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Introduction

Survival analysis also known as failure time analysis, is one of the most significant advance-
ments of statistics in the last quarter of 20th century. It analysis the expected duration
of time until one or more events happen, such as death in biological organism and failure
in mechanical system. This topic is called "reliability theory” or "reliability analysis” in
engineering.

The term ’reliability’ in engineering refers to the probability that a product, or system
will perform its designed functions without failures, under a given set of operating conditions
for a specific period of time. The primary aim of reliability system is the prevention of
these failures that affect the operational capability of the system. Many tools developed in
survival analysis, especially in reliability engineering are naturally formulated via the hazard
rate (HR) called also failure rate (FR) concept. In actuarial and demographic disciplines, it
is usually called ”the mortality rate”.

The HR function has been subject of several works, particulary in parametric and non-
parametric estimation. The main problem with the parametric approach is that existing
classical probability distribution families are limited in the face of a multitude of data struc-
tures. A wrong assumption concerning the underlying distribution model for the data may
lead to misleading interpretations. In situations such these, nonparametric methods may be
more suitable. The nonparametric methods impose only mild assumptions, such as smooth-
ness, on the underlying probability distribution and so avoid the risk of specifying the wrong
model for the data. There are several nonparametric estimation methods, such, maximum

penalized likelihood estimates (de Montricher et al., 1974), orthogonal series estimates (Sil-



verman, 1986), smoothing splines (Gu, 1993), and the one that received the most important
attention is the kernel method (Rosenblatt, 1956) known by its simplicity and great flexibil-
ity.

Kernel method also known as Parzen-Rosenblatt window method is rooted from the

histogram methodology, introduced firstly by Rosenlatt (1956) for the density function esti-
mation and generalized by Parzen (1962), then developed by Nadaraya (1964) and Ferraty
and Vieu (2003) for regression function estimation. This method is characterized by two es-
sential parameters: the kernel function K which can be symmetric (classical) or asymmetric,
and the smoothing parameter (bandwidth) h. As in all smoothing methods, the inherent
issue is the selection of the smoothing parameter, which can be done by using several tech-
niques such as, cross validation, plug-in and bayesian approach. It is well known from the
literature that the kernel function has less impact than the bandwidth on the resulting esti-
mate. Despite the fact, the kernel should be properly chosen regarding to the support of the
function to be estimated, for instance when the density function of the data have a bounded
support, using the classical kernel leads to an estimator with a large bias near the endpoints,
called "boundary effect”. This is especially the case in survival analysis, since the survival
time is assumed to be nonnegative variable. So, near zero, the symmetric kernel estimator of
the density and the HR functions underestimates the true ones, and this problem becomes
a serious drawback when a large portion of the sampled data are present in the boundary
region. In fact, many solutions are proposed to avoid the problem of boundary bias, such
as boundary kernel method, see (Jones, 1993; Zhang and Karunamuni, 2000), local linear
method (Lejeune and Sarda, 1992; Cheng, 1997; Zhang and Karunamuni, 1998), local renor-
malization method (Hardle, 1990), pseudo-data method (Cowling and Hall, 1996), reflection
method (Cline and Hart, 1991), ect.
The asymmetric kernels have been proposed as a best solution for avoiding these boundary
effects. This simple idea is due to Chen (2000) by introducing beta and gamma kernels,
Scaillet (2004) by introducing Inverse Gaussian (IG) and Reciprocal Inverse Gaussian (RIG)
kernels and Marchant et al. (2013) with Generalized Birnbaum-Sauders (GBS) kernels.

Reliability analysis mostly deals with positive random variables, which are often called

lifetimes. The analysis of lifetime data by HR function has received considerable attention,
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for instance, Bouezmarni et al. (2011) by using gamma kernel in the context of censored
data, Salha (2013, 2014) using inverse Gaussian (IG), Erlang and weibull kernels, Altun and
Comert (2016) used Weibull-Exponential models to represent the typical L-shaped HR of
electronic products, Moriyama and Maesono (2018) proposing a new kernel estimator of HR
function, that is based on a modification of C'wik and Mielniczuk method and Athayde et al.
(2019) have analyzed the failure rate of generalized Birnbaum-Saunders GBS distributions;
the change-points and statistical robustness are discussed.

Our work focuses on estimation of HR function using the nonparametric kernel method

in the case of complete data, by using the class of GBS kernels. The choice of this class
of kernels is motivated by several points. First, the family of GBS kernels includes various
special cases such as, BS-classical (BS), BS-power-exponential (BS-PE), BS-Student (BS-t)
and BS-laplace (BS-lap) kernels. As second motivation, some applications of GBS kernels
method for HR function estimation can be found in various domains, because of its several
interesting properties and flexibility. In fact, the GBS distribution contains a wider class of
positively skewed densities with nonnegative support that possesses lighter and heavier tails
than the BS distribution. Thus, the GBS distribution is essentially flexible in the kurtosis
level, see Marchant et al. (2013).
Our study is not restricted to HR function alone; two other important reliability measures
related to the HR function are also studied using the class of GBS kernels, as well; reliability
function (survival function) and reversed hazard rate function (RHR). These two functions
have also attracted considerable attention among researchers, for instance, Brunel et al.
(2016) have studied the kernel estimator of reliability function in multiplicative censoring
model, Srivastava (2020) has estimated the reliability Function of Log Gompertz Model,
Desai et al. (2011) have analyzed the nature of RHR and Veres-Ferrer and Pavia (2014) by
studying the relationship between the RHR and elasticity.

We have organized this document in four chapters. In Chapter 1, we present some basic
concepts in reliability theory, in particular the general properties of HR, reliability and RHR
functions. The Chapter 2 presents the kernel method and gives some clarification about
the class of GBS kernel in the case of density function estimation. The Chapter 3 deals

with the HR function estimation using kernel method. First we give an overview of some
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results of kernel estimation of HR function in both cases of complete and censored data,
then we introduce our proposed kernel estimator using the class of GBS kernel and we study
its asymptotic properties, strong consistence and asymptotic normality. Also the bandwidth
parameter h is estimated by two methods: rule of thumb (RT) and unbiased cross validation
(UCV). In addition, simulation and application with real data are investigated to test the
performance of our proposed estimator. In the Chapter 4, we use the class of GBS kernel in
estimation of reliability and RHR functions and establish their asymptotic properties. The
bandwidth is selected by RT and UCV methods, then simulation study is investigated to
test the performance of the estimators of reliability and RHR functions, and selecting the
most appropriate bandwidth method. We finish our document with conclusion and some

perspectives.
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Chapter

Reliability analysis

Introduction

The life distribution is characterized by many useful reliability functions such as survival
function (called also reliability function), hazard rate function, reversed hazard rate function,
mean residual life, etc. The behaviour of these functions serves to describe the ageing
properties of a device, and prevent any eventual failures. These elementary functions and
some other basic concepts are illustrated in this introductory chapter. The reader can also
refer to Lai and Xie (2006), Marshall and Olkin (2007), Finkelstein (2008) and O’Connor
(2011).

Usually in reliability analysis, we deal with positive random variable which represents time to
failure of an engineering component. This random variable r.v. is called ”lifetime” | usually
assumed to be continuous. We will restrict ourselves to this case, with density function pdf

(called failure density) and cumulative density function cdf.

1.1 Basic reliability concepts

In this section, we summarize the essential elements in reliability analysis, such as failure
density function, reliability function, residual life distribution, hazard rate function and
reversed hazard rate function.

Let T be a r.v representing lifetime of an item, with pdf f and cdf F.



Basic reliability concepts

1.1.1 Failure density function

Generally, the density failure function of the lifetime r.v. 7" is positively skewed (skewed to
the right or steep on the left-hand side). Thus, f(¢) has a flat and relatively long right-hand
tail, meaning that longer lifetimes are less probable than shorter lifetimes and that the mean
life (life expectancy) is greater than the median life.

Especially for a newly born organism or a produced unit, e.g., for a unit starting at age
t = 0, the probability to fail up to an age t > 0, called cumulative distribution function cdf,
is given by

P(T <t)= /tf(u)du, t>0.

Definition 1.1.1. The failure density function that represents the probability of failure in

the interval [t,t + dt], with dt is small enough, is defined as

s g P +d) = F()
JO=rn ==

1
= C}tlEn)()%P(t<T<t—l—dt), t > 0.

Therefore, when dt is sufficiently small
f)ydt ~P(t < T < t+dt).

All probability density functions for the variable ‘lifetime’ satisfies the two popular con-
ditions: f(t) >0, Vt>0and [~ f(t)dt =1.

The mean time to failure (MTTF), also called average lifetime, expected lifetime, life
expectancy, or mean lifetime, is another important descriptor in lifetime analysis. Thus, the

mean time to failure of the r.v. T is given by

= E(T) = /O S,

1.1.2 Reliability function

The reliability function is considered as a very useful indicator in several fields. Reliability
engineers use the reliability function in many types of decision making. In manufacturing,

this function provides a tool for setting warranties. In system safety designs, it provides
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Basic reliability concepts

one basis of safety assessment. Thus, accurate estimation of the reliability function is of
importance in many industries. The most common method modeling the reliability function
is the non-parametric Kaplan—Meier estimator proposed by Kaplan and Meier (1958). Many
works are carried out on this function, see for instance, Brunel et al. (2016) and Srivastava
(2020).

The reliability of a device is defined as the probability that this device performs its
intended function for a given period of time under conditions specified for its operation.
When the device does not perform its function satisfactorily, we say that it has failed. When
the random variable T' represents the lifetime of a device, the observation on T is realized

as the time of failure.

Definition 1.1.2. The reliability function R, also known as the survival function S, is
defined as
St)=Rt)=P(T>t)=1-P(T <t)=1-F(), t>0.

It represents the probability that the random event (time of failure) occurs after t.

The reliability function R satisfies the following properties
e R(t) is a decreasing function, with ¢.

e limy o R(t) = 1 and lim;_,, R(t) = 0,

The Figure 1.1 gives the form cdf and reliability function.

The components and the way in which they are arranged within the system, have a direct
effect on the entire system reliability. We consider T}, 75, ... T}, lifetimes of n components,
and suppose they are independent, with reliability function R;, i = 1,n.

Let Ty and R, be the lifetime and the reliability function of the system, respectively.

In the case of series system (Figure 1.2), the reliability of this system is always lower

than the reliability of any of its components, it fails if any of its elements fails. Then its

reliability function is obtained simply as the product of probabilities of each elements.

Ry(t) = P(T, > t) = P(minT; > 1) = ﬁpm >t) = ﬁRi(t).

i=1 =1
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Basic reliability concepts

F(t) R(t)

1+ 1

/ survival function

Figure 1.1: Cumulative density function (cdf) and reliability function.

@ @ . @ (n units)

Figure 1.2: Series system model.

For the case of parallel system (Figure 1.3), it is sufficient that one of its components
work to make the system work, because it fails only if all its parts fail. Its reliability function

is given by
Ri(t) =P(Ts > t) =P(maxT; >t) =1 —P(maxT; <t), i=1.n,

and as the components are independent, we write

n n

R(t)=1-[[(T <ty =1-]J(1 - Ri(t)).

i=1 =1

1.1.3 Residual life distribution

How much longer will an item of age ¢ live? This question is vital for reliability analysis,
survival analysis, actuarial applications and other disciplines. For example, how much time
does an average person aged 65 have left to live? The residual life is an important measure
in reliability application which summarizes the entire remaining life distribution. Let an

item with a lifetime 7" and a cdf F'(t) start operating at ¢t = 0. The residual lifetime at time
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Basic reliability concepts

(n units)

d @ O

1

=

Figure 1.3: Parallel system model.

t > 0 is the time left up to the failure for a component starting its life at time 0 and it is

still alive at time ¢.

Definition 1.1.3. Let F' be a distribution function such that F(0) = 0. The residual life
distribution of F at t, noted by Fy is defined for all t > 0, s > 0 and such that R(t) > 0, by

R(t+s)

Fi(s)=P(T <t+s|rst)=1— o)

(1.1)

Clearly, the residual life distribution F; is a conditional distribution of the remaining life
given survival up to time ¢. This distribution is of considerable practical importance because
the remaining life of devices (used cars, etc) or of biological entities (people, for example) is
often of interest.

The mean residual life function m(t) is the mean of the residual life distribution F}; as a

function of ¢, and is given by

mit) = /OOO %d& (1.2)

for ¢ such that R(t) > 0.
Other terms have been used for this function; in the context of actuarial science, it has been

called "the average excess claim” or "the mean excess function”, see Marshall and Olkin

(2007).

1.1.4 Hazard Rate (HR) function

The major notion in survival analysis is the hazard function called also failure rate function,

noted by A. It defines the conditional probability that a component fails in a small time
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Basic reliability concepts

interval, given that it has survived from time zero until the beginning of the time interval.

Definition 1.1.4. If F' is an absolutely continuous cdf with density f, then the hazard rate
function X\ is defined by

Pt <T <t+dt|rss F(t+dt) — F(t)

Al = limy dt =0T Ru@
f(®)
)
R(t)’

Note that R(t) > 0 and the density function f is well defined for all t > 0.

The hazard rate is also called failure rate, death rate, force of mortality and intensity

function in other disciplines such as survival analysis, actuarial science, demography, extreme
value theory and bio-sciences.
The hazard rate measures the propensity to fail depending on the age reached and it thus
plays a key role in characterizing the process of aging and in classifying lifetime distributions.
For instance, when we want to predict the chance of failure at age t for a newly born or
produced unit having F(t) as its cdf we have to use f(t) (failure density), i.e., f(¢) is an
unconditional predictor for risk to fail at . But when we know that a unit has survived up
to t, we have to use A(¢) which is a conditional predictor.

The HR function A(¢) satisfies the following properties
A(t) >0, Vt>0, and / A(t)dt = oc.
0

Care should be taken not to confuse the hazard rate with the Rate of Occurrence of
Failures (ROCOF). The ROCOF is the probability that a failure (not necessarily the first)
occurs in a small time interval. Unlike the hazard rate, the ROCOF is the absolute rate
at which system failures occur and is not conditional on survival to time t. The ROCOF
is using in measuring the change in the rate of failures for repairable systems. (O’Connor,
2011).

As is well-known, the density probability function of a random variable can be integrated
to obtain the cumulative distribution function. Analogously, the hazard rate of a variate can
be integrated to obtain the cumulative hazard rate. Specifically, the cumulative hazard rate

of an r.v. T is given by




Basic reliability concepts

and it satisfies three conditions
e A(0) =0,
o lim; , . A(t) = o0;
e A(t) is increasing with ¢.
As the hazard rate can vary over time, then it is useful to find an average value (known
as failure rate average) to represent the behavior of this rate in an interval of fixed time, say

[0,%]. Thus, the failure rate average (FRA) of an r.v. T is given by

A@®)

FRA(t) = =,

t>0.

Relationship among density, distribution, reliability and hazard functions are presented in

the Table 1.1.

f(t) R(t) A(t) A(t)
f(t) = - ~R(t) | At)exp{— [} Nx)dw} | ~HeeAWL
R(t)=| [ flo)de - exp{— [y A(x)dz} | exp{-A(1)}
A= s T - A'(t)
Aty = | —In [ f(z)dx | —In[R(t)] [ Mx)dx -

Table 1.1: Summary of important functions relationships (O’Connor 2011).

The different graphical Shapes of HR function

Hazard rate can take any graphical forms, according to the life time distribution. We dis-

tinguish

e Increasing form: The intuitive content of an increasing hazard rate stems from the
interpretation of A(t)dt as the conditional probability of failure in the interval [¢, ¢+ dt]
given survival up to time ¢. Thus, with an increasing hazard rate, the probability
of failure in the next instant of time increases as the device or organism ages. In a
very real sense this is a mathematical translation of the intuitive concept of “adverse
ageing,” but it would be unfair to claim that it is the only mathematical translation

of this concept.
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e Decreasing form: An item has a decreasing hazard rate if, as it ages, the chance of
failure (death) in the next instant of time decreases. This is the opposite of wear-
out, and might be called “wear-in.” Humans might exhibit a decreasing probability of
failing at some particular job as they gain experience and practice. But mixtures may

be the most important source of distributions with decreasing hazard rates.
e Bath-Tub form

Definition 1.1.5. (Marshall and Olkin, 2007) A distribution is said to have a bath-tub
hazard rate if for some 0 < a < b, the hazard rate \(t) is decreasing int, 0 <t < a, is

constant in the interval a < t < b, and is increasing in t, t > b.

The bath-tub curve is the most popular graph in reliability application, and may be
broadly classified in three distinct time zones, each one corresponds a distinctive failure
mode: infant mortality (wear-in), youth (constant rate) and aging (wear-out) mode,

as shown above in Figure 1.4.

A X0)
mfant youth aging
(wear-in) (const. rate) (wear-out)

e time

Figure 1.4: Form 01 of bath-tub curve.

The infant mortality or wear-in mode is generally short, with a high but decreasing
rate such as in the case of human life expectancy and the engineered product, for
instance, in Engineering the wear-in mode may be due to defective parts or defects in
materials. To correct this situation, one may resort to design improvement, care in

materials selection and tightened production quality control.
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The youth or constant rate mode is exhibited by those product that have survived the
wear-in period. The rate is generally the lowest; and in some product it maintains a
long and flat behavior.

Random failure can be reduced by improving product design, making it more robust

with respect to the service condition to which it is exposed in real life.

The aging or wear-out mode is usually due to material fatigue. The wear-out mode
is often encountered in mechanical systems with moving parts such as pumps, en-
gines, automobile tires, ect. Onset of rapidly increasing rate requires measures such
as increased regularity of inspection, maintenance, replacement, etc. Since in these
products the youth period is relatively short while the wear-out period is long, such as

depicted in Figure 1.5

(1)

= time

Figure 1.5: Form 02 of bath-tub curve.

e Inverted bathtub (upside-down) form

Definition 1.1.6. (Marshall and Olkin, 2007) A distribution is said to have an in-
verted bathtub hazard rate if for some 0 < a < b, the hazard rate \(t) is increasing
int, 0 <t<a, is constant in the interval a < t < b, and is decreasing in t, t > b.

Alternatively, such hazard rates are said to be unimodal.

Inverted bathtub hazard rates have not attracted much interest, at least in reliability
theory, perhaps because the bathtub hazard rates have been a focus of attention.

The just described origin of bathtub hazard rates for biological organisms has its
counterpart for mechanical systems. A new system may suffer from “bugs”, that is,

from errors of design or of construction. Moreover, the operators of the system may
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be initially inexperienced. As the system ages, the potential for bugs or human error
diminishes, causing the hazard rate to decrease. But after a while, the effects of aging

cause the hazard rate to rise.

Let T1,T5, ..., T, lifetimes of n components, distributed as T', and suppose that the compo-
nents are independent.
In the case of the series system, the HR is represented as the sum of the HR of the compo-

nents, that is
At) = Ni().
i=1
In the case of parallel system, we use the fact that
n t
R(t)=1- H {1 — exp {—/ )\i(u)du} } ,
i=1 0

and
A@:-Z@.

We obtain the following formula of HR
S Ai(t) exp [— f(f )\i(u)du] H#i {1 — exp [— fg Aj (u)du} }
1-T11%, {1 — exp [— fot )\i(u)du] } .

A(t) =

1.1.5 Reversed Hazard Rate (RHR) function

The reversed hazard rate RHR function was introduced by Keilson and Sumita (1982), and
have attracted considerable interest among researchers, see for instance Chandro and Roy

(2001, 2005), and Finkelstein (2002).

Definition 1.1.7. Let T be a r.v. representing lifetime, with density function f and cumu-

lative distribution function F', the reversed hazard rate of T is defined as

o . ]P)(t—dt<T§t|T§t)
plt) = lim, dt

[
= m, t>0.
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Thus, p(t)dt can be interpreted as an approximate probability of a failure in (¢t — dt, t],
given that the failure had occurred in |0, t]. We can establish the relation between the hazard

rate function A and the reversed hazard rate function p as

A(t
p(t) = . (®) , t>0.
exp {fo /\(u)du} —1
Note that,
lim p(t) = oo.

In lifetime data analysis, the concepts of reversed hazard rate has potential application when
the time elapsed since failure is a quantity of interest in order to predict the actual time of
failure, and it is more useful in estimating reliability function when the data are left censored
or right truncated.

The RHR function was initially introduced by actuarial research, until now it has mainly
been applied to reliability engineering (Desai et al., 2011). So it plays a vital role in the
analysis of parallel systems, indeed for identical independently distributed components, the
RHR of the system life is proportional to the RHR of each component, and this is not obvious
for the HR function. Reliability engineering, however, is not the only field where this tool
has proved useful. Reversed hazard can be also employed for analyzing right-truncated and
left-censored data. See, for instance Finkelstein (2008) and Desai et al.(2011).

A number of different applications of the RHR function, in the study of lifetime r.v. have
been already investigated in the literature. Thus, Andersen et al.(1993) use the RHR in the
estimation of the survival function in the presence of left censored observations. Block et al.
(1998) characterize some useful properties for k out of n systems in terms of the RHR. Some
properties of the waiting time (time elapsed since the failure of an object till the time of
observation) with respect to the RHR were studied by Chandra and Roy (2001). In addition,

Veres-Ferrer and Pavia (2014) expand the usefulness of RHR in economics.

1.2 Common life distibutions

We use the term "life distributions” to describe the collection of statistical probability dis-

tributions that we use in reliability engineering and life data analysis. Naturally any distri-
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bution of non-negative random variables could be used to describe durations.

The distributions to be presented here are all continuous and they have appeared more
frequently in the literature, such as Marshall and Olkin (2007), Lai and Xie (2006) and
O’Connor (2011).

Recall that 7' is a lifetime r.v. with pdf f and cdf F'.

1.2.1 Exponential distribution

The exponential distribution is a fairly simple distribution commonly used in reliability
analysis. If the r.v. T follows the exponential distribution, with the parameter A, T~ exp(\)
then, the corresponding density f, reliability function R, hazard rate A and reversed hazard

rate p are defined respectively for t > 0, by

f(t) = Xexp{At},
R(t) = exp{—At},
Al = A

A

R S

where the parameter A > 0 acts both as a scale parameter and a frailty parameter. Note
that the hazard rate A\ is constant, so the exponential distribution is used to model the
behavior of items that have a constant failure rate (i.e., items that do not degrade with time
or wear out). This is the case of many engineering devices (especially electronic) which have
a constant hazard rate (A > 0) during the usage period.

The exponential distribution is the only one that possess the memoryless property, in the
continuous case, so

F(t/x) = F(t),Yx,t >0,

where F(t/z) is a conditional distribution function.

The following propositions is given in Marshall and Olkin (2007).

Proposition 1.2.1. A distribution has a constant hazard rate if and only if it is an expo-

nential distribution.
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Proposition 1.2.2. A distribution F' has a mean residual life independent of age if and only

iof it is an exponential distribution.

25

20
|

Hazard rate function
1.5

Figure 1.6: HR function of exponential distribution, with \ = 2.

1.2.2 Gamma distribution

Let the r.v. T follows the gamma distribution with shape and scale parameters a > 0, 5 > 0.

It is characterized by the density
2
()

Where the gamma function is defined in the usual way by

ft) = t* Lexp(—pt), t> 0.

INa) = /000 t* Lexp(—t)dt.

Proposition 1.2.3. (Marshall and Olkin, 2007)
The density of the gamma distribution is
e completely monotone, log convex, and decreasing, for 0 < a < 1,

e log concave and unimodal, for o > 1, with mode at the point t = (a — 1)/.

The reliability function can be given in closed form only when « is an integer. In that

case,

R(t) = iexp(—ﬂt)k/( k), t>0.
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When « is a positive integer, the gamma distribution can be called the Erlang distribution.
The HR and RHR of the gamma distribution do not take a convenient form. Following

Barlow and Proschan (1975, p. 74), we write the survival function as an integral of the

density to obtain
ﬁ = /t (;)a_l exp(—f(z —t))dz = /0 [1 + %} - exp(—pu)du,

where the second integral is obtained from the first by the change of variable u = z —¢t. By
deriving the expression above, it is easy to see that for all g > 0
e o < 1, A(t) increases with time.
e o > 1, A(t) decreases with time.
e oo = 1, A(t) is constant, (case of exponential distribution),

and limy_,o A(t) = B, for all a > 0.

The gamma distribution is flexible in shape and can give good approximations to life data.

s
E - ': — a=1
g i - @=0.5
= T a=2
R
o I'\.\
m T L
| —  — e e e e e e e e e e e e e e e e
I T e
e N —
C:] p—
| | | | |
0 5 10 15 20

Figure 1.7: HR function of gamma distribution, with § = 1.

1.2.3 Weibull distribution

The Weibull distribution with parameters n and 8 denoted by W(n, #) can be viewed as a

generalization of the exponential distribution, it has wide application in reliability analysis
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(e.g., engines, mechanical devices) and in human mortality.

I[ts density f, reliability R, hazard rate A, and reversed hazard rate p, are given respectively

6 =[]
moy = e (<L)

fort > 0 as

Where n > 0 and § > 0 are shape and scale parameter, respectively. Note that the hazard
rate is a function of time, it can be used to model a variety of life behavior. According to
the shape parameter 3, one can state that for all n > 0, if (see, O’Connor 2001, page 65)

e § < 1, \(t) decreases with time, that represent the infant period.

e 5> 1, \(t) increases with time, that represent the wear-out period.

e 3 =1, A(t) is constant, that represents the youth period (case of exponential distribution).
o 1 < < 2. A(t) increases less as time increases.

e § =2, \(t) increases with a linear relationship to time.

e 0> 2 \(t) increases more as time increases.

e < 3.447798, the distribution is positively skewed. (Tail to right).

o § ~ 3.447798, the distribution is approximately symmetrical.

e 3 > 3.447798, the distribution is negatively skewed (Tail to left).

e 3 < 3 < 4, the distribution approximates a normal distribution.

e 5 > 10, the distribution approximates a Smallest Extreme Value Distribution.

It follows that, lim; .o, A(f) = 0 for 5 < 1 and lim;_,, A(t) = +oo for § > 1.
The Weibull distribution is by far the most popular life distribution used in reliability en-
gineering. This is due to its variety of shapes and generalization or approximation of many
other distributions. Analysis assuming a Weibull distribution already includes the exponen-

tial life distribution as a special case.
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Some applications where the Weibull distribution has been used are: Acceptance sampling,
Warranty analysis, Maintenance and renewal, Strength of material modeling, Wear mod-
eling, Electronic failure modeling, Corrosion modeling, see (O’Connor 2011, p.66) and a

detailed list with references to practical examples is contained in (Rinne 2008, p.275).

Hazard rate function

Figure 1.8: HR function of Weibull distribution.

1.2.4 Lognormal distribution

It is well known, the normal distribution is the most used in statistics, however it is not a
lifetime distribution as its support is (—oo, +00). Therefore, the lognormal distribution is
derived from the normal distribution for positive r.v.

The r.v. T follows the lognormal distribution with parameters m, o2, denoted by LN (m, o?).
If Y = InT is normally distributed, Y ~ N(m, c?), where m and % are mean and variance

of Y respectively. Its density f, reliability function R, hazard rate A and reversed hazard
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rate p for ¢t > 0 are

1

) = e [—W]

R = 1-0 (220,
, [ln(t) - m}

g

A=)

1 . [ (Int — m)z}
<p |
tov2m P 20?2

pt) = ; (lnt——m> )

o
where ¢ denotes the standard normal distribution function. The hazard rate A is unimodal
with slow decrease to zero as ¢t — 0.

The lognormal distribution has been found to accurately model many life distributions
and is a popular choice for life distributions. The increasing hazard rate in early life models
the weaker subpopulation (burn in) and the remaining decreasing hazard rate describes the
main population. In particular this has been applied to some electronic devices and fatigue-
fracture data. Its is also considered as a good candidate for modeling the repair time in

engineering system. See O’Connor (2011, p. 56).
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Figure 1.9: HR function of lognormal distribution with m = 2 and o = 1.
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1.2.5 Log-logistic distribution

The log-logistic distribution with parameters o and  is the probability distribution of a r.v
whose logarithm has a logistic distribution. It is very useful in a wide variety of applications,
especially in the analysis of survival data, and has been quite frequently to analyze positively
skewed data.

It is characterized by the density f, reliability function R, hazard rate A and reversed hazard

rate p. these are given for ¢t > 0 as follows

B\
i) = (J‘(O‘t) 5

H(a)]
mo = [ ()]

p(t) = t 1+(é)ﬁ],

where o > 0 and 8 > 0 are scale and shape parameters, respectively. The shape of the

hazard rate function of log-logistic distribution depends on the parameter ; when g > 1
the hazard function is unimodal and when # < 1 it decreases monotonically. The shape of
log-logistic distribution is very similar to those of log-normal distribution. Therefore, often
it is very difficult to discriminate between a log-normal and a log-logistic distribution if the
sample size is not very large. However, due to the symmetry of the log-logistic distribution,
it may be inappropriate for modeling censored survival data, especially for the cases where

the hazard rate is skewed or heavily tailed, (Kissell and Poserina 2017).

1.2.6 Birnbaum Saunders distribution (BS)

The Birnbaum-Saunders (BS) family of distributions was proposed to model the length of

cracks on surfaces. In fact, it is a two-parameter distribution for a fatigue life with unimodal
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1.0

Hazard rate function

00 02 04 068 08

Figure 1.10: HR function of log-logistic distribution.

hazard rate function. Considerable amount of work has been done on this distribution.
If the r.v. T follows BS distribution with parameters a and 8, T ~ BS(«, ) then, its

density f and the reliability R are defined for ¢ > 0 as

= () () | 1)

w - o[-0

where a > 0 is the shape parameter, § > 0 is the scale parameter, and ® is the standard
normal distribution function. Its HR and RHR functions do not have a closed form. The HR
function is always unimodal; it increases from 0 to its maximum value and then decreases
to %ﬁy i.e. it is upside-down bathtub shaped; see Kundu et al. (2008) and O’Connor
(2011). For comprehensive reviews on various developments concerning the BS distribution,

one may refer to Johnson et al. (2005) and Leiva et al. (2008).

1.3 Bathtub life distributions

The class of lifetime distribution having a bathtub shape failure rate function is very impor-

tant because the lifetime of electronic, electromechanical, and mechanical products are often
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02 03 04

Hazard rate function

0.0 0.1

Figure 1.11: HR function of BS distribution, with o =2 et § = 3.

modeled with this feature. Above some of bathtub life distribution are presented.

1.3.1 Modified Weibull distribution

The modified Weibull distribution with parameters «, § and ~, is derived from the basic
Weibull distribution, it is characterized by the density f, the reliability R, hazard rate

function A and reversed hazard rate function p, for t > 0 as

ft) = a4yt exp(yt) exp[—at? exp(yt)],
R(t) = exp[-at’ exp(yt)],

At) = a(B+1)t" " exp(t),

_a(B )P exp(at) exp[—at” exp(y1)]
ol = 1 — exp[—atf exp(~t)] ’

where a > 0, v > 0 are scale parameters and > 0 is the shape parameter.
Note that for (See, O’Connor, 2011, p. 81).

e 0 < (< 1and~ >0, the HR function A(¢) has a bathtub curve shape.

e 5> 1and v > 0, the HR function \(¢) is increasing.

e v = 0, the HR function A(¢) has a same form as a Weibull distribution, with two parameters.

page 24



Bathtub life distributions

Proposition 1.3.1. (Xie et al., 2004)
When the HR function is a bathtub curve (0 < <1 and vy > 0), then the minimum hazard

rate point is given by
_VB-8
m=-—:
Y

1.3.2 Exponentiated Weibull distribution

The exponentiated Weibull distribution is an extension of the Weibull family obtained by
adding a second shape parameter, its density f, reliability R, hazard rate function A and

reversed hazard rate p are given respectively for ¢ > 0
p-1 B B
a a a
A\
R(t) = 1—|1—exp —(—) ,
@

oy 1Yo {- )

v—1

with « is a scale parameter, S and v are shape parameters.
Note that for (see, O’Connor, 2011, p. 79).

e §<1and v <1, A is monotonically decreasing.

e 5> 1and fv > 1, X is monotonically increasing.

e < 1and v > 1, A is unimodal.

e 5 >1and frv < 1, A is bathtub curve.

This distribution is applied to model failure data and extreme value data.
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Figure 1.12: HR function of exponentiated Weibull distribution, with o = 5.
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Chapter 2

Kernel method and pdf estimation

2.1 Introduction

Kernel estimation is the most popular nonparametric method, introduced firstly by Rosen-
blatt (1956) and Parzen (1962) to estimate un unknown density function pdf f of a univariate
random variable r.v. T in the support (—oo, +00). Let T3, 75, .., T, i.i.d random variables,

the kernel estimator ﬁl of f is given by

~ I T, —t
S — K R
R =g ox () e

with ¢ is the target (point where the density is estimated), K is the symmetric kernel and

h (h > 0) is the smoothing parameter (called also bandwidth) which controls the amount
of smoothing of fh, satisfying h — 0 when n — oco. The consistency of the estimator fh is
well documented; see Parzen (1962) or Silverman (1986), for a set of regularity conditions
for consistency. However, the estimator above is not appropriate when the density to be
estimated f is supported in positive half-line R, (nonnegative data), because it causes
problem in the boundary, called "boundary effect”. The alternative way proposed by Chen
(1999, 2000) is to use asymmetric kernel instead of the symmetric one. See, Hirukawa (2018)
for more details about this type of kernels.

In the next, we give more details about symmetric and asymmetric kernels and we present

the different methods of selection the bandwidth parameter.
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2.2 Symmetric (classical) kernel

Let T1,T5, ..., T, a set of independent identically distributed (i.i.d.) r.v. , distributed as T’
with pdf f supported in R and cumulative distribution function cdf F'.

The approximation of the derivative f of F' at a given ¢ can be written as

F(t+h) — F(t — h)

f(t):}lgr(l) 57 , VteR.
Then, the estimator J,th of the pdf f is given by
- F(t+h)—F(t—h
Futy ~ LW = FEZR) -y g

2h
where F is the empirical distribution function estimator of F, with F(t) = L ooy (Th),
such that 1(_ 4 is the indicator function on (—oo,].

By conducting some simple developments, we obtain the following

h

~ 1 <
fn(t) ~ ok Z; 1[—1§Ti7tS1] vt € R.

This kernel estimator f,(t) is introduced by Rosenblatt (1956) with a uniform kernel on
[—1, 1] and after any years, Parzen(1962) generalized the above estimator using any proba-
bility density function K instead of the uniform kernel function on [—1, 1].

So, the general expression of symmetric kernel density estimator is given by

fult) = %Z;:K (Tih_t) Vi, (2.1)

where h is the bandwidth and K is the symmetric kernel which verify the following conditions

/R K(u)du =1, /R WK (u)du = 0, /R K (u)du = 0 < 0o, (2.2)

The Table 2.1 gives some examples of symmetric kernels, see (e.g, Scott, 1977), and the

Figure 2.1 displays their shapes.

Asymptotic properties

In this section, we present some properties of the estimator (2.1); bias, variance, mean
squared error (MSE) and integrated mean squared error (MISE). These properties are
established under the conditions (2.2) and by supposing that the derivatives f’, f” exist

with finite integral on the support R. The bias and the variance are given by Parzen (1962).
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Kernel Density Support
Epanechnikov | 3(1 — u?) [—1,1]
Uniforme 1/2 [—1,1]
Triangulaire (1—|ul) [—1,1]
Biweight 21 —=uH)lul | [-1,1]
Gaussien \/LzTr exp(—“;) R

Table 2.1: Some of symmetric kernels.

N .

~ | |= Epanechnikov
== Biweight

@] ++«+ Triangulaire

- | Uniforme R
—— (aussien PR

©

o

> 9©

o

h

o

N

o

o

o

Figure 2.1: Shapes of some symmetric kernels.

Proposition 2.2.1. (Parzen, 1962)

For a fized t in R, the bias and the variance of the estimator fh defined in (2.1) are

~ B2

Bias [7:(1)] = o f"(0) / 2K (2)dz + o(h?),
R

var [Fu(t)] = %AK%@@w(%).
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In fact, the bias and the variance of ﬁ are expressed respectively as

Bias [fu(0)] = E[f0)] - f)
- & [ (55 st 5o,

and

2
— k2

Var [ﬁl(t)} = 2>2 E

(o ZK(TZﬁ_t) ZK(Eh_t)]

_ #{/Rm (t;”) F(u)du — URKC;“) f(u)dur}.

By conducting the change of variable u = ¢t — hz with z > 0, and the Taylor expansion of

the function f(¢ — hz) around ¢, we fined the results shown in Proposition 2.2.1.
By using the formulas of the bias and the variance given above, we deduce the expressions

of MSE and MISE of J,th as follows

MSE[fy(t)] = Var[fy(t)] + Bias®[f(1)]
_ n_lh (1) /R K2(z)dz+hz[f”(t)]2 [ /R ZQK(z)dz} +o(h),

and
MISE[f,] = / MSE[f,(1)]

— n—lh/RK2(z)dz+ h4z;1(/R[f’/(t)]2dt+o(n—1h).

Some convergence results of the symmetric kernel estimator

Different types of convergence results are available, some of them are summarized in the
theorems below. Parzen (1962) and Tiago de Oliviera (1963) show the convergence of MSE
and MISE in Theorem 2.2.1 and 2.2.2, respectively. Strong and weak consistency are estab-
lished by Parzen (1962) and Silverman (1986) in 2.2.3 and 2.2.4 for the estimator f,. The

last Theorem 2.2.5 deals with convergence in distribution.

Theorem 2.2.1. (Parzen, 1962)

If the density function f is continuous on R and ﬁ its kernel estimator, h — 0, nh — oo
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when n — oo and the symmetric kernel K satisfies the following conditions

/RK(u)du =1, sup|K(u)| < oo, /R]K(u)|du < 00, (2.3)

u€eR

then
MSE [ﬁ(z)} P50, ViER, n— oo

Where —s denotes the convergence in probability.

Theorem 2.2.2. (Tiago de Oliviera, 1963)

If the density function f is K" power integrable ([|f(t)|* < o00), fh its kernel estimator,
h — 0, nh — 0o when n — oo and the symmetric kernel K satisfies the conditions in (2.3),
then

MISE [ﬁ] 2.0, n— oo

Theorem 2.2.3. (Parzen, 1962)
Let f the density function and fh its kernel estimator, if nh?> — oo when n — oo, the
symmetric kernel K satisfies the conditions in (2.3) and the Fourier transform TF(t) =

[ exp(—izu) K (u)du is absolutely integrable, then
sup [ﬁl(t) — f(t)] 250, n— oo
teR

Theorem 2.2.4. (Silverman, 1986)

If the density function f is uniformly continuous and fh its kernel estimator. If h — 0 and

logn
nh

it follows

— 0 when n — oo and the symmetric kernel K is positif with bounded variation, then

sup [fh(t) — f(t)] 220, n— oo.
teR

where 225 denotes the convergence almost surely.

Theorem 2.2.5. (Parzen, 1962)
If the density function f is continuous in R and fh its kernel estimator, h — 0, nh — o0

when n — oo and the symmetric kernel K satisfies the conditions in (2.3), then
Jult) —E | Fa®)
Var [fh(t)]

£ N(0,1), VteR,

c o
where — denotes the convergence in distribution.
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Efficiency of symmetric kernels

The more efficient symmetric kernel is the one that minimizes the Asymptotic integrated

mean squared error criterion AMISE of the estimator (2.1), given as

AMISE[ 3]

~ 1
s o (5).
1 h40'4 2
= — [ K*(2)d "(t)]” dt.
5 [ 2 1)
Theorem 2.2.6. (Epanchnicov, 1969)
If lim,, oo h = 0, lim, soonh = oo, f € L% [[f"(t)]*dt # 0 and [[f"(t)]*dt < oo the

Epanchnikov kernel defined as %(1 —u?)1_1) is of minimum AMISE, with L? is a set of reel

unctions f such that, [|f(t)]?dt < co.
fi f

In the case of the Epanchnikov kernel, the minimum value of AMISE is %5 and it
is declared more efficient comparing to other symmetric kernels, as shown in the theorem
above. Thus, the efficiency of the other symmetric kernels can be measured based on the

Epanchnikov one, as follow

_ J K?*(u)du _ [ K?*(u)du
[ K%(u)du '

EFF(K) =
5v'5

The Table 2.2 shows the efficiency of some most used symmetric kernels.

Kernel Efficiency

Epanechnikov | 1,0000
Uniforme 1.0758
Triangulaire 1,0143
Biweight 1,0061

Gaussien 1,0513

Table 2.2: Efficiency of some symmetric kernels.

According to the Table 2.2, we note that the efficiency of the symmetric kernels is very
closed to that of Epanechnikov one (the values are around 1). That means that the choice

of the symmetric kernels has not significant impact on the quality of estimation.
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2.3 Asymmetric kernel

It is known from the literature that the symmetric kernels are not suitable when the support
of the density f to be estimated is bounded. More specifically, when it lies on the unit
interval [0, 1] or the positive half-line R, (i.e. when we deal with nonnegative data), then
the consistency of the density estimator at the origin no longer holds because the symmetric
kernel assigns positive weights outside the support when smoothing is carried out near the
origin. So, it causes problem in the boundary called boundary bias or edge effect.
Several methods have been proposed to remove this bias problem, such as boundary kernel
method (Jones 1993; Zhang and Karunamuni, 2000), local linear method (see Lejeune and
Sarda, 1992; Cheng, 1997; Zhang and Karunamuni, 1998), local renormalization method
(see Hardle, 1990), pseudo-data method (see Cowling and Hall, 1996), reflection method
(see Cline and Hart, 1991), and transformation method (see Marron and Ruppert, 1994).
For other methods, see Hall and Park (2002) and Karunamuni and Alberts (2006).
An alternative way to remove the aforementioned boundary bias is to use kernels of asym-
metric distributions with nonnegative support instead of classical kernels, called asymmetric
kernels. This type of kernels has been first introduced by Chen (1999, 2000) using Beta
and gamma density functions as kernels to estimate densities with support [0, 1] and [0, co)
respectively. Jin and Kawczak (2003) introduced log-normal and Birnbaum-Saunders (BS)
kernels, whereas Scaillet (2004) applied inverse Gaussian (IG) and reciprocal inverse Gaus-
sian kenels and Marchant et al. (2013) introduced a class of Generalized Birnbaum-Saunders
kernls, ect.

The asymmetric kernel estimator do not engender boundary bias, see the Figure 2.2,

and it gave better estimates when data are nonnegative, see for instance, Libengué (2013).

Definition 2.3.1. For nonnegative i.i.d. r.v. Ty,Ts, ..., T, distributed as T, with pdf sup-

ported in T, T C R, the density kernel estimator of f, using asymmetric kernel as

) =SS KT, 10, (2.4)

i=1
with h is bandwidth parameter and Ky, is the asymmetric kernel which intrinsically depends

on the bandwidth h and on the target point t.
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Note that the standard kernel density estimator can also be rewritten as in (2.4), with
Kin(-) = (1/h)K(- = t)/h.
The function K j(+) is said to be an asymmetric kernel if it possesses the following two

basic properties, see Hirukawa (2018)

Property 2.3.1. The kernel function is a pdf with support either on the unit interval [0, 1]

or on the positive half-line R .

Property 2.3.2. Both the location and shape parameters in the kernel are functions of the

design point t where the estimation s made and the smoothing parameter h.

We cite in the Table 2.3 page 51, some of asymmetric kernels with their statistics proper-
ties (where Z;, is the r.v. obeying the distribution with pdf K, we give more details about

the class of Generalized Birnbaum-Sauders (GBS) kernels in the Section 2.4).

25

20

1.5

Kermel

1.0

0.5
I

0.0
I

Figure 2.2: Shape of some asymmetric kernels.

Asymptotic properties

In this section, we introduce the bias and the variance of the estimator (2.4) then, we deduce

the expressions of MSE and MISE of the estimator fh We find these results in Zougab (2013).
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Proposition 2.3.1. The bias and the variance of the estimator defined in (2.4) are given

as below

Bias [fu()] = /[ Zth)]—i—lVar(Zth)f() £(0) + o(h2).

~

Var[fy(t)] = /R K2, (u) du—%{BiaS[ 0]+ 10} .

In fact, the bias of ﬁL can be written as

~

Bias [J?h(t)] = E[fu(®)] - f(?)
= E[Ku(T)] - f(?)

= | Kip(w)f(u)du — f(t)

where Z; ), is the r.v. obeying the distribution with pdf K, and let E(Z; ;) = m.
Suppose that the function to be estimated f admits derivatives of second-order, and we

conduct a second-order Taylor expansion of f(Z;) around m, as

1

f(Zin) = f(m) 4 (Zen —m)f'(m) + §(Zt,h —m)*f"(m) + o[(Zn —m)?].

By developing E[f(Z: )], we deduce the following expression of Bias[fh(t)]

Bias (0] = 70m)+ 38 (2~ m)?) men) = 5(0) + o(0?)
_ FEEL]+ %Var(zt,h) F1(t) = F() + o(h?).

In other hand, the variance can be expressed as

ZKth

= %Var[Kt,h(T)]

= {[B(R2(T)] ~ E2[Ko(T)])

- ;AK&@V@ )iu— - {Bins( o)+ 1))

By using the fact that, MSE[fy(t)] = Var[fu(t)] + Bias[f,(t)] and MISE[f,] =

Var[fy(t)] = Var

Jr MSE[ﬁl(t)]dt, we deduce the expressions of MSE and MISE of the estimator ﬁl as shown

in the proposition above.

page 35



Asymmetric kernel

Proposition 2.3.2.

MSBIA(6] = {FIB(Zu)] + VoK) 0 - S10) )

~

o Kt = - {Bias( o) + 1)}

n

wiself) =[5z« gy 0 - 5] @
v [ s st Biastio) + s far

Some convergence results of the asymmetric kernel estimator

Above, we show the convergence of the two criterion MSE and MISE of the estimator fh in

Proposition 2.3.3 and 2.3.4, see for instance Zougab (2013).

Proposition 2.3.3. (Zougab, 2013)
If % fR+ Ktzh(u)f(u)du — 0 and h = h(n) — 0 when n — oo, then

lim MSE[f,(t)] =0 V¢ > 0.

n—oo

Proposition 2.3.4. (Zougab, 2013)
If 5 fR+ [fR+ Ktz,h(u)f(u)du] dt — 0 and h = h(n) — 0 when n — oo, then

lim MISE[f,] = 0.

n—oo

The uniforms weak and strong consistency of the estimator (2.4) using beta and gamma
kernels are studied respectively by Bouezmarni and Rolin (2003) and Bouezmarni and Rom-

bouts (2010), as illustrated in Proposition 2.3.1 and 2.3.2.

Theorem 2.3.1. (Bouezmarni and Rolin, 2003)
If f has support on [0,1], and is continuous and bounded on [0, 1], with ]?B its beta kernel

estimator, and then

sup |f5(t) — fF(H)] =50 ifh+ (nh?) ' =0, asn — oo

t€(0,1]
sup |J/C\B(t>—f(t)’ 2% 0 if h+logn/(nh®) — 0, asn — oo.
t€(0,1]

page 36



Case of Generalized Birnbaum-Saunders (GBS) kernel

Theorem 2.3.2. (Bouezmarni and Rombouts, 2010)
If f is supported in R, continuous and bounded on a compact interval I C R, , with fG its
gamma kernel estimator, then

SUP’J?G(t) — f(t)] L0 if h+ (nh®)™' = 0, asn — oo.
tel

sup [fa(t) — f()] =50 if h+logn/(nh?) — 0, asn — cc.
tel
Other convergence results of the estimator (2.4) such as, weak and strong consistencies

in the sense of both uniform and L' norms are available in Kokonendji and Libengué (2018).

Associated kernel

Kokonendji and Somé (2018) have introduced the associated kernel in the multivariate
case, to unify the two notions; symmetric and asymmetric kernels.

Above, we give the definition in univariate case.

Definition 2.3.2. Let T(C R) be the support of the pdf to be estimated, t € T is a target
and h is a bandwidth parameter. A parameterized pdf Kip(-) on support Sy ,(C R) is called

associated kernel, if the following conditions are satisfied
teSin, E(Zi,) =x+ At h) and Var(Z,,) = B(t, h).

Where Z,, is a real r.v. with density K, and both A(t,h) and B(t,h) tend to 0 when h

goes to 0.

2.4 Case of Generalized Birnbaum-Saunders (GBS)
kernel

This section describes the class of GBS distribution and introduces the asymmetric associated
kernel estimator based on this class of distributions.

Let T be the positive and continuous random variable (r.v.), denoted by

aZ\?
— 1
(7) -

1 2
2
ol

=5
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The r.v. T follows the Generalized Birnbaum-Saunders (GBS) distribution, 7' ~
GBS(«a,8,Z), where a > 0 is the shape parameter, 5 > 0 is the scale parameter and
Z is a r.v. with symmetric distribution in R characterized by a position parameter y = 0
and scale parameter 0 = 1, Z ~ Sg(0,1).

The r.v. Z can be expressed in terms of 7" as Z = é <\/T_/6 = \/6/_T>, and Z?2 be a 1.v.
following a generalized chi-squared distribution with one degree of freedom, Z% ~ Gx?(1).

The density function of the r.v. T is defined as follow

fa,ﬁ(t>:20—2<\/%+\/§)g[$ (%+§—2>:|, t>0, (2.6)

where g that is, fz(z) = ¢,9(2%), z € R, fz is a density function of a r.v. Z and ¢, is a
normalization constant that is, ¢, f_Jr;o g(2%)dz = 1.

The mean and the variance of a r.v. T" are given by

E(T) = g (2+wa?) and Var(T) = (Ba)? (ul + O‘;UQ _ 0%@) ,

where u; = E[Z7] are the moments of the r.v. 77, j=1,2

For example, if we consider the r.v. Z is normally distributed with © = 0 and o =1,
denoted by Z ~ N(0,1), then T follows a BS distribution (as particular case of GBS dis-
tribution), '~ BS(a, ). Therefore Z? follows a chi-square distribution with one degree of
freedom, Z2 ~ x2(1).

In the Table 2.4, page 52, we give some examples of symmetric distributions of the r.v.
Z and the values of ¢g4, g, u; and uy corresponding to each distribution. The corresponding
GBS kernel is presented in the Table 2.5, page 53.

Pdf estimation

Marchant et al. (2013) introduced a class of GBS kernels by substituting in the expres-
sion (2.6) the shape and the scale parameters by Vh and t respectively, so it is defined as
Kepsen(y) = fumdv)-

Considering the random variables Ty, 75, ..,T,, with an unknown density function. The

estimator of the density function based on the GBS kernel is given in Marchant and al.

(2013) as

~ 1 <
faps(t) = - Z; Kepsan(Ti), t>0,
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where ¢ is the target (point where the density is estimated) and h > 0 is the smoothing
parameter.
The expressions of the bias and variance for ]/C\GBS are derived by Marchant et al. (2013),

under the following conditions

C1. The function f is twice differentiable and its second derivative is continuous and

bounded;
C2. The functions t~2 f(¢) and t~2 f(¢) are continuous and bounded;

C3. The bandwidth h = h(n) satisfies lim,, . h = 0 and lim,,_,., nh'/? = cc.
The asymptotic bias is given by
bias [fGBs(t)} —m* + o(h), (2.7)
where m* = huy(g) [tf'(t) + 2" (t)] /2.
The asymptotic variance is given by
Var [fGBS(t)] =040 (#) , (2.8)

where 0% = c2t71 f(t)/ (c2nh'/?), cg =1/ fj;o g(y*)dy and c,2 = 1/ fj;o a*(y?)dy.
Note that, the GBS distribution contains a wider class of positively skewed densities with

nonnegative support that possesses lighter and heavier tails than the BS distribution. Thus,

the GBS distribution is essentially flexible in the kurtosis level; see Marchant et al. (2013).

2.5 Construction of asymmetric kernels: mode-
dispersion method

The majority of asymmetric kernels that exist in the literature are introduced without re-
vealing the method of their construction such as, gamma kernel of Chen (2000), Inverse
Gaussian (IG) and Reciprocal Inverse Gaussian (RIG) kernels of Scaillet (2004), ect.

The associated asymmetric kernel with two parameters (depending on the target ¢ and
bandwidth h) is constructed based on the asymmetric density function with two parame-
ters. Libengué (2013) and Libengué and Kokonendji (2017) have proposed a method for

constructing associated asymmetric kernel, called ” mode-dispersion” method.
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Principal of mode-dispersion method

Let Ky(p) be a type of unimodal kernel on the support Sy, with 6(a,b) is a function of
parameters a > 0 and b > 0. Let M3 and D4y represents the mode and the dispersion
parameter respectively of the density kernel Kyp). For ¢ > 0 and A > 0, the mode-
dispersion method allows the construction of the function Ky ) by solving in term of a and

b the following system S

M(a,b) - t

Dy = h,

\
Let 0(t,h) = 6(a(t,h);b(t,h)) where a(t,h) and b(t,h) are solutions of the system S, for
h>0and t € T, with T is the support of the density to be estimated.

The following proposition shows that Ky ) satisfies the definition of associated kernel

given in 2.3.2.

Proposition 2.5.1. (Libengué and Kokonendji, 2017)
Let T be the support of the density f to be estimated. For allt € T and h > 0, the kernel func-
tion constructed by the mode-dispersion method Ko ny with support Sgap) = Se(a(t,h)b(th)), 1S

such that

t € Sot,n),
E(Zoe) — 1 = Ag(t, h),
var(Zy,n)) = Bo(t, h),

where Zopy is a random variable with pdf Ko py and Ag(t,h) — 0 and By(t,h) — 0 when
h — 0.

Some examples of construction of kernels

Here, we give some examples of asymmetric kernels to illustrate the mode-dispersion method.
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Gamma kernel
The density function of gamma distribution, with shape parameter a > 0 and scale

parameter b > 0, is defined as
—a

.fG(aab;y) :mya_leXp{——}, y>0a

where I" is the gamma function defined as

I(a) = /0 1 exp(—t)dt.

Its mode M4 = (a — 1)b and dispersion parameter D,y = b.
By resolving the system S, we obtain a = % + 1 and b = h, then gamma kernel can be

written as

h_(%‘H) t Y
KG(%ﬂ,h) (y) = myh exp {_E} )
with y > 0,¢ >0 and h > 0.
Inverse Gamma kernel

The density function of inverse gamma distribution, with shape parameter a > 0 and

scale parameter b > 0, is defined as

b* b
fraa,byy) = =—y~ "V exp {——} , y>0.
I'(a) y
Its mode M) = a—f’rl and dispersion parameter D qp) = %

By solving the system .S, we obtain a = % — 1 and b = 3, then the inverse gamma kernel is

1
h?’

. S 1) (1)
10(%-1,%)(@/)—my exp _h_y 7 )

ht

expressed as

with y >0, ¢ >0 and h > 0.

Lognormal kernel

The density function of lognormal distribution, with the mean p and standard deviation
o is given as

1

fra(p, ory) = ;my exp {—% (In(y) — u)2} , y>0.

Its mode M, ) = exp(p — 02) and dispersion parameter D) = 0.

By solving the system S, we get p = In(t) + h* and 0 = h. Then the lognormal kernel is
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given by
| 1 )
KLG(]n(t)—&-h?,h) (y) - \/m exp {% (1n(y) - ln(t) + h2) } )

with y > 0,¢ >0 and h > 0.

However, some types of asymmetric kernels do not satisfy the mode-dispersion method,
taking example of Birnbaum-Saunders (BS) kernel which do not have an explicit form of the
mode.

Note that, the kernel generated from a given distribution may not be unique, regardless
of its support on R,. Rather, it is possible to generate different kernels from the same
distribution by changing functional forms of the shape and scale parameters. For example,
the gamma kernels proposed by Igarashi and Kakizawa (2014) and Malec and Schienle (2014)
and the inverse gamma kernels introduced by Mousa et al. (2016) and Igarashi and Kakizawa
(2017), can be obtained via alternative specifications of the shape parameter, see Hirukawa

(2018).

2.6 Bandwidth selection methods

As already pointed out, the smoothness of the density kernel estimator depends on the
smoothing parameter h, so the selection of an appropriate bandwidth A plays a very impor-
tant role on the quality of the estimation, see the Figure 2.3. However, when the parameter
selected h is not suitable, it engenders an under-smoothing (when h is very small), see the

Figure 2.4 or an over-smoothing (when h is very large), see the Figure (2.5) of the estimator.

It exists several methods to select the bandwidth parameter for both symmetric and
asymmetric kernel estimator, see for instance, Jones et al. (1996), Zougab (2013) and Ziane
(2015). These methods can be classified in two categories: classical approaches (plug-in,

cross validation) and Bayesian approach (global, local and adaptative).
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LT

Figure 2.3: Smoothed estimator.

Figure 2.4: Under-smoothed estimator.

Darsty
oz

Figure 2.5: Over-smoothed estimator.
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2.6.1 Plug-in method

Symmetric kernel case

This method is based on optimization of the following asymptotic mean squared error

AMISE

1
AMISE(f) = — / K?(2)dz +
R

4.4
h*oy

[rra

The minimization on h of the AMISE gives the following optimal bandwidth

_ f KQ(y)dy a ~1
}”‘{ﬂiﬁm@ﬁ} i

The above optimal bandwidth is not easily usable because it depends on the unknown quan-
tity f"3(t).

Many issues have been proposed to overcome this problem, for instance the rule of
thumb method. This method consists in supposing that the unknown function f is nor-
mally distributed with mean 0 and variance 0}%, where UJ% is estimated using the observations
T, Ty, ...T, by S2 = L350 (T; = T)? with T = 23" | T}, so the modified version of the
optimal bandwidth is

hpr = 1.06S,n1/°,

This bandwidth gives a good result when the observations are really normally distributed.
Otherwise, this method is not efficient, for more details see Silverman (1986).

In another hand, Scott et al. (1977) introduced iterated plug-in method, Park and Marron
(1990) presented modern iterated plug-in and Sheather and Jones (1991) introduced another
method called plug-in in three steps, which is considered the most efficient.

The principal of the method of Sheather and Jones (1991) is to replace [, f”*(t)dt by the

following estimator

R, = /R 2 ()dt =

1 — T, —T;
@ (Li— 145
e (P,

1,i7#]
where L is a derivative in forth order of the kernel L and a is a new bandwidth called pilot

parameter. This estimator is obtained under sufficient regularity conditions

[ £2wa= [ 1w s
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- 2
The new bandwidth parameter @ that minimizes the term E { [Ra — |s f”Q(t)dt} } is

represented as
17
a= —2L(4)(0) n~ YT,
o2 f]R f”’2(t)dt

It appears again in the term above of @ an unknown quantity fT f (3)2(t)dt. So the authors

proposed the following estimator

~ 1 T —T.
_ 6 (L1
= Do Z L ( b ) ’

where b = 0.912 A n~/? and ) is the estimator of A, that represents the scale parameter of
the function f (for example, its interquartile range).

The packages bw.nrd0() and bw.sj() are available in R software, for rule of thumb and
Sheather and Jones methods, respectively.

Asymmetric kernel case

In the case of asymmetric kernel estimator, the optimal bandwidth is obtained also by
the minimization of AMISE. However the bandwidth obtained depends on the unknown
functions f, f’ and f” that makes the calculations more difficult. Scaillet (2004) proposed
a rule of thumb method and replaced the unknown functions f, f’ and f” by choosing
lognormal distribution as reference for the density f with the parameters p and o, i.e.,
f ~ LN (u,0). The optimal bandwidths obtained by Scaillet (2004) using Inverse Gaussian

(IG) and Reciprocal Inverse Gaussian (RIG) are presented respectively as

2/5

160° exp { £(7o? — 20u) } / Y

hic = 5 - n
12 4 680 + 2250

and

2/5
160° exp { §(—1702 + 20p) } / _a/s
12 + 402 + o* "o

hric = [

In applied work, the unknown parameters 1 and o2 may be estimated by the empirical
mean and empirical variance computed on the algorithm of data. However, the simulation
results obtained by Scaillet (2004) are not satisfactory and tends to provide bandwidths

values which are very small.

The alternative popular method is the cross validation (CV) method.
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2.6.2 Cross validation method (CV)
2.6.2.1 Least squared (unbiased) cross-validation

This method is a popular heuristic for selecting the smoothing parameter in kernel density
estimation, introduced by Rudemo (1982) and Bowman (1984).
The basic idea in CV is to find the value of the parameter A that minimize the integrated

squared error (ISE), given as

ISE(h) = /fm() £ (b))

- /fh dt—2/fh dt+/f2(t)dt

Because the last term does not depend on h, we only need to consider the first two terms.

the optimal bandwidth is obtained by minimizing L given by

L(h) = ISE(h /f2 t)dt = /fh dt—2/fh

The idea is to find an estimate of L(h) from the data and minimize it over h. Consider the

estimator of L as

<WW=/Eimwrdw%ZﬁxT

Where fh_Z(TZ) = — Z#l Kr, ,(T}) is the density estimate (unbiased) of [ fh f(t)dt,

using sample with 7; removed.

Then, the optimal value of the bandwidth h is obtained as
hey = argmin CV (h).
h>0

This method suffers from sample variation, that means; when using different samples

from the same distribution, the bandwidths estimated may have large variance.

2.6.2.2 Biased cross-validation

This method was suggested by Scott and Terrell (1987). considers the asymptotic MISE in

the case of symmetric kernel density estimation
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i 1 2 hio "2
AMISE(fn) = — | K*(2)dz + f(t)dt.
nh Jp 4 Jr
Note that R(.) = [4(.)%.
The main idea of this method is to replace the unknown quantity R(f”) by its estimator
R(f") as

R(™) = R(FY) — = RIKY)

That gives
h* -~ 1

BCV(h) = %R(K) oot | RO = = RIK|

Then, the bandwidth selected is
hpoy = arg mhin BCV (h).

This selector is considered as a hybrid of cross-validation and plug-in methods, since it

replaces an unknown value in AMISE by a cross validation kernel estimate E( 7).

2.6.3 Bayesian approach

Before presenting the bayesian approach for selection the bandwidth parameter, we first
recall the concept of this approach.

Bayesian approach concepts

Consider T4, Ty, .., T,, ii.d. r.v. with density f and observations t = (t1,ts,..,t,). Let
h € H the parameter to be estimated, with H C R.

This approach considers the unknown parameter h as a r.v. with a prior distribution
7(h), and combines the both of the information of the parameter h (prior information) and
the information leads by the data, to provide a posterior information of the parameter h to
be estimated.

The posterior distribution w(h/t) is obtained using Bayes’s theorem as

m(t/h)m(h)
w(t)

where 7(t/h) = [[", f(t;,h) represents the maximum likelihood function and 7(t) =
Ju IT", f(ti, h)w(h)dh is the marginal distribution.

7(h/t)
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In some cases, it is difficult to obtain an explicit form of w(h/t), so Marcov Chain Monte
Carlo MCMC are usually used to overcome this problem.

MCMC methods

MCMC methods are used to approximate the posterior distribution of a parameter of
interest by random sampling. The principle is to generate a Markov chain {M®}, (i €
(1,..,1I), with I is a number of iteration), using the kernel transition (law candidate) and
an arbitrary initial value M©). After a number of iteration I, sufficiently large, the Markov
chain converges to the interest posterior density. Several algorithm to define such Markov
chains exists, including Gibbs sampling, Metropolis—Hastings, ect. For more details about
this method, see Zougab (2013), Ziane (2015).

The main scope in this approach, is to find an estimator h of the parameter h that
minimizes the mean cost, called also bayesian risk E[C (E — h)], where C (/f; — h) represents

the cost function, that is defined as

E[C(h — h)] = / c(h — h)w(h/t)dh.

H

The cost function the most used is the quadratic one, that is C (/f; —h) = (ﬁ(t) — h)?. The
estimator / that minimizes the bayesian risk using the mean quadratic cost represents the

posterior mean of h, given by

h=E(h/t) = / hr(h/t)dh.

H

It exists other types of cost functions such as, the absolute cost C(h — h) = \(ﬁ(t) — h)l,

and the cost 0-1 such that, for a given 7.

0 if [A(t) = h| <3

1 Otherwise.

\

Now, for the selection of the optimal bandwidth parameter of the kernel estimator ﬁl using

the bayesian approach. It exists three essential technics: global, local and adaptive.
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2.6.3.1 Global bayesian approach

This technic is proposed by Brewer (1998), Zhang et al.(2006) for multivariate kernel
density estimation, and Zougab et al. (2013) by using gaussian kernel estimator in the case
of continuous data and binomial kernel in discrete case. That consists to proceed as the
following steps

1. Define the maximum likelihood estimator of the data t1, o, .., t,, knowing the parameter

h, as given below

(1, ta, o ta/h) = [ [ Fata).

i=1
By sing the leave-one-out technic to estimate f(¢;) excluding the observation t;, we get

R n 1 n
7T<t1; t27 7tn/h) = H Z Ktuh(t])

n—1
i=1 =L

2. Choose the prior distribution of the bandwidth h, noted by w(h).

3. Establish the posterior distribution estimator of h through the Bayes’s theorem, as

given below

;T\(th t?) ©*y tN/h)ﬂ-(h)
%(t17 t27 .oy tn)

Where 7 (t1,to, .., t,) = [ 7(t1,t2, .., tn/h)m(h)dh. Note that, in many situation it is not

F(h/t1, ta, o tn) = (2.9)

easy to calculate this integral, so the explicite form of (2.9) cannot be obtained.

4. Finally, the bandwidth h is estimated by the posterior mean, mode or median by using
the Marcov Chain Monte Carlo (MCMC). Fore more details see for instance Zougab

(2013) and Ziane (2015).

2.6.3.2 Local bayesian approach

Here, the main idea is to estimate the bandwidth A locally at ¢, i.e. estimate A on
each point ¢ where the density is estimated. By using the Bayes’s formula, the posterior

distribution of h locally at t gives the following expression

IR (L)

[ f@)m(h)dh:
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As the model f(t) is unknown, we use its kernel estimator ]?h(t) = 15"  Kin(T;). Hence

T on

the posterior distribution of h takes the following form

Fh/tL T, T, ... T,) = _hut)(n) (2.10)

J In(ym(h)dh
In the case where the expressions (2.10) is not explicit, we can use the MCMC approxi-
mation methods.

2.6.3.3 Adaptive bayesian approach

Here, the objective is to estimate the bandwidth h for each observation t;, noted by h;. Let

fbe the adaptive associated kernel estimator of f, defined as follows

Fit) = 3" Kun (1),

where K, is the associated kernel and h; is the adaptive bandwidth parameter associated
for each observation t;.
By using the leave-one-out technic, the function f(¢;) is estimated excepting the obser-

vation t;, and can be written as

-~

~ 1
f-ilti) = f(ti/{t=i} hi) = 1 > Kin(ty).
J=Llj#i
By using the Bayes’s formula, the posterior distribution for each h; takes the following form
f(t/{t=i}, hi)m(hi)

T h; ti,1t_iy) = = . 2.11
i/ttt J fti/{t=:}, hi)m(hi)dh; (211)

The expression (2.11) can give the explicit results when using the conjugate priors, see

Brewer (2000), Zougab (2013) and Ziane et al. (2015) for more details.
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Chapter

Hazard rate function estimation using kernel

method

3.1 Introduction

In this chapter, we present an overview on hazard rate (HR) function estimation using kernel
method, then we propose an estimator of HR in the context of of positively skewed data
using the class of GBS kernels. This class is considered because of its several interesting
properties and flexibility. Some asymptotic properties, such as bias, variance and mean in-
tegrated squared error (MISE) are established for the proposed estimator. In addition, we
demonstrate that, the GBS-HR estimator is strongly consistent and asymptotically normal.
The choice of bandwidth is investigated by rule of thumb and unbiased cross validation ap-
proaches. Finally, the performances of the HR estimator based on GBS kernels are illustrated

by a simulation study and real applications.

3.2 An overview on kernel estimation of HR function

Recently, the hazard rate function HR function estimation has received considerable atten-
tion in the literature and many applications in several fields, such as, medical, biomedical,
finance, ect. This, in the parametric case, see for instance Azevedo (2012) and Athayde et

al. (2019), or nonparametric case, to cite a few, Bouezmarni et al. (2008) and Bouezmarni
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(2011) by using gamma kernel in the context of censored data, Salha (2012) by using Inverse
Gaussian (IG), Salha et al.(2014) with Weibull and Erlang kernels, Altun and Comert (2016)
used Weibull-Exponential models to represent the typical L-shaped hazard rates of electronic
products, Brazzale et al (2018) introducing a new method for estimating a change point for
hazard function and Moriyama and Maesono (2018) proposed a new kernel estimator of the
hazard ratio. In this section, we summarize some of these results of nonparametric case

using kernel method for either censored and complete data.

3.2.1 Case of censoring data

Let 11, ...,T,, are r.v. representing observed survival times and C', ..., C,, are r.v. representing
censoring times, be two nonnegative random sequences with distribution functions £’ and G,
respectively. We assume that the censoring times C; are i.i.d. and independent of the the
survival times 7;. Considering right censoring, that is instead of observing 7}, we observe the
pair (X, d¢)), where X; = min(7;, C;), d = I(T% < Ci) and I(.) is the indicator function.
We denote by f the density function of F' and by A(:) = a S ;;)(‘)) the corresponding hazard

function. The hazard rate function estimator in the case of censoring data is defined in

Bouezmarni (2008) as

~ n S
Aw) =2 n_—z-)JrlKu,h)(X(z)), z >0, (3.1)

=1
with Xy < Xy < ... < X, < are the order statistics of Xy, Xs,..., X, and d(;) is the
concomitant of X;), where h is the bandwidth parameter and K is the associated asymmetric

kernel.

Definition 3.2.1. Let (T;,7 > 1) be a sequence of random variables. Given a positive integer
n, set
a(n) =sup|P(AN B) —P(A)P(B)|, Ac FT) and B € Fpn(T),
k
with Fj(T) be the o-field of events generated by T;,i < j < k.

The sequence (T;) is a-mizing if the mizing coefficient a(n) — 0 as n — 0,

Bouezmarni (2008) supposed the survival times 7; are a-mixing (strong dependence),

and established some results of convergence of the HR function estimator defined in (3.1)
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using gamma kernel, see Proposition 3.2.1 and 3.2.2, under the following conditions
B1. The survival times (7j; 7 > 1) are stationary a—mixing sequence of random variables.

B2. The censoring time (Cj;j > 1) are i.i.d. random variables and independent of

(T4 = 1).
B3. a(n) = O(n="), for some 3 > 3.

Proposition 3.2.1. (Asymptotic normality)(Bouezmarni, 2008)
Let \ be twice continuously differentiable. Under the conditions B1-B3 and assume that
h=0(n3) . For all x such that f(z) >0, 37 such that, x < 7. Asn — oo, we have

nt/2pt/4 (X(@ _ E[X(x)]) N N(0,1), n — oo.
V(x)

with —% denotes the convergence in distribution.

(

1 272\ (x) .
if § — 00
Vi (x) = 2/m 1 — H(x) (3.2)
[(2k + 1)h~12\(z) o
21+2kF2(/{2 + 1)[1 _ H(CL‘)] if T k,

where H is a distribution function of the r.v. X; and k is a nonnegative constant.

Proposition 3.2.2. (Convergence almost sure)(Bouezmarni, 2008)
Let f be a continuous density. Assume that the conditions B1-B3 are satisfied and h =

O(n*°). Then, for all v < T and as n — oo we have
Ma) =% A),
where =25 denotes the almost sure convergence.

Still in the case of censoring data, Bouezmarni (2011) has studied the HR function
estimator (3.1) using gamma kernel with independent r.v. T}, and established the mean

integrated squared error MISE given in the following theorem.
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Theorem 3.2.1. (Bouezmarni, 2011)
Assume that f is twice continuously differentiable. If % — 0 as n — oo, then the mean

integrated squared error of \ is
MISE() = ? / B (x)dx +n~hY? / V(z)dz + o(h*) + o(n~'h1/?),

where B and V' are given by

zf"(x)
21— F(2))

(@)
2/ (1 = G@)(1 ~ F@)”

B(z) = and V(x) =

3.2.2 Case of complete data
HR function estimation using IG, Erlang and Weibull kernels

Consider T1,Ts, ..., T,, be a random sample from a distribution with an unknown probability
density function f defined on [0, +0c). Salha (2012) and Salha et al. (2014%,2014°) studied

the following HR function estimator

/):(t) _ % Z?:l Kt,h(Ti)
% Z?:l f(f Kr,h(Ti)dx

by using: Inverse Gaussian (IG) kernel, Erlang kernel and Weibull kernel, respectively. Some

, 120,

results of asymptotic convergence are established in the theorems below.

Theorem 3.2.2. Let \ be the HR function estimator using IG kernel and if (i) f is twice

continuously differentiable, (i) [)° (B3 f"(0) dt < oo, h + L — 0 and (iti) nh>* — 0 as

n — oo, the following holds

Vnhi/? [X(t) - )\(t)] 4N (0, \/12_7Tt_3/21 j‘(]?(t>> .Vt > 0.

Theorem 3.2.3. Let \ be the HR function estimator using Erlang kernel and if (i) the
density f has a continuous second derivative, (ii) 0 < [t*f"*(t) < oo and [ 10dt < 0o and

(11i) the bandwidth h satisfying, h + n—,lv,, — 0 as n — oo. The following holds

o1/h, /};‘—ﬂ [X(t) - A(t)} N (0, ﬁ) V> 0.
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Theorem 3.2.4. Let \ be HR function estimator using Weibull kernel, if (i) the density

[ has a continuous second derivative, (ii) [t*f"*(t)dt < oo and f@dt < oo and (i)

ft;]z(zdt > eXp(Z;’Lln(g), where v = 0.5772156649 is Euler’s constant. The following holds

nh A?)

P e [0 = 0] (o,m

vt =0

HR function estimation using new kernel

Moriyama and Maesono (2018) proposed a new kernel estimator of hazard rate function, that
is based on a modification of Cwik and Mielniczuk method (C'wik and Mielniczuk, 1989).

First, we describe the principal of this method. Let X, X5, ..., X,, be independently and
identically distributed (i.i.d.) random variables with a distribution function F(-), and
Y1,Y, ..., Y, be iid. random variables with a distribution function G(-), f(-) and g(-) are
the density functions of X and Y variables, and we assume that g(xq) # 0, (zo € R). A naive

~

estimator of the density ratio f(z¢)/g(zo) at the point zg, (z¢o € R)is given by f(z0)/g(z0)

where
~ 1 [T To— W
and
R 1 [T To — 2
() = E/oo K( Oh )dGn(Z),

with K(-) is a kernel function, h is a bandwidth that satisfies h — 0 and nh — oo, as
n — o0), and F,(-) and G,(-) are the empirical distribution functions of Xj,..., X, and
Y1, ..., Y,, respectively. We call ]?(xg) /9(x¢) an ’indirect’ estimator. Cwik and Mielniczuk

(1989) proposed a direct estimator, as

M) L[ g (GGl

For more details about this estimator, see Cwik and Mielniczuk (1989), Chen et al. (2009)

oo

and Igarashi (2020).
Moriyama and Maesono (2018) have extend the idea of C wik and Mielniczuk (1989), by

develop a new ‘direct’ estimator of the hazard ratio function which is defined as

o) = /_ Tk (M"(‘”O) - M"(“’)> 4, (w), (3.3)

o0
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where

M (w) = w — /w F (u)du.

—00

Asymptotic properties are also investigated for this estimator, given in theorems 3.2.5 and

3.2.6.

Theorem 3.2.5. Let us assume that (i) f(.) is three-times differentiable at xo and £ (x)
is bounded, (i) K is symmetric and the support is given by a closed interval, (iii) K® is

bounded, and (iv) Ay 4 and Asg are bounded. Then, the MSE of /X(Io) is given by

E {(X@o) - A(:co))Q} - e, { (1= Fxo)(1 = Flwo) f" +4f ") + 3 }uo) +

4 [1— F(xq)]10

A
(if)k(xo)—%(9(h6—+

1
nhl/g)a To € R7

note that

Ai,j:/ w! K (u)du

o0

Theorem 3.2.6. When h =cn™< (0 < c,% <e< %), the following asymptotic normality of

Azo) holds:
Vih [Aao) = Awo)| = N(B,VA),

where B = lim,,_,oo VNh°B;

_ Aip {(1 — F(20))(1 = F(xo)f" +4ff') +3f°
2 1— F(xo)P

B (ZE()),

and

Vi = Aso\(20).

In addition, Moriyama and Maesono (2018) have compared the proposed direct estimator

of HR function (3.3) with the naive estimator defined by \,(x¢) = 1_’?12:?;0), where F), is the
empirical distribution function. The authors concluded that the direct estimator of HR
function performs asymptotically better than the naive estimator, especially in exponential
or gamma cases, which play a central role in survival analysis and the asymptotic variance
of the new estimator is usually smaller than that of the naive one. Although, the bias of the

direct estimator is large in some cases, and the asymptotic variance is always small when

both bandwidth parameters are the same (see, Moriyama and Maesono, 2018).
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3.3 HR function estimation using GBS kernel

In this section, we develop the HR function estimation based on GBS kernels and we dis-
cuss some properties of this estimator. The bandwidth selection for HR estimator is also

investigated using the popular rule of thumb and unbiased cross validation approaches.

3.3.1 Construction of the estimator

As mentioned previously, the HR function of survival time 7' (nonnegative random variable)
has the following form

Pr(t < T < t+dt |r)

M= i @ e
which can be written as
f(t)
M) = ——— ¢

where f is unknown pdf of the r.v. T" and F its cumulative distribution function (cdf). Let

fG s be the GBS kernel estimator of the unknown pdf f, and let

R t t 1 n
0 0 =1

be the GBS kernel estimator of the cdf F. Then, based on a (complete) random sample

1,15, ..., T, distributed as T, a natural GBS-HR estimator is simply given by

1 n c 1 t 1 (T; t
Aans(t) Sl (B o (G (B + £ -2))
GBS = )
1—iym be (L4 [= (L Lz _9))yg
n 2wi=1Jo oy \ Vo, )9\ \% Tr z

where the bandwidth A controls the smoothness of the estimator ;\\GBS as for the case of

t>0, (3.4)

the pdf estimation by kernel method. This important issue of bandwidth choice will be
investigated in the Section 3.3.3. Note that for each generator g and constant ¢, given in

the Table 2.4, we obtain the following specific HR estimator according to each kernel

e BS kernel
S (dr + B) o [t (5 + £ -2)

2inv/ah - [ (ﬁ +/ T—) exp |5t (5 +755) | @

Aps(t) = t>0.
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e BS-PE kernel

n 1 t —1 T; t
St (dr + fB) o [ (5 + £ - 2)]

Aps—pE(t) = ERTEIY- ) - , t>0
R D Y <\/;7,Tz+ %}, exp [2_,11 <%+%—2> ]dm
e BS-t kernel
—(45)
5 St (i + /%) [ (7 7 -2)]
Aps—t(t) = - - t>0.

NI

2nvVhorl'(%) n t 1 = L (T N -zt
‘7@ﬁ_‘zuk(%ﬁ+ ﬁ)ﬁ+m(;+ﬁ—®} da

e BS-lap kernel

e Bl el ()
ABsflap(t) =
2

4n n t 1 x
\/_E_Zizl 0<\/TTZ-+ T—;,)exp -

3.3.2 Convergence properties

In this section, we establish the bias, variance, mean integrated squared error (MISE), of the
proposed GBS-HR kernel estimator using Proposition 3.3.1 and under the conditions C1-C3

(given in page 39) and the following assumptions

2
oo [ tf'(t) .
Al f; <17F(t)> dt < oo;

1! 2
A2 [ () dt < oo

1-F(t)

oo t—IA(t)
A3. fo 1_F(t)dt< 00.

Proposition 3.3.1. Under the conditions C1, C3 and E [ft K

0 GBS(h%,t,g)(T)dl'] < 00, for all

n, the following holds

Faps(t) 225 F(t), as n — oo (3.5)

a.s.
where — denotes the almost sure convergence.

Proof.

First, we have
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BlFuns®) = B [ Ky Ode= [~ [ Koper @tdsdy
- / / K s o () )y
= [ Bt (3.

where K, ) ~ GBS(h%,x,g). The mean and the variance of K, are respectively; see

Marchant et al. (2013)

zhus(g)

2p2 2122
E(Ken) =2 + 5 , Var(Kyp) = J:2hu1(g) T X ;2(9) _Zz 21(9)_

By the Taylor expansion around z and using the condition C1, we obtain

ulg)

LK) = £(o) + 1| "

(2/0) + 22" + o0
By replacing in (3.6), then we have

BFanst) = [ {740 [ "L ior o)+ a27@) + o0 ) ds

— /f hul( )/Ot(a:f’(x)+:L'2f”(x))dx—|—0(h).

t2 "(t) —tf(t) + F(¢
B PER ELCCGEUELI) s
= F(t)+ O(h). (3.7)
Second, note that fot KGBS(h% " (T;)dx areii.d. and E [f KGBS( (T)dx} < 00, Vn. Hence,
by the strong law of large numbers, we obtain
FGBS( [/ Kaps( )dx] 2% 0 as n — oo. (3.8)

Then, by using (3.7), (3.8) and the following classical decomposition

Feps(t) — F(t) = [E(ﬁGBS(t)) - F(t)} + [ﬁGBs(t) — E(Fans(t))| ,

we complete the proof of the proposition.
The first theorem presents the asymptotic bias and variance of the GBS-HR estimator

given by the equation (3.4) and the second one gives the mean integrated squared error
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(MISE) (global property) of the estimator Agpg and the optimal bandwidth which minimizes
the MISE criterion.

Theorem 3.3.1. (Bias and variance of XGBS)
Let XGBS be the estimator of the hazard rate function \ with GBS kernels. Under the
conditions C1, C2 given previously, the bias and variance of this estimator are given by

*

m

Bias [XGBS@] = T F@ o0 (3.9)
and
~ o*? 1

Var [AGBS(t)] = 1 FP +o(n 'h72), (3.10)

where m* = h [tf(t) + 2 f"(t)] and o* = it_lf(t)/.
2 (cg2nh!/?)
Proof
From Proposition 3.3.1, we can write
fGBs(t) _ fGBS(t)

XGBS (t) =

1 — Faps(t) 1-F(t)

Then for n enough large, the mean of /):GBs(t) is simply given by

~

E [f GBS(t)]

E [ans(t)] = —— F )

(3.11)

Hence, the bias is expressed as

E|fos(®)] gy Bias | fons(t)

Bias [XGBS(t)] =K [:\\GBS(t)} —At) =

1—-F(it) 1-F(@) 1—F(t)
Similarly, the variance is given by
- B fams(t) | Var [J/C\GBS(t)]
Var [)\GBs(t)} = Var - F)| T A-FOE

Now, by replacing the expressions of the bias and variance of fGBS (t) given in the formulas

(2.7) and (2.8) respectively, we obtain the desired result given in Theorem 3.3.1.

Theorem 3.3.2. (MISE of Agps)
Under the conditions C3 and A1-A3, we obtain the MISE of XGBS as follows

~ w(g)h® [ [f/E) + 2 f" ()] G [ tTIA®)
wseon) = S [T o o [ v

+oOﬂ+ E), (3.12)

nh2
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and the optimal bandwidth h is given by

(Sl

2 oo t7f(D)
c >dt
hopt = 9J0  (1-F(t) n

o0 ! 2 F1 2
e (g) fy (LLEO) at

[SIN]

(3.13)

Proof.
The MISE (3.12) is obtained by substituting the formulas of the bias and variance of the
estimator Agps(f) in TDBiaus2 [XGBS(t)] dt + ?Var(XGBS(t))dt, and by minimizing the MISE
(3.12) on h, we obtf;in the optimal bandv&?idth (3.13). Note that the bandwidth (3.13)
depends on the unknown pdf f and on the cdf F', then it can not be directly exploited
in practice. The rule of thumb (RT) using BS distribution as a reference model and the
Unbiased Cross Validation (UCV) approaches, will be developed in the Section 3.3.3.

Now, the two following theorems establish the strong consistency and the convergence in
distribution of XGBS. The first consistency result concerns the almost sure convergence, and

the second theorem deals with the asymptotic normality.

Theorem 3.3.3. (Strong convergence of XGBS)

Let Agps be the estimator of A defined in (3.4). Then for fized t > 0, we have
Aaps(t) Z5A(t), as n— oco.

Proof
Recall that faps(t) = 2 3", Kaps(T}) and E [fGBS(t)} — E[Kgaps(T)], such that
lim,, o E [Kgps(T)] = f(t). Note that Kgps(T;) are i.i.d. and E [Kgps(T)] < oo. Then, by

the strong law of large numbers, we have
i 1 & a.s
== Kaps(T) %3 £(t), n— oo.
Japs(t) n; ass(Ti) =5 f(t), n— o0
Now, from Proposition 3.3.1, we get
Aeps(t) “3 A1),
The proof of Theorem 3.3.3 is complete.

Theorem 3.3.4. (Asymptotic normality of :\\GBS)

For fixed t > 0, the estimator XGBS converges in distribution to the normal distribution as
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follows

*

~ m

[1— F(t)]o"'n2 |Aaps(t) — A(t) — 1= FQ) 5 N(0,1),

D o
where — denotes the convergence in distribution.

Proof

Following Bouezmarni and Rombouts (2010) and using that & = o(n™!), we can write
a%m%ﬁggw—ﬂw—mﬂ:§2n+om%%
where
Y=o {7 [Kons(T) — E(Kens(T))] }

The central limit theorem asserts that as n — oo, the distribution of V,, = Z?:l Y; tends to

the normal distribution with zero mean and unit variance, i.e. V, = A (0,1), by the fact

that E(V,,) = 0 and Var(V,,) = 1+ o(1). That leads to deduce that
x—1 1|72 «| D
o n2 [fGBs(t)—f(t)—m] = N(0,1), as n — co.

Now, from Proposition 3.3.1 we can write

B fams(t) — f(t)

Aaps(t) — A(t) = oyl
Hence, we write explicitly
~ m* f@, s(t —ft)—m*
Mmgw—A@y—l_F@): & f_F&) a.s.

Consequently,

~ m*

u_F@w*m%A%gw—mw—ij@]:a1@{%%@—f@—wﬂ a.s.

Finally, we conclude that [1 — F(¢)] 0" 'nz [XGBS(t) —\t) — km—}%] is asymptotically nor-

mally distributed, which gives the desired result.

3.3.3 Bandwidth selection

The performance of the GBS kernel HR estimator given by (3.4) depends on the bandwidth

h, which controls the smoothness of this estimator. Then, we investigate the bandwidth
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choice on the GBS kernel estimator for HR. First, recall that the optimal bandwidth (3.13)
depends on the unknown quantities f, f/, f” and F. In order to overcome this problem, we
propose to use both of RT with BS reference model and UCV methods, then compare the

results in the simulation study given in Section 3.4.

3.3.3.1 RT method

Here we suggest to use the rule of thumb method that replaces the unknown density f in
(3.13) by a known reference BS parametric model with parameters a and b (T ~ BS(a,b));
this approach can be called BS-referenced bandwidth (see, e.g., Silverman 1986; Jones and
Henderson 2007; Hirukawa and Sakudo 2014) in the context of density estimation. Note that
the parameters a and b are replaced by the corresponding estimators @ and /b\, which can be

obtained in explicit forms, using the modified moment estimation (MME) as

7N\ /2 vz
a= 2{(5) —1}] b= (T8)"*, (3.14)
with .
I I,y
T = E;TZ and S = [ﬁ;TZ
Therefore, the BS-referenced bandwidth is given by
_ -2
5
B i et
O ol |,
hyr = . ns, (3.15)
cgzu% fooo tf]’38<a$)(t)+t12f]’3’s(a?(t) dt
o[ {0 -(0]

S+
N———
[

where @ {% { (

normal cdf,

b\ 2 b\ 3
IBS(ap)(t) = —2abi/ﬂ ((Z) + (Z)

(

0VE b ) axp [ SEE2
2t2 2t2\/§ p 2a2

bt
bylo
2a2

)G9 (@7 + 8 e (-152)

, t >0,

/
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and

32 b2 3b\/_ b byt _g
- 4t4\/§ - 444 (2)3/2 - t3 tS\/g eXp (_ 2a2 >
" - t
BS(a,b)( ) 2\/%013

(" V) G- @ (52) (4 /) e (5

8v2mwadb 24/ 2madt3
3by/2 b 1 b b4i-2
< 2t2t_2t2\/§> (3_?)eXp<_t252 >

- ,t>0.

4/ 2ma3d

Note that we can use another reference model, such as gamma, lognormal, etc.

)

+

3.3.3.2 UCYV method

The UCV method is based on the optimization of the integrated squared error (ISE), that

is given in our case by

ISE(Owns) = / h [XGBS(t)rdt—Q / T Rams(ONH)dE + / TPt

The last term does not depend on bandwidth A, so we need to minimize the score function

CV given by

cV(h) = / " [Rans)] dt 2 / Rens(OAD)d

YN N S
o |1-Fgps(t) (1= F@)][1 - Faps(t)]

We replace F' by its estimator ﬁGBS, then we get the new expression of C'V(h), given by

Y Yo Kepsan (Th)
vevin = /0 [ fo Yoi Keps@n (Li)de

2(n — 1) Zj—1 i Kapsr,n (1)
5
n i=1 [ n—1) fo = 1]# Kaps(xin (T])Xm]

The UCV optimal bandwidth is defined as

hycy = argmin UCV (h).
h>0

page 67



Simulation study

3.4 Simulation study

This section investigates the GBS (BS, BS-PE, BS-t and BS-Lap) kernel HR estimators
developed in Section 3.3, and compare their performances with the Reciprocal Inverse Gaus-
sian (RIG) and Gamma kernels HR estimators through simulation study. We note that the
optimal bandwidth of the HR estimator using RIG and gamma kernels is calculated using
RT and UCV methods. The comparison of these two methods is also investigated.

We simulate data from four nonnegative life distributions. We consider the lognormal,
BS, gamma and BS-Student (GBS-t) distributions. The corresponding pdfs are listed in
Table 3.1. For each target density, 100 replications of sample size n =50, 200, 500 and 1000

are generated. We compare the performance of the estimators using the ISE criterion given

by
~ o0 ~ 12
ISEN(1)] = / [A(t) - A(t)} dt.
0
Distribution pdf expression, t > 0 Parameters
D1  lognormal tml/% exp (— 2 (In(t) — p)?) (u,0) = (2,3)
D2  gamma st exp(—3) (o, B) = (3,0.5)
1 3
D3 BS e (P4 (e (— [4+2-2]) (@A =23

vt1 1 3 t4B_9\ 2
D4 BS-Student 5l <(§)2 + (é)"’) (1 + LQ) (o, B, 1,) = (1,2, 85)
2

Table 3.1: Distributions used in simulation study.

Table 3.2 presents the average ISE based on 100 replications for the HR estimators of
the models D1, D2, D3 and D4. For bandwidth choice, which is an important practical
issue in nonparametric HR kernel estimation, we used RT and UCV procedures, developed

in Section 3.3.3, for the purpose of selecting the one that gives best results.
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Size Models BS(2,3) lognormal(2,3) gamma(3,0.5) GBS(1,2;ty=5)
Kernels
hrT hucv hrT hucv hrT hucv hrT hucv
BS 0.02608 0.05044 0.09258 0.20487 0.03692 0.21300 0.03061 0.11378
BS-PE(v = 2) 0.05359 0.05628 0.09841 0.26722 0.04060 0.12588 0.07373 0.12567
BS-t(v = 5) 0.02618 0.05419 0.07130 0.06313 0.03337 0.26009 0.04082 0.07847
n=>50 BS-lap 0.03541 0.26491 0.14983 0.12800 0.04767 0.25904 0.04417 0.07411
RIG 0.05507 0.11706 0.13853 0.11592 0.03761 0.09739 0.07605 0.12397
gamma 0.05940 0.06396 0.09339 0.06872 0.03917 0.11679 0.10101 0.14568
BS 0.00807 0.03860 0.02682 0.06756 0.01956 0.19084 0.01564 0.04011
BS-PE(v = 2) 0.01700 0.09110 0.04774 0.05680 0.02740 0.11424 0.02337 0.02136
BS-t(v = 5) 0.00981 0,15111 0.04835 0.12515 0.02825 0.26264 0.00990 0.04406
n=200 BS-lap 0.01228 0.27653 0.05037 0.07218 0.04140 0.25695 0.01266 0.04054
RIG 0.01463 0.11497 0.05290 0.12381 0.01026 0.04350 0.02348 0.08176
gamma 0.02040 0.06334 0.03656 0.06668 0.01779 0.11092 0.02316 0.14428
BS 0.00407 0.01056 0.02501 0.04410 0.01819 0.10905 0.00828 0.03865
BS-PE(v = 2) 0.00740 0.00933 0.06187 0.02362 0.02035 0.10932 0.01137 0.03804
BS-t(v = 5) 0.00543 0.01086 0.04201 0.03960 0.02447 0.26854 0.00444 0.04167
n=>500 BS-lap 0.00583 0.19160 0.02032 0.04062 0.03731 0.26217 0.00865 0.03974
RIG 0.00999 0.09817 0.02525 0.11634 0.00590 0.04961 0.01332 0.16962
gamma 0.00978 0.06189 0.02101 0.06602 0.01289 0.10905 0.01163 0.14297
BS 0.00217 0.00582 0.01200 0.02464 0.01552 0.10242 0.00277 0.02537
BS-PE(v = 2) 0.00424 0.00444 0.04130 0.01337 0.01874 0.08560 0.00287 0.02244
BS-t(v = 5) 0.00436 0.00694 0.03491 0.03676 0.02301 0.26688 0.00339 0.03787
n=1000 BS-lap 0.00237 0.12540 0.00884 0.01340 0.03602 0.26209 0.00502 0.03349
RIG 0.00571 0.09860 0.01535 0.11524 0.00380 0.04175 0.00613 0.07871
gamma 0.00526 0.06022 0.01171 0.05954 0.00971 0.10900 0.00702 0.14573

Table 3.2: Some expected values of ISE for HR estimators, based on 100 replications for the

considered models in simulation, using the bandwidths, hry and hycy.
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In terms of average ISE, the obtained results based on GBS, RIG and gamma kernels

reveal that:

e In general, the average ISE values, decreases as the sample size n increases, and the
proposed class of GBS kernels outperforms the RIG and gamma kernels, whatever the
bandwidth selection method, the sample size n and the distribution considered in the

simulation study, except for gamma model.

e In the case of RT method, the BS kernel performs better than the other kernels for
BS model, and also for small and moderate sample sizes n for lognormal distribution.
However, the BS-lap kernel works better than the other for large sample size n in
the case of lognormal distribution. In the case of BS-Student model, the BS-¢ and
BS kernels have presented the best results. The performances of BS-t and BS HR

estimators are mixed depending on the sample size n.

e In the case of UCV method, the BS kernel is better for small and moderate sample sizes
n for BS model. However the BS-PE kernel gives best results for moderate and large
sample sizes n for BS, lognormal and BS-Student distributions. The BS-t and BS-lap
kernels perform well in the case of lognormal and BS-Student models, respectively, in

the case of small sample sizes.

e The RIG kernel seems to be the suitable one in the case of gamma distribution for UCV

method, in particular for moderate and large sample sizes in the case of RT method.

e In addition, the results show that the RT bandwidth selection method is more appro-
priate than UCV method, for the models considered in simulation study excepting the

gamma model.

The comparison is also given in Figures 3.1 and 3.2. These figures indicate the estimates of
the HR function for BS and lognormal models for the sample size n = 200. Globally, we can
see graphically that the smoothing quality of the HR estimators, given in the Figure 3.1,
where the parameter h is selected with RT method, is better compared to those in Figure

3.2, and it is very satisfactory for the GBS kernel compared to RIG and gamma kernels. We
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can also note that the best fit is obtained by using the BS and BS-lap kernels in comparison
with the fit provided by BS-t and BS-PE kernels.
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Figure 3.1: HR estimators for BS and lognormal models with n = 200, using the bandwidth

hrr.
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Figure 3.2: HR estimators for BS and lognormal models with n = 200, using the bandwidth

huev.

Computer programs used in this simulation study are given in appendices.

3.5 Exemple with real data

In this section, three real lifetime data sets are analyzed by our proposed approach. These
three data sets are already discussed using the parametric BS and GBS distributions by
Kundu et al. (2008) and Athayde et al. (2019), respectively; see also Paula et al. (2012).

(S1) represents survival times (in days) of n = 72 pigs injected with the same dose of

tubercle bacilli, corresponding to 4.0 x 106 bacillary units per 0.5 ml, that is, to a
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regimen number of 237 the base-10 logarithm of bacillary units in 0.5 ml of challenge
solution. These data are discussed by Kundu et al. (2008) using the life BS distribution,

and analyzed more recently by Athayde et al. (2019) with the GBS life distribution.

(S2) denotes the total phosphorus 240 (mg/1) in Melides lagoon, Portugal, measured from
05-April-2004 to 26-Jan-2013 with sample size n = 104. Athayde et al. (2019) have
investigated the HR of GBS distributions. Note that in our study, we have multiplied
these data by 10, see Table 3.3.

(S3) concerns the claim amounts corresponding to n = 542 injuries paid by an insurance
Australian. These data have been analyzed earlier by using the BS-Student regression
model, and more recently, Athayde et al. (2019) have investigated the HR of GBS
distributions in parametric estimation. Note that in our investigation, we have divided

these data by 1000, see Table 3.3.

Data | Mean Median SD CV CS CK Min Max n

S1 99.82 70 81.11 81.26% 1.79 5.61 12 376 72

S2 1.39 0.99 1.49 107.14% 3.52 16.67 0.1 9.91 240

S3 8.99 6.76 879 97.71% 559 54.31 0.109 116.58 542

Table 3.3: Descriptive statistics for the indicated data set.

Note that
CV: coeflicient of variation.
CS: coeflicient of skewness.

CK: coefficient of kurtosis.
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The Table 3.3 gives a descriptive statistics for lifetime data sets SI1, S2 and S3. We
can see that all these data sets are positively skewed and present a high kurtosis level, in
particular for §2 and S3. Then, we apply the GBS, RIG and gamma kernels to estimate the
density and the HR function for these considered data. Table 3.4 provides the bandwidth
selectors given by the RT method for the density estimator fAGBS, and both of RT and UCV
methods for the HR function estimator :\\GBS, respectively, according to the real data sets
S1, §2 and S3. Note that the RT method is based on BS reference model, see Section 3.3.3
for HR estimators. Figures 3.3, 3.4 and 3.5 show the estimates of the pdf and HR function
for S1, S2 and S3 data sets based on GBS (BS, BS-PE, BS-t and BS-lap), RIG and gamma
kernels combined with RT and UCV bandwidth selectors. In general, we can observe that
in term of smoothing quality, the GBS kernel perform better than RIG and gamma kernels
for the data SI in the case of density estimation, and the data S7, 52 and 53 in the case of
HR estimation using RT bandwidth selection method, see Figures 3.3 and 3.4, respectively.
The first best performance is obtained with BS kernel, and the second best result can be
attributed to BS-t and BS-lap, in particular for HR function estimation. The BS-PE and
gamma kernels tend to under or over smooth the HR function of the considered data sets,

especially in the case of UCV bandwidth selector, see Figure 3.5.
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Data Kernel fGBS XGBS
hrr hvcv
BS 0.02800 | 0.05635 | 0.00621
S1 BS-PE(v =2) 0.01019 | 0.05954 | 0.48943

BS-t(v =5) 0.01752 | 0.06873 | 0.01626

BS-lap 0.02670 | 0.04237 | 0.07517

RIG 0.03524 | 0.63086 | 1.99782

Gamma 0.02368 | 0.46079 | 0.55600

BS 0.02454 | 0.03992 | 1.26476

S2 BS-PE(v =2) 0.05756 | 0.04277 | 0.67289

BS-t(v =5) 0.03564 | 0.87868 | 1.22220

BS-lap 0.02354 | 0.03048 | 0.81522

RIG 0.06524 | 0.02578 | 0.48830

Gamma 0.08524 | 0.02545 | 1.99708

BS 0.14089 | 0.03667 | 0.82671

S8 BS-PE(v =2) 0.32045 | 0.03650 | 1.81204

BS-t(v =5) 0.08463 | 0.03728 | 0.99120

BS-lap 0.26548 | 0.02314 | 0.61790
RIG 0.12563 | 0.08665 | 1.74301
Gamma 0.09648 | 0.07141 | 1.83027

Table 3.4: Bandwidth of HR estimators computed with RT and UCV methods, and those
of pdf computed with RT method.

page 75



Exemple with real data

Density

0.005 0.010 0.015 0.020

0.000

S1

S2

BS kernel
BS-PE kernel
BS-tkernel
BS-lap kernel
RIG kernel
Gamma kernel

i
I
i
|
i .
1 \ —— BSkernel
" 'L """ BS-PE kernel
] l BS-t kernel
i BS-lap kernel o |
| 'r‘ RIG kernel e
[ - Gamma kernel
Y =
2
3 =
=
o
S
AN
Pty o |
S
T T T 1 T
100 200 300 400 0 2
t
S3
9
=)
—— BSkernel
""" BS-PE kernel
BS-t kernel
-~ BS-lap kernel
S | ---- RIG kernel
° —-- Gamma kernel
2
2
53
a
)
8 |
S
o
8
=
T T T T T T 1
0 20 40 60 80 100

Figure 3.3:

Pdf estimation for S1, S2 and 53 data.
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Figure 3.5: HR function estimation for S1, S2 and S3 data, using UCV bandwidth selector.
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Chapter I

Reliability and reversed hazard rate function

estimation using GBS kernel

4.1 Introduction

According to Marchant at al. (2013) and Chekkal et al. (2021), the class of GBS kernels
gives a good estimates for density pdf and hazard rate HR function, respectively. Since these
functions are directly related to the reliability and reversed hazard rate (RHR) functions, it
will be interesting to test if the class of GBS kernels performs in the case of reliability and
reversed hazard rate functions. That is why we propose to study these two functions using
GBS kernels, and establish the asymptotic properties for each estimator. Finally, simulation

study is investigated to test their performance.

4.2 GBS-Reliability estimation
The natural estimator of reliability function of nonnegative r.v. T, is given as
~ t ~
R(t) =1 —/ f(x)dx, t>0, (4.1)
0

with fis the pdf estimator of f.
Let Ty, T, .., T, be a independent identically distributed (i.i.d.) random sample dis-

tributed as a nonnegative r.v. T. By using the class of GBS kernel, the estimator GBS-
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Reliability can be rewritten as

Reps(t) =1 — / ZKGBS (@n) (T t>0, (4.2)

where t is the target, A is the bandwidth parameter and Kgpg represents the class of GBS
kernels, presented previously in Chapter 2, Section 2.4.

By replacing the expression of the kernel Kspg, we obtain the following GBS-Reliability

anZ/( T \/7> (%(%+%—2))d:p, £>0. (4.3)

The asymptotic properties and the methods for selecting the bandwidth h of this estimator,

estimator

EG’BS( =1~

are illustrated in the next.

4.2.1 Asymptotic properties

The propositions above are established under the conditions C1-C3 given in the page 39 and

the following hypothesis

t~1R(t)? .
Fl1. [ Tyt < o0;

F2. [ [Mrdt < 00;

f(®)

t2f// (t) 2

Proposition 4.2.1. Let fiGBS be the GBS kernel of the reliability function. Under the
conditions C1 and C2, the following holds
R(t)

BiaS[EGBs(t)] = m*m + O(h,), t > 0.
Var[ﬁggs(t>] = 0*2% +o <#) , t>0.
* _ huy ’ " * Cf; -
Where m* = 3 [tf'(t) + t2f"(t)] and o* = W}f LE(t).

Proof The bias and the variance of ﬁg Bs are obtained by using Theorem 3.3.3 given in

Section 3.3.2, Chapter 3, (displaying the convergence almost sure of s, /)\\GBg(t) LA ()

as n — 00), and the fact that }A%GBS(t) = %GB—SE?) Then we replace the expressions of
GBS

Bias(fGBS) and Var(fGBS) given in Chapter 2, Section 2.4.
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Proposition 4.2.2. The mean integrated squared error (MISE) of the estimator GBS-R is

given under the conditions C1-C3 and the hypothesis F1-F3 by

. h2u2 +00 R2(t) 02 +oo R2(t) 1
MISE[R = 1 tf' () +2 " () dt / t1 dt R+ ——
[ GBS] 4 /0 [f( )+ f ()] f2(t) +692?’Lh1/2 0 f(t) +o +n\/—

(4.4)

The MISE[ﬁGBS] is obtained by replacing the Bias[ﬁGBS(t)] and Var[ﬁGBS(t)} in
MISE[EGBS(t)] = f Bias® RGBS ]+ f+oo Var| RGBS(t)]dt, with the expressions of m*

and o*2

Using the hypothesis F1-F3, h — 0 and —= — 00, as n — oo, the MISE[RGBS] tend to 0.

4.2.2 Bandwidth selection

For the selection of a bandwidth parameter h, we propose to use the same methods used in
the case of GBS-HR estimator, that are; rule of thumb (RT) and unbiased cross validation
(UCV).

4.2.2.1 RT method

By minimizing the MISE criterion in h, given in (4.4) we obtain the following optimal

bandwidth parameter

2/5
2 1 R2(t)
h* — ¢ ft ) dt n~=2/5

u2(g)ce [[Lf(8) + L2f(t )]2’;5—85))&

The main obstacle here is that the bandwidth above depends on the unknown quantities f,
f', f” and R. That makes the calculation more difficult especially in the practical case, see
for instance, Hirukawa and Sakudo (2014) in the case of density function. We propose to use
the BS parametric distribution as a reference model with parameters a and b, T~ BS(a, b)
(as in the case of GBS-HR estimator), and replace the unknown functions by fgs, fis, fhs
and Rpg, respectively. The parameters a and b are estimated using the modified moment
method (MME) and their estimators @ and b are given in the formula (3.14), Section 3.3.3,
Chapter 3.
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Therefore the BS-referenced bandwidth of GBS-R estimator is given by

2/5

(1-@
c2 f+<>0 11

h,gT _ g9J0 fBs(t)

n=%5, (4.5)

wegs [ EFhs(t) + 2 fis(0)] G EmuR]) it

1,1
where ¢ [% { (%) F - (%’) ’ H represents the cdf of BS distribution, with ®(-) is the standard

normal cdf and the expressions of frs, fpg, fhg are given previously in Chapter 3, Section

3.3.3.

4.2.2.2 UCV method

This method consists to minimize the integrated squared error (ISE) of the GBS-R estimator,

given by

[SE(Rops) = / h [Reps)] dt —2 / " Reps(OR()dt + / R dt.

The last term does not depend on bandwidth A, so we need to minimize the score function

CVg given by

CVi(h) = / " [Ress)] dt -2 / " Reps()R()dt

J/f\GBS(t) ] '

~

_ [Ta-F ps)2dt — 2F
/0 (1= Fans)di A Aens()

We replace A by its estimator XGBS, then we get the new expression of C'Vg(h), given by

oo t 1 n
UCVr(h) = / [1 —/ EZKGBS(x,h)(T%)d$
0 0 =1

2

T 2
1- ﬁ o Z#i Kepsx,n(T;)dX;

2(n — 1) — [
n Z > iz Kapser,n(T))

=1

The UCVE optimal bandwidth is
R _ .
hijoy = arg min UCVg(h).

A simulation study is conducted in the Section 4.4.1, in order to test the performance of
the reliability estimator EGBS and select the suitable bandwidth parameter for the samples

considered.
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4.3 GBS-RHR estimator

In this section, we present the reversed hazard rate RHR function estimator based on the
class of GBS kernels. Recall the expression of the reversed hazard rate function of the lifetime

rv. T

with pdf f and cdf F.
Let T,T5, ..., T, a set of r.v. distributed as T'. The kernel estimator GBS-RHR of RHR

function using GBS kernels is given as

JE aBs(t)
Faps(t)

i (A + )9(%(%+%—))
Tify (&) o (3 (B4 5 -2)) e

with fGBS(t) and Fgps(t) are GBS kernel estimator of pdf f and cdf F, given respectively

by
- c = 1 t 1 (%t
£ — g o B (T , >0,
fams(t) Qn\/ﬁz(/_tT+ Tf)g<h<t T; ))

7

Faps(t) 2nf2/< » W)g<%<%+%—2>)dx, t>0,

and h is the parameter that controls the smoothness of the estimator pgps(t). Two methods

paes(t) =

t>0, (4.6)

will be investigated to select the optimal one, in the Section 4.3.2.

The asymptotic properties of the estimator (4.6) are given in the next section.

4.3.1 Asymptotic properties

The asymptotic properties of the estimator GBS-RHR defined in (4.6) are established under

the conditions C1-C3 and the following assumptions

Gl. [° <tf (tt))) dt < oo;

1! 2
G2. fo (tzft())> dt < oo;

G3. [y° Ltldt < oo,
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GBS-RHR estimator

Proposition 4.3.1. Under the assumptions C1-C3, the bias and the variance of the esti-
mator GBS-RHR are given by

*

F(t)

Bias [paps(t)] = —— + o(h), t > 0.

0_*2

Var [ﬁGBS(t)] = F2—(t> + o0 <%ﬂ) s t > O,

where the expressions of m* and o* are given in Proposition 4.2.1.

Proof.The bias and the variance of pgps are obtained by using Proposition 3.3.1 given
in Chapter 3, Section 3.3.2, displaying the convergence almost sure of the estimator ﬁGBg,
ﬁGBS(t) 2% F(t), as n — oo. Then we replace the expressions of Bias(fGBS) and Var(fGBS)

given in Chapter 2, Section 2.4, page 36.

Proposition 4.3.2. The mean integrated squared error MISE s given under G1-G3

~ gk [T+ )] G ()
MISE(pgps) = i /0 { ) } dHcgmh%/o [F(t)]gdt

+0(h2+ 11), (4.7)

nh2

The MISE (4.7) is obtained by substituting the formulas of the bias and variance of the
estimator pgps(t) in [, Bias®[peps(t)]dt+ [,° Var[peps(t)]dt with the expressions of m* and
*2

g

Using the hypothesis G1-G3, h — 0 and #ﬁ — 00, as n — 0o, the MISE[EGBS] tend to 0.

4.3.2 Bandwidth selection

For the selection of a bandwidth parameter h, we propose to use the same methods used in

the case of GBS-HR estimator; RT and UCV methods.

4.3.2.1 RT method

This method consists to minimize the MISE(pgps) given in (4.7), to obtain the following

expression of h

[SIN]

2 oo t71f(1)

! 1 2
e (g) Jy (L) at

n

[Si1[N)
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GBS-RHR estimator

We see clearly that the bandwidth above depends on the unknown quantities f, f’, f”, and
F'. That makes the calculation more difficult especially in the practical case, see for instance,
Hirukawa and Sakudo (2014) in the case of density function. This consists to substitute the
unknown functions by those of BS parametric model, i.e., fgs, fps, f5g, and Fpg, with
parameters a and b (T" ~ BS(a,b)) that are also estimated by modified moment method
(MME), noted by @ and b respectively, see their expressions in (3.14), Chapter 3, Section

3.3.3. Finally we obtain the following optimal bandwidth as

[SIN]

t™! fpsam () Sdt

o o
her = GF%F_OP}D -

2

~

N
(SN}
—~
=~
(0]
~—

(0)+2 £

/
[e’e) th BS(

B 5 ()
cprila) fi7 | Hpep—mmed

Joro']

)5 — <E> : H represents the cdf of BS distribution, with ®(-) is the standard

dt

d

SN+

t

where ® {% { (

normal cdf. See the expressions of fps, f5g, [Bs: Fps in the Chapter 3, Section 3.3.3.

4.3.2.2 UCYV method
This method consists in optimization of the integrated squared error (ISE), that is given by

158(70ss) = | " ens )2 dt 2 / " pans(Op(t)dt + / 0P e

The last term does not depend on bandwidth A, so we need to minimize the score function

CV, given by
+oo +oo
cvn) = [ enstfat=2 [ fans(op(oy
_ /Oo fGBS(t>]2dt_ E fans(t) ]
0

Faps(t) F(t)Faps(t)
We replace F by its estimator Fepg, then we get the new expression of CV,(h), given by

UCV,(h) = / © |- iz Kossen(T)
’ 0 fot Yoi Kaps@n(Ti)dz

2 n n
o 2n=1) 3 1,52 Kepsan (1))
.
n T; n
i=1 [fo > ien jzi Kapsoxm (1) dX;

The UCV optimal bandwidth is defined as

P :
hi,c = arg min UCV,(h).
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Simulation study

A simulation study is conducted in the Section 4.4.2 to test the performance of the RHR
function estimator pgpg, and select the appropriate bandwidth for the corresponding gener-

ated samples.

4.4 Simulation study

In this section, we test the performance of GBS kernels comparing to the RIG gamma kernels
in the case of reliability and RHR estimations, and compare the two methods of bandwidth
selection; RT and UCV.

We proceed as in the case of GBS-HR estimator by using the kernels: BS, B-PE, BS-lap,
BS-t, gamma, RIG and generating sample sizes n = 50, n = 200, n = 500 and n = 1000
from the nonnegative distributions: BS (2,3), lognormal (2,3), gamma (3,1/2) and BS-
Student (1,2; t,—5), using 100 replications. See their corresponding densities in the Chapter
3, Section 3.4, Table 3.1.

4.4.1 GBS-Reliability estimator

We calculate the ISE criterion in both case of RT and UCV bandwidth selection methods
and the results of the average ISE are illustrated in the Table 4.1.

According to the results given in Table 4.1, we can see globally that, the average ISE
values decreases as the sample size n increases, whatever the bandwidth selection method.
GBS and RIG kernels perform well and the results obtained in the case of RT method are

better than those obtained for UCV method, except the case of gamma distribution. In fact

e In the case of BS, lognormal and BS-Student distributions, the values of ISE obtained
for RT method are good comparing to those obtained through UCV method. Indeed,
for RT method and in the case of BS distribution, the values of ISE are nearly closed
for all the kernels, however, the best results are obtained for BS, BS-PE and BS-t
depending on the sample size n. Similarly to lognormal and BS-Student distributions,
the values of ISE are almost closed but the smallest ones are presented in RIG kernel
for all the sizes n, except the small sample size n for BS-Student distribution, where

the BS-PE is the most efficient.
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Size Models BS(2,3) lognormal(2,3) gamma(3,0.5) GBS(1,2;ty=5)
Kernels
hrT hucv hrT hucv hrT hucv hrT hucv
BS 0.04070 0.17779 0.08596 0.08188 2.70045 0.45230 0.08857 0.17573
BS-PE(v = 2) 0.04354 0.09446 0.06382 0.06527 2.45184 0.26535 0.07415 0.16583
BS-t(v = 5) 0.05397 0.21528 0.06686 0.17824 2.33854 0.51446 0.09384 0.17407
n=>50 BS-lap 0.05336 0.22030 0.06878 0.24423 2.38445 0.52074 0.10135 0.16709
RIG 0.04866 0.26938 0.05370 0.13927 0.03618 0.25433 0.07682 0.33264
gamma 0.04150 0.31413 0.06891 0.27139 0.03833 0.05243 0.07694 0.22923
BS 0.01417 0.01848 0.02379 0.01924 2.71708 0.43191 0.06451 0.11651
BS-PE(v = 2) 0.01170 0.01424 0.01699 0.01736 2.58081 0.24639 0.05745 0.11902
BS-t(v = 5) 0.01169 0.02116 0.01795 0.01914 2.45229 0.50392 0.06455 0.12106
n=200 BS-lap 0.01360 0.02957 0.02746 0.01912 2.44789 0.49206 0.07924 0.11638
RIG 0.01497 0.24960 0.01666 0.12814 0.00803 0.23625 0.05298 0.35137
gamma 0.01459 0.29682 0.02453 0.27011 0.01030 0.04857 0.05319 0.22979
BS 0.00580 0.00574 0.01238 0.01249 2.73422 0.43616 0.06414 0.09786
BS-PE(v = 2) 0.00810 0.00567 0.01141 0.01292 2.53538 0.25031 0.05760 0.11353
BS-t(v = 5) 0.00565 0.00578 0.01339 0.01221 2.45207 0.50496 0.05856 0.09653
n=>500 BS-lap 0.00665 0.01056 0.01345 0.12347 2.41191 0.49603 0.05813 0.10808
RIG 0.00688 0.24870 0.01009 0.11465 0.00368 0.23614 0.05076 0.34616
gamma 0.00665 0.30200 0.01653 0.27481 0.00421 0.05061 0.05086 0.23525
BS 0.00537 0.00586 0.00875 0.00690 2.7098 0.43361 0.05569 0.09219
BS-PE(v = 2) 0.00459 0.00584 0.00619 0.00781 2.65970 0.24877 0.05567 0.10524
BS-t(v = 5) 0.00483 0.00585 0.00884 0.00689 2.41113 0.50355 0.05321 0.08333
n=1000 BS-lap 0.00518 0.00585 0.00746 0.00955 2.37221 0.49503 0.05988 0.09389
RIG 0.00544 0.24810 0.00549 0.12616 0.00224 0.23469 0.05390 0.35589
gamma 0.00530 0.30260 0.01034 0.26393 0.00270 0.05186 0.05403 0.22835

Table 4.1: Some expected values of ISE for reliability estimators, based on 100 replications

for the considered models in simulation, using the bandwidths, A%, and hfl. .
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e In regards to gamma distribution, the UCV method works well than RT method. In

that case the most efficient kernel is gamma.

The comparison is also given in Figures 4.1 and 4.2. These figures indicate, respectively
the estimates of the reliability function for BS and lognormal models for the sample size
n = 200 for hit, and hf . Globally, we can see graphically that the smoothing quality of
the reliability estimators in the case of RT method (Figure 4.1) is satisfactory compared to
the case where the bandwidth h is obtained with UCV method (Figure 4.2), and we can
note that the shape of all the estimators are nearly closed to the true reliability function,

for BS and lognormal distributions in the case of RT method.
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BS(2,3), n=200
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Figure 4.1: Reliability estimators for BS and lognormal models with n = 200, using the
bandwidth hf..

The computer programs used in this simulation study are given in appendices.

4.4.2 GBS-RHR estimator

According to the results given in Table 4.2, we can see globally that, the average ISE values
decreases as the sample size n increases, and in the case of the class of GBS kernels the

results obtained for RT method are better than those obtained for UCV method. In fact

e In the case of BS distribution, the RT method gives better results than UCV method,
and that is for all the kernels. Thus, in the case RT method, all the kernels perform

well, however, the gamma kernel presents the smallest values of ISE for all the sizes n.

e In the case of lognormal distribution, the smallest values of ISE are obtained mostly
in the case of RT method. In that case, BS kernel is the best one for small sizes n and

BS-lap for moderate and large sample sizes n.

e In the case of BS-Student distribution the RT method is also better than UCV for
all the kernels, except the BS kernel witch gives the best results in the case of UCV

approach. The BS-t kernel is the most efficient in the case of RT method.

e In the case of gamma distribution, The RT method performs well for GBS kernels.
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BS(2,3), n=200

086 08 1.0
| |
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***** BS kernel
""""" BS-PE kernel
''''''' BS-t kernel
-——- BS-lap kernel
—— RIG kernel
Gamma kernel

Reliability function

Figure 4.2: Reliability estimators for BS and lognormal models with n = 200, using the

bandwidth ht,, .

Hence, BS kernel is the best one for small and large sizes n and BS-t for moderate

sample sizes n.

The comparison is also given in Figures 4.3 and 4.4. These figures indicate the estimates
of the RHR function for BS and lognormal models for the sample size n = 200. Globally,
we can see graphically that the smoothing quality of the RHR estimators in the case of RT
method (Figure 4.1) is satisfactory compared to the case of UCV method (Figure 4.2). In
that case, we remark that the shape of all the estimators are nearly closed to the true RHR
function in the case of lognormal distribution, however the BS-PE kernel does not show a

good fit in the case of BS distribution.
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—— True reliability function
----- BS kernel
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The computer programs used in this simulation study are given in appendices.
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Figure 4.3: RHR function estimators for BS and log-normal models with n = 200, using the

bandwidth hAf.
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Figure 4.4: RHR function estimators for BS and log-normal models with n = 200, using the

bandwidth A,y .
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Size Models BS(2,3) lognormal(2,3) gamma(3,0.5) GBS(1,2;ty—5)
Kernels

hrT hucv hrT hucv hrT hucv hrT hucv
BS 0.02070 0.17251 0.01671 0.09621 0.91893 0.28370 0.34567 0.07317

BS-PE(v = 2) 0.04828 0.11557 0.10153 0.18185 2.23470 0.31090 0.34936 0.51407

BS-t(v = 5) 0.02401 0.12196 0.15655 0.08449 1.00151 0.35747 0.02898 0.33493

n=>50 BS-lap 0.02033 0.05954 0.02025 0.11642 2.03049 0.41204 0.04203 0.52510
RIG 0.03469 1.85236 0.04166 1.41419 2.87615 0.27142 0.23496 0.41791

gamma 0.01572 0.03920 0.02814 0.04165 3.1658 0.84553 0.14702 0.37401
BS 0.00793 0.03698 0.0946 0.02515 0.53728 0.20392 0.08654 0.03767

BS-PE(v = 2) 0.01488 0.034135 0.03635 0.07228 0.87553 0.28026 0.13980 0.27829

BS-t(v = 5) 0.00861 0.05142 0.08881 0.02597 0.51246 0.33595 0.01038 0.24630

n=200 BS-lap 0.00741 0.04874 0.00500 0.02599 2.01892 0.41144 0.01081 0.20421
RIG 0.01252 1.12219 0.2967 1.54882 0.77096 0.27010 0.01848 0.45590

gamma 0.00519 0.03365 0.04053 0.04220 1.25365 0.48279 0.10377 0.23919
BS 0.00529 0.014601 0.08393 0.01140 0.26970 0.22698 0.03861 0.02178

BS-PE(v = 2) 0.00895 0.02343 0.02692 0.04576 0.50043 0.16404 0.08049 0.14724

BS-t(v = 5) 0.00567 0.03305 0.08026 0.01016 0.24889 0.41624 0.00522 0.09442

n=>500 BS-lap 0.00315 0.04954 0.00201 0.01337 1.99272 0.41559 0.00586 0.09379
RIG 0.00617 1.86213 0.01515 1.51131 0.47761 0.33932 0.00894 0.4599

gamma 0.00252 0.03356 0.03095 0.02887 0.55134 0.43483 0.07322 0.10695
BS 0.00311 0.01204 0.00565 0.00750 0.16547 0.30002 0.02139 0.01423
BS-PE(v = 2) 0.00499 0.01807 0.02292 0.04913 0.29233 0.25919 0.00525 0.058807

BS-t(v = 5) 0.00324 0.03119 0.08185 0.00673 0.16894 0.42911 0.00371 0.06119

n=1000 BS-lap 0.003954 0.05954 0.00145 0.00672 1.80250 0.44969 0.00571 0.05487
RIG 0.00462 1.85439 0.01242 1.08808 0.23610 0.33796 0.0056 0.39145

gamma 0.00136 0.03771 0.02598 0.03869 0.31158 0.30410 0.05878 0.03962

Table 4.2: Some expected values of ISE for RHR function estimators, based on 100 replica-

tions for the considered models in simulation, using the bandwidths, A and hf; oy .
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Conclusion and perspectives

Our thesis deals with the nonparametric hazard rate function (HR) estimation in the case of
complete data, with kernel method and by using the family of Generalized Birbaum-Sauders
(GBS) kernels. The choice of this class of kernels is motivated by its good properties and
flexibility.

Firstly, we have introduced the basic concepts of reliability theory, in particular the
general properties of HR, reliability and reversed hazard rate RHR functions. Then, we have
presented the kernel method with its two parameters; the kernel K and the bandwidth A.
The kernel is chosen according to the support of the function to be estimated. In fact, when
the unknown function has an unbounded support, the suitable kernel is the symmetric one,
however, when the unknown function has a bounded support in R, , we use an asymmetric
kernel, whose the method of construction is also displayed. In addition, details about the
class of GBS kernel and different methods for selection bandwidth are given too. Afterwards,
we gave an overview of some results of kernel estimation of HR function in both cases of
complete and censored data, and introduced our proposed HR kernel estimator using the class
of GBS kernel. Under some conditions, the convergence properties such as bias, variance and
mean integrated squared error are established. In addition, we have proved that, the GBS-
HR estimator is strongly consistent and asymptotically normal. The choice of bandwidth is
investigated by rule of thumb (RT) and unbiased cross validation (UCV) approaches. The
performance of the proposed estimator compared to RIG and gamma HR kernels estimators,
and the comparison of the two bandwidth selection methods are illustrated by a simulation

study and real applications. In the sense of integrated squared error (ISE), the GBS-HR
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estimator dominates the other HR estimators based in RIG and gamma kernels, and the
bandwidth parameter obtained using the RT method outperforms the one obtained with
UCV.

We have also conducted a study on the reliability and RHR functions with the class of
GBS kernel. Asymptotic properties are investigated for each estimator and the bandwidth
parameter is calculated using RT and UCV methods. Finally, simulation study is investigated
to test the performance of GBS-Reliability and GBS-RHR estimators compared to RIG and
gamma kernel estimators of reliability and RHR functions, respectively. In the sense of
ISE criterion, we have noted globally that, the GBS-Reliability estimator performs well
in the case of RT method compared to UCV method for BS, lognormal, BS-Student and
gamma distributions, and it is also the case for GBS-RHR estimator excepting the gamma
distribution.

From the three simulation studies that we have conducted for GBS-HR, GBS-Reliability
and GBS-RHR, we consider that the class of GBS kernel can be a good candidate for esti-
mating the HR, reliability and RHR for positively skewed data, by using the RT bandwidth
selection method.

As a perspective, we can cite

e Bayesian approach in Generalized Birnbaum-Saunders kernel estimator of the hazard

rate function.
e Application of bias correction technics for GBS hazard rate function estimator.

e Comparison study between the GBS hazard rate function estimator and that based on

the C'wik and Mielniczuk method.

e New kernel estimator of hazard rate function without using the ratio of the density

function and the reliability function.

e Hazard rate function estimation in discrete case.
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Appendix

4.5 Computer programs

The computer programs that we have used in our simulation study are implemented by
using the R software. We illustrated above the computer program used for GBS-HR, GBS-
Reliability and GBS-RHR estimators, that represent hazard rate, reliability and reversed
hazard rate estimators using the class of GBS kernels. That is, in the case of rule of thumb
(RT) and Unbiased Cross Validation (UCV) bandwidth selection methods. In all three cases,

we take an example of BS distribution with BS kernel.

4.5.1 GBS-HR estimator

Case of RT method

n=50

X=rgbs(n, 2 , 3, nu = 1.0, kernel = "normal")

###BS kernel###

noyau=function(u,x,h){

NBS=1/(2xsqrt (2xh*pi) ) * ((1/sqrt (x*u) ) +sqrt (x/(u~3)))*exp((-1/(2*h)) * ((u/x)-2+(x/u)))}
###GBS density estimator###

ESTD=function(X,x,h){

ESTG=mean (noyau(X,x,h))}

###GBS Reliability estimator###

y=runif (1000,0,1)

E=0
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ESTF=function(X,x,y,h){

for (j in 1:length(y)){

E[j1=ESTD(X,x*y[j],h)

E}

E2=1-x*mean (E)}

HESHH AR SHH A SH R HHHEE RT method for GBS-HR ##################HHAHHHASHHHAHHH
###Estimate the parameters a and b###

mlegbs (X, kernel = "normal")

a=mlegbs(X)$alphaEstimate

b=mlegbs (X) $betaEstimate

###pdf and cdf of BS distribution###

f=function(x){

ff=dgbs(x, a , b , nu = 1.0, kernel = "normal",log = FALSE)

}

Frep=function(x){FF=pgbs(x, a , b, nu = 1.0, kernel = "normal",lower.tail = TRUE, log.p = FALSE)
}

fprim=function(t){

fp=1/(2%axbxsqrt (2+pi) ) * (3xb*sqrt (b/t) / (2¥t"2) -b/ (2xt~2xsqrt (b/t)) ) *exp(-1/(2*a"~2) *(b/t+t/b-2))
-1/ (4*b*a"3xsqrt (2+pi) ) *(1/b-b/(t~2))*(sqrt (b/t)+(b/t) ~(3/2) ) *exp(-1/(2xa~2) *(b/t+t/b-2))

}

f2prim=function(t){

£2p=1/(2%a*bxsqrt (2*pi) ) * (-3*b"2/ (4%t ~4*sqrt (b/t) ) -b"2/ (4*t~4*(b/t) " (3/2)) - (3*b*sqrt (b/t)/t"3)
+b/ (£~ 3*sqrt(b/t)) ) *exp(-1/(2*a~2) *(b/t+t/b-2) ) +1/(8*sqrt (2*pi) *b*xa”5) * (sqrt (b/t)+(b/t) ~(3/2))
*(1/b-b/t72) "2%exp(-1/(2*%a"2) * (b/t+t/b-2)) -1/ (2*sqrt (2+pi) *a~3*t~3) * ((b/t) ~(3/2)+sqrt (b/t))
xexp(-1/(2xa~2) *(b/t+t/b-2)) -1/ (4*sqrt (2*pi) *b*a~3) x (-3*bxsqrt (b/t) / (2*xt~2) -b/ (2*xt"2*sqrt (b/t)))
*(1/b-b/t"2) *exp(-1/(2xa"2) * (b/t+t/b-2)) -1/ (4*sqrt (2*pi) *a~3*b) * (3*xb*sqrt (b/t) / (2¥t~2)

-b/ (2%t~ 2xsqrt (b/t)) ) *(1/b-b/t"2) *exp(-1/(2*a~2) * (b/t+t/b-2))

}

ulg=1

c=1/sqrt (2*pi)

cg2=1/sqrt(pi)

###Numerator###

ul=runif (500,0,1)

num=0

for(i in 1:length(ul)){

num[i]=((c"2)*(10*ul[i]) ~(-1)*f (10*ul[i]))/(1-Frep(10*ul[i])) "2
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num }

Mnum=10*mean (num)

###Denominator###

u2=runif (500,0,1)

deno=0

for(i in 1:length(u2)){

deno[i]=cg2*(ulg~2) * ((10*u2 [i]*fprim(10*u2[i])+((10*u2[i]) "2) *f2prim (10*u2[i]))
/ (1-Frep(10%u2[il))) "2

deno

Mdeno=10#*mean (deno)

}

###0ptimal h###
hplug=(Mnum/Mdeno) ~ (2/5)*n"~ (-2/5)

###GBS-HR estiamtor###
tauxdef=function(X,x,y,h){
ESTTD=(ESTD (X, x,hplug))/ (ESTF(X,x,y,hplug))
ESTTD}

Case of UCV method

n=50

X=rgbs(n, 2 , 3 , nu = 1.0, kernel = "normal")
###BS kernel###

noyau=function(u,x,h){

NBS=1/(2*sqrt (2xh*pi))* ((1/sqrt (x*u))+sqrt(x/(u"3)))*exp((-1/(2xh)) * ((u/x)-2+(x/u)))}
###GBS density estimator###
ESTD=function(X,x,h){
ESTG=mean(noyau(X,x,h))}

###GBS reliability estimator###

y=runif (1000,0,1)

E=0

ESTF=function(X,x,y,h){

for (j in 1:length(y)){

E[j]1=ESTD(X,x*y[j],h)

E}

E2=1-x*mean(E)}

HERHHHHHHHH R R A #UCY method for GBS-HR estimator ############HHHHHHHHAHHHHHH
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###terme 1 ###

ter=0

x=runif (100,0,1)

termel=function(h){

for (j in 1:length(x)){
ter[j]=(ESTD(X,20%x[j],h) /ESTF (X,20%x[j],y,h)) "2
ter}

tt=20#*mean (ter)

}

#### termel##H#

MM1=0

MM2=0

terme2=function(h){
Mi=matrix(0,nrow=n, ncol=n)
M2=matrix(0,nrow=n, ncol=n)

for (i in 1:n){

M1[i, 1=(n"2)*ESTD(X,X[i],h)

M2[i, ]=1-ESTF(X,X[il,y,h)
diag(M1)=0

diag(M2)=0

MM1[i]l=sum(M1[i,])
MM2[1]=(((n-1)*n"2)-sum(M2[i,]1))"2 }
MM3=sum (MM1/MM2)

}

CV=function(h){

U=termel (h)-((2x(n-1))/n)*terme2(h)
}

hcvopt=optimize(CV, c(0, 2), tol = 0.005, maximum = FALSE )
hucv=hcvopt$minimum

hucv

###GBS-HR estimator###
tauxdef=function(X,x,y,h){
ESTTD=(ESTD(X,x,hucv))/(ESTF(X,x,y,hucv))
ESTTD}
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4.5.2 GBS-Reliability estimator

Case of RT method

n=50

X=rgbs(n, 2 , 3 , nu = 1.0, kernel = "normal")

### BS kernel ###

noyau=function(u,x,h){

NBS=1/(2xsqrt (2xh*pi) ) * ((1/sqrt (x*u) ) +sqrt (x/(u~3)))*xexp((-1/(2*h)) * ((u/x)-2+(x/u)))}

###GBS density estimator###

ESTD=function(X,x,h){

ESTG=mean (noyau(X,x,h))}

HASHHBHHH B S HRA SR AR SRAS R A R RT method ####H####HHHHHHHHHHAHHHBHHHBHFHHARHHBHHHHH
###Estimate the parameters a and b#i##

mlegbs (X, kernel = "normal")

a=mlegbs(X)$alphaEstimate

b=mlegbs (X) $betaEstimate

### pdf and cdf of BS distribution ###

f=function(x){

ff=dgbs(x, a , b , nu = 1.0, kernel = "normal",log = FALSE)

}

Frep=function(x){

FF=pgbs(x, a , b, nu = 1.0, kernel = "normal",lower.tail = TRUE, log.p = FALSE)

}

###Derivatives###

fprim=function(t){

fp=1/(2*a*xbxsqrt (2xpi)) * (3*xb*sqrt (b/t)/(2%t~2)-b/ (2%t~ 2*sqrt (b/t) ) ) *exp(-1/(2%¥a"2) * (b/t+t/b-2))
-1/ (4xbxa"3*sqrt (2+pi) ) *(1/b-b/(£72) ) *x(sqrt (b/t)+(b/t) " (3/2) ) *exp(-1/(2*a~2) *(b/t+t/b-2))

}

f2prim=function(t){

f2p=1/(2*a*xbxsqrt (2*pi) ) * (-3*%b~2/ (4xt"4*sqrt (b/t))-b~2/(4*t"4x(b/t) " (3/2) ) - (3*b*sqrt (b/t) /t~3)
+b/ (£~ 3*sqrt(b/t)) ) *exp(-1/(2*a~2) *(b/t+t/b-2) ) +1/(8*sqrt (2*pi) *b*xa~5) * (sqrt (b/t)+(b/t) ~(3/2))
*(1/b-b/t72) "2%exp(-1/(2*%a"2) * (b/t+t/b-2)) -1/ (2*sqrt (2+pi) *a~3*t~3) * ((b/t) ~(3/2) +sqrt (b/t))
xexp(-1/(2xa~2) *(b/t+t/b-2)) -1/ (4*sqrt (2*pi) *b*a~3) * (-3*bxsqrt (b/t) / (2*xt~2) -b/ (2%t~ 2*sqrt (b/t)))
*(1/b-b/t"2) *exp(-1/(2*%a"~2) * (b/t+t/b-2)) -1/ (4*sqrt (2+pi) *a~3*b) * (3*b*sqrt (b/t) / (2%¥t~2)

-b/ (2%t~ 2xsqrt (b/t)) ) *(1/b-b/t"2) ¥exp(-1/(2*a~2) * (b/t+t/b-2))

}
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ulg=1

c=1/sqrt (2*pi)

cg2=1/sqrt(pi)

###Numerator###

ul=runif (500,0.01,1)

num=0

for(i in 1:length(u1)){
num[i]=((c"2)*(10*ul[i]) " (-1)*(1-Frep(10*ul[i]))~2) /£ (10*ul[i])
num }

Mnum=10*mean (num)
###Denominator###

deno=0

for(i in 1:length(u1)){
deno[i]=cg2*(ulg~2) * ((1-Frep(10*ul[i]))*(10*ul [i]*fprim(10*ul [i])+((10*ul[i])~2)
*f2prim(10*ul [i])) /£ (10*ul[i])) "2
deno

Mdeno=10#*mean (deno)

}

###0ptimal h###
hplug=(Mnum/Mdeno) ~ (2/5)*n"~ (-2/5)
###GBS-Reliability estimator###
y=runif (1000,0,1)

E=0

ESTF=function(X,x,y,h){

for (j in 1:length(y)){
E[j1=ESTD(X,x*y[j],hplug)

E}

E2=1-x*mean (E)}

Case of UCV method

n=50

X=rgbs(n, 2 , 3 , nu = 1.0, kernel = "normal")

###BS kernel###

noyau=function (u,x,h){

NBS=1/(2*sqrt (2%h*pi))* ((1/sqrt (x*u))+sqrt (x/(u~3))) *exp ((-1/(2*h) ) *((u/x)-2+(x/u)))?}

### GBS density estimator ###
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ESTD=function(X,x,h){

ESTG=mean (noyau(X,x,h))}

###UCV method for GBS-Reliability estimator###
#H###terme 1 #####

ter=0

x=runif (100,0,1)
termel=function(h){

for (j in 1:length(x)){

ter [j1=ESTF(X,20*x[j],y,h) "2
ter}

tt=20*mean (ter)

}

#### termel###

MM1=0

MM2=0

terme2=function(h){
Mi=matrix(0,nrow=n, ncol=n)
M2=matrix(0,nrow=n, ncol=n)

for (i in 1:n){

M1i[i, 1= (n-1)-n*ESTF(X,X[i],y,h)
M2[i, ]=n*ESTD(X,X[il,h)
diag(M1)=0

diag(M2)=0
MM1[i1=((1/(n-1))sum(M1[i,]))"2
MM2[i]=(1/(n-1))*sum(M2[i,]) }
MM3=sum (MM1/MM2)

}

CV=function(h){

U=termel (h)-(2/n) *terme2 (h)

}

hcvopt=optimize(CV, c(0, 2), tol = 0.005, maximum = FALSE )
hucv=hcvopt$minimum

hucv

###GBS-Reliability estimator###
y=runif (1000,0,1)

E=0
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ESTF=function(X,x,y,h){
for (j in 1:length(y)){
E[j1=ESTD(X,x*y[j] ,hucv)
E}

E2=1-x*mean (E) }

4.5.3 GBS-RHR estimator

Case of RT method

n=50

X=rgbs(n, 2 , 3 , nu = 1.0, kernel = "normal")
### BS kernel ###

noyau=function(u,x,h){

NBS=1/(2*sqrt (2xh*pi) ) * ((1/sqrt (x*u) ) +sqrt(x/(u~3)))*xexp((-1/(2*h)) * ((u/x)-2+(x/u)))}
###GBS density estimator###
ESTD=function(X,x,h){

ESTG=mean (noyau(X,x,h))}

###GBS kernel estimator of cdf###

y=runif (1000,0,1)

E=0

ESTF=function(X,x,y,h){

for (j in 1:length(y)){

E[j1=ESTD(X,x*y[j],h)

E}

E2=x*mean (E) }
HHHAHHAHBHHAH R HBHHAH R H AR H RS AH R AR HAHE RT method ######H##HHAHHHHHHHAH B HAHHAHBHHAHHAHBHH
###Estimate the parameters a and b###

mlegbs(X, kernel = "normal")

a=mlegbs (X)$alphaEstimate
b=mlegbs (X) $betaEstimate

###pdf and cdf of BS distribution###
f=function(x){

ff=dgbs(x, a , b , nu = 1.0, kernel = "normal",

log = FALSE)
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}
Frep=function(x){
FF=pgbs(x, a , b, nu = 1.0, kernel = "normal",
lower.tail = TRUE, log.p = FALSE)
}
###Derivatives###
fprim=function(t){
fp=1/(2%axbxsqrt (2+pi) ) * (3xb*sqrt (b/t) / (2¥t~2) -b/ (2*t " 2*xsqrt (b/t)) ) xexp(-1/(2*a~2) * (b/t+t/b-2) ) -
1/ (4%bxa~3*sqrt (2*pi) ) *(1/b-b/(t~2) ) *(sqrt (b/t)+(b/t) " (3/2) ) *exp(-1/(2*a~2) * (b/t+t/b-2))
}
f2prim=function(t){
£2p=1/(2xa*xb*sqrt (2xpi) ) * (-3*b"2/ (4+t~4*sqrt (b/t) ) -b~2/(4*t"4x(b/t) " (3/2) ) - (3*b*sqrt (b/t) /t"3)
+b/ (" 3*sqrt (b/t)) ) *exp(-1/(2*xa~2) *(b/t+t/b-2) ) +1/(8*sqrt (2xpi) *b*a”~5) * (sqrt (b/t)+(b/t) " (3/2))
*(1/b-b/t"2) "2*exp(-1/(2*%a"~2) *(b/t+t/b-2) ) -1/ (2*sqrt (2*pi) *a~3*t~3)* ((b/t) " (3/2) +sqrt (b/t))
xexp(-1/(2xa~2) *(b/t+t/b-2)) -1/ (4d*sqrt (2*pi) *b*a~3) x (-3*bxsqrt (b/t) / (2xt~2) -b/ (2*xt " 2*sqrt (b/t)))
*(1/b-b/t"2) *exp(-1/(2*%a"2) * (b/t+t/b-2)) -1/ (4*sqrt (2+pi) *a~3*b) * (3*b*sqrt (b/t) / (2%¥t~2)
-b/ (2%t~ 2xsqrt (b/t)) ) *(1/b-b/t"2) *exp(-1/(2*a~2) * (b/t+t/b-2))
}
ulg=1
c=1/sqrt (2*pi)
cg2=1/sqrt (pi)
#HHnumérateur###
ul=runif (500,0,1)
num=0
for(i in 1:length(u1)){
num[i]=((c"2)*(10%ul [i]) "~ (-1) *£ (10*ul[i]))/ (Frep(10*ul[i])) "2
num }
Mnum=10*mean (num)
###Dénominateur###
u2=runif (500,0,1)
deno=0
for(i in 1:length(u2)){
deno [i]=cg2* (ulg~2) * ((10*u2 [i] *fprim(10*u2[i])+((10*u2[i]) ~2) *£2prim(10*u2[i]))/(Frep(10*u2[i]))) ~:
deno
Mdeno=10*mean (deno)

}
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###0ptimal h###
hplug=(Mnum/Mdeno) ~ (2/5)*n"~ (-2/5)
###GBS-RHR estimator###
tauxdef=function(X,x,y,h){
ESTTD=(ESTD(X,x,hplug) )/ (ESTF(X,x,y,hplug))

ESTTD}

Case of UCV method

n=50

X=rgbs(n, 2 , 3 , nu = 1.0, kernel = "normal")
###BS kernel###

noyau=function(u,x,h){

NBS=1/(2*sqrt (2xh*pi))*((1/sqrt (x*u))+sqrt(x/(u~3)))*exp((-1/(2*h)) * ((u/x)-2+(x/u)))}
###GBS density estimator###
ESTD=function(X,x,h){

ESTG=mean (noyau(X,x,h))}

###GBS kernel estimator of cdf###

y=runif (500,0,1)

E=0

ESTF=function(X,x,y,h){

for (j in 1:length(y)){

E[j1=ESTD(X,x*y[j],h)

E}

E2=x*mean (E)}

HHSHHASHH B R H RS HH AR H RS HH AR FHHAFHHUCV method for GBS-HR estimator ##############HHA#SHHBHHHHHSHHHL
####terme 1 #####

ter=0

x=runif (100,0,1)

termel=function(h){

for (j in 1:length(x)){

ter [j1=(ESTD(X,20%x[j],h) /ESTF(X,20*x[j],y,h)) "2
ter}

tt=20*mean (ter)

}

#H### termel###

MM1=0
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MM2=0

terme2=function(h){
Mi=matrix(0,nrow=n, ncol=n)
M2=matrix(0,nrow=n, ncol=n)

for (i in 1:n){

M1[i, ]=n*ESTD(X,X[i],h)

M2[i, ]=n*ESTF(X,X[i],y,h)
diag(M1)=0

diag(M2)=0
MM1[i]=(1/(n-1))*sum(M1[i,])
MM2[1]=((1/(n-1))*sum(M2[i,]1))"2 }
MM3=sum (MM1/MM2)

}

CV=function(h){

U=termel (h)-((2)/n)*terme2(h)

}

hcvopt=optimize(CV, c(0, 3), tol = 0.005, maximum = FALSE )
hucv=hcvopt$minimum

hucv

###GBS-RHR estimator###
tauxdef=function(X,x,y,h){
ESTTD=(ESTD(X,x,hucv))/(ESTF(X,x,y,hucv))

ESTTD}

4.6 Real data

Data S1
12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58,
58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 63, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87,
91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258

263, 297, 341, 341, 376.
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Data S2

0.010, 0.059, 0.089, 0.121, 0.142, 0.081, 0.127, 0.194, 0.071, 0.047, 0.071, 0.097, 0.166,

0.134, 0.553, 0.709, 0.183, 0.047, 0.111, 0.072, 0.074, 0.073, 0.070, 0.190, 0.128, 0.170, 0.185, 0.122,
0.194, 0.445, 0.169, 0.134, 0.081, 0.991, 0.300, 0.139, 0.098, 0.092, 0.040, 0.164, 0.030, 0.240, 0.070,
0.085, 0.150, 0.160, 0.110, 0.130, 0.170, 0.150, 0.092, 0.670, 0.029, 0.077, 0.073, 0.120, 0.071, 0.096,
0.092, 0.092, 0.110, 0.130, 0.064, 0.041, 0.070, 0.050, 0.050, 0.039, 0.047, 0.075, 0.110, 0.100, 0.170,
0.110, 0.130, 0.140, 0.059, 0.150, 0.099, 0.081, 0.096, 0.091, 0.150, 0.120, 0.160, 0.091, 0.130, 0.310,
0.041, 0.031, 0.042, 0.045, 0.048, 0.039, 0.050, 0.075, 0.110, 0.160, 0.690, 0.140, 0.140, 0.100, 0.062,

0.093.
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Data S3

109.00, 253.26, 529.40, 624.38, 878.37, 1000.00, 1005.42, 1018.42, 1325.00, 1350.00, 1500.00,

1570.82, 1727.03, 1750.00, 1800.00, 1800.00, 1838.00, 1994.00, 2000.00, 2000.00, 2000.00, 2000.00,
2000.00, 2118.15, 2242.32, 2265.15, 2269.09, 2382.61, 2397.92, 2444.78, 2484.25, 2500.00, 2500.00,
2500.00, 2510.12, 2521.00, 2551.25, 2598.10, 2652.85, 2672.25, 2780.55, 2915.07, 2920.00, 2932.40,
3000.00, 3000.00, 3000.00, 3000.00, 3000.00, 3000.00, 3000.00, 3001.00, 3015.00, 3100.00, 3148.00,
3211.00, 3250.00, 3251.70, 3323.00, 3382.64, 3455.00, 3480.30, 3480.30, 3493.50, 3500.00, 3500.00,
3500.00, 3503.00, 3515.80, 3556.32, 3579.36, 3581.50, 3591.00, 3658.50, 3666.00, 3666.00, 3718.50,
3750.00, 3750.00, 3800.00, 3878.00, 3892.00, 3897.00, 3900.00, 3976.00, 3994.88, 4000.00, 4000.00,
4000.00, 4000.00, 4000.00, 4000.00, 4000.00, 4000.00, 4020.00, 4020.18, 4075.85, 4146.00, 4151.85,
4248.30, 4250.00, 4250.00, 4257.45, 4269.00, 4285.00, 4300.24, 4346.00, 4358.00, 4380.77, 4410.06,
4472.85, 4476.00, 4476.00, 4500.00, 4500.00, 4500.00, 4500.00, 4530.00, 4550.00, 4581.10, 4590.00,
4650.00, 4672.10, 4676.35, 4691.16, 4691.50, 4699.00, 4700.00, 4717.00, 4729.45, 4746.00, 4751.41,
4774.50, 4908.00, 4920.01, 4923.36, 4938.00, 4989.50, 4991.75, 4999.05, 5000.00, 5000.00, 5000.00,
5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00, 5000.00,
5000.00, 5000.00, 5000.00, 5000.00, 5000.11, 5002.21, 5021.00, 5022.45, 5025.00, 5025.00, 5026.00,
5039.00, 5045.35, 5064.45, 5091.83, 5098.00, 5098.52, 5099.60, 5119.00, 5136.11, 5136.19, 5144.15,
5171.80, 5208.92, 5275.00, 5275.00, 5303.45, 5309.10, 5372.30, 5379.15, 5381.51, 5388.00, 5393.95,
5428.00, 5444.15, 5470.22, 5497.00, 5500.00, 5500.00, 5500.00, 5500.00, 5500.00, 5500.00, 5506.00,
5522.05, 5527.50, 5527.50, 5541.00, 5543.00, 5544.90, 5575.74, 5598.00, 5600.00, 5600.00, 5606.15,
5625.00, 5628.75, 5650.00, 5664.50, 5792.21, 5793.17, 5882.90, 5929.54, 5955.00, 5955.00, 5963.20,
5982.53, 6000.00, 6000.00, 6000.00, 6000.00, 6000.00, 6000.00, 6000.00, 6021.00, 6033.17, 6038.00,
6078.50, 6113.00, 6149.45, 6154.70, 6164.47, 6179.49, 6202.50, 6248.35, 6295.30, 6300.00, 6316.50,
6326.50, 6333.00, 6342.15, 6400.00, 6424.00, 6458.05, 6460.00, 6500.00, 6500.00, 6507.65, 6524.56,
6548.33, 6550.00, 6553.00, 6602.50, 6607.15, 6631.40, 6647.15, 6670.50, 6673.30, 6673.50, 6695.65,
6700.00, 6704.35, 6713.71, 6719.50, 6724.50, 6750.00, 6750.00, 6780.50, 6791.82, 6795.50, 6798.67,
6800.00, 6800.00, 6810.00, 6815.15, 6874.25, 6875.15, 6887.40, 6901.60, 6920.35, 6933.49, 6958.50,
6958.97, 7000.00, 7000.00, 7000.00, 7005.05, 7022.65, 7038.93, 7055.51, 7063.00, 7073.50, 7074.55,
7097.00, 7099.50, 7101.10, 7141.02, 7213.50, 7248.36, 7293.35, 7303.60, 7338.10, 7384.95, 7448.50,
7460.00, 7490.50, 7494.50, 7496.88, 7500.00, 7500.00, 7500.00, 7500.00, 7500.00, 7527.30, 7572.17,
7642.15, 7642.26, 7666.65, 7670.05, 7673.00, 7675.20, 7693.56, T704.79, 7762.35, 7765.00, 7781.36,
7791.32, 7802.55, 7827.01, 7850.95, 7890.39, 7915.30, 8000.00, 8000.00, 8001.67, 8043.15, 8070.30,
8104.00, 8117.84, 8135.00, 8168.90, 8171.12, 8172.50, 8212.83, 8225.66, 8229.40, 8296.95, 8301.51,
8331.20, 8375.10, 8437.35, 8500.00, 8500.00, 8500.00, 8500.00, 8564.00, 8637.40, 8639.80, 8706.32,
8742.00, 8782.55, 8828.56, 8831.05, 8855.00, 8908.40, 8999.75, 9000.00, 9009.05, 9061.50, 9084.00,
9138.90, 9152.10, 9163.74, 9227.21, 9248.35, 9314.08, 9319.67, 9326.95, 9354.90, 9423.05, 9437.85,
9456.65, 9467.75, 9481.94, 9520.14, 9646.50, 9664.62, 9665.85, 9742.50, 9805.10, 9839.50, 9900.00,
9950.00, 9990.00, 10000.00, 10000.00, 10000.00, 10000.00, 10000.00, 10061.21, 10081.15, 10152.40,

page 107



Real data

10156.65, 10186.92, 10213.00, 10213.55, 10315.40, 10329.00, 10342.86, 10344.90, 10356.32, 10395.38,
10457.00, 10687.42, 10746.16, 10854.90, 10979.39, 11000.00, 11000.00, 11056.34, 11133.30, 11245.32,
11250.00, 11363.00, 11377.15, 11500.00, 11500.00, 11512.49, 11850.50, 11860.92, 11874.50, 11878.95,
11949.74, 12000.00, 12000.00, 12000.00, 12000.00, 12140.00, 12310.25, 12358.00, 12417.00, 12555.35,
12783.42, 12804.25, 12853.15, 13000.00, 13000.00, 13184.65, 13321.14, 13386.93, 13500.00, 13592.41,
13688.55, 13715.24, 13946.00, 14000.00, 14000.00, 14138.89, 14336.51, 14546.60, 14709.60, 14725.81,
14736.74, 14909.15, 14950.00, 14958.35, 14979.07, 15000.00, 15000.00, 15000.00, 15060.15, 15066.15,
15104.00, 15128.32, 15163.10, 15174.50, 15268.64, 15460.00, 15466.15, 15591.00, 15654.21, 16000.00,
16038.25, 16149.55, 16164.15, 16368.50, 16999.90, 17000.00, 17215.00, 17708.09, 17734.58, 17901.50,
17904.38, 17977.10, 18286.00, 18358.00, 18707.16, 18849.90, 18872.70, 19000.00, 19500.00,19839.78,
19912.57, 20000.00, 20000.00, 20000.00, 20245.58, 21200.00, 21241.09, 21450.00, 21502.25, 22175.00,
22400.00, 22575.50, 22800.00, 23535.88, 24135.00, 24435.00, 24495.15, 25000.00, 26275.83, 29000.00,
29279.00, 30579.89, 30732.68, 31207.99, 32500.00, 32691.00, 33000.00, 33796.00, 34465.40, 37413.25,
37806.20, 43600.00, 47446.50, 67750.00, 76255.76, 116586.72.
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Abstract

The main objective of this thesis is to propose the nonparametric kernel method for the
hazard rate (HR) function estimation in the context of positively skewed data. The class of
generalized Birnbaum-Saunders (GBS) kernels is considered because of its several interesting
properties and flexibility. Some asymptotic properties, such as bias, variance and mean
integrated squared error (MISE) are established for the proposed estimator. In addition, we
demonstrate that, the GBS-HR estimator is strongly consistent and asymptotically normal.
The choice of bandwidth is also investigated by rule of thumb and unbiased cross validation
approaches. Finally, performances of the HR estimator based on GBS kernels and comparison
of the two bandwidth selection methods are illustrated by a simulation study and real
applications.

Résumeé

L'objectif principal de cette thése est de proposer la méthode non paramétrique de noyaux
pour I'estimation de la fonction de hazard (HR) dans le contexte de données positives et
asymeétriques. La classe des noyaux de Birnbaum-Saunders généralisés (GBS) est considérée
en raison de ses nombreuses propriétés intéressantes et de sa flexibilité. Certaines propriétés
asymptotiques, telles que le biais, la variance et I'erreur quadratique moyenne intégrée (MISE)
de I’estimateur proposé sont établies. En outre, nous démontrons la consistance forte et la
normalité asymptotique de I'estimateur GBS-HR .Le choix du parametre de lissage est
également étudié par la méthode de réinjection et de validation croisée non biaisée. Enfin, la
performance de I'estimateur HR basé sur les noyaux GBS et la comparaison des deux
méthodes de sélection de paramétre de lissage sont illustrées par une étude de simulation et
des applications sur des données réelles.

il
L) Bl (A (HR) Dball Jane daa 5 50l dpale ) 81 5il) 48 yla ) 81 5 A 5 kY] 038 (o (st gl
8 _fiall B2l g 5 ya 5 Lguaibiadd 1 505 (GBS) dannall ) )2 guse gy 81 55438 () Hhayy | olag) JS5 48 sl
23l (MISE) JalSiall gass 5ill Undll dass sia g abill 5 pail) Jia e jliall ailadll (iany L&) o3 alaia S
LA (e i) Uil oy ol JS anla 5 8080 (huiie GBS-HR e o g i ol ) AdLaYl - yikall
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