

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Abderrahmane MIRA- BEJAIA Faculté De Technologie

Département de Génie Civil

Mémoire de fin d'étude

En vue de l'obtention d'un diplôme du Master 2 en Génie Civil

Option : Construction métallique

Thème

Étude d'un hangar en charpente

métallique à usage de stockage.

Réaliser par : Melle. DEROUICHE Lydia Mr OUZAICH Moumen **Encadré par:** Mr : A.LARABAT.Z

Promotion 2017

Remerciements

- Dieu tout puissant de nous avoir donné cette opportunité et de nous avoir aidé à arriver jusqu'au bout.

- Tous les enseignants qui nous ont guidées le long de notre formation en particulier :

- Mr Larabat, pour son suivi et ces conseils.

- Nos très chères familles pour leur soutien moral et physique.

- Les membres du jury, de s'être donné la peine d'examiner notre modeste

travail.

- Toute personne ayant contribué de prés ou de loin à la réalisation de ce travail.

Le dédie ce modeste travaille à :

La mémoire de mes grands parents Mes chers parents Mes chers frères Ph. D Lyes et Azzedine Ma chère sœur Nabila et son prince Ahmed A tous mes proches et mes amies surtout Racha et Hassou

A toute Sa promotion 2017

A tous coux que j'aimo et qui m'aimont.

Lydia.

Dédicaces

Je dédie ce modeste travaille à : À la mémoire de ma chère mère. - À mon cher papa. À mon cher frère Sofiane et sa merveilleuse femme Siham ainsi toute sa famille. - Mes sœurs : Mayssa, Linda. - Mes frères : Bilel, Rafik, Hani. A tous mes amis et toute la promotion CM Énfin Je remercie tous ceux qui ont contribué de près ou de loin à la réalisation de ce modeste travail.

MOUMEŇ

Liste des tableaux

TableauII.1 valeur de qref,qp,Ce	16
TableauII.2 : valeurs de surface et de coefficient Cpe de chaque zone de parois vertical	17
Tableau.II.3 valeurs de surface et de coefficient Cpe de chaque zone de toiture	19
TableauII.4 : valeurs de surface et de coefficient Cpe de chaque zone de parois vertical	20
TableauII.5 : valeurs de surface et de coefficient Cpe pour la toiture	
TableauII.6 Valeurs de la pression aérodynamique des parois verticales selon V ₁	24
Tableau II.7. Valeurs de la pression aérodynamique de la toiture selon V_1	25
Tableau II.8. Valeurs de la pression aérodynamique des parois verticales selon V $_2$	25
Tableau II.9 Valeurs de la pression aérodynamique de la toiture selon V2	
Tableau III.1 le poids propre panneau correspondante à chaque épaisseur	
Tableau IV.1 : Evaluation des charges permanentes.	68
Tableau V.1 : Les résultats de F _i	81
Tableau VII.1. Pénalités de vérifications	
Tableau VII.2. Pourcentage de participation de masse.	
Tableau VII.3. Combinaisons de calcul	116
Tableau VII.4. Vérification de l'effort tranchant à la base	117
Tableau VII.5. Déplacement max en situation durable	
Tableau VII.6: Déplacement relatif des niveaux.	
Tableau VIII.1: Caractéristiques du profile IPE330	
Tableau VIII.2 : sollicitations sur le poteau IPE330	
Tableau VIII.3 : sollicitations sur le poteau IPE400.	
Tableau VIII.4: les efforts dans les éléments de contreventement.	
Tableau VIII.5: les efforts dans les éléments de contreventement	
Tableau VIII.6 : les efforts dans les éléments de contreventement.	
Tableau IX. 1: Caractéristiques mécaniques des aciers pour boulons	
Tableau IX. 2: Principales caractéristiques géométrique des boulons	
Tableau IX.3 : Epaisseur du gousset en fonction de l'effort appliqué.	
Tableau X.1: Les sollicitations à la base des poteaux IPE400	
Tableau X.2: Vérification des contraintes dans le sol.	
Tableau XI.1. Valeurs des forces extérieures pour les parois verticales sens V2	
Tableau XI.2. Valeurs des forces extérieures pour la toiture sens V2	
Tableau XI.3. Valeurs des forces intérieures pour les parois verticales sens V2	
Tableau XI.4. Valeurs des forces intérieures pour La toiture sens V2	
Tableau XI.5. Valeurs des forces extérieures pour Les parois verticales sens V2	

Figure I.1 vue en 3D de l'hangar Figure I.2:Plancher mixte à dalle collaborant	4 5
Figure I-1 : Diagramme effort /déformation de l'acier	7
Figure II.1 Les directions principales du vent	13
Figure II.2: légende relative aux murs verticaux	17
Figure II.3: légende pour les parois verticales	18
Figure II.4 :zone de pression pour la toiture	18
Figure II.5 : valeur de Cpe pour la toiture à la direction du vent V1	19
Figure II.6: répartition des surfaces sur pigon	20
Figure II.7 : Cpe,10 correspondant à chaque zone de parois verticales sens V2	21
Figure II.8 : répartition des surfaces sur la toiture	21
Figure II.9: Coefficients de pression intérieure applicables pour des ouvertures uniformémer	t répartie
	23
Figure II.10: Force exercée sur l'acrotère.	29
Figure III .1 détail de panneau sandwich (couverture).	29
Figure III. 2. Disposition de la panne	
Figure III. 3. Schéma statique des charges permanentes G sur les pannes	30
Figure III.4 Schéma statique de la poutre équivalente	32
Figure III.5. Schéma statique de panne sous surcharge de la neige	33
Figure III.6 Représentation de cisaillement de la panne	37
Figure III.7 Représentation de phénomène de déversement dans la semelle inférieure	
Figure III.8. Coupe transversale de l'échantignole Figure III.9 détail de panneau sandwich (bardage)	40 41
Figure III.10 détail de panneau sandwich (bardage).	42
Figure III.11 Disposition de la lisse sur le poteau	43
figure III.12 les efforts dans les lisses	47
Figure III.13 Disposition des potelets	49
Figure IV.1 placher mixte acier beton	56
Figure IV.2 Schéma de la trame supportant les planchers	57
Figure IV. 3:Largeur de la dalle effective	61
Figure IV.4 :Caractéristique de connecteur.	64
Figure IV.5: Sommier sous charge répartie.	66
Figure IV.6: Largeur de la dalle effective.	69
Figure IV.7: Schéma statique de la poutre secondaire	74

Figure V.1 : Vue en plan de la poutre au vent	
Figure V.2 : Schéma statique de la poutre au vent	
Figure V.3 : valeurs des forces et réactions	
Figure V.4. Isolation du nœud 1.	
Figure V.6 : schéma statique de la palée de stabilité de rive.	
Figure V.7 : schéma statique de la palée de stabilité intermédiaire.	92
Figure V.8: Schéma statique de la poutre sablière.	94
Figure VII.1 : Schéma du spectre de réponse suivant X	112
Figure VII.2: Schéma du spectre de réponse suivant Y.	113
Figure VII.3 : Mode de déformation (1).	114
Figure VII.4 : Mode de déformation (2).	115
Figure VII.5 : Mode de déformation (3).	115
Figure VIII.1 : La traverse la plus sollicitée	119
Figure VIII.2: Le poteau le plus sollicité	126
Figure VIII.3: Le poteau le plus sollicité	127
Figure VIII.4: La diagonale la plus sollicitée suivant pignon	132
Figure IX.1 : Représentation de l'assemblage Poteau –Traverse.	140
Figure IX.2 : Représentation de l'assemblage traverse-traverse.	146
Figure IX.3:Vue perspective de l'échantignole	150
Figure IX.4 vue assemblage échantignole panne	151
Figure IX.5:Représentation de l'assemblage diagonale de rive	152
Figure IX.6: Assemblage des diagonales de rive	153
Figure IX.7: Représentation Assemblage des diagonales sur gousset pignon	155
Figure IX.8:Assemblage des diagonales intermédiaires	156
Figure IX.9 : Représentation Assemblage des diagonales	158
Figure IX.10:Assemblage des diagonales de la poutre au vent	159
Figure IX. 11: Tige d'encrage du pied du poteau.	161
Figure IX.12:Vérification dans la section 1–1.	165
Figure IX.13 : Vérification dans la section 2 – 2	166
Figure IX.14 : Vérification dans la section 3 – 3	166
Figure IX.15: pied de poteau articulé	167

Figure X.1:Dimension de la semelle.	172
Figure X.2: Schéma de ferraillage de la semelle des poteaux.	181
Figure X.3 :Schéma de ferraillage des longrines.	185
Figure X.4 : Section du fut à ferrailler.	186
Figure X.5: Schéma de ferraillage des futs.	187

I.1. Introduction	. Erreur ! Signet non défini.
I.2. Situation du projet :	. Erreur ! Signet non défini.
I.3 Caractéristiques :	. Erreur ! Signet non défini.
3.1 Géométries de l'ouvrage :	. Erreur ! Signet non défini.
3.2 Étude de sol	. Erreur ! Signet non défini.
3.3 Ossature et stabilité de la structure :	. Erreur ! Signet non défini.
3.4 Matériaux utilisé	. Erreur ! Signet non défini.
I.4 Règlement utilisée :	. Erreur ! Signet non défini.
I.5 Les états limites	. Erreur ! Signet non défini.
5.1 État limite Ultime (E.L.U.)	. Erreur ! Signet non défini.
5.2 État Limite de Service (E.L.S.)	. Erreur ! Signet non défini.
I.6 Les Actions prises en compte :	. Erreur ! Signet non défini.
II.1. Introduction :	. Erreur ! Signet non défini.
II.2. Action du vent:	. Erreur ! Signet non défini.
II.3. Coefficients de calcul :	. Erreur ! Signet non défini.
3.1. Effet de la région :	. Erreur ! Signet non défini.
3.2. Effet de site :	. Erreur ! Signet non défini.
3.3. Coefficient de topographie :	. Erreur ! Signet non défini.
3.4. Calcul de coefficient dynamique Cd:	. Erreur ! Signet non défini.
<u>II .4 calcule de la pression :</u>	. Erreur ! Signet non défini.
4.1. Détermination de la pression dynamique pointe $q_p(z_c)$:	. Erreur ! Signet non défini.
4.2. Détermination du coefficient de la rugosité C _r :	. Erreur ! Signet non défini.
4.3. Détermination du coefficient d'exposition $C_{e}(z_{e})$:	. Erreur ! Signet non défini.
4.4. Intensité de turbulence :	. Erreur ! Signet non défini.
4.5. Détermination de coefficient de pression extérieure Cpe :	. Erreur ! Signet non défini.
4.5.1. Vent perpendiculaire au long pan V1 :	. Erreur ! Signet non défini.
4.5.2. Vent perpendiculaire au pignon V2:	. Erreur ! Signet non défini.
4.6 Détermination de coefficient de pression intérieure C _{pi} :	. Erreur ! Signet non défini.
II.5 Action neige:	. Erreur ! Signet non défini.
<u>5.1 But</u>	. Erreur ! Signet non défini.
5.2 Calcul des charges de neige	. Erreur ! Signet non défini.
5.2.1Charge de neige sur le sol	. Erreur ! Signet non défini.
5.2.2 Coefficient de forme de la toiture	. Erreur ! Signet non défini.
III.1 Dimensionnement des panneaux de couverture	. Erreur ! Signet non défini.
1.1. Principe de choix d'un panneau sandwich	Erreur ! Signet non défini.

Sommaire

1.2. Panneaux couverture	Erreur ! Signet non défini.
1.2.1. Détermination de poids propre de la couverture	Erreur ! Signet non défini.
1.2.2. Détermination de la portée maximale	Erreur ! Signet non défini.
III.2 Etude des pannes	Erreur ! Signet non défini.
2.1 Définition	Erreur ! Signet non défini.
2.2. Détermination des sollicitations	Erreur ! Signet non défini.
2.2.1. Evaluation des charges et surcharges	Erreur ! Signet non défini.
2.2.2 les charges et surcharges appliquées :	Erreur ! Signet non défini.
2.2.3 Les combinaisons d'actions	Erreur ! Signet non défini.
2.3 Principe de pré dimensionnement	Erreur ! Signet non défini.
2.3.1 Vérification à l'ELS (flèche)	Erreur ! Signet non défini.
2.4 Dimensionnement des pannes	Erreur ! Signet non défini.
2.4.1 Condition de la flèche	Erreur ! Signet non défini.
2.4.2 Condition de la résistance (ELU)	Erreur ! Signet non défini.
III.3. Calcul de l'échantignole :	Erreur ! Signet non défini.
III.4 Calcul des lisses de bardage	Erreur ! Signet non défini.
4.1 Panneaux bardage	Erreur ! Signet non défini.
4.1.1 Détermination de poids propre de bardage	Erreur ! Signet non défini.
4.1.2 Détermination de la portée maximale pour le bardage	Erreur ! Signet non défini.
4.2 Définition	Erreur ! Signet non défini.
4.3 Données de calcul	Erreur ! Signet non défini.
4.5. Condition de la flèche :	Erreur ! Signet non défini.
III.5 Calcul des suspentes:	Erreur ! Signet non défini.
5.1 Calcul de l'effort de traction dans la suspente la plus sollicitée	Erreur ! Signet non défini.
5.2 Calcul de la section des suspentes :	Erreur ! Signet non défini.
III.6. Calcul des potelets :	Erreur ! Signet non défini.
6.1. Calcul des charges et surcharges revenant au potelet le plus charge	<u>té</u> Erreur ! Signet non défini.
6.2. Le pré dimensionnement du potelet :	Erreur ! Signet non défini.
6.3. Vérification de la stabilité au flambement flexion sous N et M à I	<u>L'ELU:</u> Erreur ! Signet non défini.
6.4. Vérification de la stabilité au déversement	Erreur ! Signet non défini.
IV.1 Introduction :	Erreur ! Signet non défini.
IV.2. Etude de la dalle collaborant :	Erreur ! Signet non défini.
IV.3.Evaluation des charges :	Erreur ! Signet non défini.
IV.5. Vérification des solives :	Erreur ! Signet non défini.
5.1 Phase de construction :	Erreur ! Signet non défini.
5.2. Phase finale :	Erreur ! Signet non défini.

IV.6. Calcul des goujons connecteurs :	Erreur ! Signet non défini.
6.1. Vérification des soudures	Erreur ! Signet non défini.
IV.7 Calcul de la poutre maîtresse:	Erreur ! Signet non défini.
7.1 Vérification des poutres maitresses (sommiers) :	Erreur ! Signet non défini.
7.2 Vérification en tenant compte du poids du profilé	Erreur ! Signet non défini.
7.3 Calcul des goujons connecteurs :	Erreur ! Signet non défini.
7.3.1 Vérification des soudures	Erreur ! Signet non défini.
IV.8 Calcul de la poutre secondaire :	Erreur ! Signet non défini.
IV.9.Conclusion :	Erreur ! Signet non défini.
V.1 Introduction :	Erreur ! Signet non défini.
V.2 Rôle des systèmes de contreventement	Erreur ! Signet non défini.
V. 3 Calcul de la poutre au vent en pignon :	Erreur ! Signet non défini.
3.1.1 Evaluation des efforts horizontaux :	Erreur ! Signet non défini.
3.1.3 Calcul des efforts de traction dans les diagonales :	Erreur ! Signet non défini.
3.1.4 Calcul de la section brute A de la diagonale :	Erreur ! Signet non défini.
3.1.5 Calcul de la section nette :	Erreur ! Signet non défini.
3.1.6 Vérification à la résistance ultime de la section :	Erreur ! Signet non défini.
3.2.1 Vérification de la panne intermédiaire :	Erreur ! Signet non défini.
3.2.2 Vérification de l'élément aux instabilités (déversement) :	Erreur ! Signet non défini.
3.3.3 Vérification au flambement :	Erreur ! Signet non défini.
V.4 Contreventement vertical du long-pan :	Erreur ! Signet non défini.
4.1 Dimensionnement de la pale de stabilité de rive :	Erreur ! Signet non défini.
4.2 Dimensionnement de la pale de stabilité intermédiaire :	Erreur ! Signet non défini.
4.2.1dimensionnement de la diagonale:	Erreur ! Signet non défini.
4.2.2 Calcul de la section brute A :	Erreur ! Signet non défini.
V.5. Pré dimensionnement de la poutre sablière :	Erreur ! Signet non défini.
5.1. Verification via à vis de l'instabilité :	Erreur ! Signet non défini.
VI .1 Calcul des traverses	Erreur ! Signet non défini.
<u>1.2 Résultats</u>	Erreur ! Signet non défini.
1.3 Pré dimensionnement de la traverse :	Erreur ! Signet non défini.
1.4 Vérification de l'effort tranchant	Erreur ! Signet non défini.
1.5 L'incidence de l'effort normal	Erreur ! Signet non défini.
1.6 Vérification de la stabilité au déversement	Erreur ! Signet non défini.
VI .2 Calcul des poteaux	Erreur ! Signet non défini.
2.1 Résultats obtenue	Erreur ! Signet non défini.
2.3 Pré dimensionnement des poteaux :	Erreur ! Signet non défini.

2.4 Vérification de l'effort tranchant	Erreur ! Signet non défini.
2.5 Flambement du portique	Erreur ! Signet non défini.
2.6 Vérification de la stabilité au déversement	Erreur ! Signet non défini.
VI.3 Conclusion	Erreur ! Signet non défini.

VII.1 Introduction :	Erreur ! Signet non défini.
VII.2 Analyse de la structure :	Erreur ! Signet non défini.
2.1 Type d'analyse	Erreur ! Signet non défini.
2.2 Méthodes de calcul	Erreur ! Signet non défini.
3. La méthode statique équivalente :	Erreur ! Signet non défini.
3.1 Principe de la méthode :	Erreur ! Signet non défini.
3.2 Calcul de la force sismique totale :	Erreur ! Signet non défini.
4. Principe de la méthode spectrale :	Erreur ! Signet non défini.
4.1 Nombre de modes de vibrations à considérer :	Erreur ! Signet non défini.
4.2 Résultat de calcul :	Erreur ! Signet non défini.
4.3 Analyse des résultats :	Erreur ! Signet non défini.
4.4 Résultantes des forces sismiques de calcul :	Erreur ! Signet non défini.

VIII.1 Introduction :	Erreur ! Signet non défini.
VIII.2 Justification des traverses (IPE330) :	Erreur ! Signet non défini.
2.1 Charges repairés sur la traverse :	Erreur ! Signet non défini.
2.2 Caractéristiques de la traverse :	Erreur ! Signet non défini.
2.3. Vérification de la section à la résistance :	Erreur ! Signet non défini.
2.4. Condition de résistance	Erreur ! Signet non défini.
2.5. Vérification de l'élément aux instabilités :	Erreur ! Signet non défini.
2.6. Vérification au déversement :	Erreur ! Signet non défini.
2.7 Vérification avec le logiciel robot :	Erreur ! Signet non défini.
VIII.3 Vérification des poteaux :	Erreur ! Signet non défini.
3.1 Vérification par un calcul manuel	Erreur ! Signet non défini.
3.2. Vérification de l'élément aux instabilités :	Erreur ! Signet non défini.
3.2.1. Flexion composée avec risque de flambement :	Erreur ! Signet non défini.
3.3. Vérification avec le logiciel robot :	Erreur ! Signet non défini.
3.4. Pour le deuxième cas :	Erreur ! Signet non défini.
3.4.1 Flexion composée avec risque de flambement :	Erreur ! Signet non défini.
3.5. Vérification avec le logiciel robot :	Erreur ! Signet non défini.
VIII.4. Vérification des diagonales des contreventements poutre au	vent : . Erreur ! Signet non défini.

<u>4.1. Pignon (L45*5)</u>	Erreur ! Signet non défini.
4.1.1. Vérification à la traction :	Erreur ! Signet non défini.
VIII.5. Vérification des diagonales de la palée de stabilité :	Erreur ! Signet non défini.
<u>5.1. Rive : (L50*6)</u>	Erreur ! Signet non défini.
5.2. Vérification à la traction :	Erreur ! Signet non défini.
5.3. Intermédiaire : (L60*6)	Erreur ! Signet non défini.
5.4 Vérification à la traction :	Erreur ! Signet non défini.
IX.1 Introduction :	Erreur ! Signet non défini.
IX.2. Fonctionnement des Assemblages	Erreur ! Signet non défini.
IX.2 Assemblage poteau _ traverse :	Erreur ! Signet non défini.
2.1. Détermination des efforts dans les boulons :	Erreur ! Signet non défini.
2.2. Dimensionnement des boulons :	Erreur ! Signet non défini.
2.3. Condition de résistance des boulons :	Erreur ! Signet non défini.
2.4. Moment résistant effectif de l'assemblage :	Erreur ! Signet non défini.
2.5.Vérification :	Erreur ! Signet non défini.
2.5.1 Résistance d'un boulon a l'interaction cisaillement-tractio	<u>n :</u> Erreur ! Signet non défini.
2.6. Vérification au poinçonnement :	Erreur ! Signet non défini.
2.7. Vérification à la résistance de l'âme du poteau dans la zone te	ndue : Erreur ! Signet non
défini.	
2.8. Vérification à la résistance de l'âme du poteau dans la zone co	<u>omprimée :</u> Erreur ! Signet non
2.9. Vérification à la résistance de l'âme du noteau dans la zone ci	saillée · Frreur ! Signet non
défini.	<u>sumee .</u> Erreur . bighet non
2.10. Assemblage platine traverse :	Erreur ! Signet non défini.
2.11. Vérification :	Erreur ! Signet non défini.
IX.4. Assemblage traverse _ traverse	
Traverse IPE330-IPE330 :	Erreur ! Signet non défini.
4.1. Détermination des efforts dans les boulons :	Erreur ! Signet non défini. Erreur ! Signet non défini.
	Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini.
4.2. Dimensionnement des boulons :	Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini.
4.2. Dimensionnement des boulons : 4.3. Condition de résistance des boulons :	Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini. Erreur ! Signet non défini.
 4.2. Dimensionnement des boulons : 4.3. Condition de résistance des boulons : 4.4. Moment résistant effectif de l'assemblage : 	Erreur ! Signet non défini. Erreur ! Signet non défini.
 4.2. Dimensionnement des boulons : 4.3. Condition de résistance des boulons : 4.4. Moment résistant effectif de l'assemblage : 4.5. Résistance d'un boulon à l'interaction cisaillement-traction : 	Erreur ! Signet non défini. Erreur ! Signet non défini.
 <u>4.2. Dimensionnement des boulons :</u> <u>4.3. Condition de résistance des boulons :</u> <u>4.4. Moment résistant effectif de l'assemblage :</u> <u>4.5. Résistance d'un boulon à l'interaction cisaillement-traction :</u> <u>4.6. Vérification au poinçonnement :</u> 	Erreur ! Signet non défini. Erreur ! Signet non défini.
 <u>4.2. Dimensionnement des boulons :</u> <u>4.3. Condition de résistance des boulons :</u> <u>4.4. Moment résistant effectif de l'assemblage :</u> <u>4.5. Résistance d'un boulon à l'interaction cisaillement-traction :</u> <u>4.6. Vérification au poinçonnement :</u> <u>4.7. Assemblage platine traverse :</u> 	Erreur ! Signet non défini. Erreur ! Signet non défini.
 4.2. Dimensionnement des boulons : 4.3. Condition de résistance des boulons : 4.4. Moment résistant effectif de l'assemblage : 4.5. Résistance d'un boulon à l'interaction cisaillement-traction : 4.6. Vérification au poinçonnement : 4.7. Assemblage platine traverse : 4.8. Vérification : 	Erreur ! Signet non défini. Erreur ! Signet non défini.
 4.2. Dimensionnement des boulons : 4.3. Condition de résistance des boulons : 4.4. Moment résistant effectif de l'assemblage : 4.5. Résistance d'un boulon à l'interaction cisaillement-traction : 4.6. Vérification au poinçonnement : 4.7. Assemblage platine traverse : 4.8. Vérification : IX.5. Assemblage de l'échantignolle : 	Erreur ! Signet non défini. Erreur ! Signet non défini.
 4.2. Dimensionnement des boulons : 4.3. Condition de résistance des boulons : 4.4. Moment résistant effectif de l'assemblage : 4.5. Résistance d'un boulon à l'interaction cisaillement-traction : 4.6. Vérification au poinçonnement : 4.7. Assemblage platine traverse : 4.8. Vérification : IX.5. Assemblage de l'échantignolle : 5.1. Assemblage de l'échantignolle sur la panne : 	Erreur ! Signet non défini. Erreur ! Signet non défini.

5.2. Dimensionnement des boulons:	Erreur ! Signet non défini.
5.3. Moment résistant effectif de l assemblage:	Erreur ! Signet non défini.
5.4 .Assemblage de l'échantignolle sur la traverse :	Erreur ! Signet non défini.
5.5. Vérification à la pression diamétrale :	Erreur ! Signet non défini.
IX.6. Assemblage du contreventement (Palées de stabilités) :	Erreur ! Signet non défini.
6.1 Palées de stabilités de rive :	Erreur ! Signet non défini.
6.1.1. Assemblage de la diagonale sur le gousset :	Erreur ! Signet non défini.
6.1.2.Distribution de l'effort normale sur les boulons :	Erreur ! Signet non défini.
6.1.3. Dimensionnement des boulons :	Erreur ! Signet non défini.
6.1.4. Disposition géométrique :	Erreur ! Signet non défini.
6.1.5. Vérifications :	Erreur ! Signet non défini.
6.1.6. Vérification à la pression diamétrale :	Erreur ! Signet non défini.
6.1.7. Vérification de la rupture de la section nette :	Erreur ! Signet non défini.
6.2. Palées de stabilités intermédiaires :	Erreur ! Signet non défini.
6.2.1. Assemblage de la diagonale sur le gousset :	Erreur ! Signet non défini.
6.2.2. Distribution de l'effort normale sur les boulons :	Erreur ! Signet non défini.
6.2.3. Dimensionnement des boulons :	Erreur ! Signet non défini.
6.2.4. Vérifications :	Erreur ! Signet non défini.
6.2.5. Vérification à la pression diamétrale :	Erreur ! Signet non défini.
6.2.6. Vérification de la rupture de la section nette :	Erreur ! Signet non défini.
IX.7 contreventements horizontaux poutre au vent :	Erreur ! Signet non défini.
7.1. Assemblage de la diagonale sur le gousset :	Erreur ! Signet non défini.
7.2. Dimensionnement des boulons :	Erreur ! Signet non défini.
7.3. Disposition géométrique :	Erreur ! Signet non défini.
7.4. Vérifications :	Erreur ! Signet non défini.
7.5. Vérification à la pression diamétrale :	Erreur ! Signet non défini.
7.6. Vérification de la rupture de la section nette :	Erreur ! Signet non défini.
IX.8 Calcul des pieds de poteaux (encastre) :	Erreur ! Signet non défini.
8.1 Dimensionnement de la tige d'ancrage des poteaux:	Erreur ! Signet non défini.
8.2 Vérifications :	Erreur ! Signet non défini.
8.2.1. Vérification de la tige d'ancrage:	Erreur ! Signet non défini.
8.2.2. Vérification des contraintes dans le béton et l'acier:	Erreur ! Signet non défini.
8.2.3Vérification des contraintes dans le béton:	Erreur ! Signet non défini.
8.2.4Vérification des contraintes dans l'acier:	Erreur ! Signet non défini.
8.3 Dimensionnement de l'épaisseur de la platine:	Erreur ! Signet non défini.
IX. 9 Dimensionnement de la tige d'ancrage des potelets :	Erreur ! Signet non défini.

9.1.Vérification de la tige d'ancrage:	Erreur ! Signet non défini.
9.2Vérification de la contrainte de compression sur la semelle de	la fondation: . Erreur ! Signet non
defini.	
9.3Détermination de l'épaisseur de la platine:	Erreur ! Signet non défini.
XI.1 Introduction :	Erreur ! Signet non défini.
XI.2. Action d'ensemble	Erreur ! Signet non défini.
2.1. Calcul des forces à l'aide des pressions de surfaces	Erreur ! Signet non défini.
2.1.1 Vent sur pignon (sens V2)	Erreur ! Signet non défini.
2.1.2. Vent sur long pan (sens V1)	Erreur ! Signet non défini.
XI.3 : Détermination des moments renversants (M _R)	Erreur ! Signet non défini.
<u>3.1 : Cas du vent :</u>	Erreur ! Signet non défini.
<u>3.2 Cas de séisme</u>	Erreur ! Signet non défini.
X.4. Conclusion :	Erreur ! Signet non défini.

NOTATIONS

Les principales notations utilisées sont les suivants :

•	
A	Aire de la section brute.
Anet	Aire de la section nette.
Aeff	Aire de la section efficace.
Av	Aire de cisaillement.
Н	Hauteur de la section transversale.
b	Largueur des semelles.
r	Rayon du congé de raccordement.
tſ	Epaisseur des semelles.
tw	Epaisseur de l'âme.
Iy.z	Moment d'inertie.
İy.z	Rayon de giration de la section.
Iw	Facteur de gauchissement.
It	Moment d'inertie de torsion.
W _{ply.z}	Module plastique de la section.
Wely.z	Module élastique de la section.
Weff	Module élastique efficace de la section.
Npl	Effort normal résistant plastique.
Nu	Effort normal ultime de la section nette.
Nnet	Effort normal résistant de la section nette.
$\mathbf{M}_{ply.z}$	Moment résistant plastique de la section.
Mely.z	Moment résistant élastique de la section.
Meff.z	Moment résistant de la section efficace.
Mcr	Moment critique de déversement.
λy.z	Elancement géométrique pour le mode de flambement.
λy.z	Elancement réduit pour le mode de flambement.
λcr	Elancement critique d'Euler.
χy.z	Coefficient de réduction pour le mode de flambement considéré.
ψs	Coefficient de scellement relatif a une armature (psi).
τ	Contrainte tangente (tau).
τu	Contrainte tangente conventionnelle.
$ au_{S}$	Contrainte d'adhérence.
Ф	Diamètre d'une armature transversale.
N N	Coefficient de poissant (nu).
User	Moment ultime à L'ELS (mu).
μbu	Moment réduit à L'ELU.
α	Facteur d'imperfection pour le flambement.

INTRODUCTION GENERALE

La construction métallique est un domaine de construction, mais aussi de la la mécanique ou du genie civil qui s'interesse à la construction d'ouvrage en métal et plus particulierement en acier.

Une telle construction est maintenue par une ossature métallique, résultante de l'assemblage de différents composants, cet assemblage doit etre conçues globalement de manière a assuré de la structure réalisé répond a l'usage prévu pour l'ouvrage, c'est-à-dire de toute les actions qui lui sont appliquées ; assurer la coherence des déformation relative des système structureaux

Le principe de ce présent travaille est l'etude d'un hanga à usage de stockag. L'etude de pré-dimensionnement des différents éléments ont été élaborés selon les différents réglements technique de calcul et de conception, à s'avoir : (RPA99 V03, BAEL91, CCM97, RNV99)

I.1. Introduction

Dans le cadre de notre formation, nous sommes amenés, à l'issue de notre cursus, à réaliser un projet de fin d'études. Le but de ce projet est d'être confronté à une situation professionnelle concrète. Notre projet consiste à dimensionner les éléments d'un hangar en charpente métallique de forme rectangulaire à versants multiples, avec un plancher mixte acier-béton destiner au stockage. Dans ce chapitre, nous ferons une présentation de toutes les données relatives au projet.

I.2. Situation du projet :

L'ouvrage sera implanté dans la commune d'Akbou wilaya de Bejaia qui est classé selon le règlement parasismique Algérien RPA 1999 version 2003 comme zone de moyenne sismicité, zone Iia

Figure I.1 vue en 3D de l'hangar

I.3 Caractéristiques :

3.1 Géométries de l'ouvrage :

- ✓ Longueur de l'ouvrage (longpan) : 66m. Le long pan est constitué de 11 travées de 6m.
- ✓ Largeur de l'ouvrage (pignon) : **36m.**

- ✓ Hauteur totale de l'ouvrage : 7.5m.
- ✓ Hauteur des poteaux : 6m.

3.2 Étude de sol

Les études faites sur le sol (rapport préliminaire de sol) ou le projet sera implanté nous renseignent sur :

- La contrainte admissible du sol tirée de la portance : σadm= 2 bar (rapport sol)

3.3 Ossature et stabilité de la structure :

La structure est constituée de 11 portiques à quatre travées. Ces portiques assurent la stabilité transversale de l'ossature. La stabilité longitudinale est assurée par des palées de stabilités.

- Plancher :
 - ✓ La structure comporte un plancher collaborant constitués de.
 - ✓ Une dalle en béton armé
 - ✓ Armatures
 - ✓ Une tôle nervurée.
 - \checkmark Des solives.
 - ✓ Des goujons connecteurs.

FigureI-2:Plancher mixte à dalle collaborant.

• Toiture

La toiture est en charpente métallique à multiple versants. Elle est constituée de bacs de couverture en panneaux sandwichs reposant sur des pannes en IPE, et de poutres au vent.

Les panneaux sandwichs nous offre plusieurs avantages on site :

- ✓ L'isolation et l'étanchéité
- ✓ Une bonne capacité portante
- ✓ Un gain de temps appréciable au montage.
- ✓ La rapidité d'exécution

• Les façades et cloisons

Les façades extérieures sont réalisées avec des panneaux sandwichs fixés aux lisses de bardages, Les murs de la mezzanine sont réalisés avec de la maçonnerie.

3.4 Matériaux utilisé

• Acier

L'acier est un matériau constitué essentiellement de fer et d'un peu de carbone, qui sont extraits de matières premières naturelles tirées du sous-sol (mines de fer et de charbon).

Le carbone n'intervient dans la composition, que pour une très faible part (généralement inférieur à 1%).

Outre le fer et le Carbonne, l'acier peut comporter d'autre éléments qui lui sont associés soit :

- ✓ Involontairement comme le phosphore et le soufre qui sont les impuretés qui altèrent les propriétés des aciers.
- ✓ Volontairement comme le silicium, le manganèse, le nickel, le chrome...etc. ces derniers ont pour propriétés d'améliorer les caractéristiques mécaniques des aciers (Résistance a la rupture, dureté, ductilité, résistance vis-à-vis de la corrosion.....)
- Propriété de l'acier :

➢ Résistance

Les nuances d'acier courantes et leurs résistances limites sont données pale régalement (Eurocode 03).

La nuance choisie pour la réalisation de cet ouvrage est l'acier S 235.

Ductilité

L'acier de construction choisi doit satisfaire les conditions suivantes :

- Le rapport fu /fy >1,2
- La déformation ultime doit être supérieure à 20 fois la déformation élastique (εu≥20 εy)
- A la rupture l'allongement relatif ultime ε_u doit être supérieure ou égal à 15%.

FigureI-1 : Diagramme effort /déformation de l'acier.

> Propriétés mécaniques

- ✓ Masse volumique : $7850 Kg / m^3$
- ✓ Module d'élasticité longitudinal : E = 210000 MPa.
- ✓ Module d'élasticité transversale $G = E/2(1+\upsilon)$
- ✓ Coefficient de Poisson : v = 0,3
- ✓ Coefficient de dilatation thermique : $\alpha = 12.10^{-6}$ /°C
- Le béton

Le béton est un matériau de construction Composé de granulats, de sable, ciment, d'eau et éventuellement d'adjuvant pour en modifier les propriétés.

Le béton présente une excellente résistance à la compression jusqu'à 450daN/cm² mais 10 fois moindre en traction ou en cisaillement.

• Propriétés du béton

Le béton utilisé sera de classe C25 avec :

- Une résistance à la compression à 28 jours : $fc_{28}=25$ MPa.
- La résistance à la traction à 28 jours : $ft_{28}=2.1$ MPA.
- Le poids spécifique : $\rho = 25KN / m^3$
- Coefficient de retrait : $\varepsilon = 4.10^{-6}$

I.4 Règlement utilisée :

Les règlements utilisés pour la réalisation de cette étude sont :

✓ Règles de conception et de calcul des structures en acier (CCM97), document technique

réglementaire D.T.R-B.C-2.44.

- ✓ Règles parasismique algériennes (**RPA99 version 2003**) **D.T.R-B.C-2.48**.
- ✓ Charges permanentes et surcharges d'exploitation **D.T.R-B.C-22**.
- ✓ Règles neige et vent (**RNVA2013**) **D.T.R-C2.47**.
- ✓ Eurocode 1; partie 5 action induite par les ponts roulants; Eurocode 3 partie 6; chemins de roulements
- ✓ Règles de calcul des fondations superficielles **D.T.R-B.C-2.33**.

I.5 Les états limites

Un état limite est un état au-delà duquel la structure ne satisfait plus aux exigences pour lesquelles elle a été conçue. En distingue état limite :

5.1 État limite Ultime (E.L.U.)

Les états limites ultimes sont associés à la ruine de la structure, ils comprennent

- La perte d'équilibre de la structure ou de l'une de ses parties
- La ruine de la structure ou de l'un de ses éléments

5.2 État Limite de Service (E.L.S.)

Les étatslimites de service correspondent aux dépassements des critères spécifiés d'exploitation, ils comprennent :

- Les déformations et les flèches affectant l'aspect ou l'exploitation de la construction, ou provoquant des dommages à des éléments non structuraux
- Les vibrations incommodant les occupants, endommageant le bâtiment ouson contenu

I.6 Les Actions prises en compte :

Une action est Une force (charge) appliquée à la structure (action directe) ou une déformation imposée (action indirecte), déplacements d'appuis, effets thermiques.

Les actions sont classées principalement en fonction de leur variation dans le temps :

- Actions Permanentes (G) : dont l'intensité est constante ou très peu variable dans le temps, ou varie dans le même sens en tendant vers une limite, tel que :
 - Poids propre de la structure
 - Poussée des terres et liquides
- Actions variables (Q): dont l'intensité varie fréquemment et de façonimportante dans letemps tel que :

- Charges d'exploitation
- Charges climatiques (neigeS, vent W);
- Charges dues à l'effet de température (T)
- Charges appliquées en cours d'exécution.
 - Actions Accidentelles

Ce sont des actions qui ne surviennent que rarement durant la vie de l'ouvrage mais dont les conséquences peuvent être très néfastes, si des dispositions ne sont pas prises lors de la conception et de la réalisation de l'ouvrage. Parmi ces actions, on peut répertorier :

- L'action sismique notée E
- Le choc, l'incendie, l'explosion, etc....

I II.1. Introduction :

L'effet du vent sur une construction métallique est généralement prépondérant, une étude approfondie doit être élaborée pour la détermination des différentes actions dues au vent et ce, dans toutes les directions possibles. Les calculs seront menés conformément au règlement neige et vent RNVA2013.

Les valeurs de pression du vent dépendent d'un certain nombre de facteurs :

- De la région.
- De site d'implantation.
- De la hauteur de la construction.
- De la forme géométrique de la construction.
- De la rigidité de la construction.
- Des ouvertures (ou de la perméabilité à l'air) de la construction

Selon le sens du vent et l'état des ouvertures, quatre cas ont été envisagés :

- Vent sur long-pan avec surpression intérieure.
- Vent sur long-pan avec dépression intérieure.
- Vent sur pignon avec surpression intérieure.
- Vent sur pignon avec dépression intérieure.

II II.2. Action du vent:

III

Il s'agit de déterminer les actions du vent s'exerçant sur les parois et la toiture pour un vent perpendiculaire :

- au long pan V1
- au pignon V2,

Figure II.1 Les directions principales du vent.

IV II.3. Coefficients de calcul :

IV.1 3.1. Effet de la région :

Notre structure est située dans la **zone I**, dont la pression de référence est donnée par le tableau 2-2 du RNVA2013 (chapitre II-bases de calcul) par q_{ref} = 375 N/m².

IV.2 3.2. Effet de site :

La structure sera implantée en zone industrielle, donc d'après les donnes de tableau 2-

4dans le RNVA2013 (chapitre 2- bases de calcul) la catégorie de terrain est III

D'où :

Le facteur de terrain $K_T = 0,215$

Le paramètre de rugosité z = 0, 3m

La hauteur minimale $z_{min} = 5m$. (Tableau 2-4, chapitre II RNVA2013).

 $\varepsilon = 0,37$: coefficient utilisé pour le calcul de Cd

IV.3 3.3. Coefficient de topographie :

Le coefficient de topographies $C_t(z)$ prend en compte l'accroissement de la vitesse du vent lorsque celui-ci souffle sur des obstacles que les collines, les dénivellations isolées .etc. Le site est plat, le coefficient de topographie $C_t = 1$. (Chapitre II RNVA2013).

IV.4

IV.5 3.4. Calcul de coefficient dynamique Cd:

le coefficient dynamique C_d tient compte des effets de réduction dus a l'imparfaite corrélation des pression exercées sur les parois ainsi que des effets d'amplification dus à la partie de turbulence ayant une fréquence proche de la fréquence fondamentale d'oscillation de la structure .

La valeur du coefficient dynamique C_d pour les structures métalliques est donnée par le paragraphe valeur simplifiée. (**Chapitre III : coefficient dynamique** dans **RNVA2013**). C_d =1. Bâtiment dont la hauteur est inferieur à 15m

V II .4 calcule de la pression :

V.1

V.2 4.1. Détermination de la pression dynamique pointe $q_p(z_e)$:

la pression dynamique de pointe $q_p(z_e)$ à la hauteur de référence z_e est donnée par

 $q_p(z_e) = q_{ref} * c_e(z_e) (N/m^2)...$ Chapitre II § 2. 3 p50 RNVA2013

Tel que : $q_{ref}=375 \text{ N/m}^2$

 $C_e(z_e)$: coefficient d'exposition au vent.

V.3 4.2. Détermination du coefficient de la rugosité Cr :

Le coefficient de rugosité $C_r(z)$ traduit l'influence de la rugosité et de la hauteur sur la

vitesse moyenne du vent.il définit par la loi logarithmique (logarithme népérien).Chapitre

II § 2. 4.5 RNV2013 P53.

 $C_r(z) = K_T \begin{cases} \times \ln \frac{z}{z_0} & \text{si} \quad z_{min} \le z \le 200 \text{ m.} \end{cases}$ $C_r(z) = K_T \times \ln \frac{z_{min}}{z_0} & \text{si} \quad z < z_{min}. \end{cases}$

Avec :

- K_T : Facteur de terrain.
- Z₀ : Paramètre de rugosité.
- Z_{min} : Hauteur minimale.

Z : Hauteur considérée

tel que : $Z_0=0,3m$, $Z_{min}=5m$

Z=7.5m dans la toiture.

Z=6m dans les parois verticales.

Dans la toiture:

 $Z=7.5m \rightarrow Z_{min}=5m \le Z=7.5m \le 200m$

$$C_r (z=7.5m) = K_T \ln \frac{z}{z_0} = 0.215 \times \ln \frac{7.5}{0.3} = 0.692$$

 $\rightarrow C_r(z)=0.692$

Dans la paroi verticale:

 $Z=6m \rightarrow Z_{min}=5m \le Z=6m \le 200m$

donc:
$$C_r (z=6 \text{ m}) = K_T \ln \left(\frac{z}{z_0}\right) = 0.215 \times \ln \left(\frac{6}{0.3}\right) = 0.644$$

 \rightarrow C_r (z)=0.644

V.4 4.3. Détermination du coefficient d'exposition $C_e(z_e)$:

le coefficient d'exposition au vent $C_e(z)$ tient compte des effets de la rugosité du terrain de la topographie du site et de la hauteur au-dessus du sol, il tient compte de la nature turbulente du vent.

 $C_e(z)$ est donnée par:

formule suivante : $C_e(z) = C_t^2(z) * C_r^2(z) + [1+7*I_v(z)]$.

C_r: coefficient de rugosité.

Ct : coefficient de topographie.

 $I_v(z)$:l'intensite de la turbulance .

z (en m) est la hauteur considerée.

V.5 4.4. Intensité de turbulence :

L'intensité de la turbulence est définie comme étant l'écart type de la turbulence divise par la vitesse moyenne du vent et est donnée par l'équation 2.5 et a et b.

- $I_v(z) = \frac{1}{Ct(Z)*ln(\frac{Z}{Zo})}$ pour Z > Zmin
- $I_v(z) = \frac{1}{Ct(Z)*ln(\frac{Zmin}{Z_0})}$ pour $Z \le Zmin$
- parois vertical: $Z=6>Z_{min}=5$.

$$I_{v}(6) = \frac{1}{1*\ln\left(\frac{6}{0.3}\right)} \rightarrow I_{v}(6) = 0.333$$

• Toiture: $Z=7.5>Z_{min}=5$.

•
$$I_v(7.5) = \frac{1}{1*\ln(\frac{7.5}{0.3})} \rightarrow I_v(7.5) = 0.317$$

- donc on peut déterminer la pression d'exposition C_e(z) :
- paroi vertical :
- $C_{e}(6) = (0.644)^{2*12*} [1+7*0.333] \rightarrow C_{e}(6) = 1.37$
- toiture:
- $C_e(7.5) = (0.692)^{2*12*} [1+7*0.317]$

• on a:
$$q_p(z_e) = q_{ref}^* c_e(z_e)$$

• On résume les résultats dans le tableau suivant :

	Ce	qref [N/m2]	qp [N/m2]
Parois verticales	1,37	375	517,5
toiture	1,54	375	577,5

 \rightarrow C_e(7.5)=1.54

Tableau II.1 valeur de qref, qp, Ce

V.6 4.5. Détermination de coefficient de pression extérieure Cpe :

Les coefficients de pression extérieure C_{pe} applicables aux bâtiments et aux parties de bâtiments dépendent de la dimension de la surface chargée A, qui est la surface de la construction produisant l'action du vent dans la section à calculer. Les coefficients de pression extérieure sont donnés pour des surfaces chargées A de 1 m²et 10 m² dans les tableaux relatifs aux configurations de bâtiment appropriées ; ils sont notés Cpe1 pour les coefficients locaux, et Cpe10 pour les coefficients globaux, respectivement.(chapitre 5:coefficient dépression page 80 RNVA2013).

•
$$C_{Pe} = C_{Pe1}$$
 $S \le 1m$.

- $C_{Pe} = C_{Pe1} + (C_{pe10} C_{pe1}) \log_{10}(s)$ $1m^2 < S < 10m^2$
- $C_{Pe} = C_{pe10}$ $S \ge 10m^2$

Tel que : s: est la surface chargée de la paroi considérée en m².

4.5.1. Vent perpendiculaire au long pan V1 :

• pour les parois verticales:

Pour cette direction du vent on a : b=66m, d=36m, h=7.5m et e= min[b, 2h]=15m \rightarrow e=15m.

Et on a : d=36m > e=15m.

Donc on utilise la légende suivante : 5.2. du chapitre V (RNV2013 p80)

FigureII.2: légende relative aux murs verticaux .

on a : e=15m.

Et les coefficients de pression extérieure C_{pe} dans chaque zone sont donnés dans le tableau suivant :

Zone	А	В	С	D	Е
Surface m ²	18	72	126	396	396
Сре	-1	-0,8	-0,5	0,8	-0,3

 Tableau II.2 : valeurs de surface et de coefficient Cpe de chaque zone de parois vertical

On Remarque que toutes les surfaces sont supérieurs à $10m^2$ donc la formule correspond est : $C_{Pe} = C_{pe10}$

La figure suivante illustre la répartition des Cpe pour les parois verticales :

Figure II.3: légende pour les parois verticales

• Toiture :

On a une toiture a versant multiple α =9,46°, le vent perpendiculaire a la génératrice ; on prendra les valeurs Cpe de toiture à deux versant (RNV 2013 5.1.8) modifié pour leur position selon la (figure 5.7) ; θ =0° b=66m, d= 36m, h=7,5m, α =9,46°

Figure II.4 : zone de pression pour la toiture

Les zones de pression et les valeurs respectives des coefficients correspondant à ces zones sont portées sur le tableau suivant :

zone	F	G	Н	J	Ι
Surface en m ²	11,25	87,75	1089	99	1089
Сре	-1,34	-1,02	-0,46	-0,51	-0,33

Tableau.II.3 valeurs de surface et de coefficient Cpe de chaque zone de la toiture

Dans la figure suivante les indices I J représentent des Cpi indiqués dans la figure 5.7 cas a du RNV 2013, et leur surfaces représentent la surface de chaque versant

FigureII.5 : valeur de Cpe pour la toiture à la direction du vent V1

4.5.2. Vent perpendiculaire au pignon V2:

• pour les parois verticales:

Pour cette direction du vent on à: b=36, d=66m, h=7.5m

 $e= \min[b, 2h]=15m \rightarrow e=15m.$

Et on a : d=60m>e=15m.

Donc on utilise la légende suivant:..... 5.2. du chapitre V (RNV2013 p80) .

Figure II.6: répartition des surfaces sur pignon

Les zones de pression et les valeurs respectives des coefficients correspondant à ces zones sont portées sur le tableau suivant :

VI

Zone	А	В	С	D	Е
Surface m ²	18	72	306	216	216
coefficient	-1	-0,8	-0,5	0,8	-0,3

TableauII.4 : valeurs de surface et de coefficient Cpe de chaque zone de parois vertical

Figure II.7 : Cpe,10 correspondant à chaque zone de parois verticales sens V2

• Toiture :

On a une toiture a versant multiple α =9,46°

Pour un vent dont la direction est parallèle aux génératrices, les coefficient Cpe s'obtient en utilisent les valeurs de toiture a un versant pour $\Theta = 90^{\circ}$

 C_{pe} s'obtient à partir des formules suivantes :

$$\begin{split} C_{pe} &= C_{pe, 1} & si : S \leq 1 \ m^2 \\ C_{pe} &= C_{pe, 1} + (C_{pe, 10} - C_{pe, 1}) \cdot \log_{10}(5) & si : 1 \ m^2 < S < 10 \ m^2 \\ C_{pe} &= C_{pe, 10} & si : S > 10 \ m^2 \end{split}$$

Et pour la détermination des valeurs de coefficients de pression extérieure Cpe on s'est référé au tableau (5-1 RNV 2013)

Les valeurs de Cpe sont déterminées par une interpolation linéaire entre les deux valeurs de même signe $\alpha = 5^{\circ}$ et $\alpha = 15^{\circ}$

Zone	Fsup	Finf	G	Н	Ι
Surface m ²	5.625	5.625	42.75	216	216
Сре	-2,32	-2,81	-1.84	-0.68	-0.58

TableauII.5 : valeurs de surface et de coefficient Cpe pour la toiture
VI.1 4.6 Détermination de coefficient de pression intérieure C_{pi} : La combinaison la plus défavorable de la pression extérieure et intérieure, considérées comme agissant simultanément. Doit être envisagée simultanément pour chaque combinaison potentielle d'ouvertures et outres sources de fuite d'aire.

Le coefficient de pression C_{pi} est on fonction de l'indice de perméabilité μ_P et rapport h/d (ch5., fig.5.14).

Figure II.9: Coefficients de pression intérieure applicables pour des ouvertures

uniformément réparties

• Du coté de long pan : (V₁ perpendiculaire a long pan) :

Pour les bâtiments sans face dominante, le coefficient de pression intérieure C_{pi} est déterminé à partie de la **Figure 5.14 du RNV 2013** avec (h) est la hauteur du bâtiment, (d) sa profondeur et μ_p l'indice de perméabilité donné par :

 $\mu_p = \frac{\sum des \ surfaces \ des \ ouvertures \ ou \ Cpe \le 0}{\sum des \ surfaces \ de \ toutes \ les \ ouvertures}$

notre hangar possède -10 fenêtres de dimension (3*1) m² dans longpan1

- 10 fenêtres de dimension (3*1) m² dans longpan2

-4 fenêtres de dimension (1,2*0,6) m² dans pignon 1

-2 portes de dimension (5* 3) m² dans pignon 1

-2 portes de dimension (4,5* 5) m² dans pignon 2

On a : h = 7,5 m, d = 36 m,

 $\rightarrow \mu_p = 0.78$ et le rapport (h/d) = 0.2<0,25 D'après la figure 5.14

on aura \rightarrow Cpi=-0,17

• Du coté de pignon : (V₂ perpendiculaire a pignon) :

Pour les bâtiments sans face dominante, le coefficient de pression intérieure C_{pi} est déterminé à partie de la **Figure 5.14 du RNV 2013** avec (h) est la hauteur du bâtiment, (d) sa profondeur et μ_p l'indice de perméabilité donné par :

$$\mu_{p} = \frac{\sum dessurfaces desouver tures ou Cpe \le 0}{\sum dessurfaces detoutes lesouver tures}$$

 $\rightarrow \mu p = 0.78$

On a h = 7.5m, d = 66 m, et le rapport $h/d = 0.11 \le 0.25$ D'après la figure 5.14 on aura \rightarrow Cpi=-0,17

Détermination de la pression aérodynamique W(ze) :

la pression aérodynamique $W(Z_j)$ agissant sur une paroi est obtenue à l'aide de formule suivant: $W(Z_j) = q_p(Z_e) [C_{pe} - C_{pi}]$. (chapitre 2:Bases de calcul page 58).

• Du coté de long pan : (V₁ perpendiculaire à long pan)

> Paroi vertical:

$$q_p(z_e) = 517.5 \text{ N/m}^2$$
 $C_{pi} = -0.17$ $W(Z_j) = q_p(Z_e) [C_{pe} - C_{pi}].$

Zone	$q_p N/m^2$	C _{pe}	C _{pi}	W(ze) N/m ²
А		-1		-429,52
В	517,5	-0.8	-0.17	-326,025
С		-0.5		-170,77

0.8	369.81
-0.3	-67,25
	-0.3

TableauII.6 Valeurs de la pression aérodynamique des parois verticales selon V1

➤ Toiture :

 $q_p(z_e) = 577.5 \ N/m^2 \qquad \qquad C_{pi} = -0.17 \qquad \qquad W(Z_j) = q_p(Z_e) \ [C_{pe^-} \ C_{pi}].$

Zone	qp N/m²	Сре	Срі	W(ze) N/m²
F	577,5	-1,34	-0,17	-675,67
G	577,5	-1,02	-0,17	-490,87
Н	577,5	-0,46	-0,17	-132,82
J	577,5	-0,6	-0,17	-248,32
I	577,5	-1	-0,17	-479,32

Tableau II.7. Valeurs de la pression aérodynamique de la toiture selon V₁.

• Du coté de pignon : (V₂ perpendiculaire à pignon) :

> Paroi vertical:

 $q_p(z_e) = 517.5 \ \text{N/m^2} \qquad \qquad C_{pi} \text{=-} 0.17 W(Z_j) \text{=} \ q_p(Z_e) \ [C_{pe^-} \ C_{pi}]. \label{eq:qp}$

Zone	$q_p N/m^2$	C _{pe}	C _{pi}	W(ze) N/m ²
А	517.5	-1	-0.17	-429.52
В	517.5	-0.8	-0.17	-326.02
С	517.5	-0.5	-0.17	-170.77
D	517.5	+0.8	-0.17	+501.97
Е	517.5	-0.3	-0.17	-67.27

Tableau II.8. Valeurs de la pression aérodynamique des parois verticales selon V2

> Toiture :

$$q_p(z_e) = 577.5 \text{ N/m}^2$$
 $C_{pi} = -0.17 \text{W}(Z_j) = q_p(Z_e) [C_{pe} - C_{pi}].$

Zone	$q_p N/m^2$	C _{pe}	C _{pi}	W(ze) N/m ²
\mathbf{F}_{sup}	577.5	-2,32	-0.17	-1241.62
Finf	577.5	-2.81	-0.17	-1524.6
G	577.5	-1.84	-0.17	-964.42
Н	577.5	-0.68	-0.17	-294.52
Ι	577.5	-0.58	-0.17	-236.77

Tableau.II.9 Valeurs de la pression aérodynamique de la toiture selon V2

VIIII.5 Action neige:

VII.15.1 But

Le but de cette étude c'est de définir les valeurs représentatives de la charge statique de la neige sur toute surface située au-dessus du sol et soumise à l'accumulation de neige et notamment sur la toiture.

VII.25.2 Calcul des charges de neige

La charge caractéristique de neige **S** par unité de surface en projection horizontale de toiture s'obtient par la formule suivante

$$S = \mu * S_k KN/m^2$$

[RNV2013, P: 18; Paragraphe 3.1.1]

Avec:

 S_k : charge de neige sur le sol, elle est en fonction de l'altitude et de la zone de neige.

 μ : coefficient d'ajustement des charges, il est en fonction de la forme de la toiture.

5.2.1Charge de neige sur le sol

Notre projet est implanté à Akbou wilaya de Bejaia qui est classé en zone A selon la classification de RNVA 2013 avec une altitude d'environ 300m. Donc S_k est donnée par la formule

$$S_k = \frac{0.07*H+15}{100}$$

[RNV2013, P: 21; Paragraphe 4]

$$S_k = \frac{0.07 \times 300 + 15}{100} = 0.36 \text{ KN/m}^2$$

5.2.2 Coefficient de forme de la toiture

Dans le cas de toiture à versants multiples ; des valeurs de μ sont données en fonction de l'angle α

 $\alpha = \arctan(1.5/9.12)$

α=9.46°α ε [0° ; 30°]

[RNV2013, P: 25; Tableau 2]

Donc $\mu_1 = 0.8$

Et $\mu_2 = 1.05$

Les dispositions de charge à considérer correspondent à

- Cas (i) : sans accumulation de neige
- Cas (ii) : avec accumulation de neige

[RNV2013, P: 27; Figure 9]

Pour le cas (i) : $\alpha_1 = \alpha_2$

La charge de neige est alors :

 $S = \mu_1(\alpha_1) * S_k$

 $S = 0.8 * 0.36 = 0.288 \text{ KN/m}^2$

Pour le cas (ii) : $\alpha_1 = \alpha_2$

La charge de neige est :

 $S = \mu_1(\alpha_1) * S_k$

 $S = 0.8 * 0.36 = 0.288 \text{ KN/m}^2$

Oubien:

 $\mathbf{S} = \boldsymbol{\mu}_2(\boldsymbol{\alpha}_1) \ast \mathbf{S}_k$

 $S = 1.05 * 0.36 = 0.378 \text{ KN/m}^2$

> III.1 Dimensionnement des panneaux de couverture

> 1.1. Principe de choix d'un panneau sandwich

Le panneau sandwich d'enveloppe de bâtiment, est un produit composite, fabriqué industriellement en continu, comportant un parement extérieur métallique, une âme isolante et un parement intérieur métallique solidarisés par adhérence à l'âme isolante. Ces composants travaillent ensemble et ne constituent ainsi qu'un seul élément autoportant présentant différents niveaux de résistance mécanique, de réaction et de résistance au feu, d'isolation thermique et acoustique, d'étanchéité à l'air, à l'eau et à la vapeur d'eau et d'esthétique architecturale.

> 1.2. Panneaux couverture

Pour choisir le panneau couverture qui convient à notre structure, on doit savoir la charge du vent

maximale sollicité la toiture, et nombre d'appuis de séquelle le panneau de couverture sera appuyé ainsi que l'épaisseur de la couverture.

Dans notre cas, la charge maximale du vent est égale à W = -1.524 KN/m2.

Suivant une fiche technique on va choisi l'épaisseur de panneau couverture pour déterminer leur entraxe maximal et le poids propre m2 :

Figure III .1 détail de panneau sandwich (couverture).

> 1.2.1. Détermination de poids propre de la couverture

D'après ce tableau ci-dessous on fait choisit un panneau de couverture de 40mm d'épaisseur ce qui donne un poids de **12.9kg/m2**.

CARACTERISTIQUES DU PANNEAU		Epaisseurs nominales de l'âme (mm)							
		3.0	40	50	60	80	100	120	
			0,50	- 0,63 - (),75				
	Epaisseur parement intérieur (mm)	0,50 - 0,63							
	Largeur utile	1000 mm							
DIMENSIONNELLES	Largeur hors tout	1080 mm							
	Longueur maximale hors tout	16000 mm							
	Débord en extrémité		50) -100 - 1	50 - <mark>2</mark> 00	- 30 <mark>0</mark> m	Im		
PONDERALES (kg/m ²)	Ex. en épaisseurs 0,63 et 0,63 mm	12,5	12,9	13,3	13,7	14,5	15,3	16,1	

Tableau III.1 le poids propre e panneau correspondante à chaque épaisseur.

> 1.2.2. Détermination de la portée maximale

Dans notre cas la charge du vent maximale sur la toiture w=-1.524KN/m₂ (dépression) On suppose que le panneau de couverture soit repose sur plusieurs appuis (pannes), à l'aide de la fiche technique des panneaux sandwiches de couvertures. (by Arcelo Mital)

D'après le tableau annexe1 on adopte pour une portée maximale entre les pannes de 3m. \Rightarrow On prend l'entraxe entre les pannes **e=1.3m.**

III.2 Etude des pannes

2.1 Définition

Les pannes sont des poutres destinées à supporter la couverture et de transmettre les charges et surcharges s'appliquant sur cette dernière à la traverse ou bien à la ferme. Elles sont disposées parallèlement à la ligne de faitage, et elles sont calculées en flexion déviée, sous l'effet des charges permanentes, d'exploitations et climatiques.

Elles sont réalisées soit en profilés formés à chaud en (I), ou bien en (U), soit en profilés formés à froid en (Z), (U), (Σ) ou en treillis pour les portées supérieures à **6m**. Dans notre structure nous utiliserons des IPE

Figure III. 2. Disposition de la panne.

On étudie la panne la plus sollicitée qui est la panne intermédiaire de portée L=6m, incliné d'un angle $\alpha = 9,46^{\circ}$ et dans l'entraxe « e » égale à 1,3 m.

> 2.2. Détermination des sollicitations

> 2.2.1. Evaluation des charges et surcharges

a) Les charges permanentes (G) :

- Poids propre de la couverture (panneaux sandwichs)......12.9Kg/m2.
- Poids propre d'accessoire d'attache.....1.5Kg/m2.
- Poids propre de la panne estimé(IPE120).....10.4Kg/m.

G = (Pcouverture + Paccessoire) * e + Ppanne

e : espacement entre les pannes (e= 1,3m) G = (12.9 + 1.5) *1,3+10.4 = 29.12 Kg/m G = 0.291KN/m.

Figure III. 3. Schéma statique des charges permanentes G sur les pannes.

b) Surcharges d'entretien (P) :

Dans le cas des toitures inaccessible on considéré uniquement dans les calculs une charge d'entretien qui est égale au poids d'un ouvrier et de son assistant et qui est équivalente deux charges concentrées de 100Kg chacune située à 1/3 et 2/3 de la portée de la panne.(**D'après le DTR BC 2.2**).

Afin d'unifier l'expression de la flèche sous les charges (charges permanentes) et les surcharges (charges d'exploitations), on cherche la charge uniformément répartie équivalente qui nous donne le même moment trouvé par les deux charges concentrées. La charge uniformément répartie (Peq) due à la surcharge d'entretien est obtenue en égalisant le moment maximal au moment maximal du aux charges ponctuelles (P).

Figure III.4 Schéma statique de la poutre équivalente.

M max=pl/3

 $Mmax = 100 \times 2 = 200 Kg.m$

Afin d'unifier l'expression de la flèche sous les charges (charges permanentes) et les surcharges (charges d'exploitation), on cherche la charge uniformément répartie équivalente qui nous donne le même moment trouvé par les deux charges concentrées. La charge uniformément répartie (P) due à la surcharge d'entretien est obtenue en égalisant les deux moments max due à P aux charges ponctuelles (Peq).

Mmax=P'l/ 3=Pl²/8

P=8*P'/ 3*l=8*P'/ 3*l=8*100/2*6=44,44kg /ml

Peq=0,444KN/ml

c) Surcharges climatiques :

• Surcharge du vent (W) :

La panne la plus sollicitée est celle exposée au vent de dépression défavorable don le Cpi= - 0,17 zone Finf tel que la charge considérée est : -1524.60 N/m2

[Chapitre II, tableau II.5]

D'où :

W= (-1.524x1.3)= -1.981KN /ml

• Due à la neige :

La charge de la neige maximale est S = 0.378 KN/m2

D'où :

S= (0.378x1.3)=0.491KN/ml

Figure III.5. Schéma statique de panne sous surcharge de la neige.

2.2.2 les charges et surcharges appliquées :

$$\label{eq:G} \begin{split} G &= 0.291 KN/ml.\\ W &= -1.98 KN/ml.\\ S &= 0.491 KN/ml.\\ Q &= 0.444 KN/ml\\ \end{split}$$
 Décomposition des charges :

Suivant l'axe Z-Z : $G_z = G \cos \alpha = 0,287 \text{KN/m.}$ $Q_z = Q \cos \alpha = 0,433 \text{ KN/m.}$ $W_z = W = -1,98 \text{ KN/m.}$ $S_z = S \cos \alpha = 0,484 \text{ KN/m.}$

Suivant l'axe Y-Y : $G_y=G \sin \alpha = 0,047 \text{ KN/m.}$ $Qy = Q \sin \alpha = 0,072 \text{ KN/m.}$ Wy = 0 KN/m. $Sy=S \sin \alpha = 0,080 \text{ KN/m}$

2.2.3 Les combinaisons d'actions

1) ELU :

> Suivant l'axe z-z Comb 1= $1.35G_z+1.5Q_z=1.048KN/ml$ Comb 2= $1.35G_z+1.5S_z=1.118KN/ml$ Comb 3= $G_z+1.5W = -2.679KN/ml$ Comb 4= $G_z+1.35W+S_z = -1.898KN/ml$

Suivant l'axe y-y
 Comb 1= 1.35Gy+1.5Sy = 0.184KN/ml
 Comb 2= 1.35Gy+1.5Qy=0.183KN/ml
 Comb 3 = 1,35Gy = 0.063KN/ml

Selon les deux axes y et z, les charges maximales à l'ELU /ml revenant à la panne la plus

sollicitée est: quz=Gz+1.5W =-2.679 KN/ml quy=1.35Gy+1.5Sy = 0.184KN/ml

2)ELS

Suivant l'axe z-z : Comb 1= $G_z+Q_z=0.757$ KN/ml Comb 2= $G_z+S_z=0.804$ KN/ml Comb 3 = $G_z+W = -1.689$ KN/ml

Suivant l'axe y-y: Comb 1= Gy+Qy= 0.119KN /ml Comb 2 =Gy+Sy= 0.127KN/ml Comb 3 =Gy+W=0.047 KN/ml

Selon les deux axes Y et Z ; les charges maximales à l'ELS /ml revenant à la panne la plus sollicitée qsz=Gz+W=-1.689KN/mlqsy=Gy+Sy=0.127KN/ml

2.3 Principe de pré dimensionnement

Les pannes sont sollicitées à la flexion déviée (flexion bi axiale). Elles doivent satisfaire les deux conditions suivantes :

- Condition de flèche (l'ELS).
- Condition de résistance (l'ELU).

Généralement, on fait le pré dimensionnement des pannes par l'utilisation de la condition de flèche, puis on fait la vérification de la condition de résistance.

2.3.1 Vérification à l'ELS (flèche)

Vérification à l'ELS :

La flèche à l'état limite de service se fait avec les charges et surcharges de service (non pondérée) : $F \leq Fadm$.

Pour une poutre sur deux appuis uniformément chargée (axe Z-Z) :

 $fz = \frac{5xQzxl^4}{384xEIy} \le \frac{1}{200} \Longrightarrow Iy \ge \frac{5xQzx200xl^3}{384xE} = \frac{5x1.689x10^{-2}x200x600^3}{384x21000} = 452.41 \text{ cm}^4$ Ce que nous donne Iy \ge 452.41 cm⁴ donc **on opte pour un IPE140**

$$\begin{split} & Iy = 541.2 \ cm^4 \\ & Iz = 44.92 \ cm^4 \\ & Ces \ caractéristiques \ sont: \\ & h = 140 mm. \\ & b = 73 mm. \\ & tw = 4.7 mm. \end{split} \qquad \begin{array}{c} P = 12.9 \ kg/ml. \\ & A = 20.1 \ cm2. \\ & tf = 6.9 mm \\ \end{array}$$

Poids propre réel : $G = (Pcouverture + Accessoire) \times e + Ppanne$ $G = (12.9+1.5) \times 1.3+12.9=31.6 \text{ Kg/ml}$ G=0.345 KN/ml

 $Gz = 0.316 \times \cos 9.46^{\circ} = 0.31 \text{ KN/ml}$ $Gy = 0.316 \times \sin 9.46^{\circ} = 0.051 \text{ KN/ml}$

Les combinaison les plus défavorables :

A L'ELU: qz = -2.679 KN/m. qy = 0.184 KN/m. A L'ELS: qz = -1.689KN/m.

qy = 0.127 KN/m.

2.4 Dimensionnement des pannes

- > 2.4.1 Condition de la flèche
 - a) Calcul de la flèche suivant l'axe Z-Z :

$$fz = \frac{5 \times qz \times L^4}{384 \times E I} \le f_{adm} = \frac{1}{200}$$

a) Suivant l'axe Z-Z :

$$fz = \frac{5 \times 1.689 \times 10^{-2} \times 600^4}{384 \times 21000 \times 541.2} = 2.5 \le f_{adm} = \frac{600}{200} = 3cm$$

 $fz = 2.5 cm \le fadm = 3cm$

Condition vérifiée

b) Suivant l'axe Y-Y :

$$fy = \frac{5 \times 0.127 \times 10^{-2} \times 600^4}{384 \times 21000 \times 44.92} = 2.27 \text{cm} \le f_{\text{adm}} = \frac{600}{200} = 3 \text{cm}$$

$$fz = 2.27 cm \le fadm = 3cm$$

Condition vérifiée

2.4.2 Condition de la résistance (ELU)

Dans la condition de résistance à l'ELU il faut faire les vérifications suivantes :

a) Vérification à la flexion déviée :

Pour cette vérification on utilise la condition suivante :

$$\left[\frac{M_{y.sd}}{M_{pl.y.rd}}\right]^{\alpha} + \left[\frac{M_{z.sd}}{M_{pl.z.rd}}\right]^{\beta} \le 1$$

Avec : $\alpha = 2,...$ pour les profile en I. $\beta = 5n \ge 1$, $n = N/Npl = 0 \Rightarrow \beta = 1$ Et : $M_{sd} = q.l^{2}/8$

tel que :

> Axe Z-Z:

$$M_{ysd} = \frac{Qz \times l^2}{8} = \frac{2.679x6^2}{8} = 12.05 \text{KN.m}$$

> Axe Y-Y:
 $M_{zsd} = \frac{Qy \times l^2}{8} = \frac{0.127x3^2}{8} = 0.142 \text{KN.m}$

Et : $Mpl = W_{pl}f_y/\gamma_{m0}$ et pour le γ_{m0} on doit déterminer la classe du profile.

Détermination de la classe de profile :

• Ame :
$$d/t_w = 112, 2/5 = 4.7 \le 72\epsilon$$

Et : $\epsilon = \sqrt{(235/fy)} = \sqrt{(235/235)} = 1 \Rightarrow \epsilon = 1$
 \Rightarrow Ame de classe 1
• Semelle : $c/t_f = b/2/t_f = 36.5/6.9 = 5, 28 \le 10\epsilon = 10$
 \Rightarrow Semelle de classe 1

Donc la section de classe 1 . $\gamma_{m0}=1$

$$M_{plyrd} = w_{ply} \times \frac{f_y}{\gamma_{mo}} = 20.75 \text{KN.m}$$
$$M_{plzrd} = w_{plz} \times \frac{f_y}{\gamma_{mo}} = 4.53 \text{KN.m}$$

$$\left[\frac{12.05}{29.116}\right]^2 + \left[\frac{0.142}{6.133}\right]^1 = 0.33 < 1$$

Donc la flexion bi-axiale est vérifiée

b) Vérification au cisaillement :

Pour la vérification au cisaillement on utilise la condition suivante : Vz,sd ≤ Vpl,rd[EC .3 p158] Vy,sd ≤ Vpl,y,rd[EC .3 p158]

Figure III.6 Représentation de cisaillement de la panne

$$Vzsd = \frac{Qz \times l}{2} = \frac{2.679x6}{2} = 8.037KN$$
$$V_{plrd} = A_{V} x \frac{Fy}{\sqrt{3.7}m_{o}} = 7.64 \frac{23.5}{\sqrt{3.1}} = 103.65KN$$

D'ou:

$$\label{eq:Vz,sd} \begin{split} &Vz,sd \leq Vpl,rd \\ et & Vzsd < 0,5 \ Vpl.rd \end{split}$$

$$Vysd = \frac{Qy \times l}{2} = = 0,381 \text{KN}$$

Avec Avy=A-Avz=8.76cm³

$$V_{plrd} = A_V y \frac{Fy}{\sqrt{3.9}m_0} = 8.76 \frac{23.5}{\sqrt{3.1}} = 118.86 \text{KN}$$

Donc :

 $\label{eq:Vysd} \begin{array}{l} Vy,sd \leq Vpl,rd \\ et \quad Vysd < 0,5 \ Vpl.rd \end{array}$

Donc la résistance des pannes au cisaillement est vérifiée. Et pas d'interaction entre le moment résistant et l'effort tranchant.

C) Vérification au déversement :

Déversement = flambement latéral + rotation de la section transversale

La semelle supérieure qui est comprimée sous l'action des charges descendantes est susceptible de déverser. Vu qu'elle est fixée à la toiture il n'y a donc pas de risque de déversement contrairement à la semelle inferieure qui est comprimée sous l'action du vent de soulèvement et qui est quant à elle susceptible de déverser du moment qu'elle est libre tout au long de sa portée.

On rappelle la combinaison de charge défavorable pour le risque de déversement. Il s'agit de la première combinaison dans laquelle le vent agit seul et risque de faire déverser la panne (fléchie vers le haut) et en comprimant la semelle inférieure au niveau de la mi- travée (voir la figure)

Figure III.7 Représentation de phénomène de déversement dans la semelle inférieure.

La vérification au déversement se fait par l'utilisation de la condition suivante

 $\beta \omega = 1 \qquad \text{Pour les sections de classe (1) et (2).} \\ \beta \omega = \frac{\text{Wely}}{\text{Wply}} \qquad \text{Pour les sections de classe (3)} \\ \beta \omega = \frac{\text{Weffy}}{\text{Wply}} \qquad \text{Pour les sections de classe (4)} \end{cases}$

Mb,*rd* : Moment résistant au déversement.

 $M_{b,rd}$: Moment sollicitant

 χ LT : Coefficient de réduction pour le déversement.

On a : la classe de profile est de classe 01 $\Longrightarrow \beta$ w=1

Et : $\Upsilon_{m1} = 1.1$

Remarque : M_{sdy} serra calculer sous l'action de vent.

$$M_{sdy} = \frac{Q_{Z} \times l^{2}}{8} = \frac{2.679 + x6^{2}}{8} = 12.051 \text{KN.m}$$

 λ_{LTbarre} c'est l'élancement de diversement $\lambda_{\text{LT}=}\sqrt{(\frac{\lambda LT}{\lambda_1})}$

$$\lambda_{1=}\pi \sqrt{\frac{E}{fy}}_{=93,9\epsilon} \quad \epsilon = \sqrt{\frac{235}{fy}} = 1 \rightarrow \lambda_1 = 1$$

Pour une poutre constante et et doublement symétrique on peut utiliser la formule approximative ci-après qui place en sécurité.

$$\lambda_{LT} = \frac{I/Iz}{\sqrt{C} 1 \left[1 + \frac{1}{20} \left(\frac{I/Iz}{h/tf} \right)^2 \right] 0.25}$$

[Annexe F EC03 partie 1-1]

l : longueur de maintien latéral

$$\begin{split} &\lambda_{\rm LT} = \frac{300/1.65}{\sqrt{1.132} \left[1 + \frac{1}{20} \left(\frac{181.81}{20.28} \right)^2 \right] 0.25} \\ &\lambda_{\rm LT} = 114.34 \\ &D'{\rm ou} \\ &\lambda_{\rm LT} = 109.498/93.9 = 1.166 \\ &1.2 > 0.4 \\ &\rightarrow \text{il ya rise} \end{split}$$

 \rightarrow il ya risque de déversement

 $\chi_{LT} = 1/(\Phi_{LT} + [\Phi_{LT^2} - \lambda_{LT^2}]1/2)$

$$\begin{split} \Phi_{LT} &= 0.5 \times [1 + \alpha (\overline{\lambda} - 0.2) + \overline{\lambda^2}] = 1.32 \\ \rightarrow \chi LT = 0.32 \\ \rightarrow Mbrd = (0.332 * 1 * 23.5 * 123.9)/1 = 6.72 \text{ KN.m} \\ Mbrd = 6.72 \text{ KN.m} < Msd = 12.051 \text{KN.m} \end{split}$$

La condition n'est pas vérifiée donc la stabilité au déversement de la panne n'est pas vérifier, on augmente la section de profile a un IPE 180

On aura

 $\begin{array}{ll} \lambda lt = 103.56 \\ \lambda \overline{l}t = 1,102 \\ \chi Lt = 0.518 & \rightarrow & Mbrd = 20.25 KN.m \\ Mbrd = 20.25 KN.m & > & Msd = 14.76 KN.m \\ & & Donc \ la \ condition \ est \ vérifiée \ on \ adopte \ un \ IPE \ 180. \end{array}$

III.3. Calcul de l'échantignole :

L'échantignolle est un dispositif de fixation permettant d'attacher les pannes aux fermes. Le principal effort de résistance de l'échantignolle est le moment de renversement dû au chargement (surtout sous l'action de soulèvement du vent). L'excentrement « t » est limité par la condition suivante :

$$2 (b/2) \le t \le 3 (b/2)$$

Figure III.8. Coupe transversale de l'échantignole

	$9.1 \text{ cm} \le t \le 13.65 \text{ cm},$	on adopte	t = 11cm
\triangleright	Pour un IPE 180 : b = 9.1cm	et	h = 18cm

Le principe de dimensionnement est de déterminer le moment de renversement du au chargement surtout avec l'effort de vent de soulèvement.

La combinaison la plus défavorable :

> Gz - 1.5 WzG= 0.375 KN/ml Puz = $Gz + 1.5 Wz = 0.369 + 1.5 \times -1.98 = -2.601 KN/m2$

Charge revenant à la panne /ml et en tenant compte de la continuité

 \triangleright quz=-2.601KN/ml

L'effort **R** revenant à l'échantignolle n'est rien que la réaction d'appui des pannes. On prendra l'effort maximal correspondant à l'échantignolle intermédiaire (et non l'échantignolle de rive).

R= quz×L R=quz×L= 2.601×6= 15.60 KN R = 15.60 KN

La condition à vérifier:

L'effort \mathbf{R} risque de provoquer le pliage de l'échantignolle. Pour prévenir ce risque, il faut vérifier que le moment de renversement MR ne dépasse pas le moment de pliage

$$M_R \leq Mpliage \implies M_R \leq W_{ely} \frac{fy}{\gamma_{MO}}$$

Avec : $M_R = R. t$ Pour notre cas on a IPE 180. $M_R = R. t = 15.6 \times 0.11 = 1.71$ KN.m

> M_{pliage}: est le moment résistant au pliage de l'échantignolle. Dans la construction métallique, généralement les échantignolles sont des éléments formés à froid. La classe de la section est au moins de classe3.

$$M_{Pliage} = Wely \frac{fy}{\gamma_{M1}} \longrightarrow Wely \ge \frac{\gamma M1 \times MR}{fy} = \frac{1 \times 1.71}{23.5} = 7.27 cm^3$$

Pour une section rectangulaire :

Wely= $\frac{axe^2}{6}$ =(30*e²)/6 Wely=e $\ge \sqrt{\frac{7.27}{5}} \Rightarrow$ e ≥ 1.2 cm

On adopte une échantignole d'épaisseur e=12mm.

III.4 Calcul des lisses de bardage

Les lisses de bardages sont constituées de poutrelles (IPE, UAP, UPE) ou de profils minces pliés. Etant disposées horizontalement, elles sont portées soit par les poteaux de portiques, soit par les potelets intermédiaires. L'entre axe des lisse est déterminé par la portée admissible des bacs de bardage

4.1 Panneaux bardage

Figure III.9 détail de panneau sandwich (bardage).

> 4.1.1 Détermination de poids propre de bardage

D'après ce tableau ci-dessous on fait choisit un panneau de bardage de 40mm d'épaisseur ce qui donne un poids de **12.9kg/m**²

CAPACTERISTICUES DU DANNEAU			Epaisseurs nominales de l'âme (mm)								
		30	40	50	60	80	100	120			
	Epaisseur parement extérieur (mm)	0,50 - 0,63 - 0,75									
	Epaisseur parement intérieur (mm)	0,50 - 0,63									
	Largeur utile	1000 mm									
DIMENSIONNELLES	Largeur hors tout	1080 mm									
	Longueur maximale hors tout	16000 mm									
	Débord en extrémité		50 - 100 - 200 - 300 mm								
PONDERALES (kg/m ²)	Ex. en épaisseurs 0,63 et 0,63 mm	12,5	12,9	13,3	13,7	14,5	15,3	16,1			

Figure III.10 détail de panneau sandwich (bardage).

> 4.1.2 Détermination de la portée maximale pour le bardage

Dans notre cas la charge du vent maximale sur les parois verticales W= 0.501 KN/m2. (Une compression).

On suppose que le panneau de bardage soit repose sur plusieurs appuis (lisses), à l'aide de tableau ci-dessous on déterminera la portée maximale entre les lisses :

	2 APPUIS										3 AP	PUIS				
		Epais	seurs r	omina	iles de	l'àme		PORTÉE		Epais	seurs	nomina	ales de	l'āme		
	120	100	80	60	50	40	30	(m)	30	40	50	60	80	100	120	
PRESSION					141	119	101		149							PRESSION
DEPRESSION				156	142	128	96	3,00	109	132	148					DEPRESSION
PRESSION				142	123	103	84		130	150	160					PRESSION
DEPRESSION			151	139	124	109	84	3,20	97	119	133	148				DEPRESSION
PRESSION			145	127	109	90	71		115	132	153	160			1	PRESSION
DEPRESSION	158	158	133	124	109	94	74	3,40	86	107	120	132	127			DEPRESSION
PRESSION	148	148	131	114	97	79	60		102	117	137	157	160			PRESSION
DEPRESSION	135	135	120	111	96	81	66	3,60	78	97	108	119	121	123	123	DEPRESSION
PRESSION	134	134	119	103	87	70	52	-	91	104	123	142	160	160	160	PRESSION
DEPRESSION	131	131	109	99	85	71	59	3,80	72	88	98	108	115	122	122	DEPRESSION

Figure III.2 le poids propre e panneau correspondante à chaque épaisseur.

W= 50.19 daN/m2 Cette valeur elle est vérifiée pour une charge utile 104 daN/m2 ce qui correspondant à entraxe maximal de **380cm** avec une épaisseur de 40mm ; cas de panneau repose sur plusieurs appuis.

 \Rightarrow On prend l'entraxe entre les lisses **e=1.5m**.

 \triangleright

Figure III.11 Disposition de la lisse sur le poteau.

4.3 Données de calcul

- Chaque lisse repose sur 2 appuis.
- Le porté entre axe des lisses e=1.5m (espace entre 2 lisse).
- On dispose de 4 lignes de lisses sur chaque paroi.

4.4 Détermination des charges et surcharges

 \succ

a) les charges permanentes

• Poids propre de bardage (panneaux sandwichs)	. 12.9 Kg /m2
• Poids propre d'accessoires d'attaches	1.5 Kg/m2
• Poids propre de la lisse estimé (UPE)	.13.74 Kg/m

 $G=[(P_{bardage} + P_{accesoire}) \times e] + P_{lisse}$ e: espacement entre les lisse e= 1.5 m

Gp=(12.9+1.5)*1.5+13.74=35.34 Kg/ml G = 0.353 KN/ml

b) La surcharges climatique du au vent

On calcul les lisse de bardages avec la valeur obtenue : W=50.19daN/m² (voir chapitre **II**) D'où : W=0.501 x e = 0.501 x1.5 = 0.752 KN/ml

1) Charges appliquées à l'ELU :

Quy=(1.35G)=0.479 KN/ml Quz=(1.5W)=1.128 KN/ml

2) Charges appliquées à l'ELS :

Qsy=0.353 KN/ml Qsz=0.752 KN/ml

\triangleright 4.5. Condition de la flèche :

La vérification à l'état limite de service se fait avec les charges et surcharges de service (non pondérée) : $f \leq fadm$.

✓ Pour une poutre sur deux appuis uniformément chargée (axe Z-Z):

$$fz = \frac{5 \times qz \times L^4}{384 \times E Iy} = \frac{5 \times 0.752 \times 10^{-2} \times (600)^4}{384 \times 21000 \times Iy} \le fadm$$
$$fadm = \frac{l}{200} = \frac{600}{200} = 3cm$$
$$Iy \ge \frac{5 \times 0.752 \times 10^{-2} \times (600)^4}{384 \times 21000 \times 3}$$
$$Donc Iy \ge 201.89 \ cm^4$$

 \rightarrow Donc on adopte un UPE 100 Avec Iy= 207 cm⁴ et P=9.82kg/m

Vérification de la condition de flèche La charge G devient alors :

G= (12.9+1.5)* 1.5+9.82 = 31.42 Kg/m G=0.314KN/m la combinaison à l'ELU :

 $q_Y^U = (1.35 \text{ G}) = 1.35 \times 0.314 = 0.423 \text{ KN/m}$

La combinaison à l'ELS :

 $q_Y^s = 0.314 \text{ KN/m}$

✓ Pour une poutre sur deux appuis uniformément chargée (axe Z-Z):

$$fz = \frac{5 \times qz \times L^4}{384 \times E Iy} = \frac{5 \times 0.752 \times 10^{-2} \times (600)^4}{384 \times 21000 \times 207} = 2.9 < fadm = 3cm$$
(Vérifiée)

✓ Pour une poutre sur deux appuis uniformément chargée (axe Y-Y):

 $fy = \frac{5 \times qy \times L^4}{384 \times E Iz} = \frac{5 \times 0.314 \times 10^{-2} \times (600)^4}{384 \times 21000 \times 38.3} = 6.68 > fadm = 3cm \text{ (non vérifiée)}$

Donc on adopte des suspentes, les résultats de la nouvelle vérification sont donnés comme suit :

$$fy = \frac{2.05 \times qy \times \left(\frac{l}{2}\right)^4}{384 \times E Iz} = \frac{2.05 \times 0.314 \times 10^{-2} \times (300)^4}{384 \times 21000 \times 38.3} = 0.168 < fadm = 1.5cm$$
(Vérifiée)

4.6. Condition de la résistance (ELU):

a) Vérification à la flexion bi-axiale:

$$\left[\frac{M_{y.sd}}{M_{pl.y.rd}}\right]^{\alpha} + \left[\frac{M_{z.sd}}{M_{pl.z.rd}}\right]^{\beta} \le 1$$

Avec : $\alpha=2$, $\beta=1$ pour les sections de classe 1

$$q_Y^U = (1.35 \text{ G}) = 0.423 \text{KN/m}$$

 $q_Z^U = (1,5 \text{ W}) = 1.128 \text{KN/m}$

• Axe Z-Z :

$$My = \frac{q_Z^U \times l^2}{8} = \frac{1.128 \times 6^2}{8} = 5.076 \text{ KN. } m$$

• Axe Y-Y:

$$Mz = \frac{q_Y^U \times l^2}{8} = \frac{0.423 \times 6^2}{8} = 1.9 \text{ KN. m}$$

$$Mply = \frac{Wply \times fy}{\gamma m0} = \frac{48 \times 23.5}{1} 10^{-2} = 11.28KN.m$$
$$Mplz = \frac{Wplz \times fy}{\gamma m0} = \frac{19.3 \times 23.5}{1} 10^{-2} = 4.53KN.m$$

Et la condition sera :

 $\left[\frac{5.076}{11.28}\right]^2 + \left[\frac{1.9}{4.53}\right]^1 = 0.37 < 1$ →Donc la résistance du moment est vérifié

b) Vérification au cisaillement :

$$V_{\text{z.sd}} \leq V_{\text{pl.rd}}$$

=

$$Vzsd = \frac{qz \times l}{2} = \frac{1.182 \times 6}{2} = 3.384 \text{ KN}$$
$$Vpl.rd = \frac{Avz \times fy}{\sqrt{3} \times \gamma m0} = \frac{5.34 \times 23.5}{\sqrt{3} \times 1} = 72.45 \text{ KN}$$

D'où:

c) Vérification au déversement :

- Calcul de l'élancement réduit

$$\lambda_{LT} = \frac{\frac{\mathbf{l}_{\mathbf{Z}}}{\mathbf{i}_{\mathbf{Z}}}}{(C1)^{0.5} \times \left[1 + \frac{1}{20} \times \left(\frac{\mathbf{l}_{\mathbf{Z}}}{\mathbf{h}_{\mathbf{f}}}\right)^2\right]^{0.25}}$$

$$\lambda_{LT} = \frac{\frac{\frac{38.3}{1.75}}}{(1.132)^{0.5} \times \left[1 + \frac{1}{20} \times \left(\frac{\frac{38.3}{1.75}}{\frac{10}{0.75}}\right)^2\right]^{0.25}} = 20.18$$

$$\overline{\lambda_{LT}} = \left(\frac{\lambda_{LT}}{\lambda_1}\right) \times [\beta_A]^{0.5}$$
$$\lambda_1 = \pi \times \left(\frac{E}{fy}\right)^{0.5} = 93.9 \varepsilon, \qquad \varepsilon = \left[\frac{235}{fy}\right]^{0.5} = 1$$
$$\overline{\lambda_{LT}} = \left(\frac{20.18}{93.9}\right) \times [1]^{0.5} = 0.21 < 0.4$$

Donc la vérification au déversement est inutile.

→Toutes les conditions sont vérifiées donc on adopte l'UPE 100.

> III.5 Calcul des suspentes:

Les suspentes sont des tirants qui fonctionnent en traction, Elles sont généralement formées de barres rondes ou de petites cornières, leurs rôle principale est d'éviter la déformation latérale des lisses.

figure III.12 les efforts dans les lisses

5.1 Calcul de l'effort de traction dans la suspente la plus sollicitée.

 $quy = 1.25 \times (1.35 \times G) = 0.568KN$ l=l/2 $R = 0.568 \times 3 = 1.704$ KN - Efforts de traction dans le tronçon de lierne L1 provenant de la panne sablière : T1=R/2=0.852 KN

- Effort dans le tronçon L2 : T2 = T1+R= 0.852+1.704= 2.556 KN

- Effort dans le tronçon L3 : T3 = T2+R= 2.556+1.704= 4.26 KN

- Effort dans le tronçon L4: 2 T4 sin θ = T3 Avec θ = $arc \tan \frac{1.5}{3} \leftrightarrow \theta$ = 26.56°

T4 = T3 / 2 sin 26.56° T4=4.819KN

5.2 Calcul de la section des suspentes :

Condition de vérification à la résistance : résistance plastique de la section brute : Le tronçon le plus sollicité est T4 $N_{tsd} \leq N_{pl}$

Avec:
$$N_{pl} = A \times \frac{fy}{\gamma_{m0}} \Rightarrow A \ge \frac{N_{tsd} \times \gamma_{m0}}{fy}$$

$$A \ge \frac{4.76 \times 1}{23.5} \Rightarrow A \ge 0.202 \ cm^2$$
$$A = \frac{\pi \times \varphi^2}{4} \ge 0.202 \Rightarrow \varphi \ge \sqrt{\frac{4 \times 0.202}{3.14}} \Rightarrow \varphi \ge 0.507 \ cm$$

On a

Pour des raisons pratiques, on opte pour une barre ronde de diamètre $\varphi = 10mm$

III.6. Calcul des potelets :

Les potelets sont des éléments en profile laminé, qui ont pour rôle de transmettre les différents efforts horizontaux à la poutre au vent et les efforts verticaux vers le sol.

Sous l'action du vent, le potelet travaille à la flexion composée. En effet, la flexion est provoquée par les efforts dus au vent transmis par les bardages et lisses. Cette flexion peut aussi bien se produire soit vers l'intérieur de la construction sous l'effet des surpressions, soit vers l'extérieur de la construction sous l'effet des dépressions. Quant à la compression, celleci est due à son poids propre, au poids du bardage et à celui des lisses qui lui sont attachées.

Par conséquent le potelet risque de :

- Subir une flèche importante sous les pressions q_w due au vent
- Flamber lorsqu'il est très élancé
- Déverser sous les dépressions du au vent

6.1. Calcul des charges et surcharges revenant au potelet le plus chargé

A/ Charges permanentes G :

Poid du bardage	12.9Kg/m ²
Poids propre de la lisse (UPE 100)	12.1Kg/ml
Poids propre d'accessoire d'attaches	1.5Kg/m²
L'entraxe des potelets est de $e=5.13$ m	
G= poids propre du potelet + poids propre des lisses + poids propre du bas	rdage
H= hauteur du potelet H= 6.84m	

B/ Surcharge climatique W :

La charge du vent la plus défavorable sur le pignon est : $W{=}~50.1~daN/m^2 \label{eq:W}$

6.2. Le pré dimensionnement du potelet :

Le pré dimensionnement se fait par la condition de flèche :

$$q_{ws} = W \times e$$
$$q_{ws} = 257.01 \frac{daN}{m}$$

 $q_{ws} = 2.57 \text{ KN/ml}$

Les potelets étant articulés en tête et en pied, la flèche max est :

$$f_z = \frac{5 \times qws \times h^4}{384 \times E \times Iy}$$

Et la flèche admissible : fad= $\frac{L}{200} = \frac{684}{200} = 3.42 \text{ cm}$ $f_z = \frac{5 \times qws \times h^4}{384 \times E \times Iy} \le \frac{L}{200}$

$$Iy = \frac{5 \times 2.57 \times 10^{-2} \times 684^4}{384 \times 21000 \times 3.42} > 1019.88cm4$$

 $AN: \rightarrow I_y \ge 1019.88 cm^4$

Ce qui correspond à un HEA 140 dont Iy=1033cm⁴ et le poids/ml= 24.7dan/ml

Les charges permane	nentes	:
---------------------	--------	---

- poids de bardage →G1=12.9kg/m2
 Poids des lisses →G2= 12.1*6=75Kg
- poids propre du HEA 160

 $\rightarrow G2= 12.1*6=75 \text{Kg/m}$ $\rightarrow G3= 30.4 \text{kg/m}$

G = [(G3.H) + (G2.e) + (E1/2 + H + H1 * E2/2)]G=8.20KN/ml

FigureIII.13 Disposition des potelets

6.3. Vérification de la stabilité au flambement flexion sous N et M à L'ELU:

Pour cette vérification on utilise la condition suivante :

$$\frac{N_{sd}}{\chi_{min} \cdot \begin{pmatrix} A.f_{y} \\ \gamma_{MI} \end{pmatrix}} + \frac{K_{y}.M_{y.sd}}{W_{pl.y}.\begin{pmatrix} f_{y} \\ \gamma_{MI} \end{pmatrix}} + \frac{K_{z}.M_{z.sd}}{W_{pl.z}.\begin{pmatrix} f_{y} \\ \gamma_{MI} \end{pmatrix}} \leq 1$$

Avec :
$$N_{y,sd} = 1.5 \times G = 12.3KN$$

$$M_{sdy} = 1.5. \frac{q_w l^2}{8} = 22.54 KN. m$$

 $M_{sdz}=0$

a) Calcul de la longueur de flambement :

- Autour de l'axe faible y'y (dans le plan de l'âme) : le potelet risque de flamber sur toute sa hauteur
- Donc la longueur de flambement $l_{ky} = 6.84m$

Autour de l'axe faible z'z (dans le plan perpendiculaire de l'âme), le poteau est empêché de flamber sur toute sa hauteur par les lisses de bardage.

Donc la longueur de flambement $l_{kz} = 1.5m$

Pour le HEA 160, les rayons de giration sont $\left\{ \begin{array}{l} i_y = 5.73 \text{cm} \\ I_z = 3.52 \text{cm} \end{array} \right.$

b) Calcul des élancements

$$\begin{bmatrix}
\lambda_y = \frac{l_{ky}}{i_y} = \frac{684}{5.73} = 119.37 \\
\lambda_z = \frac{l_{kz}}{i_z} = \frac{150}{3.52} = 42.61
\end{bmatrix}$$

c) Calcul de l'élancement critique

Acier S235
$$\varepsilon = \left[\frac{235}{f_y}\right]^{0.5} = 1$$

Donc
$$\lambda_{cr} = 93.9\varepsilon = 93.9 \times 1 = 93.9$$

d) Calcul des élancements réduits
 $\overline{\lambda}_y = \frac{\lambda_y}{\lambda_{cr}} \times \sqrt{\beta_w} = \frac{119.37}{93.9} \sqrt{1} = 1.27 \times 0.2$ il ya un risque de flambement
 $\overline{\lambda}_z = \frac{\lambda_z}{\lambda_{cr}} \times \sqrt{\beta_w} = \frac{42.61}{93.9} \sqrt{1} = 0.45 \times 0.2$ il ya un risque de flambement
Avec
 $\sqrt{\beta_w} = 1$ HEA 140 est de classe 1

e) Calcul du coefficient de réduction

$$\chi_{\min} = \min(\chi_{y},\chi_{z})$$

Choix de la courbe de flambement d'âpre le tableau 5. 5. 3 Eurocode 3:

Pour un HEA 140 : $h = 133 \text{ mm}, b = 140 \text{ mm}, t_f = 8.4 \text{ mm}.$ Donc : $\frac{h}{b} = 0.95 \prec 1,2.$ et $t_f = 9 \prec 40 \text{ mm}.$

Axe de flambement	Courbe de flambement	Facteur de d'imperfection α
у-ў	b	$\alpha_{y} = 0.34$
z-ź	с	$\alpha_z = 0,49$

Coefficients de flambement correspondant à la section

f) Calcul de Ψmin:

$$\chi_{y} = \frac{1}{\varphi_{y} + [\varphi_{y}^{2} - \overline{\lambda}_{y}^{2}]^{0.5}} \qquad \text{Avec} : \chi_{y} \le 1$$

$$\varphi_{y} = 0.5 [1 + \alpha_{y} (\overline{\lambda}_{y} - 0.2) + \overline{\lambda}_{y}^{2}]$$

$$\varphi_{y} = 0.5 [1 + 0.34 (1.27 - 0.2) + 1.27^{2}] = 1.48. \quad \chi_{y} = 0.44$$

$$\chi_{z} = \frac{1}{\varphi_{z} + [\varphi_{z}^{2} - \overline{\lambda}_{z}^{2}]^{0.5}} \qquad \text{Avec} : \chi_{z} \le 1$$

$$\varphi_{z} = 0.5 \times [1 + \alpha_{z} (\overline{\lambda}_{z} - 0.2) + \overline{\lambda}_{z}^{2}]$$

$$\varphi_{z} = 0.5 [1 + 0.49 (0.45 - 0.2) + 0.45^{2}] = 0.66. \quad \chi_{z} = 0.87$$

 $\chi_{\min} = \min(0.44; 0.87)$

Donc $\chi_{\min} = 0.44$

g) Calcul du facteur d'amplification

$$Ky = 1 - \frac{\mu y \times Nsd}{X_y \times A \times F_y}$$
 et $Ky \le 1.5$

Le potelet étant bi-articulé à ses extrémités et d'après le tableau du calcul du moment équivalent

 $\beta_{M_V} = \beta mq = 1,3$ (Charge de vent uniformément répartie)

$$\mu y = \overline{\lambda}_{y} \left(2 \times \beta_{My} - 4 \right) + \frac{W_{\text{ply-W}_{ely}}}{W_{ely}}$$
$$\mu y = 1.27(2 \times 1.3 - 4) + \frac{173.5 - 155.4}{155.4} = -1.66 < 0.9$$
$$Ky = 1 - \frac{(-1.66) \times 12.3}{0.44 \times 31.4 \times 23.5} = 1.06 \prec 1.5$$

$$Mply = \frac{Wply \times f_y}{\gamma M1} = \frac{173.5 \times 23.50}{1.1} = 37.06 kn.m$$

Donc

Nplrd=670.81KN.m

 $\frac{Nsd}{X\min \times Nply} + \frac{K_Y \times M_{y.sd}}{Mply} = 0..68 \prec 1 \qquad \rightarrow verifié$

 $\frac{\frac{25.87}{0.556 \times 64.3 \times 23.5}}{1.1} + \frac{\frac{1.03 \times 79.16 \times 10^2}{568.5 \times 23.5}}{\frac{568.5 \times 23.5}{1.1}} = 0.705$

Donc la stabilité de ce potelet au flambement flexion est vérifiée

6.4. Vérification de la stabilité au déversement a/ Calcul de l'élancement réduit λ_{LT}

 $\beta_{\rm w} = 1 \implies Section \ de \ classe \ 1$

 $\chi_{\rm lt}$: coefficient de réduction en fonction de $\overline{\lambda_{\rm LT}}$.

$$\overline{\lambda_{LT}} = \sqrt{\frac{\beta_{w} \times W_{_{pl.y}} \times f_{y}}{M_{_{cr}}}} = \left[\frac{\lambda_{_{LT}}}{\lambda_{_{1}}}\right] \left(\beta_{\omega}\right)^{0.5}$$

 M_{cr} : est le moment critique de déversement.

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_W} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right) \right\} \text{EC3 Art F.1.2}$$

D'après les tableaux F.1.2 de l'EC3

Notre potelet considéré comme bi articules a ses extrémités on a : C1, C2, facteurs dépendant des conditions de charge et d'encastrement. C1 = 1.132 C2 = 0.459K et Kw : les facteurs de longueur effective avec : K=1 et Kw =1

 $z_a = -\frac{h}{2} = -6.65 cm$ sous le vent(-) puisque l'orientation de repert est vers la semelle comprimé $z_s = 0$ section doublement symetrique EC3 figure F.1.1

$$Zg = Za - Zs = -6.65$$
cm

It = 8.13 cm4 Iw = 15.06 cm6 L=6.84m G=0.4.E

$$I_{z} = 389.3 cm^{4}$$

Donc

$$M_{cr} = \left(1.132 \frac{\pi^2 \times 2.1 \times 10^4 \times 389.3}{(1 \times 684)^2}\right) \left\{ \left[\left(\frac{1}{1}\right)^2 \cdot \frac{15060}{389.3} + \frac{(1 \times 684)^2 \times 0.4 \times 8.13}{\pi^2 \times 389.3} + (0.459 \times -6.65)^2 \right]^{\frac{1}{2}} + (-0.459) \times (-6.65)^{\frac{1}{2}} \right]^{\frac{1}{2}} + (-0.459) \times (-6.65)^{\frac{1}{2}} = (-0.45) \times (-6.65)^{\frac{1}{2}} = (-0.45$$

 $M_{cr} = 45.22 \text{ KN.m}$

 $\bar{\lambda}_{LT=} 0.94 > 0.4 \Rightarrow Il \ ya \ risque \ de \ déversement$

Profilé laminé $\alpha = 0.21$ *Donc* $\chi_{LT} = 0.699$

La vérification à faire est

$$M_{sdy} \le M_{b,rd} = \chi_{LT} \times \beta w \times Wply \times \frac{fy}{\gamma_{m1}}$$
$$M_{b,rd} = 0.699 \times 1 \times 173.5 \times \frac{23.5}{1.1} = 25.9KN.m$$
Msdy 22.54 KN.m M_{b,rd} = 25.9 KN.m

 \rightarrow Le profilé HEA 140 est vérifié au déversement

I. IV.1 Introduction :

Dans le monde de la construction, l'association de l'acier et du béton est la combinaison la plus fréquemment utilisée. Bien que de nature différente, ces deux matériaux peuvent être complémentaires:

- Le béton résiste en compression et l'acier en traction.
- Les éléments métalliques sont relativement élancés et sujets au voilement;
- le béton peut empêcher ce voilement.
- Le béton assure à l'acier une protection contre la corrosion et une isolation thermique aux températures élevées (augmentation de la résistance au feu).
- Sous réserve d'une disposition appropriée, l'acier permet de rendre la structure ductile.

Pour que l'ensemble travaille de façon monolithique, il faut s'assurer que les efforts sont bien transmis entre la poutre et le béton de la dalle. C'est le rôle des connecteurs.

Figure IV.1 plancher mixte acier béton

II. IV.2. Etude de la dalle collaborant :

- Dalle en béton armé d'épaisseur t = 10cm.
- L'épaisseur de la tôle Cofraplus 60 =4cm
- Entraxe des solives : 1.5m
- Module de YOUNG (module d'élasticité longitudinal) $\rightarrow E_a = 21 \times 10^4 \text{MPa}$
- Le module d'élasticité longitudinale $\rightarrow E_b = 14000$ MPa.
- Coefficient d'équivalence (acier béton) : $n = \frac{E_a}{E_b} = \frac{210000}{14000} = 15$
- Coefficient de retrait du béton : $\varepsilon = 2 \times 10^{-4}$
- Contraintes admissibles des matériaux :
 - Acier S₂₃₅ \Longrightarrow $f_y = 235$ MPa

Pour le béton f_{c28} = 25MPa

Figure IV.2 Schéma de la trame supportant les planchers

III. IV.3. Evaluation des charges :

Ce sont les actions correspondant aux mobiliers et aux personnes qui habites ou fréquemment l'immeuble. Pour cela le règlement technique DTR-BC 2.2 (charges et surcharges) nous fixe les valeurs des charges et surcharges.

a) Les charges permanentes :

Nature de l'élément	Matériau	Epaisseur (cm)	Poids surfacique (KN/m ²)	Valeur de la charge totale (KN/m ²)
Plancher	Cloisons de séparation	9	1	
	Revêtement en carrelage	2	0.3	
	Mortier de pose	5	0.2	4.085
	Tôle type cofraplus60	4	0.085	
	Dalle en béton armé	8	2.5	

Tableau IV.1 : Evaluation des charges permanentes.

b) Les surcharges d'exploitation(Q) :

Plancher courant : $Q = 2,5KN/m^2$ (usage de bureaux)

IV.4. Méthode de calcul :

Le calcul de plancher mixte se fait en deux phases :

- Phase de construction
- Phase finale

a) Phase de construction:

Le profilé d'acier travail seul et les charges de la phase de construction sont :

- Poids propre du profilé
- Poids propre du béton frais
- Surcharge de construction (ouvrier)

b) Phase finale:

Le béton ayant durci, donc la section mixte (le profilé et la dalle) travaillant ensemble.

On doit tenir compte des charges suivantes :

- Poids propre du profilé.
- Poids propre du béton (sec).
- Surcharge d'exploitation finition.

IV. IV.5. Vérification des solives :

V. 5.1 Phase de construction :

Le profilé d'acier travail seul, donc les charges de la phase de construction sont :

•	Poids	propre	d	lu	béton
frais	$G_{\rm b} = 2.5 \ {\rm KN/m^2}$	I I I			
•	Poids	propre	de	la	tôle
	G _t =0.085KN/m ²				
•		Surcharge	de	const	ruction
(ouvrier)	$Q_{c} = 1.00 \text{ KN/m}^{2}$	-			

• Combinaison de charge

L'entraxe entre les solives est de 1.5 m

• A l'Etat Limite Ultime :

 $\begin{array}{l} q_u = \; (1.35 \; x \; G_b \! + \! 1.35 \; x \; G_t + 1.5 \; x \; Q) \; x \; 1.5 \\ q_u = \; (1.35 \! \times \! 2.5 + 1.35 \; x \; 0.085 + 1.5 \! \times \! 1.00) \! \times \; 1.5 \\ q_u = \; 7.48 \text{KN/m}. \end{array}$

• A l'Etat Limite De Service :

 $\begin{array}{l} q_s = (G_b + G_t + Q) \times \ 1.5 \\ q_s = (2.5 + 0.085 + 1.00) \times 1.5 \\ q_s = \ 5.37 KN/m. \end{array}$

Le pré dimensionnement se fait par la condition de flèche :

 $f = \frac{5.q_z.l^4}{384.E.ly} \le \frac{l}{250} I_y \ge \frac{5.q_z.250.l^3}{384.E} \longrightarrow \qquad I_y \ge 1797.99 \text{cm}^4 \text{soit un IPE200}$

a) Détermination de la classe de la section du profilé :

Le choix de l'IPE200 nous a conduits à déterminer la classe du notre profilé à partir du tableau donné dans l'Eurocode 3, les calculs s'effectuent comme suite : $\frac{d}{tw} \leq 33\varepsilon \rightarrow \frac{159}{5,6} = 28,39 \rightarrow \text{Tel que } \varepsilon = \sqrt{(235/fy)}$

Donc l'âme est de section 1

Pour la semelle comprimée : $\frac{c}{tf} = \frac{50}{8,5} = 5,88 \le 10\varepsilon$ \rightarrow La semelle est de classe 1 avec (c= $\frac{b}{2}$)

Pour cela on adopte un calcule plastique. Parmi les avantages d'un calcul plastique : -Il est le plus économique par rapport au calcul élastique Le moment fléchissant M_{sd} dans la section transversale de classe I et II à mi-travée doit satisfaire la condition suivante :

En tenant compte du poids du profilé : $M_{sd} \le M_{rd} = \frac{W_{pl} f_y}{\gamma_{M_0}}$

qu =7.48KN/m.

qs =5.37KN/m.

$$M_{max} = M_{sd} = \frac{q_u \times L^2}{8} = \frac{7.48 \times 6^2}{8} = 33.66 \text{Kn.m}$$

 $M_{rd} = \frac{220,4 \times 23,5}{1} = 51,84 \ Kn.m$

M_{sd} = 33.66Kn.m< M_{rd} = 51, 84kn.m

Condition de résistance vérifiée

(On n'aura pas besoin d'un étaillement à mi- travée)

b) Vérification à l'effort tranchant :

On doit vérifier que : $V_{Sd} \leq V_{Rd} = \frac{f_y A_{yz}}{\sqrt{3} \gamma_{M_y}}$

Où : V_{Rd} : effort tranchant résistant de la section. A_{vz} : aire de cisaillement. $A_{vz} = 14,00 \text{ cm}^2$ (D'après le tableau des profilé). $Vplrd = \frac{23,5 \times 14}{\sqrt{3} \times 1} = 189,94$ KN

• Calcul de l'effort tranchant V_{sd} :

 $V_{sd}^{max} = \frac{q_u \times L}{2} = \frac{7.48 \times 6}{2} = 22.44 \text{KN}$ $V_{sd}^{max} = 22.44 \text{Kn} < V_{plRd} = 189,94 \text{ KN}$ Condition de l'effort tranchant est vérifiée

Vsd = 22.44 < 0,5Vplrd = 94.97 KN

Pas d'interaction entre l'effort tranchant et le moment fléchissant. Donc le moment résistant ne sera pas réduit.

VI. 5.2. Phase finale :

Le béton ayant durci, donc la section mixte (le profile et la dalle) travaillant ensemble donc les charges de la phase finale sont :

•.....Surcharge d'exploitation (usage de bureaux) $Q = 2,5 \text{ KN/m^2}$.
•	Poid	s propre	e	du t	oéton	
(sec)	$G_{\rm b} = 2.5 \ {\rm KN/m^2}.$					
 	Poids	propre	de	la	tôle	
	G _t =0.085K	N/m^2 .				
•	Carrelage	e, mortier	de	pose,	+	
accessoires	$G_{c} = 1.5 \text{ KN/m}^{2}$.			-		

a) Combinaison de charge :

L'entre axe entre les solives est de 1.5 m

• A l'Etat Limite Ultime :

 $\begin{array}{l} q_u = (1.35.G_b + 1.35 \ .G_t + \ 1.35 \ .G_c + \ 1.5.Q) \times \ 1.5 \\ q_u = (1.35. \ 2.5 + 1.35. \ 0.085 + \ 1.35. \ 1.5 + 1.5. \ 2.5) \times \ 1.5 \\ q_u = 13.89 \ KN/m \end{array}$

• A l'Etat Limite De Service :

 $\begin{array}{l} q_s = \ (G_b + G_t + \, Q + G_c \) \times \ 1.5 \\ q_s = \ (2.5 + 0.085 + 2.5 + 1.5) \times \ 1.5 \\ q_s = 9.87 \ KN/m. \end{array}$

• Largeur de la dalle effective :

 $b_{eff} = \min \begin{cases} \frac{2.l_0}{8} & \text{avec } l_0 : \text{Langueur libre d'une poutre simplement appuie} \\ \text{b} & \text{b: Entraxe entre les poutres} \end{cases}$ $b_{eff} = \min \begin{cases} \frac{2.l_0}{8} & \frac{2.6}{8} = 1.5 \text{ m} \\ b = 1,5 \text{ m} \end{cases}$ $b_{eff} = 1.5 \text{ m}$

Figure IV. 3:Largeur de la dalle effective.

c) Vérification de la résistance à L'ELU

$q_u = 14.11 \, KN/m$

Il faut vérifier la condition suivante :

 $M_{sd} \leq M_{Pl,Rd}^+$

Avec :

$$M_{sd} = \frac{q_u \times l^2}{8} = \frac{14.11 \times 6^2}{8} = 63.51 KN. m$$

Détermination de la position de l'axe neutre plastique : $E = \frac{A}{28.5 \times 23,5} = 608.96 \text{ km}$

$$F_{a} = \frac{1}{\gamma_{M_{a}}} \times f_{y} = \frac{1}{1,1} = 608.86KN$$

$$F_{c} = beff \times h_{c} \times \frac{0.85 \times f_{c28}}{\gamma_{b}} = 1500 \times 80 \times \frac{0.85 \times 25}{1,5} = 1700KN$$

 $F_c > F_a \Longrightarrow$ L'axe neutre plastique (ANP) est situé dans l'épaisseur de la dalle.

$$Z = \frac{F_a}{beff \times \left(\frac{0.85 \times f_{c28}}{\gamma_b}\right)} = \frac{608.86}{1500 \times \left(\frac{0.85 \times 25}{1.5}\right)} = 2.86cm$$
$$M_{Pl,Rd}^+ = F_a \times \left(\frac{h_a}{2} + h_p + h_c - \frac{Z}{2}\right) = 608.86 \times \left(\frac{24}{2} + 4 + 8 - \frac{2.86}{2}\right) \times 10^{-2}$$
$$M_{Pl,Rd}^+ = 137.4KN$$

 $M^+_{Pl,Rd} > M_{sd} \Longrightarrow$ La section est vérifiée en résistance.

a) Vérification de la flèche en service : $q_s = 10.11 \, KN/m$

Il faut vérifier la condition suivante : $f_{adm} > f_{cal}$

Avec :

$$f_{adm} = \frac{l}{250} \rightarrow \text{Plancher mezzanine} \rightarrow f_{adm} = \frac{600}{250} = 2,4cm$$

 $f_{cal} = \frac{5 \times q_s \times l^4}{384 \times E_a \times I_m}$

e) Calcul de I_m

$$I_m = I_a + A_a \times d^2 + \frac{beff \times (h_c + h_p)^3}{12 \times \eta} + \frac{beff \times (h_c + h_p)}{\eta} \times f^2$$

$$I_m = 3892 + 28.5 \times 13.57^2 + \frac{150 \times (8 + 4)^3}{12 \times 15} + \frac{150 \times (8 + 4)}{15} \times 4,43^2 = 7910.23cm^4$$

$$f_{cal} = \frac{5 \times 0,01017 \times 600^4}{384 \times 21000 \times 7910.23} = 1.1cm$$

$$f_{adm} = 2,4 > f_{cal} = 1.1cm \implies \text{La flèche est vérifiée.}$$

f) Calcul des contraintes

1) Contraintes dues au moment fléchissant :

Contrainte dans la poutre acier :

Traction dans la fibre inferieure :

$$\sigma_{ai} = \frac{M_{sd}}{I_m} \times v_i = -220.52MPa$$

Compression dans la fibre supérieure :

$$\sigma_{as} = \frac{M_{sd}}{I_m} \times \left[v_s - \left(h_c + h_p \right) \right] = 117.03 MPa$$

Contrainte dans la dalle béton :

Compression dans la fibre supérieure :

$$\sigma_{bs} = \frac{M_{sd}}{\eta \times I_m} \times v_s = 5.99 MPa$$

Compression dans la fibre inférieure :

$$\sigma_{bi} = \frac{M_{sd}}{\eta \times I_m} \times \left[v_s - \left(h_c + h_p \right) \right] = -0.90 M P a$$

2) Contraintes dues au retrait

 β : Distance entre le CDG de l'acier et CDG du béton

$$\beta = \frac{h_{\rm a} + h_{\rm c} + h_{\rm p}}{2} = \frac{24 + 8 + 4}{2} = 18cm$$

 α : Distance entre le CDG de l'acier et l'AN de la section homogène

$$\alpha = \frac{l_y}{A_a \times \beta} = \frac{1943}{28.5 \times 18} = 3.8cm$$

$$K = \frac{B \times E_a \times \varepsilon \times \beta \times A_a}{(\eta \times l_y \times A_a) + (B \times l_y) + (B \times A_a \times \beta^2)}$$

$$B = b_{eff}^+ \times (h_c + h_p) = 150 \times (8 + 4) = 1800cm^2$$

$$K = \frac{1800 \times 2.1 \times 10^4 \times 2 \times 10^{-4} \times 18 \times 28.5}{(15 \times 3892 \times 28.5) + (1800 \times 3892) + (1800 \times 28.5 \times 18^2)}$$

$$K = 0.16$$
Avec :

$$E_a = 2.1 \times 10^4 MPa$$
$$\varepsilon = 2 \times 10^{-4}$$

 Y_1 : Distance entre l'interface et l'AN de la section homogène

$$Y_1 = \frac{h_a}{2} + \alpha = \frac{24}{2} + 5,5 = 17,5cm$$

 Y_2 : Distance entre la fibre supérieure du béton et l'AN de la section homogène

$$Y_2 = Y_1 + h_c + h_p = 17,5 + 8 + 4 = 29.5cm$$

D'où les valeurs de contraintes sont :

$$\begin{split} \sigma_{as} &= K \times Y_{1} = 0,16 \times 17.5 = 28MPa \\ \sigma_{ai} &= K \times (h_{a} - Y_{1}) = 0,16 \times (24 - 17,5) = -10,4MPa \\ \sigma_{bi} &= \frac{(E_{a} \times \varepsilon) - (K \times Y_{1})}{\eta} = \frac{(2,1 \times 10^{5} \times 2 \times 10^{-4}) - (0,16 \times 17,5)}{15} \\ \sigma_{bi} &= -0,93MPa \\ \sigma_{bs} &= \frac{(E_{a} \times \varepsilon) - (K \times Y_{2})}{\eta} = \frac{(2,1 \times 10^{5} \times 2 \times 10^{-4}) - (0,16 \times 29.5 \times 10)}{15} \\ \sigma_{bs} &= -0,34MPa \\ \textbf{3) Contraintes finales} \\ \sigma_{as} &= 117.03 + 28 = 145.03MPa < f_{y} = 235MPa \dots \text{ Verifiée} \\ \sigma_{ai} &= -220.52 - 10,4 = -230.92MPa < f_{y} = 235MPa \dots \text{ Verifiée} \\ \sigma_{bs} &= -0.9 - 0,34 = -1.24MPa < f_{bu} = \frac{0,85 \times f_{c28}}{\gamma_{b}} = 14,2MPa \dots \text{ Verifiée} \\ \sigma_{bi} &= 5.99 - 0,93 = 5.06MPa < f_{y} = \frac{0,85 \times f_{c28}}{\gamma_{b}} = 14,2MPa \dots \text{ Verifiée} \end{split}$$

VII. IV.6. Calcul des goujons connecteurs :

Ce sont des éléments métalliques soudés sur la semelle supérieure de la solive. Ils ont pour rôle d'assurer la liaison et l'adhérence entre la dalle du béton et la solive.

 γ_b

On choisit des connecteurs de diamètre Ø18.

$$f_u = 400Mpa$$

$$\frac{h}{d} > 4 \Longrightarrow h > 4 \times d$$

On a $d = 18mm \implies h > 4 \times 18 = 72mm$

On prendh = 80mm

Figure IV.4 : Caractéristique de connecteur.

$$\frac{h}{d} > 4 \Longrightarrow \frac{80}{18} = 4,44 > 4 \Longrightarrow \alpha = 1$$

Béton de classe C 25/30 \Longrightarrow $f_{ck} = 25MPa$, $E_{cm} = 30500MPa$ La résistance de calcul au cisaillement d'un connecteur vaut :

$$P_{Rd} = \min \begin{cases} 0.8 \times \frac{f_u}{\gamma_r} \frac{\pi d^2}{4} \\ 0.29 \times \frac{\alpha d^2}{\gamma_r} \times \sqrt{F_{ck} \times E_{cm}} \end{cases}$$
$$AN: P_{Rd} = \min \begin{cases} 0.8 \times \frac{400}{1.25} \times \frac{3.14 \times 18^2}{4} \times 10^{-3} = 65.144KN \\ 0.29 \times \frac{1 \times 18^2}{1.25} \times \sqrt{25 \times 30500} = 65.638KN \end{cases}$$

 $P_{Rd} = 65,144$ (Résistance d'un goujon).

$$\begin{cases} d = 18mm \le 20mm \\ h_p = 40mm \le 85mm \end{cases} => P'_{Rd} = r \times P_{Rd} = 1 \times 65,111 = 65,111KN$$

\mathcal{G} Effort de cisaillement V_{lf}

$$V_{lf} = min\left(\frac{A_a \times f_y}{\gamma_a}; \ 0.85 \times b_{eff}^+ \times \frac{(h_c + h_p) \times f_{ck}}{\gamma_c}\right)$$
$$V_{lf} = min\left(\frac{28.5 \times 235 \times 10^{-1}}{1.1}; \ 0.85 \times 1.5 \times \frac{(8+4) \times 25}{1.5} \times 10\right) = 608.86 \ KN$$

[EC 4 ; article 6.2.1.1]

Some des goujons N $N \ge \frac{V_{lf}}{P'_{Rd}} = \frac{608.86}{65,144} = 9.34 \text{ Goujons}; Onprend$ **10Goujons**.Soit 10 goujons sur une longueur L/2 = 600/2 = 300 cm => 20 goujons sur 6m. Sepacement *e* $e = \frac{300}{10} = 30 \ cm.$

VIII. 6.1. Vérification des soudures

a : La gorge

$$a < min(d; t_f) = min(159; 8.5) = 8.5mm$$

On prend a = 7mm

l: Longueur du cordon de soudure circulaire

$$l = \pi \times d = \pi \times 18 = 56,549mm$$

AcierS235
$$\Longrightarrow \begin{cases} \beta_w = 0.8\\ \gamma_{Mw} = 1.25\\ f_u = 400MPa \end{cases}$$

L'effort résistant de cisaillement :

$$F_{wrd} = a \times l \times \frac{f_u}{\beta_w \times \gamma_{Mw} \times \sqrt{3}} = 7 \times 56,548 \times \frac{400 \times 10^{-3}}{0,8 \times 1,25 \times \sqrt{3}} = 91,41KN$$

> L'effort sollicitant est donné par :

$$F_{sd} = \frac{V_{lf}}{N_f} = \frac{608.86}{10} = 60.88KN$$

Quelle que soit la direction de l'effort sollicitant F_{sd} par rapport au cordon, on a :

 $F_{sd} \leq F_{wrd} \Longrightarrow 60.88 KN \leq 91,41 KN \rightarrow Conditionvérifiée$

IX. IV.7 Calcul de la poutre maîtresse:

Les poutres porteuses (sommiers) sont des éléments structuraux qui permettent de supporter les charges des planchers et les transmettent aux poteaux. Elles sont sollicitées principalement par un moment de flexion.

Caractéristiques du plancher :

Portée du sommier : L = 6m Entre axe des sommiers : $e_{sommier}$ = 6m Entre axe des solives : e_{solive} =1.5m Charges permanentes du plancher : G = 4.085KN/m² Surcharges d'exploitation : Q = 2,5KN/m² Poids de la solive : G_{solive}= 0,22KN/m Les solives exercent des charges concentrées sur le sommier avec : P_{solive}= G_{solive}.e_{sommier}=0,307 x 6 = 1,842Kn

Figure IV.5: Sommier sous charge répartie.

X. 7.1 Vérification des poutres maitresses (sommiers) :

1) Phase de construction :

L'entre axe des sommiers est : $e_{sommier} = 6m$

Le profilé d'acier travail seul, donc les charges de la phase de construction sont :

G= 3.778 KN/m^2 Q = 1KN/m^2 G_{IPE 200} = 0,224 KN/m

G=3.778×6=22.68Kn/m Q= 1×6=6Kn/m

a) Combinaison de charge :

A l'Etat Limite Ultime : q_u = (1.35 x G + 1.5 x Q) q_u = (1.35×22.68 + 1.5×6) q_u = 39.60KN/m.
A l'Etat Limite De Service : q_s = (G+Q) q_s = (22.68+6) q_s = 28.68KN/m.

Le pré dimensionnement se fait par la condition de flèche :

 $f = \frac{5.q_z.l^4}{384.E.l_y} \le \frac{l}{250} I_y \ge \frac{5.q_z.250.l^3}{384.E} I_y \ge 9602.67 \text{ cm}^4.$

On adopte un IPE330 _____ classe1

Le moment fléchissant M_{sd} dans la section transversale de classe I et II à mi-travée doit satisfaire la condition suivante :

$$M_{sd} \leq M_{rd} = \frac{W_{pl} f_y}{\gamma_{M_0}}$$

On prenant compte du poids du profilé :

qu =39.60 KN/m.
qs =28.68 KN/m.
$$M_{max} = M_{sd} = \frac{q_u \times L^2}{8} = \frac{39.6 \times 6^2}{8} = 178.20$$
Kn.m
 $M_{rd} = \frac{804,3 \times 23,5}{1} = 189,01$ Kn.m

M_{sd}= 178.20Kn.m< M_{rd}=189,01kn.mCondition de Résistance Vérifiée

b) Vérification à l'effort tranchant:

On doit vérifier que : $V_{Sd} \le V_{Rd} = \frac{f_y A_{vz}}{\sqrt{3} \gamma_{M_0}}$ Où : V_{Rd} : effort tranchant résistant de la section.

 $A_{vz} : \text{aire de cisaillement.}$ $A_{vz} = 30,81 \text{cm}^2 \dots (D'\text{après le tableau des profilé).}$ $Vpl_{rd} = \frac{23,5 \times 30,81}{\sqrt{3} \times 1} = 418.02 \text{KN}$ • Calcul de l'effort tranchant V_{sd}:

 $V_{sd}^{max} = \frac{q_u \times L}{2} = \frac{39.6 \times 6}{2} = 118.8 \text{KN}.$ $V_{sd}^{max} = 118.8 \text{Kn} < V_{plRd} = 418.02 \text{KN}$ Condition de l'effort tranchant est vérifiée

Vsd = 118.8< 0,5Vplrd =209,01 KN

Pas d'interaction entre l'effort tranchant et le moment fléchissant.

Donc le moment résistant ne sera pas réduit.

2) Phase finale :

L'entre axe des sommiers est : $e_{sommier} = 6m$

 $G= 5,27 \text{ KN/m}^2$ $Q = 2,5 \text{KN/m}^2$

 $G_{IPE 330} = 0,491 \text{ KN/m}$

G=5,27×6=31.66Kn/m **Q=**2,5×6=15Kn/m

1) Combinaison de charge :

L'entraxe entre les solives est de 1.5 m • A l'Etat Limite Ultime : $q_u = (1.35 \times G + 1.5 \times Q)$ $q_u = (1.35 \times 31.66 + 1.5 \times 15)$ $q_u = 65.25 \text{KN/m.}$ • A l'Etat Limite De Service : $q_s = (G+Q)$ $q_s = (31.66+15)$ $q_s = 46.66 \text{KN/m}.$

Le pré dimensionnement se fait par la condition de flèche :

$$f = \frac{5.q_z.l^4}{384.E.ly} \le \frac{l}{250} I_y \ge \frac{5.q_z.250.l^3}{384.E} I_y \ge 15622.76 \text{cm}^4.$$

Soit un IPE360 avec $Iy=16270cm^4 \implies$ la section est de classe 1.

XI. 7.2 Vérification en tenant compte du poids du profilé➢ La flèche

 $q_s' = q_s + G_{\text{profile}} = 47.23 KN/m$

 $f_{cal} = \frac{5 \times q'_s \times l^4}{384 \times E \times I_y}$

 $f_{cal} = 2,33cm \le f_{ad} = \frac{600}{250} = 2,4cm \dots \dots$ Vérifiée

La résistance

$$q_u = 65.82 \ KN/m$$

$$M_{sd} = \frac{q_u \times l^2}{12} = 197.46KN.\,m$$

$$M_{Rd} = \frac{W_{pl} \times f_y}{\gamma_{M_0}} = 239,46KN.\,m > 197.46KN.\,m......Vérifiée$$

$$V_{sd} = \frac{q_u \times l}{2} = 197.46KN$$
$$V_{pl,Rd} = \frac{A_{vz} \times (f_y / \sqrt{3})}{\gamma_{M_0}} = 476,22KN > 197.46KN$$

 $0.5V_{pl,Rd} = 238.11KN > V_{sd} = 197.46 \dots \dots$ Vérifiée

On adopte un IPE360

Largeur de la dalle effective :

 $b_{eff} = \min \begin{cases} \frac{2.l_0}{8} & \text{avec } l_0 : \text{Langueur libre d'une poutre simplement appuie} \\ b & b: \text{Entraxe entre les poutres} \end{cases}$ $b_{eff} = \min \begin{cases} \frac{2l_0}{8} = \frac{12}{8} = 1,5 \text{ m} \\ be1 = 1,5 \text{ m} \end{cases}$ $b_{eff} = 1,5 \text{ m}$

Figure IV.6: Largeur de la dalle effective.

a) Vérification de la résistance à L'ELU

 $q_u = 65.82 KN/m$

Il faut vérifier la condition suivante :

 $M_{sd} \leq M_{Pl,Rd}^+$

Avec :

$$M_{sd} = \frac{P_u \times l^2}{12} = \frac{65.82 \times 6^2}{12} = 197.46KN.m$$

Détermination de la position de l'axe neutre plastique :

$$F_a = \frac{A}{\gamma_{M_a}} \times f_y = \frac{72,7 \times 23,5}{1,1} = 1553,13KN$$
$$F_c = beff \times h_c \times \frac{0,85 \times f_{c28}}{\gamma_b} = 1500 \times 80 \times \frac{0,85 \times 25}{1,5} = 1700KN$$

 $F_c > F_a \Longrightarrow$ L'axe neutre plastique (ANP) est situé dans l'épaisseur de la dalle

$$Z = \frac{F_a}{beff \times \left(\frac{0,85 \times f_{c28}}{\gamma_b}\right)} = \frac{1553,31}{1500 \times \left(\frac{0,85 \times 25}{1,5}\right)} = 7.30cm$$
$$M_{Pl,Rd}^+ = F_a \times \left(\frac{h_a}{2} + h_p + h_c - \frac{Z}{2}\right) = 1553,13 \times \left(\frac{36}{2} + 4 + 8 - \frac{7.30}{2}\right) \times 10^{-2}$$
$$M_{Pl,Rd}^+ = 409.24KN$$

 $M_{Pl,Rd}^+ > M_{sd} \Longrightarrow$ La section est vérifiée en résistance.

b) Vérification de la flèche en service

$$q_s = 47.23 \, KN/m$$

Il faut vérifier la condition suivante : $f_{adm} > f_{cal}$

Avec :

$$f_{adm} = \frac{l}{250} \rightarrow \text{Plancher mezzanine} \rightarrow f_{adm} = \frac{600}{250} = 2,4cm$$

 $f_{cal} = \frac{5 \times P_s \times l^4}{384 \times E_a \times I_m}$

c) calcul de Im

$$\begin{split} I_m &= I_a + A_a \times d^2 + \frac{beff \times (h_c + h_p)^3}{12 \times \eta} + \frac{beff \times (h_c + h_p)}{\eta} \times f^2 \\ I_m &= 16270 + 72.7 \times 14.94^2 + \frac{150 \times (8 + 4)^3}{12 \times 15} + \frac{150 \times (8 + 4)}{15} \times 9.06^2 = 27855.93 cm^4 \\ f_{cal} &= \frac{5 \times 0.4723 \times 600^4}{384 \times 21000 \times 27855.93} = 1.36 cm \\ f_{adm} &= 2.4 > f_{cal} = 1.36 cm \Longrightarrow \text{La flèche est vérifiée} \end{split}$$

d) Calcul des contraintes

1) Contraintes dues au moment fléchissant :

Contrainte dans la poutre acier :

Traction dans la fibre inferieure :

$$\sigma_{ai} = \frac{M_{sd}}{I_m} \times v_i = -233.49 MPa$$

Compression dans la fibre supérieure :

$$\sigma_{as} = \frac{M_{sd}}{I_m} \times \left[v_s - \left(h_c + h_p \right) \right] = 148.43 MPa$$

Contrainte dans la dalle béton :

Compression dans la fibre supérieure :

$$\sigma_{bs} = \frac{M_{sd}}{\eta \times I_m} \times v_s = 7.11 MPa$$

Compression dans la fibre inférieure :

$$\sigma_{bi} = \frac{M_{sd}}{\eta \times I_m} \times \left[v_s - \left(h_c + h_p \right) \right] = 0.144 MPa$$

2) Contraintes dues au retrait

 β : Distance entre le CDG de l'acier et CDG du béton

$$\beta = \frac{h_{\rm a} + h_{\rm c} + h_{\rm p}}{2} = \frac{36 + 8 + 4}{2} = 24cm$$

 α : Distance entre le CDG de l'acier et l'AN de la section homogène

$$\alpha = \frac{I_y}{A_a \times \beta} = \frac{16270}{72,7 \times 24} = 9.32cm$$

$$K = \frac{B \times E_a \times \varepsilon \times \beta \times A_a}{(\eta \times I_y \times A_a) + (B \times I_y) + (B \times A_a \times \beta^2)}$$

$$B = b_{eff}^+ \times (h_c + h_p) = 150 \times (8 + 4) = 1800cm^2$$

$$\begin{split} &K = \frac{1800 \times 2,1 \times 10^4 \times 2 \times 10^{-4} \times 24 \times 72,7}{(15 \times 16270 \times 72,7) + (1800 \times 16270) + (1800 \times 72,7 \times 24^2)} \\ &K = 0,10 \\ &\text{Avec}: \\ &E_a = 2,1 \times 10^4 MPa \\ &\varepsilon = 2 \times 10^{-4} \\ &Y_1: \text{Distance entre l'interface et l'AN de la section homogène} \\ &Y_1 = \frac{h_a}{2} + \alpha = \frac{36}{2} + 9.32 = 27.32 cm \\ &Y_2: \text{Distance entre la fibre supérieure du béton et l'AN de la section homogène} \\ &Y_2 = Y_1 + h_c + h_p = 27.32 + 8 + 4 = 39.32 cm \\ &D'où \text{ les valeurs de contraintes sont :} \\ &\sigma_{as} = K \times Y_1 = 0,10 \times 27.32 \times 10 = 27.32 MPa \end{split}$$

$$\sigma_{ai} = K \times (h_{a} - Y_{1}) = 0,1 \times (36 - 27.32) \times 10 = -8.68MPa$$

$$\sigma_{bi} = \frac{(E_{a} \times \varepsilon) - (K \times Y_{1})}{\eta} = \frac{(2,1 \times 10^{5} \times 2 \times 10^{-4}) - (0,1 \times 27.32 \times 10)}{15}$$

$$\sigma_{bi} = 0.97MPa$$

$$\sigma_{bs} = \frac{(E_a \times \varepsilon) - (K \times Y_2)}{\eta} = \frac{(2.1 \times 10^5 \times 2 \times 10^{-4}) - (0.1 \times 39.32 \times 10)}{15}$$

$$\sigma_{bs} = -0.17MPa$$

3) Contraintes finales

$$\begin{split} \sigma_{as} &= 27.32 + 148.43 = 175.75 MPa < f_y = 235 MPa \dots \text{ Werifie} \\ \sigma_{ai} &= -233.49 - 8.68 = -242.17 MPa < f_y = 235 MPa \dots \text{ Verifie} \\ \sigma_{bs} &= 7.11 - 0.17 = 6.94 MPa < f_{bu} = \frac{0.85 \times f_{c28}}{\gamma_b} = 14.2 MPa \dots \text{ Verifie} \\ \sigma_{bi} &= 0.97 + 0.144 = 1.114 MPa < f_y = \frac{0.85 \times f_{c28}}{\gamma_b} = 14.2 MPa \dots \text{ Verifie} \end{split}$$

XII. 7.3 Calcul des goujons connecteurs :

On choisit des connecteurs de diamètre Ø18.

$$f_u = 400Mpa$$

$$\frac{h}{d} > 4 \Longrightarrow h > 4 \times d$$

On a $d = 18mm \implies h > 4 \times 18 = 72mm$

On prend h = 80mm

$$\frac{h}{d} > 4 \Longrightarrow \frac{80}{18} = 4,44 > 4 \Longrightarrow \alpha = 1$$

Béton de classe C $25/30 \Longrightarrow f_{ck} = 25MPa, E_{cm} = 30500MPa$

La résistance de calcul au cisaillement d'un connecteur vaut :

$$P_{Rd} = \min \begin{cases} 0.8 \times \frac{f_u}{\gamma_r} \frac{\pi d^2}{4} \\ 0.29 \times \frac{\alpha d^2}{\gamma_r} \times \sqrt{F_{ck} \times E_{cm}} \end{cases}$$
$$AN : P_{Rd} = \min \begin{cases} 0.8 \times \frac{400}{1.25} \times \frac{3.14 \times 18^2}{4} \times 10^{-3} = 65.144KN \\ 0.29 \times \frac{1 \times 18^2}{1.25} \times \sqrt{25 \times 30500} = 65.638KN \end{cases}$$

 $P_{Rd} = 65,144$ (Résistance d'un goujon).

$$\begin{cases} d = 18mm \le 20mm \\ h_p = 40mm \le 85mm \end{cases} \implies P_{Rd}^{'} = r \times P_{Rd} = 1 \times 65,111 = 65,111KN$$

Seffort de cisaillement*V*_{lf}

$$V_{lf} = min\left(\frac{A_a \times f_y}{\gamma_a}; \ 0.85 \times b_{eff}^+ \times \frac{(h_c + h_p) \times f_{ck}}{\gamma_c}\right)$$
$$V_{lf} = min\left(\frac{72.7 \times 235 \times 10^{-1}}{1.1}; \ 0.85 \times 1.5 \times \frac{(8+4) \times 25}{1.5} \times 10\right) = 1553.13KN$$

♦ Nombre des goujons*N*

 $N \ge \frac{V_{lf}}{P'_{Rd}} = \frac{1553,13}{65,144} = 23,84$ *Goujons*; *Onprend***24** *Goujons*. Soit 24 goujons sur une longueur L/2 = 600/2 = 3m => 48 goujons sur 6m. \clubsuit **Espacement** *e* $e = \frac{300}{24} = 12,5$ *cm*.

7.3.1 Vérification des soudures

a : La gorge $a < min(d; t_f) = min(298,6; 12,7) = 12.7mm$

On prend
$$a = 10mm$$

l: Longueur du cordon de soudure circulaire

 $l = \pi \times d = \pi \times 18 = 56,549mm$

AcierS235
$$\Rightarrow \begin{cases} \beta_w = 0.8\\ \gamma_{Mw} = 1.25\\ f_u = 400MPa \end{cases}$$

L'effort résistant de cisaillement :

$$F_{wrd} = a \times l \times \frac{f_u}{\beta_w \times \gamma_{Mw} \times \sqrt{3}} = 10 \times 56,548 \times \frac{400 \times 10^{-3}}{0,8 \times 1,25 \times \sqrt{3}} = 117,53KN$$

> L'effort sollicitant est donné par : $F_{sd} = \frac{V_{lf}}{N_f} = \frac{1553,13}{24} = 64,71KN$

Quelle que soit la direction de l'effort sollicitant F_{sd} par rapport au cordon, on a :

$$F_{sd} \leq F_{wrd} \Longrightarrow 64,71 KN \leq 117,53 KN \rightarrow Conditionvérifiée$$

XIII. IV.8 Calcul de la poutre secondaire :

FigureIV.7: Schémastatique de la poutre secondaire

Caractéristiques de la poutre secondaire :

Portée de la poutre : L = 6m Entre axe de la poutre : d_{poutre} = 1.5 Charges permanentes du plancher : G = 4.085KN/m² Surcharges d'exploitation : Q = 2,5KN/m²

• Pré dimensionnement :

Ps=[G+Q].dpoutre

Ps=[4.085+2.5].1.5=9.87KN/m

Il faut vérifier que : $fz = \frac{q_{S} l^4}{384.E.ly} \le \frac{l}{250} = \frac{600}{250} = 2.4 \text{ cm}$

$$I_{y} \ge \frac{q_{z} \cdot l^{4}}{384.E \times 2} = \frac{9.87 \cdot 600^{4} \times 10^{-1}}{2 \times 384 \times 2.1 \times 10^{5}} = 793.125 \ cm^{4}$$

On choisit un IPE 160

• Vérification de la flèche en tenant compte du poids du profile :

P' =[G+Q].d+Gpoutre=[4.085+2.5]*1.5+0.158=10.03 KN/m

: $fz = \frac{q_{s.l^4}}{_{384.E.Iy}} = \frac{10.03.600^4 * 10^{-1}}{_{384*2.1*10^5 * 8693}} = 1.85 \text{ cm} < f_{ad} = \frac{600}{250} = 2,4cm \dots \dots \text{ Vérifiée}$

• Vérification de la résistance : Déterminationde la classe de la section :

Classe de la semelle (semelle comprime) :

$$\frac{c}{r_f} = \frac{B/2}{r_f} \le 10\varepsilon = \frac{82/2}{7.4} = 5.54 \le 10$$

Tel que $\varepsilon = \sqrt{(235/fy)} = 1$

La semelle est de classe 1 Avec $(c = \frac{b}{2})$. **Class de l'âme (âme fléchie) :** $\frac{d}{tw} \le 33\varepsilon \rightarrow \frac{127.2}{5} = 25.44 \rightarrow \text{Tel que}\varepsilon = \sqrt{(235/fy)}$ L'âme est de section 1

Donc IPE160 est de class 1

Vérification au moment :

 $Pu=1.35(G*d+G_{profile})+1.5Q.d$

Pu=1.35(4.085*1.5+0.158)+1.5(2.5*1.5)=14.11KN/m

$$M_{sd} = \frac{Pu.L^2}{12} = \frac{14.11*6^2}{12} = 42.33 \text{ KN/m}$$

$$M_{Rd} = \frac{W_{pl} \times f_y}{\gamma_{M_0}} = \frac{123.9 \times 23.5}{1} = 29.11 \text{ KN/m}$$

 $M_{sd} \ge M_{Rd} => Non vérifiée.$

La condition de résistance n'est pas vérifiée on augmente a un profile IPE200

D'où

Pu=1.35(G*d +Gprofile) +1.5Q.d

$$M_{sd} = \frac{Pu.L^2}{12} = \frac{14.19*6^2}{12} = 42.57 \text{ KN/m}$$
$$M_{Rd} = \frac{W_{pl} \times f_y}{\gamma_{M_0}} = \frac{220.6*23.5}{1} = 51.84 \text{ KN/m}$$

$$M_{sd}$$
= 42.57 Kn.m< M_{rd} = 51, 84kn.m

Condition de résistance vérifiée

Vérification au Cisaillement :

$$V_{sd}^{max} = \frac{q_u \times L}{2} = \frac{14.19 \text{ X } 6}{2} = 42.57 \text{ KN}$$
$$V_{pl,Rd} = \frac{A_{\nu z} \times (f_y / \sqrt{3})}{\gamma_{M_0}} = \frac{14*(23.5/\sqrt{3})}{1} = 189.94 \text{ KN}$$

 $V_{pl,Rd} = 189.94KN > V_{sd} = 42.5KN \dots$ Vérifiée

Toutes les conditions sont vérifiés, alors on adopte IPE200 pour la poutre secondaire.

XIV. IV.9.Conclusion :

D'après notre étude du plancher mixte de notre structure et les vérifications effectuées nous avons obtenues les résultats suivant :

Solive : IPE200

Des goujons connecteurs de diamètre **18mm** Poutre maitresse : **IPE360** Des goujons connecteurs de diamètre **18mm** Poutre secondaire : **IPE200**

1) V.1 Introduction :

Les contreventements sont des pièces qui ont pour objet d'assurer la stabilité de l'ossature en s'opposant à l'action des forces horizontales : vent, freinages des ponts roulants, effet de séismes, chocs etc. ils sont généralement conçus pour garantir le cheminement des charges horizontales jusqu'aux fondations.

Ils sont disposés en toiture, dans le plan des versants « poutres au vent », et en façade « palées de stabilité », et doivent reprendre les efforts horizontaux appliqués tant sur les pignons que sur les longs pans.

2) V.2 Rôle des systèmes de contreventement

Les contreventements ont pour fonctions principales de :

• Reprendre et de transmettre jusqu'aux fondations les efforts dus aux actions latérales ou horizontales causées par : le vent, le séisme, les forces de freinage de ponts roulant, les explosions, les chocs de véhicules, la poussée des terres...

• Empêcher de grandes déformations (ou de limiter les déplacements horizontaux) sous l'effet de ces actions.

• Jouer un rôle important vis-à-vis des phénomènes d'instabilité en réduisant les risques de flambement et de déversement. En effet, ils diminuent les longueurs de flambement des poteaux, et ils constituent parfois des appuis latéraux intermédiaires pour les membrures comprimées de poutres et de portiques vis-à-vis du déversement.

• Possèdent un rôle important dans les problèmes de vibration de la construction, dans son ensemble ou dans des éléments élancés de cette construction et ce, en modifiant la période fondamentale. Ce qui permet d'éviter le phénomène de résonnance.

3) V. 3 Calcul de la poutre au vent en pignon :

La transmission des efforts sur le pignon passe successivement du bardage aux lisses, ux potelets puis à la traverse du portique, cette dernière n'est pas rigide transversalement, il est nécessaire de la stabiliser en construisant un dispositif dans le plan de la toiture.

La poutre contreventée sera calculée comme une poutre a treillis reposant sur deux appuis et soumise aux réactions horizontales des potelets ; auxquels on adjoint les efforts d'entrainement.

Figure V.1 : Vue en plan de la poutre au vent

Figure V.2 : Schéma statique de la poutre au vent

4) **3.1.1** Evaluation des efforts horizontaux :

On a:

$$\begin{split} F_{rive} &= 1.5[(W^{max} \times S_i) + F_r/n] \\ F_{int} &= 1.25[1.5[(W^{max} \times S_i) + F_r/n]] \end{split}$$

S_i: Surface afférente de chaque force.

$$S_i = e_i \times \frac{h_i}{2}$$

- N : nombre de nœuds
- e_i : Entre axes.
- h_i: Hauteur de chaque poteaux.

La force d'entraînement F_r est la force de frottement pour la toiture, dans notre cas la force du frottement $F_r = 55.61$ (voir chapitre 11)

Notre projet comporte deux poutres au vent ce qui fait pour chacune d'entre elle; on a n=5noeuds.

 $\frac{Fr}{N} = \frac{55.61}{5} = 11.12$ KN

Les résultats de F_i sont résumés dans le tableau si dessous :

I	1	2	3	
H _i (m)	6	7	7.5	
L _i (m)	2.6	4.55	3.9	
S _i (m)	7.8	15.93	14.63	
W _i *Si(KN)	3.90	7.98	7.33	
$\frac{F_{fr}}{n}$ (KN)	11.12	11.12	11.12	
F _i (KN)	22.53	35.81	34.59	

Tableau V.1 : Les résultats de F_i

3.1.2 Calcul des réactions :

$$R_A = R_B = F_1 + F_2 + \frac{F_3}{2} = 75.64 \text{ KN}$$

Les valeurs des réactions et de forces exercées sur la poutre au vent sont présentées sur la figure suivante :

Figure V.3 : valeurs des forces et réactions

5) 3.1.3 Calcul des efforts de traction dans les diagonales :

Par la méthode des coupures, on établit que l'effort F_d dans les diagonales d'extrémité (les plus sollicitées) est donné comme suit :

Figure V.4. Isolation du nœud 1.

$$\tan^{-1} \alpha = \tan^{-1} \left(\frac{5.2}{6}\right) \Longrightarrow \alpha = 40.92^{\circ}$$
$$\sum F_{y} = 0 \Longrightarrow -Ra + F_{1} + F_{d} \cos \alpha = 0$$

$$\implies F_{d} = \frac{R_{a} - F_{1}}{\cos \alpha} = 70.28KN$$

 $F_d = 70.28KN$

6) 3.1.4 Calcul de la section brute A de la diagonale :

$$N_{sd} \le N_{pl.Rd} = \frac{A.f_y}{\gamma_{m0}}$$
$$A > \frac{N_{sd}.\gamma_{m0}}{\gamma_{m0}} = \frac{70.283.1}{\gamma_{m0}} = 3.1$$

$$A \ge \frac{N_{sd}, \gamma_{m0}}{f_y} = \frac{70.283 \cdot 1}{23.5} = 3.11 \text{ cm}^2$$

 $A \ge 3.11 \text{ cm}^2$

On adopte une cornière : L (45x 45x5) \Rightarrow A = 4.3 cm²

7) 3.1.5 Calcul de la section nette :

$$A_{net} = A_{1+}\xi A_2$$

$$A_1 = (4,5.0,5) - (1,3.0,5) = 1.6 \text{ cm}^2$$

$$A_2 = (4,5-0,5) \cdot 0.5 = 2\text{ cm}^2$$

$$\xi = \frac{3A_1}{2} = 0.706$$

 $\xi = \frac{1}{3A_1 + A_2} = 0,706$

 $A_{net} = 1.6 + (0,706.2) = 3.12 \text{ cm}^2$

8) 3.1.6 Vérification à la résistance ultime de la section :

 $N_{sd} \le N_{u.Rd}$ $N_{u.Rd} = \frac{0.9 \cdot A_{net} \cdot f_u}{\gamma_{m2}},$ $N_{u.Rd} = \frac{0.9 * 3.12 * 36}{1.25} = 89.85 \text{ KN}$ $N_{t.sd} = 70.28 \text{ KN} < N_{u.Rd} = 89.85 \text{kN} \implies \text{Vérifiée}$

Donc la cornière L (45x 45 x5)convient pour les diagonales de la poutre au vent.

3.1.7 Vérification de la section à la résistance :

La formule de vérification est la suivante :

$$\frac{M_{y,sd}}{M_{Ny,rd}} \bigg]^{\alpha} + \left[\frac{M_{z,sd}}{M_{Nz,rd}} \right]^{\beta} \le 1$$

Avec :

$$\begin{split} \mathbf{M}_{\mathrm{Ny,rd}} &= \mathbf{M}_{\mathrm{ply,rd}} \left[\frac{1-n}{1-0.5a} \right] \\ \mathbf{M}_{\mathrm{Nz,rd}} &= \mathbf{M}_{\mathrm{plz,rd}} \left[1 - \left(\frac{n-a}{1-a} \right)^2 \right] \\ \mathbf{a} &= \min\left(\frac{A_{\mathrm{w}}}{A}; 0.5 \right) \\ \mathbf{n} &= \frac{\mathrm{N}_{\mathrm{sd}}}{\mathrm{N}_{\mathrm{pl,rd}}}; \mathrm{N}_{\mathrm{pl,rd}} = \frac{A \times f_y}{\gamma_{M0}}; \mathrm{M}_{\mathrm{ply,rd}} = \frac{\mathrm{W}_{\mathrm{ply}} \times f_y}{\gamma_{M0}}; \mathrm{M}_{\mathrm{plz,rd}} = \frac{\mathrm{W}_{\mathrm{plz}} \times f_y}{\gamma_{M0}} \end{split}$$

9) 3.2.1 Vérification de la panne intermédiaire :

Flexion déviée (calcul des pannes) :

$$\label{eq:G} \begin{split} G &= 0.375 KN/m (\text{voir chapitre III calcul des pannes}) \\ S &= 0.484 \ KN/m \end{split}$$

➤ Compression :

V = F2= 35.81 KN

Combinaisons de charges :

$$q_{sd} = 1.35G + 1.5S$$

$$N_{sd} = 1.35V$$
Donc:

$$q_{sd} = 1.23KN/m$$

$$q_{z,sd} = q_{sd} \times \cos \alpha = 1.21KN/m$$

$$M_{y,sd} = \frac{q_{z,sd} \times L^2}{8} = \frac{1.21 \times 6^2}{8} = 5.44KN.m$$

$$q_{y,sd} = q_{sd} \times \sin \alpha = 0.20KN/m$$

$$M_{z,sd} = \frac{q_{y,sd} \times (\frac{L}{2})^2}{8} = \frac{0.20 \times (3)^2}{8} = 0.225KN.m$$

$$N_{sd} = 53.71KN$$

Caractéristiques géométriques de l'IPE180 sont :

$$-I_{y} = cm^{4} -h = 180mm -d = mm$$

$$-I_{z} = cm^{4} -b = 91 mm -r = 9 mm$$

$$M_{ply,rd} = \frac{W_{ply} \times f_{y}}{\gamma_{M0}} = \frac{166 \ 10^{-6} \times 235 \times 10^{3}}{1} = 39.01 \text{ KN. m}$$

$$M_{plz,rd} = \frac{W_{plz} \times f_{y}}{\gamma_{M0}} = \frac{34.6 \times 10^{-6} \times 235 \times 10^{3}}{1} = 8.13 \text{ KN. m}$$

$$N_{pl,rd} = \frac{A \times f_{y}}{\gamma_{M0}} = \frac{23.9 \times 23.5}{1} = 510.59 \text{ KN}$$

a) Incidence de l'effort normal :

$$0,25N_{pl,rd} = 127.647 \text{ KN}$$

 $A_w = A - 2 \times b \times t_f = 23.9 - (2 \times 9.1 \times 0.8) = 9.34 \text{ cm}^2$
 $0.5A_w \times \frac{f_y}{\gamma_{M0}} = 0.5 \times 9.34 \times \frac{23.5}{1} = 99.76 \text{ KN}$
 $N_{sd} = 53.71 \text{ KN} < \min(127.64; 99.76) \text{ KN} \rightarrow \text{II}$ y'a pas interaction entre le moment résistant et l'effort normal.

$$M_{Ny,rd} = M_{ply,rd}$$

 $M_{Nz,rd} = M_{plz,rd}$

La formule de vérification est la suivante :

$$\left[\frac{M_{y,sd}}{M_{ply,rd}} \right]^{\alpha} + \left[\frac{M_{z,sd}}{M_{plz,rd}} \right]^{\beta} \le 1$$

$$Ou: \alpha = 2 \text{ et } \beta = 1$$

$$\left[\frac{2.77}{39.01} \right]^{2} + \left[\frac{0.102}{8.13} \right]^{1} = 0.0175 < 1$$

Vérifiée

b) Incidence de l'effort tranchant :

Si : $V_{sd} \leq 0.5V_{pl,rd} \rightarrow II$ n'y a pas d'interaction entre le moment résistant et l'effort tranchant. A mi- travée la valeur du moment fléchissant est maximale et la valeur de l'effort tranchant est nulle, donc il n'y a pas d'interaction entre le moment fléchissant et l'effort tranchant.

10) 3.2.2 Vérification de l'élément aux instabilités (déversement) :

> Semelle supérieure :

La semelle supérieure qui est comprimée sous l'action des charges verticales descendantes est susceptible de déverser, vu qu'elle est fixée à la toiture il n'y a donc pas risque de déversement.

Semelle inférieure :

La semelle inférieure qui est comprimée sous l'action du vent du soulèvement est susceptible de déverser de moment quelle est libre tout au long de sa portée.

> Combinaisons à l'ELU :

 $q_u = G + 1.5W = -2.595 kn$ $q_{uz.sd} = G \cos \alpha + 1.5 W_z = -2.6 KN/m$ $q_{uv.sd} = 1.35G \sin \alpha = 0.083Kn$ $N_{sd} = 1.5F_2 = 53.71KN$ Avec : $G = 0.375 \text{ KN/m} \ll \text{ charge permanente } \gg$ W = -1.98 KN/m« vent de soulèvement »

$V = F_2 = 35.81 \text{KN} \ll \text{effort de compression du vent revenant à la panne intermédiaire } \gg$

> Charge de flexion :

$$M_{y,sd} = \frac{q_{z,sd} \times L^2}{8} = \frac{2.6 \times 6^2}{8} = 12.06 \text{KN. m}$$
$$M_{z,sd} = \frac{q_{y,sd} \times (\frac{L}{2})^2}{8} = \frac{0.083 \times (3)^2}{8} = 0.093 \text{ KN. m}$$

> Charge de compression :

 $N_{sd} = 1.5F_2 = 53.71KN$

11) 3.3.3 Vérification au flambement :

Flexion composée avec risque du flambement :

$$\frac{N_{sd}}{\chi_{min} \times N_{pl,rd}} + \frac{K_y \times M_{y,sd}}{M_{ply,rd}} + \frac{K_z \times M_{z,sd}}{M_{plz,rd}} \le 1$$
Avec :

EC03. (5. 52. Art. 5. 5. 4.)

Avec :

$$\begin{split} k_{y,z} &= 1 - \frac{\mu_{y,z} \times N_{sd}}{\chi_{y,z} \times A \times f_y} \quad \text{mais} \quad k_{y,z} \leq 1,5 \\ \mu_{y,z} &= \bar{\lambda}_{y,z} \times \left(2\beta_{M,y,z} - 4\right) + \left(\frac{W_{\text{ply},z} - W_{\text{ely},z}}{W_{\text{ely},z}}\right) \quad \text{mais} \ \mu_{y,z} \leq 0.90 \end{split}$$

 $\beta_{M,v,z}$: Sont les facteurs de moment uniforme equivalent pour le flambement par flexion On a:

N_{pl,rd} =510.59 KN $M_{\text{ply,rd}} = 39.01 KN.m$ $M_{plz,rd} = 8.13 KN.m$

Calcul de coefficient de réduction χ_{min} :

Avec : $\chi_{\min} = \min(\chi_y; \chi_z)$

a.1) Flambement par rapport à l'axe fort y-y :

$$\chi_{y} = \frac{1}{\varphi_{y} + \left[\varphi_{y}^{2} - \overline{\lambda_{y}^{2}}\right]^{0.5}}$$
$$\varphi_{y} = 0.5 \times \left[1 + \alpha_{y} \times (\overline{\lambda}_{y} - 0.2) + \overline{\lambda}_{y}^{2}\right]; \overline{\lambda}_{y} = \left(\frac{\lambda_{y}}{\lambda_{1}}\right) \times \left[\beta_{A}\right]^{0.5}$$

Avec : $\beta_A = 1$ pour les sections de classe 1 et 2

$$\lambda_1 = \pi \left[\frac{E}{f_y}\right]^{0.5} = \pi \left[\frac{2.1 \times 10^6}{2350}\right]^{0.5} = 93.9$$

 α : facteur d'imperfection correspondant à la courbe de flambement appropriée, donné par le tableau **5.5.2** de l'EC3.

$$\lambda_{y} = \frac{L_{y}}{i_{y}} = \frac{600}{7.42} = 75.98 \text{KN}$$

$$\overline{\lambda_{y}} = \frac{80.86}{93.9} = 0.86 \begin{cases} \frac{h}{b} = \frac{180}{91} = 1.97 > 1.2\\ t_{f} = 7.4 \text{mm} < 40\\ \text{Axe de flambement } y - y \end{cases} \Rightarrow \text{La courbe (a)}$$

$$\begin{cases} \text{La courbe (a)}\\ \overline{\lambda_{y}} = 08 \end{cases} \Rightarrow \chi_{y} = 0.78 \end{cases}$$

$$\mu_{y} = \bar{\lambda}_{y} \times \left(2\beta_{M,y} - 4\right) + \left(\frac{W_{ply} - W_{ely}}{W_{ely}}\right)$$

Pour une poutre simplement appuyée avec une charge uniformément répartie : $\beta_{M,y}=1.3$

$$\mu_{y} = 0.86 \times (2 \times 1.3 - 4) + \left(\frac{166 - 146}{146}\right) \Longrightarrow \mu_{y} = -1.06 < 0.9 \qquad \text{OK}$$

$$k_{y} = 1 - \frac{\mu_{y} \times N_{sd}}{\chi_{y} \times A \times f_{y}} = 1 - \frac{1.06 \times 53.71}{0.78 \times 23.9 \times 23.5} = 0.87 < 1.5 \qquad \text{Vérifiée}$$

a.2) Flambement par rapport à l'axe faible z-z :

$$\begin{split} \chi_z &= \frac{1}{\varphi_z + \left[\varphi_z^2 - \overline{\lambda_z^2}\right]^{0.5}} \\ \varphi_z &= 0.5 \times \left[1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2\right]; \overline{\lambda}_y = \left(\frac{\lambda_z}{\lambda_1}\right) \times \left[\beta_A\right]^{0.5} \\ \lambda_z &= \frac{L_z}{i_z} = \frac{300}{2.05} = 146.34 \end{split}$$

$$\begin{split} \bar{\lambda_z} &= \frac{146.34}{93.9} = 1.55 \\ \begin{cases} \frac{h}{b} = \frac{180}{91} = 1.55 > 1.2 \\ t_f &= 8 \text{mm} < 40 \end{cases} \implies \text{La courbe (b)} \\ \text{Axe de flambement } z - z \end{cases} \\ \begin{cases} \text{La courbe (b)} \\ \bar{\lambda_z} &= 1.55 \end{cases} \implies \chi_z = 0.35 \\ \mu_z &= 1.55 \times (2 \times 1.3 - 4) + \left(\frac{34.6 - 22.3}{22.22}\right) \implies \mu_y = -1.62 < 0.9 \text{ Vérifiée} \end{split}$$

$$k_{z} = 1 - \frac{\mu_{z} \times N_{sd}}{\chi_{z} \times A \times f_{y}} = 1 - \frac{1.62 \times 53.71}{0.35 \times 23.9 \times 23.5} = 0.557 < 1.5$$
 Vérifiée

La vérification :

$$\frac{N_{sd}}{\chi_{\min} \times N_{pl,rd}} + \frac{K_y \times M_{y,sd}}{M_{ply,rd}} + \frac{K_z \times M_{z,sd}}{M_{plz,rd}} \le 1$$

$$\frac{53.71}{0.34 \times 510.59} + \frac{0.90 \times 11.7}{39.01} + \frac{0.71 \times 0.093}{8.13} = 0.587 < 1 \quad \text{Vérifiée}$$

b) Vérification au déversement :

 $\frac{N_{sd}}{\chi_{z} \times N_{pl,rd}} + \frac{K_{LT} \times M_{y,sd}}{\chi_{LT} \times M_{ply,rd}} + \frac{K_{z} \times M_{z,sd}}{M_{plz,rd}} \le 1$ EC03(5.52Art. 5. 5. 4)
Avec :

$$\begin{split} k_{LT} &= 1 - \frac{\mu_{LT} \times N_{sd}}{\chi_z \times A \times f_y} \quad \text{mais} \quad k_{LT} \leq 1 \\ \mu_{LT} &= 0.15 \times \bar{\lambda}_z \times \beta_{M,LT} - 0.15 \quad \text{mais} \ \mu_{LT} \leq 0.90 \end{split}$$

 β_{MLT} : est un facteur de moment uniforme équivalent pour le déversement.

$$\chi_{LT} = \frac{1}{\varphi_{LT} + \left[\varphi_{LT}^2 - \overline{\lambda_{LT}^2}\right]^{0.5}}$$
$$\varphi_{LT} = 0.5 \times \left[1 + \alpha_{LT} \times (\overline{\lambda}_{LT} - 0.2) + \overline{\lambda}_{LT}^2\right]$$
$$\overline{\lambda}_{LT} = \left(\frac{\lambda_{LT}}{\lambda_1}\right) \times \left[\beta_A\right]^{0.5}$$

Avec :

 $\alpha_{LT}: \ facteur \ d'imperfection pour le déversement.$

 $\alpha_{LT} = 0.21$: pour les sections laminées.

 $\beta_A = 1: \mbox{ pour les sections de classe 1et 2}$

 λ_{LT} : Élancement de l'élément vis à vis au déversement ; pour les profilés laminés I ou H

$$\lambda_{\rm LT} = \frac{\frac{12}{i_{\rm Z}}}{(C_1)^{0.5} \times \left[1 + \frac{1}{20} \times \left[\frac{L_{\rm Z}}{\frac{1}{k_{\rm T}}}\right]^2\right]^{0.25}} = \frac{\frac{300}{2.05}}{(1.132)^{0.5} \times \left[1 + \frac{1}{20} \left[\frac{300}{\frac{2.05}{0.8}}\right]^2\right]^{0.25}} = 103.788$$
$$\bar{\lambda}_{\rm LT} = \left(\frac{\lambda_{\rm LT}}{\lambda_1}\right) \times \left[\beta_{\rm A}\right]^{0.5} = 1.1 > 0.4$$

On tenir compte du risque de déversement :

$$\phi_{LT} = 0.5 \times [1 + 0.21 \times (1.1 - 0.2) + 1.1^2] = 1.19$$

$$\chi_{\rm LT} = \frac{1}{1.19 + [1.19^2 - 1.1^2]^{0.5}} = 0.609$$

Calcul de coefficient K_{LT} :

$$\mu_{LT} = 0.15 \times \overline{\lambda}_z \times \beta_{M,LT} - 0.15$$

 $\beta_{MLT} = 1.3$: Pour une poutre simplement appuyée avec une charge repartie.

$$\mu_{LT} = 0.15 \times 1.55 \times 1.3 - 0.15 = 0.152 < 0.9 \tag{OK}$$

$$k_{LT} = 1 - \frac{\mu_{LT} \times N_{sd}}{\chi_z \times A \times f_y} = 1 - \frac{0.152 \times 69.09}{0.35 \times 23.9 \times 23.5} = 0.053 < 1$$
 OK

La vérification :

$$\frac{N_{sd}}{\chi_{min} \times N_{pl,rd}} + \frac{K_{LT} \times M_{y,sd}}{\chi_{LT} \times M_{ply,rd}} + \frac{K_z \times M_{z,sd}}{M_{plz,rd}} \le 1$$

$$\frac{53.71}{0.35 \times 510.59} + \frac{0.97 \times 11.7}{0.609 \times 39.01} + \frac{0.71 \times 0.093}{8.13} = 0.786 \le 1 \qquad OK$$

Le profilé **IPE180**est adéquat comme panne de toiture.

12) V.4 Contreventement vertical du long-pan :

Les palées de stabilités sont destinées à assurer la stabilité des parois ou files d'ossature, vis àvis des efforts horizontaux qui peuvent les solliciter :

- Vent.
- Effets des séismes.
- Flambement et déversement.
- Force de frottements

Le dimensionnement s'effectue en négligent les diagonales comprimées en admettant qu'elles flambent, dans ce cas tous les efforts sont repris par les diagonales tendues.

13) 4.1 Dimensionnement de la pale de stabilité de rive :

Evaluation des efforts de traction dans les diagonales tendues se faite par la méthode des coupures :

Figure V.6 : schéma statique de la palée de stabilité de rive.

tg
$$\alpha = 6/6 = 1 => \alpha = 45^{\circ}$$

 $\implies N = \frac{R - F1}{\cos \alpha} = \frac{75.64 - 22.53}{\cos 45} = 75.10 \text{ KN}$

4.1.1dimensionnement de la diagonale

4.1.2 Calcul de la section brute A :

$$N_{sd} \le N_{pl.Rd} = \frac{A. f_y}{\gamma_{m0}}$$

 $N_{sd} = 1.5*75.10{=}112.66KN$

$$A \ge \frac{N_{sd}.\,\gamma_{m0}}{f_y} = \frac{112.66 \times 1}{23.5} = 4.79 \text{ cm}^2$$

$$A \ge 4.79 \text{ cm}^2$$

On adopte une cornière :L (60x 60 x 6) \Rightarrow A = 6.91cm²

4.1.3 Calcul de la section nette :

$$A_{net} = A_{1+}\xi.A_2$$

$$A_1 = (6.0,6) - (1,3.0,6) = 2.88 \text{ cm}^2$$

$$A_2 = (6 - 0, 6) \cdot 0, 6 = 3.24 \text{ cm}^2$$

$$\xi = \frac{3A_1}{3A_1 + A_2} = 0,72$$

 $A_{net} = 2.88 + (0.72 \times 3.24) = 5.22 \text{ cm}^2$

4.1.4 Vérification à la résistance ultime de la section :

 $N_{sd} \leq N_{u.Rd}$

$$N_{u.Rd} = \frac{0.9 . A_{net}. f_u}{\gamma_{m2}}$$

$$N_{u.Rd} = \frac{0.9.5.22.36}{1.25} = 135.20 \text{ kN}$$

 $N_{t.sd} = 112.66 \text{kN} < N_{u.Rd} = 135.20 \text{ kN} \implies \text{Vérifiée}$

La cornière L (60 x60x6) convient pour les diagonales de la palée de stabilité de rive.

14) 4.2 Dimensionnement de la pale de stabilité intermédiaire :

Evaluation des efforts de traction dans les diagonales tendues se faite par la méthode des coupures :

Figure V.7 : schéma statique de la palée de stabilité intermédiaire.

tg $\alpha = 6/6 = 1 = > \alpha = 45^{\circ}$

$$\implies N = \frac{R}{\cos \alpha} = \frac{75.64}{\cos 45} = 106.97 \text{ KN}$$

15) 4.2.1dimensionnement de la diagonale:

16) 4.2.2 Calcul de la section brute A :

$$N_{sd} \le N_{pl.Rd} = \frac{A.f_y}{\gamma_{mo}}$$

 $N_{sd} = 1.5*106.97 = 160.45 KN$

$$A \ge \frac{N_{sd}.\gamma_{m0}}{f_v} = \frac{160.45 \times 1}{23.5} = 6.82 \text{ cm}^2$$

 $A \ge 6.82 \text{cm}^2$

On adopte une cornière :L(70x70 x9) \Rightarrow A = 11.88cm²

$$A_{net} = A_1 + \varepsilon + A_2$$

$$A_1 = [(7 \times 0.9) - (1.3 \times 0.9)] = 5.13 \text{ cm}^2$$

$$A_2 = (7 - 0.9) \times 0.9 = 5.49 \text{ cm}^2$$

$$\varepsilon = \frac{3 \times A_1}{3 \times A_1 + A_2} = 0.737$$

$$A_{net} = 5.13 + 0.737 + 5.49 = 11.36 \text{ cm}^2$$

• Vérification à la résistance ultime de la section

$$N_{sd} \le N_{u.Rd} = \frac{0.9 \times 11.36 \times 36}{1.25} = 294.45$$
KN
 $N_{sd} = 160.45$ KN $\le N_{u.Rd} = 294.45$ KN Vérifiée

Donc on opte une cornière L70X70X9.

17) V.5. Pré dimensionnement de la poutre sablière :

La poutre sablière est considérée comme une barre de contreventement vertical, Elle est soumise à un effort horizontal et à son propre poids, d'où la vérification va se faire en flexion composée.

Figure V.8: Schéma statique de la poutre sablière.

 $F_1 = 22.53 Kn$

$$R = R_A = R_B = 75.64 KN$$

$$N^{MAX} = R - F_1 = 53.11KN$$

$$N_{Pl} = \frac{A \times f_y}{\gamma_{M0}} \ge N^{Max} \Rightarrow A \ge \frac{N_{sd \times \gamma_{m0}}}{f_y}$$
$$A \ge \frac{53.11}{23.5} = 2.28 \text{cm}^2$$

On adopte profilé de type **HEA 100**.....A=21.2cm²

Remarque : Pour une meilleure résistance de la poutre sablière on doit adopte des profiles en H ou des section tubulaires

18) 5.1. Verification via à vis de l'instabilité :

La vérification aux instabilités est donnée par les formules suivantes :

$$\frac{N_{sd}}{\chi_{\min} \times N_{pl,rd}} + \frac{K_y \times M_{y,sd}}{M_{ply,rd}} \le 1$$

Calcul du coéfficient de réduction minimal χ_{min} :

les élancements :

$$\lambda_y = \frac{l_{ky}}{i_y} = \frac{600}{5.75} = 104.34$$

Acier S235
$$\implies \varepsilon = \left[\frac{235}{fy}\right]^{0.5} = 1$$

 $\lambda_1 = 93.9 \times \varepsilon = 93.9 \times 1 = 93.9$

Les élancements réduits sont :

$$\bar{\lambda}_y = \frac{\lambda_y}{\lambda_1} \times \sqrt{\beta_A} = \frac{104.34}{93.9} \times \sqrt{1} = 1.11 > 0.2$$

D'où :

La vérification au flambement flexion est nécessaire. Elle est comme suite : Calcul des sollicitations :

$$M_{sdy} = 1.5 \times \frac{q_{\times l^2}}{8} = 1.5 \times \frac{0.129 \times 6^2}{8} = 0.88 \text{ KN.m}$$

 $N_{SD} = R = 75.64 \text{ KN}$

Calcul de N_{plyRd} et M_{plrd} :

$$N_{plyRd} = \frac{A \times f_y}{\gamma_{m0}} = \frac{21.2 \times 23.5}{1} = 498.2 \text{ KN}$$
$$M_{plyrd} = \frac{w_{ply} \times f_y}{\gamma_{m0}} = \frac{83.01 \times 23.5}{1} = 1950.73 \text{ KN. } m$$

$$\begin{cases} \frac{h}{b} = \frac{96}{100} = 0.96\\ t_f = 8mm < 40mm \end{cases} => \text{ la courbe (b) selon l'axe y-y'}$$

D'où :

$$\aleph_y = 0.6612$$

Calcul de μ_y :

$$\mu_{y} = \bar{\lambda}_{y} \times \left(2\beta_{M,y} - 4\right) + \left(\frac{W_{ply} - W_{ely}}{W_{ely}}\right) \quad \text{mais } \mu_{y} \le 0.90$$
$$\mu_{y} = 1.11 \times (2 \times 1.3 - 4) + \left(\frac{83.01 - 72.76}{72.76}\right) = -1.41 < 0.9$$

Calcul de k_y :

$$k_{y} = 1 + \frac{\mu_{y} \times N_{sd}}{\chi_{y} \times A \times f_{y}} = 1 + \frac{1.41 \times 53.11}{0.6612 \times 21.2 \times 23.5} = 1.22 < 1.5 \quad \text{verifiée}$$

On opte pour un **HEA100**.

VI .1 Calcul des traverses

Les traverses sont des poutres maitresses d'une toiture a deux versants ; elles sont constituées généralement en profiles IPE ou HEA. Les traverses de la toiture servent à supporter les éléments de la couverture

Détermination des charges

Dans le but de pré-dimensionné les poteaux et de traverses on a modaliser un portique

1.2 Résultats

Sous la combinaison G+1,5W

Le moment maximal est de 147.33KN/m L'effort normal maximal est de 17.83KN L'effort tranchant est de 42.03KN

1.3 Pré dimensionnement de la traverse :

 $M_{plrd} = W_{ply} \times f_y / \gamma m_0 =$

 $W_{ply\!\!>\!\!My\!\!\times\!\!\gamma m_0\!/Fy\!\!=\!\!\frac{147.33\!\times\!1.1}{235}$

Wply>689.62cm³

Donc on optre pour un IPE 330

1.4 Vérification de l'effort tranchant Wply=804Cm³

VplRd= $Av(\frac{Fy}{\sqrt{3}})$

 $Av = A-2b \times tf + (tw+2r) \times tf$

 $Av=30.8cm^2$

Vplrd=Av(fy $/\sqrt{3}$)= 379.92KN

 $V_{sd} = 27.17 KN < 379.92 KN$ C'est vérifier

L'incidence sur le moment résistant peut êtres négliger

1.5 L'incidence de l'effort normal

Nplrd=A×Fy/ym1=62.6*23.5/1.1=1337.36KN

Nsd*0.25 = < Nplrd*0.5

4.33KN < 334.34KN

1.6 Vérification de la stabilité au déversement

D'après le diagramme de l'effort sous l'effet de vent de soulèvement qu'on a eu après modalisation,

on a deux zones qui risquent de déverser

- La semelle supérieure de la traverse proche de la zone nodale
- La semelle inferieure de la traverse hors de la zone nodale

Pour le premier cas, grâce aux pannes qui lient la semelle supérieure le déversement ne présente

aucun risque. Il nous reste seulement le deuxième cas a étudie.

• La vérification au diversement se fait par la formule suivante :

 $\frac{N}{Xmin \times Nply} + \frac{KLT \times My}{XLT \times Mply} \le 1$

• Détermination du moment critique de déversement

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_W} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right) \right\} \text{EC3 Art F.1.2}$$

D'après les tableaux F.1.2 de l'EC3

C1, C2, facteurs dépendant des conditions de charge et d'encastrement.

C1 = 1.132 C2 = 0,459

K et Kw : les facteurs de longueur effective avec : K=1 et Kw =1

L=1,3m entraxe entre maintient latéraux

 $z_a = -\frac{h}{2} = -16.5$ Cm sous le vent(-) puisque l'orientation de repertest vers la semelle comprimé $z_s = 0$ section doublement symetrique EC3 figure F.1.1 Zg =Za -Zs = -16.5cm It = 20.12cm4 Iw = 125.9cm6 L=130cm G=0.4.E

Mcr=2795.53KNm Calcul de l'élancement réduit $\overline{\lambda_{LT}}$ $\overline{\lambda}_{LT} = \sqrt{\frac{WpLy \times fy}{Mcr}} = \sqrt{\frac{804 \times 10^3 \times 235}{2795.53 \times 10^6}} = 0,11 < 0.4$ →Pas de risque de déversement

→IPE330 est vérifié pour la traverse

VI .2 Calcul des poteaux

2.1 Résultats obtenue

Le moment maximal est de 180.33KN/m

L'effort normal correspondant est de 109.3KN

→sous la combinaison 0.8G-Ex

L'effort normal maximal est de 331.44KN

Le moment correspondant est de 0KN/m

→sous la combinaison 1.35G+1.5Q

2.3 Pré dimensionnement des poteaux :

 $M_{plrd} = W_{ply} \times f_y / \gamma m_0 =$

 $W_{ply>}My_{\times}\gamma m_0/Fy = \frac{180.33 \times 1.1}{235}$

Wply>843.95cm³

Donc on optre pour un IPE 360

2.4 Vérification de l'effort tranchant

Wply=1019Cm³

$$Vpl_{Rd} = Av(\frac{Fy}{\sqrt{3}})$$

 $Av = A-2b \times tf+(tw+2r) \times tf$

Av=35.1cm²

Vplrd=Av(fy $/\sqrt{3}$)= 379.92KN

 V_{sd} = 116.04 KN < 432.63 KN C'est vérifier

L'incidence sur le moment résistant peut êtres négliger

2.5 Flambement du portique
La longueur de flambement est de 300 Cm. Calcul de l'élancement réduit λ :

Pour un IPE 360 les rayons de giration sont

iy = 15 cmiz = 3.79 cm

• Calcul des élancements

 $\lambda y = I_{Ky} / i_{y} = 300 / 15 = 20$

 $\lambda z = I_{\text{Kz}} / i_{z} = 150/3.79 = 39.59$

• Calcul de l'élancement critique

Acier S235

$$\varepsilon = \left[\frac{235}{f_y}\right]^{0.5} = 1$$

Donc $\lambda_{cr} = 93.9\varepsilon = 93.9 * 1 = 93.9$

• Calcul des élancements réduits

 $\overline{\lambda_y} = \frac{\lambda_y}{\lambda_1} (\beta_A)^{0.5} = 0.21 > 0.2 \text{ (il y a risque de flambement)}$ $\overline{\lambda_z} = \frac{\lambda_z}{\lambda_1} (\beta_A)^{0.5} = 0.39 > 0.2 \text{ (il y a risque de flambement)}$

Le choix de la courbe de flambement :

h/b= 36/17 = 2.11>1,2

tf= 14mm< 40mm

Axe de flambement **y-y** courbe de flambement a

Axe de flambement **z-z** courbe de flambement b

Calcul de Ymin

Axe yy :

$$\chi_{y} = \frac{1}{\varphi_{y} + \left[\varphi_{y}^{2} - \overline{\lambda}_{y}^{2}\right]^{0.5}}$$
$$\varphi_{y} = 0.5 \left[1 + \alpha_{y} \left(\overline{\lambda}_{y} - 0.2\right) + \overline{\lambda}_{y}^{2}\right]$$

 $\varphi_y = 0.52$

$$\chi_y = 1$$

Axe zz :

$$\chi_{z} = \frac{1}{\varphi_{y} + \left[\varphi_{y}^{2} - \overline{\lambda}_{y}^{2}\right]^{0.5}}$$
$$\varphi_{z} = 0.5 \left[1 + \alpha_{y} \left(\overline{\lambda}_{y} - 0.2\right) + \overline{\lambda}_{y}^{2}\right]$$
$$\varphi_{z} = 0.59$$

 $\chi_z = 0.96$

2.6 Vérification de la stabilité au déversement

D'après le diagramme de l'effort sous l'effet de vent de soulèvement qu'on a eu après modalisation,

on a deux zones qui risquent de déverser

- La semelle supérieure de la traverse proche de la zone nodale
- La semelle inferieure de la traverse hors de la zone nodale

Pour le premier cas, grâce aux pannes qui lient la semelle supérieure le déversement ne présente

aucun risque. Il nous reste seulement le deuxième cas a étudie.

• La vérification se fait par la formule suivante :

$$\frac{Nsd}{\chi_{y} \times A \times fy/\gamma_{M1}} + Ky \times \frac{Msd_{y}}{\chi_{LT} \times WpLy \times fy/\gamma_{M1}} \leq 1$$

et
$$\frac{Nsd}{\chi_{z} \times A \times fy/\gamma_{M1}} + Kz \times \frac{Msd_{y}}{\chi_{LT} \times WpLy \times fy/\gamma_{M1}}$$

Détermination du moment critique de déversement

(cas de vent de pression) L=150m

Calcul de l'élancement réduit $\overline{\lambda_{LT}}$

 $\beta_{\rm w} = 1 \implies Section \ de \ classe \ 1$

 χ_{lt} : coefficient de réduction en fonction de $\overline{\lambda_{LT}}$.

$$\overline{\lambda_{LT}} = \sqrt{\frac{\beta_{w} \times W_{_{pl.y}} \times f_{y}}{M_{_{cr}}}} = \left[\frac{\lambda_{_{LT}}}{\lambda_{_{1}}}\right] \left(\beta_{\omega}\right)^{0.5}$$

 M_{cr} : est le moment critique de déversement.

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_W} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + (C_2 \cdot Z_g)^2 \right]^{\frac{1}{2}} - (C_2 \cdot Z_g) \right\} \text{EC3 Art F.1.2}$$

D'après les tableaux F.1.2 de l'EC3

C1, C2, facteurs dépendant des conditions de charge et d'encastrement.

$$C1 = 1.132$$
 $C2 = 0,459$

K et Kw : les facteurs de longueur effective avec : K=1 et Kw =1

$$z_a = -\frac{h}{2} = -18cm$$
 sous le vent(-) puisque l'orientation de repert est vers la semelle comprimé
 $z_s = 0$ section doublement symetrique EC3 figure F.1.1
Zg =Za -Zs =-18cm

It = 37.32cm4 Iw = 313.6 cm6 L=150cm G=0.4.E

$$I_{z} = 1043 cm^{4}$$

$$\rightarrow Mcr = 1478.8 KNm$$

$$\rightarrow \bar{\lambda}_{LT} = \sqrt{\frac{1 \times \left(\frac{1019 \times 23.5}{1.1}\right)}{1478.8}} = 0.38 < 0.4$$

$$\Rightarrow Pas de risque de déversement$$

> Détermination du moment critique de déversement

(cas de vent de dépression) L=300m

Calcul de l'élancement réduit $\overline{\lambda_{LT}}$

 $\beta_{\rm w} = 1 \implies Section \ de \ classe \ 1$

 χ_{lt} : coefficient de réduction en fonction de $\overline{\lambda_{LT}}$.

$$\overline{\lambda_{LT}} = \sqrt{\frac{\beta_{w} \times W_{_{pl.y}} \times f_{y}}{M_{_{cr}}}} = \left[\frac{\lambda_{_{LT}}}{\lambda_{_{1}}}\right] \left(\beta_{\omega}\right)^{0.5}$$

 M_{cr} : est le moment critique de déversement.

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_W} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right) \right\} \text{EC3 Art F.1.2}$$

D'après les tableaux F.1.2 de l'EC3

C1, C2, facteurs dépendant des conditions de charge et d'encastrement. C1 = 1.132 C2 = 0,459

K et Kw : les facteurs de longueur effective avec : K=1 et Kw =1

 $z_a = -\frac{h}{2} = -18cm$ sous le vent(-) puisque l'orientation de repert est vers la semelle comprimé $z_s = 0$ section doublement symetrique EC3 figure F.1.1 Zg =Za -Zs =-18cm

It = 37.32cm4 Iw = 313.6 cm6 L=300cm G=0.4.E

$$\begin{split} I_z &= 1043 cm^4 \\ \rightarrow \mathrm{Mcr} &= 382.44 \mathrm{KNm} \\ \rightarrow \bar{\lambda}_{LT} &= \sqrt{\frac{1 \times \left(\frac{1019 \times 23.5}{1.1}\right)}{2902.2}} = 0.75 < 0.4 \\ &\Rightarrow \mathrm{il} \ \mathrm{ya} \ \mathrm{un} \ \mathrm{risque} \ \mathrm{de} \ \mathrm{deversement} \end{split}$$

Profilé laminé $\alpha = 0.21$ D'apres le tableau 5.5.2 eurocode3 $\rightarrow \chi_{LT} = 0.82$

• Facteurs d'interaction :

 $Ky = 1 - \frac{\mu y \times Nsd}{\chi y \times A \times fy}$ $\mu y = \overline{\lambda} y (2\beta M y - 4) + \frac{W p L y - W e L y}{W e L y}$ Avec : $\beta My = 1,3$ $\mu y = -0.16$ Ky = 1.24 $Kz = 1 - \frac{\mu z \times Nsd}{\chi z \times A \times fz}$ $\mu z = \overline{\lambda} z (2\beta M z - 4) + \frac{W p L z - W e L z}{W e L z}$ Avec : $\beta My = 1,3$ $\mu z = 0.01$ Kz = 0.99Nsd=331.44KN Nply=1553.13KN Msdy=180.9KNm Mply=217.69kNm $\frac{Nsd}{\chi_{y} \times A \times fy/\gamma_{M1}} + Ky \times \frac{Msd_{y}}{\chi_{LT} \times WpLy \times fy/\gamma_{M1}} \leq 1$ $\frac{Nsd}{\chi_z \times A \times fy/\gamma_{M1}} + Kz \times \frac{Msd_y}{\chi_{LT} \times WpLy \times fy/\gamma_{M1}}$ AN: $\frac{331.44}{1 \times 1553.13} + 1.31 \times \frac{180.9}{0.82 \times 1553.13} = 1.54 \succ 1$ $\frac{331.44}{096.\times1553.13} + 0.99 \times \frac{180.9}{0.82 \times 1553.13} = 1.23 \succ 1$

Le déversement n'est pas vérifié en augmente a un IPE400

On aura donc It = 51cm4 Iw = 490 cm6 L=300m G=0.4.E Iz=1318 \rightarrow Nply=1805.2KN \rightarrow Mply=279.22Nm \rightarrow Mcr=1154.31KNm

$$\frac{Nsd}{\chi_z \times A \times fy/\gamma_{M1}} + Kz \times \frac{Msd_y}{\chi_{LT} \times WpLy \times fy/\gamma_{M1}}$$

AN:

$$\frac{331.4}{0.96 \times 1805.2} + 0.75 \times \frac{180.9}{279.22 \times 0.86} = 0.75\langle 1 \rangle$$

C'est verifier

V.3 Conclusion

L'étude de portique nous à permet de déterminer toutes les sollicitations agissants sur notre structure, dont on a utilisé dans le calcul des éléments porteuses, et des assemblages. Après le calcul avec robot on a trouve que :

- Pour les poteaux c'est des IPE400.
- Pour les traverses IPE330

VII.1 Introduction :

Le séisme est un phénomène naturel qui se caractérise par un mouvement d'une partie de la surface de la terre provoqué par des processus de déformations et de ruptures à l'intérieur de la croute terrestre. L'énergie accumulée est libérée sous forme de vibration se propageant dans toutes les directions, appelées ondes sismiques. Ce phénomène est l'un des plus graves désastres pour l'humanité, son apparition brusque, l'intensité des forces mises en jeu, l'énormité des pertes humaines et matérielles ont marquées la mémoire des générations.

Dans le but de limiter les endommagements causés aux constructions, ce que nécessite une bonne conception des structures à fin qu'elles résistent aux séismes. Pour cela, l'analyse de la structure est faite par le logiciel robot structure qui est basé sur la méthode des éléments finis.

VII.2 Analyse de la structure :

2.1 Type d'analyse

L'analyse élastique globale, peut être statique ou dynamique, selon la satisfaction des conditions posées par les règlements en vigueur, sur les cas de chargement.

Les chargements statiques :

- Poids propre de la structure.
- Les effets dus aux actions climatiques.

Les chargements dynamiques

• Les effets sismiques

2.2 Méthodes de calcul

En Algérie, la conception parasismique des structures est régie par un règlement en vigueur à savoir le « RPA99 version 2003 ». Ce dernier propose trois méthodes de calcul dont les conditions d'application différents et cela selon le type de structure à étudier, le choix des méthodes de calcul et la modélisation de la structure doivent avoir pour objectif de reproduire au mieux le comportement réel de l'ouvrage. Ces méthodes sont les suivantes :

- 1. La méthode statique équivalente.
- 2. La méthode d'analyse modale spectrale
- 3. La méthode d'analyse dynamique par accélérogramme.

3. La méthode statique équivalente :

Les codes parasismiques modernes autorisent à conduire l'analyse de ces ouvrages sous les actions sismiques par des méthodes simplifiées ne prenants en compte que le mode fondamental de vibration dans deux **directions perpendiculaires successives.**

La forme de ces modes fondamentaux peut être soit spécifiée forfaitairement dans les codes, soit calculée de manière approchée.

La méthode statique équivalente permet d'avoir des résultats **conservatifs** (pour les efforts, les contraintes ou les déplacements) par le fait que la masse totale en vibration est intégrée dans le **mode fondamental.**

On appelle **mode fondamental** de la structure (ou premier mode) le mode correspondant à la fréquence la plus basse.

3.1 Principe de la méthode :

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les efforts sont considérés équivalents à ceux de l'action sismique.

3.2 Calcul de la force sismique totale :

D'après l'art 4.2.3 de RPA 99/version 2003, la force sismique totale V qui s'applique à la base de la structure, doit être calculée successivement dans deux directions horizontales orthogonales selon la formule :

$$V = \frac{A \times D \times Q}{R} \times W$$

A : coefficient d'accélération de zone, donné par le tableau (4.1) de RPA99/version 2003 en fonction de la zone sismique et du groupe d'usage du bâtiment.

Dans notre cas, on est dans la Zone IIa et un groupe d'usage 2 Nous trouverons : A = 0.15

D: facteur d'amplification dynamique, il est en fonction de la catégorie de site, facteur de correction d'amortissement (η) et de la période fondamentale de la structure (T) :

 T_2 : période caractéristique associée à la catégorie de site donnée par (le tab4.7 p49 RPA99)

$$\rightarrow (T_2 = 0,5)$$

ſ

Le facteur de correction d'amortissement est donné par la formule :

$$\eta = \sqrt{\frac{7}{\left(2+\xi\right)}} \ge 0.7 \quad \dots \quad Tableau \ 4.3 \ p38 \ RPA99$$

 ξ : le pourcentage d'amortissement critique, il est en fonction de du matériau constructif, de type de structure et de l'importance de remplissage. Ses valeurs sont données par le tab4.2 p38

Dans notre cas : portique en acier de remplissage léger, $\xi = 4\% \rightarrow \eta = 1,08$

$$T = C_T h_N^{\frac{3}{4}} \dots Tableau \ 4.6 \ p \ 46 \ RPA99$$

Avec :

 h_N : hauteur mesurée en mètres à partir de la base de la structure jusqu'audernier niveau

 C_T : coefficient, il est en fonction du système de contreventement et du type de remplissage, donné par le tab4.6 (CT=0.085), portique auto stable ductile en acier sans remplissage en maçonnerie.

$$T = 0.05 \times 7.5^{0.75} + 0.081 = 0.30 \, s$$

D'après le tableau 4.7 du RPA99 : $T_2 = 0,5s$, donc : $0 \le T \le 3s \rightarrow D=2,7$

R : coefficient de comportement global de la structure donné par le tableau 4.3 p42 RPA99 :

Dans le sens longitudinal et transversal :

L'ossature est contreventée par palées triangulées en X : (R=4).

Q : facteur de qualité, il est fonction de :

La redondance et la géométrie des éléments constituants

La régularité en plan et en élévation

La qualité du contrôle de la construction, elle est déterminée par la formule suivante :

$$Q = l + \sum_{1}^{5} P_q$$

[RPA 99, P39, équation 4.4]

Avec :

 $\mathbf{P}_{\mathbf{q}}$: pénalité à retenir selon le critère q (satisfaite ou non)

q : critère de qualité.

Les critères de qualité à vérifier sont :

Les critères	Selon X	Selon Y
Condition minimale sur les files de contreventement	$P_{q} = 0.05$	$P_q = 0.05$
La redondance en plan	$P_q = 0.05$	$P_q = 0.05$
La régularité en plan	$P_q = 0.05$	$P_q = 0.05$
Régularité en élévation	$P_{q} = 0.05$	$P_q = 0$
Contrôle de qualité des matériaux	$P_q = 0$	$P_q = 0$
Contrôle de qualité de l'exécution	$P_q = 0$	$P_q = 0$
Q	1 + (0.1)= 1.2	1 + (0.1) = 1.15

Tableau VII.1. Pénalités de vérifications

W : poids total de la structure.

$$W = \sum W_i$$
, avec : $W_i = W_{Gi} + \beta W_{Qi}$ [RPA 99, P41, équation 4.5]

Avec :

 W_{Gi} : poids dû aux charges permanentes.

 W_{Qi} : poids dû aux charges d'exploitation.

β : coefficient de pondération: (β = 0,5)

[RPA 99, P 41, tableau 4.5]

Les poids estimés des différents éléments de la structure sont présentés comme suit :

W_G= 2494.05KN
W_Q=540KN
Et : W=∑W_i , avec : W_i=W_{Gi}+βW_{Qi}
Donc : → W_T=2764.05KN
V_x=
$$\frac{A \times D \times Q}{R} \times W_T = \frac{0.15 \times 2.7 \times 1.2}{4} \times 2764.05 = 335.83KN$$

V_y= $\frac{A \times D \times Q}{R} \times W_T = \frac{0.15 \times 2.7 \times 1.15}{4} \times 2764.05 = 321.83KN$

4. Principe de la méthode spectrale :

Par cette méthode, il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

Spectre de repense de calcul

L'action sismique est représentée par le spectre de calcul RPA 99 V2003 :

$$\frac{S_a}{g} = \begin{cases} 1.25 \text{ A} \left(1 + \frac{T}{T_1} \left(2.5\eta \frac{Q}{R} - 1 \right) \right) & 0 \le T \le T_1 \\ 2.5\eta (1.25 \text{ A}) \frac{Q}{R} & T_1 \le T \le T_2 \\ 2.5\eta (1.25 \text{ A}) \frac{Q}{R} \left(\frac{T_2}{T} \right)^{2/3} & T_2 \le T \le 0.3s \\ 2.5\eta (1.25 \text{ A}) \frac{Q}{R} \left(\frac{T_2}{3} \right)^{2/3} \left(\frac{3}{T} \right)^{5/3} & T \ge 0.3s \end{cases}$$

Avec les coefficients A, \eta, R, T1, T2, Q : sont déjà déterminés.

Qx = 1.2Qy = 1.15 A = 0,15 $\eta = 1,08$ T1 = 0,15s T2 = 0,5s

4.1 Nombre de modes de vibrations à considérer :

Selon le RPA99/V2003, Le nombre de modes de vibration à retenir doit être tel que :

• La somme des masses modales effectives pour les modes retenus soit égale à 90 % au moins de la masse totale de la structure.

• Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure.

Le minimum de modes à retenir est de trois (03) dans chaque direction considérée.

4.2 Résultat de calcul :

a) Schématisation du spectre de réponse suivant X et Y :

Figure VII.1 : Schéma du spectre de réponse suivant X

Figure VII.2: Schéma du spectre de réponse suivant Y.

Cas/I	lode	Fréquence [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masses Cumulées UZ [%]	Masse Modale UX [%]	Masse Modale UY [%]	Masse Modale UZ [%]	Tot.mas.UX [kg]	Tot.mas.UY [kg]	Tot.mas.UZ [kg]
1/	1	3,09	0,32	23,88	0,00	0,0	23,88	0,00	0,0	325432,37	325432,37	0,0
1/	2	3,09	0,32	23,88	81,58	0,0	0,00	81,57	0,0	325432,37	325432,37	0,0
1/	3	3,20	0,31	24,09	81,58	0,0	0,21	0,00	0,0	325432,37	325432,37	0,0
1/	4	3,27	0,31	30,20	81,58	0,0	6,11	0,00	0,0	325432,37	325432,37	0,0
1/	5	3,52	0,28	31,76	81,58	0,0	1,56	0,00	0,0	325432,37	325432,37	0,0
1/	6	3,67	0,27	35,43	81,58	0,0	3,67	0,00	0,0	325432,37	325432,37	0,0
1/	7	3,83	0,26	35,95	81,58	0,0	0,51	0,00	0,0	325432,37	325432,37	0,0
1/	8	3,99	0,25	35,95	96,55	0,0	0,00	14,97	0,0	325432,37	325432,37	0,0
1/	9	4,08	0,25	90,55	96,55	0,0	54,60	0,00	0,0	325432,37	325432,37	0,0
1/	10	4,21	0,24	94,53	96,55	0,0	3,98	0,00	0,0	325432,37	325432,37	0,0

b) Pourcentage de participation de masse :

Tableau VII.2. Pourcentage de participation de masse.

Dans les trois premiers modes on a :

-Translation suivant (X) pour le premier mode.

-Translation suivant (Y) pour ledeuxième mode.

-Rotation pour le troisième mode.

c) Les réponses modales de la structure :

Déformation modale :

La déformation de la structure suivant les modes de vibration les plus prépondérants est illustrés par les figures suivantes :

Mode 1 : Translation suivant X-X, période T =0,32s, taux de participation de la masse 28.88%

Figure VII.3 : Mode de déformation (1).

Mode 2 : Translation suivant Y-Y, période T =0,32s, taux de participation de la masse 81.58%

Figure VII.4 : Mode de déformation (2).

Mode 3 : Rotation autour de Z-Z, période T =0,31s,

Figure VII.5 : Mode de déformation (3).

4.3 Analyse des résultats :

Il y a lieu de constater que la structure présente des translations suivant les deux directions horizontales et une rotation autour de l'axe verticale.

Les combinaisons de calcul :

✓ Notation :

G : Poids propre.

- Q : Charge d'exploitation.
- S : Action de la neige.
- p : Action de pont roulant.

W : Action du vent.

- W1 : Vent \perp au long pan.
- W2 : Vent \perp au pignon.

E : Action sismique.

Les combinaisons de calcul adoptées selon les règlements en vigueur sont données dans le tableau suivant :

Combinaisons à l'État	Combinaisons à l'État limite	Combinaisons Accidentelles
limite ultime	de service	
1.35G + 1.5Q	G + V1	G + Q + 1.2E _X
1.35G+1.5Q	G + V2	$G + Q + E_{Y}$
G+1.5W1	G + S	0.8G + E _X
G+1.5W2		0.8G – E _X
		0.8G – E _Y
		0.8G +E _Y

4.4 Résultantes des forces sismiques de calcul :

Selon l'article 4.3.6 du RPA 99, la résultante des forces sismiques à la base obtenue par la combinaison des valeurs modales doit être supérieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente.

Eanaag sigmiguag	V statique	0.8Vstatique	V dynamique	Observation	
Forces sistinques	(KN)	(KN)	(KN)	Observation	
Sens xx	335.83	268.72	424.95	Vérifié	
Sens yy	321.83	257.48	390.37	Vérifié	

Tableau VII.4. Vérification de l'effort tranchant à la base

a) Vérification des déplacements : > 1^{èr} Cas : situation durable :

Les déplacements sont limités à :

Déplacement horizontal :

$\int \frac{h}{150}$	sans charge du vent	EC3 Art $4 2 2(1)$ I
$\left \frac{h}{125}\right $	avec charge du vent	LC3 / 11 4.2.2(1) 1

Ou h : hauteur du poteau

Déplacement verticale :

	Combinaisons		Déplacements max (cm)		
	Avec le vent	Sans le vent	Avec le vent	Sans le vent	
Suivant X	1.35 (G+Q+V1)	1.35 (G+Q+N)	0.1	0.6	
Suivant Y	1.35 (G+Q+V1)	1.35 (G+Q+N)	1.9	0.3	
Suivant Z	1.35 (G+Q+V1)	1.35 (G+Q+N)	1	0	

Tableau VII.5. Déplacement max en situation durable

$$\frac{h}{150} = \frac{600}{150} = 4 \text{ cm}$$
$$\frac{h}{125} = \frac{600}{125} = 4.8 \text{ cm}$$
$$\frac{l}{200} = \frac{912}{200} = 4.56 \text{ cm}$$

On constate que les déplacements suivant les trois directions sont inférieurs aux déplacements admissibles, donc les déplacements sont vérifiés.

2^{ème} Cas : situation accidentelle :

Le D.T.R RPA 99 V2003 précise que le déplacement horizontal est calculé sous les forces sismique seules (art 4.4.3) et préconise de limiter les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacent à 1% de la hauteur d'étage (art 5.10).

Le déplacement horizontal à chaque niveau k de la structure est calculé comme suite :

$$\delta_k = R.\delta_{ek}$$

 δ_{ek} : Déplacement dû aux forces sismiques.

```
R : coefficient de comportement R=4
```

Il s'agit de vérifier le point le plus haut de la toiture par rapport au sol.

	Déplacement (cm)				
Niveau	Suivant X	Suivant Y			
Toiture	2.5	2			

 Tableau VII.6: Déplacement relatif des niveaux.

$$\frac{h}{100} = \frac{750}{100} = 7.5 c$$

Tous les déplacements sont inférieurs à 7.5cm, donc ils sont vérifiés.

VIII.1 Introduction :

Le calcul d'une structure exige que sous toutes les combinaisons d'actions possibles définies règlementairement, la stabilité statique soit assurée, tant globalement, au niveau de la structure, qu'individuellement au niveau de chaque élément.

Les actions développent diverses sollicitations, qui génèrent des contraintes au sein du matériau et des déformations des éléments. Il s'agit donc, afin de garantir le degré de sécurité souhaitée et de vérifier que les contraintes et les déformations restent au-dessous des limites admissibles.

Le calcul des différents éléments structuraux est fait selon le règlement "CCM97" et à l'aide du logiciel ROBOT qui détermine la réaction d'appuis pour chaque cas de charge ; on passe à la vérification des cas les plus défavorables.

> VIII.2 Justification des traverses (IPE330) :

La vérification se fait pour la traverse la plus sollicitée ; dans notre cas ; la traverse la plus sollicitée est la $N^{\circ}767$ de longueur L=9.12m ; comme illustré en rouge sur la figure suivante :

Figure VIII.1 : La traverse la plus sollicitée

> 2.1 Charges repairés sur la traverse :

• Poids du panneau sandwiche

- Poids des pannes
- Poids propre de la traverse
- Charge d'entretien

	H (mm)	B (mm)	Tw (mm)	Tf (mm)	r(mm)
IPE330	330	160	7.5	11,5	18
H 1350	A (cm2)	Iy (cm4)	Iz (cm4)	Wply (cm3)	Wplz (cm3)
	62.6	11770	788	804	154

> 2.2 Caractéristiques de la traverse :

Tableau VIII.1: Caractéristiques du profile IPE330
--

> 2.3.Vérification de la section à la résistance :

> a. Bilan des efforts :

La vérification à faire est de vérifier l'élément le plus sollicité (barre N°767)

Barre	Combinaison	N _{sd} (KN)	V _z (KN)	M _y (KN*m)
767	1.35G+1.5S	25.93	27.27	80.1

Tableau	VIII.2 :	sollicitations	sur le	poteau	IPE330
---------	-----------------	----------------	--------	--------	--------

- Classe de la section (Barre 767)
- Classe de la semelle : (comprimée)

$$\frac{c}{tf} = \frac{b/2}{tf} \le 10\varepsilon \Rightarrow \frac{\frac{16}{2}}{1.15} = 6.95 \le 10\varepsilon$$
$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1$$

• Classe de l'âme : (Flexion composée)

$$\begin{split} \alpha &= \frac{1}{d} \left(\frac{d+d_c}{2} \right) \le 1 \\ d_c &= \left(\frac{N_{sd}}{t_w \times f_y} \right) = \frac{80.1}{0.75 \times 23.5} = 4.55 \\ \alpha &= \frac{1}{80.25} \left(\frac{80.25 + 4.55}{2} \right) = 0.52 \le 1 \end{split}$$

Pour les sections de classe 1 :

$$\frac{d}{t_w} \le \frac{396\varepsilon}{(13\alpha - 1)}$$

$$\frac{d}{t_w} = \frac{27.1}{0.75} = 36.13$$

$$\frac{396\varepsilon}{(13\alpha - 1)} = \frac{396}{(13 \times 0.52 - 1)} = 72$$
Donc: $\frac{d}{t_w} \le \frac{396\varepsilon}{(13\alpha - 1)} \Longrightarrow classe 01$

La section de IPE330est de classe 01

> 2.4. Condition de résistancea) Vérification de l'effort tranchant :

On doit vérifier que : $V_{sd} \leq 0, 5V_{plRd}$

 V_{zsd} = 27.27 KN

$$V_{\text{plrd}} = \frac{A_{\text{vz}} \times f_{\text{y}}}{\sqrt{3} \times \gamma_{\text{M0}}} = \frac{30.8 \times 23.5}{\sqrt{3} \times 1} = 417.88 \text{KN}$$

$$\frac{V_{zsd}}{V_{plrd}} = \frac{27.27}{417.88} = 0.06 < 0.5$$

Alors, l'incidence de l'effort tranchant sur le moment résistant peut être négligée.

b) Vérification de l'effort normal :

Si $Nsd \prec Min(0, 25N_{pl,Rd}, 0, 5A_w f_y / \gamma_{m0})$: il n'y a pas d'interaction entre le moment résistantet l'effort normal.

$$N_{sd} = 25.93 \text{ Kn}$$

$$N_{pl,rd} = \frac{A \times f_y}{\gamma_{m0}} = \frac{62.6 \times 23.5}{1} = 1337.36 \text{ KN}$$

$$0.25 \times N_{pl,rd} = 334.36$$

$$A_w = A - 2 \times b \times t_f = 62.6 - 2 \times 16 \times 1.15 = 25.8 \text{ cm}^2$$

$$0.5 \times \frac{A_w \times f_y}{\gamma_{m0}} = 303.15 \text{ KN}$$

$$N_{sd} < \min\left(0.25 \text{ N}_{plrd}, 0.5 \times \frac{A_w \times f_y}{\gamma_{m0}}\right)$$

$$\Rightarrow N_{sd} < \min(334.36 \text{ KN}; 303.15 \text{ KN})$$

$$\Rightarrow N_{sd} = 25.93 < 303.15 \text{ KN} \dots \text{ vérifier}$$

Alors, l'incidence de l'effort normal sur le moment résistant peut être négligée.

c) Vérification de la résistance de la section transversale :

$$M_{plyrd} = \frac{W_{ply} \times f_y}{\gamma_{M0}} = \frac{804 \times 23.5}{1.1} = 171.76 \text{KN. m}$$

 \Rightarrow M_{sd} = 80.1KN.m < M_{plyrd} =171.76 KN.m

La résistance de la section transversale est vérifiée.

2.5. Vérification de l'élément aux instabilités :

Flexion composée avec risque de flambement :

On doit vérifier que :

$$\frac{N_{sd}}{\chi_{\min}.N_{pl,Rd}} + \frac{k_y.M_{ySd}}{M_{ply,Rd}} \le 1$$

Flexion composée avec risque de déversement

On doit vérifier que :

$$\frac{N_{sd}}{\chi_{z}.N_{pl,Rd}} + \frac{k_{LT}.M_{ySd}}{\chi_{LT}.M_{ply,Rd}} \le 1$$

Calcul du coefficient de réduction pour le flambement χ_{\min} :

$$\chi_{\min} = Min(\chi_y; \chi_z)$$

• Flambement par rapport à l'axe fort y-y (dans le plan du portique) :

Longueur de flambement :

 $l_y = 912$ cm (Longueur total de la traverse)

L'élancement :

$$\lambda_{\rm y} = \frac{l_{\rm y}}{l_{\rm y}} = \frac{912}{13.7} = 65.56$$

L'élancement réduit :

$$\bar{\lambda}_{y} = \left(\frac{\lambda_{y}}{\lambda_{1}}\right) \times [B_{A}]^{0.5}$$

Avec : $B_A = 1$ pour les sections de classe 1,2 et 3

$$\lambda_{1} = \pi \left[\frac{E}{f_{y}} \right]^{0.5} = 3.14 \times \left[\frac{2.1 \times 10^{6}}{2350} \right]^{0.5} = 93.9$$

$$\bar{\lambda}_{y} = \left(\frac{65.56}{93.9} \right) = 0,70 > 0.2 \qquad \text{il ya de risque de flambement}$$

Courbe de flambement : $\frac{h}{b} = \frac{33}{16} = 2.06 > 1.2$

Axe de flambement y-y \rightarrow courbe de flambement a $\longrightarrow \alpha_y=0.21$

$$\phi y = 0.5 \times \left[1 + \alpha \times (\overline{\lambda}y - 0.2) + \overline{\lambda}y^2\right]$$

$$\phi y = 0.5 \times \left[1 + 0.21 \times (0.70 - 0.2) + 0.70^2\right] = 0.79$$

$$\chi_y = \frac{1}{\phi y + \sqrt{\phi y^2 - \overline{\lambda}y^2}} = \frac{1}{0.79 + \sqrt{0.79^2 - 0.7^2}}$$

$$\chi_y = 0.86$$

• Flambement par rapport à l'axe faible z-z (hors plan du portique) :

Longueur de flambement :

 Autour de l'axe faible z'z (dans le plan perpendiculaire de l'âme), le traverse est empêché de flamber sur toute sa longueur par les pannes. Donc la longueur de flambement l_{kz} = 1.3m

Pour l'IPE330, les rayons de giration sont : $i_y = 13.7$ cm et $i_z = 3.55$ cm

• Calcule Les Élancement

$$\lambda_{z} = \frac{l_{z}}{l_{z}} = \frac{150}{3.55} = 42.25$$

L'élancement réduit :

$$\bar{\lambda}_z = \left(\frac{39.6}{93.9}\right) = 0.44 > 0.2$$
 \square is que de flambement

Courbe de flambement : $\frac{h}{b} = \frac{330}{160} = 2.06 > 1.2$

Axe de flambement z-z \rightarrow courbe de flambement b α_z =0.34

$$\phi_z = 0.5 \times \left[1 + \alpha \times (\overline{\lambda}z - 0.2) + \overline{\lambda}z^2\right]$$

$$\phi_z = 0.5 \times \left[1 + 0.34 \times (0.44 - 0.2) + 0.44^2\right] = 0.63$$

$$\chi z = \frac{1}{\phi_z + \sqrt{\phi_z^2 - \overline{\lambda}z^2}} = \frac{1}{0.63 + \sqrt{0.63^2 - 0.44^2}}$$

$$\chi_z = 0.91$$

Donc : $\aleph_{\min} = \min(\chi_z; \chi_z) = \min(0.86, 0.91) = 0.86$

• Calcul du coefficient de réduction pour le déversement χ_{LT} :

$$\chi_{LT} = \frac{1}{\phi_{LT} + \left[\phi_{LT}^2 - \overline{\lambda_{LT}}^2\right]^{0.5}} \le 1$$
$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0.2\right) + \overline{\lambda_{LT}}^2\right]$$

Avec :

 $\alpha_{\rm LT}$: Facteur d'imperfection pour le déversement.

$$\alpha_{LT}$$
 =0,21 pour les sections laminées. (C'est notre cas)

 α_{LT} =0,49 pour les sections soudées.

$$\overline{\lambda_{LT}} = \left[\frac{\lambda_{LT}}{\lambda_1}\right] \cdot \left[\beta_w\right]^{0.5} : L' \text{élancement réduit pour le déversement.}$$

Avec : $\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = 93,9$

 λ_{LT} : Élancement de l'élément vis-à-vis du déversement

Pour les profilés laminés en I ou en H :

IPE330: i_z =3.55 cm, h=33 cm, t_f=1,15cm \Rightarrow c₁=1,12 \leq 2.7

$$\lambda_{LT} = \frac{L/i_z}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L/i_z}{h/t_f} \right)^2 \right]^{0.25}}$$
$$\lambda_{LT} = \frac{\frac{130}{3.55}}{(1,12)^{0.5} \times \left[1 + \frac{1}{20} \times \left(\frac{\frac{130}{3.55}}{\frac{33}{1.15}} \right)^2 \right]^{0.25}}$$

 λ_{LT} =33.93

Donc :

 $\bar{\lambda}_{LT} = \left(\frac{36.53}{93.9}\right) = 0.36 < 0.4$ Il n'y a pas de risque de déversement

• Calcul du facteur de moment uniforme équivalent pour le flambement par flexion:suivant y-y:

D'après la figure 5.5.3 du CCM97 :

$$\beta_{M} = \beta_{M\psi} + \frac{MQ}{\Delta M} (\beta_{M,Q} - \beta_{M\psi})$$

$$\beta_{M\psi} = 1, 8 - 0, 7\psi$$

$$\Psi = \frac{71.87}{80.1} = 0.80 \Longrightarrow \beta_{M\Psi} = 1.8 - 0.7 (0,8) = 1.24$$

$$MQ = |\max M| = 80.1 \text{KN.m}$$

 $\Delta M = |\max M| + |\min M| = |80.1| + |71.87| = 151.97 \text{KN.m}$

 $\beta_{MQ} = 1,3$ Cas d'une charge uniformément répartie.

$$\beta_{My} = 1.24 + \frac{80.1}{151.97} \times (1.3 - 1.24) = 1.27$$

$$\mu_{y} = \overline{\lambda}_{y} \left(2\beta_{My} - 4 \right) + \frac{W_{ply} - W_{ely}}{W_{ely}}$$

Donc : $\mu_y = 0.86 \times (2 \times 1.27 - 4) + \frac{804 - 713}{713} = -1.12 < 0.9$

$$k_{y} = 1 - \frac{\mu_{y} \cdot N_{Sd}}{\chi_{y} \cdot A \cdot f_{y}}$$

$$k_{y} = 1 - \frac{(1.12) \times 25.93}{0.86 \times 62.6 \times 23.5} = 1.02 \le 1.5$$

➤ →Vérification au flambement :

$$\frac{N_{sd}}{\chi_{\min}.N_{pl.Rd}} + \frac{k_y.M_{y.Sd}}{M_{ply.Rd}} \le 1$$

• Application numérique :

• $\frac{25.93}{0.86 \times 1337.36} + \frac{1.02 \times 80.1}{171.76} = 0.49 < 1.$

2.6. Vérification au déversement :

• Déversement =Flambement latéral de la partie comprimée + Rotation de la section transversale.

$$\frac{N_{sd}}{\chi_z \cdot N_{pl.Rd}} + \frac{k_{LT} \cdot M_{y.Sd}}{\chi_{LT} \cdot M_{ply.Rd}} \le 1$$

$$\frac{25.93}{0.91 \times 1337.36} + \frac{0.52 \times 80.1}{0.36 \times 171.76} = 0.69 < 1.$$

> 2.7 Vérification avec le logiciel robot :

Pièce	Profil		Matériau	Lay	Laz	Ratio	Cas
767 Poutre_767	<mark>0K</mark>	IPE 330	S 235	56.54	256.27	0.70	10 1.35G+1.5S

Conclusion :

Le profilé choisi IPE330 est adéquat comme traverse.

VIII.3 Vérification des poteaux :

Les éléments poteaux de la structure sont soumis à une compression et une flexion suivant les deux axes (y-y) et (z-z).

Les sollicitations les plus défavorables tirés à partir du ROBOT sont :

Dans notre cas : les poteaux les plus sollicité sont le N2,8 de hauteur H=6 m; comme illustré en rouge sur la figure suivante :

• premier cas : sous (N_{max} et V et M correspond):

Le poteau $N^{\circ}8$ de hauteur H=6m ; comme illustré en rouge sur la figure VII.1 suivante :

Figure VIII.2: Le poteau le plus sollicité.

• deuxième cas : sous (N et V correspond et M_{max}).

Le poteau N°2de hauteur H=6m ; comme illustré en rouge sur la Figure VII.3.suivante :

Figure VIII.3: Le poteau le plus sollicité.

> 3.1 Vérification par un calcul manuel

Barre	combinaison	N _{sd} (KN)	V _z (KN)	M _y (KN*m)	M _Z (KN*m)
8	1.35G+1.5Q	306.13	0.39	0.1	0.19
2	G+Q+1.2Ex	205.49	49.29	68.23	0.35

Tableau VIII.3 : sollicitations sur le poteau IPE400.

- Vérification à la résistance
- 1. Classe de la section
- Classe de la semelle : (comprimée)

c / $t_f = b_f/2.t_f ≤ 10E \Rightarrow (400/2 . 21)= 7.14 < 10 E \Rightarrow$ Semelle de classe 1

• Classe de l'âme : (fléchie)

 $d / t_w = 331 / 11.5 = 28.78 < 72 \epsilon$ \Rightarrow Ame de classe 1

Donc : les poteaux de section IPE400 sont de classe01.

On a
$$\varepsilon = \sqrt{\frac{235}{f_y}} = 1$$

Semelle comprimée

$$c = \frac{b}{2} = \frac{160}{2} = 80 mm$$
$$c = \frac{b}{t_f} = \frac{80}{13.5} = 5.92 < 11\varepsilon$$

> 3.2. Vérification de l'élément aux instabilités :

La vérification aux instabilités est donnée par les formules suivantes :

3.2.1. Flexion composée avec risque de flambement :

$$\frac{N_{sd}}{\chi_{min} \times A \times f_y / \gamma_{m1}} + \frac{K_y \times M_{ysd}}{W_{ply} \times f_y / \gamma_{m1}} + \frac{K_z \times M_{zsd}}{W_{plz} \times f_y / \gamma_{m1}} \le 1$$

a) Calcul de χ_{\min} :

$$\chi_{\min} = \min(\chi_y, \chi_z)$$

> .Flambement par rapport à l'axe fort y-y (dans le plan du portique) :

• Suivant l'axe y-y:

$$i_y = \sqrt{\frac{I_Y}{A}} = \sqrt{\frac{I_Y}{A}} = \sqrt{\frac{23130}{84.5}} = 16.54 \text{ cm}$$

 $\lambda_y = \frac{0.5l_{ky}}{i_y} = \frac{300}{14.91} = 18.13$

$$\bar{\lambda} = \left[\frac{\lambda}{\lambda 1}\right] [\beta_w]^{0.5} \text{ Avec } \beta_w = 1\bar{\lambda} [18.13] = 0.19 \le 0.2$$

On doit pas tenir compte de fait de flambement

• Suivant l'axe faible z-z : (hors du plan du portique)

i_z=3.95

$$\lambda_{z} = \frac{l_{ky}}{i_{y}} = \frac{150}{3.95} = 37.97$$

$$\bar{\lambda} = \left[\frac{\lambda}{\lambda 1}\right] [\beta_{w}]^{0.5} \text{ Avec } \beta_{w} = 1 \quad \Longrightarrow \qquad \bar{\lambda}_{y} = \left[\frac{37.97}{93.9}\right] = 0.40 > 0.2$$

On doit tenir compte de fait de flambement

Le choix de la courbe de flambement :

h/b = 400/180 = 2.22 < 1,2

 $t_f = 13.5 \text{mm} < 40 \text{mm}$ donc on choisie la courbe (b)

Axe de flambement **z-z** \longrightarrow courbe de flambement b ; α =0.34(tableau 3).

$$\bar{\lambda}_z = 0.4 \quad \Rightarrow \qquad \chi_z = 0.92$$

• Calcul de χ_{\min} :

 $\chi_{\min} = (\chi_z) = 0.92$

• Calcul de l'élancement réduit vis-à-vis de déversement $\overline{\lambda}_{LT}$

$$\lambda_{LT} = \frac{\frac{l_Z}{l_Z}}{(C_1)^{0.5} \left[1 + \frac{1}{20} \left(\frac{l_Z}{\frac{l_Z}{h}} \right)^2 \right]^{0.25}}$$

$$\lambda_{LT} = \frac{\frac{131.8}{3.95}}{\left(1,132\right)^{0.5} \left[1 + \frac{1}{20} \left(\frac{131.8}{\frac{3.95}{40}}\right)^2\right]^{0.25}} = 30.91$$

$$\overline{\lambda}_{LT} = \left(\frac{\lambda_{LT}}{\lambda_1}\right) \times \left[\beta_A\right]^{0.5} = 0.52$$

 $\overline{\lambda}_{LT} = 0.52 \succ 0.4$ Il ya un risque de déversement

- Calcul des coefficients Ky et Kz : $\mu_{y} = \lambda_{\overline{y}}(2 \ \beta_{My} - 4) + \frac{W_{ply} - W_{ely}}{W_{ely}}$ $\mu_{z} = \lambda_{\overline{z}}(2 \ \beta_{Mz} - 4) + \frac{W_{plz} - W_{elz}}{W_{elz}}$
- Suivant l'axe (Z-Z) :

$$\mu_{z} = \bar{\lambda}_{z} \times (2\beta_{M.Y} - 4) + \frac{W_{pl.z} - W_{el.z}}{W_{el.z}}$$

$$\mu_z = 0.4* (2*1, 8 - 4) + 0.56 = 0.40$$

$$k_{z} = 1 - \frac{\mu_{z} \cdot N_{sd}}{\chi_{z} \cdot A \cdot f_{y}}$$

$$K_{z} = 1 - \frac{0.4 \times 306.13}{0.92 \times 84.5 \times 23,5} = 0.93$$

$$N_{sd} = 305.98 \text{ KN}$$

$$M_{y.sd} = 0.13 \text{ KN}$$

$$M_{z.sd} = 0.11 \text{ KN.m}$$

$$N_{pl.Rd} = A \cdot f_{y} / \gamma m0 = 84.5 \cdot 23.5 / 1 = 1805.22 \text{ KN}$$

$$M_{ply.Rd} = 1307^{*} 23.5 * 10^{-2} / 1 = 307.14 \text{ Kn.m}$$

$$\frac{N_{sd}}{\chi_{min} \times A \times \frac{f_{y}}{\gamma_{m1}}} + \frac{K_{y} \times M_{ysd}}{W_{ply} \times \frac{f_{y}}{\gamma_{m1}}} + \frac{K_{z} \times M_{zsd}}{W_{plz} \times \frac{f_{y}}{\gamma_{m1}}} \le 1$$

 $\frac{305.98}{0.92.\ 1805.22} + \frac{0*38.06}{307.14} + \frac{0.93*(0.11)}{188.54} = 0,18 < 1 \longrightarrow \text{Ce qui est vérifier}$

> 3.3. Vérification avec le logiciel robot :

Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas
8 Poteau_8	K IPE 400	S 235	36.26	151.90	0.64	11 1.35G+1.5Q

> 3.4. Pour le deuxième cas :

3.4.1 Flexion composée avec risque de flambement :

$$\frac{N_{sd}}{\chi_{min} \times A \times \frac{f_y}{\gamma_{m1}}} + \frac{K_y \times M_{ysd}}{W_{ply} \times \frac{f_y}{\gamma_{m1}}} + \frac{K_z \times M_{zsd}}{W_{plz} \times \frac{f_y}{\gamma_{m1}}} \le 1$$

• Calcul de χ_{\min} :

$$\chi_{\min} = \min(\chi_y, \chi_z)$$

 $\chi_{\min} = (\chi_z) = 0.92$

• Calcul de l'élancement réduit vis-à-vis de déversement $\overline{\lambda}_{\scriptscriptstyle LT}$

$$\lambda_{LT} = \frac{\frac{l_Z}{i_Z}}{\left(C_1\right)^{0.5} \left[1 + \frac{1}{20} \left(\frac{l_Z}{\frac{i_Z}{h}}\right)^2\right]^{0.25}}$$

$$\lambda_{LT} = \frac{\frac{131.8}{3.95}}{\left(1,132\right)^{0.5} \left[1 + \frac{1}{20} \left(\frac{\frac{131.8}{3.95}}{\frac{40}{1,35}}\right)^2\right]^{0.25}} = 30.91$$

$$\overline{\lambda}_{LT} = \left(\frac{\lambda_{LT}}{\lambda_1}\right) \times \left[\beta_A\right]^{0.5} = 0.52$$

 $\overline{\lambda}_{LT} = 0.52 \succ 0.4$ Il ya un risque de déversement

- Calcul des coefficients K_y et K_z : $\mu_y = \lambda_y (2 \beta_{My} - 4) + \frac{W_{ply} - W_{ely}}{W_{ely}}$ $\mu_z = \lambda_z (2 \beta_{Mz} - 4) + \frac{W_{plz} - W_{elz}}{W_{elz}}$
- Suivant l'axe (Z-Z) :

$$\mu_{z} = \bar{\lambda}_{z} \times (2\beta_{M.Y} - 4) + \frac{W_{pl.z} - W_{el.z}}{W_{el.z}}$$

$$\mu_z = 0.4* (2*1.8 - 4) + 0.56 = 0.40$$

$$k_{z} = 1 - \frac{\mu_{z} \cdot N_{Sd}}{\chi_{z} \cdot A \cdot f_{y}}$$
$$K_{z} = 1 - \frac{0.4 \times 304}{0.92 \times 84.5 \times 23.5} = 0.93$$

$$N_{sd} = 204.88 \text{ KN}$$

 $M_{y.sd} = 77.8 \text{KN}$
 $M_{z.sd} = 0.27 \text{ KN.m}$
 $N_{pl.Rd} = A \cdot f_y / \gamma m0 = 84.5 \cdot 23.5 / 1 = 1805.22 \text{ KN}$
 $M_{ply.Rd} = 1307* 23.5 * 10^{-2} / 1 = 307.14 \text{ Kn.m}$

$$\frac{N_{sd}}{\chi_{min} \times A \times \frac{f_y}{\gamma_{m1}}} + \frac{K_y \times M_{ysd}}{W_{ply} \times \frac{f_y}{\gamma_{m1}}} + \frac{K_z \times M_{zsd}}{W_{plz} \times \frac{f_y}{\gamma_{m1}}} \le 1$$

$$\frac{204.88}{0.92.\ 1805.22} + \frac{0*38.06}{307.14} + \frac{0.93*(0.27)}{188.54} = 0,13 < 1 \longrightarrow \text{ vérifier}$$

3.5. Vérification avec le logiciel robot :

Pièce		Profil	Matériau	Lay	Laz	Ratio	Cas
2 Poteau_2	СК	IPE 400	S 235	36.26	151.90	0.49	11 1.35G+1.5Q

Conclusion : Le profilé choisi IPE400 est adéquat comme poteau.

VIII.4. Vérification des diagonales des contreventements poutre au vent :

➢ 4.1. Pignon (L45*5)

La vérification se fait pour la diagonale la plus sollicitée sur le pignon, qui est la barre N°1157Comme illustré en rouge sur la **figure VIII.4** suivante :

Figure VIII.4: La diagonale la plus sollicitée suivant pignon.

Élément	Combinaisons	N _{sd} (KN)
Traction	G+Q+Ey	21.48
Compression	0.8G-Ey	-19.86

Tableau VIII.4: les efforts dans les éléments de contreventement.

4.1.1. Vérification à la traction :

 $N_{sd} \le N_{rd} = \frac{A \times f_y}{\gamma_{m0}}$ On a : A = 4.3cm²

 $N_{rd} = \frac{4.3 \times 23,5}{1.1} = 91.86 KN$ $N_{sd} = 21.48 KN < N_{rd} = 91.86 KN$ Vérifiée

VIII.5. Vérification des diagonales de la palée de stabilité : 5.1. Rive : (L50*6)

Élément	Combinaisons	N _{sd} (KN)
Traction	G+Q+E _y	59.51
Compression	0.80G-E _y	-47.66

Tableau VIII.5: les efforts dans les éléments de contreventement

5.2. Vérification à la traction :

 $N_{sd} \le N_{rd} = \frac{A \times f_y}{\gamma_{m0}}$ On a : A = 5.69 cm²

$$N_{rd} = \frac{5.69 \times 23,5}{1.1} = 121.55KN$$

$$N_{sd} = 59.51KN < N_{rd} = 121.55KN$$
Vérifiée

5.3. Intermédiaire : (L60*6)

Élément	Combinaisons	N _{sd} (KN)
Compression	0.8G-E _Y	-54.05
Traction	G+Q+Ey	58.21

 Tableau VIII.6 : les efforts dans les éléments de contreventement.

5.4 Vérification à la traction :

$$\begin{split} N_{sd} &\leq N_{rd} = \frac{A \times f_y}{\gamma_{m0}} \\ & \text{On a: A = 6.91 cm}^2 \\ N_{rd} &= \frac{6.91 \times 23.5}{1.1} = 147.62 KN \\ N_{sd} &= 59.21 KN < N_{rd} = 147.62 KN \end{split}$$
 Vérifiée

IX.1 Introduction :

 \triangleright

La conception et le calcul des assemblages revêtent en construction métallique ,une importance équivalente à celle du dimensionnement des pièces pour la sécurité finale de la construction, Les ossatures ne présentent généralement pas de redondances importantes et les assemblages constituent donc de point de passage obligé pour les sollicitations régnant dans les différents composants structurels; En cas de défaillance d'un assemblage, c'est bien le fonctionnement global de la structure qui est en cause.

- Les assemblages sont des ensembles constitués de plusieurs composants.
- Les abouts des éléments structurels liaisonnés.
- Les pièces accessoires de liaison
- Les organes de fixation proprement dits assurant la solidarisation effective entre les Composants en présence

IX.2. Fonctionnement des Assemblages

Les principaux modes d'assemblages sont :

a) le rivetage :

Ce méthode d'assemblage a été le premier mis en œuvre de manière généralisée par ma construction métallique, il est aujourd'hui pratiquement abandonné au profile des assemblages boulonnée

b) Le boulonnage :

Le boulonnage consiste le moyen d'assemblage le plus utilisé en construction métallique du fait de sa facilité de mise en œuvre et des possibilités de réglage qu'il ménage sur site, pour notre cas on a utilisé le boulon de haute résistance

(HR) il comprend une vis à tige filetée, une tête hexagonale ou carrée et un écrou en acier à très haute résistance.

On distique deux types de boulons qui se différencient caractéristiques mécaniques plus ou moins élevées.

- les boulons ordinaires.

- les boulons à haute résistance.

Boulons	Classe de qualité	F _{YB} [N/mm ²]	F _{ub} [N/mm ²]
De charpente	4.6	240	400
	5.6	300	500
à haute résistance	8.8	640	800
	10.9	900	1000

 Tableau IX. 1:Caractéristiques mécaniques des aciers pour boulons.

c) Le soudage

En charpente soudée les assemblages sont plus rigides, celaà pour effet un encastrement partiel des éléments constructifs. Les soudages à la flamme oxyacéthylénique et le soudage à l'arc électrique sont des moyens de chauffages qui permettent d'élever à la température de fusion brilles des pièce de métal à assembler.

d) Le coulage :

C'est le type d'assemblage le moins utilisé dans la charpente métallique.

Pour conduire les calcules selon les schémas classiques de la résistance des

matériaux il y a lieu de distinguer. Parmi les assemblage:
- Les assemblages articulés : qui transmettront uniquement les efforts normaux et tranchants.

Désignation	M8	M10	M12	M14	M16	M18	M20	M22	M24	M27	M30
d (mm)	8	10	12	14	16	18	20	22	24	27	30
d ₀ (mm)	9	11	13	15	18	20	22	24	26	30	33
A (mm2)	50,3	78,5	113	154	201	254	314	380	452	573	707
A _s (mm2)	36,6	58	84,3	115	157	192	245	303	353	459	561
ϕ rondelle	16	20	24	27	30	34	36	40	44	50	52
(mm)											
ϕ clé (mm)	21	27	31	51	51	51	58	58	58	58	58
Tôle usuelle	2	3	4	5	6	7	8	10,14	>14	-	-
(mm)											
Cornière	30	35	40	50	60	70	80	120	>120	-	-
usuelle											
(mm)											

- Les assemblages rigides : qui transmettront en outre les divers moments.

Tableau IX. 2: Principales caractéristiques géométrique des boulons

d : diamètre de la partie non filetée de la vis.

- d₀ : diamètre nominal du trou.
- A : section nominale du boulon.
- A_s : section résistante de la partie filetée.

IX.2 Assemblage poteau _ traverse :

- l'assemblage poteau traverse est réalisé à l'aide d'une platine boulonnée à la traverse et au poteau.
- l'assemblage est sollicité par un moment fléchissant, effort tranchant et un effort normal.

Figure IX.1 : Représentation de l'assemblage Poteau – Traverse.

On choisit des boulons de classe 8.8

Nombre de boulons = 10

Nombre de files : n = 2

Section résistante de la partie filetée : As =192 mm²

Poteau IPE400

Traverse: IPE330

 $Vsd = 21.98KN \rightarrow a$ l'ELU combinaison : 1,35G+1.5S

M =52.16KN.m

 $N_{max} = 69.61 \text{ KN}$

VIII 2.1. Détermination des efforts dans les boulons :

Nous considérons uniquement les boulons tendus, c'est à dire les trois rangées supérieures des boulons.

 $d1 = 440 \text{mm.} d_2 = 320 \text{mm.} d_3 = 200 \text{ mm.}$

 $\sum d^2 = (440)^2 + (320)^2 + (200)^2 = 0.34m^2$

Ni =
$$\frac{Msd \times di}{\sum di^2}$$

N₁ = $\frac{52.16*0.44}{0.34}$ = 67.50 KN
N₂ = $\frac{52.16*0.32}{0.34}$ = 49.09KN

$$N_3 = \frac{52.16*0.2}{0.34} = 30.68 \text{KN}$$

IX 2.2. Dimensionnement des boulons :

Il faut vérifier que : $N_1\!\le n\times F_P$ avec : $F_P=0.7\times \mathit{fub}\,\times$

On choisit des boulons M14

Soit des boulons de diamètre $d_0 = 13mm$; de classe 8.8 ; $A_S = 84.3mm^2$; $A=113mm^2$

Avec $P_2 = 70 \text{ mm}$

X 2.3. Condition de résistance des boulons : > Distance entre axe des boulons :

Avec : $d_0 = 15 \text{ mm}$

 $P_1 \! \geq \! 2,\! 2d_0 \, P_2 \! \geq \! 3d_0$

 $P_1 \! \geq \! 2,\! 2 \times 15 = \! 33 \text{ mm} \qquad P_2 \! \geq \! 3 \times 15 = \! 45 \text{ mm}$

•Pince longitudinale :	•Pince transversale :		
$e_1 \ge 1.2d_0$	$e_2 \ge 1.5 d_0$		
$e_1 \ge 1.2 \times 15 = 18 \text{mm}$	$e_2 \ge 1.5 \times 15 = 22.5 \text{mm}$		
On prend : $e_1 = 50$ mm.	On prend : $e_2 = 45 \text{ mm}$		
On prend : $P_1 = 120$ mmOn prend : $P_2 = 70$ mm			

As

XI 2.4. Moment résistant effectif de l'assemblage :

$$\mathbf{M}_{\mathrm{R}} = \frac{F_{P} \times \sum di^{2}}{d1} < \mathbf{M}_{\mathrm{sd}}$$

 $F_P = 0.7 \times \textit{fub} \times A_S = 0.7 \times 800 \times 10^{-3} \times 84.3 = 47.2$ KN par boulon

Et $47.2 \times 2=94.41$ KN pour les autres rangers a deux boulons

$$M_{R} = \frac{94.41 * 0.34}{0.44} = 72.95 \text{KN.m} > M_{sd} = 52.16 \text{KN.m}$$

Condition vérifiée

XII 2.5.Vérification :

2.5.1 Résistance d'un boulon a l'interaction cisaillement-traction : Il faut vérifier que : $V_{sd} \le V_R = \frac{K_s \times \mu \times n \times (F_P - 0.8F_{t.sd})}{\gamma_{Ms}}$

Avec :

 μ = coefficient de frottement qui est pris égale à 0.3

 $K_S = 1$ coefficient qui est en fonction de la dimension des trous de perçage pour les trous à tolérance normale.

 $\gamma_{Ms} = 1,25$

n =nombred'interfaces de frottement = 1

 $F_P = 0.7 \times fub \times A_S = 0.7 \times 800 \times 10^{-3} \times 84.3 = 47.2 \text{ KN}$

$$F_{t.sd} = \frac{N_{sd}}{2} = \frac{47.2}{2} = 23.6KN$$

• Effort de cisaillement sollicitant par boulon

$$F_{vsd} = \frac{Vsd}{n} = \frac{21.98}{10} = 2.19 \text{ KN}$$

• Effort résistant de l'interaction cisaillement-traction.

•
$$\leq V_{R} = \frac{K_{s} \times \mu \times n \times (F_{P} - 0.8F_{t.sd})}{\gamma_{Ms}}$$

 $F_{VR} = \frac{1 \times 0.3 \times 1 \times (47.2 - (0.8 \times 23.6))}{1.25} = 6.79 \, KN$

 F_{vsd} = 2.19 KN < F_{vr} = 6.79KN (vérifiée)

XIII 2.6. Vérification au poinçonnement :

Il faut vérifier que : $B_{prd} > F_{t.sd}$

$$B_{prd} = 0.6 \,\pi.\,d_m.\,t_p \frac{f_u}{\gamma_{Mb}}$$

 $d_m = 23.7$ mm

 $t_p = 13.5$ mm (t_f de poteau IPE400)

 f_u =360 Mpa

D'où $B_{prd} = 0.6 \times 3.14 \times 2.37 \times 1.35 \times \frac{36}{1.25} = 173.6 \text{ KN}$

Donc $B_{prd} = 173.6KN > F_{t.sd} = 23.6KN$ vérifiée.

XIV 2.7. Vérification à la résistance de l'âme du poteau dans la zone tendue : On doit vérifier que : $F_V \le F_{t,Rd}$

Avec :

$$F_{t.Rd} = t_w.b_{eff}.\frac{f_y}{\gamma_{m0}}$$

Où :

F_{t.Rd}: Résistance de l'âme du poteau à la traction.

twc : Epaisseur de l'âme du poteau.

 $b_{eff} = P$: entraxe des rangées de boulons. (P=70cm).

Donc:
$$F_{t.Rd} = 8.6 \times 0.7 \times \frac{23.5}{1} = 141.47 \ KN$$

L'effort de cisaillement vaut :

$$F_V = \frac{M_{sd}}{h - t_f}$$
 EC03-1-8 art 6.2.6.7

$$F_{V} = \frac{M_{sd}}{h - t_{f}} = \frac{71.87}{0.33 - 0.0135} = 227.07 \, KN \ge F_{t,Rd} = 146.98 \, KN \dots non \ vérifiée$$

D'où la nécessité d'un raidissage : (raidisseur d'épaisseur 15mm)

XV 2.8. Vérification à la résistance de l'âme du poteau dans la zone comprimée : On doit vérifier que : Fvrd = $227.07 \le \text{Fcrd} = \frac{fy.tw.beff}{\text{vm0}}$

 $B_{eff}=t_f+2t+5(t_p+r)$

Avec:

tw=8.6mm épaisseur de l'âme du poteau

tf=11.5 mm épaisseur de la traverse

t=20mm épaisseur de la platine

tp=13.5mm épaisseur de la semelle du poteau

r=21

beff =275mm

F_{vrd}=227.07 KN <F_{crd}=505.25KN

condition vérifiée

XVI 2.9. Vérification à la résistance de l'âme du poteau dans la zone cisaillée : On doit vérifier que : $F_V \le F_{VRd}$

$$F_{VR} = 0.58 \times f_y \times h \times \frac{t_w}{\gamma_{M_0}}$$
$$F_{VR} = 0.58 \times 23.5 \times 33 \times \frac{0.86}{1} = 386.81 KN$$

L'effort de cisaillement vaut :

 $F_{V} = \frac{M_{sd}}{h - t_{f}} = \frac{71.87}{0.33 - 0.0135} = 227.07 \text{ KN} \le F_{t.Rd} = 386.81 \text{KN}.....vérifiée$

XVII 2.10. Assemblage platine traverse :

Cette liaison se fera au moyen de cordon de soudure

Epaisseur de la platine :

Soit e = 20 mm

➢ Gorge reliant l'âme :

 $3 \text{ mm} \le a \le 0.5 \text{ t}_w \rightarrow 3 \text{ mm} \le a \le 0.5 \times 7.5 \text{ mm} \rightarrow a = 3.5 \text{ mm}$

Gorge reliant la semelle :

 $3mm \le a \le 0.5 t_f \longrightarrow 3 mm \le a \le 0.5 \times 11.5 mm \rightarrow a = 5.5 mm$

Distribution des efforts sur les différents cordons :

• Cordon âme platine :

Chaque cordon reprend : V / 2 = 27.27 / 2 = 13.63 KN

• Cordon semelle :

 $L = 2b - t_w = 320 - 8.6 = 311.4mm$

N = M / L = 71.87 / 0,311 = 231.09 KN

XVIII 2.11. Vérification :

• Cordon semelle platine :

 $L = \frac{N \cdot \sqrt{3} \cdot \beta_{W} \cdot \gamma_{mW}}{a. fu} (EC3 \text{ Art } 6.6.5.3)$

 β_w : Coefficient de corrélation = 0.8

 y_{mw} : Coefficient de sécurité = 1.25

fu: Valeur normal de la résistance = 360Mpa

 $L = \frac{231.09}{5.5 \cdot 36} \cdot \frac{\sqrt{3}}{0.8 \cdot 1.25} = 2.02 cm$

L = 31.14 cm >2.02 cm

Vérifiée

IX.4. Assemblage traverse _ traverse

XIX Traverse IPE330-IPE330 :

- L'assemblage traverse traverse est réalisé par l'intermédiaire d'une platine boulonnée.
- Si la portée du portique ne dépasse pas certaines limites pour le transport (environ 16m), L'assemblage du faitage peut être réalisé en usine, hors chantier, permettant ainsi des économies.

Figure IX.2 : Représentation de l'assemblage traverse-traverse.

On choisit des boulons de classe 8.8

Nombre de boulons = 10

Traverse : IPE330,

 $M_{max} = 80.1 KN.m$, $Vsd_{max} = 27.27 KN$.

XX 4.1. Détermination des efforts dans les boulons :

Nous considérons uniquement les boulons tendus, c'est à dire les 3 rangées supérieures des boulons.

 $d1 = 360 \text{ mm}, d_2 = 280 \text{ mm}, d_3 = 200 \text{ mm}.$

$$\sum di^2 = 0,248 \text{ m}^2$$

$$\mathrm{Ni} = \frac{Me \times di}{\sum di^2}$$

 $N_1 = 116.27 \text{ KN}, N_2 = 90.43 \text{KN}, N_3 = 64.59 \text{ KN}.$

XXI 4.2. Dimensionnement des boulons :

Il faut vérifier que : $N_1 \le n \times F_P$ avec : $F_P = 0.7 \times fub \times A_S$

$$A_{\rm S} \ge \frac{N_1}{0.7 \times fub \times n} = \frac{116.27 \times 10^3}{0.7 \times 800 \times 2} = 103.81 mm^2$$

On choisit un boulon M14

Soit des boulons de diamètre $d_0 = 15 \text{mm}$; de classe 8.8 ; $A_S = 115 \text{mm}^2$; $A=154 \text{mm}^2$

XXII 4.3. Condition de résistance des boulons :

Distance entre axe des boulons : Entre axe des boulons :

 $P_1 = 39.6$ mm, On prend : $P_1 = 80$ mm.

 $P_2 = 54$ mm, On prend : $P_2 = 70$ mm.

• Pince longitudinale :

 $e_1\!\!\geq 1.2d_0$

 $e_1\!\!\geq 1.2\times 15=18~mm$

On prend : $e_1 = 70$ mm.

• Pince transversale :

 $e_2 \!\!\geq 1.5 d_0$

 $e_2 {\geq} 1.5 \times 18 = 27 \text{ mm}$

On prend : $e_2 = 45$ mm.

XXIII 4.4. Moment résistant effectif de l'assemblage :

$$\mathbf{M}_{\mathrm{R}} = \frac{F_{P} \times \sum di^{2}}{d1} < \mathbf{M}_{\mathrm{sd}}$$

 $F_P = 64.4$ KN par boulon

Et $64.4 \times 2 = 128.8$ KN pour chaque rangers

$$M_{R} = \frac{128.8 \times 0.248}{0.36} = 88.78 \text{KN.m} > M_{sd} = 80.1 \text{KN.m} \quad \text{vérifiée}$$

XXIV 4.5. Résistance d'un boulon à l'interaction cisaillement-traction : XXV

Il faut vérifier que : $F_{vsd} \le F_{VR} = \frac{K_s \times \mu \times n \times (F_P - 0.8F_{t.sd})}{\gamma_{Ms}}$

Avec: $\mu = 0,3$, $K_S = 1$, $\gamma_{ms} = 1,25$, n = 1.

 $F_P = 0.7 \times fub \times A_S = 0.7 \times 800 \times 115 \times 10^{-3} = 64.4 \text{KN}.$

$$F_{t.sd} = \frac{N_{sd}}{2} = \frac{25.93}{2} = 12.96KN$$

• Effort de cisaillement sollicitant par boulon

$$F_{vsd} = \frac{Vsd}{n} = \frac{27.27}{10} = 2.72 \text{ KN}$$

• Effort résistant de l'interaction cisaillement-traction sollicitons

$$V_{R} = \frac{1 \times 0.3 \times 1 \times (64.4 - (0.8 \times 12.96))}{1.25} = 12.96 \ KN$$

 F_{vsd} = 2.72 KN < F_{VR} = 12.96 KN (vérifiée)

XXVI 4.6. Vérification au poinçonnement :

Il faut vérifier que : $B_{prd} > F_{t.sd}$

$$B_{prd} = 0.6 \,\pi. d_m. t_p \frac{f_u}{\gamma_{Mb}}$$

$$d_m = 23.7$$
mm, $f_u = 360$ Mpa

$$t_p = 20 \text{ D'où } B_{prd} = 0.6 \times 3.14 \times 23.7 \times 20 \times \frac{36}{1.25} = 257.18 \text{ KN}$$

Donc $B_{prd} = 257.18 KN > F_{t.sd} = 12.96 KN$ vérifiée.

XXVII4.7. Assemblage platine traverse :

Cette liaison se fera au moyen de cordon de soudure :

> Epaisseur de la platine :

Soit e = 30 mm

➢ Gorge reliant l'âme :

 $3mm \le a \le 0.5 t_w \rightarrow 3 mm \le a \le 0.5 \times 7.5 mm \rightarrow a = 3.5 mm$

Gorge reliant la semelle :

3 mm $\leq a \leq 0.5 t_f$ $\rightarrow 3 mm \leq a \leq 0.5 \times 11,5 mm$ $\rightarrow a = 5.5 mm$

Distribution des efforts sur les différents cordons :

• Cordon âme platine :

Chaque cordon reprend : V / 2 = 27.27 / 2 = 13.63 KN

• Cordon semelle :

 $L = 2b - t_w = 320 - 7.5 = 321.5 \text{ mm}$

N = M / L = 80.1 / 0,3212 = 249.37 KN

XXVIII 4.8. Vérification : • Cordon semelle platine : $L = \frac{N \cdot \sqrt{3} \cdot \beta_{W} \cdot \gamma_{mW}}{a \cdot fu}$ (EC3 Art 6.6.5.3) $\beta_{W} = 0.8, \quad \gamma_{mW} = 1.25, \quad fu = 360$ Mpa $L = \frac{249.37 \quad \sqrt{3} \quad 0.8 \quad 1.25}{5.5 \cdot 36} = 2.18$ cm

L = 32.15 cm > 2.18cm vérifiée

IX.5. Assemblage de l'échantignolle :

XXIX 5.1. Assemblage de l'échantignolle sur la panne :

Les pannes sont assemblées aux traverses ou aux fermes par boulonnage. Sur les toitures inclinées, pour éviter le glissement et le basculement à la pose, les pannes sont fixées à l'aide d'échantignolles.

On dimensionnera le boulon au cisaillement avec R_{vZ} (chaque boulon reprend une seul panne).

Figure IX.3: Vue perspective de l'échantignole

On vérifiera l'assemblage pour un boulon ordinaire à fin de réaliser une articulation.

R_z : réaction de la panne sous la combinaison G-1.5W

R_{VZ max} = 7.79 KN est celui due au vent (ChapitreIII).

R_{vymax}=0.95 KNest celui due au poids propre de la panne.

XXX 5.2. Dimensionnement des boulons:

$$F_{Vsd} = \frac{R_{Vz\max}}{n.p} = \frac{7.79}{1} = 12.97 \, KN$$
$$F_{V.rd} = \frac{0.5 \times A_S \times f_{ub}}{\gamma_{Mb}}$$

$$A_{S} \ge \frac{\gamma_{Mb} \cdot F_{Vsd}}{0.5 f_{ub}} = \frac{1.25 \times 7.79 \times 10^{3}}{0.5 \times 600} = 32.45 mm^{2}$$

On adopte des boulons de type M8 avec $A_S=36.6 \text{ mm}^2$ et $d_0=9\text{mm}$

XXXI 5.3. Moment résistant effectif de l assemblage:

 $M_{Z} = R_{Z} * d_{1}$ R_{Z} : effort de traction.

 $M_Z = 7.79*9 = 7.01 \text{KN.m}$ $F_{t.sd} = \frac{M*d1}{n*d1}$ n: nombre de boulons $F_{t.sd} = \frac{7.01*0.9}{2*0.9} = 3.5$

$M_Y = R_Y * d_2$ R_Y :effort de cisaillement $M_Y = 4.95 * 7 = 3.5$ KN.m

Figure IX.4 vue assemblage échantignole panne

XXXII5.4 .Assemblage de l'échantignolle sur la traverse :

Dans ce cas, le boulon est soumis simultanément à un effort de cisaillement et de traction, Le cas le plus défavorable et celui du vent :

 $R_{vy} = 0.95 KN$ (Chapitre III).

$$\begin{aligned} \frac{F_{V.sd}}{F_{V.rd}} + \frac{F_{t.sd}}{1.4 \times F_{t.rd}} &\leq 1 \\ F_{t.sd} &\leq F_{t.rd} \\ F_{t.rd} &= 0.9 \times A_s \times \frac{f_{ub}}{\gamma_{Mb}} = 0.9 \times 0.366 \times \frac{360}{1.25} = 94.86KN \\ F_{V.rd} &= 0.5 \times A_s \times \frac{f_{ub}}{\gamma_{Mb}} = 0.5 \times 0.366 \times \frac{360}{1.25} = 52.7KN \\ \frac{12.97}{52.14} + \frac{3.5}{1.4 \times 94.86} = 0.31 \leq 1 \end{aligned}$$

XXXIII 5.5. Vérification à la pression diamétrale : $F_{P,rd} = 2,5 \times \alpha \times d \times t_p \times \frac{f_u}{\gamma_{Mb}}$

$$F_{P.rd} = 2.5 \times 1 \times 1.5 \times 0.8 \times \frac{36}{1.25} = 80.64 KN$$

 $F_{P.rd} = 80.64 KN \succ F_{V.sd} = 7.79 KN \longrightarrow condition vérifiée.$

IX.6. Assemblage du contreventement (Palées de stabilités) :

XXXIV 6.1 Palées de stabilités de rive :

Figure IX.5:Représentation de l'assemblage diagonale de rive

L'assemblage se fait par la détermination de l'élément le plus sollicité avec un effort de traction : $N_{t,Sd}$ =59.51KN.

6.1.1. Assemblage de la diagonale sur le gousset :> Pré dimensionnement du gousset :

L'épaisseur du gousset dépend essentiellement de l'effort appliqué, il est donné par le tableau suivant :

F (KN)	≤ 200	200-450	450-750	750-1150	1150-1650
e (mm)	8	10	12	14	16

Tableau IX.3 : Epaisseur du gousset en fonction de l'effort appliqué.

Dans ce genre d'assemblage, les boulons sont sollicités en cisaillement seul, les diagonales les plus sollicitées sont celles qui reprennent un effort de traction maximum.

N=59.51 KN \leq 200 KN d'où e =8mm

L'assemblage est réalisé par des boulons ordinaires de classe 5.6, dont la résistance au glissement par cisaillement est donnée comme suit :

$$F_{vrd} = \frac{0.5 \times Fub}{\gamma_{mb}} \times As$$
; avec $F_{ub} = 500 MPa$ (**Tableau 3.3 CCM97**)

$\gamma_{mb}\,$: Coefficient de sécurité =1,25

Figure IX.6: Assemblage des diagonales de rive

6.1.2.Distribution de l'effort normale sur les boulons :

 $F_{Vsd} = \frac{N_{\text{max}}}{n.p} = \frac{59.51}{3.2} = 9..92KN$

Avec : p : nombre de plan de cisaillement =2

n : est le nombre de boulons pris arbitrairement =3

6.1.3. Dimensionnement des boulons :

 $F_{vrd} = \frac{0.5 \times Fub}{\gamma_{mb}} \times As$; avec $F_{ub} = 500 MPa$ (**Tableau 3.3 CCM97**)

 γ_{mb} : Coefficient de sécurité =1,25

$$F_{V.rd} = \frac{0.5 \times A_{s} \times f_{ub}}{\gamma_{Mb}} \quad A_{s} \ge \frac{\gamma_{Mb} \cdot F_{Vsd}}{0.5 f_{ub}} = \frac{1.25 \times 9.92 \times 10^{3}}{0.5 \times 500} = 49.6 mm^{2}$$

On adopte des boulons de type M10 avec $A_S=58mm^2$ et $d_0=11mm$

6.1.4. Disposition géométrique :

Cornière L *(50*50*6) t = 10mm

$1.2d_0 \le e_1 \le 12t$		$13.2mm \le e_1 \le 120$
$2.2d_0 \le p_1 \le 14t$	d'où≺	$24.2 \le P_1 \le 140$
$1.5d_0 \le e_2$		$16.5 \le e_2$

Soit $e_1 = 4 \text{ cm}$ $P_1 = 6 \text{ cm}$ $e_2 = 2.5 \text{ cm}$

6.1.5. Vérifications :

Vérification de l'Assemblage trop long :

 $L=(n-1)P_1=(3-1) 6=12cm$

L<15.d=15x1=15cm

L < 15 d= 150 mm; Donc l'assemblage est long.

6.1.6. Vérification à la pression diamétrale :

$$F_{P,rd} = 2,5 \times \alpha \times d \times t_p \times \frac{f_u}{\gamma_{Mb}}$$

$$\alpha = \min(\frac{e_1}{3d_0}; \frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1) = 1$$

$$F_{P.rd} = 2.5 \times 1 \times 1 \times 0, 8 \times \frac{36}{1.25} = 57, 6KN$$

$$F_{P.rd} = 57.6KN \succ F_{V.sd} = 9.92KN \rightarrow conditionvérifiée$$

Y'a pas risque de rupture par pression diamétrale pour la cornière.

6.1.7. Vérification de la rupture de la section nette :

$$N_{u.Rd} = 0,9A_{nett} \frac{f_u}{\gamma_{mb}} \ge F_{v,sd}$$

 $A_{net} = A_{1+}\xi.A_2$

$$A_1 = (5.0,6) - (1.0,6) = 2.4$$
 cm²

$$A_2 = (5 - 0.6) \cdot 0.6 = 2.64 \text{ cm}^2$$

$$\xi = \frac{3A_1}{3A_1 + A_2} = 0,73$$

$$A_{net} = 2.4 + (0,73.4.06) = 4.33 \text{ cm}^2$$

$$N_{u.rd} = 0.9 \times 4.33 \times \frac{36}{1.25} = 112.27 \text{ KN} \succ F_{V.sd} = 9.92 \text{ KN} \rightarrow \text{condition vérifiée}$$

XXXV6.2. Palées de stabilités intermédiaires :

Figure IX.7: Représentation Assemblage des diagonales sur gousset pignon.

L'assemblage se fait par la détermination de l'élément le plus sollicité avec un effort traction : $N_{t,Sd}$ =58.21KN.

6.2.1. Assemblage de la diagonale sur le gousset :

Pré dimensionnement du gousset :

N=58.21 KN \leq 200 KN d'où e = 8mm

L'assemblage est réalisé par des boulons ordinaires de classe 5.6, dont la résistance au glissement par cisaillement est donnée comme suit :

$$F_{vrd} = \frac{0.5 \times Fub}{\gamma_{mb}} \times As ; \text{ avec } F_{ub} = 400 \text{ MPa}(\text{Tableau 3.3 CCM97})$$

 $\gamma_{mb} = 1,25$

Figure IX.8: Assemblage des diagonales intermédiaires

6.2.2. Distribution de l'effort normale sur les boulons :

$$F_{Vsd} = \frac{N_{max}}{n.p} = \frac{58.21}{3.2} = 9.70 \, KN$$

Avec :
$$p = 2$$
, $n = 3$.

6.2.3. Dimensionnement des boulons :

$$F_{V.rd} = \frac{0, 5 \times A_S \times f_{ub}}{\gamma_{Mb}}$$

$$A_{S} \geq \frac{\gamma_{Mb}.F_{Vsd}}{0.5 f_{ub}} = \frac{1.25 \times 9.7 \times 10^{3}}{0.5 \times 500} = 48.5 mm^{2}$$

On adopte des boulons de type M10 avec $A_S=58mm^2$ et $d_0=11mm$

> Disposition géométrique :

Cornière L *(60*60*6) t = 8mm

$1.2d_0 \le e_1 \le 12t$		$132mm \le e_1 \le 120$
$2.2d_0 \le p_1 \le 14t$	d'où∢	$24.2 \le P_1 \le 140$
$1.5d_0 \le e_2$		$16.5 \le e_2$

Soit $e_1 = 4 \text{ cm}$ $P_1 = 6 \text{ cm}$ $e_2 = 2.5 \text{ cm}$

6.2.4. Vérifications :

• Vérification de l'Assemblage trop long : L= (n-1)P₁= (3-1) 6 =12cm

L<15.d=15x1=15cm

L<15 d= 150mm ; Donc l'assemblage est long.

6.2.5. Vérification à la pression diamétrale :

$$F_{P,rd} = 2,5 \times \alpha \times d \times t_p \times \frac{J_u}{\gamma_{Mb}}$$

$$F_{P.rd} = 2.5 \times 1 \times 1 \times 0.8 \times \frac{36}{1.25} = 57.6 KN$$

 $F_{P.rd} = 57.6KN \succ F_{V.sd} = 9.7KN \rightarrow conditionvérifiée.$

Y'a Pas risque de rupture par pression diamétrale pour la cornière.

6.2.6. Vérification de la rupture de la section nette :

$$N_{u.Rd} = 0.9A_{nett} \frac{f_u}{\gamma_{mb}} \ge F_{v,sd}$$

 $A_{net} = A_{1+}\xi.A_2$

$$A_1 = (6.0,6) - (1.0,6) = 3$$
cm²

$$A_2 = (6 - 0,6) \cdot 0,6 = 3.24$$
 cm²

$$\xi = \frac{3A_1}{3A_1 + A_2} = 0,73$$

 $A_{net} = 3 + (0,73.3.24) = 5.36 \text{cm}^2$

$$N_{u.rd} = 0.9 \times 5.36 \times \frac{36}{1.25} = 138.93 \, \text{KN} \ \succ \ F_{V.sd} = 9.70 \, \text{KN} \quad \rightarrow \text{ condition vérifiée}$$

IX.7 contreventements horizontaux poutre au vent :

Figure IX.9 : Représentation Assemblage des diagonales

L'assemblage se fait par la détermination de l'élément le plus sollicité avec un effort de traction : $N_{t,Sd}$ =21.48 KN

XXXVI 7.1. Assemblage de la diagonale sur le gousset :

Pré dimensionnement du gousset :

 $N{=}21.48 \leq 200 KN \qquad d'où: e = 8mm$

L'assemblage est réalisé par des boulons ordinaires de classe 5.6, dont la résistance au glissement par cisaillement est donnée comme suit :

 $F_{vrd} = \frac{0.5 \times Fub}{\gamma mb} \times As$; avec $F_{ub} = 500 \text{ MPa}$

Figure IX.10:Assemblage des diagonales de la poutre au vent

Distribution de l'effort normale sur les boulons :

$$F_{Vsd} = \frac{N_{max}}{n.p} = \frac{21.48}{3.2} = 3.58 \, KN$$

Avec : p = 2, n = 3.

XXXVII 7.2. Dimensionnement des boulons :

$$F_{V.rd} = \frac{0.5 \times A_S \times f_{ub}}{\gamma_{Mb}}$$

$$A_{S} \geq \frac{\gamma_{Mb}.F_{Vsd}}{0.5 f_{ub}} = \frac{1.25 \times 3.58 \times 10^{3}}{0.5 \times 500} = 17.9 mm^{2}$$

On adopte des boulons de type M8 avec $A_S=36.6mm^2$ et $d_0=9mm$

XXXVIII 7.3. Disposition géométrique :

Cornière L (45*45*5) t = 8mm

$1.2d_0 \le e_1 \le 12t$		$10.8mm \le e_1 \le 120$
$2.2d_0 \le p_1 \le 14t$	d'où∢	$19.8 \le p_1 \le 140$
$1.5d_0 \le e_2$		$135 \le e_2$

Soit $e_1 = 4 \text{ cm}$ $P_1 = 6 \text{ cm}$ $e_2 = 2.5 \text{ cm}$.

XXXIX 7.4. Vérifications :

• Vérification de l'Assemblage trop long :

 $L=(n-1)P_1=(3-1) 6 = 12cm,$ L<15.d=15x0.8=12cm.

 $L \ge 15 d = 120 mm$; Donc l'assemblage est long.

XL 7.5. Vérification à la pression diamétrale :

$$F_{P,rd} = 2,5 \times \alpha \times d \times t_p \times \frac{f_u}{\gamma_{Mb}}$$

$$F_{P,rd} = 2.5 \times 1 \times 0.8 \times 0.8 \times \frac{36}{1.25} = 46.08 KN$$

$$F_{P,rd} = 46.08 KN \succ F_{V,sd} = 3.58 KN \longrightarrow condition \\ \forall i file e$$

Y'a Pas risque de rupture par pression diamétrale pour la cornière.

XLI 7.6. Vérification de la rupture de la section nette :

$$N_{u.Rd} = 0.9A_{nett} \frac{f_u}{\gamma_{mb}} \ge F_{v,sd}$$

 $A_{net} = A_{1+}\xi.A_2$

$$A_1 = (4.5.0,5) - (0.8.0,5) = 1.85 \text{ cm}^2$$

 $A_2 = (4.5 - 0.5) \cdot 0.5 = 2 \text{cm}^2$

$$\xi = \frac{3A_1}{3A_1 + A_2} = 0,73$$

 $A_{net} = 1.85 + (0,73.2) = 3.32 \text{ cm}^2$

$$N_{u.rd} = 0.9 \times 3.32 \times \frac{36}{1.25} = 80.05 \text{ KN} \succ F_{V.sd} = 3.58 \text{ KN} \rightarrow \text{condition vérifiée}$$

IX.8 Calcul des pieds de poteaux (encastre) :

Les bases des poteaux et les tiges d'ancrage sont des éléments de continuité qui assurent la transmission des efforts de la superstructure aux fondations, ce sont des dispositifs de liaisons.

Ces derniers sont constitués d'une plaque d'assise appelée platine assurant la réduction de la pression dans le béton, soudée au poteau reposant sur la fondation et fixée par des écrous aux tiges d'ancrage qui sont noyées dans le béton.

XLII 8.1 Dimensionnement de la tige d'ancrage des poteaux:

Les tiges seront dimensionnées avec l'effort N_t =204.88KN et un moment M_y =77.74KN.m Et un effort tranchant V=53.88KN

Figure IX. 11: Tige d'encrage du pied du poteau.

b = h+2c

h : la hauteur de la section IPE400 \Rightarrow h = 400 mm

c : le débord, donné par : c = $(100 \div 150)$ mm

on prend : c = 100 mm

d'où : $a = h + 2c = 400 + 2 \times 100 = 600 mm$

 $b = b + 2c = 180 + 2 \times 100 = 380 \text{ mm}$

Les tiges d'ancrages sont dimensionnées à la traction simple, sous un effort de traction (Nst)

$$F = \frac{N_t}{n} + \frac{M_y}{3P_2} = \frac{204.88}{6} + \frac{77.74 \times 10^2}{3 \times 38} = 102.33KN$$

n: l'encrage est réaliser par 6 tiges

N_t: effort sollicitant de traction.

$$F \leq \frac{\pi . \phi^2}{4} f_y$$

$$\phi \geq \sqrt{\frac{4.F}{\pi . f_y}}$$

$$\phi \geq \sqrt{\frac{4 \times 102.3}{3.14 \times 23.5}} = 2.35 cm$$

Donc on choisit pour les tiges le diamètre Φ =3 cm.

XLIII 8.2 Vérifications : XLIV 8.2.1. Vérification de la tige d'ancrage:

L'effort admissible par scellement est par la règle suivante

$$N_{a} = 0.1 \left(1 + \frac{7g_{c}}{1000} \right) \frac{\phi}{\left(1 + \frac{\phi}{d_{1}} \right)^{2}} (l_{1} + 6.4r + 3.5l_{2}) \ge F$$

$$l_{1} = 20\phi = 20 \times 3 = 60cm$$

$$l_{2} = 2\phi = 2 \times 3 = 6cm$$

$$r = 3\phi = 9m$$

$$(CCM97)$$

 g_c : Le dosage en ciment = 350 Kg/m³

Na: effort normal résistant par scellement d'une tige.

 $d_1 = 5cm$

$$N_a = 0.1 \left(1 + \frac{7 \times 350}{1000} \right) \frac{2}{\left(1 + \frac{2}{5} \right)^2} \left(40 + 6.4 \times 6 + 3.5 \times 4 \right) = 32.52KN < 102.33KN \text{ On remarque}$$

que résistance par scellement est très petit donc pour augmenter la résistance ont va augmenter les paramètres de la résistance pas scellement (le diamètre de la tige, l_1 , l_2 et r) Soit

$$\begin{split} l_{1} &= 70 cm \\ l_{2} &= 7 cm \\ r &= 9 cm \\ N_{a} &= 0.1 \bigg(1 + \frac{7 \times 350}{1000} \bigg) \frac{2}{\bigg(1 + \frac{2}{5} \bigg)^{2}} \big(70 + 6.4 \times 9 + 3.5 \times 7 \big) = 106.6 KN \ge 102.33 KN \end{split}$$

D'où la condition est vérifiée

8.2.2. Vérification des contraintes dans le béton et l'acier:

$$e = \frac{M_{sd}}{N_{sd}} = \frac{77.74 \times 10^3}{204.88} = 379.4mm$$
$$e = 80cm \succ \frac{D}{6} = \frac{50}{6} = 8.33$$

Donc le centre de poussée se trouve hors du tiers central de la section, et la platine est soulevé

$$A = \frac{3\Pi \times R^2}{2} = \frac{3 * 3.14 \times 3^2}{2} = 18.84 cm^2 \text{ (A : aire de la section 3cm} detiges à gauche du poteau)}$$

$$l = e + h/2 + c/2 = 104cm$$

$$h = hp + d1 + d1/2 = 37.5cm$$

$$b = 2d1 + hp = 40cm$$

$$n = \frac{E_a}{E_b} = 15$$

$$h^{3} + 3.(l - h).h^{2} + 90A\frac{l}{b}.h' - 90A\frac{l}{b}.h = 0$$

$$h^{3} + 3.(104 - 37.5).h^{2} + 90 \times 18.84 \times \frac{104}{40}.h' - 90 \times 18.84 \times \frac{104}{40}.37.5 = 0$$

$$h^{3} + 199.5 \times h^{2} + 4408.56 \times h' - 165321 = 0$$

$$h' = 19.2cm$$

e à gauche (les boulons de gauche étant sollicités en traction).

XLV 8.2.3Vérification des contraintes dans le béton:

On doit vérifier que :

$$\begin{aligned} \sigma_{b} &= \frac{2N \times l}{bh'(h - \frac{h'}{3})} \le f_{ub} = 0.85 \frac{f_{c28}}{\gamma_{b}} & avec \ \gamma_{b} = 1.5 \\ \sigma_{b} &= \frac{2 \times 204.88 \times 104}{40 \times 19.2 \times \left(37.5 - \frac{19.2}{3}\right)} = 2.66 MPa \le f_{ub} = 14.2 MPa \rightarrow v\acute{e}rifi\acute{e} \end{aligned}$$

La contrainte est vérifiée

8.2.4Vérification des contraintes dans l'acier:

$$\sigma_a = \frac{N}{A} \cdot \frac{l-h+\frac{h'}{2}}{h-\frac{h'}{3}} \le f_y$$

On doit vérifier que :

$$\sigma_{a} = \frac{204.88}{18.84} \cdot \frac{104 - 37.5 + \frac{19.2}{2}}{37.5 - \frac{19.2}{3}} = 39.74 MPa \le f_{y} = 235 MPa$$

La contrainte est vérifiée

XLVI 8.3 Dimensionnement de l'épaisseur de la platine:

• Vérification dans la section 1-1:

Le moment dans la section 1-1 est obtenu grâce au diagramme trapézoïdal des contraintes situé à droite de la section, que l'on peut décomposer en un diagramme rectangulaire (1) et un diagramme triangulaire (2).

Les moments correspondants, pour une bande de largeur unité (=1 cm) et d'épaisseur t, sont :

Figure IX.12: Vérification dans la section 1–1.

$$\begin{cases} M_1 = 10 \times 39.74 \times \frac{10}{2} \times 10^{-3} = 1.98 \text{ KN .m} \\ M_2 = \left(10 \times \frac{2.66}{2}\right) \frac{2*10}{3} \times 10^{-3} = 0.088 \text{ kn * m} \end{cases} \implies M = M_1 - M_2 = 1.89 \text{ KN .m}$$

Le module d'inertie de la platine pour b = 1 cm est : $\frac{I}{V} = \frac{(b.t^3)/12}{(t/2)} = \frac{bt^2}{6}$

La contrainte de flexion dans la section 1-1 est :

$$\frac{M}{W_{el}} \le f_y \Longrightarrow t \ge \sqrt{\frac{1.89 \times 6}{23.5}} = 0.69 cm$$

• Contrainte de flexion dans la section 2-2:

Le même raisonnement on aura le moment maximal:

D'où : $t \ge \sqrt{\frac{1.98 \times 6}{\times 23.5}} = 0.71 cm$

M = M1 = 1.98 Kn.m

 $t \ge 0.71 cm$

Figure IX.13 : Vérification dans la section 2 – 2

• Vérification dans la section 3 - 3

Du cote tendu, la platine est soumise à un moment M = 0.1T

$$T = A.\sigma_a = 18.84 \times 39.74 \times 10^{-1} = 74.79 KN$$
$$M = 0.1 \times 74.79 = 7.47 KN.m$$
$$W_{el} = \frac{50t^2}{6}$$

Il faut vérifiée que :

Figure IX.14 : Vérification dans la section 3 – 3

Il faut donc vérifier que :

$$\frac{7.47 \times 6}{50t^2} \le f_y \Longrightarrow t \ge \sqrt{\frac{6M}{50f_y}} = \sqrt{\frac{6 \times 7.47}{50 \times 23.5}}$$

 $t \geq 0.19 cm$

Conclusion : on prendra une platine d'épaisseur : **t =20mm.**

IX. 9 Dimensionnement de la tige d'ancrage des potelets :

Le pied des potelets sont articulé

Nt=103.61KN

h : la hauteur de la section HEA140 \Rightarrow h = 133 mm

c : le débord, donné par : c = (100; 150) mm

on prend : c = 100 mm

d'où : $a = h + 2c = 133 + 2 \times 100 = 333 \text{ mm}$

 $b = b + 2c = 140 + 2 \times 100 = 340 \text{ mm}$

L'ancrage est réalisé par deux tiges

$$\begin{split} &\frac{N_t}{2} \le \frac{\pi . \phi^2}{4} f_y \\ &\phi \ge \sqrt{\frac{2N_t}{\pi . f_y}} \\ &\phi \ge \sqrt{\frac{2*103.61}{3.14*3*23.5}} = 0.87 cm \end{split}$$

Donc on choisit pour les tiges le diamètre Φ =1,2 cm.

XLVII9.1.Vérification de la tige d'ancrage:

L'effort admissible par scellement est par la règle suivante

$$N_{a} = 0.1 \left(1 + \frac{7g_{c}}{1000} \right) \frac{\phi}{\left(1 + \frac{\phi}{d_{1}} \right)^{2}} \left(l_{1} + 6.4r + 3.5l_{2} \right) \ge \frac{N_{t}}{6}$$
(CCM97)
$$l_{1} = 20\phi = 1.2 \times 20 = 24cm$$
$$l_{2} = 2\phi = 2 \times 1.2 = 2.4cm$$
$$r = 3\phi = 3.6cm$$

$$g_c$$
: Le dosage en ciment = 350 Kg/m³

Na: effort normal résistant par scellement d'une tige.

 $d_1 = 5cm$

$$N_{a} = 0.1 \left(1 + \frac{7 \times 350}{1000} \right) \frac{2}{\left(1 + \frac{2}{5} \right)^{2}} \left(40 + 6, 4 \times 6 + 3, 5 \times 4 \right) = 32.53 \text{KN} \ge \frac{103.61}{6} = 17.26 \text{KN} \rightarrow ok$$

La condition est vérifiée

XLVIII 9.2Vérification de la contrainte de compression sur la semelle de la fondation:

L_p=60cm (longueur de la platine)

B_p=38cm (largeur de la platine)

$$\sigma = \frac{N_t}{L_p \times B_p} = \frac{103.61 \times 10^{-3}}{60 \times 38 \times 10^{-4}} = 0.45MPa \prec f_{ub} = 14.2MPa$$

XLIX 9.3Détermination de l'épaisseur de la platine: Il faut vérifiée que :

$$\sigma.b.\frac{\mu^2}{2} \le f_y.\frac{b.t^2}{6} \qquad soit \qquad t \ge \mu \times \sqrt{\frac{3 \times \sigma}{f_y}}$$
$$t \ge 50 \times \sqrt{\frac{3 \times 0.45}{235}} = 3.78mm \quad \text{On prend}: t=10mm$$

L X. ETUDE DE L'INFRASTRUCTURE.

LI X.1 Introduction :

Un ouvrage quelle que soit sa forme et sa destination, prend toujours appui sur un sol d'assise. Les éléments qui jouent le rôle d'interface entre l'ouvrage et le sol s'appelle fondations. Le dimensionnement de la fondation est conditionné par le site d'implantation.

> Choix du type de fondation :

Le choix du type de fondation se fait suivant trois paramètres :

_ La nature et le poids de la superstructure.

_ La qualité et la quantité des charges appliquées sur la construction.

_ La qualité du sol de fondation.

La contrainte admissible de notre sol site $S_2est : \sigma_{sol} = 2$ bars

La profondeur d'ancrage : D =2 m

LIIX.2. Calcul des fondations sous les poteaux:

LII.1 2.1. Détermination des sollicitations:

Pour le dimensionnement des fondations superficielles, les sollicitations sont déterminées selon les combinaisons d'actions suivantes :

$$\begin{cases} G + Q + E \\ 0,8G \pm E \end{cases}$$
 (art 10.1.4.1. RPA99/2003)

Ainsi que les combinaisons citées par le BAEL91.

Compte tenu de l'application à la résistance ultime du sol q_u d'un coefficient de sécurité de 2.

Les sollicitations les plus défavorables sont données dans le tableau ci-dessous:

	Situation accidentelle	Situation durable		
Sollicitation		ELU	ELS	
	G+Q+1.20E _x	1.35G+1,5Q	G+S	
N ^{max} (KN)	230.95	311.05	157.07	
M _y (KN.m)	77.74	60.24	44.62	
M _Z (KN.m)	0.3	0.2	0.5	
V _y (KN)	7.45	9.98	5.58	
V _Z (KN)	53.88	21.99	16.29	

Tableau X.1: Les sollicitations à la base des poteaux IPE400

LII.2 2.2. Pré dimensionnement de la semelle du poteau :

Les dimensions de la semelle sont choisies de manière qu'elles soient homothétiques avec celle du pied de poteau, les poteaux de notre structure sont rectangulaires à la base (h*b), donc les semelles sont rectangulaires (H*B).

h et b : dimension de la platine du poteau considéré. (IPE400)

H et B : dimension de la semelle.

 $h_1: d + c$; avec c = 5 cm. (Béton de propreté)

d : hauteur utile de la semelle est donnée par

Figure X.2: Dimension de la semelle.

$$d = \max\begin{cases} \frac{B-b}{4} \\ \frac{H-h}{4} \end{cases}$$
(BAEL 91 - Ch 15.III - Art 1.2)

a. Critère de non poinçonnement:

- $\sigma_{M} < 2\sigma_{sol}$: Situation accidentelle
- $\sigma_{\scriptscriptstyle M} < 1,33\sigma_{\scriptscriptstyle sol}$: Situation durable

 $\sigma_{\!\scriptscriptstyle M}$: Contrainte maximale dans la semelle donnée par la formule suivante:

$$\sigma_{M} = \frac{N}{H \times B} \left(1 + \frac{6 \times e_{0}}{B} \right) \dots \sigma_{M} = \frac{N}{H \times B} \left(1 + \frac{6 \times e_{0}}{H} \right) \text{ on } \rightarrow \text{ prend } \sigma_{M} = \max$$
$$e_{0} = \frac{M_{Y}}{N}$$
$$\sigma_{sol} = 2bar$$

h=37.5 cm et b=40 cm

Ou : h et b dimensions de la platine puisque les poteaux sont encastrés.

LII.3 2.3. Dimensionnement de la semelle:

Situation accidentelle : $\sigma_{M} \leq 2\sigma_{sol}$

$$\frac{N}{B \times H} \left(1 + \frac{6 \times e_0}{H} \right) \le 2\sigma_{sol}$$

$$\frac{N}{B \times \left(\frac{h \times B}{b} \right)} \left(1 + \frac{6 \times e_0}{\left(\frac{h \times B}{b} \right)} \right) \le 2\sigma_{sol}$$

$$345B^{3} + 372B^{2} - 669.75 \ge 0$$

avec $e_{0} = \frac{77.74}{203.95} = 0.33$
 $B \ge 0.97m \rightarrow ont \ choisis \ B = 1m$

 $\Rightarrow H = 0.93 \times B = 0.93m$ soit H = 1m

SoitB=1m et H=1m

• Situation durable : $\sigma_{M} \prec 1,33\sigma_{sol}$

$$\frac{N}{B \times H} \left(1 + \frac{6 \times e_0}{H} \right) \le 1,33\sigma_{sol}$$
$$\frac{N}{B \times \left(\frac{h \times B}{b}\right)} \left(1 + \frac{6 \times e_0}{\left(\frac{h \times B}{b}\right)} \right) \le 1,33\sigma_{sol}$$

$$213B^{3} + 186B^{2} - 684.31 \ge 0$$

avec $e_{0} = \frac{60.24}{311.05} = 0.2$
 $B \ge 1.2m \rightarrow ont \ choisis \ B = 1.2m$

$$\Rightarrow H = 0.93 \times B = 1.1m$$

soit $H = 1.2m$

On choisit pour toutes les semelles B=1,2m et H = 1,2m

$$d = \max \begin{cases} \frac{B-b}{4} \\ \frac{H-h}{4} \\ d = \max \begin{cases} \frac{1.2-0.4}{4} = 0.20m \\ \frac{1.2-0.375}{4} = 0.205m \end{cases}$$

soit $d = 0.25m$

 $h_1 = d + c = 0,3 \text{ m}$

 I_1 : hauteur de l'amorce de poteau

$$I_1 = 2 - 0,3 = 1.7 \text{ m}$$

Poids de la semelle:

$$P = H \times B \times h_1 \times f_{c28}$$

P = 1.2×1,2×0,3×25 = 10.8KN

Les moments à la base:

$$M_{by} = M_y + T_z \times (h_1 + l_1)$$
$$M_{bz} = M_z + T_y \times (h_1 + l_1)$$

Les contraintes dans les semelles excentrées sont données par les expressions suivantes:

$$sensB\begin{cases} \sigma_{\max} = \frac{N}{B \times H} \left(1 + \frac{6 \times e_0}{B} \right) \leq \begin{cases} 2.\sigma_{sol} \rightarrow \text{situation accidentelle} \\ 1,33\sigma_{sol} \rightarrow \text{situation durable} \end{cases}$$

$$\sigma_{\min} = \frac{N}{B \times H} \left(1 - \frac{6 \times e_0}{B} \right) \rightarrow avec \ e_0 = \frac{M_Z}{N}$$

$$sensH\begin{cases} \sigma_{\max} = \frac{N}{B \times H} \left(1 + \frac{6 \times e_0}{H} \right) \leq \begin{cases} 2.\sigma_{sol} \rightarrow \text{situation accidentelle} \\ 1,33\sigma_{sol} \rightarrow \text{situation durable} \end{cases}$$

$$\sigma_{\min} = \frac{N}{B \times H} \left(1 - \frac{6 \times e_0}{H} \right) \rightarrow avec \ e_0 = \frac{M_y}{N}$$

$$2.\sigma_{sol} = 2 \times 2 = 400 \text{ KN / } m^2$$

$$1.33\sigma_{sol} = 1.33 \times 2 = 266 \text{ KN / } m^2$$

$$\sigma_{moy} = \frac{3.\sigma_{\max} + \sigma_{\min}}{4} \leq \sigma_{sol}$$

Les contraintes sont regroupées dans le tableau suivant:

Cas de chargement		Sens	e₀ (m)	$\sigma_{\scriptscriptstyle m max}$ (bar)	$\sigma_{_{ m min}}$ (bar)	$\sigma_{\scriptscriptstyle moy}$ (bar)
Situation		Sens H	0,3	0,42 ≤ 4	0,1	0,34<1.2
accidentelle		Sens B	0.003	0,163< 4	0,15	0,2<1.2
Situation Durable	ELU	Sens H	0,19	0,43<2,66	0.01	0,43<1.2
		Sens B	0,006	0,22<2,66	0.20	0,27<1.2
	ELS	Sens H	0,28	0,26<2,66	0,04	0,21<1.2
		Sens B	0,008	0,11<2,66	0,1	0,12<1.2

TableauX.2: Vérification des contraintes dans le sol.

Les contraintes moyennes ne sont vérifiée donc B= 1,2 H=1,2:

(RPA 99 v 2003.Art.10.1.5)

2.4 Vérification de la stabilité au renversement :
Dans le cas accidentel, il faut vérifier que:

$$e_0 \leq \begin{cases} \frac{B}{4} = \frac{1,2}{4} = 0, 3m \rightarrow sensB \\ \frac{H}{4} = \frac{1,2}{4} = 0, 3m \rightarrow sensH \end{cases}$$

sens $B: e_0 = 0.003m < 0.3m$ sens $H: e_0 = 0.3m < 0.3m$ Donc la vérification au renversement est satisfaite.

2.5. Détermination des armatures de la semelle:

On a deux conditions à vérifier :

$$(1) \begin{cases} e_0 \prec \frac{b}{6} \rightarrow sensB \\ e_0 \prec \frac{h}{6} \rightarrow sensH \end{cases}$$
$$(2) \begin{cases} e_0 \prec \frac{B}{24} \rightarrow sensB \\ e_0 < \frac{H}{24} \rightarrow sensH \end{cases}$$

Si les deux conditions sont vérifiées, les armatures seront calculées sous un effort normal fictif:

$$N' = N \times \left(1 + \frac{3 \times e_0}{B}\right) \to sensB$$
$$N' = N \times \left(1 + \frac{3 \times e_0}{H}\right) \to sensH$$

Si l'une des deux conditions n'est pas vérifiée, les armatures seront calculées sous un moment M₁

$$M_{1} = \left(4 \times B + 0, 3 \times b - 9 \times e_{0}\right) \left(\frac{\frac{B}{2} - 0, 35 \times b}{\frac{B}{2} - e_{0}}\right)^{2} \frac{N}{27} \rightarrow sensB$$

$$M_1 = \left(4 \times H + 0.3 \times h - 9 \times e_0\right) \left(\frac{\frac{H}{2} - 0.35 \times h}{\frac{H}{2} - e_0}\right)^2 \frac{N}{27} \rightarrow sensH$$

a. Situation accidentelle:

• Armatures parallèles à H=1,2m:

$$\begin{cases} e_0 = 0, 3 \ge \frac{0.375}{6} = 0,06m \\ \Rightarrow \text{Calcul de } M_1 \\ e_0 = 0, 3 \ge \frac{0.40}{24} = 0,016m \end{cases}$$
$$M_1 = (4 \times 1, 2 + 0, 3 \times 0,375 - 9 \times 0,3) \left(\frac{\frac{1,20}{2} - 0,35 \times 0,4}{\frac{1,20}{2} - 0,3}\right)^2 \times \frac{231.95}{27} \rightarrow sensH$$

*M*₁ = 29.14kn.m.

$$A_{s} = \frac{M_{1}}{z \times f_{st}}$$

avec $z = 0.9 \times d = 0.225m$

$$A_{s} = \frac{29.14 \times 10^{-3}}{0.225 \times 400} = 3.23 cm^{2}$$
$$A_{s} = 3.23 cm^{2}$$

Armatures parallèles à B=1,2m:

$$e_{0} = 0.003m \le \frac{0.4}{6} = 0.06m$$

$$e_{0} = 0.003m \le \frac{1.2}{24} = 0.05m$$

$$N' = N\left(1 + \frac{3 \times e_{0}}{B}\right)$$

$$N' = 230.95\left(1 + \frac{3 \times 0.003}{1.2}\right) = 232.68KN$$

$$A_s = \frac{232.68 \times 0.8}{8 \times 0.25 \times 348000} = 2.67 cm^2$$
$$A_s = 2.67 cm^2$$

a) Situation durable :

≻ A l'E.L.U :

Armatures parallèles à H=1,2m:

$$e_0 = 0.19m \ge \frac{0.375}{6} = 0.06m$$

 $e_0 = 0.19m \ge \frac{1.2}{24} = 0.05m$
donc ont calcul M_1

$$M_{1} = (4 \times 1, 2 + 0.3 \times 0.375 - 9 \times 0.19) \left(\frac{\frac{1,2}{2} - 0.35 \times 0.375}{\frac{1,2}{2} - 0.19}\right) \frac{311.05}{27} = 42.18 \text{KN.m}$$

 $M_1 = 42.18 KN.m$

$$A_{s} = \frac{M_{1}}{z \times f_{st}}$$

avec $z = 0.9 \times d = 0.225m$

$$A_{s} = \frac{42.18 \times 10^{-3}}{0.225 \times 400} = 4.68 cm^{2}$$
$$A_{s} = 4.68 cm^{2}$$

Armatures parallèle à B=1,2m:

$$e_0 = 0.006m \prec \frac{0.4}{6} = 0.06m$$

 $e_0 = 0.006m \prec \frac{1.2}{24} = 0.05m$

$$N' = N \left(1 + \frac{3 \times e_0}{B} \right)$$
$$N' = 311.05 \left(1 + \frac{3 \times 0,006}{1,2} \right) = 315.71 KN$$

$$A_s = \frac{315.71 \times 0.8}{8 \times 0.25 \times 348000} = 3,62 cm^2$$
$$A_s = 3.62 cm^2$$

• A l'E.L.S:

Armatures parallèles à H:

$$e_{0} = 0.28m \succ \frac{0.375}{6} = 0.06m$$

$$e_{0} = 0.28m \succ \frac{1,2}{24} = 0.05m$$
donc ont calcul M_{1}

$$M_{1} = (4 \times 1,2 + 0.3 \times 0.375 - 9 \times 0.28) \left(\frac{\frac{1,2}{2} - 0.35 \times 0.375}{\frac{1,2}{2} - 0.28}\right) \frac{157.07}{27} = 32.30 \text{ KN.m}$$

$$M_{1} = 32.30 \text{ KN.m}$$

$$A_{5} = \frac{32.30 \times 10^{-3}}{0.225 \times 400} = 3.58 \text{ cm}^{2}$$

$$A_{5} = 3.58 \text{ cm}^{2}$$

Armatures parallèles à B:

$$e_0 = 0.008m \le \frac{0.4}{6} = 0.06m$$

 $e_0 = 0.008m \le \frac{1.2}{24} = 0.05m$

$$N' = N \left(1 + \frac{3 \times e_0}{B} \right)$$
$$N' = 157.07 \left(1 + \frac{3 \times 0.008}{1.2} \right) = 160.21 KN$$

$$A_{s} = \frac{160.21 \times 0.8}{8 \times 0.25 \times 348000} = 1.84 cm^{2}$$
$$A_{s} = 1.84 cm^{2}$$

LII.4 2.6 Condition de non fragilité :

min $A_B = 0.23 \times \frac{f_{128}}{f_e} \times B \times h_1 = 0.23 \times \frac{2.1}{400} \times 120 \times 40 = 5.79 cm^2$ min $A_B = 5.79 cm^2$

 $\min A_{H} = 0.23 \times \frac{f_{t28}}{f_{e}} \times B \times h_{1} = 0.23 \times \frac{2.1}{400} \times 120 \times 37.5 = 5.48 cm^{2}$ $\min A_{H} = 5.48 cm^{2}$

Dispositions constructives:

Les armatures seront munies des crochets si : (Is>H/4 sens H et Is> B/4 sens B)

$$l_s = \frac{\varphi \times f_e}{4 \times 0, 6 \times \psi_s^2 \times f_{tj}}$$

l_s: longueur de scellement

$$\psi_s = 1, 5 \rightarrow HA$$

Suivant H :

$$l_s = \frac{1.2 \times 400}{2.4 \times 1.5^2 \times 2.1} = 42.32 cm \succ \frac{H}{4} = 30 cm$$

Suivant B :

$$l = \frac{1.2 \times 400}{2.4 \times 1.5^2 \times 2.1} = 42.32 cm \prec \frac{H}{4} = 30 cm$$

.Donc les armatures ne seront pas munies de crochets

Tous les résultats sont regroupés dans le tableau suivant:

Armatures	Situation accidentelle	Situ dur	ation able	A _{min} (cm²)	Nombre De	A _s (cm²)	l₅ (cm)	S _t (cm)
		ELU	ELS		barre			
A _s (H)	3,23	4.68	3.58	5.48	6HA12	6.79	42.32	23
A _s (B)	2,67	3.62	1.87	5.79	6HA12	6.79	42.32	23

LIII

LIV Figure X.2: Schéma de ferraillage de la semelle des poteaux.

LVIX.3 Fondation sous potelet :

Nous avons des potelets HEA 140, la surface de la platine du potelet S :

$$S = a.b \quad avec \quad Lp = 50cm \quad et \quad Bp = 35cm$$

$$\frac{A}{B} = \frac{a}{b} = \frac{50}{35} = 1.43 \implies A = 1.43 \times B$$

$$\sigma_{c} = \frac{N_{sd}}{A.B} = \frac{N_{sd}}{1.4..B^{2}} \le \sigma_{sol} \quad avec \quad \sigma_{sol} = 0.2MPa$$

$$\implies B = \sqrt{\frac{103.61}{0.2 \times 1.43}} = 19.03cm$$

Soit B =80 cm, d'où on prend A=120cm

• Hauteur de la semelle :

$$d \ge \max \begin{cases} \frac{A-a}{4} = \frac{120-60}{4} = 15cm \\ \frac{B-b}{4} = \frac{80-38}{4} = 10,5cm \end{cases}$$
$$d \ge 15cm$$

On prend d=20cm

LV.1 3.1. L'encrage :

$$h_t = d + c = 20 + 5 = 25cm$$

 $\frac{h_t}{3} \le h_p \le \frac{h_t}{2} \Longrightarrow 8,33 \le h_p \le 12,5$
Avec C=5cm

Soit $h_p = 10$ cm

On doit vérifier que:

$$\sigma_{c} = \frac{N_{e}}{S} \leq \sigma_{sol}$$
Avec : $N_{t} = N_{sd} + 1.35P_{s}$
 P_{s} : poids de la semelle
$$\gamma = 25KN / m^{3}$$
 $P_{s} = 0.8 \times 1.20 \times 0.2 \times 25 = 4.8KN$

D'où

$$N_t = 103.6 + 4.8 = 108.4 KN$$

$$\sigma_c = \frac{108.4}{80 \times 120} \le 1.12 < \sigma_{sol} = 2MPa$$

3.2 Calcul des armatures :

calcul de ferraillage par la méthode des bielles : la semelle se comporte en une semelle isolée la transmission de N par des bielles

$$F_{X} = \frac{N_{t}(A-a)}{8d} = \frac{108.4(120-50)}{8 \times 20} = 47.42KN$$

$$F_{X} = \frac{N_{t}(B-b)}{8d} = \frac{108.4(80-35)}{8 \times 20} = 30.48KN$$

$$\frac{F_{X}}{\overline{\sigma}_{s}} = A_{X} = \frac{47.42 \times 10^{3}}{400/1.15} = 1.36cm^{2}$$

$$\frac{F_{Y}}{\overline{\sigma}_{s}} = A_{X} = \frac{30.48 \times 10^{3}}{400/1.15} = 0.87cm^{2}$$

LV.2 3.3. Condition de non fragilité :

$$A_{X} \ge A_{X\min}$$

$$A_{Y} \ge A_{Y\min}$$

$$Avec : F_{t28} = 2,1Mpa, fe = 400Mpa$$

$$A_{X\min} = 0,23 \left(\frac{F_{t28}}{fe}\right) A \times d = 0,23 \left(\frac{2,1}{400}\right) 120 \times 20$$

$$A_{X\min} = 2,89cm^{2}$$

$$A_{Y\min} = 0,23 \left(\frac{F_{t28}}{fe}\right) B \times d = 0,23 \left(\frac{2,1}{400}\right) 80 \times 20$$

$$A_{Y\min} = 1,93cm^{2}$$

$$On : \begin{cases} A_{X\min} \rangle A_{X} \Longrightarrow A_{X} = A_{X\min} = 2,89cm^{2} \\ A_{Y\min} \rangle A_{Y} \Longrightarrow A_{Y} = A_{Y\min} = 1,93cm^{2} \end{cases}$$

Dans le plan xx', on prend $4HA12=4,52cm^2$, avec un espacement de 35cm entre deux barres. Dans le plan yy', on prend $4HA10=3,14cm^2$, avec un espacement de 25cm entre deux barres.

LVI X.4. Calcul des longrines :

Les longrines sont des éléments appartenant à l'infrastructure et qui servent à rigidifier l'ensemble des semelles. Elles sont soumises à des forces axiales de traction

LVI.1 4.1 Pré dimensionnement :

Les dimensions minimales de la section transversale des longrines d'après le RPA99vs2003 sont:

25 cm x 30 cm : sites de catégorie S₂ et S₃

30 cm x 30 cm : sites de catégorie S₄

Pour notre cas on optera pour des longrines de section :(30x35) cm²

LVI.2 4.2 Ferraillage :

Les longrines doivent être calculées pour résister à l'action d'une force de traction qui est égale:

$$N_t = \left(\frac{N}{\alpha}\right) \ge 20KN$$
 (RPA99V2003.Art.10.1.1.b)

 α : coefficient fonction de la zone sismique et de la catégorie de site considérée

 $N_u^{\rm max}$: L'effort normal ultime du poteau le plus sollicité.

 α = 12 (zone IIa, site S3)

$$ELU \rightarrow N_{t} = \left(\frac{230.6}{12}\right) = 19.21KN$$
$$ELS \rightarrow N_{t} = \left(\frac{154.25}{12}\right) = 12.85KN$$

$$A_s = \frac{N_t}{\sigma_s}$$

$$ELU \to A_{s} = \left(\frac{19.21 \times 10^{-3}}{348}\right) = 0.55 cm^{2}$$
$$ELS \to A_{s} = \left(\frac{12.85 \times 10^{-3}}{201}\right) = 0.63 cm^{2}$$

$$A_{\min} = 0.6\% B = 0.6 \times 10^{-2} \times 30 \times 35 = 4.5 cm^2$$
$$A_{\min} = 6.3 cm^2$$

Donc on ferraille avec Amin

Soit 8HA12 repartie sur toute la section, avec $A_s = 9,05 \text{ cm}^2$

LVI.3 4.3 Vérification de la condition de non fragilité : $A_{s} \geq \frac{B \times f_{t28}}{f_{e}}$ $A_{s} \geq \frac{30 \times 35 \times 2,1}{400} = 5.51 cm^{2}$ $5.51 cm^{2} \prec 9,05 cm^{2} \qquad vérifiée$

LVI.4 4.4. Armatures transversales :

Soit des cadres de diamètre 8mm dont l'espacement est inférieur à : min (20 cm, 15Ф)

St<min (20cm, 15*0,6) = 9cm

Les cadres sont espacés de 10 cm en travée et de 8 cm en zone nodale.

Figure X.3 : Schéma de ferraillage des longrines.

LVII X.5. Ferraillage des futs :

Les fondations sont ancrées à D=2m; l'assemblage platine massif doit être audessus du sol ; donc on prévoit un poteau en B.A (fût) de dimension (90*70) cm².

Le fût est soumis à un effort normal, un effort tranchant et un moment fléchissant. Le ferraillage de la section sera calculé en flexion composé.

On calculera uniquement le fût le plus sollicité ; par les efforts (M. N.T)

On a:
$$\begin{cases} N_{u} = 304.8KN \\ M_{u} = 0KN \\ V_{u} = 0.22KN \end{cases}$$

$$e = \frac{M_{u}}{N_{u}} = \frac{0}{304.8} = 0m \\ \frac{h}{6} = \frac{0.9}{6} = 0.15m \\ e \prec \frac{h}{6} \rightarrow La \text{ sec tion est entièrement comprimée} \\ M_{uA} = M_{u} + N_{u} \left(d - \frac{h}{2} \right) = 0 + 304.8 \left(0.85 - \frac{0.9}{2} \right) = 121.92 \\ N_{u} \left(d - d' \right) - M_{uA} = 304.8 (0.85 - 0.05) - 121.92 = 121.92KN.m \quad (I) \\ (0.337 \times d - 0.81 \times d') \times b \times h \times f_{ub} = 2200.26KN.m \quad (II) \\ (I) \prec (II) \Rightarrow A = 0 \\ A' = \frac{N_{u} - \psi \times b \times h \times f_{bu}}{f_{st}} \end{cases}$$

$$avec: \psi = \frac{0.357 + \frac{N_u(d-d') - M_{uA}}{b \times h^2 \times f_{bu}}}{0.857 - \frac{d'}{h}} = \frac{0.357 + \frac{304.8(0.85 - 0.05) - 121.92}{0.7 \times 0.9^2 \times 14.2 \times 10^3}}{0.857 - \frac{0.05}{0.9}} = 0.41$$

 $A' = -25.52 cm^2 < 0$ donc on ferraille avec $A_{s.min}$

Selon RPA99/2003 (art 7.4.2.1) la section minimale d'armature longitudinale est :

$$A_{s,min} = 0.9\% b \times h = 56.7 cm^2$$

Le choix de la section est : $A_{s,min} = 14 HA14 + 16 HA16$

Armatures transversales

Soit trois cadres Φ 10 et des épingles de diamètre Φ 8 dont l'espacement max est donné par le RPA

Dans la zone nodale :

 $S_t \leq 10cm \rightarrow soit S_t = 10cm$

Dans la zone courante :

$$S_t \le \min(\frac{b}{2}; \frac{h}{2}; 10\phi_1) = 14 \text{ cm} \rightarrow \text{ soit } S_t = 14 \text{ cm}$$

FigureX.5: Schéma de ferraillage des futs.

• XI.1 Introduction :

Après le dimensionnement et la vérification des éléments de la structure, on doit vérifier la stabilité d'ensemble sous l'action du vent et du séisme.

La stabilité de la structure est assurée si :

Σ Moments résistants (stabilisateurs) $\geq \Sigma$ moments renversants.

 $\Sigma M_{st} \ge \Sigma M_R$

XI.2. Action d'ensemble

2.1. Calcul des forces à l'aide des pressions de surfaces

La force exercée par le vent F_w agissant sur une construction ou un élément de construction peut être déterminé par sommation vectorielle des forces $F_{w,e}$, $F_{w,i}$, et F_{fr} respectivement données par :

	[RNV2013, P : 58 ; Paragraphe 2.6.2]
-Forces de frottements :	$F_{fr} = C_{fr} * q_p(z_e) * A_{fr}$
-Forces intérieures :	$F_{w,i} = \sum W_i * A_{ref}$
-Forces extérieures :	$F_{w,e} = C_d * \sum W_e * A_{ref}$

2.1.1 Vent sur pignon (sens V2) a/ Forces extérieures

on a :
$$F_{w,e} = C_d * \sum W_e * A_{ref} \text{ et } W_e = q_p(z_e) * C_{pe}$$

Parois verticales:

Zone	C _d	$W_e(kN/m^2)$	A _{ref} (m ²)	$W_e * A_{ref}(kN)$
Α	1	-0.517	18	-9.30
В	1	-0.413	72	-29.73
С	1	-0.258	306	-78.94
D	1	0.413	216	89.20
Ε	1	-0.155	216	-33.48

Tableau XI.1. Valeurs des forces extérieures pour les parois verticales sens V2

Donc $F_{w,e}$ = -62.25 KN

Toiture :

Zone	C _d	$W_e(kN/m^2)$	$A_{ref}(m^2)$	$W_e * A_{ref}(kN)$
\mathbf{F}_{sup}	1	-1.55	5.625	-8.718
$\mathbf{F_{inf}}$	1	-1.38	5.625	-7.762
G	1	-1.06	42.75	-45.315
Н	1	-0.39	216	-84.24
Ι	1	-0.33	2106	-665.28

Tableau XI.2. Valeurs des forces extérieures pour la toiture sens V2

Donc $F_{w,e}$ = -811.315kN

b/ Forces intérieures:

On a :
$$F_{w,i} = \sum W_i * A_{ref}$$
 et $W_i = q_p(z_e) * C_{pi}$

Zone	$A_{ref}(m^2)$	$W_i (kN/m^2)$	$W_i * A_{ref}(kN)$
Α	18	-0.087	-1.582
В	72	-0.087	-6.264
С	306	-0.087	-26.622
D	216	-0.087	-18.792
Ε	216	-0.087	-18.792

Parois verticales:

Tableau XI.3. Valeurs des forces intérieures pour les parois verticales sens V2

Donc F_{wi} = -72.052KN

 Toi 	ture :		
Zone	$A_{ref}(m^2)$	W_i (KN/m ²)	$W_i * A_{ref}$ (N)
$\mathbf{F}_{\mathbf{sup}}$	5.625	-0.09	-0.506
$\mathbf{F_{inf}}$	5.625	-0.09	-0.506
G	42.75	-0.09	-3.847
Н	216	-0.09	-19.44
Ι	2106	-0.09	-189.54

Tableau XI.4. Valeurs des forces intérieures pour La toiture sens V2

Donc : F_{wi} = -231.839KN

c / Forces de frottements :

 $On \; a: \qquad F_{fr} = C_{fr} * \; q_p(z_e) * \; A_{fr}$ $C_{fr} \; est \; le \; coefficient \; de \; frottement \; ;$

on a des ondulations perpendiculaires au vent, donc c'est égal à 0.04

[RNV2013, P: 59; Tableau 2.8]

Parois verticales :

Aire de la surface extérieure parallèle au vent :

 $A_{fr} = 2*d*h = 2*66*7.5 = 990m^2$

Aire de la surface extérieure perpendiculaire au vent :

$$A = (2 \times 36 \times 7.5 = 540) \times 4 = 2160m^2$$

On a l'aire totale de toute les surfaces parallèles au vent est inférieure à 4 fois l'aire totale de toute les surfaces extérieures perpendiculaire au vent, donc il n'ya pas lieu de calculer les forces de frottement.

[RNV2013, P: 59; Paragraphe 2.6.3]

Toiture

 $q_p(z_e) = 577.5 \text{N/m}^2$ $A_{fr} = (9.12*4)*66 = 2407.68 \text{m}^2$ $F_{fr} = 0.04*577.5*2407.68$ $F_{fr} = 55617.40 \text{N}$

[RNV2013, P: 60; Tableau 2.9]

d / Force totale exercée par le vent F_w

Parois verticales

 F_W = -134.302.702KN

Toiture

 F_{W} = - 1043.154KN

2.1.2. Vent sur long pan (sens V1) a/ Forces extérieures

on a:
$$F_{w,e} = C_d * \sum W_e * A_{ref}$$
 et $W_e = q_p(z_e) * C_{pe}$

Parois verticales:

Zone	C_d	$W_e (KN/m^2)$	A_{ref} (m ²)	W _e * A _{ref} (N)
Α	1	-0.517	18	-9.30
В	1	-0.413	72	-29.736
С	1	-0.258	126	-32.508
D	1	0.413	396	163.548
Ε	1	-0.155	396	-61.38

Tableau XI.5. Valeurs des forces extérieures pour Les parois verticales sens V2

Donc $F_{we} = 30.638 KN$

Zone	Cd	$W_e(KN/m^2)$	$A_{ref}(m^2)$	$W_e * A_{ref}(KN)$
F	1	-0.773	5.625	-4.348
F	1	-0.773	5.625	-4.348
G	1	-0.588	87.75	-51.597
Η	1	-0.265	1089	-288.585

Toiture

Ι	1	-0.577	1089	-628.353
J	1	-0.346	99	-34.254

Tableau XI.6. Valeurs des forces extérieures pour La toiture sens V1

Donc : F_{we} = -1011.485KN

b / Forces intérieures :

 $On \ a: \qquad F_{w,i} = \sum W_i * A_{ref} \quad et \quad W_i = q_p(z_e) * C_{pi}$

Parois verticales:

Zone	$A_{ref}(m^2)$	W_i (KN/m ²)	$W_i * A_{ref}(KN)$
Α	18	-0.08	-1.44
В	72	-0.08	-5.76
С	126	-0.08	-10.08
D	396	-0.08	-31.68
Ε	396	-0.08	-31.68

Tableau XI.7. Valeurs des forces intérieures pour les parois verticales sens V1

Donc F_{wi} = - 80.64KN

• To	oiture		
Zone	$A_{ref}(m^2)$	W_i (KN/m ²)	W _i * A _{ref} (KN)
F	5.625	-0.09	-0.506
F	5.625	-0.09	-0.506
G	87.75	-0.09	-7.897
Н	1089	-0.09	-98.01
Ι	1089	-0.09	-98.01
J	99	-0.09	-8.91

Tableau XI.8. Valeurs des forces intérieures pour La toiture sens V1

Donc $F_{w,i} = -213.869$ KN

c / Forces de frottements

[RNV2013, P: 59; Tableau 2.8]

Parois verticales :

Aire de la surface extérieure parallèle au vent :

 $A_{fr} = 2*d*h = 2*36*7.5 = 540m^2$

Aire de la surface extérieure perpendiculaire au vent :

 $A = (2 \times 66 \times 7.5 = 990) \times 4 = 3960m^2$

On a l'aire totale de toute les surfaces parallèles au vent est inférieure à 4 fois l'aire totale de toute les surfaces extérieures perpendiculaire au vent, donc il n'ya pas lieu de calculer les forces de

Toiture

Aire de la surface extérieure parallèle au vent :

 $A_{fr}=2*2*18=72 \text{ m}^2$

Aire de la surface extérieure perpendiculaire au vent :

 $A = (4 \times 66 \times 9.12 = 2407.68) \times 4 = 9630.72m^2$

On a l'aire totale de toute les surfaces parallèles au vent est inférieure à 4 fois l'aire totale de toute les surfaces extérieures perpendiculaire au vent, donc il n'ya pas lieu de calculer les forces de

d / Force totale exercée par le vent Fw

Parois verticales

 F_{W} = -50.002KN

Toiture

 F_{W} = -1225.354KN

XI.3 : Détermination des moments renversants (M_R)

• 3.1 : Cas du vent :

L'action du vent est décomposée en deux composantes :

- Une composante horizontale (Fwe h)

- Une composante verticale (Fwe v)

a) Vent perpendiculaire au PIGNON V1 :

Forces extérieurs : Fwe= $C_d \times \sum W_e \times A_{ref}$

$$X_T = \frac{\sum T_i \cdot x_i}{\sum T_i} , \quad Y_T = \frac{\sum T_i \cdot y_i}{\sum T_i} , \quad Z_T = \frac{\sum T_i \cdot z_i}{\sum T_i}$$

$$X_U = \frac{\sum U_{ii}.x_i}{\sum U_i} \quad ; \quad Y_U = \frac{\sum U_i.y_i}{\sum U_i} \quad ; \quad Z_U = \frac{\sum U_i.z_i}{\sum U_i}$$

zone	Fwe _H (KN)	Fwe _V (KN)	Point d'application		
			X(m)	Y(m)	Z(m)
D	89.2	0	18	0	3
E	-33.48	0	18	66	3
F ₁	0	-8.72	1.87	0.75	6.2
F2	0	-7.76	34.15	0.75	6.2
G	0	-45.31	14.25	0.75	6.79
Н	0	-84.24	18	3	7
Ι	0	-665.2	18	29.25	7
F _r (toi)	-	-	-	-	-
F _r (par)	-	-	-	-	-
	F _{weH} = 55.72	-	18	39.65	3
	-	F _{wev} =-	17.7	24.35	6.97
		811.23			

 Tableau XI.9. Forces extérieurs sens V1.

Forces intérieurs : $\mathbf{F}_{w,i} = \sum W_i \times A_{ref}$

zone	Fwe _H (KN)	Fwe _V (KN)	Point d'application				
			X(m)	Y(m)	Z(m)		
D	-18.79	0	18	0	3		
E	-18.79	0	18	66	3		
F ₁	0	-0.506	1.87	0.75	6.2		
F2	0	-0.506	34.15	0.75	6.2		
G	0	3.84	14.25	0.75	6.79		
Н	0	-19.44	18	3	7		
Ι	0	-189.54	18	29.25	7		

F _r (toi)	-	-	-	-	-
F _r (par)	-	-	-	-	-
	F _{weH} = -37.58	-	18	33	3
	-	F _{weV} =-	18.07	18.23	7.11
		206.12			

Tableau XI.10. Forces intérieurs sens V1.

La force résultante:

	Action	Action	Coordonn	Coordonnées du point d'application						
	horizontale	verticale	X	у	Z					
F _{w,e}	55.72	0	18	-39.65	3					
F _{w,e}	0	-811.23	17.7	24.35	6.97					
F _{w,i}	-37.58	0	18	33	3					
F _{w,i}	0	-206.12	18.07	18.23	7.11					
F _{fr(p.v)}	0	0	-	-	-					
F _{fr(toiture)}	0	0	-	-	-					
Résultante Fw _H	-18.14	0	18	123.65	3					
Résultante Fwv	0	-1017.35	17.8	23.11	6.99					

Tableau XI.11. La force Fw résultante cas V2

Calcul du moment de renversement :

 $M_{R/XX}$: moment renversant par rapport à l'axe XX

 $M_{R/YY}$: moment renversant par rapport à l'axe YY

 $M_{R/XX}$ = Fv*Yv = -1017.35*23.11 =-23510.95 KN.m

M_{R/YY} = Fh*Xh = 18.14*18 = 326.52 KN.m

> Calcul du moment stabilisant : $M_s = w \times 13$

Avec :

W=2764.05 KN : Poids totale du bâtiment.

 $M_s = 2764.05 \times 13 = 35932.65$ KN.m

 $M_r \prec M_s$: La stabilité longitudinale est vérifiée.

b) Vent perpendiculaire au long pan sens V1:

zone	Fwe _H (KN)	Fwe _V (KN)	Point d'application				
			X(m)	Y(m)	Z(m)		
D	163.54	0	0	33	3		
E	-61.38	0	18	33	3		
F _{sup}	0	-4.34	1.87	0.75	6.2		
F _{inf}		-4.34	1.87	64.13	6.2		
G	0	-51.59	1.87	33	6.2		
Н	0	-288.58	288.58 9		6.5		
Ι	0	-628.35	17.25	33	6.95		
J	0	-34.25	18	33	7		
	FweH=102.16	-	-10.81	33	3		
	-	Fw _e v =-977.2	14.49	33	7.12		

Forces extérieurs : $Fwe = C_d \times \sum W_e \times A_{ref}$

Tableau XI.12. Forces extérieurs V2.

Forces intérieurs : $\mathbf{F}_{w,i} = \sum W_i \times A_{ref}$

zone	Fwe _H (KN)	Fwev	Point d'application				
		(KN)	X(m)	Y(m)	Z(m)		
D	-31.68	0	0	33	3		
Е	-31.68	0	18	66	3		
F _{sup}	0	-0.506	1.87	0.75	6.2		
F _{inf}		-0.506	1.87	64.13	6.2		
G	0	-7.89	1.87	33	6.2		
Н	0	-98.21	9	33	6.5		
Ι	0	-98.01	17.25	33	6.95		
J	0	-8.91	18	33	7		
	FwiH=-63.36	-	9	33	3		
	-	Fw _{iV} =-214.03	12.84	33	6.70		

 Tableau XI.13.Forces intérieurs sens V2.

La force résultante:

	Action	Action	Coordonn	application	
	horizontale	verticale	X	У	Z
F _{w,e}	102.16	0	-10.81	33	3
F _{w,e}	0	-977.2	14.49	33	7.12
F _{w,i}	-63.36	0	9	33	3
F _{w,i}	0	-214.03	13.84	33	6.7
F _{fr(p.v)}	0	0	-	-	-
F _{fr(toiture)}	0	0	-	-	-
Résultante Fw _H	38.8	0	43.15	33	3
Résultante Fw_V	0	-1191.23	14.37	33	7.04

Tableau XI.14.La force Fw résultante cas V3

Calcul du moment de renversement :

 $M_{R/XX}$: moment renversant par rapport à l'axe XX

 $M_{R/YY}$: moment renversant par rapport à l'axe YY

M_{R/XX} = Fv*Yv = -1191.23*33 =-39310.59 KN.m

M_{R/YY} = Fh*Xh = 38.8*43.15 = 1674.22 KN.m

Calcul du moment stabilisant :

 $M_s = w \times 35$

Avec :

W=2764.05 KN : Poids totale du bâtiment. $M_s = 2764.05 \times 35 = 96741.75$ KN.m Tous les moments résistants (stabilisateurs) sont supérieurs aux moments renversants, donc il n'y'a pas de risque au renversement et la stabilité d'ensemble est assurée.

• 3.2 Cas de séisme

Le moment de renversement qui peut être par l'action causé par l'action sismique doit être calculé par rapport au niveau de contacte sol –fondation.

a) Réaction à la base :

Le mode			Réaction		
	$\mathbf{F}_{\mathbf{x}}(\mathbf{KN})$	F _y (KN)	F _z (KN)	M _{xx} (KN.m)	M _{yy} (KN.m)
CQC	17.43	3.23	52.17	0.3	46.66

Tableau XI.15. Réactions à la base due aux effets sismiques.

N.B : Vu que l'effort Fz est positif, donc il ne crée aucun moment de renversement.

CQC : combinaison quadratique complète.

 $M_{R/xx} = Mxx + F_Z \times Y_G$ $M_{R/yy} = Myy + F_Z \times X_G$

 $M_R/xx=0.3+52.17 \times 13=678.5KN.m$

M_R/yy= 44.66+52.17 × 35 = 1870.35KN.m

b) Calcul des moments résistant (stabilisateurs) :

- Poids de la structure : P_T = 2764.05 KN

1) Moment résistant $M_{ST/xx} = \sum P_i \times Y_i = P_T \times Y_G$ $M_{ST/yy} = \sum P_i \times X_i = P_T \times X_G$ $- M_{st/XX} = 2764.05 \times 13 = 35932.65 \text{ KN.m}$ $- M_{st/YY} = 2764.05 \times 35 = 96741.75 \text{ KN.m}$

	M _R (F	KN.m)	M _{st} (F	KN.m)	0,8 M _{st} (KN.m)		
Cas du	Par rapport	Par rapport	Par rapport	Par rapport	Par rapport	Par rapport	
séisme	à l'axe x-x	à l'axe y-y	à l'axe x-x	à l'axe y-y	à l'axe x-x	à l'axe y-y	
	678.5	1870.35	35932.65	96741.75	28764.12	77393.4	

Tableau XI.16. Vérification au renversement sous l'effet du séisme

Tous les moments résistants (stabilisateurs) sont supérieurs aux moments renversants, donc il n'y'a pas de risque au renversement et la stabilité d'ensemble est assurée.

•

• X.4. Conclusion :

La stabilité d'ensemble vis-à-vis du vent et du séisme respectivement est vérifiée ; donc notre construction est stable.

Conclusion générale :

L'ingénieur en génie civil est censé concevoir des édifices et garantir leur bon fonctionnement, tout en respectant les règles parasismiques en vigueur, il doit tenir en compte de plusieurs critères dont la sécurité, l'économie et l'aspect architectural.

Dans ce contexte, notre projet de fin d'études nous a permis d'avoir un aperçu sur la construction métallique et surtout d'appliquer les connaissances acquises durant notre cursus sur un projet réel :

- Les actions du vent sont les plus défavorables dans les structures métalliques.
- L'agression sismique constitue un vrai test qui met le bâtiment a l'épreuve, pour ce la tout ouvrage doit être réalisé conformément aux normes et règles parasismiques.
- L'utilisation du logiciel ROBOT STRUCTURAL ANALYSES dans notre étude nous a permis de faire un calcul tridimensionnel et dynamique, dans le but de faciliter les calculs, d'avoir une meilleure approche de la réalité.
- La disposition de contreventement joue un rôle très important dans le comportement global de la structure.

Enfin, notre objectif final lors de cette étude est l'obtention d'un ouvrage résistant et garantissant la sécurité des vies humaines et de leurs biens, nous souhaitons que ce travail serve comme support nos futurs étudiants qui seront intéressés par cette voie.

Références bibliographiques

DTR. C- 2-4.7 ; Règlement neige et vent « RNV2013 ».

DTR B C 2 48; Règles Parasismiques Algériennes RPA99/Version 2003,*Centre de Recherche Appliquée en Génie Parasismique, Alger*

>DTR.B. C- 2.2 ; Charge permanentes et charges d'exploitation, *Centre de Recherche Appliquée en Génie Parasismique, Alger*

≻EUROCODE 3 ; Calcul des éléments résistants d'une construction métallique. Office des publications universitaires, 2009.

Lahlou Dehmani; calcul des structures métalliques selon l'EC3/ Edition Eyrolles Paris 2005

≻Cours de 1^{ér} année master
 ✓ charpente métallique : M^r A/Becheur.

B.A.E.L 91 : Béton Armé aux Etats Limites, troisième tirage, Eyrolles, 1997.

≻Projets de fin d'étude (Université de BEJAIA).

ANNEXES 1

	2 APPUIS										3 APF	PUIS				
								PORTÉE	Epaisseurs nominales de l'âme							
	120	100	80	60	50	40	30	(m)	30	40	50	60	80	100	120	
PRESSION						330	270	2.00								PRESSION
DEPRESSION						240	240	2,00								DEPRESSION
PRESSION					280	260	210	2.25								PRESSION
DEPRESSION					220	220	220	2,25								DEPRESSION
PRESSION			290	290	230	200	150	2.50	240	275						PRESSION
DEPRESSION			220	190	190	190	190	2,50	190	190						DEPRESSION
PRESSION			260	260	215	170	140	2.75	195	225	260					PRESSION
DEPRESSION			205	170	170	170	170	2,75	170	170	170					DEPRESSION
PRESSION	220	220	220	220	185	140	115	2.00	165	190	225	250	250			PRESSION
DEPRESSION	190	190	190	155	155	155	155	3,00	155	155	155	155	190			DEPRESSION
PRESSION	195	195	195	195	155	120	100		140	165	190	220	220	220	220	PRESSION
DEPRESSION	175	175	175	140	140	140	140	3,25	140	140	140	140	175	175	175	DEPRESSION
PRESSION	170	170	170	170	130	100	75		120	140	165	200	200	200	200	PRESSION
DEPRESSION	160	160	160	130	130	130	130	3,50	130	130	130	130	160	160	160	DEPRESSION
PRESSION	150	150	150	150	110	85	70		105	125	145	180	180	180	180	PRESSION
DEPRESSION	150	150	150	115	115	115	115	3,75	115	115	115	115	150	150	150	DEPRESSION
PRESSION	130	130	130	130	95	70	60		90	110	125	160	160	160	160	PRESSION
DEPRESSION	140	140	140	105	105	105	105	4,00	105	105	105	105	140	140	140	DEPRESSION

Les charges maximales admissibles en daN/m2 en fonction des portées.

ANNEXES 2

Tableau des armatures

Φ (mm)	5	6	8	10	12	14	16	20	25	32	40
1	0,20	0,28	0,50	0,79	1,13	1,54	2,01	3,14	4,91	8,04	12,57
2	0,39	0,57	1,01	1,57	2,26	3,08	4,02	6,28	9,82	16,08	25,13
3	0,59	0,85	1,51	2,36	3,39	4,62	6,03	9,42	14,73	24,13	37,7
4	0,79	1,13	2,01	3,14	4,52	6,16	8,04	12,57	19,64	32,17	50,27
5	0,98	1,41	2,51	3,93	5,65	7,72	10,05	15,71	24,54	40,21	62,83
6	1,18	1,70	3,02	4,71	6,79	9,24	12,06	18,85	29,45	48,25	75,40
7	1,37	1,98	3,52	5,50	7,92	10,78	14,07	21,99	34,36	56,30	87,96
8	1,57	2,26	4,02	6,28	9,05	12,32	16,08	25,13	39,27	64,34	100,53
9	1,77	2,54	4,52	7,07	10,18	13,85	18,10	28,27	44,18	72,38	113,10
10	1,96	2,83	5,03	7,85	11,31	15,39	20,11	31,42	49,09	80,42	125,66
11	2,16	3,11	5,53	8,64	12,44	16,93	22,12	34,56	54,00	88,47	138,23
12	2,36	3,39	6,03	9,42	13,57	18,47	24,13	37,70	58,91	96,51	150,80
13	2,55	3,68	6,53	10,21	14,70	20,01	26,14	40,84	63,81	104,55	163,36
14	2,75	3,96	7,04	11,00	15,38	21,55	28,15	43,98	68,72	112,59	175,93
15	2,95	4,24	7,54	11,78	16,96	23,09	30,16	47,12	73,63	120,64	188,50
16	3,14	4,52	8,04	12,57	18,10	24,63	32,17	50,27	78,54	128,68	201,06
17	3,34	4,81	8,55	13,35	19,23	26,17	34,18	53,41	83,45	136,72	213,63
18	3,53	5,09	9,05	14,14	20,36	27,71	36,19	56,55	88,36	144,76	226,20
19	3,73	5,37	9,55	14,92	21,49	29,25	38,20	59,69	93,27	152,81	238,76
20	3,93	5,65	10,05	15,71	22,62	30,79	40,21	62,83	98,17	160,85	251,33

Section en cm² de N armatures de diamètre Φ (mm)

ANNEXE 3

Valeur de χ en f	fonction d	le λ
-----------------------	------------	------

	Coefficients de réduction										
$\overline{\lambda}$	Valeur	s de χ pour la cou	urbe de flambe	ment							
	а	b	с	d							
0,2	1,0000	1,0000	1,0000	1,0000							
0,3	0,9775	0,9641	0,9491	0,9235							
0,4	0,9528	0,9261	0,8973	0,8504							
0,5	0,9243	0,8842	0,8430	0,7793							
0,6	0,8900	0,8371	0,7854	0,7100							
0,7	0,8477	0,7837	0,7247	0,6431							
0,8	0,7957	0,7245	0,6622	0,5797							
0,9	0,7339	0,6612	0,5998	0,5208							
1,0	0,6656	0,5970	0,5399	0,4671							
1,1	0,5960	0,5352	0,4842	0,4189							
1,2	0,5300	0,4781	0,4338	0,3762							
1,3	0,4703	0,4269	0,3888	0,3385							
1,4	0,4179	0,3817	0,3492	0,3055							
1,5	0,3724	0,3422	0,3145	0,2766							
1,6	0,3332	0,3079	0,2842	0,2512							
1,7	0,2994	0,2781	0,2577	0,2289							
1,8	0,2702	0,2521	0,2345	0,2093							
1,9	0,2449	0,2294	0,2141	0,1920							
2,0	0,2229	0,2095	0,1962	0,1766							
2,1	0,2036	0,1920	0,1803	0,1630							
2,2	0,1867	0,1765	0,1662	0,1508							
2,3	0,1717	0,1628	0,1537	0,1399							
2,4	0,1585	0,1506	0,1425	0,1302							
2,5	0,1467	0,1397	0,1325	0,1214							
2,6	0,1362	0,1299	0,1234	0,1134							
2,7	0,1267	0,1211	0,1153	0,1062							
2,8	0,1182	0,1132	0,1079	0,0997							
2,9	0,1105	0,1060	0,1012	0,0937							
3,0	0,1036	0,0994	0,0951	0,0882							
				1							

ANNEXES 4

Type de Section	limites	axe de flambement	courbe de flamberner
Sections en I laminées	h / b > 1,2 : t _f ≤ 40 mm	y - y z - z	a b
h y y	40 mm < t _f ≤ 100 mm	y - y z - z	b c
	h / b ≤ 1,2 : t _f ≤ 100 mm	y - y z - z	b c
	t _f > 100 mm	y - y z - z	d d
Sections en I soudées			
	t _f ≤ 40 mm	y - y z - z	b c
yy	t _f > 40 mm	y - y z - z	c d
Sections creuses	laminées à chaud	quel qu'il soit	а
	formées à froid - en utilisant f _{yb} *)	quel qu'il soit	b
	formées à froid - en utilisant f _{ya} *)	quel qu'il soit	С
Caissons soudés	d'une manière générale (sauf ci-dessous)	quel qu'il soit	b
	b / $t_{\rm f} < 30$	V - V	с
y y y	h / t _w < 30	Z - Z	С
ections en U, L, T et sections pleines			
		quel qu'il soit	с

Diagramme des moments	Facteur de moment uniforme équivalent β_M
Moments d'extrémité $M_1 \qquad	$\beta_{M,\psi} = 1,8-0,7\psi$
Moment crée par des forces latérales dans le plan	$\beta_{M,Q} = 1,3$
Υ ↑ MQ	$\beta_{M,Q} = 1,4$
Moment créé par des forces latérales dans le plan et des moments d'extrémité	
Ma TAM	$\beta_{\mathbf{M}} = \beta_{\mathbf{m}}, \psi + \frac{M_{\mathbf{Q}}}{\Delta \mathbf{M}} (\beta_{\mathbf{M},\mathbf{Q}} - \beta_{\mathbf{M}}, \psi)$
MQ AM	$M_Q = MaxM $ dû aux charges transversales seulement
	max M pour diagrammes
	de moment sans
· YTTRITTA	changement de signe
M1 AM	$ \max M + \min M \text{ pour diagrammes} $
Man	de moment avec
	changement de signe

Facteurs de moment uniforme équivalent βM

ANNEXE 5

TABLEAUX DES PROFILETS

Désigi	nation			Val	eurs st	atiques	/ Secti	on proj	oerties	/ Statis	iche Ke	nnwert	e			EN 1	Classit	fication	n 2005	4	14
Desigi Bezeic	nation hnung		stroi starke	fort y- ng axis y Achse	-у /-у у-у		sch	axe fai weak a wache	ble z-z ixis z-z Achse	Z-Z						Pibendi	ure ing y-y	Po	ure ression	5-2; 200	5-4: 200 25:2001
	G kg/m	l, mm⁴ x10⁴	W _{ely} mm ³ x10 ³	W _{ply} mm ³ x10 ³	i, mm x10	A ₂ mm ² x10 ²	l ₂ mm ⁴ x10 ⁴	W _{elz} mm ³ x10 ³	W _{plz'} mm ³ x10 ³	i mm x10	s₅ mm	lt mm ⁴ x10 ⁴	ا» mm ⁶ x10 ⁹	y₅ mm x10	y _m mm x10	S235	S355	S235	S355	EN 1002	EN 1002 EN 102
UPE 80	7,90	107	26,8	31,2	3,26	4,05	25,5	8,0	14,3	1,59	16,9	1,47	0,22	1,82	3,71	1	1	1	1	1	
UPE 100	9,82	207	41,4	48,0	4,07	5,34	38,3	10,6	19,3	1,75	17,9	2,01	0,53	1,91	3,93	1	1	1	1	*	
UPE 120	12,1	364	60,6	70,3	4,86	7,18	55,5	13,8	25,3	1,90	20,0	2,90	1,12	1,98	4,12	1	1	1	1	1	
UPE 140	14,5	600	85,6	98,8	5,71	8,25	78,8	18,2	33,2	2,07	21,0	4,05	2,20	2,17	4,54	1	1	1	1	1	
UPE 160	17,0	911	114	132	6,48	10,0	107	22,6	41,5	2,22	22,0	5,20	3,96	2,27	4,76	1	1	1	1	*	
UPE 180	19,7	1350	150	173	7,34	11,2	144	28,6	52,3	2,39	23,0	6,99	6,81	2,47	5,19	1	1	1	1	1	
UPE 200	22,8	1910	191	220	8,11	13,5	187	34,5	63,3	2,54	24,6	8,89	11,0	2,56	5,41	1	1	1	1	~	
UPE 220	26,6	2680	244	281	8,90	15,8	247	42,5	78,2	2,70	26,1	12,1	17,6	2,70	5,70	1	1	1	1	1	
UPE 240	30,2	3600	300	347	9,67	18,8	311	50,1	92,2	2,84	28,3	15,1	26,4	2,79	5,91	1	1	1	1	*	
UPE 270	35,2	5250	389	451	10,8	22,2	401	60,7	112	2,99	29,8	19,9	43,6	2,89	6,14	1	1	1	2	1	
UPE 300	44,4	7820	522	613	11,8	30,3	538	75,6	137	3,08	33,3	31,5	72,7	2,89	6,03	1	1	1	1	1	
UPE 330	53,2	11010	667	792	12,7	38,8	681	89,7	156	3,17	37,5	45,2	112	2,90	6,00	1	1	1	1	1	
UPE 360	61,2	14830	824	982	13,8	45,6	844	105	178	3,29	39,5	58,5	166	2,97	6,12	1	1	1	1	*	
UPE 400	72,2	20980	1050	1260	15,1	56,2	1045	123	191	3,37	42,0	79,1	259	2,98	6,06	1	1	1	1	*	

Désign Design Bezeict	ation ation inung		A	Dimension brnessung	s en				Dimensi Dimer Kon		Surface Oberfläche			
	G kg/m	h mm	b mm	t, mm	t, mm	r mm	A mm ² x10 ²	h, mm	d mm	ø	e _{nin} mm	e _{na}	A. m²/m	Ac m?/t
UPE 80*	7,90	BO	50	4,0	7,0	10	10,1	66	46	-	-	-	0,343	43,45
UPE 100*	9,82	100	55	4,5	7,5	10	12,5	85	65	M 12	35	36	0,402	41,00
UPE 120*	12,1	120	60	5,0	8,0	12	15,4	104	80	M 12	35	41	0,460	37,98
UPE 140*	14,5	140	65	5,0	9,0	12	18,4	122	98	M 16	35	38	0,520	35,95
UPE 160*	17,0	160	70	5,5	9,5	12	21,7	141	117	M 16	36	43	0,579	34,01
UPE 180*	19,7	180	75	5,5	10,5	12	25,1	159	135	M 16	36	48	0,639	32,40
UPE 200*	22,8	200	80	6,0	11,0	13	29,0	178	152	M 20	46	47	0,697	30,60
UPE 220*	26,6	220	85	6,5	12,0	13	33,9	196	170	M 22	47	49	0,756	28,43
UPE 240*	30,2	240	90	7,0	12,5	15	38,5	215	185	M.24	47	51	0,813	26,89
UPE 270*	35,2	270	95	7,5	13,5	15	44,8	243	213	M.27	48	50	0,897	25,34
UPE 300*	44,4	300	100	9,5	15,0	15	56,6	270	240	M 27	50	55	0,968	21,78
UPE 330*	53,2	330	105	11,0	16,0	18	67,B	298	262	M 27	54	60	1,043	19,60
UPE 360*	61,2	360	110	12,0	17,0	18	77,9	326	290	M 27	55	65	1,121	18,32
UPE 400*	72,2	400	115	13,5	18,0	18	91,9	364	328	M 27	57	70	1,218	16,87

Désigna Designa Bezeich	ition ition nung		A	Dimension binessung	s en				Dimensi Dimen Kon		Surface Oberfläche			
	G kg/m	h mm	b mm	t, mm	t: mm	n mm	A mm ² x10 ²	h mm	d mm	ø	Pom mm	Pea mm	A. m ¹ /m	Ac m²/t
HE 220 AA*	40,4	205	220	6	8,5	18	51,5	188	152	M 27	98	118	1,247	30,87
HE 220 A	50,5	210	220	7	11	18	64,3	188	152	M 27	98	118	1,255	24,85
HE 220 B	71,5	220	220	9,5	16	18	91,0	188	152	M 27	100	118	1,270	17,77
HE 220 C*	94,1	230	223	12,5	21	18	119,9	188	152	M 27	104	122	1,296	13,77
HE 220 M	117	240	226	15,5	26	18	149,4	188	152	M 27	108	124	1,322	11,27
HE 240 AA*	47,4	224	240	6,5	9	21	60,4	206	164	M 27	104	138	1,359	28,67
HE 240 A	60,3	230	240	7,5	12	21	76,8	206	164	M 27	104	138	1,369	22,70
HE 240 B	83,2	240	240	10	17	21	106,0	206	164	M 27	108	138	1,384	16,63
HE 240 C*	119	255	244	14	24,5	21	152,2	206	164	M 27	112	142	1,422	11,90
HE 240 M	157	270	248	18	32	21	199,6	206	164	M 27	116	146	1,460	9,318
HE 260 AA*	54.1	244	260	6.5	9,5	24	69.0	225	177	M 27	110	158	1,474	27.22
HE 260 A	68,2	250	260	7,5	12,5	24	86,8	225	177	M 27	110	158	1,484	21,77
HE 260 B	93,0	260	260	10	17,5	24	118,4	225	177	M 27	114	158	1,499	16,12
HE 260 C*	132	275	264	14	25	24	168,4	225	177	M 27	118	162	1,537	11,63
HE 260 M	172	290	268	18	32,5	24	219,6	225	177	M 27	122	166	1,575	9,133
HE 280 AA*	61.2	264	280	7	10	24	78.0	244	196	M 27	110	178	1,593	26.01
HE 280 A	76,4	270	280	8	13	24	97,3	244	196	M 27	112	178	1,603	20,99
HE 280 B	103	280	280	10,5	18	24	131,4	244	196	M 27	114	178	1,618	15,69
HE 280 C*	145	295	284	14,5	25,5	24	185,2	244	196	M 27	118	182	1,656	11,39
HE 280 M	189	310	288	18,5	33	24	240,2	244	196	M 27	122	186	1,694	8,984
HE 300 AA *	69,8	283	300	7,5	10,5	27	88,9	262	208	M 27	116	198	1,705	24,42
HE 300 A	88,3	290	300	8,5	14	27	112,5	262	208	M 27	118	198	1,717	19,43
HE 300 B	117	300	300	11	19	27	149,1	262	208	M 27	120	198	1,732	14,80
HE 300 C*	177	320	305	16	29	27	225,1	262	208	M 27	126	204	1,782	10,08
HE 300 M	238	340	310	21	39	27	303,1	262	208	M 27	132	208	1,832	7,699
HE 320 AA *	74,2	301	300	8	11	27	94,6	279	225	M 27	118	198	1,740	23,43
HE 320 A	97,6	310	300	9	15,5	27	124,4	279	225	M 27	118	198	1,756	17,98
HE 320 B	127	320	300	11.5	20,5	27	161,3	279	225	M 27	122	198	1,771	13,98
HE 320 C*	186	340	305	16	30,5	27	236,9	279	225	M 27	126	204	1,822	9,796
HE 320 M	245	359	309	21	40	27	312,0	279	225	M 27	132	204	1,866	7,616

Désigna	tion			Valeurs s	statique	s / Secti	on prope	erties / !	Statische	e Kennv	verte			E	CI N 19	assif 93-	icat) 1-1:	an 200	5	04	g	_
Designa Bezeichr	tion		stron	g axis y- Achse y	y -y		sc	weak a wache	kis z-z Achse z	-7				be	Pure	1-1		Pure	ion	5-2:20	5-4:20	25:200
	G kg/m	կ mm ⁴ x10 ⁴	W _{sy} mm ³ x10 ³	W _{py} ◆ mm ³ x10 ³	ý mm x10	A ₂ mm ² x10 ²	اد mm ⁴ x10 ⁴	W _{eb} mm ³ x10 ³	W _{pt} ♦ mm ³ x10 ³	ե mm x10	s. mm	h mm ⁴ x10 ²	L mm ^c x10 ²	5235	S355	5460	5235	S355	S 460	EN 10025	EN1002	EN 102
HE 220 AA	40,4	4170	406,9	445,5	9,00	17,63	1510	137,3	209,3	5,42	44,09	15,93	145,6	3	3	4	3	3	4	4	*	4
HE 220 A	50,5	5410	515.2	568,5	9,17	20,67	1955	177.7	270,6	5.51	50,09	28,46	193,3	1	2	з	1	2	з	*	¥	*
HE 220 B	71,5	8091	735,5	827,0	9,43	27,92	2843	258,5	393,9	5,59	62,59	76,57	295,4	1	1	1	1	1	1	1	*	1
HE 220 C	94,1	11180	972,2	1114	9,65	36,47	3888	348,7	532,4	5,69	75,59	168,2	423,9	1	1	-	1	1	-	1		
HE 220 M	117	14600	1217	1419	9,89	45,31	5012	443,5	678,6	5,79	88,59	315,3	572,7	1	1	-	1	1	-	1	*	4
HE 240 AA	47,A	5835	521,0	570,6	9,83	21,54	2077	173,1	264,4	5,87	49,10	22,98	239,6	з	з	4	3	з	4	*	¥	*
HE 240 A	60,3	7763	675,1	744,6	10,05	25,18	2769	230,7	351,7	6,00	56,10	41,55	328,5	1	2	з	1	2	з	*	4	*
HE 240 B	83,2	11260	938,3	1053	10,31	33,23	3973	326,9	498,4	6,08	68,60	102,7	486,9	1	1	1	1	1	1	*	*	*
HE 240 C	119	17330	1359	1564	10,67	46,35	5942	487,1	743,8	6,25	87,60	288,7	787,9	1	1	-	1	1	-	*		
HE 240 M	157	24290	1799	2117	11,03	60,07	8153	657,5	1006	6,39	106,6	627,9	1152	1	1	-	1	1	-	*	¥	*
HE 260 AA	54,1	7981	654,1	714,5	10,75	24,75	2788	214,5	327,7	6,36	53,62	30,31	382,6	з	з	4	3	з	4	*	¥	*
HE 260 A	68,2	10450	836,4	919,8	10,97	28,76	3668	282,1	430,2	6,50	60,62	52,37	516,4	1	з	З	1	з	З	*	HI	н
HE 260 B	93,0	14920	1148	1283	11,22	37,59	5135	395,0	602,2	6,58	73,12	123,8	753,7	1	1	1	1	1	1	*	н	HI
HE 260 C	132	22590	1643	1880	11,58	51,94	7680	581,8	888,3	6,75	92,12	336,4	1198	1	1	-	1	1	-	*		
HE 260 M	172	31310	2159	2524	11,94	66,89	10450	779,7	1192	6,90	111,1	719,0	1728	1	1	1	1	1	1	*	н	HI
HE 280 AA	61,2	10560	799,8	873,1	11,63	27,52	3664	261,7	399,4	6,85	55,12	36,22	590,1	з	з	4	3	З	4	*	¥	*
HE 280 A	76,4	13670	1013	1112	11,86	31,74	4763	340,2	518,1	7,00	62,12	62,10	785,4	1	з	З	1	з	З	*	HI	HI
HE 280 B	103	19270	1375	1534	12,11	41,09	6595	471,0	717,6	7,09	74,62	143,7	1130	1	1	1	1	1	1	*	н	HI
HE 280 C	145	28810	1953	2225	12,47	56,26	9750	686,6	1047	7,26	93,67	387,5	1768	1	1	-	1	1	-	1		
HE 280 M	189	39550	2551	2966	12,83	72,03	13160	914,1	1397	7,40	112,6	807,3	2520	1	1	1	1	1	1	*	H	н
HE 300 AA	69,8	13800	975,6	1065	12,46	32,37	4734	315,6	482,3	7,30	60,13	49,35	877,2	3	3	4	3	З	4	¥	*	*
HE 300 A	88,3	18260	1260	1383	12,74	37,28	6310	420,6	641,2	7,49	68,13	85,17	1200	1	з	з	1	3	З	*	HI	H
HE 300 B	117	25170	1678	1869	12,99	47,43	8563	570,9	870,1	7,58	80,63	185,0	1688	1	1	1	1	1	1	1	н	H
HE 300 C	177	40950	2559	2927	13,49	68,48	13736	900,7	1374	7,81	105,6	598,3	2903	1	1	-	1	1	-	٧.		
HE 300 M	238	59200	3482	4078	13,98	90,53	19400	1252	1913	8,00	130,6	1408	4386	1	1	1	1	1	1	*	H	H
HE 320 AA	74,2	16450	1093	1196	13,19	35,40	4959	330,6	505,7	7,24	61,63	55,87	1041	з	3	4	3	З	4	*	*	1
HE 320 A	97,6	22930	1479	1628	13,58	41,13	6985	465,7	709,7	7,49	71,63	108,0	1512	1	2	з	1	2	3	1	HI	HI
HE 320 B	127	30820	1926	2149	13,82	51,77	9739	615,9	939,1	7,57	84,13	225,1	2069	1	1	1	1	1	1	*	н	HI
HE 320 C	186	48710	2865	3274	14,34	72,25	14446	947	1445	7,81	108,6	679,1	3454	1	1	-	1	1	-	*		
HE 320 M	245	68130	3796	4435	14,78	94,85	19710	1276	1951	7,95	132,6	1501	5004	1	1	1	1	1	1	4	н	н

Dësignat Designat Bezelchn	lan Ian ung		A	Dimension brnessung	s en				Dimensi Dimen Kon		Sur Ober	face fläche		
	G kg/m	h mm	b mm	t. mm	t, mm	T mm	A mm ² x10 ²	h, mm	d mm	ø	Pre mm	P⊷ mm	A m²/m	A: m²/t
HE 340 AA*	78,9	320	300	8,5	11,5	27	100,5	297	243	M 27	118	198	1,777	22,52
HE 340 A	105	330	300	9,5	16,5	27	133,5	297	243	M 27	118	198	1,795	17,13
HE 340 B	134	340	300	12	21,5	27	170,9	297	243	M 27	122	198	1,810	13,49
HE 340 M	248	377	309	21	40	27	315,8	297	243	M 27	132	204	1,902	7,670
HE 360 AA *	83,7	339	300	9	12	27	106,6	315	261	M 27	118	198	1,814	21,67
HE 360 A	112	350	300	10	17,5	27	142,8	315	261	M 27	120	198	1,834	16,36
HE 360 B	142	360	300	12.5	22.5	27	180.6	315	261	M 27	122	198	1.849	13.04
HE 360 M.	250	395	308	21	40	27	318,8	315	261	M 27	132	204	1,934	7,730
HE 400 AA+	92.4	37.8	300	9.5	13	27	117.7	352	298	M 27	118	198	1,891	20.45
HE 400 A	175	790	300	11	19	27	159.0	352	798	M 77	120	198	1.917	15.72
HE 400 B	155	400	300	135	74	77	197.9	357	798	M 77	174	198	1927	17.41
HE 400 M	256	432	307	21	4D	27	325,8	352	298	M 27	132	202	2,004	7,835
HE 450 AA*	00.7	425	300	10	175	27	177.1	200	344	M 77	120	100	1 084	10.00
HE 450A	140	440	300	11.5	21	27	178.0	798	344	M 77	177	198	2.011	14.79
HE 450 B	171	450	300	14	76	77	218.0	700	344	M 77	174	108	2.026	11.84
HE 450 M	263	478	307	21	40	27	335,4	398	344	M 27	132	202	2,096	7,959
HE FOO AA -	107	477	200	105	4.4	77	136.0	444	700	44.77	4.70	100	3.077	10.77
HE SOOA	155	400	300	10,5	22	37	107.5	444	390	M 27	120	100	2,017	12.60
HE SOOR	197	500	200	145	78	77	770.6	444	390	M 77	174	100	2,110	11 74
HE 500 M	270	524	306	21	40	27	344,3	444	390	M 27	132	202	2,184	8,079
HE 550 AA -	120	522	300	115	15	27	157.8	497	438	M 77	122	100	2 175	18.13
HESSOA	166	540	300	125	24	27	211.8	497	418	M 77	122	198	2 209	13.29
HE 550 B	199	550	300	15	29	27	254.1	492	438	M 27	124	198	2,224	11.15
HE 550 M	278	572	306	21	40	27	354,4	492	438	M 27	132	202	2,280	8,195
HE GOD A A*	129	571	300	12	15.5	77	1541	540	486	M 77	122	198	2 272	17.64
HE 600 A	178	590	300	13	25	27	226.5	540	486	M 27	122	198	2 308	12.98
HE 600 B	212	600	300	15.5	30	27	270.0	540	486	M 27	126	198	2 323	10.95
HE 600 M	285	620	305	21	40	77	363.7	540	486	M 27	132	200	2.372	8.308
HE 600 x 337*	337	632	310	25.5	45	77	429.7	540	486	M 27	138	202	2,407	7.144
HE 600 Y 300 *	ood	CAR	215	30	5.4	77	500 5	540	406	M 77	1.47	208	2.450	6177

Désignatio	n			Valeurs s	tatiques	s / Secti	on prope	erties / S	Statische	e Kennv	verte			F	0	lassi 07.	ficati	on 200	15	ŧ	Ħ	
Designation Bezeichnu	ng		axe stron starke	fort y-y g axis y- Achse y-	y -y		sci	ake fal weak a wache	ble z-z kis z-z Achse z	-Z				ber	Pute	y-y		Pure	son	-2; 200	-4: 200	25:2001
	G	Ļ	Way	W _{ph} ♦	ł	A _r	ł	Water	W _{ptr} +	ŀ	5	h	L.							0025	0025	102
	kg/m	mm ⁴	mm ¹	mm ¹	mm	mm ²	mm ⁴	mm ³	mm ³	mm	mm	mm ⁴	mm ⁶	235	355	460	235	355	450	NIC	N10	R
		x10 ⁴	x10 ²	x10 ²	x10	x10 ²	x10 ⁴	x10 ²	x10 ²	x10		x10 ⁴	x10 ⁴	51	UN	un.	141	S	UN			
	-																					
HE 340 AA	78,9	19550	1222	1341	13,95	38,69	5185	345,6	529,3	7,18	63,13	63,07	1231	3	3	4	3	3	4	*	*	*
HE 340 A	105	27690	1678	1850	14,40	44,95	7436	495,7	755,9	7,46	74,13	127,2	1824	1	1	3	1	1	3	4	H	H
HE 340 B	134	36660	2156	2408	14,65	56,09	9690	646,0	985,7	7,53	86,63	257,2	2454	1	1	1	1	1	1	×	н	H
HE 340 M	248	76370	4057	4718	15,55	98,63	19710	1776	1953	7,90	132,6	1506	5584	1	1	1	1	1	1	1	н	н
HE 360 AA	83,7	23040	1359	1495	14,70	42,17	5410	360,7	553,0	7,12	64,63	70,99	1444	2	3	з	2	з	з	¥	¥	¥
HE 360 A	112	33090	1891	2088	15,22	48,96	7887	525,8	802,3	7,43	76,63	148,8	2177	1	1	2	1	1	2	*	н	H
HE 360 8	142	43190	2400	2683	15,46	60,60	10140	676.1	1032	7,49	89,13	292.5	2883	1	1	1	1	1	1	4	H	н
HE 360 M	250	84870	4297	4989	16,32	102,4	19520	1268	1942	7,83	132,6	1507	6137	1	1	1	1	1	1	1	н	H
HE 400 AA	92,4	31250	1654	1824	16,30	47,95	5861	390,8	599,7	7,06	67,13	84,69	1948	2	з	з	2	з	4	*	*	*
HE-400 A	125	45070	2311	2562	16,84	57,33	8564	570,9	872,9	7,34	80,63	189,0	2942	1.	1	1	1	2	2	4	H	н
HE 400 B	155	57680	2884	3232	17,08	69,98	10820	721,3	1104	7,40	93,13	355,7	3817	1	1	1	1	1	1	*	H	H
HE 400 M	756	104100	4820	5571	17,88	110,2	19340	1260	1934	7,70	132,6	1515	7410	1	1	1	1	1	1	1	н	н
HE 450 AA	99,7	41890	1971	2183	18,16	54,70	6088	405,8	624,4	6,92	68,63	95,61	2572	1	з	з	2	4	4	1	1	¥
HE 450 A	140	63720	2896	3216	18,92	65,78	9465	631,0	965,5	7,29	85,13	243,8	4148	1	1	1	1	2	з	4	н	н
HE 450 B	171	79890	3551	3982	19,14	79,66	11720	781,4	1198	7,33	97,63	440,5	5258	1	1	1	1	1	2	4	H	н
HE 450 M	263	131500	5501	6331	19,80	119,8	19340	1260	1939	7,59	132,6	1529	9251	1	1	1	1	1	1	4	н	н
HE SOO AA	107	54640	2315	2576	19,98	61,91	6314	420,9	649,3	6,79	70,13	107,7	3304	1	3	з	2	4	4	*	4	*
HE SDO A	155	86970	3550	3949	20,98	74,72	10370	691,1	1059	7,74	89,63	309,3	5643	1	1	1	1	з	4	1	н	H
HE 500 B	187	107200	4287	4815	21,19	89,82	12620	841,6	1292	7,27	102,1	538,4	7018	1	1	1	1	2	2	*	н	н
HE 500 M	270	161900	6180	7094	21,69	129,5	19150	1252	1932	7,46	132,6	1539	11190	1	1	1	1	1	1	¥.	H	н
HE 550 AA	120	72870	2792	3128	21,84	72,66	6767	451,1	698,6	6,65	73,13	133,7	4338	1	2	з	3	4	4	*	1	¥
HE 550 A	166	111900	4145	4672	22,99	83,72	10820	721,3	1107	7,15	92,13	351,5	7189	1	1	1	2	4	4	*	н	H
HE 550 B	199	136700	4971	5591	23,20	100,1	13080	871,8	1341	7,17	104,6	600,3	8856	1	1	1	1	2	з	4	HL	н
HE 550 M	278	198000	6923	7933	23,64	139,6	19160	1252	1937	7,35	132,6	1554	13520	1	1	1	1	1	1	4	н	н
	4.70	01000				-					-	4 40 0			-	-	-					
HE GUU AA	129	91900	4218	3673	14,66	81,29	0331	406,2	124,5	6,53	74,93	149,8	2381	1	4	4	4	4	4	*	*	*
HE 600 A	178	141200	4/11/	5350	74,97	93,21	112/0	/51,4	1156	7,05	94,63	397,8	8978		1	1	1	4	4	×.	H	H
HE 600 B	212	171000	5701	6425	25,17	110,8	13530	902,0	1391	7,08	107,1	667,2	10970	1	1	1	1	3	4	×.	H	H
HE 600 M	285	237400	7660	8772	25,55	149,7	18980	1244	1930	1,22	132,6	1564	15910	1	1	1	1	1	1	4	HE	19
HE 600 x 337	337	283200	8961	10380	25,69	180,5	22940	1480	2310	7,31	149,1	2451	19610	1	1	1	1	1	1	4	H	
HE 600 X 399	399	344600	10640	12460	76,03	213,6	28280	1/96	2814	7,46	169,6	3966	24810	1	1	1	1	1	1	*	H	

Désigna Designa Bezeichi	ition ition nung		A	Dimension: bimessunge	s en				Dimensk Dimen Kons		Surface Oberfläche											
	G kg/m	h mm	b mm	t. mm	t, mm	r mm	A mm ² x10 ²	h mm	d mm	ø	P== mm	P _{ma} mm	A. m²/m	Ac m²/t								
EF AA 340*	24.9	236.4	120	48	80	150	317	220.4	190.4	M 17	54	68	0.917	36.86								
PFA 240+	26.2	737	120	5.2	83	15.0	33.3	220.4	190.4	M 12	6.4	68	Dete	35.10								
EFE 240	30.7	240	120	67	0.0	15.0	20.1	220.4	100.4	M 17	66	60	0.077	30.03								
PE 0 240+	34,3	242	122	7,0	10,8	15,0	43,7	220,4	190,4	M 12	66	70	0,932	27,17								
IPEA 270+	30,7	267	135	5,5	8,7	15,0	39,2	249,6	219,6	M 16	70	72	1,037	33,75								
IPE 270	36,1	270	135	6,6	10,2	15,0	45,9	249,6	219,6	M16	72	72	1,041	28,86								
IPE O 270+	42,3	274	136	7,5	12,2	15,0	53,8	249,6	219,6	M 16	72	72	1,051	24,88								
IPEA 300+	36,5	297	150	6,1	9,2	15,0	46,5	278,6	248,6	M16	72	86	1,156	31,65								
IPE 300	42,2	300	150	7,1	10,7	15,0	53,8	278,6	248,6	M16	72	86	1,160	27,46								
IPE O 300+	49,3	304	152	8,0	12,7	15,0	62,8	278,6	248,6	M16	74	88	1,174	23,81								
IPEA 330+	43,0	327	160	6,5	10,0	18,0	54,7	307,0	271,0	M16	78	96	1,250	29,09								
IPE 330	49,1	330	160	7,5	11,5	18,0	62,6	307,0	271,0	M16	78	96	1,254	25,52								
IPE O 330+	57,0	334	162	8,5	13,5	18,0	72,6	307,0	271,0	M 16	80	98	1,268	22,24								
IPEA 360+	50,2	357,6	170	6,6	11,5	18,0	64,0	334,6	298,6	M 22	86	88	1,351	26,91								
IPE 360	57,1	360	170	B,0	12,7	18,0	72,7	334,6	298,6	M 22	88	88	1,353	23,70								
IPE O 360+	66,0	364	172	9,2	14,7	18,0	84,1	334,6	798,6	M 22	90	90	1,367	20,69								
IPEA 400+	57,4	397	180	7,0	12,0	21,0	73,1	373,0	331,0	M 22	94	98	1,464	25,51								
IPE 400	66,3	400	180	8,6	13,5	21,0	84,5	373,0	331,0	M 22	96	98	1,467	22,12								
IPE O 400+	75,7	-404	182	9,7	15,5	21,0	96,4	373,0	331,0	M 22	96	100	1,481	19,57								
IPE A 450-	67,2	-447	190	7,6	13,1	21,0	85,6	420,B	378,8	M 24	100	102	1,603	23,87								
IPE-450	77,6	450	190	9,4	14,6	21,0	98,8	420,B	378,8	M 24	100	102	1,605	20,69								
IPE O 450+	92,4	456	192	11,0	17,6	21,0	118	420,B	378,8	M 24	102	104	1,622	17,56								
IPE A 500-	79,4	497	200	8,4	14,5	21,0	101	468,0	426,0	M 24	100	112	1,741	21,94								
IPE 500	90,7	500	200	10,2	16,0	21,0	116	468,0	426,0	M 24	102	112	1,744	19,23								
IPE O 500+	107	506	202	12,0	19,0	21,0	137	468,0	426,0	M 24	104	114	1,760	16,4								
Désignation				Valeurs	statique	es / Sec	tion pro	perties	/ Statist	the Keni	nwerte				(EN 1	Classif 993-	icatio 1-1:	n 2005		R	R	
---------------------	---------------	-------------------------------------	------------------	--------------------	----------	------------------	------------------	---	-------------------	----------	--------	------------------	------------------	-----	--------------------	-----------------	----------------	---------------------	-----	------	----------	--------
Designa Bezeichr	tian Iung	strong axis y-y starke Achse y-y					sc	weak axis z - z schwache Achse z - z						bi	Pute bendingy-y			Pure compression			5-4; 200	252001
	G	L Wm		W _{riv} +	i,	A,	Ŀ	Wee	W _{pt} +	ł	5	l _t	l,							025	025	02
	kn/m	mmt	imm ³	rum ³	mm	mm ²	mmt	mm ³	mm ²	mm	mm	mmt	mm ^s	235	355	460	235	355	480	N 10	ULN N	N
	6 9 11	x10 ⁴	x10 ²	x10 ²	x10	x10 ²	x10 ²	x10 ²	x10 ³	x10		x10 ⁴	x10 ²	in	in .	in	iv.	5	un.	•		
IPE AA 240	24,9	3154	267	298	9,97	15,3	231	38,6	60,0	2,70	38,4	7,33	30,1	1	1	-	3	4	-	*		
IPEA.240	26,2	3290	278	312	9,94	16,3	240	40,0	62,4	2,68	39,4	8,35	31,3	1	1	1	2	- 4	-4	¥	¥	¥
IPE 240	30,7	3892	324	367	9,97	19,1	284	47,3	73,9	2,69	43,4	12,9	37,4	1	1	1	1	2	4	*	¥	*
IPE O 240	34,3	4369	361	410	10,0	21,4	379	53,9	84,4	2,74	46,2	17,2	43,7	1	1	1	1	2	3	1	×	×
REA 220	10.7	4017	269	412	11.2	10.0	350	53.0	87.7	3.02	40.5	10.2	50.5									
RE 370	7,00	5700	470	404	44.5	33.4	410	63.3	070	3,02	44.5	45.0	705	4	4	4	-	-		1	1	1
PE 270	1,01	5790	929	484	11,2	22,1	920	02,2	97,0	3,02	40.5	140	70,6		-	1	4	-	4	Ť.	ľ,	ľ,
PE 0 270	42,3	0947	50/	2/2	11/4	25,2	514	19,5	110	a'na	49,5	14,9	87,6	'		1	1	-	4	ŕ	ŕ	ŕ
PEA 300	36,5	7173	483	542	12,4	22,3	519	69,2	107	3,34	42,1	13,4	107	1	1	1	3	4	4	1	4	¥
IPE 300	42,2	8356	557	678	12,5	25,7	604	80,5	125	3,35	46,1	20,1	126	1	1	1	2	4	4	*	1	1
IPE O 300	49,3	9994	658	744	12,6	29,1	746	98,1	153	3,45	51,0	31,1	158	1	1	1	1	3	4	¥	¥	¥
IPEA 330	43	10230	676	702	13,7	27,0	685	85,6	133	3,54	47,6	19,6	172	1	1	1	З	4	4	¥	¥	¥
IPE 330	49,1	11770	713	804	13,7	30,8	788	98,5	154	3,55	51,6	28,2	199	1	1	1	2	4	4	*	*	*
IPE O 330	57	13910	833	943	13,8	34,9	960	119	185	3,64	56,6	42,2	246	1	1	1	1	3	4	1	×	*
IPEA 360	50.2	14530	812	007	15.1	20 B	044	111	173	1.04	507	265	282			-				5		1
IPE 360	57.1	16270	004	1010	15.0	35.1	1047	123	101	170	SAS	373	714	1	1	1	2	4	4	1	1	1
IPE 0.360	55	19050	1047	1186	151	40.7	1251	145	777	3.85	597	55.8	380	1	1	1	1	3	4	1	1	2
11 1 0 200	00	1.00000	1947	1100	1.491	41414	10.01	140		2,00	441		340	ľ	ŕ		Ľ	1	4	i.	i.	ŕ
IPEA 400	57,4	20290	1022	1144	16,7	35,B	1171	130	202	4,00	55,6	34,8	432	1	1	1	4	4	4	1	4	¥
IPE 400	66,3	23130	1160	1307	16,6	42,7	1318	146	229	3,95	60,2	51,1	490	1	1	1	3	4	4	4	1	*
PE O 400	75,7	26750	1324	1502	16,7	48,0	1564	172	269	4,03	65,3	73,1	588	1	1	1	2	3	4	¥	¥	¥
IPEA 450	67,2	29760	1331	1494	18,7	47,3	1502	158	246	4,19	58,4	45,7	705	1	1	1	4	4	4	*	¥	×
IPE 450	77,6	33740	1500	1702	18,5	50,9	1676	176	276	4,12	63,2	66,9	791	1	1	1	3	4	4	*	4	1
IPE O 450	97,4	40920	1795	2046	18,7	59,4	2085	217	341	4,21	70,8	109	998	1	1	1	2	4	4	×	×	×
PEA 500	79,4	42930	1728	1946	70,6	50,4	1939	194	302	4,38	62,0	62,8	1125	1	1	1	4	4	4	Y	Y	¥
PE 500	90,7	48200	1930	2194	20,4	59,9	2142	214	336	4,31	66,8	89,3	1249	1	1	1	3	4	4	V	*	*
IPE O 500	107	57780	2284	2613	20,6	70,2	2622	260	409	4,38	74,6	144	1548	1	1	1	2	4	4	×	1	1

Désigna Designa Bezeichr	Désignation Designation Bezeichnung			Dimension bmessung	s en				Dimensi Dimen Kons	Surface Oberfläche				
	G kg/m	h mm	b mm	t _w mm	t _f mm	r mm	A mm ² x10 ²	h mm	d mm	Ø	P _{min} mm	P _{man} mm	A, m²/m	Ac m²/t
IPE AA 80*	4,9	78	46	3,2	4,2	5,0	6,31	69,6	59,6	-	-	-	0,325	65,62
IPE A 80+/* IPE 80*	5,0 6,0	78 80	46 46	3,3 3,8	4,2 5,2	5,0 5,0	6,38 7,64	69,6 69,6	59,6 59,6	-	-	-	0,325	64,90 54,64
IPE AA 100*	6,7	97,6	55	3,6	4,5	7,0	8,56	88,6	74,6	-	-	-	0,396	58,93
IPE A 100+/* IPE 100*	6,9 8,1	98 100	55 55	3,6 4,1	4,7	7,0 7,0	8,8 10,3	88,6 88,6	74,6 74,6	-	-	-	0,397 0,400	57,57 49,33
IPE AA 120*	8,4	117	64	3,8	4,8	7,0	10,7	107,4	93,4	-	-	-	0,470	56,26
IPE A 120+ IPE 120	8,7 10,4	117,6 120	64 64	3,8 4,4	5,1 6,3	7,0 7,0	11,0 13,2	107,4 107,4	93,4 93,4	-	-	-	0,472 0,475	54,47 45,82
IPE AA 140*	10,1	136,6	73	3,8	5,2	7,0	12,8	126,2	112,2	-	-	-	0,546	54,26
IPE A 140+ IPE 140	10,5 12,9	137,4 140	73 73	3,8 4,7	5,6 6,9	7,0	13,4 16,4	126,2 126,2	112,2	-	-	-	0,547	52,05 42,70
IPE AA 160*	12.1	156.4	87	40	5.6	70	15.4	145.2	131.2	-	-	-	0.671	50.40
IPE A 160+	12,7	157	82	4,0	5,9	9,0	16,2	145,2	127,2	-	-	-	0,619	48,70
105 44 4004	14.0	175.4	01	4.2	5.2	3,0	10.0	1640	1450	11.10	10	40	0,023	46.27
IPE A 180+	15,4	170,4	91	4,3	6,5	9,0	19,0	164,0	146,0	M 10	48	48	0,693	40,37
IPE 180 IPE O 180+	18,8	180	91 92	5,3 6,0	8,0 9,0	9,0 9,0	23,9	164,0 164,0	146,0 146,0	M 10	48 50	48	0,698	37,13 33,12

	G	Ļ	W _{aly}	W _{plp} ♦	i,	A _{cr}	l _r	West	W _{pis} ♦	i,	5,	k.	Ļ	22	53	8	50	18	8	10025	10025	V 1023
	kg/m	mm*	mm ³	mm ³	mm	mm ²	mm4	mm ³	mm3	mm	mm	mm*	mme	25	3	SA	22	5	55	EN	EN	i
		×10 ⁴	x10 ³	*10 ²	×10	x10 ²	×104	×10 ³	×10 ²	x10		×104	x10°									
IPE AA 80	4,9	64,1	16,4	18,9	3,19	3,00	6,85	2,98	4,7	1,04	17,5	0,40	0,09	1	1	-	1	1	-	1		
IPE A BO	5,0	64,4	16,5	19,0	3,18	3,07	6,85	2,98	4.7	1.04	17,6	0,42	0,09	1	1	-	1	1	-	1		
IPE 80	6,0	80,1	20,0	23,2	3,24	3,58	8,49	3,69	5,8	1,05	20,1	0,70	0,12	1	1	-	1	1	-	*		
IPE AA 100	6,7	136	27,9	31,9	3,98	4,40	12,6	4,57	7,2	1,21	20,8	0,73	0,27	1	1	-	1	1	-	4		
IPE A 100	6.9	141	28,8	33,0	4.01	4.44	13,1	4.77	7.5	1,22	21,2	0,77	0,28	1	1	-	1	1	-	1		
IPE 100	8,1	171	34,2	39,4	4,07	5,08	15,9	5,79	9,2	1,24	23,7	1,20	0,35	1	1	-	1	1	-	*		
IPE AA 120	8,4	244	41,7	47,6	4,79	5,36	21,1	6,59	10,4	1,41	21,6	0,95	0,66	1	1	-	1	1	-	*		
IPE A 120	8,7	257	43,8	49,9	4,83	5,41	22,4	7,00	11,0	1,42	22,2	1,04	0,71	1	1	-	1	1	-	4		
IPE 120	10,4	318	53,0	60,7	4,90	6,31	27,7	8,65	13,6	1,45	25,2	1,74	0,89	1	1	-	1	1	-	*		
IPE AA 140	10,1	407	59,7	67,6	5,64	6,14	33,8	9,27	14,5	1,63	22,4	1,19	1,46	1	1	-	1	2	-	+		
IPE A 140	10,5	435	63,3	71,6	5,70	6,21	36,4	10,0	15,5	1,65	23,2	1,36	1,58	1	1	1	1	2	з	4	4	*
IPE 140	12,9	541	77,3	88,3	5,74	7,64	44,9	12,3	19,3	1,65	26,7	2,45	1,98	1	1	1	1	1	2	*	+	*
IPE AA 160	12,1	646	82,6	93,3	6,47	7,24	51,6	12,6	19,6	1,83	23,4	1,57	2,93	1	1	-	1	3	-	4		
IPE A 160	12,7	689	87,8	99,1	6,53	7,80	54,4	13,3	20,7	1,83	26,3	1,96	3,09	1	1	1	1	3	4	4	4	*
IPE 160	15,8	869	109	124	6,58	9,66	68,3	16,7	26,1	1,84	30,3	3,60	3,96	1	1	1	1	1	2	*	*	*
IPE AA 180	14,9	1020	116	131	7,32	9,13	78,1	17,2	26,7	2,03	27,2	2,48	5,64	1	1	-	2	3	-	+		
IPE A 180	15,4	1063	120	135	7,37	9,20	81,9	18,0	28,0	2,05	27,8	2,70	5,93	1	1	1	2	3	4	1	*	*
IPE 180	18,8	1317	146	166	7,42	11,3	101	22,2	34,6	2,05	31,8	4,79	7,43	1	1	1	1	2	Э	*	*	*
IPE O 180	21,3	1505	165	189	7,45	12,7	117	25,5	39,9	2,08	34,5	6,76	8,74	1	1	1	1	1	2	4	*	*
IPE AA 200	18,0	1533	156	176	8,19	11,4	112	22,4	35,0	2,21	32,0	3,84	10,1	1	1	-	2	4	-			
IPE A 200	18,4	1591	162	182	8,23	11,5	117	23,4	36,5	2,23	32,6	4,11	10,5	1	1	1	2	4	4	*	*	*
IPE 200	22,4	1943	194	221	8,26	14,0	142	28,5	44,6	2,24	36,7	6,98	13,0	1	1	1	1	2	з	1	1	*
IPE O 200	25,1	2211	219	249	8,32	15,5	169	33,1	51,9	2,30	39,3	9,45	15,6	1	1	1	1	1	2	*	*	*

	G	h-b	t	r ₁	r.,	A.	z.=y.	¥.	U ₁	H ₂	A	Ac
	1.1.1.											
	×g/m	mm	mm	mm	mm	mm-	mm	mm	mm	mm	m-/m	m·/t
						×10 ²	x10	x10	x10	x10		
L 20 x 20 x 3	0,879	20	3	3,5	2,0	1,12	0,596	1,41	0,843	0,700	0,077	87,40
L 25 x 25 x 3 ^{1*}	1.11	25	3	3.5	2.0	1,42	0.721	1.77	1.02	0,877	0,097	85,88
1 78 + 78 + 47*	1.45	28		25	20	1.05	0.761	1 77	1.08	0.007	0.007	88.87
12372314	1,93	+3	-	2,2	2,0	1,03	0,701	145.5	1,00	0,034	0,037	00,07
L 30 x 30 x 3"*	1,36	30	3	5	2,5	1,74	0,835	2,12	1,18	1,05	0,116	84,87
1 30 4 30 4 4 14	1.78	30	4		2.5	2.27	0.878	2.12	1.24	1.06	0.116	85.02
1 30 1 20 1 4	1.74		-	-	41-4		0,010		1,41	1,000	10,1110	61.07,074
1 35 x 35 x 4	2,09	35	4	5	2,5	2,67	1,00	2,47	1,42	1,24	0,136	64,82
1.403.403.414	2.42				2.0	3.00		2.02		1.40		64.07
14014014	6.96		-		3,0	2,00	1,14	4,63	1,10	1,45	4,133	04/07
L40x40x5"*	2,97	40	5	0	3,0	3,79	1,10	2,83	1,04	1,41	0,155	52,07
1.45 + 45 + 4*/*	274	45		7	25	2.49	1.72	2.18	1.75	1.57	0174	03.40
	4114	45	-		21.0	2,42	1,4.3	2,10	1.1.2	1	10111-1	0.3,40
L 43 x 43 x 4,3	3,00	45	4.5	7	3,5	3,90	1,26	3,18	1,78	1,58	0,174	50,83
L43x43x5***	3,38	45	3	7	3,5	4,30	1,28	3,18	1,81	1,58	0,174	51,51
1.00.00.01*				-								
L 30 x 30 x 4	3,00	50	4	7	3,5	3,89	1,30	3,54	1,92	1,75	0,194	03,49
L 50 x 50 x 5	3,77	50	3	7	3,5	4,80	1,40	3,54	1,99	1,70	0,194	51,40
L 50 x 50 x 6"*	4.47	50	0	7	3.5	5.09	1.45	3.34	2.04	1.77	0.194	43.41
1.50 + 50 - 254				-	2.8	0.00	1.40	2.8.4	2.10	1.70	0.104	27.84
1. JUX JUX 7	4.13	30	1	1	2,2	-0,30	1,45	3,34	4,10	1,10	10,1294	21,66
L 33 x 33 x 3"*	4,18	35	3	8	4,0	5,32	1,52	3,89	2,15	1,93	0,213	51,05
1.55 + 55 + 6 * 4	4.95	-			40	6.21	1.56	3.00	2.21	1.94	0.712	42.04
	100				4,4	- Charles	420	-4145		1.44	topa toa	
L 60 x 60 x 4"	3,70	60	4	8	4,0	4,71	1,00	4,24	2,26	2,10	0,233	63,07
1.60 x 60 x 5 ^{-1*}	4.57	00	3	8	4.0	5.82	1.04	4.24	2.32	2.11	0.233	51.04
1					4.0			4.74	3.30			43.00
LOUXOUKO	3,42	00	0	8	4,0	0,91	1,09	4,24	4,33	4,11	0,233	42,33
1.60 x 60 x 8	7,09	00	8	8	4,0	9,03	1,77	4,24	2,50	2,14	0,233	32,89
1.03 x 03 x 0***	5.91		0	9	4.5	7.53	1.80	4.00	2.95	3.28	0.252	47.70
			-	-			1,000					
L 03 X 03 X 7	6,83	00	1	а	4,2	8,70	1,80	4,00	2,01	2,29	0,252	30,93
L 03 x 03 x 8"**	7,73	05	8	9	4,5	9,85	1,89	4,00	2,07	2,31	0,252	32,04
L70x70x6	0.38	70	0	9	4.5	8.13	1.93	4.95	2.73	2.40	0.272	42.08
1 70 - 70 - 7	7.58	70	-		4.5	0.40	1.07	4.05	1 70	7.47	0.171	20.21
LIOKIOKI	7,38	74			4,2	3,40	1.27	4,93	2.79	2.47	0,272	30,91
L70x70x8**	8,37	70	8	10	5,0	10,7	2,01	4,95	2,84	2,47	0,271	32,41
L70 x 70 x 9*/*	9,32	70	9	9	4.5	11,9	2,05	4,95	2,90	2,50	0,272	29,20
the second second												
L 73 K 73 K 4	4,00	75	4		4,2	2,93	1,90	2,30	2,70	2,0.5	0,292	02,82
L73x75x5"	5,70	75	5	9	4,5	7,34	2,01	3,30	2,64	2,03	0,292	50,75
L73×75×6	0.85	75	0	9	4.5	8.73	2.05	3.30	2.90	2.04	0.292	42.00
1	-		-			10.1			7.04	7.05	0.707	20.00
L/3X/3X/	7,23	12	1	3	4,2	10,1	4,10	2,30	4,90	2,05	0,292	30,88
173x75x8	8,99	75	8	.9	4,5	11,4	2,14	5,30	3,02	2,66	0,292	32,53
L75x75x10"	11,1	75	10	9	4,5	14,1	2,22	5,30	3,13	2,69	0,292	26,43
1 BO Y BD + F	F 17	00		10	8.0	7.05	2.12	2.00	2.02	2.07	0.211	50.00
r an x an x a	0,17	80	2	10	2,0	7,86	4,14	2,00	3,00	4,81	0,311	30,49
L BO K BO K 6"."	7,34	80	6	10	5,0	9,35	2,17	3,00	3,07	2,B1	0,311	42,44
L80x80x7*	8,49	80	7	10	5,0	10,8	2,21	3,00	3,13	2,82	0,311	36,67
180×80×8	9.63	80		10	5.0	12.3	2.26	3.00	3.19	2.61	0.311	32.34
1 00 0 00 - 10	11.0						2.24			-		
LBOXBOX10	11,9	80	10	10	5,0	15,1	2,34	3,00	3,30	2,85	0,311	26,26
L90x90x6*/*	8,28	90	0	10	5.0	10.5	2,42	0.36	3,42	3,10	0,351	42,44
190×90+7	2.61	90	7	11		122	7.45	0.10	7.47	2.16	0 351	20.45
L JUN JUN /					4.4	14.4		6,26	4,47	4,15	1.1.1	20,990
r 90 x 90 x 8	10,9	90	8	11	2,2	13,9	2,50	0,30	3,23	2,17	0,351	32,13
L 90 K 90 K 9	12,2	90	9	11	3,5	15,5	2,54	0,30	3,59	3,18	0,351	28,77
L90x90x10	13.4	90	10	11	3.5	17.1	2.58	0.30	3.05	3.19	0.351	20.07
1.00 - 00 - 11*	14.7	-				10.7	3.63	0.74	3 30	2.24	0.781	77.04
r 30 ¥ 30 ¥ 11	14,7	30	11	11	2,2	18,7	4,04	0,30	4,70	4,21	0,331	23,80
L 100 x 100 x 6***	9,20	100	0	12	6,0	11.8	2,64	7.07	3.74	3.51	0,390	42,09
1 100 x 100 x 7	10.7	100	7	17	6.0	12.7	200	707	3.01	7.01	0.200	20.22
L 100 X 100 X /	10,7	100	,	14	0,0	13,7	2,03	1,111	1,81	1,21	0,130	30,33
L 100 x 100 x 8"	12,2	100	8	12	6,0	15,5	2,74	7,07	3,87	3,52	0,390	32,00
L100 x 100 x 10**	15,0	100	10	12	6,0	19,2	2,82	7,07	3,99	3,54	0,390	25,92
1 100 x 100 x 12**	17.8	100	12	12	6.0	22.7	2,90	7.07	4.31	3.57	0.390	21.86
L110x110x8""	13,4	110	8	12	6,0	17,1	2,99	7,78	4,22	3,87	0,430	31,96
L110x110x10***	16,6	110	10	13	0.5	21,2	3,06	7,78	4,33	3,88	0,429	25,79
1 110 - 120 - 12	18.7	110	12	12		28.3	2.78	7.70	4.45	3.01	0.070	21.73
110110112	124.5	110	14	1.4	0,3	4.4.1		1.10	14,14.3	10,00	10,002.2	# 1, 7 #