

Remerciement

Au préambule je souhaite remercier Allah pour sa protection et pour l'espérance qu'il ma permis d'avoir tous au long de l'année, en espèrant qu'il serra toujours présent, préservera et protégera les personnes que j'aime.

Je souhaite aussi adresser mes sincères remrciements à mon encadreur monsieur le professeur Achouche Mouhamed pour son aide, son soutien précieu, ainsi que le temps qu'il a bien voulut me consacrer.

Je remercie également ma très chère famille : mon père Hocine ; ma mère Khadrat; mes deux frères Dady et Yanis et ma sœur Lilia, pour leurs soutien, et pour la mise à ma disposition des moyens nécessaires à la réalisation de ce travail de recherche.

Je remercie mon chèr Hakim, ainsi que Lyes et Fahim pour leur présence tous au long de l'année.

Je remercie tous mes proches et J'exprime ma gratitude à toutes les personnes ayant contribuer, de loin ou de prés, à la réalisation de ce travail de recherche.

Dédicaces

Je dédie ce travail à mon père Hocine et ma mère Khadra qui m'ont élevé et qui m'ont tous donné.

A mon frère Yanis que j'aime.

A mon frère Dady et sa future femme Imane.

A ma Sœur Lilia ainsi qu'à son mari Smail.

A toutes ma famille particulièrement mon oncle Djamel.

A tous mes amis(es) avec une big dédicace à Lyes et Fahim.

A mon chéri Hakim que J'aime.

A toutes les personnes que j'aime.

A toutes les personnes qui m'aime.

Liste des abréviations	0
Introduction générale	1
Chapitre 01 : La théorie du mal hollandais et l'économie algéries	nne5
Introduction Section 01 : Les fondements théoriques du mal hollandais	
1.1 Origine, définition et causes du mal hollandais	
1.2 Les modèles théoriques du mal hollandais	6
1.3 Les convergences des modèles de mal hollandais avec les commerce international	_
Section 02 : Caractéristiques de l'économie algérienne	20
2.1 Le secteur des hydrocarbures en Algérie	20
2.2 Evolution des politiques conjoncturelle en Algérie	
2.3 Quelques statistiques du secteur réel	
Conclusion	33
Chapitre 02 : Mise en évidence empirique de la manifestation d'u	ın mal hollandais35
Introduction	35
Section 01: Présentation des variables clés et études de leurs caractér	ristiques stochastiques.35
1.1 Définition et représentation graphique des variables de choi	x35
1.2 Test statistique	42
1.3 Test de stationnarité	49
Section 02 : Modélisations des variables	57
2.1 Approche par la régression multiple	57
2.2 Le modèle VAR	60
2.3 Instruments d'analyse associés au modèle VAR	65
Conclusion	74
Conclusion générale	
Table des matières	
Bibliographie	
Table des illustrations	
Annoyog	9.1

Liste des abréviations.

AB: Absorption.

AIC: Akaike.

AID: Aide étrangère.

B: Secteur en Boom.

BC: Balance Commerciale.

BCHH: Balance commerciale hors hydrocarbures.

BCO : Balance Courante. **BK :** Balance des Capitaux.

C: Constante.

DE: Devise Etrangère.

DF: Dickey-Fuller.

DSSD: Différence Stationnaire Sans Dérive.

DW: Durbin Watson.**DX:** Dette Extérieur.**FP:** Fiscalité Pétrolière.

FPP: Frontière de possibilité de production.

IAG: Indice des prix à la production industriel du secteur Agricole.

IDE: Investissement Direct Etranger.

IEN: Indice des prix à la production du secteur de l'Energie.

IHH: Indice des prix à la production Hors Hydrocarbures.

IM: Indice des prix à la production Manufacturier.

IND: Indice. **INF:** Inflation.

IPM: Indice des Prix à l'importation.

IPX: Indice des Prix à l'exportation.

L: Sector in Leg (secteur en retard).

M: Importation.

M2: Masse monétaire au sens de l'agrégat M2.

MCO: Moindres Carrés Ordinaires.

MN: Monnaie Nationale.

N: Secteur des Non échangeables.

OPEP : Organisation des Pays Exportateurs de Pétrole.

PC: Prix des biens dans le secteur des Non échangeables.

PC: Prix des biens non Commercialisés (ou non échangeables).

PIB: Produit Intérieur Brut.

PL: Prix des biens du Leggin sector (secteur en retard).

PP: Phillips et Perron.

PPB: Prix du Pétrole Brute.

Proba: Probabilité.

R² : Coefficient de détermination.

REES: Réescompte.

S: Saving (l'épargne brute).

SC: Schwarz.

SS: Salter et Swan (le modèle).

Liste des abréviations.

Stat-Tabulé : Statistique Tabulé. **Stat-Calculé :** Statistique Calculé.

TCNI: Taux de change nominal coté à l'incertain.

TCR: Taux de Change Réel.

TCR_c: Taux de Change réel coté au certain.
TCR_i: Taux de Change réel coté à l'incertain.
TCRI: Taux de Change Réel Coté à l'Incertain.

TE: Terme de l'Echange.

TEM : Terme de l'Echange Marchand.

TIN: Taux d'Intérêt Nominale.

TIR : Taux d'Intérêt Réel. **TS :** Tendance Stationnaire.

VA: Valeur Ajoutée.

VAG: Valeur Ajoutée en pourcentage du PIB du secteur Agricole. **VAI**: Valeur Ajoutée en pourcentage du PIB du secteur Industriel.

VAM: Valeur Ajoutée en pourcentage du PIB du secteur Manufacturier.

VAR: Vecteur Autorégressif.

VARI: Variation. **X**: Exportation.

XH: Exportation d'Hydrocarbure.

Introduction générale

Le pétrole représente une matière première rare, difficilement substituable ; un produit stratégique par excellence à l'échelle mondiale dont la demande est inélastique à la variation des prix sur le marché. Un pays détenteur de cette ressource naturelle ne peut que générer une rente considérable grâce à son exploitation.

Le premier forage effectué en Pennsylvanie en 1859 marque le début de l'industrie pétrolière. La première exploitation pétrolière de l'histoire revient à Edwin Drake et George. Cependant John Rockefeller demeure le précurseur de l'industrie pétrolière. Il créa en 1870 la Standard Oil, cette compagnie domina le marché pendant près de quarante ans. A la suite de son démantèlement en 1911, sept compagnies appelées les sept sœurs ont été créées .Elles se partagent le marché pétrolier et contracte un accord secret dans le but de fixer les prix du brut indépendamment des mécanismes de marché. La création de ces compagnies fut dans le but de libéraliser le marché. Cependant, les majors empêchent cette libéralisation via leur accord secret. Le dynamisme de la demande mondiale en produit pétrolier qui accompagne le développement industriel pousse les majors à développer des prospections sur d'autres continents.

Effectivement, le pétrole fut découvert et extrais sur d'autres continents. Cependant ces Etats détenaient la ressource mais pas les capacités d'extraction, d'où l'appel aux compagnies privées étrangères pour l'extraction de cette matière première. Devant une telle situation les pays producteurs ont été lésés par les compagnies privés. Elles cherchent alors à obtenir un partage plus équitable de la rente énergétique. A cette époque, le choix du maintien des prix du pétrole brut artificiellement bas est fait, ce qui permet de stimuler la demande mondiale et d'empêcher le développement de sources énergétiques alternatives. La demande tend alors à s'accroitre plus vite que l'offre. Avec la création en 1960 de l'organisation des pays exportateurs de pétrole OPEP, les Etats producteurs reprennent progressivement le contrôle de leurs sous-sols et de leurs ressources pétrolières. La nationalisation de l'industrie pétrolière est faite dès 1970.

Le marché pétrolier reste un marché imparfait, l'équilibre y est fragile vue l'extrême sensibilité des prix du pétrole brut à la moindre variation exogène de l'offre ou de la demande sur le marché. Les prix du pétrole brut atteignent des sommets à partir de 1970, conduisant à un choc pétrolier en 1973 et 1979.

Le poids de l'énergie prend une place considérable dans l'économie des pays industrialisés. Leur sensibilité aux variations des prix est devenue flagrante durant ces deux chocs pétroliers .Paradoxalement ces booms de prix n'ont pas profité aux pays producteurs de cette ressource naturelle ; essentiellement ceux dont les exportations pétrolières représentent la principale source de revenu.

Les performances économiques de ces pays considérés comme exportateurs nets de pétrole révèlent un phénomène contre intuitif où la bénédiction des ressources naturelles se transforme la plupart du temps en malédiction. En effet, on constate la plupart du temps que les recettes pétrolières externes ont un impact négatif sur la croissance économique des pays exportateurs nets de pétrole .Ces derniers assistent à un phénomène de désindustrialisation. La croissance mesuré en terme du PIB est en expansion ; cependant la mesure de la croissance en

terme de PIB hors hydrocarbure est en déclin .L'expansion du secteur de la ressource naturelle engendre des effets adverses sur les autres secteurs exportateurs du pays. L'exportation pétrolière apparait alors bien plus préjudiciable à la croissance économique que la pénurie des ressources ; c'est le paradoxe de l'abondance ou bien la malédiction des ressources naturelles.

La malédiction des ressources naturelles est expliquée entre autres dans la littérature économique par la théorie du mal hollandais. Cette théorie s'inspire des caractéristiques de l'économie hollandaise suite à la découverte et l'exploitation des réserves de gaz naturelle du gisement de Groningue.

La manifestation du mal hollandais n'a pas pour unique cause un boom dans un secteur pétrolier mais un boom dans un secteur de ressources naturelles en générale; un afflux massif d'investissement direct étranger; un afflux massif d'aide étrangère ou un progrès technique permettant une réduction substantielle de coût. Cependant, en ce qui se rapporte au cas algérien, la restriction au secteur des hydrocarbures apparait comme du plus logique.

L'économie algérienne demeure très fortement dépendante de la rente énergétique qui représente sa principale source de revenu. Selon les données les plus récentes les hydrocarbures représentent 98% des exportations. Les recettes générées par ce secteur reviennent à l'Etat via la fiscalité pétrolière qui est à hauteur de 82%. La rente énergétique influence donc en grande partie les décisions du gouvernement en matière de politique économique. La question qui se pose en ce qui concerne l'économie algérienne est la suivante :

- Est-ce que la théorie du mal hollandais est applicable pour le cas de l'Algérie ?
- En d'autres termes, est-ce-que un boom dans le secteur des hydrocarbures engendre des effets adverses sur les autres secteurs exportateurs de l'économie algérienne ?

Des réponses provisoires peuvent être formulées sous forme d'hypothèses, soitent :

- Un boom pétrolier engendre des effets adverses sur l'industrie manufacturière ; le mal hollandais se manifeste par la désindustrialisation.
- Un boom pétrolier engendre des effets adverses sur le secteur agricole ; le mal hollandais se manifeste par la désagriculturisation.
- Un boom pétrolier engendre une croissance appauvrissante car la structure de l'économie algérienne est telle qu'il est impossible d'assoir une politique de diversification de la production et des exportations.
- Une défaillance dans les politiques économiques mises en œuvre ne permet pas une bonne gestion de la rente énergétique conduisant à l'apparition d'un mal hollandais.
- La théorie du mal hollandais ne s'applique pas au cas de l'Algérie.

La démarche méthodologique dans le but d'apporter une réponse à la problématique étudiée consiste à partager le travail de recherche en deux chapitres :

Le premier chapitre sera composé de deux sections : la première section représente une approche théorique du phénomène de mal hollandais, un paradoxe de l'abondance qui durant les deux chocs pétrolier de 1973 et 1979 a surpris la synthèse néoclassique qui prévalait alors à l'élaboration de modèles économiques. Cette section aura alors naturellement pour objectif d'éclaircir le concept de mal hollandais ainsi que les causes qui conduisent à sa manifestation ; de présenter les différents modèles théoriques explicatifs de ce mal en passant par les théories néoclassiques présentant des convergences avec cette théorie. La deuxième section représente un survol de l'économie algérienne visant à déceler des défaillances dans la gestion de l'économie du pays et des signes apportant une première réponse à la question de départ.

Le deuxième chapitre représente une application permettant d'évaluer empiriquement la manifestation du mal hollandais. Il sera composé également de deux sections : la première représente une étude uni-variée des variables afin d'identifier leurs caractéristiques stochastiques et choisir la modélisation adéquate. La seconde section fera office de modélisation des variables pour étudier les interactions entre elles et permettra l'apport d'une réponse définitive à la question de départ.

Chapitre01

La théorie du mal hollandais et l'économie algérienne.

Le mal hollandais est un concept utilisé dans la littérature économique, pour faire référence à la situation paradoxale ou un afflux massif de devise étrangère dans un pays permise par une appréciation réelle de la monnaie nationale quel qu'en soit la cause ; ne lui permet pas d'entrer dans une phase de croissance et de développement de son économie. La question qui se pose est quels sont les mécanismes et canaux de transmission qui conduisent à l'apparition de ce mal hollandais? Et est-ce que cette théorie est envisageable pour le cas de l'Algérie?

Section 01 : Les fondements théoriques du mal hollandais

La littérature économique offre un ensemble d'éléments d'analyse qui permettent d'expliquer l'enchaînement qui conduit à l'apparition d'un mal hollandais et de synthétiser les différents canaux de transmission de ce mal.

Cette section aura donc pour objet de mieux définir le concept de mal hollandais ; de revoir les principaux modèles théorique qui permettent de l'expliquer ainsi que les convergences de ces derniers avec certaines théories néoclassiques du commerce international.

1.1. Origine, définition et causes du mal hollandais

Le mal hollandais (ou syndrome hollandais, ou malaise hollandais) est la traduction française du terme dutch disease. Le terme dutch disease est apparut durant les années 1970 avec les difficultés que rencontrait l'économie néerlandaise suite à l'exploitation des réserves de gaz naturel du Gisement de Groningue. L'expansion du secteur gazier a engendré des effets adverses sur l'industrie manufacturière. Cette expression a été utilisée pour la première fois par David Ricardo, elle est réapparut quelque année plus tard dans la revue anglaise "The économiste" en 1977 au moment où le spectre du syndrome menaçais sérieusement la grande Bretagne suite aux découvertes pétrolières 1.

Le phénomène de maladie hollandaise fait donc référence à une situation plutôt paradoxale par laquelle l'expansion brutale et imprévue d'un secteur exposé à la concurrence internationale entraîne le déclin des autres secteurs exposés de l'économie.

Par exemple dans le cas d'une ressource naturelle, le boom d'un secteur d'exportation engendre des effets adverses sur l'industrie manufacturière ou sur l'exploitation agricole du pays. Ces derniers sont généralement des secteurs anciennement exportateurs. Cependant le boom engendre leur déclin et le pays se voit contraint d'importer ses produits des pays étranger à meilleur prix.

La maladie hollandaise se manifeste lors d'une rentrée massive de devise étrangère, les éléments susceptibles de provoquer cette entrée massive de devises étrangères sont:

_

¹ Aoun, M. (2008) La rente pétrolière et le développement économique des pays exportateurs. Thèse de doctorat, Université Paris dauphine, p70.

- L'expansion d'un secteur de ressource naturelle ; un choc de prix de ces ressources naturelles ou la découverte et l'exploitation de cette ressource naturelle engendrent un excédent de la balance commerciale.
- L'entrée d'aide étrangère dans un pays en développement .Edwards et Wijnbergen (1989) souligne qu'il existe certaines similitudes entre l'accroissement du revenu provenant de l'exploitation de ressources naturelles et les flux d'aide internationale. Chacun amène une augmentation temporaire de devise étrangère disponible tout en utilisant une quantité limitée de facteur de production².
- ➤ Un afflux massif d'investissement direct étranger (IDE) dans une économie.

Les trois éléments engendrent une appréciation de la monnaie nationale. Cependant la manifestation de ce mal hollandais dépend du fait que ces capitaux soient utilisés pour financer les dépenses courantes ou l'accumulation du capital dans le secteur des biens échangeables ou non échangeables.

1.2. Les modèles théoriques du mal hollandais

Dans le but de mettre en lumière les mécanismes qui conduisent à l'apparition d'un mal hollandais, des théoriciens se sont penchés sur le sujet en développant des modèles qui, sous des hypothèses spécifiques et plutôt restrictives, permettent de synthétiser les différents canaux de transmissions de ce mal ainsi que l'enchaînement des effets qui conduit à son apparition. Les principaux modèles théoriques explicatifs du dutch disease sont au nombre de quatre: le modèle de Salter et Swan (1950), le modèle de Gregory (1976), le modèle de Corden et Neary (1982) et le modèle de Corden (1984).

1.2.1. Le modèle de Salter et Swan (1950)

Wilfred Edward Graham Salter et Trevor Swan ont élaboré dans les années 1950 un modèle (SS). Ce modèle constitue le soubassement des modèles de Corden et Neary qu'ils ont approfondi et développé. C'est un modèle qui repose sur un certain nombre d'hypothèses.

- ➤ Ils considèrent un pays qui produit trois types de biens : un bien exportable (x), un bien importable (m) et un bien non négociable (N). Le premier est entièrement destiné à l'exportation et les deux derniers à la consommation finale.
- Les prix des biens (x) et (m) sont respectivement P_x et P_m, ils sont déterminés sur le marché international et convertis en monnaie nationale³ selon un taux de change nominal fixe.
- Le prix des biens (N) est représenté par PN et il se détermine selon la loi de l'offre et de la demande sur le marché local.

³ L'utilisation de la cotation du taux de change à l'incertain permet d'exprimer les prix étrangers en monnaie

national.

² Adam, M. (2003) La maladie hollandaise: étude empirique appliquée à des pays en développement exportateurs de pétrole. Université de Montréal, p13.

- ➤ Ils considèrent les termes de l'échange⁴ comme étant constants et on note $P_t = P_x/P_m$, ce qui permet de considéré les biens (x) et (m) comme étant un seul bien (t) négociable dont le prix est P_t .
- Le marché des facteurs de production (capital et travail) est parfaitement concurrentiel et le pays est en plein emploi de ces facteurs de production.
- ➤ La mobilité des facteurs apparaît à court terme pour le travail et à long terme pour le capital.

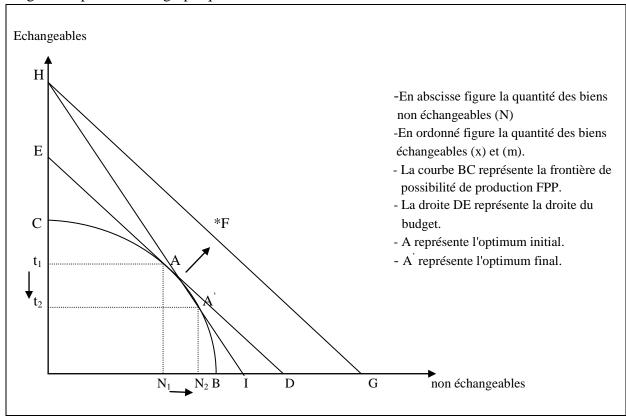


Fig.01: Représentation graphique du modèle de Salter et Swan

Source: Nacoumdé, N. (2007) Boom pétrolier et risque d'un syndrome hollandais au Tchad: une approche par la modélisation en équilibre générale calculable. Thèse de doctorat, Université d'Auvergne Clermont-Ferrand 1, p68.

Le boom d'un secteur d'exportation donne lieu à un excédent commercial qui peut être assimilé à une augmentation du revenu globale (le budget total du pays). Cette augmentation représente un choc exogène qui se traduit graphiquement par le déplacement de la droite DE⁵ vers la droite donnant GH.

L'expansion monétaire utilisée à des fins de consommation conduit à une augmentation de la demande. Si cette augmentation se traduit par une demande excessive dans le secteur des

_

⁴ TEM= (indice des prix des produits exportés/indice des prix des produits importés)*100. Si TEM>100, détérioration des TE. Si TEM<100, amélioration des TE.

⁵ DE=Pt*t+PN*N.

non échangeables et que les biens de ce secteur ne sont pas des biens inférieurs, on aura une augmentation des prix des non échangeables qui provoque une rotation de la droite GH autour de H vers la gauche donnant la droite IH et un nouvel optimum A. Par conséquent la production des biens non échangeables s'accroît passant de N_1 à N_2 , et celle du secteur des échangeables décroit passant de t_1 à t_2 .

Le maintien du taux de change nominal constant conduit à un fléchissement des secteurs d'exportation et une inflation dans le secteur des biens non échangeables reflétant les symptômes du mal hollandais (benjamin N.1987).

1.2.2. Le modèle de Gregory (1976)

R.G.Gregory a élaboré en 1976 un modèle pour expliquer les effets des prix domestiques sur l'offre à l'exportation X et la demande l'importation M. C'est un modèle qui repose sur les hypothèses suivantes :

- ➤ Il situe son analyse dans un cadre macroéconomique en considérant une petite économie ouverte ; il considère donc un petit pays dont les prix n'ont pas d'impact sur les prix mondiaux.
- Les prix représentent non pas le niveau général des prix mais un prix relatifs P_i rapport entre le prix des biens commercialisés⁶ PC fixé sur le marché international et le prix des biens non commercialisés⁷ PN fixé sur le marché local par le jeu de l'offre et de la demande. Ce prix relatif rentre dans la détermination du taux de change réel coté à l'incertain selon la théorie du commerce international (TCR_i).

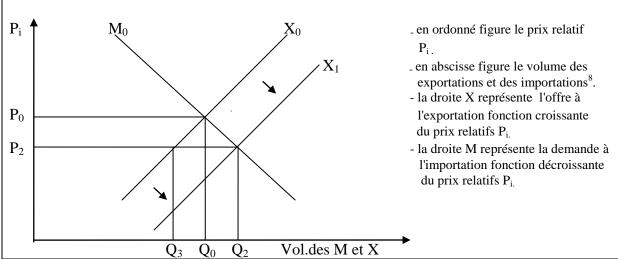


Fig.02: Représentation graphique du modèle de Gregory.

Source: Aoun, M. (2008) La rente pétrolière et le développement économique des pays exportateurs. Thèse de doctorat, Université Paris dauphine, p91.

⁷ Des biens non échangeables ou non exportés destinés à la consommation locale.

⁶ Des biens échangeables ou exportés.

⁸ Gregory pose au préalable deux hypothèses qui permettent de porter les importations et les exportations sur le même axe: les termes de l'échange sont constants et les unités de X et M sont choisies de telle sorte que les termes de l'échange soient égaux à l'unité.

Le modèle de Gregory met en évidence directement la relation entre la fonction d'offre à l'exportation, la fonction de demande à l'importation et le rapport des prix $P_{i,}$ et indirectement la relation entre l'offre à l'exportation, la demande à l'importation et le taux de change réel coté à l'incertain.

Les exportations anciennes du pays sont représentées par la droite (X_0) , cette droite représente donc des exportations hors secteur en boom.

Les importations anciennes du pays sont représentées par la droite (M_0) , est celle-ci reste stable dans un premier temps.

Le point de concours de la droite X_0 et M_0 représente l'équilibre initial de la balance commerciale (hors secteur en boom).

Si on suppose qu'une ressource naturelle est découverte donc un nouveau secteur d'activité apparaît (c'est le secteur en boom). Cette découverte provoque un accroissement important des exportations de ce secteur.

L'apparition du secteur en boom représente un choc exogène sur les exportations et ce choc donne lieu à l'augmentation du volume des biens exportés provoquant le déplacement de X_0 vers la droite. Ce déplacement est représenté graphiquement par la droite X_1 . L'équilibre initial de la balance commerciale s'en trouve alors modifié et passe du point P_0Q_0 au point P_2Q_2 . La distance X_1 - X_0 représente les exportations en ressources naturelles.

Cette augmentation du volume des exportations entraı̂ne une baisse du prix relatif P_0 vers P_1 . Ce qui correspond à une dépréciation du TCR_i qui équivaut à une appréciation de la MN sur le marché de change.

Cette appréciation de la monnaie nationale engendre une baisse du volume des exportations hors secteur en boom. Ce volume passe de Q_0 à Q_3 et une augmentation du volume des importations en particulier celles des produits substituent aux produits fabriqués localement.

Les effets de l'appréciation du taux de change réel sur les différents secteurs :

- L'appréciation de la MN encourage l'offre à l'exportation du secteur en boom et ne décourage pas la demande à l'importation de ce secteur. Les ressources naturelles représentent des matières premières stratégiques et non substituables. La dépréciation du TCR_i ne décourage pas forcément la demande à l'importation étrangère et permet à ce secteur de générer des recettes considérables grâce à une augmentation de l'offre à l'exportation nationale ; l'inélasticité-prix de la demande des ressources naturelles et une dépréciation continue de TCR_i.
- L'appréciation de la MN décourage l'offre à l'exportation du secteur des biens commercialisés hors secteur en boom car cette appréciation rend les prix internationaux plus attractifs que les prix nationaux:
 - ✓ Ce qui décourage la demande étrangère des biens commercialisés hors secteur en boom ;
 - ✓ Et décourage la demande interne des biens commercialisés hors secteur en boom; les consommateurs se détournent de la consommation des produits locaux vers l'importation de produits de substitution.
- L'appréciation du taux de change n'a pas d'impact direct sur le secteur des biens non commercialisés.

Ainsi le boom de la ressource naturelle réduit la taille du secteur d'exportation hors ressources naturelles. Toutefois, le déclin de ce secteur ne peut être que relatif et non absolu si l'économie de ce pays est en pleine croissance.

On en conclue que selon le modèle de Gregory le taux de change réel représente le canal de transmission du mal hollandais.

1.2.3. Le modèle de Corden et Neary (1982)

Le modèle de Gregory fut prolongé par W.Max Corden et J.Peter Neary en 1982. Dans le cadre de l'élaboration de ce modèle explicatif de la manifestation d'un mal hollandais, les deux théoriciens adoptent les hypothèses suivantes :

- L'analyse se situe dans le cadre macroéconomique d'une petite économie ouverte et dont l'horizon est le moyen terme. Cette économie produit deux types de bien: des biens échangeables et des biens non échangeables.
- Les biens échangeables sont des biens commercialisés à l'échelle internationale, leurs prix est exogène et il est déterminé sur le marché international. Les biens de ce secteur sont des biens du secteur miniers (X_C) et des biens du secteur manufacturier (X_M) .
- Les biens non échangeables sont des biens commercialisés localement, leurs prix est flexible et déterminé sur le marché national par le jeu de l'offre et de la demande. Les biens de ce secteur sont des services.
- La production dans chaque secteur nécessite l'utilisation d'un facteur mobile (le travail qui se déplace entre les trois secteurs égalisant les salaires entre les trois emplois alternatifs) et un facteur spécifique à chaque secteur (le capital et il est nécessaire de préciser que ce facteur est aussi internationalement immobile).
- Le stock des facteurs de production est fixe mais leurs prix sont flexibles.
- ➤ Ce modèle considère que cette économie est en plein emploi de ses facteurs de production. Ce qui permet de faire abstraction de la sphère monétaire. Seule est pris en compte le prix relatif P_i rapport entre le prix des biens échangeables PC et le prix des biens non échangeables PN. Ce prix relatif entre dans la détermination du taux de change réel coté à l'incertain. Ce qui permet d'introduire les effets de la variation du TCR_i sur le marché de change sur les trois secteurs d'activité.
- > Ce modèle suppose que tous les biens sont destinés à la consommation finale.

C'est dans ce contexte que Corden et Neary (1982) se proposent d'étudier l'impact d'un boom dans le secteur minier sur le secteur des biens échangeables non miniers. Selon ces théoriciens un boom dans le secteur minier affecte le reste de l'économie par deux effets : un effet de réallocation des ressources et un effet de dépense.

- L'effet de réallocation des ressources (*ressource mouvement effect*) qui fait référence au déplacement du facteur mobile en l'occurrence le travail vers le secteur en boom et le secteur des biens non échangeables et provoquant la contraction du secteur des biens échangeables hors secteur en boom⁹.
- L'effet dépense (*spending effect*) qui a trait à l'utilisation des revenus. Il analyse l'impact macroéconomique de l'augmentation du revenu engendré par tout choc

⁹ Hamadache, H. (2009) Rente pétrolière et évolution du secteur agricole en Algérie: syndrome hollandais et échangeabilité. Mémoire de master of science, Institut agronomique méditerranéen de Montpellier, p15.

externe. Cet accroissement du revenu provoque une augmentation de la demande des biens non échangeables ¹⁰.

L'effet dépense se manifeste si les biens du secteur des non échangeables ne sont pas des biens inférieurs, autrement dit que l'élasticité revenu de la demande de ces biens est positif¹¹.

Tout d'abord l'économie aura affaire à un effet ressources si le secteur en expansion n'est pas une enclave ; l'apparition d'un secteur en boom (le secteur minier) suite à une importante découverte de ressources naturelles provoque une augmentation de la demande de travail de ce secteur poussant les salaires à la hausse. Cette hausse des salaires nominaux provoque un déplacement du facteur mobile des deux autres secteurs vers le secteur en expansion.

Le boom de ce secteur d'exportation vient augmenter le solde de la balance commerciale qui devient excédentaire. L'excédent de la balance commerciale peut être assimilé à un accroissement du revenu global ¹². Si tout le revenu est dépensé et si les biens non échangeables ne sont pas des biens inférieurs, cet accroissement du revenu global se traduira par une hausse de la demande de ces biens. A un moment donné la demande excédera l'offre, il y'aura une hausse PN et ce indépendamment de toute réallocation des ressources.

Cette augmentation des prix augmente le profit du secteur des biens non échangeables ce qui permet à ce secteur d'accroître sa demande de travail provoquant le déglacement du facteur mobile du secteur des biens échangeables hors secteur en expansion vers le secteur des non échangeables.

Aussi la hausse de PN fait que le prix relatif P_i baisse ce qui conduit à une dépréciation du TCR_i qui équivaut à une appréciation de la MN. Cette appréciation de la MN renchérit le prix des biens locaux par rapport aux biens étrangers et encourage l'importation (décourage la demande interne) de biens particulièrement des substituts aux produits fabriqués localement en l'occurrence les biens du secteur des échangeables hors secteur en boom et décourage l'exportation de ces biens (découragement de la demande externe).

En résumé le boom d'un secteur d'exportation produit trois effets, un effet compétitivitéprix suite à l'appréciation de la MN. Cette appréciation de la monnaie national constitue le point de départ qui conduit à l'apparition d'un effet ressource et d'un un effet dépense. La

¹⁰ Hamadache, H. (2009)., op cit,p15.

In notant $(e_{R/D})$ l'élasticité revenue de la demande celle-ci est égale à $e_{R/D} = \frac{\Delta D}{\Delta R} \times \frac{R}{D} = \frac{\partial D}{\partial R} \times \frac{R}{D}$: Si e< 0 : ce sont des biens inférieurs, toute augmentation du revenu se traduit par une baisse de la demande due à la substitution des biens inférieurs par des biens supérieurs. Si e=0 : ce sont des biens de base que l'on doit consommer ce qui fait leur demande est inélastique à la variation du revenu. Si 0< $e \le 1$:ce sont des biens normaux et nécessaires, l'augmentation du revenu se traduit par l'augmentation de la demande qui ne peut être plus que proportionnelle. Si e>1 : ce sont des biens de luxe donc toute augmentation du revenu se traduit par une augmentation de la demande qui est plus que proportionnelle.

¹² Le revenu globale (Y) en économie ouverte est égale à : $Y=C+I+G_0+(X-M)=C+I+G_0+BC$, avec (C: la consommation, I:l'investissement, G_0 : les dépenses publiques, X : les exportations et M : les importations).

combinaison des trois phénomènes provoque une expansion du secteur des biens non échangeables et un déclin du secteur des biens échangeables hors secteur en boom. Quant à la balance commerciale hors mine elle se dégrade.

1.2.4. Le modèle de Corden (1984)

Dans un article publié en 1984, Corden approfondi le modèle de 1982. Ce modèle comprend les secteurs suivants :

- Le secteur en boom (*booming sector*) le secteur pétrolier ou toute autre industrie primaire d'exportation dans une phase de prix croissants; d'exploitation d'une découverte majeure de ressources ou encore un progrès technique dont l'effet est une réduction substantielle des coûts.
- Le secteur en retard (*lagging sector*) qui représente les autres biens échangeables qui couvrent les autres exportations et les substituts à l'importation tant dans le secteur manufacturier que dans le secteur agricole.
- Le secteur des biens non échangeables qui comprend les services.

Notant que le secteur en boom est représenté par (B) le secteur en retard par (L) et le secteur des non échangeables par (N), et les revenus agrégés de chaque secteur sont respectivement R_b , R_1 , R_n .

L'apparition du secteur en boom provoque toujours deux effets : un effet ressource et un effet dépense. Mais la combinaison des deux effets comprend deux conséquences : une désindustrialisation directe et une désindustrialisation indirecte.

La représentation graphique du modèle de Corden prend en considération uniquement l'impact de ces phénomènes sur le marché des biens non échangeables puisque leur prix est déterminé localement par le jeu de l'offre et de la demande. Il est plus facile de représenter des courbes d'offre et de demande interne. Cependant la simple analyse du secteur des non échangeables permet de comprendre l'enchainement qui conduit à l'apparition d'un mal hollandais. A la différence du modèle de 1982, le prix relatif P_n représente le rapport entre le prix des biens non échangeables PC et le prix des biens échangeables hors secteur en boom PL. Ce qui correspond à une cotation au certain. L'appréciation de P_n donne lieu à une appréciation de TCR_c qui équivaut à l'appréciation de la MN. L'inversement du rapport des prix n'est pas du au hasard mais permet d'exprimer plus clairement les fonctions d'offre des biens N (qui est une fonction croissante de PN) et de demande des biens N (qui est une fonction décroissante de PN) en fonction de ce prix relatif P_n .

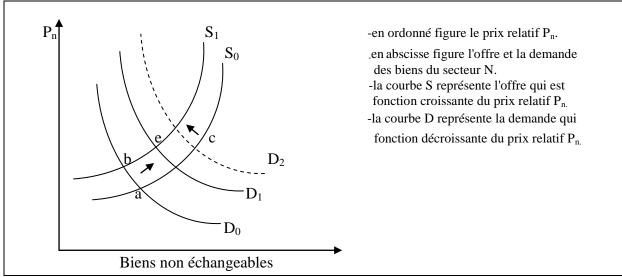


Fig.03: Présentation graphique du modèle de Corden (1984)

Source: Aoun, M. (2008) La rente pétrolière et le développement économique des pays exportateurs. Thèse de doctorat, Université Paris dauphine, p91.

Tout commence par un boom dans le secteur B. L'expansion de ce secteur à taux de change réel constant entraîne un effet de mouvement de ressources qui comporte deux conséquences :

- ➤ Un déplacement du facteur mobile du secteur en retard vers le secteur en expansion (de L vers B), c'est ce qu'on appelle une désindustrialisation directe et elle représente un mouvement de main d'œuvre dans le secteur des échangeables.
- ➤ Un déplacement du facteur mobile du secteur des non échangeables vers le secteur en expansion (de N vers B, c'est ce qu'on appelle une désindustrialisation indirecte et elle représente un déplacement de la main d'œuvre entre le secteur des non échangeables et le secteur des échangeables.

Ce premier effet ressource réduit le facteur travail des secteurs L et N. La réduction du facteur travail dans le secteur N entraine une baisse de la production de ce secteur et donc de son offre. Ce qui se traduit graphiquement par un déplacement de la courbe de l'offre vers la gauche (de S_0 vers S_1) entrainant une hausse du prix relatif P_n qui équivaut à une appréciation de la MN.

D'autre part le boom du secteur d'exportation B donne lieu à un excédent commercial qui peut être assimilé à un accroissement du revenu globale. Si tout le revenu est dépensé et que l'élasticité-revenu de la demande des biens du secteur N est positif, l'accroissement du revenu global se traduira par une hausse de la demande de ces biens qui se traduit graphiquement par un déplacement de la courbe de demande vers la droite (de D_0 vers D_1) et entraine une hausse supplémentaire de P_n qui équivaut à une appréciation supplémentaire de la MN. Cette appréciation du TCR_c rend l'importation de bien substitut au produit fabriqué localement plus attractif que la consommation des produits locaux (ce qui touche les biens échangeables hors secteur en boom).

On a alors affaire à un effet dépense qui permet l'expansion du secteur N et une appréciation de la MN, entrainant une deuxième désindustrialisation indirecte engendrant le déplacement du facteur mobil du secteur L vers le secteur N.

En résumé, le boom entraine l'expansion du secteur B et le déclin de secteur L. Cependant la résultante est incertaine dans le secteur N car l'effet dépense tend à accroitre ce secteur d'activité alors que l'effet ressource tend à le décroitre.

1.3. Les convergences des modèles de mal hollandais avec les théories néoclassiques du commerce international

Les modèles théoriques du mal hollandais présentent des similitudes avec certaines théories néoclassiques du commerce international, notamment la théorie de la dépendance et de la domination, la théorie de la dotation factorielle de Rybsczynki et la théorie de la croissance appauvrissante Bhagwati.

1.3.1. La théorie de la dépendance et de la domination

La théorie de la dépendance et de domination est évoquée pour montrer que l'échange international, dès lors qu'il existe, est favorable à tous les partenaires. Selon le théorème de Heckser-Ohlin-Samuelson, le commerce international confère les mêmes chances de développement aux différents partenaires et permet d'augmenter la production pour laquelle ils ont la meilleure dotation factorielle. Or pour certain hauteurs tiers-mondistes, l'analyse du marché mondial révèle un processus d'accumulation du capital au profit des pays développés et au détriment des pays sous-développés et en voie de développement. Ceci se fait sous deux formes : dans le travail contenu dans les marchandises dont les rémunérations sont inégales et dans la forme liée à l'émigration et au problème monétaire.

Donc, il apparait des distorsions, des relations inégales entre le centre et la périphérie: c'est la thèse d'échange inégal dont la démonstration la plus connue est celle d'Arghiri Emmanuel, reprise et enrichit par Samir Amin. Pour ces auteurs, les exportations des pays du tiers monde reposent essentiellement sur les matières premières, alors que celles des pays industrialisés sont composées des produits à forte valeur ajoutée ¹³, ce qui fait qu'il y'a accumulation de richesse au centre par le jeu de l'échange international.

Les pays du tiers monde ne peuvent tirer profit d'une augmentation des exportations pendant la phase de flambées des prix des matières premières car leur structure économique est telle qu'il est difficile d'assoir une diversité des produits d'exportations. Dans ce cas, l'industrie pétrolière est considérée comme une enclave où ses relations avec le reste de l'économie passent forcement par le budget de l'Etat¹⁴.

. .

Abdelmalki L et Mundler P (1995). Economie du développement : les théories, les expériences et les perspectives. HACHETTE Supérieur. Paris, p 123.
 Nacoumdé, N (2007).Boom pétrolier et risque d'un syndrome hollandais au Tchad: une approche par la

¹⁴ Nacoumdé, N (2007).Boom pétrolier et risque d'un syndrome hollandais au Tchad: une approche par la modélisation en équilibre générale calculable. Thèse de doctorat, Université d'auvergne Clermont-Ferrand 1, p60.

1.3.2. Le théorème de Rybsczynski (1955)

Selon Rybsczynski, la hausse de la dotation d'un facteur de production provoque une hausse de la production du bien intensif en ce facteur et une diminution de la production du bien intensif en l'autre facteur sous l'hypothèse de plein emploi des facteurs de production ¹⁵, et lorsque le prix relatif des biens et réciproquement celui des facteurs de production restent constant.

Pour comprendre ce théorème, considérons un pays qui produit trois types de bien : un secteur spécialisé dans la production manufacturière ; un secteur spécialisé dans l'exploitation agricole et un secteur en boom le secteur des hydrocarbures.

Pour l'illustration du théorème de Rybsczynski, considérons dans un premier temps uniquement les deux premiers secteurs : le secteur manufacturier qui produit les biens Y et le secteur agricole qui produit les biens X. Les quantités de facteur réacquise par unité de production des deux biens sont

	Travail	Capital	Avec, $\alpha > \gamma > 0$ et $\delta > \beta > 0$
X	α	γ	
Y	β	δ	

$$L_i = \alpha X + \beta Y = L_X + L_Y$$

$$K_i = \gamma X + \delta Y = K_X + K_Y$$
, et où

L_i: la quantité totale de travail disponible dans le secteur i.

K_i: la quantité totale de capital disponible dans le secteur i.

En notant le ratio capital-travail: $k_i = K_i/L_i$

 $k_x = K_x/L_x = \gamma X/\alpha X = \gamma/\alpha$, donc $k_x<1$, on considère le bien X intensif en travail.

 $k_v = K_v/L_v = \delta Y/By = \delta /\beta$, donc $k_v > 1$, on considère le bien Y intensif en capital.

Si on cherche à représenter graphiquement L_i et K_i, alors

Pour X=0	$(L/\alpha)<(K/\gamma)$
Pour Y=0	$(K/\delta) < (L/\beta)$

Si la dotation en facteur capital K_i augmente, cela se traduira graphiquement par un déplacement de la droite K_i vers la droite. Celle-ci est représentée dans la fig.04 par à la droite en rouge. L'amélioration de la dotation en facteur capital augmente la production du bien Y qui est intensif en ce facteur qui passe de Y_a à Y_b ($Y_a < Y_b$); et diminue la production du bien intensif en l'autre facteur qui passe de X_a à X_b ($X_a > X_b$).

14

¹⁵ Nyahoho, E *et al*, (2000) Le commerce international: Théories, politiques et perspectives industrielles. Presses de l'Université du Québec, 2ème édition. Québec, Canada, p117.

Si la dotation en facteur travail L_i augmente, cela se traduira graphiquement par un déplacement de la droite L_i vers la droite. Celle-ci est représentée dans la fig.04 par à la droite en bleu. L'amélioration de la dotation en facteur travail augmente la production du bien X qui est intensif en ce facteur qui passe de X_a à X_c ($X_a < X_c$); et diminue la production du bien intensif en l'autre facteur qui passe de Y_a à Y_c ($Y_a > Y_c$).

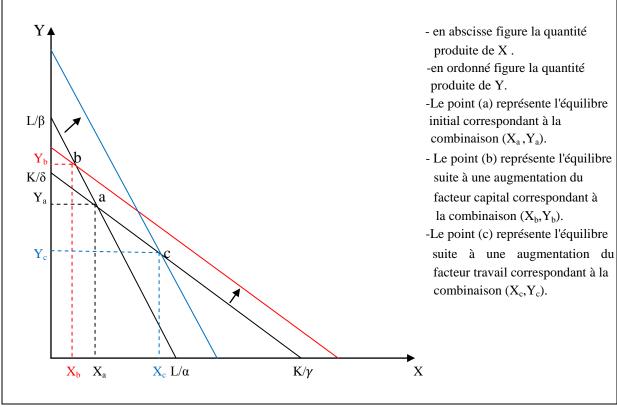


Fig.04: Représentation graphique du théorème de Rybsczynski.

Source: Nyahoho, E *et al*, (2000) Le commerce international: Théories, politiques et perspectives industrielles. Presses de l'Université du Québec, 2ème édition. Québec, Canada, p119.

La convergence de théorème avec les modèles de mal hollandais réside dans le fait que l'expansion du secteur de la ressource naturelle capte une partie des ressources des autres secteurs. En premier lieu le boom provoque le déplacement du facteur travail des deux autres secteurs vers le secteur en expansion. Cette baisse de la dotation factorielle en travail engendre une baisse de la production du secteur qui utilise intensément ce facteur de production (par exemple le secteur agricole). Aussi le boom donne lieu à une augmentation du revenu global qui permet une augmentation de la demande donc du facteur capital des secteurs qui captent cette demande et peut améliorer la production de ce secteur si celui-ci utilise intensément ce facteur de production ou bien des autres secteurs sous l'hypothèse de la mobilité du capital entre les différents secteurs d'activité.

1.3.3. Le théorie de la croissance appauvrissant de Bhagwati

L'échange international offre des possibilités de gain s'il n'existe pas de distorsions concurrentielles et tarifaires, le libre échange international peut donc permettre l'atteinte d'un optimum parétien ou il est impossible d'améliorer le bien-être d'un pays sans nuire à celui de

l'autre. Chaque pays assiste donc à l'échange dans le souci d'améliorer le bien-être global de sa population. Cependant certaines conditions relatives au fonctionnement du marché comme la modification des termes de l'échange ou la mobilité des facteurs de production peuvent conduire à un appauvrissement en termes de bien-être social.

La théorie de la croissance appauvrissant fut initiée par John Stuart Mill et approfondie par Jagdish N.Bhagwati pour ce dernier l'amélioration des capacités de production des biens échangeables contribuera à faire baisser le prix des produits sur le marché international si bien que la croissance finira par avoir des effets pervers dans l'économie du pays considéré¹⁶.

Bhagwati considère un pays qui produit deux types de bien : un bien non échangeable N dont le prix est P_N et un bien échangeable t dont le prix P_t représente le prix relatif rapport entre P_x le prix des biens exportable du secteur en boom et P_m le prix des biens importable hors secteur en boom.

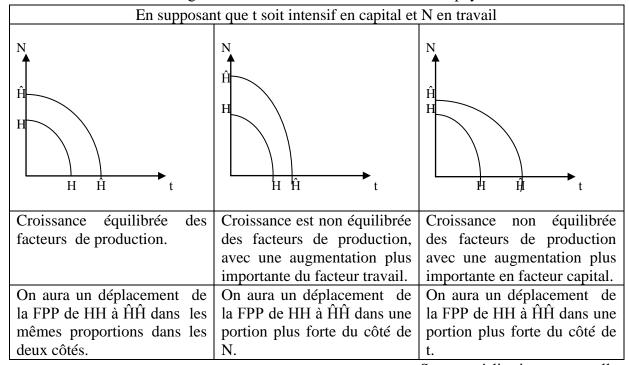
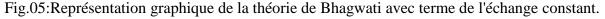


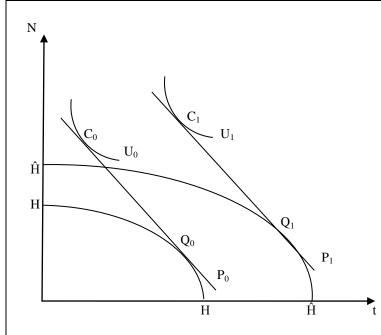
Tableau.01: Effet d'une augmentation de la dotation factorielle d'un pays sur la FPP.

Source: réalisation personnelle.

Tout d'abord le boom du secteur producteur du bien (x) déplace la courbe de possibilité de production de HH à $\hat{H}\hat{H}$ avec une portion plus forte du coté de (t). A ce niveau deux scénarios peuvent se présenter :

_


¹⁶ Nacoumdé, N. (2007).Boom pétrolier et risque d'un syndrome hollandais au Tchad: une approche par la modélisation en équilibre générale calculable. Thèse de doctorat, Université d'auvergne Clermont-Ferrand 1, n63


- Cas 1: Le boom n'a aucun effet sur les termes de l'échange; ces derniers restent constants.
- Cas 2: Le boom provoque une détérioration des termes de l'échange.

Si le boom n'a aucun effet sur les termes de l'échange la pente de P_0 reste telle quelle, cependant P_0 se déplace vers la droite car le boom conduit à l'augmentation du revenu globale. Ce qui fait que le budget alloué à la consommation de N et t augmente et déplace parallèlement P_0 vers la droite donnant P_1 .

L'augmentation du budget de la nation permet l'atteinte d'un niveau de bien-être social plus élevé passant de U0 à U_1 , grâce à l'amélioration de la capacité à consommer du pays de C_0 à C_1 .

Donc selon Bhagwati à terme de l'échange constant le boom d'un secteur d'exploration permet l'amélioration du bien-être social.

- -HH représente la FPP dérivé de la boite d'Edgeworth, cette FPP correspond à l'ensemble des combinaisons Pareto optimal permettant la réalisation du plein emploi des facteurs de production en les allouant à la production de N et t. -P₀ représente la droite du budget avant l'échange international de pente I₀.
- U_0 la courbe d'indifférence avant l'échange international, elle correspond au bien être social du pays procuré par la consommation de N et t.
- $\label{eq:consommation} \mbox{-} C_0 \mbox{ l'équilibre de la consommation}$ avant l'échange international.
- P₀ l'équilibre de la production avant l'échange international.

Source: Nacoumdé, N. (2007) Boom pétrolier et risque d'un syndrome hollandais au Tchad: une approche par la modélisation en équilibre générale calculable. Thèse de doctorat, Université d'auvergne Clermont-Ferrand 1,

p64.

Si le boom a pour effet de détériorer les termes de l'échange la pente de P_0 se modifie et devient plus faible. La droite de P_0 tend à devenir horizontale, aussi le boom conduit à l'augmentation du revenu global qui fait que le budget alloué à la consommation de N et t augmente. Au total on aura déplacement P_0 vers la droite donnant P_1 avec une rotation dans le sens inverse des aiguilles d'une montre.

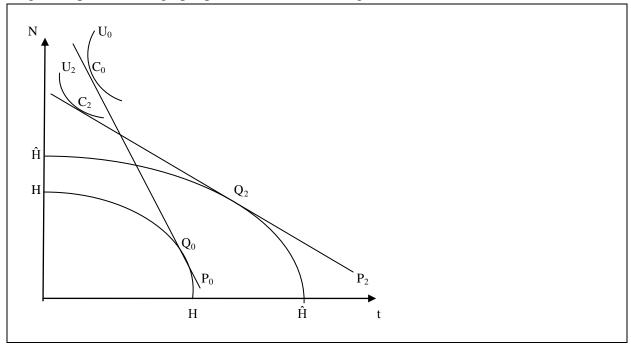


Fig.06:Représentation graphique de la théorie de Bhagwati avec modification des TE.

Source: Nacoumdé, N. (2007) Boom pétrolier et risque d'un syndrome hollandais au Tchad: une approche par la modélisation en équilibre générale calculable. Thèse de doctorat, Université d'auvergne Clermont-Ferrand 1, p64.

Le boom permet d'améliorer les capacités de production de la nation passant de Q_0 à Q_2 , mais conduit à un appauvrissement en termes de bien-être social qui passe de U_1 à U_2 . Selon Bhagwati une détérioration des termes de l'échange élimine l'effet bénéfique de l'expansion et conduit à une croissance appauvrissante.

Le point de convergence entre cette théorie et les modèles de mal hollandais réside dans le fait que le boom d'un secteur d'exportation peut paradoxalement appauvrir le pays. Cependant Bhagwati considère dans son analyse un grand pays.

Les petit pays sont généralement preneurs de prix sur les marchés mondiaux "Price taker", le boom d'un secteur d'exportation de ce pays n'a pas d'impact sur les termes de l'échange, sauf si un ensemble de petit pays se réunissent pour former un cartel. Dans ce cas cette ensemble de petit pays est assimilé à un grand pays ; ils deviennent faiseurs de prix sur les marchés mondiaux "Price maker".

Un grand pays est tout équivalant sont faiseurs de prix sur le marché mondial. Le boom d'un secteur d'exportations peut dans ce cas modifier les termes de l'échange.

Section 02 : Caractéristiques de l'économie algérienne

Il s'agit dans cette section de faire en brève une présentation de l'économie algérienne. Cette présentation permettra de détecter des failles dans la gestion de l'économie qui pourraient expliquer la manifestation du mal hollandais en Algérie.

2.1. Le secteur des hydrocarbures en Algérie

Il s'agit de présenter brièvement le secteur des hydrocarbures en Algérie ainsi que l'évolution des prix du pétrole brute car cette variable reflète l'évolution des recettes des hydrocarbures.

2.1.1. Brève historique de la découverte et l'exploitation du pétrole en Algérie

Les premiers puis de pétrole en Algérie sont ceux d'Ain Zeft en 1895 et Tliouanet en 1915 au sud-ouest de Relizane, cette découverte du pétrole fut accidentelle. A cette époque le pétrole n'avait pas une place considérable. Ce n'est qu'après la seconde guerre mondiale que l'exploitation pétrolière a véritablement eu lieu pour les besoins de guerre comme la production de l'armement nécessaire pour le combat.

La production du pétrole a réellement débuté en Algérie en 1957. Durant cette époque l'Algérie était colonisée par les français et l'exploitation pétrolière n'a pas profiter à l'Algérie d'ailleurs le pétrole représente la raison pour laquelle l'indépendance de l'Algérie a été retarder.

L'indépendance du pays est marquée par la nationalisation de l'économie algérienne notamment celle du secteur des hydrocarbures.

La gestion du secteur des hydrocarbures est confiée à la Sonatrach, ce groupement pétrolier algérien chargé de la production, le transport, la transformation et la commercialisation des hydrocarbures. La Sonatrach était classée ^{1ère} société en Afrique et 12^{éme} plus grand groupe pétrolier au monde par le Petroleum Intelligence Weekly.

En 1969 l'Algérie est devenue un pays membre de l'Organisation des pays exportateurs de pétrole (OPEP¹⁷).Le pétrole algérien est considéré de très bonne qualité par sa faibles teneur en soufre et sa légèreté. L'Algérie représente le 3^{ème} pays producteur de pétrole en Afrique derrière le Nigeria et l'Angola et 18^{éme} producteur mondial de pétrole, elle est le 11^{éme} exportateur de pétrole à l'échelle mondiale. Elle occupe la 15^{éme} place mondiale en matière de réserves pétrolières.

Le secteur des hydrocarbures en Algérie reste sous le contrôle de l'Etat.

l'Arabie saoudite, l'Iran, l'Irak, le Koweït et le Venezuela.

_

¹⁷ L'OPEP est créée le 14 septembre 1960, lors de la Conférence de Bagdad, principalement à l'initiative du Shah d'Iran et du Venezuela en la personne de Juan Pablo Perez Alfonso qui mena, dans le cadre de ses fonctions de ministre Vénézuélien des mines, des actions visant la création d'une organisation internationale des pays producteurs de pétrole pour pallier la baisse du prix du baril. À l'origine, seuls cinq pays en étaient membres :

2.1.2. Les prix du pétrole brut

Les prix du pétrole sont cotés en bourse dans un compartiment réservé exclusivement aux matières premières. La formation des prix se fait en fonction de la confrontation de l'offre et de la demande sur le marché financier. Un pic pétrolier peut être le fait d'un choc d'offre comme pour les deux chocs pétroliers de 1973 et 1979 ou un choc demande cas du choc pétrolier de 2008.

• Le premier choc pétrolier 1973

La croissance économique fulgurante observée au cours des années 50-60 dans la plupart des pays industrialisés repose, entre autres, sur l'accès à un pétrole abondant et bon marché. Pendant les années 1960, la demande pétrolière croît de plus de 7% par an .Dès 1972, la production de pétrole aux Etats-Unis atteint ce que les experts désignent comme un « pic pétrolier », c'est-à-dire le point de production maximale. Afin de pallier ce manque, les Etats-Unis importent une quantité toujours croissante de pétrole, notamment extraite au Moyen-Orient. En parallèle à cette augmentation de la demande mondiale, l'Organisation des Pays Exportateurs de Pétrole (OPEP) formée en 1960 se réunit en 1970 et 1971 afin de revaloriser le prix du pétrole. L'union de ces grands pays producteurs au sein d'un cartel accroît considérablement leur pouvoir de marché sur la fixation des quantités mises en vente ainsi que sur le prix du baril.

Le 6 octobre 1973, l'Etat d'Israël est attaqué par une coalition d'Etats Arabes menée par l'Egypte et la Syrie. Cette guerre est prétexte à l'augmentation des prix du baril de brut décidée par l'OPEP en réponse au soutien de certains pays occidentaux à Israël. Lors de la conférence de Koweït le 19 octobre 1973, l'OPEP décide une augmentation de 70% des prix du baril et quelques jours plus tard une réduction mensuelle de 5% de la production pétrolière. L'OPEP stabilise ensuite les prix moyens du brut autour de 12 \$ de l'époque par baril, quatre fois le niveau d'avant la crise de 3 \$.Cependant cette réduction fut temporaire en effet un second choc pétrolier fait son apparition en 1979.

• Le second choc pétrolier 1979

La situation politique au Moyen-Orient se tend à nouveau à la fin des années 1970, notamment du fait des agitations révolutionnaires en Iran. Afin de se prémunir contre d'éventuels troubles, les compagnies pétrolières des pays consommateurs accroissent leur demande auprès des pays producteurs afin de constituer des stocks. Concomitamment à cette hausse de la demande, l'Arabie Saoudite décide de diminuer sa production de 1 million de barils par jour afin de réduire l'offre.

La révolution iranienne éclate fin 1978 et aboutit le 11 janvier 1979 à la chute du Shah. C'est le point de départ du choc pétrolier. La dégradation des relations entre l'Iran et l'Irak débouche sur une guerre de 1980 à 1988. La déstabilisation de ces deux grands pays producteurs de pétrole entretient les tensions sur le marché pétrolier au début des années 80. Au plus haut le baril de brut atteint 39 dollars soit, en tenant compte de l'inflation, l'équivalent de 100 dollars de 2008. Ce choc pétrolier entraînera le monde dans une crise économique jusqu'en 1982.

Cependant à partir de 1981 les prix du pétrole commence à baisser. Cette réduction est le fait d'une baisse de la demande mondiale de pétrole. La fin de cette phase a été marquée par un effondrement des prix du brut à 7\$ le baril. Puis les prix du baril pétrole reprennent leur envole à partir de 2000 jusqu'à battre des records.

• Le troisième choc pétrolier 2008

L'expression troisième choc pétrolier est utilisée par certains journalistes, économistes et hommes politiques pour désigner une augmentation des cours en 2008 initiée à partir de l'année 2000. Le choc pétrolier de 2008 est différent des deux précédents :

- o Il n'est pas dû à une crise de l'offre causée par des instabilités géopolitiques mais à un surcroît de demande.
- Il est étalé sur plusieurs années, contrairement aux chocs ponctuels de 1973 et 1979.
 L'augmentation du prix du pétrole a l'amplitude des chocs précédents mais pas leur concentration dans le temps.

Le choc pétrolier de 2008 est la cause du dégonflement de la bulle spéculative menant à une crise financière en 2008 via le canal du crédit qui rattache la sphère réelle à la sphère monétaire. Le pétrole représente une matière première stratégique, la hausse des prix des matières premières augmente les coûts de production engendrant une inflation globale.

La relation négative prouvée entre l'inflation et le cours des titres sur le marché financier est une explication au crache boursier de 2008. A ce qu'il parait cette crise a été planifiée, l'effondrement des deux tours jumelles de la World Trade Center par un attentat terroriste est une mascarade mise en place par l'Etat américain, l'effondrement a mené la réserve fédérale américaine (FED) à baisser le taux d'intérêt directeur à un niveau très bas. L'inflation de 2008 a conduit à une hausse brutale de ce taux d'intérêt directeur avec des conséquences graves sur l'économie mondiale.

La diffusion de la crise et due à la libéralisation de l'activité économique. L'Etat Américain reprend ainsi le pouvoir et reprend sa place de leader de l'économie mondiale.

2.2. Evolution des politiques conjoncturelle en Algérie

D'un point de vue analytique, la réponse de la politique économique à un choc pétrolier dépend de la durée de ce dernier. Si le choc est de courte durée, les effets prix sont par définition transitoires, les politiques conjoncturelles peuvent contribuer à stabiliser la production nationale. Si en revanche le choc est permanant, les politiques conjoncturelles deviennent inefficaces, les politiques structurelles entrent en jeu pour améliorer la réallocation des ressources et les orienter vers les secteurs hors hydrocarbures pour éviter le phénomène de désindustrialisation.

Aussi la manifestation d'un mal hollandais dépend de l'utilisation des ressources naturelles. Le mode d'utilisation de ces ressources dépend de la politique économique poursuivie.Il apparait alors comme nécessaire de présenter brièvement l'évolution des politiques conjoncturelles en Algérie et définir la réponse de politique économique face à un choc pétrolier.

2.2.1. Evolution de la politique budgétaire

Il y'a un manque de visibilité dans la politique budgétaire menée par l'Etat algérien. Une chose est sûre, est que les recettes budgétaires sont le fait de la fiscalité notamment la fiscalité pétrolière car les revenus générés de l'exploitation des ressources naturelles reviennent à l'Etat via la fiscalité pétrolière. Elle représente ainsi naturellement une ressource indispensable au financement des projets de l'Etat.

L'Etat algérien n'a jamais réellement poursuivi une politique budgétaire. La corruption et un fait en Algérie et elle empoisonne l'économie du pays. Ces dernières années des changements commencent à être opérés. Cependant l'Etat à tendance à investir dans des dépenses d'infrastructures à savoir la réalisation de routes, la construction de bâtiments et de locaux. Il investit également dans l'aide à la création de petites et moyennes entreprises alors que le mieux est de lancer une aide à l'industrialisation qui est réellement créatrice d'emplois. Aussi l'Etat poursuit une politique de désendettement ce qui est une bonne chose et permet une reprise de contrôle dans la gestion de l'économie.

Des réaménagements sont nécessaires dans la politique budgétaire de l'Etat Algérien.

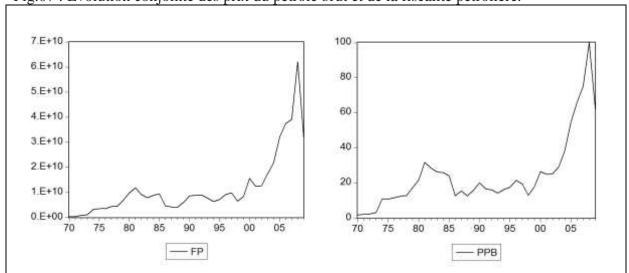


Fig.07: Evolution conjointe des prix du pétrole brut et de la fiscalité pétrolière.

Source : Réalisation personnelle à base des statistiques de l'ONS et de la CNCUD.

Les recettes d'hydrocarbure reviennent à l'Etat via la fiscalité pétrolière. En Algérie cette fiscalité est à hauteur de 82%. On remarque à travers la représentation graphique que l'évolution de la fiscalité pétrolière en Algérie suit logiquement la même évolution que les recettes générées par les hydrocarbures mesurées en termes de PPB.

2.2.2 Evolution de la politique monétaire

La politique monétaire menée par la banque d'Algérie suit l'évolution suivante :

• De 1960 à 1970

Cette période coïncide avec l'algérianisation du système bancaire. Elle est caractérisée par une faible demande de crédit en l'absence de projet d'investissement. Les instruments de la politique monétaire étaient pratiquement inopérants.

• De 1971 à 1985

La politique monétaire s'inscrivait dans le cadre d'une politique économique centralisée. Il n'y'avait pas une véritable politique monétaire, la monnaie était endogène au sens ou la monnaie était déterminée en dehors des instruments et des moyens de la Banque Centrale.

• De 1985 à 1995

Après le contre choc pétrolier de 1986 qui a révélé les dysfonctionnements du modèle économique adopté, des réformes ont été amorcées pour rompre avec le mode de financement générateur d'inflation et asseoir les fondements d'un mode de financement par l'épargne.

La période allant de 1986 à 1995 comme le montre la représentation graphique est caractérisée par une politique monétaire restrictive (hausse du taux d'intérêt nominale et du taux de réescompte) justement pour réduire la masse monétaire génératrice d'inflation¹⁸ et dans le but d'encourager l'épargne¹⁹.

Ces mesures prises par la banque d'Algérie n'ont pas donné de résultat significatif. Les vraies mesures de refonte du système n'ont commencé qu'à partir de 1990.

• De 1995 jusqu'à aujourd'hui

A partir de 1995 la banque d'Algérie adopte une politique monétaire expansive. Dans le but cette fois d'encourager l'investissement voir l'industrialisation.

¹⁸ Une expansion monétaire utilisée à des fins de consommation finale peut être génératrice d'inflation.

¹⁹ L'épargne étant fonction croissante du taux d'intérêt. Une politique monétaire restrictive par une baisse du taux d'intérêt directeur vise à encourager l'épargne à la consommation, dans le but d'éviter une inflation préjudiciable à la croissance économique.

REES - TIN

Fig.08: Evolution du taux d'intérêt nominal et du taux de réescompte.

Source : Réalisation personnelle à base des statistiques de la banque d'Algérie et de l'ONS.

L'évolution de la politique monétaire est traduite par l'évolution du taux d'intérêt nominal et du taux de réescompte.

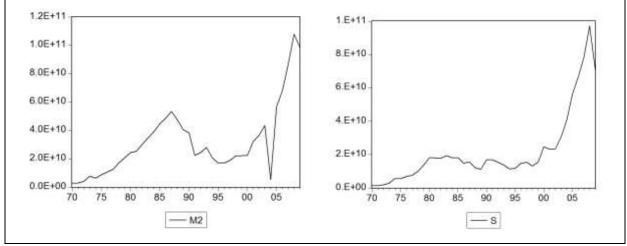


Fig.09: Evolution conjointe de la masse monétaire et de l'épargne brute.

Source : Réalisation personnelle à base des statistiques de l'ONS et de la Banque Mondiale.

L'évolution de la masse monétaire traduit la politique monétaire poursuivie par la banque d'Algérie, soit une politique qui s'adapte aux impératifs de financement de 1970 à 1985, suivie d'une restriction en matière monétaire de 1986 à 1995. A partir de 1995 vient la période d'expansion monétaire.

L'épargne brute évolue au même rythme que l'expansion monétaire. Effectivement les mesures prises de 1986 à 1995 n'ont pas eu un réel impact sur l'épargne et paradoxalement la politique expansive menée à partir de 1995 a conduit à un encouragement de l'épargne.

30 20 10 0 -10 -20 2002 TIR

INF

Fig.10: Evolution conjointe du taux d'intérêt réel et de l'inflation.

Source : Réalisation personnelle à base des statistiques de l'ONS et de la banque d'Algérie.

On ne peut pas parler de corrélation entre les deux variables. Le taux d'intérêt réel n'est pas corrigé par l'inflation 20. Ce qui ne permet pas une visibilité dans les décisions d'investissement et d'épargne. Les agents économiques deviennent victimes d'une illusion monétaire.

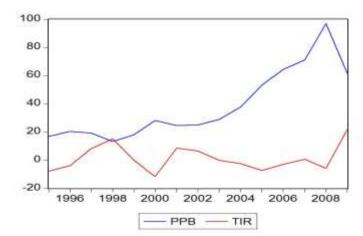


Fig.11 : Evolution conjointe du taux d'intérêt réel et des prix du pétrole brut.

Source : Réalisation personnelle à base des statistiques de la CNCUD et de l'ONS.

Une relation négative entre les deux variables. La hausse des prix du pétrole brut est accompagnée d'une baisse du taux d'intérêt réel. Donc par une politique expansionniste en matière monétaire. Les recettes issues du boom sous forme d'un afflux massif de devise étrangère se traduisent par une expansion monétaire. Ce qui représente un des effets qui caractérise la manifestation d'un mal hollandais. Ce constat est confirmé dans la figure, La

²⁰ En principe une hausse du taux d'inflation doit être accompagnée par une baisse du taux d'intérêt réel. Le taux d'intérêt réel devrait être corrigé par l'inflation.

série PPB et M2 une évolution identique. Cependant le mal hollandais n'est pas expansion monétaire mais dépend de l'utilisation de cet excès de monnaies.

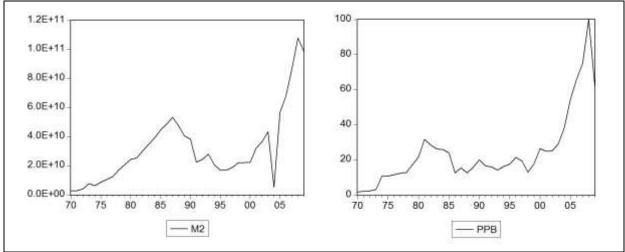


Fig.12 : Evolution conjointe des prix du pétrole brut et de la masse monétaire.

Source : Réalisation personnelle à base des statistiques de l'ONS et de la CNCUD.

2.2.3. Evolution de la politique de change

Le lendemain de l'Independence, l'Algérie faisait encore partie de la zone franc ce qui ne permettait pas d'avoir une gestion autonome de la politique de change par les autorités monétaires. En 1964 des changements commencent à intervenir, en l'occurrence la restitution du dinar en tant que monnaie nationale dans les échanges commerciaux internationaux. Il était défini à parité fixe par rapport au franc français et sa valeur par rapport aux autres monnaies était définie en référence à cette parité dans le cadre du système de Breton Wood. Ce changement ne permettait pas non plus une gestion autonome de la politique de change dans la mesure où la valeur du dinar était dépendante de celle du franc français.

L'effondrement du système de Breton Wood, et les conséquences auxquelles il a donné lieu à savoir le flottement généralisé des monnaies et la démonétisation de l'or, l'Algérie a été amenée à revoir sa politique de change dès 1973. Cette fois toujours dans le cadre d'un régime de change fixe mais dont la parité est indexée à un panier de monnaie²¹.

La politique de change de 1973 à 1986 était beaucoup plus une politique de change passive. Cette période est caractérisée par une forte inflation dans le pays et des réserves de changes utilisées dans un but de création monétaire au profit du financement du déficit public de l'Etat Algérien; ce qui a été défavorable à l'économie du pays. Aussi suite au contre choc pétrolier de 1986, l'Algérie a subi des pertes sur ces recettes d'exportations; le maintien du cour du dinar n'étais plus possible car la valeur réelle de la monnaie nationale était surévaluée. Il est apparut nécessaire d'encourager les importations, d'où l'ajustement du taux

-

²¹ Le dollars USD, le franc français, le deutschemark, la livre sterling, le franc belge et le franc suisse.

de change par des dévaluations rampantes ²² du dinar algérien, suivie par une première dévaluation officielle en 1990 et une deuxième en 1994. Cette politique n'ayant pas donnée les résultats escomptés; la définition d'un nouveau régime de change était nécessaire dès 1994. D'ailleurs cette année marque le passage d'un régime de change fixe à un flottement administré de la monnaie nationale.

On en conclut que la politique économique en Algérie a véritablement commencé à partir de 1990. Il y'a toujours des failles à corriger dans la gestion de l'économie algérienne. Ces failles ne permettent pas la bonne gestion de la rente énergétique.

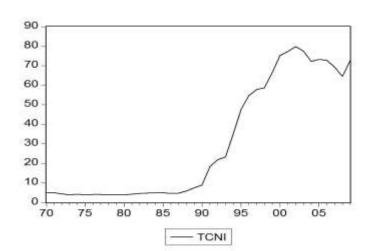
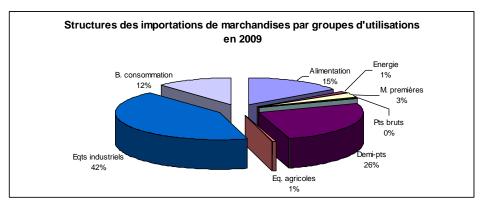


Fig.13: Evolution du taux de change nominal coté à l'incertain de 1970 à 2009.

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale.

L'évolution du taux de change nominal reflète l'évolution de la politique de change en Algérie. Le TCNI constant de 1970 à 1990 est le signe d'un régime de change fixe. L'appréciation du TCNI de 1990 à 1994 représente la dépréciation de la monnaie nationale suite à la politique de dévaluation menée durant cette période. A partir de 1994 la valeur de la monnaie nationale suit la logique du marché ; soit la confrontation de l'offre et de la demande sur le marché de change.


2.3. Quelques statistiques du secteur réel

Ces statistiques présentent l'évolution de l'économie algérienne en générale et elles permettent de détecter des faits qui valident la possible application du mal hollandais en Algérie.

-

²² Faire baisser de manière continue et sans que ça soit annoncé, la valeur de la monnaie nationale.

Fig.14: Structure des importations de marchandise par groupe d'utilisation en 2009.

Source: Statistiques de l'ONS.

Les importations sont constituées principalement de produits manufacturiers agricoles et des biens de consommation. La structure de ces importations met en évidence un possible mal hollandais car elles sont constituées de produit de secteur anciennement exportateur.

Fig. 15: Structure des exportations de marchandises par groupe d'utilisation en 2009.

Source : Statistiques de l'ONS.

Les exportations représentent quasiment des hydrocarbures. Un afflux massif de devise étrangère ne peut être dû qu'aux recettes générées de ces exportations étant donné que le solde le plus important de la balance des paiements est le solde de la balance commerciale.

Tableau.02: Sous solde de la balance des paiements en milliards de dollars.

Année	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
BCO	7.06	4.36	8.84	11.12	21.18	28.95	30.64	34.45	0.41	12.16	19.70
BK	-0.87	-0.71	-1.37	-1.87	- 4.24	-10.22	-1.09	2.54	3.45	3.02	0.36

Source : Bulletins statistiques N°1et 19 de la Banque d'Algérie.

Le solde de la balance des capitaux est négligeable à côté du solde de la balance des transactions courantes.

Tableau.03 : Les variables causant un afflux massif de DE en milliards de dollars.

Année	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
XH	18.53	18.11	23.99	31.55	45.99	53.61	59.61	77.19	44.41	56.12	71.66
AID	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
IDE	1.18	0.97	0.62	0.62	1.06	1.76	1.37	2.28	2.54	3.47	2.04

Source : Bulletins statistiques N°1 et 19 de la Banque d'Algérie.

La valeur des exportations en hydrocarbures est extrêmement importante, à côté de l'évolution des exportations en hydrocarbures, celle de l'investissement direct étranger et particulièrement celle de l'aide étrangère apparaissent comme étant négligeables. La manifestation d'un mal hollandais en Algérie ne peut être due qu'à un boom des exportations de cette ressource naturelle.

Tableau.04 : Les termes de l'échange marchand (TEM).

Année	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
IPM	134,4	139,8	135,5	136,0	141,1	154,0	164,9	171,8	187,0	214,2	208,9
IPX	191,2	357,8	326,8	319,3	374,7	447,8	624,2	748,4	801,5	1001,9	721,8
TEM	1,4	2,6	2,4	2,3	2,7	2,9	3,8	4,4	4,3	4,7	3,5

Source : Statistique de l'ONS

L'Algérie étant membre de l'OPEP, un mal hollandais conduit à une croissance appauvrissante par une détérioration des termes de l'échange d'un pays faiseur de prix sur le marché international. Ce n'est pas le cas, ici on assiste à une amélioration des TEM. Cela ne permet pas pour autant d'écarter l'hypothèse de mal hollandais.

Tableau.05 : La dette extérieure en milliards de dollars.

Année	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
DX	22.7	22.64	23.53	21.82	17.91	5.60	5.47	5.58	5.41	5.60	4.40

Source : Bulletins statistiques N°1 et 19 de la Banque d'Algérie.

Une hausse des prix du brut constitue un transfert de revenu national des pays importateurs vers les pays producteurs. Ce transfert de revenu s'accompagne le plus souvent d'une diminution de l'activité économique mondiale. En effet, la propension marginale à consommer des pays importateurs de pétrole est généralement plus forte que celle des pays

exportateurs. Le phénomène est d'autant plus accentué aujourd'hui que les pays producteurs de pétrole tendent à lisser leurs consommations et leurs investissement dans le temps et à privilégier leur désendettement.

Les réserves de change constituées grâce aux recettes d'hydrocarbures ont servi en partie au règlement de la dette extérieure. Les recettes d'hydrocarbures peuvent conduire à un mal hollandais. Cependant ces recettes ne représentent pas forcément une malédiction si elles sont bien utilisées. Par exemple le règlement de cette dette extérieure permet un assainissement et une reprise de contrôle dans la gestion de l'économie du pays.

Tableau.06: Indice des prix à la production industrielle et leurs variations annuelles.

Annéo	e	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
IEN	IND	880.3	884.5	923	972.5	1048	1160. 1	1161. 7	1163. 6	1195. 5	1198. 3	1200. 6
	VARI	1.5	0.5	4.4	5.4	7.8	10.7	0.1	0.2	2.7	0.2	0.2
IHH	IND	829.3	842.6	878	920.3	961.9	987.6	1029. 4	1088. 3	1125. 1	1160	1184. 9
	VARI	4.2	1.6	4.2	4.8	4.5	2.7	4.2	5.7	3.4	3.1	2.2
IM	IND	825.5	836.7	872.0	913.3	953.3	975.5	1016. 8	1065. 7	1097. 6	1134. 5	1146. 3
	VARI	4.4	1.4	4.2	4.7	4.4	2.3	4.2	4.8	3	3.4	1.0
IAG	IND	1130. 8	1147. 5	1187	1234. 6	1234. 8	1260. 6	1291. 8	1395. 1	1419. 1	1450. 7	1462. 9
	VARI	3.3	1.5	3.4	4.0	0.0	2.1	2.5	8.0	1.7	2.2	0.8

Source : Statistiques de l'ONS.

Les indices de prix à la production industrielle, augmentent avec des valeurs différentes notamment pour l'IAG qui se détache du lot. Il y'a donc une envolée importante des prix à la production agricole. Ce qui pourrait être le signe d'une hausse de la demande en produit interne de ce secteur ou bien d'une baisse de l'offre et le maintien de ce secteur en vie par une hausse des prix. Si c'est le cas, le mal hollandais est une évidence et il se manifeste par une désagriculturisation.

ENG

IAG

Fig.16: Evolution des indices de prix à la production.

Source : Réalisation personnelle à base des statistiques de l'ONS.

IHH

IM

Les indices de prix évoluent avec un même rythme de croissance et dans le même sens. L'idée d'une corrélation positive entre les indices est possible. Un boom des prix dans le secteur de l'énergie pourrait conduire à une augmentation des prix des autres secteurs d'activité (Secteurs hors hydrocarbures). La hausse des prix dans les secteurs hors hydrocarbures peut être le signe d'une augmentation des couts de production. Une politique fiscale menée par l'Etat est insoutenable par les autres secteurs; une augmentation de la demande, une baisse de l'offre (coût de production élevée ou parce que la demande se tourne vers des produits d'importation et il devient nécessaire d'augmenter les prix pour maintenir le secteur d'activité en vie).

L'évolution des prix ne permet pas d'écarter l'hypothèse de mal hollandais.

Conclusion

Dans le cas d'une ressource naturelle, un boom des exportations de ce secteur permet l'appréciation de la MN sur le marché de change, entrainant un mouvement de ressources et un effet dépense conduisant à un phénomène de désindustrialisation. Ce phénomène touche principalement un secteur anciennement exportateur. La considération de la balance commerciale avec prise en compte du secteur en boom est excédentaire alors que la prise en considération de cette Balance commerciale hors secteur en boom est en détérioration continue faute de cette désindustrialisation.

Dans un cas ou le boom correspond à un afflux massif d'IDE, c'est la balance des capitaux qui présente un excédent entrainant, en suivant un enchainement similaire à un problème de désindustrialisation .Aussi il est nécessaire de préciser que dans un cas où le secteur qui subit le déclin est le secteur agricole ; il est plus juste d'utiliser le terme de désagriculturisation.

A partir des modèles du mal hollandais, on peut conclure que le canal de transmission de départ du mal hollandais est l'appréciation réelle de la monnaie nationale sur le marché de change ; soit l'appréciation du TCR_c entrainant un afflux massif de devise étrangère ; soit une expansion monétaire. Cette expansion monétaire se présente quel que soit le régime de change. Cependant la manifestation effective du mal hollandais dépend de l'utilisation de cette masse excédentaire de monnaie. En effet, le mal se manifeste dans le cas d'une utilisation des revenus supplémentaires à des fins de consommation finale (un effet dépense) qui se traduit par une forte inflation dans le pays.

Aussi les théories néoclassiques du commerce international qui présentent des convergences avec les modèles de mal hollandais mettent en évidence d'autres canaux de transmission. Selon la théorie de la dépendance et de la domination, un pays peut tirer profit d'une expansion monétaire que si sa structure économique est telle qu'il peut assoir une politique de diversification de la production et des exportations. La théorie de la croissance appauvrissante de Bhagwati met en évidence le rôle clef des termes de l'échange. Dans le cas d'un grand pays une détérioration des termes de l'échange entraine un appauvrissement du pays. Cependant cette théorie est contradictoire avec la vision faite du mal hollandais dans le modèle SS et le modèle de Gregory dans la mesure où le mal hollandais peut se manifester à termes de l'échange constant. Quant à Rybszcinski, c'est l'intensité factorielle qui joue un rôle clef dans l'expansion d'un secteur de production et le déclin d'un autre et conduit par un mouvement de ressources à la manifestation de ce mal.

Il est donc nécessaire que l'expansion monétaire soit utilisée à des fins d'industrialisation, soit par l'Etat par l'investissement public productif et non uniquement dans des dépenses d'infrastructures, en expatriant les fond générés par le boom ou en limitant la diffusion de ces fonds dans l'économie. Soit par la banque centrale à travers une politique monétaire expansive permettant une baisse réelle des taux d'intérêts visant à encourager l'investissement, particulièrement en poursuivant une politique d'encouragement à

l'industrialisation et de la diversification de la production. Ou bien par les ménages, en favorisant l'épargne, l'investissement ou même la thésaurisation à la consommation.

En ce qui concerne l'économie algérienne, le secteur des hydrocarbures a pris une ampleur considérable dans l'économie du pays. La rente énergétique demeure la principale source de revenue. Le point fort de l'expansion du secteur des hydrocarbures est le fait que les revenus générés de l'exploitation des ressources naturelles stratégiques permettent la réalisation de certains projets à savoir la réalisation de route ; la construction de logements et bien d'autres dépenses d'infrastructure ; la création de petites et moyennes entreprises, le règlement de la dette extérieure. Le point faible est la mise en œuvre de politique économique toujours en faveur du secteur des hydrocarbures dans le but de générer des recettes considérables et négligeant les effets adverses que de telles politiques pourraient avoir sur le reste de l'économie.

Les statistiques présentées ne permettent pas de rejeter le fait que la théorie du mal hollandais soit applicable pour le cas de l'Algérie. Elles ne la confirment pas non plus. Une chose est sûre est que la croissance de l'Algérie n'arrive pas à décoller la seule réponse plausible à un tel échec ; c'est la manifestation d'un mal hollandais. Pour remédier à cela des réaménagements doivent être faits dans la gestion de l'économie du pays ainsi que dans la gestion de la rente énergétique.

Chapitre02

Mise en évidence empirique de la manifestation d'un mal hollandais.

Dans ce chapitre il s'agit d'évaluer empiriquement l'existence d'un mal hollandais, la première section est consacrée à la présentation des variables et à une étude uni-varier pour synthétiser leurs propriétés stochastiques ce qui permettra le choix d'une modélisation appropriée, la deuxième est consacrée à une étude multi-varier, pour étudier les interactions entres les différentes variables et l'apport d'une réponse définitive à la problématique.

Section 01 : Présentation des variables clés et études de leurs caractéristiques stochastiques.

Il s'agit dans cette section de présenter les variables et d'étudier les caractéristiques stochastiques de ces variables de choix.

1.1 Définition et représentation graphique des variables de choix

Il s'agit dans cette partie de définir les variables à exploiter et de justifier le choix des variables considérées clés. Aussi le passage initialement par une représentation graphique des variables est nécessaire pour mettre en évidence l'évolution de celles-ci sous une forme globale, et déceler une éventuelle relation entre les variables de choix.

1.1.1 Les prix du pétrole brut (PPB)

Cette série représente l'évolution des prix d'un baril²³ de pétrole brut, cette variable est exprimée en dollars (\$) étant donné que les prix du pétrole sont cotés en bourse et exprimés en une monnaie considérée internationale en l'occurrence le dollar.

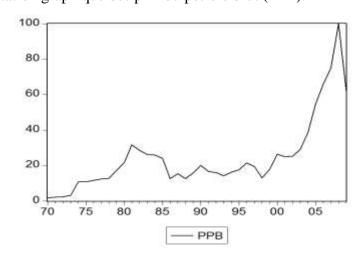


Fig.17: Représentation graphique des prix du pétrole brut (PPB).

Source : Réalisation personnelle à base des statistiques de la CNCUD.

recettes, la substitution est possible entre les deux séries.

²³ Il aurait été préférable d'utiliser la série des recettes d'hydrocarbures en Algérie, cependant ces données sont présente qu'à partir de 2001. Etant donné que l'évolution des prix du pétrole brut peut refléter l'évolution de ces

Le graphe de la série présente une tendance globale à la hausse avec un pic important en 2008 relatif au choc pétrolier (Choc demande). Cette représentation met en évidence la différence significative de l'ampleur du choc pétrolier de 2008 par rapport aux deux premiers de 1973 et 1979 (Choc d'offre) car on remarque des pics de faible ampleur par rapport à 2008 mais qui représente des chocs significatifs de prix en 1973 et 1979.

1.1.2 Le taux de change réel (TCRI)

Le taux de change réel mesure le prix relatif de deux paniers de bien, c'est un indice qui correspond au rapport de deux pouvoirs d'achat, il représente un indicateur de compétitivité-prix du pays. Le TCR représente le canal de transmission de départ du mal hollandais, il est de ce fait une variable clé qui doit impérativement être intégrée dans le modèle. Le TCRI correspond au taux de change réel coté à l'incertain, cette cotation est cohérente avec l'idée que la dépréciation du TCRI engendre une perte de compétitivité-prix des biens nationaux sur le marché international suite à une appréciation réelle de la MN sur le marché de change.

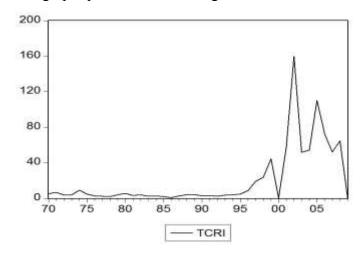


Fig. 18: Représentation graphique du taux de change réel coté à l'incertain (TCRI).

Source : Réalisation personnelle à base des statistiques de la banque d'Algérie.

Le graphe de la série est stable dans un premier temps, à partir de 1995 apparait une légère tendance à la hausse qui commence à baisser de 1999 à 2000. A partir de 2000 la série reprend une évolution à la hausse avec un rythme de croissance élevé enregistrant un pic important en 2002 et un deuxième plus faible en 2005.

1.1.2 Le produit intérieur brut (PIB)

Le Produit intérieur brut (PIB) est l'indicateur le plus retenu pour évaluer la production de biens et services d'un pays pendant une année. Il illustre l'importance de l'activité économique d'un pays ou encore la grandeur de sa richesse générée. Il représente donc un

indicateur parfait de croissance économique. Cette variable est exprimée en dollars courant.²⁴ Pour que le mal hollandais s'applique en Algérie. Le boom d'un secteur d'exportation doit engendrer systématiquement une croissance du PIB et une décroissance du PIB hors hydrocarbure²⁵.

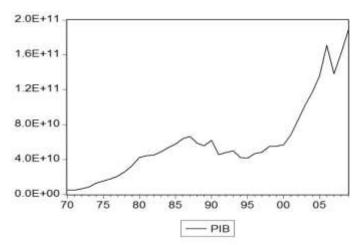
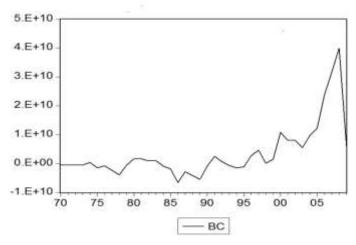


Fig.19: Représentation graphique du produit intérieur brut (PIB).

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale.

Le graphe de la série présente une tendance globale à la hausse tous d'abord à un rythme faible, puis avec un rythme de croissance élevé à partir de 2000.


1.1.3 La balance commerciale (BC)

Le solde de la balance commerciale représente la différence entre la valeur des exportations et la valeur des importations de biens. L'utilisation de cette variable permettra une comparaison entre l'impact d'un boom sur les exportations et les importations de biens du pays grâce à une prise en compte dans un premiers temps des exportations en hydrocarbures, puis, la non prise en compte des exportations en hydrocarbure dans un deuxième temps. Cette variable est exprimée en dollars courant.

²⁴ La valeur des variables exprimées en dollars courants peut être trompeuse de plusieurs manières parce qu'elle peut comporter un biais de gonflement à cause de l'inflation (ou de dégonflement à cause de la déflation) dès que l'on procède à des comparaisons dans le temps .Cependant faute de manque de données et dans le but d'exprimer toutes les variables dans la même unité, la restriction à cette unité de mesure est apparue comme étant une nécessité.

²⁵ Il aurait été préférable d'utiliser le PIB hors hydrocarbures pour estimer l'impact d'un boom sur d'autres secteurs d'activité. Par exemple une corrélation négative entre les prix du pétrole brut et le PIB hors hydrocarbures peut être le signe d'un déclin des autres secteurs d'activité. Cependant cette variable est indisponible.

Fig.20 : Représentation graphique de la balance commerciale (BC).

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale.

Le graphe de la série présente une évolution quasi-stable mise appart un pic important enregistré en 2008.

1.1.5 La balance commerciale hors hydrocarbures (BCHH²⁶)

La balance commerciale hors hydrocarbure, représente le solde de la balance commerciale dont la valeur des exportations en hydrocarbures a été soustraite, par exemple une détérioration continue de ce solde est le signe d'un impact négatif de l'expansion monétaire résultant d'un boom dans le secteur des hydrocarbures d'où le choix de cette variable. Cette variable est exprimée en dollars courant.

Fig.21 : Représentation graphique de la balance commerciale hors hydrocarbures (BCHH).

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale et de l'ONS.

²⁶ BCHH= BC-XH.

Le graphe de la série présente une tendance globale à la baisse, signe d'une détérioration continue au fil du temps de la balance commerciale hors hydrocarbures.

1.1.6 L'absorption (AB)

On y regroupe les dépenses de consommation finale des ménages et des administrations publiques, l'investissement privé, l'investissement public, et les exportations brutes. Cette variable est exprimée en pourcentage du PIB.

La capacité d'absorption constitue une contrainte pour la croissance économique quand le rythme d'accumulation du capital est plus important que la capacité d'absorption locale, et donc une capacité en termes de besoin qualitatifs et quantitatifs en main-d'œuvre locale et également en facilité infrastructurelles plus faible par rapport au capital disponible. Cette variable permettra une mise en évidence du caractère gaspillage des recettes d'hydrocarbures, ainsi qu'une mise en évidence de l'effet dépense.

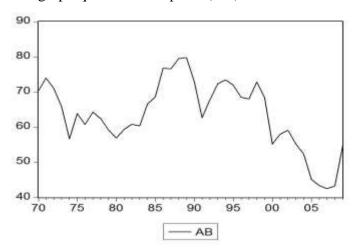
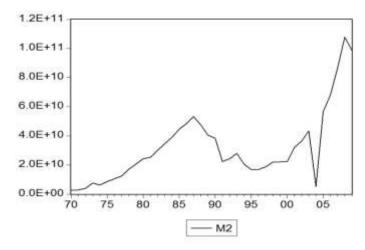


Fig.22: Représentation graphique de l'absorption (AB).

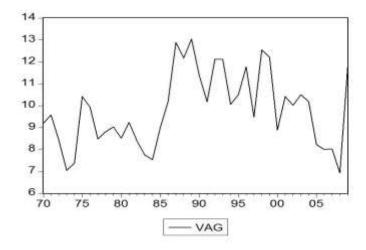

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale.

Le graphe de la série présente une tendance globale à la baisse.

1.1.7 La masse monétaire (M2)

La masse monétaire est une mesure de la quantité de monnaie dans un pays ou une zone économique. Cette mesure se fait à base d'agrégats monétaires, l'évolution de cette masse reflète la politique poursuivit par la banque centrale en matière monétaire ainsi que l'orientation avenir de cette politique. Une expansion monétaire est préjudiciable à la croissance si elle est suivit par une inflation. La masse monétaire en Algérie est mesurée par l'agrégat M2.La manifestation d'un mal hollandais est possible grâce à une expansion monétaire imprévue. Cette variable est exprimée en dollars courant.

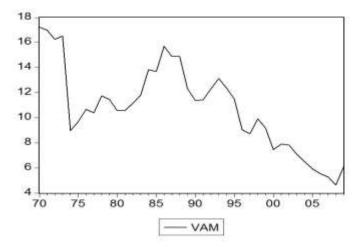
Fig.23: Représentation graphique de la masse monétaire (M2).


Source : Réalisation personnelle à base des statistiques de l'ONS.

Le graphe de la série présente une tendance à la hausse à un rythme moyen jusqu'à 1987, puis une tendance globale à la baisse jusqu'à 2005. A partir de 2005 l'expansion monétaire reprend à un rythme de croissance élevé enregistrant un pic important en 2008.

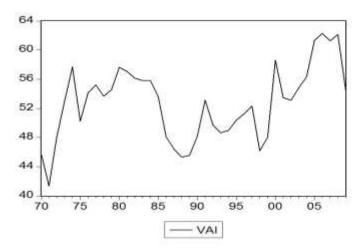
1.1.8 La valeur ajoutée par secteur d'activité en pourcentage du PIB

La valeur ajoutée est un indicateur économique qui mesure la valeur de la richesse créée par une entreprise, un secteur d'activité ou un agent économique au cours d'une période donnée. Le calcul de la valeur ajoutée en pourcentage du PIB permet d'estimer la contribution de chaque secteur à la formation du PIB. Ici les trois secteurs en question sont le secteur agricole (G), le secteur manufacturier (M), et le secteur industriel d'une manière générale (I), c'est-à-dire qui inclut le secteur des hydrocarbures.


Fig.24 : Représentation graphique de la valeur ajoutée en pourcentage du PIB dans le secteur agricole (VAG).

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale.

Le graphe de la série ne présente pas une tendance particulière, et enregistre des pics significatifs à des périodes différentes.


Fig.25 : Représentation graphique de la valeur ajoutée en pourcentage du PIB dans le secteur manufacturier (VAM).

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale.

Le graphe de la série présente une tendance globale à la baisse.

Fig.26 : Représentation graphique de la valeur ajoutée en pourcentage du PIB dans le secteur industriel (VAI).

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale.

Le graphe de la série ne présente pas une tendance particulière, et enregistre des pics significatifs à des périodes différentes. La série présente un caractère saisonnier.

1.2 Test statistique

Il s'agit du test d'autocorrélation, du test de Box-Pierce ainsi que du test de normalité, dans le but de réunir des caractéristiques relatives aux variables de choix, et de définir une modélisation adéquate de la relation entre ces variables.

1.2.1 Test d'autocorrélation et de Box-Pierce

Ces deux tests sont effetuer en choisissant un rettard (P) allant de 1 jusqu'à 10. Ce qui permet une mise en evidence de la tendence glodale de la fonction d'autocorrélation, et un degré de précision plus important dans l'interprétation des résultats.

1.2.1.1 La série prix du pétrole brut (PPB)

Fig.27 : Test d'autocorrélation et de Box-Pierce (PPB).

Sample: 1970 2009

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
L N		1	0.843	0.843	30.647	0.00
		2	0.614	-0.338	47.307	0.00
	1 1	3	0.430	0.087	55.698	0.00
C C	1 🔲	4	0.260	-0.170	58.860	0.00
0 1	1 1	5	0.144	0.110	59.852	0.00
1 1	1 [1	6	0.073	-0.051	60.118	0.00
1 1	1 1 1	7	0.026	0.014	60.152	0.00
1 1 1	1 1	8	-0.011	-0.058	60.159	0.00
1 1	1 1	9	-0.059	-0.077	60.345	0.00
t 📕 t	1 1	10	-0.091	0.033	60.810	0.00
1 1	1 1 1	11	-0.081	0.074	61.193	0.00
t 🚺 t	1 1	12	-0.061	-0.026	61.417	0.00
t 🚺 t	1 🛮 1	13	-0.066	-0.096	61.690	0.00
t 🚺 t	1 1	14	-0.070	0.026	62.009	0.00
t 🚺 t	1 1 1	15	-0.056	0.039	62.221	0.00
1 1	1 1	16	-0.043	-0.004	62.350	0.00
t t	1 1	17	-0.050	-0.080	62.531	0.00
t t	1 1	18	-0.046	0.056	62.695	0.00
t t	1 🔳	19	-0.057	-0.127	62.958	0.00
1 1	1 1	0/5	-0.060		63.257	0.00

Source : Réalisation personnelle à base des statistiques de la CNCUD.

A première vue, seuls les trois premiers termes de la fonction d'autocorrélation simple présente des pics significativement supérieurs à zéro. Les termes de cette fonction décroissent puis tendent à s'annuler, ce qui pourrait être le signe d'une tendance .Le premier terme de la fonction d'autocorrélation partielle présente un premier pic significatif positif et un deuxième négatif. D'autre part l'hypothèse de bruit blanc est rejetée puisque la statistique de Box-Pierce (Q-stat) reste supérieur à la statistique de χ^2_p au seuil de 5 % quel que soit le retard (p).

1.2.1.2 La série taux de change réel coté à l'incertain (TCRI)

Fig.28: Test d'autocorrélation et de Box-Pierce (TCRI).

Sample: 1970 2009 Included observations: 40 Autocorrelation Partial Correlation AC PAC Q-Stat 0.584 0.584 14.710 0.438 0 146 23 189 0 000 41.136 3 0.629 0.504 0.000 0.397 -0.248 48.476 0 000 0.257 -0.002 51.643 6 0.253 -0.244 0 045 -0 202 54 917 0.000 8 0 013 0 046 54 926 0.000 0.029 0.024 54.971 10 -0.044 0.226 55.284 11 -0.059 -0.016 12 -0.080 -0.050 55.666 0.000 13 -0.084 -0.079 56.104 0.000 14 -0.089 -0.167 56.621 15 -0.101 0.027 16 -0.111 -0.071 58.172 17 -0.113 0.120 59.104 0.000 18 -0 122 -0 015 60 238 0.000 -0.128 -0.012 19 61.554 0 000 20 -0.134 -0.055 63.067 0.000

Source : Réalisation personnelle à base des statistiques de la banque d'Algérie.

Il apparait à travers l'observation de la fonction d'autocorrélation simple que les quatre premiers termes de cette fonction sortent de l'intervalle de confiance, ils sont donc significatifs. Seuls le premier et le troisième terme de la fonction d'autocorrélation partielle présentent un pic significatif et il est positif. D'autre part l'hypothèse de bruit blanc est rejetée puisque la statistique de Box-Pierce (Q-stat) reste supérieur à la statistique de χ^2_p au seuil de 5 % quel que soit le retard (p). La série est non stationnaire.

1.2.1.3 La série produit intérieur brut (PIB)

Fig.29: Test d'autocorrélation et de Box-Pierce (PIB).

Sample: 1970 2009 Included observations: 40 Autocorrelation Partial Correlation AC PAC Q-Stat 0.843 0.843 30.576 0 722 0 041 53,606 0.000 71.651 0 630 0 044 0.000 0.457 -0.320 81.389 0.000 0.327 -0.003 86.515 0.217 -0.049 88 847 0.000 0.120 0.057 89 586 0.000 0.044 -0.046 89,686 0.000 -0.008 0.024 0.000 89.690 10 -0.035 0.010 89.760 11 -0.054 0.008 89.930 12 -0 067 -0 033 90 197 0.000 13 -0.066 0.002 90.471 0.000 14 -0.064 -0.007 90.733 0.000 15 -0.042 0.075 90.849 16 -0.008 0.050 90.854 0.000 90 857 0.006 -0.033 0.000 90.940 0.033 0.017 18 0.000 0.004 91.212 20 0.045 -0.083 91.381 0.000

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale.

A première vue seuls les cinq premiers termes de la fonction d'autocorrélation simple présente des pics significativement supérieurs à zéro. Les termes de cette fonction décroissent puis tendent à s'annuler, ce qui pourrait être le signe d'une tendance .Le premier terme de la fonction d'autocorrélation partielle présente un pic significatif positif le quatrième terme un pic significatif négatif. Aussi l'hypothèse de bruit blanc est rejetée puisque la statistique de Box-Pierce reste supérieur à la statistique de χ^2_p au seuil de 5 % quel que soit le retard (p). La série est non stationnaire.

1.2.1.4 La série balance commerciale (BC)

Fig.30 : Test d'autocorrélation et de Box-Pierce (BC).

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
()	1	1	0.752	0.752	24.361	0.000
	1 🔳	2	0.513	-0.120	36.010	0.000
i 1	1 1 1	3	0.334	-0.019	41.074	0.00
1 🔳	1 🔳 (4	0.270	0.133	44.474	0.00
1 🔳	1 1 1 6	5	0.222	-0.020	46.837	0.000
1 🔳	1 📋 1	6	0.226	0.110	49.370	0.00
1 1	1 1 1	7	0.189	-0.060	51.190	0.00
1 1	1 1 1	8	0.140	-0.024	52.222	0.00
1 1	1 1 1	9	0.050	-0.095	52.359	0.00
1 1 1	1 1 1	10	0.033	0.085	52.421	0.00
1 1 1	1 1 1	11	0.026	-0.013	52.461	0.00
1 1 1	i e	12	-0.033	-0.171	52.526	0.00
1 1	1 1 1	13	-0.079	0.028	52.917	0.00
1 🛭 1	1 1 6	14	-0.085	0.016	53.380	0.00
1 1	1 1 6	15	-0.068	0.024	53.687	0.00
1 1	1 1 1	16	-0.065	-0.037	53.984	0.00
1 🛭 1	1 1 6	17	-0.095	-0.086	54.638	0.00
1 🔟 1	1 🔳	18	-0.169	-0.129	56.816	0.00
1 🔤 1	1 1 6		-0.208		60.267	0.00
1 🚃 1	1 1 1	2430	-0.198			0.00

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale.

A première vue, seuls les trois premiers termes de la fonction d'autocorrélation simple présente des pics significativement supérieurs à zéro. Les termes de cette fonction décroissent progressivement ce qui est le signe d'une tendance. Seul le premier terme de la fonction d'autocorrélation partielle présente un pic significatif et il est positif. D'autre part l'hypothèse de bruit blanc est rejetée puisque la statistique de Box-Pierce (Q-stat) reste supérieur à la statistique de χ^2_p au seuil de 5 % quel que soit le retard (p). La série est non stationnaire.

1.2.1.5 La série balance commerciale hors hydrocarbure (BCHH)

Fig.31 : Test d'autocorrélation et de Box-Pierce (BCHH).

Sample: 1970 2009 Included observations: 40 Partial Correlation PAC Q-Stat Prob Autocorrelation AC 8.5664 0.600 0.501 24.505 3 0.380 0.037 31.045 0.000 0 294 -0 160 35 078 0 000 0.183 -0.114 36.685 0.095 -0.050 37.133 7 -0.003 -0.072 37.133 8 -0 025 0 007 37 165 9 -0.089 -0.005 37.596 0.000 10 -0.008 0.139 37.600 0.000 -0.042 0.058 12 -0.101 -0.207 38.313 13 -0.077 -0.119 38 680 0.000 14 -0.046 0.128 38.817 0.000 15 -0.014 0.159 38.830 16 -0.020 -0.034 17 0.003 -0.067 38.858 0.002 18 -0 011 -0 029 38 867 0.003 19 -0 005 -0 005 38 869 0 005 20 0.045 0.065 39.040 0.007

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale et de l'ONS.

Il apparait à travers l'observation de la fonction d'autocorrélation simple que les trois premiers termes de cette fonction sortent de l'intervalle de confiance, ils sont donc significatifs. Seuls les deux premiers termes de la fonction d'autocorrélation partielle le son et ils présentent un pic positif. D'autre part l'hypothèse de bruit blanc est rejetée puisque la statistique de Box-Pierce (Q-stat) reste supérieur à la statistique de χ^2_p au seuil de 5 % quel que soit le retard (p). La série est non stationnaire.

1.2.1.6 La série absorption (AB)

Fig.32: Test d'autocorrélation et de Box-Pierce (AB).

Sample: 1970 2009 Included observations: 40 Autocorrelation Partial Correlation AC PAC Q-Stat 0.851 0.851 31.163 2 0.646 -0.278 49 637 0.000 0 474 0 030 59 827 0 000 0.343 -0.001 65.324 0.000 0.231 -0.066 0.116 -0.103 0.008 -0.054 68 548 0 000 8 -0.063 0.023 68.759 0.000 9 -0.125 -0.101 69,602 0 000 10 -0.208 -0.161 72.013 11 -0.237 0.155 75.274 12 -0.270 -0.199 79.661 0.000 13 -0 289 0 012 84 857 0 000 14 -0.283 0.018 90.048 0.000 15 -0.252 0.030 94.318 16 -0.228 -0.111 97.963 17 -0.221 -0.073 101.52 0.000 18 -0.280 -0.270 107.51 0.000 19 -0.322 0.060 115.80 0.000 20 -0.271 0.157 121.94 0.000

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale.

A première vue, seuls les quatre premiers termes ainsi que le 19ème terme de la fonction d'autocorrélation simple présente des pics significativement supérieurs à zéro. Les termes de cette fonction suivent une progression quasi-décroissante amortie. Seul le premier terme de la fonction d'autocorrélation partielle présente un pic significatif et il est positif. D'autre part l'hypothèse de bruit blanc est rejetée puisque la statistique de Box-Pierce (Q-stat) reste supérieur à la statistique de χ^2_p au seuil de 5 % quel que soit le retard (p). La série est non stationnaire.

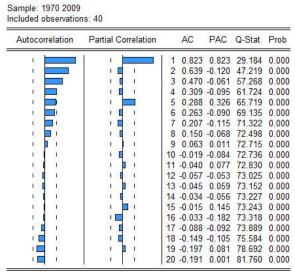
1.2.1.7 La série masse monétaire (M2)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	0.766	0.766	25.264	0.00
	0 🔳 0	2	0.546	-0.097	38.464	0.00
	0 🔳 0	3	0.347	-0.093	43.926	0.00
1 😇 1	1 1 1	4	0.184	-0.056	45.510	0.00
(1	3 6	5	0.074	-0.007	45.775	0.00
(1	0 🔳 0	6	0.079	0.173	46.083	0.00
0 1 1		7	-0.024	-0.295	46.111	0.00
1 🔳 1	1 1 1	8	-0.110	-0.052	46.741	0.00
()	1 1 1	9	-0.175	-0.031	48.405	0.00
1 0	1 1	10	-0.212	-0.005	50.927	0.00
1 1	1 1 1	11	-0.244	-0.057	54.379	0.00
1 1	1 🔳 1	12	-0.246	-0.122	58.002	0.00
1 1	1 1	13	-0.219	0.093	60.989	0.00
()	1 1 1	14	-0.196	-0.042	63.475	0.00
(🔳)	1 1	15	-0.135	0.081	64.694	0.00
1 🚺 1	1 1 1	16	-0.083	-0.057	65,175	0.00
(1)	1 1 1	17	-0.029	0.036	65.235	0.00
(1	0 🔳	18	0.077		65.691	0.00
	5 6 6	19	0.179	0.015	68.259	0.00
	1 3 6 6	20			72.818	0.00

Source : Réalisation personnelle à base des statistiques de l'ONS.

A première vue, seuls les trois premiers termes de la fonction d'autocorrélation simple présente des pics significativement supérieurs à zéro. Les termes de cette fonction suivent une progression sinusoïdale amortie. Seul le premier terme de la fonction d'autocorrélation partielle présente un pic significatif et il est positif. D'autre part l'hypothèse de bruit blanc est rejetée puisque la statistique de Box-Pierce (Q-stat) reste supérieur à la statistique de χ^2_p au seuil de 5 % quel que soit le retard (p). La série est non stationnaire.

1.2.1.8 Les séries valeur ajoutée par secteur d'activité en % du PIB


Fig.34 : Test d'autocorrélation et de Box-Pierce (VAG).

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1	()	1	0.539	0.539	12.528	0.000
1 🔳	(1)	2	0.340	0.069	17.638	0.000
1 🚞	1 📋 1	3	0.300	0.130	21.718	0.000
1 🔳 1	1 🔳	4	0.120	-0.143	22.389	0.000
1 🔳 1	1 🔳 1	5	0.155	0.149	23.539	0.000
1 🔲 1	()	6	0.182	0.055	25.169	0.000
1 1	1 🔳	7	0.004	-0.176	25.169	0.001
1 ()	1 0	8	-0.036	-0.048	25.236	0.001
1 🚺 1	((9	-0.073	-0.054	25.522	0.002
1 1	(🔳)	10	0.008	0.193	25.525	0.004
1 📳 1	(10)	11	0.102	0.060	26.129	0.006
1 🗖 1		12	-0.092	-0.300	26.641	0.009
1 🔳	1 🔳	13	-0.201	-0.152	29.165	0.006
(=)	1 🛮 1	14	-0.266	-0.113	33.725	0.002
	1 🔳 1	15	-0.392	-0.140	44.055	0.000
	1 🛮 1	16	-0.332	-0.109	51.769	0.000
1 🔳	(10	17	-0.217	0.057	55.207	0.000
	1 🗖 1	18	-0.323	-0.102	63.173	0.000
	1 🔳	19	-0.366	-0.155	73.895	0.000
1 🔤	(🔳)	20	-0.193	0.184	77.031	0.000

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale.

La fonction ne suit pas une progression particulière. Il apparait à travers l'observation de la fonction d'autocorrélation simple que les termes 1, 2, 15, 16, 18,19 sortent de l'intervalle de confiance, ils sont donc significatifs. Seul le premier terme de la fonction d'autocorrélation partielle présente un pic significatif et il est positif. D'autre part l'hypothèse de bruit blanc est rejetée puisque la statistique de Box-Pierce (Q-stat) reste supérieur à la statistique de χ^2_p au seuil de 5 % quel que soit le retard (p). La série est non stationnaire.

Fig.35: Test d'autocorrélation et de Box-Pierce (VAM).

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale.

A première vue, seuls les quatre premiers termes de la fonction d'autocorrélation simple présente des pics significativement supérieurs à zéro. Les termes de cette fonction décroissent progressivement ce qui est le signe d'une tendance. Le premier terme ainsi que le 5ème terme de la fonction d'autocorrélation partielle présente un pic significatif et il est positif. D'autre part l'hypothèse de bruit blanc est rejetée puisque la statistique de Box-Pierce (Q-stat) reste supérieur à la statistique de χ^2_p au seuil de 5 % quel que soit le retard (p). La série est non stationnaire.

Fig.36: Test d'autocorrélation et de Box-Pierce (VAI).

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.697	0.697	20.909	0.000
1	1 🔳 1	2	0.403	-0.161	28.076	0.000
l I	1 1	3	0.271	0.114	31.406	0.000
1 1	1 🛛 1	4	0.173	-0.058	32.805	0.000
1 1	1 1	5	0.095	-0.003	33.242	0.000
1 1 1	1 🔳 1	6	-0.013	-0.132	33.250	0.000
1 🔳 1	1 0 1	7	-0.113	-0.071	33.898	0.000
1 🔳 1	1 1 1	8	-0.151	-0.021	35.100	0.000
1 🚾 1	1 🔳 1	9	-0.220	-0.154	37.715	0.000
1 🔳	1 1	10	-0.249	-0.004	41.197	0.000
1 🔳	1 1 1	11	-0.224	-0.013	44.113	0.000
1	1 🔳	12	-0.274	-0.184	48.628	0.000
1	1 (13	-0.308	-0.051	54.526	0.000
1	1 1	14	-0.269	-0.007	59.214	0.000
1 🔳	1 1	15	-0.169	0.073	61.144	0.000
1 🔳 1	1 🛮 1	16	-0.114	-0.091	62.055	0.000
1 1	1 1 1	17	-0.079	0.032	62.511	0.000
1 🔳 1		18	-0.134	-0.231	63.875	0.000
1 🔳 1	1 1	19	-0.152	-0.032	65.727	0.000
1 📕 1	1 1	20	-0.112	-0.035	66.786	0.000

Source : Réalisation personnelle à base des statistiques de la Banque Mondiale.

A première vue, seuls les deux premiers termes ainsi que le 13ème terme de la fonction d'autocorrélation simple présente des pics significativement supérieurs à zéro. Les termes de cette fonction suivent une progression quasi-sinusoïdale amortie. Seul le premier terme de la fonction d'autocorrélation partielle présente un pic significatif et il est positif. D'autre part l'hypothèse de bruit blanc est rejetée puisque la statistique de Box-Pierce (Q-stat) reste supérieur à la statistique de χ^2_p au seuil de 5 % quel que soit le retard (p). La série est non stationnaire.

1.2.2 Test de normalité

La skewness permet de vérifier la symétrie ou l'asymétrie de la série, une série symétrique suit une loi normale et elle est considérée comme étant stationnaire. La kurtosis mesure l'épaisseur de la distribution, une série concentré suit une loi normale au contraire une série plate ne suit pas une loi normale, cette statistique permet de vérifier les résultats donnés par la skewness. Quant à la Jarque-Bera elle permettra de départager dans le cas où les deux premières statistiques donnent des résultats contradictoires.

Tableau.07 : Test de normalité.

Variable	S^{27}	SY/ASY	K^{28}	P/C	J-B ²⁹	Proba ³⁰	NSLN/
							SLN
PPB	1.96	ASY	6.83	P	50.20	0.000000	NSLN
TCRI	2.39	ASY	8.85	P	95.24	0.000000	NSLN
PIB	1.29	ASY	4.12	P	13.29	0.001298	NSLN
BC	2.41	ASY	8.89	P	96.99	0.000000	NSLN
BCHH	-1.60	ASY	4.94	P	23.51	0.000008	NSLN
AB	-0.46	SY	2.61	C	1.69	0.428065	SLN
M2	1.40	ASY	4.80	P	18.59	0.000092	NSLN
VAG	0.2	SY	2.06	С	1.84	0.397047	SLN
VAM	0.09	SY	2.25	C	0.99	0.609387	SLN
VAI	-0.01	SY	2.43	C	0.53	0.764750	SLN

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

Les séries PPB, TCRI, PIB, BC, BCHH et M2 ne suivent pas une loi normale³¹. Quant aux variables AB, VAG, VAM et VAI elles suivent une loi normale.

1.3 Test de stationnarité

Le but est de tester la stationnarité des différentes variables déjà présentées en utilisant le test de DF, les résultats de ce test feront l'objet d'une confirmation ou d'une infirmation par le test de PP.

Le test de DF ainsi que le test de PP permettent de tester la stationnarité des variables, définir le type de non stationnarité, et l'ordre d'intégration des variables .Elle permet aussi d'identifier la méthode adéquate pour rendre stationnaire les séries étudier.

_

 $^{^{27}}$ S=0 les observations sont répartit équitablement autours de la moyenne, |S| < 1 est le signe d'une symétrie satisfaisante.

²⁸ K=0 il s'agit d'une loi normale, K>3 est le signe que la série est plate et pas suffisamment concentré, |K|<0.5 la concentration de la série est satisfaisante

²⁹ La J-B est comparée à la statistique de khi-deux (χ^2_p) au seuil de 5%, si J-B < χ^2_p la série suit une loi normale autrement elle ne suit pas une loi normale.

³⁰ La probabilité associée au test de J-B. Cette probabilité permet une vérification du résultat donné par la J-B. Si la probabilité calculée est supérieur au seuil de 0.5 la série suit une loi normale, autrement elle ne suit pas une loi normale.

³¹ La fonction (*log*) peut permettre une normalisation de ces variables lors d'une régression.

1.3.1 La série prix du pétrole brute (PPB).

Tableau.08: Test de racine unitaire (PPB).

Variable	Test de		DF^{32}			PP ³³	
		Stat-	Stat-	Proba	Stat-	Stat-	Proba
		Calculé	Tabulé		Calculé	Tabulé	
Au niveau	Significativité	1.6098	1.9600	0.1162	1.6098	1.9600	0.1162
	de la tendance						
	à base du						
	modèle [3]						
	Significativité	1.4354	1.9600	0.1595	1.4354	1.9600	0.1595
	de la constante						
	à base du						
	modèle [2]						
	Stationnarité à	0.1902	-1.9495	0.8501	0.1902	-1.9495	0.8501
	partir du						
	modèle [1]						
En différence	Stationnarité à	-5.1130	-1.9498	0.0000	-5.1130	-1.9498	0.0000
première	partir du						
	modèle [1]						

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

L'estimation du modèle [3] indique que la statistique de student calculée est inférieure à la valeur de la table de student au seuil de 5%, ce qui signifie que le coefficient associé à la tendance n'est pas significatif.

L'estimation du modèle [2] indique que la statistique de student calculée est inférieure à la valeur de la table de student au seuil de 5%, ce qui signifie que le coefficient associé à la constante n'est pas significatif.

Le test de stationnarité est donc effectué à base du modèle [1]. La statistique de DF calculée est supérieure à la valeur de la table de DF au seuil de 5%. La séries est non stationnaire, le processus générateur de données est un DSSD. Ce processus est stationnarisé par la différentiation.

Une seule différentiation permet de rendre la série stationnaire, en effet la statistique de DF calculée devient inférieur à la valeur de la table de DF au seuil de 5%. La série est donc intégrée d'ordre (1).

³² Le principe du test de Dicky-fuller est basé sur trois modèles: si l'hypothèse H0:Φ=1 est retenue dans l'un des trois modèles, la série est non stationnaire.

Modèle sans tendance et sans constante [

^[1] $x_t = \Phi x_{t-1} + \varepsilon_t$.

Modèle sans tendance et avec constante

^[2] $x_t = \Phi x_{t-1} + \beta + \varepsilon_{t.}$

Modèle avec tendance et constante :

^[3] $x_t = \Phi x_{t-1} + bt + c + \varepsilon_t$.

³³ Le test de PP est construit sur une correction non paramétrique des statistiques Dicky-Fuller pour prendre en compte des erreurs hétéroscédastiques. Ce test suit la même logique que le test de DF.

1.3.2 La série taux de change réel (TCRI)

Tableau.09 : Test de racine unitaire (TCRI).

Variable	Test de		DF			PP	
		Stat-	Stat-	Proba	Stat-	Stat-	Proba
		Calculé	Tabulé		Calculé	Tabulé	
Au niveau	Significativité	2.2338	1.9600	0.0318	2.2338	1.9600	0.0318
	de la tendance						
	à base du						
	modèle [3]						
	Significativité	-0.0069	1.9600	0.9945	-0.0069	1.9600	0.9945
	de la tendance						
	à base du						
	modèle ([3] *) ³⁴						
	Significativité	-0.2250	1.9600	0.8232	-0.2250	1.9600	0.8232
	de la constante						
	à base du						
	modèle [2]						
	Stationnarité à	-4.0606	-1.9495	0.0002	-4.0606	-1.9495	0.0002
	partir du						
	modèle [1]						

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

L'estimation du modèle [3] indique que la statistique de student calculée est supérieure à la valeur de la table de student au seuil de 5%, ce qui signifie que le coefficient associé à la tendance est significatif. La série est non stationnaire, le processus générateur de données est un processus TS.

Après avoir effectué les opérations nécessaires à l'élimination de cette tendance. On constate à travers le modèle [3]* que le coefficient associé à la tendance devient effectivement non significatif car la statistique de student calculée devient inférieur à la valeur de la table de student au seuil de 5%. Il est maintenant possible de continuer les étapes du teste de DF et de passer à l'estimation du modèle [2].

L'estimation du modèle [2] indique que la statistique de student calculée est inférieure à la valeur de la table de student au seuil de 5%, ce qui signifie que le coefficient associé à la constante n'est pas significatif. Il est donc nécessaire d'éliminer la constante du modèle et de passer à l'estimation du modèle [1].

Le test de stationnarité est donc effectué à base du modèle [1]. La statistique d'DF calculée est inférieure à la valeur de la table d'DF au seuil de 5%. La séries est stationnaire.

La série est donc non stationnaire, le processus générateur de données est un processus TS. La série devient stationnaire après avoir éliminé la tendance.

_

³⁴ C'est le modèle detrender, la stationnarisation de la tendance est faite en estimant la droite de la tendance par les moindres carrés ordinaires en utilisant le logiciel Eviews 4.1. Puis en procédant à la récupération des valeurs ajustées à l'aide de la fonction "forcast" présente sur la barre des menu de la fenêtre qui apparait à l'écran suite à l'estimation de la tendance, et enfin en générant une série stationnaire représentant la différence entres les valeurs observées et les valeurs ajustées.

1.3.3 La série produit intérieur brut (PIB)

Tableau.10: Test de racine unitaire (PIB).

Variable	Test de		DF			PP	
		Stat- Calculé	Stat- Tabulé	Proba	Stat- Calculé	Stat- Tabulé	Proba
Au niveau	Significativité	0.9767	1.9600	0.3352	0.9767	1.9600	0.3352
	de la tendance						
	à base du						
	modèle [3]						
	Significativité	0.2259	1.9600	0.8225	0.2259	1.9600	0.8225
	de la constante						
	à base du						
	modèle [2]						
	Stationnarité à	3.1417	-1.9495	0.0032	3.1417	-1.9495	0.0032
	partir du						
	modèle [1]						
En différence	Stationnarité à	-5.1467	-1.9498	0.0000	-5.1467	-1.9498	0.0000
première	partir du						
	modèle [1]						

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

La série est non stationnaire, le processus générateur de données est un DSSD. La série est intégrée d'ordre (1).

1.3.4 La série balance commerciale (BC)

Tableau.11: Test de racine unitaire (BC).

Variable	Test de		DF			PP	
		Stat-	Stat-	Proba	Stat-	Stat-	Proba
		Calculé	Tabulé		Calculé	Tabulé	
Au niveau	Significativité	1.9513	1.9600	0.0588	1.9513	1.9600	0.0588
	de la tendance						
	à base du						
	modèle [3]						
	Significativité	0.9269	1.9600	0.3600	0.9269	1.9600	0.3600
	de la constante						
	à base du						
	modèle [2]						
	Stationnarité à	-2.0986	-1.9495	0.0426	-2.0985	-1.9495	0.0426
	partir du						
	modèle [1]						

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

L'estimation du modèle [3] indique que la statistique de student calculée est inférieure à la valeur de la table de student au seuil de 5%, ce qui signifie que le coefficient associé à la tendance n'est pas significatif. Il est donc nécessaire d'éliminer la tendance du modèle et de passer à l'estimation du modèle [2].

L'estimation du modèle [2] indique que la statistique de student calculée est inférieure à la valeur de la table de student au seuil de 5%, ce qui signifie que le coefficient associé à la constante n'est pas significatif. Il est donc nécessaire d'éliminer la tendance du modèle et de passer à l'estimation du modèle [1].

Le test de stationnarité est donc effectué à base du modèle [1] et cette fois en utilisant la statistique d'DF. La statistique de DF calculée est inférieure à la valeur de la table de DF au seuil de 5%. La séries est stationnaire.

1.3.5 La série balance commerciale hors hydrocarbures (BCHH)

Tableau.12: Test de racine unitaire (BCHH).

Variable	Test de		DF			PP	
		Stat-	Stat-	Proba	Stat-	Stat-	Proba
		Calculé	Tabulé		Calculé	Tabulé	
Au niveau	Significativité	-3.4047	1.9600	0.0001	-3.4047	1.9600	0.0001
	de la tendance						
	à base du						
	modèle [3]						
	Significativité	-0.0859	1.9600	0.9320	-0.0859	1.9600	0.9320
	de la tendance						
	à base du						
	modèle [3] *						
	Significativité	-0.1006	1.9600	0.9204	-0.1006	1.9600	0.9204
	de la constante						
	à base du						
	modèle [2]						
	Stationnarité à	-4.6470	-1.9495	0.0000	-4.6470	-1.9495	0.0000
	partir du						
	modèle [1]						

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

La série est non stationnaire, le processus générateur de données est un processus TS. La série devient stationnaire après avoir éliminé la tendance.

1.3.6 La série absorption (AB)

Tableau.13: Test de racine unitaire (AB).

Variable	Test de		DF			PP	
		Stat-	Stat-	Proba	Stat-	Stat-	Proba
		Calculé	Tabulé		Calculé	Tabulé	
Au niveau	Significativité	-0.8739	1.9600	0.3879	-0.8739	1.9600	0.3879
	de la tendance						
	à base du						
	modèle [3]						
	Significativité	1.4795	1.9600	0.1474	1.4795	1.9600	0.1474
	de la constante						
	à base du						
	modèle [2]						
	Stationnarité à	-0.7281	-1.9495	0.4710	-0.7281	-1.9495	0.4710
	partir du						
	modèle [1]						
En différence	Stationnarité à	-5.2093	-1.9498	0.0000	-5.2093	-1.9498	0.0000
première	partir du						
	modèle [1]						

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

La série est non stationnaire, le processus générateur de données est un DSSD. La série est intégrée d'ordre (1).

1.3.7 La série masse monétaire (M2)

Tableau.14: Test de racine unitaire (M2).

Variable	Test de		DF			PP	
		Stat-	Stat-	Proba	Stat-	Stat-	Proba
		Calculé	Tabulé		Calculé	Tabulé	
Au niveau	Significativité	1.5533	1.9600	0.1291	1.5533	1.9600	0.1291
	de la tendance						
	à base du						
	modèle [3]						
	Significativité	1.1940	1.9600	0.2400	1.1940	1.9600	0.2400
	de la constante						
	à base du						
	modèle [2]						
	Stationnarité à	0.6620	-1.9495	0.5119	0.6620	-1.9495	0.5119
	partir du						
	modèle [1]						
En différence	Stationnarité à	-7.1202	-1.9498	0.0000	-7.1202	-1.9498	0.0000
première	partir du						
	modèle [1]						

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

La série est non stationnaire, le processus générateur de données est un DSSD. La série est intégrée d'ordre (1).

1.3.8 Les série valeur ajoutée en pourcentage du PIB

Tableau.15: Test de racine unitaire (VAG).

Variable	Test de		DF			PP	
		Stat-	Stat-	Proba	Stat-	Stat-	Proba
		Calculé	Tabulé		Calculé	Tabulé	
Au niveau	Significativité	0.8940	1.9600	0.3772	0.8940	1.9600	0.3772
	de la tendance						
	à base du						
	modèle [3]						
	Significativité	3.1671	1.9600	0.0031	3.1671	1.9600	0.0031
	de la constante						
	à base du						
	modèle [2]						
	Stationnarité à	-3.1658	-2.9378	0.0031	-3.1658	-2.9378	0.0031
	partir du						
	modèle [2]						

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

L'estimation du modèle [3] indique que la statistique de student calculée est inférieure à la valeur de la table de student au seuil de 5%, ce qui signifie que le coefficient associé à la tendance n'est pas significatif. Il est donc nécessaire d'éliminer la tendance du modèle et de passer à l'estimation du modèle [2].

L'estimation du modèle [2] indique que la statistique de student calculée est supérieure à la valeur de la table de student au seuil de 5%, ce qui signifie que le coefficient associé à la constante est significatif. Le test de stationnarité est donc effectué à base du modèle [2]. La statistique de DF calculée est inférieure à la valeur de la table de DF au seuil de 5%. La séries est stationnaire.

Tableau.16: Test de racine unitaire (VAM).

Variable	Test de		DF			PP	
		Stat- Calculé	Stat- Tabulé	Proba	Stat- Calculé	Stat- Tabulé	Proba
Au niveau	Significativité	-1.5341	1.9600	0.1337	-1.5341	1.9600	0.1337
	de la tendance						
	à base du						
	modèle [3]						
	Significativité	1.3616	1.9600	0.1815	1.3616	1.9600	0.1815
	de la constante						
	à base du						
	modèle [2]						
	Stationnarité à	-1.6169	-1.9495	0.1142	-1.6169	-1.9495	0.1142
	partir du						
	modèle [1]						
En différence	Stationnarité à	-6.1538	-1.9498	0.0000	-6.1538	-1.9498	0.0000
première	partir du						
	modèle [1]						

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

La série est non stationnaire, le processus générateur de données est un DSSD. La série est intégrée d'ordre (1).

Tableau.17: Test de racine unitaire (VAI).

Variable	Test de		DF			PP	
		Stat-	Stat-	Proba	Stat-	Stat-	Proba
		Calculé	Tabulé		Calculé	Tabulé	
Au niveau	Significativité	0.5754	1.9600	0.5685	0.5754	1.9600	0.5685
	de la tendance						
	à base du						
	modèle [3]						
	Significativité	2.7196	1.9600	0.0099	2.7196	1.9600	0.0099
	de la constante						
	à base du						
	modèle [2]						
	Stationnarité à	-2.6929	-2.9378	0.0106	-2.6929	-2.9378	0.0106
	partir du						
	modèle [2]						
En différence	Stationnarité à	-6.4944	-2.9399	0.0000	-6.4944	-2.9399	0.0000
première	partir du						
	modèle [2]						

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

L'estimation du modèle [3] indique que la statistique de student calculée est inférieure à la valeur de la table de student au seuil de 5%, ce qui signifie que le coefficient associé à la tendance n'est pas significatif.

L'estimation du modèle [2] indique que la statistique de student calculée est supérieure à la valeur de la table de student au seuil de 5%, ce qui signifie que le coefficient associé à la constante est significatif.

Le test de stationnarité est donc effectué à base du modèle [2]. La statistique de DF calculée est supérieure à la valeur de la table de DF au seuil de 5%. La séries est non stationnaire, le processus générateur de données est un DS avec dérive. Ce processus est stationnarisé par la différentiation.

Une seule différentiation permet de rendre la série stationnaire, en effet la statistique de DF calculée devient inférieur à la valeur de la table de DF au seuil de 5%. La série est donc intégrée d'ordre (1).

Section 02 : Modélisations des variables.

Cette section sera consacrée à la mise en évidence empirique de la manifestation d'un mal hollandais, d'abord par une régression multiple estimée par la méthode des MCO indispensable pour cerner une première interaction entres les variables. Puis dans un cas de fausse régression l'estimation d'un modèle VAR dans le but d'exploiter les instruments d'analyse qui lui sont associés et obtenir une réponse définitive à la question de départ.

Il s'agit d'estimer deux modèles, le premier met en relation les prix du pétrole brut et le PIB, la balance commerciale qui inclut les exportations en hydrocarbures, et celle qui les exclut, l'absorption et la masse monétaire au sens de M2. Pour étudier l'impact d'un boom sur la sphère réelle et sur la sphère monétaire

Le deuxième met en relation les PPB et les valeurs ajoutées en pourcentage du PIB, soit VAG, VAM, VAI. Pour mettre en évidence une désindustrialisation ou une désagriculturisation.

2.1. Approche par la régression multiple

L'approche par une régression multiple permet de définir une corrélation entre les variables et le sens de cette corrélation. Elle permet aussi de voir si l'estimation est une fausse régression dut à la non stationnarité des variables.

2.1.1. Le premier modèle

• Première régression

PPB=36.41+0.07×TCRI+
$$(1.51\times10^{-10})$$
PIB+8.83×BC+ (3.19×10^{-11}) BCHH-0.45×AB+ (2.08×10^{-10}) M2. [3.95] [-2.64] [2.63] [4.93] [0.24] [-3.30] [3.20]
$$R^2=0.96$$

$$DW=1.52$$

Toutes les statistiques de student en valeur absolue mise appart celle associée à la balance commerciale hors hydrocarbures (BCHH) sont supérieur à la valeur de la table de student (1.96) au seuil de 5%, ce qui signifie que tous les coefficients mis appart celui associé à la BCHH sont statistiquement significatifs.

La statistique de Fisher, $F_c=143.28$ est largement supérieur à la valeur de la table de Fisher (3.84) au seuil de 5%, ce qui permet de dire que le modèle est globalement bien défini.

Le coefficient de détermination obtenu de la régression (R^2 =0.96), indique que la variable (PPB) est expliquée à 96%, par la combinaison linéaire des variables explicatives. Selon la règle de Granger (R^2 =0.96>DW=1.52) le modèle estimé est une fausse régression.

• Résultat de la première régression

Les prix du pétrole brut dépendent positivement du taux de change réel coté à l'incertain, un boom des PPB est corrélé positivement à une dépréciation réelle de la monnaie nationale.

Les prix du pétrole brut dépendent positivement du produit intérieur brut, un boom pétrolier est corrélé positivement à une croissance en terme de PIB.

Les prix du pétrole brut dépendent positivement de la balance commerciale, un boom des PPB est corrélé positivement à un excédent commerciale.

Les prix du pétrole brut dépendent positivement de la masse monétaire. Un boom des PPB est corrélé positivement à une expansion monétaire.

Même si le coefficient associé à la variables BCHH est statistiquement insignifiants, en faisant abstraction de ce résultat on en déduits que les prix du pétrole brut dépendent négativement de la balance commerciale hors hydrocarbures, autrement dit les PPB sont corrélés positivement à la détérioration de la balance commerciale qui ne prend pas en compte les exportations en hydrocarbures.

Et enfin, les prix du pétrole brut dépendent négativement de l'absorption. C'est-à-dire les PPB sont corrélés négativement à l'absorption, sachant que cette variable englobe la consommation, l'investissement ainsi que les exportations brutes.

Mise appart de la relation entre PPB et AB, la première régression présente toutes les caractéristiques d'un mal hollandais ce qui pousse à appliquer cette théorie au cas algérien.

• Deuxième régression

PPB=
$$35.55-0.07 \times TCRI+ (1.41 \times 10^{-10}) \times PIB+ (9.05 \times 10^{-10}) \times BC - 0.43 \times AB +2.12 \times M2.$$
[4.22] [-2.67] [3.68] [5.97] [-3.52] [3.41]
$$R^{2} = 0.96$$

$$DW=1.54$$

Après élimination de la variable (BCHH) dont le coefficient est statistiquement non significatif et l'estimation d'un autre modèle par les MCO, toutes les statistiques de student en valeur absolue sont supérieures à la valeur de la table de student (1.96) au seuil de 5%, ce qui signifie que tous les coefficients sont statistiquement significatifs.

La statistique de Fisher, F_c=176.96 est largement supérieur à la valeur de la table de Fisher (3.84) au seuil de 5%, ce qui permet de dire que le modèle est globalement bien défini.

Le coefficient de détermination obtenu de la régression (R^2 =0.96), indique que la variable (PPB) est expliquée à 96%, par la combinaison linéaire des variables explicatives. Selon la règle de Granger (R^2 =0.96>DW=1.54) le modèle estimé est une fausse régression.

• Résultat de la deuxième régression

La deuxième régression confirme des résultats concernant le PIB, la balance commerciale, la masse monétaire et l'absorption.

Cependant elle infirme le résultat concernant la relation entre les PPB et le TCRI, selon cette seconde régression les PPB sont corrélés positivement à une appréciation réelle de la monnaie nationale.

La deuxième régression ne permet pas de conclure à un résultat similaire au premier.

2.1.2. Le deuxième modèle

• Première régression

PPB=-27.48+0.22×VAG-2.91×VAM+1.53×VAI.
[-0.30] [0.09] [-2.38] [1.40]
$$R^{2} = 0.62 DW = 0.45$$

Seule la statistique de student associée à la variable (VAM) est supérieure à la valeur de la table de student au seuil de 5%, ce qui signifie qu'uniquement le coefficient associé à cette variable est statistiquement significatif.

La statistique de Fisher, F_c =176.96 est largement supérieur à la valeur de la table de Fisher (3.84) au seuil de 5%, ce qui permet de dire que le modèle est globalement bien défini.

Le coefficient de détermination obtenu de la régression (R^2 =0.62), indique que la variable (PPB) est expliquée à 62%, par la combinaison linéaire des variables explicatives. Selon la règle de Granger (R^2 =0.62 >DW=0.45) le modèle estimé est une fausse régression.

• Résultat de la première régression

Pour l'interprétation, on considère dans un premier temps que tous les coefficients sont statistiquement significatifs.

Les prix du pétrole brut dépendent positivement de la valeur ajoutée dans le secteur agricole, un boom des PPB est corrélé positivement à une agriculturisation.

Les prix du pétrole brut dépendent négativement de la valeur ajoutée en pourcentage du PIB dans le secteur manufacturier, un boom des PPB est corrélé positivement à un déclin dans le secteur manufacturier.

Les prix du pétrole brute dépendent positivement de la valeur ajouté en pourcentage du PIB dans le secteur industriel, un boom des PPB est corrélé positivement à une industrialisation. Cependant il est nécessaire de préciser que le secteur industriel comprend le secteur des hydrocarbures. Ce résultat pourrait être le fait de l'expansion pétrolière

Selon les résultats de la première régression un boom pétrolier engendre des effets adverse sur l'industrie manufacturière, le mal hollandais est applicable pour le cas de l'Algérie, et il se manifeste par une désindustrialisation.

• Deuxième régression

PPB=1.65×VAM.
$$R^2 = -0.53$$
 $DW = -186.41$. [4.56]

Après élimination des variables non significatives (VAI, VAM) ainsi que la constante et l'estimation d'un autre modèle par les MCO, la statistiques de student en valeur absolue est supérieures à la valeur de la table de student (1.96) au seuil de 5%, ce qui signifie que le coefficient associé à la variable (VAM) est statistiquement significatifs.

• Résultat de la deuxième régression

Les résultats issus de la seconde régression contredisent les premiers, la relation entre boom des PPB et la VAM est positive, un boom pétrolier est corrélé positivement à une expansion du secteur manufacturier.

Les premières estimations ne permettent pas de trancher entre les résultats obtenus, il convient donc de passer à une mise en relation différentes entre les variables, en l'occurrence la modélisation VAR.

2.2. Le modèle VAR

La modélisation économétrique classique à plusieurs équations structurelle a connu beaucoup de critique et de défaillance face à un environnement économique très perturbé. Les prévisions élaborées à l'aide de ces modèles se sont révélées très médiocre. Selon Granger ces résultats médiocre sont dus à la non stationnarité des séries, il propose alors un modèle d'estimation le modèle (VAR : vecteur autorégressif). L'estimation d'un tel modèle se fait en deux étapes :

- La stationnarisation des variables du modèle, la section précédente a eu pour objet de tester cette stationnarité et de définir la méthode adéquate de stationnarisation.
- Le choix de l'ordre de retard.

L'estimation du modèle VAR ce fait soit en estimant chaque équation du modèle par les MCO, ou l'estimation de toutes les équations du modèle VAR au même temps par la méthode du maximum de vraisemblance.

Dans cette partie l'estimation est faite à l'aide de l'utilisation des deux méthodes. Logiquement les deux méthodes d'estimations conduisent aux mêmes résultats.

Ce qui est intéressant ce n'est pas le modèle VAR en lui-même car le but n'est pas de faire des prévisions, mais les différents instruments d'analyse qui lui sont associés pour étudier l'impact d'un boom sur les différentes variables sélectionnées.

2.2.1. Choix de l'ordre de retard

Le choix du nombre de retard se fait en estimant les équations du modèle VAR pour des ordres de retard allant de 1 à (P) et ou (P=4) représente le retard maximum. On retient le retard (P) qui minimise les deux critères d'information AIC³⁵ et SC³⁶.

2.2.1.1. Le premier modèle

Tableau.18 : Choix du nombre de retard pour le modèle VAR estimé par la méthode des MCO pour le premier modèle.

	P	P=1 P=2		=2	P=3			=4
	AIC	SC	AIC	SC	AIC	SC	AIC	SC
D(PPB)	6.42	6.84	5.33	5.99	5.15	6.11	4.43*	5.72*
TCRI	9.65	9.99	9.40	10.05	8.69*	9.65*	8.50	9.79
D(PIB)	49.13	49.47	48.47	49.13	48.15*	49.12*	48.45	49.74
BC	47.41	47.75	45.96*	46.61*	46.07	47.04	45.70	46.99
ВСНН	48.03	48.37	47.50*	48.15*	47.25	48.22	47.20	48.49
D(AB)	6.19*	6.53*	6.14	6.79	6.28	7.25	5.51	6.79
D (M2)	49.17	49.52	48.80	49.45	48.52	49.49	47.96*	49.25*

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

Pour l'estimation du modèle VAR(1) par la méthode des moindres carrées ordinaires on retient selon le principe de parcimonie l'ordre de retard (P=1).

Tableau.19 : Choix du nombre de retard pour le modèle VAR estimé par la méthode du maximum de vraisemblance pour le premier modèle.

	P=1	P=2	P=3	P=4
AIC	214.67*	213.77	213.85	/
SC	217.08*	218.34	220.62	/

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

Pour l'estimation du modèle VAR(1) par la méthode du maximum de vraisemblance on retient selon le principe de parcimonie l'ordre de retard (P=1).

 $^{^{35}}$ AIP(P)=ln[| $\sum \varepsilon$ |]+(2PK²)/n

³⁶ SC (P)= $\ln[|\sum \varepsilon|]+ (PK^2\ln(n))/n$

2.2.1.2. Le deuxième modèle

Tableau.20 : Choix du nombre de retard pour le modèle VAR estimé par la méthode des MCO pour le deuxième modèle.

	P=	=1	P=	=2	P	=3	P=	-4
	AIC	SC	AIC	SC	AIC	SC	AIC	SC
D(PPB)	7.44*	7.66*	7.60	7.99	7.68	8.25	7.86	8.62
VAG	3.78*	4.00*	3.92	4.31	3.99	4.56	4.12	4.88
D(VAM)	3.93	4.14	4.12	4.51	4.34	4.91	3.09*	3.85*
D(VAI)	5.55*	5.77*	5.60	5.99	5.75	6.32	5.39	6.14

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

Pour l'estimation du modèle VAR(1) par la méthode des moindres carrées ordinaires on retient selon le principe de parcimonie l'ordre de retard (P=1).

Tableau.21 : Choix du nombre de retard pour le modèle VAR estimé par la méthode du maximum de vraisemblance pour le deuxième modèle.

	P=1	P=2	P=3	P=4
AIC	214.67*	213.77	213.85	/
SC	217.08*	218.34	220.62	/

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

Pour l'estimation du modèle VAR(1) par la méthode du maximum de vraisemblance on retient selon le principe de parcimonie l'ordre de retard (P=1).

2.2.2. Estimation du modèle VAR

Les critères d'information AIC et SC permettent de conclure en ce qui concerne les deux modèles à l'estimation d'un vecteur autorégressif d'ordre (1), les éléments d'analyse associés au modèle seront étudier en choisissant également ce mêmes ordre de retard.

2.2.2.1. Le premier modèle

Les équations résultant de l'estimation du VAR(1) sont présentées ci-dessous :

D (PPB (-1)) = -0.65*D (PPB (-1)) + 0.05*TCRI (-1) - $(8.58\times10^{-11})*D$ (PIB (-1)) + $(2.07\times10^{-10})*BC$ (-1) - $(8.26\times10^{-10})*BCHH$ (-1) - 0.50*D (AB (-1)) - $(1.11\times10^{-10})*D$ (M2 (-1)) + 3.31.

D (TCRI (-1)) = -1.81*D (PPB (-1)) + 0.29*TCRI (-1) + $(4.48 \times 10^{-10})*D$ (PIB (-1)) + $(8.56 \times 10^{-10})*BC$ (-1) - $(7.39 \times 10^{-10})*BCHH$ (-1) - 0.98*D (AB (-1)) - $(3.71 \times 10^{-10})*D$ (M2 (-1)) - 0.59.

D (PIB (-1)) = $(4.87 \times 10^{+8})$ *D (PPB (-1)) + $(1.79 \times 10^{+8})$ *TCRI (-1) - 0.42*D (PIB (-1)) + 0.08*BC (-1) + 0.18*BCHH (-1) + 43150477*D (AB (-1)) + 0.15*D (M2 (-1)) + $4.38 \times 10^{+9}$.

D (BC (-1)) = $(-4.30 \times 10^{+8})$ *D (PPB (-1)) -4439929*TCRI (-1) + 0.02*D (PIB (-1)) + 0.90*BC (-1) -0.56*BCHH (-1) $-(4.36 \times 10^{+8})$ *D (AB (-1)) + 0.05*D (M2 (-1)) + $1.40 \times 10^{+9}$.

D (BCHH (-1)) = $-(3.9 \times 10^{+8})$ *D (PPB (-1)) -15110185*TCRI (-1) -0.57*D (PIB (-1)) +0.03*BC (-1) + 0.24*BCHH (-1) $-(3.47 \times 10^{+8})$ *D (AB (-1)) + 0.14*D (M2 (-1)) + $2.48 \times 10^{+9}$.

D (AB (-1)) = -0.05*D (PPB (-1)) - 0.05*TCRI (-1) - $(8.84\times10^{-12})*D$ (PIB (-1)) + $(1.75\times10^{-10})*BC$ (-1) + $(1.65\times10^{-10})*BCHH$ (-1) + 0.09*D (AB (-1)) + $(1.06\times10^{-10})*D$ (M2 (-1)) -1.2.

D (M2 (-1)) = $-(1.81 \times 10^{+8})$ *D (PPB (-1)) + 67598737*TCRI (-1) + 0.01*D (PIB (-1)) + 0.63*BC (-1) -0.66*BCHH (-1) $-(1.46 \times 10^{+8})$ *D (AB (-1)) -0.50*D (M2 (-1)) + $2.58 \times 10^{+9}$.

Tableau.22: Résultats d'estimation du modèle VAR(1) pour le premier modèle pour le deuxième modèle.

dedicine induce.							
	D(PPB)	TCRI	D(PIB)	BC	ВСНН	D(AB)	D (M2)
D (PPB (-1))	-0.6501	-1.8173	$4.87 \times 10^{+8}$	$-4.30\times10^{+8}$	$-3.9\times10^{+8}$	-0.0595	$-1.81 \times 10^{+8}$
	[-2.56]	[-1.46]	[1.05]	[-2.19]	[-1.47]	[-0.27]	[-0.38]
TCRI(-1)	0.0517	0.2983	1.79×10 ⁺⁸	-4439929	-15110185	-0.0527	67598737
	[1.19]	[1.42]	[2.28]	[-0.13]	[-0.33]	[-1.42]	[0.84]
D(PIB(-1))	-8.58×10	4.48×10 ⁻¹⁰	-0.4290	0.0241	-0.5723	-8.84×10	0.0103
	11					12	
	[-0.80]	[0.87]	[-2.23]	[0.29]	[-5.16]	[-0.09]	[0.05]
BC(-1)	2.07×10^{-10}	8.56×10 ⁻¹⁰	0.0855	0.9010	0.0356	1.75×10 ⁻¹⁰	0.6387
	[1.33]	[1.13]	[0.30]	[7.57]	[0.22]	[1.31]	[2.22]
BCHH(-1)	-8.26×10	-7.39×10	0.1853	-0.5673	0.2488	1.65×10 ⁻¹⁰	-0.6678
	10	10					
	[-6.71]	[-1.23]	[0.83]	[-6.01]	[1.93]	[1.56]	[-2.93]
D (AB (-1))	-0.5081	-0.9888	43150477	-4.36×10 ⁺⁸	-3.47×10 ⁺⁸	0.0917	-1.46×10 ⁺⁸
	[-2.27]	[-0.91]	[0.10]	[-2.54]	[-1.48]	[0.47]	[0.35]
D(M2(-1))	-1.11×10	-3.71×10	0.1517	0.0579	0.1406	1.06×10^{-10}	-0.5068
	10	10					
	[-1.25]	[-0.86]	[0.94]	[0.85]	[1.51]	[1.39]	[-3.08]
С	3.3102	-0.5982	4.38×10 ⁺⁹	1.40×10 ⁺⁹	2.48×10 ⁺⁹	-1.2009	2.58×10 ⁺⁹
	[3.14]	[-0.11]	[2.29]	[1.73]	[2.25]	[-1.33]	[1.32]

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

Les prix du pétrole brut sont influencés négativement par leurs propres valeurs passées (Décalée d'une période), et par les valeurs passées de la balance commerciale hors hydrocarbure et de l'absorption. Ces deux dernières ont un impact négatif et significatif sur les PPB.

Le taux de change réel coté à l'incertain n'est influencé significativement par aucune des variables étudiées.

Le produit intérieur brut est influencé significativement et négativement par ces propres valeurs passées et significativement et positivement par les valeurs passées du taux de change réel coté à l'incertain.

La balance commerciale est influencée significativement et positivement par ces propres valeurs passées, et significativement et négativement par les valeurs passées des prix du pétrole brut, de la balance commerciale hors hydrocarbures et de l'absorption.

La balance commerciale hors hydrocarbures est influencée significativement et négativement par le produit intérieur brut.

L'absorption n'est influencée significativement par aucune des variables étudiés.

La masse monétaire est influencée significativement et négativement par ces propres valeurs passées et par les valeurs passées de la balance commerciale hors hydrocarbures, et elle est influencée significativement et positivement par les valeurs passées de la balance commerciale.

• Résultat

Pour le premier modèle les interactions entres les variables ne permettent pas de conclure à un mal hollandais.

2.2.2.2. Le deuxième modèle

Les équations résultant de l'estimation du VAR(1) sont présentées ci-après :

```
D (PPB (-1)) = -0.28*D (PPB (-1)) +0.56*VAG (-1) +0.07*D (VAM (-1)) +0.43*D (VAI (-1)) -3.32.
```

$$VAG(-1) = -0.03*D(PPB(-1)) + 0.48*VAG(-1) - 0.19*D(VAM(-1)) - 0.05*D(VAI(-1)) + 5.18.$$

D (VAM (-1)) =
$$0.02*D$$
 (PPB (-1)) $-0.13*VAG$ (-1) $-0.13*D$ (VAM (-1)) $-0.12*D$ (VAI (-1)) + 1.007 .

D (VAI
$$(-1)$$
)= 0.03 *D (PPB (-1)) + 0.87*VAG (-1) +0.61*D (VAM (-1)) +0.11*D (VAI (-1)) - 8.16.

Tableau.23: Résultats d'estimation du modèle VAR(1) pour le deuxième modèle.

	D(PPB)	VAG	D(VAM)	D(VAI)
D(PPB)	-0.2849	-0.0334	0.0245	0.0397
	[-0.98]	[-0.72]	[0.49]	[0.35]
VAG	0.5606	0.4801	-0.1384	0.8772
	[0.54]	[2.93]	[-0.78]	[2.21]
D(VAM)	0.0704	-0.1907	-0.1394	0.6197
	[0.05]	[-1.00]	[-0.68]	[1.34]
D(VAI)	0.4391	-0.0579	-0.1202	0.1185
	[0.84]	[-0.69]	[-1.33]	[0.58]
С	-3.3213	5.1826	1.0078	-8.1690
	[-0.32]	[3.13]	[0.56]	[-2.03]

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

La PPB n'est influencée significativement par aucune des variables étudiées. La VAG est influencée significativement et positivement par ces propres valeurs passées. La VAM n'est influencée significativement par aucunes des variables étudiées. La VAI est influencée significativement par les valeurs passées de la VAG.

• Résultat

Pour le deuxième modèle les interactions entres les variables ne permettent pas de conclure à un mal hollandais.

2.3. Instruments d'analyse associés au modèle VAR

Il s'agit de tester le sens de la causalité entre les variables, d'étudier la fonction de réponse aux chocs, et de décomposer la variance de l'erreur de prévision.

2.3.1. L'Analyse des chocs

L'analyse des chocs consiste à mesurer l'impact de la variation d'une innovation sur les variables. Dans ce qui suit l'analyse de la fonction de réponse impulsionnelle se fait sur un horizon qui s'étale sur (10) périodes, pour distinguer des effets de court terme des effets de long terme.

2.3.1.1. Le premier modèle

Le but est d'estimer l'impact d'un boom des prix du pétrole brut sur les autres variables, on peut donc se limiter à l'analyse de l'impact d'un choc de D(PPB) sur les autres variables.

Pour avoir un mal hollandais on s'attend à ce qu'un choc positif sur D(PPB) implique, un choc positif sur, le D(PIB), la BC, D(AB), et D(M2), et un choc négatif sur le TCRI et sur la BCHH. Et inversement.

Aussi il est nécessaire de préciser qu'un choc négative sur le PIB peut être le signe d'un mal hollandais, cela signifie que même avec le secteur des hydrocarbures on assiste au déclin de l'activité économique, ce déclin ne peut être entrainé que par les autres secteurs d'activités.

Le tableau ci-dessous représente les réponses aux chocs sur D(PPB), en bleu apparait ce qui est en accord avec la théorie du mal hollandais, en rouge ce qui annule cette théorie pour le cas de l'Algérie.

Tableau.24 : Réponse au choc de D(PPB) pour le premier modèle.

	D(PPB)	TCRI	D(PIB)	BC	ВСНН	D(AB)	D (M2)
1	+	0	0	0	0	0	0
2	_	+	_	_	_	_	-
3	+	+	+	_	+	+	_
4	+	+	_	+	_	-	+
5	_	_	+	_	_	_	-
6	+	+	+	+	+	+	+
7	_	_	_	_	_	_	_
8	+	+	+	_	+	+	_
9	+	+	_	+	+	_	+
10	_	ı	+	_	_	ı	ı

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

Pour la première période un choc positif sur les prix du pétrole brut n'a aucun impact sur les autres variables.

Un choc positive sur D(PPB) n'engendre dans aucun des cas une appréciation réelle de la monnaie nationale, autrement dit il conduit à un choc positif du TCRI correspondant à une dépréciation réelle de la monnaie nationale. Aussi un choc négatif sur D(PPB) conduit quasiment tous les cas à un choc négatif sur le TCRI (sauf une la période 2).

Paradoxalement même sans une appréciation réelle de la monnaie nationale, la réponse au choc du reste variables est dans la plupart des cas conforme à la théorie du mal hollandais particulièrement pour la période 4, où un choc positif sur D(PPB) conduit à une détérioration de BCHH et une décroissance de D(PIB). Et ces effets se manifestent à court terme. Ce qui permet d'accepter dans un premier temps d'appliquer cette théorie au cas algérien.

2.3.1.2. Le deuxième modèle

Le but est d'estimer l'impact d'un boom sur les prix du pétrole brut sur les autres variables, on peut donc se limiter à l'analyse de l'impact d'un choc de D(PPB) sur les autres variables.

Pour avoir un mal hollandais on s'attend à ce qu'un choc positif sur D(PPB) implique, un choc négatif sur, la VAG ou sur D(VAM), et un choc positif sur D(VAI). Et inversement.

Aussi il est nécessaire de préciser qu'un choc négatif sur D (VAI) peut être le signe d'un mal hollandais, puisque le secteur industriel comprend le secteur des hydrocarbures, cela signifie que même la contribution du secteur des hydrocarbures à la formation de VA est insuffisante et conduit au déclin des autres secteurs de l'économie.

Le tableau ci-dessous représente les réponses au choc de D(PPB), comme pour le premier modèle, en bleu apparait ce qui est en accord avec la théorie du mal hollandais, en rouge ce qui annule cette théorie pour le cas de l'Algérie.

Tableau.25: Réponse au c	choc de D(PPB)	pour le deuxième	modèle.
--------------------------	----------------	------------------	---------

	D(PPB)	VAG	D(VAM)	D(VAI)
1	+	0	0	0
2	_	+	_	+
3	+	_	+	_
4	_	+	_	+
5	+	_	+	_
6	_	+	_	+
7	+	_	+	_
8	_	+	_	+
9	+	_	+	_
10	_	+	_	+

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

Pour la première période un choc positif sur les prix du pétrole brut n'a aucun impact sur les autres variables.

Un choc sur D(PPB) présente tantôt un choc positif et tantôt un choc négatif, c'est également le cas pour les autres variables.

Le résultat des réponses au choc sur D(PPB) sont conforme à la théorie du mal hollandais, ils permettent aussi de conclure à une manifestation par une désagriculturisation et non pas par une désindustrialisation, car en présence d'un choc positif sur D(PPB), la VAG présente un choc négatif, et D(VAM) un choc positif, et inversement.

Aussi en présence d'un choc positif sur D(PPB) la D(VAI) présente un choc négatif, ce qui signifie que même la contribution du secteur des hydrocarbures à la formation du PIB est insuffisante et conduit au déclin de l'activité économique.

Les effets du choc sur D(PPB) perdurent dans le temps, il y'a donc une relation de long terme entres les variables.

2.3.2. Décomposition de la variance de l'erreur de prévision

La décomposition de la variance de l'erreur de prévision a pour objectif de calculer pour chacune des innovations sa contribution à la variance de l'erreur.

- Si un choc relatif à l'erreur de prévision n'affecte pas la variance de l'erreur de la variable en question, cette variable est considérés exogène car elle évolue indépendamment de l'erreur de prévision.
- A contrario un choc affectant fortement la variable en question, la variance de l'erreur est considéré endogène elle est dépendante de l'erreur de prévision.

Dans la pratique ces résultat ne sont pas très marqués mais indique la contribution de chaque variable à la variance de l'erreur de prévision.

La décomposition de la variance de l'erreur de prévision nécessite le choix de l'ordre de décomposition et le choix de l'horizon de décomposition. Dans ce qui suit le choix de décomposition se fait de la variable la plus endogène à l'erreur de prévision, à la variable la plus exogène et sur un horizon qui s'étale sur (10) périodes.

2.3.2.1 Le premier modèle

En ce qui concerne toutes les variables, la contribution de chaque variable à l'erreur de prévision est presque la même peu importe la période. L'interprétation ne se fera pas en pourcentage de la contribution mais en fonction de la contribution significative ou moins significative à la variance de l'erreur. Les résultats sont résumés dans le tableau ci-dessous, la contribution significative serra affectée d'un signe (+), la contribution moins significative d'un signe (-).

Tableau.26 : Décomposition de la variance de l'erreur de prévision du premier modèle.

		Contribution à variance de l'erreur de prévision.							
Variables	D(PPB)	TCRI	D(PIB)	BC	ВСНН	D(AB)	D (M2)		
D(PPB)	+	_	+	_	+	_	_		
TCRI	+	+	+	_	_	_	_		
D(PIB)	+	+	+	_	_	_	_		
BC	+	+	+	+	+	_	_		
ВСНН	+	+	+	+	+	_	_		
D(AB)	+	_	_	_	_	+			
D(M2)	=	+	+	_	+	_	+		

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

Les variables BC, BCHH et D(M2) sont les plus endogènes à la variation de l'erreur de prévision. Puis viennent les variables, D(PPB), TCRI, PIB. Et enfin D(AB) avec une contribution plus faible. La variance de l'erreur de chaque variable présente une influence significative de ces propres innovations.

La variance de l'erreur de prévision de BC est due à ces propres innovations, et à celles des autres variables, avec une influence plus significative des innovations concernant D(PPB), TCRI, D(PIB), BCHH.

La variance de l'erreur de prévision de BCHH est due à ces propres innovations, et à celles des autres variables, avec une influence plus significative des innovations concernant, D(PPB), TCRI, D(PIB), BC.

La variance de l'erreur de prévision de D(M2) est due à ces propres innovations, et à celles des autres variables, avec une influence plus significative des innovations concernant, TCRI, D(PIB), BCHH.

La variance de l'erreur de prévision de D(PPB) est due à ces propres innovations, et à celles des autres variables, avec une influence plus significative des innovations concernant, D(PIB), BCHH.

La variance de l'erreur de prévision du TCRI est due à ces propres innovations, et celles des autres variables, avec une influence plus significative des innovations concernant, D(PPB), D(PIB).

La variance de l'erreur de prévision de D(PIB) est due à ces propres innovations, et celles des autres variables, avec une influence plus significative des innovations concernant, D(PPB), TCRI.

Et enfin, la variance de l'erreur de prévision de D(AB) est due à ces propres innovations, et celles des autres variables, avec une influence plus significative des innovations concernant, D(PPB).

2.3.2.2 Le deuxième modèle

Aussi, en ce qui concerne le deuxième modèle l'interprétation se fera en fonction de la contribution significative ou moins significative à la variance de l'erreur. La contribution significative serra affectée d'un signe (+), la contribution moins significative d'un signe (-).

Tableau.27 : Décomposition de la variance de l'erreur de prévision du deuxième modèle.

	Contribution à variance de l'erreur de prévision.							
Variables	D(PPB)	VAG	D(VAM)	D(VAI)				
D(PPB)	+	_	_	_				
VAG	+	+	_	_				
D(VAM)	+	_	+	_				
D(VAI)	+	+	+	+				

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

La variable D(VAI) est la plus endogène à la variation de l'erreur de prévision. Puis viennent les variables VAG et D(VAI). Et enfin D(PPB) avec une contribution plus faible. La variance de l'erreur de chaque variable présente une influence significative de ces propres innovations.

La variance de l'erreur de prévision de la D(VAI) est due significativement à ces propres innovations et à celle du reste des variables du modèle.

La variance de l'erreur de prévision de VAG est due à ces propres innovations, et celles des autres variables, avec une influence plus significative des innovations concernant, D(PPB).

La variance de l'erreur de prévision de D(VAM) est due à ces propres innovations, et celles des autres variables, avec une influence plus significative des innovations concernant, D(PPB).

La variance de l'erreur de prévision de D(PPB) est due significativement à ces propres innovations et moins significativement à celle du reste des variables du modèle.

2.3.2. La causalité au sens de Granger

Au niveau théorique la mise en évidence de la relation causale entre les variables fournit des éléments de réflexion propice à une meilleure compréhension des phénomènes économiques. Granger a proposé en 1956 les concepts de causalité et d'exogénéité.

Tester l'absence de causalité entre deux variables stationnaires revient à effectuer un test de restriction sur les coefficients associé à ces variables, les hypothèses du test sont données de la manière suivante.

- H₀: La première variable ne cause au sens de Granger la seconde variable.
- H₁: La première variable cause au sens de Granger la seconde variable.

La règle de décision consiste à comparer la statistique de Fisher calculée issue du test à celle de la table de Fisher au seuil choisit (ici 5%). Hypothèse d'existence de causalité entre

les variables est retenue si $(F_c > F_t)$. Le test peut être également effectué à l'aide de la probabilité associée à la statistique de Fisher calculée.

A partir de ce test, on peut conclure à une causalité dans les deux sens, une causalité dans un seul sens, ou à une absence de causalité.

2.3.2.1. Le premier modèle

• Causalité dans les deux sens entre

D(PPB) et BCHH, selon les résultats d'estimation du modèle VAR(1), il existe une relation inverse entre les deux variables, on peut en déduire qu'un boom pétrolier engendre une détérioration de la balance commerciale hors hydrocarbures.

• Causalité dans un seul sens

Les D(PPB) cause au sens de Granger la BC, selon les résultats d'estimation du modèle VAR(1), il existe une relation inverse entre les deux variables, ce qui signifie qu'un boom pétrolier conduit à un déficit commercial.

Le TCRI cause au sens de Granger D(PIB), selon les résultats d'estimation du modèle VAR(1), Il existe une relation positive entre les deux variables, selon ce résultat l'appréciation de la monnaie nationale cause une décroissance mesurée en termes de PIB.

Le D(PIB) cause au sens de Granger BCHH, selon les résultats d'estimation du modèle VAR(1), Il existe une relation inverse entre les deux variables. Ce résultat est le signe qu'une croissance du PIB conduit à une détérioration de la balance commerciale hors hydrocarbures.

La BC cause au sens de Granger D(PIB), selon les résultats d'estimation du modèle VAR(1), il existe une relation positive entre les deux variables, ce résultat s'interprète ainsi, un excèdent commercial se traduit par une augmentation du revenu global, si on assimile la croissance du PIB à celle du revenu global.

La masse monétaire D(M2) cause au sens de Granger le D(PIB), selon les résultats d'estimation du modèle VAR (1) il existe une relation positive entre les deux variables. On peut en déduire qu'une expansion monétaire provoque une croissance du PIB.

La BCHH cause au sens de Granger BC, selon les résultats d'estimation du modèle VAR(1) il existe une relation inverse entre les deux variables, un tel résultat est le signe qu'une détérioration de BCHH s'accompagne d'un excèdent commercial.

La BCHH cause au sens de Granger D(M2), selon les résultats d'estimation du modèle VAR(1) Il existe une relation inverse entre les deux variables. On peut en déduire qu'une détérioration de la BCHH se traduit par une expansion monétaire.

• Absence de causalité entre les deux variables

En ce qui concerne les autres variables, les résultats du test de Granger conduisent à accepter l'hypothèse de non causalité au sens de Granger.

2.3.2.2. Le deuxième modèle

• Causalité dans les deux sens entre

Aucune des relations étudier présente un lien de causalité dans les deux sens.

• Causalité dans un seul sens

VAG cause au sens de Granger D(VAI), selon les résultats d'estimation du modèle VAR(1) il existe une relation positive entre les deux variables. L'explication de ce résultat est qu'une amélioration de la valeur ajoutée dans le secteur agricole, conduit à une amélioration de la valeur ajoutée dans le secteur industriel (peut-être parce que le secteur industriel se tourne principalement vers la production de produit alimentaire).

• Absence de causalité entre les deux variables

En ce qui concerne les autres variables, les résultats du test de Granger conduisent à accepter l'hypothèse de non causalité au sens de Granger.

Tableau.28 : Test de causalité au sens de Granger.

Lien de causalité entre	Statistic	que de	Fisher	Pr	obabi	lité	On accepte	Lien de causalité entre	Statistic	que de	Fisher	Pr	obabi	lité	On accepte
	F _c	Signe	$\mathbf{F_t}$	Pc	Signe	seuil]		F _c	Signe	$\mathbf{F_t}$	Pc	Signe	seuil	_
D(PPB)/TCRI	0.58	<	3.84	0.44	>	0.05	H_0	TCRI/D(PPB)	1.66	<	3.84	0.20	>	0.05	H_0
D(PPB)/D(PIB)	5.60	>	3.84	0.02	<	0.05	H_1	D(PIB)/D(PPB)	1.54	<	3.84	0.22	>	0.05	H_0
D(PPB)/BC	0.02	<	3.84	0.86	>	0.05	H_0	BC/D(PPB)	0.00	<	3.84	0.99	>	0.05	H_0
D(PPB)/BCHH	5.82	>	3.84	0.02	<	0.05	H_1	BCHH/D(PPB)	45.92	>	3.84	0.00	<	0.05	$\mathbf{H_1}$
D(PPB)/D(AB)	0.91	<	3.84	0.34	>	0.05	H_0	D(AB)/D(PPB)	2.11	<	3.84	0.15	>	0.05	H_0
D(PPB)/D(M2)	2.40	<	3.84	0.12	>	0.05	H_0	D(M2)/D(PPB)	0.04	<	3.84	0.82	>	0.05	H_0
D(PPB)/VAG	0.32	<	3.84	0.56	>	0.05	H_0	VAG/D(PPB)	0.12	<	3.84	0.73	>	0.05	H_0
D(PPB)/D(VAM)	0.21	<	3.84	0.64	>	0.05	H_0	D(VAM)/D(PPB)	0.10	<	3.84	0.75	>	0.05	H_0
D(PPB)/D(VAI)	0.31	<	3.84	0.57	>	0.05	H_0	D(VAI)/D(PPB)	0.63	<	3.84	0.43	>	0.05	H_0
TCRI/D(PIB)	8.07	>	3.84	0.00	<	0.05	H_1	D(PIB)/TCRI	0.01	<	3.84	0.90	>	0.05	H_0
TCRI/BC	0.98	<	3.84	0.32	>	0.05	H_0	BC/TCRI	0.03	<	3.84	0.84	>	0.05	H_0
TCRI/BCHH	5.22	>	3.84	0.02	<	0.05	H_1	BCHH/TCRI	0.71	<	3.84	0.40	>	0.05	H_0
TCRI/D(AB)	1.04	<	3.84	0.31	>	0.05	H_0	D(AB)/TCRI	0.15	<	3.84	0.69	>	0.05	H_0
TCRI/D(M2)	3.05	<	3.84	0.08	>	0.05	H_0	D(M2)/TCRI	0.88	<	3.84	0.35	>	0.05	H_0
D(PIB)/BC	0.45	<	3.84	0.50	>	0.05	H_0	BC/D(PIB)	6.22	>	3.84	0.01	<	0.05	$\mathbf{H_1}$
D(PIB)/BCHH	47.95	>	3.84	0.00	<	0.05	$\mathbf{H_1}$	BCHH/D(PIB)	0.04	<	3.84	0.83	>	0.05	H_0
D(PIB)/D(AB)	0.00	<	3.84	0.97	>	0.05	H_0	D(AB)/D(PIB)	0.41	<	3.84	0.52	>	0.05	H_0
D(PIB)/M2	0.08	<	3.84	0.76	>	0.05	H_0	D(M2)/D(PIB)	5.01	>	3.84	0.03	<	0.05	\mathbf{H}_{1}
BC/BCHH	2.06	<	3.84	0.15	>	0.05	H_0	ВСНН/ВС	36.56	>	3.84	0.00	<	0.05	\mathbf{H}_{1}
BC/D(AB)	3.41	<	3.84	0.07	>	0.05	H_0	D(AB)/BC	1.70	<	3.84	0.20	>	0.05	H_0
BC/D(M2)	5.83	>	3.84	0.02	<	0.05	$\mathbf{H_1}$	D(M2)/BC	0.93	<	3.84	0.34	>	0.05	H_0
BCHH/D(AB)	3.52	<	3.84	0.06	>	0.05	H_0	D(AB)/BCHH	0.19	<	3.84	0.66	>	0.05	H_0
BCHH/D(M2)	7.96	>	3.84	0.00	<	0.05	\mathbf{H}_{1}	D(M2)/BCHH	0.24	<	3.84	0.62	>	0.05	H_0
D(AB)/D(M2)	0.01	<	3.84	0.91	>	0.05	H_0	D(M2)/D(AB)	1.96	<	3.84	0.20	>	0.05	H_0
VAG/D(VAM)	0.29	<	3.84	0.58	>	0.05	H_0	D(VAM)/VAG	0.25	<	3.84	0.61	>	0.05	H_0
VAG/D(VAI)	4.27	>	3.84	0.04	<	0.05	\mathbf{H}_{1}	D(VAI)/VAM	0.25	<	3.84	0.61	>	0.05	H_0
D(VAM)/VAI	1.00	<	3.84	0.32	>	0.05	H_0	VAI/D(VAM)	0.98	<	3.84	0.32	/	0.05	H_0

Source : Réalisation personnelle en utilisant le logiciel Eviews 4.1.

Conclusion

En ce qui concerne la régression multiple pour les deux modèles, la première est conforme à la théorie du mal hollandais. Selon les résultats obtenus, ce dernier est applicable au cas algérien et il se manifeste par une désindustrialisation. Cependant il est nécessaire de rappeler que l'interprétation est faite avec prise en compte de tous les coefficients même ceux considérés statistiquement non significatifs.

Les résultats de la seconde régression pour les deux modèles (Après illimination des variables dont les coefficients sont statistiquement non significatifs) contredisent ceux obtenus de la première et annule l'hypothèse de l'application de la théorie au cas algérien.

Après le passage à l'estimation du modèle VAR(1) dont l'interprétation directe des informations obtenues n'aboutit à aucun résultat, de ce constat apparait l'importance des instruments d'analyse associés à ce modèle.

En principe, selon les modèles de mal hollandais un boom pétrolier engendre des effets adverses sur les autres secteurs exportateurs de l'économie, aussi le canal de transmission de départ qui conduit à la manifestation du mal hollandais est l'appréciation réelle de la monnaie nationale sur le marché de change provoquant un effet de perte de compétitivité-prix.

L'analyse de la fonction de réponse impulsionnelle du premier modèle met en évidence un constat différent mais qui n'annule pas pour autant la possible application de la théorie du dutch desease au cas de l'Algérie.

En effet un choc positif sur les prix du pétrole brut conduit dans tous les cas à une dépréciation réelle de la monnaie nationale ; au lieu d'un effet perte on assiste à un effet gain de compétitivité-prix. Paradoxalement l'impact de ce choc sur les autres variables présente des similitudes avec la théorie en question, notamment pour la période (4) où un choc positif sur les prix du pétrole brut conduit à un excédent commercial ; à une expansion monétaire ; à un ralentissement de la croissance dans sa globalité et à une détérioration de le balance commerciale hors hydrocarbure.

Aussi l'impact d'un choc positif sur les prix du pétrole brut a une influence positive sur l'absorption, ce qui peut être le signe de la manifestation d'un effet dépense, soit dans un but de consommation ; d'investissement ou il peut tout simplement refléter un boom des exportations.

Les résultats de réponse au choc du premier modèle poussent à rechercher un autre mécanisme d'apparition du mal hollandais, pourquoi pas en se basant sur les modèles théoriques néoclassiques. Il permet aussi de déceler une défaillance dans la structure économique dans sa globalité.

En ce qui concerne le deuxième modèle, la réponse au choc est nulle pour la première période et présente les mêmes caractéristiques pour le reste des périodes. Un choc positif sur les prix du pétrole brut a un impact négatif sur la valeur ajoutée du secteur agricole et celle du

secteur industriel et positif sur celle du secteur manufacturier. Ce qui permet de conclure à une manifestation par la désagriculturisation et par une désindustrialisation qui selon le test de causalité au sens de Granger touche un secteur industriel dont la valeur ajoutée est dépendante de celle du secteur agricole.

Pour les résultats de la décomposition de variance de l'erreur de prévision. Il apparait que la variance de l'erreur de toutes les variables est influencée par une innovation des prix du pétrole brut. Cette influence est significative pour toutes les variables à l'exclusion de la masse monétaire où l'influence est moins significative.

Selon l'étude de la causalité entre les variables pour le premier modèle, un boom des prix du pétrole brut cause un excédent commercial et une détérioration de la balance commerciale hors hydrocarbure. Une détérioration du solde de la balance commerciale hors hydrocarbure cause un excédent commercial (donc du uniquement au secteur des hydrocarbures) et une expansion monétaire. Il y a absence de causalité entre la balance commerciale et la masse monétaire au sens de M2, cependant ces deux variables causent une croissance du PIB. Aussi le taux de change réel coté à l'incertain cause uniquement le PIB, ce qui signifie qu'une appréciation réelle de la monnaie nationale conduit à une décroissance du PIB.

Ces relations causales poussent à accepter la théorie selon laquelle un mal hollandais se manifeste en Algérie mais d'une manière différente que celle présentée selon les modèles théoriques du dutch desease.

L'étude de la causalité entre les variables pour le deuxième modèle présente un résultat pertinent. Il apparait que la valeur ajoutée du secteur agricole cause une amélioration de la valeur ajoutée du secteur indutriel, et inversement.

Les prix du pétrole brut ne causent pas toutes les variables mais exercent une influence significative sur toutes les variables.

Conclusion générale

A partir des résultats obtenus, on conclut qu'un boom dans le secteur des hydrocarbures est accompagné d'une dépréciation réelle de la monnaie nationale. Cependant il conduit à une baisse de la contribution de la valeur ajoutée du secteur agricole à la formation du PIB. On assiste alors à un déclin de l'activité économique de ce secteur, et ce même avec une appréciation du taux de change réel coté à l'incertain.

De ce fait, la seconde hypothèse acceptant l'application de la théorie au cas algérien par une désagriculturisation est retenue.

Aussi, la première hypothèse selon laquelle la mal hollandais se manifeste par la désindustrialisation est retenue. Cependant cette désindustrialisation ne touche pas le secteur manufacturier mais un secteur d'activité dont la valeur ajoutée est dépendante de celle du secteur agricole.

Un boom pétrolier ne conduit pas à un effet de perte de compétitivité-prix des produits nationaux face aux produits étrangers, ce mal hollandais ne se manifeste pas suite à un effet de compétitivité-prix.

Les deux autres effets étant difficilement mesurable on peut que supposer que ce mal ce manifeste suite à un effet ressource ou un effet dépense.

Aussi, le secteur des hydrocarbures en Algérie est un Secteur enclave, le mouvement de ressources ne peut s'opérer qu'entre les autres secteurs d'activité.

Une première réponse à la problématique de départ consiste alors à appliquer la théorie du dutch desease au cas de l'Algérie mais en rejetant le mécanisme présenté dans les modèles théoriques à savoir le modèle de Salter et Swan (1950); le modèle de Gregory (1976); le modèle de Corden et Neary (1982) et le modèle de Corden (1984) et rechercher un autre enchaînement en se basant sur la théorie néoclassique.

L'Algérie même en tant que membre de l'OPEP est Price-taker sur le marché international. Aussi, les termes de l'échange sont en amélioration et ce constat annule la possible manifestation du mal hollandais suivant la théorie de N.Bhagwati.

En principe, une dépréciation réelle de la monnaie nationale conduit à un effet de gain de compétitivité-prix provoquant un encouragement des exportations et un découragement des importations des secteur hors hydrocarbures .Or la structure des exportations de l'économie algérienne est constituée quasiment d'hydrocarbures et la part des autres secteurs est négligeable. Aussi, la structure des importations est constituée essentiellement de produit du secteur primaire. Cette situation pousse à retenir l'hypothèse selon laquelle la structure de l'économie est telle qu'il est impossible d'assoir une politique de diversification des exportations. Ce résultat est conforme à la théorie de la dépendance et de la domination.

La quatrième hypothèse est en partie acceptée, c'est-à-dire qu'il n'existe pas de grandes anomalies dans la politique économique poursuivie par les autorités économiques. Les revenus générés de l'exploitation des hydrocarbures sont utilisés ces dernières années à des fins de désendettement et dans la réalisation d'infrastructure. La rente énergétique ne profite pas aux autres secteurs, particulièrement au secteur agricole et probablement par un effet de mouvement de ressource.

Un secteur agricole développé est intensif en facteur capital ; dans ce cas l'Etat peut injecter des fonds en guise d'aide au profit de ce secteur. Un secteur agricole sous-développé est quant à lui intensif en facteur travail. En Algérie ce secteur est en voie de développement nécessitant la présence des deux facteurs avec une intensité plus forte pour le facteur travail. Le mal hollandais peut alors s'expliquer par la théorie de la dotation factorielle de Rybsczynski.

Il y a un manque de mains d'œuvre et celle-ci est essentiellement orientée vers l'infrastructure. Etant donné que le secteur des hydrocarbures est une enclave et suite à une insuffisance en capital due au non encouragement de l'activité de ce secteur par l'Etat puisque le gouvernement a fait le choix de poursuivre d'autres objectifs mais qui restent rationnels à court terme d'un point de vue économique.

La dernière hypothèse est en partie rejetée. Par ce que, les résultats de cette recherche restent limités. La première limite est une limite de données car il aurait été préférable d'utiliser la série du PIB hors hydrocarbures pour la mise en évidence empirique d'un déclin de l'activité économique hors hydrocarbures. Aussi l'information concernant le taux de chômage par secteur ou le taux d'emploi par secteur est indisponible. Cette information aurait été utile pour mesurer l'effet de mouvement de ressources, par exemple un boom qui n'améliore pas le taux d'emploi ou qui ne diminue pas le taux de chômage dans le secteur des hydrocarbures est le signe que ce secteur est une enclave, ou encore un boom qui améliore le taux d'emploi dans un secteur et qui diminue ce taux dans un autres secteur ou qui diminue le taux de chômage dans un secteur et qui l'augmente dans un autre est le signe d'un mouvement de ressource. Aussi la présence des variables nécessaire au calcul des élasticités aurait était utile pour mesurer l'effet dépense.

La deuxième limite de la recherche est le choix du modèle, en effet la modélisation VAR est essentiellement utilisée pour faire des prévisions et permet une relation purement statistique entre les variables. Il est donc nécessaire d'intensifier la recherche en utilisant un autre modèle, par exemple une approche par la Co-intégration ou bien en utilisant le modèle (STAR). Une contrainte liée au temps n'a pas permis un approfondissement de l'étude concernant le fonctionnement de ces deux modèles.

Au terme de ce modeste travail, je tiens à préciser que je me porte volontaire pour continuer la recherche dans le but d'apporter une meilleure réponse à la problématique de départ.

Table des matières

Liste des abréviations	0
Introduction générale	1
Chapitre 01 : La théorie du mal hollandais et l'économie algérienne	5
Introduction	5
Section 01 : Les fondements théoriques du mal hollandais	5
1.1 Origine, définition et causes du mal hollandais	5
1.2 Les modèles théoriques du mal hollandais	6
1.2.1 Le modèle de Salter et Swan (1950)	6
1.2.2 Le modèle de Gregory (1976)	8
1.2.3 Le modèle de Corden et Neary (1982)	10
1.2.4 Le modèle de Corden (1984)	12
1.3 Les convergences des modèles de mal hollandais avec les théories néoclassie	ques du
commerce international	14
1.3.1 La théorie de la dépendance et de la domination	14
1.3.2 Le théorème de Rybsczynski (1955)	15
1.3.3 La théorie de la croissance appauvrissant de Bhagwati	16
Section 02 : Caractéristiques de l'économie algérienne	20
2.1 Le secteur des hydrocarbures en Algérie	20
2.1.1 Brève historique de la découverte et l'exploitation du pétrole en Algérie	
2.1.2 Les prix du pétrole brut.	
2.2 Evolution des politiques conjoncturelle en Algérie	
2.2.1 Evolution de la politique budgétaire	22
2.2.2 Evolution de la politique monétaire	24
2.2.3 Evolution de la politique de change	27
2.3 Quelques statistiques du secteur réel	28
Conclusion	33
Chapitre 02 : Mise en évidence empirique de la manifestation d'un mal hollandais	35
Introduction	35
Section 01: Présentation des variables clés et études de leurs caractéristiques stochastic	ques.35
1.1 Définition et représentation graphique des variables de choix	35
1.1.1 Les prix du pétrole brut (PPB)	
1.1.2 Le taux de change réel (TCRI)	
1.1 LA DIVIGUIL HIGHAU DIGI VI ID 1	

1.1.4 La balance commerciale (BC)	37
1.1.5 La balance commerciale hors hydrocarbures (BCHH)	38
1.1.6 L'absorption (AB)	39
1.1.7 La masse monétaire (M2)	39
1.1.8 La valeur ajoutée par secteur d'activité en pourcentage du PIB	40
1.2 Test statistique	42
1.2.1 Test d'autocorrélation et de Box-Pierce	42
1.2.1.1 La série prix du pétrole brut (PPB)	42
1.2.1.2 La série taux de change réel coté à l'incertain (TCRI)	43
1.2.1.3 La série produit intérieur brut (PIB)	43
1.2.1.4 La série balance commerciale (BC)	44
1.2.1.5 La série balance commerciale hors hydrocarbure (BCHH)	45
1.2.1.6 La série absorption (AB)	
1.2.1.7 La série masse monétaire (M2).	
1.2.1.8 Les séries valeur ajoutée par secteur d'activité en pourcentage du PIB	47
1.2.2 Test de normalité.	
1.3 Test de stationnarité.	49
1.3.1 La série prix du pétrole brute (PPB)	50
1.3.2 La série taux de change réel (TCRI).	
1.3.3 La série produit intérieur brut (PIB)	
1.3.4 La série balance commerciale (BC)	
1.3.5 La série balance commerciale hors hydrocarbures (BCHH)	
1.3.6 La série absorption (AB).	
1.3.7 La série masse monétaire (M2).	54
1.3.8 Les série valeur ajoutée en pourcentage du PIB	
Section 02 : Modélisations des variables.	57
2.1 Approche par la régression multiple	57
2.1.1 Le premier modèle	
2.1.2 Le deuxième modèle.	
2.2 Le modèle VAR	60
2.2.1 Choix de l'ordre de retard	61
2.2.1.1 Le premier modèle	61
2.2.1.1 Le deuxième modèle.	62
2.2.2 Estimation du modèle VAR	62
2.2.2.1 Le premier modèle	62
2.2.2.2 Le deuxième modèle.	64
2.3 Instruments d'analyse associés au modèle VAR	65
2.3.1 L'Analyse des chocs	
2.3.1.1 Le premier modèle	
2.3.1.2 Le deuxième modèle.	
2.3.2 Décomposition de la variance de l'erreur de prévision	68
2.3.2.1 Le premier modèle	68

Table des matières

2.3.2.1 Le deuxième modèle	69
2.3.3 La causalité au sens de Granger	70
2.3.3.1 Le premier modèle	71
2.3.3.2 Le deuxième modèle	72
Conclusion	74
Conclusion générale	76
Table des matières	78
Bibliographie	81
Table des illustrations	82
Annexes	84

Bibliographie

Ouvrages

Abdelmalki L *et* Mundler P (1995). Economie du développement : les théories, les expériences et les perspectives. HACHETTE Supérieur. Paris, France.

Bourdonnais, R. (2009) Econométrie : Manuel et exercices corrigés. Dunod, 7éme édition. Paris, France.

Nyahoho, E *et al*, (2000) Le commerce international: Théories, politiques et perspectives industrielles. Presses de l'Université du Québec, 2ème édition. Québec, Canada.

Thèses

Aoun, M. (2008) La rente pétrolière et le développement économique des pays exportateurs. Thèse de doctorat, Université Paris dauphine.

Nakoumdé, N. (2007) Boom pétrolier et risque d'un syndrome hollandais au Tchad: une approche par la modélisation en équilibre générale calculable. Thèse de doctorat, Université d'auvergne Clermont-Ferrand 1.

* Mémoires

Adam, M. (2003) La maladie hollandaise: étude empirique appliquée à des pays en développement exportateurs de pétrole. Mémoire de master. Université de Montréal.

Benzaid, K et BIBI, D (2011) Impact des fluctuations des prix du pétrole sur les variables macroéconomique en Algérie. Mémoire de master, Université Abderrahmane Mira de Bejaia.

Hamadache, H. (2009) Rente pétrolière et évolution du secteur agricole en Algérie: syndrome hollandais et échangeabilité. Mémoire de master of science, Institut agronomique méditerranéen de Montpellier.

Revues

J.D. Sachs *and* A.M. Warner. (2001) Natural resources and economique development: The curse of natural resources. Europen economique review, Harvard university of USA.

Sites web

CUNCED: http://www.ocndat.org.

Doc-Etudiant: http://www.doc-etudiant.fr.

La banque d'Algérie : http://www.bank-of-algeria.dz.

La banque mondiale : http://www.worldbank.org.

Office national des statistiques : http://www.ons.dz.

Table des illustrations

Liste des tableaux

Tableau.01 : Effet d'une augmentation de la dotation factorielle d'un pays sur la FPP	17
Tableau.02 : Sous solde de la balance des paiements en milliards de dollars	29
Tableau.03 : Les variables causant un afflux massive de DE en milliards de dollars	30
Tableau.04 : Les termes de l'échange marchand (TEM)	30
Tableau.05 : La dette extérieure en milliards de dollars	30
Tableau.06 : Indice des prix à la production industrielle et leurs variations annuelles	31
Tableau.07 : Test de normalité	49
Tableau.08 : Test de racine unitaire (PPB)	50
Tableau.09 : Test de racine unitaire (TCRI)	51
Tableau.10 : Test de racine unitaire(PIB).	52
Tableau.11: Test de racine unitaire (BC)	52
Tableau.12 : Test de racine unitaire (BCHH)	53
Tableau.13 : Test de racine unitaire (AB)	54
Tableau.14: Test de racine unitaire (M2)	54
Tableau.15 : Test de racine unitaire (VAG).	55
Tableau.16: Test de racine unitaire (VAM)	55
Tableau.17: Test de racine unitaire (VAI).	56
Tableau.18 : Choix du nombre de retard pour le modèle VAR estimé par la méthode des M	1CO
pour le premier modèle	61
Tableau.19: Choix du nombre de retard pour le modèle VAR estimé par la méthode	e du
maximum de vraisemblance pour le premier modèle	61
Tableau.20 : Choix du nombre de retard pour le modèle VAR estimé par la méthode des M	1CO
pour le deuxième modèle	62
Tableau.21: Choix du nombre de retard pour le modèle VAR estimé par la méthode	e du
maximum de vraisemblance pour le deuxième modèle	62
Tableau.22: Résultats d'estimation du modèle VAR(1) pour le premier modèle	63
Tableau.23: Résultats d'estimation du modèle VAR(1) pour le deuxième modèle	65
Tableau.24 : Réponse au choc de D(PPB) pour le premier modèle	66
Tableau.25 : Réponse au choc de (PPB) pour le deuxième modèle	67
Tableau.26 : Décomposition de la variance de l'erreur de prévision du premier modèle	68
Tableau.27 : Décomposition de la variance de l'erreur de prévision du deuxième modèle	70
Tableau.28 : Test de causalité au sens de Granger	73
Liste des figures	
Fig.01: Représentation graphique du model de Salter et Swan	
Fig.02: Représentation graphique du modèle de Gregory	
Fig.03: Présentation graphique du model de Corden (1984)	13

Fig.04: Représentation graphique du théorème de Rybsczynski	16
Fig.05:Représentation graphique de la théorie de Bhagwati avec terme de l	'échange
constant	18
Fig.06:Représentation graphique de la théorie de Bhagwati avec modification des TE.	19
Fig.07 : Evolution conjointe des prix du pétrole brut et de la fiscalité pétrolière	23
Fig.08: Evolution du taux d'intérêt nominal et du taux de réescompte	25
Fig.09: Evolution conjointe de la masse monétaire et de l'épargne brute	25
Fig.10: Evolution conjointe du taux d'intérêt réel et de l'inflation	26
Fig.11 : Evolution conjointe du taux d'intérêt réel et des prix du pétrole brute	26
Fig.12 : Evolution conjointe des prix du pétrole brut et de la masse monétaire	27
Fig.13: Evolution du taux de change nominal coté à l'incertain de 1970 à 2009	28
Fig.14: Structure des importations de marchandise par groupe d'utilisation en 2009	29
Fig.15: Structure des exportations de marchandise par groupe d'utilisation en 2009	29
Fig.16: Evolution des indices de prix à la production	32
Fig.17: Représentation graphique des prix du pétrole brut (PPB)	35
Fig.18: Représentation graphique du taux de change réel coté à l'incertain (TCRI)	36
Fig.19: Représentation graphique du produit intérieur brut (PIB)	37
Fig.20 : Représentation graphique de la balance commerciale (BC)	38
Fig.21: Représentation graphique de la balance commerciale hors hydrocarbures (BC	HH)38
Fig.22 : Représentation graphique de l'absorption (AB)	39
Fig.23 : Représentation graphique de la masse monétaire (M2)	40
Fig.24: Représentation graphique de la valeur ajoutée en pourcentage du PIB dans le	e secteur
agricole (VAG)	40
Fig.25 : Représentation graphique de la valeur ajoutée en pourcentage du PIB dans le	e secteur
manufacturier (VAM)	41
Fig.26: Représentation graphique de la valeur ajoutée en pourcentage du PIB dans le	e secteur
industriel (VAI)	41
Fig.27 : Test d'autocorrélation et de Box-Pierce (PPB)	42
Fig.28 : Test d'autocorrélation et de Box-Pierce (TCRI)	43
Fig.29: Test d'autocorrélation et de Box-Pierce (PIB)	43
Fig.30 : Test d'autocorrélation et de Box-Pierce (BC)	44
Fig.31 : Test d'autocorrélation et de Box-Pierce (BCHH)	45
Fig.32 : Test d'autocorrélation et de Box-Pierce (AB)	45
Fig.33 : Test d'autocorrélation et de Box-Pierce (M2)	
Fig.34 : Test d'autocorrélation et de Box-Pierce (VAG)	
Fig.35 : Test d'autocorrélation et de Box-Pierce (VAM)	
Fig.36: Test d'autocorrélation et de Box-Pierce (VAI)	

Annexes

Annexe.01 : Statistiques issues de la base de données de la Banque Mondiale.

Année	AB (\$*)	BC (\$*)	PIB (\$*)	S (\$*)	TCNI**	VAG (\$*)	VAI (\$*)	VAM (\$*)
1970	70,430864	-344331749	4,863E+09	1,438E+09	4,94	9,205466	45,53073	17,2102
1971	73,939911	-468183798	5,077E+09	1,323E+09	4,91	9,569175	41,31525	16,9997
1972	70,974815	-356840185	6,762E+09	1,963E+09	4,48	8,420846	48,12796	16,2725
1973	65,801899	-530410132	8,715E+09	2,98E+09	3,96	7,03976	52,98956	16,5161
1974	56,7242	430539981	1,321E+10	5,717E+09	4,18	7,366629	57,69762	8,99254
1975	63,869836	-1,443E+09	1,556E+10	5,621E+09	3,95	10,41841	50,21294	9,69197
1976	60,713808	-720495965	1,773E+10	6,965E+09	4,16	9,926881	54,10023	10,6675
1977	64,23902	-2,339E+09	2,097E+10	7,5E+09	4,15	8,470141	55,2309	10,3795
1978	62,413541	-3,858E+09	2,636E+10	9,909E+09	3,97	8,805621	53,68735	11,7543
1979	59,171522	-570938782	3,324E+10	1,357E+10	3,85	9,016629	54,52071	11,4704
1980	56,923077	1693810966	4,235E+10	1,824E+10	3,84	8,509234	57,65171	10,5541
1981	59,299893	1645117451	4,435E+10	1,805E+10	4,32	9,235128	57,05382	10,5949
1982	60,789981	871041794	4,521E+10	1,773E+10	4,59	8,389787	56,12298	11,1516
1983	60,290975	1044102852	4,88E+10	1,938E+10	4,79	7,74615	55,80961	11,8059
1984	66,591928	-943130450	5,37E+10	1,794E+10	4,98	7,530864	55,80247	13,8272
1985	68,589078	-1,83E+09	5,794E+10	1,82E+10	5,03	8,995894	53,56476	13,6991
1986	76,761264	-6,572E+09	6,37E+10	1,48E+10	4,7	10,17942	48,11424	15,7085
1987	76,583255	-2,763E+09	6,674E+10	1,563E+10	4,85	12,87466	46,42371	14,8842
1988	79,456359	-4,193E+09	5,909E+10	1,214E+10	5,91	12,16766	45,29246	14,889
1989	79,801559	-5,493E+09	5,563E+10	1,124E+10	7,61	13,03902	45,53388	12,3203
1990	72,903924	-926546457	6,205E+10	1,681E+10	8,96	11,35827	48,16929	11,378
1991	62,640618	2522600361	4,572E+10	1,708E+10	18,47	10,16706	53,15845	11,4461
1992	67,792408	696097891	4,8E+10	1,546E+10	21,84	12,12685	49,71594	12,3128
1993	72,264153	-676804146	4,995E+10	1,385E+10	23,35	12,09707	48,63838	13,1345
1994	73,442844	-1,499E+09	4,254E+10	1,13E+10	35,06	10,05844	48,96275	12,3594
1995	71,892899	-1,17E+09	4,176E+10	1,174E+10	47,66	10,49782	50,40057	11,4979
1996	68,505836	2729999497	4,694E+10	1,478E+10	54,75	11,7667	51,23046	9,03893
1997	67,984322	4610000492	4,864E+10	1,542E+10	57,71	9,48232	52,30709	8,72045
1998	72,789259	30000489	5,479E+10	1,311E+10	58,74	12,53328	46,14702	9,90932
1999	68,380579	1520000346	5,518E+10	1,538E+10	66,57	12,20108	48,00041	9,17201
2000	55,154602	1,086E+10	5,705E+10	2,457E+10	75,26	8,879884	58,60672	7,45633
2001	58,024315	8082000207	6,802E+10	2,316E+10	77,22	10,40756	53,45276	7,90105
2002	59,136399	8082000225	8,501E+10	2,331E+10	79,68	10,0036	53,08864	7,82056
2003	55,135539	5520553921	1,023E+11	3,052E+10	77,39	10,49124	54,81774	7,09701
2004	52,312012	9789367496	1,172E+11	4,054E+10	72,06	10,18849	56,35439	6,49079
2005	45,112682	1,2259E+10	1,358E+11	5,617E+10	73,28	8,221657	61,31043	5,93865
2006	43,406955	2,3923E+10	1,71E+11	6,631E+10	72,65	7,988789	62,2971	5,53597
2007	42,46076	3,1665E+10	1,381E+11	7,814E+10	69,29	8,025346	61,28301	5,27653
2008	43,266323	3,9952E+10	1,62E+11	9,701E+10	64,58	6,9201	62,11858	4,63421
2009	54,531119	6171963098	1,887E+11	7,067E+10	72,65	11,73265	54,54121	6,07416

^{*}En dollar courant.

^{**}Taux de change bilatéral (DA/\$) coté à l'incertain.

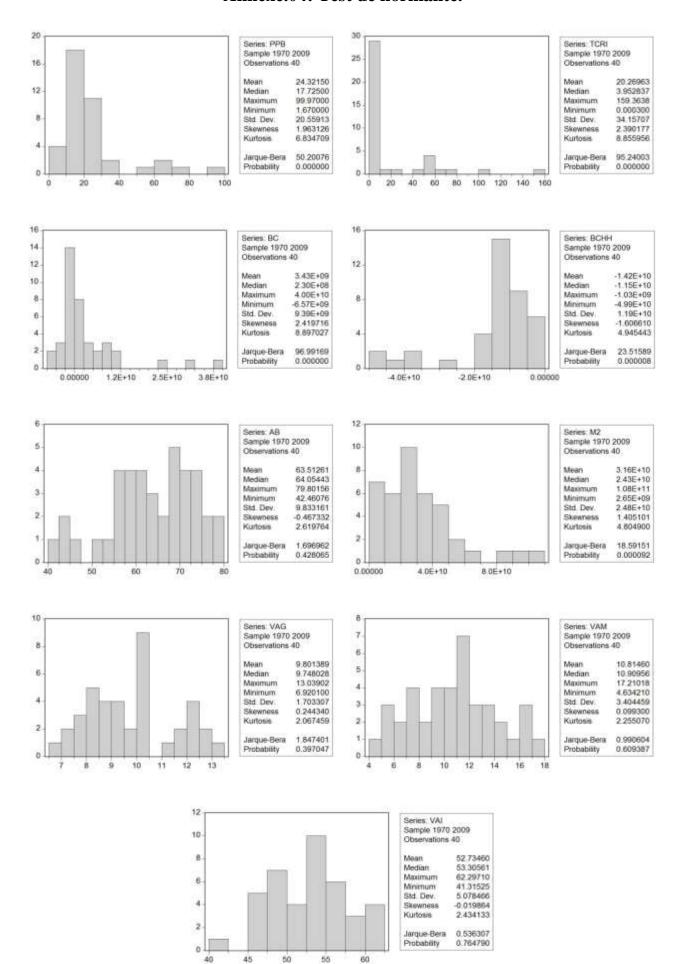
Annexe.02 : Statistiques issues de la base de données de l'Office National des Statistiques (ONS).

Année	FP (DA*)	FP (\$**)	INF***	M2 (DA*)	M2 (\$**)	TIN***	XH (\$**)
1970	1350000000	273279352	4.8	1,31E+10	2651821862	2,5	690000000
1971	1648000000	335641547	2.76	1,41E+10	2871690427	2,5	630000000
1972	3278000000	731696428	4.04	1,82E+10	4062499999	2,75	960000000
1973	4114000000	103888888	6.90	3,03E+10	7651515151	2,75	1240000000
1974	13399000000	3205502392	2.82	2,58E+10	6172248803	2,75	3650000000
1975	13462000000	3408101265	8.63	3,36E+10	8506329113	2,75	4220000000
1976	14237000000	3422355769	8.30	4,36E+10	1,0481E+10	2,75	4680000000
1977	18019000000	4341927710	11	5,2E+10	1,253E+10	2,75	4650000000
1978	17365000000	4374055415	15.62	6,75E+10	1,7003E+10	2,75	7170000000
1979	26516000000	6887272727	10.39	7,97E+10	2,0701E+10	2,75	13500000000
1980	37658000000	9806770833	9.18	9,35E+10	2,4349E+10	2,75	15420000000
1981	50954000000	11794907407	14.66	1,09E+11	2,5255E+10	2,75	14200000000
1982	41458000000	9032244008	6.20	1,38E+11	3,0044E+10	2,75	14080000000
1983	37711000000	7872860125	6.02	1,66E+11	3,4656E+10	2,75	14540000000
1984	43841000000	8803413654	8.18	1,95E+11	3,9096E+10	2,75	13270000000
1985	46786000000	9301391650	10.49	2,24E+11	4,4493E+10	2,75	7120000000
1986	21439000000	4561489361	12.29	2,27E+11	4,8298E+10	2,75	8530000000
1987	20479000000	4222474226	17.46	2,58E+11	5,3175E+10	5	7350000000
1988	24100000000	4077834179	5.90	2,8E+11	4,7428E+10	5	9090000000
1989	45500000000	5978975032	9.29	3,08E+11	4,0486E+10	6	12340000000
1990	76200000000	8504464285	17.90	3,43E+11	3,8315E+10	8,75	11970000000
1991	1,615E+11	8743909041	25.87	4,14E+11	2,2436E+10	10,5	10840000000
1992	1,938E+11	8873626373	31.67	5,29E+11	2,4231E+10	11	9590000000
1993	1,798E+11	7700214132	20.52	6,49E+11	2,7799E+10	11	8400000000
1994	2,22176E+11	6337022247	29.04	7,23E+11	2,0633E+10	15	9720000000
1995	3,36148E+11	7053042383	29.78	8E+11	1,6777E+10	14	12630000000
1996	4,95997E+11	9059305936	18.69	9,2E+11	1,6796E+10	13	13690000000
1997	5,64765E+11	9786258880	5.73	1,08E+12	1,874E+10	11	10140000000
1998	3,78556E+11	6444603336	4.95	1,29E+12	2,1925E+10	9,5	11910000000
1999	5,60121E+11	8414015322	2.66	1,46E+12	2,1983E+10	8,5	21060000000
2000	1,17324E+12	15589117725	0.34	1,66E+12	2,2046E+10	6	18530000000
2001	9,56389E+11	12385249935	4.22	2,47E+12	3,2032E+10	6	18110000000
2002	1,0079E+12	12649347389	1.42	2,9E+12	3,6414E+10	5,5	23990000000
2003	1,35E+12	17444114226	2.58	3,35E+12	4,3344E+10	4,5	31550000000
2004	1,5707E+12	21797113516	3.57	3,74E+11	5187343880		45590000000
2005	2,3527E+12	32105622270	1.63	4,15E+12	5,659E+10		53610000000
2006	2,714E+12	37357205781	2.64	4,93E+12	6,7911E+10		59610000000
2007	2,71185E+12	39137653341	3.9	5,99E+12	8,6463E+10		77190000000
2008	4,0035E+12	61992877051	4.4	6,96E+12	1,0771E+11		44410000000
2009	2,3277E+12	32039917412	5.5	7,17E+12	9,8734E+10		56120000000

^{*} En dinars courant.

^{**} Calculé comme suit : (La valeur en dinars÷TCNI).

^{***} En pourcentage.


Annexe.03 : Statistiques issues de la base de données de la banque d'Algérie et de la CNCUD.

Année	REES*	TCRI*		
1970	3,75	4,93706		
1971	3,75	6,5501844		
1972	2,75	3,3603862		
1973	2,75	3,9624954		
1974	2,75	9,19765		
1975	2,75	4,4430844		
1976	2,75	2,7758833		
1977	2,75	2,0733792		
1978	2,75	1,7626222		
1979	2,75	3,8532667		
1980	2,75	5,37243		
1981	2,75	2,8772056		
1982	2,75	3,9361643		
1983	2,75	2,3944		
1984	2,75	2,4916875		
1985	2,75	2,01112		
1986	2,75	0,7837194		
1987	5	2,771281		
1988	5	3,9431778		
1989	5	4,2269769		
1990	7	2,6345613		
1991	10,5	2,8419808		
1992	11,5	2,047132		
1993	11,5	3,3350581		
1994	11,5	3,6267415		
1995	14	4,7662727		
1996	13,5	8,6445684		
1997	12,25	19,235783		
1998	9,5	23,495583		
1999	8,5	44,382583		
2000	7,5	0.02		
2001	6	57,911266		
2002	5,5	159,3638		
2003	5	51,59665		
2004	4,5	54,045488		
2005	4	109,9145		
2006	4	72,64662		
2007	4	51,9693		
2008	4	64,5828		
*En pourcentage (Ba	4	0,0003		

Année	PPB(\$)
1970	1,67
1971	2,03
1972	2,29
1973	3,05
1974	10,73
1975	10,73
1976	11,51
1977	12,39
1978	12,7
1979	17,27
1980	21,59
1981	31,77
1982	28,52
1983	26,19
1984	25,88
1985	24,09
1986	12,51
1987	15,4
1988	12,58
1989	15,86
1990	20,03
1991	16,54
1992	15,99
1993	14,25
1994	16,21
1995	17,55
1996	21,5
1997	19,49
1998	12,94
1999	17,9
2000	26,45
2001	24,85
2002	25,22
2003	29
2004	38,52
2005	54,64
2006	65,85
2007	74,94
2008	99,97
2009	62,26
**En dollar courant.	~-,-~

^{*}En pourcentage (Banque d'Algérie).

Annexe.04: Test de normalité.

Annexe.05: Test de stationarité.

Les prix du pétrole brut PPB (test de DF)

Modèle [3]

Modèle [2]

		5% Critical Value 10% Critical Value	-3.5279 -3.1949	ADF Test Statistic	-0.974972	1% Critical Value* 5% Critical Value 10% Critical Value	-3.6067 -2.9378 -2.6069
ADF Test Statistic	-1.828284	1% Critical Value*	-4.2092				

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PPB) Method: Least Squares Date: 05/10/13 Time: 19:04 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PPB) Method: Least Squares

Date: 05/10/13 Time: 19:05 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	moidada opecitatione	. oo altor aajat	ting onapoint	Maria .	
9050,8050,0054	28/18/80 23/6/38	Y2-20-30-30-30-0	Attendence	800 (e80.000)	Variable	Coefficient	Std. Error	t-Statistic	Prob.
PPB(-1) C @TREND(1970)	-0.181716 0.218498 0.278896	0.099391 2.896475 0.173241	-1.828284 0.075436 1.609877	0.0758 0.9403 0.1162	PPB(-1) C	-0.072089 3.236764	0.073939 2.254823	-0.974972 1.435485	0.3359 0.1595
R-squared	0.090523	Mean depen	Mean dependent var		R-squared	0.025048	Mean deper	ident var	1.553590
Adjusted R-squared	0.039996	S.D. depend	dent var	9.052228	Adjusted R-squared	-0.001302	S.D. depend	dent var	9.052228
S.E. of regression	8.869354	Akaike info	criterion	7.276885	S.E. of regression	9.058121	Akaike info criterion		7.295121
Sum squared resid	2831.956	Schwarz cri	terion	7.404851	Sum squared resid	3035.834	Schwarz cri	terion	7.380432
Log likelihood	-138.8992	F-statistic		1.791584	Log likelihood	-140.2549	F-statistic		0.950571
Durbin-Watson stat	1.685804	Prob(F-stati	stic)	0.181240		1.696239	Prob(F-stati	stic)	0.335906

Modèle [1]

Modèle [1] Dif

ADF Test Statistic	0.190270	200	Critical Value* Critical Value	-2.6227 -1.9495	ADF Test Statistic	-5.113010	11/2/2/2	Critical Value*	-2.6243
		VOE (610)					5%	Critical Value	-1.9498
		10%	Critical Value	-1.6202			10%	Critical Value	-1.6204
					111		1711/12012		10000000000

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PPB) Method: Least Squares Date: 05/10/13 Time: 19:06 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PPB,2) Method: Least Squares Date: 05/10/13 Time: 19:07 Sample(adjusted): 1972 2009

Sample(adjusted): 1972 2009 Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
PPB(-1)	0.009175	0.048222	0.190270	0.8501	D(PPB(-1))	-1.121883	0.219417	-5.113010	0.0000
R-squared	-0.029250	Mean depen	Mean dependent var 1		R-squared	0.409882	Mean dependent var		-1.001842
Adjusted R-squared	-0.029250	S.D. depend	lent var		Adjusted R-squared	0.409882	S.D. depend	lent var	12.07068
S.E. of regression	9.183661	Akaike info	criterion		S.E. of regression	9.272597	Akaike info criterion		7.317967
Sum squared resid	3204.906	Schwarz crit	Schwarz criterion 7		Sum squared resid	3181,299	Schwarz criterion		7.361062
Log likelihood	-141.3117	Durbin-Wats	on stat	1.705513		-138.0414	Durbin-Watson stat		1.600069

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Les prix du pétrole brut PPB (test de PP)

Modèle [3]

Modèle [2]

	Mou	cic [c	' J		Wiodele [2]					
PP Test Statistic	-1.828284	5% 10%	Critical Value* Critical Value Critical Value	-4.2092 -3.5279 -3.1949	PP Test Statistic	-0.974972	1% 5% 10%	MERCHIC TRANSPORT	-3.6067 -2.9378 -2.6069	
*MacKinnon critical	values for rejec	nypothesis of a un	it root.	*MacKinnon critical	values for rejec	tion of	hypothesis of a un	it root.		
Lag truncation for Bartlett kernel: 0 (Newey-West suggests: 3) Residual variance with no correction 72.61426 Residual variance with correction 72.61426										
Phillips-Perron Test Dependent Variable Method: Least Squ Date: 05/10/13 Tir Sample(adjusted):	o: D(PPB) ares me: 19:08				Phillips-Perron Test Dependent Variable Method: Least Squ Date: 05/10/13 Tin	: D(PPB) ares			77	

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
PPB(-1)	-0.181716	0.099391	-1.828284	0.0758	
C	0.218498	2.896475	0.075436	0.940	
@TREND(1970)	0.278896	0.173241	1.609877	0.1162	
R-squared	0.090523	Mean depen	1.553590		
Adjusted R-squared	0.039996	S.D. depend	lent var	9.052228	
S.E. of regression	8.869354	Akaike info		7.276885	
Sum squared resid	2831.956	Schwarz crit	terion	7.404851	
Log likelihood	-138.8992	F-statistic		1.791584	
Durbin-Watson stat	1.685804	Prob(F-statistic)		0.181240	

Sample(adjusted): 1971 2009 Included observations: 39 after adjusting endpoints										
Variable	Coefficient	Std. Error	t-Statistic	Prob.						
PPB(-1)	-0.072089	0.073939	-0.974972	0.3359						
c'	3.236764	2.254823	1.435485	0.1595						
R-squared	0.025048	Mean depen	dent var	1.553590						
Adjusted R-squared	-0.001302	S.D. depend	lent var	9.052228						
S.E. of regression	9.058121	Akaike info	criterion	7.295121						
Sum squared resid	3035.834	Schwarz criterion		7.380432						
Log likelihood	-140.2549	F-statistic	0.950571							
Durbin-Watson stat	1 696239	Proh/F-statis	etic)	0.335906						

Modèle [1]

Modèle [1] Dif

PP Test Statistic	0.190270	0.7573500	Critical Value* Critical Value Critical Value	-2.6227 -1.9495 -1.6202	PP Test Statistic	-5.113010	0.000	Critical Value* Critical Value 6 Critical Value	-2.6243 -1.9498 -1.6204
*MacKinnon critical	values for rejec	tion of	hypothesis of a un	it root.	*MacKinnon critical	values for rejec	tion of	hypothesis of a un	it root.
Lag truncation for B Residual variance w Residual variance w	ith no correction	vey-West suggest	s: 3) 82.17708 82.17708	00.747					
Phillips-Perron Test	Equation				Phillips-Perron Test				

Dependent Variable: D(PPB) Method: Least Squares Date: 05/10/13 Time: 19:10 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Included observations: 39 after adjusting endpoints

Dependent Variable: D(PPB,2) Method: Least Squares
Date: 05/10/13 Time: 19:11
Sample(adjusted): 1972 2009
Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
PPB(-1)	0.009175	0.048222	0.190270	0.8501	D(PPB(-1))	-1.121883	0.219417	-5.113010	0.0000
R-squared	-0.029250	Mean depen	Mean dependent var 1.		1.553590 R-squared	0.409882	Mean depen	dent var	-1.001842
Adjusted R-squared	-0.029250	S.D. depend		9.052228 Adjusted R-squared 7.298036 S.E. of regression	0.409882	Electric and the second second second		12.07068	
S.E. of regression	9.183661	Akaike info			9.272597			7.317967	
Sum squared resid	3204.906	Schwarz crit	erion	7.340691	Sum squared resid	3181.299	Schwarz crit	terion	7.361062
Log likelihood	-141.3117	Durbin-Wats		1.705513	Log likelihood	-138.0414	Durbin-Wats	on stat	1.600069

Le taux de change réel coté à l'incertain TCRI (test de DF)

Modèle [3]

Modèle [3] Det

ADF Test Statistic	-3.919713	1% Critical Value* 5% Critical Value 10% Critical Value	-4.2092 ADF Test Statistic -3.5279 -3.1949	-3.919713	1% Critical Value* 5% Critical Value 10% Critical Value	-4.2092 -3.5279 -3.1949
		10% Critical Value	-3.1949		1070 Officer Value	0.1040

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TCRI) Method: Least Squares Date: 05/18/13 Time: 13:23 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RES1) Method: Least Squares Date: 05/18/13 Time: 13:27

Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
TCRI(-1) C @TREND(1970)	-0.647987 -8.966353 1.115551	0.165315 9.268027 0.499392	-3.919713 -0.967450 2.233818	0.3398	OTDELID MATA	-0.647987 -0.902778 -0.002681	0.165315 8.786101 0.383946	-3.919713 -0.102751 -0.006982	0.9187
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.301057 0.262227 26.86621 25984.56 -182.1217 1.887970	Mean depen S.D. depend Akaike info of Schwarz crit F-statistic Prob(F-statis	lent var criterion terion	31.27843 9.493419 9.621385 7.753171	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.301057 0.262227 26.86621 25984.56 -182.1217 1.887970	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	lent var criterion terion	-1.852282 31.27843 9.493419 9.621385 7.753171 0.001585

Modèle [2] Det

Modèle[1] Det

ADF Test Statistic	-3.992118	5%	Critical Value* Critical Value Critical Value	-3.6067 -2.9378 -2.6069		-4.060645	25.50	Critical Value*	-2.6227
*MacKinnon critical	*MacKinnon critical values for rejection of hypothesis of a unit root.						2000	Critical Value 6 Critical Value	-1.9495 -1.6202
					*MacKinnon critical	values for rejec	ction of	hypothesis of a uni	t root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RES1) Method: Least Squares Date: 05/18/13 Time: 13:28 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RES1) Method: Least Squares Date: 05/18/13 Time: 13:29

Sample(adjusted): 1971 2009

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Included observations: 39 after adjusting endpoints						
RES1(-1)	-0.648096	0.162344	-3.992118	V. S. N. S.		Coefficient	Std. Error	t-Statistic	Prob.		
С	-0.956241	4.249437	-0.225028	0.8232	RES1(-1)	-0.650026	0.160079	-4.060645	0.0002		
R-squared	0.301056	Mean depen	ident var	-1.852282	00000000000000000000000000000000000000		00000ACR380000				
Adjusted R-squared	0.282166	S.D. depend	dent var	31.27843	R-squared	0.300099	Mean deper	ident var	-1.852282		
S.E. of regression	26.50068	Akaike info	criterion	9.442138	Adjusted R-squared	0.300099	S.D. depend	dent var	31.27843		
Sum squared resid	25984.59	Schwarz crit	terion	9.527449	S.E. of regression	26.16755	Akaike info	criterion	9.392224		
Log likelihood	-182.1217	F-statistic		15.93700	Sum squared resid	26020.15	Schwarz cri	terion	9.434879		
Durbin-Watson stat	1.887794	Prob(F-stati	stic)	0.000298	Log likelihood	-182.1484	Durbin-Wats	son stat	1.881885		

Le taux de change réel coté à l'incertain TCRI (test de PP)

Modèle [3]

Modèle [3] Det

Phillips-Perron Test Equation Dependent Variable: D(TCRI) Method: Least Squares Date: 05/18/13 Time: 13:41 Sample(adjusted): 1971 2009 Included observations: 39 after adjusting endpoints	Phillips-Perron Test Equation Dependent Variable: D(RES1) Method: Least Squares Date: 05/18/13 Time: 13:30 Sample(adjusted): 1971 2009 Included observations: 39 after adjusting endpoints
Lag truncation for Bartlett kernel: 0 (Newey-West suggests: 3) Residual variance with no correction 666.270 Residual variance with correction 666.270	Lag truncation for Bartlett kernel: 0 (Newey-West suggests: 3) 6 Residual variance with no correction 666.2706 7 Residual variance with correction 666.2706
*MacKinnon critical values for rejection of hypothesis of a unit root.	*MacKinnon critical values for rejection of hypothesis of a unit root.
PP Test Statistic -3.919713 1% Critical Value* -4.20 5% Critical Value -3.52 10% Critical Value -3.19	

Vari <mark>ab</mark> le	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
TCRI(-1)	-0.647987	0.165315	-3.919713	0.0004	RES1(-1)	-0.647987	0.165315	-3.919713	0.0004
C	-8.966353	9.268027	-0.967450	0.3398	C	-0.902778	8.786101	-0.102751	0.9187
@TREND(1970)	1.115551	0.499392	2.233818	0.0318	@TREND(1970)	-0.002681	0.383946	-0.006982	0.9945
R-squared	0.301057	Mean depen	dent var	-0.126584	R-squared	0.301057	Mean depen	ndent var	-1.852282
Adjusted R-squared	0.262227	S.D. depend	lent var	31.27843	Adjusted R-squared	0.262227	S.D. depend	dent var	31.27843
S.E. of regression	26.86621	Akaike info	criterion	9.493419	S.E. of regression	26.86621	Akaike info	criterion	9.493419
Sum squared resid	25984.56	Schwarz crit	terion		Sum squared resid	25984.56	Schwarz cri	terion	9.621385
Log likelihood	-182.1217	F-statistic		7.753171	Log likelihood	-182.1217	F-statistic		7.753171
Durbin-Watson stat	1.887970	Prob(F-statis	stic)	0.001585	Durbin-Watson stat	1.887970	Prob(F-stati	stic)	0.001585

Modèle [2] Det

Modèle [1] Det

	Modele	[2] Det				Model	e [1] Det		
PP Test Statistic	-3.992118	1% Critical 5% Critical 10% Critical	Value	-3.6067 -2.9378 -2.6069	PP Test Statistic	-4.060645		l Value*	-2.6227
*MacKinnon critical v	alues for rejecti	on of hypothe	sis of a unit	10X			5% Critica 10% Critica		-1.9495 -1.6202
Lag truncation for Bar Residual variance with		(Newey-Wes	st suggests:	3) 666,2715	*MacKinnon critical	values for reject	ion of hypothe	esis of a unit	root.
Residual variance with	n correction			666.2715	Lag truncation for Ba Residual variance wi Residual variance wi	th no correction		st suggests:	3) 667.1834 667.1834
Phillips-Perron Test E Dependent Variable: Method: Least Square	D(RES1)				Phillips-Perron Test	Fouation			
Date: 05/18/13 Time Sample(adjusted): 19 Included observations	71 2009	ting endpoints	3		Dependent Variable: Method: Least Squa Date: 05/18/13 Tim	D(RES1) res e: 13:32			
Sample(adjusted): 19	71 2009	ting endpoints	t-Statistic	Prob.	Dependent Variable: Method: Least Squa	D(RES1) res le: 13:32 971 2009	sting endpoint	s	
Sample(adjusted): 19 Included observations	71 2009 : 39 after adjus	STEEL CT.	CHI (1004/1000) 100	Prob. 0.0003 0.8232	Dependent Variable: Method: Least Squa Date: 05/18/13 Tim Sample(adjusted): 1	D(RES1) res le: 13:32 971 2009	sting endpoint Std. Error	s t-Statistic	Prob.
Sample(adjusted): 19 Included observations Variable RES1(-1)	71 2009 : 39 after adjus Coefficient -0.648096	Std. Error 0.162344	t-Statistic -3.992118 -0.225028	0.0003	Dependent Variable: Method: Least Squa Date: 05/18/13 Tim Sample(adjusted): 1 Included observation Variable RES1(-1)	D(RES1) res le: 13:32 971 2009 s: 39 after adjus		18.	Prob. 0.0002

Le produit intérieur brut PIB (test de DF)

Modèle [3]

Modèle [2]

ADF Test Statistic	0.037433	1% Critical Value* 5% Critical Value 10% Critical Value	-4.2092 -3.5279 -3.1949	ADF Test Statistic	1.606357	1% Critical Value* 5% Critical Value	-3.6067 -2.9378
*MacKinnon critical	alues for rejec	ction of hypothesis of a u	nit root			10% Critical Value	-2.6069

CALCII DAXX

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIB) Method: Least Squares Date: 05/10/13 Time: 18:57 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PIB) Method: Least Squares

Date: 05/18/13 Time: 14:07 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	included observations	. 33 aiter aujus	iting enupoint	•	
Valiable	Odemeient	Ota. Ellor	1400-1400-1400	1 100.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIB(-1) C @TREND(1970)	0.003066 -1.19E+09 2.86E+08	0.081905 3.62E+09 2.93E+08	0.037433 -0.328007 0.976746	0.7448	PIB(-1)	0.070568 6.93E+08	0.043931 3.07E+09	1.606357 0.225945	0.1167 0.8225
R-squared	0.089327	Mean depen	dent var	4.71E+09	R-squared	0.065193	Mean depen	dent var	4.71E+09
Adjusted R-squared	0.038734	S.D. depend	lent var	1.13E+10	Adjusted R-squared	0.039928	S.D. depend	lent var	1.13E+10
S.E. of regression	1.11E+10	Akaike info	criterion	49.16445	S.E. of regression	1.11E+10	Akaike info	criterion	49.13933
Sum squared resid	4.40E+21	Schwarz crit	terion		Sum squared resid	4.52E+21	Schwarz cri	terion	49.22464
Log likelihood	-955.7068	F-statistic		1.765605	Log likelihood	-956.2169	F-statistic		2.580384
Durbin-Watson stat	2.206346	Prob(F-statis	stic)	0.185577	Durbin-Watson stat	2.291679	Prob(F-stati	stic)	0.116697

Modèle [1]

Modèle [1] Dif

ADF Test Statistic	3.141715	1% Critical Value* 5% Critical Value 10% Critical Value	-2.6227 ADF Test Statistic -1.9495 -1.6202	-5.146706	1% Critical Value* 5% Critical Value 10% Critical Value	-2.6243 -1.9498 -1.6204
		10% Critical Value	-1.6202		10% Critical Value	-1.6204

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PIB) Method: Least Squares Date: 05/10/13 Time: 18:59 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PIB,2) Method: Least Squares Date: 05/10/13 Time: 18:59 Sample(adjusted): 1972 2009

Included observations: 38 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob. Variable Coefficient Std. Error t-Statistic Prob. D(PIB(-1)) PIB(-1) 0.078673 0.025042 3.141715 0.0032 -0.900662 0.174998 -5.146706 0.0000 0.063904 4.71E+09 R-squared 0.416106 Mean dependent var 6.97E+08 R-squared Mean dependent var Adjusted R-squared 0.063904 1.13E+10 Adjusted R-squared 0.416106 1.62E+10 S.D. dependent var S.D. dependent var 49.08942 S.E. of regression S.E. of regression 1.09E+10 Akaike info criterion 1.24E+10 Akaike info criterion 49.33898 49.13208 Sum squared resid 2.305946 Log likelihood Sum squared resid Log likelihood 4.52E+21 5.65E+21 Schwarz criterion 49.38207 Schwarz criterion Durbin-Watson stat -936.4406 Durbin-Watson stat 1.923347 -956.2438

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Le produit intèrieur brut PIB (test de PP)

Modèle [3]

Modèle [2]

PP Test Statistic	0.037433	0.7570000	Critical Value* Critical Value Critical Value	-4.2092 -3.5279 -3.1949	PP Test Statistic	1.606357	5%	Critical Value* Critical Value Critical Value	-3.6067 -2.9378 -2.6069
*MacKinnon critical v	alues for reject	ion of	hypothesis of a uni	t root.	*MacKinnon critical	values for rejec	tion of h	ypothesis of a un	t root.
Lag truncation for Ba Residual variance wit Residual variance wit	h no correction		vey-West suggests	1.13E+20	Lag truncation for Ba Residual variance wi Residual variance wi	th no correction		ey-West suggests	5: 3) 1.16E+20 1.16E+20

Phillips-Perron Test Equation Dependent Variable: D(PIB) Method: Least Squares Date: 05/10/13 Time: 19:00 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Phillips-Perron Test Equation
Dependent Variable: D(PIB)
Method: Least Squares
Date: 05/10/13 Time: 19:01
Sample(adjusted): 1971 2009
Included observations: 39 after adjusting endpoints

		(ES) 2	2 1200							
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.	
PIB(-1) C @TREND(1970)	0.003066 -1.19E+09 2.86E+08	0.081905 3.62E+09 2.93E+08	0.037433 -0.328007 0.976746	0.7448	224177	0.070568 6.93E+08	0.043931 3.07E+09	1.606357 0.225945	0.1167 0.8225	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.089327 0.038734 1.11E+10 4.40E+21 -955.7068 2.206346	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	lent var criterion terion	1.13E+10 49.16445 49.29242 1.765605	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.065193 0.039928 1.11E+10 4.52E+21 -956.2169 2.291679	Mean depen S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	dent var criterion terion	4.71E+09 1.13E+10 49.13933 49.22464 2.580384 0.116697	

Modèle [1]

Modèle [1] Dif

PP Test Statistic *MacKinnon critical v	3.141715	5% Critica 10% Critica	110000000	-2.6227 -1.9495 -1.6202	PP Test Statistic *MacKinnon critical	-5.146706 values for reject	5% Critica 10% Critical	Value	-2.6243 -1.9498 -1.6204 root.
Lag truncation for Bar Residual variance with Residual variance with	h no correction	(Newey-We	st suggests:	3) 1.16E+20 1.16E+20		th no correction	(Newey-We	st suggests:	3) 1.49E+20 1.49E+20
Phillips-Perron Test E Dependent Variable: Method: Least Squar Date: 05/18/13 Time Sample(adjusted): 19 Included observations	D(PIB) es e: 14:08 71 2009	sting endpoint	s		Phillips-Perron Test Dependent Variable: Method: Least Squa Date: 05/10/13 Tim Sample(adjusted): 1! Included observation	D(PIB,2) res e: 19:03 972 2009	sting endpoints	S	
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIB(-1)	0.078673	0.025042	3.141715	0.0032	D(PIB(-1))	-0.900662	0.174998	-5.146706	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.063904 0.063904 1.09E+10 4.52E+21 -956.2438	Mean deper S.D. depend Akaike info Schwarz cri Durbin-Wats	dent var criterion terion	1.13E+10 49.08942 49.13208	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.416106 0.416106 1.24E+10 5.65E+21 -936.4406	Mean depen S.D. depend Akaike info Schwarz cri Durbin-Wats	lent var criterion terion	6.97E+08 1.62E+10 49.33898 49.38207 1.923347

Balance commerciale BC (test de DF)

Modèle [3]

Modèle [2]

ADF Test Statistic	-3.069338	1% Critical Value* 5% Critical Value	-4.2092 -3.5279	ADF Test Statistic	-2.284599	1% Critical Value*	-3.6067
85.		10% Critical Value	-3.1949	ADI Test Statistic	-2.204333	5% Critical Value	-2.9378
44.4		saar viitiste musear oo	gereren ger			10% Critical Value	-2.6069

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(BC) Method: Least Squares Date: 05/10/13 Time: 16:31 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation Dependent Variable: D(BC) Method: Least Squares Date: 05/10/13 Time: 16:32 Sample(adjusted): 1971 2009

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Included observations: 39 after adjusting endpoints					
		1075200357533000	190900000000000000000000000000000000000	1 30316.000	Variable	Coefficient	Std. Error	t-Statistic	Prob.	
BC(-1) C @TREND(1970)	-0.418670 -2.86E+09 2.22E+08	0.136404 2.23E+09 1.14E+08	-3.069338 -1.282291 1.951345	0.2079	BC(-1) C	-0.246232 9.96E+08	0.107779 1.07E+09	-2.284599 0.926904	W 1000000000000000000000000000000000000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.207454 0.163423 6.09E+09 1.33E+21 -932.4269	Mean depend S.D. depend Akaike info Schwarz crit F-statistic	lent var criterion	1.67E+08 6.66E+09 47.97061 48.09858 4.711606	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.123625 0.099940 6.31E+09 1.48E+21 -934.3875	Mean depend S.D. depend Akaike info Schwarz cri F-statistic	dent var criterion	1.67E+08 6.66E+09 48.01987 48.10518 5.219392	
Durbin-Watson stat	1.516003	Prob(F-statis	stic)	0.015221	Durbin-Watson stat	1.478650	Prob(F-stati	stic)	0.028168	

Modèle [1]

-2.098541	1%	Critical Value*	-2.6227
	5%	Critical Value	-1.9495
	10%	Critical Value	-1.6202
	-2.098541	5%	-2.098541 1% Critical Value* 5% Critical Value 10% Critical Value

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(BC) Method: Least Squares Date: 05/10/13 Time: 16:33 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
BC(-1)	-0.212502	0.101262	-2.098541	0.0426	
R-squared	0.103276	Mean depen	dent var	1.67E+08	
Adjusted R-squared	0.103276	S.D. depend		6.66E+09	
S.E. of regression	6.30E+09	Akaike info	criterion	47.99154	
Sum squared resid	1.51E+21	Schwarz crit	terion	48.03420	
Log likelihood	-934.8351	Durbin-Wats	on stat	1.469385	

Balance commerciale BC (test de PP)

Modèle [3]

Modèle [2]

PP Test Statistic	-3.069338	5%	Critical Value* Critical Value Critical Value	-4.2092 -3.5279 -3.1949	PP Test Statistic	-2.284599	5%	Critical Value* Critical Value Critical Value	-3.6067 -2.9378 -2.6069
*MacKinnon critical	values for rejec	tion of	hypothesis of a un	t root.	*MacKinnon critical	values for rejec	tion of	hypothesis of a un	t root.
Lag truncation for B Residual variance w Residual variance w	ith no correction		vey-West suggests	3.42E+19	Lag truncation for B Residual variance w Residual variance w	ith no correctio		wey-West suggests	3.78E+19 3.78E+19

Phillips-Perron Test Equation Dependent Variable: D(BC) Method: Least Squares Date: 05/10/13 Time: 16:34 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Phillips-Perron Test Equation Dependent Variable: D(BC) Method: Least Squares Date: 05/10/13 Time: 16:36 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Madable	O - E	OH F	1 01-11-11-	Deal		850	853 11		
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
BC(-1) C @TREND(1970)	-0.418670 -2.86E+09 2.22E+08	0.136404 2.23E+09 1.14E+08	-3.069338 -1.282291 1.951345	0.2079	3237.00	-0.246232 9.96E+08	0.107779 1.07E+09	-2.28 <mark>4</mark> 599 0.926904	0.0282 0.3600
R-squared	0.207454	Mean depen			R-squared Adjusted R-squared	0.123625 0.099940	Mean depen		1.67E+08 6.66E+09
Adjusted R-squared S.E. of regression	0.163423 6.09E+09	S.D. depend Akaike info			S.E. of regression	6.31E+09	Akaike info		48.01987
Sum squared resid Log likelihood	1.33E+21 -932.4269	Schwarz crit F-statistic	********	4.711606	Sum squared resid Log likelihood	1.48E+21 -934.3875	Schwarz cri F-statistic	1980 AV	48.10518 5.219392
Durbin-Watson stat	1.516003	Prob(F-stati	stic)	0.015221	Durbin-Watson stat	1.478650	Prob(F-stati	stic)	0.028168

Modèle [1]

PP Test Statistic	-2.098541	1%	Critical Value*	-2.6227
		5%	Critical Value	-1.9495
		10%	Critical Value	-1.6202

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel: 0 (Newey-West suggests: 3)
Residual variance with no correction 3.87E+19
Residual variance with correction 3.87E+19

Phillips-Perron Test Equation Dependent Variable: D(BC) Method: Least Squares Date: 05/10/13 Time: 16:37 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
BC(-1)	-0.212502	0.101262	-2.098541	0.0426	
R-squared	0.103276	Mean depen	dent var	1.67E+08	
Adjusted R-squared	0.103276	S.D. depend	lent var	6.66E+09	
S.E. of regression	6.30E+09	Akaike info	criterion	47.99154	
Sum squared resid	1.51E+21	Schwarz crit	terion	48.03420	
Log likelihood	-934.8351	Durbin-Wats	on stat	1.469385	

Balance commerciale hors hydrocarbures BCHH (test de DF)

Modèle [3]

Modèle [3] Det

ADF Test Statistic -4.452795	1% Critical Value* 5% Critical Value 10% Critical Value	-4.2092 ADF Test Statistic -3.5279 -3.1949	-4.452795	1% Critical Value* 5% Critical Value 10% Critical Value	-4.2092 -3.5279 -3.1949
------------------------------	---	--	-----------	---	-------------------------------

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(BCHH) Method: Least Squares Date: 05/10/13 Time: 16:39 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RES) Method: Least Squares

Date: 05/10/13 Time: 16:40 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

						100	4,54.25		
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
BCHH(-1)	-0.809387	0.181770	-4.452795	0.0001	RES(-1)	-0.809387	0.181770	-4.452795	0.0001
C	-6.13E+08	2.96E+09	-0.207138	0.8371	C	78007887	2.96E+09	0.026369	0.9791
@TREND(1970)	-5.70E+08	1.67E+08	-3.404769	0.0016	@TREND(1970)	-11141829	1.30E+08	-0.085944	0.9320
R-squared	0.360945	Mean deper	ident var	-1.25E+09	R-squared	0.360945	Mean deper	ident var	-5.63E+08
Adjusted R-squared	0.325442	S.D. depend	dent var	1.10E+10	Adjusted R-squared	0.325442	S.D. depend	dent var	1.10E+10
S.E. of regression	9.02E+09	Akaike info	criterion	48.75787	S.E. of regression	9.02E+09	Akaike info	criterion	48.75787
Sum squared resid	2.93E+21	Schwarz cri	terion	48.88584	Sum squared resid	2.93E+21	Schwarz cri	terion	48.88584
Log likelihood	-947.7785	F-statistic			Log likelihood	-947.7785	F-statistic		10.16660
Durbin-Watson stat	1.898820	Prob(F-stati	stic)		Durbin-Watson stat	1.898820	Prob(F-stati	stic)	0.000316

Modèle [2] Det

Modèle [1] Det

*MacKinnon critical values for rejection of hypothesis of a unit root.

Std. Error

0.174887

Mean dependent var S.D. dependent var Akaike info criterion

Schwarz criterion

Durbin-Watson stat

t-Statistic

-4.647018

Prob.

0.0000

-5.63E+08

1.10E+10

48.65579

48.69844

1.891821

ADF Test Statistic	-4.570 1 35	5%	Critical Value* Critical Value Critical Value	-3.6067 -2.9378 -2.6069	ADF Test Statistic	-4.647018	1133350	Critical Value*	-2.6227
*MacKinnon critical	values for rejec	tion of	hypothesis of a uni	t root.	×c.		50 51050	Critical Value Critical Value	-1.9495 -1.6202

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RES) Method: Least Squares Date: 05/10/13 Time: 16:42

Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RES)

Method: Least Squares Date: 05/10/13 Time: 16:43 Sample(adjusted): 1971 2009

ns: 39 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Included observations	
RES(-1)	-0.811556	0.177578	-4.570135	0.0001	Variable	Coefficient
С	-1.44E+08	1.43E+09	-0.100610	0.9204	RES(-1)	-0.812705
R-squared	0.360814	Mean depen	ident var	-5.63E+08	=======================================	0.012103
Adjusted R-squared	0.343539	S.D. depend	dent var	1.10E+10	R-squared	0.360639
S.E. of regression	8.90E+09	Akaike info	criterion	48.70680	Adjusted R-squared	0.360639
Sum squared resid	2.93E+21	Schwarz crit	terion	48.79211	S.E. of regression	8.78E+09
Log likelihood	-947.7825	F-statistic		20.88613	Sum squared resid	2.93E+21
Durbin-Watson stat	1.894516	Prob(F-stati	stic)	0.000053	Log likelihood	-947.7879

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Balance commerciale hors hydrocarbures BCHH (test de PP)

Modèle [3]

Modèle [3] Det

PP Test Statistic	-4.452795	8.45° - 7.65° - 7.5	il Value* il Value il Value	-4.2092 -3.5279 -3.1949	PP Test Statistic	-4 <mark>.</mark> 452795		l Value* I Value I Value	-4.2092 -3.5279 -3.1949
*MacKinnon critical	values for rejecti	on of hypoth	esis of a unit	root.	*MacKinnon critical	values for rejecti	on of hypothe	esis of a unit	root.
Lag truncation for Ba Residual variance wi Residual variance wi	th no correction	(Newey-We	st suggests:	7.52E+19	Lag truncation for B Residual variance w Residual variance w	ith no correction		st suggests:	3) 7.52E+19 7.52E+19
Phillips-Perron Test Dependent Variable: Method: Least Squa Date: 05/10/13 Tim Sample(adjusted): 1 Included observation	D(BCHH) ires ie: 16:48 971 2009	iting endpoint	s		Phillips-Perron Test Dependent Variable Method: Least Squa Date: 05/10/13 Tir Sample(adjusted): 1 Included observation	: D(RES) ares ne: 16:44 1971 2009	iting endpoint	s	
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
BCHH(-1)	-0.809387	0.181770	-4.452795	0.0001	RES(-1)	-0.809387	0.181770	-4.452795	0.0001

variable	Coefficient	Std. Error	t-Statistic	Prob.	variable	Coemicient	Sta. Error	t-Statistic	Prob.
BCHH(-1)	-0.809387	0.181770	-4.452795	0.0001	RES(-1)	-0.809387	0.181770	-4.452795	0.0001
C	-6.13E+08	2.96E+09	-0.207138	0.8371	C	78007887	2.96E+09	0.026369	0.9791
@TREND(1970)	-5.70E+08	1.67E+08	-3.404769	0.0016	@TREND(1970)	-11141829	1.30E+08	-0.085944	0.9320
R-squared	0.360945	Mean depen	ident var	-1.25E+09	R-squared	0.360945	Mean deper	ident var	-5.63E+08
Adjusted R-squared	0.325442	S.D. depend	dent var	1.10E+10	Adjusted R-squared	0.325442	S.D. depend	dent var	1.10E+10
S.E. of regression	9.02E+09	Akaike info	criterion	48.75787	S.E. of regression	9.02E+09	Akaike info	criterion	48.75787
Sum squared resid	2.93E+21	Schwarz crit	terion	48.88584	Sum squared resid	2.93E+21	Schwarz cri	terion	48.88584
Log likelihood	-947.7785	F-statistic		10.16660	Log likelihood	-947.7785	F-statistic		10.16660
Durbin-Watson stat	1.898820	Prob(F-stati	stic)	0.000316	Durbin-Watson stat	1.898820	Prob(F-stati	stic)	0.000316

Modèle [2] Det

Modèle [1] Det

	-4.570135	A STATE OF THE STA	al Value* al Value al Value	-3.6067 -2.9378 -2.6069	PP Test Statistic	-4.647018	2820 TAXABLE	ıl Value*	-2.6227 -1.9495
*MacKinnon critical va	alues for rejecti	on of hypoth	esis of a unit	root.			10% Critica		-1.6202
Lag truncation for Bart		(Newey-We	est suggests:		*MacKinnon critical	alues for reject	tion of hypothe	esis of a unit	root.
Residual variance with Residual variance with			1427/95	7.52E+19 7.52E+19	Lag truncation for Ba Residual variance wi Residual variance wi	th no correction		st suggests:	3) 7.52E+19 7.52E+19
Phillips-Perron Test E Dependent Variable: [
Method: Least Square Date: 05/10/13 Time Sample(adjusted): 19 Included observations:	: 16:45 71 2009 : 39 after adjus	1078 Et	8850424245544574	LI PANCANI.	Phillips-Perron Test Dependent Variable: Method: Least Squa Date: 05/10/13 Tim Sample(adjusted): 19	D(RES) res e: 16:46 971 2009	a www		
Date: 05/10/13 Time Sample(adjusted): 197	: 16:45 71 2009	ting endpoin Std. Error	8850424245544574	Prob.	Dependent Variable: Method: Least Squa Date: 05/10/13 Tim	D(RES) res e: 16:46 971 2009	sting endpoint	s	
Date: 05/10/13 Time Sample(adjusted): 19 Included observations Variable RES(-1)	: 16:45 71 2009 : 39 after adjus Coefficient -0.811556	Std. Error 0.177578	t-Statistic	0.0001	Dependent Variable: Method: Least Squa Date: 05/10/13 Tim Sample(adjusted): 19	D(RES) res e: 16:46 971 2009	sting endpoint Std. Error	s t-Statistic	Prob.
Date: 05/10/13 Time Sample(adjusted): 19: Included observations	: 16:45 71 2009 : 39 after adjus Coefficient	Std. Error	t-Statistic -4.570135 -0.100610	0.0001	Dependent Variable: Method: Least Squa Date: 05/10/13 Tim Sample(adjusted): 1! Included observation	D(RES) res e: 16:46 971 2009 s: 39 after adju		20 II MOG	MANAGE Appropriate

Absorption AB (test de DF)

Modèle [3]

Modèle [2]

ADF Test Statistic	-1.792334	1% Critical Value* 5% Critical Value 10% Critical Value	-4.2092 -3.5279 ADF Test Statistic -3.1949	-1.574188	1% Critical Value* 5% Critical Value	-3.6067 -2.9378
					10% Critical Value	-2.6069

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(AB) Method: Least Squares Date: 05/17/13 Time: 17:50 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation Dependent Variable: D(AB)

Method: Least Squares Date: 05/17/13 Time: 17:51 Sample(adjusted): 1971 2009

Variable	Coefficient	Std. Error	t-Statistic	Prob.	included observations.	. 33 aiter aujus	ting enupoint		
Vallable	Coefficient	Stu. Lifti	t-Statistic	F100.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
AB(-1) C @TREND(1970)	-0.164300 11.44980 -0.069225	0.091668 6.726005 0.079207	-1.792334 1.702318 -0.873976	0.0973	AB(-1)	-0.129948 7.875588	0.082549 5.322816	-1.574188 1.479591	0.1240 0.1474
R-squared	0.082243	Mean depen	ident var	-0.407686	R-squared	0.062771	Mean depen	dent var	-0.407686
Adjusted R-squared	0.031257	S.D. depend	dent var	5.109846	Adjusted R-squared	0.037440	S.D. depend	lent var	5.109846
S.E. of regression	5.029353	Akaike info	criterion	6.142263	S.E. of regression	5.013276	Akaike info	criterion	6.111977
Sum squared resid	910.5980	Schwarz crit	terion	6.270229	Sum squared resid	929.9187	Schwarz cri	terion	6.197288
Log likelihood	-116.7741	F-statistic		1.613044	Log likelihood	-117.1835	F-statistic		2.478069
Durbin-Watson stat	1.604535	Prob(F-stati	stic)	0.213351	Durbin-Watson stat	1.619488	Prob(F-stati	stic)	0.123957

Modèle [1]

Modèle [1] Dif

ADF Test Statistic	-0.728149	1%	Critical Value*	-2.6227 ADF Test St	tatistic	-5.209365	1%	Critical Value*	-2.6243
		5%	Critical Value	-1.9495			5%	Critical Value	-1.9498
		10%	6 Critical Value	-1.6202			10%	Critical Value	-1.6204

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(AB)
Method: Least Squares
Date: 05/17/13 Time: 17:52
Sample(adjusted): 1971 2009
Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation Dependent Variable: D(AB,2) Method: Least Squares Date: 05/17/13 Time: 17:53 Sample(adjusted): 1972 2009 Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
AB(-1)	-0.009206	0.012643	-0.728149	0.4710	D(AB(-1))	-0.907508	0.174207	-5.209365	0.0000
R-squared	0.007318	Mean depen	dent var	-0.407686	R-squared	0.422576	Mean depen	dent var	0.204099
Adjusted R-squared	0.007318	S.D. depend	lent var	5.109846	Adjusted R-squared	0.422576	S.D. depend	lent var	6.768978
S.E. of regression	5.091116	Akaike info	criterion	6.118178	S.E. of regression	5.143641	Akaike info	criterion	6.139363
Sum squared resid	984.9394	Schwarz crit	terion	6.160833	Sum squared resid	978.9106	Schwarz cri	terion	6.182457
Log likelihood	-118.3045	Durbin-Wats	on stat	1.708121	Log likelihood	-115.6479	Durbin-Wats	on stat	1.816318

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Absorption AB (test de PP)

Modèle [3]

Modèle [2]

500	6 Critical Value* 6 Critical Value 7 Critical Value	-4.2092 -3.5279 -3.1949	PP Test Statistic	-1.574188	5%	Critical Value* Critical Value Critical Value	-3.6067 -2.9378 -2.6069
*MacKinnon critical values for rejection of	f hypothesis of a unit	root.	*MacKinnon critical	values for rejec	tion of h	nypothesis of a un	t root.
Lag truncation for Bartlett kernel: 0 (No Residual variance with no correction Residual variance with correction	ewey-West suggests:	3) 23.34867 23.34867		ith no correction		ey-West suggests	23.84407 23.84407

Phillips-Perron Test Equation Dependent Variable: D(AB) Method: Least Squares Date: 05/17/13 Time: 17:54

Sample(adjusted): 1971 2009 Included observations: 39 after adjusting endpoints

Phillips-Perron Test Equation Dependent Variable: D(AB) Method: Least Squares Date: 05/17/13 Time: 17:55

Sample(adjusted): 1971 2009 Included observations: 39 after adjusting endpoints

12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			_			THE STREET SAME SHELL SERVICE	10	- 11
Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
-0.164300 11.44980 -0.069225	0.091668 6.726005 0.079207	988 FART TOTAL 1887	0.0973	AB(-1)	-0.129948 7.875588	0.082549 5.322816	-1.574188 1.479591	0.1240 0.1474
0.082243	School Street	S.D. dependent var 5 Akaike info criterion 6		R-squared	0.062771	THE RESERVE THE PROPERTY OF THE PARTY OF THE		-0.407686 5.109846
5.029353	5.029353 Akaike info criterion 6.142263 S.			S.E. of regression	5.013276	Akaike info	criterion	6.111977 6.197288
-116.7741	F-statistic		1.613044	Log likelihood	-117.1835	F-statistic		2.478069 0.123957
	11.44980 -0.069225 0.082243 0.031257 5.029353 910.5980	-0.164300 0.091668 11.44980 6.726005 -0.069225 0.079207 0.082243 Mean deper 0.031257 S.D. depend 5.029353 Akaike info 910.5980 Schwarz cri -116.7741 F-statistic	-0.164300 0.091668 -1.792334 11.44980 6.726005 1.702318 -0.069225 0.079207 -0.873976 0.082243 Mean dependent var 0.031257 S.D. dependent var 5.029353 Akaike info criterion 910.5980 Schwarz criterion -116.7741 F-statistic	-0.164300 0.091668 -1.792334 0.0815 11.44980 6.726005 1.702318 0.0973 -0.069225 0.079207 -0.873976 0.3879 0.082243 Mean dependent var -0.407686 0.031257 S.D. dependent var 5.109846 5.029353 Akaike info criterion 6.142263 910.5980 Schwarz criterion 6.270229 -116.7741 F-statistic 1.613044	-0.164300	-0.164300	-0.164300	-0.164300

Modèle [1]

Modèle [1] Dif

PP Test Statistic	-0.728149	1% Critical Value* 5% Critical Value 10% Critical Value	-2.6227 -1.9495 -1.6202	PP Test Statistic	-5.209365	1% Critical Value* 5% Critical Value 10% Critical Value	-2.6243 -1.9498 -1.6204			
*MacKinnon critical	values for rejec	tion of hypothesis of a u	ınit root.	*MacKinnon critical values for rejection of hypothesis of a unit root.						
Lag truncation for E Residual variance v Residual variance v	vith no correctio	(Newey-West sugges n	25.25486	Lag truncation for Bartlett kernel: 0 (Newey-West suggests: 3) Residual variance with no correction 25.7 Residual variance with correction 25.7						
Phillips-Perron Test Dependent Variable				Phillips-Perron Test Dependent Variable						

Method: Least Squares Date: 05/17/13 Time: 17:55 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Method: Least Squares
Date: 05/17/13 Time: 17:57
Sample(adjusted): 1972 2009
Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.	
AB(-1)	-0.009206	0.012643	-0.728149	0.4710	D(AB(-1))	-0.907508	0.174207	-5.209365	0.0000	
R-squared	0.007318	Mean depen			R-squared	0.422576	Mean depen	dent var	0.204099	
Adjusted R-squared	0.007318	S.D. depend			Adjusted R-squared	0.422576	S.D. depend	lent var	6.768978	
S.E. of regression	5.091116	Akaike info	criterion		6.118178 S	S.E. of regression	5.143641	Akaike info	criterion	6.139363
Sum squared resid	984.9394	Schwarz crit	terion	6.160833	Sum squared resid	978.9106	Schwarz crit	terion	6.182457	
Log likelihood	-118.3045	Durbin-Wats	on stat	1.708121	Log likelihood	-115.6479	Durbin-Wats	on stat	1.816318	

La masse monétaire M2 (test de DF)

Modèle [3]

Modèle [2]

ADF Test Statistic	-1.391536	1% Critic 5% Critic 10% Critic	al Value	-4.2092 -3.5279 -3.1949	ADF Test Statistic	-0.559485	0.00	Critical Value*	-3.6067 -2.9378
***************************************	value for sale							Critical Value	-2.6069

^{&#}x27;MacKinnon critical values for rejection of hypothesis of a unit root.

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(M2) Method: Least Squares Date: 05/10/13 Time: 18:21

Sample(adjusted): 1971 2009 Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(M2)
Method: Least Squares
Date: 05/10/13 Time: 18:24
Sample(adjusted): 1971 2009
Included observations: 39 after adjusting endpoints

Variable	Coefficient	Std Error	t-Statistic	Prob.	Included observations	. 55 aiter aujus	iting enupoint	3	
DAMAGE AND	W 0.10 1.30 1.15 1.15	(The 1 section of 2 section 2	AVAILABLE 1510A		Variable	Coefficient	Std. Error	t-Statistic	Prob.
M2(-1) C @TREND(1970)	-0.151557 2.92E+08 3.35E+08	0.108913 4.01E+09 2.16E+08	-1.391536 0.072873 1.553382	0.9423		-0.049527 3.95E+09	0.088522 3.30E+09	-0.559485 1.194098	100000000000000000000000000000000000000
R-squared Adjusted R-squared	0.070679 0.019050	Control of the second second			R-squared Adjusted R-squared	0.008389 -0.018411	Mean depen		2.46E+09 1.22E+10
S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	1.21E+10 5.27E+21 -959.2358 2.222702	Schwarz crit F-statistic	Akaike info criterion Schwarz criterion F-statistic		S.É. of regression Sum squared resid Log likelihood Durbin-Watson stat	1.23E+10 5.63E+21 -960.5009 2.307785	Akaike info Schwarz cri F-statistic Prob(F-stati	terion	49.35902 49.44433 0.313024 0.579202

Modèle [1]

Modèle [1] Dif

ADF Test Statistic	0.662032	1% Critical Value	-2.6227 ADF Test Statistic	-7.120223		-2.6243
		5% Critical Value	-1.9495		5% Critical Value	-1.9498
		10% Critical Value	-1.6202		10% Critical Value	-1.6204

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(M2) Method: Least Squares Date: 05/10/13 Time: 18:25 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(M2,2)
Method: Least Squares
Date: 05/10/13 Time: 18:53
Sample(adjusted): 1972 2009
Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
M2(-1)	0.035221	0.053202	0.662032	0.5119	D(M2(-1))	-1.163056	0.163345	-7.120223	0.0000
R-squared	-0.029825	Mean depen			R-squared	0.578027	Mean deper	dent var	-2.42E+08
Adjusted R-squared	-0.029825	S.D. depend	lent var	1.22E+10	Adjusted R-squared	0.578027	S.D. depend	lent var	1.92E+10
S.E. of regression	1.24E+10	Akaike info	criterion	49.34555	S.E. of regression	1.25E+10	Akaike info	criterion	49.35776
Sum squared resid	5.85E+21	Schwarz crit	terion	49.38821	Sum squared resid	5.76E+21	Schwarz cri	terion	49.40086
Log likelihood	-961.2383	Durbin-Wats	on stat	2.417629	Log likelihood	-936.7975	Durbin-Wats	on stat	1.945865

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

La masse monétaire M2 (test de PP)

Modèle [3]

Modèle [2]

Vin	artlett kernel: 0	(New	vey-West suggests:	3)	*MacKinnon critical	values for reject	ion of r	nypotnesis of a unit	root.
W 02 100	and an Irania Ira	(New	vev-West suggests:	3)		100-11			

Phillips-Perron Test Equation Dependent Variable: D(M2) Method: Least Squares Date: 05/10/13 Time: 18:32 Sample(adjusted): 1971 2009

Adjusted R-squared

S.E. of regression

Sum squared resid

Log likelihood

Included observations: 39 after adjusting endpoints

Phillips-Perron Test Equation Dependent Variable: D(M2) Method: Least Squares Date: 05/10/13 Time: 18:37 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Variable	Coofficient	Ctd Error	4 Otatistis	Deah		200	853 71		
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
M2(-1) C @TREND(1970)	-0.151557 2.92E+08 3.35E+08	0.108913 4.01E+09 2.16E+08	-1.391536 0.072873 1.553382	0.9423	M2(-1) C	-0.049527 3.95E+09	0.088522 3.30E+09	-0.559485 1.194098	F-07-9/3-75
R-squared Adjusted R-squared	0.070679 0.019050	S.D. depend	S.D. dependent var 1.		R-squared Adjusted R-squared	0.008389 -0.018411	0.018411 S.D. dependent var		2.46E+09 1.22E+10
S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	1.21E+10 5.27E+21 -959.2358 2.222702	Schwarz crit F-statistic	Schwarz criterion F-statistic		S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	1.23E+10 5.63E+21 -960.5009 2.307785	Schwarz criterion F-statistic		49.35902 49.44433 0.313024 0.579202

Modèle [1]

-0.029825

1.24E+10

5.85E+21

-961.2383

S.D. dependent var

Akaike info criterion

Schwarz criterion

Durbin-Watson stat

Modèle [1] Dif

0.578027

1.25E+10

5.76E+21

-936.7975

S.D. dependent var

Akaike info criterion

Schwarz criterion

Durbin-Watson stat

1.92E+10

49.35776

49.40086

1.945865

	Model	C[1]			Modele [1] Dif					
PP Test Statistic	0.662032	1% Critica 5% Critica 10% Critical	A Company	-2.6227 -1.9495 -1.6202	PP Test Statistic	-7.120223	5%	Critical V Critical V Critical V	/alue	-2.6243 -1.9498 -1.6204
*MacKinnon critical v	alues for reject	ion of hypothe	sis of a unit	root.	*MacKinnon critical	values for reject	tion of h	ypothesi	s of a unit	root.
Lag truncation for Ba Residual variance wit Residual variance wit	h no correction	(Newey-We	st suggests:	3) 1.50E+20 1.50E+20	Lag truncation for Ba Residual variance wi Residual variance wi	ith no correction		ey-West	suggests:	3) 1.52E+20 1.52E+20
Phillips-Perron Test I Dependent Variable: Method: Least Squar Date: 05/10/13 Time Sample(adjusted): 19 Included observations	D(M2) res e: 18:37 971 2009	sting endpoint	S		Phillips-Perron Test Dependent Variable: Method: Least Squa Date: 05/10/13 Tim Sample(adjusted): 1 Included observation	D(M2,2) ires ne: 18:38 972 2009	sting en	dpoints		
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std.	Error	t-Statistic	Prob.
M2(-1)	0.035221	0.053202	0.662032	0.5119	D(M2(-1))	-1.163056	0.16	3345	-7.120223	0.0000
R-squared	-0.029825	Mean deper	dent var	2.46E+09	R-squared	0.578027	Mean	depende	ent var	-2.42E+08

1.22E+10 Adjusted R-squared

49.34555 S.E. of regression

49.38821 Sum squared resid 2.417629 Log likelihood

La valeur ajoutée en pourcentage du PIB dans le secteur agricole VAG (test de DF)

Modèle [3]

Modèle [2]

ADF Test Statistic	-3.271126	1% Critica 5% Critica 10% Critica	5 TO 1 TO 1	-4.2092 -3.5279 -3.1949	ADF Test Statistic	-3.165873	5% Crit	ical Value* ical Value ical Value	-3.6067 -2.9378 -2.6069
*MacKinnon critical	values for reject	ion of hypothe	sis of a unit r	oot.	*MacKinnon critical	values for rejec	tion of hypo	thesis of a unit	root.
Augmented Dickey-I Dependent Variable: Method: Least Squa Date: 05/17/13 Tim Sample(adjusted): 1 Included observation	D(VAG) res le: 18:10 971 2009		5		Augmented Dickey-I Dependent Variable: Method: Least Squa Date: 05/17/13 Tim Sample(adjusted): 1 Included observation	D(VAG) ires ie: 18:11 971 2009		ints	
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Service To the Service	100 KG 100 KG	Prob
VAG(-1)	-0.466493 4 234621	0.142609	-3.271126 3.041614	0.0024		-0.441576			0.0031

Coefficient	Std Error	t-Statistic				9	iii	
Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C 4.234621 1.392229 3.04161	-3.271126 3.041614 0.894080	0.0044	VAG(-1)	-0.441576 4.370990	0.139480 1.380092	-3.165873 3.167174	0.0031 0.0031	
0.230239	Mean depen	Mean dependent var 0.		R-squared	0.213147	Mean deper	dent var	0.064800
0.187475	S.D. depend	dent var	1.622299 Adjusted R-squared	0.191881	S.D. dependent var		1.622299	
1.462343	Akaike info	criterion	3.671760	S.E. of regression	1.458373	Akaike info	criterion	3.642440
76.98409	Schwarz crit	terion			78.69352	2 Schwarz criterion		3.727751
-68.59933	F-statistic		5.383893	Log likelihood	-69.02759	F-statistic		10.02275
1.860913	Prob(F-stati	stic)			1.861281	Prob(F-stati	stic)	0.003091
	4.234621 0.018968 0.230239 0.187475 1.462343 76.98409 -68.59933	-0.466493	-0.466493	-0.466493	Coefficient Std. Error t-Statistic Prob. Variable -0.466493 0.142609 -3.271126 0.0024 4.234621 1.392229 3.041614 0.0044 VAG(-1) 0.018968 0.021215 0.894080 0.3772 C 0.230239 Mean dependent var 0.187475 0.064800 R-squared 1.622299 Adjusted R-squared 1.622299 1.462343 Akaike info criterion 76.98409 3.671760 S.E. of regression 3.799727 Sum squared resid 5.383893 Log likelihood	Coefficient Std. Error t-Statistic Prob. Variable Coefficient -0.466493 0.142609 -3.271126 0.0024 VAG(-1) -0.441576 4.234621 1.392229 3.041614 0.0044 VAG(-1) -0.441576 0.018968 0.021215 0.894080 0.3772 C 4.370990 0.230239 Mean dependent var 0.187475 1.622299 Adjusted R-squared Adjusted R-squared 0.191881 1.462343 Akaike info criterion 76.98409 3.671760 S.E. of regression 3.799727 Sum squared resid 78.69352 -68.59933 F-statistic 5.383893 Log likelihood -69.02759	Coefficient Std. Error t-Statistic Prob. Variable Coefficient Std. Error -0.466493 0.142609 -3.271126 0.0024 -0.441576 0.139480 4.234621 1.392229 3.041614 0.0044 VAG(-1) -0.441576 0.139480 0.018968 0.021215 0.894080 0.3772 C 4.370990 1.380092 0.230239 Mean dependent var 0.064800 R-squared Adjusted R-squared 0.191881 S.D. dependent var 1.622299 Adjusted R-squared 0.191881 S.D. dependent var 1.622299 Adjusted R-squared 0.191881 S.D. dependent var 0.76.98409 Schwarz criterion 3.671760 S.E. of regression 1.458373 Akaike info 0.76.98409 78.69352 Schwarz criterion 78.69352 Schwarz criterion 6.98493 F-statistic 5.383893 Log likelihood -69.02759 F-statistic	-0.466493

La valeur ajoutée en pourcentage du PIB dans le secteur agricole VAG (test de PP)

Modàla [3]

Modàla [2]

	Model	e [3]			Mode	le [2]			
PP Test Statistic	-3.271126	1% Critical 5% Critical 10% Critical	A CONTRACTOR OF THE PARTY OF TH	-4.2092 -3.5279 -3.1949	PP Test Statistic	-3.165873	1% Critica 5% Critica 10% Critical		-3.6067 -2.9378 -2.6069
*MacKinnon critical v	alues for reject	ion of hypothe	sis of a unit	root.	*MacKinnon critical v	alues for reject	ion of hypothe	sis of a unit	root.
Lag truncation for Ba Residual variance wit Residual variance wit	h no correction	(Newey-Wes	st suggests:	3) 1.973951 1.973951	Lag truncation for Ba Residual variance wit Residual variance wit	h no correction		st suggests:	3) 2.017783 2.017783
Phillips-Perron Test E Dependent Variable: Method: Least Squar Date: 05/17/13 Time Sample(adjusted): 19 Included observations	D(VAG) es e: 18:14 971 2009	sting endpoints	3		Phillips-Perron Test I Dependent Variable: Method: Least Squar Date: 05/17/13 Tim Sample(adjusted): 15 Included observations	D(VAG) es e: 18:15 971 2009	sting and point		
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
VAG(-1) C @TREND(1970)	-0.466493 4.234621 0.018968	0.142609 1.392229 0.021215	-3.271126 3.041614 0.894080	0.0024 0.0044 0.3772	VAG(-1)	-0.441576 4.370990	0.139480 1.380092	-3.165873 3.167174	0.0031 0.0031
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.230239 0.187475 1.462343 76.98409 -68.59933 1.860913	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	lent var criterion cerion	0.064800 1.622299 3.671760 3.799727 5.383893 0.009003	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.213147 0.191881 1.458373 78.69352 -69.02759 1.861281	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	lent var criterion terion	0.064800 1.622299 3.642440 3.727751 10.02275 0.003091

La valeur ajoutée en pourcentage du PIB dans le secteur Manufacturier VAM (test de DF)

Modèle [3]

Modèle [2]

	5% Critical Value 10% Critical Value	-3.5279 -3.1949	ADF Test Statistic	-1.777588	5%	Critical Value*	-3.6067 -2.9378
	1070 Officer value	0.1040			2 2 3 3 0	Critical Value	-2.6069

^{*}MacKinnon critical values for rejection of hypothesis of a unit roo

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(VAM) Method: Least Squares Date: 05/17/13 Time: 18:25 Sample(adjusted): 1971 2009

Durbin-Watson stat

Sample(adjusted): 1971 2009 Included observations: 39 after adjusting endpoints Augmented Dickey-Fuller Test Equation Dependent Variable: D(VAM) Method: Least Squares Date: 05/17/13 Time: 18:26 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob Prob. Variable Coefficient Std. Error t-Statistic -0.253663 0 0243 **VAM(-1)** 0.107866 -2 351649 3.463875 1.722248 2.011252 0.0518 VAM(-1) -0 130867 0.073621 -1 777588 0.0837 @TREND(1970) -0.048766 0.031786 -1.534184 0.1337 C 1.145641 0.841334 1.361697 0.1815 -0.285539 R-squared 0.078681 -0.285539 R-squared 0.135221 Mean dependent var Mean dependent var Adjusted R-squared 0.087178 S.D. dependent var 1.567541 Adjusted R-squared 0.053781 S.D. dependent var 1.567541 S.E. of regression 1.497656 Akaike info criterion 3.719483 S.E. of regression 1.524807 Akaike info criterion 3.731533 Sum squared resid 80.74703 Schwarz criterion 3.847449 Sum squared resid 86.02637 Schwarz criterion 3.816844 Log likelihood 69.52991 F-statistic 2.814575 Log likelihood -70.76490 F-statistic 3.159820

0.073163 Durbin-Watson stat

Modèle [1]

1.884825

Prob(F-statistic)

Modèle [1] Dif

Prob(F-statistic)

0.083692

1.993681

ADF Test Statistic	-1.616926	1%	Critical Value*	-2.6227 ADF Test Statist	c -6.153036	1%	Critical Value*	-2.6243
		5%	Critical Value	-1.9495		5%	Critical Value	-1.9498
		10%	Critical Value	-1.6202		10%	Critical Value	-1.6204

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(VAM) Method: Least Squares Date: 05/17/13 Time: 18:27 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation Dependent Variable: D(VAM,2) Method: Least Squares Date: 05/17/13 Time: 18:28 Sample(adjusted): 1972 2009

Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
VAM(-1)	-0.034933	0.021604	-1.616926	0.1142	D(VAM(-1))	-1.022113	0.166115	-6.153036	0.0000
R-squared	0.032510	Mean depen	dent var	-0.285539	R-squared	0.505561	Mean depen	dent var	0.043433
Adjusted R-squared	0.032510	S.D. depend			Adjusted R-squared	0.505561	S.D. depend	lent var	2.296264
S.E. of regression	1.541850	Akaike info	criterion		S.E. of regression	1.614649	Akaike info	criterion	3.822075
Sum squared resid	90.33750	Schwarz crit	terion	3.771806	Sum squared resid	96,46233	Schwarz crit	terion	3.865169
Log likelihood	-71.71843	Durbin-Wats	on stat		Log likelihood	-71.61943	Durbin-Wats	on stat	1.976399

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

La valeur ajoutée en pourcentage du PIB dans le secteur Manufacturier VAM (test de PP)

Modèle [3]

Modèle [2]

PP Test Statistic	-2.351649	0.00	Critical Value* Critical Value Critical Value	-4.2092 -3.5279 -3.1949	PP Test Statistic	-1.777588	5%	Critical Value* Critical Value Critical Value	-3.6067 -2.9378 -2.6069
*MacKinnon critical	values for rejec	tion of	hypothesis of a un	it root.	*MacKinnon critical	values for rejec	tion of	hypothesis of a un	it root.
Lag truncation for B Residual variance w Residual variance w	ith no correction		vey-West suggests	2.070437	Lag truncation for B Residual variance w Residual variance w	ith no correctio		wey-West suggests	2.205804 2.205804

Phillips-Perron Test Equation Dependent Variable: D(VAM) Method: Least Squares Date: 05/17/13 Time: 18:28 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Phillips-Perron Test Equation Dependent Variable: D(VAM) Method: Least Squares Date: 05/17/13 Time: 18:29 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

LPL/A/SEPS-GERS-V		OIL F		Daniel Co.				80	100
Variable	Variable Coefficient Std Error t-Statistic		Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.	
VAM(-1) C @TREND(1970)	-0.253663 3.463875 -0.048766	0.107866 1.722248 0.031786	-2.351649 2.011252 -1.534184	0.0518		-0.130867 1.145641	0.073621 0.841334	-1.777588 1.361697	0.0837 0.1815
R-squared	0.135221	Mean depen	Mean dependent var -0.		R-squared	0.078681	Mean dependent var		-0.285539
Adjusted R-squared	0.087178	S.D. depend	dent var	1.567541	Adjusted R-squared	0.053781	S.D. depend	dent var	1.567541
S.E. of regression	1.497656	Akaike info	criterion	3.719483	S.E. of regression	1.524807	Akaike info	criterion	3.731533
Sum squared resid	80.74703	Schwarz crit	terion	3.847449	Sum squared resid	86.02637	Schwarz cri	terion	3.816844
Log likelihood	-69.52991	F-statistic		2.814575	Log likelihood	-70.76490	F-statistic		3.159820
Durbin-Watson stat	1.884825	Prob(F-stati	stic)	0.073163	Durbin-Watson stat	1.993681	Prob(F-stati	stic)	0.083692

Modèle [1]

0.032510

0.032510

1.541850

90.33750

-71.71843

Mean dependent var

S.D. dependent var

Akaike info criterion

Durbin-Watson stat

Schwarz criterion

R-squared

Adjusted R-squared

S.E. of regression Sum squared resid Log likelihood

Modèle [1] Dif

0.505561

0.505561

1.614649

96.46233

-71.61943

Mean dependent var

S.D. dependent var

Akaike info criterion

Schwarz criterion

Durbin-Watson stat

0.043433

2.296264

3.822075

3.865169

1.976399

PP Test Statistic -1.616926 1% Critical Value* -1.9495 -1.6202 *MacKinnon critical values for rejection of hypothesis of a unit root. *MacKinnon critical values for rejection of hypothesis of a unit root. Lag truncation for Bartlett kernel: 0 (Newey-West suggests: 3) Residual variance with no correction Residual variance with correction Phillips-Perron Test Equation Dependent Variable: D(VAM) Method: Least Squares Date: 05/17/13, Time: 18:30 PP Test Statistic -6.153036 1% Critical Value* 5% Critical Value *MacKinnon critical values for rejection of hypothesis of a unit *MacKinnon critical values for rejection of hypothesis of a unit *MacKinnon critical values for rejection of hypothesis of a unit *Phillips-Perron Test Equation Dependent Variable: D(VAM) Method: Least Squares Date: 05/17/13, Time: 18:31	-2.6243
Lag truncation for Bartlett kernel: 0 (Newey-West suggests: 3) Residual variance with no correction Residual variance with correction Phillips-Perron Test Equation Dependent Variable: D(VAM) Method: Least Squares Lag truncation for Bartlett kernel: 0 (Newey-West suggests: Residual variance with no correction Residual variance with no correction Residual variance with correction Phillips-Perron Test Equation Dependent Variable: D(VAM) Method: Least Squares	-1. <mark>9</mark> 498 -1.6204
Residual variance with no correction Residual variance with no correction Residual variance with correction Phillips-Perron Test Equation Dependent Variable: D(VAM) Method: Least Squares Pessidual variance with no correction Residual variance with no correction Phillips-Perron Test Equation Dependent Variable: D(VAM) Method: Least Squares	oot.
Dependent Variable: D(VAM) Method: Least Squares Dependent Variable: D(VAM,2) Method: Least Squares	3) 2.538482 2.538482
Date: 05/17/13 Time: 18:30 Sample(adjusted): 1971 2009 Included observations: 39 after adjusting endpoints Date: 05/17/13 Time: 18:31 Sample(adjusted): 1972 2009 Included observations: 39 after adjusting endpoints	
Variable Coefficient Std. Error t-Statistic Prob. Variable Coefficient Std. Error t-Statistic	Prob.
VAM(-1) -0.034933 0.021604 -1.616926 0.1142 D(VAM(-1)) -1.022113 0.166115 -6.153036	

-0.285539 R-squared

1.567541 Adjusted R-squared

3.729150 S.E. of regression

3.771806 Sum squared resid

2.087006 Log likelihood

La valeur ajoutée en pourcentage du PIB dans le secteur industriel VAI (test de DF)

Modèle [3]

Modèle [2]

*MacKinnon critical	values for rejer	10% Critical Va				22732.5	6 Critical Value	-2.6069
ADF Test Statistic	-2.695690	1% Critical Va 5% Critical Va	lue -3.5279	ADF Test Statistic	-2.692956	1000000	Critical Value*	-3.6067 -2.9378

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(VAI) Method: Least Squares Date: 05/17/13 Time: 18:17 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Augmented Dickey-Fuller Test Equation Dependent Variable: D(VAI) Method: Least Squares Date: 05/17/13 Time: 18:18

Sample(adjusted): 1971 2009 Included observations: 39 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
VAI(-1) C @TREND(1970)	-0.325844 16.77247 0.031337	0.120876 6.086610 0.054452	-2.695690 0.0106 2.755635 0.0091 0.575495 0.5685		VAI(-1)	-0.300638 16.07113	0.111639 5.909218	-2.692956 2.719672	0.0106 0.0099
R-squared	0.171502	Mean depen	ident var	0.231038	R-squared	0.163880	Mean deper	dent var	0.231038
Adjusted R-squared	0.125474	S.D. depend	dent var	3.814435	Adjusted R-squared	0.141282	S.D. depend	lent var	3.814435
S.E. of regression	3.567111	Akaike info	criterion	5.455192	S.E. of regression	3.534724	Akaike info	criterion	5.413068
Sum squared resid	458.0740	Schwarz crit		5.583159	Sum squared resid	462.2882	Schwarz cri	terion	5.498379
Log likelihood	-103.3763	F-statistic	3566351d I	3 726060	Log likelihood	-103.5548	F-statistic		7.252011
Durbin-Watson stat	1.823190	Prob(F-stati	stic)		Durbin-Watson stat	1.849844	Prob(F-stati	stic)	0.010578

Modèle [2] Dif

ADF Test Statistic	-6.494402	1%	Critical Value*	-3.6117
		5%	Critical Value	-2.9399
		10%	Critical Value	-2.6080

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(VAI,2) Method: Least Squares Date: 05/17/13 Time: 18:19 Sample(adjusted): 1972 2009

Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(VAI(-1))	-1.120537	0.172539	-6.494402	0.0000
° C ′′′	0.400669	0.624337	0.641751	0.5251
R-squared	0.539508	Mean depen	dent var	-0.088471
Adjusted R-squared	0.526717	S.D. depend	lent var	5.553499
S.E. of regression	3.820563	Akaike info	criterion	5.569868
Sum squared resid	525.4811	Schwarz crit	erion	5.656057
Log likelihood	-103.8275	F-statistic		42.17726
Durbin-Watson stat	1.769024	Prob(F-stati	stic)	0.000000

La valeur ajoutée en pourcentage du PIB dans le secteur industriel VAI (test de PP)

Modèle [3]

Modèle [2]

PP Test Statistic	-2.695690	5%	Critical Value* Critical Value Critical Value	-4.2092 -3.5279 -3.1949	PP Test Statistic	-2.692956	5%	Critical Value* Critical Value	-3.6067 -2.9378
*MacKinnon critical	45 - 45000W 111 111500	5 505601	Turke Communication		*MacKinnon critical	values for rejec	374	hypothesis of a uni	-2.6069 t root.
Lag truncation for B Residual variance w Residual variance w	ith no correctio		vey-vvest suggests	11.74549	Lag truncation for B Residual variance w Residual variance w	ith no correction		wey-West suggests	s: 3) 11.85354 11.85354

Phillips-Perron Test Equation Dependent Variable: D(VAI) Method: Least Squares Date: 05/17/13 Time: 18:20 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Phillips-Perron Test Equation Dependent Variable: D(VAI) Method: Least Squares Date: 05/17/13 Time: 18:20 Sample(adjusted): 1971 2009

Included observations: 39 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	included observations	. 55 alter adjus	sting enuponit	,	
valiable	Coefficient	Stu. Litti	t-Statistic	FIOD.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
VAI(-1) C @TREND(1970)	-0.325844 16.77247 0.031337	0.120876 6.086610 0.054452	-2.695690 2.755635 0.575495		VAI(-1)	-0.300638 16.07113	0.111639 5.909218	-2.692956 2.719672	0. <mark>01</mark> 06 0.0099
R-squared	0.171502	Mean depen	ident var	0.231038	R-squared	0.163880	Mean deper	dent var	0.231038
Adjusted R-squared	0.125474	S.D. depend	lent var	3.814435	Adjusted R-squared	0.141282	S.D. depend	lent var	3.814435
S.E. of regression	3.567111	Akaike info	criterion	5.455192	S.E. of regression	3.534724	Akaike info	criterion	5.413068
Sum squared resid	458.0740	Schwarz crit	terion	5.583159	Sum squared resid	462.2882	Schwarz cri	terion	5.498379
Log likelihood	-103.3763	F-statistic		3.726060	Log likelihood	-103.5548	F-statistic		7.252011
Durbin-Watson stat	1.823190	Prob(F-stati	stic)	0.033826	Durbin-Watson stat	1.849844	Prob(F-stati	stic)	0.010578

Modèle [2] Dif

PP Test Statistic	-6.494402	1%	Critical Value*	-3.6117
		5%	Critical Value	-2.9399
		10%	Critical Value	-2.6080

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel: 0 (Newey-West suggests: 3)
Residual variance with no correction 13.82845
Residual variance with correction 13.82845

Phillips-Perron Test Equation Dependent Variable: D(VAI,2) Method: Least Squares Date: 05/17/13 Time: 18:22 Sample(adjusted): 1972 2009

Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(VAI(-1))	-1.120537	0.172539	-6.494402	0.0000
C	0.400669	0.624337	0.641751	0.5251
R-squared	0.539508	Mean depen	dent var	-0.088471
Adjusted R-squared	0.526717	S.D. depend	lent var	5.553499
S.E. of regression	3.820563	Akaike info	criterion	5.569868
Sum squared resid	525.4811	Schwarz crit	terion	5.656057
Log likelihood	-103.8275	F-statistic		42.17726
Durbin-Watson stat	1.769024	Prob(F-stati	stic)	0.000000

Annexe.06: Regression multiple.

Dependent Variable: PPB Method: Least Squares Date: 05/24/13 Time: 17:04 Sample: 1970 2009 Included observations: 39 Excluded observations: 1

Dependent Variable: PPB Method: Least Squares Date: 05/24/13 Time: 17:08 Sample: 1970 2009 Included observations: 39 Excluded observations: 1

Dependent Variable: PPB

t-Statistic

4.566390

Prob.

0.0000

24.32150 20.55913 9.370960

9.413182

0.162855

Variable	Coefficient	Std. Error	t-Statistic	Prob. =		5. 1	HALF MANAGERATIONS	\$170 V \$60 S\$1 V \$410 C	794942940877
102	FEED THOSE CIETY	102 112 10 10 10 10 10 10	272/2009/20	0.000	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	36.41788	9.216369	3.951435	0.0004	22/07/9	pro-re-state arms to a	980 886 E00809A	100440-0009103517	1000150-000000
TCRI	-0.074383	0.028077	-2.649266	0.0124	С	35.55528	8.417805	4.223818	0.0002
PIB	1.51E-10	5.73E-11	2.637008	0.0128	TCRI	-0.073904	0.027610	-2.676732	0.0115
BC	8.83E-10	1.79E-10	4.935159	0.0000	PIB	1.41E-10	3.82E-11	3.683045	0.0008
BCHH	3.19E-11	1.28E-10	0.248922	0.8050	BC	9.05E-10	1.52E-10	5.974135	0.0000
AB	-0.451299	0.136688	-3.301666	0.0024	AB	-0.438279	0.124477	-3.520963	0.0013
M2	2.08E-10	6.48E-11	3.208764	0.0030	M2	2.12E-10	6.19E-11	3.419582	0.0017
R-squared	0.964115	Mean depen	ident var	24.26692 R-s	squared	0.964045	Mean depen	dent var	24.26692
Adjusted R-squared	0.957386	S.D. depend	lent var	20.82496 Adjusted R-squared		0.958598	S.D. depend	lent var	20.82496
S.E. of regression	4.298911	Akaike info	criterion	5.915749 S.E	of regression	4.237371	Akaike info	criterion	5.866401
Sum squared resid	591.3803	Schwarz crit	terion	6.214337 Sur	m squared resid	592.5254	Schwarz crit	terion	6.122334
Log likelihood	-108.3571	F-statistic		143.2889 Loc	likelihood	-108.3948	F-statistic		176.9645
Durbin-Watson stat	1.527819	Prob(F-stati:	stic)	0.000000 Dui	rbin-Watson stat	1.549540	Prob(F-statis	stic)	0.000000

Dependent Variable: PPB Method: Least Squares Date: 05/24/13 Time: 17:09 Sample: 1970 2009 Included observations: 40

					**			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Method: Least Square Date: 05/24/13 Time			
С	-27.48294	89.39468	-0.307434		Sample: 1970 2009 Included observations	: 40		
VAG	0.228016	2.309752	0.098719	0.9219	9			
VAM	-2.914085	1.223314	-2.382124	0.0226	Variable	Coefficient	Std. Error	t-Statist
VAI	1.537591	1.097244	1.401320	0.1697		Mental Andrews	AND ADDRESS OF NO	100.600.00000000
R-squared	0.627043	Mean deper	ident var	24.32150	VAM	1.651145	0.361587	4.56639
Adjusted R-squared	0.595964	S.D. depend		OF BUILDING STORY	R-squared	-0.586913	Mean depen	ident var
S.E. of regression	13.06818	Akaike info	criterion	8.072877	Adjusted R-squared	-0.586913	S.D. depend	dent var
Sum squared resid	6147.982	Schwarz cri	terion		S.E. of regression	25.89890	Akaike info	
Log likelihood	-157.4575	F-statistic			Sum squared resid	26159.37	Schwarz crit	
Durbin-Watson stat	0.459902	Prob(F-stati	stic)		Log likelihood	-186.4192	Durbin-Wats	170.00 St. Aug.

Annexe.07: Estimation du modèle VAR(1) par la méthode des MCO.

Dependent Variable: D(PPB) Method: Least Squares Date: 05/25/13 Time: 18:00 Sample(adjusted): 1972 2009 Included observations: 38 after adjusting endpoints

Dependent Variable: RES1 Method: Least Squares Date: 05/25/13 Time: 18:04 Sample(adjusted): 1972 2009

Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3.310210	1.052197	3.145998	0.0037	C	-0.598299	5.097942	-0.117361	0.9074
D(PPB(-1))	-0.657014	0.255844	-2.568022	0.0155	D(PPB(-1))	-1.817321	1.239577	-1.466082	0.1530
RES1(-1)	0.051749	0.043202	1.197847	0.2404	RES1(-1)	0.298382	0.209314	1.425524	0.1643
D(PIB(-1))	-8.58E-11	1.06E-10	-0.808903	0.4249	D(PIB(-1))	4.48E-10	5.14E-10	0.872047	0.3901
BC(-1)	2.07E-10	1.55E-10	1.332657	0.1927	BC(-1)	8.56E-10	7.51E-10	1.139298	0.2636
RES(-1)	-8.26E-10	1.23E-10	-6.718331	0.0000	RES(-1)	-7.39E-10	5.96E-10	-1.239569	0.2247
D(AB(-1))	-0.508146	0.223183	-2.276809	0.0301	D(AB(-1))	-0.988892	1.081334	-0.914512	0.3677
D(M2(-1))	-1.11E-10	8.86E-11	-1.255306	0.2191	D(M2(-1))	-3.71E-10	4.29E-10	-0.862983	0.3950
R-squared	0.688688	Mean depen	ident var	1.585000	R-squared	0.213702	Mean depen	dent var	-0.961172
Adjusted R-squared	0.616048	S.D. depend	lent var	9.171586	Adjusted R-squared	0.030233	S.D. depend		27.96062
S.E. of regression	5.683066	Akaike info	criterion	6.497523	S.E. of regression	27,53471	Akaike info		9.653436
Sum squared resid	968.9171	Schwarz crit	terion	6.842278		22744.81	Schwarz crit		9.998191
Log likelihood	-115.4529	F-statistic		9.480901	Log likelihood	-175.4153	F-statistic		1.164783
Durbin-Watson stat	1.021212	Prob(F-stati	stic)	0.000004		1.983076	Prob(F-stati	stic)	0.351685

Dependent Variable: D(PIB) Method: Least Squares Date: 05/25/13 Time: 18:05 Sample(adjusted): 1972 2009 Included observations: 38 after adjusting endpoints

Dependent Variable: BC Method: Least Squares Date: 05/25/13 Time: 18:07 Sample(adjusted): 1972 2009 Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4.38E+09	1.91E+09	2.296749	0.0288	С	1.40E+09	8.07E+08	1.734394	0.0931
D(PPB(-1))	4.87E+08	4.64E+08	1.050098	0.3021	D(PPB(-1))	-4.30E+08	1.96E+08	-2.191900	0.0363
RES1(-1)	1.79E+08	78354539	2.287255	0.0294	RES1(-1)	-4439929.	33143171	-0.133962	0.8943
D(PIB(-1))	-0.429042	0.192310	-2.230992	0.0333	D(PIB(-1))	0.024105	0.081345	0.296332	0.7690
BC(-1)	0.085323	0.281110	0.303521	0.7636	BC(-1)	0.901001	0.118907	7.577385	0.0000
RES(-1)	0.185319	0.223030	0.830914	0.4126	RES(-1)	-0.567325	0.094340	-6.013650	0.0000
D(AB(-1))	43150477	4.05E+08	0.106601	0.9158	D(AB(-1))	-4.36E+08	1.71E+08	-2.543662	0.0164
D(M2(-1))	0.151775	0.160740	0.944227	0.3526	D(M2(-1))	0.057963	0.067991	0.852514	0.4007
R-squared	0.337751	Mean depen	dent var	4.83E+09	R-squared	0.832698	Mean depen	ident var	3.64E+09
Adjusted R-squared	0.183227	S.D. depend	lent var	1.14E+10	Adjusted R-squared	0.793661	S.D. depend	dent var	9.60E+09
S.E. of regression	1.03E+10	Akaike info	criterion	49.13478	S.E. of regression	4.36E+09	Akaike info	criterion	47.41397
Sum squared resid	3.19E+21	Schwarz crit	terion	49.47954	Sum squared resid	5.70E+20	Schwarz crit	terion	47.75873
Log likelihood	-925.5609	F-statistic		2.185744	Log likelihood	-892.8654	F-statistic		21.33089
Durbin-Watson stat	1.844516	Prob(F-statis	stic)	0.064364	Durbin-Watson stat	1.021576	Prob(F-stati	stic)	0.000000

Dependent Variable: RES Method: Least Squares Date: 05/25/13 Time: 22:26 Sample(adjusted): 1972 2009 Included observations: 38 after adjusting endpoints

Dependent Variable: D(AB) Method: Least Squares Date: 05/25/13 Time: 18:09 Sample(adjusted): 1972 2009 Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	2.48E+09	1.10E+09	2.258341	0.0314	C	-1.200918	0.902317	-1.330926	0.1932
D(PPB(-1))	-3.95E+08	2.67E+08	-1.475460	0.1505	D(PPB(-1))	-0.059574	0.219401	-0.271533	0.7878
RES1(-1)	-15110185	45151741	-0.334653	0.7402	RES1(-1)	-0.052737	0.037048	-1.423488	0.1649
D(PIB(-1))	-0.572355	0.110818	-5.164795	0.0000	D(PIB(-1))	-8.84E-12	9.09E-11	-0.097266	0.9232
BC(-1)	0.035679	0.161989	0.220255	0.8272	BC(-1)	1.75E-10	1.33E-10	1.313782	0.1989
RES(-1)	0.248817	0.128521	1.935999	0.0623	RES(-1)	1.65E-10	1.05E-10	1.564182	0.1283
D(AB(-1))	-3.47E+08	2.33E+08	-1.487495	0.1473	D(AB(-1))	0.091770	0.191392	0.479485	0.6351
D(M2(-1))	0.140695	0.092626	1.518953	0.1392	D(M2(-1))	1.06E-10	7.60E-11	1.396024	0.1730
R-squared	0.649610	Mean depen	dent var	-9501053.	R-squared	0.270276	Mean depen	dent var	-0.510758
Adjusted R-squared	0.567853	S.D. depend	lent var	9.04E+09	Adjusted R-squared	0.100007	S.D. depend		5.137187
S.E. of regression	5.94E+09	Akaike info	criterion	48.03235	S.E. of regression	4.873544	Akaike info		6.190184
Sum squared resid	1.06E+21	Schwarz crit	terion	48.37711	Sum squared resid	712.5431	Schwarz crit	terion	6.534939
Log likelihood	-904.6147	F-statistic		7.945568		-109.6135	F-statistic		1.587346
Durbin-Watson stat	1.858540	Prob(F-stati	stic)	0.000019		1.869339	Prob(F-stati	stic)	0.177438

Dependent Variable: D(M2) Method: Least Squares
Date: 05/25/13 Time: 18:11
Sample(adjusted): 1972 2009
Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	2.58E+09	1.95E+09	1.322239	0.1961	
D(PPB(-1))	-1.81E+08	4.74E+08	-0.382351	0.7049	
RES1(-1)	67598739	79969668	0.845305	0.4046	
D(PIB(-1))	0.010391	0.196274	0.052943	0.9581	
BC(-1)	0.638721	0.286904	2.226250	0.0337	
RES(-1)	-0.667865	0.227628	-2.934025	0.0064	
D(AB(-1))	1.46E+08	4.13E+08	0.353437	0.7262	
D(M2(-1))	-0.506847	0.164053	-3.089529	0.0043	
R-squared	0.414569	Mean depen	dent var	2.52E+09	
Adjusted R-squared	0.277969	S.D. depend	lent var	1.24E+10	
S.E. of regression	1.05E+10	Akaike info	criterion	49.17559	
Sum squared resid	3.32E+21	Schwarz crit	terion	49.52035	
Log likelihood	-926.3362	F-statistic		3.034902	
Durbin-Watson stat	1.955543	Prob(F-statis	stic)	0.015501	

Annexe.08: Estimation du modèle VAR(2) par la méthode des MCO.

Dependent Variable: D(PPB) Method: Least Squares
Date: 05/25/13 Time: 17:28
Sample(adjusted): 1973 2009
Included observations: 37 after adjusting endpoints

Dependent Variable: RES1 Method: Least Squares
Date: 05/25/13 Time: 17:30
Sample(adjusted): 1973 2009
Included observations: 37 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.937342	0.773231	1.212241	0.2383	C	-12.73162	5.899151	-2.158213	0.0421
D(PPB(-1))	-0.081791	0.174710	-0.468151	0.6443	D(PPB(-1))	-0.034650	1.332905	-0.025996	0.9795
RES1(-1)	-0.025867	0.027281	-0.948145	0.3534	RES1(-1)	0.012423	0.208135	0.059687	0.9529
D(PIB(-1))	-1.78E-11	7.05E-11	-0.252683	0.8029	D(PIB(-1))	1.04E-09	5.38E-10	1.929971	0.0666
BC(-1)	9.74E-10	3.65E-10	2.666254	0.0141	BC(-1)	-3.93E-09	2.79E-09	-1.410269	0.1724
RES(-1)	-1.29E-09	1.51E-10	-8.563054	0.0000	RES(-1)	-2.32E-10	1.15E-09	-0.201125	0.8424
D(AB(-1))	-0.169750	0.199449	-0.851095	0.4039	D(AB(-1))	-2.178924	1.521639	-1.431959	0.1662
D(M2(-1))	4.94E-11	6.13E-11	0.805912	0.4289	D(M2(-1))	-3.76E-10	4.67E-10	-0.805278	0.4293
D(PPB(-2))	-0.003645	0.163692	-0.022268	0.9824	D(PPB(-2))	0.484054	1.248846	0.387601	0.7020
RES1(-2)	0.001224	0.030523	0.040095	0.9684	RES1(-2)	-0.370855	0.232864	-1.592582	0.1255
D(PIB(-2))	-3.71E-11	1.11E-10	-0.333375	0.7420	D(PIB(-2))	1.53E-09	8.48E-10	1.808361	0.0842
BC(-2)	-8.30E-10	4.03E-10	-2.059408	0.0515	BC(-2)	5.17E-09	3.08E-09	1.681749	0.1068
RES(-2)	1.19E-09	1.72E-10	6.882786	0.0000	RES(-2)	3.08E-10	1.32E-09	0.234222	0.8170
D(AB(-2))	-0.099701	0.139958	-0.712363	0.4837	D(AB(-2))	-1.982015	1.067772	-1.856215	0.0769
D(M2(-2))	5.10E-11	7.93E-11	0.642816	0.5270	D(M2(-2))	-2.40E-11	6.05E-10	-0.039632	0.9687
R-squared	0.935493	Mean depen	dent var	1.620811	R-squared	0.593317	Mean depen	ident var	-1.346352
Adjusted R-squared	0.894443	S.D. depend	dent var		Adjusted R-squared	0.334518	S.D. depend		28.24391
S.E. of regression	3.020039	Akaike info	criterion	5.339352	S.E. of regression	23.04054	Akaike info	criterion	9.403323
Sum squared resid	200.6540	Schwarz crit	terion	5.992427	Sum squared resid	11679.07	Schwarz crit	terion	10.05640
Log likelihood	-83.77801	F-statistic		22.78905	Log likelihood	-158.9615	F-statistic		2.292584
Durbin-Watson stat	2.494004	Prob(F-stati	stic)	0.000000	Durbin-Watson stat	1.665085	Prob(F-stati	stic)	0.039492

Dependent Variable: D(PIB) Method: Least Squares Date: 05/25/13 Time: 17:32 Sample(adjusted): 1973 2009 Included observations: 37 after adjusting endpoints

Dependent Variable: BC Method: Least Squares Date: 05/25/13 Time: 17:34 Sample(adjusted): 1973 2009 Included observations: 37 after adjusting endpoints

		55°10'10'5" - 150°5 - 150°5 - 150°5							
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4.37E+09	1.80E+09	2.424194	0.0240	С	-6.42E+08	5.13E+08	-1.253237	0.2233
D(PPB(-1))	23077304	4.07E+08	0.056659	0.9553	D(PPB(-1))	-84212.58	1.16E+08	-0.000727	0.9994
RES1(-1)	86362714	63600983	1.357883	0.1883	RES1(-1)	-53120480	18085203	-2.937234	0.0076
D(PIB(-1))	-0.032686	0.164303	-0.198937	0.8441	D(PIB(-1))	0.080978	0.046720	1.733257	0.0970
BC(-1)	-1.366677	0.852073	-1.603943	0.1230	BC(-1)	1.834884	0.242290	7.573078	0.0000
RES(-1)	0.243026	0.352180	0.690062	0.4974	RES(-1)	-0.960695	0.100144	-9.593167	0.0000
D(AB(-1))	-5.87E+08	4.65E+08	-1.263197	0.2197	D(AB(-1))	-52952316	1.32E+08	-0.400493	0.6927
D(M2(-1))	-0.277511	0.142833	-1.942910	0.0649	D(M2(-1))	0.192693	0.040615	4.744360	0.0001
D(PPB(-2))	-3.95E+08	3.82E+08	-1.036048	0.3114	D(PPB(-2))	1.95E+08	1.09E+08	1.799528	0.0857
RES1(-2)	-26841984	71157606	-0.377219	0.7096	RES1(-2)	-15818983	20233960	-0.781804	0.4427
D(PIB(-2))	0.275903	0.259183	1.064509	0.2986	D(PIB(-2))	-0.057841	0.073700	-0.784819	0.4409
BC(-2)	2.815902	0.939767	2.996384	0.0067	BC(-2)	-1.100931	0.267227	-4.119841	0.0005
RES(-2)	-0.558520	0.402088	-1.389050	0.1787	RES(-2)	1.003651	0.114335	8.778131	0.0000
D(AB(-2))	1.05E+08	3.26E+08	0.323235	0.7496	D(AB(-2))	24676001	92780596	0.265961	0.7927
D(M2(-2))	-0.648530	0.184980	-3.505955	0.0020	D(M2(-2))	0.033531	0.052600	0.637478	0.5304
R-squared	0.772924	Mean depen	dent var	4.92E+09	R-squared	0.974005	Mean depen	dent var	3.75E+09
Adjusted R-squared	0.628421	S.D. depend	dent var		Adjusted R-squared	0.957463	S.D. depend		9.71E+09
S.E. of regression	7.04E+09	Akaike info	criterion		S.E. of regression	2.00E+09	Akaike info		45.96367
Sum squared resid	1.09E+21	Schwarz crit	terion	49.13181		8.82E+19	Schwarz crit	terion	46.61674
Log likelihood	-881.8567	F-statistic		5.348842	Log likelihood	-835.3279	F-statistic		58.88042
Durbin-Watson stat	1.336712	Prob(F-statis	stic)	0.000254		1.949667	Prob(F-stati	stic)	0.000000

Dependent Variable: RES Method: Least Squares Date: 05/25/13 Time: 17:36 Sample(adjusted): 1973 2009 Included observations: 37 after adjusting endpoints

Dependent Variable: D(AB) Method: Least Squares Date: 05/25/13 Time: 17:37 Sample(adjusted): 1973 2009 Included observations: 37 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	8.70E+08	1.11E+09	0.785962	0.4403	С	-0.716807	1.157074	-0.619500	0.5420
D(PPB(-1))	-1.48E+08	2.50E+08	-0.593191	0.5591	D(PPB(-1))	-0.215783	0.261439	-0.825367	0.4180
RES1(-1)	-44000931	39042935	-1.126988	0.2719	RES1(-1)	-0.025336	0.040824	-0.620602	0.5412
D(PIB(-1))	-0.489091	0.100861	-4.849157	0.0001	D(PIB(-1))	-2.92E-11	1.05E-10	-0.276420	0.7848
BC(-1)	1.726925	0.523065	3.301552	0.0033	BC(-1)	-7.33E-10	5.47E-10	-1.339443	0.1941
RES(-1)	-0.221224	0.216194	-1.023270	0.3173	RES(-1)	6.88E-10	2.26E-10	3.043489	0.0060
D(AB(-1))	2.25E+08	2.85E+08	0.789101	0.4385	D(AB(-1))	-0.135717	0.298458	-0.454728	0.6538
D(M2(-1))	0.286690	0.087681	3.269690	0.0035	D(M2(-1))	3.46E-11	9.17E-11	0.377090	0.7097
D(PPB(-2))	-1.02E+08	2.34E+08	-0.433511	0.6689	D(PPB(-2))	-0.319849	0.244952	-1.305764	0.2051
RES1(-2)	-36257366	43681742	-0.830035	0.4154	RES1(-2)	-0.018337	0.045675	-0.401472	0.6919
D(PIB(-2))	-0.084372	0.159106	-0.530289	0.6012	D(PIB(-2))	3.13E-10	1.66E-10	1.879862	0.0734
BC(-2)	-1.850454	0.576898	-3.207596	0.0041	BC(-2)	9.16E-10	6.03E-10	1.518956	0.1430
RES(-2)	1.003297	0.246831	4.064712	0.0005	RES(-2)	-8.88E-10	2.58E-10	-3.440876	0.0023
D(AB(-2))	-1.16E+08	2.00E+08	-0.579491	0.5681	D(AB(-2))	-0.315362	0.209436	-1.505769	0.1464
D(M2(-2))	-0.025131	0.113554	-0.221317	0.8269	D(M2(-2))	-5.28E-12	1.19E-10	-0.044437	0.9650
R-squared	0.863901	Mean depen	ndent var	-35534186	R-squared	0.536916	Mean depen	dent var	-0.444424
Adjusted R-squared	0.777292	S.D. depend		9.16E+09	Adjusted R-squared	0.242227	S.D. depend	lent var	5.191523
S.E. of regression	4.32E+09	Akaike info	criterion	47.50281	S.E. of regression	4.519230	Akaike info	criterion	6.145496
Sum squared resid	4.11E+20	Schwarz crit	terion	48.15588	(2) (2) (2) (2) (2) (2) (2) (3) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	449.3157	Schwarz crit	terion	6.798571
Log likelihood	-863.8019	F-statistic		9.974748	Log likelihood	-98.69167	F-statistic		1.821972
Durbin-Watson stat	1.873165	Prob(F-stati	stic)	0.000002	Durbin-Watson stat	2.313871	Prob(F-stati	stic)	0.100647

Dependent Variable: D(M2) Method: Least Squares Date: 05/25/13 Time: 17:38 Sample(adjusted): 1973 2009 Included observations: 37 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	6.90E+08	2.12E+09	0.324887	0.7483
D(PPB(-1))	-4.83E+08	4.80E+08	-1.006247	0.3252
RES1(-1)	96662220	74901046	1.290532	0.2103
D(PIB(-1))	0.325560	0.193495	1.682526	0.1066
BC(-1)	1.376236	1.003462	1.371488	0.1841
RES(-1)	-0.769297	0.414752	-1.854838	0.0771
D(AB(-1))	1.58E+08	5.48E+08	0.288432	0.7757
D(M2(-1))	-0.572965	0.168210	-3.406247	0.0025
D(PPB(-2))	-1.29E+08	4.49E+08	-0.286661	0.7771
RES1(-2)	-2.94E+08	83800262	-3.504276	0.0020
D(PIB(-2))	0.294674	0.305233	0.965409	0.3448
BC(-2)	-0.588361	1.106736	-0.531618	0.6003
RES(-2)	-0.204767	0.473528	-0.432430	0.6696
D(AB(-2))	-3.52E+08	3.84E+08	-0.915592	0.3698
D(M2(-2))	-0.179934	0.217845	-0.825970	0.4177
R-squared	0.733208	Mean depen	dent var	2.56E+09
Adjusted R-squared	0.563431	S.D. depend	lent var	1.25E+10
S.E. of regression	8.29E+09	Akaike info	criterion	48.80582
Sum squared resid	1.51E+21	Schwarz crit	terion	49.45889
Log likelihood	-887.9076	F-statistic		4.318663
Durbin-Watson stat	1.557523	Prob(F-statis	stic)	0.001134

Annexe.09: Estimation du modèle VAR(3) par la méthode des MCO.

Dependent Variable: D(PPB) Method: Least Squares
Date: 05/25/13 Time: 17:01
Sample(adjusted): 1974 2009
Included observations: 36 after adjusting endpoints

Dependent Variable: RES1 Method: Least Squares Date: 05/25/13 Time: 17:04 Sample(adjusted): 1974 2009

Included observations: 36 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.982665	1.048764	1.890478	0.0796	C	-16,98059	6.155519	-2.758596	0.0154
D(PPB(-1))	-0.439858	0.212334	-2.071538	0.0573	D(PPB(-1))	0.514962	1.246255	0.413208	0.6857
RES1(-1)	0.008177	0.032710	0.249994	0.8062	RES1(-1)	0.095445	0.191983	0.497156	0.6268
D(PIB(-1))	-1.77E-10	1.24E-10	-1.423318	0.1765	D(PIB(-1))	1.92E-09	7.30E-10	2.627261	0.0199
BC(-1)	6.01E-10	4.76E-10	1.263876	0.2269	BC(-1)	7.78E-10	2.79E-09	0.278502	0.7847
RES(-1)	-1.39E-09	1.58E-10	-8.770936	0.0000	RES(-1)	6.53E-10	9.27E-10	0.704584	0.4926
D(AB(-1))	-0.178531	0.213918	-0.834577	0.4180	D(AB(-1))	-0.640239	1.255552	-0.509926	0.6180
D(M2(-1))	1.42E-10	9.14E-11	1.550114	0.1434	D(M2(-1))	8.43E-10	5.36E-10	1.570908	0.1385
D(PPB(-2))	-0.187984	0.171829	-1.094017	0.2924	D(PPB(-2))	1.249785	1.008518	1.239229	0.2356
RES1(-2)	-0.028611	0.038112	-0.750713	0.4653	RES1(-2)	-0.275089	0.223689	-1.229787	0.2390
D(PIB(-2))	-1.44E-10	1.21E-10	-1.194405	0.2522	D(PIB(-2))	7.12E-10	7.09E-10	1.003715	0.3325
BC(-2)	1.06E-09	7.84E-10	1.349568	0.1986	BC(-2)	-1.64E-09	4.60E-09	-0.356324	0.7269
RES(-2)	1.66E-10	4.77E-10	0.347572	0.7333	RES(-2)	4.25E-09	2.80E-09	1.516288	0.1517
D(AB(-2))	0.055824	0.228328	0.244488	0.8104	D(AB(-2))	-0.159545	1.340128	-0.119052	0.9069
D(M2(-2))	2.60E-10	1.15E-10	2.257449	0.0405	D(M2(-2))	3.90E-10	6.77E-10	0.576404	0.5735
D(PPB(-3))	-0.054346	0.173710	-0.312853	0.7590	D(PPB(-3))	0.900388	1.019556	0.883118	0.3921
RES1(-3)	0.061814	0.043263	1.428805	0.1750	RES1(-3)	0.929553	0.253922	3.660783	0.0026
D(PIB(-3))	-1.20E-11	1.30E-10	-0.092271	0.9278	D(PIB(-3))	-1.71E-10	7.62E-10	-0.224420	0.8257
BC(-3)	-1.86E-09	6.27E-10	-2.965262	0.0102	BC(-3)	-2.78E-09	3.68E-09	-0.754609	0.4630
RES(-3)	1.27E-09	4.84E-10	2.613822	0.0204	RES(-3)	-1.56E-09	2.84E-09	-0.549720	0.5912
D(AB(-3))	-0.102150	0.155536	-0.656762	0.5220	D(AB(-3))	0.072510	0.912889	0.079429	0.9378
D(M2(-3))	-1.20E-10	1.03E-10	-1.166532	0.2629	D(M2(-3))	9.02E-10	6.05E-10	1.490289	0.1583
R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.965552 0.913879 2.766215 107.1272	Mean depend S.D. depend Akaike info	lent var criterion	1.644722 9.426105 5.150597 6.118303	Adjusted R-squared	0.870649 0.676623 16.23577 3690.404	Mean depen S.D. depend Akaike info Schwarz cri	lent var criterion	-1.721720 28.55079 8.690072 9.657778
Log likelihood Durbin-Watson stat	-70.71075 1.935491	F-statistic Prob(F-stati	stic)	18.68603 0.000001	Log likelihood Durbin-Watson stat	-134.4213 1.602166	F-statistic Prob(F-stati		4.487272 0.002934

Dependent Variable: D(PIB) Method: Least Squares
Date: 05/25/13 Time: 17:05
Sample(adjusted): 1974 2009
Included observations: 36 after adjusting endpoints

Dependent Variable: BC Method: Least Squares Date: 05/25/13 Time: 17:06 Sample(adjusted): 1974 2009

Included observations: 36 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.99E+09	2.28E+09	0.873162	0.3973	С	-5.31E+08	8.10E+08	-0.655525	0.5228
D(PPB(-1))	-5.14E+08	4.63E+08	-1.111014	0.2853	D(PPB(-1))	47958052	1.64E+08	0.292612	0.7741
RES1(-1)	97945869	71250401	1.374671	0.1908	RES1(-1)	-61662033	25247882	-2.442266	0.0285
D(PIB(-1))	0.051763	0.270882	0.191091	0.8512	D(PIB(-1))	0.006170	0.095988	0.064281	0.9497
BC(-1)	-1.802053	1.036599	-1.738428	0.1041	BC(-1)	1.602789	0.367323	4.363429	0.0006
RES(-1)	0.408048	0.344055	1.185996	0.2554	RES(-1)	-0.954774	0.121918	-7.831307	0.0000
D(AB(-1))	-6.92E+08	4.66E+08	-1.484116	0.1599	D(AB(-1))	-84462697	1.65E+08	-0.511526	0.6170
D(M2(-1))	-0.004451	0.199099	-0.022357	0.9825	D(M2(-1))	0.155672	0.070552	2.206496	0.0446
D(PPB(-2))	52210901	3.74E+08	0.139493	0.8910	D(PPB(-2))	1.68E+08	1.33E+08	1.266679	0.2259
RES1(-2)	-1.31E+08	83017392	-1.581288	0.1361	RES1(-2)	-19633053	29417565	-0.667392	0.5154
D(PIB(-2))	0.227353	0.263124	0.864055	0.4021	D(PIB(-2))	0.017439	0.093239	0.187033	0.8543
BC(-2)	3.102423	1.706790	1.817695	0.0906	BC(-2)	-0.988941	0.604808	-1.635132	0.1243
RES(-2)	-1.626768	1.039831	-1.564454	0.1400	RES(-2)	0.908470	0.368469	2.465528	0.0272
D(AB(-2))	-2.57E+08	4.97E+08	-0.516798	0.6134	D(AB(-2))	-1.03E+08	1.76E+08	-0.581606	0.5701
D(M2(-2))	-0.195307	0.251109	-0.777778	0.4496	D(M2(-2))	-0.015787	0.088981	-0.177421	0.8617
D(PPB(-3))	2.91E+08	3.78E+08	0.768090	0.4552	D(PPB(-3))	21108057	1.34E+08	0.157425	0.8772
RES1(-3)	56213550	94237859	0.596507	0.5604	RES1(-3)	-33834705	33393585	-1.013210	0.3282
D(PIB(-3))	0.113459	0.282954	0.400980	0.6945	D(PIB(-3))	0.003479	0.100266	0.034698	0.9728
BC(-3)	-0.754266	1.366735	-0.551875	0.5897	BC(-3)	0.403335	0.484308	0.832806	0.4189
RES(-3)	1.547657	1.054473	1.467706	0.1643	RES(-3)	-0.032861	0.373657	-0.087944	0.9312
D(AB(-3))	2.05E+08	3.39E+08	0.606265	0.5540	D(AB(-3))	66199601	1.20E+08	0.551410	0.5900
D(M2(-3))	0.484548	0.224688	2.156533	0.0489	D(M2(-3))	-0.087001	0.079619	-1.092709	0.2930
R-squared	0.893961	Mean depen	dent var	5.00E+09	R-squared	0.981080	Mean depen	dent var	3.86E+09
Adjusted R-squared	0.734902	S.D. depend		1.17E+10	Adjusted R-squared	0.952699	S.D. depend		9.82E+09
S.E. of regression	6.03E+09	Akaike info		48.15419	S.E. of regression	2.14E+09	Akaike info		46.07928
Sum squared resid	5.08E+20	Schwarz crit		49.12190	Sum squared resid	6.38E+19	Schwarz cri	terion	47.04698
Log likelihood	-844.7755	F-statistic		5.620311	Log likelihood	-807.4270	F-statistic		34.56857
Durbin-Watson stat	2.117415	Prob(F-stati	stic)	0.000902	Durbin-Watson stat	2.003485	Prob(F-stati	stic)	0.000000

Dependent Variable: RES Method: Least Squares Date: 05/25/13 Time: 17:09 Sample(adjusted): 1974 2009 Included observations: 36 after adjusting endpoints

Dependent Variable: D(AB) Method: Least Squares Date: 05/25/13 Time: 17:10 Sample(adjusted): 1974 2009 Included observations: 36 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3.21E+08	1.46E+09	0.220364	0.8288	С	-1.681059	1.850541	-0.908415	0.3790
D(PPB(-1))	-76547076	2.95E+08	-0.259509	0.7990	D(PPB(-1))	-0.039312	0.374663	-0.104925	0.9179
RES1(-1)	-1.06E+08	45439306	-2.342654	0.0344	RES1(-1)	-0.055115	0.057716	-0.954929	0.3558
D(PIB(-1))	-0.186428	0.172752	-1.079165	0.2988	D(PIB(-1))	1.28E-10	2.19E-10	0.584848	0.5680
BC(-1)	1.607005	0.661082	2.430872	0.0291	BC(-1)	-4.19E-10	8.40E-10	-0.498867	0.6256
RES(-1)	-0.291961	0.219418	-1.330613	0.2046	RES(-1)	6.75E-10	2.79E-10	2.421265	0.0296
D(AB(-1))	28095171	2.97E+08	0.094543	0.9260	D(AB(-1))	-0.194739	0.377458	-0.515922	0.6140
D(M2(-1))	0.181050	0.126974	1.425880	0.1758	D(M2(-1))	-6.75E-11	1.61E-10	-0.418698	0.6818
D(PPB(-2))	50923509	2.39E+08	0.213336	0.8341	D(PPB(-2))	-0.358517	0.303192	-1.182475	0.2567
RES1(-2)	-49922781	52943598	-0.942943	0.3617	RES1(-2)	0.015245	0.067248	0.226696	0.8239
D(PIB(-2))	-0.060915	0.167805	-0.363013	0.7220	D(PIB(-2))	3.23E-10	2.13E-10	1.513629	0.1524
BC(-2)	-2.390861	1.088490	-2.196493	0.0454	BC(-2)	3.04E-10	1.38E-09	0.219996	0.8291
RES(-2)	1.082403	0.663143	1.632231	0.1249	RES(-2)	-2.61E-10	8.42E-10	-0.309395	0.7616
D(AB(-2))	-4.69E+08	3.17E+08	-1.477754	0.1616	D(AB(-2))	-0.130992	0.402884	-0.325136	0.7499
D(M2(-2))	-0.031647	0.160142	-0.197618	0.8462	D(M2(-2))	-1.02E-10	2.03E-10	-0.501595	0.6237
D(PPB(-3))	-10175425	2.41E+08	-0.042167	0.9670	D(PPB(-3))	-0.040094	0.306510	-0.130807	0.8978
RES1(-3)	-73580647	60099351	-1.224317	0.2410	RES1(-3)	-0.035428	0.076337	-0.464104	0.6497
D(PIB(-3))	-0.464362	0.180451	-2.573339	0.0221	D(PIB(-3))	2.01E-10	2.29E-10	0.874825	0.3964
BC(-3)	1.175818	0.871623	1.348998	0.1988	BC(-3)	1.04E-10	1.11E-09	0.094202	0.9263
RES(-3)	-0.395539	0.672481	-0.588179	0.5658	RES(-3)	-6.89E-10	8.54E-10	-0.806598	0.4334
D(AB(-3))	-1.49E+08	2.16E+08	-0.689627	0.5017	D(AB(-3))	-0.380623	0.274443	-1.386893	0.1872
D(M2(-3))	0.365544	0.143293	2.551025	0.0231	D(M2(-3))	4.01E-11	1.82E-10	0.220535	0.8286
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.931501 0.828752 3.84E+09 2.07E+20 -828.5819 2.075649	Mean depen S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	lent var criterion terion	-69373464 9.29E+09 47.25455 48.22225 9.065804 0.000059	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.647905 0.119763 4.880980 333.5355 -91.15393 1.816534	Mean depen S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	lent var criterion terion	-0.313077 5.202442 6.286330 7.254036 1.226763 0.353120

Dependent Variable: D(M2) Method: Least Squares Date: 05/25/13 Time: 17:11 Sample(adjusted): 1974 2009 Included observations: 36 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-2.74E+09	2.75E+09	-0.996877	0.3357
D(PPB(-1))	-6.32E+08	5.57E+08	-1.134207	0.2758
RES1(-1)	13001125	85776874	0.151569	0.8817
D(PIB(-1))	-0.093394	0.326109	-0.286390	0.7788
BC(-1)	0.580151	1.247940	0.464887	0.6492
RES(-1)	-0.255428	0.414201	-0.616675	0.5473
D(AB(-1))	-68447156	5.61E+08	-0.122015	0.9046
D(M2(-1))	-0.072964	0.239692	-0.304408	0.7653
D(PPB(-2))	2.02E+08	4.51E+08	0.449105	0.6602
RES1(-2)	-4.06E+08	99942909	-4.065554	0.0012
D(PIB(-2))	0.557812	0.316769	1.760943	0.1001
BC(-2)	-2.473381	2.054769	-1.203727	0.2487
RES(-2)	-0.415974	1.251831	-0.332293	0.7446
D(AB(-2))	-1.38E+09	5.99E+08	-2.301367	0.0373
D(M2(-2))	0.071496	0.302304	0.236502	0.8165
D(PPB(-3))	95366944	4.56E+08	0.209353	0.8372
RES1(-3)	1.15E+08	1.13E+08	1.015334	0.3272
D(PIB(-3))	0.791411	0.340642	2.323290	0.0357
BC(-3)	2.344384	1.645384	1.424825	0.1761
RES(-3)	0.381942	1.269458	0.300870	0.7679
D(AB(-3))	-3.61E+08	4.08E+08	-0.885430	0.3909
D(M2(-3))	-0. <mark>0</mark> 97508	0.270498	-0.360476	0.7239
R-squared	0.870027	Mean depen	dent var	2.53E+09
Adjusted R-squared	0.675068	S.D. depend		1.27E+10
S.E. of regression	7.25E+09	Akaike info		48.52529
Sum squared resid	7.37E+20	Schwarz crit	terion	49.49300
Log likelihood	-851.4552	F-statistic		4.462616
Durbin-Watson stat	2.312160	Prob(F-statis	stic)	0.003017

Annexe.10 : Estimation du modèle VAR(4) par la méthode des MCO.

Dependent Variable: D(PPB) Method: Least Squares Date: 05/25/13 Time: 15:51 Sample(adjusted): 1975 2009

Included observations: 35 after adjusting endpoints

Dependent Variable: RES1 Method: Least Squares Date: 05/25/13 Time: 15:55 Sample(adjusted): 1975 2009

Included observations: 35 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	-1.109848	1.624425	-0.683225	0.5200	c	-11.87661	12.42953	-0.955516	0.3762
D(PPB(-1))	-0.247042	0.267422	-0 923793	0.3912	D(PPB(-1))	-0.050249	2.046215	-0.024557	0.9612
RES1(-1)	-0 088474	0.066450	-1.331435	0.2314	RES1(-1)	0.553288	0.508453	1.088179	0.3183
D(PIB(-1))	2.42E-10	1.82E-10	1.327197	0.2327	D(PIB(-1))	1.57E-09	1.39E-09	1.127994	0.3024
BC(-1)	6.23E-10	6.35E-10	0.823882	0.4415	BC(-1)	-3.92E-09	4.86E-09	-0.807389	0.4503
RES(-1)	-1.35E-09	2.70E-10	-5.005822	0.0024	RES(-1)	3.17E-09	2 07E-09	1.531064	0.1766
D(AB(-1))	-0.219566	0.222133	0.988446	0.3611	D(AB(-1))	-1.024077	1.699679	-0.602512	0.5689
D(M2(-1))	-2.14E-10	1.63E-10	-1.316501	0.2361	D(M2(-1))	2.15E-10	1.24E-09	0.173280	0.8681
D(PPB(-2))	-0.048660	0.229442	-0.212079	0.8391	D(PPB(-2))	-0.123669	1.755606	-0.070442	0.9461
RES1(-2)	-0.038886	0.049676	-0.782791	0.4635	RES1(-2)	-0.278168	0.380102	-0.731824	0.4919
D(PIB(-2))	-3.20E-11	1.44E-10	-0.221631	0.8320	D(PIB(-2))	-1:30E-10	1.10E-09	-0.117405	0.9104
BC(-2)	1.42E-09	8.53E-10	1.660066	0.1480	BC(-2)	9.52E-10	6.53E-09	0.145911	0.8888
RES(-2)	4.42E-10	6.39E-10	0.691889	0.5149	RES(-2)	-6.63E-10	4.89E-09	-0.135475	0.8967
D(AB(-2))	0.212133	0.230708	0.919487	0.3933	D(AB(-2))	1.317374	1.765298	0.746262	0.4837
D(M2(-2))	2.60E-10	1.07E-10	2.434418	0.0509	D(M2(-2))	3.91E-10	8.17E-10	0.479112	0.6488
D(PPB(-3))	0.000648	0.185111	0.003500	0.9973	D(PPB(-3))	0.675394	1.416402	0.476838	0.6503
RES1(-3)	-0.077908	0.075966	-1.025560	0.3447	RES1(-3)	0.677734	0.581266	1.165962	0.2879
D(PIB(-3))	3.63E-11	1.61E-10	0.226172	0.8286	D(PIB(-3))	1.36E-10	1.23E-09	0.110924	0.9153
BC(-3)	-2.83E-09	1.10E-09	-2.579396	0.0418	BC(-3)	2.21E-10	8.39E-09	0.026290	0.9799
RES(-3)	1.38E-09	6.21E-10	2.228219	0.0674	RES(-3)	-3.49E-09	4.75E-09	-0.734086	0.4906
D(AB(-3))	-0.402154	0.256406	-1.568423	0.1678	D(AB(-3))	-0.789848	1.961932	-0.402587	0.7012
D(M2(-3))	6.28E-11	1.55E-10	0.405916	0.6989	D(M2(-3))	1.04E-09	1.18E-09	0.878049	0.4137
D(PPB(-4))	-0.059444	0.155352	-0.382638	0.7152	D(PPB(-4))	-1.664997	1.188702	-1.400685	0.2108
RES1(-4)	0.104876	0.084117	1.246788	0.2589	RES1(-4)	-0.353690	0.643636	-0.549518	0.6025
D(PIB(-4))	2.43E-10	2.25E-10	1.081629	0.3210	D(PIB(-4))	2.46E-09	1.72E-09	1,431786	0.2022
BC(-4)	7.37E-10	8.99E-10	0.819486	0.4438	BC(-4)	1.07E-09	6.88E-09	0.155654	0.8814
RES(-4)	-4.60E-10	6:23E-10	-0.738595	0.4880	RES(-4)	3.34E-09	4.76E-09	0.701927	0.5090
D(AB(-4))	-0.121129	0.161597	-0.749576	0.4819	D(AB(-4))	-0.140373	1.236479	-0.113526	0.9133
D(M2(-4))	-1.80E-10	2 00E-10	-0.898257	0.4037	D(M2(-4))	-1.83E-09	1.53E-09	-1.194969	0.2772
R-squared	0.989275	Mean depen	ident var	1.472286	R-squared	0.931635	Mean dependent var		-2.218808
Adjusted R-squared	0.939226	S.D. depend	dent var	9.505935	Adjusted R-squared	0.612599	S.D. depend		28.80912
S.E. of regression	2.343448	Aksike info	criterion		S.E. of regression	17.93124	Akaike info	cnterion	8.504520
Sum squared resid	32.95049	Schwarz cri			Sum squared resid	1929 175	Schwarz cri		9.793237
Log likelihood	48.60687	F-statistic		19.76592	Log likelihood	-119.8291	F-statistic	are entire	2.920159
Durbin-Watson stat	1.811639	Prob(F-stati	stic)		Durbin-Watson stat	2.171107	Prob(F-stati	stic)	0.091704

Dependent Vanable: D(PIB) Method: Least Squares Date: 05/25/13 Time: 15:57 Sample(adjusted): 1975:2009

Included observations: 35 after adjusting endpoints

Dependent Variable: BC Method: Least Squares Date: 05/25/13 Time: 16:42 Sample(adjusted): 1975 2009 Included observations: 35 after adjusting endpoints

Prob(F-statistic)

0.000286

Variable Coefficient Std. Error t-Statistic Pmb Coefficient Std. Error Variable 4,83E+09 -7.41E+08 5 89E+09 0.819602 0.4438 C D(PPB(-1)) RES1(-1) D(PPB(-1)) 0.4736 -2.02E+08 2.45E+08 -0.825655 0.4406 -696091.7 -0.244607 RES1(-1) 52315655 2.41E+08 0.217047 0.8354 60817161 D(PIB(-1)) BC(-1) RES(-1) 0.066676 D(PIB(-1)) 0 166622 1.468034 0.1925 -0.930476 BC(-1) RES(-1) 1.470200 -0.864041 2 301585 -0.404276 0.7000 0.580732 2.531633 0.0446 0.101600 0.981145 0.103552 0.247561 3.490217 0.0130 D(AB(-1)) -4.62E+08 D(AB(-1)) D(M2(-1)) 8.06E+08 -0.5728980.5875 -15876785 2.03E+08 0.9403 D(M2(-1)) D(PPB(-2)) 0.037164 -2.62E+08 0.063047 0.589469 0.9518 0.324304 0.148734 2.180432 0.0720 8.32E+08 0.7640 D(PPB(-2)) 34464176 2 10F+08 fi 164122 0.8750 RES1(-2) D(PIB(-2)) -41164073 0.087619 -0.228451 0.167386 0.8269 1.80E+08 RES1(-2) 5927877 0.9005 0.523454 D(PIB(-2)) -0.051581 0.132077 0.390538 0.7096 BC(-2) RES(-2) 2 059941 3 093427 0.665909 0.5302 BC(-2) -1.223604 1.150543 2.319204 -0.496094 0.6375 RES(-2) 0.325632 0.585178 0.556467 0.5980 D(AB(-2)) 3.51E+08 8:37E+08 -0.4191580.6897 D(AB(-2)) D(M2(-2)) 2.86E+08 2.11E+08 1.353444 D(M2(-2)) -0 147692 -0.381455 0.039678 0.097693 -0.406145 0.6987 D(PPB(-3)) RES1(-3) 0.6055 0.9643 D(PPB(-3)) 2 09E+08 6.71E+08 0.311338 0.7661 92304021 1.69E+08 0 544828 3242961 0.046644 69526490 -0.014268 1.940562 0.9259 D(P(B(-3)) -0.2166240.582720 -0.371746 0.7229 D(PIB(-3)) 0.147031 0.097043 BC(-3) 0.484892 3.978696 0.121872 0.9070 1.003898 1.933027 BC(-3) RES(-3) RESI-3) 0.772177 2.252284 0.342842 0.7434 -0.412382 0.568293 -0.725651 0.4954 D(AB(-3)) D(M2(-3)) 2 29E+08 0 638464 0.246619 9.30E+08 0.8134 D(AB(-3)) 2.26E+08 0.3725 0.561321 0.2987 D(M(2)(-3)) -0.102981 0.141632 0.727102 0.4945 D(PPB(-4)) RES1(-4) -2.75E+08 1.12E+08 5.64E+08 3.05E+08 -0.487743 0.366467 0.6430 1.42E+08 0.6844 0.7266 81684673 RES1(4) 76986631 -1.061024 0.3295 D(PIB(-4)) BC(-4) D(PIB(-4)) BC(-4) -0.051270 -1.115052 0.264811 0.816127 .0 324472 0.7566 0.205924 -0.248975 -0.700038 0.8371 3.260098 -0.214729 0.822583 -1.355550 0.2240 RES(-4) 0.667913 2.258650 0.291286 0.032472 0.7806 RES(-4) D(AB(-4)) 0.839712 0.569899 1.473441 0.1911 D(AB(-4)) 19033518 5.86E+08 0.4475 1.48E+08 1.20E+08 0.812487 D(M2(-4)) 0.250161 0.726947 0.344126 0.7425 D(M2(-4)) 0.027542 0.183422 0.150154 0.8856 3.96E+09 5.01E+09 R-squared 0.909554 Mean dependent var 0.991789 Mean dependent var R-squared Adjusted R-squared Adjusted R-squared 0.487471 0.953469 S.D. dependent var 9.94E+09 S.D. dependent var 1.19E+10 S.E. of regression 8.50E+09 4.34E+20 Akaike info criterion S.E. of regression 48.45818 2.14E+09 Akaike info coterion Sum squared resid. 49.74689 2.76E+19 46 99277 Schwarz criterion Sum squared resid Schwarz criterion Log likelihood Durbin-Watson stat Log likelihood Durbin-Watson stat 770.8209 2.135096 -819.0181 F-statistic 2.164920 F-statistic 25.88181

Prob(F-statistic)

Dependent Variable: RES Method: Least Squares Date: 05/25/13. Time: 16:00 Sample(adjusted): 1975 2009 Included observations: 35 after adjusting endpoints

Dependent Variable: D(AB)
Method: Least Squares
Date: 05/25/13 Time: 16:03
Sample(adjusted): 1975-2009
Included observations: 35 after adjusting endpoints

	are more audion	anoli anielianie	*::		1 to 1					
Variable	Coefficient	Std. Error	t-Statistic	Prob	Variable	Coefficient	Std. Error	t-Statistic	Prob	
C	1.68E+09	3.15E+09	0.534882	0.6120	С	-2.740573	2.781214	-0.985387	0.3629	
D(PPB(-1))	-3.42E+08	5.18E+08	-0.660708	0.5333	D(PPB(-1))	0.680346	0.457858	1,485932	0.1878	
RES1(-1)	-20055014	1.29E+08	-0.155734	0.8813	RES1(-1)	-0.048380	0.113771	-0.425245	0.6855	
D(PIB(-1))	-0.492751	0.352813	-1.396636	0.2120	D(P(B(-1))	4.24E-10	3.12E-10	1.359198	0.2229	
BC(-1)	1.227073	1.229669	0.997889	0.3569	BC(-1)	-1.00E-09	1.09E-09	-0.922719	0.3917	
RES(-1)	-0.189167	0.524197	-0.360870	0.7306	RES(-1)	9.61E-10	4.63E-10	2.074583	0.0834	
D(AB(-1))	1.36E+08	4.30E+08	0.316123	0.7626	D(AB(-1))	-0.153394	0.380318	-0.403330	0.7007	
D(M2(-1))	0.219971	0.314936	0.698464	0.5110	D(M2(-1))	-5.05E-10	2.78E-10	-1.816795	0.1191	
D(PPB(-2))	-4.15E+08	4.45E+08	-0.932660		D(PPB(-2))	-0.076364	0.392832	-0.194394	0.8623	
RES1(-2)	-62734713	96269162	-0.651659		RES1(-2)	0.016732	0.085051	0.196731	0.8506	
D(PIB(-2))	-0.262867	0.279666	-0.939933		D(PIB(-2))	2.02E-10	2.47E-10	0.817854	0.4447	
BC(-2)	-2.969079	1.652727	-1.796473		BC(-2)	1.13E-09	1.46E-09	0.771501	0.4697	
RES(-2)	0.292536	1.239083	0.236091		RES(-2)	3.26E-10	1.09E-09	0.297409	0.7762	
D(AB(-2))	-8.40E+88	4.47E+08	-1.878305		D(AB(-2))	0.150484	0.395001	0.380971	0.7163	
D(M2(-2))	-0.012014	0.206859	-0.058076		D(M2(-2))	-8.09E-11	1.83E-10	-0.442850	0.6734	
D(PPB(-3))	-37830304	3.59E+08	-0.105455		D(PPB(-3))	0.365642	0.316932	1.153690	0.2925	
RES1(-3)	-1.40E+08	1.47E+08	-0.950168		RES1(-3)	-0.128959	0.130063	-0 991513	0.3597	
D(PIB(-3))	-0.386878	0.311330	-1.242661		D(PIB(-3))	2.88E-10	2.75E-10	1.045376	0.3361	
BC(-3)	3.300743	2.125700	1.552779		BC(-3)	-3.36E-09	1.88E-09	-1.789027	0.1238	
RES(-3)	-1 626282	1.203329	-1.351486		RES(-3)	-2.52E-10	1.06E-09	-0.236862	0.8206	
D(AB(-3))	4.29E+08	4.97E+08	-0.862768		D(AB(-3))	-0.973345	0.438999	-2.217191	0.0686	
D(M2(-3))	0.482201	0.299897	1.607886		D(M2(-3))	-1.05E-10	2.65E-10	0.396490	0.7055	
D(PPB(-4))	1.16E+08	3.01E+08	0.384973		D(PPB(-4))	-0.144564	0.265982	-0.543510	0.6064	
RES1(-4)	-1.09E+08	1.63E+08	-0.666315		RES1(-4)	0.067086	0.144019	0.465811	0.6578	
D(PIB(-4))	0.082548	0.436033	0.189315		D(PIB(-4))	4.23E-10	3.85E-10	1.098213	0.3142	
BC(4)	-0.888813	1.741774	-0.510292		BC(-4)	3.94E-09	1.54E-09	2.559444	0.0429	
RES(-4)	1.806480	1.206730	1.497004		RES(-4)	1.45E-09	1.07E-09	-1.362764	0.2219	
D(AB(-4))	66291234	3.13E+08	0.211681		D(AB(-4))	0.103537	0.276673	0.374221	0.721	
D(M2(-4))	0.025930	0.388386	0.066763		D(M2(-4))	-3.57E-10	3.43E-10	-1.040752	0.3381	
D)115(11)	V-0420000	0.000000			Spring rip		0,102.10		0,400	
R-squared	0.958993	Mean deper		-83245699		0.888757	Mean deper	ident var	-0.062659	
Adjusted R-squared	0.767629	S.D. depend	dent var		Adjusted R-squared	0.369622	S.D. depend	ient var	5.053466	
S.E. of regression	4.54E+09	Alcaike info	criterion	47.20447	S.E. of regression	4.012268	Akaike info	criterian	5.510145	
Sum squared resid	1.24E+20	Schwarz cri		48.49319		96.58979	Schwarz cri	tenan	6.798862	
Log likelihood	-797.0782	F-statistic		5.011348		-67.42754	F-statistic	400-1410	1.711995	
Durbin-Watson stat	2.446796	ProblF-stati	stic)		Durbin-Watson stat	2.269273	Prob(F-stati	stic)	0.260077	

Dependent Variable: D(M2)
Method: Least Squares
Date: 85/25/13: Time: 16:05
Sample(adjusted): 1975-2009
Included observations: 35 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	-3.27E+09	4.60E+09	-0.711353	0.5036
D(PPB(-1))	-9.27E+08	7.57E+08	-1.224355	0.2667
RES1(-1)	-1.55E+08	1.88E+08	-0.824045	0.4414
D(PIB(-1))	0.301787	0.515439	0.585495	0.5796
BC(-1)	-0.025740	1.796476	-0.014328	0.9890
RES(-1)	0.411256	0.765821	0.537013	0.6106
D(AB(-1))	1.55E+08	6.29E+08	0.246733	0.8133
D(M2(-1))	-0.879102	0.460103	-1.910662	0.1046
D(PPB(-2))	-3.99E+08	6.50E+08	-0.614375	0.5615
RES1(-2)	-2 30E+08	1.41E+08	-1.633184	0.1535
D(PIB(-2))	0.215483	0.408576	0.527399	0.6168
BC(-2)	-3.148406	2.414540	-1.303936	0.2400
RES(-2)	-0.658963	1.810229	-0.364022	0.7283
D(AB(-2))	-1.38E+09	5.53E+08	2.105792	0.0798
D(M2(-2))	0.356458	0.302210	1.179506	0.2828
D(PPB(-3))	2.37E+08	5.24E+08	0.452349	0.6669
RES1(-3)	-2.86E+08	2.15E+08	-1.331964	0.2312
D(PIB(-3))	0.552155	0.454836	1.213966	0.2704
BC(-3)	5.392965	3.105526	1.736570	0.1331
RES(-3)	-2.048690	1.757994	-1.165356	0.2881
D(AB(-3))	-7.37E+08	7.26E+08	-1.015497	0.3491
D(M2(-3))	0.660235	0.438133	1.506929	0.1825
D(PPB(-4))	2.45E+08	4.40E+08	0.556322	0.5981
RES1(-4)	4.62E+08	2.38E+08	1.940183	0.1004
D(PIB(-4))	0.859875	0.637019	1.349842	0.2258
BC(-4)	-1.642312	2.544633	-0.645402	0.5425
RES(-4)	2.844894	1.762964	1.613700	0.1577
D(AB(-4))	3.92E+08	4.58E+08	0.856602	0.4245
D(M2(-4))	-0.771099	0.567410	-1.358980	0.2230
R-squared	0.953265	Mean depen	dent var	2.64E+09
Adjusted R-squared	0.735167	S.D. depend		1.29E+10
S.E. of regression	6.63E+09	Akaike info		47.96263
Sum squared resid	2.64E+20	Schwarz cri		49 25135
Log likelihaad	-810.3461	F-statistic	×1.000	4.370821
Durbin-Watson stat	1.872714	Prob(F-stati	stick	0.036203

Annexe.11 : Estimation du modèle VAR(1) par la méthode des MCO.

Dependent Variable: D(PPB) Method: Least Squares Date: 05/26/13 Time: 13:09 Sample(adjusted): 1972 2009

Included observations: 38 after adjusting endpoints

Dependent Variable: VAG Method: Least Squares
Date: 05/26/13 Time: 13:13
Sample(adjusted): 1972 2009
Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-3.321387	10.31816	-0.321897	0.7496	С	5.182673	1.652008	3.137195	0.0036
D(PPB(-1))	-0.284913	0.288045	-0.989126	0.3298	D(PPB(-1))	-0.033488	0.046118	-0.726144	0.4729
VAG(-1)	0.560609	1.021284	0.548925	0.5868	VAG(-1)	0.480152	0.163515	2.936450	0.0060
D(VAM(-1))	0.070487	1.183167	0.059575	0.9529	D(VAM(-1))	-0.190746	0.189433	-1.006932	0.3213
D(VAI(-1))	0.439137	0.521425	0.842188	0.4057	D(VAI(-1))	-0.057903	0.083484	-0.693586	0.4928
R-squared	0.055166	Mean depen	dent var	1.585000	R-squared	0.331259	Mean depen	dent var	9.823182
Adjusted R-squared	-0.059359	S.D. depend	lent var		Adjusted R-squared	0.250200	S.D. depend	lent var	1.745433
S.E. of regression	9.439872	Akaike info	criterion	7.449841	S.E. of regression	1.511388	Akaike info	criterion	3.786013
Sum squared resid	2940.669	Schwarz crit	terion	7.665313	Sum squared resid	75.38167	Schwarz cri	terion	4.001485
Log likelihood	-136.5470	F-statistic			Log likelihood	-66.93425	F-statistic		4.086620
Durbin-Watson stat	1.640513	Prob(F-stati	stic)	0.748952	Durbin-Watson stat	1.867915	Prob(F-stati	stic)	0.008460

Dependent Variable: D(VAM) Method: Least Squares
Date: 05/26/13 Time: 13:14
Sample(adjusted): 1972 2009
Included observations: 38 after adjusting endpoints

Dependent Variable: D(VAI) Method: Least Squares Date: 05/26/13 Time: 13:15 Sample(adjusted): 1972 2009 Included observations: 38 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.007806	1.777558	0.566961	0.5746	С	-8.169056	4.008314	-2.038028	0.0496
D(PPB(-1))	0.024501	0.049623	0.493745	0.6248	D(PPB(-1))	0.039752	0.111897	0.355252	0.7247
VAG(-1)	-0.138471	0.175941	-0.787032	0.4369	VAG(-1)	0.877271	0.396740	2.211199	0.0341
D(VAM(-1))	-0.139458	0.203830	-0.684191	0.4986	D(VAM(-1))	0.619797	0.459627	1.348477	0.1867
D(VAI(-1))	-0.120285	0.089828	-1.339052	0.1897	D(VAI(-1))	0.118548	0.202559	0.585253	0.5624
R-squared	0.065253	Mean depen	dent var	-0.287514	R-squared	0.166781	Mean depen	ident var	0.348052
Adjusted R-squared	-0.048050	S.D. depend	lent var		Adjusted R-squared	0.065784	S.D. depend	dent var	3.794039
S.E. of regression	1.626251	Akaike info	criterion	3.932511	S.E. of regression	3.667122	Akaike info	criterion	5.558771
Sum squared resid	87.27483	Schwarz crit	terion	4.147983	Sum squared resid	443.7769	Schwarz cri	terion	5.774243
Log likelihood	-69.71771	F-statistic		0.575914	Log likelihood	-100.6166	F-statistic		1.651353
Durbin-Watson stat	2.054340	Prob(F-statis	stic)		Durbin-Watson stat	1.572568	Prob(F-stati	stic)	0.184833

Annexe.12: Estimation du modele VAR(2) par la méthode des MCO.

Dependent Variable: D(PPB) Method: Least Squares Date: 05/26/13 Time: 13:20 Sample(adjusted): 1973 2009 Included observations: 37 after adjusting endpoints

Dependent Variable: VAG Method: Least Squares
Date: 05/26/13 Time: 13:21
Sample(adjusted): 1973 2009
Included observations: 37 after adjusting endpoints

		30 30					- W		
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-10.25773	12.78047	-0.802610	0.4290	С	5.267705	2.028008	2.597478	0.0148
D(PPB(-1))	-0.469789	0.334335	-1.405146	0.1710	D(PPB(-1))	-0.017854	0.053052	-0.336537	0.7390
VAG(-1)	3.087508	2.194093	1.407191	0.1704	VAG(-1)	0.045981	0.348159	0.132068	0.8959
D(VAM(-1))	0.424988	1.365349	0.311267	0.7579	D(VAM(-1))	-0.276331	0.216654	-1.275450	0.2126
D(VAI(-1))	1.208172	0.889856	1.357716	0.1854	D(VAI(-1))	-0.217870	0.141203	-1.542958	0.1341
D(PPB(-2))	0.639934	0.497572	1.286112	0.2089	D(PPB(-2))	-0.058821	0.078955	-0.744999	0.4625
VAG(-2)	-1.896227	2.035390	-0.931628	0.3595	VAG(-2)	0.436493	0.322976	1.351471	0.1874
D(VAM(-2))	0.815323	1.333803	0.611277	0.5459	D(VAM(-2))	-0.084273	0.211648	-0.398176	0.6935
D(VAI(-2))	0.177628	0.582918	0.304722	0.7628	D(VAI(-2))	0.033606	0.092498	0.363318	0.7191
R-squared	0.138281	Mean depen	ident var	1.620811	R-squared	0.390331	Mean depen	dent var	9.861083
Adjusted R-squared	-0.107925	S.D. depend	lent var	9.295403	Adjusted R-squared	0.216140	S.D. depend	lent var	1.753585
S.E. of regression	9.784154	Akaike info	criterion	7.607179	S.E. of regression	1.552552	Akaike info	criterion	3.925450
Sum squared resid	2680.431	Schwarz crit	terion	7.999023	Sum squared resid	67.49166	Schwarz crit	terion	4.317295
Log likelihood	-131.7328	F-statistic		0.561648	Log likelihood	-63.62082	F-statistic		2.240819
Durbin-Watson stat	1.836720	Prob(F-statis	stic)	0.799750	Durbin-Watson stat	2.004431	Prob(F-stati	stic)	0.054662

Dependent Variable: D(VAM) Method: Least Squares Date: 05/26/13 Time: 13:23 Sample(adjusted): 1973 2009

Included observations: 37 after adjusting endpoints

Dependent Variable: D(VAI) Method: Least Squares Date: 05/26/13 Time: 13:24 Sample(adjusted): 1973 2009 Included observations: 37 after adjusting endpoints

						7.5	E 10		
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.357293	2.243978	0.604860	0.5501	С	-6.606783	4.688028	-1.409288	0.1698
D(PPB(-1))	0.006522	0.058702	0.111107	0.9123	D(PPB(-1))	0.067299	0.122638	0.548761	0.5875
VAG(-1)	-0.204736	0.385236	-0.531455	0.5993	VAG(-1)	1.017381	0.804819	1.264111	0.2166
D(VAM(-1))	-0.246196	0.239726	-1.026989	0.3132		0.763742	0.500826	1.524966	0.1385
D(VAI(-1))	-0.173080	0.156240	-1.107782	0.2774	D(VAI(-1))	0.321820	0.326410	0.985938	0.3326
D(PPB(-2))	0.050725	0.087363	0.580623	0.5661	D(PPB(-2))	-0.110653	0.182515	-0.606265	0.5492
VAG(-2)	0.031297	0.357371	0.087577	0.9308	VAG(-2)	-0.324168	0.746605	-0.434189	0.6675
D(VAM(-2))	-0.003571	0.234187	-0.015249	0.9879	D(VAM(-2))	-0.628525	0.489255	-1.284657	0.2094
D(VAI(-2))	-0.103 <mark>8</mark> 87	0.102348	-1.015036	0.3188	D(VAI(-2))	-0.135991	0.213821	-0.636001	0.5299
R-squared	0.113093	Mean depen	dent var	-0.275630	R-squared	0.263495	Mean deper	dent var	0.173331
Adjusted R-squared	-0.140309	S.D. depend	dent var	1.608732	Adjusted R-squared	0.053065	S.D. depend		3.688133
S.E. of regression	1.717889	Akaike info	criterion	4.127842		3.588944	Akaike info		5.601366
Sum squared resid	82.63198	Schwarz cri	terion	4.519687	Sum squared resid	360.6545	Schwarz cri		5.993211
Log likelihood	-67.36509	F-statistic		0.446299	Log likelihood	-94.62527	F-statistic		1.252175
Durbin-Watson stat	1.985459	Prob(F-stati	stic)	0.882531	Durbin-Watson stat	1.961625	Prob(F-stati	stic)	0.307100

Annexe.13: Estimation du modele VAR(3) par la méthode des MCO.

Dependent Variable: D(PPB) Method: Least Squares Date: 05/26/13 Time: 13:29 Sample(adjusted): 1974 2009

Included observations: 36 after adjusting endpoints

Dependent Variable: VAG Method: Least Squares Date: 05/26/13 Time: 13:30 Sample(adjusted): 1974 2009

Included observations: 36 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
880	01:00481m2004340m	7 to 12 to 4 to 12 to	NAME OF STREET	2200A0EX70	10 market control of the control of	0.000.000000000000000000000000000000000	Secretary and the second	855-945-936A-950-6274-953	an attached to the
C	-21.73367	15.02358	-1.446637	0.1615	Company (C) The company	6.816661	2.373346	2.872174	0.0086
D(PPB(-1))	-0.786436	0.385607	-2.039475	0.0531	D(PPB(-1))	-0.007582	0.060916	-0.124468	0.9020
VAG(-1)	6.113773	2.682759	2.278913	0.0323	VAG(-1)	-0.140278	0.423808	-0.330995	0.7436
D(VAM(-1))	1.285574	1.499599	0.857278	0.4001	D(VAM(-1))	-0.325693	0.236899	-1.374819	0.1824
D(VAI(-1))	3.029443	1.249941	2.423669	0.0236	D(VAI(-1))	-0.287135	0.197459	-1.454148	0.1594
D(PPB(-2))	0.560425	0.528948	1.059507	0.3004	D(PPB(-2))	-0.022126	0.083560	-0.264785	0.7935
VAG(-2)	-1.890588	2.692564	-0.702152	0.4896	VAG(-2)	-0.088946	0.425357	-0.209110	0.8362
D(VAM(-2))	0.807544	1.475340	0.547361	0.5894	D(VAM(-2))	-0.213893	0.233066	-0.917733	0.3683
D(VAI(-2))	0.721100	0.996015	0.723985	0.4764	D(VAI(-2))	-0.213764	0.157345	-1.358569	0.1875
D(PPB(-3))	0.977739	0.602381	1.623125	0.1182	D(PPB(-3))	-0.113898	0.095161	-1.196899	0.2435
VAG(-3)	-1.895284	2.199299	-0.861767	0.3977	VAG(-3)	0.573197	0.347434	1.649803	0.1126
D(VAM(-3))	3.272683	1.697481	1.927964	0.0663	D(VAM(-3))	-0.119927	0.268159	-0.447223	0.6589
D(VAI(-3))	0.432038	0.655089	0.659510	0.5161	D(VAI(-3))	-0.024213	0.103487	-0.233971	0.8171
R-squared	0.282424	Mean depen	ndent var	1.644722	R-squared	0.456797	Mean depen	dent var	9.939453
Adjusted R-squared	-0.091964	S.D. depend	dent var	9.426105	Adjusted R-squared	0.173386	S.D. depend	lent var	1.711484
S.E. of regression	9.850003	Akaike info			S.E. of regression	1.556052	Akaike info		3.996378
Sum squared resid	2231.519	Schwarz cri	terion		Sum squared resid	55.68982	Schwarz cri	terion	4.568204
Log likelihood	-125.3663	F-statistic			Log likelihood	-58.93480	F-statistic		1.611786
Durbin-Watson stat	1.519039	Prob(F-stati	stic)	0.687751		1.620932	Prob(F-stati	stic)	0.157088

Dependent Variable: D(VAM) Method: Least Squares Date: 05/26/13 Time: 13:31 Sample(adjusted): 1974 2009 Included observations: 36 after adjusting endpoints

Dependent Variable: D(VAI) Method: Least Squares Date: 05/26/13 Time: 13:32 Sample(adjusted): 1974 2009 Included observations: 36 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.041130	2.820292	0.369157	0.7154	С	-10.24214	5.716371	-1.791721	0.0863
D(PPB(-1))	0.020112	0.072388	0.277843	0.7836	D(PPB(-1))	0.049929	0.146721	0.340302	0.7367
VAG(-1)	-0.419740	0.503619	-0.833448	0.4132	VAG(-1)	1.412258	1.020772	1.383520	0.1798
D(VAM(-1))	-0.312027	0.281511	-1.108398	0.2791	D(VAM(-1))	0.865869	0.570587	1.517505	0.1428
D(VAI(-1))	-0.287063	0.234644	-1.223396	0.2336	D(VAI(-1))	0.456466	0.475594	0.959780	0.3471
D(PPB(-2))	0.034812	0.099297	0.350583	0.7291	D(PPB(-2))	-0.158555	0.201261	-0.787807	0.4389
VAG(-2)	0.013351	0.505460	0.026414	0.9792	VAG(-2)	0.331865	1.024502	0.323928	0.7489
D(VAM(-2))	-0.045338	0.276957	-0.163701	0.8714	D(VAM(-2))	-0.437715	0.561357	-0.779744	0.4435
D(VAI(-2))	-0.159967	0.186976	-0.855547	0.4011	D(VAI(-2))	0.194880	0.378977	0.514226	0.6120
D(PPB(-3))	-0.005423	0.113082	-0.047960	0.9622	D(PPB(-3))	0.211773	0.229202	0.923960	0.3651
VAG(-3)	0.260587	0.412862	0.631173	0.5342	VAG(-3)	-0.712388	0.836819	-0.851305	0.4034
D(VAM(-3))	-0.158667	0.318659	-0.497921	0.6233	D(VAM(-3))	0.471435	0.645880	0.729912	0.4728
D(VAI(-3))	-0.012472	0.122976	-0.101417	0.9201	D(VAI(-3))	0.051829	0.249257	0.207933	0.8371
R-squared	0.153425	Mean depen	dent var	-0.290054	R-squared	0.308343	Mean depen	dent var	0.043102
Adjusted R-squared	-0.288266	S.D. depend	lent var	1.629124		-0.052522	S.D. depend	lent var	3.653153
S.E. of regression	1.849086	Akaike info	criterion	4.341457	S.E. of regression	3.747860	Akaike info		5.754445
Sum squared resid	78.63970	Schwarz crit	terion	4.913283	Sum squared resid	323.0684	Schwarz crit	terion	6.326271
Log likelihood	-65.14623	F-statistic		0.347358		-90.58000	F-statistic		0.854456
Durbin-Watson stat	1.403672	Prob(F-statis	stic)	0.969565	Durbin-Watson stat	1.746603	Prob(F-stati	stic)	0.599424

Annexe.14: Estimation du modele VAR(4) par la méthode des MCO.

Dependent Variable: D(PPB) Method: Least Squares Date: 05/26/13 Time: 13:36 Sample(adjusted): 1975 2009

Included observations: 35 after adjusting endpoints

Dependent Variable: VAG Method: Least Squares Date: 05/26/13 Time: 13:38 Sample(adjusted): 1975 2009

Included observations: 35 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	44.00000	40.04040	0.710450	0.4000	C	4.865677	3.049471	1.595581	0.1280
C	-14.66920	19.81916	-0.740153	0.4688		-0.058019	0.073281	-0.791736	0.4388
D(PPB(-1))	-0.511235	0.476271	-1.073411	0.2973					
VAG(-1)	6.018051	3.281405	1.833986	0.0832		0.101600	0.504893	0.201230	0.8428
D(VAM(-1))	1.468587	1.780906	0.824629	0.4204		-0.308248	0.274019	-1.124916	0.2754
D(VAI(-1))	2.760514	1.476266	1.869930	0.0778	A STATE OF THE PARTY OF THE PAR	-0.178437	0.227145	-0.785562	0.4423
D(PPB(-2))	0.821199	0.644576	1.274014	0.2189		-0.056288	0.099178	-0.567548	0.5774
VAG(-2)	-4.063932	3.495881	-1.162492	0.2602		0.274044	0.537893	0.509477	0.6166
D(VAM(-2))	0.482052	1.726454	0.279215	0.7833	D(VAM(-2))	-0.118915	0.265640	-0.447653	0.6597
D(VAI(-2))	-0.597533	1.603913	-0.372547	0.7138	D(VAI(-2))	0.053792	0.246786	0.217969	0.8299
D(PPB(-3))	0.825682	0.677760	1.218252	0.2389	D(PPB(-3))	-0.082564	0.104283	-0.791726	0.4388
VAG(-3)	-0.675535	3.008800	-0.224520	0.8249	VAG(-3)	0.624470	0.462948	1.348898	0.1941
D(VAM(-3))	3.374507	2.049276	1.646682	0.1170	D(VAM(-3))	-0.000583	0.315311	-0.001850	0.9985
D(VAI(-3))	0.550668	1.208245	0.455758	0.6540	D(VAI(-3))	0.101917	0.185906	0.548219	0.5903
D(PPB(-4))	-0.787096	0.765129	-1.028711	0.3172	D(PPB(-4))	0.171547	0.117726	1.457169	0.1623
VAG(-4)	0.315040	2.636693	0.119483	0.9062	VAG(-4)	-0.466166	0.405694	-1.149058	0.2656
D(VAM(-4))	-2.344522	2.016654	-1.162580	0.2602		0.374461	0.310292	1.206804	0.2431
D(VAI(-4))	-0.089174	0.729812	-0.122188	0.9041	D(VAI(-4))	-0.005934	0.112292	-0.052848	0.9584
R-squared	0.339785	Mean depen	ident var	1.472286	R-squared	0.498278	Mean depen	ident var	10.01296
Adjusted R-squared	-0.247072	S.D. depend		9.505935	Adjusted R-squared	0.052303	S.D. depend	dent var	1.677819
S.E. of regression	10.61551	Akaike info		7.868961		1.633352	Akaike info	criterion	4.125598
Sum squared resid	2028.401	Schwarz crit		8.624416		48.02111	Schwarz cri	terion	4.881053
Log likelihood	-120.7068	F-statistic		0.578991	Control of the Contro	-55.19797	F-statistic	or content on	1.117278
Durbin-Watson stat	1.853037	Prob(F-stati	stic)	0.861304	AND THE RESERVE OF THE PARTY OF	1.681713	Prob(F-stati	stic)	0.407229

Dependent Variable: D(VAM) Method: Least Squares Date: 05/26/13 Time: 13:40 Sample(adjusted): 1975 2009

Included observations: 35 after adjusting endpoints

Dependent Variable: D(VAI) Method: Least Squares Date: 05/26/13 Time: 13:41 Sample(adjusted): 1975 2009 Included observations: 35 after adjusting endpoints

	, 3				- <u>2</u>				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	3.513680	1.823427	1.926966	0.0699	С	-5.613146	5.745301	-0.976998	0.3415
D(PPB(-1))	-0.012177	0.043818	-0.277904	0.7843	D(PPB(-1))	0.221942	0.138064	1.607524	0.1253
VAG(-1)	-0.279059	0.301900	-0.924345	0.3675	VAG(-1)	0.508414	0.951234	0.534479	0.5996
D(VAM(-1))	0.060533	0.163849	0.369441	0.7161	D(VAM(-1))	0.474991	0.516260	0.920061	0.3697
D(VAI(-1))	0.051068	0.135821	0.375994	0.7113	D(VAI(-1))	-0.140748	0.427949	-0.328890	0.7460
D(PPB(-2))	-0.136272	0.059303	-2.297889	0.0338	D(PPB(-2))	0.082228	0.186854	0.440066	0.6651
VAG(-2)	0.370980	0.321632	1.153428	0.2638	VAG(-2)	-1.276777	1.013407	-1.259885	0.2238
D(VAM(-2))	-0.061125	0.158839	-0.384821	0.7049	D(VAM(-2))	-0.806773	0.500475	-1.612014	0.1244
D(VAI(-2))	0.316729	0.147565	2.146364	0.0457	D(VAI(-2))	-1.080468	0.464952	-2.323827	0.0320
D(PPB(-3))	0.072687	0.062356	1.165668	0.2590	D(PPB(-3))	0.041423	0.196473	0.210832	0.8354
VAG(-3)	-0.199317	0.276819	-0.720025	0.4808	VAG(-3)	-0.690361	0.872209	-0.791508	0.4390
D(VAM(-3))	-0.046973	0.188540	-0.249139	0.8061	D(VAM(-3))	-0.111423	0.594057	-0.187562	0.8533
D(VAI(-3))	0.036430	0.111162	0.327722	0.7469	D(VAI(-3))	-0.512186	0.350254	-1.462330	0.1609
D(PPB(-4))	0.030869	0.070394	0.438517	0.6662	D(PPB(-4))	-0.551316	0.221800	-2.485640	0.0230
VAG(-4)	-0.256959	0.242584	-1.059257	0.3035	VAG(-4)	2.022104	0.764341	2.645553	0.0164
D(VAM(-4))	0.068010	0.185539	0.366555	0.7182	D(VAM(-4))	-1.394680	0.584600	-2.385700	0.0282
D(VAI(-4))	0.030610	0.067145	0.455880	0.6539	D(VAI(-4))	-0.019593	0.211563	-0.092609	0.9272
R-squared	0.560579	Mean depen	dent var	-0.083382	R-squared	0.616706	Mean depen	dent var	-0.090183
Adjusted R-squared	0.169983	S.D. depend		1.072013		0.276000	S.D. depend	lent var	3.616586
S.E. of regression	0.976661	Akaike info		3.097097		3.077288	Akaike info		5.392427
Sum squared resid	17.16959	Schwarz crit		3.852552	Sum squared resid	170.4546	Schwarz crit	terion	6.147882
Log likelihood	-37.19920	F-statistic		1.435187	Log likelihood	-77.36747	F-statistic		1.810083
Durbin-Watson stat	2.361008	Prob(F-statis	stic)	0.228771	Durbin-Watson stat	1.567362	Prob(F-stati	stic)	0.112905

Annexe.15: Estimation du VAR(1) par la méthode du maximum de vraisemblance.

Vector Autoregression Estimates Date: 05/26/13 Time: 12:22 Sample(adjusted): 1972 2009

Included observations: 38 after adjusting endpoints Standard errors in () & t-statistics in []

4	D(PPB)	RES1	D(PIB)	ВС	RES	D(AB)	D(M2)
D(PPB(-1))	-0.657014	-1.817321	4.87E+08	-4.30E+08	-3.95E+08	-0.059574	-1.81E+08
	(0.25584)	(1.23958)	(4.6E+08)	(2.0E+08)	(2.7E+08)	(0.21940)	(4.7E+08)
	[-2.56802]	[-1.46608]	[1.05010]	[-2.19190]	[-1.47546]	[-0.27153]	[-0.38235]
RES1(-1)	0.051749	0.298382	1.79E+08	-4439929.	-15110185	-0.052737	67598739
	(0.04320)	(0.20931)	(7.8E+07)	(3.3E+07)	(4.5E+07)	(0.03705)	(8.0E+07)
	[1.19785]	[1.42552]	[2.28726]	[-0.13396]	[-0.33465]	[-1.42349]	[0.84530]
D(PIB(-1))	-8.58E-11	4.48E-10	-0.429042	0.024105	-0.572355	-8.84E-12	0.010391
	(1.1E-10)	(5.1E-10)	(0.19231)	(0.08135)	(0.11082)	(9.1E-11)	(0.19627)
	[-0.80890]	[0.87205]	[-2.23099]	[0.29633]	[-5.16479]	[-0.09727]	[0.05294]
BC(-1)	2.07E-10	8.56E-10	0.085323	0.901001	0.035679	1.75E-10	0.638721
	(1.5E-10)	(7.5E-10)	(0.28111)	(0.11891)	(0.16199)	(1.3E-10)	(0.28690)
	[1.33266]	[1.13930]	[0.30352]	[7.57739]	[0.22026]	[1.31378]	[2.22625]
RES(-1)	-8.26E-10	-7.39E-10	0.185319	-0.567325	0.248817	1.65E-10	-0.667865
	(1.2E-10)	(6.0E-10)	(0.22303)	(0.09434)	(0.12852)	(1.1E-10)	(0.22763)
	[-6.71833]	[-1.23957]	[0.83091]	[-6.01365]	[1.93600]	[1.56418]	[-2.93402]
D(AB(-1))	-0.508146	-0.988892	43150477	-4.36E+08	-3.47E+08	0.091770	1.46E+08
	(0.22318)	(1.08133)	(4.0E+08)	(1.7E+08)	(2.3E+08)	(0.19139)	(4.1E+08)
	[-2.27681]	[-0.91451]	[0.10660]	[-2.54366]	[-1.48750]	[0.47948]	[0.35344]
D(M2(-1))	-1.11E-10	-3.71E-10	0.151775	0.057963	0.140695	1.06E-10	-0.506847
	(8.9E-11)	(4.3E-10)	(0.16074)	(0.06799)	(0.09263)	(7.6E-11)	(0.16405)
	[-1.25531]	[-0.86298]	[0.94423]	[0.85251]	[1.51895]	[1.39602]	[-3.08953]
С	3.310210	-0.598299	4.38E+09	1.40E+09	2.48E+09	-1.200918	2.58E+09
	(1.05220)	(5.09794)	(1.9E+09)	(8.1E+08)	(1.1E+09)	(0.90232)	(1.9E+09)
	[3.14600]	[-0.11736]	[2.29675]	[1.73439]	[2.25834]	[-1.33093]	[1.32224]
R-squared	0.688688	0.213702	0.337751	0.832698	0.649610	0.270276	0.414569
Adj. R-squared	0.616048	0.030233	0.183227	0.793661	0.567853	0.100007	0.277969
Sum sq. resids	968.9171	22744.81	3.19E+21	5.70E+20	1.06E+21	712.5431	3.32E+21
S.E. equation	5.683066	27.53471	1.03E+10	4.36E+09	5.94E+09	4.873544	1.05E+10
F-statistic	9.480901	1.164783	2.185744	21.33089	7.945568	1.587346	3.034902
Log likelihood	-115.4529	-175.4153	-925.5609	-892.8654	-904.6147	-109.6135	-926.3362
Akaike AIC	6.497523	9.653436	49.13478	47.41397	48.03235	6.190184	49.17559
Schwarz SC	6.842278	9.998191	49.47954	47.75873	48.37711	6.534939	49.52035
Mean dependent	1.585000	-0.961172	4.83E+09	3.64E+09	-9501053.	-0.510758	2.52E+09
S.D. dependent	9.171586	27.96062	1.14E+10	9.60E+09	9.04E+09	5.137187	1.24E+10
Determinant Resid Log Likelihood (d.f Akaike Information Schwarz Criteria	adjusted)	2.10E+83 -4022.735 214.6703 217.0836	38450	***************************************		maka nambi interpre	and the second second

Annexe.16: Estimation du VAR(2) par la méthode du maximum de vraisemblance.

Vector Autoregression Estimates
Date: 06/26/13 Time: 12:14
Sample(adjusted): 1973 2009
Included observations: 37 after adjusting endpoints
Standard errors in () & t-statistics in []

	D(PPB)	RES1	D(PIB)	BC	RES	D(AB)	D(M2)
D(PPB(-1))	-0.081791	-0.034650	23077304	-84212.58	-1.48E+08	-0.215783	-4.83E+08
	(0.17471)	(1.33290)	(4.1E+08)	(1.2E+08)	(2.5E+08)	(0.26144)	(4.8E+08
	[-0.46815]	[-0.02600]	[0.05666]	[-0.00073]	[-0.59319]	[-0.82537]	[-1.00625]
D(PPB(-2))	-0.003645	0.484054	-3.95E+08	1.95E+08	-1.02E+08	-0.319849	-1.29E+08
	(0.16369)	(1.24885)	(3.8E+08)	(1.1E+08)	(2.3E+08)	(0.24495)	(4.5E+08
	[-0.02227]	[0.38760]	[-1.03605]	[1.79953]	[-0.43351]	[-1.30576]	[-0.28666
RES1(-1)	-0.025867	0.012423	86362714	-53120480	-44000931	-0.025336	96662220
	(0.02728)	(0.20813)	(6.4E+07)	(1.8E+07)	(3.9E+07)	(0.04082)	(7.5E+07
	[-0.94815]	[0.05969]	[1.35788]	[-2.93723]	[-1.12699]	[-0.62060]	[1.29053
RES1(-2)	0.001224	-0.370855	-26841984	-15818983	-36257366	-0.018337	-2.94E+08
	(0.03052)	(0.23286)	(7.1E+07)	(2.0E+07)	(4.4E+07)	(0.04567)	(8.4E+07
	[0.04010]	[-1.59258]	[-0.37722]	[-0.78180]	[-0.83003]	[-0.40147]	[-3.50428
D(PIB(-1))	-1.78E-11	1.04E-09	-0.032686	0.080978	-0.489091	-2.92E-11	0.325560
	(7.0E-11)	(5.4E-10)	(0.16430)	(0.04672)	(0.10086)	(1.1E-10)	(0.19349
	[-0.25268]	[1.92997]	[-0.19894]	[1.73326]	[-4.84916]	[-0.27642]	[1.68253
D(PIB(-2))	-3.71E-11	1.53E-09	0.275903	-0.057841	-0.084372	3.13E-10	0.294674
	(1.1E-10)	(8.5E-10)	(0.25918)	(0.07370)	(0.15911)	(1.7E-10)	(0.30523
	[-0.33337]	[1.80836]	[1.06451]	[-0.78482]	[-0.53029]	[1.87986]	[0.96541
BC(-1)	9.74E-10	-3.93E-09	-1.366677	1.834884	1.726925	-7.33E-10	1.376236
	(3.7E-10)	(2.8E-09)	(0.85207)	(0.24229)	(0.52306)	(5.5E-10)	(1.00346)
	[2.66625]	[-1.41027]	[-1.60394]	[7.57308]	[3.30155]	[-1.33944]	[1.37149]
BC(-2)	-8.30E-10	5.17E-09	2.815902	-1.100931	-1.850454	9.16E-10	-0.588361
	(4.0E-10)	(3.1E-09)	(0.93977)	(0.26723)	(0.57690)	(6.0E-10)	(1.10674
	[-2.06941]	[1.68176]	[2.99638]	[-4.11984]	[-3.20760]	[1.51896]	[-0.53162]
RES(-1)	-1.29E-09	-2.32E-10	0.243026	-0.960695	-0.221224	6.88E-10	-0.769297
	(1.5E-10)	(1.2E-09)	(0.35218)	(0.10014)	(0.21619)	(2.3E-10)	(0.41475
	[-8.56305]	[-0.20112]	[0.69006]	[-9.59317]	[-1.02327]	[3.04349]	[-1.85484
RES(-2)	1.19E-09	3.08E-10	-0.558520	1.003651	1.003297	-8.88E-10	-0.204767
	(1.7E-10)	(1.3E-09)	(0.40209)	(0.11434)	(0.24683)	(2.6E-10)	(0.47353
	[6.88279]	[0.23422]	[-1.38905]	[8.77813]	[4.06471]	[-3.44088]	[-0.43243
D(AB(-1))	-0.169750	-2.178924	-5.87E+08	-52952316	2.25E+08	-0.135717	1.58E+08
	(0.19945)	(1.52164)	(4.6E+08)	(1.3E+08)	(2.9E+08)	(0.29846)	(5.5E+08
	[-0.85110]	[-1.43196]	[-1.26320]	[-0.40049]	[0.78910]	[-0.45473]	[0.28843
D(AB(-2))	-0.099701	-1.982015	1.05E+08	24676001	-1.16E+08	-0.315362	-3.52E+08
	(0.13996)	(1.06777)	(3.3E+08)	(9.3E+07)	(2.0E+08)	(0.20944)	(3.8E+08
	[-0.71236]	[-1.85621]	[0.32323]	[0.26596]	[-0.57949]	[-1.50577]	[-0.91559]
D(M2(-1))	4.94E-11	-3.76E-10	-0.277511	0.192693	0.286690	3.46E-11	-0.572965
	(6.1E-11)	(4.7E-10)	(0.14283)	(0.04062)	(0.08768)	(9.2E-11)	(0.16821
	[0.80591]	[-0.80528]	[-1.94291]	[4.74436]	[3.26969]	[0.37709]	[-3.40625
D(M2(-2))	5.10E-11	-2.40E-11	-0.648530	0.033531	-0.025131	-5.28E-12	-0.179934
	(7.9E-11)	(6.1E-10)	(0.18498)	(0.05260)	(0.11355)	(1.2E-10)	(0.21785
	[0.64282]	[-0.03963]	[-3.50595]	[0.63748]	[-0.22132]	[-0.04444]	[-0.82597]
C	0.937342	-12.73162	4.37E+09	-6.42E+08	8.70E+08	-0.716807	6.90E+08
	(0.77323)	(5.89915)	(1.8E+09)	(5.1E+08)	(1.1E+09)	(1.15707)	(2.1E+09
	[1.21224]	[-2.15821]	[2.42419]	[-1.25324]	[0.78596]	[-0.61960]	[0.32489]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.935493 0.894443 200.6540 3.020039 22.78905 -83.77801 5.339352 5.992427 1.620811 9.295403	0.693317 0.334518 11679.07 23.04054 2.292584 -158.9615 9.403323 10.05640 -1.346362 28.24391	0.772924 0.628421 1.09E+21 7.04E+09 5.348842 -881.8567 48.47874 49.13181 4.92E+09 1.16E+10	0.974005 0.957463 8.82E+19 2.00E+09 58.88042 -835.3279 45.96367 46.61674 3.75E+09 9.71E+09	0.863901 0.777292 4.11E+20 4.32E+09 9.974748 -863.8019 47.50281 48.15688 -35534186 9.16E+09	0.536916 0.242227 449.3157 4.519230 1.821972 -98.69167 6.145496 6.798570 -0.444424 5.191523	0.733208 0.563431 1.51E+21 8.29E+09 4.318663 -887.9076 48.80582 49.45889 2.56E+05
Determinant Res Log Likelihood (d Akaike Informatio Schwarz Criteria	.f. adjusted)	e 5.61E+81 -3849.828 213.7745 218.3460					

Annexe.17: Estimation du VAR(3) par la méthode du maximum de vraisemblance.

Vector Autoregression Estimates
Date: 05/26/13 Time: 11:53
Sample(adjusted): 1974-2009
Included observations: 36 after adjusting endpoints
Standard errors in () & t-statistics in []

	D(PPB)	RE51	D(PIB)	bс	RES	D(AB)	D(M2)
D(PPB(-1))	-0.439868	0.514962	-5.14E+08	47958052	-76547076	-0.039312	-6.32E+08
	(0.21233)	(1.24625)	(4.6E+08)	(1.6E+08)	(2.9E+08)	(0.37466)	(5.6E+08
	(-2.07154)	[0.41321]	[-1.11101]	[0.29261]	[-0.25951]	[-0.10493]	(-1.13421)
D(PPB(-2))	-0.187984	1.249785	52210901	1.68E+08	50923509	-0.358517	2.02E+08
	(0.17183)	(1.00852)	(3.7E+08)	(1.3E+08)	(2.4E+08)	(0.30319)	(4.5E+08
	[-1.09402]	[1.23923]	[0.13949]	[1.26668]	[0.21334]	[-1.18247]	[0.44910]
D(PPB(-3))	-0.064346	0.900388	2.91E+08	21108057	-10175425	-0.040094	95366944
	(0.17371)	(1.01956)	(3.8E+08)	(1.3E+08)	(2.4E+08)	(0.30661)	(4.6E+08
	[-0.31266]	[0.88312]	[0.76809]	[0.15743]	[-0.04217]	[-0.13081]	[0.20935]
RES1(-1)	0.008177	0 095445	97945869	-61662033	-1.06E+08	-0.055115	13001126
	(0.03271)	(0 19198)	(7.1E+07)	(2.5E+07)	(4.5E+07)	(0.05772)	(8.6E+07
	[0.24999]	[0 49716]	[1.37467]	[-2.44227]	[-2.34265]	[-0.95493]	[0.15157]
RES1(-2)	-0.028611	-0.275089	-1.31E+08	-19633053	-49922781	0.015245	-4.06E+08
	(0.03811)	(0.22369)	(8.3E+07)	(2.9E+07)	(5.3E+07)	(0.06725)	(1.0E+08
	[-0.75071]	[-1.22979]	[-1.68129]	[-0.66739]	[-0.94294]	[0.22670]	[-4.06555]
RE51(-3)	0.061814	0.929663	56213550	-33834705	-73580547	-0.036428	1.15E+08
	(0.04326)	(0.26392)	(9.4E+07)	(3.3E+07)	(6.0E+07)	(0.07634)	(1.1E+08
	[1.42881]	[3.66078]	[0.59651]	[-1.01321]	[-1.22432]	[-0.46410]	[1.01533]
D(PIB(-1))	-1.77E-10	1.92E-09	0.051763	0.006170	-0.186428	1.28E-10	-0.093394
	(1.2E-10)	(7.3E-10)	(0.27088)	(0.09599)	(0.17275)	(2.2E-10)	(0.32611)
	[-1.42332]	[2.62726]	[0.19109]	[0.06428]	[-1.07917]	[0.58485]	[-0.28639]
D(PIB(-2))	-1.44E-10	7 12E-10	0.227363	0.017439	-0.060915	3.23E-10	0.557812
	(1.2E-10)	(7 1E-10)	(0.26312)	(0.09324)	(0.16780)	(2.1E-10)	(0.31677)
	[-1.19440]	[1 00372]	[0.86406]	[0.18703]	[-0.36301]	[1.61363]	[1.76094]
D(PIB(-3))	-1.20E-11	-1.71E-10	0.113459	0.003479	-0.464362	2.01E-10	0.791411
	(1.3E-10)	(7.6E-10)	(0.28295)	(0.10027)	(0.18045)	(2.3E-10)	(0.34064)
	[-0.09227]	[-0.22442]	[0.40098]	[0.03470]	[-2.57334]	[0.87483]	[.2.32329]
BC(-1)	6.01E-10	7.78E-10	-1 802053	1.602789	1 607005	-4.19E-10	0.580151
	(4.8E-10)	(2.8E-09)	(1.03660)	(0.36732)	(0 66108)	(8.4E-10)	(1.24794)
	[1.26388]	[0.27850]	[-1.73843]	[.4.36343]	[2 43087]	[-0.49887]	[0.46489]
BC(-5)	1.06E-09	-1.64E-09	3.102423	-0.988941	-2 390861	3.04E-10	-2.473381
	(7.8E-10)	(4.6E-09)	(1.70679)	(0.60481)	(1.08849)	(1.4E-09)	(2.05477)
	[1.34957]	[-0.35632]	[1.81769]	[-1.63513]	[-2.19649]	[0.22000]	[-1.20373]
BC(-3)	-1.86E-09	-2.78E-09	-0.754266	0.403335	1.175818	1.04E-10	2.344384
	(6.3E-10)	(3.7E-09)	(1.36674)	(0.48431)	(0.87162)	(1.1E-09)	(1.64538)
	[-2.96526]	[-0.75461]	[-0.55187]	[0.83281]	[1.34900]	[0.09420]	[1.42483
RES(-1)	-1.39E-09	6.53E-10	0.408048	-0.954774	-0.291961	6.75E-10	-0.255428
	(1.6E-10)	(9.3E-10)	(0.34406)	(0.12192)	(0.21942)	(2.8E-10)	(0.41420)
	[-8.77094]	[0.70458]	[1.18600]	[-7.83131]	[-1.33061]	[2.42126]	[-0.61668]
RES(-2)	1.66E-10	4.25E-09	-1.626768	0.908470	1.082403	-2.61E-10	-0.415974
	(4.8E-10)	(2.8E-09)	(1.03983)	(0.36847)	(0.66314)	(8.4E-10)	(1.25183)
	[0.34757]	[1.51629]	[-1.56445]	[2.46553]	[1.63223]	[-0.30939]	[-0.33229]
RES(-3)	1.27E-09	-1.56E-09	1.547657	-0.032861	-0.395539	-6.89E-10	0.381942
	(4.8E-10)	(2.8E-09)	(1.05447)	(0.37366)	(0.67248)	(8.5E-10)	(1.26946)
	[2.61382]	[-0.54972]	[1.46771]	[-0.08794]	[-0.58818]	[-0.80660]	[0.30087]
D(AB(-1))	-0.178531	-0.640239	-6.92E+08	-84462697	28095171	-0.194739	-68447156
	(0.21392)	(1.25555)	(4.7E+08)	(1.7E+08)	(3.0E+08)	(0.37746)	(5.6E+08
	[-0.83458]	[-0.50993]	[-1.48412]	[-0.51153]	[0.09454]	[-0.51592]	[-0.12201]
D(AB(-2))	0.055824	-0.159545	-2.57E+08	-1.03E+08	-4.69E+08	-0.130992	-1.38E+09
	(0.22833)	(1.34013)	(5.0E+08)	(1.8E+08)	(3.2E+08)	(0.40288)	(6.0E+08
	[0.24449]	[-0.11905]	[-0.51680]	[-0.58161]	[-1.47775]	[-0.32514]	[-2.30137]
D(AB(-3))	-0.102150	0.072510	2.05E+08	66199601	-1.49E+08	-0.380623	-3.61E+08
	(0.15554)	(0.91289)	(3.4E+08)	(1.2E+08)	(2.2E+08)	(0.27444)	(4.1E+08
	[-0.65676]	[0.07943]	[0.60626]	[0.55141]	[-0.68963]	[-1.38689]	[-0.88543]
D(M2(-1))	1.42E-10	8.43E-10	-0.004451	0.155672	0.181050	-6.75E-11	-0.072964
	(9.1E-11)	(5.4E-10)	(0.19910)	(0.07055)	(0.12697)	(1.6E-10)	(0.23969)
	[1.55011]	[1.57091]	[-0.02236]	[2.20650]	[1.42588]	[-0.41870]	[-0.30441]
D(M2(-2))	2.60E-10	3.90E-10	-0.195307	-0.015787	-0.031647	-1.02E-10	0.071496
	(1.2E-10)	(6.8E-10)	(0.25111)	(0.08898)	(0.16014)	(2.0E-10)	(0.30230)
	[2.25745]	[0.57640]	[-0.77778]	[-0.17742]	[-0.19762]	[-0.50160]	[0.23650
D(M2(-3))	-1.20E-10	9.02E-10	0.484548	-0.087001	0.365544	4.01E-11	-0.097508
	(1.0E-10)	(6.1E-10)	(0.22469)	(0.07962)	(0.14329)	(1.8E-10)	(0.27050)
	[-1.16653]	[1.49029]	[.2.15653]	[-1.09271]	[2.55103]	[0.22054]	[-0.36048]
c	1.982665	-16.98059	1.99E+09	-5.31E+08	3.21E+08	-1.681059	-2.74E+09
	(1.04876)	(6.15552)	(2.3E+09)	(8.1E+08)	(1.5E+09)	(1.85054)	(2.8E+09
	[1.89048]	[-2.75860]	[0.87316]	[-0.6552]	[0.22036]	[-0.90841]	(-0.99688
dj. R-squared	0.965552	0.870649	0.893961	0.981080	0.931501	0.647905	0.870027
dj. R-squared	0.913879	0.676623	0.734902	0.952699	0.828752	0.119763	0.675067
um sq. resids	107.1272	3690.404	5.08E+20	6.38E+19	2.07E+20	333.5355	7.37E+20
E. equation	2.766215	16.23577	6.03E+09	2.14E+09	3.84E+09	4.880980	7.25E+09
estatistic	18.68603	4.487272	5.620311	34.56867	9.065804	1.226763	4.462616
og likelihood	-70.71076	-134.4213	844.7765	-807.4270	828.5819	91.15393	861.4562
kaike AIC	5.150597	8.690072	48.16419	46.07928	47.25455	6.286330	48.62629
chwarz SC	6.118303	9.667778	49.12190	47.04698	48.2225	7.254036	49.49300
fean dependent	1.644722	-1.721720	5.00E+09	3.86E+09	69373464	0.313077	2.63E+09
D. dependent	9.426106	28.66079	1.17E+10	9.82E+09	9.29E+09	6.202442	1.27E+10
Determinant Resid og Likelihood (d.f kkaike Information Schwarz Criteria	adjusted)	3.41E+80 -3695.385 213.8547 220.6287					

Annexe.18: Estimation du VAR(4) par la méthode du maximum de vraisemblance.

Vector Autoregression Estimates Date 06/26/13 Time 11:38 Sample(adjusted): 1976-2009 Included observations 35 after adjusting endpoints Standard errors in () & t-statistics in []

Standard errors in	D(PPB)	RES1	D(PIB)	BC.	RES	D(AB)	D(M2)
D(PPB(-1))	-0.247042	-0.060249	-7.41E+08	-2 02E+08	-3 42E+08	0 680346	-9.27E+01
	(0.26742)	(2.04621)	(9.7E+08)	(2.4E+08)	(6 2E+08)	(0 45786)	(7.6E+08
	[-0.92379]	[-0.02456]	[-0.76433]	(-0.82666)	(-0 66071)	[1 48693]	(-1.22436
D(PPB(-2))	-0.048660	-0.123669	-2.62E+08	-34464176	4 16E+08	-0.076364	-3 99E+0
	(0.22944)	(1.75661)	(8.3E+08)	(2.1E+08)	(4 4E+08)	(0.39283)	(6.6E+06
	[-0.21208]	[-0.07044]	[-0.31425]	[-0.16412]	[-0.93266]	[-0.19439]	(-0.61437
D(PPB(-3))	0.000648	0.675394	2 09E+08	-92304021	-37830304	0.365642	2.37E+0
	(0.18611)	(1.41640)	(6 7E+08)	(1.7E+08)	(3.6E+08)	(0.31693)	(6.2E+06
	[0.00360]	[0.47684]	[0 31134]	[-0.64483]	[-0.10645]	[1.16369]	[0.46236
D(PPB(-4))	-0.069444	-1.664997	-2.76E+08	60692145	1.16E+08	-0 144564	2.46E+06
	(0.16635)	(1.18870)	(6.6E+09)	(1.4E+08)	(3.0E+08)	(0 26698)	(4.4E+06
	[-0.38264]	[-1.40068]	[-0.48774]	[-0.42686]	[0.38497]	[-0 54361]	[0.66632
RES1(-1)	-0.088474	0.653288	62316666	-696091.7	-20055014	-0.048380	-1.55E+0
	(0.06645)	(0.50845)	(2.4E+08)	(6.1E+07)	(1 3E+08)	(0.11377)	(1.9E+06
	[-1.33143]	[1.08818]	[0.21706]	[-0.01145]	[-0.15573]	[-0.42524]	[-0.82404
RES1(-2)	-0.038886	-0.278168	-41164073	-6927877	-62734713	0.016732	-2 30E+0
	(0.04968)	(0.38010)	(1.8E+08)	(4.6E+07)	(9.6E+07)	(0.08505)	(1.4E+00
	(-0.78279)	[-0.73182]	[-0.22845]	(-0.13038)	[-0.65166]	[0.19673]	[-1.63318
RES1(-3)	-0.077908 (0.07597) [-1.02556]	0.677734 (0.58127) [1.16596]	27296772 (2 8E+08) [0 09906]	3242961. (7.0E+07) [0.04664]	-1.40E+08 (1.5E+08) [-0.95017]	-0.128959 (0.13005) [-0.99151]	-2.86E+0 (2.2E+0
RE91(-4)	0.104876	-0.363690	1 12E+08	-81684673	-1 09E+08	0 067086	4 62E+0
	(0.08412)	(0.64364)	(3 1E+08)	(7.7E+07)	(1 6E+08)	(0 14402)	(2 4E+0
	[1.24679]	[-0.64962]	[0 36647]	[-1.06102]	[-0 66632]	[0 46681]	[1 9401
D(PIB(-1))	2.42E-10	1.67E-09	-0.066676	-0.244607	-0.492751	4.24E-10	0.30178
	(1.8E-10)	(1.4E-09)	(0.66036)	(0.16662)	(0.36281)	(3.1E-10)	(0.6164)
	[1.32720]	[1.12799]	[-0.10097]	[-1.46803]	[-1.39664]	[1.36920]	[0.6866)
D(PIB(-2))	-3.20E-11	-1.30E-10	0.087619	-0.061681	-0.262867	2.02E-10	0.21648
	(1.4E-10)	(1.1E-09)	(0.62345)	(0.13208)	(0.27967)	(2.5E-10)	(0.4085)
	[-0.22163]	[-0.11741]	[0.16739]	[-0.39064]	[-0.93993]	(0.81785)	[0.6274)
D(PIB(-3))	3.63E-11 (1.6E-10)	1.36E-10 (1.2E-09) [0.11092]	-0.216624 (0.68272)	-0.014268 (0.14703)	-0.386878 (0.31133) [-1.24266]	2.88E-10 (2.8E-10) [1.04638]	0.55215
D(PIB(-4))	[0.22617] 2.43E-10 (2.2E-10) [1.08163]	2 46E-09 (1.7E-09) [1.43179]	(-0.37176) -0.264811 (0.81613) [-0.32447]	[-0.09704] -0.061270 (0.20692) [-0.24897]	0.082648 (0.43603) [0.18932]	4.23E-10 (3.9E-10)	0 85987 (0 6370) [1 3498
BC(-1)	6.23E-10 (6.3E-10)	(4.9E-09) (4.9E-09) (-0.80739)	[-0.32447] -0.930476 (2.30168) [-0.40428]	[-0.24897] 1.470200 (0.58073) [.2.53163]	1.227073	[1.09821] -1.00E-09 (1.1E-09) [-0.92272]	-0.02674
BC(-2)	[0 62366] 1 42E-09 (8 SE-10) [1 66007]	[-0.80739] 9.62E-10 (6.6E-09) [-0.14691]	2.069941	[2 63163] -1 223604 (0 78063) [-1 66766]	['0.99789] -2.969079 (1.66273) [-1.79647]	[-0.92272] 1.13E-09 (1.5E-09) [0.77160]	(-0.0143 -3.14846 (2.4146 (-1.3039
BC(-3)	-2 B3E-09	[0.14691] 2.21E-10 (8.4E-09) [0.02629]	[`0.66691] 0.484892 (3.97870) [.0.12187]	[-1 66766] 1 940662 (1 00390)	[-1 79647] 3.300743 (2.12670) [-1.66278]	-3.36E-09 (1.9E-09)	6.39296 (3.1066
DC(-4)	[-2.67940] 7.37E-10 (9.0E-10) [0.81949]	(°0.02629) 1.07E-09 (6.9E-09)	-0.700038	[1.93303] -1.116062	-0.088813	[-1 78903] 3 94E-09 (1 5E-09)	(1.7365 -1.64231 (2.6446
RES(-1)	-1 36E-09 (2 7E-10)	[0.16666]	(3.26010) [-0.21473] 0.101600 (0.98114)	(0.82258) [-1.36565] -0.864041 (0.24766)	(1.74177) [-0.61029] -0.189167 (0.52420)	[2 66944] 9 61E-10 (4 6E-10) [2 07458]	0.41125 (0.7658)
RES(-2)	(-6.00582) 4.42E-10	(2 1E-09) [1.53106] -6.63E-10 (4.9E-09)	(°0.10366) -1.160643 (2.31920)	(0.24766) [-3.49022] 0.325632 (0.58518)	0.292636	3.26E-10	0.6370
RES(-3)	(6.4E-10) [0.69189] 1.38E-09	(4.9E-09) [-0.13548] -3.49E-09	[-0.49609]	(0.58518) [0.55647] -0.412362	(1.23908) [0.23609] -1.626262	(1.1E-09) [0.29741] -2.52E-10	(1.8102: [-0.3640: -2.04869
RES(=4)	(6.2E-10)	(4.8E-09)	(2.25228)	(0.56829)	(1.20333)	(1.1E-09)	(1.7579)
	[2.22822]	[-0.73409]	[0.34284]	[-0.72565]	[-1.35149]	[-0.23686]	[-1.16530
	-4.60E-10	3.34E-09	0.667913	0.839712	1.806480	-1.45E-09	2.84489
	-4.60E-10 (6.2E-10) [-0.73869]	3.34E-09 (4.8E-09) [0.70193]	(2.26866) (0.29129)	(0.56990) [1.47344]	(1.20673) (1.49700)	-1,45E-09 (1.1E-09) [-1,36276]	(1.7629) [1.6137)
D(AB(-1))	-0.219566	-1.024077	4.62E+08	-15876785	1.36E+08	-0.153394	1.55E+0
	(0.22213)	(1.69968)	(8.1E+08)	(2.0E+08)	(4.3E+08)	(0.38032)	(6.3E+0
	[-0.98845]	[-0.60251]	[-0.57290]	[-0.07809]	[0.31612]	[-0.40333]	[0.2467:
D(AB(-2))	0.212133 (0.23071) [0.91949]	-1.317374 (1.76530) [-0.74626]	(8.4E+08) [-0.41916]	-2.06E+00 (2.1E+00) [-1.36344]	-8.40E+08 (4.6E+08) [-1.87830]	0.150484 (0.39500) [0.38097]	(6.5E+0 (6.5E+0
D(AB(-3))	-0.402154	-0.789848	2.29E+08	2.26E+08	-4.29E+08	-0.973346	7.37E+0
	(0.25641)	(1.96193)	(9.3E+08)	(2.3E+08)	(6.0E+08)	(0.43900)	(7.3E+0
	[-1.56842]	[-0.40259]	[0.24662]	[0.96354]	[-0.86277]	[-2.21719]	[-1.01656
D(AB(-4))	-0.121129	-0.140373	19033518	1.20E+08	66291234	0.103537	3.92E+0
	(0.16160)	(1.23648)	(5.9E+08)	(1.5E+08)	(3.1E+08)	(0.27667)	(4.6E+0
	[-0.74958]	[-0.11353]	[0.03247]	[0.81249]	[0.21168]	[0.37422]	[0.8566
D(M2(-1))	-2 14E-10	2.16E-10	0.037164	0.324304	0.219971	-5.05E-10	-0.87910
	(1 6E-10)	(1.2E-09)	(0.58947)	(0.14873)	(0.31494)	(2.8E-10)	(0.46010
	[-1 31660]	[0.17328]	[0.06306]	[2.18043]	[0.69846]	[-1.81679]	[-1.91066
D(M2(-2))	2.60E-10	3.91E-10	-0.147692	-0.039678	-0.012014	-8.09E-11	0.35645
	(1.1E-10)	(8.2E-10)	(0.38718)	(0.09769)	(0.20886)	(1.8E-10)	(0.3022
	[2.43442]	[0.47911]	[-0.38145]	[-0.40616]	(-0.05808)	(-0.44285)	[1.1795
D(M2(-3))	6.28E-11	1.04E-09	0.638464	-0.102981	0.482201	-1.06E-10	0.66023
	(1.6E-10)	(1.2E-09)	(0.66132)	(0.14163)	(0.29990)	(2.6E-10)	(0.4381)
	[0.40592]	[0.87805]	[1.13743]	[-0.72710]	[1.60789]	[-0.39649]	[1.5069
D(M2(-4))	-1.80E-10	-1.83E-09	0.250161	0.027542	0.025930	-3.57E-10	-0.77105
	(2.0E-10)	(1.5E-09)	(0.72695)	(0.18342)	(0.38839)	(3.4E-10)	(0.5674
	(-0.89826)	[-1.19497]	[0.34413]	(0.15016)	(0.06676)	[-1.04075]	[-1.3589
c	-1 109848	-11.87661	4 83E+09	1.19E+09	1 68E+09	-2.740673	-3.27E+0
	(1 62443)	(12.4296)	(5 9E+09)	(1.5E+09)	(3 1E+09)	(2.78121)	(4.6E+0
	[-0 68322]	[-0.95552]	[0.81960]	[0.79855]	[0 53486]	(-0.98539]	(-0.7113)
c-squared adj. R-squared Sum sq. reside 3 E equation statistic og likelihood akaike AIC Schwarz SC Jean dependent 3.D. dependent	0.989275 0.939226 32.96049 2.343448 19.76692 48.60687 4.434676 5.723395 1.472286 9.606936	0.931635 0.631635 0.612599 1929.176 17.93124 2.920169 -119.8291 8.504520 9.793237 -2.218808 28.80912	0.909554 0.487471 4.34E+20 8.60E+09 2.164920 -819.0181 48.45818 49.74689 6.01E+09 1.19E+10	0.991789 0.963469 2.76E+19 2.14E+09 26.88181 -770.8209 45.70405 46.99277 3.96E+09 9.4E+09	0.9588993 0.767629 1.24E+20 4.64E+09 5.011348 -797.0762 47.20447 48.49319 -83245699 8.42E+09	0.888757 0.369622 96.68979 4.012268 1.711996 67.42763 5.510145 6.798862 -0.062659 5.03466	0.95326 0.73516 2.64E+2 6.63E+0 4.37082 -810.346 47.9626 49.2513 2.64E+0 1.29E+1

Annexe.19: Estimation du VAR(1) par la méthode du maximum de vraisemblance.

Vector Autoregression Estimates Date: 05/26/13 Time: 12:34 Sample(adjusted): 1972 2009

Included observations: 38 after adjusting endpoints

Standard errors in () & t-statistics in []

	D(PPB)	VAG	D(VAM)	D(VAI)
D(PPB(-1))	-0.284913	-0.033488	0.024501	0.039752
The Control of the Control	(0.28804)	(0.04612)	(0.04962)	(0.11190)
	[-0.98913]	[-0.72614]	[0.49375]	[0.35525]
VAG(-1)	0.560609	0.480152	-0.138471	0.877271
	(1.02128)	(0.16351)	(0.17594)	(0.39674)
	[0.54893]	[2.93645]	[-0.78703]	[2.21120]
D(VAM(-1))	0.070487	-0.190746	-0.139458	0.619797
	(1.18317)	(0.18943)	(0.20383)	(0.45963)
	[0.05957]	[-1.00693]	[-0.68419]	[1.34848]
D(VAI(-1))	0.439137	-0.057903	-0.120285	0.118548
	(0.52142)	(0.08348)	(0.08983)	(0.20256)
	[0.84219]	[-0.69359]	[-1.33905]	[0.58525]
С	-3.321387	5.182673	1.007806	-8.169056
	(10.3182)	(1.65201)	(1.77756)	(4.00831)
	[-0.32190]	[3.13720]	[0.56696]	[-2.03803]
R-squared	0.055166	0.331259	0.065253	0.166781
Adj. R-squared	-0.059359	0.250200	-0.048050	0.065784
Sum sq. resids	2940.669	75.38167	87.27483	443.7769
S.E. equation	9.439872	1.511388	1.626251	3.667122
F-statistic	0.481692	4.086620	0.575914	1.651353
Log likelihood	-136.5470	-66.93425	-69.71771	-100.6166
Akaike AIC	7.449841	3.786013	3.932511	5.558771
Schwarz SC	7.665313	4.001485	4.147983	5.774243
Mean dependent	1.585000	9.823182	-0.287514	0.348052
S.D. dependent	9.171586	1.745433	1.588534	3.794039
Determinant Resid	ual Covariance	1229.377		
Log Likelihood (d.f		-350.8497		
Akaike Information	Criteria	19.51840		
Schwarz Criteria		20.38029		

Annexe.20: Estimation du VAR(2) par la méthode du maximum de vraisemblance.

Vector Autoregression Estimates Date: 05/26/13 Time: 12:40

Sample(adjusted): 1973 2009 Included observations: 37 after adjusting endpoints Standard errors in () & t-statistics in []

	D(PPB)	VAG	D(VAM)	D(VAI)
D(PPB(-1))	-0.469789 (0.33433)	-0.017854 (0.05305)	0.006522 (0.05870)	0.067299 (0.12264)
	[-1.40515]	[-0.33654]	[0.11111]	[0.54876]
D(PPB(-2))	0.639934	-0.058821	0.050725	-0.110653
	(0.49757)	(0.07895)	(0.08736)	(0.18252)
	[1.28611]	[-0.74500]	[0.58062]	[-0.60626]
VAG(-1)	3.087508	0.045981	-0.204736	1.017381
	(2.19409)	(0.34816)	(0.38524)	(0.80482)
	[1.40719]	[0.13207]	[-0.53146]	[1.26411]
VAG(-2)	-1.896227	0.436493	0.031297	-0.324168
	(2.03539)	(0.32298)	(0.35737)	(0.74661)
	[-0.93163]	[1.35147]	[0.08758]	[-0.43419]
D(VAM(-1))	0.424988	-0.276331	-0.246196	0.763742
	(1.36535)	(0.21665)	(0.23973)	(0.50083)
	[0.31127]	[-1.27545]	[-1.02699]	[1.52497]
D(VAM(-2))	0.815323	-0.084273	-0.003571	-0.628525
	(1.33380)	(0.21165)	(0.23419)	(0.48925)
	[0.61128]	[-0.39818]	[-0.01525]	[-1.28466]
D(VAI(-1))	1.208172	-0.217870	-0.173080	0.321820
	(0.88986)	(0.14120)	(0.15624)	(0.32641)
	[1.35772]	[-1.54296]	[-1.10778]	[0.98594]
D(VAI(-2))	0.177628	0.033606	-0.103887	-0.135991
	(0.58292)	(0.09250)	(0.10235)	(0.21382)
	[0.30472]	[0.36332]	[-1.01504]	[-0.63600]
С	-10.25773	5.267705	1.357293	-6.606783
	(12.7805)	(2.02801)	(2.24398)	(4.68803)
	[-0.80261]	[2.59748]	[0.60486]	[-1.40929]
R-squared	0.138281	0.390331	0.113093	0.263495
Adj. R-squared	-0.107925	0.216140	-0.140309	0.053065
Sum sq. resids	2680.431	67.49166	82.63198	360.6545
S.E. equation	9.784154	1.552552	1.717889	3.588944
F-statistic Log likelihood	0.561648 -131.7328	2.240819 -63.62082	0.446299 -67.36508	1.252175 -94.62527
Akaike AIC	7.607178	3.925450	4.127842	5.601366
Schwarz SC	7.999023	4.317295	4.519687	5.993211
Mean dependent	1.620811	9.861083	-0.275630	0.173331
S.D. dependent	9.295403	1.753585	1.608732	3.688133
Determinant Resid	ual Covariance	972.3515		
Log Likelihood (d.f.		-337.2777		
Akaike Information		20.17717		
Schwarz Criteria		21.74455		
(<u>R</u>				

Annexe.21: Estimation du VAR(3) par la méthode du maximum de vraisemblance.

Vector Autoregression Estimates
Date: 05/26/13 Time: 12:45
Sample(adjusted): 1974 2009
Included observations: 36 after adjusting endpoints
Standard errors in () & t-statistics in []

	D(PPB)	VAG	D(VAM)	D(VAI)
D(PPB(-1))	-0.786436 (0.38561)	-0.007582 (0.06092)	0.020112 (0.07239)	0.049929 (0.14672)
	[-2.03948]	[-0.12447]	[0.27784]	[0.34030]
D(PPB(-2))	0.560425	-0.022126	0.034812	-0.158555
7.2.2. 3. 2.2.3.2.3.2.3.2.3.2.3.2.3.2.3.2.3.2.3	(0.52895)	(0.08356)	(0.09930)	(0.20126)
	[1.05951]	[-0.26479]	[0.35058]	[-0.78781]
D(PPB(-3))	0.977739	-0.113898	-0.005423	0.211773
A Charles of the Control of the Cont	(0.60238)	(0.09516)	(0.11308)	(0.22920)
	[1.62313]	[-1.19690]	[-0.04796]	[0.92396]
VAG(-1)	6.113773	-0.140278	-0.419740	1.412258
	(2.68276)	(0.42381)	(0.50362)	(1.02077)
	[2.27891]	[-0.33100]	[-0.83345]	[1.38352]
VAG(-2)	-1.890588	-0.088946	0.013351	0.331865
	(2.69256)	(0.42536)	(0.50546)	(1.02450)
	[-0.70215]	[-0.20911]	[0.02641]	[0.32393]
VAG(-3)	-1.895284	0.573197	0.260587	-0.712388
	(2.19930)	(0.34743)	(0.41286)	(0.83682)
	[-0.86177]	[1.64980]	[0.63117]	[-0.85130]
D(VAM(-1))	1.285574	-0.325693	-0.312027	0.865869
	(1.49960)	(0.23690)	(0.28151)	(0.57059)
	[0.85728]	[-1.37482]	[-1.10840]	[1.51751]
D(VAM(-2))	0.807544	-0.213893	-0.045338	-0.437715
	(1.47534)	(0.23307)	(0.27696)	(0.56136)
	[0.54736]	[-0.91773]	[-0.16370]	[-0.77974]
D(VAM(-3))	3.272683	-0.119927	-0.158667	0.471435
	(1.69748)	(0.26816)	(0.31866)	(0.64588)
	[1.92796]	[-0.44722]	[-0.49792]	[0.72991]
D(VAI(-1))	3.029443	-0.287135	-0.287063	0.456466
	(1.24994)	(0.19746)	(0.23464)	(0.47559)
	[2.42367]	[-1.45415]	[-1.22340]	[0.95978]
D(VAI(-2))	0.721100	-0.213764	-0.159967	0.194880
E 1-5 F O AL SOCIO 100 FLO	(0.99601)	(0.15735)	(0.18698)	(0.37898)
	[0.72398]	[-1.35857]	[-0.85555]	[0.51423]
D(VAI(-3))	0.432038	-0.024213	-0.012472	0.051829
	(0.65509)	(0.10349)	(0.12298)	(0.24926)
	[0.65951]	[-0.23397]	[-0.10142]	[0.20793]
C	-21.73367	6.816661	1.041130	-10.24214
	(15.0236)	(2.37335)	(2.82029)	(5.71637)
	[-1.44664]	[2.87217]	[0.36916]	[-1.79172]
R-squared	0.282424	0.456797	0.153425	0.308343
Adj. R-squared	-0.091964	0.173386	-0.288266	-0.052522
Sum sq. resids	2231.519	55.68982	78.63970	323.0684
S.E. equation	9.850003	1.556052	1.849086	3.747860
F-statistic Log likelihood	0.754362 -125.3663	1.611786 -58.93480	0.347358	0.854456 -90.58000
Akaike AIC	7.687018	3.996378	-65.14623 4.341457	5.754444
Schwarz SC	8.258844	4.568204	4.913283	6.326271
Mean dependent	1.644722	9.939453	-0.290054	0.043102
S.D. dependent	9.426105	1.711484	1.629124	3.653153
Determinant Reside	ual Covariance	1070.078		
Log Likelihood (d.f.	adjusted)	-329.8859		
Akaike Information	Criteria	21.21588		
Schwarz Criteria		23.50319		

Annexe.22: Estimation du VAR(4) par la méthode du maximum de vraisemblance.

Vector Autoregression Estimates
Date: 05/26/13 Time: 12:52
Sample(adjusted): 1975 2009
Included observations: 35 after adjusting endpoints
Standard errors in () & t-statistics in []

	D(PPB)	VAG	D(VAM)	D(VAI)
D(PPB(-1))	-0.511235	-0.058019	-0.012177	0.221942
	(0.47627)	(0.07328)	(0.04382)	(0.13806)
	[-1.07341]	[-0.79174]	[-0.27790]	[1.60752]
D(PPB(-2))	0.821199	-0.056288	-0.136272	0.082228
	(0.64458)	(0.09918)	(0.05930)	(0.18685)
	[1.27401]	[-0.56755]	[-2.29789]	[0.44007]
D(PPB(-3))	0.825682	-0.082564	0.072687	0.041423
	(0.67776)	(0.10428)	(0.06236)	(0.19647)
	[1.21825]	[-0.79173]	[1.16567]	[0.21083]
D(PPB(-4))	-0.787096	0.171547	0.030869	-0.551316
	(0.76513)	(0.11773)	(0.07039)	(0.22180)
	[-1.02871]	[1.45717]	[0.43852]	[-2.48564]
VAG(-1)	6.018051	0.101600	-0.279059	0.508414
	(3.28140)	(0.50489)	(0.30190)	(0.95123)
	[1.83399]	[0.20123]	[-0.92434]	[0.53448]
VAG(-2)	-4.063932	0.274044	0.370980	-1.276777
	(3.49688)	(0.53789)	(0.32163)	(1.01341)
	[-1.16249]	[0.50948]	[1.15343]	[-1.26988]
VAG(-3)	-0.675535	0.624470	-0.199317	-0.690361
	(3.00880)	(0.46295)	(0.27682)	(0.87221)
	[-0.22452]	[1.34890]	[-0.72003]	[-0.79151]
VAG(-4)	0.315040	-0.466166	-0.256959	2.022104
	(2.63669)	(0.40569)	(0.24258)	(0.76434)
	[0.11948]	[-1.14906]	[-1.05926]	[2.64555]
D(VAM(-1))	1.468587	-0.308248	0.060533	0.474991
	(1.78091)	(0.27402)	(0.16385)	(0.51626)
	[0.82463]	[-1.12492]	[0.36944]	[0.92006]
D(VAM(-2))	0.482052	-0.118915	-0.061125	-0.806773
	(1.72645)	(0.26564)	(0.15884)	(0.50047)
	[0.27922]	[-0.44765]	[-0.38482]	[-1.61201]
D(VAM(-3))	3.374507	-0.000583	-0.046973	-0.111423
	(2.04928)	(0.31531)	(0.18854)	(0.59406)
	[1.64668]	[-0.00185]	[-0.24914]	[-0.18756]
D(VAM(-4))	-2.344522	0.374461	0.068010	-1.394680
	(2.01665)	(0.31029)	(0.18554)	(0.58460)
	[-1.16258]	[1.20680]	[0.36655]	[-2.38570]
D(VAI(-1))	2.760514	-0.178437	0.051068	-0.140748
	(1.47627)	(0.22715)	(0.13582)	(0.42795)
	[1.86993]	[-0.78656]	[0.37599]	[-0.32889]
D(VAI(-2))	-0.597533	0.053792	0.316729	-1.080468
	(1.60391)	(0.24679)	(0.14757)	(0.46495)
	[-0.37255]	[0.21797]	[2.14636]	[-2.32383]
D(VAI(-3))	0.550668	0.101917	0.036430	-0.512186
	(1.20825)	(0.18591)	(0.11116)	(0.35025)
	[0.45576]	[0.54822]	[0.32772]	[-1.46233]
D(VAI(-4))	-0.089174	-0.005934	0.030610	-0.019593
	(0.72981)	(0.11229)	(0.06715)	(0.21156)
	[-0.12219]	[-0.05285]	[0.45588]	[-0.09261]
С	-14.66920	4.865677	3.513680	-5.613146
	(19.8192)	(3.04947)	(1.82343)	(5.74530)
	[-0.74015]	[1.59558]	[1.92697]	[-0.97700]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.339786	0.498278	0.560579	0.616706
	-0.247072	0.052303	0.169983	0.276000
	2028.401	48.02111	17.16959	170.4546
	10.61551	1.633352	0.976661	3.077288
	0.578991	1.117278	1.435187	1.810083
	-120.7068	-55.19797	-37.19920	-77.36747
	7.868961	4.125598	3.097097	5.392427
	8.624415	4.881053	3.852552	6.147881
	1.472286	10.01296	-0.083382	-0.090183
	9.506935	1.677819	1.072013	3.616586
Determinant Resi Log Likelihood (d. Akaike Informatio Schwarz Criteria	f. adjusted)	125.4394 -283.2083 20.06904 23.09086		

Annexes.23: Analyse des chocs.

Period	se of D(PPB) D(PPB)	RES1	D(PIB)	BC	RES	D(AB)	D(M2)
1	5.683066	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2	4.040145	0.235509	-0.400764	-1.186067	-3.612652	-2.142212	-1.00760
3	2.489824	2.417661	5.678599 -3.762895	-0.647706 0.469241	0.563782	1.394691 -0.654364	1.06594
5	-2.187834	-0.020129	3.131392	-0.643166	-1.588678	-0.674223	-1.727376
6	3.401614	1.637332	0.286180	0.649994	1.538035	1.043821	1.383334
7	-2.190479	-0.409688	-1.950117	-0.151062	-1.785428	-1.347399	-0.72228
8	0.938470	0.644462	3.516245	-0.078976	0.423166	0.673313	-0.23623
10	1.152080 -1.904551	0.638889	-2.517626 1.435384	0.449767 -0.402635	0.125846	-0.131976 -0.671918	-1.10375
Respon Period	se of RES1: D(PPB)	RES1	D(PIB)	вс	RES	D(AB)	D(M2)
1	9.284761	25.92207	0.000000	0.000000	0.000000	0.000000	0.000000
2	-4.655045	7.332830	3.681642	1.098722	-4.039957	-4 520846	-3 356150
3	8.839880	5.908934	4.418073	2.560510	3.589484	1.865983	1.70440
4	-2.024155	0.542688	-6.875452	1.324864	-3.116639	-3.209756	0.08879
6	-0.086916	0.980934	8.431229	-0.254925	-1.205345	0.159793	-1.91096
6	5.216682 -4.556736	2.827179	-3.155909 1.037270	1.478119 -0.667231	1.037773	0.542977	2.57091
á	4.712578	2.825554	5.100057	0.637396	1.466542	1.712493	0.92834
9	-0.418470	0.976239	-4.433438	0.459969	-2.016683	-1.594933	0.32374
10	-1.128365	0.747901	5.603929	-0.517174	-1.593183	-0.305258	-1.64535
Respon Period	se of D(PIB): D(PPB)	RES1	D(PIB)	ВС	RES	D(AB)	D(M2)
1	1.25E+08	4.03E+09	9.49E+09	0.000000	0.000000	0.000000	0.000000
2	6.22E+09	3.48E+09	-4.21E+09	9.61E+08	1.11E+09	6.07E+08	1.37E+0
3	-5.30E+09	-5.89E+08	1.17E+09	-5.38E+08	-3.46E+09	-2.45E+09	-2.06E+0
4	5.14E+09	2.40E+09	4.12E+09	5.56E+08	2.33E+09	2.08E+09	9.96E+0
6	-1.47E+09 -1.04E+09	40169447 1.66E+08	-5.30E+09 5.68E+09	4.01E+08 -6.03E+08	-1.81E+09 -8.62E+08	-1.75E+09 1.13E+08	3.26E+0 -1.61E+0
7	3.81E+09	1.74E+09	-2.15E+09	9.21E+08	1.42E+09	7.81E+08	1.95E+0
8		-7.87E+08	-3.26E+08	-5.27E+08	-2.64E+09	-1.70E+09	-1.61E+0
9	2.84E+09	1.40E+09	3.67E+09	2.31E+08	1.35E+09	1.34E+09	5.23E+0
10	-1.52E+08	3.08E+08	-3.73E+09	3.45E+08	-8.39E+08	-8.77E+08	4.78E+0
Respon Period	se of BC D(PPB)	RES1	D(PIB)	BC	RES	D(AB)	D(M2)
1	3.44E+09	-1.92E+08	-8.93E+08	2.51E+09	0.000000	0.000000	0.000000
2	-1.49E+08	-2.57E+08	-96668698	1.49E+09	-2.17E+09	-1.49E+09	5.25E+0
3	2.00E+09	1.66E+09	3.33E+09	4.10E+08	-1.68E+09	-1.25E+08	-4.63E+0
4	1.48E+09	2.25E+09	6.26E+08	5.70E+08	-1.93E+09	-7.63E+08	3 85E+0
6	4.21E+08 2.24E+09	2.15E+09 2.81E+09	2.90E+09 2.02E+09	12383858 4.72E+08	-2.38E+09 -1.14E+09	-7.89E+08 -1.94E+08	-8.40E+0 2.80E+0
7	4.05E+08	2.06E+09	1.01E+09	2 14E+08	-2.10E+09	-9.57E+08	-4.21E+0
8	1.26E+09	2.24E+09	2.73E+09	2.28E+08	-1.29E+09	-2.98E+08	-2.68E+0
10	1.37E+09 2.24E+08	2.12E+09 1.62E+09	6.51E+08 1.75E+09	4.03E+08 1.08E+08	-1.22E+09 -1.64E+09	-4.83E+08 -6.70E+08	1.28E+0 -5.07E+0
11 (15 A	se of RES	1.021.403	11702400	1.002400	1.042.703	-0.702400	-0.072.10
Period	D(PPB)	RES1	D(PIB)	BC	RES	D(AB)	D(M2)
1	3.27E+09	-82782372	-9.89E+08	2.93E+09	3.88E+09	0.000000	0.00000
3	-6.23E+08 -1.66E+09	-2.47E+09 -2.48E+09	-5.71E+09 1.18E+09	1.69E+09 -1.61E+08	1.22E+09 2.23E+08	-9.68E+08 40462821	1.27E+0
4	1.68E+09	-6.69E+08	-1.61E+09	4 81E+08	1.76E+09	8.77E+08	1.33E+0
5	-2.38E+09	-1.65E+09	-1.55E+09	-3.91E+08	-7.87E+08	-6.90E+08	-6.79E+0
G	6.87E+08	-3.36E+08	1.66E+09	-1-11E+08	1.14E+09	8.76E+08	1.80E+0
7	-61114144	-5.22E+08	-2.60E+09	1.15E+08	3:40E+08	-87258595	4.93E+0
8	-1.49E+09	-9.18E+08	9.49E+08	-3.99E+08	-2.36E+08	-1.23E+08	-6.93E+0
10	1.32E+09 -1.43E+09	47510117 -8.60E+08	-4.15E+08 -1.42E+09	1.93E+08	1.21E+09 -4.44E+08	7.00E+08 -5.01E+08	7.08E+0
Respon	se of D(AB): D(PPB)	RES1	D(PIB)	ВС	RES	D(AB)	D(M2)
1	-2.454459	0.748574	0.280504	-1.792857	0.260914	3.715590	0.00000
2	0.118141	-0.991262	-0.303545	0.946977	0.926386	0.683358	0.96094
3	0.226988	-0.977048	-1.132300	0.469237	-0.077785	-0.069292	0.12786
4	0.335550	-0.483045	0.519582	0.105498	-0.428185	-0_162156	0.06436
6	0.715276	0.265075	0.273663	0.107342	-0.061026	0.148053	0.16249
6	-0.253313 0.335804	0.166491	-0.030706	-0.007862	-0.581940	-0.295795 0.054896	-0.11000
8	0.335055	0.431846	-0.177900	0.107372	-0.184506 -0.212698	-0.103111	0.08771
9	-0.169582	0.243094	0.494679	-0.037506	-0.425516	-0.180756	-0.22172
10	0.527015	0.454645	0.346817	0.097083	-0.009754	0.070942	0.11481
Respon Period	se of D(M2): D(PPB)	RES1	D(PIB)	вс	RES	D(AB)	D(M2)
1	3.03E+08	3.68E+09	6.96E+08	1.79E+09	2.47E+09	2.28E+09	9.06E+0
2	-8.96E+08	-26926114	-1.23E+08	-1.52E+09	-3.81E+09	-6.15E+08	-4.59E+0
3	1.26E+09	1.84E+09	4.05E+09	1.03E+09	2.54E+08	1.82E+08	1.92E+0
4	1.86E+09	1.52E+09	-1.59E+09	2.02E+08	-1.25E+09	-3.61E+08	-3.95E+0
5	-1.40E+09	8.46E+08	2.61E+09	-33470110	-1.95E+09	-9.90E+08	-6.31E+0
	3.05E+09	2.15E+09 8.49E+08	1.56E+09 -8.18E+08	4.05E+08 1.45E+08	1.74E+08 -1.88E+09	5.95E+08 -1.21E+09	4.48E+0
6				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1.00 by T.00	The State of	The state of the s
7	-8.82E+08 9.23E+08			-22506446	-5.86E+08	1.54E+08	-4.83E+0
	9.23E+08 1.49E+09	1.37E+09 1.48E+09	3.33E+09		-5.86E+08 -4.06E+08	1.54E+08 -2.26E+08 -7.59E+08	4.83E+0 6.43E+0

Annexes.24 : Analyse des chocs.

Period	se of D(PPB D(PPB)	VAG	D(VAM)	D(VAI)
- 1	9.784154	0.000000	0.000000	0 000000
2	-4.790482	1.604024	-0.760817	1.920589
3	8.367813	-1.322085	1.787638	-1.188077
4	-10.04837	2 961696	-2.999587	1.581724
5	12 18131	-2.765568	3.144042	-2 183370
6	-15.79147	3.745531	4 217831	2.772760
7	19.44944	4.507453	5.290226	-3.461829
8				
	-24.98257	5.924697	-6.766139	4.262861
10	31,16648	-7.329310 9.265859	8.420876 -10.63425	6.871470
2.00.000.000.000		3.203033	-10.63425	0.07.147.0
Respon Period	D(PPB)	VAG	D(VAM)	D(VAI)
1	-0.872726	1.284042	0.000000	0.000000
2	-0.526224	0.516388	-0.174595	-0.346340
3	-0.758336	0.351106	-0.292952	-0.032223
4	0.114208	-0.006492	0.153220	-0.070089
5	-0.804642	0.244097	-0.169297	0.052284
6	0.500466	-0.068421	0.136442	-0.183027
7	-0.976018	0.226468	-0.255503	0.128253
8	1.046713	-0.257085	0.306580	-0.192930
9				
	-1.425940	0.337148	-0.371647	0.234399
10 Respon	1.724803 se of D(VAM		0.466498	-0.314822
10 Respon Period	se of D(VAM D(PPB)): VAG	D(VAM)	D(VAI)
10 Respon Period	se of D(VAM D(PPB) -0.698657): VAG -0.158663	D(VAM)	D(VAI)
10 Respon Period	ose of D(VAM D(PPB) -0.698657 0.013740	VAG -0.158663 0.104668	D(VAM) 1.561360 -0.180348	D(VAI) 0.000000 -0.275139
10 Respon Period 1 2 3	-0.698657 0.013740 0.307137	VAG -0.158663 0.104668 0.017480	D(VAM) 1.561360 -0.180348 0.051361	D(VAI) 0.000000 -0.275139 -0.102518
10 Respon Period 1 2 3 4	se of D(VAM D(PPB) -0.698657 0.013740 0.307137 0.141113	VAG -0.158663 0.104668 0.017480 -0.192661	D(VAM) 1.561360 -0.180348 0.051361 0.091373	D(VAI) 0.000000 -0.275139 -0.102518 0.142411
10 Respon Period 1 2 3 4 5	-0.698657 0.013740 0.307137 0.141113 0.395164	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789	D(VAI) 0.000000 -0.275139 -0.102518 0.142411 0.038588
10 Respon Period 1 2 3 4 5 6	-0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405	D(VAI) 0.000000 -0.275139 -0.102518 0.142411 0.038588 0.025941
10 Respon Period 1 2 3 4 5 6 7	-0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 0.384637	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096	D(VAI) 0.000000 -0.275139 -0.102518 0.142411 0.038588 0.025941
10 Respon Period 1 2 3 4 5 6 7 8	se of D(VAM D(PPB) -0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 0.384637 -0.370613	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190	D(VAI) 0.000000 -0.275139 -0.102518 0.142411 0.038588 0.025941 -0.063954 0.096438
10 Respon Period 1 2 3 4 5 6 7 8	-0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 0.384637 -0.370613 0.544583	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351 -0.126708	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190 0.153654	D(VAI) 0.000000 -0.275139 -0.102518 0.142411 0.038588 0.025941 -0.063954 0.096438
Respon Period 1 2 3 4 5 6 7	se of D(VAM D(PPB) -0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 0.384637 -0.370613	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190	D(VAI) 0.000000 -0.275139 -0.102518 0.142411 0.038588 0.025941 -0.063954 0.096438 -0.080046
10 Respon Period 1 2 3 4 5 6 7 8 9	-0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 0.384637 -0.370613 0.544583	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351 -0.126708 0.167116	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190 0.153654	D(VAI) 0.000000 -0.275139 -0.102518 0.142411 0.038588 0.025941 -0.063954 0.096438 -0.080046
10 Respon Period 1 2 3 4 5 6 7 8 9 10 Respon Period	se of D(VAM D(PPB) -0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 0.384637 -0.370613 0.544583 -0.662711 se of D(VAI): D(PPB)	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351 -0.126708 0.167116 VAG -1.897940	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190 0.153654 -0.186008 D(VAM)	D(VAI) 0.000000 -0.275139 -0.102518 0.142411 0.038588 0.025941 -0.063954 0.096438 -0.080046 0.110609
10 Respon Period 1 2 3 4 5 6 7 8 9 10 Respon Period	se of D(VAM D(PPB) -0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 0.384637 -0.370613 0.544583 -0.662711 se of D(VAI): D(PPB)	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351 -0.126708 0.167116 VAG -1.897940 0.574387	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190 0.153654 -0.186008 D(VAM) -1.178952 0.813067	D(VAI) 0.000000 -0.275138 -0.102518 0.142411 0.038584 0.025941 -0.063954 0.096438 -0.080048 0.110609 D(VAI) 1.589666
10 Respon Period 1 2 3 4 5 6 7 8 9 10 Respon Period	se of D(VAM D(PPB) -0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 0.384637 -0.370613 0.544583 -0.662711 se of D(VAI): D(PPB)	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351 -0.126708 0.167116 VAG -1.897940	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190 0.153654 -0.186008 D(VAM)	D(VAI) 0.000000 -0.275138 -0.102518 0.142411 0.038584 0.025941 -0.063954 0.096438 -0.080048 0.110609 D(VAI) 1.589666
10 Respon Period 1 2 3 4 5 6 7 8 9 10 Respon Period	se of D(VAM D(PPB) -0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 0.384637 -0.370613 0.544583 -0.662711 se of D(VAI): D(PPB)	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351 -0.126708 0.167116 VAG -1.897940 0.574387	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190 0.153654 -0.186008 D(VAM) -1.178952 0.813067	D(VAI) 0.000000 -0.275139 -0.102518 0.142411 0.038588 0.025941 -0.063954 0.096438 -0.080046 0.110609
10 Respon Period 1 2 3 4 5 6 7 8 9 10 Respon Period 1 2 3	se of D(VAM D(PPB) -0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 -0.384637 -0.370613 0.544583 -0.662711 se of D(VAI): D(PPB) 2.315465 -0.017863 -1.528510	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351 -0.126708 0.167116 VAG -1.897940 0.574387 0.839682	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190 0.153654 -0.186008 D(VAM) -1.178952 0.813067 -0.925937	D(VAI) 0.000000 -0.275139 -0.102518 0.142411 0.038588 0.025941 -0.063954 0.096438 -0.080045 0.110609 D(VAI) 1.589666 0.511586
Respond 1 2 3 4 5 6 7 8 9 10 Respond Period 1 2 3 4	se of D(VAM D(PPB) -0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 0.384637 -0.370613 0.544583 -0.662711 se of D(VAI): D(PPB) 2.315465 -0.017863 -1.528510 0.228755	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351 -0.126708 0.167116 VAG -1.897940 0.574387 0.839682 0.063026	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190 0.153654 -0.186008 D(VAM) -1.178952 0.813067 -0.925937 -0.292927	D(VAI) 0.000000 -0.275138 -0.102518 0.142411 0.038584 0.025941 -0.063954 0.096438 -0.080048 0.110609 D(VAI) 1.589668 0.511586 -0.484782 -0.343934 0.305492
Respond 1 2 3 4 5 6 7 8 9 10 Respond Period 1 2 3 4 5	se of D(VAM D(PPB) -0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 0.384637 -0.370613 0.544583 -0.662711 se of D(VAI): D(PPB) 2.315465 -0.017863 -1.528510 0.228755 -1.043933	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351 -0.126708 0.167116 VAG -1.897940 0.574387 0.839682 0.063026 -0.026846	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190 0.153654 -0.186008 D(VAM) -1.178952 0.813067 -0.925937 -0.292927 -0.079675	D(VAI) 0.000000 -0.275139 -0.102518 0.142411 0.038588 0.025941 -0.063954 0.096438 -0.080045 0.110609 D(VAI) 1.589666 0.511586 -0.484782 -0.343934
10 Respon Period 1 2 3 4 5 6 7 8 9 10 Respon Period 1 2 3 4 5 6 6	se of D(VAM D(PPB) -0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 -0.384637 -0.370613 0.544583 -0.662711 Se of D(VAI): D(PPB) 2.315465 -0.017863 -1.528510 0.228756 -1.043933 0.922063): VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351 -0.126708 0.167116 VAG -1.897940 0.574387 0.839682 0.063026 -0.026846 -0.225347	D(VAM) 1.561360 -0.180348 -0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190 0.153654 -0.186008 D(VAM) -1.178952 0.813067 -0.925937 -0.292927 -0.079675 0.396577	D(VAI) 0.000000 -0.275139 -0.102518 0.142411 0.038588 0.025941 -0.063954 0.096438 -0.080045 0.110609 D(VAI) 1.589666 0.511586 -0.484782 -0.343934 0.305492 -0.160999 0.127246
10 Respon Period 1 2 3 4 5 6 7 8 9 10 Respon Period 1 2 3 4 5 6 7 8 9 10	se of D(VAM D(PPB) -0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 0.384637 -0.370613 0.544583 -0.662711 se of D(VAI): D(PPB) 2.315465 -0.017863 -1.528510 0.228755 -1.043933 0.922063 -1.605205 1.680336	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351 -0.126708 0.167116 VAG -1.897940 0.574387 0.839682 0.063026 -0.026846 -0.225347 0.472677 -0.405591	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190 0.153654 -0.186008 D(VAM) -1.178952 0.813067 -0.925937 -0.292927 -0.079675 0.396577 -0.462876 0.415115	D(VAI) 0.000000 -0.275139 -0.102518 0.142411 0.038588 0.025941 -0.063954 0.096438 -0.080048 0.110609 D(VAI) 1.589668 0.511588 -0.484782 -0.343934 0.305492 -0.160999 0.127248 -0.352282
Respond 1 2 3 4 5 6 7 8 9 10 Respond Period 1 2 3 4 5 6 7	se of D(VAM D(PPB) -0.698657 0.013740 0.307137 0.141113 0.395164 -0.202814 4.0384637 -0.370613 0.544583 -0.662711 se of D(VAI): D(PPB) 2.315465 -0.017863 -1.528510 0.228755 -1.043933 0.922063 -1.605205	VAG -0.158663 0.104668 0.017480 -0.192661 -0.086199 0.102024 -0.077225 0.072351 -0.126708 0.167116 VAG -1.897940 0.574387 0.839682 0.063026 -0.026846 -0.225347 0.472577	D(VAM) 1.561360 -0.180348 0.051361 0.091373 0.154789 -0.086405 0.059096 -0.098190 0.153654 -0.186008 D(VAM) -1.178952 0.813067 -0.925937 -0.292927 -0.079675 0.396577 -0.462876	D(VAI) 0.000000 -0.275133 -0.102518 0.142411 0.038588 0.025941 -0.063954 0.096438 -0.080048 0.110609

Annexe.25: Décomposition de la variance de l'erreur de prévision.

	8.E	ition of D(PPB) D(PPB)	RES1	D(PIB)	BC	RES	D(AB)	D(M2)
3	6.683066	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000
2	8 300508	70.56765	0.080502	0.233114	2.041782	18 94274	6.660634	1.47357
3	10.77847	47.18662	5.078545	27.89499	1.572002	11.50769	5.624460	1.13568
6	11.61686	41.09239	5.876589	34.50611	1.516447	10.02962	5.159212 4.756930	1.81963
6	13 26819	40.79205	6.027893	32.06794	1.637436	10.46582	4.832043	4 17680
7	13.79716	40.24473	5.662718	31.65393	1.526274	11.35329	5 422336	4.13673
8	14.30791	37.85303	5.468535	35.47395	1.422300	10.64468	5.263580	3.87392
10	14.62011	36.87461	5.428440	36.94048 36.31887	1.456844	10.20232	5.049330	4.04797
-	-	ition of RES1:	0.260967	36.31867	1.466677	10.52312	5.040503	4,42476
Period	8.E.	D(PPB)	RES1	D(PIB)	вс	RES	D(AB)	D(M2)
1 2	27.53471	11.37050	88.62950	0.000000	0.000000	1.820786	2 280053	1.25657
3	32.47754	17.63568	72.11285	3.135585	0.736013	2.768858	2.267743	1.34327
4	33.68918	16.85083	67.44474	7 121372	0.843679	3.449560	3.033280	1.25653
6	34 72008	15 77162	63.20253	12.56187	0.795005	3.349024	2 84 10 18	1.47693
G	35.50798	17.23788	61.06275	12.80052	0.933402	3.287466	2.739719	1.93826
7	36.22755	18 14 199	58.67143	12.37905	0.930613	4.489132	3.080187	2.30760
8	37.07926	18.93342	56 58768	13.70874	0.909366	4.441700	3,153609	2.26548
10	37.45107 37.96611	18 57184	55.53763	14 83927	0.906476	4.643911	3.272670	2 22820
-	- Company of the Comp	ition of D(PIB):		1.02.00.00.00				
Period	S.E.	D(PPB)	RES1	D(PIB)	вс	RES	D(AB)	D(M2)
1	1.03E+10 1.29E+10	0.014691	16.25808	64.30050	0.000000	0.000000	0.000000	1.12750
3	1.48E+10	16.26414 25.18038	13.02832	49.64064	0.543177	5.986279	2.838070	2.78313
4	1.67E+10	29.18998	12.28189	45.03049	0.536532	6.643533	3.779290	2.53828
6	1.78E+10	26.48207	10.85478	48.66182	0.524834	6.900262	4.309646	2.27668
6	1.88E+10	24 01279	9.726329	52 66783	0.572577	6.387657	3.862038	2.77077
7	1.96E+10	25.94960	9.774029	49.83142	0.750001	6.424097	3.724823	3.54603
8	2.02E+10	27.45560	9.293042	46.63367	0.769242	7.706196	4.192697	3.94954
9	2.09E+10	27.57424	9.161007	46.79078	0.733126	7.638399	4.338264	3.76420
	2.13E+10	26.61360	8.861043	48 22657	0.733664	7.526346	4.356036	3.66274
/ariance ⊐eriod	Decompos S.E.	D(PPB)	RES1	D(PIB)	BC	RES	D(AB)	D(M2)
1	4.36E+09	62.37803	0.194553	4.198358	33.22906	0.000000	0.000000	0.00000
2	5.34E+09	41.65168	0.361850	2.830914	29.92482	16.52385	7.740589	0.96629
3	7.01E+09	32.27780	5.075576	24.18622	17.68647	15.27932	4.518522	0.97709
4	7.85E+09	29 30924	12.27475	19.95000	14.65240	18.24088	4 552191	1.02054
	9.05E+09	22.28723	14.88446	25.33440	9.209141	20.64095	4 188192	1.63111
6 7	1.00E+10 1.06E+10	21.01984	21.83018	23.17026	8.343206	18.10787	3 931547	1 42727
23	1 13E+10	19.63131	23 02435	26 13563	7.340880	19.05303	3.509455	1.30534
9	1.17E+10	19.75920	24.84727	24.77647	6.991020	18.93556	3.456439	1.23404
10	1.20E+10	18.55411	25.08510	25.32159	6.560403	19.59619	3.649223	1.33339
distanced the less the season	Decompos	ition of RES	RES1	D(PIB)	BC	RES	D(AB)	D(M2)
Period	S.E.	D(PPB)	CONTRACTOR OF STREET	73. 16 16 15 13 10 13	24.25949	42.65256	0.000000	0.00000
Period		The statement of	0.019425		Marie - Mr. S.A. Charles de			
Period 1	5.94E+09	30.29326	0.019425	2 775262	14.05649	20.36126		
Period 1 2	5.94E+09 9.01E+09	30.29326 13.63230	7.494523	41 30405	14.05649	20.36126	1.152810	1.99856
Period 1 2 3 4	5.94E+09 9.01E+09 9.62E+09 1.02E+10	30 29326 13 63230 14 91371 16 93898	7.494523 13.20724 12.15236	41.30405 37.76600 35.99274	12.37023	17.93183	1.013982	1.99856 2.79706 4.19049
1 2 3 4 5	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10	30 29326 13 63230 14 91371 16 93898 19 07066	7.494523 13.20724 12.15236 13.18061	41.30405 37.76600 36.99274 34.20870	12.37023 11.20206 10.13623	17.93183	1.013982 1.637364 1.870400	1.99856 2.79706 4.19049 4.1375
1 2 3 4 6	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10	30.29326 13.63230 14.91371 16.93898 19.07066 18.60493	7.494523 13.20724 12.15236 13.18051 12.68458	41.30405 37.76600 35.99274 34.20870 34.93581	12.37023 11.20206 10.13623 9.692732	17.93183 18.88601 17.39697 17.68721	1.013982 1.637364 1.870400 2.415482	1.99856 2.79706 4.19049 4.1375 3.97926
1 2 3 4 5 6	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.14E+10	30.29326 13.63230 14.91371 16.93898 19.07066 18.60493	7.494523 13.20724 12.15236 13.18061 12.68458 12.16864	41 30405 37 76600 36 99274 34 20870 34 93581 38 15507	12.37023 11.20206 10.13623 9.692732 9.147994	17.93183 18.88601 17.39697 17.68721 16.76389	1.013982 1.637364 1.870400 2.415482 2.283046	1.99856 2.79706 4.19049 4.1375 3.97926 3.93887
1 2 3 4 5 6 7	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.14E+10 1.16E+10	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 67948	7.494523 13.20724 12.16236 13.16061 12.68468 12.16864 12.37322	41 30405 37 76600 35 99274 34 20870 34 93581 38 15507 37 50017	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316	1.013982 1.637364 1.870400 2.415482 2.283046 2.215031	1.99856 2.79706 4.19049 4.1375 3.97926 3.93887 4.16006
Period 1 2 3 4 5 6 7	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.14E+10	30.29326 13.63230 14.91371 16.93898 19.07066 18.60493	7.494523 13.20724 12.15236 13.18061 12.68458 12.16864	41 30405 37 76600 36 99274 34 20870 34 93581 38 15507	12.37023 11.20206 10.13623 9.692732 9.147994	17.93183 18.88601 17.39697 17.68721 16.76389	1.013982 1.637364 1.870400 2.415482 2.283046	1.99856 2.79700 4.19048 4.1376 3.97928 3.93887 4.16008 4.39000
Period 1 2 3 4 6 6 7 8 9 10	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.14E+10 1.16E+10 1.16E+10 1.20E+10	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 57948 19 23843	7.494523 13.20724 12.15236 13.18061 12.68468 12.16864 12.37322 11.98304	41.30405 37.76600 35.99274 34.20870 34.93581 38.15507 37.50017 36.43706	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692395	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061	1.013982 1.637364 1.870400 2.415482 2.283046 2.215031 2.498661	1.99856 2.79706 4.19048 4.1375 3.97926 3.9388 4.16006 4.39000 4.28557
Period 1 2 3 4 5 6 7 8 9 10 Variance	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.14E+10 1.16E+10 1.20E+10 1.20E+10 Decompos 8.E	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 57948 19 23843 19 93950 ition of D(AB) D(PPB)	7.494523 13.20724 12.15236 13.18051 12.68458 12.16864 12.37322 11.98304 12.05076 RES1	41 30405 37 76600 36 99274 34 20870 34 93581 38 15507 37 50017 36 43706 36 48078 D(PIB)	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692396 8.389737	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.27379 RES	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498561 2.579859 D(AB)	1.99856 2.7970 4.19048 4.1375 3.97928 3.93887 4.16006 4.28567 D(M2)
Period 1 2 3 4 6 6 7 8 9 10 /ariance	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.02E+10 1.14E+10 1.16E+10 1.16E+10 1.20E+10 Decompos 8.E 4.873544 5.278142	30.29326 13.63230 14.91371 16.93698 19.07066 18.60493 17.54249 18.67948 19.23643 19.93960 ittion of D(AB): D(PPB)	7.494523 13.20724 12.15236 13.18061 13.18061 12.68458 12.16864 12.37322 11.98304 12.05076 RES1 2.359279 5.538444	41.30405 37.76600 36.99274 34.93581 38.15507 37.50017 36.43705 36.48078 D(PIB)	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692395 8.389737 BC	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.27379 RES 0.286619 3.324867	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498561 2.579859 D(AB)	1.99856 2.79700 4.19049 4.1375 3.93887 4.16006 4.28557 D(M2) 0.00000 3.31459
Period 1 2 3 4 5 6 7 7 8 9 10	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.14E+10 1.16E+10 1.20E+10 Decompos 8.E 4.873544 5.278142 5.513113	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 57948 19 23843 19 93950 ition of D(AB) D(PPB) 25 36424 21 67477 20 03608	7.494523 13.20724 12.15236 13.18051 12.68458 12.16864 12.37322 11.98304 12.05076 RES1 2.359279 5.538444 8.217187	41.30405 37.76600 36.99274 34.20870 34.93581 38.15507 37.50017 36.43706 36.48078 D(PIB) 0.331274 0.613171 4.780236	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692395 8.389737 BC 13.53322 14.75692	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76051 16.27379 RES 0.286619 3.324867 3.067400	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498561 2.579859 D(AB) 58 12537 50.77722 46.555697	1.99856 2.79700 4.19049 4.1375 3.97929 4.16009 4.39000 4.28557 D(M2) 0.00000 3.31459 3.09186
Period 1 2 3 4 5 6 7 8 9 10 /ariance Period 1 2 3 4 4	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.16E+10 1.16E+10 1.20E+10 Decompos 8.E 4.873544 5.278142 5.513113 6.588848	30.29326 13.63230 14.91371 16.93898 19.07066 18.60493 17.54249 18.57948 19.23643 19.93960 ition of D(AB) D(PPB) 25.36424 21.67477 20.03608 19.855722	7.494523 13.20724 12.15236 13.18061 12.68458 12.16864 12.37322 11.98304 12.05076 RES1 2.359279 5.538444 8.217187 8.7430011	41.30405 37.76600 36.99274 34.93581 38.15507 37.50017 36.43705 36.43705 36.43705 0.613171 4.780236 5.515869	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692396 8.389737 BC 13.53322 14.75692 14.25026 13.90230	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061 16.27379 RES 0.286619 3.324867 3.067400 3.571803	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498561 2.579859 D(AB) 58 12537 50.77722 46.55697 46.38791	1,9985 2,79700 4,1904 4,1376 3,9792 3,9388 4,1600 4,3900 4,2865 D(M2) 0,0000 3,3145 3,0918 3,0219
Period 1 2 3 4 5 6 7 8 9 10 /ariance Period 1 2 3 4 5	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.14E+10 1.16E+10 1.16E+10 1.20E+10 Decompos 8.E 4.873544 5.278142 5.513113 6.688488 6.65221	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 57948 19 23843 19 93950 ition of D(AB) D(PPB) 25 36424 21 67477 20 03608 19 85722 21 01140	7.494523 13.20724 12.15236 13.18061 12.68458 12.16864 12.37322 11.98304 12.05076 RES1 2.359279 5.538444 8.217187 8.743011 8.766133	41.30405 37.76600 36.99274 34.93681 38.15507 37.50017 36.43706 36.48078 D(PIB) 0.331274 0.613171 4.780236 5.516859 6.625900	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692396 8.369737 BC 13.53322 14.75692 14.25026 13.90230 13.65647	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76051 16.27379 RES 0.286619 3.324867 3.067400 3.571803 3.499664	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498561 2.579859 D(AB) 58 12537 50.77722 46.55697 46.38791 44.43501	1,9985,2 2,79700 4,1904;4 1,376,3 3,9782;3 3,9388,4 16000;4 3,9000;4 2,866;0 0,0000;3 3,145;3 3,0219;3 3,0219;3 3,0219;3 3,0219;3
Period 1 2 3 4 5 6 7 8 9 10 /ariance Period 1 2 3 4 4	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.16E+10 1.16E+10 1.20E+10 Decompos 8.E 4.673544 5.278142 5.513113 6.688848 6.652821 5.698607	30.29326 13.63230 14.91371 16.93898 19.07066 18.60493 17.54249 18.57948 19.23843 19.93950 ition of D(AB) D(PPB) 25.36424 21.67477 20.03608 19.85722 21.01140 20.86539	7.494523 13.20724 12.15236 13.18061 12.68458 12.16864 12.37322 11.98304 12.05076 RES1 2.359279 5.538444 8.217187 8.743011 8.766133 8.708134	41.30405 37.76600 36.99274 34.93581 38.15507 37.50017 36.43705 36.43705 36.43707 0.613171 4.780236 5.515859 5.625900 5.536819	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692396 8.389737 BC 13.53322 14.75692 14.25026 13.90230 13.62647 13.40268	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061 16.27379 RES 0.286619 3.324867 3.067400 3.671803 3.499664 4.484822	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498561 2.579859 D(AB) 58 12537 50.77722 46.55697 46.38791 44.43601 43.97782	1.99856 2.79700 4.1904 4.1376 3.9792 3.9388 4.1600 4.39000 4.28667 0.00000 0.33145 3.09186 3.0366 3.0366 3.0366
Period 1 2 3 4 5 6 7 8 9 10 /ariance Period 1 2 3 4 5 6 7	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.14E+10 1.16E+10 1.16E+10 1.20E+10 Decompos 8.E 4.873544 5.278142 5.513113 6.68848 6.652821 5.69607 5.797962	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 57948 19 23843 19 93950 ition of D(AB) D(PPB) 25 36424 21 67477 20 03608 19 85722 21 01140 20 86539 20 49894	7.494523 13.20724 12.15236 13.18061 12.68458 12.16864 12.37322 11.98304 12.05076 RES1 2.359279 5.538444 8.217187 8.743011 8.766133 8.768134 8.967385	41.30405 37.76600 36.99274 34.93681 38.15507 37.50017 36.43706 36.48078 D(PIB) 0.331274 0.613171 4.780236 5.516859 6.626900 5.536819 7.693688	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692396 8.389737 BC 13.53322 14.75692 14.25026 13.90230 13.65647 13.40288 12.95209	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76051 16.27379 RES 0.286619 3.324867 3.067400 3.671803 3.499564 4.484822 4.435222	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498561 2.579859 D(AB) 58 12537 50.77722 46.555697 46.38791 43.397782 42.50740	1 9985/ 2 7970/ 4 1904/ 4 1375/ 3 9792/ 3 9388/ 4 1600/ 4 2856/ D(M2) 0 00000/ 3 3145/ 3 0218/ 3 0218/ 3 0241/ 2 945/2
Period 1 2 3 4 6 6 7 8 9 10 /ariance Period 1 2 3 4 6 6 7 8 9	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.16E+10 1.16E+10 1.20E+10 Decompos 8.E 4.873544 5.278142 5.513113 5.68848 6.65221 5.69607 5.797962 5.833478 6.883478 6.883478 6.883478 6.883478	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 57948 19 23843 19 93950 ition of D(AB) D(PPB) 25 36424 21 67477 20 03608 19 85722 21 01140 20 86539 20 49894 20 57999 20 30830	7.494523 13.20724 12.15236 13.18061 12.68458 12.16864 12.37322 11.98304 12.05076 RES1 2.359279 5.538444 8.217187 8.743011 8.766133 8.768134 8.967385 9.406553 9.416073	41,30405 37,76600 36,99274 34,93681 38,15507 37,50017 36,43706 36,48078 D(PIB) 0,331274 0,613171 4,780236 5,516859 6,625900 6,536819 7,693294 8,267391	12.37023 11.20206 10.13523 9.692732 9.147994 8.948879 8.692396 8.389737 BC 13.53322 14.75692 14.25026 13.90230 13.65547 13.40288 12.95209 12.82874 12.61167	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061 16.27379 RES 0.286619 3.324867 3.067400 3.671803 3.49964 4.484822 4.514326 4.959419	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498661 2.679859 D(AB) 58 12537 50.77722 46.55697 46.38791 44.43601 43.97782 42.50740 42.02262 41.39263	1 9985 2 79700 4 1904 4 1375 3 97922 4 39000 4 2856 0 00000 3 3145 3 0218 3 0241 2 9452 2 9544 3 0465
Period 1 2 3 4 6 7 7 8 9 10 /ariance Period 1 2 3 4 6 6 7 8	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.14E+10 1.14E+10 1.16E+10 1.16E+10 1.20E+10 Decompos 8.E 4.673544 5.278142 5.513113 6.688848 6.652621 5.698607 5.797962 5.833478	30.29326 13.63230 14.91371 16.93898 19.07066 18.60493 17.54249 18.57948 19.23843 19.93950 ition of D(AB) D(PPB) 25.36424 21.67477 20.03608 19.85722 21.01140 20.86539 20.49894	7.494523 13.20724 12.15236 13.18061 12.68458 12.16864 12.37322 11.98304 12.06076 RES1 2.359279 5.538444 8.217187 8.743011 8.766133 8.708134 8.967385 9.406553	41.30405 37.76600 36.99274 34.93681 38.15507 37.50017 36.43705 36.43705 36.43705 36.43707 0.613171 4.780236 5.516859 5.516859 5.536819 7.693688 7.693294	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692396 8.389737 BC 13.53322 14.75692 14.25026 13.90230 13.62647 13.40268 12.95209 12.82874	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061 16.27379 RES 0.286619 3.324867 3.067400 3.571803 3.499664 4.48482 4.435222 4.514326	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498561 2.579859 D(AB) 58 12537 50.77722 46.55697 46.38791 44.3501 43.97782 42.50740 42.02262	1.9985 2.79700 4.1904 4.1376 3.9792 3.9388 4.16006 4.28667 0.00006 3.3145 3.09186 3.02196 3.02412 2.94522 2.94548
Period 1 2 3 4 6 6 7 8 9 10 Variance Period 1 2 3 4 6 6 7 7 8 9 10 Variance 1 2 3 4 6 7 7 8 9 10 Variance 1 4 6 7 7 8 9 10 Variance	5.94E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.14E+10 1.16E+10 1.20E+10 Decompos 8.E 4.873544 5.278142 5.513113 5.68848 6.65221 5.69607 5.797962 5.833478 6.883474 6.937911	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 57948 19 23843 19 93950 ition of D(AB) D(PPB) 25 36424 21 67477 20 03608 19 85722 21 01140 20 86539 20 49894 20 57999 20 30830	7.494523 13.20724 12.15236 13.18061 12.68458 12.16864 12.37322 11.98304 12.05076 RES1 2.359279 5.538444 8.217187 8.743011 8.766133 8.768134 8.967385 9.406553 9.416073	41,30405 37,76600 36,99274 34,93681 38,15507 37,50017 36,43706 36,48078 D(PIB) 0,331274 0,613171 4,780236 5,516859 6,625900 6,536819 7,693294 8,267391	12.37023 11.20206 10.13523 9.692732 9.147994 8.948879 8.692396 8.389737 BC 13.53322 14.75692 14.25026 13.90230 13.65547 13.40288 12.95209 12.82874 12.61167	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061 16.27379 RES 0.286619 3.324867 3.067400 3.671803 3.49964 4.484822 4.514326 4.959419	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498661 2.679859 D(AB) 58 12537 50.77722 46.55697 46.38791 44.43601 43.97782 42.50740 42.02262 41.39263	1 9985 2 79700 4 1904 4 1375 3 97922 4 39000 4 2856 0 00000 3 3145 3 0218 3 0241 2 9452 2 9544 3 0465
Period 1 2 3 4 5 6 7 7 8 9 10	5.94E+09 9.01E+09 9.02E+09 1.02E+10 1.08E+10 1.11E+10 1.14E+10 1.16E+10 1.20E+10 Decompos 8.E 4.873544 5.278142 5.513113 6.588848 6.652821 5.699607 5.797962 5.833478 6.884414 6.9379111	30.29326 13.63230 14.91371 16.93898 19.07066 18.60493 17.54249 18.57948 19.23843 19.93950 ition of D(AB) D(PPB) 25.36424 21.67477 20.03608 19.85722 21.01140 20.86539 20.49894 20.57999 20.30830 20.73174	7.494523 13.20724 12.15236 13.18061 12.68458 12.16864 12.37322 11.98304 12.05076 RES1 2.359279 5.538444 8.217187 8.743011 5.766133 8.708134 8.967385 9.406553 9.416073 9.832431 RES1	41.30405 37.76600 36.99274 34.93681 38.15507 37.50017 36.43706 36.43706 36.43706 36.43707 4.780236 5.516859 5.516859 5.516859 5.536819 7.693688 7.693688 7.693294 8.267391 8.460233	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692396 8.389737 BC 13.53322 14.75692 14.25026 13.90230 13.62647 13.40288 12.95209 12.82874 12.61167 12.41217	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061 16.27379 RES 0.286619 3.324867 3.067400 3.671803 3.499664 4.484822 4.514326 4.9659419 4.870728 RES 5.534963	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498561 2.579859 D(AB) 58 12637 50.77722 46.55697 46.38791 44.3501 43.97782 42.50740 42.02262 41.39263 40.66441	1 9985/ 2 79700 4 1904 4 1375/ 3 9792/ 3 9388 4 16009 4 2856/ 0 00000 3 3145/ 3 0218/ 3 0245/ 3 0245/
Period 1 2 3 4 6 6 7 8 9 10 /ariance Period 1 2 3 4 6 6 7 8 9 10 /ariance	5.94E+09 9.01E+09 9.02E+10 1.02E+10 1.03E+10 1.11E+10 1.14E+10 1.14E+10 1.16E+10 1.20E+10 Decompos 8.E 4.873544 6.278142 6.513113 6.688848 6.662821 6.688848 6.662821 6.6884414 6.937911 Decompos 8.E	30.29326 13.63230 14.91371 16.93898 19.07066 18.60493 17.54249 18.57948 19.23843 19.93950 ition of D(AB) D(PPB) 25.36424 21.67477 20.03608 19.86722 21.01140 20.86539 20.49894 20.57999 20.30830 20.73174	7.494523 13.20724 12.15236 13.18061 12.68468 12.16864 12.37322 11.98304 12.06076 RES1 2.369279 5.538444 8.217187 8.743011 8.766133 8.708134 8.967385 9.406553 9.415073 9.832431 RES1 12.206077 9.021738	41.30405 37.76600 36.99274 34.93681 38.15507 37.50017 36.43706 36.48078 D(PIB) 0.331274 0.613171 4.780236 5.516859 5.516859 5.536819 7.693688 7.693294 8.267391 8.460233 D(PIB) 0.437602 0.333613	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692396 8.389737 BC 13.53322 14.75692 14.25026 13.90230 13.62647 13.40288 12.95209 12.82874 12.61167 12.41217 BC 2.900300 3.683278	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061 16.27379 RES 0.286619 3.324867 3.067400 3.671803 3.499664 4.484822 4.514326 4.9659419 4.870728 RES 5.534963	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498561 2.579859 D(AB) 58 12537 50.77722 46.55697 44.336791 44.337782 42.50740 42.02262 41.39263 40.66441 D(AB) 4.715724 3.738163	D(M2)
Period 1 2 3 4 6 6 7 8 9 10 /ariance Period 1 2 3 4 6 6 7 8 9 10 /ariance Period 1 2 3 4 6 6 7 8 9 10 /ariance	5.94E+09 9.01E+09 9.01E+09 9.02E+10 1.08E+10 1.18E+10 1.16E+10 1.16E+10 1.20E+10 Decompos 8.E 4.873544 5.278142 5.513113 5.68848 5.65281 5.65281 5.69607 5.797962 5.833478 6.937911 Decompos S.E 1.05E+10 1.22E+10 1.32E+10	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 57948 19 23843 19 93950 ition of D(AB) D(PPB) 25 36424 21 67477 20 03608 19 85722 21 01140 20 86539 20 49894 20 57999 20 30830 20 73174 ition of D(M2) D(PPB)	7.494523 13.20724 12.15236 13.18061 12.68458 12.16864 12.37322 11.98304 12.05076 RES1 2.359279 5.538444 8.217187 8.743011 8.766133 8.708134 8.967385 9.406553 9.416073 9.832431 RES1 12.20607 9.021738 9.604189	41,30405 37,76600 36,99274 34,93581 38,15507 37,50017 36,43706 36,48078 D(PIB) 0,331274 0,613171 4,780236 5,516859 6,625900 6,536819 7,693294 8,267391 8,460233 D(PIB) 0,437602 0,333613 9,588096	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692395 8.389737 BC 13.53322 14.75692 14.25026 13.90230 13.62547 13.40288 12.95209 12.82874 12.61167 12.41217 BC 2.900300 3.683278 3.735734	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061 16.27379 RES 0.286619 3.324867 3.067400 3.671803 3.499654 4.484822 4.514326 4.969419 4.870728 RES 6.534963 13.77014 11.75612	1.013982 1.637364 1.870400 2.415482 2.283046 2.215031 2.498561 2.679859 D(AB) 58 12537 50.77722 46.55697 44.3501 43.97782 44.350740 42.0262 41.39263 40.66441 D(AB)	1.9985/ 2.7970/ 4.1904/ 4.1376/ 3.9792/ 3.9388/ 4.1600/ 4.2856/ D(M2) 0.0000/ 3.3145/ 3.0219/ 3.0219/ 3.0241/ 2.9456/ 3.0245/
Period 1 2 3 4 6 6 7 8 9 10 /arriance Period 1 2 3 4 6 6 7 8 9 10 /arriance Pariod 1 2 3 4 6 7 8 9 10 /arriance Pariod	5.94E+09 9.01E+09 9.02E+10 1.02E+10 1.03E+10 1.11E+10 1.14E+10 1.16E+10 1.16E+10 1.20E+10 Decompos 8.E 4.673544 6.278142 6.513113 6.688848 6.662821 6.688848 6.662821 6.6884414 6.937911 Decompos 8.E	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 57948 19 23843 19 93950 ition of D(AB): D(PPB) 25 36424 21 67477 20 03608 19 86722 21 01140 20 4649 20 73174 ition of D(M2): D(PPB) 0.083082 0.59734 1 416724 3 206138	7.494523 13.20724 12.15236 13.18061 12.68468 12.16864 12.37322 11.98304 12.06076 RES1 2.369279 5.538444 8.217187 8.743011 8.766133 8.708134 8.967385 9.406553 9.416073 9.832431 RES1 12.20607 9.021738 9.604189 10.32075	41.30405 37.76600 36.99274 34.93681 38.15507 37.50017 36.43706 36.48078 D(PIB) 0.331274 0.613171 4.780236 5.516859 5.536819 7.693688 7.693294 8.267391 8.460233 D(PIB) 0.437602 0.333613 9.588096 10.42381	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692396 8.389737 BC 13.53322 14.75692 14.25026 13.90230 13.62647 13.40268 12.95209 12.82874 12.61167 12.41217 BC 2.900300 3.683278 3.735734 3.552301	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061 16.27379 8E8 0.286619 3.324867 3.067400 3.571803 3.499564 4.48482 4.435222 4.435222 4.514326 4.969419 4.870728 8ES 5.534963 13.77014 11.75612 11.95539	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498561 2.579859 D(AB) 58 12637 50.77722 46.55697 44.3501 43.97782 42.50740 42.02262 41.39263 40.66441 D(AB) 4.715724 3.738163 3.200273 3.094548	D(M2)
Period 1 2 3 4 5 6 7 8 9 10 /eriance Period 1 2 3 4 6 6 7 8 9 10 /eriance Period 1 2 3 4 6 6 7 7 8 9 10 /eriance	5.94E+09 9.01E+09 9.01E+09 9.02E+10 1.08E+10 1.18E+10 1.16E+10 1.16E+10 1.20E+10 Decompos 8.E 4.873544 5.278142 5.513113 6.58848 5.65281 5.69607 5.797962 5.83478 6.937911 Decompos 8.E 1.05E+10 1.22E+10 1.33E+10 1.33E+10	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 57948 19 23843 19 93950 ition of D(AB) D(PPB) 25 36424 21 67477 20 03608 19 85722 21 01140 20 86539 20 49894 20 57999 20 30830 20 73174 ition of D(M2) D(PPB)	7.494523 13.20724 12.15236 13.18061 12.68458 12.16864 12.37322 11.98304 12.05076 RES1 2.359279 5.538444 8.217187 8.743011 7.766133 8.708134 8.967385 9.416073 9.832431 RES1 12.20607 9.021738 9.604189 10.32075 9.922844	41,30405 37,76600 36,99274 34,93581 38,15507 37,50017 36,43706 36,48078 D(PIB) 0,331274 0,613171 4,780236 5,516859 6,626900 5,536819 7,693294 8,267391 8,460233 D(PIB) 0,437602 0,333613 9,588096 10,42381 13,06502	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692395 8.389737 BC 13.53322 14.75692 14.25026 13.90230 13.65547 13.40288 12.95209 12.82874 12.61167 12.41217 BC 2.900300 3.683278 3.735734 3.552301 3.293213	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061 16.27379 RES 0.286619 3.324867 3.067400 3.571803 3.499654 4.484822 4.514326 4.9659419 4.870728 RES 5.534963 13.77014 11.75612 11.95539 12.96806	1.013982 1.637364 1.870400 2.415482 2.283046 2.215031 2.498561 2.679859 D(AB) 58 12637 50.77722 46.55697 44.43601 43.97782 42.50740 42.02262 41.39263 40.66441 D(AB) 4.715724 3.738163 3.200273 3.094548 3.356307	1.9985/ 2.7970/ 4.1904/ 4.1376/ 3.9792/ 3.9388/ 4.1600/ 4.2856/ D(M2) 0.0000/ 3.3145/ 3.0219/ 3.0219/ 3.0241/ 2.9456/ 3.0245/
Period 1 2 3 4 5 6 7 8 9 10 /eriance Period 1 2 3 4 6 6 7 8 9 10 /eriance Period 1 2 3 4 6 6 7 7 8 9 10 /eriance	5.94E+09 9.01E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.14E+10 1.16E+10 1.20E+10	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 57948 19 23843 19 93950 ition of D(AB): D(PPB) 25 36424 21 67477 20 03608 19 86732 20 01140 20 86830 20 73174 ition of D(AB): D(PPB) 0.083082 0.59734 1416724 3 206138 3 947969 7 893526	7.494523 13.20724 12.15236 13.18061 12.68468 12.16864 12.37322 11.98304 12.05076 RES1 2.369279 5.538444 8.217187 8.743011 8.766133 8.708134 8.967385 9.406553 9.415073 9.832431 RES1 12.20607 9.021738 9.604189 10.32075 9.922844 11.27322	41.30405 37.76600 36.99274 34.93681 38.15507 37.50017 36.43706 36.48078 D(PIB) 0.331274 0.613171 4.780236 5.516859 5.536819 7.693684 7.693294 8.267391 8.460233 D(PIB) 0.437602 0.333613 9.588096 10.42381 13.06502 13.15080	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692396 8.389737 14.75692 14.25026 13.90230 13.62647 13.40268 12.95209 12.82874 12.61167 12.41217 BC 2.900300 3.683276 3.735734 3.552301 3.293213 3.110612	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061 16.27379 8E8 0.286619 3.324867 3.067400 3.571803 3.499664 4.48482 4.435222 4.435222 4.514326 4.969419 4.870728 8ES 5.534963 13.77014 11.75612 11.95539 12.96806 11.96673	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498561 2.579859 D(AB) 56 12637 50.77722 46.56597 44.34501 43.97782 42.50740 42.02262 41.39263 40.66441 D(AB) 4.715724 3.738163 3.200273 3.094548 3.356307 3.256878	1,9985, 2,7970, 4,1904, 1,1904
Period 1 2 3 4 5 6 7 8 9 10 /eriance Period 1 2 3 4 4 6 6 7 7 8 9 10 /ariance Period 1 2 3 4 5 6 6 7 7 8 9 10 /ariance Period	5.94E+09 9.01E+09 9.01E+09 9.02E+10 1.08E+10 1.18E+10 1.16E+10 1.16E+10 1.20E+10 Decompos 8.E 4.873544 5.278142 5.513113 6.68848 5.65221 5.69607 5.797962 5.83478 6.937911 Decompos S.E 1.05E+10 1.22E+10 1.33E+10 1.36E+10	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 57948 19 23843 19 93950 ition of D(AB) D(PPB) 25 36424 21 67477 20 03608 19 85722 21 01140 20 86539 20 49894 20 57999 20 30830 20 73174 ition of D(M2) D(PPB) 0 083082 0 597734 1 416724 3 206138 3 947969 7 893525 7 984271	7.494523 13.20724 12.15236 13.18061 12.68458 12.16864 12.37322 11.98304 12.05076 RES1 2.359279 5.538444 8.217187 8.743011 7.766133 8.708134 8.967385 9.406553 9.416073 9.832431 RES1 12.20607 9.021738 9.604189 10.32075 9.922844 11.27322 11.273266	41,30405 37,76600 36,99274 34,93581 38,15507 37,50017 36,43705 36,48078 D(PIB) 0,331274 0,613171 4,780236 5,516859 6,625900 5,536819 7,693294 8,267391 8,460233 D(PIB) 0,437602 0,333613 9,588096 10,42381 13,06502 13,15080	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692395 8.389737 BC 13.53322 14.75692 14.25026 13.90230 13.62547 13.40288 12.95209 12.82874 12.61167 12.41217 BC 2.900300 3.683278 3.735734 3.5552301 3.293213 3.110612 3.019672	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061 16.27379 RES 0.286619 3.324867 3.067400 3.571803 3.499654 4.495222 4.514326 4.9659419 4.870728 RES 5.534953 13.77014 11.75612 11.95539 12.96806 11.96673 13.15217	1.013982 1.637364 1.870400 2.415482 2.283046 2.215031 2.498561 2.679859 D(AB) 58 12637 50.77722 46.55697 44.43501 43.97782 42.50740 42.02262 41.39263 40.66441 D(AB) 4.715724 3.738163 3.200273 3.094548 3.356307 3.256878 3.758929	1.9985.2 2.7970.4 1.1904.4 1.1904.4 1.1906.4 1.1
7 2 3 4 4 5 6 7 7 8 9 9 10	5.94E+09 9.01E+09 9.01E+09 9.62E+09 1.02E+10 1.08E+10 1.11E+10 1.14E+10 1.16E+10 1.20E+10	30 29326 13 63230 14 91371 16 93898 19 07066 18 60493 17 54249 18 57948 19 23843 19 93950 ition of D(AB): D(PPB) 25 36424 21 67477 20 03608 19 86732 20 01140 20 86830 20 73174 ition of D(AB): D(PPB) 0.083082 0.59734 1416724 3 206138 3 947969 7 893526	7.494523 13.20724 12.15236 13.18061 12.68468 12.16864 12.37322 11.98304 12.05076 RES1 2.369279 5.538444 8.217187 8.743011 8.766133 8.708134 8.967385 9.406553 9.415073 9.832431 RES1 12.20607 9.021738 9.604189 10.32075 9.922844 11.27322	41.30405 37.76600 36.99274 34.93681 38.15507 37.50017 36.43706 36.48078 D(PIB) 0.331274 0.613171 4.780236 5.516859 5.536819 7.693684 7.693294 8.267391 8.460233 D(PIB) 0.437602 0.333613 9.588096 10.42381 13.06502 13.15080	12.37023 11.20206 10.13623 9.692732 9.147994 8.948879 8.692396 8.389737 14.75692 14.25026 13.90230 13.62647 13.40268 12.95209 12.82874 12.61167 12.41217 BC 2.900300 3.683276 3.735734 3.552301 3.293213 3.110612	17.93183 18.88601 17.39697 17.68721 16.76389 16.22316 16.76061 16.27379 8E8 0.286619 3.324867 3.067400 3.571803 3.499664 4.48482 4.435222 4.435222 4.514326 4.969419 4.870728 8ES 5.534963 13.77014 11.75612 11.95539 12.96806 11.96673	1.013982 1.637364 1.870400 2.416482 2.283046 2.215031 2.498561 2.579859 D(AB) 56 12637 50.77722 46.56597 44.34501 43.97782 42.50740 42.02262 41.39263 40.66441 D(AB) 4.715724 3.738163 3.200273 3.094548 3.356307 3.256878	1,9985, 2,7970, 4,1904, 1,1904

Annexe.26: Décomposition de la variance de l'erreur de prévision.

Period	S.E.	ition of D(PPE D(PPB)	VAG	D(VAM)	D(VAI)
1	9.784154	100.0000	0.000000	0.000000	0.000000
2	11.20352	94.55030	2.049807	0.461160	2.938733
3	14.20895	93.46416	2.140133	1.869540	2.526169
4	17.97595	89.64318	4.051696	3.952532	2.352589
5	22.22206	88 70702	4.200076	4 588113	2.504789
6	27.97673	87.82745	4.442304	5.167655	2.562593
7	34.94662	87.26223	4.510641	5.603495	2.62363
8	44.09591	86 90546	4.638278	5.873859	2.58240
9	55.41084	86.67327	4.686998	6.029433	2.61030
10	69.81585	86.55508	4.713828	6.118118	2.61297
Varianc	e Decompos	ition of VAG:	AL MINISTER	1100-00000-000	
Period	S.E.	D(PPB)	VAG	D(VAM)	D(VAI)
1	1.552552	31.59834	68.40166	0.000000	0.000000
2	1.761936	33.45434	61.69984	0.981933	3.86388
3	1.972214	41.48564	52 41369	2.990108	3.11057
4	1.982701	41.37975	51.86178	3.555754	3.20271
5	2.160909	48.70146	44.93649	3 607256	2.75479
6	2.230873	50.72736	42.25622	3.758612	3.25781
7	2.462199	57.35672	35.53517	4.162363	2.94574
8	2.712072	62.17003	30.18740	4.708571	2.93399
9	3.113739	68_13682	24.07389	4.996743	2.79254
10	3.626085	72.86815	18.97932	5.339571	2.81295
Varianc Period	e Decompos S.E.	ition of D(VAI D(PPB)	VAG	D(VAM)	D(VAI)
1	1.717889	16.54010	0.853029	82.60687	0.000000
2	1.752288	15.90323	1.176658	80 45469	2.465428
	1.752200				
3	1.782779	18.33194	1.146367	77.80920	2.71249
3		18.33194 18.46091	1.146367	77.80920 76.02292	
4	1.782779				3.262667
	1.782779 1.806644	18.46091	2.253501	76.02292	3.262667
5	1.782779 1.806644 1.858224	18.46091 21.97257	2.253501 2.345315	76.02292 72.55494	3.26266 3.127176 3.09320
5	1.782779 1.806644 1.858224 1.874213	18.46091 21.97257 22.77025	2.253501 2.345315 2.601794	76.02292 72.55494 71.53475	2.71249- 3.26266 3.127176 3.09320 3.068566 3.181808
4 5 6 7	1.782779 1.806644 1.858224 1.874213 1.916812	18.46091 21.97257 22.77025 25.79606	2.253501 2.345315 2.601794 2.649750 2.674636	76.02292 72.55494 71.53475 68.48562	3.26266 3.127176 3.09320 3.068566 3.181808
4 5 6 7 8	1.782779 1.806644 1.858224 1.874213 1.916812 1.958494	18.46091 21.97257 22.77025 25.79606 28.29067	2.253501 2.345315 2.601794 2.649750	76.02292 72.55494 71.53475 68.48562 65.85288	3.26266 3.127176 3.09320 3.068566
4 5 6 7 8 9	1.782779 1.806644 1.858224 1.874213 1.916812 1.958494 2.044099 2.166169	18.46091 21.97257 22.77025 25.79606 28.29067 33.06852 38.80626 ition of D(VAI	2.253501 2.345315 2.601794 2.649750 2.674636 2.839646 3.123712	76.02292 72.55494 71.53475 68.48562 65.85288 61.01771 65.07179	3.26266 3.127176 3.09320 3.068566 3.181808 3.074229
4 5 6 7 8 9 10	1.782779 1.806644 1.858224 1.874213 1.916812 1.958494 2.044099 2.166169	18.46091 21.97257 22.77025 25.79606 28.29067 33.06852 38.80626	2.253501 2.345315 2.601794 2.649750 2.674636 2.839545 3.123712	76.02292 72.55494 71.53475 68.48562 65.85288 61.01771	3.26266 3.127176 3.09320 3.068566 3.181808 3.074229
4 5 6 7 8 9 10 Varianc Period	1.782779 1.806644 1.858224 1.874213 1.916812 1.958494 2.044099 2.166169 e Decompos S.E.	18.46091 21.97257 22.77025 25.79606 28.29067 33.06852 38.80626 ition of D(VAI D(PPB)	2.253501 2.345315 2.601794 2.649750 2.674636 2.839546 3.123712): VAG	76.02292 72.55494 71.53475 68.48562 65.85288 61.01771 55.07179 D(VAM)	3.26266 3.127176 3.093202 3.068566 3.181808 3.074229 2.998240 D(VAI)
4 5 6 7 8 9 10 Varianc Period	1.782779 1.806644 1.858224 1.874213 1.916812 1.958494 2.044099 2.166169 e Decompos S.E. 3.588944 3.759462	18.46091 21.97257 22.77025 25.79606 28.29067 33.06852 38.80626 ition of D(VAI D(PPB)	2.253501 2.345315 2.601794 2.649750 2.674636 2.839545 3.123712): VAG 27.96608 27.82100	76.02292 72.55494 71.53475 68.48562 65.85288 61.01771 55.07179 D(VAM)	3.26266 3.127176 3.09320 3.068566 3.181808 3.074229 2.998240 D(VAI)
4 5 6 7 8 9 10 Varianc Period	1.782779 1.806644 1.858224 1.874213 1.916812 1.958494 2.044099 2.166169 e Decompos S.E. 3.588944 3.759462 4.274031	18.46091 21.97257 22.77025 25.79606 28.29067 33.06852 38.80626 ition of D(VAI D(PPB) 41.62392 37.93593 42.14101	2.253501 2.345315 2.601794 2.649750 2.674636 2.839545 3.123712): VAG 27.96608 27.82100 25.38499	76.02292 72.55494 71.53475 68.48562 65.85288 61.01771 55.07179 D(VAM)	3.26266 3.127176 3.09320 3.06856 3.181800 3.074229 2.998240 D(VAI)
4 5 6 7 8 9 10 Varianc Period	1.782779 1.806644 1.858224 1.874213 1.916812 1.958494 2.044099 2.166169 e Decompos S.E. 3.588944 3.759462 4.274031 4.304386	18.46091 21.97257 22.77025 25.79606 28.29067 33.06852 38.80626 ition of D(VAI D(PPB) 41.62392 37.93593 42.14101 41.83117	2 253501 2 345315 2 601794 2 649750 2 674636 2 839545 3 123712): VAG 27 96608 27 82100 25 38499 25 04965	76.02292 72.55494 71.53475 68.48562 65.85288 61.01771 55.07179 D(VAM) 10.79093 14.51160 15.92112 16.16048	3.26266 3.127176 3.09320 3.068566 3.181806 3.074229 2.998240 D(VAI) 19.61907 19.73147 16.55286 16.95869
4 5 6 7 8 9 10 Varianc Period	1.782779 1.806644 1.858224 1.874213 1.916812 1.958494 2.044099 2.166169 e Decompos S.E. 3.588944 3.759462 4.274031 4.304386 4.440487	18.46091 21.97257 22.77025 25.79606 28.29067 33.06852 38.80626 ition of D(VAI D(PPB) 41.62392 37.93593 42.14101 41.83117 44.83314	2.253501 2.345315 2.601794 2.649750 2.674636 2.839546 3.123712): VAG 27.96608 27.82100 25.38499 26.04966 23.54129	76.02292 72.55494 71.53475 68.48562 65.85288 61.01771 55.07179 D(VAM) 10.79093 14.51160 15.92112 16.16048 15.21722	3.26266 3.127176 3.093202 3.068566 3.181808 3.074229 2.998240 D(VAI) 19.61907 19.73147 16.55288 16.40836
4 5 6 7 8 9 10 Varianc Period	1.782779 1.806644 1.858224 1.874213 1.916812 1.958494 2.044099 2.166169 e Decompos S.E. 3.588944 3.759462 4.274031 4.304386	18.46091 21.97257 22.77025 25.79606 28.29067 33.06852 38.80626 ition of D(VAI D(PPB) 41.62392 37.93593 42.14101 41.83117 44.83314 46.58358	2 253501 2 345315 2 601794 2 649750 2 674636 2 839545 3 123712): VAG 27 96608 27 82100 25 38499 25 04965	76.02292 72.55494 71.53475 68.48562 65.85288 61.01771 55.07179 D(VAM) 10.79093 14.51160 15.92112 16.16048 15.21722 15.18016	3.26266 3.127176 3.09320 3.068566 3.181808 3.074229 2.998240 D(VAI) 19.6190 19.7314 16.55286 16.95869 16.40836 15.67776
4 5 6 7 8 9 10 Varianc Period 1 2 3 4 5 6 7	1.782779 1.806644 1.858224 1.874213 1.916812 1.958494 2.044099 2.166169 e Decompos S.E. 3.588944 3.759462 4.274031 4.304386 4.440487	18.46091 21.97257 22.77025 25.79606 28.29067 33.06852 38.80626 ition of D(VAI D(PPB) 41.62392 37.93593 42.14101 41.83117 44.83314	2.253501 2.345315 2.601794 2.649750 2.674636 2.839546 3.123712): VAG 27.96608 27.82100 25.38499 26.04966 23.54129	76.02292 72.55494 71.53475 68.48562 65.85288 61.01771 55.07179 D(VAM) 10.79093 14.51160 15.92112 16.16048 15.21722	3.26266 3.127176 3.09320 3.06856 3.181800 3.074229 2.998240 D(VAI)
4 5 6 7 8 9 10 Varianc Period	1.782779 1.806644 1.858224 1.874213 1.916812 1.958494 2.044099 2.166169 e Decompos S.E. 3.588944 3.759462 4.274031 4.304386 4.440487 4.560932	18.46091 21.97257 22.77025 25.79606 28.29067 33.06852 38.80626 ition of D(VAI D(PPB) 41.62392 37.93593 42.14101 41.83117 44.83314 46.58358	2.253501 2.345315 2.601794 2.649750 2.674636 2.839545 3.123712): VAG 27.96608 27.82100 25.38499 26.04965 23.54129 22.55847	76.02292 72.55494 71.53475 68.48562 65.85288 61.01771 55.07179 D(VAM) 10.79093 14.51160 15.92112 16.16048 15.21722 15.18016	3.26266 3.127176 3.09320 3.068566 3.181808 3.074229 2.998240 D(VAI) 19.6190 19.7314 16.55286 16.95869 16.40836 15.67776
4 5 6 7 8 9 10 Varianc Period 1 2 3 4 5 6 7	1.782779 1.806644 1.858224 1.874213 1.916812 1.958494 2.044099 2.166169 e Decompos S.E. 3.588944 3.759462 4.274031 4.304386 4.440487 4.560932 4.881860	18.46091 21.97257 22.77025 25.79606 28.29067 33.06852 38.80626 ition of D(VAI D(PPB) 41.62392 37.93593 42.14101 41.83117 44.83314 46.58358 51.47180	2.253501 2.345315 2.601794 2.649750 2.674636 2.839545 3.123712): VAG 27.96608 27.82100 25.38499 25.04965 23.54129 22.55847 20.62709	76.02292 72.55494 71.53475 68.48562 65.86288 61.01771 55.07179 D(VAM) 10.79093 14.51160 15.92112 16.16048 15.21722 16.18016 14.14891	3.26266 3.127176 3.09320 3.068566 3.181806 3.07422 2.998240 D(VAI) 19.6190 19.7314 16.55288 16.95869 16.40836 15.67776 13.75218

Annexe.27: Test de causalité au sens de Granger.

Pairwise Granger Causality Tests Date: 05/25/13 Time: 12:08 Sample: 1970 2009 Lags: 1

Null Hypothesis:	Obs	F-Statistic	Probability
RES1 does not Granger Cause D(PPB)	38	1.66906	0.20485
D(PPB) does not Granger Cause RES1		0.58657	0.44888
D(PIB) does not Granger Cause D(PPB)	38	1.54849	0.22163
D(PPB) does not Granger Cause D(PIB)		5.60098	0.02361
BC does not Granger Cause D(PPB)	38	6.9E-05	0.99342
D(PPB) does not Granger Cause BC		0.02769	0.86879
RES does not Granger Cause D(PPB)	38	45.9286	7.4E-08
D(PPB) does not Granger Cause RES		5.82930	0.02113
D(AB) does not Granger Cause D(PPB)	38	2.11410	0.15486
D(PPB) does not Granger Cause D(AB)		0.91790	0.34460
D(M2) does not Granger Cause D(PPB)	38	0.04805	0.82776
D(PPB) does not Granger Cause D(M2)		2.40936	0.12961
D(PIB) does not Granger Cause RES1	38	0.01 <mark>33</mark> 4	0.90870
RES1 does not Granger Cause D(PIB)		8.07639	0.00743
BC does not Granger Cause RES1	39	0.03946	0.84366
RES1 does not Granger Cause BC		0.98104	0.32855
RES does not Granger Cause RES1	39	0.71906	0.40205
RES1 does not Granger Cause RES		5.22732	0.02822
D(AB) does not Granger Cause RES1	38	0.15100	0.69993
RES1 does not Granger Cause D(AB)		1.04065	0.31467
D(M2) does not Granger Cause RES1	38	0.88438	0.35345
RES1 does not Granger Cause D(M2)		3.05796	0.08911
BC does not Granger Cause D(PIB)	38	6.22930	0.01743
D(PIB) does not Granger Cause BC		0.45552	0.50416
RES does not Granger Cause D(PIB)	38	0.04373	0.83557
D(PIB) does not Granger Cause RES		47.9584	4.8E-08
D(AB) does not Granger Cause D(PIB)	38	0.41430	0.52399
D(PIB) does not Granger Cause D(AB)		0.00138	0.97055
D(M2) does not Granger Cause D(PIB)	38	5.01410	0.03160
D(PIB) does not Granger Cause D(M2)		0.08985	0.76614
RES does not Granger Cause BC	39	36.5619	6.0E-07
BC does not Granger Cause RES		2.06724	0.15913
D(AB) does not Granger Cause BC	38	1.70161	0.20059
BC does not Granger Cause D(AB)		3.41710	0.07299
D(M2) does not Granger Cause BC	38	0.93345	0.34060
BC does not Granger Cause D(M2)		5.83527	0.02107
D(AB) does not Granger Cause RES	38	0.19438	0.66200
RES does not Granger Cause D(AB)		3.52394	0.06884
D(M2) does not Granger Cause RES	38	0.24866	0.62114
RES does not Granger Cause D(M2)		7.96947	0.00780
D(M2) does not Granger Cause D(AB)	38	1.69045	0.20204
D(AB) does not Granger Cause D(M2)		0.01202	0.91332

Annexe.28: Test de causalité au sens de Granger.

Pairwise Granger Causality Tests Date: 05/25/13 Time: 12:37 Sample: 1970 2009

Lags: 1

Null Hypothesis:	Obs	F-Statistic	Probability
VAG does not Granger Cause D(PPB)	38	0.12012	0.73098
D(PPB) does not Granger Cause VAG		0.32992	0.56938
D(VAM) does not Granger Cause D(PPB)	38	0.10299	0.75018
D(PPB) does not Granger Cause D(VAM)		0.21236	0.64777
D(VAI) does not Granger Cause D(PPB)	38	0.63113	0.43229
D(PPB) does not Granger Cause D(VAI)		0.31518	0.57809
D(VAM) does not Granger Cause VAG	38	0.25054	0.61983
VAG does not Granger Cause D(VAM)		0.29694	0.58926
D(VAI) does not Granger Cause VAG	38	0.25683	0.61548
VAG does not Granger Cause D(VAI)		4.27274	0.04619
D(VAI) does not Granger Cause D(VAM)	38	0.98984	0.32661
D(VAM) does not Granger Cause D(VAI)		1.00081	0.32398

Résumé:

L'énergie prend une place considérable dans l'économie des pays industrialisés. Leur sensibilité aux variations des prix est devenue flagrante durant ces deux chocs pétroliers. Paradoxalement ces boom de prix n'ont pas profité aux pays producteurs de cette ressource naturelle; essentiellement ceux dont les exportations pétrolières représentent la principale source de revenue. Les performances économiques de ces pays considérés comme exportateurs nets de pétrole révèlent un phénomène contre intuitif où la bénédiction des ressources naturelles ce transforme la plupart du temps en malédiction. L'expansion du secteur de la ressource naturelle engendre des effets adverses sur les autres secteurs exportateurs du pays. L'exploitation pétrolière apparait alors bien plus préjudiciable à la croissance économique que la pénurie des ressources; c'est le paradoxe de l'abondance ou bien la malédiction des ressources naturelles.

Mots clés: Croissance économique, Secteur en boom, désindustrialisation, désagriculturisation.

Summary:

Energy takes an important place in the economy of the industrialized countries. Their sensitivity to price changes became evident during the two oil shocks paradoxically these boom prices have not benefited producing countries of this natural resource. Mainly those whose oil exports are the main source of income. Economic performance of these countries considered net oil exporters show a phenomenon against which the blessing intuitive resource that transforms mostly curse. The expansion of the natural resource sector produces adverse effects on other export sectors of the country. Oil production then appears more detrimental to the economic and resource scarcity growth is the paradox of plenty or the resource curse.

Keywords: Economic Growth Sector in boom, industrialization, desagriculturization.

ملخص:

الطاقة تأخذ مكانا هاما في اقتصاد البلدان الصناعية. أصبحت حساسيتها للتغيرات في أسعار النفط واضحا خلال الصدمتين النفطية و الطفرة هي عدم استفادة الدول المنتجة لهذه الموارد الطبيعية استراتيجية من هاتين الصدمتين. و بشكل رئيسي البلدان التي تمثل فيها صادرات النفط المصدر الرئيسي للدخل الوطني. الأداء الاقتصادي لهذه البلدان التي تعتبر مصدرة صافية للنفط تبين ظاهرة ضد الموراد التي تدعى كذلك بظاهرة النعمة البديهية التي تتحول الى لعنة. لتوسع في قطاع الموارد الطبيعية آثارا سلبية على القطاعات التصديرية الأخرى من البلاد. يظهر إنتاج النفط أكثر ضررا على النمو الاقتصادي على ندرة الموارد هي مفارقة الوفرة أو لعنة الموارد

المصطلحات الاساسية: النمو الاقتصادي. قطاع في ازدهار. خفض في التصنيع خفض في الزراعة.

.