RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE ABDERRAHMANE MIRA BEJAIA FACULTÉ DE LA TECHNOLOGIE DÉPARTEMENT DE GÉNIE MÉCANIQUE

MEMOIRE

PRÉSENTÉ POUR L'OBTENTION DU DIPLÔME DE

MASTER

FILIÈRE : GÉNIE MÉCANIQUE

SPÉCIALITÉ : MAINTENANCE INDUSTRIELLE

Par:

MAKHLOUFI SOFIANE

ATMANI YANIS

Thème

Diminution des fréquences de la maintenance préventive d'une souffleuse SBO6 (Cevital).

Soutenu le 20/06/2017 devant le jury composé de:

Mr. BEN SAID Président

Mr. LAGGOUNE RADOUANE Rapporteur

Mr. AIT AMOUKHTAR H Examinateur

Année Universitaire 2016-2017

Remerciements

Nous remercions Dieu de nous avoir permis d'atteindre et d'avoir réussi nos études.

Nous exprimons toute notre gratitude à notre promoteur. Professeur LAGGOUNE Radouane qui nous a encadrés avec patience, riqueur et compétence. Nous le remercions pour son inépuisable disponibilité, ces critiques, son soutien et encouragements.

Nous voudrons étendre cette gratitude à Monsieur Youcef khoudja A|MOUMEN pour son accueil et suivie au sein de l'entreprise Cevital.

Nous inscrivons aussi dans ces lignes notre reconnaissance envers Monsieur A17 MOXHTAR EL hassene pour son aide, conseils et orientations.

Nous remercious également notre président de jury ainsi que les examinateurs pour avoir accepté de juger et de valoriser notre travail.

Nous exprimons notre reconnaissance à notre famille de nous avoir accompagné et supporté durant ce travail.

Nous remercions Monsieur Ouaret Monkrane de nous avoir aidé à retoucher et à finaliser ce travail.

Enfin, nous tenons à remercier sincèrement toutes les personnes ayant contribué de près ou de loin à la réalisation de ce travail.

Je dédie ce modeste travail à :

A ma mère, qui sans elle, je ne serai pas ici aujourd'hui, et elle est un magnifique modèle de labeur et de persévérance.

Mon père qui a toujours été là pour nous.

Ma sœur ; Chahinez,

Et à mon frère ; Massi.

Mes cousines; Katia et Lynda;

Toutes mes tantes.

Et Léticia qui ma aidé à maintes fois pour la réussite de ce travail.

A Tous mes amis qui m'ont aidé de prés ou de loin.

Sofiane

Je dédie ce modeste travail à :

A mon père, qui m'a donné un magnifique modèle de labeur et de persévérance.

Ma mère qui a toujours été là pour moi

Ma sœur ; Amina,

Et à mes deux frères ; Fayçal et Md Amine, à qui je dois beaucoup.

Mes grands parents.

Toutes mes tantes.

Tous mes oncles.

7ous mes amis qui m'ont aidé de prés

ou de loin.

Particulièrement Mouna.

Yanis

Table des matières

Liste des figures	04
Liste des tableaux	05
Introduction générale	06
Chapitre I : Concepts normalisés de la maintenance	
I.1.Formes et types de la maintenance	8
I.1.1. Maintenance préventive	8
I.1.2. Définition de la maintenance préventive et ces différents types	9
I.1.2.1.La maintenance préventive systématique	9
I.1.2.2.La maintenance préventive conditionnelle	9
I.1.3.Définition de la maintenance corrective et ces différents types	9
I.1.3.1.La maintenance corrective	9
I.1.4.Comparaison entre les différents types de maintenance	10
I.2.Les niveaux de maintenance	11
L3. Généralités sur la sûreté de fonctionnement	12
I.3.1 Concepts de base de la sûreté de fonctionnement (FMDS)	13
I.3.1.1.Fiabilité	13
I.3.1.2.Maintenabilité	15
I.3.1.3.Disponibilité	16
I.3.1.4.Sécurité	17
Charitas II a Miss en place d'un plan de maintenance préventive	
Chapitre II : Mise en place d'un plan de maintenance préventive	
II.1.Définition d'un plan de maintenance	18
II.2.Comment définir un plan adapté à chaque machine	18
II.2.1.Le critère de production	18
II.2.2. Choix par l'abaque de NOIRET	18
II.2.3.Le coût global	22
II.3. Opter pour un plan de maintenance préventive	23
II.3.1. Sur quoi agit la maintenance préventive	23
II.3.2. Politiques de maintenance	24
II.3.2.1. Maintenance préventif selon l'âge	24
II.3.2.2. Politique de remplacement périodique	24
II.3.3.Evaluation des temps de maintenance préventive	
II.4. Elaboration d'un plan de maintenance préventive	
II.4.1. Documents techniques constructeurs	27

II.4.2.Analyse historique	27
II.4.3.Analyse AMDEC	28
II.4.4.Planification des interventions par la méthode ABAC ABAD	29
Chapitre III : Présentation de l'entreprise et la souffleuse SBO6	
Introduction	31
III.1.Présentation Générale De Cevital Agro-industrie	31
III.2.Organigramme du complexe Cevital	32
III.3.Présentation de l'unité conditionnement d'huile	32
III.4.Conditionnement d'huile	33
III.5.Processus techno de la fabrication des bouteilles	34
III.6.Présentation de la souffleuse SBO6	35
III.7.Système fonctionnel de la souffleuse SBO6	35
III.8.Rôle des différents éléments de la souffleuse SBO6	36
III.8.1.Motorisation et transmission	36
III.8.2.L'alimentation	36
III.8.3. Le four	37
III.8.4. La table de transfert	37
III.8.5.La roue de soufflage	38
III.8.6.La sortie bouteilles	39
III.9.Principe de fonctionnement	40
Chapitre IV : Analyse des données de la souffleuse SBO6	
Introduction	
IV.1.Collecte de données	
IV.1.1.Les inconvénients rencontrés	
IV.2.Représentation des données	
IV.2.1.Les défaillances les plus récurrentes	
IV.2.2.Comparaison entre les temps d'arrêts préventif et correctif	
IV.2.3.Représentation des coûts	
IV.3.La perte de production	
IV.4Le plan de maintenance actuel de la souffleuse	49
Chapitre V : Application de la méthodologie sur la souffleuse SBO6	
Introduction	50
V.1.Utilisation de l'abaque de Noiret	
V.2.Le plan de maintenance a proposé	
V.3.Estimation des paramètres de loi de weibull	
•	

V.3.1.Calcul des TBF	52
V.3.2.Estimation de β et η	52
V.4.Les coûts des sous-ensembles défaillants du moule	53
V.5.Calcul de T optimum	53
V.5.1. Utilisation du modèle de Kelly	53
V.5.2.Utilisation de la méthode analytique (Politique de remplacement périodique)	54
V.6.Comparaison entre les deux méthodes	55
V.7.Les résultats des fréquences obtenues	55
Conclusion	56
Conclusion générale	57
Référencées bibliographiques	58
Annexe	60

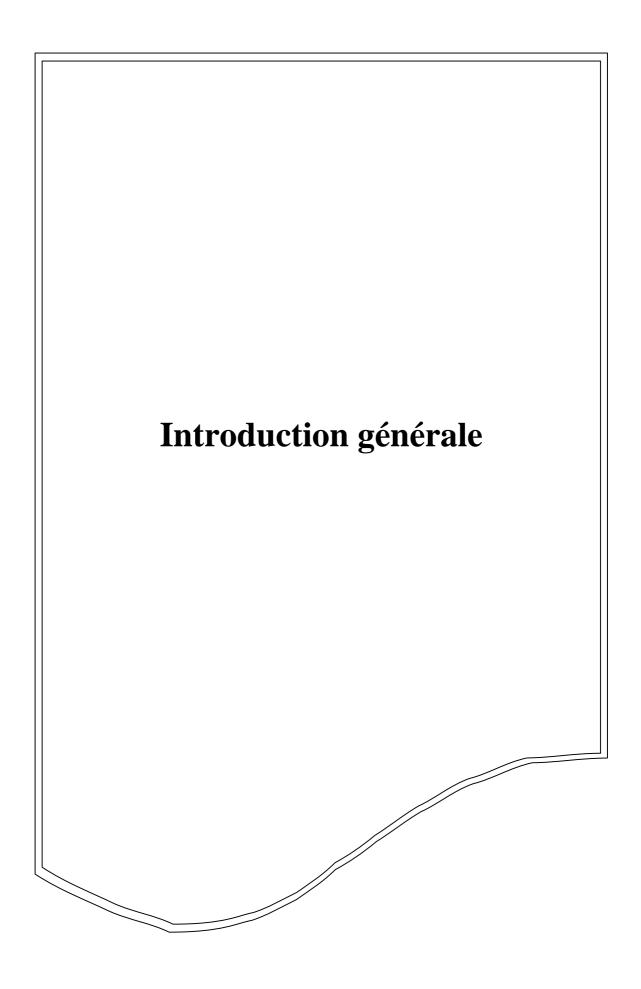

Liste des figures

Figure I.1.Les déférents types de maintenance	8
Figure I.2.Relation entre Les composantes de la sureté	13
Figure I.3.La fonction de fiabilité	13
Figure I.4. Allure du taux de panne	14
Figure II.1.Choix sur le coût global	23
Figure II.2: Abaque de Kelly.	26
Figure II.3.Méthode ABAC ABAD	30
Figure III.1.Organigramme du complexe Cevital	32
Figure III.2.les unités de production de l'huile	33
Figure III.3.Organigramme du service de conditionnement d'huile.	
Figure III.4.La transformation d'une préforme en bouteille	35
Figure III.5. Motorisation et transmission de la souffleuse SBO6	36
Figure III.6. Alimentation de la souffleuse SBO6	37
Figure III.7. Four de la souffleuse SBO6	37
Figure III.8. Table de transfert de la souffleuse SBO6	38
Figure III.9.La roue de soufflage de la souffleuse SBO6.	39
Figure III.10.La sortie bouteilles de la souffleuse SBO6	39
Figure III.11. Principe de fonctionnement de la souffleuse SBO6	41

Liste des tableaux

Tableau I.1: Comparaison entre les différents types de maintenance	10
Tableau I.2 : Les ressources nécessaires pour chaque niveau de maintenance.	12
Tableau II.1: L'âge de l'équipement	19
Tableau II.2: Interdépendance de l'équipement	20
Tableau II.3: Coût de l'équipement.	20
Tableau II.4: Complexité et accessibilité de l'équipement.	20
Tableau II.5: La robustesse et la précision de l'équipement	21
Tableau II.6: L'origine de l'équipement	21
Tableau II.7: L'utilisation de l'équipement dans le temps.	21
Tableau II.8: Conséquences de ses défaillances sur le produit.	22
Tableau II.9: Les délais de production.	22
Tableau II.10: Les indices de criticité	22
Tableau II.11: Analyse des modes de défaillances et de leur criticité	29
Tableau II.12 : Echelle de criticité (C=G.O.D)	29
Tableau IV.1: Les défaillances les plus récurrentes(en 2016).	43
Tableau IV.2: Les causes et les effets du moule non verrouillé	45
Tableau IV.3: Les causes et les effets des défaillances mécaniques	45
Tableau IV.4: Les causes et les effets du couple four	46
Tableau IV.5: Les remplacements correctif	46
Tableau IV.6: Les sous ensemble et leurs nombres de remplacement	47
Tableau IV.7: Les temps d'arrêt de la souffleuse SBO6	47
Tableau IV.8: Les coûts de maintenance de la souffleuse SBO6	48
Tableau IV.9: les coûts préventif et correctif des ensembles	48
Tableau V.1: les TBF des sous-ensembles les plus critiques du moule.	52
Tableau V.2: Paramètres de la loi de weibull et le T optimum.	52
Tableau V.3: Coûts des interventions sur les annexes moule.	53
Tableau V.4: les résultats trouvés du T optimum des sous-ensembles avec la méthode de Kelly	53
Tableau V.5: les résultats trouvé de T optimum des sous ensembles avec la méthode du	
remplacement périodique.	55

Introduction générale

Contexte

La maintenance industrielle à pour but d'assurer le bon fonctionnement des outils de production afin de satisfaire la demande en qualité et en quantité, tout on respectant les délais et les coûts.

Pour avoir un système de production fiable il faut définir un plan de maintenance adapté, car à chaque instant de l'exploitation du système le service maintenance doit faire un choix entre le préventif et le correctif. Afin de déterminer la meilleur action à effectuer, pour une exploitation optimale du système, ce choix n'est pas toujours évident, car si on veut sécurise le système cela exige une fréquence de maintenance préventive élevée, mais de point de vue économique ce n'est pas intéressant, car sa engendre un ralentissement de la production, alors il faut trouver le temps optimum d'intervention.

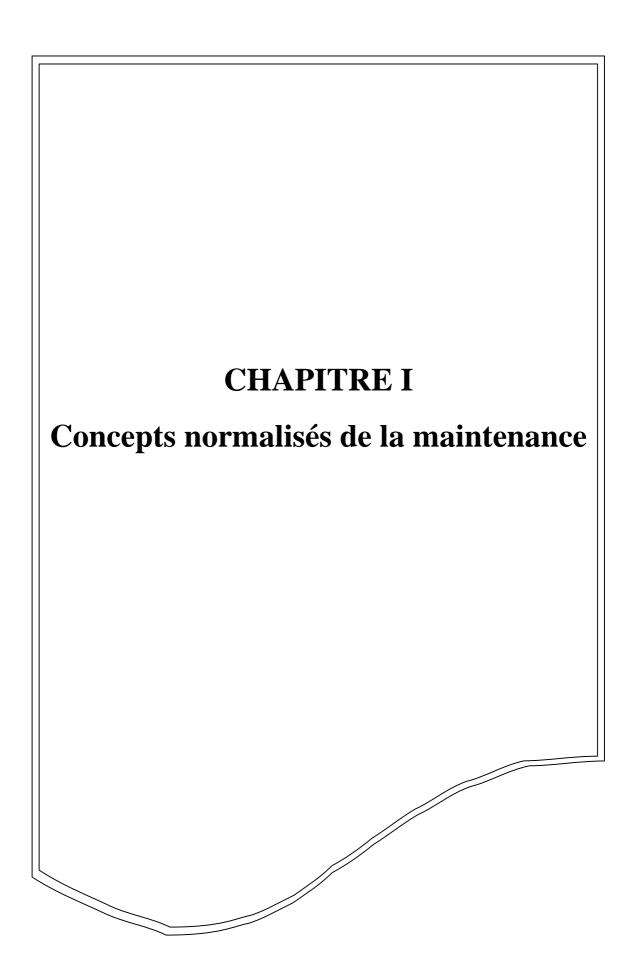
Une gestion efficace de la maintenance nécessite de faire appel à des procédures d'optimisation, permettant de tenir compte de plusieurs facteurs. En effet, une maintenance optimale est celle qui permettra d'avoir un rendement maximal avec un coût optimal.

Problématique

Depuis l'entré de l'Algérie en économie du marché, le groupe Cevital a vu le jour et ne cesse d'amplifier ces outils de production. Ce leader du secteur agroalimentaire, dans notre pays, représente, aujourd'hui, une force économique africaine. Ce n'est un secret pour personne, Cevital a pris le monopole du marché de sucre et d'huile, de ce fait il n'a qu'une seule ambition produire un max et assurer la régularité de sa production peu importe le prix à payer. Mais dans un marché de compétitivité et de concurrence, le prix à payer, pour assurer la continuité de la production, est d'une grande signification.

Pour quoi alors ne pas maximiser le rendement de la souffleuse pour limiter les pertes de gain ? C'est-à-dire, assurer la régularité de la production, tout en évitant les interruptions de production causer par les arrêts préventifs mal programmer.

Notre travail à pour ambition de fournir une démarche scientifique qui permettrait l'amélioration de la gestion des équipements du point de vue maintenance au sain du groupe Cevital-Bejaia. Il s'agit, plus particulièrement, d'optimiser et de diminuer les fréquences de maintenance préventive d'une souffleuse.


Pour cela, nous avons entamé ce mémoire par une petite synthèse bibliographique, où nous avons donné une idée générale sur la sûreté de fonctionnement et les différents concepts de bases ; fiabilité, disponibilité et maintenabilité vue leur importance et leur implication directe dans les modèles de maintenance et aussi nous avons fournie les démarches à suivre

Introduction générale

pour le choix d'une politique de maintenance, en vue de l'application d'un plan de maintenance en adéquat avec l'équipement et les attentes de la production.

Dans un deuxième temps, nous ferons le calcule des paramètres de fiabilité, pour les intégrer dans un model d'optimisation, afin d'obtenir les temps optimums pour les interventions préventives, cela pour la construction d'un plan de maintenance préventif qui vise la réduction des fréquences de la maintenance préventive actuelle, dans le but de maximiser le rendement de la souffleuse.

En dernier lieu, nous présenterons les résultats de notre étude, suivie d'une comparaison entre les modelés d'optimisation utilisée, et nous terminerons par une conclusion.

I.1. Formes et types de la maintenance

Selon la définition de l'AFNOR¹, la maintenance vise à maintenir un bien dans un état spécifié afin que celui-ci soit en mesure d'assurer un service déterminé.

Récemment, elle a été remplacer par une nouvelle définition, désormais, européenne(NF EN 13306 X 60-319):<< Ensemble de toutes les actions techniques, administratives et de management durant le cycle de vie d'un bien, destinées à le maintenir ou à le rétablir dans un état dans lequel il peut accomplir la fonction requise.>>

La maintenance regroupe, ainsi, les actions de dépannage et de réparation, de réglage, de révision, de contrôle et de vérification des équipements matériels (machines, véhicules, objets manufacturés, etc.) Ou même immatériels (logiciels).

Les différents types de maintenance, existant habituellement, sont repris dans le schéma de la figure I.1 qui les identifie et les hiérarchise [1].

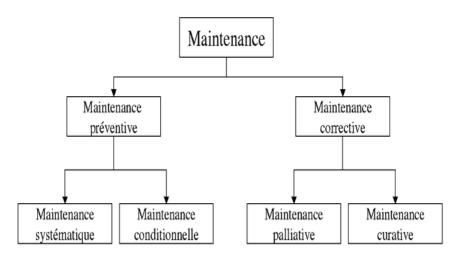


Figure I.1. Les différents types de maintenance [1].

I.1.1. Maintenance préventive

La maintenance a pour objet la réduction de la probabilité de défaillance ou de dégradation d'un bien ou d'un service rendu. Autrement dit, la maintenance préventive permet de réduire les risques et probabilités de dysfonctionnement des systèmes de production. Elle consiste à suivre l'évolution de l'état d'un ensemble de manière de prévoir une intervention dans un délai raisonnable [2].

¹ AFNOR : Association française de normalisation

I.1.2.Définition de la maintenance préventive et ces différents types

I.1.2.1.La maintenance préventive systématique :elle s'effectue suivant un échéancier prévu et établi selon le temps ou le nombre d'unités d'usage du bien. Cette unité d'usage caractérise l'exploitation du bien [3].

a-Visite systématique : Pour chaque visite on constate l'état de l'organe qui sera exprimé par une valeur de mesure ou par une appréciation visuelle, donc MPS est effectué en fonction de conditions qui reflètent l'état d'évolution d'une défaillance.

b- Les remplacements systématiques : On remplace systématiquement un composant, un organe ou un sous ensemble selon un échéancier défini. Le risque de ce remplacement est de changer des éléments encore capable d'assurer le bon fonctionnement pendant un temps non négligeable.

I.1.2.2.La maintenance préventive conditionnelle : D'après la définition Afnor, il s'agit de la « maintenance subordonnée a un type d'événements prédéterminé : autodiagnostique, information d'un capteur, mesure...etc. ».

La décision d'intervention est prise lors ce qu'un seuil de dégradation prédéterminant est atteint [3].

I.1.3.Définition de la maintenance corrective et ces différents types

I.1.3.1.La maintenance corrective

Cette forme de la maintenance constitue l'ensemble des activités réalisées après la défaillance d'un bien, ou la dégradation de sa fonction pour lui permettre d'accomplir une fonction requise, au moins provisoirement : ces activités comportent notamment la localisation de la défaillance et son diagnostic, la remise en état avec ou sans modification, le contrôle du bon fonctionnement [4].

a- La maintenance curative

Ce type de maintenance permet de remettre définitivement en état le système après l'apparition d'une défaillance .Cette remise en état du système est une réparation durable. Les équipements réparés doivent assurer les fonctions pour lesquelles ils ont été conçus. Une réparation est une opération définitive de la maintenance curative qui peut être décidée soit : immédiatement à la suite d'une défaillance, soit après un dépannage. Elle provoque donc une indisponibilité du système [5].

b-La maintenance palliative

La maintenance palliative revêt un caractère temporaire...provisoire. Elle est, principalement, constituée d'opérations qui devront, toute fois, être suivie d'opérations curatives. Le dépannage est une opération de maintenance palliative qui est destinée à remettre le système en état provisoire de fonctionnement de manière à ce qu'il puisse assurer une partie des fonctions requises. Les opérations de dépannage sont souvent de courte durée et peuvent être nombreuses. Parce qu'elles ont lieu souvent, elles sont, également, très coûteuses [6].

I.1.4.Comparaison entre les différents types de maintenance

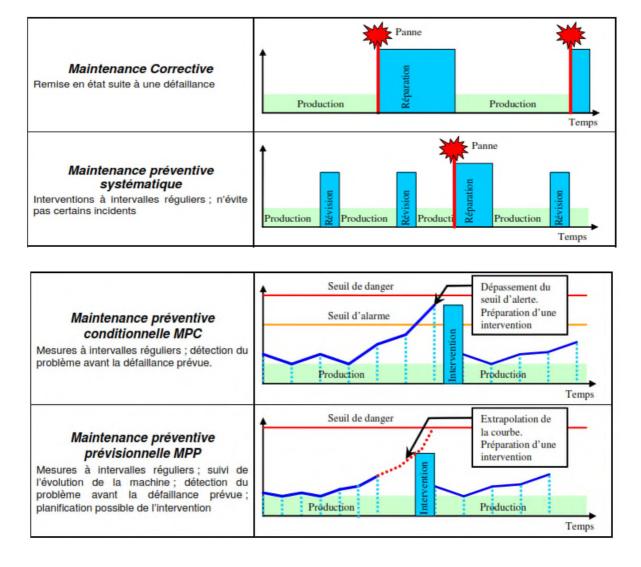


Tableau I.1: Comparaison entre les différents types de maintenance.

I.2.Les niveaux de maintenance

La réussite d'un système de maintenance dépend des spécifications des niveaux de ce dernier. Suivant la norme NF X60-010, il existe cinq niveaux de maintenance qui classent les opérations à réaliser selon leur complexité.

- Niveau I : Réglage simple prévu par le constructeur au moyen d'organe accessible sans aucun démontage d'équipement ou échange d'éléments accessible en toute sécurité.
- Niveau II: Dépannage par échange standard d'éléments prévus à cet effet ou opérations mineures de maintenance préventive.
- Niveau III: Identification et diagnostic de pannes, réparation par échange de composants fonctionnels, réparations mécanique mineures.
- Niveau IV : Travaux importants de maintenance corrective ou préventive.
- Niveau V: Travaux de rénovation, de reconstruction ou de réparations importantes confiées à un atelier central.

En attribue à chaque niveau des ressources humaines et des moyennes spécifique à l'accomplissement d'une tache (voir Tableau); cela permis de préciser et de limiter la responsabilité [7].

Niveaux	Personnel d'intervention	Moyens
I	Exploitant sur place	Outillage léger défini dans les instructions d'utilisation.
П	Technicien habilité sur place.	Outillage léger défini dans les instructions d'utilisation, plus pièces de rechange trouvées à proximité sans délai
III	Technicien spécialise, sur place ou en local de maintenance	Outillage prévu plus appareils de mesure, banc d'essai, de contrôle, etc.
IV	Equipe encadrée par un technicien spécialisée. en atelier central.	Outillage général plus spécialisé, matériel d'essai, de contrôle, etc.
V	Equipe complète, polyvalent en atelier central.	Moyens proches de la fabrication par le constructeur.

Tableau I.2: Les ressources nécessaires pour chaque niveau de maintenance [7].

I.3. Généralités sur la sûreté de fonctionnement

La sûreté de fonctionnement (Sdf) est l'aptitude d'une entité à satisfaire une ou plusieurs fonctions requises dans des conditions données. Elle traduit la confiance qu'on peut accorder à un système, la sûreté de fonctionnement étant la propriété qui permet aux utilisateurs du système de placer une confiance justifiée dans le service qu'il est délivré par le système.

Au sens large, la sûreté de fonctionnement est considérée comme la science des défaillances et des pannes.

La sdf est un concept qui se décline en quatre grandeurs chiffrables ; elles dépendent les unes des autres. Ces quatre grandeurs sont à prendre en compte pour toute étude de sdf [8].



Figure I.2. Relation entre Les composantes de la sureté de fonctionnement.

I.3.1 Concepts de base de la sûreté de fonctionnement (FMDS)

I.3.1.1.Fiabilité

Selon [AFNOR X60-500], la fiabilité est définie comme l'aptitude (la probabilité) d'une entité à accomplir une fonction requise pendant un intervalle de temps donné, dans des conditions données.

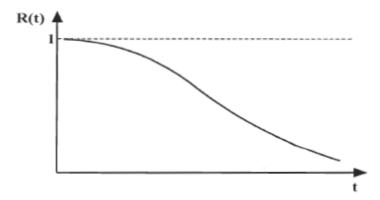


Figure I.3. La fonction de fiabilité.

La fonction de fiabilité, appelée aussi fonction de survie, représente la probabilité de fonctionnement sans défaillance pendant la période [0,t]. Elle est notée $\mathbf{R}(\mathbf{t})$, R pour *reliability* (*fiabilité en anglais*), **[12]** son expression est donnée par la relation:

$$R(t) = 1 - F(t) = P(X > t) = \overline{F}(t) = \int_{t}^{\infty} f(t)dt$$
 (I.1)

Où

X ; désigne la variable aléatoire (Temps à la défaillance).

F(t); c'est la fonction de répartition, elle représente la probabilité de défaillance durant le temps de fonctionnement t.

f(t); c'est la fonction de densité de probabilité, c'est la fonction dérivé de la fonction F(t).

$$f(t) = \frac{dF(t)}{dt} = -\frac{dR(t)}{dt} \tag{I.2}$$

Le taux de défaillance, $\lambda(t)$ est la probabilité pour qu'un élément tombe en panne au cours de [t, t+x], sachant qu'il a fonctionné sans défaillance jusqu'à la date t. Il est donné par :

$$\lambda(t) = \lim_{x \to 0} \frac{1}{x} \frac{F(t+x) - F(t)}{1 - F(t)} = \lim_{x \to 0} \frac{1}{x} \frac{R(t) - R(t+x)}{R(t)}$$
(I.3)

L'évolution du taux de défaillance en fonction de l'âge t du matériel est donnée par la courbe en baignoire [13].

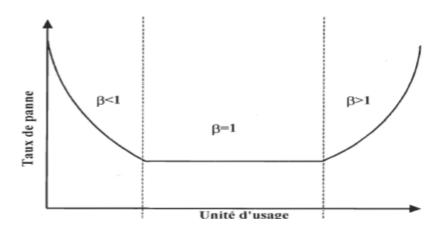


Figure I.4 : Allure du taux de panne.

On distingue trois périodes différentes selon l'âge du matériel :

- Période de jeunesse (ou période de mortalité infantile ou période des défaillances précoces), pendant laquelle le taux de défaillance décroît.
- ➤ Période de vie utile qui correspond à la maturité du matériel durant laquelle les défaillances sont aléatoires et le taux de défaillance sensible constant.

Période de vieillesse pendant laquelle le taux de défaillance croît.

I.3.1.2. Maintenabilité

C'est l'aptitude (probabilité) d'une entité à être maintenu ou rétabli dans un état dans lequel elle peut accomplir la fonction requise lorsque la maintenance est réalisée dans des conditions données avec des procédures et des moyens prescrits [AFNOR].

Elle joue un rôle important sur le plan économique, technologique et humain. Il ne s'agit plus, de se limiter à l'entretien, de subir la panne, il faut au contraire parvenir à la maîtriser et la prévenir. Pour cela, il est prépondérant ou recommander d'agir le plus en amont possible en tenant compte des contraintes ou des facteurs influant sur l'intégrité du système [9].

La maintenabilité permet de réduire les durées des pannes et leurs coûts. Elle caractérise la facilité à remettre ou à maintenir un équipement en bon état de fonctionnement [11].

• Fonction de maintenabilité M(t) d'un dispositif

C'est une fonction non décroissante de t, elle est donnée par

$$M(t) = P(que \ le \ dispositif \ soit \ réparé \ avant \ t)$$
 (I.4)

• Taux de réparation $\mu(t)$

C'est la densité de probabilité pour que le dispositif soit remis en service entre les instants tet t + dt sachant qu'il était en panne à l'instant t.

$$\mu(t) = -\frac{1}{1 - M(t)} \frac{dM(t)}{d(t)} = \frac{g(t)}{1 - M(t)}$$
(I.5)

Avec

$$g(t) = \frac{dM(t)}{dt} \tag{I.6}$$

t ; variable aléatoire, elle représente le temps de réparation

g(t) Est la densité de probabilité de réparation.

MTTR (Mean Time To Repair) : durée moyenne de réparation.

$$MTTR = \int_0^\infty t g(t) dt = \int_0^\infty [1 - M(t)] dt$$
 (I.7)

MTBF (Mean Time Between Failure) : temps moyen entre deux défaillances d'un système réparable.

$$\mathbf{MTBF} = \int_0^\infty t \cdot f(t) dt = \int_0^\infty R(t) dt$$
 (I.8)

I.3.1.3.Disponibilité

C'est l'aptitude d'une entité, sous les aspects combinés de sa fiabilité, maintenabilité et de l'organisation de maintenance, à être en état d'accomplir une fonction requise, dans des conditions de temps déterminées [05].

D'une façon générale, la disponibilité A(t) d'un équipement au temps t > 0, est la probabilité que ce dernier fonctionne au temps t, sous des conditions données [16].

$$A(t) = P(que \ l'équipement \ est \ non \ défaillant \ à \ l'instantt)$$
 (I.9)

• Taux de disponibilité: au cours de temps (t), le taux de disponibilité (A) d'un matériel est défini par le rapport:

$$A = A(t) = \frac{temps \ d'utilisation \ et \ d'attente}{temps \ d'utilisation \ et \ d'attente+temps \ de \ mainttenance}$$
 (I.10)

• **Disponibilité opérationnelle :** il s'agit de prendre en compte les conditions réelles d'exploitation et de maintenance.

$$D_{op} = \frac{MTBF}{MTBF + MTI} = \frac{MTBF}{MTBF + MTTR + MTL} \tag{I.11}$$

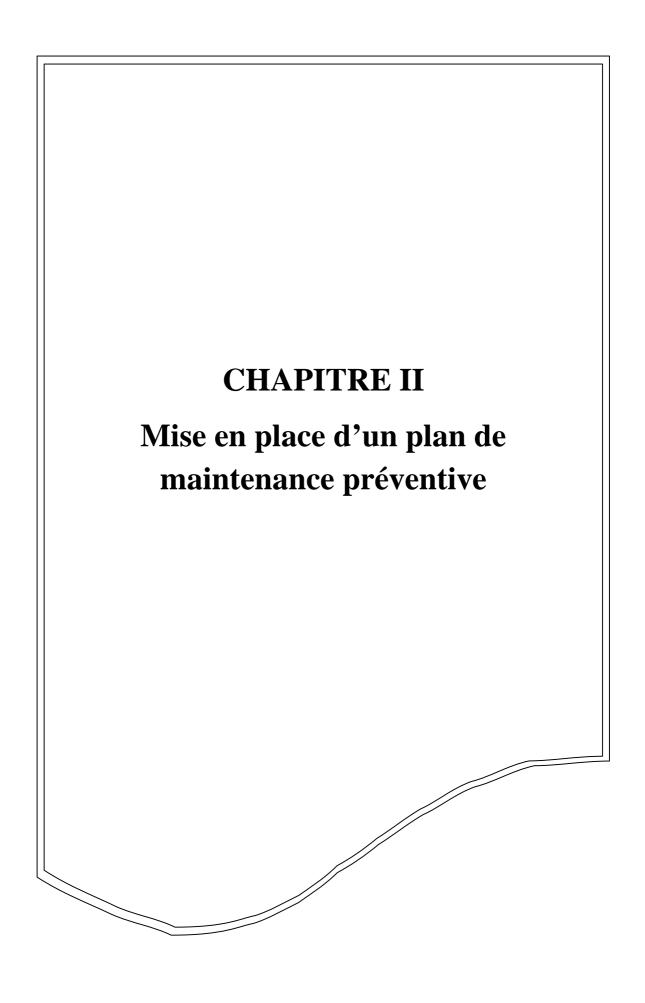
MTBF: Moyenne des temps de bon fonctionnement.

MTI: Moyenne des temps d'indisponibilité.

MTTR: Moyenne des temps techniques de réparations.

MTL: Moyenne des temps logistique.

• **Disponibilité intrinsèque** : c'est la disponibilité idéale de point de vue du concepteur, il faut chercher à tendre la disponibilité opérationnelle vers cette dernière.


$$Di = \frac{\mu}{\lambda + \mu} \tag{I.12}$$

D'où
$$\mu = \frac{1}{MTBF}$$
 (I.13)

Et
$$\lambda = \frac{1}{MTTR} \tag{I.14}$$

I.3.1.4.Sécurité

Aptitude d'un système à ne pas générer, dans des conditions données, des événements critiques ou catastrophiques. En la mesurant par la probabilité qu'un système évite de faire apparaître, dans des conditions données, des événements critiques ou catastrophiques [13].

II.1.Définition d'un plan de maintenance

C'est de choisir au mieux un plan, soit préventif ou correctif pour un élément en prenant compte plusieurs critères et paramètres, pour optimiser les coûts et la disponibilité du matériel [3].

II.2.Comment définir un plan adapté à chaque machine

C'est la procédure à effectuer pour mieux adapter un plan de maintenance à n'importe quelle machine en suivant certain critères [3].

II.2.1.Le critère de production

Ces critères sont issus de la compétence des services de production.

- Matériels dont l'arrêt entraine l'arrêt total de production.
- Matériels dont l'arrêt entraine un ralentissement de production ou une dégradation de la qualité.
- Matériels pour lesquels la production a des solutions de rechange et dont l'arrêt perturbe peu.
- Matériels à ne pas suivre en maintenance préventive.

II.2.2. Choix par l'abaque de NOIRET

L'abaque de Noiret est un outil d'aide à la décision qui fournit des recommandations, quant à la pertinence, ou non, d'une politique de maintenance préventive sur un équipement de production ; et il permet d'orienter le choix de la politique de maintenance en fonction de [3] :

- -Des caractéristiques de l'équipement
- -De son utilisation

Les résultats offrent trois options possibles :

- -Préventif recommandé
- -Préventif possible
- -Préventif non nécessaire

Le principe de cet abaque est basé sur les critères suivant :

- a) l'âge de l'équipement;
- b) Son interdépendance : dans quelle mesure est-il vital pour la production ;
- c) Son coût;
- d) Sa complexité et son accessibilité;
- e) Sa robustesse et sa précision;
- f) Son origine;
- g) Son utilisation dans le temps;

- h) Les conséquences de ses défaillances sur le produit ;
- i) Les délais de production.

Chaque critère ce décline en plusieurs options, à son tour il correspond à un certain nombre de points. À la fin, les points obtenus sont additionnés.

a- L'âge de l'équipement :

AGE	Points
(ans)	Tomes
20	10
19	14
18	18
17	22
16	26
15	30
14	34
13	38
12	42
11	46
10	50
9	54
8	58
7	62
6	66
5	70
4	74
3	78
2	82
1	86
0	90

Tableau II.1: L'âge de l'équipement [3].

b-Son interdépendance : dans quelle mesure est-il vital pour la production :

Critère	Points
Matériel essentiel et marche continue	70
Matériel essentiel et marche semi discontinue	60
Matériel essentiel et marche discontinue	50
Matériel sans tampon aval ou amont	40
Matériel semi indépendant	30
Matériel indépendant	20
Matériel double (ou plus)	10

Tableau II.2: Interdépendance de l'équipement [3].

c-Son coût:

Critère en €	Points
Moins de 3000	5
[3000 à 15000[15
[15000 à 30000[25
[30000 à 45000[35
[45000 à 150000[45
150000 ou plus	55

Tableau II.3: Coût de l'équipement [3].

d-Sa complexité et son accessibilité :

Critère	Points
Matériel peu complexe et accessible	5
Matériel très complexe et accessible	25
Matériel peu complexe et inaccessible	35
Matériel très complexe et inaccessible	45

Tableau II.4: Complexité et accessibilité de l'équipement [3].

e-Sa robustesse et sa précision :

Critère	Points
Robuste	5
Courant	10
Robuste et de précision	15
Peu robuste (délicat)	20
Travail en surcharge	25
Délicat et de précision	30

Tableau II.5: La robustesse et la précision de l'équipement [3].

f-Son origine:

Critère	Points
Français de grande série	20
Français de petite série	40
Etranger avec SAV en France	50
Etranger sans SAV en France	70
Etranger sans service technique	90

Tableau II.6:L'origine de l'équipement[3].

g-Son utilisation dans le temps :

Critère	Points
Marche à 1 poste de travail	75
Marche à 2 postes de travail	175
Marche à 3 postes de travail	250

Tableau II.7: L'utilisation de l'équipement dans le temps [3].

h-Les conséquences de ses défaillances sur le produit :

Critère	Points
Produits vendables	10
Produits à reprendre	35
Produits perdus	55

Tableau II.8: Conséquences de ses défaillances sur le produit [3].

i-Les délais de production :

Critère	Points
Délai libre (constitution de stock)	25
Délai serré	100
Délai impératif (risque de pénalités de retard)	150
Délai impératif (risque de pénalités de perte client)	225

Tableau II.9: Les délais de production [3].

➤ Son utilisation :

Les points de chaque critères son additionné pour aboutir a un total.

Domaine	Recommandation	
0 à 510	Préventif non nécessaire	
511 à 559	Préventif possible	
559 à 910	Préventif recommandé	

Tableau II.10: les indices de criticité[3].

II.2.3.Le coût global

Le classement ABC détermine le coût global par installation [15].

- ➤ **Zone A**: On constate qu'entre 20% et 30% des pannes représentent 80% des coûts, alors cela nécessite une maintenance préventive sur les défaillances probables et peu probables.
- ➤ **Zone B**: Dans cette tranche, les 30% de pannes suivantes ne coutent que 15% supplémentaire.
- **Zone C**: Enfin, dans cette tranche, 50% de pannes restantes ne reviennent qu'à 5% des coûts.

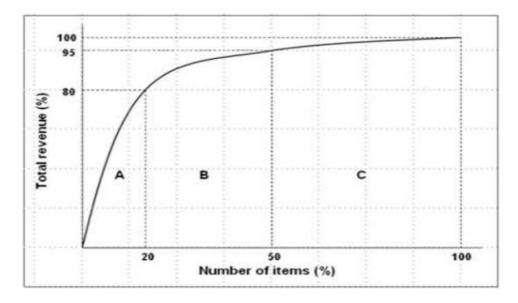


Figure II.1 : Choix sur le coût global [15].

II.3. Opter pour un plan de maintenance préventif

Ce plan de maintenance s'adresse aux éléments provoquant une perte de production ou des coûts d'arrêts imprévisibles classés comme importants pour l'entreprise. Ce sont les matériels appartenant à la catégorie A d'une courbe ABC (coûts/nombre de pannes). Il convient, donc, d'organiser un système de maintenance visant à minimiser ces arrêts tout en ne devenant pas trop onéreux. Ainsi, on aura à pratiquer deux formes de maintenance dite préventive :

- ✓ La maintenance préventive systématique qui s'adressera à des éléments de la catégorie A et ne revenant pas trop cher en changement.
- ✓ La maintenance préventive conditionnelle qui conviendra pour les matériels coutant chers en remplacement et pouvant être surveillés par des méthodes non destructives (analyses de vibration, de l'huile, de la température) [15].

II.3.1. Sur quoi agit la maintenance préventive

La maintenance préventive agit sur les concepts suivants [15]:

A - Planifications des tâches

- Moins d'imprévus.
- > Charge de travail plus régulière.

B- La Fiabilité

- Moins de pannes ayant des conséquences catastrophiques.
- \triangleright Maximiser R(t).
- \triangleright Minimiser $\lambda(t)$ et F(t).

C-La Disponibilité

- Maximiser MTBF.
- > Minimiser MTTR.

II.3.2.Politiques de maintenance

II.3.2.1. Maintenance préventive selon l'âge

Une nouvelle unité commence à fonctionner à t=0. L'unité est remplacée lorsqu'elle atteint un âge T, ou à la défaillance [16]. La maintenance préventive et la réparation urgente (corrective) durent, respectivement, t_P , t_c .

▶ Un remplacement selon l'âge sera égale à $X=t+t_c$. Si l'unité tombera en panne dans l'intervalle (t, t+dt), $t \le T$, avec une probabilité F(t), ou à $X=T+t_p$ si l'unité atteint l'âge T, avec une probabilité 1- F(T).

$$\mathbf{C}(\mathbf{T}) = \frac{c_{\mathbf{c}}(1 - \mathbf{R}(\mathbf{T})) + c_{\mathbf{p}}\mathbf{R}(\mathbf{t})}{\int_{0}^{T} \mathbf{R}(\mathbf{t})d\mathbf{t}}$$
(II.1)

II.3.2.2. Politique de remplacement périodique

Dans cette politique un élément est préventivement maintenu à des intervalles de temps fixes ns (n=1,2,3,....) indépendants de l'historique des pannes , et réparé à la défaillance [16]. Une autre politique de MP périodique de base est «le remplacement périodique avec réparation minimale à la défaillance» où un élément est remplacé à des temps prédéterminés ns (n=1,2,....) et les défaillances sont éliminées par des réparations minimales $(Barlow\ and\ hunter\ 1960)$. Dans cette classe, on peut également citer la politique de remplacement en block ou un élément est remplacé à des temps pré arrangés ns et à la défaillance $(généralement\ utilisée\ pour\ les\ systèmes\ multicomposants).$

$$H(t) = \int_0^T \lambda(t)dt$$
 (II.2)

Où $\lambda(t)$ représente le taux d'occurrence de défaillances (*ROOCOF pour Rate OF Occurrence OF Failures*), pour un composant non réparable, il représente le taux de défaillance, Alors l'expression

du coût est :
$$C(T) = \frac{c_c \cdot H(T) + c_p}{T} = \frac{c_c \int_0^T \lambda(t)dt + c_p}{T}$$
 (II.3)

Avec:
$$\lambda(t) = \frac{\beta}{\eta} \times \left(\frac{t}{\eta}\right)^{\beta - 1}$$
 (II.4)

Et pour calculé le T optimum :

$$\frac{dC(T)}{dT} = 0 (II.5)$$

D'ou on obtient
$$T = \sqrt[\beta]{\frac{cp}{cc} \times \frac{\eta^{\beta}}{\beta - 1}}$$
 (II.6)

Cp : Coût du renouvellement préventif de la pièce.

Cc : Coût entrainé par les pertes de production.

• Modèle de Kelly

Cette méthode consiste à déterminer le T optimum qui correspond au période optimale de l'intervention systématique, pour cela il faut connaître:

- ✓ Le coût du correctif (Cc) qui, par hypothèse égale au coût de défaillance.
- ✓ Le coût du préventif (Cp).
- ✓ Les paramètres de weibull (β et η).

On appellera $r = \frac{C_c}{C_p}$ le ratio de criticité économique de la défaillance. Domaine de validité :

2< r <100 [15].

Et
$$X = \frac{T_O}{\eta}$$
 (II.7)

D'où
$$T_O = X \times \eta$$
.....(II.8)

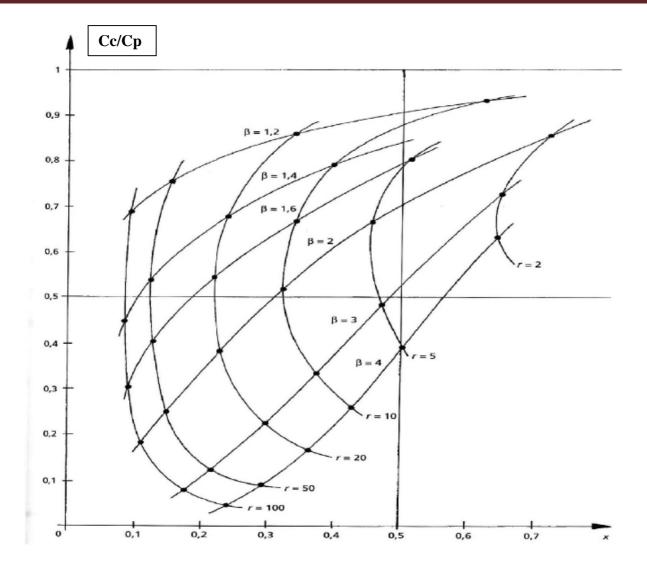


Figure II.2: Abaque de Kelly.

II.3.3. Evaluation des temps de maintenance préventive

L'évaluation des temps de maintenance préventive se base sur [15] :

Périodicité

- ✓ Inspections planifiées.
- ✓ Lors de la maintenance préventive.
- ✓ Lors des périodes d'arrêt d'utilisation du matériel.

> Durée des interventions

- ✓ Inspection.
- ✓ Réparation.
- ✓ Contrôle.

Avec:
$$M_p = \frac{\sum_{i=1}^{i=k} n_{pi} \times M_{Pi}}{\sum_{i=1}^{i=k} n_{pi}}$$
 (II.9)

 P_i : Type d'opération « i » de maintenance préventive.

 \mathbf{n}_{pi} : Fréquence du type d'opération « i » à prévoir.

 M_{pi} : Durée de l'opération « i ».

 M_p : Durée moyenne de l'intervention préventive.

II.4. Elaboration d'un plan de maintenance préventive

Elaborer un plan de maintenance préventive, c'est décrire et planifier toutes les opérations de maintenance préventive qui devront être effectuées sur chaque organe.

Les différentes sources qui nous aident à définir les opérations de maintenance préventive sont :

II.4.1. Documents techniques constructeurs

Les documents constructeurs permettent de connaître d'une manière approfondie la machine à étudier. Les renseignements qu'on peut trouver sont [3] :

- Pièces d'usure, pièces de rechange.
- Types et références des articles.
- Type de lubrifiant, produits consommables.
- Paramètres de surveillance, de réglage.
- Modes opératoires de maintenance.
- Précautions particulières.
- Consignes particulières de sécurité.

II.4.2. Analyse historique

On recherche dans l'historique d'une installation la nature et la fréquence d'apparition des défaillances, et la fréquence de remplacement afin de [3] :

- Trouver les moyens pour détecter les défaillances avant leurs apparitions.
- Déduire la périodicité des Operations de contrôles.
- Calculer la fréquence de remplacement systématique.

II.4.3.Analyse AMDEC

Analyse des Modes de Défaillance, de leurs Effets et de leur Criticité, a pour objectif d'identifier les cause et les effets de l'échec potentiel d'un procédé ou d'un moyen de production, et d'identifier les actions pouvant éliminer ou de réduire l'échec potentiel.

Dans le cas des organes spécifique et mal connus, on doit faire une analyse de type AMDEC, en utilisant la matrice à trois criticités (voir tableau) [7].

Gravité G : Impact des défaillances sur l'outil de production					
1	Sans dommage: défaillance mineur ne provoquant pas d'arrêt de production, et aucune dégradation notable du matériel		Important : défaillance provoquant un arrêt significatif, et nécessitant une intervention importante		
2	Moyenne : défaillance provoquant un arrêt de production, et nécessitant une petite intervention	4	Catastrophique : défaillance provoquant un arrêt impliquant des problèmes graves		
Fréquence d'occurrence O: Probabilité d'apparition d'une cause ou d'une					
dé	faillance				
1	Exceptionnelle : la possibilité d'une défaillance est pratiquement inexistante	3	Certaine : il y a eu traditionnellement des défaillances dans le passé		
2	Rare : une défaillance occasionnelle c'est déjà produite ou pourrait se produire	4	Très fréquente : il est presque certain que la défaillance se produira souvent		
N	on-détection D : Probabilité de la	no	on-perception de l'existence d'une		
défaillance					
1	Signes avant coureurs : l'opérateur pourra détecter facilement la défaillance	3	Aucun signe : la recherche de la défaillance n'est pas facile		
2	Peu de signes : la défaillance est décelable avec une certaine recherche	4	Expertise nécessaire : la défaillance n'est pas décelable ou encore sa localisation nécessite une expertise approfondie		

Tableau II.11: Analyse des modes de défaillances et de leur criticité [7].

C<16	Ne pas tenir compte de la maintenance préventive
16≤C<32	Mise sous préventif a fréquence faible
32≤C<36	Mise sous préventif a fréquence élevée
36≤C<48	Recherche d'amélioration
48≤C<64	Reprendre la conception

Tableau II.12 : Echelle de criticité (C=G.O.D) [8].

II.4.4.Planification des interventions par la méthode ABAC ABAD

Les temps d'intervention, étant calculés d'après les lois de durées de vie, il reste à planifier les tâches de maintenance préventive. Dans un souci d'optimisation, il faut grouper les opérations à effectuer sur un même sous-système (machine de production, appareil de manutention, poste de travail, etc.). Pour cela, il convient de programmer des interventions suivant une progression géométrique [14].

Concrètement:


- ✓ La tâche A est effectué au bout d'un temps t_{1.}
- ✓ La tâche B au bout d'un temps $t_2=2t_1$.
- ✓ La tâche C au bout d'un temps $t_3=2t_2=4t_1$.
- ✓ La tâche D au bout d'un temps $t_4=2t_3=8t_1$.

Ainsi, la planification s'élabore de la façon suivante :

- ✓ Au temps t_1 , on exécute les taches A.
- ✓ Au temps $2.t_1$, on exécute les taches B+A.
- ✓ Au temps $3.t_1$, on exécute les taches A.
- ✓ Au temps $4.t_1$, on exécute les taches C+B+A.
- ✓ Au temps $5.t_1$, on exécute les taches A.
- ✓ Au temps $6.t_1$, on exécute les taches B+A.
- ✓ Au temps $7.t_1$, on exécute les taches A.
- ✓ Au temps $8.t_1$, on exécute les taches D+C+B+A.

	Α	В	С	D
T1				
T2				
Т3				
T4				
T5				
Т6				
T7				
Т8				

Figure II.2: Méthode ABAC ABAD.

Introduction

Pour faire connaître l'entreprise CEVITAL Agro-industrie nous allons évoquer tout d'abord, l'historique de Cevital, sa situation géographique et ces différentes structures. Ensuite, la présentation de conditionnement du l'huile CEVITAL (2000Tonnes /jour) et le processus de fabrication des bouteilles de l'huile. Enfin, la description de la souffleuse SBO6 qui constitue le cadre de notre application.

III.1.Présentation Générale De Cevital Agro-industrie

Créée en 1998 par des fonds privés, Cevital Agro-industrie est le leader du secteur agroalimentaire en Algérie. Il représente une grande force industrielle et économique africaine, elle est parmi les entreprises Algériennes qui ont vu le jour des l'entrée de notre pays en économie du marché, elle est une société par action (spa), d'un montant de 250 000 000 DA.

Son complexe de production se situé au niveau du port de Bejaia et s'étend sur une surface de 131758 m² dont la superficie est de 78386,19 m². Grace à cet emplacement stratégique, le complexe occupe une place importante dans l'économie locale et nationale.

Ses produits se vendent aujourd'hui dans plusieurs pays, notamment en Europe, au Maghreb, au Moyen Orient et en Afrique de l'Ouest. Aujourd'hui, Cevital Agro-industrie est le plus grand complexe privé en Algérie. Ces outils de production ultra performants se répartissent comme suit :

- La raffinerie d'huile, avec une capacité de production de 1800tonnes /jour ;
- La margarinerie et graisses végétales, avec une production de 1600 tonnes /jour;
- ♣ Trois raffineries du sucre, avec une capacité de production de 5000 tonnes/jour
 - Une raffinerie de sucre d'une capacité de production de 3000 tonnes/jour ;
 - Une raffinerie de sucre d'une capacité de production de 2000 tonnes/jour

Et une unité de production du sucre liquide, avec une capacité de production de **6000 tonnes/jour.**

III.2.Organigramme du complexe Cevital :

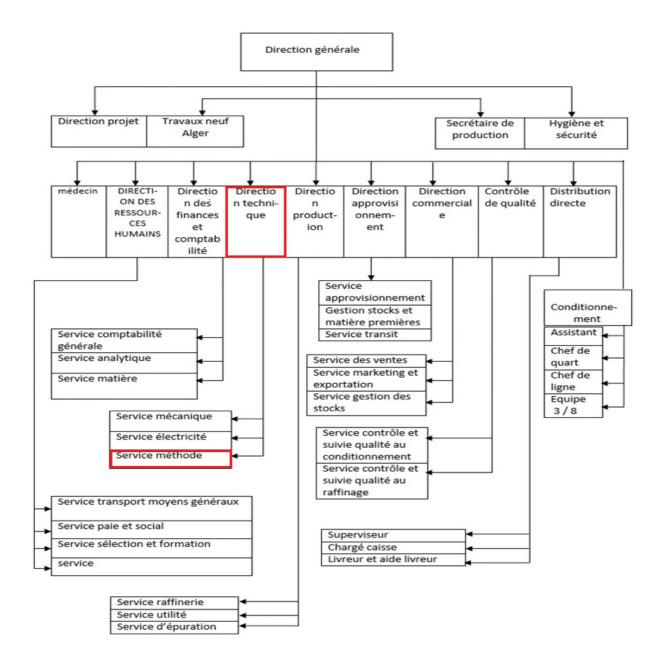


Figure III.1: Organigramme du complexe Cevital.

III.3. Présentation de l'unité conditionnement d'huile :

L'unité de conditionnement d'huile de CEVITAL est constituée actuellement de six ligne de production, deux lignes pour la production des bouteilles de 5litres, une ligne pour la production des bouteilles de 1 litre une ligne pour la production de bouteilles de 2 litres et une pour la production des bouteilles de 1.8litres.

Chapitre III : Présentation de l'entreprise et la souffleuse SBO6

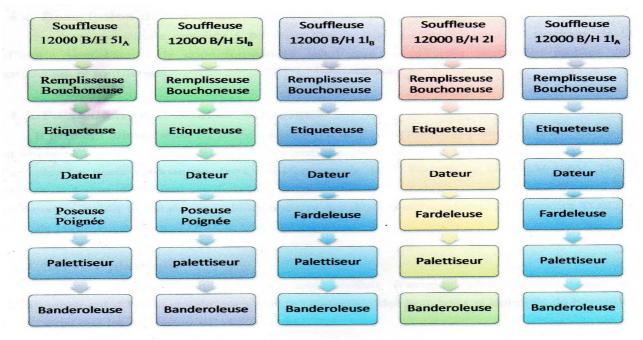


Figure III.2 : Les unités de production de l'huile.

En terme équipement sur chaque ligne est constituée de plusieurs machines assurant de taches précises dans le but d'avoir un produit fini complètement emballé et prêt à être vendu.

III.4.Conditionnement d'huile :

La direction de conditionnement d'huile est constituée de plusieurs services qui sont représentés dans organigramme suivants :

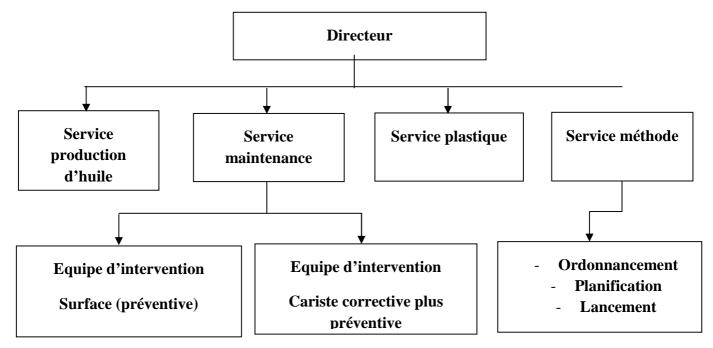


Figure III.3 : Organigramme du service de conditionnement d'huile.

Chapitre III : Présentation de l'entreprise et la souffleuse SBO6

III.5.Processus techno de la fabrication du produit fini :

La mise en bouteilles sur chaque ligne des huiles raffinées s'effectue par la transformation du PET en préforme en suite en bouteilles. Les préformes passent par les étapes suivantes :

- La souffleuse : qui est une machine destinée à fabriquer des bouteilles à partir des préformes qui ont une structure de tube, cette dernière est fabriquées dans l'unité plastique.
- Convoyeur aéraulique rafale : c'est un dispositif destiné au transport des petites bouteilles en PET de la souffleuse jusqu'à la remplisseuse. Le transport est assuré par un soufflage d'air produit par les colonnes de ventilation équipées des filtres garantissant un air propre.
- **Remplisseuse** : la remplisseuse est l'unité chargée du remplissage des bouteilles du produit fini (huile) dont la vitesse du remplissage peut être variée.
- **Bouchonneuse**: la bouchonneuse se trouve encastrée dans la remplisseuse pour permettre le bouchage des bouteilles juste à la fin du remplissage pour éviter le débordement, les bouchons sont fabriqués et préparés par une autre unité.
- **Etiqueteuse** : elle est destinée à coller les étiquettes enveloppement sur les récipients cylindriques portant des informations sur le produit et le fabriquant.
- **Dateur** : le dateur sert à mentionner la date et l'heure de fabrication du produit
- **Fardeleuse** : c'est la machine qui reçoit les bouteilles et les enveloppe dans un film en silicone.
- **Tapis roulant** : c'est un moyen de transport des fardeaux de la sortie de la fardeleuse jusqu'à l'entrée du palettiseur.
- **Poseuse poignée** : on trouve ce type de machine uniquement dans les lignes de 4 ou 5 litres. Elle a pour rôle le placement et la fixation des poignées sur les bouteilles.
- **Palettiseur** : cette machine est conçue pour superposer sur une palette plusieurs étages de fardeaux.
- **Banderoleuse** : son rôle est d'entourer la charge d'un film en silicone dans le but d'assurer la bonne tenue des bouteilles pour tout déplacement.

III.6.Présentation de la souffleuse SBO6

Elle est destinée au soufflage haute pression d'article en P.E.T (Polyéthylène Téréphtalate). La production est assurée a partir de préformes proportionnées en fonction de l'article final. La machine est conçue pour s'intégrer en amont d'une chaine de remplissage ou fonctionner seule selon les activités de son exploitant.

III.7. Système fonctionnel de la souffleuse SBO6

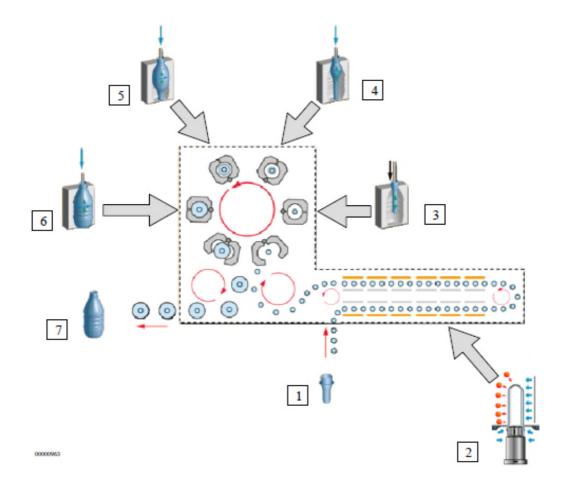


Figure III.4: La transformation d'une préforme en bouteille.

1	Alimentation préformes	5	Fin présoufflage
2	Chauffe préformes	6	Soufflage
3	Début étirage mécanique	7	Sortie articles
4	Fin étirage / Début présoufflage		

III.8. Rôle des différents éléments de la souffleuse SBO6

III.8.1.Motorisation et transmission

La motorisation, assurée par le motoréducteur(1), permet l'entrainement des différents poulies et courroies de la transmission machine.

Figure III.5: Motorisation et transmission de la souffleuse SBO6.

III.8.2.L'alimentation

L'alimentation des préformes dans la machine est assurée par le rail (2) et le plateau d'alimentation (3) :

- Le rail dirige les préformes par gravité sur le plateau d'alimentation.
- -Le plateau d'alimentation assure le transfert des préformes vers le four.

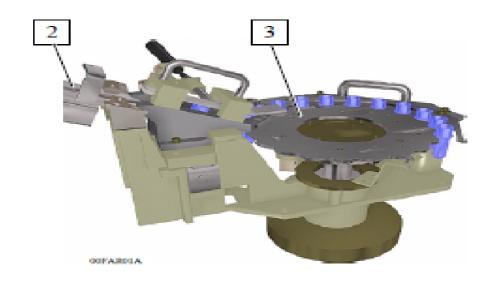
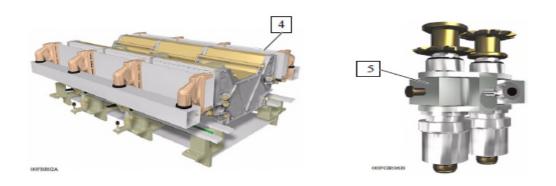
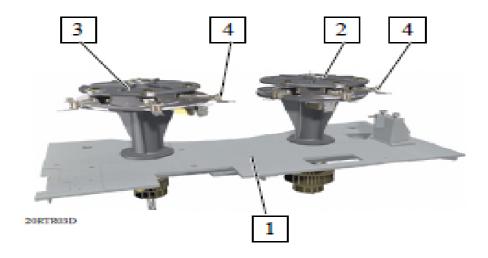



Figure III.6: Alimentation de la souffleuse SBO6.

III.8.3. Le four

Le four (4), équipé de lampes infrarouge, assure la chauffe du corps des préformes (entre 80°C et 120°C).

Les préformes, maintenues pas des tournettes(5), sont animées d'un mouvement de rotation pendant leur passage devant les lampes I.R. Cette rotation garanti une réparation optimale de la température du corps de la préforme.


Figure III.7 : Four de la souffleuse SBO6.

III.8.4. La table de transfert

Equipée de deux roues (2,3), elle assure le transfert des préformes chaudes vers la roue de soufflage roue (2) et le transfert des articles soufflés vers la sortie machine (roue 3).

Chapitre III: Présentation de l'entreprise et la souffleuse SBO6

Les roues (2,3) sont équipées de bras (4) qui saisissent les préformes et les articles soufflés aux différents points de rencontre.

Figure III.8 : Table de transfert de la souffleuse SBO6.

III.8.5.La roue de soufflage

Equipée de plusieurs portes de soufflage (2), elle assure la transformation de la préforme chaude en article souhaite.

Cette transformation est obtenue par bi-orientation : Etirage mécanique par la tige d'élongation (3) et soufflage par air (40 bar) de la préforme dans un moule (4) parfaitement verrouillé

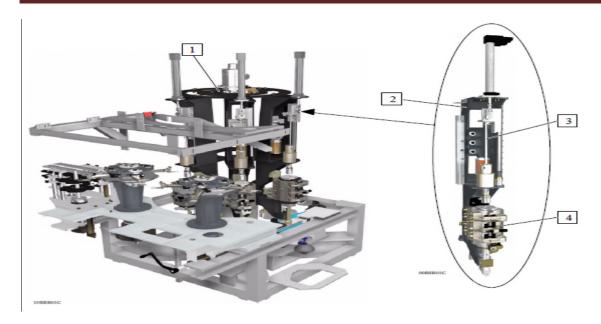


Figure III.9: La roue de soufflage de la souffleuse SBO6.

III.8.6.La sortie bouteilles

Des sa transformation (soufflage) accomplie, l'article fini est transféré vers la sortie.

Les roues à encoches(1) entrainent les articles finis sur les guides de sortie(2).

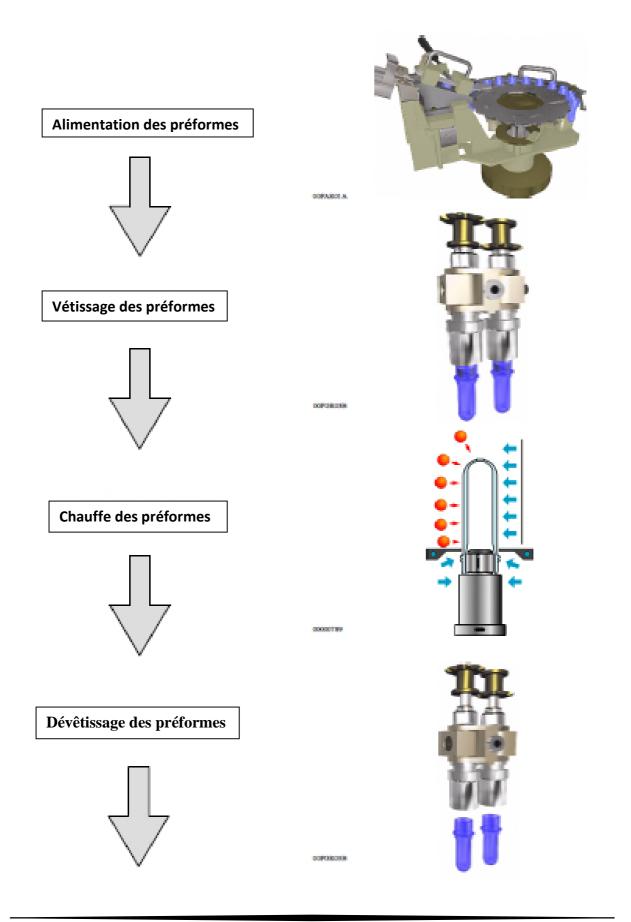



Figure III.10: La sortie bouteilles de la souffleuse SBO6.

III.9.Principe de fonctionnement

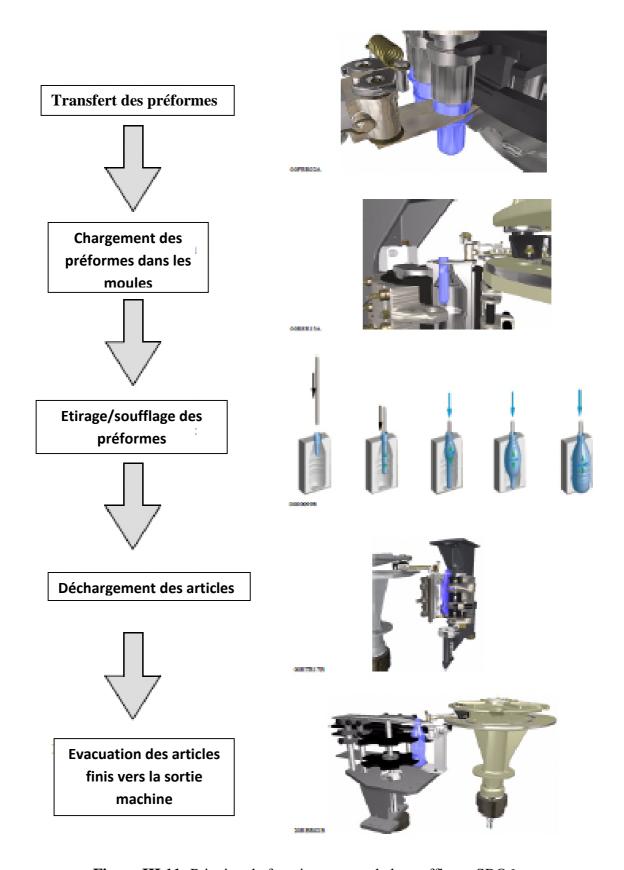
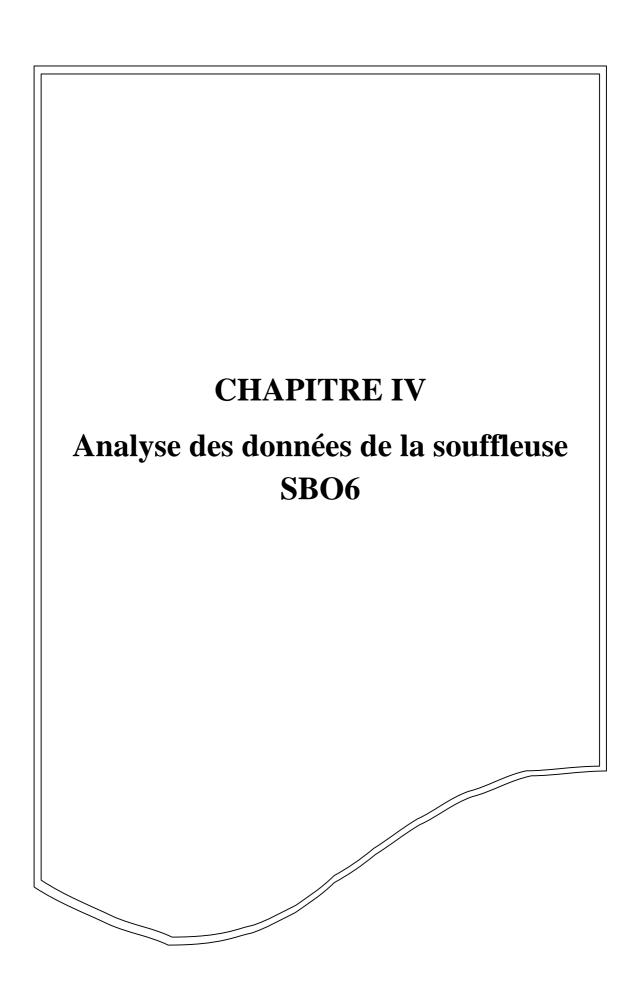



Figure III.11: Principe de fonctionnement de la souffleuse SBO6.

Introduction

Avant d'entamer ce chapitre, on tient à préciser que le dernier historique fiable de la souffleuse remonte à l'année 2016. Avant cela, c'était le black-out total.

Alors, on a essayé, au mieux, d'interpréter et d'analyser les donnés que nous avons à notre disposition, pour cerner, au mieux, le problème des arrêts fréquents de l'équipement, ce qu'on va développer dans les points de ce chapitre.

IV.1.Collecte de données

On a recueilli les données concernant la souffleuse SBO6 :.elles nous ont été fournie en data brut ; alors on a filtré les données selon le besoin de notre étude comme suite :

- L'historique des arrêts de l'année 2016.
- Les coûts de pièces de rechange.
- Les taches effectuées durant les opérations préventives et correctives.

Ces données, nous ont permis de :

- ✓ Déduire les défaillances les plus fréquentes.
- ✓ Estimer les TBF.
- ✓ Trouver les coûts du préventif et du correctif.

IV.1.1 Les inconvénients rencontrés

Lors de l'analyse de ces données, on a constaté que les TBF n'ont pas été recueilli, ajouter à cela, notre étude s'est faite sur une période d'une année car l'historique ne remonte pas plus loin que ça.

IV.2 Représentation des données

IV.2.1.Les défaillances les plus récurrentes

D'après l'historique des pannes de l'année 2016 qui ont été enregistré sur le tableau de commande de la souffleuse SBO6, on a classé les défaillances les plus fréquentes par ordre décroissant suivant leur temps d'arrêts :

Défaillances	Temps D'arrêts en H	Pourcentage
Moule non verrouillé	233,8	34.28%
Mécanique	165,2	24.22%
Couple Four	137,8	20.21%
Couple Roue de Chargement	33	4.84%
Qualité préformes	18,45	2.71%
Manque air de soufflage	17,8	2.61%
Réglage de process	15,6	2.29%
Effort sur came moule	15,05	2.21%
Couple Roue de sortie	14,75	2.16%
Electriques	13	1.91%
Pneumatique	6,2	0.91%
Défaut de vétissage	4,9	0.72%
Blocage préformes	2,45	0,36%
Défaut eau sur roue	2	0,29%
Manque eau de process	2	0,29%
Total	682	100,00%

Tableau IV.1: Les défaillances les plus récurrentes(en 2016).

On remarque qu'à eux trois (moule non verrouillé, mécanique et couple four), les défaillances représentent 78.71% de taux global.

En se basant sur ça, on a listé quelques causes de défaillance propre à chacun d'eux avec une analyse AMDE (Analyse de Mode Défaillance et leur Effets) :

❖ Moule non verrouillé

Ensemble	Sous-ensemble	Fonction	Composant	Mode de Défaillance	Causes	Effets											
			Levier		Déréglage du levier ouverture / fermeture moule	Arrêt critique											
			ouverture / fermeture	Moule non verrouillé	Élément d'assemblage défectueux	Arrêt critique											
			moule		Cisaillement axe galet	Arrêt critique											
			.	36.1	Mauvais transfert préformes	Arrêt critique											
			Bras de transfert	Moule non verrouillé	Mauvais transfert bouteilles	Arrêt critique											
				Moule non verrouillé	Desserrage des tiges de liaison	Arrêt critique											
			Arbre de verrouillage		Galet arbre de verrouillage détérioré	Arrêt critique											
Rou	Post	Verr	Verr		Blocage de l'arbre de verrouillage	Arrêt critique											
Roue de soufflage	e de s	Verrouillage Moule	ouilla	ouilla	ouilla	ouilla	ouilla	ouilla	ouilla	ouilla	ouilla	ouilla	ouilla			Rupture du joint de compensation	Arrêt critique
ouffl	Poste de soufflage		Compensation	ompensation Moule non verrouillé		Ecrou a embase en contact avec les peignes	Arrêt critique										
age		age	age	oule			Mauvais réglage de l'amortisseur	Arrêt critique									
						Déréglage de la came	Arrêt critique										
			Came de	Moule non	Défaut de connexion	Arrêt critique											
			verrouillage	verrouillé	Détecteur défectueux	Arrêt critique											
					Détecteur non en position	Arrêt critique											
			Electrovanne de compensation	Moule non verrouillé	Electrovanne bloquée en position ouverte	Arret machine											
			Pogues épaulé	Moule non	Usure des bagues	Arrêt critique											
	Bagues épaulé verrouillé	Bagues male logées	Arrêt critique														

	Roue de Commande verrouillage moule Came de verrouillage moule			Usure de la came	Effort sur came
de		verrouillage Came de Pas de	Déréglage de la came	Effort sur came	
ıfflage		moule		Détecteur défectueux	Arrêt machine
			Détecteur de détection non en position	Arrêt machine	

Tableau IV.2 : Les causes et les effets du moule non verrouillé.

❖ Défaillance Mécanique

		1				<u> </u>						
Ensemble	Sous-ensemble	Fonction	Composant	Mode de Défaillance	Causes	Effets						
			Limiteur de		Déclenchement du limiteur	Arrêt machine						
		Transmission four	couple	Pas de transmission	Défaillance interne	Arrêt machine						
			Courroie		Rupture de la courroie	Arrêt machine						
	Ro	Transmission Roue de soufflage Transmission		Pas transmission	Défaut d'alimentation	Arrêt machine						
			Moteur		Moteur défectueux	Arrêt machine						
Rou						Circuit de commande défectueux	Arrêt machine					
ie de s	ransn		ransn	ransn	ransn	ransn	ransn	ransn			Circuit de puissance défectueux	Arrêt machine
Roue de soufflage	ission		Réducteur		Défaillance interne du réducteur	Arrêt machine						
age	5	1 Roue			Cisaillement de l'arbre	Arrêt machine						
		e de so	Arbre d'entraînement	Pas t transmission	Mauvais alignement poulie	Arrêt machine						
		ufflage			Palier détérioré	Arrêt machine						
		,,	Pignon	Pas de	Élément d'assemblage défectueux	Arrêt machine						
			1 ignon	transmission	Usure des dents pignon	Arrêt machine						
			Courroie	Pas de transmission	Rupture de la courroie	Arrêt machine						

Tableau IV.3 : Les causes et les effets des défaillances mécaniques.

Couple four

Ensemble	Sous-ensemble	Fonction	Composant	Mode de Défaillance	Causes	Effets														
					Blocage chaine tournette	Arrêt machine														
	CH	Sécurité et liaison CHAINE TOURNETTE	Tournette	Couple four				C 1.6	C 1.6	C 1.6	C 1.6				C 1.6	Carrella Garage	Carrella Garage	Corrello forma	Axe tournette tordu	Arrêt machine
					Nez de tournette défectueux	Arrêt machine														
	AINE				Galet entrainement tournette défectueux	Arrêt machine														
FOUR	TOU	TOUI	té et l	Chaina simpla		Mauvais réglage de la tension chaîne	Arrêt machine													
	liaiso		Chaine simple	Couple four	Chaîne défectueuse	Arrêt machine														
	TE				Glissière trop écarté	Arrêt machine														
			Glissière de guidage	Couple four	Usure de glissière	Arrêt machine														
					Présence de débris sur glissière	Arrêt machine														

Tableau IV.4: Les causes et les effets du couple four.

Ensuite, avec les données qu'on a sur les pièces de rechange, on a pu recenser 127 changements lors des opérations correctives liées à la partie four et soufflage, qui sont illustrés dans le tableau suivant :

	Remplacement correctif	
Ensemble	Nb de remplacement	%
Soufflage	89	70,08%
Four	38	29,92%
Total	127	100,00%

Tableau IV.5: Les remplacements correctif.

Nous avons constate que la partie soufflage représente 70,08% des remplacements correctifs; alors ce qu'on peut tirer de cela est que cette partie manque clairement d'opérations préventives.

Pour les 6 moules à eux seuls, on a trouvé 50 changements correctifs. Dans le tableau cidessous, on a recensé les sous-ensembles remplacés plus de 4 fois :

Sous-ensemble	Nb de remplacement
Amortisseur D'élongation	4
Doigt de Verrouillage	8
Kit de compensation	4
Limiteur d'effort	7
Tige de liaison	5
Total	28

Tableau IV.6 : Les sous ensemble et leurs nombres de remplacement.

IV.2.2 Comparaison entre les temps d'arrêts préventifs et correctifs

D'après le tableau IV.1, on voit que pour l'année 2016, on a 682h d'arrêt du aux défaillances ; pour l'estimation des temps d'arrêts préventifs, on s'est basé sur les dires de service Méthode que chaque semaine un arrêt est programmé pour une durée moyenne de 5h, alors sur 42 semaines on a un total de 210 h. Ci-dessous, on a constitué un tableau comparatif :

	Les temps d'arrêts	
Correctif	682	76,46%
Préventif	210	23,54%
Total	892	100,00%

Tableau IV.7: Les temps d'arrêt de la souffleuse SBO6.

D'après ce tableau, on remarque que les temps d'arrêts du correctif sont très élevés par rapport au préventif, alors on peut y mettre deux hypothèses :

- 1-le service maintenance ne fait pas un préventif de qualité.
- 2-le service ne consacre pas beaucoup de temps pour le préventif.

Pour notre étude, on va se focaliser sur hypothèse (1) : car 5h en moyenne chaque semaine sont largement suffisantes pour le préventif vu que la souffleuse, à la base, est conçue pour fonctionner en continu.

IV.2.3.Représentation des coûts

Pour cela on s'est basé sur les coûts de pièces de rechanges lors des opérations correctives et de préventives.

	Coût de maintenance	
Préventif	2 981 389,00 DZD	47,54%
Correctif	3 290 517,36 DZD	52,46%
Total	6 271 906,36 DZD	100,00%

Tableau IV.8 : Les coûts de maintenance de la souffleuse SBO6.

On remarque que le correctif est plus élevé que le préventif. Alors on voit qu'ils ne favorisent pas les remplacements préventifs.

Ensuite, on a redistribué les coûts préventifs et correctifs pour la partie soufflage et partie four qui sont représentés dans le tableau ci-dessus :

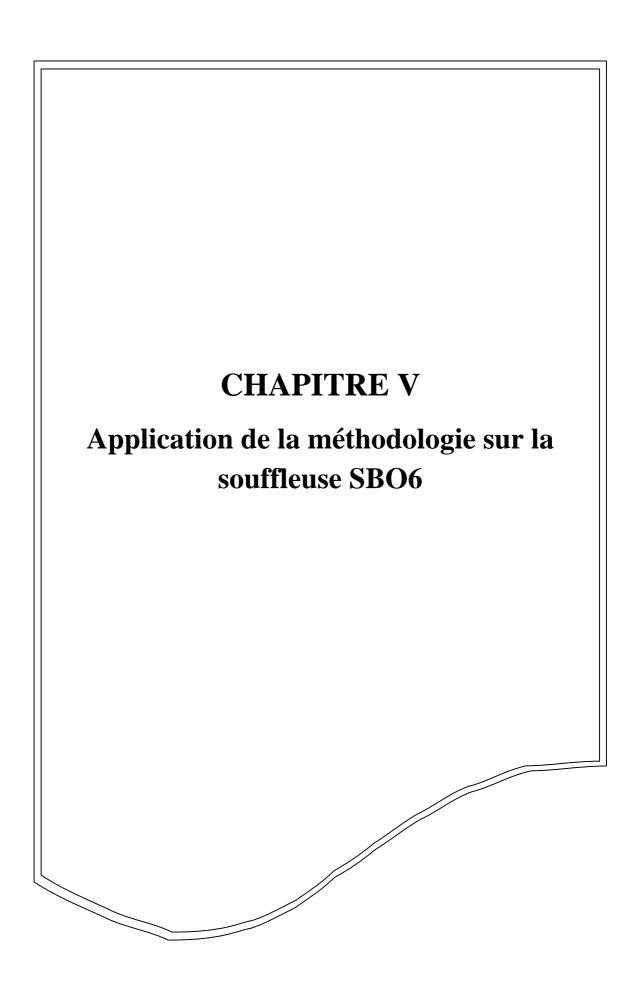
Coûts de préventif		Coûts de correctif		
Ensemble	Coûts	%	Coûts	%
Soufflage	1 141 878,00 DZD	42,58%	2 406 124,75 DZD	73,12%
Four	1 539 756,23 DZD	57,42%	884 392,61 DZD	26,88%
Total	2 681 634,23 DZD	100,00%	3 290 517,36 DZD	100,00%

Tableau IV.9 : les coûts préventifs et correctifs des ensembles.

On voit que les coûts du préventifs du four représentent presque 58% par rapport au coût global. Cependant, le correctif représente, seulement, 27%. Mais pour la partie soufflage, on voit que son coût préventif représente 42% du coût global, par contre son coût correctif est de 73%. Cela dit, plus on intervient dans le préventif moins le coût du correctif est élevé.

IV.3.La perte de production

Pour calculer les pertes, d'abord, on a pris en compte que les heures d'arrêts du aux opérations correctives. Ensuite, on a estimé la valeur d'une bouteille de 5L d'huile à 400,00 DZD tout en sachant que la SBO6 produit 6000B/h.


Après le calcule effectué, on est arrivé au résultat suivant : 1 634 400 000,00 DZD de gains perdus par Cevital. Hors que le coût du préventif représente que 0,18% de cette perte. Alors on voit clairement que leur politique est basée sur le « Run to Faileur ».

IV.4.Le plan de maintenance actuel de la souffleuse

D'après nos analyses et témoignages du personnel affectés à la souffleuse et d'après le bureau Méthode de l'entreprise, on a remarqué qu'elle n'a pas de plan de maintenance adapté, mais juste des tâches de lubrification pour quelques parties visibles ainsi que des vérifications de quelques ensembles et sous-ensembles de l'équipement.

A noter que pour la lubrification, c'est les mêmes points qui sont lubrifiés chaque semaine tout en précisant qu'il y a des parties qui sont laissées à l'abandon (exemple : les sous ensembles moule).

On voit que le plan de maintenance actuel n'est pas optimal et il engendre des coûts énormes sans, pour autant, apporter des solutions pour diminuer ces arrêts, de ce fait, on propose notre plan préventif qui sera détaillé dans le chapitre qui va suivre.

Introduction

Comme notre thème le stipule, on va essayer de diminuer les fréquences de la maintenance préventive en se basant sur les coûts du correctif et du préventif.

Alors, d'après le traitement des données, on voit que la partie soufflage est la plus critique, de part son taux d'arrêt et sont coût d'entretien.

Comme on l'a déjà fait, on voit que le préventif hebdomadaire dure en moyenne 5h, et cela comprend la visite systématique de cette partie ; mais elle n'a pas vraiment d'effet sur l'amélioration de son taux de fiabilité.

Enfin, notre but consiste à diminuer les fréquences sur les sous-ensembles de la partie soufflage qui va se répercuter sur l'ensemble de l'équipement pour avoir un rendement optimal.

V.1. Utilisation de l'abaque de Noiret

On a utilisé l'abaque de Noiret pour définir le type de politique de maintenance à suivre pour l'équipement :

- Matériel de 15 ans : 15pts.
- Matériel essentiel et marche continue : 70pts.
- Coût plus 150000 euro : 55pts.
- Matériel très complexe et accessible : 25pts.
- Origine française petite série : 40pts.
- Matériel de précision délicat : 30pts.
- Marche à trois postes : 250pts.
- Produit perdu: 55 pts.
- Délai série : 100pts.
- Total=655pts.

D'après l'abaque, l'équipement nécessite une maintenance préventive recommandée.

V.2.Le plan de maintenance à proposé

Alors, on a proposé un plan de maintenance préventif à titre facultatif et cela en se basant sur les recommandations du constructeur. Vu que certaines tâches préventives ne sont jamais faites sur l'équipement cela cause des arrêts dont on pourrait s'en passer.

Après qu'on a estimé le temps d'intervention préventif de chaque tâche, on voit que le temps total pour une période de 9000 h (presque une année) est de 100 h de préventive, alors qu'il était au part avant 210 heures, donc nous avons une réduction de 110 heures. (Voir annexe)

Notre apport

Apres avoir alerté le bureau Méthode sur les défaillances répétitives du moule N°3, ils ont, immédiatement, dépêché une équipe pour vérifier nos constatations : ils ont trouvé, effectivement, une fissure au niveau de ce dernier qui est la cause principale de ces arrêts.

Ensuite, lors de leur réversion partielle de 05-05-2017, ils ont adopté notre plan préventif. Ainsi, après notre dernière visite faite le 25-05-2017, ils nous ont affirmé que sur une période de 20 jours, aucune défaillance n'a été signaler par rapport aux années précédentes et que le taux du rendement de la souffleuse était à son optimum.

Pour notre étude, on s'est focalisé sur la diminution des fréquences de la partie soufflage. Donc, pour cette partie on a recensé les sous-ensembles les plus critiques (voir tableau IV.6).

V.3. Estimation des paramètres de loi de weibull

V.3.1. Calcul des TBF

D'après l'analyse de quelques données, on a pu calculer les TBF qui sont indiqués dans le tableau ci-dessous :

	Sous-ensembles les plus critiques								
	Amortisseur Kit de Limiteur d'élongation compensation d'effort		Tige de liaison		Doigt de Verrouillage				
	T-B-F		T-B-F		T-B-F		T-B-F		T-B-F
1	936	1	672	1	3168	1	2112	1	2136
2	1488	2	1152	2	4848	2	2880	2	2112
3	1728	3	1416	3	6408	3	3000	3	3384
4	3264	4	1440	4	7176	4	3384	4	3624
5	3288	5	2040			5	3600	5	4344
6	3648	6	2232			6	5784		
		7	3360						
		8	3600						
		9	3960						

Tableau V.1: les TBF des sous-ensembles les plus critiques du moule.

V.3.2. Estimation de β et η :

Alors, L'estimation des paramètres de la loi de Weibull pour ce système est faite sous le logiciel MATLAB R2010b en utilisant la fonction prédéfinie *wblfit* Matlab. Les résultats obtenus sont illustrés dans le tableau suivant :

Sous-ensembles	β	η
Amortisseur d'élongation	1,6	2851
Kit de compensation	1,2	2442
Limiteur d'effort	1,4	5636
Tige de liaison	1,6	3685
Doigt de verrouillage	2	3300

Tableau V.2 : Les Paramètres de la loi de weibull .

L'estimation de β (Tableau V.2) est supérieure à l'unité, ce qui signifie que l'intensité de défaillance est croissante dans le temps, donc les sous-ensembles sortent de la période de jeunesse, ce qui signifie que la dégradation des sous-ensembles est en évolution.

V.4.Les coûts des sous-ensembles défaillants du moule

Avec les données précédentes, on a répertorié les coûts du préventif et du correctif pour les sous-ensembles du moule qui ont une fréquence d'apparition élevée qui sont, à leur tour, représentées dans le tableau V.1 ci-dessous :

Annexe moule	Coût préventif	Coût Correctif
Amortisseur d'élongation	28541,00 DZD	62 733,00 DZD
Kit de compensation	102 667.00 DZD	723 092,00 DZD
Limiteur d'effort	12 000,00 DZD	30 712,00 DZD
Tige de liaison	3 000,00 DZD	24 708,00 DZD
doigt de verrouillage	25 463,00 DZD	134 875,00 DZD
Total	171 671,00 DZD	976 120,00 DZD

Tableau V.3: Coûts des interventions sur les sous-ensembles du moule.

V.5. Calcul de T optimum

V.5.1. Utilisation du modèle de Kelly

A partir de cet abaque, on peut déterminer le T optimum qui correspond au période optimale de l'intervention systématique. Donc, il suffit de connaître β et r pour trouver le temps optimum d'intervention. (Voir le tableau V.4).

Sous-ensembles	r=Cc/Cp	β	η	T optimum(h)
Amortisseur d'élongation	2,20	1,6	2851	1795,92
Kit de compensation	7,04	1,2	2442	1147,74
Limiteur d'effort	2,56	1,4	5636	3381,6
Tige de liaison	8,24	1,6	3685	1658,25
doigt de verrouillage	5,30	2	3300	1616,88

Tableau V.4 : les résultats trouvés du T optimum des sous-ensembles avec la méthode de Kelly.

V.5.2.Utilisation de la méthode analytique (politique de remplacement périodique)

L'objet d'utilisation de ce model est de trouver le T optimum pour chaque sousensemble défaillant et cela à partir de l'équation (II.5).

$$C(T) = \frac{c_c \cdot H(T) + c_p}{T} = \frac{c_c \int_0^T \lambda(t) dt + c_p}{T}$$
 (V.3)

Et avec
$$\frac{dC(T)}{dT} = 0 (V.4)$$

On obtient
$$T = \sqrt[\beta]{\frac{Cp}{Cc} \times \frac{\eta^{\beta}}{\beta - 1}}$$
 (V.5)

Les résultats obtenus sont représentés dans le tableau ci-dessous :

Sous-ensemble	β	η	T optimum (h)
Amortisseur d'élongation	1,6	2851	2398,2
Kit de compensation	1,2	2442	1835
Limiteur d'effort	1,4	5636	5542,35
Tige de liaison	1,6	3685	1357,5
doigt de verrouillage	2	3300	1433,84

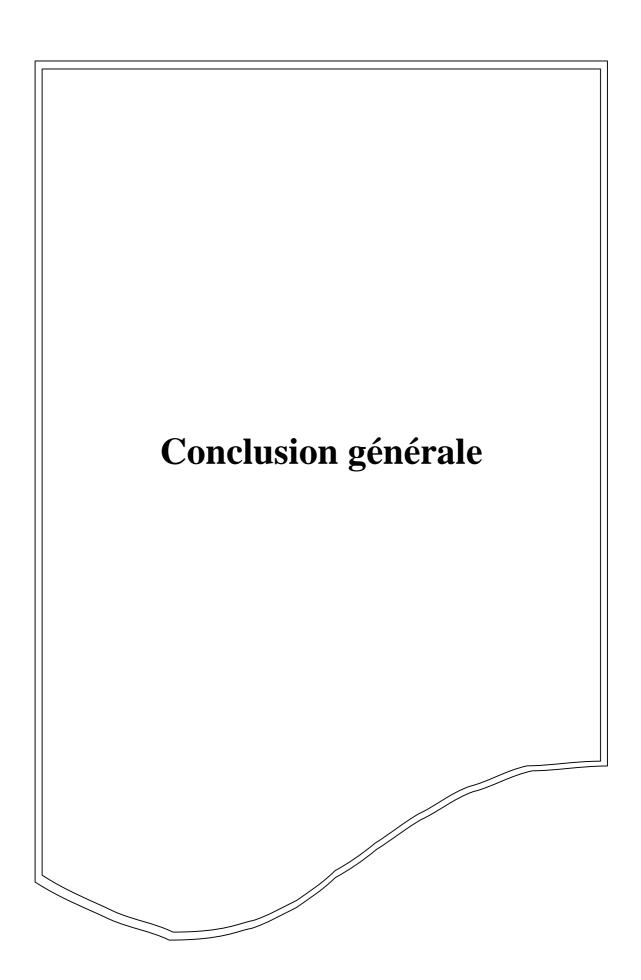
Tableau V.5 : les résultats trouvé de T optimum des sous ensembles avec l'algorithme d'optimisation.

V.6. Comparaison entre les deux méthodes

Les résultats obtenus par l'abaque de kelly, pour la détermination des périodicités des interventions préventives et ceux obtenus par la méthode analytique, révèle une légère différence, néanmoins, ils restent de même ordre.

L'abaque de kelly, à l'avantage d'être rapide d'utilisation, ne nécessitons pas de moyen de calcul, donc sa peut être une bonne option lors ce qu'il s'agit de faire une première approche de la politique de maintenance, par contre sa serait mieux de raffiner les résultats par l'algorithme d'optimisation a fin que les T optimums soient plus juste.

V.7.Les résultats des fréquences obtenues


Apres avoir converti les résultats en jour, on a pu déduire les fréquences par mois et les nombres de visite par année ; les résultats sont dans le tableau ci-dessous :

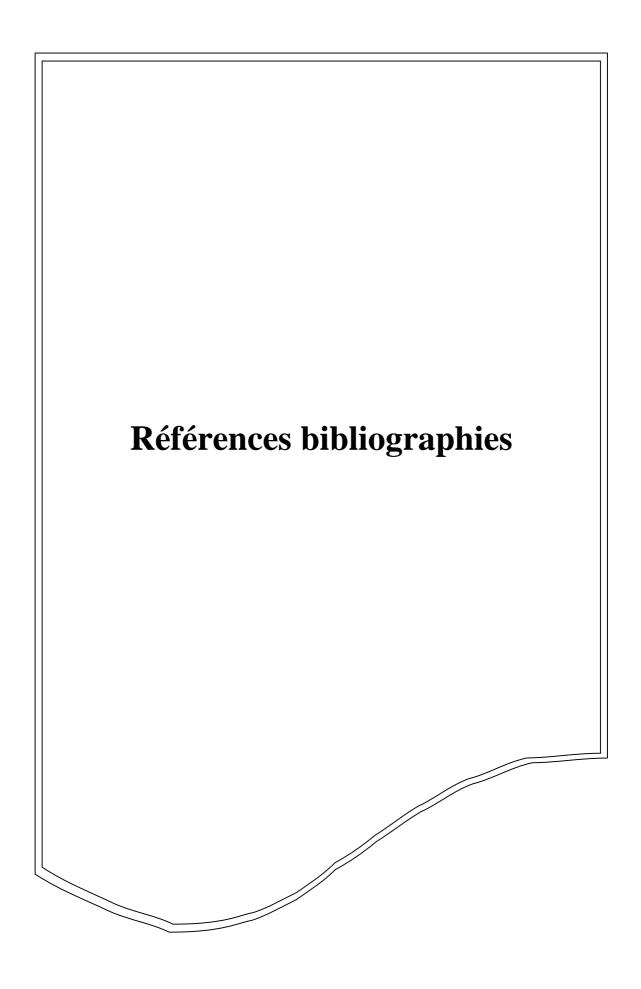
Sous-ensembles	Fréquences (MOIS)	Nb de visite par An
Amortisseur d'élongation	4	3
Kit de compensation	3	4
Limiteur d'effort	8	1
Tige de liaison	2	6
Doigt de verrouillage	2	6

Tableau V.6 : Les fréquences de maintenance préventive et le nombre de visite pour chaque élément.

Conclusion

Rien qu'en appliquant la résolution analytique, le résultat se fait sentir inlassablement : la fréquence des maintenances préventives est diminuées d'une manière considérable : la fréquence serra en moyenne bimestrielle tandis que la fréquence actuelle est hebdomadaire.

Conclusion générale

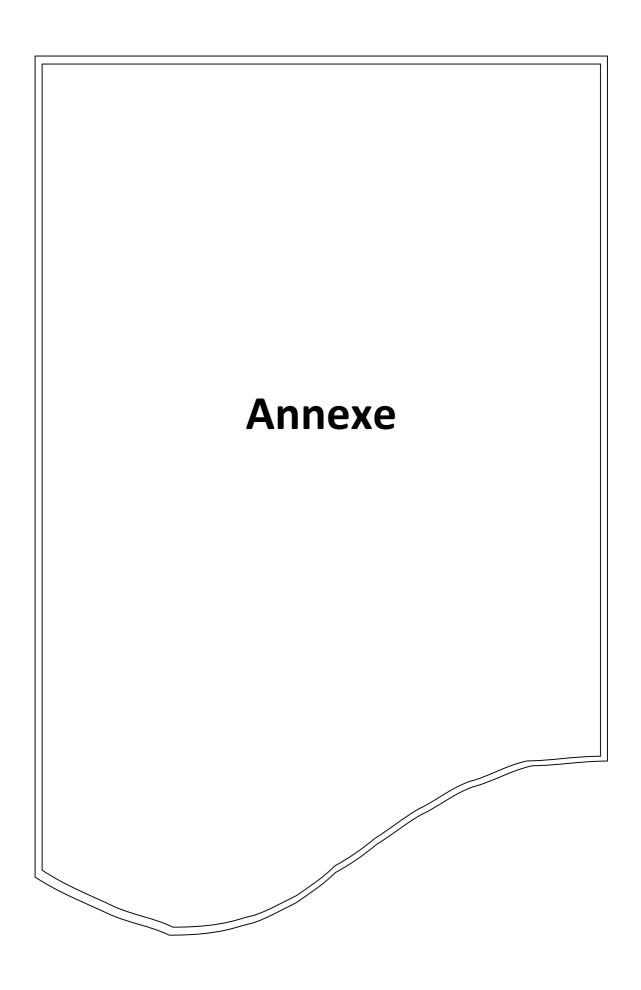

Aujourd'hui, le groupe Cevital est fortement soumis à la concurrence du marché. Dans un tel contexte, rester toujours performant passe obligatoirement par le maintien en état de fonctionnement de l'outil de production. En effet, dans un monde industriel ou les notions de réactivité, de coût et de qualité ont de plus en plus d'importance, il est vital de pouvoir s'appuyer sur un système de production performant à tout instant.

La mise en place d'un plan de maintenance préventif, permet de prévenir et de diminuer l'interruption des opérations de production, mais ce dernier ne peut pas être parfait, dès le départ, mais il faut mettre des indicateurs techniques, financiers pour suivre ce plan en vue de son optimisation.

Hors ce qu'on a constaté, durant notre stage, c'est que le service maintenance ne faisait pas le suivi du plan de maintenance préventif, et le programme des arrêts préventifs hebdomadaires est fait juste pour quelque tâches de lubrification de parties visibles de la souffleuse, et cela en laissant à l'abandon d'autres organes, pourtant, vitaux pour cette dernière, leur politique est le « Run To Faillure ».

Alors, pour l'optimisation du rendement de la souffleuse par la diminution des fréquences de la maintenance préventives, nous avons déterminé les temps optimaux pour les interventions préventives , par l'abaque de kelly qui est une méthode graphique, ensuite pour améliore les résultats nous avons opter pour une méthode analytique.

Ensuite nous avons proposé un plan qui englobe toutes les tâches préventives essentielles, ainsi que leurs périodicités optimales, pour minimiser les arrêts fortuits et diminuer les fréquences de la maintenance préventives, donc maximiser le rendement de la souffleuse.



Références bibliographiques

- [01] Modélisation et Évaluation des Stratégies de Maintenance Complexes sur des Systèmes Multi-Composants. PhD thesis, Université de Technologie de Troyes, 2009.
- [02] L.BENALI «maintenance industrielle» 5eme année d'ingénieurs en génie mécanique, office des publications universitaires 09-2006
- [03] JEAN HENG << Pratique de la maintenance préventive>>. Dunod.paris, 2002.
- [04] TOULOUM Karim «analyse et modélisation orientée services d'un système de maintenance industrielle» mémoire de magistère en informatique, université de Bejaia, 2006/2007.
- [05] Afnor<<Terminologie de maintenance >>.2001
- [06] H. Kaffel. Maintenance Distribuée : Concepts, Évaluation et Mise en Œuvre. PhD thesis, Université Laval, Octobre 2001.
- [07] LAURENS Jérémy, «Mise en place d'un plan de maintenance préventive sur un site de production pharmaceutique». Thèse de doctorat, université de Joseph Fourier de GRENOBLE, France(2011)
- [08] Alain Villemeur, Sûreté de fonctionnement des systèmes industriels, Paris, Eyrolles, coll. « Collection de la direction des études et recherches d'Électricité de France », juillet 1988 (ISSN 0399-4198) page 744
- [09] J.-C. Laprie, Guide de la sûreté de fonctionnement, Toulouse, Cépaduès, mai 1995, 369p
- [10] M. Arturo. «Optimisation de la disponibilité des systèmes assujettis a la maintenance imparfaite». Mémoire de maitrise en génie mécanique, université de Laval, 2008
- [11] A.B.Ocnasu. «Evaluation de la sureté de fonctionnement des réseaux de distribution par la simulation de Monte Carlo : application a des stratégies de maintenance optimal ». Mémoire de thèse, institut polytechnique de Grenoble, 2008.
- [12] R.Laggoune. « Cours de sureté de fonctionnement des systèmes». Département de génie mécanique 2013.
- [13] DETHOOR (J.-M.) et GROBOILLOT (J.-L.). La vie des équipements : investissements, renouvellement, maintenance. Dunod (1968).
- [14] François Monchy et Jean-Pierre Vernier « Maintenance : Méthodes et Organisations » 3^e édition, DUNOD, Paris 2010.
- [15] P.LYONNET <<La maintenance mathématiques et méthodes>>,4^e édition. LAVOISIER. Octobre 2000.

Références bibliographiques

européennes 2011.		

Résumé

Notre travail consiste, à proposer une politique permettant de réduire la fréquence des maintenances préventives pour améliorer la disponibilité de la souffleuse.

Dans ce contexte, nous avons suivi une démarche, basée sur les données fournies par Cevital, pour essayer de déterminer les éléments les plus critiques, ainsi, leurs coûts correctifs et préventifs. Ensuite, nous avons ajusté des lois de weibull de ces éléments sur Matlab. Les résultats obtenus sont ensuite utilisés pour établir un plan de maintenance optimal de la souffleuse.

Les périodicités de maintenance ont été déterminées dans une première étape, par l'abaque de Kelly, améliorées ensuite par un algorithme d'optimisation.