))

ESTTD}

Case of UCV method

n=50

X=rgbs(n, 2 , 3 , nu = 1.0, kernel = "normal")

###BS kernel###

noyau=function(u,x,h){

NBS=1/(2*sqrt(2*h*pi))*((1/sqrt(x*u))+sqrt(x/(u^3)))*exp((-1/(2*h))*((u/x)-2+(x/u)))}

###GBS density estimator###

ESTD=function(X,x,h){

ESTG=mean(noyau(X,x,h))}

###GBS kernel estimator of cdf###

y=runif(500,0,1)

E=0

ESTF=function(X,x,y,h){

for (j in 1:length(y)){

E[j]=ESTD(X,x*y[j],h)

E}

E2=x*mean(E)}

####################################UCV method for GBS-HR estimator ################################

####terme1#####

ter=0

x=runif(100,0,1)

terme1=function(h){

for (j in 1:length(x)){

ter[j]=(ESTD(X,20*x[j],h)/ESTF(X,20*x[j],y,h))^2

ter}

tt=20*mean(ter)

}

#### terme2###

MM1=0
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Real data

MM2=0

terme2=function(h){

M1=matrix(0,nrow=n, ncol=n)

M2=matrix(0,nrow=n, ncol=n)

for (i in 1:n){

M1[i, ]=n*ESTD(X,X[i],h)

M2[i, ]=n*ESTF(X,X[i],y,h)

diag(M1)=0

diag(M2)=0

MM1[i]=(1/(n-1))*sum(M1[i,])

MM2[i]=((1/(n-1))*sum(M2[i,]))^2 }

MM3=sum(MM1/MM2)

}

CV=function(h){

U=terme1(h)-((2)/n)*terme2(h)

}

hcvopt=optimize(CV, c(0, 3), tol = 0.005, maximum = FALSE )

hucv=hcvopt$minimum

hucv

###GBS-RHR estimator###

tauxdef=function(X,x,y,h){

ESTTD=(ESTD(X,x,hucv))/(ESTF(X,x,y,hucv))

ESTTD}

4.6 Real data

Data S1

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58,

58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87,

91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258,

263, 297, 341, 341, 376.

page 105



Real data

Data S2

0.010, 0.059, 0.089, 0.121, 0.142, 0.081, 0.127, 0.194, 0.071, 0.047, 0.071, 0.097, 0.166,

0.134, 0.553, 0.709, 0.183, 0.047, 0.111, 0.072, 0.074, 0.073, 0.070, 0.190, 0.128, 0.170, 0.185, 0.122,

0.194, 0.445, 0.169, 0.134, 0.081, 0.991, 0.300, 0.139, 0.098, 0.092, 0.040, 0.164, 0.030, 0.240, 0.070,

0.085, 0.150, 0.160, 0.110, 0.130, 0.170, 0.150, 0.092, 0.670, 0.029, 0.077, 0.073, 0.120, 0.071, 0.096,

0.092, 0.092, 0.110, 0.130, 0.064, 0.041, 0.070, 0.050, 0.050, 0.039, 0.047, 0.075, 0.110, 0.100, 0.170,

0.110, 0.130, 0.140, 0.059, 0.150, 0.099, 0.081, 0.096, 0.091, 0.150, 0.120, 0.160, 0.091, 0.130, 0.310,

0.041, 0.031, 0.042, 0.045, 0.048, 0.039, 0.050, 0.075, 0.110, 0.160, 0.690, 0.140, 0.140, 0.100, 0.062,

0.093.
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Real data

Data S3

109.00, 253.26, 529.40, 624.38, 878.37, 1000.00, 1005.42, 1018.42, 1325.00, 1350.00, 1500.00,

1570.82, 1727.03, 1750.00, 1800.00, 1800.00, 1838.00, 1994.00, 2000.00, 2000.00, 2000.00, 2000.00,

2000.00, 2118.15, 2242.32, 2265.15, 2269.09, 2382.61, 2397.92, 2444.78, 2484.25, 2500.00, 2500.00,

2500.00, 2510.12, 2521.00, 2551.25, 2598.10, 2652.85, 2672.25, 2780.55, 2915.07, 2920.00, 2932.40,

3000.00, 3000.00, 3000.00, 3000.00, 3000.00, 3000.00, 3000.00, 3001.00, 3015.00, 3100.00, 3148.00,

3211.00, 3250.00, 3251.70, 3323.00, 3382.64, 3455.00, 3480.30, 3480.30, 3493.50, 3500.00, 3500.00,

3500.00, 3503.00, 3515.80, 3556.32, 3579.36, 3581.50, 3591.00, 3658.50, 3666.00, 3666.00, 3718.50,

3750.00, 3750.00, 3800.00, 3878.00, 3892.00, 3897.00, 3900.00, 3976.00, 3994.88, 4000.00, 4000.00,

4000.00, 4000.00, 4000.00, 4000.00, 4000.00, 4000.00, 4020.00, 4020.18, 4075.85, 4146.00, 4151.85,

4248.30, 4250.00, 4250.00, 4257.45, 4269.00, 4285.00, 4300.24, 4346.00, 4358.00, 4380.77, 4410.06,

4472.85, 4476.00, 4476.00, 4500.00, 4500.00, 4500.00, 4500.00, 4530.00, 4550.00, 4581.10, 4590.00,

4650.00, 4672.10, 4676.35, 4691.16, 4691.50, 4699.00, 4700.00, 4717.00, 4729.45, 4746.00, 4751.41,

4774.50, 4908.00, 4920.01, 4923.36, 4938.00, 4989.50, 4991.75, 4999.05, 5000.00, 5000.00, 5000.00,

5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00,

5000.00, 5000.00, 5000.00, 5000.00, 5000.11, 5002.21, 5021.00, 5022.45, 5025.00, 5025.00, 5026.00,

5039.00, 5045.35, 5064.45, 5091.83, 5098.00, 5098.52, 5099.60, 5119.00, 5136.11, 5136.19, 5144.15,

5171.80, 5208.92, 5275.00, 5275.00, 5303.45, 5309.10, 5372.30, 5379.15, 5381.51, 5388.00, 5393.95,

5428.00, 5444.15, 5470.22, 5497.00, 5500.00, 5500.00, 5500.00, 5500.00, 5500.00, 5500.00, 5506.00,

5522.05, 5527.50, 5527.50, 5541.00, 5543.00, 5544.90, 5575.74, 5598.00, 5600.00, 5600.00, 5606.15,

5625.00, 5628.75, 5650.00, 5664.50, 5792.21, 5793.17, 5882.90, 5929.54, 5955.00, 5955.00, 5963.20,

5982.53, 6000.00, 6000.00, 6000.00, 6000.00, 6000.00, 6000.00, 6000.00, 6021.00, 6033.17, 6038.00,

6078.50, 6113.00, 6149.45, 6154.70, 6164.47, 6179.49, 6202.50, 6248.35, 6295.30, 6300.00, 6316.50,

6326.50, 6333.00, 6342.15, 6400.00, 6424.00, 6458.05, 6460.00, 6500.00, 6500.00, 6507.65, 6524.56,

6548.33, 6550.00, 6553.00, 6602.50, 6607.15, 6631.40, 6647.15, 6670.50, 6673.30, 6673.50, 6695.65,

6700.00, 6704.35, 6713.71, 6719.50, 6724.50, 6750.00, 6750.00, 6780.50, 6791.82, 6795.50, 6798.67,

6800.00, 6800.00, 6810.00, 6815.15, 6874.25, 6875.15, 6887.40, 6901.60, 6920.35, 6933.49, 6958.50,

6958.97, 7000.00, 7000.00, 7000.00, 7005.05, 7022.65, 7038.93, 7055.51, 7063.00, 7073.50, 7074.55,

7097.00, 7099.50, 7101.10, 7141.02, 7213.50, 7248.36, 7293.35, 7303.60, 7338.10, 7384.95, 7448.50,

7460.00, 7490.50, 7494.50, 7496.88, 7500.00, 7500.00, 7500.00, 7500.00, 7500.00, 7527.30, 7572.17,

7642.15, 7642.26, 7666.65, 7670.05, 7673.00, 7675.20, 7693.56, 7704.79, 7762.35, 7765.00, 7781.36,

7791.32, 7802.55, 7827.01, 7850.95, 7890.39, 7915.30, 8000.00, 8000.00, 8001.67, 8043.15, 8070.30,

8104.00, 8117.84, 8135.00, 8168.90, 8171.12, 8172.50, 8212.83, 8225.66, 8229.40, 8296.95, 8301.51,

8331.20, 8375.10, 8437.35, 8500.00, 8500.00, 8500.00, 8500.00, 8564.00, 8637.40, 8639.80, 8706.32,

8742.00, 8782.55, 8828.56, 8831.05, 8855.00, 8908.40, 8999.75, 9000.00, 9009.05, 9061.50, 9084.00,

9138.90, 9152.10, 9163.74, 9227.21, 9248.35, 9314.08, 9319.67, 9326.95, 9354.90, 9423.05, 9437.85,

9456.65, 9467.75, 9481.94, 9520.14, 9646.50, 9664.62, 9665.85, 9742.50, 9805.10, 9839.50, 9900.00,

9950.00, 9990.00, 10000.00, 10000.00, 10000.00, 10000.00, 10000.00, 10061.21, 10081.15, 10152.40,
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Real data

10156.65, 10186.92, 10213.00, 10213.55, 10315.40, 10329.00, 10342.86, 10344.90, 10356.32, 10395.38,

10457.00, 10687.42, 10746.16, 10854.90, 10979.39, 11000.00, 11000.00, 11056.34, 11133.30, 11245.32,

11250.00, 11363.00, 11377.15, 11500.00, 11500.00, 11512.49, 11850.50, 11860.92, 11874.50, 11878.95,

11949.74, 12000.00, 12000.00, 12000.00, 12000.00, 12140.00, 12310.25, 12358.00, 12417.00, 12555.35,

12783.42, 12804.25, 12853.15, 13000.00, 13000.00, 13184.65, 13321.14, 13386.93, 13500.00, 13592.41,

13688.55, 13715.24, 13946.00, 14000.00, 14000.00, 14138.89, 14336.51, 14546.60, 14709.60, 14725.81,

14736.74, 14909.15, 14950.00, 14958.35, 14979.07, 15000.00, 15000.00, 15000.00, 15060.15, 15066.15,

15104.00, 15128.32, 15163.10, 15174.50, 15268.64, 15460.00, 15466.15, 15591.00, 15654.21, 16000.00,

16038.25, 16149.55, 16164.15, 16368.50, 16999.90, 17000.00, 17215.00, 17708.09, 17734.58, 17901.50,

17904.38, 17977.10, 18286.00, 18358.00, 18707.16, 18849.90, 18872.70, 19000.00, 19500.00,19839.78,

19912.57, 20000.00, 20000.00, 20000.00, 20245.58, 21200.00, 21241.09, 21450.00, 21502.25, 22175.00,

22400.00, 22575.50, 22800.00, 23535.88, 24135.00, 24435.00, 24495.15, 25000.00, 26275.83, 29000.00,

29279.00, 30579.89, 30732.68, 31207.99, 32500.00, 32691.00, 33000.00, 33796.00, 34465.40, 37413.25,

37806.20, 43600.00, 47446.50, 67750.00, 76255.76, 116586.72.
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Abstract 

The main objective of this thesis is to propose the nonparametric  kernel  method  for the 

hazard rate (HR) function  estimation  in the context of positively  skewed  data. The class of 

generalized Birnbaum-Saunders (GBS) kernels is considered because of its several interesting  

properties  and flexibility. Some asymptotic properties, such as bias, variance and mean 

integrated squared error (MISE) are established for the proposed estimator. In addition, we 

demonstrate that, the GBS-HR estimator is strongly consistent and asymptotically normal. 

The choice of bandwidth is also investigated by rule of thumb and unbiased cross validation 

approaches. Finally, performances of the HR estimator based on GBS kernels and comparison 

of the two bandwidth selection methods are illustrated by a simulation study and real 

applications. 

 

Résumé 

L'objectif principal de cette thèse est de proposer la méthode non paramétrique de  noyaux 

pour l'estimation de la fonction de hazard (HR) dans le contexte de données positives et 

asymétriques. La classe des noyaux de Birnbaum-Saunders généralisés (GBS) est considérée 

en raison de ses nombreuses propriétés intéressantes et de sa flexibilité. Certaines propriétés 

asymptotiques, telles que le biais, la variance et l'erreur quadratique moyenne intégrée (MISE)  

de l’estimateur proposé sont établies. En outre, nous démontrons la consistance forte et la 

normalité asymptotique de l'estimateur GBS-HR .Le choix du paramètre de lissage est 

également étudié par la méthode de réinjection et de validation croisée non biaisée. Enfin, la 

performance de l'estimateur HR basé sur les noyaux GBS et la comparaison des deux 

méthodes de sélection de paramètre de lissage sont illustrées par une étude de simulation et 

des applications sur des données réelles. 

 

 ملخص

( في سياق البيانات HRالهدف الرئيسي من هذه الأطروحة هو اقتراح طريقة النواة اللامعلمية لتقدير وظيفة معدل الخطر )

( نظرًا لخصائصها ومرونتها العديدة المثيرة GBSالمنحرفة بشكل إيجابي. ينُظر إلى فئة نواة بيرنبومسوندرز المعممة )

( للمقدر MISEالخطأ التربيعي المتكامل )مثل التحيز والتباين ومتوسط  المقاربة،للاهتمام. تم إنشاء بعض الخصائص 

متسق بشدة وطبيعي بشكل مقارب. يتم أيضًا التحقق من اختيار  GBS-HRنوضح أن مقدر  ذلك،المقترح. بالإضافة إلى 

استناداً إلى نواة ،توضيح أداء مقدريتم  أخيرًا،طاق الترددي من خلال قواعد التجربة ونهج التحقق المتبادل غير المتحيز. الن

GBS .والمقارنة بين طريقتين لاختيار النطاق الترددي من خلال دراسة محاكاة وتطبيقات حقيقية 
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