République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur Et de la Recherche Scientifique Université Abderrahmane MIRA- Bejaia Faculté de la technologie Département de Génie Civil

Mémoire de fin d'études Mémoire de fin d'études

En Vue d'Obtention du Diplôme Master en génie civil Option : Matériaux et structures

Thème:

Etude d'un bâtiment (R+10+S-sol et E-sol) à usage multiples d'habitation Commercial et bureaux contreventé par un système mixte (Voiles – Portiques)

Présenté par :

Encadreur:

M^r AFROUN Nabil M^r BOUZIDI Loucif M^r MADI Nabil

M^r A.Boukellouda

Jury:

M^{me} S Arezki M^{me} S ourabah

Promotion 2012-2013

Remerciements

Avant tout, nous tenons à remercier Dieu le tout puissant pour nous avoir donné la force et la patience pour mener a terme ce travail.

Nous remercions nos familles qui nous ont toujours encouragés et soutenus durant toutes nos études.

Nous adressons notre reconnaissance et nos remerciements à notre promoteur Mr A.boukellouda d'avoir accepter de nous quider dans ce travail.

Nos remercions les membres de jury qui nous feront l'honneur de juger ce travail.

Notre sincère gratitude va vers tous ce qui ont participé de prés ou de loin à ce travail.

Dédicaces

Je dédie ce modeste travail

A mes très chers parents pour toute L'aide qu'ils n'ont cessé de me donnée.

A mon cher frère Ahcen et sa femme et en particulier le petit Amin.

A mes beaux frères omar et tarik.

A mes sœurs Síham, Fouzía, Soría, Lynda et son adorable Islam.

A toute ma famille

A mes binômes et leurs familles

Et a tous mes amís sans exceptíon

Loucif.

Dédicaces

Je dédie ce modeste travail

A la mémoire de mon très cher père

A ma très chère mère qui ont tant donné pour me voir réussir.

A mes très cher frère: Raíd et Aklí et son épouse, et le petite ange MAYAS.

A mes très chères sœurs : Hayat, Malíka, Lynda, Zína (et leurs épouses)

A ma très chère grande mère.

A mes très chères tantes et oncles.

A mes très chers cousins : Boualeme, Lounis, Brahim, Ouhib, Arab, Slimene, Tarik, Zahir, Hakim,.....

A Tous mes amís et amíes (Jígou, Yacíne, Bolo, Ríbouh, Karím, Tayeb, Dahmene, Salím, Zímpo, Momoh, Koutkout (et leurs amís) mouhamed, Djaafer, M, A, Amel,)

A mes binômes loucif et nabil et leurs familles

A Toute ma grande famille, Qui m'a soutenu en toutes circonstances aux cours de ce cycle

A toute la promo de master génie civil 2013

A.NABIL

En premier lieu nous tenons à remercier nos familles pour leurs sacrifices et encouragements durant tout le parcours des études. Sans oublier notre promoteur M^r A.Boukellouda de nous avoir encadré

Mes amis que j'estime de tout cœur, en particulier Fichai le débrouillard, qui ont compatit à mes douleurs et jubilés à mon bonheur et avec qui j'ai passé de bons moments inoubliables et je leurs souhaitent une vie prospère et pleine de réussite. Et aussi nous tenons à remercier également l'ensemble des enseignants de département GENIE CIVIL pour leurs rôles importants dans notre formation. En particulier les membres de jury qui auront à juger ce travail.

Nabil Madi

SOMMAIRE

Introduction générale.

Chapitre I.Généralités
I.1 Introduction
I.2 description de l'ouvrage
I.3Caractéristiques de l'ouvrage
I.4Contreventement
I.5. Règlementation et normes utilisés
I.6.Méthode de calcul
I.7. Matériaux
I.8 Actions et sollicitations
Chapitre II. Pré dimensionnement des éléments
Introduction
II.1pré dimensionnement des éléments porteurs.
II.2 Les planchers9
II.2.1 Plancher à corps creux9
II.2.2 Pré dimensionnement des poutrelles
II.3 Pré dimensionnement de l'acrotère
II.4 Pré dimensionnement des dalles pleines
II.5 les voiles
II.6 Escalier. 12
II.7.Evaluation des charges et surcharges
II.8 La descente de charge
II.9. Vérifications
II.9.1. Vérification des poteaux à la compression simple
II.9.2.Vérification de l'effort normal réduit
II.10. Conclusion.
Chapitre III. Etude des éléments secondaires
III.1.Introduction

III.2.1.La méthode forfaitaire	31
III.2.2. Méthode de Caquot	32
III.3 : Etude du plancher	32
III.3.1 : Les différents types des poutrelles	32
III.3.2.Charges et surcharges revenant aux poutrelles	33
III.3.3.Vérification des conditions d'application de la méthode forfaitaire	33
III.3.4.Exemple de calcul (poutrelle type 3)	34
III.3.5.Exemple de ferraillage Etage courant (types 4)	38
III.3.6.Ferraillage des poutrelles	46
III.3.6.1Vérification à l'ELU	47
III.3.6.2.Vérifications des contraintes à E.L.S	48
III.3.6.2.1. Etat limite de compression de béton	48
III.3.6.2.2 Etat limite de déformation	49
III.3.7.Ferraillage de la dalle de compression	50
III.3.7.1.Armatures perpendiculaires aux poutrelles.	50
III.3.7. 2.Armatures parallèles aux poutrelles	50
III.3.8.Schéma de ferraillage des poutrelles	51
III.4. étude des poutres de chainages.	53
III.4.1.Dimensionnement	53
III.4.2.sollicitation	53
III.5. dalle pleine	56
III.5.1 dalle sur deux appuis $\rho > 04$	56
III.5.2. dalle sur deux appuis $\rho < 04$.	59
III.5.3. Panneau du plancher (4 appuis)	64
III.6. Etude des escaliers	67
III.6.1. Escalier à trois volées (E-Sol).	67
III.6.1.1. Calcul du chargement	68
III.6.1.2. Calcul des sollicitations	68
III.6.1.3. Calcul du Ferraillage à l'ELU.	69
III.6.1.4. Vérifications.	73
III.7. Etude de la poutre palière	87
III.8 Etude de la poutre brisée	90
III.9. Description de l'ascenseur.	93
III.9.1. Caractéristiques des ascenseurs	94

III.9.2. Etude de l'ascenseur	94
III.9.3. Evaluation des charges et surcharges.	94
III.10. Acrotère	103
III.10.1. Evaluation des charges	103
III.10.2. Calcul des sollicitations.	103
III.10.3. Combinaisons d'actions	104
III.10.4. Calcul de l'excentricité à l'état limite ultime	104
III.10.5. Ferraillage de la section	105
III.10.6 Schéma de ferraillage	107
Chapitre IV. Etude dynamique	
Introduction.	107
IV.1Méthode de calcul.	107
IV.2 Méthode statique équivalente	107
IV.3 Méthode dynamique modale spectrale	110
IV.4Description du logiciel SAP 2000 V14	112
IV.5 Disposition des voiles.	112
IV.6 Interprétation des résultats de l'analyse dynamique donnés par SAP2000V14	114
IV.7 justification de l'interaction voiles-portiques	114
IV.8 Vérification de l'effort normal réduit	116
IV.9Vérification vis à vis des déformations.	117
IV.10Justification vis-à-vis de l'effet P-Δ	119
IV.11Vérification de la résultante des forces sismiques.	120
Conclusion.	120
Chapitre V. Etude éléments principaux	
Introduction.	122
V.1 Etude des poteaux	122
V.1.1.Les recommandations du RPA 99/2003	122
V.1.2. Sollicitations de calcul	125
V.1.3. calcul du Ferraillage	125
V.1.4. Dispositions constructives	130
V.2.Etude des poutres	133
V.2.1 Les recommandations du RPA 99/2003	133

V.2.2.Ferraillages des poutres	136
V.2.3.Vérification	138
V.2.4.Schéma de ferraillage des poutres	143
V.2.5. schémas constrictives des armatures dans les poutres	145
V.3Vérification des zones nodales	146
V.4. Etude des voiles	147
V.4.1.Recommandation du RPA	148
V.4.2.Le ferraillage	
Conclusion	155
Chapitre VI. Etude de l'infrastructure	
Introduction.	156
VI.1Choix du type des fondations.	156
VI.2 Combinaisons d'actions à considérer.	156
VI.3 Etude des fondations.	156
VI.3.1 Vérification des semelles isolées.	156
VI.3.2 Vérification des semelles filantes.	157
VI.3.3 Vérification de Radier général.	158
VI.3.3.1. Pré dimensionnement.	159
VI.3.3.2 La surface du radier et poids du radier	160
VI.3.4 Vérifications nécessaires.	161
VI.3.5 Ferraillage.	164
VI.4 Ferraillage des nervures.	168
VI.5 Etude du voile périphérique.	174
VI.5.1 Introduction.	174
VI.5.2 Dimensionnement du voile.	174
VI.5.3 Caractéristiques du sol.	175
VI.5.4 Evaluation des charges et surcharges	175
VI.5.5 Ferraillage du voile.	175

Conclusion	179
Conclusion général	
Bibliographia	
Annexes	

TableauII.1 : pré dimensionnement de l'acrotère	11
Tableau II.2 : récapitulations des escaliers simples.	14
Tableau II.3 : récapitulation de l'escalier balancé	15
Tableau II.4: Evaluation des charges (plancher Terrasse inaccessible)	15
Tableau II.5 : Evaluation des charges (plancher étage courant)	15
Tableau II.6: Evaluation des charges (Dalle pleine)	16
Tableau II.7: Evaluation des charges (mursextérieure)	16
Tableau II.8 : Evaluation des charges de la volée	17
Tableau II.9 : Evaluation des charges du palier	17
Tableau II.10: les surfaces afférentes	18
Tableau II.11: les charges et les surcharge des planchers	19
Tableau II.12 : poids des poteaux	20
Tableau II.13 : descente de charges (poteau cage d'escalier)	23
Tableau II.14 : descente de charges (poteau central)	23
Tableau II.15 : descente de charges (poteau centrale)	25
Tableau II.16 : descente de charges (poteau de rive)	26
Tableau II.17 .Efforts normaux dans les trois poteaux	27
Tableau II.18 : vérification du critère de stabilité de forme	27
Tableau II.19 : Vérification des poteaux au flambement	29
Tableau II.20 Vérification de l'effort normal réduit pour les différentes sections adoptées	29
Tableau II.21 : Vérification des conditions du RPA	30
Tableau II.22 : Caractéristiques des éléments structuraux	30
Tableau. III. 1.Différents types de poutrelles	32
Tableau. III. 2.Chargement sur les poutrelles.	
Tableau III. 3 : calcul des sollicitations des différents types de poutrelles	

Tableau III. 4 : calcul des sollicitations des différents types de poutrelles	37
Tableau III.5 : calcul des sollicitations des différents types de poutrelles	37
Tableau III.6 : calcul des sollicitations des différents types de poutrelles	38
Tableau III.7 : calcul des sollicitations des différents types de poutrelles	38
Tableau III. 8. Tableau du ferraillage des poutrelles	47
Tableau. III. 9.Vérification au cisaillement	48
Tableau. III. 10.Vérification des états limites de compression du béton	49
Tableau. III. 11.Vérification des états limitent de déformation	49
Tableau III.12 : Schéma de ferraillage des poutrelles	53
Tableau.III.13. Ferraillage des poutres de chaînage	54
Tableau III.14 Calcul du ferraillage de la dalle du balcon type4	57
Tableau III.15 vérification des contraintes	58
Tableau III.16 Ferraillage de la dalle sur deux appuis	59
Tableau III.17 Théorie de calcul des moments pour les dalles à trois appuis	61
Tableau.III.18. Calcul du ferraillage de la dalle D2	62
Tableau III.19. vérification des contraintes	63
Tableau.III.20. Calcul du ferraillage	65
Tableau III.21 : Vérification des contraintes	66
Tableau III.22 : Résultat de ferraillage de l'escalier.	69
Tableau III.23. Vérification des contraintes de compression dans le béton	71
Tableau III.24 : calcul des sollicitations max	72
Tableau III.25 : Résultat de ferraillage de l'escalier	73
Tableau III.26 : Vérification a l'ELU	73
Tableau III.27. Vérification des contraintes de compression dans le béton	73
Tableau III.28 Calcul des sollicitations max	75
Tableau III.29 : Résultat de ferraillage de l'escalier	75
Tableau III.30 : Vérification a l'ELU	75

Tableau III.31. Vérification des contraintes de compression dans le béton	76
Tableau III.32 : Calcul du ferraillage a l'ELU	77
Tableau III.33 : Résultat de ferraillage de l'escalier	77
Tableau III.34 : Vérification a l'ELU	78
Tableau III.35 Vérification des contraintes de compression dans le béton	78
Tableau III.36 : Calcul des sollicitations max	79
Tableau III.37 : Résultat de ferraillage de l'escalier	80
Tableau III.38 : Vérification a l'ELU	80
Tableau III.39 : Vérification des contraintes de compression dans le béton	80
Tableau III.40 : Calcul des sollicitations max	82
TableauIII.41 : Résultat de ferraillage de l'escalier	82
Tableau III. 42 : Vérification a l'ELU.	83
Tableau III.43 Vérification des contraintes de compression dans le béton	83
Tableau. III. 44 : Calcul d'armature	88
Tableau III.45 : Calcul des sollicitations max	91
Tableau III.46 : Ferraillage de la poutre brisé à la flexion simple.	91
Tableau III.47 : Calcul de la section de ferraillage de la dalle d'ascenseur	96
Tableau III.48 : Vérification de la condition de non fragilité	96
Tableau III.49 : Vérification de l'effort tranchant	96
Tableau III.50 : vérification de la flèche	98
Tableau III.51 : Ferraillage en travée	100
Tableau III.52 : Ferraillage en appuis	100
Tableau III.53 : Combinaisons d'action.	104
Tableau IV.1Valeurs des pénalités Pq	108
Tableau IV.2la participation massique pour chaque mode	114
Tableau IV.3Charges verticales reprises par les portiques et les voiles	115

Tableau IV4 Charges horizontales reprises par les portiques et les voiles	116
Tableau IV.5 Vérification de l'effort normal réduit dans les poteaux.	117
Tableau IV.6 Vérification des déplacements suivant X_X	117
Tableau IV.7 Vérification des déplacements suivant Y_Y	118
Tableau IV.8 Vérification de l'effet P-Δ.	119
Tableau IV.9 Vérification de la résultante des forces	120
Tableau V 1 Armetures longitudinales minimales et mayimales dans les noteaux (salan PDA)	122
Tableau V.1 Armatures longitudinales minimales et maximales dans les poteaux (selon RPA)	
Tableau V.2Sollicitations dans les poteaux	
Tableau V.3 les armatures longitudinales dans les poteaux	125
Tableau V.4 Les armatures transversales adoptées pour les poteaux	126
Tableau V.5 vérification du flambement des poteaux	128
Tableau V.6Vérification des contraintes dans le béton des poteaux	129
Tableau V.7 Vérification des sollicitations tangentes	130
Tableau V.8récapitulation du ferraillage des poutres	137
Tableau V.9 Vérification des contraintes tangentielles	139
Tableau V.10 Résultats de vérification des contraintes dans le béton	140
Tableau V.11 vérification de la flèche	142
Tableau V.12 section de ferraillage des poutres de l'E/sol	143
Tableau V.13 section de ferraillage des poutres de RDC	143
Tableau V.14section de ferraillage de l'Etage Service	144
Tableau V.15section de ferraillage de l'Etage Courant (2eme10eme)	145
Tableau V.16 Moment résistant dans les poteaux	146
Tableau V.17 Vérification des zones nodales	147
Tableau V.18Ferraillage du voile Vx 1	150
Tableau V.19 Ferraillage du voile Vx2.	151
Tableau V.20 Ferraillage du voile Vy1	151

Tableau V.21Ferraillage du voile Vy2.	152
Tableau V.22Ferraillage du voile Vy3.	152
Tableau V.23Ferraillage du voile Vy4	153
Tableau V.24 vérification à l'effort tranchant pour les voiles selon x	153
Tableau V.25 vérification à l'effort tranchant pour les voiles selon y	154
Tableau VI.1 Résumé des résultats de ferraillage de radier	156
Tableau VI.2 Vérification des contraintes de radie	166
Tableau VI.3 vérification des contraintes nouvelles de radier	166
Tableau VI.4 Distribution des charges	167
Tableau VI.5 Sollicitations sur la nervure dans le sens longitudinal	169
Tableau VI.6 Sollicitations sur la nervure dans le sens transversal	170
Tableau VI.7 Résumé des résultats (ferraillage des nervures dans le sens Y-Y)	170
Tableau VI.8 Résumé des résultats (ferraillage des nervures dans le sens X-X)	171
Tableau VI.9 Vérification de l'effort tranchant	171
Tableau VI.10 Résumé des résultats (vérification des contraintes).	172
Tableau VI.11 Vérification des contraintes nouvelles	172
Tableau VI.12 Section des armatures du mur de soutènement	176
Tableau VI.13 vérification des contraintes pour le voile périphérique	177
Tableau VI.14 section de ferraillage adopté après vérification	178

Liste des figures

Figurel.1. Evaluation de la résistance fcj en fonction de l'âge de béton	3
Figure I.2 : Diagramme des contraintes-déformations du béton	4
FigureI.3. Diagramme contrainte-déformation de calcul à l'ELS	4
Figure I. 4: Diagramme de Contrainte-Déformation de l'acier à l'ELU	5
Figure II.1 disposition des poutrelles	8
Figure II.2Plancher à corps creux	9
Figure.II.3 : Schéma d'une poutrelle	10
Figure II.4 : Schémas acrotère	10
FigureII.5 : panneau D1	11
FigureII.6 : panneau D2	11
Figure II.7 : pré dimension des voiles	12
Figure II.8 : schéma statique de la 1èr volées d'escalier entre sol	13
Figure II.9 : schéma statique d'escalier balancé	14
Figure II.10 : surface afférente	18
Figure II.11 Hauteur libre d'étage	19
Figure II.12 : descente de charges	20
Figure II.13: section réduite du poteau	27
Figure III.1 : Diagramme des efforts tranchant	32
Figure.III.2 : Schéma du type 4 de poutrelle (étage commercial)	34
FigureIII.3Schéma de ferraillage de la dalle de compression	51
Figure III.4 : Schéma de ferraillage de la poutre de chainage	56
Figure III.5. : dalle sur deux	56
Figure III.6: Section de la dalle pleine a ferraillée	57
Figure III.7. schéma de ferraillage des dalles des balcons	59

Figure III.8. dalle sur deux appuis	59
Figure III.9 Schéma de ferraillage des dalles	60
Figure.III.10. Dalle sur 3appuis	61
Figure.III.11. Section de la dalle pleine a ferraillé	62
Figure.III.12 : Schéma de ferraillage	63
Figure.III.13. panneau de dalle	64
Figure III.14 : Section de la dalle pleine a ferraillé	65
Figure III.15 : panneau sur 4 appuis	66
Figure III.16: Schéma de ferraillage de la dalle sur 4 appuis	67
Figure. III.17 : schéma statique de l'escalier	67
Figure III.18 : schéma de ferraillage de volée 1 E/Sol	72
Figure III.19: schéma statique de l'escalier	72
Figure. III.20: schéma de ferraillage de volée 2 enter sol	74
Figure III.21: schéma statique de l'escalier	74
Figure III.22 : schéma de ferraillage de volée 3 E/Sol	76
Figure III.23: schéma statique de l'escalier.	77
Figure III.24: schéma de ferraillage d'escalier étage courante	79
Figure III.25 : schéma de ferraillage de la volée 2 de RDC	78
Figure III.26 : schéma de ferraillage de la volée 2 de RDC	81
Figure III.27 : schéma statique de l'escalier	82
Figure III.28: schéma de ferraillage d'escalier	84
Figure III.29 : vu en plane d'escalier	84
Figure III.30 : schéma de ferraillage de la volée 1	86
Figure III.31 : schéma de ferraillage de la volée.	87
Figure III.32. Schéma statique de la poutre palière	87
Figure III.33. Section creuse équivalente.	88
Figure.III.34 : Schéma de ferraillage de la poutre palière.	90

Figure.III.35.: Section creuse équivalent	92
Figure III.36. Schéma de ferraillage.	93
FigureIII.37. Schéma de la Cage d'ascenseur.	94
Figure.III.38: Schémas représentant la surface d'impact	98
Figure III.39 : Calcul de Périmètre au niveau de la feuille moyenne	98
Figure.III.40 : Schéma de ferraillage de la dalle.	102
Figure III.42. Section creuse équivalent	105
Figure III.41 : Vue en coupe A-A du ferraillage de la dalle.	102
Figure III.42 : Section à ferrailler.	105
Figure III.43 : Schéma de ferraillage de l'acrotère.	106
Figure IV.1Spectre de calcul	111
Figure IV.2Disposition des voiles	112
Figure IV.3MODE 2 (translation suivant l'axe XX)	113
Figure IV.4MODE 1 (translation suivant l'axe YY)	113
Figure IV.5MODE 3 (rotation auteur de l'axe ZZ)	113
Figure V.1zone modal	123
Figure V.2 Section d'un poteau	128
Figure V.3Disposition des armatures de poteau	131
Figure V.4 schéma de ferraillage des poteaux (75*70)	132
Figure V.5 schéma de ferraillage des poteaux (70*65)	132
Figure V.6 schéma de ferraillage des poteaux (65*60)	132
Figure V.7 schéma de ferraillage des poteaux (60*55)	132
Figure V.8 schéma de ferraillage des poteaux (55*50)	133
Figure V.9 Dispositions constructives des portiques	135

Figure V.10 2U superposés	136
Figure V.11 Disposition constructive des armatures des poutres	145
Figure V.12 la zone modal	146
Figure V.13 Section du voile	149
Figure V.14 Schéma de ferraillage de voile V (y)	154
Figure V.15 coupe A-A	155
Figure VI.1 Semelle isolée de fondation	157
Figure VI.2 Schéma d'une Semelle filante	158
Figure VI.3 Zone de contact poteau radier	161
Figure VI.4 Schéma d'une dalle sur quatre appuis	164
Figure VI.5 Schéma de ferraillage de radier	167
Figure VI.6 Schéma de distribution des charges sur les nervures	168
Figure VI.7 Chargement de la nervure intermédiaire dans le sens y-y	168
Figure VI.8 Chargement de la nervure intermédiaire dans le sens x-x	169
Figure VI.9 Schéma statique sens Y-Y	169
Figure VI.10 Schéma statique sens X-X	169
Figure VI.11 Section à ferrailler	170
Figure VI.12 schéma de ferraillage des nervures sens Y-Y	173
Figure VI.13 schéma de ferraillage des nervures sens X-X	174
Figure VI.14 Schéma de répartition des contraintes sur le mur	175
Figure VI.15 Schéma de ferraillage de voile périphérique	178

Symboles et Notations

A_r : Aire d'une section d'acier de répartition

A_t: Aire d'une section d'acier transversal

A_s: Aire d'une section d'acier

B: la largeur (m).

B_r: Section réduite du béton

E_s: Module d'élasticité de l'acier

E_{vi}: Module de déformation différée du béton à l'âge de j jour

E_{ij}: Module de déformation instantanée du béton à l'âge de j jour

f_{ci}: Résistance caractéristique de compression à j jour

f_{tj}: Résistance caractéristique de traction à j jour

f_e: Limite d'élasticité de l'acier

G : Charges permanente

Q: Charges d'exploitation

E: Actions accidentelles

qu: Charges réparties ultime

q_s: Charges réparties de service

I: Moment d'inertie

M_u: Moment de calcul ultime

M_s: Moment de calcul de service

Nu: Effort normal ultime

Ns: Effort normal de service.

V: Effort tranchant

S : Surface plane de la structure

d : Position des armatures tendues par rapport à la fibre la plus comprimée

e: Epaisseur

L: Longueur

L_r: Longueur de recouvrement

l_f: Longueur de flambement

I: Rayon de giration

 Λ : Elancement

μ: Coefficient de frottement

μ_{bu} : Moment ultime réduit

v: Coefficient de poisson

 σ_{bc} : Contrainte du béton à la compression

 σ_s : Contrainte de l'acier à la traction

φ_t : Diamètre des armatures transversales

S_t: Espacement des armatures

ζ: Contrainte tangentielle de cisaillement

 ζ_{se} : Contrainte d'adhérence

η : Coefficient de fissuration

 Ψ_s : Coefficient de scellement

ls: Longueur de scellement

 ξ_{bc} : Raccourcissement relatif du béton

 ξ_s : Allongement relatif de l'acier tendu

γ_b : Coefficient de sécurité de béton

γ_s: Coefficient de sécurité de l'acier

γ : Poids spécifique déjaugé

A : Coefficient d'accélération de zone

 C_T : coefficient fonction du système de contreventement et du type de remplissage

C_u: La cohésion du sol (KN/m²).

D: Facteur d'amplification dynamique moyen.

ELS: Etat limite de service.

ELU: Etat limite ultime.

Fs : Cœfficient de sécurité = 1.5

Q : Facteur de qualité

R : coefficient de comportement global

P: Poids du radier (KN).

N : Charge concentrée appliquée (ELS ou ELU).

 S_r : surface du radier (m²).

S_{bat}: Surface totale du bâtiment (m²).

St : Espacement des armatures.

W: poids propre de la structure.

W_{Oi}: Charges d'exploitation.

W_G: poids du aux charges permanentes et à celles d'équipement fixes éventuels.

Z : bras de levier

f: Flèche

fe: Limite d'élasticité

h_{t:} hauteur total du radier (m).

 $\mathbf{h}_{\scriptscriptstyle N}$: hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

 σ : Contrainte normale.

φ : Angle de frottement interne du sol (degrés).

 σ_{adm} : Contrainte admissible au niveau de la fondation (bars).

k_s: Coefficient de portance.

 $\mathbf{q}_{\scriptscriptstyle{0}}$: Contrainte effective verticale initiale au niveau de fondation (bars).

 σ_{i} : Contrainte effective finale (bars).

 $\tau_{\mbox{\tiny ulim}}$: Valeur de cisaillement limite donné par le BAEL (MPa).

 τ_u : Contrainte de cisaillement (MPa).

η: Facteur d'amortissement.

 β : Coefficient de pondération en fonction de la nature et de la durée de la charge d'exploitation.

h₀: épaisseur de la dalle de radier (cm)

h_t: hauteur de la nervure (cm)

Introduction générale

INTRODUCTION GENERALE

INTRODUCTION

Le Génie civil représente l'ensemble des techniques concernant les constructions civiles. Les ingénieurs civils s'occupent de la conception, de la réalisation, de l'exploitation et de la réhabilitation d'ouvrages de construction et d'infrastructures urbaines dont ils assurent la gestion afin de répondre aux besoins de la société, tout en assurant la sécurité du public et la protection de l'environnement.

Pour mieux se protégé contre d'éventuels événements sismiques, il est nécessaire de bien comprendre le phénomène des tremblements de terre qui est à l'origine de mouvements forts de sol.

Le mouvement sismique a pour effets d'induire dans le sol et les ouvrages des forces d'inerties importantes et rapidement variables .Son action s'exercent d'une manière fondamentalement dynamique.

L'amélioration de la réglementation technique de la construction se base sur une connaissance approfondie du mouvement du sol.

A cet effet l'ingénieur en génie civil est censé de concevoir des édifices de manière à faire face à ce phénomène (construction parasismique), il doit en outre tenir compte des différents facteurs tel que l'économie, l'esthétique, la résistance et surtout la sécurité.

Dans l'analyse et le dimensionnement des structures, l'ingénieur doit appliquer le règlement afin d'assurer le bon fonctionnement de l'ouvrage, son choix du système de contreventement dépend de certaines considérations à savoir la catégorie du site, la hauteur et l'usage de la construction ainsi que les contraintes architecturales.

Le projet qui nous a été confié porte sur l'étude d'un bâtiment multifonctionnel (R+10+ S-sol+ E -sol), il regroupe à la fois commerces, service et logements d'habitations, il est contreventé par un système mixte (voiles portiques).

Nos trois premiers chapitres se résument au calcul statique, ensuite on nous entamant l'étude dynamique dans le IV chapitre à la recherche d'un bon comportement de notre structure par la mise en place de bon choix de disposition des voiles.

Une fois que la disposition est adoptée, la structure est soumise au spectre de réponse du RPA, sa réponse va être calculée en utilisant le SAP 2000 V14, le calcul du ferraillage des éléments structuraux sera exposé dans le chapitre V et enfin le calcul de l'infrastructure fera l'objet du chapitre VI.

Chapitre I:

Généralités

I.1. Introduction

L'étude d'un bâtiment en béton armé nécessite des connaissances de base sur lesquelles l'ingénieur prend appuis, et cela pour obtenir une structure à la fois sécuritaire et économique.

A cet effet, on consacre ce chapitre pour la description du projet et l'étude des caractéristiques des matériaux utilisés.

I.2. description de l'ouvrage

Le projet à étudier est un bâtiment **R+10avec un S-sol et E-sol** à usage multiple (commerce service et habitation). Est situé a proximité de l'université Abderrahmane Mira (targua Ouzzemour) dans la ville de **Bejaia** qui est classée selon le **RPA 99** (Règlement Parasismique Algérien 99 version 2003**Art.3.2**) en **Zone IIa** (zone de moyenne sismicité).

le site est constitué par des remblais importants, une couche de brèches de pente recimentées avec des passages alluvionnaire reposant sur des marnes fracturées.

A la profondeur de 1.35m après terrassements des remblais et de prendre une contrant admissible $Q_{adm}=1.5$ bars, et pour cela le site peut être classe en catégorie S_2

I.3. Caractéristiques de l'ouvrage

> Caractéristiques architecturales

- Hauteur total du bâtiment est h_t=38.58 m
- Hauteur du E/SOL : $h_{e-sol}=3.24 \text{ m}$
- Hauteur du S/SOL : $h_{s/sol} = 2.52 \text{ m}$
- Hauteur du RDC : h_{RDC}=4.14 m
- Hauteur d'étage : hétg=3.06 m
- La longueur totale du bâtiment : L_x=18.35m
- La largeur totale du bâtiment : L_v=9 m

I.4 Contreventement

Selon le RPA, tout ouvrage dépassant les 14m de hauteur doit être constitué de portiques et voiles en béton armé (contreventement mixte) RPA99 (Art 3.4.A.1.a)

I.5. Règlementation et normes utilisés

L'étude du projet est élaborée suivant les règles de calcul et de conception qui sont mises en vigueur actuellement en Algérie à savoir :

- Le CBA93 (Code De Béton Armé).
- Le RPA 99 révisée 2003(Règlement Parasismique Algérien).
- Le BAEL 91(Béton Armé Aux Etats Limites).
- DTR-BC2.2 (Document Technique Règlementaire Charges Et Surcharges).
- DTR-BC2.331 (Règles De Calculs Des Fondations Superficielles).

I.6. Méthodes de calcul

1. Etat limite ultime ELU

C'est un état qui correspond à la capacité portante maximale de la structure, son dépassement va entraîner la ruine de l'ouvrage.

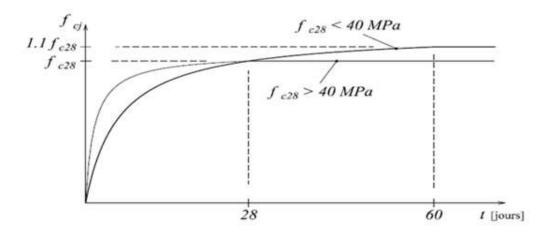
- Etat limite de l'équilibre statique.
- Etat limite de résistance de l'un des matériaux.
- Etat limite de stabilité de forme : flambement.

2. Etat limite de service ELS

C'est la condition que doit satisfaire un ouvrage pour que son utilisation normale et sa durabilité soient assurées, son dépassement impliquera un désordre dans le fonctionnement de l'ouvrage.

- Etat limite d'ouverture des fissures.
- Etat limite de déformation : flèche maximale.
- Etat limite de compression du béton.

I.7.Matériaux


a) le béton

1. Résistance à la compression

Le béton est caractérisé par sa résistance à la compression à l'âge de 28 jours ; notée f_{cj} . Cette valeur est mesurée à l'aide d'un essai de compression axiale sur des éprouvettes cylindriques de 16cm du diamètre et de 32 cm de hauteur.

- Pour $j \le 28$ jours :
- Pour $f_{c28} \le 40 \text{ MPa} \Rightarrow f_{cj} = [j/(4,76+0,83j)] f_{c28}$ (CBA Art: A.2.1.1.1)
- Pour $f_{c28} > 40 \text{ MPa} \Rightarrow f_{ci} = [j/(1,4+0.95j)] f_{c28}$ (CBA Art: A.2.1.1.1)
- Pour : 28< j<60 jours \Rightarrow $f_{cj} = f_{c28}$ (CBA Art : A.2.1.1.1)
- Pour : j >= 60 jours $\Rightarrow f_{cj} = 1, 1f_{c28}$ (CBA Art : A.2.1.1.1)

Pour l'étude on opte pour f_{c28} =25 MPA

Fig I.1. Evaluation de la résistance f_{cj} en fonction de l'âge de béton

2) Résistance à la traction

La résistance caractéristique à la traction du béton à j jours, notée f_{ij} est donnée par :

$$\begin{split} & f_{tj} = 0.6 + 0.06 \times f_{cj} \quad \text{Pour} \ f_{cj} \leq 60 \, \text{MPa} \\ & f_{t28} = 2.1 \, \text{MPa}. \end{split} \tag{CBA .Art : A.2.1.1.2}$$

- 3) Module de déformation longitudinale du béton
 - a) A court terme E_{ii}

$$E_{ij} = 11000 \times (f_{cj})^{1/3}$$
 $T \le 24h$ (CBA .Art: A.2.1.1.2)
 $f_{c28} = 25MPa \Rightarrow E_{ij} = 32164.2MPa$

b) A long terme E_{vi}

$$E_{vj} = 3700 \times (f_{cj})^{1/3} \Longrightarrow E_{vj} = 10818.86 \text{ MPa}$$
 $T > 24h$

• Cœfficient de poisson

C'est le rapport entre la déformation transversale et le raccourcissement unitaire de déformation

longitudinale avec :
$$\begin{cases} v = 0 & \text{pour le calcul des sollicitations à l'ELU} \\ v = 0,2 & \text{pour le calcul de déformation à l'ELS} \end{cases}$$
 (CBA Art A.2.1.3)

• Le module de déformation transversale du béton G

$$G = \frac{E_{ij}}{2 \times (\nu + 1)}$$

- 1. Diagramme contrainte déformation
- Contrainte de compression à l'Etat Limite Ultime

$$\sigma_{bc} = \frac{0.85 \times f_{c28}}{\theta \times \gamma_b} \text{ [MPa]Avec}:$$

T : La durée probable d'application de la combinaison d'action considérée.

 θ : Coefficient d'application.

$$\gamma_b = \begin{cases} 1.15 & \text{Situation accidentelle} \\ 1.5 & \text{Situation durable} \end{cases}$$

Lorsque T>24h.

 θ = 0.9 Lorsque 1h ≤ T ≤ 24h. θ = 0.8 Lorsque la durée probable d'application de la combinaison d'action<1h.

Dans notre cas t \leq 24heures d'où $\sigma_{bc}=$ 14.2 MPa situation durable. $\sigma_{bc}=$ 18.48 MPa situation accidentelle.

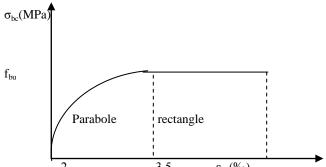


Figure 1.2²: Diagramme des contraintes-déformations du béton

La contrainte de compression $(\overline{\sigma}_{bc})$ à ELS (CBA 93 art. A.4.5.2)

$$\overline{\sigma_{bc}} = 0.6 \times f_{c28} = 0,6 \times 25 = 15 \text{ MPa}$$



Fig I.3. Diagramme contrainte-déformation de calcul à l'ELS

- La contrainte de cisaillement du béton
 Elle est limité parτ<τ_{adm.}
- Cas de fissuration peu nuisible

$$\overline{\tau_u} \le \min(0.13 f_{c28}; 5 \text{ MPa})$$

D'où :
$$\overline{\tau_u} = 3,25 \,\mathrm{MPa}$$

• Cas de fissuration nuisible ou très nuisible

$$\overline{\tau_u} \le \min(0.1 f_{c28}; 4 \text{ MPa})$$

$$D'où: \overline{\tau_u} = 2.5 \text{ MPa}$$

- b). Aciers:
 - 1. Caractéristiques mécaniques des aciers
 - à E.L.U

$$\begin{cases} \sigma_{s} = \frac{f_{e}}{\gamma_{s}} & \text{Pour: } \varepsilon_{se} \leq \varepsilon_{s} \leq 10\% \\ \sigma_{s} = E_{s} \times \varepsilon_{s} & \text{Pour: } \varepsilon_{s} \leq \varepsilon_{se} \end{cases}$$

Avec :
$$\varepsilon_s : \frac{f_e}{\gamma_s \times E_s}$$
; $\gamma_s = \begin{cases} 1,5....$ Pour le cas courant. $1...$ Pour le cas accidentel.

$$\sigma_s = \begin{cases} 348 \text{ MPa} & \text{Pour une situation courante.} \\ 400 \text{ MPa} & \text{Pour une situation accidentelle.} \end{cases}$$

 $E_{_{\it S}}$: Module d'élasticité longitudinal de l'acier = 200000 MPa:

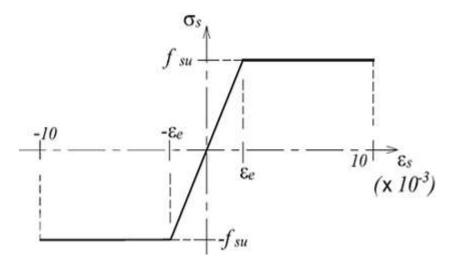


Figure I. 4: Diagramme de Contrainte-Déformation de l'acier à l'ELU

- à E.L.S
- Cas de fissuration peu nuisible :Pas de vérification à faire
- Cas de fissuration préjudiciable

$$\sigma_{s} \leq \min(\frac{2}{3} \times f_{e}, 110\sqrt{\eta \times f_{tj}})$$

 η : Coefficient de fissuration : $\eta = 1$ pour l'acier R L

 $\eta = 1.6$ pour l'acier H A

• Cas de fissuration très préjudiciable

$$\sigma_{_{s}} \leq min(\frac{1}{2} \times f_{_{e}}, 90\sqrt{\eta \times f_{_{tj}}})$$

• Protection des Armatures (l'enrobage « e »)

On adopte: e=h-d avec d=0.9h

I.8. Actions et sollicitations

a). Les Actions : CBA 93 (art A.3.1.1)

On appelle actions, les forces et les couples dues aux charges appliquées et aux déformations imposées à une construction, elles proviennent donc :

- des charges permanentes.
- des charges d'exploitations.
- des charges climatiques.

1) Les Actions Permanentes (G)

Ce sont des actions dont l'intensité est constante, ou très peu variable dans le temps, elles constituent :

- Le poids propre des éléments de la structure
- Le poids des revêtements et cloisons.
- Le poids de poussée des terres et des liquides.

2) Les Actions Variables (Q)

Ce sont des actions dont l'intensité varie dans le temps, elles correspondent aux :

- Charges d'exploitation appliquées au cours d'exécution.
- Effet de la température.
- Charges climatiques (vent, neige).
- Charges non permanente appliquées aux cours de l'exécution.

3) Les Actions Accidentelles (E)

Ce sont des actions qui se produisent rarement, et dont la durée d'application est très courte. Par exemple (Séismes, Explosions, Chocs...).

b). Les sollicitations: CBA93 (Art A.3.3.1)

Les sollicitations de calcul sont des efforts (normaux et tranchants) et des moments (de flexions et de torsions).

1. Les combinaisons d'action:

a) Combinaisons fondamentales ELU: BAEL91 (Art.A.3.3.21)

Lors des situations durables ou transitoires, il y a lieu de considérer :

$$1.35 G_{\text{max}} + G_{\text{min}} + \gamma_{O1} Q_1 + \sum 1.3 \psi_{0i} Q_i$$

 $G_{\mathrm{max}}\,$: L'ensemble des actions permanentes dont l'effet est défavorable.

 $G_{\min}\,$: L'ensemble des actions permanentes dont l'effet est favorable

 Q_1 : Action variable dite de base.

 Q_i : Actions variables dites d'accompagnement (avec i> 1)

 ψ_0 , ψ_1 et ψ_2 : Sont fixés par les textes en vigueur, et sont données par **CBA 93(Art A 3.1.3.1).**

Expressions dans lesquels

 $\gamma_{Q1} = \begin{cases} 1.5 \text{ dans le cas général} \\ 1.35 \text{ Dans les cas (La température, Les charges d'exploitations étroitement bornées ou} \\ \text{de Caractère particulières, Les bâtiments agricoles à faible densité d'occupation humaine)}. \end{cases}$

b) Situations accidentelles ELS: (Art. A.3.3.22 BAEL91)

$$G_{\max} + G_{\min} + F_A + \psi_{11} Q_1 + \sum \psi_{2i} Q_i$$

Avec : F_A : valeur normale de l'action accidentelle

 $\psi_{11}Q_1$: Valeur fréquente d'une action variable.

 $\psi_{2i} Q_i$: Valeur quasi permanente d'une autre action variable.

2. Combinaisons d'actions données par le RPA 99/version 2003 :

Selon la RPA les combinaisons d'action sont :

• Situations durables : $\begin{cases} ELU : 1.35 \times G + 1.5 \times Q \\ ELS : G + Q \end{cases}$

• Situations accidentelles :
$$\begin{cases} G + Q \pm E \\ G + Q \pm 1.2 \times E \text{ pour les structures auto-stables} \\ 0.8 \times G \pm E \end{cases}$$

Chapitre II:

Pré dimensionnement

Introduction

Les éléments porteurs doivent avoir une section minimale pour reprendre les efforts sollicitant et pour cela nous avons respecté les recommandations du : RPA 99 version 2003, BAEL 91 et CBA 93.

II.1 : pré dimensionnement des éléments porteurs

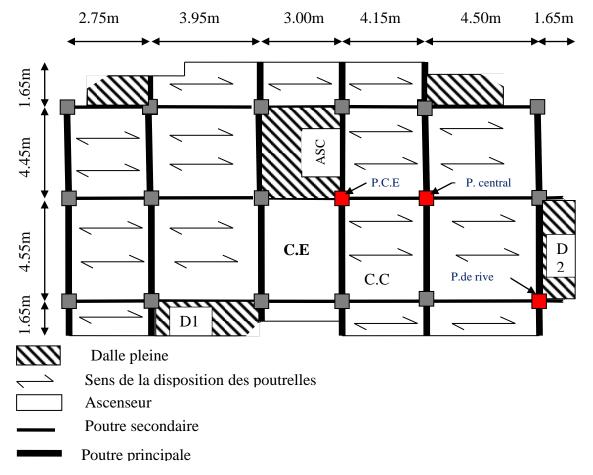


Fig II.1: disposition des poutrelles

poutres principales : Selon le BAEL91 le pré dimensionnement des poutres se fait en utilisant la condition suivante :

 $L/15 \leq h \leq L/10$

- h: hauteur de la poutre.
- L: distance maximale entre nu d'appuis (Lmax = 4.55 0.5 = 4.05m)

D'ou:

 $L = 405cm. \Rightarrow 27cm \le ht \le 40.5cm$

On prend: b = 30 cm et h = 35 cm

vérifier des exigences du RPA qui sont les suivantes :

• b ≥20cm condition vérifiée.

- ht ≥30cm condition vérifiée.
- h/b = 35/30 = 1.16 < 4 condition vérifiée.
- les poutres secondaires : elles sont disposées parallèlement aux poutrelles, leurs hauteur est donnée par le critère de flèche qui est suivantes :

$$L/15 \le h \le L/10$$

L: portée maximale entre nu d'appuis (L= 450-50=400 cm)

 $L=400cm \Rightarrow 26.66cm \le h \le 40cm$.

On prend: $\mathbf{b} = 30 \text{ cm et h} = 35 \text{ cm}.$

✓ Vérifications selon RPA 99:

Les dimensions de la poutre doivent satisfaire les conditions suivantes :

$$\begin{cases} b \geq 20 \text{ cm si verifiée} \\ h \geq 30 \text{ cm si verifiée} \\ h/b \leq 4.00 \text{ si verifiée} \end{cases}$$

Apres la vérification on adopte les dimensions suivantes :

✓ Poutres principales : $b \times h = (30,35) \text{ cm}^2$

✓ Poutres secondaires : $b \times h = (30,35) \text{ cm}^2$.

II.2 Les planchers

II.2.1 Plancher à corps creux: Le plancher est composé de corps creux et de poutrelles et de dalle de compression. Son pré dimensionnement se fait par satisfaction de la condition suivante :

$h \ge L_{max}/22.5$

L_{max}: longueur maximale entre nus d'appuis selon la disposition des poutrelles

ht: hauteur du plancher

 $L_{max} = 450 - 50 = 400 cm$

h≥400 /22,5= 17.77cm

Donc on adoptera des planchers à corps creux avec une hauteur de (16+4)=20cm.

Avec:

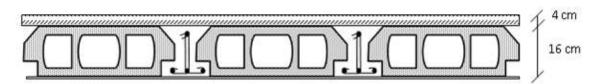


Fig II.2: Plancher à corps creux

II.2.2 Pré dimensionnement des poutrelles :

- > Critère de la petite portée : Les poutrelles sont disposées parallèlement à la plus
- > petite portée.
- ➤ Critère de continuité : Si les deux sens ont les mêmes dimensions, alors les poutrelles sont disposées parallèlement au sens du plus grand nombre d'appuis.

b: Largeur de la table de compression.

h: Épaisseur du plancher = 16+4cm.

L_x: distance maximale entre nus d'appui de deux poutrelles.

 l_y : distance minimal entre nus d'appuis dans le sens de la disposition des poutrelles

$$b_0 = (0.4 \text{ à } 0.8) \text{ h} \rightarrow b_0 = (8 \text{ à } 16 \text{cm})$$

Soit: $b_0 = 10$ cm

 $b_1 \le \min (L_x/2, L_y/10)$ CBA93 (article A.4.1.3)

 $L_x = 65-10 = 55$ cm : distance entre deux nervures Successives.

L_v: la distance minimale entre nus d'appuis des poutres secondaires

$$L_v = 275-50 = 225$$
cm

 $b_1 \le \min (55/2; 225/10)$

 $b_1 \le \min(27.5; 22.5)$

 $b_1 = 22.5$ cm

 $b = 2b_1 + b_0$

 $b = 2 \times 22.5 + 10 = 55$

Soit: b = 55cm

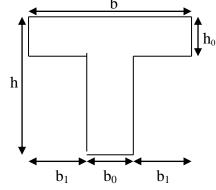


Fig.II.3: Schéma d'une poutrelle

-Les poutrelles sont calculées en flexion simple, comme des poutres sur plusieurs appuis.

II.3 Pré dimensionnement de l'acrotére

Désignation des	Epaisseur	Surface	Densité	Poids
éléments	(cm)	(m²)	(KN/m^3)	(KN/ml)
Poids propre de	15	0,0985	25	2,46
l'acrotère				
Enduit de ciment	2	0,009	20	0,18
intérieur				
Enduit de ciment	2	0,012	20	0,24
extérieur				

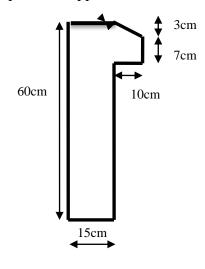


Fig II.4: Schémas acrotère

Charge permanente		
totale	G=	2,88K/ml
Charge		Q=1 KN/ml
d'exploitation		

Tab II.1: pré dimensionnement de l'acrotère

II.4 Pré dimensionnement des dalles pleines

• Résistance au feu

e = 7 cm pour une heure de coupe-feu.

e = 11 cm pour deux heures de coupe-feu. (CBA93)

e = 17.5 cm pour quatre heures de coupe-feu.

• Isolation phonique $e \ge 13$ (CBA93)

• Résistance à la flexion

- Dalle reposant sur un ou deux appuis : $e \ge \frac{L_X}{20}$
- Dalle reposant sur trois appuis $\frac{L_X}{45} \le e \le \frac{L_X}{40}$
- Dalle reposant sur quatre appuis : $\frac{L_x}{45} \le e \le \frac{L_x}{40}$ si $\rho > 0.4$

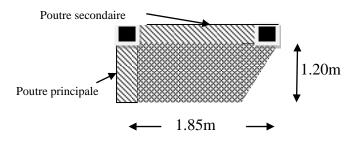
L'épaisseur e déponde aussi du critère de coupe-feu

- e > 7cm pour 1 heur de coupe-feu²
- e > 11cm pour 2 heures de coupe-feu

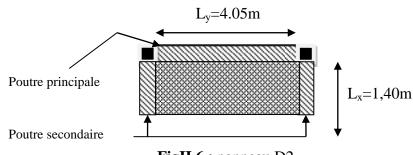
L_x: est la petite portée du panneau le plus sollicité (cas le plus défavorable).

> Dalle sur 2 appuis

On a: $L_x=1,20m$ Ly=1.85m.


$$e \ge \frac{Lx}{20} \Leftrightarrow e \ge 6cm$$

> Dalles sur 4 appuis


 $L_x=1,40m$; $L_y=4,05m$.

$$\frac{Lx}{35} \le e \le \frac{Lx}{30} \Rightarrow \frac{140}{35} \le e \le \frac{140}{30}$$

 \Rightarrow 4cm \leq e \leq 4.67cm.

FigII.5: panneau D1

FigII.6: panneau D2

Toutes les dalles des balcons ont des dimensions modérées et c'est pour cette raison que la condition de coupe-feu est la plus défavorable.

On prend :
$$e = 15$$
 cm.

II.5 les voile:

Les dimensions des voiles doivent satisfaire les conditions du RPA (article 7.7.1) suivantes :

$$a \ge \max [h_e/20,15cm].$$

a : épaisseur.

Avec : h_e : la hauteur libre d'étage.

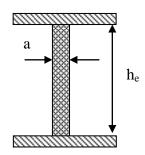


Fig II.7: pré dimension des voiles

On a dans notre cas:

- Sous-sols he = 252 20 = 232cm.
- Entre sol h_e =324 -20= 304 cm
- RDC h_e = 414-20= 394cm.
- autres niveaux $h_e = 306 20 = 286$ cm.

1^{er} type de voile :

$$a \ge \frac{232}{20} \Rightarrow a \ge 11.60cm \Rightarrow$$
 on adopte pour le sous-sol un voile d'épaisseur $a = 20cm$

$$a \ge \frac{304}{20} \implies a \ge 15.20 \ cm \implies$$
 on adopte pour l'entre sol un voile d'épaisseur $a = 20 \text{cm}$

$$a \ge \frac{394}{20} \implies a \ge 19.70 cm \implies$$
 on adopte pour RDC un voile d'épaisseur $a = 20 cm$

$$a \ge \frac{286}{20} \Rightarrow a \ge 14.30 cm \Rightarrow \text{ on adopte pour autres niveaux un voile d'épaisseur } a = 15 cm$$

II.6 Escalier:

Pré dimensionnement :

Pour déterminer les dimensions des marches et des contres marches on utilise la formule de **Blondel** qui est donnée par :

$$59 \le g + 2 \times h \le 66 \dots (1)$$
.

La limite inférieure (59) correspond à des escaliers courants d'appartement et la limite Supérieure (66) correspond à des locaux publics.

Soit (n) le nombre de contre marches et (n-1) le nombre de marche

H: la hauteur de la volée

L₀ : la longueur projetée de la volée

$$H = n \times h \implies h = H/n$$

$$L_0 = (n-1) \times g \implies g = L_0/n-1$$

Si
$$g + 2 \times h = 64$$
cm....(2).

On remplace dans (2):

$$L_0/n - 1 + 2 \times (H/n) = 64$$

n est la solution de l'équation : $64 n^2 - (64 + 2H + L_0)n + 2 H$

$> 1^{er}$ type:

Entre sol 1^{er} volée

H = 1.08m

$$L_0 = 1.50m$$

$$\Rightarrow$$
 0.64 n²-(0.64 + 2×1.08 + 1.50) n + 2×1.08 = 0

$$\Rightarrow$$
n = 6

Donc : nombre de contre marche (n = 6)

nombre de marche (n-1) = 5

$$g = L_0/n-1 = 1.50/5 = 30cm$$

$$h = H/n = 1.08/6 = 18cm$$

1.08m α α 1.50m

Fig II.8 : schéma statique de la 1^{èr} volées d'escalier entre sol

> Epaisseur de la paillasse

Elle est déterminée en assimilant cette dernière à une poutre simplement appuyée, elle est calculée par la relation suivante:

$$L/30 \le e \le L/20$$

$$L \!\!=\! (1.60^2 \!+ 1.08^2)^{1/2} + 1.60 \!\Longrightarrow\! L \!\!=\! 3.44 m$$

$$\Rightarrow$$
 344/30 \leq e \leq 344/20

$$\implies 11.49cm \le e \le 17.24cm$$

On prend: e = 15 cm

> Poids de la paillasse :

$$G = \frac{\gamma_b \times e}{\cos \alpha} = \frac{25 \times 0.15}{\cos 35.75} = 4.62 \text{ kn/m}^2$$

Avec :
$$\alpha = tg^{-1}(H/L) = tg^{-1}(108/150)$$

$$\Rightarrow \alpha = 35.75^{\circ}$$

$$L_v = (L_0^2 + H^2)^{1/2} = 1.93 \text{ m}$$

Le tableau suivant résume le calcul des autres escaliers

Etage	Volée	H	$\mathbf{L_0}$	N	n-1	g	h	L	e	$L_{\rm v}$	α	G
		(m)	(m)			(cm)	(cm)	(m)	(cm)	(m)	(.°)	(KN/m)
	1	1.08	1.5	6	5	30	18	3.44	15	1.93	35.75	4.62
\mathbf{E} - \mathbf{S}	2	1.62	2.4	9	8	30	18	4.75	18	2.90	34.02	5.43
	3	0.54	0.6	3	2	30	18	4.45	18	0.80	41.98	6.05
RDC	1	2.16	3.3	12	11	30	18	4.89	18	3.94	33.20	5.37
	2	1.98	3.0	11	10	30	18	4.84	18	3.59	33.42	5.40
Courant	1=2	1.53	2.4	9	8	30	17	4.69	18	2.85	32.51	5.33

Tab II.2: récapitulations des escaliers simples

2^{eme}type:

Entre sol

> Partie BCD et EFG

$$\beta = \frac{90}{3} = 30^{0}$$

$$X = 1.51 \tan 30$$

$$\begin{cases} X = 0.87m \\ Y = 0.61m \end{cases}$$

$$X' = 1.48 \tan 30$$

$$\begin{cases} X' = 0.85m \\ Y' = 0.66m \end{cases}$$

Soit deux marche avec h=18cm

Et de l'épaisseur e=15cm

$$\Rightarrow \alpha = 21.20^{\circ}$$

> ETAGE RDC

4 Partie BCD et EFG

$$\beta = \frac{90}{5} = 18^{0}$$

$$X_{1} = X_{2} = 1.38 \tan 18^{0}$$

$$X_{2} = X_{3} = 0.45m$$

$$\begin{cases} X_1 = X_2 = 0.45m \\ Y_1 = 0.58m \end{cases}$$

$$X_1' = X_2' = 1.48 \tan 18^0$$

$$\begin{cases} X_1' = X_2' = 0.48m \\ Y_1' = 0.42m \end{cases}$$

Soit quatre marche avec h=18cm

Et de l'épaisseur e=15cm

Le tableau suivant résume le calcul d'escaliers balancé

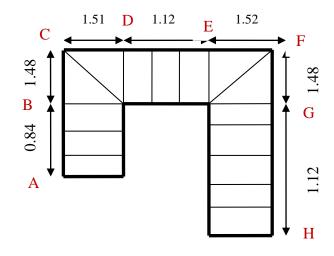
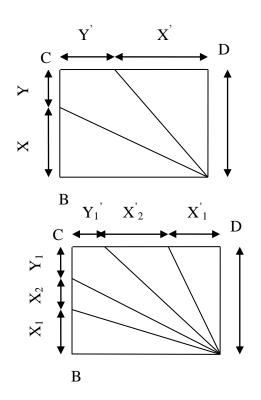



Fig II.9: schéma statique d'escalier balancé

Etage	Volée	H	L_0	n	n-1	g	h	L	e	α	G
		(m)	(m)			(cm)	(cm)	(m)	(cm)	(.°)	(KN/m ²)
	AB	0.72	0.84	4	3	28	18	3.96	15	17.24	3.92
E-Sol	DE	0.90	1.125	5	4	28	18	1.44	15	38.78	4.81
	FH	0.90	2.32	5	4	28	18	4.00	15	21.20	4.02
	AB	0.72	0.84	4	3	28	18	3.96	15	17.24	3.92
RDC	DE	1.08	1.4	6	5	28	18	1.77	15	37.64	3.73
	FH	0.90	2.32	5	4	28	18	4	15	21.20	4.02

Tab II.3 : récapitulation de l'escalier balancé

II.7. Evaluation des charges et surcharges :

> Plancher terrasse inaccessible :

Désignation des éléments	e (cm)	Poids (KN/m ²)
Gravillon de protection	5	0.60
Multicouche d'étanchéité	2	0.12
Forme de pente	15%	2.20
Isolation thermique	1,5	0.27
Plancher corps creux (16+4)	20	2.85
Enduit en mortiers	1.5	0.27
		$\sum =6.31$

Tab II.4: Evaluation des charges (plancher Terrasse inaccessible)

 $G_{pi} = 6.31 \ KN/m^2 \qquad \qquad Q_{pi} = 1 \ KN/m^2.$

> Plancher étage courant :

Désignation des éléments	e (cm)	Poids (KN/m²)
Cloisons légères de séparation	10.0	0.9
Revêtement en Carrelage	2	0.40
Mortier de pose	2	0.40
Plancher corps creux (16+4)	20	2.85
Enduit en plâtre	2.00	0.20
		$\sum = 4.75$

Tab II.5 : Evaluation des charges (plancher étage courant)

$Gp = 4.75 \text{ KN/m}^2$	(G plancher étages courant).
$G_{pc} = 4.75 \text{ KN/m}^2$	(G plancher étage commercial).
$G_{pb} = 4.75 \text{ KN/m}^2$	(G plancher étage bureau).
$Q_p = 1.5 \text{ KN/m}^2$	(Q plancher étages courant).
$Q_{pc} = 5.0 \text{ KN/m}^2.$	(Q plancher étage commercial).
$Q_{pb} = 2.5 \text{ KN/m}^2$	(Q plancher étage bureau).

> Dalle pleine:

Désignation des éléments	e (cm)	Poids (KN/m ²)
Carrelage	2	0.40
Dalle pleine	15	3.75
Mortier de pose	2	0.40

Sable fin	3	0.54
Enduit de ciment	1.5	0.27
		$\sum = 5.36$

Tab II.6: Evaluation des charges (Dalle pleine)

 $G = 5.36 \text{ KN/m}^2$

 $Q = 3.5 \text{ KN/m}^2$.

> Murs extérieurs (doubles cloisons en briques creuses) :

Désignation des éléments	e (cm)	Poids (KN/m²)
Enduit en plâtre	1.5	0,15
Briques creuses	15	1,35
Lame d'air	5	0,00
Briques creuses	10	0.90
Enduit de ciment	1.5	0,27
		$\sum = 2.67$

Tab II.7: Evaluation des charges (murs éxterieure)

 $G = 2,67 \text{ KN/m}^2$.

> Escalier

♣ Volée type 1 (escalier principale)

Paillasse...
$$G = \frac{\gamma_b \times e}{\cos \alpha} = \frac{25 \times 0.18}{\cos 32.52} = 5.33 KN/m^2$$

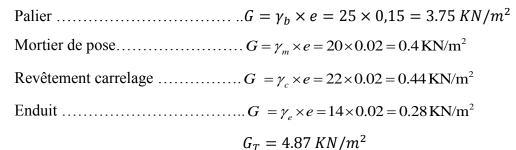
Marche ... $G = \gamma_b \times \frac{h}{2} = (22 \times 0.18)/2 = 1.98 \text{ KN/m}^2$

Mortier de pose... $G = \gamma_m \times e = 20 \times 0.02 = 0.4 \text{ KN/m}^2$

Carrelage horizontale ... $G_h = \gamma_c \times e = 22 \times 0.02 = 0.44 \text{ KN/m}^2$

Carrelage vertical ... $G = \gamma c \times \frac{h}{g} \times e = 22 \times 0.18/0.3 \times 0.02 = 0.264 \text{ kn/m}^2$

Enduit ... $G = \frac{\gamma_{end} \times e}{\cos \alpha} = \frac{14 \times 0.015}{\cos 32.52} = 0.25 \text{ KN/m}^2$


 $G_{T=}8.66 \text{ kn/m}^2$

Désignation des éléments	Epaisseur (m)	Densité (KN/m ³)	Poids (KN/m ²)
Carrelage horizontale	0.02	22	0.44
Carrelage verticale	0.02	22	0.26
Mortier de pose	0.02	20	0.40
Lit de sable	0.02	18	0.36
Marches	0.18 · (1/2)	22	1.98
Paillasse	0.18/ (cos32.52)	25	5.33
Enduit de plâtre	0.015/(cos32.52)	14	0.25

Charge permanente totale	G = 9.02
Surcharge d'exploitation	Q = 2.50

Tableau II.8 : Evaluation des charges de la volée.

Evaluation des charges sur le palier :

> Palier:

Désignation des éléments	e (cm)	Poids (KN/m²)
Revêtement en carrelage	2	0,44
Mortier de pose	2	0,40
Poids de la dalle	15	3.75
Enduit	2	0,28
		$\sum =4.87 KN/m^2$

Tableau II.9: Evaluation des charges du palier

Escalier à usage d'habitation : $Q = 2.5 \text{ KN/m}^2$

Escalier à usage de service (soupente et rez de chaussée) : $Q = 4 \text{ KN/m}^2$

II.8 La descente de charge :

• La loi de dégression des charges d'exploitation :

Chaque plancher d'un immeuble est calculé pour la charge d'exploitation maximale qu'il est appelé à supporter. Toutefois, comme il est peu probable que tous les planchers d'une même construction soient soumis, en même temps, à leurs charges d'exploitation maximale, on réduit les charges transmises aux fondations.

- La loi de dégression :

Soit Q_0 la charge d'exploitation sur le toit ou la terrasse couvrant le bâtiment, Q_1, Q_2, \dots, Q_n les charges d'exploitations respectives des planchers des étages $1,2,\dots, n$ numérotés à partir du sommet du bâtiment.

On adoptera pour le calcul des points d'appui les charges d'exploitation suivantes :

Sous toit ou terrasse : Q_0

Sous dernier étage : $Q_0 + Q_1$

Sous étage immédiatement inférieur (étage2) : $Q_0 + 0.95(Q_1 + Q_2)$

Sous étage immédiatement inférieur (étage3) : $Q_0 + 0.9(Q_1 + Q_2 + Q_3)$

Sous étage n quelconque :

$$Q_n = Q_0 + \frac{3+n}{2n} (Q_1 + Q_2 + \dots Q_n)$$

Le coefficient $\frac{(3+n)}{2n}$ étant valable pour $n \ge 5$

Lorsque les charges d'exploitation sont les mêmes pour tous les étages, la loi de dégression établie précédemment se réduit à :

Sous toit ou terrasse:

 Q_0

Sous dernier étage :

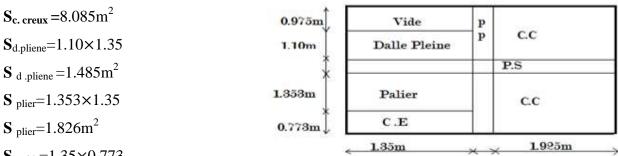
Q

Sous étage immédiatement inférieur (étage2): 0.9Q

Sous étage immédiatement inférieur (étage3): 0.8 Q

Et ainsi de suite en réduisant de 10% par étage jusqu'à 0.5Q, valeur conservée pour les étages inférieurs suivants.

Poteaux cage d'escalier :


La surface afférente terrasse inaccessible

$$S_{c. creux} = (1.35 \times 2.125) + (2.125 \times 1.925) + (2.075 \times 1.925) + (1.35 \times 1.10)$$

$$S_{c. creux} = 12.45 \text{m}^2$$

$$S_{d.pliene} = 1.35 \times 0.98 = 1.323 \text{ m}^2$$

> La surface afférente étage courante

S volée= 1.35×0.773

 $S_{\text{vol\'ee}} = 1.043 \text{m}^2$

Fig II.10 : surface afférente

> La surface afférente

	S _{c. creux}	$\mathbf{S}_{ ext{d.pliene}}$	Spalier	Svolée
étage service	$4.09m^2$	1.485m^2	$2.386m^2$	$3.976m^2$
RDC	$4.09m^2$	1.485m^2	5.254m^2	$1.108m^2$
E/Sol	10.95m^2	1.485m^2	/	/

Tab II.10: les surfaces afferentes

	G _{c. creux}	G _{d .pliene}	$\mathbf{G}_{ ext{vol\'ee}}$	G palier	Q _{c cre}	Q d.pliene	Qescalier
Terrasse	59.13	7.09	/	/	13.75	/	/
inaccessible							
Etage	38.40	7.959	9.032	10,262	12.127	3,71	7.172
courant							
Etage de	19.43	7.959	34,037	13.40	10.225	3,712	17.565
service							
Etage RDC	19.43	7.959	9.207	26.81	20.45	3.71	17.565

les charges et les surcharge

Tab II.11: les charges et les surcharge des planchers

54.750

5.197

✓ Poids des poutres :

52.01

Poutre principal (**pp**) : $0.35 \times 0.30 \times 4.2 \times 25 = 11.02 \text{ KN}$

Poutre secondaire (**ps**) : $0.35 \times 0.30 \times 3.275 \times 25 = 8.60$ KN

7.959

pp+ps = 19.62 KN

E/Sol

Les poteaux :

Ce sont des éléments en béton arme, rectangulaire et circulaire, le pré dimensionnement des poteaux se fait a la compression centrée selon les règles du BAEL91, en appliquant les critères de résistance et le critère de stabilité de forme et suivant les exigences du RPA 99 version 2003 dans la zone IIa

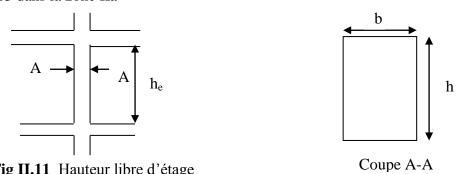


Fig II.11 Hauteur libre a ciagoLes exigences de RPA: $\begin{cases} & \text{Min } (b, h) \geq 25 \text{cm} \\ & \text{min } (b, h) \geq h_e/20 \text{ cm.} \end{cases}$ Pour un poteau rectangulaire. 0.25 < b/h < 4.0 $D \geq 30 \text{ cm}$ pour un poteau circulaire.

On fixera les dimensions des poteaux après avoir effectué la descente de charge, tout en vérifiant les recommandations du RPA99.

Les dimensions des poteaux sont supposées :

o -Sous-sol et entre sol:	$(h, b) = (50,50) \text{ cm}^2$
o R.D.C.et 1 ^{er} étage :	$(h, b) = (45,45) \text{ cm}^2$
\circ - 2 ^{eme} 3 ^{eme} ,4 ^{eme} et 5 ^{eme} étage :	$(h, b_) = (40, 40) \text{ cm}^2$
o -6 ^{eme} . 7 ^{eme} , et 8 ^{eme} étage:	$(h, b) = (35, 35) cm^2$
o -9 ^{eme} et10 ^{eme} étage:	$(h, b) = (30.30) \text{ cm}^2$

o Poids des poteaux

	Surface	G _{poteaux}
S/SOL	50×50	15.75
E/SOL	50×50	20.25
RDC	45×45	20.96
ETAGE SERVICE	45×45	15.49
ETAGE 2 ^{eme} à 5 ^{eme}	40×40	12.24
ETAGE 6 ^{eme} à 8 ^{eme}	35×35	9.37
ETAGE 9 ^{eme} et 10 ^{eme}	30×30	6.88

Tab II.12: poids des poteaux

Descente des charges du poteau :

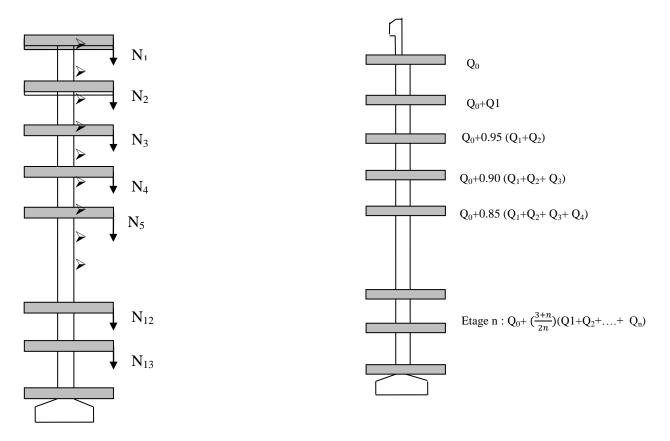


Fig II.12 : descente de charges

Poids des poutres :

Poutre principal (**pp**) : $0.35 \times 0.30 \times 4.2 \times 25 = 11.02$ KN

Poutre secondaire (**ps**) : $0.35 \times 0.30 \times 4.02 \times 25 = 10.56$ KN

 $Pp + Ps = 21.59 \ KN$

> Descente des charges poteau cage d'escalier :

	Niveau	Eléments	G (kN)	Q (kN)
		Plancher terrasse inaccessible	69.09	13.75
		Poutres	19.62	
Etage 10	N1	Dalle pleine	16.45	
		Poteaux	6.88	
		Σ	112.04	13.75
		N1	112.04	
		Plancher Courant	38.40	23.00
T. 0	N2	Poutres	19.62	
Etage 9		Poteaux	6.88	
		Dalle pleine	7.96	
		Escalier	19.29	
		Σ	204.19	36.75
		N2	204.19	
		Plancher Courant	38.40	23.00
T74 0	N3	Poutres	19.62	
Etage 8		Poteaux	9.37	
		Dalle pleine	7.96	
		Escalier	19.29	
		Σ	298.83	57.45
		N3	298.83	
		Plancher courant	38.40	23.00
	N4	Poutres	19.62	
Etage 7		Poteaux	9.37	
		Dalle pleine	7.96	
		Escalier	19.29	
		Σ	393.47	75.85
		N4	393.47	
		Plancher Courant	38.40	23.00
Etage 6	N5	Poutres	19.62	
		Poteaux	9.37	
		Dalle pleine	7.96	
		Escalier	19.29	
		Σ	488.11	91.95
		N5	488.11	
		Plancher Courant	38.40	23.00
Etage05	N6	Poutres	19.62	
		Poteaux	12.24	
I		Dalle pleine	7.96	

		Escalier		19.29	
			Σ	585.62	105.75
		N6		585.62	
		Plancher Courant		38.40	23.00
	N7	Poutres		19.62	
Etage 4		Poteaux		12.24	
		Dalle pleine		7.96	
		Escalier		19.29	
			Σ	683.13	117.25
		N7		683.13	
		Plancher Courant		38.40	23.00
	N8	Poutres		19.62	
Etage 3		Poteaux		12.24	
		Dalle pleine		7.96	
		Escalier		19.29	
			Σ	780.64	126.45
		N8		780.64	
		Plancher Courant		38.40	23.00
	N9	Poutres		19.62	
Etage 2		Poteaux		12.24	
		Dalle pleine		7.96	
		Escalier		19.29	
			Σ	878.15	140.16
		N9		878.15	
T-14	N110	Plancher courant		38.40	23.00
Etage Service	N10	Poutres Poteaux		19.62 15.49	
Scrvice		Dalle pleine		7.96	
		Escalier Escaler		19.29	
			Σ	982.14	150.37
		N10		982.14	
		Plancher SERVICE		19.43	31.50
Etage	N11	Poutres		19.62	
RDC		Poteaux		20.96	
		Dalle pleine		7.96	
		Escalier		36.02	
			Σ	1086.13	168.77
		N11		1086.13	44.70
	B74.0	Plancher RDC		19.43	41.72
	N12	Poutres		19.62	
E/SOL		Poteaux Della plaina		20.25 7.96	
		Dalle pleine Escalier		7.96 36.02	
		Discurren	Σ	1189.41	190.28

S/SOL	N13	Plancher E/Sol Poutres Poteaux Dalle pleine	52.01 19.62 15.75 7.96	58.46 225.42
		TOTAL	1284.75	225.42

Tab II.13 : descente de charges (poteau cage d'escalier)

POTEAU CENTRAL

> Les charges et les surcharge

	G _{c. creux}	Gescalier	Qc. creux	Qescalier
Terrasse	95.78	/	16.905	/
inaccessible				
Etage	80.30	/	19.365	/
courant				
Etage de	61.32	33.28	64.55	16
service				
Etage RDC	61.32	33.28	64.55	16
E/Sol	80.30	/	84.525	/

Tab II.14 : descente de charges (poteau central)

Descente des charges poteau centrale

Niveau	Désignation	G (KN)	Q (KN)
	Plancher T- inaccessible	106.67	
N1	Poutre (pp+ps)	21.59	16.905
	G venant de N1	128.26	
N2	Poteau (30×30)	6.88	16.905
	G venant de N2	135.14	
N3	Plancher etage courant	80.30	42.26
	Poutre (pp+ps)	21.59	
N4	G venant de N3	237.03	
	Poteau (30×30)	6.88	42.26
	G venant de N4	243.91	
N5	Plancher courant	80.30	65.08
	Poutre (pp+ps)	21.59	
	G venant de N5	345.80	
N6	Poteau (35×35)	9.37	65.08
	G venant de N6	355.17	
N7	Plancher courant	80.30	85.37
	Poutre (pp+ps)	21.59	
	G venant de N7	457.06	
N8	Poteau (35×35)	9.37	85.37
	G venant de N8	466.43	
N9	Plancher courant	80.30	103.12

	Poutre (pp+ps)	21.59	
	G venant de N9	586.32	
N10	Poteau (35×35)	9.37	103.12
	G venant de N10	577.69	
N11	Plancher courant	80.30	118.33
	Poutre (pp+ps)	21.59	
	G venant de N11	679.58	
N12	Poteau (40×40)	12.24	118.33
·	G venant de N12	691.82	
N13	Plancher courant	80.30	131.01
	Poutre (pp+ps)	21.59	
	G venant de N13	793.71	131.01
N14	Poteau (40×40)	12.24	
	G venant de N14	805.95	
N15	Plancher courant	80.30	142.93
1,12	Poutre (pp+ps)	21.59	1121,75
	G venant de N15	907.84	
N16	Poteau (40×40)	12.24	142.93
1,10	G venant de N16	920.08	= .2., 0
N17	Plancher courant	80.30	154.85
1,1,	Poutre (pp+ps)	21.59	1000
N18	G venant de N17	1021.97	
1,10	Poteau (40×40)	12.24	154.85
	G venant de N18	1034.21	20 1100
N19	Plancher courant	80.30	167.53
1,12	Poutre (pp+ps)	21.59	107.60
N20	G venant de N19	1136.10	167.53
	Poteau (45×45)	15.49	
	G venant de N20	1151.59	
N21	Plancher courant	61.32	196.62
	Poutre (pp+ps)	21.59	
	G venant de N21	1234.50	196.62
N22	Poteau (45×45)	20.96	
	Escalier	33.23	
	G venant de N22	1288.69	
N23	Plancher courant	61.32	231.76
	Poutre (pp+ps)	21.59	
	G venant de N23	1371.60	
N24	Poteau (50×50)	20.25	231.76
	Escalier	33.23	
	G venant de N24	1425.08	
N25	Plancher courant	80.30	274.93
	Poutre (pp+ps)	21.59	
N26	G venant de N25	1526.97	274.93
1120	Poteau (50×50)	15.75	414.73
	100000 (30/30)	13.73	

Total	1542.72	274.93

 Tab II.15 : descente de charges (poteau centrale)

> Descente des charges poteau de rive

Niveau	Eléments	G (kN)	Q(kN)
	Plancher terrasse	92.06	13.04
	Poutres	18.92	
	Poteaux	6.88	
N1	l'acrotére	22.03	
	Σ	139.89	13.04
	N1	139.89	
	Plancher Courant	51.86	22.48
	Poutres	18.92	
N2	Poteaux	6.88	
	Mur extérieur	25.36	
	Σ		35.52
	N2	242.91	
	Plancher Courant	51.86	
	Poutres	18.92	22.48
N3	Poteaux	9.37	
	Mur extérieur	25.36	
	Σ	348.42	55.75
	N2	348.42	
	Plancher Courant	51.86	22.48
N4	Poutres	18.92	
	Poteaux	9.37	
	Mur extérieur	25.36	
	Σ	453.93	73.73
	N4	453.93	13:13
	Plancher Courant	51.86	22.48
N5	Poutres	18.92	22.10
143	Poteaux	9.37	
	Mur extérieur	25.36	
	Σ		89.47
	N5	559.44	
	Plancher Courant	51.86	22.48
N6	Poutres	18.92	
	Poteaux	12.24	
	Mur extérieur	25.36	
	Σ		102.96
	N6	667.82	
	Plancher Courant	51.86	22.48
N7	Poutres	18.92	
	Poteaux	12.24	

	Mur extérieur	25.36	
	2	776.20	114.20
	N7	776.20	
	Plancher Courant	51.86	22.48
N8	Poutres	18.92	
	Poteaux	12.24	
	Mur extérieur	25.36	
	2	884.58	123.19
	N8	884.58	
	Plancher Courant	51.86	22.48
N9	Poutres	18,92	
	Poteaux	12.24	
	Mur extérieur	25.36	
		992.96	135.33
	N9	992.96	
	Plancher courant	51.86	22.48
N10	Poutres	18.92	
	Poteaux	15.49	
	Mur extérieur	25.36	
	2	1104.59	146.57
	N10	1104.59	
	Plancher Service	51.86	32.62
N11	Poutres	18,92	
	Poteaux	20.96	
	Mur extérieur	20.96	
		1217.29	165.75
	N11	1217.29	
	Plancher RDC	62.31	65.25
274.0	Poutres	18.92	
N12	Mur extérieur	20.96	
	Poteaux	20.25	
	2		202.16
	N12	1339.73	20
N13	Plancher E/Sol	37.04 18.92	39
1113	Poutres		
	Poteaux	15.75	
	Mur extérieur	20.96	225.02
	Σ	1432.40	225.03
	TOTAL	1432.40	225.03

 Tab II.16 : descente de charges (poteau de rive)

Poteaux G(KN) Ns (KN) Q(KN) Nu (KN) Poteau cage 1284.75 225.42 2072.54 1510.17 d'escalier Poteau central 1542.72 274.93 2495.06 1817.65 Poteau de rive 1432.40 225.03 2271.28 1657.43

Récapitulation des résultats :

Tabl II.17 .Efforts normaux dans les trois poteaux

Le poteau le plus sollicité est P2 avec un effort normal égal à :

$$N_u = 1.35G + 1.5Q = (1.35 \times 1542.72) + (1.5 \times 274.93) = 2495.06KN.$$

Selon le CBA93 (Art B.8.11) on doit majorer l'effort normal de compression ultime N_u de 10%. Aprés majoration on trouve : N_u = 2744.56KN.

II.9. Vérifications

II.9.1. Vérification des poteaux à la compression simple

On doit vérifier la condition suivante : $\frac{\text{Nu}}{\text{B}} \le \overline{\sigma}_{\text{bc}}$ avec B: section du poteau.

$$\overline{\sigma}_{bc} = \frac{0.85 \times fc28}{1.5} = \frac{0.85 \times 25}{1.5} = 14.2 \text{MPa}$$

Tableau. Vérification des poteaux à la compression simple.

Vérification du critère de stabilité de forme

Etagos	N ₁₁ (UN)	Sections (m ²)	Condition d	Observation		
Etages	Nu(KN)	Sections (iii)	$\frac{-}{\sigma}_{bc}$ (MPa)	$\sigma_{\rm cal}$ (MPa)	Ouservation	
S-SOL et E-sol	2744.56	0.50×0.50	14.2	10.97		
RDC et service	2296.10	0.45×0.45	14.2	11.99		
2 à 5 ^{éme}	1812.22	0.40×0.40	14.2	11.33	vérifiée	
6 à 8 ^{éme}	862.79	0.35×0.35	14.2	5.39		
9 et 10 ^{éme}	469.58	0.30×0.30	14.2	5.21		

Tab II.18: vérification du critère de stabilité de forme

D'après le (CBA 93), on doit faire la vérification suivante :

$$\begin{split} \mathbf{N}_{\mathbf{u}} &\leq \alpha \times \left[\frac{\mathbf{B}_{\mathbf{r}} \times \mathbf{f}_{c28}}{0.9 \times \gamma_b} + \frac{\mathbf{A}_{\mathbf{s}} \times \mathbf{f}_{\mathbf{e}}}{\gamma_s} \right] \text{CBA 93} \text{(Article B.8.2.1)} \\ \mathbf{Br} &= (\text{a-2}) \times (\text{b-2}) \text{ ; a et b:dimensions du poteau} \\ \mathbf{As} &\geq 0.8\% \times \mathbf{Br} \quad \text{on prend As= 1\% Br} \quad \text{BAEL 91(7-4-2)} \\ \gamma_b &: \text{coefficient de sécurité de béton.} \end{split}$$

γ_S: coefficient de sécurité des aciers

 α : Coefficient en fonction de l'élancement λ

Fig II.13: section réduite du poteau

$$\alpha = \begin{cases} \frac{0.85}{1 + 0.2 \times (\frac{\lambda}{35})^2} \to 0 < \lambda \le 50. \\ 0.6 \times (\frac{50}{\lambda})^2 \to 50 < \lambda \le 70. \end{cases}$$

On calcule l'élancement $\lambda = \frac{l_f}{:}$.

 l_f : Longueur de flambement.

 l_0 : Longueur libre du poteau.

i: Rayon de giration :
$$i = \sqrt{\frac{I}{B}}$$

I:Moment d'inertie :
$$I = \frac{b_1 \times h_1^3}{12}$$

Vérification du poteau du sous-sol :

$$l_f = 0.7 \times l_0 = 0.7 \times (2.52 - 0.20) = 1.624 \text{m}.$$

$$B = 0.50 \times 0.50 = 0.25m^2$$

$$I = \frac{0.50^4}{12} = 5.20 \times 10^{-3} m^4.$$

$$i = \sqrt{\frac{5.20 \times 10^{-3}}{0.25}} = 0.144$$
m

$$i = \sqrt{\frac{5.20 \times 10^{-3}}{0.25}} = 0.144 \text{m}$$

$$\lambda = \frac{1.624}{0.144} = 11.27 < 50 \Rightarrow \alpha = \frac{0.85}{1 + 0.2 \times (\frac{11.27}{35})^2} = 0.83$$

D'après le BAEL91 on doit vérifier :
$$B_{r} \geq \frac{N_{u}}{\alpha \times \left[\frac{f_{c28}}{0.9 \times \gamma_{b}} + \frac{f_{e}}{100 \times \gamma_{s}}\right]}$$

$$B_{r} \ge \frac{2744.57 \times 10^{-3}}{0.83 \times \left[\frac{25}{0.9 \times 1.5} + \frac{400}{100 \times 1.15}\right]} = 0.15 \text{m}^{2}$$

Or nous avons:

$$B_r = (50-2) \times (50-2) \times 10^{-4} = 0.23 \text{m}^2$$

0.23 > 0.16donc le poteau ne risque pas de flamber.

Les résultats de vérifications au flambement sont résumés dans le tableau II.

Etagas	Niv	Castions	Condi	Observation		
Etages	Nu	Sections	B_r	B _{r cal}	Observation	
S-SOL	2744.56	0.50×0.50	0.230	0.15	vérifiée	

E-sol	2569.87	0.50×0.50	0.230	0.14
RDC	2296.10	0.45×0.45	0.180	0.13
Service	2034.53	0.45×0.45	0.180	0.11
2 à 6 ^{éme}	1812.22	0.40×0.40	0.144	0.10
7 et 8 ^{ème}	862.79	0.35×0.35	0.109	0.05
9 et 10 ^{éme}	469.58	0.30×0.30	0.078	0.027

Tab II.19: Vérification des poteaux au flambement

II.9.2. Vérification de l'effort normal réduit :

Selon le *RPA* (article.7.1.3.3) il faut vérifier :

$$v = \frac{N_d}{B \times f_{c28}} \le 0.3$$

$$v = \frac{2744.56 \times 10^{-3}}{0.5 \times 0.5 \times 25} = 0.44 \times 0.3$$
.....condition non vérifier.

Les dimensions choisit sont insuffisantes, donc on redimensionne les poteaux

On choisit une section : $(b_1 \times h_1) = (60 \times 60)$

On présentera les différentes sections des poteaux dans le tableau suivant :

Niveaux	Section (cm ²)	N _u (KN)	ν	observation	
S-Sol	60×60	2495.06	0.27	Vérifier	
E-Sol	55×55	2271.45	0.300	Vérifier	
RDC	55×55	2034.66	0.27	Vérifier	
Service	50×50	1805.94	0.28	Vérifier	
1 ^{er} étage	50×50	1628.45	0.26	Vérifier	
2 ^{eme} étage	45×45	1456.50	0.28	Vérifier	
3 ^{eme} étage	45×45	1284.54	0.25	Vérifier	
4 ^{eme} étage	40×40	1111.45	0.27	Vérifier	
5 ^{eme} étage	40×40	934.56	0.23	Vérifier	
6 ^{eme} étage	35×35	757.73	0.24	Vérifier	
7 ^{eme} étage	35×35	577.05	0.18	Vérifier	
8 ^{eme} étage	30×30	392.67	0.17	Vérifier	
9 ^{eme} étage	30×30	207.79	0.09	Vérifier	

Tab II.20 Vérification de l'effort normal réduit pour les différentes sections adoptées

> Vérification des conditions du RPA :

$$\min(b_1, h_1) \ge 25cm \dots (1)$$

$$\min(b_1, h_1) \ge \frac{h_2}{20}$$
(2)

$$\frac{1}{4} \le \frac{b_1}{h_1} \le 4 \tag{3}$$

Le tableau suivant résume les vérifications des conditions du RPA pour les différents poteaux :

Niveaux	Section (cm ²)	Conditions(1)	Conditions(1) Conditions(2)		observation
S-Sol	60×60	60>25	60>12.6	$0.25 \le 1 \le 4$	Vérifier
E-Sol	55×55	55>25	55>16.2	$0.25 \le 1 \le 4$	Vérifier
RDC	55×55	55>25	55>20.7	$0.25 \le 1 \le 4$	Vérifier
Service et 1 ^{er}	50×50	50>25	50>15.3	$0.25 \le 1 \le 4$	Vérifier
2 ^{eme} et 3 ^{eme}	45×45	45>25	45>15.3	$0.25 \le 1 \le 4$	Vérifier
4 ^{eme} et 5 ^{eme}	40×40	40>25	40>15.3	$0.25 \le 1 \le 4$	Vérifier
6 ^{eme} et 7 ^{eme}	35×35	35>25	35>15.3	$0.25 \le 1 \le 4$	Vérifier
8 ^{eme} et 9 ^{eme}	30×30	30>25	30>15.3	$0.25 \le 1 \le 4$	Vérifier

Tab. II.21: Vérification des conditions du RPA

II.10. Conclusion:

Les sections optées pour les éléments sont résumées dans le tableau

Eléments	largeur b (cm)	Hauteur h (cm)
Poutres principales	30	35
Poutres secondaires	30	35
Poteaux du sous-sol	60	60
Poteaux du E-S et TDC	55	55
Poteaux du Service et 1 ^{er} étage	50	50
Poteaux du 2 ^{émé} et 3 ^{éme} étage	45	45
Poteaux du 4 ^{éme} et 5 ^{éme} étage	40	40
Poteaux du 6 ^{éme} et 7 ^{éme} étage	35	35
Poteaux du 8 ^{éme} et 9 ^{éme} étage	30	30
Voiles de contreventement	S-sol, E-sol et RDC	20
- ones de contro contentent	Service et étage courante	15

Tableau II.22 : Caractéristiques des éléments structuraux.

Chapitre III:

Etudes des éléments secondaires

III.1.Introduction

Les éléments secondaires à étudier dans ce chapitre sont : les planchers, l'escalier, l'acrotère et ainsi que l'ascenseur.

III.2.Méthodes de calcul

III.2.1.La méthode forfaitaire

Le **BAEL91** (**Art. L.III,2**) propose une méthode simplifiée dite méthode forfaitaire. Elle est applicable quasi les 4 conditions suivantes sont vérifiées :

- 1. Plancher à surcharge modérée, Q≤ (2G; 5KN/m²).
- 2. Le rapport des portées successives (L_i/L_{i+1}) est compris entre 0.8 et 1.25.
- 3. Le moment d'inertie est considéré constant dans toutes les travées.
- 4. La fissuration est peu nuisible.
- > Principe de la méthode forfaitaire

-Les moments fléchissant :

En travée :

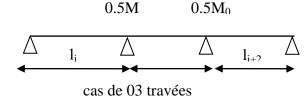
 $\alpha = \frac{Q}{Q+G}$: Le rapport des charges d'exploitations et permanentes.

1)
$$M_t + \frac{M_g + M_d}{2} \ge \max \begin{cases} (1 + 0.3 \times \alpha) \times M_0 \\ 1.05 M_0 \end{cases}$$

$$(2) \begin{cases} M_t \geq \frac{1.2 + 0.3 \times \alpha}{2} \times M_0 & \text{Pour une trav\'ee de rive.} \\ M_t \geq \frac{1 + 0.3 \times \alpha}{2} \times M_0 & \text{Pour une trav\'ee interm\'ediaire} \end{cases}$$
 Avec : $M_0 = \frac{p \times l^2}{8}$

P : la charge repartie à l'état limite considérer.

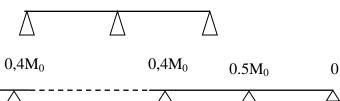
 M_0 : Moment isostatique maximal de la travée indépendante.


 M_d : Moment sur l'appui de droite de la travée considérée.

 M_{g} : Moment sur l'appui de gauche de la travée considérée.

 M_t : Moment en travée de la travée considérée.

 l_i : Portée de la travée.


 $0.5M_{0}$

En appuis:

0

 Δ

0

 $0.6M_{0}$

-Les efforts tranchants :

En supposant la discontinuité entre les travées. Dans ce cas l'effort tranchant hyperstatique est confondu avec l'effort tranchant isostatique sauf pour le premier appui intermédiaire où l'on tient compte des moments de continuité en majorant l'effort tranchant isostatique V_0 avec :

15 % pour une poutre à deux travées et 10 % pour une poutre à plus de deux travées.

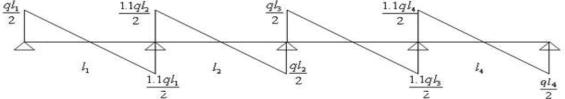


Fig III.1: Diagramme des efforts tranchant

III.2.2. Méthode de Caquot :

Elle est applicable généralement pour les planchers à surcharges élevées Q> (2G; 5KN/m²) mais elle peut s'appliquer aussi à des planchers à surcharges modérées si une des trios condition de la méthode forfaitaire n'est pas satisfaite.

Principe de la méthode Caquot :

- Calcul des moments

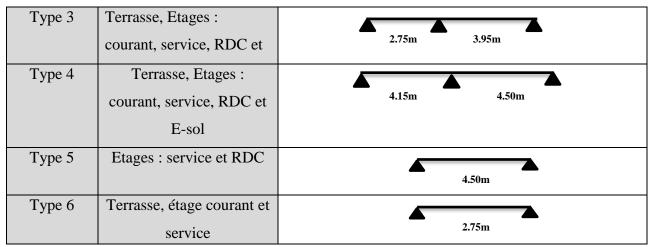
En appuis :
$$M_a = -\frac{P_g \times l_g^{'3} + P_d \times l_d^{'3}}{8.5 \times (l_g^{'} + l_d^{'})}$$
 (BAEL. Art. L.III,3)

Avec $l' = 0.8 \times l$: Pour une travée intermédiaire ; l' = l: Pour une travée de rive.

 $P_{\rm g}$; $P_{\rm d}$: Charge a droite et a gauche de la travée.

Entravées:

$$M(x) = M_0(x) + M_g \times (1 - \frac{x}{1}) + M_d \times \frac{x}{1}; \quad M_0(x) = \frac{Pu \times x}{2} \times (1 - x); \quad x = \frac{l_i}{2} - \frac{M_g - M_d}{Pu \times l_i}$$


-Evaluation des efforts tranchants :
$$V = \frac{Pu \times l_i}{2} + \frac{M_d - M_g}{l_i}$$
.....BAEL(ArtL.III.3)

III.3: Etude du plancher:

III.3.1 : Les différents types des poutrelles :

Les différents types de poutrelles sont classés dans le tableau III.1

Types de poutrelles	Niveau	Schémas statiques					
Type 1	Terrasse, E-Sol et Etage Courant	2.75m 3.95m 3.00m 4.15m 4.50m					
Type 2	Terrasse, Etages : courant, Service et RDC	3.95m 3.00m 4.15m					

Tab. III. 1.Différents types de poutrelles

III.3.2. Charges et surcharges revenant aux poutrelles

- À l'ELU : $p_u = l \times (1.35 \times G + 1.5 \times Q)$
- À l'ELS: $p_s = l \times (G + Q)$ avec l: entre axe des poutrelles.

Type de plancher	G	Q	l	$\mathbf{p}_{\mathbf{u}}$	$\mathbf{p_s}$
	(KN/m ²)	(KN/m^2)	(m)	(KN/ml)	(KN/ml)
Terrasse inaccessible	6.31	1	0.65	6.51	4.75
Etage courant	4.75	1.5	0.65	5.63	4.06
Etage service	4.75	2.5	0.65	6.60	4.71
Etage commercial	4.75	5	0.65	9.04	6.34

Tab. III. 2. Chargement sur les poutrelles.

III.3.3. Vérification des conditions d'application de la méthode forfaitaire

1^{ere} condition:

→ Plancher terrasse inaccessible :

$$G = 6.31 KN / m^2$$

$$Q = 1.00 \text{KN/m}^2 \Rightarrow 1.00 \leq \min(2 \times 6.315) \text{KN/m}^2 \dots \text{vérifiée.}$$

→ Plancher étage courant :

$$G = 4.75 KN / m^2$$

$$Q = 1.5 \text{KN/m}^2 \Rightarrow 1.5 \le \min(2 \times 4.75;5) \text{KN/m}^2$$
..... vérifiée.

→ Plancher étage service :

$$G = 4.75KN/m^2$$

$$Q = 2.5 \text{KN/m}^2 \Rightarrow 2.5 \leq \min(2 \times 4.75;5) \text{KN/m}^2 \quad \text{v\'erifi\'ee}.$$

→ Plancher étage commercial (RDC et E-sol) :

$$G = 4.75 KN / m^2$$

2^{eme} condition:

Type 1:
$$0.8 \ge \frac{2.75}{3.95} \le 1.25$$
 n'est pas vérifiée.

Type
$$3:0.8 \ge \frac{2.75}{3.95} \le 1.25$$
 n'est pas vérifiée.

Type
$$4:0.8 \le \frac{4.15}{4.50} \le 1.25$$
 Vérifiée.

La 3^{eme} et la 4^{eme} condition sont vérifiées.

Les conditions **1,3** et **4** sont vérifiées pour tous les types de poutrelles. Concernant la **deuxième** (2^{ème}) condition on a constaté après vérification qu'elle est valable juste pour les types de poutrelles **3**.

Conclusion:

- Le type de poutrelles 4 sera calculé par la méthode forfaitaire.
- les types de poutrelle 1, 2 et 3 seront calculés par la méthode de Caquot.
- le type de poutrelles 5 sera calculé par la méthode de la RDM.

III.3.4.Exemple de calcul (poutrelle type 3)

> Méthode forfaitaire

• calcul des sollicitations :

 $P_u = 9.04 \, Kn \, / \, ml$ $P_s = 6.34 \, Kn \, / \, ml$ \vdots $4.15 \, m$ $4.50 \, m$

Pour le plancher à usage commercial :

Poutrelle type 4:

• Moments isostatiques :

Fig.III.2 : Schéma du type 4 de poutrelle (étage commercial)

À l'ELU:

Travée A-B:
$$M_0^{AB} = \frac{P_U l^2}{8} = \frac{9.04 \times 4.15^2}{8} = 19.46 KN.m$$

Travée B-C:
$$M_0^{BC} = \frac{P_U l^2}{8} = \frac{9.04 \times 4.5^2}{8} = 22.88 \text{KN.m}$$

À l'ELS:

Travée A-B: $M_0^{AB} = 13.65 KN.m$

Travée B-C: $M_0^{BC} = 16.05 KN.m$

• Moments sur les appuis :

Appuis de rive :

$$M_A = M_C = 0$$

Sur les appuis de rive, le moment est nul, mais il faut toujours mettre des aciers de fissuration équilibrant un moment égal à $(-0.15 \times M_0)$.

À l'ELU:
$$M_A = M_C = -0.15 \times 22.88 = -3.43 KN.m$$

À l'ELS:
$$M_A = M_C = -0.15 \times 16.05 = -2.41 KN.m$$

Appuis intermédiaires :

À l'ELU:

$$M_B = -0.6 \times \max(M_0^{AB}, M_0^{BC}) = -0.6 \times 22.88 = -13.73 \text{KN.m}$$

À l'ELS:

$$M_B = -0.6 \times \max(M_0^{AB}, M_0^{BC}) = -0.6 \times 16.05 = -9.63 \text{KN.m}$$

• Moments en travées :

$$\alpha = \frac{Q}{Q+G} = \frac{5}{5+4.75} = 0.512$$

$$\alpha = 0.512 \Rightarrow \begin{cases} 1 + 0.3\alpha = 1.15 \\ 1.2 + 0.3\alpha = 1.35 \end{cases}$$

À l'ELU:

$$\left\{ \begin{array}{l} M_t + \frac{M_g + M_d}{2} \geq \max[(1+0.3\alpha)M_0; 1,05M_0] \\ \\ M_t \geq & \frac{1.2+0.3\alpha}{2}M_0 \rightarrow \text{ Pour une travée de rive.} \end{array} \right.$$

Travée A-B

$$M_{\rm g} = 0$$
 et $M_{\rm d} = 0.6 M_0$

$$\begin{cases} M_{t} \ge 1.15 \times 19.46 - \frac{11.68}{2} = 16.54 \text{KN.m} \\ M_{t} \ge \frac{1.35}{2} \times 19.46 = 13.13 \text{KN.m} \end{cases}$$

Travée B-C:

$$\begin{cases} M_t \ge 1.15 \times 22.88 - \frac{13.73}{2} = 19.44 \text{ KN.m} \\ M_t \ge \frac{1.35}{2} \times 22.88 = 15.44 \text{ KN.m} \end{cases}$$

À l'ELS:

Travée A-B

$$\begin{cases} M_t \ge 1.15 \times 13.65 - \frac{8.19}{2} = 11.60 \text{KN.m} \\ M_t \ge \frac{1.35}{2} \times 13.65 = 9.21 \text{KN.m} \end{cases}$$

Travée B-C:

$$\begin{cases} M_t \ge 1.15 \times 16.05 - \frac{9.63}{2} = 13.64 \text{KN.m} \\ M_t \ge \frac{1.35}{2} \times 16.05 = 10.83 \text{KN.m} \end{cases}$$

• Les efforts tranchants :

À L'ELU:

Travée A-B:

$$V_A = \frac{9.04 \times 4.15}{2} = 18.76KN$$
$$V_B = -1.15 \times V_A = -21.57KN$$

Travée B-C:

$$V_B = 1.15 \times \frac{9.04 \times 4.5}{2} = 23.39 KN$$
$$V_C = -20.34 KN$$

Les sollicitations maximales :

> Les sollicitations maximales (Terrasse inaccessible)

	ELU				ELS		
Types de poutrelles	M appui (KN.m)	M_{trav}^{max} (KN.m	V max (KN)	Mappuis rive(KN.	M appui	M_{trav}^{max} (KN.m)	M _{appuis} rive(KN.n
	(12. (.111))		m)	(1111,111)	(KIN.III)	
Type1	-8.966	12.305	16.644	-1.845	-6.502	8.997	-1.350
Type2	-7.150	10.672	15.235	-1.601	-5.184	7.802	-1.170
Type3	-6.753	9.548	14.571	-1.432	-4.898	6.981	-1.047
Type4	-9.89	12.363	16.85	-1.854	-7.217	9.022	-1.353
Type6	/	6.156	8.954	-0.923	/	4.492	-0.674
max	-9.89	12.363	16.85	-1.854	-7.217	9.022	-1.353

Tab III. 3 : calcul des sollicitations des différents types de poutrelles

> Les sollicitations maximales à usage d'habitation (Etage courant)

Tr. 1		ELU				ELS		
Types de poutrelles	$\stackrel{\mathrm{max}}{M}$ appui	M_{trav}	V^{max}	M_{appuis} rive(KN.m	$\stackrel{ ext{max}}{M}_{appui}$	$\stackrel{ ext{max}}{M}_{trav}$	M_{appuis} rive(KN.m)	
F 3 333 02103	(KN.m)	(KN.m)	(KN)	IIVE(KIV.III	(KN.m)	(KN.m)	IIVe(KIV.III)	
Type2	-6.497	9.092	13.25	-1.364	-4.647	6.578	-0.986	
Type3	-6.138	8.128	12.675	-1.220	-4.39	5.881	-0.882	
Type4	-8.552	11.003	14.57	-1.650	-6.17	7.939	-1.191	
Туреб	/	5.323	7.743	-0.798	/	3.841	-0.576	
Max types 2,3 et 4	-8.552	11.003	14.57	-1.650	-6.17	7.939	-1.191	

Tab III.4 : calcul des sollicitations des différents types de poutrelles

➤ Les sollicitations maximales à usage du bureau (Etage service)

		E	LU		ELS		
Types de poutrelles	M appui (KN.m)	M_{trav}^{max} (KN.m)	V max (KN)	Mappuis rive(KN.m)	M appui	M_{trav}^{max} (KN.m)	M _{appuis} rive(KN.m
Type2	-7.991	10.507	15.633	-1.576	-5.643	7.521	-1.128
Type3	-7.549	9.386	14.958	-1.408	-5.331	6.72	-1.008
Type4	-10.033	13.435	17.093	-2.015	-7.158	9.586	-1.438
Type5	/	16.721	14.864	-2.508	/	11.93	-1.789
Type6	/	6.245	9.083	-0.937	/	4.455	-0.668
Max types 2,3 et 4	-10.033	13.435	17.093	-2.015	-7.158	9.586	-1.438
Max types 5 et 6	1	16.721	14.864	-2.508	/	11.93	-1.789

Tab III.5 : calcul des sollicitations des différents types de poutrelles

▶ Les sollicitations maximales à usage commercial (Etage RDC)

	ELU				ELS		
Types de poutrelles	Mappui (KN.m)	M trav	V max (KN)	Mappuis rive(KN.m	M appui (KN.m)	M_{trav} (KN.m)	M _{appuis} rive(KN.m)
Type3	-11.078	12.533	20.664	-1.88	-7.683	8.818	-1.322

Type4	-13.734	19.546	23.399	-2.932	-9.626	13.699	-2.055
Type5	1	22.89	20.347	-3.43	/	16.043	-2.406
Max Types 3 et 4	-13.734	19.546	23.399	-2.932	-9.626	13.699	-2.055

Tab III.6 : calcul des sollicitations des différents types de poutrelles

▶ Les sollicitations maximales à usage commercial (Etage E-Sol)

	ELU				ELS		
Types de poutrelles	M appui (KN.m)	M_{trav}^{max}	V max (KN)	M _{appuis} rive(KN.	M appui (KN.m)	M_{trav}^{max} (KN.m)	M_{appuis} rive(KN.m)
)		m)			
Type1	-14.707	16.127	23.615	-2.42	-10.199	11.349	-1.702
Type3	-11.078	12.533	20.664	-1.88	-7.683	8.818	-1.322
Type4	-13.734	19.546	23.399	-3.509	-9.626	13.699	-2.055
max	-14.707	19.546	23.615	-3.509	-10.199	13.699	-2.055

Tab III.7 : calcul des sollicitations des différents types de poutrelles

III.3.5.Exemple de ferraillage Etage courant (types 4)

a) Vérification des poutrelles à l'ELU

$$M_{arive}^{max} = -1.650 \text{ KN.m}$$

$$M_{aint}^{max} = -8.552 \text{ KN.m}$$

$$M_t^{max} = 11.003 KN.m$$

$$V_u^{max}$$
=14.57 KN

Ferraillage en travée :

b = 0.55 m

$$M_{tu} = bh_0 (d - \frac{h_0}{2}) x f_{bu}$$

$$M_{tu} = 550x0,04 \text{ x } (0,18 - \frac{0,04}{2}) \text{ x } 14,2 = 49.984\text{KN.m}$$

 $M_{tu}\!\!>\!M_t \ \ \, \text{d'ou la section se calcul comme une section rectangulaire (bxh)}.$

$$\mu_{bu} = \frac{Mt}{bd^2f_{bu}} = 0.043$$

$$\mu_{bu}$$
< 0,392 => pivot A, d'où A' = 0

$$\alpha = 1,25 (1 - \sqrt{1 - 2\mu bu}) = 0.055$$

$$Z = d (1 - 0.4 \alpha) = 17.60 cm$$

$$A_t = \frac{Mt}{Z f_{st}} = 1.79 \text{ cm}^2$$
 avec $f_{st} = 348 MPA$. Soit 3HA10=2.36 cm²

> Ferraillage en appui int :

On fait les calculs pour une section de (b_0xh) .

$$\mu_{bu} = \frac{\text{Mint}}{b_0 d^2 f_{bu}} = 0.185$$

$$\mu_{bu}$$
< 0,392 => pivot A d'où A' = 0

$$\alpha = 1.25 (1 - \sqrt{1 - 2\mu bu}) = 0.257$$

$$Z = d (1 - 0.4 \alpha) = 16.15 cm$$

$$A_a^{int} = \frac{M_a^{int}}{(Zfst)} = 1.52 \text{ cm}^2$$

> Ferraillage en appui rive :

On fait les calculs pour une section de (b_0xh) .

$$\mu_{bu} = \frac{Mr}{b_0 d^2 f_{bu}} = 0.035$$

$$\mu_{bu}$$
< 0,392 => pivot A d'où A' = 0

$$\alpha = 1,25 (1 - \sqrt{1 - 2\mu}) = 0.044$$

$$Z = d (1 - 0.4\alpha) = 17.68 \text{ cm}$$

$$A = \frac{Mr}{Z f_{st}} = 0.268 \text{ cm}^2$$

Soit 1HA10 = 0.79 cm²

Vérification de la condition de non fragilité :

En travée:

$$A_t = 2.36 \text{ cm}^2$$

$$A_{\min} = 0.23x \text{ bd } (\frac{f_{t28}}{f_e}) = 1.195 \text{ cm}^2$$

$$A_t > A_{min}$$
 vérifié

En appui int :

$$A_t = 1.57 \text{ cm}^2$$

$$A_{min} = 0.23 \ b_0 d \left(\frac{f_{t28}}{f_e} \right) = 0.217 \ cm^2$$

$$A_t > A_{min}$$
 vérifié.

En appui rive:

$$A_t = 0.79 \text{ cm}^2$$

$$A_{min} = 0$$
, 23 $b_0 d \left(\frac{f_{t28}}{f_e} \right) = 0.217 \text{ cm}^2$

$$A_t > A_{min}$$
 vérifié.

Vérification de l'effort tranchant :

$$\tau_u = \frac{Vu}{b_0.d} = 0.809MPa$$
.

$$\overline{\tau_u}$$
 f_{c28}/\gamma_b; 5 MPa) $\Rightarrow \tau_u$ < min (3,33; 5) MPa.= 3,33 MPa.

$$\tau_u = 0.809 \text{ MPa} < \overline{\tau_u} = 3,33 \text{ MPA} \dots \text{Vérifiée}.$$

Pas de risque de rupture de cisaillement

> Ferraillage transversal:

$$\Phi_t \leq \min(\frac{h}{35}, \Phi_{Lmin}, \frac{b0}{10}) \Rightarrow \Phi_t \leq 0.57 \text{ cm}^2$$

On choisit un étrier $\Phi 6 \Rightarrow_{A_t=0,57 \text{ cm}^2}$

Espacement:

$$S_t \le \min(0.9d; 40 \text{ cm}) \Rightarrow S_t \le 16.2 \text{ cm}$$
(1)

$$S_t \le \frac{0.8 \cdot f_e \cdot A_t}{b_0(\tau_u - 0.3 \cdot K \cdot f_{t,28})}$$
(2)

K=1 : Flexion simple, ou pas de reprise de bétonnage.

 $\alpha = 90$ (Les armatures sont perpendiculaires)

D'où
$$S_t \le 24.32 \text{cm}$$

$$S_{t} \le \frac{A_{t} \cdot f_{e}}{0.4 \cdot b_{o}} \Rightarrow S_{t} \le 57 \text{cm}...$$
 (3)

On adopte $S_t = 15$ cm.

> Vérification de la bielle

On doit vérifier que : $Vu \le 0.267.a.b_0$. fc28.

Avec
$$a \le 0.9.d = 0.1944m$$
; soit: $a = 0.18 m$

$$Vu = 14.57KN \le 0.267 \times 0.18 \times 0.1 \times 25 = 120.15KN...$$
 vérifiée.

- Vérification des armatures longitudinales à l'effort tranchant (V_u)
- > Appui intermédiaire

$$A_{\rm l} \ge (V_{\rm u} + \frac{M_{\rm U}}{0.9 \times \rm d}) \frac{\gamma_s}{f_s} = (14.57 - \frac{8.552}{0.9 \times 0.18}) \times 10^{-3} \times \frac{1.15}{400} \times 10^4 = -0.927 \text{ cm}^2 < 0$$

Aucune vérification a faire cas l'effort tranchant est négligeable devant l'effort du moment.

$$A_1 = A_{trav\acute{e}} + A_{appui} \Longrightarrow A_1 = 2.36 + 0.1.57 = 3.93 cm^2 > -0.941 cm^2 \Longrightarrow C'est v\'erifi\'e.$$

Appui de rive

$$A_{_{1}} \ge \frac{V_{_{u}} \times \gamma_{_{s}}}{fe} = \frac{14.57 \times 10^{-3} \times 1.15}{400} = 0.418 cm^{2}$$

$$A_1 = 0.79 + 2.36 = 3.15 \text{cm}^2 \ge 0.418 \text{cm}^2 \implies \text{C'est vérifié.}$$

Vérification de la jonction table-nervure

On doit vérifier que :

$$\tau_{\!\scriptscriptstyle u} = \frac{V_{\scriptscriptstyle u} \times b_{\scriptscriptstyle 1}}{0.9 \times d \times b \times h_{\scriptscriptstyle 0}} \leq \tau_{\scriptscriptstyle adm} \quad Avec \ b_{\scriptscriptstyle 1} = \frac{b - b_{\scriptscriptstyle 0}}{2} = 0.225 m$$

$$\tau_u = \frac{14.57 \times 10^{-3} \times 0.225}{0.9 \times 0.18 \times 0.55 \times 0.04} = 0.920 MPa$$

$$\tau_{\text{u}} \leq \tau_{\text{adm}} = min(0.2 \times f_{c28}/\gamma_{\text{b}} \; ; 5 \; Mpa) = 3.33 Mpa. \Longrightarrow Condition \; v\'{e}rifi\'{e}e$$

Vérification de l'adhérence

La condition à vérifier est :

$$\tau_{su} = \frac{V_u}{0.9d \times \sum U_i} \le \overline{\tau_{su}} \quad \text{ Tel que :} \quad$$

 $\overline{\tau_{su}}$: Contrainte limite d'adhérence.

∑Ui : la somme des périmètres des barres.

$$V_u = Max \ V_i = 14.083KN$$

$$\sum\!U_i = \!\!\pi\!\!\times (3\!\!\times\!\!\varphi 10\!\!+\!\!2\!\!\times\!\!\varphi 10\!\!+\!\!\varphi 10) \!\!=\!\!188.495~mm$$

$$\tau_{su} = \frac{14.57 \times 10^{-3}}{0.9 \times 0.18 \times 188.495 \times 10^{-3}} = 0.477 MPa$$

$$\overline{\tau_{su}} = 0.6 \times \psi^2 \times \text{ft28}$$
 tel que $\psi = 1.5$ pour les aciers HA.

$$\overline{\tau_{su}} = 0.6 \times 1.5^2 \times 2.1 = 2.835 \text{MPa} \implies \text{condition vérifiée.}$$

> Vérification des poutrelles à l'ELS

• Etat limite de compression du béton

On doit vérifier la contrainte de compression du béton:

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \overline{\sigma_{bc}} = 15 \text{ MPa}$$

• En travée

$$M_{ser} = 7.939 KN.m$$

Position de l'axe neutre :

$$H = \frac{b \times h_0^2}{2} - 15A(d - h_0) = \frac{0.55 \times 0.04^2}{2} - 15 \times 2.36 \times 10^{-4} (0.18 - 0.04) = -0.556 \times 10^{-4} m^3$$

H<0 (alors l'axe neutre passe par la nervure \Rightarrow calcul d'une section en T)

Position de l'axe neutre y :

$$b_0 \times y^2 + [2 \times (b - b_0) \times h_0 + 30 \times A] \times y - [(b - b_0) \times h_0^2 + 30 \times d \times A] = 0$$

$$10 \times y^2 + [2 \times (55 - 10) \times 4 + 30 \times 2.36] \times y - [(55 - 10) \times 4^2 + 30 \times 18 \times 2.36] = 0$$

$$10y^2 + 430.8y - 1994.4 = 0 \dots (1) \text{ Solution d'équation : } y = 4.21 \text{ cm}$$

• Calcul de l'inertie I

$$I = \frac{b \times y^{3}}{3} - \frac{(b - b_{0})}{3} \times (y - h_{0})^{3} + 15 \times A \times (d - y)^{2}$$

$$I = \frac{55 \times 4.21^{3}}{3} - \frac{(55 - 10)}{3} \times (4.21 - 4)^{3} + 15 \times 2.36 \times (18 - 4.21)^{2} \Rightarrow I = 8099.675cm^{4}$$

$$\sigma_{bc} = \frac{M_{ser}}{I} y \Rightarrow \sigma_{bc} = \frac{7.939 \times 10^{-3}}{8099.675 \times 10^{-8}} \times 0.0421 \Rightarrow \sigma_{bc} = 4.12 \text{MPa}(\textbf{CBA Art A.5.3.3})$$

• En appuis intermédiaires :

$$M_{ser} = -6.17 KN.m$$

Position de l'axe neutre :

$$H = b\frac{h_0^2}{2} - 15A \times (d - h_0)$$

$$H = 55 \times \frac{4^2}{2} - 15 \times 1.57 \times (18 - 4) = 110.3cm^3$$

H>0 (alors l'axe neutre : le calcul se fait pour une section $b_0 \times h$)

Position de l'axe neutre y :

$$\frac{b_0}{2} \times y^2 + 15 \times A \times (y - d) = 0 \Rightarrow \frac{10}{2} y^2 + 15 \times 1.57 y - 15 \times 1.57 \times 18 = 0$$

$$y^2 + 4.71y - 84.78 = 0...$$
 (2)

Apres résolution de l'équation (2) : y = 7,15cm

$$I = \frac{b_0}{3} \times y^3 + 15 \times A \times (d - y)^2$$

$$I = \frac{10}{3} \times (7.15)^3 + 15 \times 1.57 \times (18 - 7.15)^2 \Rightarrow I = 3990.78 \text{cm}^4$$

$$\sigma_{bc} = \frac{M_{ser}}{I} y = \frac{6.17 \times 10^{-3}}{3990.78 \times 10^{-8}} \times 0.0715 = 11.05 MPa \text{ (CBA Art A.5.3.3)}$$

$$\Rightarrow \sigma_{bc} < \overline{\sigma_{bc}} = 15 \text{MPaC'est vérifié.}$$

• En appuis rive :

$$M_{ser} = -1.191 KN.m$$

Position de l'axe neutre :

$$H = b\frac{h_0^2}{2} - 15A \times (d - h_0)$$

$$H = 55 \times \frac{4^2}{2} - 15 \times 0.79 \times (18 - 4) = 274.1cm^3$$

H>0 (alors l'axe neutre : le calcul se fait pour une section $b_0 \times h$)

Position de l'axe neutre y :

$$y = 5.45$$
cm, $I=2406.00$ cm⁴, $\sigma_{bc} = 2.69MPa$

$$\Rightarrow \sigma_{bc} < \overline{\sigma_{bc}} = 15 \text{ MPa C'est vérifié.}$$

> Etat limite d'ouverture des fissures

La fissuration est peu préjudiciable donc pas de vérification.

Etat limite de déformation :BAEL91/Modifiées99 (Article B.6.5) [2].

Le calcul des déformations est effectué pour évaluer les flèches dans l'intention de fixer les contre flèches à la construction ou de limiter les déformations de service.

Evaluation de la flèche :

Si l'une de ses conditions ci-dessous n'est pas satisfaite la vérification de la flèche devient

nécessaire :
$$\begin{cases} \frac{h}{l} \ge \frac{1}{16} \\ \frac{h}{l} \ge \frac{M_t}{10 \times M_0} \\ \frac{A}{h_0 \times d} \le \frac{4.2}{f} \end{cases}$$

On a :
$$\frac{h}{l} = \frac{20}{450} = 0.044 < \frac{1}{16}$$
 la condition n'est pas satisfaite donc on doit faire une

vérification de la flèche.

$$\Delta f_t = f_{gv} - f_{ji} + f_{pi} - f_{gi}$$
 (BAEL91/modifier 99 Article B.6.5,2)

La flèche admissible pour une poutre supérieur à 5m est de :

$$f_{adm} = (\frac{l}{500}) = \frac{450}{500} = 0.9cm$$

 f_{gv} et f_{gi} : Flèches dues aux charges permanentes totales différées et instantanées respectivement.

 f_{ij} : Flèche due aux charges permanentes appliquées au moment de la mise en œuvre des cloisons.

 f_{pi} : Flèche due à l'ensemble des charges appliquées (G + Q).

$$f_{ji} = \frac{M_{jser}.L^2}{10.E_i.If_{ij}}$$
; $f_{gi} = \frac{M_{gser}.L^2}{10.E_i.If_{ig}}$; $f_{pi} = \frac{M_{pser}.L^2}{10.E_i.If_{ip}}$; $f_{gv} = \frac{M_{pser}.L^2}{10.E_v.If_{gv}}$

Avec:

$$M_{jser} = 0.772 \frac{q_{jser} \times l^2}{8}$$
, $M_{gser} = 0.772 \frac{q_{gser} \times l^2}{8}$ et $M_{pser} = 0.772 \frac{q_{pser} \times l^2}{8}$

 $q_{\it jser}=0.65\times G$: La charge permanente qui revient à la poutrelle sans la charge de revêtement.

 $q_{gser} = 0.65 \times G$: La charge permanente qui revient à la poutrelle.

 $q_{\it pser} = 0.65 \times (G+Q)$: La charge permanente et la surcharge d'exploitation.

$$\lambda_i = \frac{0.05.f_{t28}}{(2+3\frac{b_0}{h})\rho}$$
 Déformation instantanée.

$$\lambda_{v} = 0.4 \times \lambda_{i}$$
 Déformation différé

Propriété de la section

 $A_s=2.36\ cm^{\,2}$; $y=4.21cm;\,I=8.099x10^{\text{-}5}\ m^{\,4}$.

$$\rho = \frac{As}{b \times d} = \frac{2.36 \times 10^{-4}}{0.10 \times 0.18} = 0.013$$

$$y_G = \frac{b_0 \frac{h^2}{2} + (b - b_0) \frac{h_0^2}{2} + n(A \times d + A' \times d')}{b_0 \times h + (b - b_0)h_0 + n(A + A')} \Rightarrow y_G = \frac{10 \times \frac{20^2}{2} + (55 - 10) \frac{4^2}{2} + 15 \times (2.36 \times 18 + 0)}{10 \times 20 + (55 - 10)4 + 15(2.36 + 0)}$$

$$\Rightarrow$$
 $y_G = 7.215cm$

$$I_{0} = \frac{b}{3} {y_{G}}^{3} - (b - b_{0}) \; ((y_{G} - h_{0})^{3} / 3) + b_{0} \; ((h - y_{G})^{3} / 3) + n \; [A \; (d - y_{G})^{2} + A' \; (y_{G} - d')^{2}]$$

$$I_0=1.747x10^{-4}m^4$$

$$E_i = 11000\sqrt[3]{f_{c28}} = 32164.2MPa$$

$$E_{v} = \frac{E_{i}}{3} = 10721.4 \text{MPa}$$

Evaluation des moments:

$$q_{iser} = 0.65 \times G = 0.65 \times 3.85 = 2.50 KN / m$$

$$q_{gser} = 0.65 \times G = 0.65 \times 4.75 = 3.08 \text{KN/m}$$

$$q_{pser} = 0.65 \times (G + Q) = 0.65(4.75 + 1.5) = 4.06KN/m$$

$$M_{jser} = 0.772 \frac{q_{jser} \times l^2}{8} = 0.772 \frac{2.50 \times 4.5^2}{8} = 4.885 KNm$$

$$M_{gser} = 0.772 \frac{q_{gser} \times l^2}{8} = 0.772 \frac{3.08 \times 4.5^2}{8} = 6.018 KNm$$

$$M_{pser} = 0.772 \frac{q_{pser} \times l^2}{8} = 0.772 \frac{4.06 \times 4.5^2}{8} = 7.933 KNm$$

Contraintes

 (σ_s) : Contrainte effective de l'acier sous l'effet de chargement considéré (Mpa).

$$\sigma_{sj} = 15 \times \frac{M_{jser} \times (d - y)}{I} = > \sigma_{sj} = 15 \times \frac{4.885 \times (0.18 - 0.0421)10^{-3}}{8.099 \times 10^{-5}} = 124.763 Mpa$$

$$\sigma_{sg} = 15 \times \frac{M_{gser} \times (d - y)}{I} = > \sigma_{sg} = 15 \times \frac{6.018 \times (0.18 - 0.0421)10^{-3}}{8.099 \times 10^{-5}} = 153.700 Mpa$$

$$\sigma_{sp} = 15 \times \frac{M_{pser} \times (d - y)}{I} = > \sigma_{sp} = 15 \times \frac{7.933 \times (0.18 - 0.0421)10^{-3}}{8.099 \times 10^{-5}} = 202.61 Mpa$$

\triangleright Inerties fictives (I_f):

Si
$$\mu \le 0 \Rightarrow \mu = 0$$

$$\mu_{j} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sj} + f_{t28}} = 1 - \frac{1.75 \times 2.1}{4 \times 0.013 \times 124.763 + 2.1} = 0.57$$

$$\mu_g = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sg} + f_{t28}} = 1 - \frac{1.75 \times 2.1}{4 \times 0.013 \times 153.700 + 2.1} = 0.63$$

$$\mu_p = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sp} + f_{t28}} = 1 - \frac{1.75 \times 2.1}{4 \times 0.013 \times 202.61 + 2.1} = 0.71$$

Calcul des inerties :

$$\lambda_i = \frac{0.05. f_{t28}}{(2 + 3\frac{b_0}{h})\rho} = 3.173 \ \lambda_v = 0.4 \times \lambda_i = 1.269$$

$$I_{fij} = \frac{1.1I_0}{1 + \lambda_i \mu_i} = 6842.17 cm^4$$

$$I_{fig} = \frac{1.1I_0}{1 + \lambda_i u_a} = 6407.82 cm^4$$

$$I_{fip} = \frac{1.1I_0}{1 + \lambda_i \mu_n} = 5907.77 \ cm^4$$

$$I_{fvg} = \frac{1.1I_0}{1 + \lambda_v \mu_g} = 10679.25 \ cm^4$$

calcul de la flèche

$$f_{ij} = \frac{M_j l^2}{10 E_i I_{fij}} = 0.449 cm$$

$$f_{ig} = \frac{M_g l^2}{10 \; E_i I_{fig}} = 0.591 cm$$

$$f_{ip} = \frac{M_p l^2}{10 \; E_i I_{fip}} = 0.845 \; cm$$

$$f_{vg} = \frac{M_g l^2}{10 \; E_v I_{fvg}} = 1.06 \; cm$$

$$\Delta f_t = f_{gv} - f_{ji} + f_{pi} - f_{gi} = 1.06 - 0.449 + 0.845 - 0.591 = 0.865 \text{ cm}$$

III.3.6.Ferraillage des poutrelles :

Les résultats de ferraillage des poutrelles sont résumés dans le tableau III.8

			M	μ_{bu}	α	Z	A _{cal} (c	A _{min}	A_{adopte}
	Types		(KN.m)			(cm)	m²)	(cm²)	(cm²)
	1,	Travée	12.336	0.048	0.061	17.56	2.01	1.195	3HA10=2.36
Terra		Appui int	-9.89	0.215	0.306	15.79	1.80	0.217	2HA10=1.57
sse	3	A							
inacc	Et	Appui de	-1.854	0.040	0.051	17.63	0.30	0.217	1HA10=0.79
essibl	4	rive							
e		Travée	6.156	0.024	0.030	17.78	0.99	1.195	2HA10=1.57
	6	Appui de	-0.923	0.020	0.025	17.82	0.148	0.217	1HA10=0.79
		rive	0.723	0.020	0.023	17.02	0.110	0.217	111110-0.75
	2,	Travée	11.003	0.043	0.055	17.60	1.79	1.195	3HA10=2.36
	3	Appui int	-8.552	0.185	0.257	16.13	1.52	0.217	2HA10=1.57
Etage	Et	Appui de	-1.650	0.035	0.044	17.68	0.27	0.217	111 4 10 0 70
coura	4	rive	-1.030	0.033	0.044	17.08	0.27	0.217	1HA10=0.79
nt		Travée	5.323	0.021	0.026	17.81	0.86	1.195	2HA10=1.57
	6	Appui de rive	-0.798	0.017	0.021	17.85	0.13	0.217	1HA10=0.79
	2,	Travée	13.435	0.053	0.068	17.51	2.20	1.195	2HA12+1HA10=

	3								3.05
Etage servic	Et 4	Appui Int	10.033	0.218	0.311	15.75	1.83	0.217	1HA10+1HA12= 1.92
e		Appui de rive	-2.015	0.043	0.055	17.60	0.33	0.217	1HA10=0.79
	5,	Travée	16.721	0.066	0.085	17.38	2.76	1.195	2HA12+1HA10= 3.05
	6	Appui de rive	-2.508	0.054	0.070	17.49	0.41	0.217	1HA10=0.79
	3 Et	Travée	19.546	0.077	0.10	17.28	3.25	1.195	2HA14+1HA10= 3.87
Etage	4	Appui int	-13.734	0.298	0.456	14.71	2.68	0.217	2HA14=3.08
comm ercial		Appui de rive	-2.932	0.063	0.081	17.41	0.48	0.217	1HA14=1.54
RDC	5	Travée	22.89	0.090	0.118	17.14	3.83	1.195	2HA14+1HA12= 4.21
		Appui de rive	-3.43	0.074	0.096	17.30	0.57	0.217	1HA10=0.79
Etage comm	1 3	Travée	19.546	0.077	0.1	17.28	3.25	1.195	2HA14+1HA10= 3.87
ercial	Et	Appui int	-14.707	0.319	0.499	14.40	2.93	0.217	2HA14=3.08
E- SOL	4	Appui de rive	-3.509	0.076	0.099	17.28	0.58	0.217	1HA14=1.54

Tab. III. 8. Tableau du ferraillage des poutrelles

III.3.6.1Vérification à l'ELU

Types						ongitudinale appuis	jonction table-	vérification de	
		S	Bielle	Cisaillement	Rive	Intermédiair e	nervure	l'adhérence	
			$V_u \le 0.267.d.b_0.f_{c28}$	$\tau_u = \frac{V_u}{b_0 \times d} \le \tau_{adm}$	$A \ge \frac{\gamma_s.V_u}{f_e}$	$A_l \ge (V + \frac{M_u}{0.9d}) \frac{\gamma_s}{f_e}$	$\tau_u = \frac{V_u.b_1}{0.9d.b.h_0} \le \tau_{ad}$	$\tau_{su} = \frac{V_u}{0.9d \times \sum U_i} \le \overline{\tau_{su}}$	
T	erra	1.							
	SS	.4	16.85<120.15	0.936 < 3.33	3.84>0.48	4.78>-1.27	1.06< 3.33	0.551<2.835	

inacc	6	8.954<120.15	0.497 < 3.33	3.15>0.25	/	0.56< 3.33	0.586<2.835
Etage coura	2.	14.57<120.15	0.809<3.33	3.15>0.41	3.93>-1.10	0.920<3.33	0.477 < 2.835
nt	6	7.743<120.15	0.430<3.33	3.15>0.22	/	0.488<3.33	0.507<2.835
Etage	2, 3, 4	17.093<120.1 5	0.95<3.33	3.84>0.49	4.78>-1.28	1.079<3.33	0.541<2.835
servic e	5, 6	14.864< 120.15	0.825<3.33	3.84>0.42	/	0.938<3.33	0.663<2.835
ETAG	3, 4	23.399< 120.15	1.30<3.33	5.41>0.67	6.95>-1.76	1.47< 3.33	0.598<2.835
ERDC	T 5	20.347< 120.15	1.13<3.33	5>0.58	/	1.28<3.33	0.832<2.835
Etage 1 Observ		23.615<	1.31<3.33	5.41>0.68 Véri	6.95>-1.93 fiée	1.49<3.33	0.610<2.835

Tab. III. 9. Vérification au cisaillement

III.3.6.2. Vérifications des contraintes à E.L.S

III.3.6.2. 1.Etat limite de compression de béton

			M_{t}	Y	I	σ	_
			(KN.m)	(cm)	(dm ⁴)	(MPa)	$\sigma \le \sigma$
	1	Travée	9.022	4.70	0.999	4.24	
	à	Appui int	-7.217	3.52	0.574	4.42	
Terrass inacc	4	Appui de rive	-1.353	2.57	0.313	1.11	
		Travée	4.492	3.52	0.574	2.75	şe
	6	Appui de rive	-0.674	2.57	0.313	0.55	Vérifiée
	2	Travée	7.939	4.21	0.810	4.12	
Etage	à	Appui int	-6.17	3.52	0.574	3.78	
courant	4	Appui de rive	-1.191	2.57	0.313	0.98	

			1				
		Travée	3.841	3.52	0.574	2.35	
	6	Appui de rive	-0.576	2.57	0.313	0.47	
	2,	Travée	9.586	4.70	0.999	4.50	
	3	Appui int	-7.158	3.85	0.681	4.04	
Etage service	E t4	Appui de rive	-1.438	2.57	0.313	1.18	
service	5	Travée	11.93	4.70	0.999	5.61	
	6	Appui de rive	-1.789	2.57	0.313	1.47	
		Travée	13.699	5.20	1.20	5.93	
Etage	3	Appui int	-9.626	4.72	1.00	4.55	
commerc ial RDC	E t 4	Appui de rive	-2.055	3.49	5.64	0.127	
		Travée	16.043	5.38	1.29	6.69	
	5	Appui de rive	-2.406	2.57	0.313	1.97	
Etage		Travée	13.699	5.20	1.20	5.93	
commerci	commercial		-10.199	4.72	1.00	4.81	
E-SOL	E-SOL		-2.055	3.49	5.64	0.127	

Tab.III. 10. Vérification des états limites de compression du béton.

III.3.6.2. 2.Etat limite de déformation : $\Delta f \leq f_{adm}$

	Terrasse inaccessible								Etage
Planchers			Etage courant		Etage service		commercial		commercial
							RDC		E-Sol
types	1 à 4	6	2 à 4	6	2 à 4	5 et 6	3 et 4	5	1,3 et 4
q_{jser} (KN/m)	3.28		2.50		2.5		2.5		2.5
q_{gser} (KN/m)	4.10		3.08		3.08		3.08		3.08
q_{pser} (KN/m)			4.06		4.71		6.33		6.33
$M_{jser}(KN.m)$	6.22	3.10	4.88	2.36	5.08	4.74	5.08	4.74	5.08

M_{gser}	7.78	3.87	6.01	2.91	6.26	4.85	6.26	5.84	6.26
M_{pser}	9.01	4.49	7.93	3.83	9.57	8.94	12.86	12.01	12.86
$I_0 \text{ (cm}^4)*10^{-4}$	1.86	1.60	1.74	1.60	1.86	1.86	2.15	2.04	2.15
ρ	0.016	0.008	0.013	0.008	0.017	0.017	0.027	0.023	0.027
λ_{v}	0.97	1.89	1.258	1.89	0.97	0.93	0.602	0.70	0.602
λ_{i}	2.43	4.72	3.146	4.72	2.43	2.43	1.106	1.76	1.106
σ_{sj} (MPa)	124.2	117.3	124.73	89.46	101.38	94.69	64.07	69.56	64.07
σ_{sg} (MPa)	155.3	146.7	153.67	110.2	124.91	106.6	78.94	85.70	78.94
σ_{sp} (MPa)	179.9	169.9	202.56	145.3	191.01	178.4	160.2	176.1	160.2
μ_{j}	0.65	0.406	0.57	0.29	0.59	0.56	0.59	0.57	0.59
μ_{g}	0.708	0.49	0.63	0.38	0.65	0.63	0.65	0.63	0.65
μ_p	0.742	0.54	0.71	0.48	0.75	0.74	0.81	0.80	0.81
$If_{ij} (m^4)*10^{-5}$	7.937	6.04	6.84	7.35	8.41	8.60	1.25	1.12	1.25
$If_{ig} (m^4)*10^{-5}$	7.524	5.31	6.38	6.29	7.92	8.07	1.20	1.06	1.20
$If_{ip} (m^4)*10^{-5}$	7.302	4.95	5.93	5.34	7.22	7.31	1.06	9.33	1.06
$If_{vg} (m^{4)}*10^{-5}$	12.13	9.15	10.65	10.25	12.54	12.69	1.70	1.55	1.70
f_{ji} (cm)	0.489	0.12	0.45	0.07	0.37	0.34	0.25	0.26	0.25
$f_{gi}(cm)$	0.645	0.17	0.58	0.107	0.49	0.45	0.32	0.34	0.32
$f_{pi}(cm)$	0.77	0.21	0.83	0.16	0.82	0.76	0.75	0.80	0.75
$f_{gv}(cm)$	1.20	0.29	1.57	0.19	0.93	0.86	0.69	0.70	0.69
Δf (cm)	0.83	0.22	0.857	0.18	0.89	0.83	0.86	0.899	0.86
$f_{adm}(cm)$	0.9	0.55	0.9	0.55			0.9		

Tab. III. 11. Vérification des états limitent de déformation

III.3.7.Ferraillage de la dalle de compression :

Selon le BAEL 91 (B.6.8, 423) la dalle de compression, sera armée par un quadrillage de barres dont les dimensions de mailles ne doivent pas dépasser :

- 20 cm (5 p.m.) pour les armatures perpendiculaires aux nervures.
- 33 cm (3 p.m.) pour les armatures parallèles aux nervures.

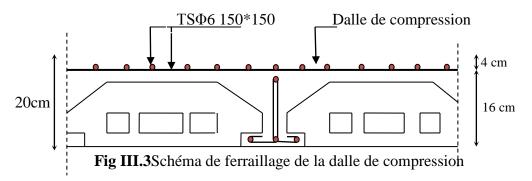
On utilise un treillis soude ronds lisse f_{e235} .

III.3.7.1.Armatures perpendiculaires aux poutrelles

III.3.7. 1. Armatures parallèles aux poutrelles

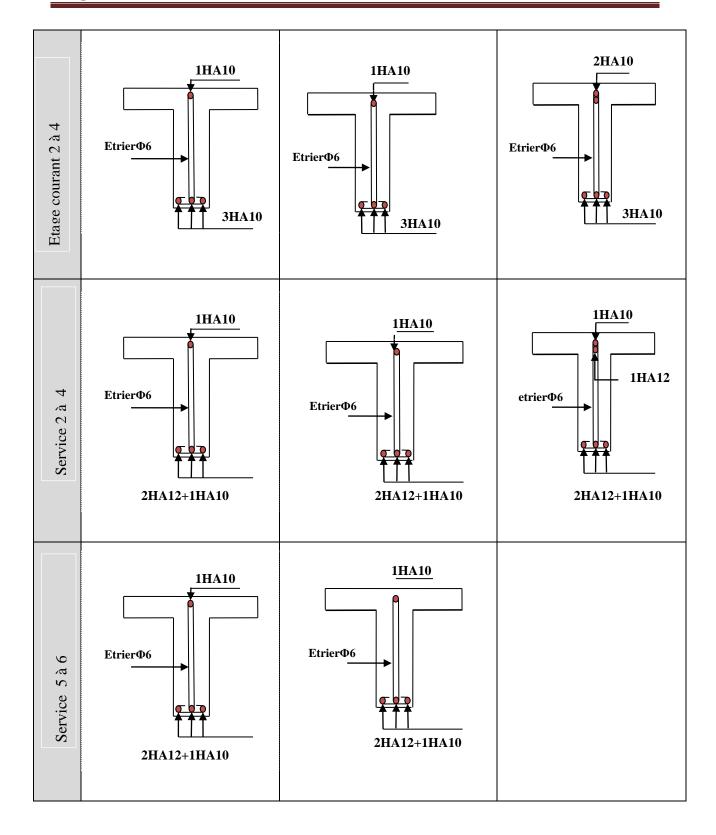
$$A_{\parallel}=A_{\perp}/2=0.55~cm^2\!/ml$$

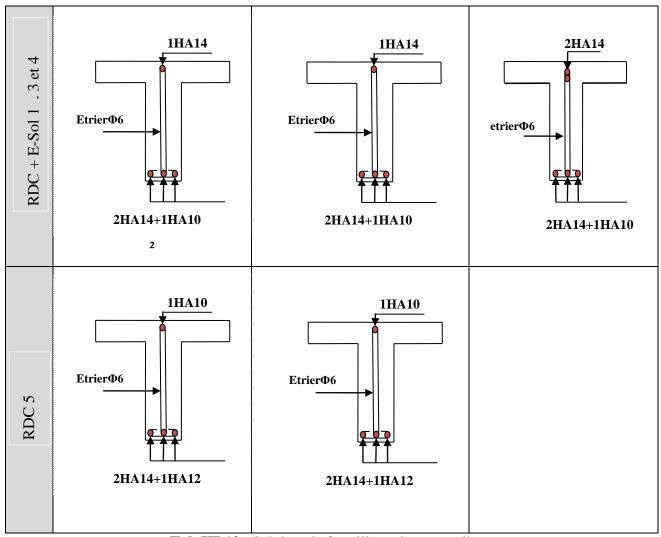
On choisit:


- 5φ6/ml=1.41cm²/ml Armatures perpendiculaires aux poutrelles

Avec :St=20cm≤20cm...Vérifiée.

- $4\phi6$ /ml=1.13cm²/ml parallèles aux poutrelles →St=25cm<30 cm.


Donc on choisit un treillis a soudé : TS ϕ 6 150 ×150.


TS ∮ 6 150 ×150dalle de compression

III.3.8.Schéma de ferraillage des poutrelles

plan	Sc	héma de ferraillage des poutrelle	es
cher	Appuis de rive	Travée	Appuis intermédiaire
Terrasse inaccessible 1 à 4	1HA10 ΕtrierΦ6	1HA10 ΕtrierΦ6 3HA10	2HA10 EtrierΦ6 3HA10
Terrasse + Etage courant 6	1HA10 ΕtrierΦ6 2HA10	1HA10 ΕtrierΦ6 2HA10	

Tab III.12 : Schéma de ferraillage des poutrelles

III.4. Etude des poutres de chaînages :

C'est des poutres noyées dans les planchers qui servent pour supporter le poids des murs en doubles cloisons.

III.4.1 Dimensionnement:

La portée maximale de la poutre de chaînage est : $L_{\text{max}} = 3.85m$

Selon la condition de flèche :

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10} \qquad donc.....25.66cm \le h \le 38.50cm$$

Selon le RPA 99 (Art: 9.3.3):

h≥15 cm et b≥ $\frac{2}{3}$ ×h D'où h=30 cm et b=25 cm. (30cm est l'épaisseur de mur)

III.4.2 Sollicitation:

$$P_p = 0.3 \times 0.25 \times 25 = 1.875 \text{ KN/ml}$$

 $Pmur = 2.86 (3.06 - 0.3) = 7.808 \text{KN/ml}$

✓ Calcul à l'ELU:

$$q_u = 1,35 \cdot (p_p + p_{mur}) = 1,35 \times (1.875 + 7.808) = 13.07 \text{ KN/ml}$$

✓ Ferraillage :

Armature longitudinale:

$$M_u = \frac{q_u \times l^2}{8} = \frac{13.07 \times 3.85^2}{8} = 24.21 \text{ KN.m}$$

Les résultats sont récapitulés dans le tableau suivant :

$M_u(KN.m)$	$\mu_{_{bu}}$	α	z (cm)	A _{calculé} (cm ²)	$A_{adopt\acute{e}} (cm^2)$
24.21	0.075	0.097	26.91	2.58	3T12 = 3.39

Tab III.13: Ferraillage des poutres de chaînage.

Vérification à l'état limite ultime :

- Vérification de la condition de non fragilité :

$$A_{\min} = 0,23 \cdot b \cdot d \frac{f_{t28}}{fe} = 0,23 \cdot 0,3 \cdot 0,28 \cdot \frac{2,1}{400} = 1,01 \text{ cm}^2$$

$$A=3.39 \text{ cm}^2 > A_{\min} = 1,01 \text{ cm}^2 \dots \text{vérifiée}$$

• Vérification de l'effort tranchant :

$$\tau_{bu} = \frac{V_u}{b \times d} \qquad V_u = \frac{ql}{2} = \frac{13.07 \times 3.85}{2} = 25.16 \text{ KN}$$

$$\tau_{bu} = \frac{25.16 \times 10^{-3}}{0.23 \times 0.28} = 0.39 \text{ MPa}$$

- Fissuration peu nuisible :

$$\bar{\tau}_{bu} = \min \left[0.2 \times \frac{f_{c28}}{\gamma_b} ; 5 MPA \right] = 3.33 MPA$$

$$\tau_{bu} = 0.39 < \bar{\tau}_{bu} = 3.33 MPA \rightarrow \text{Pas de risque de cisaillement}$$

Calcul des armatures transversales :

$$\phi_t \le \min(\frac{h}{35}; \frac{b}{10}; \phi_t) \Rightarrow \phi_t \le 8.57 mm$$

$$\Phi_t \ge 0.3\Phi_t \Rightarrow \Phi_t \ge 0.36 \qquad \text{Soit } A_t = 3\phi 6 = 0.85 \text{ cm}^2$$

Espacement:

$$S_t \le \frac{0.8 \cdot f_e \cdot A_t}{b_0 \cdot (\tau_u - 0.3 \times K \cdot f_{t28})}$$

K=1 : Flexion simple, avec sans reprise de bétonnage.

 $\alpha = 90$ (Les armatures sont perpendiculaires)

D'où
$$S_{t} \leq \frac{0.8 \times 400 \times 1.14}{25 \times (0.39 - 0.3 \times 1 \times 2.1)} \Rightarrow S_{t} < 0 cm$$
(1).
$$S_{t} \leq \frac{A_{t} \times f_{e}}{0.4 \times b_{0}} \Rightarrow S_{t} \leq \frac{0.57 \times 400}{0.4 \times 25} \Rightarrow S_{t} \leq 22.5 cm$$
(2).
$$S_{t} \leq \min(0.9d, 40 cm) \Rightarrow S_{t} \leq 25.2 mm$$
(3).
Soit: $S_{t} = 20 cm$

Vérification à l'ELS:

- Etat limite de compression du béton :

La fissuration est peu nuisible donc la vérification à faire est la contrainte de compression du béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 f_{c28} = 15 MPa$$

Calcul de y:

$$\frac{b \cdot y^2}{2} + 15 \cdot A \cdot y - 15 \cdot A \cdot d = 0 \implies y = 8.83 \text{cm}$$

Calcul de 1:

$$I = \frac{b \cdot y^{3}}{3} + 15 \cdot A \cdot (d - y)^{2} \Rightarrow I = 24424.02 \text{m}^{4}$$

$$M_{ser} = \frac{q_{s} \times l^{2}}{8} = \frac{9.68 \times 3.85^{2}}{8} = 17.93 \text{ KN.m}$$

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} = \frac{17.93 \times 8.83 \times 10^{-5}}{24424.02 \times 10^{-8}} = 6.48 \text{ KN.m} \qquad \text{vérifié}$$

État limite de déformation :

- Vérification de la flèche :

La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} & \dots \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} & \dots \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} & \dots \end{cases} \Rightarrow \frac{h}{L} = \frac{30}{385} = 0.078 > \frac{1}{16} = 0.0625 \dots$$
condition non vérifié

La première condition n'est pas vérifiée, alors il faut calculer la flèche.

La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij}$$

Pour une portée inférieur à 5m, la flèche admissible : $f_{adm} = \frac{l}{500} = 0.77cm$ cm

Le calcul par SOCOTEC nous a donné $\Delta f = 2.14 mm < f_{adm} = 7.7 mm$

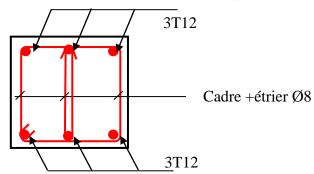


Fig III.4: Schéma de ferraillage de la poutre de chainage

III.5. dalle pleine

III.5.1.Dalle sur deux appuis avec $\rho > 04$

On se contentera d'étudier la dalle type 4 qui est la plus défavorable (voir chap2 fig2.9), et ça sera le même

ferraillage pour les autres types
$$\rho = \frac{120}{185} = 0.64$$

Donc la dalle travaille selon les deux sens.

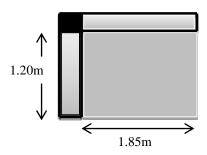


Fig III.5: dalle sur deux

Calcul du chargement :

$$\begin{cases} q_u = (1.35 \times 5.36) + (1.5 \times 3.5) = 12.48 \text{K.ml.} \\ q_s = 5.36 + 3.5 = 8.86 \text{KN.ml.} \end{cases}$$

Calcul de Mx_0 et My_0 :

$$M_{0u}^{x} = \mu_{x} \times q \times l_{x}^{2} = 0.0765 \times 12.48 \times 1.20^{2} = 1.37 \text{KN.ml}$$

$$M_{0u}^{y} = \mu_{y} \times M_{0}^{x} = 0.3472 \times 1.37 = 0.47 \text{KN.ml}$$

$$M_{0ser}^{x} = \mu_{x} \times q \times l_{x}^{2} = 0.0819 \times 8.86 \times 1.20^{2} = 1.04 \text{KN.ml}$$

$$M_{0ser}^{y} = \mu_{y} \times M_{0}^{x} = 0.5117 \times 1.04 = 0.53 \text{KN.ml}$$

Calcul des moments compte tenu de l'encastrement :

En travée :

ELU
$$\begin{cases} M^{x}_{t} = 0.85M^{x}_{0u} = 1.16KN.m \\ M^{y}_{t} = 0.85M^{y}_{0u} = 0.39KN.m \end{cases}$$
ELS
$$\begin{cases} M^{x}_{t} = 0.85M^{x}_{0ser} = 0.88KN.m \\ M^{y}_{t} = 0.85M^{y}_{0ser} = 0.45KN.m \end{cases}$$

En appuis :

ELU
$$\rightarrow$$
 $M_a^x = M_a^y = -0.5M_0^x = -0.68KN.m$

ELS
$$M_a^x = M_a^y = -0.5M_0^x = -0.52.KN.m$$

Ferraillage

Le ferraillage se fait à la flexion simple pour une bande de 1 ml.

Fig III.6 : Section de la dalle pleine a ferraillée

Le tableau résume le calcul des armatures en travées et en appuis

	En travée								
Sens x	ens x $A_{cal} (cm^2/m_l)$ $A_{min} (cm^2/m_l)$ $A_{opt} (cm^2/m_l)$								
0.25 1.41 3Hz		$3HA10 = cm^2.36$	33						
Sens y	0.10	1.20	$3HA8 = 1.51cm^2$	33					
	En appuis								
Sens x, sens y	0.15	1.22	$3HA8 = 1.51cm^2$	33					

Tab.III.14.Calcul du ferraillage de la dalle du balcon type4

Avec

$$A_{x_{\min}} = 0.0008 \times \frac{(3-\rho)}{2} b \times e$$

$$A_{v \min} = 0.0008 \times b \times e$$

Vérification des espacements

$$\left\{ \begin{array}{l} S_t = 33 cm \leq min \ (3 \ e, \ 33 cm) = 33 cm \ \ v\'{e}rifi\'{e}e \ (sens \ principale \ X-X) \\ S_t = 33 cm \leq min \ (4 \ e, \ 45 cm) = 45 cm \ v\'{e}rifi\'{e}e \ (sens \ secondaire \ Y-Y) \end{array} \right.$$

> Vérification diverse :

Vérification de l'effort tranchant :

$$V_u^x = \frac{q \times l_x}{3} = \frac{12.48 \times 1.20}{3} = 4.99 KN$$

$$V_u^y = \frac{P \times L_x}{2} \times \frac{1}{1 + \frac{\rho}{2}} = 5.47 \, KN$$

$$\tau_{bu}^{\text{max}} = \frac{V_u}{b \times d} = \frac{5.47 \times 10^{-3}}{1 \times 0.13} = 0.042 MPa \le \tau_{adm} = 0.05 \times f_{c28} = 1.25 MPa$$

$$au_{bu}^{\max} < au_{adm}$$
 vérifier

• Vérification des A₁ vis-à-vis de l'effort tranchant :

On doit vérifier que :
$$A_l \geq rac{\gamma_s imes V}{f_e}$$

Et on a :
$$A_1=2.36$$
 et $V_{max}=5.47$ KN. $\Rightarrow 2.36>0.15$ cm²

• Vérification des contraintes :

Comme notre dalle se situe à l'intérieur (FPN), alors on ne vérifie que la contrainte de compression dans le béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15MPa$$

$$y = \frac{b \times y^2}{2} + 15(A_s + A_s) \times y - 15 \times (d \times A_s + d \times A_s) = 0$$

$$I = \frac{b_0 \times y^3}{3} + 15 \times \left[A_s \times (d - y)^2 + A_s \times (y - d')^2 \right]$$

Le tableau suivant illustre les résultats de calcul

Localisation	Mser	I	Y	$\sigma_{\!\scriptscriptstyle bc}$	σ_{bc}
	(KN.m)	(cm ⁴)	(cm)	(MPa)	(MPa)
Appuis	- 0.52	6742.6	3.36	0.26	15
Travées (x)	0.88	6742.6	3.36	0.44	15
Travées (y)	0.45	6742.6	3.36	0.22	15

Tab III.15 vérification des contraintes

Etat limite de déformation

Si les conditions suivantes sont vérifiées le calcul de la flèche n'est pas nécessaire.

Sens x-x

1.
$$\frac{h}{l_x} > \frac{M_x^t}{20M_{0x}} \Leftrightarrow 2.55 > 0.042....verifie$$
BAEL 9(Art .IV ,10)

2.
$$\frac{A_s}{b \times d} \le \frac{2.4}{f_s} \Leftrightarrow 0.0018 \langle 0.006.....verifie$$

Sens y-y

$$1 \quad \frac{h}{l_{y}}\rangle \frac{M_{y}^{t}}{20M_{0y}} \Leftrightarrow 1.70\rangle 0.0424.....verifiée$$

$$\frac{A_s}{b \times d} \le \frac{2.4}{f_e} \Leftrightarrow 0.0012 \langle 0.006.....verifi\'ee$$

> Schéma de ferraillage :

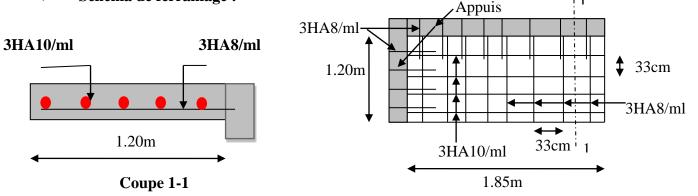


Fig.III.7: schéma de ferraillage des dalles des balcons

III.5.2.Dalle sur deux appuis avec ρ < 04

$$L_X = 1.40 m$$

$$L_{Y} = 3.55 m$$

 $\frac{L_X}{L_Y} = \frac{1.40}{3.55} = 0.39$ La dalle travaille dans un seul sens.

> Calcul des sollicitations :

$$\begin{split} &M_{0u}^{\chi} = \frac{q_x L_x^2}{8} = \frac{12.48 \times 1.40^2}{8} = 3.05 \text{KN. m.} \\ &M_{0ser}^{\chi} = \frac{q_{ser} L_x^2}{8} = \frac{8.86 \times 1.40^2}{8} = 2.17 \text{KN. m.} \end{split}$$

> En travée :

$$M_t^x = 0.85 M_{0u}^x = 2.60 KN.m.$$

> En appui:

$$M_{a}^{x} = -0.4 M_{0u}^{x} = -1.22 KN.m.$$

$$V_{\rm u} = \frac{q_{\rm x} L_{\rm X}}{2} = 8.73$$
KN. m

> Ferraillage:

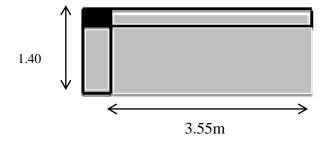


Fig III.8: dalle sur deux appuis

	M _u (KN.m)	$\mu_{_{bu}}$	α	Z (m)	A _{min} (cm ² /ml)	Acal (cm ² /ml)	Aadp(cm ² /ml)
Travée	3.05	0,0127	0,016	0,129	1.56	0,60	3HA10 = 2.36
appui	1.22	0,005	0,0063	0,129	1.65	0,23	3HA10 = 2.36

Tab III.16 Ferraillage de la dalle sur deux appuis

$$A_{x_{\min}} = 0.0008 \times \frac{(3-\rho)}{2} b \times e \Rightarrow A_{\min} = 1.56cm^2$$

Les armatures de répartition :

$$A_r = \frac{A_t}{4} = 0.39cm^2 / ml \Rightarrow A_r = 1.51 = 3HA8$$

> Calcul des espacements :

$$S_{ty} \le min(3*e;33cm) = 33cm$$
; Soit: $S_{tx} = 33cm$.

$$S_{ty} \le \min(45cm, 4*e) = \min(45, 4*15)$$
; Soit: $S_{ty} = 33cm$.

> Vérifications :

2) L'effort tranchant :

$$\tau_u = \frac{V_u}{h \times d} = \frac{8.73 \times 10^{-3}}{1 \times 0.13} = 0.067 MPa < \bar{\tau}_u = 1.25 MPa....verifié$$

L'ELS

t Etat limite de compression de béton :

$$\sigma_{bc} = \frac{M_{Ser}}{I} \cdot y$$
 ; $y = 3.36 \text{cm}$; $I = 6728.68 \text{ cm}^4$.
 $\sigma_{bc} = \frac{M_{ser} \times y}{I} = 1.08 MPa \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 MPa$

Etat limite d'ouverture des fissures :

$$\sigma_s = 15 \times \frac{M_{ser}}{I} \times (d-y) \leq \overline{\sigma_s}, avec \ \overline{\sigma_s} = min(\frac{2}{3}f_e \ , 110\sqrt{\eta \ f_{tj})} = 201.63 MPa$$

$$\sigma_s = 15 \times \frac{2.17 \times 10^{-3}}{6728.68 \times 10^{-8}} \times (0.13 - 0.0336) = 46.63 \text{MPa} \le \overline{\sigma_s} = 201.63 \text{MPa} ... \text{ vérifiée}$$

Etat limite de déformation :

1)
$$\frac{h}{l} > \frac{1}{16}$$
 $\frac{h}{l} = \frac{0.15}{1.40} = 0.107 > \frac{1}{16} = 0.0625$

2)
$$\frac{h}{l} > \frac{M_t}{10 \cdot M_0} = 0.15 = 0.107 > \frac{2.60}{10 \times 3.05} = 0.085$$

3)
$$\frac{A}{b \cdot d} \le \frac{4,2}{f_e}$$
. $\frac{A}{b \times d} = \frac{3.14}{100 \times 13} = 0.0024 < \frac{4.20}{400} = 0.0105$

Les trois conditions sont vérifiées, donc la flèche est vérifiée

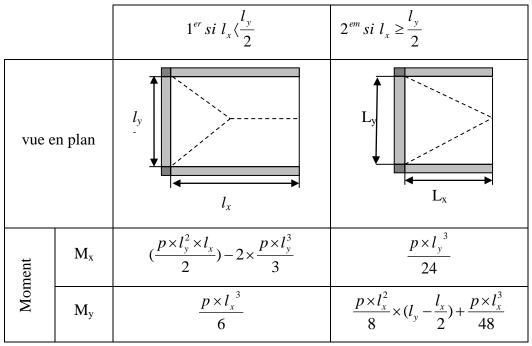

Schéma de ferraillage 3HA10/ 1.40m Coupe 1-1 Schéma de ferraillage 3HA10/ 3HA8/m 3HA10/ml 3HA8/m 3,55m

Fig III.9. Schéma de ferraillage des dalles

➤ Dalle sur 3appuis

Méthode de calcul

On utilise la théorie des lignes de ruptures, et on détermine les moments isostatiques sollicitant la pièce comme suit

Tab III.17 Théorie de calcul des moments pour les dalles à trois appuis.

Notation : on prend $\begin{cases} l_x : \text{la grande port\'ee} & \text{(uniquement pour les dalles sur 3 appuis)} \\ l_y : \text{La petite port\'ee} \end{cases}$

Dans notre cas on a:

 $L_x=1.40 \text{ m} < \frac{l_y}{2} = 2.025 \text{ m}$, donc on est dans le 1^{er} cas

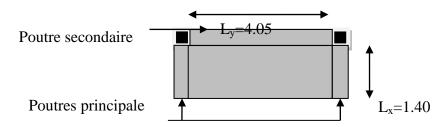


Fig III.10 Dalle sur 3appuis

> Calcul du chargement :

$$\left\{ \begin{array}{l} q_u {=} (~1.35{\times}5.36) {+} (1.5{\times}3.5) = 12.48 KN/ml. \\ \\ q_s {=} ~5.36 {+} 3.5 = 8.36 KN/ml. \end{array} \right.$$

> Ferraillage:

Le ferraillage se fait à la flexion simple pour une bande de 1 ml.

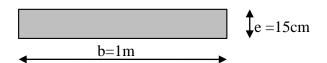


Fig.III.11. Section de la dalle pleine a ferraillé

Les résultats de calcul sont résumés dans le tableau suivant :

Localisation	M ₀ (KN)		M _t (KN)		A cal	A min	\mathbf{A}_{apt}	S_{t}	
	ELU	ELS	ELU	ELS	(cm^2/m_l)	(cm^2/m_l)	(cm^2/m_l)	(cm)	
	En travée								
Sens x	26.71	18.95	22.71	16.11	5.28	1.2	5HA12=5.65	20	
Sens y	5.71	4.05	4.85	3.44	1.08	1.2	3HA8=1.51	33	
				En a	appui				
Sens x, y	26.71	18.95	-	-9.47	3.04	1.2	4HA10=3.14	25	
			13.35						

Tab III.18 Calcul du ferraillage de la dalle D₂

 $Avec \qquad A_{ymin} = A_{xmin} = 0.0008 \times b \times e$

Vérification des espacements :

$$\begin{cases} S_t = 20cm \le min (3 e, 33cm) = 33cm & vérifiée (sens principale) \\ S_t = 33cm \le min (4 e, 45cm) = 45cm & vérifiée (sens secondaire) \end{cases}$$

> Vérification diverse :

a) A l'ELU:

- Vérification de l'effort tranchant:

$$V_u^x = \frac{q \times l_x}{3} = \frac{12.48 \times 1.40}{2} = 5.82 KN$$

$$\tau_{bu} = \frac{V_u}{b \times d} = \frac{5.82 \times 10^{-3}}{1 \times 0.13} = 0.015 MPa \le \tau_{adm} = 0.05 \times f_{c28} = 1.25 MPa$$

$$\tau_{max} < \tau_{adm} \dots \dots V\acute{e}rifi\acute{e}e$$

- Vérification des A_l vis-à-vis de l'effort tranchant :

On doit vérifier que :
$$A_l \ge \frac{\gamma_s \times V}{f_e}$$

Et on a :
$$A_1 = 5.65 \text{cm}^2$$
 et $V_{max} = 5.82 \text{ KN.} \Rightarrow 5.65 \ge 0.16 \text{cm}^2$

b) A l'ELS:

-vérification des contraintes :

Comme notre dalle se situe à l'intérieur (FPN), alors on ne vérifier que la contrainte de compression dans le béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

$$y = \frac{b \times y^2}{2} + 15(A_s + A_s') \times y - 15 \times (d \times A_s + d' \times A_s') = 0$$

$$I = \frac{b_0 \times y^3}{3} + 15 \times \left[A_s \times (d - y)^2 + A_s' \times (y - d')^2 \right]$$

Le tableau (tab III.19.) suivant illustre les résultats de calcul

Localisation	Mser I		Y	$\sigma_{\!\scriptscriptstyle bc}$	$\overline{\sigma}_{bc}$
	(KN.m)	(cm ⁴)	(cm)	(MPa)	(MPa)
Appuis	-9.47	18942.8	5.8	0.63	15
Travées (x)	16.11	9423.1	4.02	6.87	15
Travées (y)	3.44	36922	1.6	0.64	15

Tab.III.19. vérification des contraintes

D'après le tableau on remarque que les contraintes sont vérifiées

Etat limite de déformation

Si les conditions suivantes vérifiées le calcul de la flèche n'est pas nécessaire

1).
$$\frac{h}{l} > \frac{1}{16}$$
 $\frac{h}{l} = \frac{0.15}{1.40} = 0.107 > \frac{1}{16} = 0.0625...$ vérifier

2).
$$\frac{h}{l} > \frac{M_t}{10 \cdot M_0} = 0.107 > \frac{16.11}{10 \times 18.95} = 0.085$$
.....vérifier

3).
$$\frac{A}{b \cdot d} \le \frac{4,2}{f_e} \frac{A}{b \times d} = \frac{5.65}{100 \times 13} = 0.0043 < \frac{4.20}{400} = 0.0105...$$
vérifier

Les trois conditions de la flèche sont vérifiées

Schéma de ferraillage

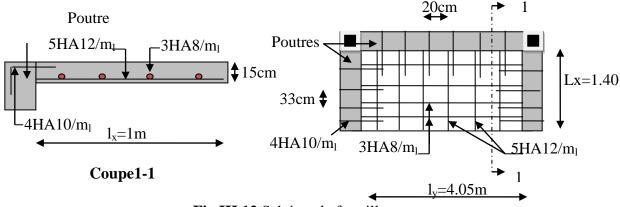


Fig.III.12.Schéma de ferraillage

III.5.3.Panneau du plancher (4 appuis) :

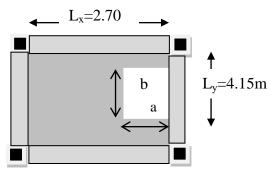


Fig.III.13: panneau de dalle

$$\rho = \frac{270}{415} = 0.65$$

Donc la dalle travaille selon les deux sens..

Lesson Calcul du chargement :

$$\begin{cases} q_u = 1.35 \times 5.36 + 1.5 \times 2.5 = 10.98 KN/ml. \\ q_s = 5.36 + 2.5 = 7.89 KN/ml. \end{cases}$$

\blacksquare Calcul de Mx_0 et My_0 :

$$M_{0u}^{x} = \mu_{x} \times q \times l_{x}^{2} = 0.0751 \times 10.98 \times 2.70^{2} = 6.01 \text{KN.ml}$$

$$M_{0u}^{y} = \mu_{y} \times M_{0}^{x} = 0.3613 \times 6.01 = 2.17 \text{KN.ml}$$

$$M_{0ser}^{x} = \mu_{x} \times q \times l_{x}^{2} = 0.0805 \times 7.89 \times 2.70^{2} = 4.63 \text{KN.ml}$$

$$M_{0ser}^{y} = \mu_{y} \times M_{0}^{x} = 0.5235 \times 4.63 = 2.42 \text{KN.ml}$$

> Calcul des moments compte tenu de l'encastrement :

- En travée :

ELU
$$\begin{cases} M_t^x = 0.75M_{0u}^x = 4.50KN.m \\ M_t^y = 0.85M_{0u}^y = 1.84KN.m \end{cases}$$
ELS
$$\begin{cases} M_t^x = 0.75M_{0ser}^x = 3.47KN.m \\ M_t^y = 0.85M_{0ser}^y = 2.05KN.m \end{cases}$$

- En appuis :

ELU
$$\Rightarrow M_a^x = M_a^y = -0.5M_0^x = -3KN.m$$

ELS $\Rightarrow M_a^x = M_a^y = -0.5M_a^x = -2.31.KN.m$

> Ferraillage:

Le ferraillage se fait à la flexion simple pour une bande de 1 ml.

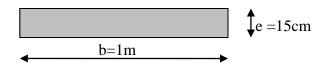


Fig.III.14. Section de la dalle pleine a ferraillé

Le tableau résume le calcul des armatures en travées et en appuis

	En travée								
Sens-x	$A_{cal} (cm^2/m_l)$	A $_{min}$ (cm $^2/m_l$)	$A_{opt}(cm^2/m_l)$	S _t (cm)					
Sens-x	1.12	1.41	4HA8=2.01	25					
Sens-y	0.42	1.2	3HA8=1.51	33					
	En appuis								
Sens x, sens y	0.66	1.41	3HA8=1.51	33					

Tab III.20. Calcul du ferraillage

$$A_{x_{\min}} = 0.0008 \times \frac{(3-\rho)}{2} b \times e \qquad A_{y_{\min}} = 0.0008 \times b \times e$$

Vérification des espacements :

$$\begin{cases} S_t = 25\text{cm} \le \text{min (3 e, 33cm)} = 33\text{cm v\'erifi\'ee (sens principale)} \\ S_t = 33\text{cm} \le \text{min (4 e, 45cm)} = 45\text{cm v\'erifi\'ee (sens secondaire)} \end{cases}$$

Vérification diverse :

a) A l'ELU:

- Vérification de l'effort tranchant :

$$V_u^x = \frac{q \times l_x}{3} = \frac{10.98 \times 2.70}{3} = 9.88KN$$
 et $V_u^y = \frac{P \times l_x}{2} \times \frac{1}{1 + \frac{\rho}{2}} = 11.18KN$

$$\tau_{bu}^{\text{max}} = \frac{V_u}{b \times d} = \frac{11.18 \times 10^{-3}}{1 \times 0.13} = 0.086 MPa \le \tau_{adm} = 0.05 \times f_{c28} = 1.25 MPa$$

Vérification des A_l vis-à-vis de l'effort tranchant :

On doit vérifier que : $A_l \ge \frac{\gamma_s \times V}{f_e}$

Et on a : A_1 =2.01cm² et V_{max} = 11.18 KN. \Rightarrow 2.01 \geq 0.32cm²

$$A_t^y \ge \frac{A_t^x}{4} \Rightarrow 1.51 \ge \frac{2.01}{4} = 1.005 cm^2$$

b) A l'ELS:

-vérification des contraintes :

Comme notre dalle se situe à l'intérieur (FPN), alors on ne vérifier que la contrainte de compression dans le béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

$$y = \frac{b \times y^2}{2} + 15(A_s + A_s') \times y - 15 \times (d \times A_s + d' \times A_s') = 0$$

$$I = \frac{b_0 \times y^3}{3} + 15 \times \left[A_s \times (d - y)^2 + A_s' \times (y - d')^2 \right]$$

Le tableau (tab3.17.) suivant illustre les résultats de calcul

Localisation	Mser I		Y	σ_{bc}	$\overset{-}{\sigma}_{bc}$
	(KN.m)	(cm ⁴)	(cm)	(MPa)	(MPa)
Appuis	-2.31	5608.7	3.05	1.25	15
Travées (x)	3.47	5608.7	3.05	1.88	15
Travées (y)	2.05	5608.7	3.05	1.12	15

Tab.III.21. vérification des contraintes

-Vérification de la flèche :

Si les conditions suivantes sont vérifiées, le calcul de la flèche n'est pas nécessaire.

➤ Sens x-x

Sens y-y

1).
$$\frac{h}{l_y} \ge \frac{M_y^t}{20 \times M_{0x}} \Leftrightarrow 0.036 \langle 0.042 \dots \text{Non vérifier}$$

Les conditions de la flèche ne sont pas vérifiées, donc le calcul à la lèche est nécessaire La flèche Pour une portée supérieure à 5m, la

flèche admissible :
$$f_{adm} = \frac{405}{500} = 0.81$$
 cm

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij} = 0.148 \text{ cm}$$

$$Y=3.34cm$$
 $I_0=229908.2cm^4$

 $\mu j = \mu g = 0 \quad \mu_p = 0.0068$

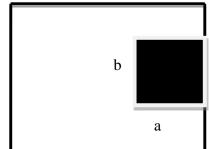


Fig III.15: panneau sur 4 appuis

$$f_{gv}$$
=0,147 f_{pi} =0,0872 f_{gi} =0.0493 f_{ij} =0.0364 $\Delta f \langle f_{adm} = 0.81 \Rightarrow donc \text{ la fleche est verifie e}$

Dans cette dalle ont une ouverture de (1.95*1.75) donc on calculer la longueur des Barre de renfort $L_f=a+b+2L_S$

 $L_S = 40\emptyset$ pour HA

L_S=40*2.01cm=80.4cm

♣ Dans le sens L_x

 $L_f = 1.95 + 1.75 + 1.6$ donc $L_f = 5.30$ m

↓ Dans le sens L_y L_S =40*1.51cm L_f =1.95+1.75+1.20 donc L_f =4.90m

-Schéma de ferraillage

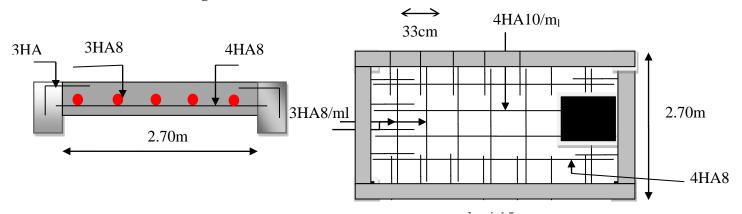


Fig III.16 : Schéma de ferraillage de la dalle sur 4 appuis

III.6. Etude des escaliers

L'étude des escaliers consiste à déterminer les sollicitations et par la suite le ferraillage correspondant. Ce calcul peut être mené par la méthode de résistance des matériaux ou forfaitaire en prenant en considération le nombre de points d'appuis.

III.6.1 Escalier à trois volées (E-Sol)

1) Etude de la volée 1

La volée :
$$\begin{cases} G_V = 8.31 KN / m^2 \\ Q_V = 2.5 KN / m^2 \end{cases}$$

2) Etude du palier de repos

Le palier :
$$\begin{cases} G_P = 4.87 \, KN \, / \, m^2 \\ Q_P = 2.50 \, KN \, / \, m^2 \end{cases}$$

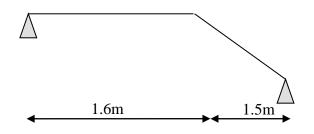
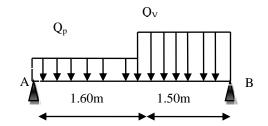



Fig III.17: schéma statique de l'escalier

III.6.1.1. Calcul du chargement

À l'ELU :
$$q = 1.35 \times G + 1.5 \times Q$$

À l'ELS :
$$q = G + Q$$

	q volée (KN/m)	q palier (KN/m)
l'ELU	14.97	10.32
l'ELS	10.81	7.37

La poutre est isostatique, pour le calcul des réactions on utilise la méthode de la résistance des matériaux.

$$\sum F = 0 \Rightarrow R_A + R_B = (10.32 \times 1.6) + (14.97 \times 1.5)$$
$$\Rightarrow R_A + R_B = 38.96.KN$$

$$\sum M/_{A} = 0 \Longrightarrow (10.32 \times \frac{1.6^{2}}{2}) + (14.97 \times 1.5 \times 2.35) - (R_{B} \times 3.10) = 0$$

$$\Rightarrow \begin{cases} R_{\scriptscriptstyle B} = 21.28 \text{KN} \\ R_{\scriptscriptstyle A} = 17.68 \text{KN} \end{cases}$$

III.6.1.2. Calcul des sollicitations

Nous procédons par la méthode des sections car la poutre est soumise à des chargements différents

•
$$0 \le x \le 1.6m$$

$$M(x) + \frac{10.32}{2}x^2 - 17.68x = 0 \Rightarrow M(x) = -5.16x^2 + 17.68x$$

$$\begin{cases} M(0) = 0 \\ M(1.6) = 15.07 \, KN.m \end{cases}$$

$$T(x) = \frac{dM(x)}{dx} \Rightarrow T(x) = -10.32x + 17.68$$

$$\begin{cases}
T(0) = 17.68KN \\
T(1.6) = 1.168KN
\end{cases}$$

$$\frac{dM}{dx} = 0 \Rightarrow 10.32x - 17.68 = 0$$

$$x = 1.71m \notin [0;1.6]$$

$$M^{\text{max}} = M(x = 1.71) = 15.14 \text{KN.m}$$

•
$$0 \le x \le 1.50m$$

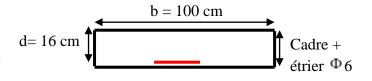
•
$$M(x) + \frac{14.97}{2}x^2 - 21.28x = 0 \Rightarrow M(x) = -7.48x^2 + 21.28x$$

•
$$\begin{cases} M(0) = 0 \\ M(1.5) = 15.09 KN.m \end{cases}$$

•
$$T(x) = \frac{dM(x)}{dx} \Rightarrow T(x) = -14.97x + 21.28$$

$$\bullet \begin{cases}
T(0) = 21.28KN \\
T(1.50) = -1.175N
\end{cases}$$

$$\frac{dM}{dx} = 0 \Rightarrow -14.97x - 21.28 = 0$$


•
$$x = 1.42m \in [0;1.5]$$

 $M^{\text{max}} = M(x = 1.42) = 15.14 \text{KN.m}$

$$M^{\text{max}}(x=1.75)=14.77 \text{ KN.m}$$

$$V^{\max} = 21.28KN$$

III.6.1.3. Calcul du Ferraillage à l'ELU

$$\begin{split} M_0 &= M^{max} = 15.13 \ KN.m \\ M_t &= 0.75 \ M_0 = 0.75 \times 15.13 {=} 11.34 \ KN.m \\ M_a &= 0.5 \ M_0 = 0.5 \times 15.13 {=} 7.56 \ KN.m \end{split}$$

Le ferraillage se fait à la flexion simple pour une bande de 1m de large. Les résultats sont résumés dans le tableau suivant :

Localisation	M(KN.m)	μ_{bu}	α	z (cm)	A	A adoptée (cm ²)
					calculée(cm ²)	
En travée	11.34	0.047	0.06	12.68	2.57	4HA10=3.14
En appui	7.56	0.031	0.039	12.79	1.69	4HA8=2.01

Tab III.22 : Résultat de ferraillage de l'escalier

Dans le but d'avoir une bonne répartition spatiale de nos armatures, on prévoit des armatures de répartition comme suit :

• **En appuis :**
$$A_r^a = \frac{A^a}{4} = \frac{2.01}{4} = 0.502cm^2$$

• En travée :
$$A_r^t = \frac{A^t}{4} = \frac{3.14}{4} = 0.785cm^2$$

Soit
$$A_r^a = 3HA8/ml = 1.51 \text{ cm}^2$$

$$A_r^t = 4\text{HA8/ml} = 2.01 \text{ cm}^2$$

Vérifications

Vérification à l'ELU

Vérification de la condition de non fragilité

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{ij}}{fe} = 0.23 \times 1 \times 0.13 \times \frac{2.1}{400} = 1.57 \text{ cm}^2$$

Vérification de l'effort tranchant

$$\tau_{bu} = \frac{V_u}{b \times d} = \frac{21.28 \times 10^{-3}}{1 \times 0.13} = 0.16 \,\text{MPa}$$

Fissuration nuisible

$$\bar{\tau}_{bu} = \min\left(0.07 \times \frac{f_{bu}}{\gamma_b}; 4MPa\right) = 1.17 MPa$$

$$\tau_{bu} = 0.16 \text{ MPa} < \bar{\tau}_{bu} = 1.17 \text{MPa} \rightarrow \text{ les armatures transversale sont pas nécessaires}$$

Vérification des armatures longitudinales à l'effort tranchant

$$A_l \ge (V_u + \frac{M_u}{0.9 \times d}) \times \frac{\delta_s}{f_e}$$
 Avec: $A_l = 3.14 + 3.14$ cm²

$$A_l = 6.28cm^2 \ge (21.28 + \frac{11.34 \times 10^{-3}}{0.9 \times 0.13}) \times \frac{1.15}{400} = 3.39 \text{ cm}^2$$
 C'est vérifié

• Espacement des armatures

Les règles d'espacement des barres données aux BAEL91 donnent :

• Armatures longitudinales

$$S_t = 25 \text{ cm} \le \min (3h, 33\text{cm}) = 33\text{cm}$$

> Armatures transversales

$$S_t = 25 \text{ cm} \le \min(4 \text{ h}, 45 \text{cm}) = 45 \text{cm}$$

- > Vérification à l'ELS
- État limite de compression du béton

La fissuration est peu nuisible donc la vérification à faire est la contrainte de compression du béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15MPa$$

$$R_A = 12.67 \text{ KN}$$

$$R_{B} = 15.33 \text{ KN}$$

$$M^{max} = 10.84 \text{ KN.m}$$

$$M_{t} = 0.75 \times 10.84 = 8.13 \text{ KN.m}$$

$$M_{a} = 0.5 \times 10.84 = 5.42 \text{ KN.m}$$

Calcul de y:
$$\frac{b}{2}y^2 + 15 \times A \times y - 15 \times A \times d = 0$$

Calcul de
$$I: I = \frac{b}{3} \times y^3 + 15 \times A \times (d - y)^2$$

Les résultats de calcul des contraintes sont résumés dans le tableau suivant :

Localisation	Mser(KN.m)	Y (cm)	I (dm ⁴)	σ_{bc}	$\overline{\sigma}_{bc}$ (MPa)
				(MPa)	
Travées	8.13	4.73	1.28	3.00	15
Appuis	5.42	3.92	0.899	2.36	15

Tab III.23: Vérification des contraintes de compression dans le béton.

État limite de déformation

➤ Vérification de la flèche :La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$\begin{cases}
\frac{h}{L} \ge \frac{1}{16} \dots (1) \\
\frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots (2) \\
\frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots (3)
\end{cases}$$

$$h \quad 15 \qquad 1$$

$$\frac{h}{L} = \frac{15}{310} = 0.0483 < \frac{1}{16} = 0.0625$$
condition non vérifié

La première condition n'est pas vérifiée, donc il faut calculer la flèche.

Pour une poutre simplement appuyée de portée inférieure à 5m, la flèche admissible :

$$f_{adm} = \frac{L}{500}$$
 ce qui donne pour notre cas : $f_{adm} = 0.62cm$

Les résultats de calcul sont résumés dans le tableau suivant :

$q_{\it jser}$	$q_{\it gser}$	$q_{\it pser}$	M_{jser}	M_{gser}	M_{pser}
(KN/m^2)	(KN/m^2)	(KN/m^2)	(KN/m)	(KN/m)	(KN/m)
4.62	8.31	10.81	2.025	3.91	5.94

Le calcul de la flèche et fait à l'aide de logiciel socotec :

$$f_{gv} = 0.326mm, f_{pi} = 0.336mm, f_{ji} = 0.0606mm, f_{gi} = 0.128mm$$

La flèche totale $\Delta f_t = 0.473 \text{mm} < f_{adm} = 6.2 \text{mm}$ C'est vérifiée

Schéma de ferraillage

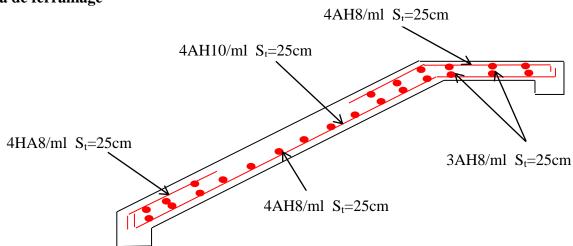


Fig. III.18 : schéma de ferraillage de volée 1 E/Sol

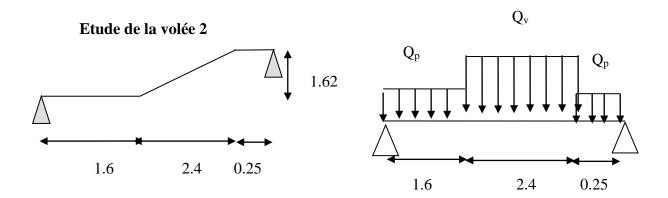


Fig III.19 : schéma statique de l'escalier

	$\mathbf{q}_{\mathbf{v}}$	$\mathbf{q}_{\mathbf{p}}$	R _a	R _b	M_t^{max}	V ^{max}
ELU	15.14	10.32	29.56	25.88	31.09	29.56
ELS	10.94	7.37	21.30	18.58	22.41	21.30

Tab III.24. Calcul des sollicitations max

$$\begin{aligned} M_0 &= M^{max} = 31.10 & KN.m \\ M_t &= 0.75 & M_0 = 0.75 \times 31.09 = 23.32 & KN.m \\ M_a &= -0.5 & M_0 = -0.5 \times 31.09 = -15.55 & KN.m \end{aligned} \qquad d = 16 \text{ cm}$$

Le ferraillage se fait à la flexion simple pour une bande de 1m de large. Les résultats sont résumés dans le tableau suivant :

Localisation	M(KN.m)	μ_{bu}	α	z (cm)	A_{cal} (cm ²)	A adop (cm ²)
En travée	23.32	0.064	0.083	15.47	4.33	4HA12=4.52
En appui	15.55	0.042	0.054	15.65	1.93	4HA8=2.01

Tab III.25: Résultat de ferraillage de l'escalier

Dans le but d'avoir une bonne répartition spatiale de nos armatures, on prévoit des armatures de répartition comme suit :

• **En appuis :**
$$A_r^a = \frac{A^a}{4} = \frac{2.01}{4} = 0.502cm^2$$

• **En travée**:
$$A_r^t = \frac{A^t}{4} = \frac{4.52}{4} = 1.13cm^2$$

Soit
$$A_r^a = 3HA8/ml = 1.51 \text{ cm}^2$$

$$A_r^t = 3\text{HA8/ml} = 1.51 \text{ cm}^2$$

III.6.1.4. Vérifications

➤ Vérification à l'ELU

	A ado	A _{min}	$ au_{bu}$	$\bar{ au}$	A_l	$(V_u + \frac{M_u}{2}) \times \frac{\delta_s}{c}$	S_{t}	S_{t}	OBS
	(cm ²)	(cm ²)	MPA	MPA	(cm ²)	$0.9 \times d'$ f_e	longitudinal	transversal	
						(cm ²)	cm	cm	
Travée	4.52	1.93	0.18	3.33	6.53	5.50	25	25	V
Appui	2.01	1.93	0.18	3.33		3.95	33	33	V

Tab III.26: Vérification a l'ELU

Vérification à l'ELS

Localisation	Mser(KN.m)	Y (cm)	I (dm ⁴)	σ_{bc}	$\overline{\sigma}_{bc}$ (MPa)
				(MPa)	
Travées	16.04	4.03	1.18	6.45	15
Appuis	8.96	3.44	0.878	3.50	15

Tab III.27: Vérification des contraintes de compression dans le béton.

Vérification de la flèche : La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} & \dots \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} & \dots \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} & \dots \end{cases}$$
 (2)
$$\frac{h}{L} = \frac{18}{425} = 0.0423 < \frac{1}{16} = 0.0625 \dots$$
 condition non vérifié

La première condition n'est pas vérifiée, donc il faut calculer la flèche.

Pour une poutre simplement appuyée de portée inférieure à 5m, la flèche admissible :

$$f_{adm} = \frac{L}{500}$$
 ce qui donne pour notre cas : $f_{adm} = 0.85cm$

Les résultats de calcul sont résumés dans le tableau suivant :

$q_{\it jser}$	$q_{\it gser}$	$q_{\it pser}$	M_{jser}	M_{gser}	M pser
(KN/m^2)	(KN/m^2)	(KN/m^2)	(KN/m)	(KN/m)	(KN/m)
5.43	8.44	10.94	9.50	14.26	19.04

Le calcul de la flèche et fait à l'aide de logiciel socotec :

$$f_{gv} = 5.99mm, f_{pi} = 5.268mm, f_{ji} = 0.999mm, f_{gi} = 2.939mm$$

Schéma de ferraillage 4AH12/ml 4HA8/ml S_t=25cm 3HA8/ml

Fig III.20: schéma de ferraillage de volée 2 enter sol

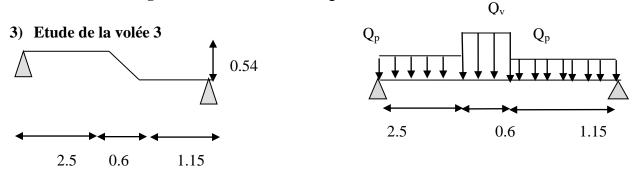
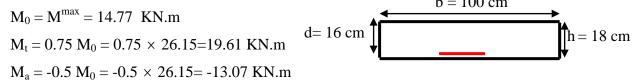



Fig. III.21: schéma statique de l'escalier

	$\mathbf{q}_{\mathbf{v}}$	$\mathbf{q}_{\mathbf{p}}$	q _p R _a		M_t^{max}	V ^{max}	
	KN/m	KN/m	KN	KN	KN.m	KN	
ELU	16.94	10.32	23.29	24.55	26.15	24.55	
ELS	12.27	7.37	16.66	17.60	18.84	17.6	

Tab III.28. calcul des sollicitations max

III.6.1.5. Calcul du Ferraillage à l'ELU

Le ferraillage se fait à la flexion simple pour une bande de 1m de large. Les résultats sont résumés dans le tableau suivant :

Localisation	M(KN.m)	$\mu_{_{bu}}$	α	z (cm)	A _{calculée} (cm ²)	A adoptée (cm ²)
En travée	19.61	0.054	0.069	15.55	3.62	5HA10=3.93
En appui	13.07	0.036	0.045	15.70	2.39	4HA10=3.14

Tab III.29: Résultat de ferraillage de l'escalier

Dans le but d'avoir une bonne répartition spatiale de nos armatures, on prévoit des armatures de répartition comme suit :

• En appuis :
$$A_r^a = \frac{A^a}{4} = \frac{3.14}{4} = 0.785cm^2$$

• En travée :
$$A_r^t = \frac{A^t}{4} = \frac{3.93}{4} = 0.982cm^2$$

Soit
$$A_r^a = 3HA8/ml = 1.51 \text{ cm}^2$$

$$A_r^t = 3HA8/ml = 1.51 \text{ cm}^2$$

Vérifications

➤ Vérification à l'ELU

	A _{cal}	A_{min}	$ au_{bu}$	$\bar{ au}$	A_l	$(V + M_u) \times \frac{\delta_s}{\delta_s}$	S_{t}	S_{t}	OBS
	(cm ²)	(cm ²)	MPA	MPA	(cm ²)	$0.9 \times d^{\prime \wedge} f_e$	longitudinal	transversal	
						(cm ²)	cm	cm	
Travée	3.93	1.93	0.15	3.33	7.07	4.62	20	33	v
Appui	3.14	1.93	0.15	3.33		3.31	25	33	v

Tab III.30 : Vérification a l'ELU

Vérification à l'ELS

Localisation	Mser(KN.m)	Y (cm)	I (dm ⁴)	σ_{bc}	$\overline{\sigma}_{bc}$ (MPa)
				(MPa)	
Travées	16.01	3.79	1.06	5.73	15
Appuis	9.42	3.79	1.06	3.37	15

Tab III.31: Vérification des contraintes de compression dans le béton.

➤ Vérification de la flèche :La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$\begin{cases}
\frac{h}{L} \ge \frac{1}{16} \dots (1) \\
\frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots (2) \\
\frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots (3)
\end{cases}$$

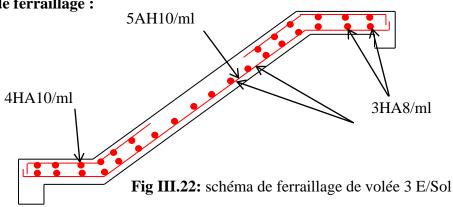
$$ho \frac{h}{L} = \frac{18}{425} = 0.0423 < \frac{1}{16} = 0.0625 \dots$$
 condition non vérifié

La première condition n'est pas vérifiée, donc il faut calculer la flèche.

Pour une poutre simplement appuyée de portée inférieure à 5m, la flèche admissible :

$$f_{adm} = \frac{L}{500}$$
 ce qui donne pour notre cas : $f_{adm} = 0.85cm$

Les résultats de calcul sont résumés dans le tableau suivant :


$q_{\it jser}$	$q_{\it gser}$	$q_{\it pser}$	M_{jser}	M_{gser}	M pser
(KN/m^2)	(KN/m^2)	(KN/m^2)	(KN/m)	(KN/m)	(KN/m)
6.05	9.77	12.27	8.03	11.21	15.94

Le calcul de la flèche et fait à l'aide de logiciel socotec :

$$f_{gv} = 4.232mm \,, f_{pi} = 4.715mm \,, f_{ji} = 0.376mm \,, f_{gi} = 1.897mm \,$$

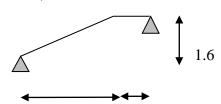

La flèche totale $\Delta f_t = 6.697mm < f_{adm} = 8.5mm$ C'est vérifiée

Schéma de ferraillage :

Etude RDC

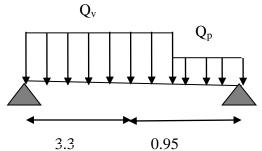
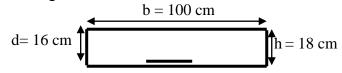


Fig III.23 : schéma statique de l'escalier.

	$\mathbf{q}_{\mathbf{v}}$	$\mathbf{q}_{\mathbf{p}}$	R _a	$\mathbf{R}_{\mathbf{b}}$	M_t^{max}	V ^{max}
ELU	16.49	10.32	34.39	29.84	35.86	34.39
ELS	11.94	7.37	24.88	21.51	25.96	24.88


Tab III.32. Calcul du Ferraillage à l'ELU

$$M_0 = M^{max} = 31.10$$
 KN.m

3.3

$$M_t = 0.75 M_0 = 0.75 \times 35.86 = 26.89 KN.m$$

$$M_a = -0.5 M_0 = -0.5 \times 35.86 = -17.93 \text{ KN.m}$$

Le ferraillage se fait à la flexion simple pour une bande de 1m de large. Les résultats sont résumés dans le tableau suivant :

Localisation	M(KN.m)	μ_{bu}	α	z (cm)	A _{calculée} (cm ²)	A adoptée (cm ²)
En travée	26.89	0.074	0.096	15.38	5.02	5HA12=5.65
En appui	17.93	0.049	0.063	15.59	3.30	5HA10=3.93

Tab III.33 : Résultat de ferraillage de l'escalier.

Dans le but d'avoir une bonne répartition spatiale de nos armatures, on prévoit des armatures de répartition comme suit :

• **En appuis :**
$$A_r^a = \frac{A^a}{4} = \frac{3.93}{4} = 0.982cm^2$$

• **En travée**:
$$A_r^t = \frac{A^t}{4} = \frac{5.62}{4} = 1.41cm^2$$

Soit
$$A_r^a = 3HA8/ml = 1.51 \text{ cm}^2$$

$$A_r^t = 3HA8/ml = 1.51 \text{ cm}^2$$

Vérifications

> Vérification à l'ELU

A _{cal}	A _{min}	τ_{bu}	$\bar{\tau}$	Aı	$M_u \setminus \delta_s$	S _t	S _t	OBS
(cm ²)	(cm ²)	MPA	MPA	(cm ²)	$(v_u + \frac{1}{0.9 \times d}) \times \frac{1}{f_e}$	longitudinal	transversal	

						(cm ²)	cm	cm	
Travée	5.65	1.93	0.21	3.33	9.58	6.35	20	33	v
Appui	3.93	1.93	0.21	3.33		4.56	20	33	V

Tab III.34 : Vérification a l'ELU

Vérification à l'ELS

Localisation	Mser(KN.m)	Y (cm)	I (dm ⁴)	σ_{bc}	$\overline{\sigma}_{bc}$ (MPa)
				(MPa)	
Travées	22.04	5.37	2.05	5.77	15
Appuis	12.98	4.42	1.42	4.03	15

Tab III.35: Vérification des contraintes de compression dans le béton.

➤ Vérification de la flèche : La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} & \dots \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} & \dots \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} & \dots \end{cases} (2)$$

$$\frac{h}{L} = \frac{18}{425} = 0.0423 < \frac{1}{16} = 0.0625 \dots \text{condition non vérifié}$$

La première condition n'est pas vérifiée, donc il faut calculer la flèche.

Pour une poutre simplement appuyée de portée inférieure à 5m, la flèche admissible :

$$f_{adm} = \frac{L}{500}$$
 ce qui donne pour notre cas : $f_{adm} = 0.85cm$

Les résultats de calcul sont résumés dans le tableau suivant :

$q_{\it jser}$	$q_{\it gser}$	$q_{\it pser}$	M_{jser}	M_{gser}	M pser
(KN/m^2)	(KN/m^2)	(KN/m^2)	(KN/m)	(KN/m)	(KN/m)
5.74	9.44	11.94	10.63	17.24	22.04

Le calcul de la flèche et fait à l'aide de logiciel socotec :

$$f_{gv} = 1.579mm, f_{pi} = 1.317mm, f_{ji} = 0.272mm, f_{gi} = 0.839mm$$

La flèche totale $\Delta f_t = 1.786mm < f_{adm} = 8.5mm$ C'est vérifiée

Schéma de ferraillage

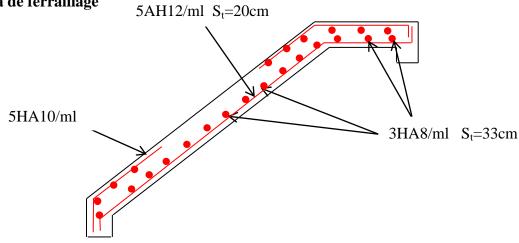


Fig III.24: schéma de ferraillage d'escalier étage courante

• Etude de la volée 2

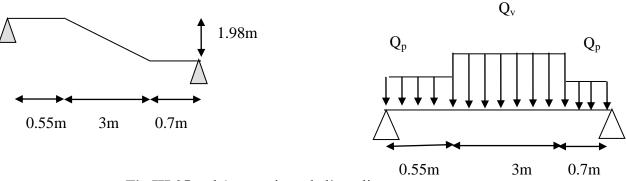


Fig III.25: schéma statique de l'escalier

	$\mathbf{q}_{\mathbf{v}}$	$\mathbf{q}_{\mathbf{p}}$	R _a	R_b	M_t^{max}	V ^{max}	
	KN/m	KN/m	KN	KN	KN.m	KN	
ELU	16.03	10.32	30.80	30.20	35.07	30.80	
ELS	11.6	7.37	22.23	21.78	25.35	22.78	

Tab III.36. Calcul des sollicitations max

III.6.1.6. Calcul du Ferraillage à l'ELU

$$M_0 = M^{max} = 14.77 \text{ KN.m}$$

 $M_t = 0.75 \text{ M}_0 = 0.75 \times 35.07 = 26.30 \text{ KN.m}$
 $M_a = -0.5 \text{ M}_0 = -0.5 \times 35.07 = -17.53 \text{ KN.m}$

h = 18 cm

Le ferraillage se fait à la flexion simple pour une bande de 1m de large. Les résultats sont résumés dans le tableau suivant :

Localisation	M(KN.m)	μ_{bu}	α	z (cm)	A _{calculée} (cm ²)	A adoptée (cm ²)
En travée	26.30	0.072	0.094	15.39	4.90	5HA12=5.65
En appui	17.53	0.048	0.062	15.60	3.23	5HA10=3.93

Tab III.37 : Résultat de ferraillage de l'escalier

Dans le but d'avoir une bonne répartition spatiale de nos armatures, on prévoit des armatures de répartition comme suit :

• En appuis :
$$A_r^a = \frac{A^a}{4} = \frac{3.93}{4} = 0.982cm^2$$

• En travée :
$$A_r^t = \frac{A^t}{4} = \frac{5.65}{4} = 1.41cm^2$$

Soit
$$A_r^a = 3HA8/ml = 1.51 \text{ cm}^2$$

$$A_r^t = 3\text{HA8/ml} = 1.51 \text{ cm}^2$$

Vérifications

Vérification à l'ELU

	A _{cal}	A_{min}	$ au_{bu}$	$\bar{ au}$	A _l	$(V + \frac{M_u}{N_u}) \times \frac{\delta_s}{N_u}$	S_{t}	S_{t}	OBS
	(cm ²)	(cm ²)	MPA	MPA	(cm ²)	$(v_u + \frac{1}{0.9 \times d}) \times \frac{1}{f_e}$	longitudinal	transversal	
						(cm ²)	cm	cm	
Travée	6.79	1.93	0.19	3.33	10.72	6.13	20	33	v
Appui	3.93	1.93	0.19	3.33		4.38	20	33	V

Tab III.38: Vérification a l'ELU

Vérification à l'ELS

Localisation	Mser(KN.m)	Y (cm)	I (dm ⁴)	σ_{bc}	$\overline{\sigma}_{bc}$ (MPa)
				(MPa)	
Travées	21.55	4.78	1.64	6.25	15
Appuis	12.67	3.79	1.06	4.53	15

Tab III.39: Vérification des contraintes de compression dans le béton.

Vérification de la flèche : La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} & \dots \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} & \dots \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} & \dots \end{cases}$$
 (2)
$$\frac{h}{L} = \frac{18}{425} = 0.0423 < \frac{1}{16} = 0.0625 \dots$$
 condition non vérifié

La première condition n'est pas vérifiée, donc il faut calculer la flèche.

Pour une poutre simplement appuyée de portée inférieure à 5m, la flèche admissible :

$$f_{adm} = \frac{L}{500}$$
 ce qui donne pour notre cas : $f_{adm} = 0.85cm$

Les résultats de calcul sont résumés dans le tableau suivant :

$q_{\it jser}$	$q_{\it gser}$	$q_{\it pser}$	M_{jser}	M_{gser}	M pser
(KN/m^2)	(KN/m^2)	(KN/m^2)	(KN/m)	(KN/m)	(KN/m)
5.4	9.1	11.6	10.21	16.87	21.76

Le calcul de la flèche et fait à l'aide de logiciel socotec :

$$f_{gv} = 7.242mm, f_{pi} = 5.766mm, f_{ji} = 1.166mm, f_{gi} = 3.663mm$$

Schéma de ferraillage

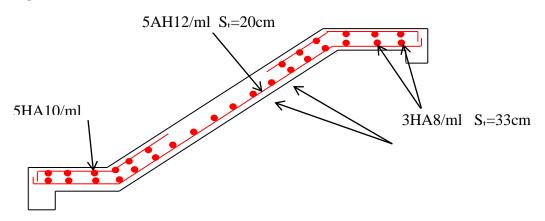
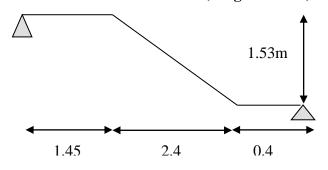
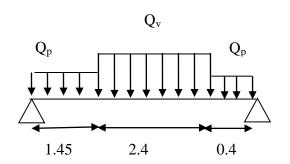
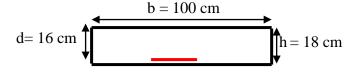



Fig III.26 : schéma de ferraillage de la volée 2 de RDC

• Etude de la volée 1 (Etage courant)




Fig III.27 : schéma statique de l'escalier

	$\mathbf{q}_{\mathbf{v}}$	$\mathbf{q}_{\mathbf{p}}$	R _a	R_b	M_t^{max}	V ^{max}
	KN/m	KN/m	KN	KN	KN.m	KN
ELU	15.87	10.32	26.94	30.22	32.72	30.22
ELS	11.47	7.37	19.36	21.79	23.61	21.79

Tab III.40: Calcul des sollicitations max

III.6.1.7. Calcul du Ferraillage à l'ELU

$$\begin{aligned} M_0 &= M^{max} = 14.77 & KN.m \\ M_t &= 0.75 & M_0 = 0.75 \times 32.72 = 24.54 & KN.m \\ M_a &= -0.5 & M_0 = -0.5 \times 32.72 = -16.36 & KN.m \end{aligned}$$

Le ferraillage se fait à la flexion simple pour une bande de 1m de large. Les résultats sont résumés dans le tableau suivant :

Localisation	M(KN.m)	μ_{bu}	α	z (cm)	A _{calculée} (cm ²)	A adoptée (cm ²)
En travée	24.54	0.067	0.087	15.44	4.56	5HA12=5.65
En appui	16.36	0.054	0.057	15.63	3.00	5HA10=3.93

Tab III.41: Résultat de ferraillage de l'escalier

Dans le but d'avoir une bonne répartition spatiale de nos armatures, on prévoit des armatures de répartition comme suit :

• En appuis:
$$A_r^a = \frac{A^a}{4} = \frac{3.93}{4} = 0.982cm^2$$

• **En travée**:
$$A_r^t = \frac{A^t}{4} = \frac{5.65}{4} = 1.41cm^2$$

Soit
$$A_r^a = 3HA8/ml = 1.51 \text{ cm}^2$$

$$A_r^t = 3\text{HA8/ml} = 1.51 \text{ cm}^2$$

Vérifications

> Vérification à l'ELU

	A _{cal}	A _{min}	$ au_{bu}$	$\bar{ au}$	A _l	$(V + \frac{M_u}{\delta_s}) \times \frac{\delta_s}{\delta_s}$	S_{t}	S_{t}	OBS
	(cm ²)	(cm ²)	MPA	MPA	(cm ²)	$0.9 \times d^{\prime \wedge} f_e$	longitudinal	transversal	
						(cm ²)	cm	cm	
Travée	5.65	1.93	0.18	3.33	9.58	5.76	20	33	V
Appui	3.93	1.93	0.18	3.33		4.13	20	33	V

Tab III.42: Vérification a l'ELU

Vérification à l'ELS

Localisation	Mser(KN.m)	Y (cm)	I (dm ⁴)	σ_{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)
Travées	20.07	3.44	0.878	7.85	15
Appuis	9.44	2.82	0.595	4.45	15

Tab III. 43: Vérification des contraintes de compression dans le béton.

➤ Vérification de la flèche : La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \dots (1) \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots (2) \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots (3) \end{cases}$$

$$\Rightarrow \frac{h}{L} = \frac{18}{425} = 0.0423 < \frac{1}{16} \dots = 0.0625 \dots \text{condition non vérifié}$$

La première condition n'est pas vérifiée, donc il faut calculer la flèche.

Pour une poutre simplement appuyée de portée inférieure à 5m, la flèche admissible :

$$f_{adm} = \frac{L}{500}$$
 ce qui donne pour notre cas : $f_{adm} = 0.85cm$

Les résultats de calcul sont résumés dans le tableau suivant :

$q_{\it jser}$	$q_{\it gser}$	$q_{\it pser}$	M_{jser}	M_{gser}	M_{pser}
(KN/m^2)	(KN/m^2)	(KN/m^2)	(KN/m)	(KN/m)	(KN/m)
5.33	8.97	11.47	9.48	15.28	20.07

Le calcul de la flèche et fait à l'aide de logiciel socotec :

$$f_{gv} = 6.73mm, f_{pi} = 5.80mm, f_{ji} = 0.991mm, f_{gi} = 3.411mm$$

Schéma de ferraillage

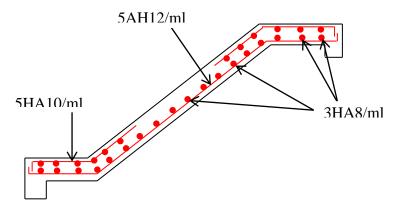


Fig III.28 : schéma de ferraillage d'escalier

Escalier balancée

VOLEE TYYPE 1

Poids propre de garde-corps

$$\begin{split} P &= 20 \times 0.1 \times 1 = 2KN \\ P_u &= 1.35 \times 2 = 2.7KN \\ q_u &= 1.35 \times 8.31 + 1.5 \times 4 = 17.218KN/ml \\ q_s &= 8.31 + 4 = 12.31KN/m \end{split}$$

A Calculer des moments :

! Le ferraillage :

Z=12.56 cm

$$A_u = \frac{\text{Mu}}{Z \times f_{st}}$$

$$U_{bu} = \frac{15.64 \times 10^{-3}}{1 \times 0.13^2 \times 14.2} = 0.065$$

$$\alpha = 0.084$$

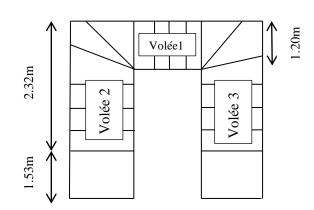
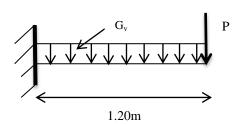



Fig III.29: vu en plane d'escalier

$$A_{\rm u} = \frac{15.64 \times 10^{-3}}{12.56 \times 400} = 3.58 \,{\rm cm}^2$$

$$A_{\rm u} = 5 \text{HA} 10 = A_{\rm u} = 3.93 \text{cm}^2$$

Espacement : $S_t = 20 \text{ cm}$

• Amateur de repartition :

$$A_r = \frac{A_u}{3} = \frac{3.93}{3} = 1.31 \text{cm}^2$$

$$A_r = 3HA8 => A_r = 1.51cm^2$$

Espacement : $S_t = 33$ cm

VOLEE TYPE 2 et 3

 $G_v = 8.31 \text{ KN/m}$

 $G_p = 4.87 \text{ KN/m}$

A L'ELU

$$q_u^p = 1.35 \times 4.87 + 1.5 \times 4 = 12.57KN$$

$$q_u^v = 1.35 \times 8.31 + 1.5 \times 4 = 17.22KN$$

A L'ELS

$$q_S^p = 4.87 + 4 = 8.87KN$$

$$q_S^v = 8.31 + 4 = 12.31KN$$

• Calculer de RDM:

$$R_A + R_B = 26.73KN$$

$$\sum M/A = 0 => RA = 11.87KN$$

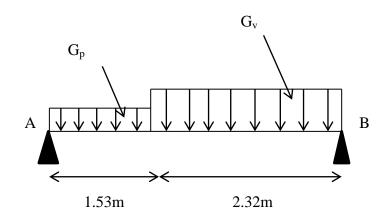
$$R_B = 14.97KN$$

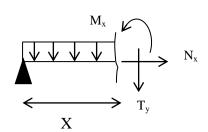
 1^{ere} tronçon: $0 \le x \le 1.53$ m

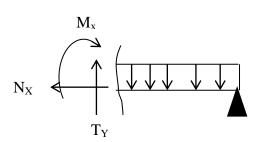
$$\sum_{i} M/_{0} = 0$$

$$M = 11.87x - 4.87 \frac{x^2}{2} \text{ KN/m}$$

$$T_Y = 4.87x - 11.87 \text{ KN}$$


$$T_{\rm Y}(0) = -11.87 \, \rm KN$$


$$T_{\rm Y}(01.53) = 4.31 {\rm KN}$$


$$x = \frac{11.78}{4.87} = x = 2.40$$
m

$$M(2.40) = 14.26KN/m$$

 2^{eme} tronçon: $0 \le x \le 2.32$ m

$$\sum M/_0 = 0$$

$$M = 14.97x - 8.31 \frac{x^2}{2} \text{ KN/m}$$

$$T_Y = 14.97x - 8.31 \text{ KN}$$

$$T_{\rm v}(0) = -14.97 \, \rm KN$$

$$T_{Y}(01.53) = -4.31KN$$

$$x = \frac{14.97}{8.31} = x = 1.80$$
m

$$M(1.80) = 13.48KN/m$$

$$M_t = 0.75 \times 13.48 = 10.48 \text{ KN/m}$$

$$M_a = -0.5 \times 13.48 = -6.74 \text{ KN/m}$$

$$U_{bu} = 0.042$$

$$\propto = 0.054$$

$$\propto = 0.054$$
 $Z = 12.72m$

$$A_t = \frac{10.48 \times 10^{-3}}{12.72 \times 400} = 2.28 \text{cm}^2$$

Vérification de condition de non fragilité :

$$A_{min} = 0.23 \times b \times d \times \frac{f_{st28}}{f_e} = 1.57 cm^2 \le A_t \dots \dots verifie$$

Donc:
$$A_t = 4HA10 = 3.14cm^2$$
 $S_t = 25 cm^2$

• En appuis:
$$A_a = \frac{M_a \times A_t}{M_t} = \frac{2.28 \times 6.74}{10.48} = 1.46cm^2$$

Soit :
$$A_a$$
=3HA8=1.51 cm² S_t = 33cm

Armature de répartition :

• En appuis :
$$A_r^a = \frac{1.51}{4} = 0.37 \text{cm}^2 = > 3HA8 = 1.51 \text{cm}^2$$

• En travée :
$$A_r^t = \frac{3.14}{4} = 0.78 \text{cm}^2 = > 3HA8 = 1.51 \text{cm}^2$$

> Schéma de ferraillage :

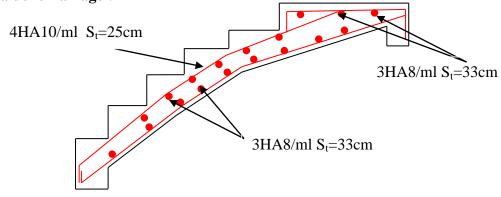


Fig III30 : schéma de ferraillage de la volée 1

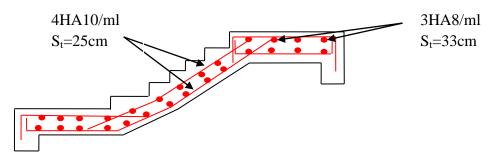


Fig III.31 : schéma de ferraillage de la volée

III-7. Etude de la poutre palière :

a) Dimensionnement

Condition de RPA:

 $b \ge 20cm$

 $h \ge 30cm$

$$\frac{h}{b} \le 4$$

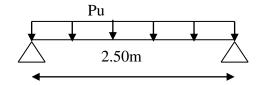


Fig.III.32: Schéma statique de la poutre palière

Condition de la flèche :

$$\frac{L}{15} \prec h \prec \frac{L}{10}$$
$$10cm \prec h \prec 15cm$$

On prend:

H = 30 cm et b = 30 cm

b) Les charges sur la poutre :

g₀: Poids propre de la poutre

$$g_0 = 0.3^2 \times 25 = 2.25 KN / m$$

La charge transmise par l'escalier : c'est la réaction d'appui au point B

ELU: $R_B = 29.84 \text{KN}$

ELS: $R_B = 21.51$ KN

Les sollicitations

$$P_u = 1.35 g_0 + R_B$$

$$P_u = 32.87 \text{ KN/m}$$

$$P_s = 21.51 + 2.25$$

 $P_s = 23.76 \text{ KN/m}$

$$M_{0} = \frac{P_{u} \times L^{2}}{8} = 25.67 \, KN \, / \, m$$

$$M^{t} = 0.85 M_{0} = 21.82 \, KN \, / \, m$$

$$M^{a} = -0.4 M_{0} = -10.27 \, KN \, / \, m$$

$$V_{u} = \frac{P_{u} \times L}{2} = 41.08 \, KN$$

c) Calcul d'armature à la flexion simple :

	M(KN.m)	μ_{bu}	α	Z(m)	A_{CAL} (cm ²)
En travée	21.82	0.021	0.026	0.267	2.04
En appuis	10.27	0.010	0.012	0.268	0.95

Tab III.44: Calcul d'armature

Exigence du RPA:

 $A_{\min} = 0.5\% \text{ b} \times \text{h} = 4.5 \text{cm}^2$

 A^a : Section d'armature en appui

A': Section d'armature en travée

Donc on prend $A^a = 4.5 \text{cm}^2$

d) Calcul d'armature a la torsion

Le moment de torsion provoquer sur la poutre palière est transmis par la volée

C'est le moment d'appui (Figure III-16).

$$M^{tortion} = M_b^a = 17.93 KN.m$$

Pour une section pleine on remplace la section réelle par une section creuse équivalente dont l'épaisseur de la paroi est égale au sixième du diamètre du cercle qu'il est possible d'inscrire dans le contour de la section (Art A.5.4.2 .2.) [4]

- U : périmètre de la section
- Ω : air du contour tracé à mi-hauteur
- e : épaisseur de la paroi
- A₁: section d'acier

$$e = \emptyset / 6 = h/6 = 5 \text{ cm}$$

$$\Omega = [b-e] \times [h-e] = 0.0625 \text{ m}^2$$

$$U = 2 \times [(h-e) + (b-e)] = 1 \text{m}^2$$

$$A1 = \frac{M_{Tu} \times U \times \gamma_s}{2 \times \Omega \times f} = 4.12cm^2$$

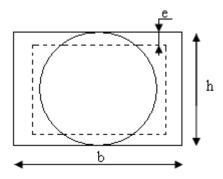


Fig III.33: Section creuse équivalente

e) Choix des armatures

•En travée

$$A^{t} = 2.04 + \frac{4.12}{2} = 4.10 \text{ cm}^{2}$$
 Soit 3HA12+3HA10=5.75cm²

•En appui

$$A' = 4.5 + \frac{4.12}{2} = 6.56 \text{cm}^2$$
 Soit 3HA12+3HA12 = 6.78 cm²

On doit vérifier la condition suivante :

Vérification de la contrainte de cisaillement :

On vérifie que : $\tau_u < \tau_u^-$

Avec $\tau_u = \sqrt{\tau_{cr}^2 + \tau_v^2}$ contrainte de cisaillement du a l'effort tranchant. [Art A.5.421]

BAEL91].

On a
$$V_{\text{max}} = 44.37 \text{KN}$$

$$\tau_{v} = \frac{V_{U}}{b_{0} \times d} = \frac{41.08 \times 10^{-3}}{0.27 \times 0.3} = 0.50 MPa$$

$$\tau cr = \frac{M_{Tu}}{2 \times \Omega \times e} = \frac{17.93 \times 10^{-3}}{0.0625 \times 2 \times 0.05} = 2.86MPa$$

D'où
$$\tau_u = 2.90 Mpa < \overline{\tau}_u = \min(0.3 f_{c28}; 4Mpa) = 3.25 Mpa$$
.....Condition vérifiée

Ferraillage:

f) Calcul des armatures transversales :

Soit St=15cm

- Flexion simple :

$$A_t \ge \frac{0.4 \times b \times S_t}{f_e} = \frac{0.4 \times 0.3 \times 0.15}{400} = 0.45 cm^2$$

$$A_{t} \geq \frac{b \times S_{t} \times (\tau_{v} - 0.3 \times f_{t28})}{0.8 \times f_{e}} = \frac{0.3 \times 0.15 \times (0.50 - 0.3 \times 2.1)}{0.8 \times 400} = -0.18cm^{2}$$

- Torsion:

$$A_t^{\text{min}} = 0.003 \times S_t \times b = 0.003 \times 15 \times 30 = 1.35 cm^2$$

$$A_{t} = \frac{M_{Tu} \times U \times \gamma_{s}^{2}}{2 \times \Omega \times f_{s}} = \frac{17.93 \times 10^{-3} \times 100 \times 10^{-2} \times 1.15^{2}}{2 \times 625 \times 10^{-8} \times 400} = 0.47 cm^{2}$$

D'où
$$A_t = 1.35 + 0.45 = 1.8$$
cm² soit $4HA8 = 2.01$ cm²

• Vérification de l'état limite de compression de béton

On vérifie :
$$\sigma_{bc} = M_{ser} \times \frac{y}{I} < \overline{\sigma_{bc}}$$
$$0.5b \times y^2 + 15A \times y - 15A(d - y)^2 = 0$$

Avec
$$I = \frac{b}{3}y^{3} + 15A(d - y)^{2}$$

Sur appuis $(M_a=9.50KN.m)$; y = 10.09cm ; $I = 36136.44 cm^4$

Application numérique

$$\begin{cases} \sigma_{bc} = \frac{9.50 \times 10^{-3}}{36136.44 \times 10^{-8}} \times 10.09 \times 10.09^{-2} = 2.65 \text{ MPa} \\ \overline{\sigma_{bc}} = 0.6 f_{c28} = 15 \text{ MPa} \end{cases}$$

g) Schéma de ferraillage de la poutre palière :

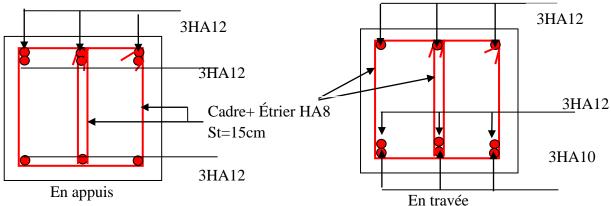
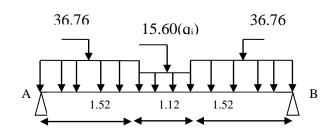


Fig.III.34 : Schéma de ferraillage de la poutre palière

III.8. Etude de la poutre brisée


La poutre inclinée se calcule à la flexion simple et à la torsion.

1. Pré-dimensionnement

On doit vérifier la condition de la flèche:

$$\frac{L}{15} \le h \le \frac{L}{10} \Longrightarrow 26.33 \le h \le 39.5cm$$

On prend: h=35cm et b=30cm

1.1. Calcul à la flexion simple

1.2. Calcul des sollicitations

La poutre est soumise à son poids propre :

$$g_0 = 0.35 \times 0.3 \times 25 = 2.62 KN/ml$$

$$g_1 = 25 \times 0.35 \times 0.3 / cos \ 40.60^0 = 4.03 \ KN/ml$$

Poids du cloisons légère de séparation: $P_m = (0.9+(0.2\times2))\times1 \Rightarrow P_m = 1.3KN/ml$

Poids du grade coups : P_g = (20×0.1×1)1 \Rightarrow p_g =2 KN/ml

La charge transmise par la 3^{ème} volée est une réaction

Apre le calcul R.D.M au na :

	q _r (kN)	q _i (kn)	$R_a=R_B(kn)$	$M_{\text{max}}^{t}(KN.m)$	V _{max} (KN)
ELU	36.76	27.06	71.39	69.45	-71.39
ELS	24.79	19.60	48.64	38.58	-48.65

Tab III.45: Calcul des sollicitations max

Les moments sollicitant

	M(KN.m)	$\mu_{_{bu}}$	α	<i>Z</i> (<i>m</i>)	$A_{CAL}(cm^2)$
En travée	52.08	0.112	0.285	0.29	5.16
En appui	34.72	0.074	0.10	0.25	3.99

Tab III.46 : Ferraillage de la poutre brisé à la flexion simple.

2-Vérification à l'E.L.U

- Effort tranchant

$$\tau_u \le \overline{\tau}_u = \min(0.13 \times \frac{f_{c28}}{\gamma_b}; 4MPa) = 3,25MPa.$$

$$\tau_u = \frac{V}{b.d} = \frac{71.39 \times 10^{-3}}{0.3 \times 0.33} = 0.721 MPa < \tau_u^-.$$
 Condition vérifiée.

- Vérification des armatures longitudinales au cisaillement

$$A > (V_u + \frac{M_u}{0.9 \times d}) \times \frac{\gamma_s}{f_e} = (71.39 \times 10^{-3} - \frac{52.08 \times 10^{-3}}{0.9 \times 0.33}) \times \frac{1.15}{400} = -2.98cm^2$$

- Calcul de l'espacement St

1) $St \le \min(0.9d, 40cm) \Rightarrow St \le 29.7$ On opte: St=15cm en travée et St=10cm en appui.

1. Calcul de la section d'armature a la torsion

Pour une section pleine on remplace la section réelle par une section creuse équivalente dont l'épaisseur de la paroi est égale au sixième du diamètre du cercle qu'il est possible d'inscrire dans le contour de la section **BAEL**

- U : périmètre de la section
- Ω : air du contour tracé à mi-hauteur
- e : épaisseur de la paroi
- A₁: section d'acier

$$e = \emptyset / 6 = b/6 = 5 \text{ cm}$$

$$\Omega = [b-e] \times [h-e] = 0.075 \text{ m}^2$$

$$U = 2 \times [(h-e)+(b-e)] = 1.10m$$

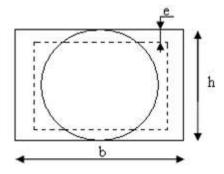


Fig III.35. Section creuse équivalent

3.1. Ferraillage à la torsion

Le moment de torsion à prendre est le moment aux appuis de la volée donc :

$$A_{tor} = \frac{M_{tor} \times u \times \gamma_s}{2 \times \Omega \times fe} \implies A_{tor} = 0.76 \text{cm}^2.$$

3.2. Les armatures longitudinales :

Vérification de la condition de non fragilité : Amin= $0.5\% \times b \times h = 4.95 \text{cm}^2$.

Section d'armature longitudinale à prendre

- En travée : $A = 5.16+0.76 \Rightarrow A = 5.92 \text{cm}^2$, on opte : $A = 3T12+3T12 = 6.79 \text{cm}^2$
- En appui : $A = 3.99 + 0.76 \Rightarrow A = 4.75 \text{cm}^2$, on opte: $A = 3T12 + 3T10 = 5.75 \text{cm}^2$

Vérification de l'effort tranchant

$$\tau_{flexion} = 0.72MPa; \tau_{tor} = \frac{M_{tor}}{2 \times \Omega \times e} \Rightarrow \tau_{tor} = 0.898MPa$$

$$\sqrt{\tau_{tor}^2 + \tau_{flex}^2} \le \tau_{adm} = 3.25 Mpa \iff 1.82^2 + 0.72^2 \le 3.25^2 \implies 1.32 \le 10.56.....V\acute{e}rifi\acute{e}$$

Armatures transversales :On opte St = 15cm en travée et St = 10cm en appui.

$$A_{tor}^{t} = \frac{M_{tor} \times st \times \gamma_{s}}{2 \times \Omega \times fe} \Rightarrow A_{tor}^{t} = 0,19cm^{2}....trav\acute{e}e$$
 $A_{tor}^{t} = 0,13cm^{2}....trav\acute{e}e$

- Section d'armature transversale à prendre

• En travée : $A = 0.45 + 0.19 \Rightarrow A = 0.64 \text{cm}^2$

• En appui : $A = 0.3+0.13 \Rightarrow A = 0.43 \text{cm}^2$

On choisit : un cadre et un étrier de T8

1. Vérification à l'E.L.S

- l'état limite de compression de béton : $\sigma_{bc} = M_{ser} \times \frac{y}{I} < \overline{\sigma_{bc}}$

Avec:
$$0.5 \times b \times y^2 + 15 \times A \times y - 15 \times A \times d = 0; \quad I = \frac{b}{3} \times y^3 + 15 \times A \times (d - y)^2$$

- **Au appuis :** $M_a=19.29KN.m$; y = 11.20cm; $I = 16781.91 cm^4$

$$\sigma_{bc} = \frac{19.29 \times 10^{-3}}{16781.91 \times 10^{-8}} \times 11.20 \times 10^{-2} = 12.87 < \overline{\sigma_{bc}}$$

Condition vérifié.

- **En travée**: Mt=28.93KNm; y=18.74cm; I=67193.28cm⁴.

6. Schéma de ferraillage

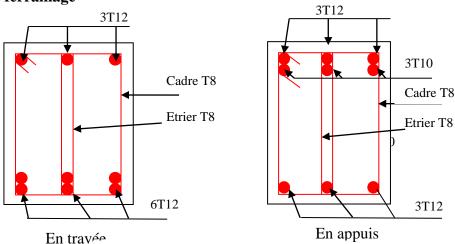


Fig III.36 : Schéma de ferraillage

III.9. Description de l'ascenseur :

- Cabine : Organe de l'ascenseur destiné à recevoir les personnes et les charges à transporter.
- Gaine: Volume dans lequel se déplacent la cabine, le contrepoids et le vérin hydraulique. Ce volume est matériellement délimité par le fond de la cuvette, les parois et le plafond.
- **Palier :** Aire d'accès à la cabine à chaque niveau de service.
- Cuvette : Partie de la gaine située en contre bas du niveau d'arrêt inférieur desservi par la cabine.
- Hauteur libre : Partie de la gaine située au-dessus du dernier niveau desservi par la cabine.

local des machines : Local où se trouvent la machine et son appareillage.

III.9.1. Caractéristiques des ascenseurs :

charges nominales :

En kilogrammes: 320 - 400 - 630 - 800 - 1 000 - 1 250 - 1 600 - 2 000 - 2 500.

vitesses nominales [m/s]:

La vitesse nominales de l'ascenseur est donner comme suit : 0.4 ; 0.63 ; 1 ; 1.6 et 2.5 (0.4 n'est applicable qu'aux ascenseurs hydrauliques ; 1.6 et 2.5 ne sont applicables qu'aux ascenseurs électriques).

• Nombre de passagers (Annexe 3):

Le nombre de passagers est le plus petit des nombres obtenus par la formule :

$$n = \frac{\text{charge nominale}}{75}$$
 $\Rightarrow n = \frac{630}{75} = 8.4$

Dans notre structure, on utilise un ascenseur pour huit personnes, dont ses caractéristiques sont :

L = 140cm: Longueur de l'ascenseur. $L_r = 110cm$: Largeur de l'ascenseur.

H = 220cm: Hauteur de l'ascenseur. $F_c = 102KN$: Charge due à la cuvette.

 $D_m = 82KN$: Charge due à la salle des machines.

 $P_m = 15KN$: Charge due à l'ascenseur.

 $P_{perssonnes} = 6.3KN$: La charge nominale. V = 1.00m/s: La vitesse.

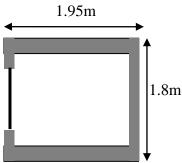
III.8.2. Etude de l'ascenseur :

La dalle de la cage d'ascenseur doit être épaisse pour qu'elle puisse supporter les charges important (machine+ ascenseur) qui sont appliquées sur elle.

On a $l_x = 1.80m$ et $l_y = 1.95m$ donc une surface

$$S = 1.80 \times 1.95 = 3.51 m^2.$$

$$e \ge \frac{l}{20} = \frac{1.95}{20} = 0.0975m$$


Soit alors son épaisseur est e=20cm.

III.9.3. Evaluation des charges et surcharges :

 $G_1 = 25 \times 0.2 = 5 \, \text{KN/m}^2$: Poids de la dalle en béto **Fig III.37**. Schéma de la Cage d'ascenseur.

$$G_2 = 25 \times 0.05 = 1.1 KN/m^2$$
: Poids de revêtement en beton.

$$G' = G_1 + G_2 = 6.1 KN / m^2$$
.

$$G'' = \frac{F_e}{S} = \frac{102}{3.51} = 29.06 \, \text{KN} / m^2$$
. Poids de la machine.

$$G_{totale} = G' + G'' = 35.16 KN / m^2.$$

Et
$$Q = 1KN/m^2$$
.

A) Cas de charge repartie :

• A l'ELU:

> Calcul les sollicitations à ELU:

$$q_{\rm u} = 1.35 \times G_{\rm totale} + 1.5 \times Q = 1.35 \times 35.16 + 1.5 \times 1 \Longrightarrow q_{\rm u} = 48.96 KN/m^2.$$

$$\rho = \frac{l_x}{l_y} = 0.92 > 0.4 \Rightarrow$$
 La dalle travaille dans les deux sens.

$$\rho = 0.92 \Rightarrow \begin{cases} \grave{a} \;\; ELU \;\; (\nu = 0) \\ \mu_x = 0.0437 \\ \mu_y = 0.8251 \\ \grave{a} \;\; ELS \;\; (\nu = 0.2) \\ \mu_x = 0.0509 \\ \mu_y = 0.8799 \end{cases}$$

$$M_{0x} = \mu_x \times Pu \times l_x^2 = 0,0437 \times 48.96 \times (1.8)^2 = 6.93$$
KN.m
 $M_{0y} = \mu_y \times M_x = 0.8251 \times 6.93 = 5.72$ KN.m

> Calcul les moments réelles :

> En travée : Sens x-x' :
$$M_t^x = 0.85 \times M_0^x = 5.89 \text{KNm}$$

Sens y-y':
$$M_t^y = 0.85 \times M_0^y = 4.86 KNm$$

$$\textbf{En appui}: \ \ M_{a}^{x} = M_{a}^{y} = 0.3 \times M_{0}^{x} = 1.76 KNm$$

> Calcul le ferraillage :

On fera le calcul de la dalle sur 4 appuis pour une bande de 1m de longueur et de 15cm d'épaisseur à la flexion simple avec $d_x = 18cm$ et $d_y = 17cm$.

Sei	ns	M (KN.m)	μ_{bu}	α	Z (cm)	A _{cal} (cm ² /ml)	Amin (cm²/ml)
travée	X-X	5.89	0.0128	0.0161	17.88	0.94	1.66
	у-у	4.86	0.0118	0.0148	16.89	0.82	1.6
appui	X-X	1.76	0.0038	0.0047	17.96	0.28	1.66

у-у	1.46	0.0035	0.0043	16.97	0.25	1.6

Tab.III. 47: Calcul de la section de ferraillage de la dalle d'ascenseur

➤ Vérification à l'E.L.U

a) Condition de non fragilité

On calcule A_{\min} : On a des HA $f_eE400 \Rightarrow \rho_0=0.0008; e=20cm; b=100cm, \rho=0.92$

$$\left. \begin{array}{l} e > 12cm \\ \rho > 0.4 \end{array} \right\} \Longrightarrow \begin{cases} A_{min}^{\,x} = \rho_0 \times \frac{3-\rho}{2} \times b \times e \\ A_{min}^{\,y} = \rho_0 \times b \times e \end{array} \Longrightarrow \begin{cases} A_{min}^{\,x} = 1.66cm^2/ml \\ A_{min}^{\,y} = 1.6cm^2/ml \end{cases}$$

$$A_t^y > \frac{A_x^t}{4}$$
 Vérifiée.

• Tableau récapitulatif des résultats de calcul :

	$A_t(cm^2)$	$A_a (cm^2)$	$A_{min}(cm^2)$	Туре	$A_{daptern}(cm^2)$	OBS
Sens x-x	0.94	0.28	1.66	4T10	3,14	vérifiée
Sens y-y	0.82	0.25	1.6	4T10	3,14	vérifiée

Tab III.48 : Vérification de la condition de non fragilité.

Calcul des espacements

Sens x-x':
$$S_t \le \min(3e;33cm) \Rightarrow S_t \le 33cm$$
 on adopte $S_t = 25cm$
Sens y-y': $S_t \le \min(4e;45cm) \Rightarrow S_t \le 45cm$ on adopte $S_t = 25cm$

Vérification de l'effort tranchant

$$\tau_{u} = \frac{V_{\text{max}}}{b \times d} \le \bar{\tau}_{u} = 0.07 \times f_{c28} / \gamma_{b} = 1.16 MPa$$

 $\rho = 0.97 > 0.4 \Rightarrow$ Flexion simple dans les deux sens.

Sens x - x:
$$V_x = q_u \times \frac{l_x}{3} = 29.37 \text{KN}$$
.

Sens y - y:
$$V_y = q_u \times \frac{l_x}{2} \times \frac{1}{1 + \frac{\rho}{2}} = 30.18KN$$

Les résultats de calcul sont résumés dans le tableau suivant :

	Vu (KN)	τ_u (MPA)	$\overline{\tau}_u$ (MPA)	OBS
Sens x-x	29.37	0,16	1,16	vérifiée
Sens y-y	30.18	0,17	1,16	vérifiée

Tab III.49: Vérification de l'effort tranchant

Vérification a l'ELS:

 $q_s = G_{tot} \times Q = 36.16$. KN / m^2 , on fera le calcul de la dalle pour une bande de 1 ml

Evaluation des moments :

$$\rho = 0.92 \Rightarrow \begin{cases} \mu_x = 0.0509 \\ \mu_y = 0.8799 \end{cases}$$
 [Annexe 02]

$$M_x = \mu_x \times Ps \times l_x^2 = 0,0509 \times 36.16 \times (1.8)^2 = 5.96 \text{ KN.m}$$

$$M_y = \mu_y \times M_x = 0.8799 \times 5.96 = 5.24 \text{ KN.m}$$

1. Travée

$$M_{tser}^{x} = 0.85 \times M_{0}^{x} = 5.066 KN.m$$

$$M_{tser}^{y} = 0.85 \times M_{0}^{y} = 4.454 KN.m$$

2. Appuis

$$M_{ax} = -0.3xM_x = -0.3x5.066 = 1.52 \text{ Kn.m}$$

 $M_{ay} = 1.33 \text{ Kn.m}$

• Vérification des contraintes dans le béton :

On vérifie :
$$\sigma_{bc} \leq \overline{\sigma}_{bc}$$

$$\overline{\sigma}_{bc} = 0.6 \times f_{c28} = 15 \text{ MPa.}$$

$$\sigma_{bc} = \frac{M_{ser}}{I} \times y \text{ .}$$

Sens xx:

En travée :
$$M_{tx} = 5.066 \text{ KN.m}$$

$$\frac{b_0 * y^2}{2} + 15 * A * y - 15 * A * d = 0 \Rightarrow y = 3.67cm$$

$$I = b \frac{y^3}{3} + 15A(d - y)^2 \Rightarrow I = 11319.63cm^4$$

$$\sigma_{bc} = \frac{5.066*10^{-3}}{11319.63*10^{-8}}*3,67*10^{-2} = 1.64 MPa < \overline{\sigma}_{bc} = 15 MPa.....V\acute{e}rifi\acute{e}e$$

> En appui:

$$M_a = 1.52 \text{ KN.m}$$
 , y = 3.67 KN.m , I = 11319.63 cm⁴

$$\sigma_{bc} = 0.493 \text{ Mpa} < 15 \text{MPa}$$
 c'est vérifiée.

Etat limite d'ouverture des fissures :

Puisque la condition de non fragilité est satisfaite donc aucune vérification à effectuer.

• Vérification des contraintes dans l'acier

On vérifie que : $\sigma_s \leq \overline{\sigma}_s$

$$\overline{\sigma}_s = \min(\frac{2}{3}f_e, 150 * \eta) = 240MPa$$

$$\sigma_s$$
 (= 156.35MPa) $< \overline{\sigma}_s$ (= 240MPa).....vérifiée.

• Vérification de la flèche

Le calcul de la flèche se fait de la même manière que dans le calcul des planchers ; d'après le **BAEL91** et **CBA93** la vérification a` la flèche est inutile si :

1.
$$\frac{h_t}{l} > \frac{1}{16}$$
 (1)

2.
$$\frac{h_t}{l} > \frac{M_t}{10 \times M_0}$$
 (2) (BAEL 91).

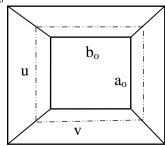
$$3. \quad \frac{A_s}{b \times d} \le \frac{2,4}{f_e} \tag{3}$$

Les résultats de calcul sont résumés dans le tableau suivant :

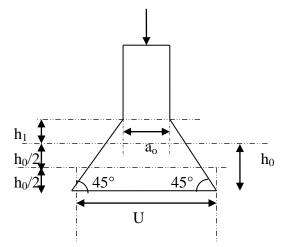
Sens	Condition (1)	Condition (2)	Condition (3)
X-X	Vérifiée	Vérifiée	Vérifiée
у-у	Vérifiée	Vérifiée	Vérifiée

Tab III.50: vérification de la flèche

B) Cas d'une charge concentrée :


La charge concentré q est appliquée à la surface de la dalle sur aire $a_0 \times b_0$. Elle agit uniformément sur aire $u \times v$ située sur le plan moyen de la dalle.

 $a_0 \times b_0$: Surface sur laquelle elle s'applique la charge donnée en fonction de vitesse.


 $u \times v$: Surface d'impact.

 a_0 et u =dimension suivant y-y.

 b_0 et v: Dimension suivant x-x.

Fig.III.38 : Schémas représentant la surface d'impact.

Fig.III.39.: Calcul de Périmètre au niveau de la feuille moyenne.

On a
$$\begin{cases} u = a_0 + h_0 + 2 \times \xi \times h_1 \\ v = b_0 + h_0 + 2 \times \xi \times h_1 \end{cases} \quad pour \quad V = 1m/s \Rightarrow \begin{cases} a_0 = 80cm. \\ b_0 = 80cm. \end{cases}$$

Avec $h_1 = 5cm$: Epaisseur de revêtement.

 $h_0 = 20$ cm: Epaisseur de dalle.

 $\zeta = 1$: Coefficient qui dépend du type de revêtement

$$\begin{cases} u = 80 + 20 + 2 \times 1 \times 5 \implies u = 110 \text{cm.} \\ v = 80 + 20 + 2 \times 1 \times 5 \implies u = 110 \text{cm.} \end{cases}$$

> Calcul les sollicitations :

$$\begin{cases} \boldsymbol{M}_{x} = \boldsymbol{q}_{u} \times (\boldsymbol{M}_{1} + \boldsymbol{\gamma} \times \boldsymbol{M}_{2}) \\ \boldsymbol{M} \boldsymbol{y} = \boldsymbol{q}_{u} \times (\boldsymbol{M}_{2} + \boldsymbol{\gamma} \times \boldsymbol{M}_{1}) \end{cases}$$

Avec
$$\gamma$$
: Coefficient de poisson
$$\begin{cases} \gamma = 0 & \text{à } l'ELU \\ \gamma = 0.2 & \text{à } l'ELS \end{cases}$$

$$ightharpoonup M_1$$
 En fonction de $\frac{v}{l_x}$ et ρ ; M_2 En fonction de $\frac{v}{l_y}$ et $\frac{v}{l_x}$ et $\rho = 0.92$

$$\begin{cases} \frac{u}{l_x} = \frac{110}{180} \implies \frac{u}{l_x} = 0.61 \\ \frac{v}{l_y} = \frac{110}{195} \implies \frac{v}{l_y} = 0.56 \end{cases} \Rightarrow \begin{cases} M_1 = 0.087 \\ M_2 = 0.070 \end{cases}$$

\triangleright Evaluation des moments M_{x1} et M_{y2} du système de levage à l'ELU:

On a:
$$g = D_m + P_m + P_{perssonne} = 82 + 15 + 6.3 = 103.3 KN$$
.

$$q_u = 1.35 \times g = 1.35 \times 103.3 = 139.455 KN$$

$$\begin{cases} M_{x1} = q_{u} \times M_{1} \\ M_{y1} = q_{u} \times M_{2} \end{cases} \Rightarrow \begin{cases} M_{x1} = 139.45 \times 0.087 = 12.13 \text{KNm} \\ M_{y1} = 139.45 \times 0.070 = 9.76 \text{KNm} \end{cases}$$

Evaluation des moments due au poids propre de la dalle à l'ELU :

$$- q_u = 48.96KN$$

$$M_{x2} = \mu_x \times q_u \times l_x^2 \Rightarrow M_{x2} = 6.93KN.m$$

$$M_{y2} = \mu_y \times M_{x2} \Rightarrow M_{y2} = 5.72 \text{KN.m}$$

> Superposition des moments :

Les moments agissants sur la dalle sont :
$$\begin{cases} M_x = M_{x1} + M_{x2} = 19.06 KNm \\ M_y = M_{y1} + M_{y2} = 15.48 KNm \end{cases}$$

> Les moments réels :

La section considérée est une section de (1m×0.20m) sollicité à la flexion simple.

$$b = 100cm$$
, $h = 20cm$, $dx = 18cm$, $d_y = 17cm$, $fbu = 14.2 Mpa$.

Les résultats de calcul sont donnés dans les tableaux qui suivent:

1. En travée :

	M_T	A Calculé	A adopté
	(kn.m)	(cm ²)	(cm ²)
Sens x-x	19.06	3.108	4HA10=3.14
Sens y-y	15.48	2.66	4HA10=3.14

Tab III.51: Ferraillage en travée

2 .En appuis:

	$M_T(kn.m)$	A CALCULE	A adopté
		(cm ²)	(cm ²)
Sens x-x	5.72	0.92	4HA10=3.14
Sens y-y	4.64	0.78	4HA10=3.14

Tab III.52: Ferraillage en appuis

HA Fe E400

➤ Vérification : [BAEL91]

 $h_0 = 20 \text{ cm} > 12 \text{ cm}$

Vérification de la condition de non fragilité

 $, \rho_0 = 0.8 \%$;

$$a = 0.07 \times 0.4 \Rightarrow A^{\min} = a^{\left(3 - \rho\right)} \times b \times b$$

$$\rho = 0.97 > 0.4 \Rightarrow A_x^{\min} = \rho_0 \left(\frac{3 - \rho}{2} \right) \times b \times h$$

$$A_x^{\text{min}} = 0.0008 \times \left(\frac{3 - 0.92}{2}\right) \times 0.20 = 1.66 \text{ cm}^2$$

$$A_y^{\text{min}} = \rho_0 \times b \times h = 0.0008 \times 1 \times 0.20 = 1,60 \text{ cm}^2$$

> Vérification à l'E.L.U

a. Vérification au poinçonnement :

$$p_u \le 0.045 \times U_c \times h \times \frac{f_{c28}}{\gamma_b}$$
 BAEL91 (Article H. III.10)

 p_u : Charge de calcul à l'état limite. Avec:

h: Epaisseur de la dalle.

 U_c : Périmètre du contour au niveau du feuillet moyen.

$$U_c = 2 \times (u + v) \implies U_c = 2 \times (110 + 110) \implies U_c = 440cm.$$
; $q_u = 139.455KN$

Or $q_u = 139.455 \text{KN} \le 0.045 \times U_c \times h \times \frac{f_{c28}}{\gamma_h} = 648 \text{KN}$. Pas de risque de poinçonnement.

b. Vérification de l'effort tranchant : b=100cm; d=18cm.

$$\tau_{u} = \frac{V_{\text{max}}}{b \times d} \le \bar{\tau}_{u} = 0.05 \times f_{c28} = 1.25 MPa$$

On a:
$$u = v = 110cm \Rightarrow V_{\text{max}} = \frac{q_u}{2 \times u + v} = \frac{139.455}{2 \times 1.1 + 1.1} = 42.26 MPa$$

$$V_u = \frac{V_{\text{max}}}{b \times d} = \frac{42.26}{1 \times 0.18} \times 10^{-3} = 0.23 MPa \le \frac{1}{\tau} = 0.05 \times f_{c28} = 1.25 MPa$$
 Vérifiée.

> Calcul à l'ELS:

1) Le moment engendré par le moment de levage :

Les moments engendrés par le système de levage : $q_{ser} = g = 103.3 \text{KN}$.

$$\begin{cases} \mathbf{M}_{x1} = \mathbf{q}_{s} \times (\mathbf{M}_{1} + \mathbf{M}_{2} \times \gamma) \\ \mathbf{M}_{y1} = \mathbf{q}_{s} \times (\mathbf{M}_{2} + \mathbf{M}_{1} \times \gamma) \end{cases} \Rightarrow \begin{cases} \mathbf{M}_{x1} = 103.3 \times (0.087 + 0.070 \times 0.2) = 10.43 \text{KNm} \\ \mathbf{M}_{y1} = 103.3 \times (0.070 + 0.087 \times 0.2) = 9.03 \text{KNm} \end{cases}$$

Les moments M_{x2} et M_{y2} dus au poids propre de la dalle :

$$\rho = 0.92 \Rightarrow \begin{cases} \mu_x = 0.0509 \\ \mu_y = 0.8799 \end{cases}$$
 Annexe2

$$q_{ser} = 6.1 + 1 = 7.1KN \Rightarrow \begin{cases} \mathbf{M}_{x2} = \mu_x \times q_{ser} \times \mathbf{l}_x^2 = 1.17KNm \\ \mathbf{M}_{y2} = \mu_y \times \mathbf{M}_{x2} = 1.03KNm \end{cases}$$

Les moments agissants sur la dalle sont : $\begin{cases} \mathbf{M_x} = \mathbf{M_{x1}} + \mathbf{M_{x2}} = 11.6 \text{KNm} \\ \mathbf{M_y} = \mathbf{M_{y1}} + \mathbf{M_{y2}} = 10.06 \text{KNm} \end{cases}$

a) Vérification des contraintes :

> Calcul des moments

$$M_t^x = 0.85 \times 11.6 \implies M_t^x = 9.86 \text{KNm}$$

$$M_t^y = 0.85 \times 10.06 \Rightarrow M_t^y = 8.55 KNm$$

$$M_a$$
=0.3×11.6 $\Rightarrow M_a$ =3.48KNm

b) Etat limite de compression de béton : $\sigma_{bc} = M_{ser} \times \frac{y}{I} < \overline{\sigma_{bc}}$

Sens x-x:
$$y = 3.67cm$$
; $I=11319.63cm^4$

$$\sigma_{bc} = 3.19MPa \le \overline{\sigma} = 15MPa$$

Sens y-y: y=3.55cm et $I=10011.77cm^4$

c)Etat limite d'ouverture des fissures

La fissuration est peu nuisible, donc aucune vérification à faire.

d) Vérification de la flèche :

Le calcul de la flèche se fait de la même manière que dans le calcul des planchers ;

d'après le BAEL91 et CBA93 la vérification a la flèche est inutile si :

Les conditions à vérifier sont les suivants :

$$\begin{cases} \frac{h_t}{L_x} = \frac{0.20}{1.8} = 0.111 > \frac{1}{16} = 0.0625......v\'{e}rifi\'{e}e \\ \frac{h_t}{L_y} = \frac{0.20}{1.95} = 0.102 > \frac{1}{16} = 0.0625.....v\'{e}rifi\'{e}e \end{cases} \\ \begin{cases} \frac{h_t}{L_x} = \frac{0.20}{1.8} = 0.111 > \frac{M_{tx}}{10 \times M_x} = \frac{9.86}{10 \times 11.6} = 0.085.....v\'{e}rifi\'{e}e \\ \frac{h_t}{L_y} = \frac{0.20}{1.95} = 0.102 > \frac{M_{ty}}{10 \times M_y} = \frac{8.55}{10 \times 10.03} = 0.085.....v\'{e}rifi\'{e}e \end{cases} \\ \begin{cases} \frac{A_s}{b \times d} = \frac{3.14}{100 \times 18} = 0.0017 \prec \frac{4.2}{f_e} = 0.0105......v\'{e}rifi\'{e}e. \\ \frac{A_s}{b \times d} = \frac{3.14}{100 \times 17} = 0.0017 \prec \frac{4.2}{f_e} = 0.0105......v\'{e}rifi\'{e}e. \end{cases}$$

Donc la condition de la flèche est vérifiée

> Schéma de ferraillage

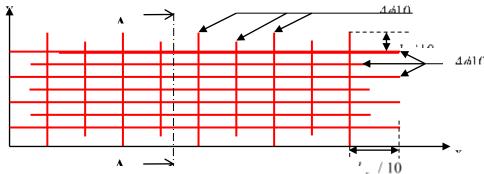


Fig III40. Schéma de ferraillage de la dalle.

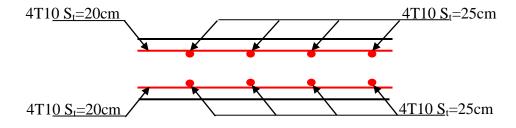


Fig III.41. Vue en coupe A-A du ferraillage de la dalle.

III.10. Acrotère C'est un élément en béton armé encastré au niveau du plancher terrasse inaccessible, ses dimensions sont adoptées d'après les plans architecturaux.

$$S_{acr} = (15 \times 60) + \left(\frac{3 \times 10}{2}\right) + (7 \times 10)$$

$$S_{acr}=0.0985\,m^2$$

Hypothèse de calcul:

- Le calcul se fera pour une bande de 1m de longueur.
- La fissuration est nuisible.
- Le calcul sera fait en flexion composée.

III.10.1. Evaluation des charges :

- Poids propre : $G_1 = 25 \times 0.0985 \times 1 = 2.46 KN$.
- Poids d'enduit extérieur (ciment :e =1.5cm) : $G_2 = 20 \times 0.015 \times 0.60 \times 1 = 0.18$ KN.
- Poids d'enduit intérieur (ciment :e = 2cm) : $G_3 = 20 \times 0.02 \times 0.60 \times 1 = 0.24 KN$.

$$W_n = G_1 + G_2 + G_3 = 2.88KN.$$

Q=1KN/ml

La force sismique:

La force sismique horizontale F_P est donnée par la formule suivante :

$$F_p = 4 \times A \times C_p \times W_p$$
. RPA99 (Article 6.2.3)

A : Coefficient d'accélération de zone (groupe d'usage 2, zone IIa, A= 0,15).

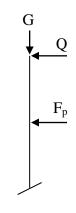
 C_p : Facteur de force horizontal ($C_p = 0.8$).

 W_p : Poids de l'acrotère.

Donc:

$$F_p = 4 \times 0.15 \times 0.8 \times 2.88 = 1.38 KN.$$

Le centre de gravité de la section est $G(X_g; Y_g)$:


$$X_{g} = \frac{\sum x_{i} \times A_{i}}{\sum A_{i}} = 0.085m \ Y_{g} = \frac{\sum y_{i} \times A_{i}}{\sum A_{i}} = 0.32m$$

L'acrotère est soumis à :

$$N_G = 2.88 KN$$
 $M_G = 0.$ $N_Q = 0$ $M_Q = Q \times h = 1 \times 0.6 = 0.6 KNm.$ $N_{F_p} = 0$ $M_{F_p} = F_p \times Y_g = 1.38 \times 0.32 = 0.441 KNm$

L'acrotère travaille en flexion composée.

III.10.3. Combinaisons d'actions :

	RPA 99	ELU	ELS
Combinaison de charges	G + Q + E	1,35G + 1,5Q	G + Q
N (KN)	2.88	3.88	2.88
M (KN.m)	1.04	0.90	0.60

Tab III.53 Combinaisons d'action.

III.10.4. Calcul de l'excentricité à l'état limite ultime :

La combinaison à considérer est : G + Q + E

 $N_u = 2.88 \text{ KN}$

 $M_u = 1.04 \text{ KN.m}$

Ces sollicitations sont réduites au centre de gravité de la section du béton et l'effort appliqué est un effort de compression.

On a:

$$\begin{cases} e_1 = \frac{M_u}{N_u} = 0.36m \\ \frac{h}{6} = 0.1m \end{cases}$$

 $e_1 > \frac{h}{6} \Rightarrow$ le centre de pression se trouve à l'extrémité du noyau central donc la section est

partiellement comprimée, le ferraillage se fait par assimilation à la flexion simple.

Le risque de flambement développé par l'effort de compression conduit à ajouter e_a et e_2 telle que :

 $\boldsymbol{e}_{\boldsymbol{a}}$: Excentricité additionnelle traduisant les imperfections géométriques initiales.

 \boldsymbol{e}_2 : Excentricité due aux effets du second ordre, liés à la déformation de la structure.

$$e_a = \max(2cm; \frac{h}{250}) = 2cm.$$
 $e_2 = \frac{3 \times l_f^2 \times (2 + \phi \times \alpha)}{h_0 \times 10^4}$ **CBA93** (Article A.4.3.5)

Avec :
$$\alpha = \frac{M_G}{M_G + M_Q}$$

$$M_G = 0 \Rightarrow \alpha = 0.$$

 ϕ : C'est le rapport de déformation finale due au fluage à la déformation instantanée sous la charge considérée, il est généralement pris égal à 2.

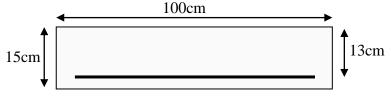
 α : Le rapport du moment du premier ordre, dû aux charges permanentes et quasipermanentes, au moment total du premier ordre, le coefficient α est compris entre 0 et 1.

 l_f : Longueur de flambement ; $l_f = 2 \times h = 1.2m$

 h_0 : Hauteur de la section qui est égale à 15cm.

Donc:

$$e_2=0.58\,m$$


$$e = e_1 + e_2 + e_a = 0.96 m$$

III.10.5. Ferraillage de la section :

$$f_{bu} = 14.2MPa$$

$$f_{st} = 348MPa$$

$$N_{u} = 2.88 \text{ KN}$$

 $M_u = N_u x e = 2.76 \text{ KN.m}$

Fig III.42. Section à ferrailler.

Selon le **BAEL 91**:

$$M_{ua} = M_u + N_u \times \left(d - \frac{h}{6}\right) = 2.92 \text{ KN.m}$$

$$\mu_{\text{bu}} = 0.012$$
, $\alpha = 0.016$, $z = 12.91$ cm, $A = 0.61$ cm²

Donc, la section à la flexion composée sera :

$$A_s = A - \frac{N_u}{f_{st}} = 0.26 \ cm^2$$

> Vérification à l'ELU :

a) Condition de non fragilité:

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 1.56cm^2.$$

On remarque que $A_s < A_{\min}$ donc on prend $A_{\min} = 1.56cm^2$.

Se qui fait $4T8 = 2.01cm^2 / ml$.

Armatures de répartition :

$$A_r = \frac{A_s}{4} = \frac{2.01}{4} = 0.502cm^2 \Rightarrow 4T6 = 1.13cm^2 / ml.$$

Calcul des espacements :

Les armatures principales : $S_t \le \frac{100}{4} = 25 \text{ cm}$ soit $S_t = 25 \text{cm}$

Les armatures de répartition : $S_t \le \frac{100}{4} = 25 \text{ cm}$ soit $S_t = 25 \text{cm}$

b) Vérification au cisaillement :

$$\begin{split} &\tau_u < \overline{\tau_u} \\ &\tau_u = \frac{V_u}{b \times d} = \frac{2.38 \times 10^{-3}}{1 \times 0.13} = 0.0183 MPa \ . \\ &\overline{\tau_u} < \min(0.1 \times f_{c28}; 3MPa) \Rightarrow \overline{\tau_u} = 2.5 MPa. \ \text{c'est v\'erifi\'ee}. \end{split}$$

Vérifications à L'ELS:

Vérification de la contrainte d'adhérence limite:

$$\tau_s = \frac{V_u}{0.9 \times d \times \sum u_i} \le \overline{\tau}_s$$
BAEL91 (Article J.II.2)

Avec Σu_i : la somme des périmètres des barres.

$$\Sigma \mathbf{u}_i = \pi \times n \times \phi = 3.14 \times 4 \times 8 = 100.48 mm.$$

$$\tau_s = \frac{2.38 \times 10^{-3}}{0.9 \times 0.13 \times 100.48 \times 10^{-3}} = 0.20 \text{ MPa}.$$

$$\bar{\tau}_s = 0.6 \times \psi^2 \times f_{t28} = 0.6 \times 1.5^2 \times 2.1 = 2.83 MPa$$
 $\psi = 1.5$ Pour les HA

$$\Rightarrow \tau_s < \bar{\tau}_s$$
 c'est vérifiée.

Etat limite de compression de béton :

$$\sigma_{bc} = K \times y_{ser}$$

$$\sigma_{sc} = n \times K \times (d - y_{ser})$$

$$\overline{\sigma_s} = \min(\frac{2}{3} \times f_e; 150 \times \eta) = 201.63 \text{MPa}$$

$$K = \frac{N_{ser}}{I} \times y_c$$

$$I = \frac{b}{3} \times y_{ser}^3 + 15 \times \left[(A_s \times (d - y_{ser})^2 + A_s' \times (y_{ser} - d')^2 \right]$$

Détermination de y_{ser} :

$$y_c^3 + p \times y_c + q = 0$$

$$p = -3 \times c^{2} - 90 \times A' \times \frac{(c - d')}{b} + 90 \times A \times \frac{(d - c)}{b}$$

$$q = -2 \times c^{3} - 90 \times A' \times \frac{(c - d')^{2}}{b} - 90 \times A \times \frac{(d - c)^{2}}{b}$$

On
$$A' = 0$$
, $A = 2.01 \times 10^{-4} m^2$, $b = 1m$ et $c = -0.133m$

Donc on trouve :p =
$$-4.83 \times 10^{-2}$$
 et q = 3.72×10^{-4}

Après résolution de l'équation (*) on trouve : $y_c = 0.251m \Rightarrow y_{ser} = y_c + c = 0.118m$

Calcul de
$$I: I = 5.48 \times 10^{-4} m^4$$
.

$$\sigma_{bc} = 0.15MPa < 15MPa$$

La condition est vérifiée.

$$\sigma_{sc} = 0.237 MPa < 201.63 MPa$$

III.10.6. Schéma de ferraillage :

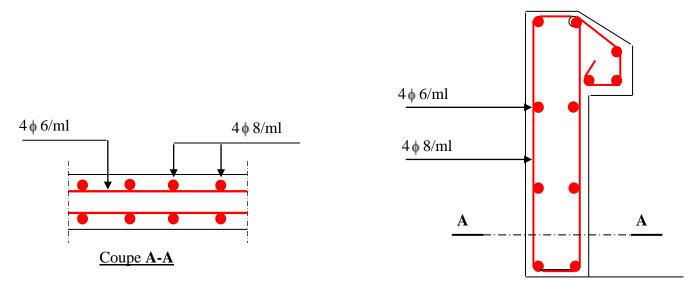


Fig III.43. Schéma de ferraillage de l'acrotère.

(Terrasse inaccessible)

Chapitre IV

Etudes dynamique

Introduction

Le séisme est un phénomène naturel, qui peut induire des dégâts matériels et humains. Il correspond à un mouvement du sol libérant une énergie de déformation importante selon son intensité. Vue que le projet est situe dans une zone de moyenne sismicité cela impose la nécessite de l'étude du comportement dynamique de la structure qui a pour but l'estimation des valeurs caractéristiques les plus défavorables de la réponse sismique et le dimensionnement des éléments de résistance, afin d'obtenir une sécurité satisfaisante pour l'ensemble de l'ouvrage et d'assurer le confort des occupants.

On fait souvent appel à un modèle mathématique de calcul à base d'élément finis qui permet de simplifier suffisamment le problème pour pouvoir l'analyser, Le logiciel de calcul utilisé est le SAP2000.V.14.

IV.1. Méthodes de calcul

Le **RPA99** propose trois méthodes de calcul des sollicitations :

- 1. La méthode statique équivalente.
- 2. Les méthodes dynamiques : -La méthode d'analyse modale spectrale.

-La méthode d'analyse par Accélérogrammes.

IV.2. Méthode statique équivalente :

A) Principe : Selon RPA99.V2003Art (4.2.1) les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les efforts sont considérés équivalents à ceux de l'action sismique.

La structure peut être modélisée comme une console encastrée dans le sol et dans laquelle les différents étages sont représentés par des masses ponctuelles concentrées au centre de gravité des planchers et de même propriétés d'inertie.

B) Condition d'application :

La méthode statique équivalente est applicable dans les conditions suivantes :

- Le bâtiment ou le bloc étudié, respecte les conditions de régularité en plan et en élévation avec une hauteur au plus 65m en zone I et IIa et 30m en zone IIb et III.
- Le bâtiment ou le bloc étudié présente une configuration régulière tout en respectant, outre les conditions énoncées en haut, d'autres conditions complémentaires énumérées dans le RPA99. V2003 (article 4.1.2).

Dans notre structure ces conditions ne sont pas satisfaites, alors cette méthode n'est pas aplicable.

C) Calcul de la force sismique totale : La force sismique totale V, appliquée à la base de la structure, doit être calculée successivement dans deux directions horizontales orthogonales selon la formule :

$$V = \frac{A \times D \times Q}{R} \times W \qquad \qquad \mathbf{RPA99.V2003Art} \ (4.2.3)$$

Avec : A : Cœfficient d'accélération de la zone, dépend du groupe de la structure et de la zone sismique. Dans notre cas : groupe d'usage 2 (H=38.58<48m)

Zone sismique : IIa
$$\Rightarrow$$
 A = 0,15.

R : coefficient de comportement global de la structure.

Valeur donnée par le tableau (4-3) du RPA 99 en fonction du système de contreventement. (Contreventement mixte voiles /portiques avec interaction \Rightarrow R = 5).

Q: facteur de qualité.

Sa valeur est donnée par la formule :
$$Q = 1 + \sum_{q=1}^{6} P_q$$
. RPA 99. V2003 (Formule 4-4)

 $\boldsymbol{p}_{\boldsymbol{q}}$: est la pénalité à retenir selon que les critères de qualité q sont satisfaits ou non.

Sa valeur est donnée par le tableau 4-4 (RPA 99.V2003).

"Critère q	Observée	P_q/xx	Observée	P _q /yy
1- Conditions minimales sur les files de contreventement	Non	0.05	/	/
2- Redondance en plan	Non	0.05	Non	0.05
3- Régularité en plan	Non	0.05	Non	0.05
4- Régularité en élévation	/	/	/	/
5- Contrôle de qualité des matériaux	/	/	/	/
6- Contrôles de qualité des d'exécution	/	/	/	/

Tableau IV. 1 : Valeurs des pénalités Pq

Donc:
$$Q/_{XX} = 1,15$$
; $Q/_{yy} = 1,10$

W : poids total de la structure :
$$W = \sum_{i=1}^{n} Wi$$
 , avec : $W_i = W_{Gi} + \beta \times W_{Qi}$

 $W_{\it Gi}$: Poids dus aux charges permanentes et à celles des équipements éventuellement fixes de la structure.

 W_{Oi} : Poids dus aux charges d'exploitation.

 β : Coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation, il est donné par le tableau (4-5) du RPA 99.

 $\beta = 0.2 \rightarrow \text{usage d'habitation et service}$

 $\beta = 0.3 \rightarrow \text{Bâtiment à usage commercial}$

D: facteur d'amplification dynamique moyen.

Il est fonction de catégorie du site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure T.

Le poids total de la structure :

D) Estimation de la période fondamentale de la structure :

La période empirique peut être calculée de deux manières :

1-
$$T_1 = C_T \times (h_N)^{3/4}$$

RPA 99. V2003 (Art .4.2.4).

2-
$$T_2=0.09 \times \frac{h_N}{\sqrt{D}}$$

RPA 99. V2003 (Formule 4-7)

Avec: $T = 1.3 \times \min(T_1; T_2)$

 $h_{\rm N}=38.58~{\rm m}$: La hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau

 C_T : Coefficient, fonction du système de contreventement et du type de remplissage.

$$\Rightarrow C_{\tau} = 0.05$$

RPA99.V2003 (tableau 4.6)

D : est la dimension du bâtiment mesurée à sa base dans la direction de calcul considérée.

On prend la plus petite valeur pour T.

D'où :
$$T_1 = 0.774s$$
.

Sens(x): D =
$$18.35 \Rightarrow T_2 = 0.81$$
s

Sens(y): D = 9 m
$$\Rightarrow$$
 T_2 = 1.157 s

Donc la période fondamentale statique majorée de 30 % est :

$$\begin{cases} T_{Sx} = 1.3 \times min(0.81; 0.774) = 1.006s \\ T_{Sy} = 1.3 \times min(0.774; 1,157) = 1.006s \end{cases}$$

• Valeur de T₁ etT₂:

T₁, T2: Périodes caractéristiques associées à la catégorie de site (**RPA 99.V2003** tableau 4-7)

Sol meuble
$$\Rightarrow$$
 Site (S3) \Rightarrow $\begin{cases} T_1 = 0.15 s \\ T_2 = 0.5 s \end{cases}$

$$T_{2} \prec T_{x} \prec 3,0 \, s \Rightarrow D_{x} = 2,5 \times \eta \times \left(\frac{T_{2}}{T_{x}}\right)^{2/3}$$

$$RPA 99.V2003 \text{ (Art 4.3.3)}$$

$$T_{2} \prec T_{y} \prec 3,0 \, s \Rightarrow D_{y} = 2,5 \times \eta \times \left(\frac{T_{2}}{T_{y}}\right)^{2/3}$$

Tel que : $\eta = \sqrt{\frac{7}{(2+\xi)}}$ \rightarrow facteur de correction d'amortissement.

Avec : D : facteur d'amplification dynamique moyen selon la direction considérer

 ξ (%) : est le pourcentage d'amortissement critique fonction du matériau constitutif, du type de remplissage (RPA Tableau 4-2)

Construction auto stable $\rightarrow \xi = 7 \%$.

RPA 99.V2003 (Art 4.2.3)

Contreventement par voiles $\rightarrow \xi = 10 \%$.

Donc, pour une construction mixte on prend la moyenne $\Rightarrow \begin{cases} \xi = 8.5\% \\ \eta = 0.816 \end{cases}$

$$D'ou: D_x = 1.513$$
; $D_y = 1.513$
$$V_{st_x} = \frac{0.15 \times 1.51 \times 1.15}{5} \times 29559,513 = 1539.90 KN = 154t$$

$$V_{\text{st}y} = \frac{0.15 \times 1.51 \times 1.10}{5} \times 29559,513 = 1472.95 \text{KN} = 147.30 \text{t}$$

IV.3. Méthode dynamique modale spectrale

Cette méthode peut être utilisée dans tout les cas, et en particulier, dans le cas où la méthode statique équivalente n'est pas applicable. Puisque notre structure ne dépasse pas 65m, la méthode dynamique s'impose.

A) principe:

Il est recherché par cette méthode pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul suivant :

$$\frac{S_a}{g} = \begin{cases} 1.25 \times A \times \left(1 + \frac{T}{T_1} \left(2.5 \eta \frac{Q}{R} - 1\right)\right) & 0 \leq T \leq T_1 \\ 2.5 \times \eta \times \left(1.25A\right) \times \left(\frac{Q}{R}\right) & T_1 \leq T \leq T_2 \\ 2.5 \times \eta \times \left(1.25A\right) \times \left(\frac{Q}{R}\right) \times \left(\frac{T_2}{T}\right)^{2/3} & T_2 \leq T \leq 3.0 \text{ s} \\ 2.5 \times \eta \times \left(1.25A\right) \times \left(\frac{T_2}{3}\right)^{2/3} \times \left(\frac{3}{T}\right)^{5/3} \times \left(\frac{Q}{R}\right) & T > 3.0 \text{ s} \end{cases}$$

$$RPA99.V2003 (Formule 4-13)$$

Avec:

A : coefficient d'accélération de zone.

 η : Facteur de correction d'amortissement.

R : coefficient de comportement de la structure.

T1, T2: périodes caractéristiques associées a la catégorie du site.

Q: Facteur de qualité.

Le spectre de réponse est donné par le logiciel (spectre).

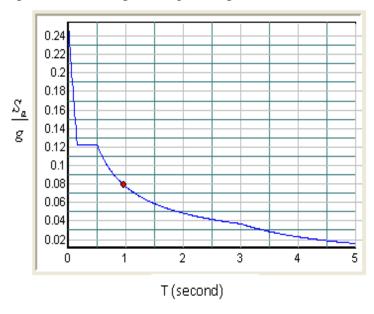
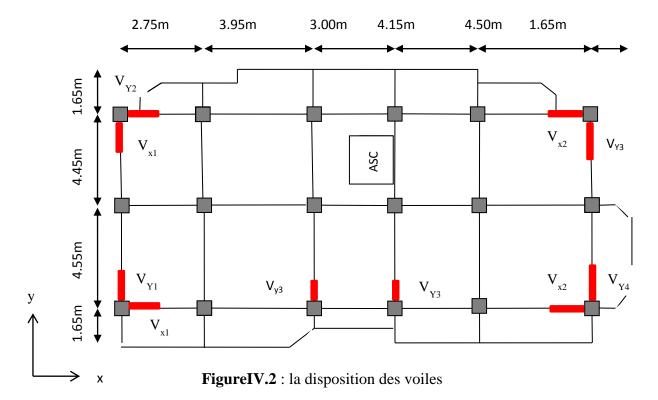


Figure IV.1 : Spectre de calcul.

B) Les hypothèses:

- 1. les masses sont supposées concentrées au niveau des nœuds principaux (nœuds maîtres).
- 2. seuls les déplacements horizontaux des nœuds sont pris en compte.
- 3. le nombre de mode à prendre en compte est tel que la somme des taux de participation des masses modales atteint au moins 90% de la masse globale de la structure.
- 4. Les planchers et les fondations doivent être rigides dans leurs plans.


IV.4. Description du logiciel SAP 2000 V14

Le SAP 2000 est un logiciel de calcul et de conception des structures d'ingénierie particulièrement adapté aux bâtiments et ouvrages de génie civil. Il permet en un même environnement la saisie graphique des ouvrages de bâtiment avec une bibliothèque d'éléments autorisant l'approche du comportement de ce type de structure. Il offre de nombreuses possibilités d'analyse des effets statiques et dynamiques avec des compléments de conception et de vérification des structures en béton armé et charpente métallique. Le post-processeur graphique disponible facilite considérablement l'interprétation et l'exploitation des résultats ainsi que la mise en forme des notes de calcul et des rapports explicatifs.

IV.5.Disposition des voiles

Après plusieurs essais de disposition des voiles, et de modification des sections des poteaux, ainsi que l'épaisseur de voile on a retenu la disposition représente ci-dessous.

Cette disposition nous a permit d'éviter un mode de torsion au premier mode de vibration et répondre favorablement aux conditions du RPA99 /2003

> Présentation des trois premiers modes :

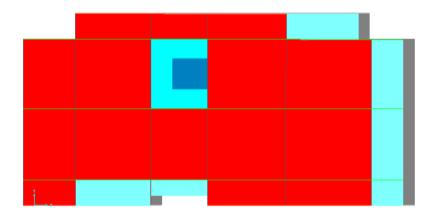


Figure IV.3: MODE 2 (translation suivant l'axe XX).

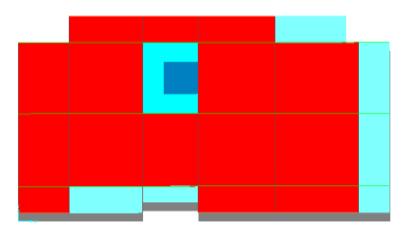
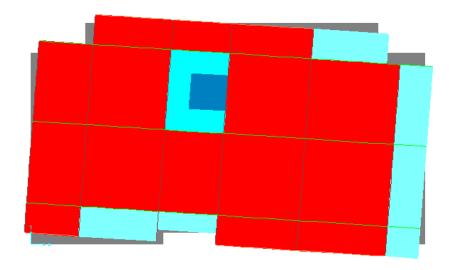



Figure IV.4: MODE 1 (translation suivant l'axe YY).

Figure IV.5: MODE 3 (rotation auteur de l'axe Z).

IV.6. Interprétation des résultats de l'analyse dynamique donnée par SAP2000V14

• Périodes de vibration et taux de participation des masses modales :

Le taux de participation massique tel qu'il est exigé par le **RPA99.V2003** doit être supérieur à 90%.

Le tableau suivant donne la participation massique pour chaque mode.

Mode	Période sec	Individuel mode		Cumula	tive mode
		Ux(%)	Uy(%)	SumUx(%)	SumUy(%)
Mode 1	0,980542	0,00231	0,71591	0,00231	0,71591
Mode 2	0,855855	0,72185	0,00141	0,72416	0,71732
Mode 3	0,728749	0,0069	0,00423	0,73106	0,72155
Mode 4	0,308819	0,00036	0,12658	0,73141	0,84813
Mode 5	0,272894	0,13122	0,00049	0,86263	0,84861
Mode 6	0,234454	0,00154	0,00062	0,86418	0,84923
Mode 7	0,164356	0,00013	0,05252	0,8643	0,90175
Mode 8	0,143729	0,04594	0,00025	0,91024	0,902

Tableau IV.2: la participation massique pour chaque mode.

• Analyse des résultats :

On constate que la période fondamentale de vibration est inférieure a celle calcule par

Les formules empiriques du RPA 99.V2003 majorée de 30 %

$$(T_y = 0.98 \text{ s} \le T_{sy} = 1.006 \text{ s}, T_x = 0.85 \text{ s} \le T_{sx} = 1.006 \text{ s}).$$

IV.7. Justification de l'interaction voiles portiques

• Sous charges verticales :

$$\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \ge 80\% \text{ Pourcentage des charges verticales reprises par les portiques.}$$

$$\frac{\sum F_{voiles}}{\sum F_{portiques} + \sum F_{voiles}} \leq 20\% \ \ Pourcentage \ des \ charges \ verticales \ reprises \ par \ les \ voiles.$$

Les résultats de l'interaction sous charges verticales sont obtenus par le logiciel SAP2000 v14.

niveaux	Charge re	eprise	Pourcentage repris		
	portiques	voiles	portiques(%)	voiles(%)	
E-S	26642,078	5774,579	82,1863834	17,8136166	
RDC	23993,98	5410,865	81,5987297	18,4012703	
Service	21798,587	3957,067	84,636123	15,363877	
2 étages	19362,189	3729,052	83,8507943	16,1492057	
3 étages	17068,246	3352,472	83,5829867	16,4170133	
4 étages	14866,436	2983,471	83,2857897	16,7142103	
5 étages	12472,579	2637,782	82,5432232	17,4567768	
6 étages	10347,242	2283,371	81,9219305	18,0780695	
7 étages	8296,028	1852,468	81,746379	18,253621	
8 étages	6131,484	1470,391	80,657522	19,342478	
9 étages	4188,23	931,522	81,8053296	18,1946704	
10 étages	2248,266	548,007	80,4022354	19,5977646	

Tableau IV.3: Charges verticales reprises par les portiques et les voiles.

✓ Analyse des résultats :

On remarque que l'interaction portiques voiles sous charges verticales est vérifiée dans tous les étages (tous les portiques reprennent plus de 80% des charges verticales).

• Sous charges horizontales :

$$\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \geq 25\% \ \ \text{Pourcentage des charges horizontales reprises par les portiques}.$$

$$\frac{\sum F_{voiles}}{\sum F_{portiques} + \sum F_{voiles}} \leq 75\% \ \ Pourcentage \ des \ charges \ horizontales \ reprises \ par \ les \ voiles.$$

Les résultats de l'interaction sous charges horizontales sont obtenus par le logiciel SAP2000

		Sens X-X			Sens Y-Y				
Niveaux	Charge 1	reprise	Pourcentag	e repris(%)	Charge	reprise	Pourcentag	ge repris(%)	
	Portiques	Voiles	Portiques	Voiles	Portiques	Voiles	Portiques	Voiles	
E-S	682,776	694,338	49,580209	50,419791	789,047	494,095	61,4933499	38,5066501	
RDC	474,549	599,731	44,1736791	55,8263209	625,213	264,076	70,3048165	29,6951835	
Service	974,066	481,21	66,9334202	33,0665798	835,531	435,645	65,7289785	34,2710215	
2 étages	862,256	528,404	62,0033653	37,9966347	711,56	466,456	60,4032543	39,5967457	
3 étages	871,449	434,361	66,7362786	33,2637214	701,578	399,835	63,6979952	36,3020048	
4 étages	860,747	360,691	70,4699706	29,5300294	681,925	346,133	66,3313743	33,6686257	
5 étages	729,819	357,39	67,1277556	32,8722444	579,644	341,878	62,9007229	37,0992771	
6 étages	686,306	283,697	70,7529771	29,2470229	537,575	286,176	65,2594048	34,7405952	
7 étages	628,531	210,021	74,954326	25,045674	477,969	236,141	66,9321253	33,0678747	
8 étages	471,42	198,918	70,3257163	29,6742837	354,832	213,014	62,4873645	37,5126355	
9 étages	393,115	114,401	77,4586417	22,5413583	284,85	146,509	66,0354832	33,9645168	
10 étages	355,411	87,271	80,2858485	19,7141515	239,737	45,424	84,070753	15,929247	

Tableau IV.4: Charges horizontales reprises par les portiques et les voiles.

✓ **Analyse des résultats :** On remarque que l'interaction portiques-voiles sous charges horizontales est vérifiée dans tous les étages (tous les portiques reprennent plus de 25% des charges horizontales) sauf au 10 ^{eme} étage avec un écarte de 5,28% selon x-x et 9,07% selon y-y **IV.6.**

IV.8. Vérification de l'effort normal réduit

L'effort normal réduit doit être vérifié pour éviter l'écrasement du béton.

La formule utilisée est la suivante :

$$v = \frac{N_d}{B_c.f_{c28}} < 0.30$$
 RPA 99.V2003 (Article 7.1.3.3)

Nd : Effort normal de calcul retiré à partir des résultats donnés par SAP2000.

Bc: L'aire brute du poteau.

Niveaux	Section (cm ²)	N _d (KN)	$B_c(m^2)$	V	observation
E-Sol	75×70	2793.90	0.525	0.21	Vérifiée
RDC et Service	70×65	2486.54	0.455	0.21	Vérifiée
2eme,3eme et 4 ^{eme}	65×60	1995.34	0.390	0.20	Vérifiée
5 ^{eme} , 6 ^{eme} et 7 ^{eme}	60×55	1296.73	0.330	0.15	Vérifiée
8 ^{eme} , 9 ^{eme} et 10 ^{eme}	55×50	648.803	0.275	0.094	Vérifiée

Tableau IV.5 : Vérification de l'effort normal réduit dans les poteaux.

IV.9. Vérification vis à vis des déformations

Le déplacement horizontal à chaque niveau K de la structure est calculé par :

$$\delta_k = R \times \delta_{ek}$$
 RPA99.V2003 (Article 4.4.3)

 $\delta_{\it ek}$:Déplacement dû aux forces $\,F_i$ (y compris l'effet de torsion).

R: Coefficient de comportement.

Le déplacement relatif au niveau K par rapport au niveau K-1 est égal à :

$$\Delta_k = \delta_k - \delta_{k-1}$$
.....RPA.V2003(Formule 4 - 19)

Avec :
$$\Delta_k < 1\% \times h_k$$
......RPA99.V2003 (Art.5.10)

 h_k : Étant la hauteur de l'étage

niveau		Sens X_X								
inveau	$\delta_{\it ek}$ (cm)	δ_k (cm)	δ_{k-1} (cm)	Δ_k (cm)	h_k (cm)	Δ_{K}/h_{K} (%)				
Entre sol	0.0006	0.003	0	0.003	324	0.000926				
RDC	0.0024	0.012	0.003	0.009	414	0.00217				
Service	0.0042	0.021	0.012	0.009	306	0.00294				
2 étages	0.0061	0.0305	0.021	0.0095	306	0.00310				
3 étages	0.008	0.04	0.0305	0.0095	306	0.00310				
4 étages	0.010	0.05	0.04	0.01	306	0.00326				
5 étages	0.0119	0.055	0.05	0.005	306	0.00164				

6 étages	0.0136	0.065	0.055	0.01	306	0.00326
7 étages	0.0152	0.075	0.065	0.01	306	0.00326
8 étages	0.0167	0.08	0.075	0.005	306	0.00163
9 étages	0.0179	0.085	0.08	0.005	306	0.00163
10 étages	0.0189	0.09	0.085	0.006	306	0.00167

Tableau IV.6: Vérification des déplacements suivant X_X

niveau			Sen	as Y_Y		
mvcaa	$\delta_{\it ek}$ (cm)	$\delta_{_k}$ (cm)	δ_{k-1} (cm)	Δ_k (cm)	h_k (cm)	$\frac{\Delta_{\kappa}}{h_{\kappa}}$ (%)
Entre sol	0.0006	0.03	0	0.03	324	0,0092593
RDC	0.0024	0.012	0.03	-0.018	414	-0,004348
Service	0.0044	0.022	0.012	0.01	306	0,003268
2 étages	0.0067	0.033	0.022	0.011	306	0,0037582
3 étages	0.0091	0.045	0.033	0.012	306	0,0039216
4 étages	0.0115	0.057	0.045	0.012	306	0,0039216
5 étages	0.0137	0.065	0.057	0.007	306	0,002451
6 étages	0.0158	0.079	0.065	0.014	306	0,0045752
7 étages	0.0177	0.088	0.079	0.009	306	0,0031046
8 étages	0.0194	0.097	0.088	0.008	306	0,0027778
9 étages	0.0207	0.103	0.097	0.0065	306	0,0021242
10 étages	0.0219	0.109	0.103	0.006	306	0,0019608

Tableau IV.7 : Vérification des déplacements suivant Y_Y.

✓ Analyse des résultats

D'après le tableau ci-dessus nous constatons que les déplacements relatifs des niveaux sont inférieurs au centième de la hauteur d'étage.

IV.10. Justification vis-à-vis de l'effet P- Δ

L'effet P-Δ(effet de second ordre) est l'effet dû aux charges verticales après déplacement. Il est peut être négligé si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{p_K \times \Delta_K}{V_K \times h_k} \le 0,1 \text{ ; Tel que :}$$
 RPA99.V2003 (Article 5.9)

 p_k : Poids total de la structure et des charges d'exploitations associées au dessus du

niveau « k » ; avec :
$$p_k = \sum_{i=1}^{n} (W_{Gi} + \beta \times W_{Qi})$$
 RPA99.V2003 (Article 5.9)

 v_k : Effort tranchant d'étage de niveau « k ».

 Δ_k : Déplacement relatif du niveau « k » par rapport au niveau « k-1 ».

 h_k : Hauteur de l'étage « k ».

- Si $0.1 < \theta_k < 0.2$, l'effet P- Δ peut être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculée au moyens d'une analyse élastique du premier ordre par le facteur $\frac{1}{1-\theta}$.
- Si $\theta_k > 0.2$ la structure est partiellement instable elle doit être redimensionnée.

	h_k			Sens x-	x'	Sen	s y-y'	
Niveau	(cm)	P _k (KN)	Δ_k (cm)	V _k (KN)	θ_{k}	Δ_{k} (cm)	V _k (KN)	θ_{k}
Entre sol	324	32416,657	0.003	1377,114	0,02179589	0.03	1283,142	0,0023392129
RDC	414	29404,845	0.009	1074,28	0,05950365	-0.018	889,289	-0,001437633
Service	306	25755,654	0.009	1455,276	0,0520533	0.01	1271,176	0,06621334
2 étages	306	23091,241	0.0095	1390,66	0,05154998	0.011	1178,016	0,07366692
3 étages	306	20420,718	0.0095	1305,81	0,04855044	0.012	1101,413	0,07270774
4 étages	306	17849,907	0.01	1221,438	0,04775767	0.012	1028,058	0,06808919
5 étages	306	15110,361	0.005	1087,209	0,02270965	0.007	921,522	0,04018916
6 étages	306	12630,613	0.01	970,003	0,04255297	0.014	823,751	0,0701512
7 étages	306	10148,496	0.01	838,552	0,03955034	0.009	714,11	0,04412033

8 étages	306	7601,875	0.005	670,338	0,01853	0.008	567,846	0,0371867
9 étages	306	5119,752	0.005	507,516	0,00016878	0.0065	431,359	0,02521169
10 étages	306	2796,273	0.006	442,682	0	0.006	285,161	0

Tableau IV.8 : Vérification de l'effet P-Δ.

✓ Analyse des résultats :

On remarque, d'après les résultats obtenus que θ_k < 0.1 dans tous les niveaux, d'où les effets du second ordre (effet P- Δ) peuvent être négligés.

IV.11. Vérification de la résultante des forces sismiques

Selon l'Article **4.3.6** du **RPA99.Version2003**, la résultante des forces sismiques à la base V_{dyn} obtenue par combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente V_{st} .

	V _{dyn} (KN)	V _{dyn} (KN)	V _{dyn} / V _{st}
Sens xx	1539.90	1625.90	1.055
Sens yy	1472.95	1500.23	1.018

Tableau IV.9: vérification de la résultante des forces.

✓ Analyse des résultats :

 $\frac{V_{dyn}}{V_{sta}} \ge 0.80 \Longrightarrow$ Donc les paramètres de la réponse calculés ne seront pas majorés.

V_{dyn}: Effort tranchant de calcul retiré à partir des résultats donnés par SAP2000.

Conclusion

Après avoir modélisé la structure on a pu opter à des voiles de 20 cm d'épaisseur pour le E/sol et RDC, des voiles de 15 cm pour les autres niveaux, ainsi que, les dimensions des poteaux et des poutres principales et secondaire sont acceptables et vérifies les conditions du RPA99.V2003, (pour avoir des translations dans les deux premiers modes, la satisfaction de l'interaction voiles-portiques et le taux de participation massique).

La simplicité de la structure doit être respectée en priorité par le concepteur car sa modélisation, son calcul, son dimensionnement et même sa mise en œuvre permettent de prévoir aisément son comportement en cas de séisme. La structure doit être le plus possible symétrique

car la distribution régulière des éléments structuraux permet une transmission directe des forces : Cette symétrie devrait être respectée en plan, de même que l'uniformité de la structure en élévation ; en effet, symétrie et uniformité évite l'apparition de zones critiques, et la concentration de contraintes. Nous conseillons donc aux concepteurs de distribuer régulièrement et symétriquement les éléments structuraux.

Chapitre V

Etudes des éléments structuraux

Introduction:

Une construction en béton armé demeure résistante avant et après séisme grâce à ces éléments principaux (voiles, poteaux, poutres). Cependant ces derniers doivent être bien armés (ferrailles) et bien disposés pour qu'ils puissent reprendre tous genres de sollicitations.

V.1: Etude des poteaux :

Les poteaux sont des éléments verticaux de la structure, ils doivent résister aux différents types de sollicitations, et satisfaire les exigences de sécurité vis-à-vis de la résistance et de la ductilité.

Leur ferraillage se fait à la flexion composée selon les combinaisons de sollicitations les plus défavorables :

- ➤ Moment maximal et un effort normal correspondant.
- > Effort normal maximal avec le moment correspondant.
- Effort normal minimal avec le moment correspondant.

Les combinaisons utilisées pour la détermination des sollicitations précédentes sont :

- 1) 1,35G + 1.5Q
- 2) G + Q
- 3) $G + Q \mp E_x$
- 4) $0.8G \mp E_x$
- 5) $G + Q \mp E_Y$
- 6) $0.8G \mp E_{Y}$

V.1.1. Les recommandations du RPA 99/2003 :

a) Les armatures longitudinales:

- Les armatures longitudinales doivent être à haute adhérence, droites et sans crochets.
- Le pourcentage minimal est de: 0.8 % (Zone II).
- Le pourcentage maximal et de : 4 % en zones courantes.

6 % en zones de recouvrement.

- Le diamètre minimal est de 12mm.
- \triangleright La longueur minimale des recouvrements est de : $40 \times \phi$ (zone II).

- La distance entre les barres verticales dans une face du poteau ne doit pas dépasser 25cm (zone II).
- Les jonctions par recouvrement doivent être faites à l'extérieur des zones nodales.

La zone nodale est définie par l' et h'. l' = 2h $h' = \max(\frac{h_e}{6}, b_1, h_1, 60cm)$ $(h_1*b_1) : section de poteau.$

h_e: hauteur d'étage.

Figure V-1: Zone nodale

Les valeurs numériques relatives aux prescriptions du RPA99 sont apportées dans le tableau suivant :

	Section du		A _{max} (cm ²)	A_{max} (cm ²)
Niveau	poteau (cm²)	A _{min} (cm ²)	zone courante	zone recouvrement
S- sol et E-sol	70×75	42	210	315
RDC et 1 ^{er} étage	70×65	36.40	182	273
2 ^{ere} 4 ^{eme} étage	60×65	31.20	156	234
5 ème7 eme étages	55×60	26.40	132	198
8 ^{eme} 10 ^{eme} étages	50×55	22	110	165

Tab V.1: Armatures longitudinales minimales et maximales selon le RPA dans les poteaux.

b) Armatures transversales:

Les armatures transversales des poteaux sont calculées à l'aide de la formule suivante :

$$\frac{A_{t}}{t} = \frac{\rho_{a} V_{u}}{h_{1} \cdot f_{e}}$$
 RPA99 (Article 7.4.2.2)

Avec:

V_u: L'effort tranchant de calcul.

h₁: Hauteur totale de la section brute.

f_e : Contrainte limite élastique de l'acier d'armature transversale.

 ρ_a : Coefficient correcteur qui tient compte du mode de rupture fragile par effort tranchant; il est pris égal à 2,5 si l'élancement géométrique λ_g dans la direction considérée est supérieur ou égal à 5 et à 3,75 dans le cas contraire.

t : L'espacement des armatures transversales dont la valeur est déterminée dans la formule précédente; par ailleurs la valeur max de cet espacement est fixée comme suit :

- Dans la zone nodale : t = min (10,15cm) en zone IIa
- Dans la zone courante : $t \le 15 \phi_l$ en zone IIa

Où : ϕ_t est le diamètre minimal des armatures longitudinales du poteau.

- La quantité d'armatures transversales minimales :

$$\frac{A}{t \times b_1}$$
 en % est donnée comme suit :

$$A_t^{\min} = 0.3\% \ (t \times b_1) \ si \ \lambda_g \ge 5$$

$$A_t^{\min} = 0.8\% \ (t \times b_1) \ si \lambda_g \le 3$$

Si: $3 < \lambda_g < 5$ Interpoler entre les valeurs limites précédentes.

 $\lambda_{\scriptscriptstyle g}$: est l'elencement géométrique du poteau

$$\lambda_g = \left(\frac{l_f}{a} \text{ ou } \frac{l_f}{b}\right); \text{ Avec a et b, dimensions de la section droite du poteau dans la direction de déformation considérée, et } l_f: \text{longueur de flambement du poteau.}$$

Les cadres et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de $10\phi_r$ minimum.

Les cadres et les étriers doivent ménager des cheminées verticales en nombre et diamètre suffisants ϕ ..che min ées $\geq 12cm$ pour permettre une vibration correcte du béton sur toute la hauteur de poteau.

V.1.2. Sollicitations de calcul:

Les sollicitations de calcul selon les combinaisons les plus défavorables sont extraites directement du logiciel SAP2000V14, les résultats sont résumés dans le tableau ci-après :

 $N_{max} \longrightarrow M_{cor}$ V M_{max} — \rightarrow N cor N_{min}-→ M cor Niveau N(KN) N(KN) N(KN) (KN) M M M (KN.m) (KN.m) (KN.m) S- sol et E-sol 2801.62 4.99 4.52 185.81 2075.69 234.28 12.11 RDC et 1^{er}étage 2494.09 18.71 372.18 621.95 3.43 24.59 314.68 2^{ere}4^{eme} étage 2003.44 13.44 176.20 951.32 8.97 138.50 111.61 5 ème ...7 eme étages 1302.25 13.90 160.63 758.26 168.61 11.67 100.86 8^{eme}...10^{eme} étages 651.41 108.032 365.32 75.07 22.27 15.61 66.46

Tab V.2-Sollicitations dans les poteaux

V.1.3: calcul du Ferraillage

Ferraillage longitudinales :

Le ferraillage des poteaux se fait dans les deux plans et selon la combinaison la plus défavorable, les résultats obtenus sont récapitulés dans le tableau suivant

Niveau	Section (cm ²)	A _{min} (cm ²) (RPA)	A (cm ²) socotec	A adoptée (cm ²)
S- sol et E-sol	70×75	42	0.5	10HA20+6HA16=43.48
RDC et 1 ^{er} étage	70×65	36.40	8.67	6HA16+8HA20=37.19
2 ^{ere} 4 ^{eme} étage	60×65	31.20	0	10HA16+4HA20=32.58
5 ème7 eme étages	55×60	26.40	0.7	4HA16+6HA20=26.86
8 ^{eme} 10 ^{eme} étage	50×55	22	1.07	4HA14+8HA16=24.12

Tableau V.3: Les Armatures longitudinale dans les poteaux

b) Ferraillage transversales

Niveau	S-sol/E-sol	RDC et 1 ^{er}	2 ^{eme} 4 ^{eme}	5 ^{eme} 7 ^{eme}	8 ^{eme} 10 ^{eme}
Section (cm ²)	70*75	70*65	60*65	55*60	50*55
ϕ_l^{\max} (cm)	2	2	2	2	1.6
ϕ_{\min}^{l} (cm)	1.6	1.6	1.6	1.6	1,4
l_f (cm)	226.8	289.8	214,2	214,2	214,2
λg	3,24	4.45	3,57	3.89	4,28
Vu (KN)	234.28	314.68	111.61	100.86	66.46
1 _y	80	80	80	80	80
St zone nodale (cm)	10	10	10	10	10
St zone courante (cm)	15	15	15	15	15
$A_t(cm^2)$	4.39	5,32	2.41	2.36	1,70
A min (cm²) zone courante	6.50	4.26	2.36	4.76	3.60
A_{\min}^{t} (cm ²)zone nodale	5.18	4.84	4.05	2.12	2.4
Nbre de cadres	4Ø8	3Ø8	3 (Ø8)	3 (Ø8)	3(Ø8)

Tableau V.4: Les armatures transversales dans les poteaux

Conformément au RPA99 version 2003 et au BAEL 91, le diamètre des armatures transversales est :

$$\Phi \ge \frac{\Phi_l^{\text{max}}}{3} \Rightarrow \frac{20}{3} = 6.66mm$$
 vérifiée

Vérifications :

a). Vérification au flambement

Selon BAEL91, (art 4.4.1) : les éléments soumis à la flexion composée doivent être justifiés vis-à-vis de l'état limite ultime de stabilité de forme (flambement).

L'effort normal ultime est définit comme étant l'effort axial que peut supporter un poteau sans subir des instabilités de forme par flambement.

La vérification se fait pour le poteau le plus sollicité à chaque niveau et le plus élancé.

Critère de la stabilité de forme :

Le poteau le plus élancé : (l₀=4.14m)

D'après le CBA93 on doit vérifier que :

$$N_{u} = \alpha \times \left(\frac{B_{r} \times f_{c28}}{0.9 \times \gamma_{b}} + \frac{A_{s} \times f_{e}}{\gamma_{s}}\right)$$
 CBA93 (Art: B.8.2.1)

Avec : B_r : Section réduite du béton

 $\gamma_b = 1.5$: Cœfficient de sécurité de béton (cas durable).

 $\gamma_s = 1.15$ coefficient de sécurité de l'acier.

 α : Coefficient réducteur qui est fonction de l'élancement λ_{g} .

A_s: section d'acier comprimée prise en compte dans le calcul.

$$\begin{cases} \alpha = \frac{0.85}{1 + 0.2 \times \left(\frac{\lambda}{35}\right)^2} & \text{si: } \lambda \le 50 \\ \alpha = 0.6 \times \left(\frac{50}{\lambda}\right) & \text{si: } 50 \le \lambda \le 70 \end{cases}$$

Tel que :
$$\lambda = \frac{l_f}{i}$$
 avec $i = \sqrt{\frac{I}{b \times h}}$

Cas d'une section rectangulaire : $I = \frac{b \times h^3}{12}$

D'où :
$$\lambda = \frac{2.898}{0.216} = 13.42 \text{ Avec : } l_f = 0.7 \times l_0$$

$$B_r = (a-2) \times (b-2)$$
 avec : $\begin{cases} a : \text{largeur de la section nette} \\ b : \text{hauteur de la section nette} \end{cases}$

A_s: Section d'armature.

Les résultats de vérification des poteaux au flambement sont résumés dans le tableau suivant :

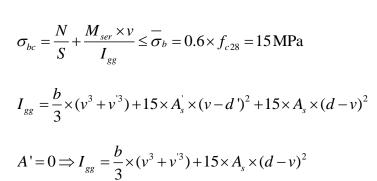

Niveaux	Section	L_0	$l_{\rm f}$	i	λ	α	As	B_r	N_{ultime}	N _{max}
	(cm ²)	(m)	(m)	(m)			(m ²)	(m ²)	(MN)	(MN)
S-sol et E-sol	75×70	3.24	2,268	0,216	10,50	0,835	0,004348	0,4964	8.938	2.801
RDC et 1 ^{er} etage	70×65	4.14	2,898	0,202	14.35	0,822	0,003719	0,4284	7.584	2.494
2 ^{eme} 4 ^{eme}	65×60	3,06	2,142	0,187	11.45	0,832	0,003493	0,3654	6.640	2.003
5 ^{eme} 7 ^{eme}	60×55	3,06	2,142	0,173	12.38	0,829	0,002686	0,3074	5.493	1.302
8 ^{eme} 10 ^{eme}	55×50	3,06	2,142	0,159	13.47	0,825	0,002412	0,2544	4.578	0.651

Tableau V.5: vérification du flambement des poteaux

 $N_{max} < Nu \Rightarrow Pas$ de risque de flambement.

b). Vérification des contraintes :

Comme La fissuration est peu nuisible, donc la vérification se fait pour la contrainte de compression du béton seulement, cette vérification sera faite pour le poteau le plus sollicité à chaque niveau.

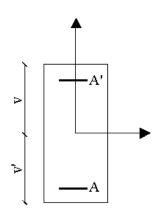


Fig. V.2: Section d'un poteau

$$v = \frac{1}{B} \times (\frac{b \times h^2}{2} + 15 \times A_s \times d)$$

$$v' = h - v$$
 et d=h-3cm

$$B = b \times h + 15 \times A_s$$

Les résultats de calcul sont résumés dans le tableau suivant :

							N_{ser}	M_{ser}	$\sigma_{_{bc}}$	$\stackrel{-}{\sigma}_{bc}$	
Niwaany	Section	d	As	ν	ν'	\mathbf{I}_{gg}					Obs
Niveaux	(cm ²)	(cm)	(cm ²)	(cm)	(cm)	(m4)	(KN)	(KN.m	(MPa)	(MP a)	
S-sol et E-sol	75×70	72	43.48	46.40	28.60	0,0330	2036.19	39.102	4.43	15	vérifiée
RDC et leretage	70×65	67	37.19	38.50	31.50	0,0237	1816.66	69.310	5,12	15	vérifiée
2eme4e me	65×60	62	34,93	36	29	0,0177	1459.72	27.004	4.29	15	vérifiée
5eme7eme	60×55	57	26,86	34.75	25.25	0,0126	949.062	37.020	2.98	15	vérifiée
8 ^{eme} 10 ^{eme}	50×45	47	24.12	28.04	21.952	0,0062	475.392	41.673	3,99	15	vérifiée

Tableau V.6: Vérification des contraintes dans le béton des poteaux

c). Vérification des sollicitations tangentes :

Selon le *RPA99* version 2003 (Article 7.4.2.2)

$$\tau_{bu} \leq \overline{\tau}_{bu} \quad \text{Tel que} : \overline{\tau}_{bu} = \rho_d \times f_{c28} \text{ avec} : \rho_d = \begin{cases} 0.075 \, si \, \lambda_g \geq 5 \\ 0.04 \, si \, \lambda_g < 5 \end{cases}$$

$$\lambda_g = \frac{l_f}{a} ou \, \lambda_g = \frac{l_f}{h}$$

 $\tau_{bu} = \frac{V_u}{b_0 \times d}$ (La contrainte de cisaillement conventionnelle de calcul dans le béton sous combinaison sismique).

Tous les résultats de calculs effectués sont représentés dans le tableau suivant :

Niveaux	Section	l_{f}			d	$V_{\rm u}$			
	(cm ²)	(m)	λ_g	$ ho_{\scriptscriptstyle d}$	(cm)	(KN)	τ_u (MPa)	$\overline{\tau}_u^-$ (MPa)	Obs
S-sol et E-sol									
	75×70	2.268	3,24	0,04	73	234.285	0.458	1	vérifiée
RDC et 1eretage	70×65	2.898	4.45	0,04	67	314.689	0,722	1	vérifiée
2eme4eme	65×60	2,142	3,57	0,04	62	111.618	0,300	1	vérifiée
5eme7eme	60×55	2,142	3.89	0,04	57	100.862	0,322	1	vérifiée
8 ^{eme} 10 ^{eme}	50×45	2,142	4,28	0,04	47	66.46	0,314	1	vérifiée

Tableau V.7 : Vérification des sollicitations tangentes

V.1.4. Dispositions constructives :

Longueur des crochets :

$$L = 10\Phi_1 = 10 \times 1.2 = 12cm$$

La longueur minimale des recouvrements est de :

$$L_r \ge 40 \phi \implies 40 \times 2.0 = 80 \text{cm}$$

On adopte : Lr = 100 cm

$$L_{\rm r} \ge 40 \phi \Rightarrow 40 \times 16 = 64 \text{cm}$$

On adopte : Lr = 80 cm

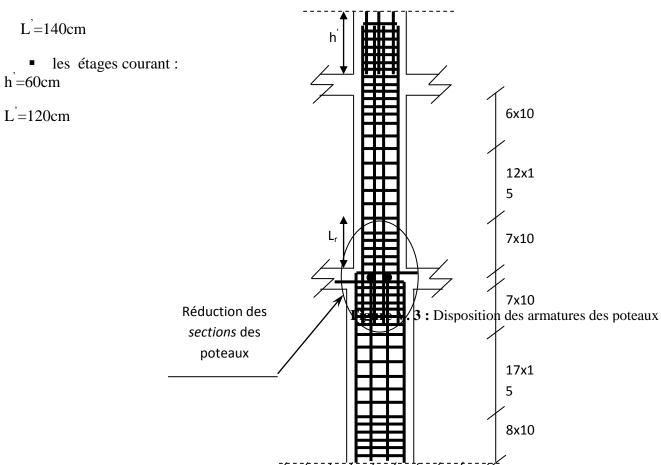
Détermination de la zone nodale :

La détermination de la zone nodale est nécessaire car à ce niveau qu'on disposera les armatures transversales d'une façon à avoir des espacements très rapprochés à cause de la sensibilité de cet endroit qu'est constitué par le nœud poteau poutre.

Les jonctions par recouvrement doivent être faites si possible à l'extérieur de ces zones nodales sensibles (selon la RPA99 version2003)

La longueur à prendre en compte pour chaque barre est donnée dans la figure suivante

Pour E/sol


h'= Max (
$$\frac{h_e}{6}$$
; b_1 ; h_1 ; 60 cm) = max (69,75,70,60)

Donc: $\dot{h} = 75cm$

$$L = 2h = 2 \times 75 = 150$$

• Pour RDC:

h = 70cm

• Schéma de ferraillage des poteaux

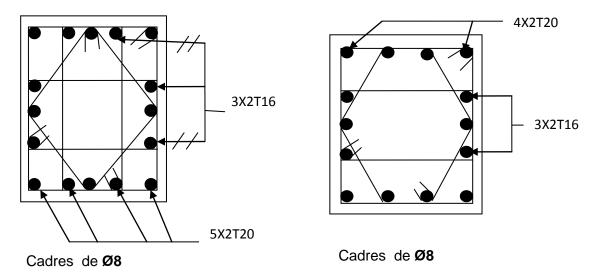
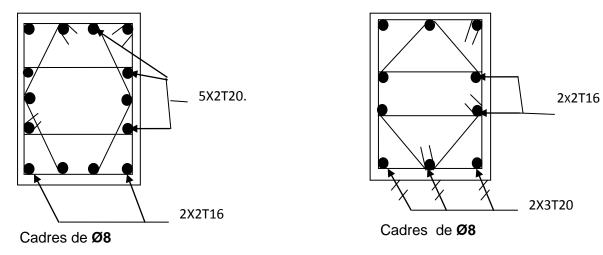



Figure V.4. schéma de ferraillage des Poteaux (75x70)

Figure V.5. schéma de ferraillage des Poteaux (70x65)

Figure V.6.schéma de ferraillage des Poteau (65x60)

Figure V.7. schéma de ferraillage des Poteau (60x55)

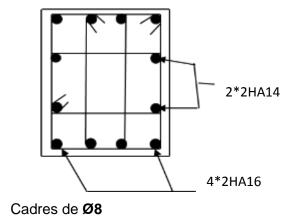


Figure V.8. schéma de ferraillage des Poteau (55x50) cm²

V.2. Etude des poutres :

Les poutres sont sollicitées en flexion simple, sous un moment fléchissant et un effort tranchant. Le moment fléchissant permet la détermination des dimensions des armatures longitudinales. L'effort tranchant permet de déterminer les armatures transversales.

On distingue deux types de poutres, les poutres principales qui constituent des appuis aux poutrelles, les poutres secondaires qui assurent le chaînage.

Après la détermination des sollicitations, on procède au ferraillage en respectant les prescriptions données par le RPA99/version 2003 et celles données par le BAEL91.

Les poutres sont étudiées en tenant compte des efforts données par le logiciel SAP2000, combinés par les combinaisons les plus défavorables données par le RPA99/version2003 suivantes :

- 4 1,35 × G + 1,5 × Q
- \bullet G + Q
- \bullet G + Q + E
- \Leftrightarrow G+Q-E
- \bullet 0,8 × G + E
- \bullet 0,8 \times G E

V.2.1 Recommandation du RPA99/2003 (Art 7.5.1)

a) Coffrage:

Les poutres doivent respecter les dimensions ci-après :

$$\begin{cases} b \ge 20 \text{ cm} \\ h \ge 30 \text{ cm} \\ b_{\text{max}} \le 1.5 h + b_1 \end{cases}$$
 RPA99 (Article 7.5.1)

b) ferraillage

Les armatures longitudinales

- ➤ Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0.5% b×h en toute section.
- Le pourcentage total maximum des aciers longitudinaux est de :
- 4 % b×h En zone courante.

6% b×h En zone de recouvrement.

RPA99 (Article 5.2)

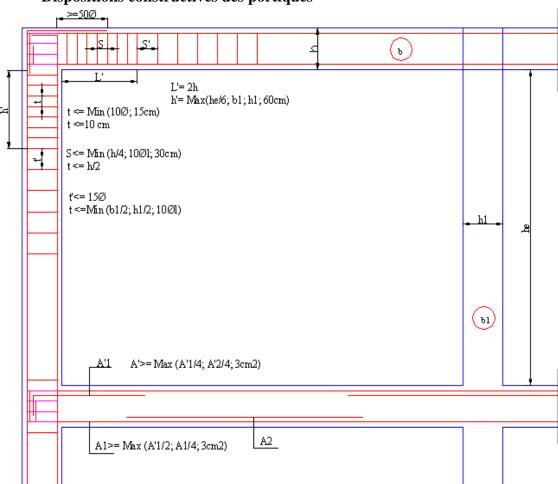
- ➤ Les poutres supportant de faibles charges verticales et sollicitées principalement par les forces latérales sismiques doivent avoir des armatures symétriques avec une section en travée au moins égale à la moitié de la section sur appui.
- La longueur minimale des recouvrements est de :

✓ 40 \phi en zone I et II

✓ 50 \phi en zone III

 $avec:\phi_{max}:$ est le diamétre maximale utilisé.

- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit avec des crochets à 90°.
- Les cadres du nœud disposés comme armatures transversales des poteaux, sont constitués de 2U superposés formant un carré ou un rectangle (là où les circonstances s'y prêtent, des cadres traditionnels peuvent également être utilisés).
- ➤ Les directions de recouvrement de ces U doivent être alternées, néanmoins, il faudra veiller à ce qu'au moins un coté fermé des U d'un cadre soit disposé de sorte à s'opposer à la poussé au vide des crochets droits des armatures longitudinales des poutres.
- On doit avoir un espacement maximum de 10cm entre deux cadres et un minimum de trois cadres par nœuds.
- Les armatures transversales : RPA99V2003 (Art 7.5.2.2)
- La quantité d'armatures transversales minimales est donnée par :


 $A_t = 0.003 \times S \times b$

L'espacement maximum entre les armatures transversales est déterminé comme suit : Dans la zone nodale et en travée si les armatures comprimées sont nécessaires :

Minimum de :
$$S \leq \min(\frac{h}{4}; 12\phi_l)$$

En dehors de la zone nodale : $S \le \frac{h}{2}$ Avec : h : La hauteur de la poutre

- La valeur du diamètre ϕ_t des armatures longitudinales à prendre est le plus petit diamètre utilisé, et dans le cas d'une section en travée avec armatures comprimées. C'est le diamètre le plus petit des aciers comprimés.
- Les premières armatures transversales doivent être disposées à 5cm au plus du nu d'appui ou de l'encastrement.



• Dispositions constructives des portiques

Figure V.9: Dispositions constructives des portiques

- Détail d'un cours d'armatures transversales de la zone nodale :
- Recommandation du RPA99/2003 (Art 7.5.1)

2U superposés (avec alternance dans l'orientation)

Recommandation de BAEL :

La section minimale des aciers longitudinaux est de :

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e}$$
 (Condition de non fragilité)

Figure V.10: 2U superposés

V.2.2. Ferraillages des poutres :

Exemple de calcul :

Prenons comme exemple de calcul de ferraillage la poutre principale (40×45) la plus

sollicitée avec les sollicitations suivantes :
$$\begin{cases} Mt = 114,13KN.m \\ Ma = 115,47KN.m \end{cases}$$

Armatures en travée :
$$\mu_{bu} = \frac{114,13\times10^{-3}}{0.4\times0.42^2\times14.2} = 0,113$$

$$\mu_{bu} = 0,113 < \mu_l = 0.3916 => A'_s = 0$$

$$\alpha = 0,15 => z = 0,394m => A_s = 8,32 \text{ cm}^2$$

On opte pour $As = 6T14 => A_s = 9.24 \text{ cm}^2$

Armatures en appui :
$$\mu_{bu}=0.115<\mu_l=0.3916 \ \to A'_s=0$$

$$\alpha=0.153=>z=0.396m \ \to \ A_s=8,38\ cm^2$$

On adopte pour $A_s = 6 \text{ HA } 14 = 9,24 \text{ cm}^2$

Les tableaux suivants regroupent le calcul de ferraillage des différentes poutres.

a) Les armatures longitudinales :

Le ferraillage adopté doit respecter les exigences du RPA

Etage	Type de la	Sectio	Localisatio	A	A _{min}	A adoptée
	poutre	n	n	(cm^2)	(cm ²)	(cm^2)
		(cm ²)				
	Poutre	40×45	Appui	8,38	9	6HA14=9,24
E/SOL	principale		Travée	8,31		6HA14=9,24
	Poutre	40×45	Appui	4,47	9	6HA14=9,24
	secondaire		Travée	8,71		6HA14=9,24
	Poutre	40×45	Appui	12,01	9	6HA16=12,06
RDC	principale		Travée	11,32		5HA16+1HA14=11,59
	Poutre	40×45	Appui	9,57	9	3HA16+3HA14=10,65
	secondaire		Travée	7,65		6HA14=9,24
Etage	Poutre	40×45	Appui	11,55	9	5HA16+1HA14=11,59
	principale		Travée	11,41		5HA16+1HA14=11,59
service	Poutre	40×45	Appui	11,82	9	6HA16=12,06
	secondaire		Travée	9,98		3HA16+3HA14=10,65
	Poutre	40×45	Appui	11,97	9	6HA16=12,06
Etage	principale		Travée	10.60		3HA16+3HA14=10,65
courant	Poutre	40×45	Appui	10,61	9	3HA16+3HA14=10,65

	secondaire		Travée	11,34		5HA16+1HA14=11,59
Terrasse	Poutre	40×45	Appui	7,28	9	6HA14=9,24
	principale		Travée	3,11		6HA14=9,24
Inaccessibl	Poutre	40×45	Appui	5,23	9	6HA14=9,24
e	secondaire		Travée	5,16		6HA14=9,24

Tableau V.8: Tableau récapitulation du ferraillage des poutres

b) Armatures transversales:

Le diamètre des armatures transversales est donnée par :

$$\phi \le \min\left(\phi_{l\min}; \frac{h}{35}; \frac{b}{10}\right)$$
BAEL91 (Article H.III.3)

• **Poutres principales**
$$\phi \le \min\left(1.2; \frac{45}{35}; \frac{40}{10}\right) = \min(1.2; 1.28; 4)$$

Donc on prend $\phi_t = 10 \text{mm} \Rightarrow A_t = 4HA8 = 2.01cm^2 \text{ (un cadre et un étrier)}$

• Poutres secondaires
$$\phi \le \min\left(1.2; \frac{45}{35}; \frac{40}{10}\right) = \min(1.2; 1.28; 4)$$

Donc on prend $\phi_t = 10 \text{mm} \implies A_t = 4HA8 = 2.01cm^2 \text{ (un cadre et un étrier)}$

o Calcul des espacements des armatures transversales

Selon le RPA addenda2003

$$\checkmark$$
 Zone nodale: $S^{\tau} \leq Min(\frac{h}{4}; 12\phi_{min}; 30 \text{ cm})$.

Poutres principales : $S_t \le Min(11.25cm; 14.4cm; 30cm)$ Soit : $S_t=10cm$

Poutres secondaires : $S_t \le Min(11.25cm; 14.4cm; 30cm)Soit : S_t=10 cm$

✓ Zone courante :
$$S_t \le \frac{h}{2}$$

Poutres principales: $S_t \le \frac{h}{2} \Longrightarrow S_t \le \frac{45}{2} = 22.5 \text{cm} \implies S_t \le 22.5 \text{cm}$ Soit: $S_t = 15 \text{cm}$

Poutres secondaires : $S_t \le \frac{h}{2} \Longrightarrow S_t \le \frac{45}{2} = 22.5 \text{cm} \implies S_t \le 22.5 \text{cm}$ Soit : $S_t = 15 \text{cm}$

$$A_t^{\text{min}} = 0.003 \times S_t \times b = 0.003 \times 15 \times 40 = 1.8 cm^2$$

$$A_t = 2.01cm^2 > A_t^{\text{min}} = 1.8cm^2$$
 Condition vérifiée

V.2.3Vérification:

a) Vérification du (%) des armatures selon le RPA 99 :

Pourcentage maximum des armatures longitudinales

✓ Poutres principales

En zone courante:

$$A_{max} = 4\% \times b \times h = 0.04 \times 40 \times 45 = 72 cm^2 > A_{cal} \rightarrow \text{v\'erifi\'ee}$$

En Zone de recouvrement :

$$A_{max} = 6\% \times b \times h = 0.06 \times 40 \times 45 = 108 cm^2 > A_{cal} \rightarrow \text{v\'erifi\'ee}$$

✓ Poutres secondaires:

En zone courante:

$$A_{max} = 4\% \times b \times h = 0.04 \times 40 \times 45 = 72 cm^2 > A_{cal} \rightarrow \text{v\'erifi\'ee}$$

En zone de recouvrement :

$$A_{max} = 6\% \times b \times h = 0.06 \times 40 \times 45 = 73.5 cm^2 > A_{cal} \rightarrow \text{v\'erifi\'ee}$$

• Les longueurs de recouvrement :

La longueur minimale des recouvrements est :

$$\phi = 12 \,\text{mm} : \text{Lr} = 40 \,\phi = 40 \times 1.2 = 48 \,\text{cm}$$
 soit L_r= 60 cm

$$\phi = 14 \text{ mm} : \text{Lr} = 40 \phi = 40 \times 1.4 = 56 \text{cm}$$
 soit L_r= 70 cm

$$\phi = 16 \,\text{mm} : \text{Lr} = 40 \,\phi = 40 \times 1.6 = 64 \,\text{cm}$$
 soit L_r= 80 cm

b) Vérifications à l'ELU:

1) Condition de non fragilité :

$$A > A_{min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_0} = 2.028 \text{cm}^2$$
 Condition vérifiée.

2) Contrainte tangentielle maximale :

$$\tau_{bu} = \frac{V_u}{b_0 \times d} < \tau_{adm}$$

Fissuration peu nuisible: $\tau_{adm} = \min\left(\frac{0.2}{\gamma_b}f_{c28}; 5 MPa\right) = 3.33 MPa$

Poutres	V _u (KN)	$\tau_{\rm bu}(MPa)$	$\tau_{adm}(MPa)$	Observation
Poutre	314.96	1.87	3.33	Vérifiée
principale				
Poutre	352.43	2.09	3.33	Vérifiée
secondaire				

Tableau V. 9: Vérification des contraintes tangentielles

 $\tau_{\rm bu} < \tau_{adm} \rightarrow {\rm on \ a \ pas \ de \ risque \ de \ cisaillement}$

• Vérification des armatures longitudinales à l'effort tranchant :

• Poutres principales :

Appui intermédiaire :

$$\begin{split} A_{l} &\geq \frac{1.15}{f_{e}} \times [V_{u} + \frac{M_{a}}{0.9 \times d}] \\ A_{l} &\geq \frac{1.15}{400} \times [248.4 - \frac{147.94}{0.9 \times 0.42}] \times 10^{-3} \Rightarrow A_{l} \geq -0.016cm^{2} \end{split}$$

Aucune vérification à faire au niveau de l'appui intermédiaire car l'effort tranchante est négligeable devant l'effort de moment

• Appuis de rive :

$$A_l \ge \frac{1.15 \times V_u}{f_s} \implies A_l \ge \frac{1.15 \times 314.96 \times 10^{-3}}{400} = 9.005 cm^2$$
 Condition vérifiée.

•Poutres secondaires

• Appui intermédiaire :

$$A_{l} \ge \frac{1.15}{f_{e}} \times [V_{u} + \frac{M_{a}}{0.9 \times d}] \Rightarrow A_{l} \ge \frac{1.15}{400} \times [264,16 - \frac{136,08}{0.9 \times 0.42}] \times 10^{-3} \Rightarrow A_{l} \ge -0.016cm^{2}$$

Aucune vérification à faire au niveau de l'appui intermédiaire car l'effort tranchante est négligeable devant l'effort de moment

• Appuis de rive :

$$A_l \ge \frac{1.15 \times V_u}{f_e} \implies A_l \ge \frac{1.15 \times 264,16 \times 10^{-3}}{400} = 9.005 cm^2$$
 Condition vérifiée

$$\frac{\gamma_s}{f_e} \times (V - \frac{M_a}{0.9 \times d}) \le 0 \Rightarrow$$
aucune vérification pour les armatures longitudinales à l'effort tranchant

c) Vérification à l'ELS:

1) L'Etat limite d'ouvertures des fissures :

Aucune vérification à faire car la fissuration est peu préjudiciable.

2) État limite de compression du béton :

La fissuration est peu nuisible, donc la vérification à faire est la contrainte de compression du béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

Calcul de
$$y : \frac{b \times y^2}{2} + 15(A_s + A_s) \times y - 15 \times (d \times A_s + d \times A_s) = 0$$

Calcul de
$$I: I = \frac{b_0 \times y^3}{3} + 15 \times \left[A_s \times (d - y)^2 + A_s \times (y - d')^2 \right]$$

Les résultats de calcul sont résumés dans le tableau suivant :

Poutres	Localisation	Mser (KN.m)	I + (cm ⁴)	Y (cm)	σ_{bc} (MPa)	σ_{bc} (MPa)	Observation $\sigma_{bc} < \sigma_{bc}$
Poutre	Appuis	84.14	42573.10	7.33	14.48	15	Vérifié
principale	Travée	56.90	65087.20	9.14	7.99	15	Vérifié
Poutre secondaire	Appuis	55.03	42573.10	7.33	9.47	15	Vérifié
secondane	Travée	56.43	65087.20	9.14	7.92	15	Vérifié

Tableau V.10: Résultats de vérification des contraintes dans le béton.

3) Vérification de la flèche :

La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites.

$$\begin{cases}
\frac{h}{L} \ge \frac{1}{16} \dots (1) \\
\frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots (2) \\
\frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots (3)
\end{cases}$$

• Poutres secondaires :

•
$$\frac{h}{l} \ge \frac{1}{16}$$

 $\frac{h}{l} = \frac{45}{450} = 0.10 > 0.062$ Condition vérifiée

$$\bullet \quad \frac{h}{l} \ge \frac{M_t}{10 \times M_0}$$

$$M_t = 56.43$$
KN. m

$$G = 7.59 KN/m$$
 ; $Q = 5.25 \ KN/m$; $G_0 = 25 \times 0.4 \times 0.45 = 4.5 \ KN/m$

$$G_T = 7.59 + 4.5 = 12.09 KN/m$$

$$q_s {=} \; G + Q = 12.09 {+} 5.25 {=} 17.34 KN/m$$

$$M_0 = \frac{qs \times L^2}{8} = 43.89$$
KN. m

$$\frac{h}{l} = 0.10 \ge \frac{M_t}{M_0 \times 10} = 0.128.$$
 Condition n'est pas vérifiée

• La vérification a flèche est nécessaire :

Planchers	RDC	Terrasse inaccessible
q _{jser} (KN/ml)	2.50	3.51
q _{gser} (KN/ml)	3.08	4.10
q _{pser} (KN/ml)	6.33	4.75
M _{jser} (KN.m)	4.75	6.67
M _{g ser} (KN.m)	5.86	7.78
M _{pser} (KN.m)	12.03	9.02
$I_0 (cm^4)$	1.45×10 ⁻³	1.45×10 ⁻³
P	0.0055	0.0055
$\lambda_{ m v}$	3.81	3.81
λ_{i}	1.52	1.52
$\sigma_{sj}(MPa)$	13.76	19.34
$\sigma_{sg}(MPa)$	16.98	22.56
$\sigma_{sp}(MPa)$	34.86	26.13
μ_{j}	0.52	0.45
$\mu_{ m g}$	0.48	0.0077
$\mu_{ m p}$	0.28	0.0090
$If_{ij}(cm)^4$	0.003	0.0053
$If_{ig}(cm)^4$	0.0045	0.0068
$If_{ip}(cm)^4$	0.051	0.010
$If_{vg}(cm)^4$	0.015	0.0107

$f_{ji}(m)$	7.79×10 ⁻⁵	7.90×10^{-5}
$f_{gi}(m)$	8.04×10 ⁻⁵	7.90×10 ⁻⁵
$f_{pi}(m)$	1.47×10 ⁻⁵	7.33×10 ⁻⁵
$f_{gv}(m)$	7.29×10 ⁻⁵	0.000137
$\Delta f(m)$	0.0216	0.0227
f_{adm}	0.9	0.9

Tableau. V.11. vérification de la flèche

• Poutres principales :

•
$$\frac{h}{l} \ge \frac{1}{16}$$

•
$$\frac{h}{1} = \frac{45}{455} = 0.098 > 0.0625$$
 condition vérifiée

$$\bullet \quad \frac{h}{l} \ge \frac{M_t}{10 \times M_0}$$

$$M_t = 56.90 KN. m$$

$$G = 18.64 \text{KN/m}$$
; $Q = 21.62 \text{ KN/m}$; $G_0 = 25 \times 0.40 \times 0.40 = 4.\text{KN/m}$

$$G_T = 18.64 + 4.5 = 23.14 \text{ KN/m}$$

$$q_u = G + Q = 23.14 + 21.62 = 44.76 KN/m$$

$$M_0 = \frac{q_u \times L^2}{8} = 115.83 \text{KNm}$$

$$\frac{A}{b_0 \times d} = \frac{9 \times 10^{-4}}{0.4 \times 0.42} = 0.0053 \le \frac{4.2}{f_e} = 0.0105$$
Condition vérifiée

Donc : La vérification de la flèche n'est pas nécessaire

V.2.4 Schéma de ferraillage des poutres

Les schémas de ferraillage des poutres sont représentés dans schémas ci après :

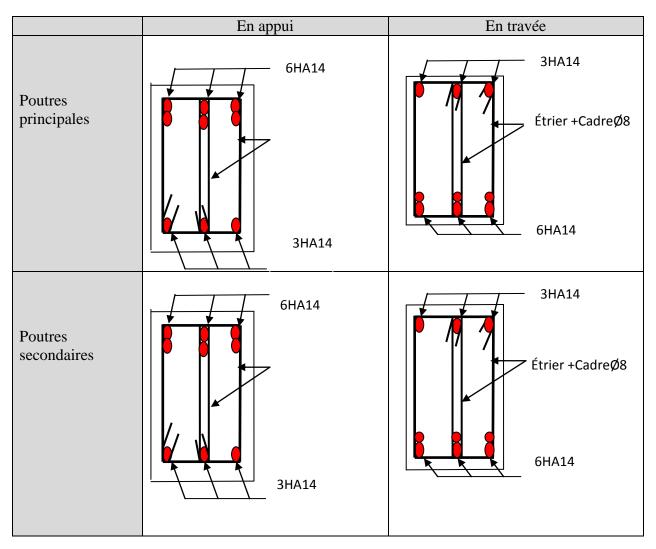
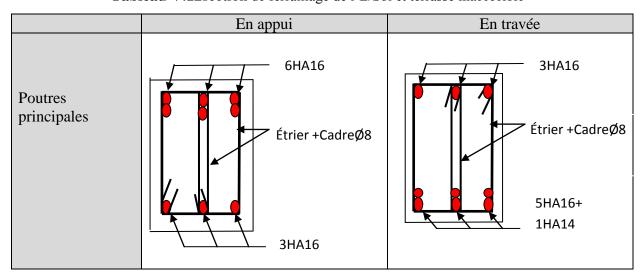



Tableau V.12 section de ferraillage de l'E/Sol et terrasse inaccecible

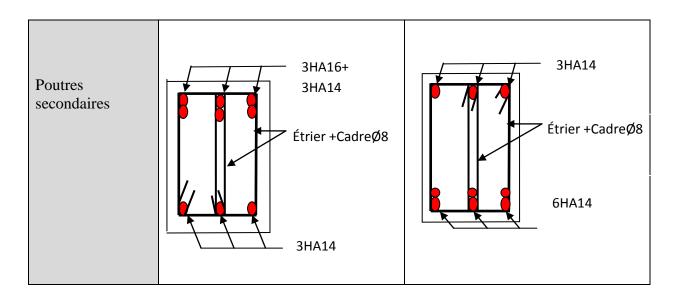


Tableau V.13 section de ferraillage de RDC.

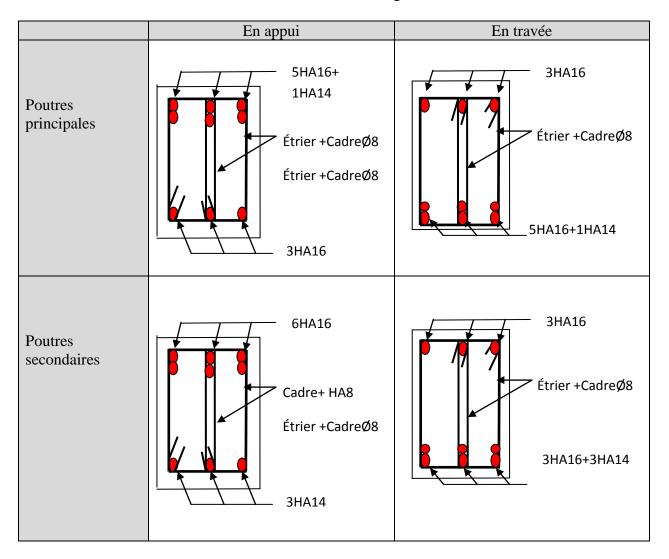
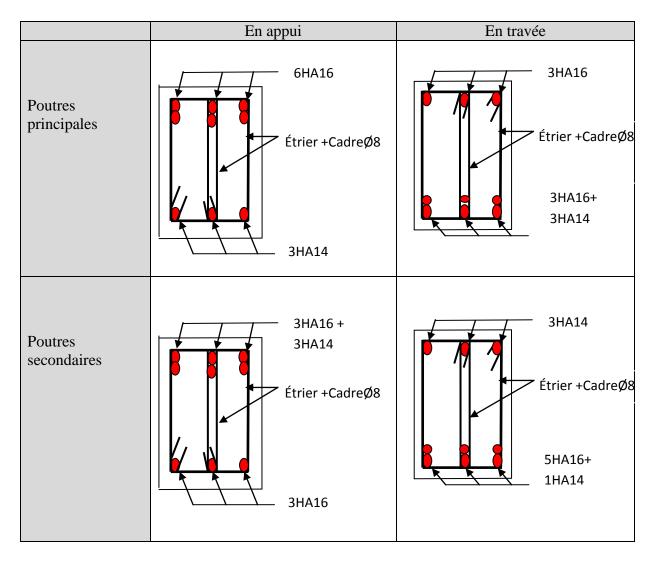



Tableau V.14 section de ferraillage de l'Etage Service

3T16

Tableau V 15sections de ferraillage de l'EtageCourant (2^{eme}...10^{eme})

V.2.5.schémas constrictives des armatures dans les poutres :

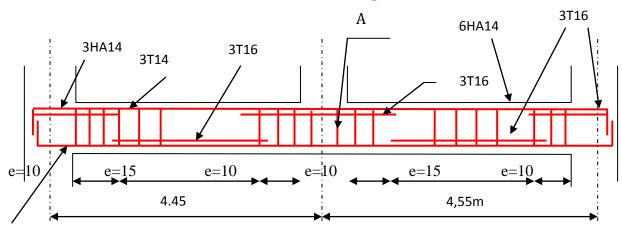
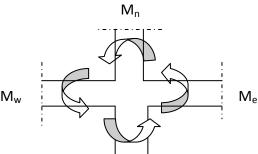


Figure.V.11 Disposition constructive des armatures des poutres

V.3. Vérification des zones nodales

Dans le but de permettre la formation des rotules plastiques dans les poutres et non dans les poteaux, le **RPA99/03** (Art.7.6.2) exige que : $|M_n| + |M_s| \ge 1.25 \times |M_w| + |M_e|$


Cependant cette vérification est facultative pour les deux derniers niveaux (bâtiments supérieurs à R+2).

Avec ; M_n , M_s : mmts résistant ultimes dans les poteaux.

 $M_{\rm \ w}, M_e$: mmts résistant ultimes dans les poutres.

h: La hauteur totale de la section du béton.

$$Z = 0.85 \cdot h$$

a. Détermination du moment résistant dans les poteaux

Le moment résistant (M_R) d'une section de béton dépend essentiellement

M_s **Fig. V.12** la zone nodale

- Des dimensions de la section du béton
- O
- De la quantité d'armatures dans la section du béton
- De la contrainte limite élastique des aciers

$$M_R = Z \cdot A_s \cdot \sigma_s$$

$$\sigma_s = \frac{f_s}{\gamma_c} = 348 \,\mathrm{MPa}$$

Les résultats obtenus sont donnés dans le tableau ci-dessous :

Niveau	Section (cm ²)	Z (m)	As (cm ²)	M _R (KNm)
S/Sol et E/Sol	75×70	0,637	43.48	963.84
RDC et Service	70×65	0,595	37.19	770.05
2 ^{ème} à 4 ^{ème}	65×60	0,552	34.99	672.14
5 ^{ème} à 7 ^{ème}	60×55	0,510	26.86	476.71
8 ^{ème} à 10 ^{ème}	55×50	0.467	24.12	391.98

Tableau V.16 Moment résistant dans les poteaux.

Vérifiée

Niveau	M _w (KNm)	M _e (KNm)	$1,25 \cdot \left(M_{w} + M_{e}\right)$ (KNm)	$M_n + M_s$ (KNm)	Observation
E/Sol et E/Sol	245.66	245.66	614.15	1927.98	Vérifiée
RDC+ Service	340.58	340.58	851.45	1540.10	Vérifiée
2 ^{ème} à 4 ^{ème}	311.86	311.86	779.66	1344.28	Vérifiée
5 ^{ème} à 7 ^{ème}	311.86	311.86	779.66	953.42	Vérifiée

b. Détermination du moment résistant dans les poutres

311.86

Les résultats obtenus sont donnés dans le tableau ci-dessous :

Tableau V.17 Vérification des zones nodales

779.66

783.97

On voit bien que les moments résistants dans les poteaux sont supérieurs aux moments résistant dans toutes les poutres, alors on aura la formation des rotules plastiques dans les poutres et non pas dans les poteaux.

V.4. Etude des voiles

Introduction

8^{ème} à 10^{ème}

311.86

Le RPA/99/version 2003 (3.4.A.1.a), exige de mettre des voiles à chaque structure en béton armé dépassant quatre niveaux ou 14 m de hauteur dans la zone IIa (moyenne sismicité).

Les voiles ou murs de contreventement peuvent être définis comme étant des éléments verticaux qui sont destinés à reprendre, outre les charges verticales (au plus 20%), Les efforts horizontaux (au plus 75%) grâce à leurs rigidités importantes dans leurs plan.

Ils présentent deux plans l'un de faible inertie et l'autre de forte inertie ce qui impose une disposition dans les deux sens (x et y).

Un voile travail comme une console encastré à sa base, on distingue deux types de voiles qui ont un comportement différent :

- ✓ Voiles élancés : $(\frac{h}{l} > 1,5)$
- ✓ Voiles courts : $(\frac{h}{1} < 1, 5)$

Un voile est sollicité en flexion composée avec un effort tranchant, d'où on peut citer les principaux modes de ruptures dans un voile élancé causé par ces sollicitations :

✓ Rupture par flexion

- ✓ Rupture en flexion par effort tranchant.
- ✓ Rupture par écrasement ou traction du béton.

V.4.1. Recommandation du RPA:

a. Armatures verticales:

- Les armatures verticales sont destinées à reprendre les efforts de flexion, elles sont disposées en deux nappes parallèles aux faces de voiles. Elles doivent respecter les prescriptions suivantes :
- L'effort de traction doit être pris en totalité par les armatures verticales et horizontales de la zone tendue, tel que : $A_{\min} = 0, 2 \cdot L_t \cdot e$

 L_t : Longueur de la zone tendue.

- *e* : épaisseur du voile.
- Les barres verticales des zones extrêmes doivent être ligaturés avec des cadres horizontaux dont l'espacement st <e (e : épaisseur de voile).
- A chaque extrémités du voile, l'espacement des barres doit être réduit de moitie sur 1/10 de la largeur du voile.
- Les barres du dernier niveau doivent être munies des crochets à la partie supérieure.

b. Les armatures horizontales :

Les armatures horizontales sont destinées à reprendre les efforts tranchants.

Elles doivent être disposées en deux nappes vers les extrémités des armatures verticales pour empêcher leurs flambements et munies de crochets à 135° ayant une longueur de 10ϕ .

c. Les armatures transversales :

Elles sont destinées essentiellement à retenir les barres verticales intermédiaires contre le flambement, elles sont en nombre de quatre épingles par 1m² au moins.

d. Les armatures de coutures :

Le long des joints de reprises de coulage, l'effort tranchant doit être pris par les aciers de couture dont la section doit être calculé avec la formule :

$$A_{Vj} = 1, 1 \cdot \frac{V}{f_c}$$
; avec: $V = 1, 4 \cdot V_u$

e. Règles communes (armatures verticales et horizontales) :

- Le pourcentage minimum d'armatures (verticales et horizontales) :

$$A_{\min} = 0.15 \% b \cdot h$$
.....dans la section globale de voile.
 $A_{\min} = 0.10 \% b \cdot h$dans la zone courante.

- $-\phi_l \le \frac{1}{10}e$ (Exception faite pour les zones d'about).
- L'espacement : $s_t = \min(1, 5a; 30 cm)$
- Les deux nappes d'armatures doivent être reliées avec au moins quatre épingles par m². Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur.
- Longueurs de recouvrement :
 - 40ϕ : Pour les barres situées dans les zones où le renversement de signe des efforts et possible.
 - 20ϕ : Pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charge.

V.4.2. Le ferraillage :

a. Les armatures verticales :

Le calcul des armatures verticales se fait à la flexion composée sous les sollicitations les plus défavorables (M, N) pour une section $(b \times h)$.

La section trouvée (A) sera répartie sur toute la moitié de la section en respectant toujours les recommandations du RPA99, addenda 2003

b) Les armatures horizontales :

Leurs sections sont calculées selon la formule suivante :

$$\frac{A_{t}}{b \cdot S_{t}} \ge \frac{\tau - 0.3 \cdot f_{tj} \cdot k}{0.9 \cdot \frac{f_{e}}{\gamma_{s}} \cdot (\sin \alpha + \cos \alpha)}$$

Elle doit aussi respecter les conditions du RPA.

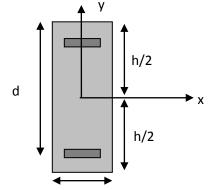


Figure V.13: Section du voile

Les résultats de ferraillages seront récapitulés dans le tableau ci après où :

 $A_V^{\min}/_{\text{voile}}$: Section d'armature verticale minimale dans le voile complet

$$(A_{\min} = 0.15\%b \cdot l)$$

 $A_V^{\text{calculée}} \, /_{\text{face}} \,$: Section d'armature calculée pour une seule face de voile.

 $A_V^{\text{adoptée}}/_{\text{face}}$: Section d'armature adoptée pour une seule face de voile.

 S_t : Espacement.

 $A_h^{\min}/_{\text{voile}}$: Section d'armature horizontale minima dans le voile complet $(A_{\min} = 0.15\%b \cdot l)$ le

 $A_h^{\text{calculée}} /_{\text{face}}$: Section d'armature calculée $(A_V^{\text{adoptée}} / 4)$.

 $A_h^{\text{adoptée}}/_{\text{ml}}$: Section d'armature adoptée pour un mètre linière.

 $N^{bre}/_{ml}$: Nombre de barres adopté par un mètre linière.

- Calcul du ferraillage du voile :

Le SAP 2000, nous donne les sollicitations (N, M et V) dans chaque voile.

Après avoir comparé les valeurs les plus défavorables des sollicitations, selon les différentes combinaisons d'action citée auparavant.

Les résultats de calcul sont récapitulés dans les tableaux qui suivent :

• Voile sens xx : (Vx 1)

Niveau	RDC et Service	2,3 et 4 ^{eme} étage	5,6 et 7 ^{eme} étage	8,9 et 10 ^{eme} étage
Section (cm ²)	200x20	200x15	200x15	200x15
N (KN)	1328.37	902.516	648.01	362.848
M (KNm)	472.36	-39.8	-65.376	-14.424
V (KN)	167.42	-142.478	-133.558	-109.974
Amin (RPA) (cm ²)	6	6	6	6
A calculée/ face (cm ²)	12.47	12.02	10.72	5.527
A adopté / face (cm ²)	12.66	12.19	10.78	7.91
Nombre de barres/face	4T16+3T14	3T16+4T1	7T14	7T12
St (cm)	25	25	25	25
A _h calculée (cm ²)	0.45	5.87	5.87	5.87
$A_h \min / ml (cm^2)$	1.02	0.43	0.43	0.71
A _h adoptée (cm ²)	3.14	6.28	6.28	6.28
Nbre des barres/face/ml	4HA10	8HA10	4HA10	8T10
St (cm)	25	12.5	12.5	12.5

Tableau V.18 : Ferraillage du voile Vx 1

• Voile sens xx : (Vx 2)

Niveau	RDC et Service	2,3 et 4 ^{eme} étage	5,6 et 7 ^{eme} étage	8,9 et 10 ^{eme} étage
Section (cm ²)	140x20	140x15	140x15	140x15
N (KN)	813.43	604.45	439.862	230.91
M (KNm)	-19.93	66.62	84.32	95.60
V (KN)	-159.361	189.082	141.29	94.38
Amin (RPA) (cm ²)	5.6	4.2	4.2	3.15
A calculée/ face (cm ²)	12.307	11.31	8.92	2.63
A adopté / face (cm ²)	13.13	11.72	9.14	5.53
Nombre de barres/face	5T16+2T14	2T16+5T14	3T14+4T12	7T10
St (cm)	25	25	25	25
A _h calculée (cm ²)	8.37	5.87	5.87	0.56
A _h min /ml (cm ²)	0.83	0.71	0.74	0.82
A _h adoptée (cm ²)	9.48	6.32	6.32	2.01
Nombre de barre/face/ml	12T10	8T10	8T10	4T8
St (cm)	8	12.5	12.5	20

Tableau V.19 : Ferraillage du voile Vx 2

• Voile sens yy : (Vy1)

Niveau	RDC et Service	2,3 et 4 ^{eme} étage	5,6 et 7 ^{eme} étage	8,9 et $10^{\rm eme}$ étage
Section (cm ²)	140x20	140x15	140x15	140x15
N (KN)	938.77	532.717	382.213	259.908
M (KN.m)	-221.12	13.1052	-60.89	-21.73
V (KN)	-100.717	98.317	79.576	56.135
Amin (RPA) (cm ²)	4.2	4.2	4.2	4.2
A calculée/ face (cm ²)	8.74	8.06	6.408	3.83
A adopté / face (cm ²)	10.65	8.42	7.60	4.74
Nombre de barres/face	3T16+3T14	4T14+2T12	2T14+4T12	6T10
St (cm)	25	25	25	25
A _h calculée (cm ²)	0.75	5.87	5.87	5.87
A _h min /ml (cm ²)	0.87	0.51	0.41	0.29
A _h adoptée (cm ²)	3.14	6.32	6.32	6.32
Nombre de barre/face/ml	4T10	8T10	8T10	8T10
St (cm)	25	12.5	12.5	12.5

Tableau V.20 : Ferraillage du voile Vy1

• Voile sens y-y: (Vy2)

Niveau	RDC et Service	2,3 et 4 ^{eme} étage	5,6 et 7 ^{eme} étage	8,9 et 10^{eme} étage
Section (cm ²)	160x20	160x15	160x15	160x15
N (KN)	1075.044	611.532	459.662	306.512
M (KNm)	-347.97	-138.36	-182.21	-101.21
V (KN)	133.76	-124.71	-99.499	-72.72
Amin (RPA) (cm ²)	4.8	4.8	3.6	3.6
A calculée/ face (cm ²)	10.57	10.88	4.22	3.034
A adopté / face (cm ²)	11.72	11.72	6.21	5.53
Nombre de barres/face	2T16+5T14	2T16+5T14	2T12+5T10	7T10
St (cm)	25	25	25	25
A _h calculée (cm ²)	0.75	5.87	0.56	0.56
$A_h \min / ml (cm^2)$	1.02	0.57	0.76	0.55
A _h adoptée (cm ²)	3.14	6.32	2.01	2.01
Nombre de barre/face/ml	4T10	8T10	4T8	4T8
St (cm)	25	12.5	25	25

Tableau V.21 : Ferraillage du voile Vy2

• Voile sens y-y : (Vy3)

Niveau	RDC et Service	2,3 et 4 ^{eme} étage	5,6 et 7 ^{eme} étage	8,9 et 10 ^{eme} étage
Section (cm ²)	105x20	105x15	105x15	105x15
N (KN)	700.315	479.641	395.771	273.816
M (KNm)	-146.84	-93.704	-79.39	-47.805
V (KN)	84.288	-66.718	-50.225	-38.932
Amin (RPA) (cm ²)	3.15	2.36	2.36	3.15
A calculée/ face (cm ²)	6.92	4.64	3.86	5.13
A adopté / face (cm ²)	9.24	5.42	5.42	5.42
Nombre de barres/face	2T14+4T12	2T12+4T10	2T12+4T10	2T12+4T10
St (cm)	25	25	25	25
A _h calculée (cm ²)	0.75	0.56	0.56	5.87
$A_h \min / ml (cm^2)$	1.69	0.77	0.58	0.27
A _h adoptée (cm ²)	3.14	3.14	3.14	6.32
Nombre de barre/face/ml	4T10	4T10	4T10	8T10
St (cm)	25	25	25	12.5

Tableau V.22 : Ferraillage du voile Vy3

• Voile sens y-y: (Vy4)

Niveau	RDC et Service	2,3 et 4 ^{eme} étage	5,6 et 7 ^{eme} étage	8,9 et 10 ^{eme} étage
Section (cm ²)	185x20	185x15	185x15	185x15
N (KN)	1309.37	994.097	702.404	463.033
M (KNm)	-168.19	43.62	54.67	-36.558
V (KN)	175.621	177.125	134.31	88.49
Amin (RPA) (cm ²)	7.4	5.55	5.55	5.55
A calculée/ face (cm ²)	22.74	15.307	11.371	7.51
A adopté / face (cm ²)	23.74	15.74	11.81	8.47
Nombre de barres/face	5T20+4T16	4T16+5T14	4T14+5T12	4T12+5T10
St (cm)	25	25	25	25
A _h calculée (cm ²)	8.01	5.87	5.87	5.87
A _h min /ml (cm ²)	0.58	0.58	0.44	0.29
A _h adoptée (cm ²)	9.04	6.32	6.32	6.32
Nombre de barre/face/ml	8T12	8T10	8T10	8T10
St (cm)	12.5	12.5	12.5	12.5

Tableau V.23: Ferraillage du voile Vy4

Vérification à l'effort tranchant :

Selon l'article 7.7.2.du RPA 99

$$\begin{split} &\tau_{\rm adm}=0.2\,f_{c28}=5\,{\rm MPa}\;.\\ &\tau=1.4\frac{V}{b_0.d}\;;\;{\rm Avec}\;{\rm b}_0\,:\,{\rm \acute{e}paisseur}\;{\rm du}\;{\rm voile}\;{\rm et}\;{\rm d}:{\rm hauteur}\;{\rm utile}. \end{split}$$

voile		V_{x1}	V_{x2}	Obser
RDC et Service	V (KN)	167.42	159.361	Vérifie
	τ (MPa)	0.42	0.399	Vérifie
Etage 2 à 4	V (KN)	125.844	151.272	Vérifie
	τ (MPa)	0.45	0.54	Vérifie
Etage 5 à 7	V (KN)	142.478	189.082	Vérifie
	τ (MPa)	0.51	0.67	Vérifie
Etage 8 à 10	V (KN)	109.974	94.38	Vérifie
	τ (MPa)	0.39	0.337	Vérifie

Tableau V.24: vérification à l'effort tranchant pour les voiles selon x.

voile		V_{y1}	V_{y2}	V_{y3}	V_{y4}	Obser
RDC et	V (KN)	100.717	133.76	84.288	175.621	Vérifie
Service	τ (MPa)	0.252	0.335	0.211	0.440	Vérifie
Etage	V (KN)	98.317	124.71	66.718	177.125	Vérifie
2 à 4	τ (MPa)	0.351	0.446	0.238	0.633	Vérifie
Etage 5 à 7	V (KN)	79.576	99.499	50.225	134.309	Vérifie
	τ (MPa)	0.284	0.355	0.179	0.480	Vérifie
Etage 8 à 10	V (KN)	56.135	72.72	38.932	88.49	Vérifie
	τ (MPa)	0.200	0.260	0.139	0.316	Vérifie

Tableau V.25: vérification à l'effort tranchant pour les voiles selon y.

 $\tau < \bar{\tau} \rightarrow c'$ est veriție

Exemple d'un schéma de ferraillage de voile : Niveau E-S et RDC (Sens yy)

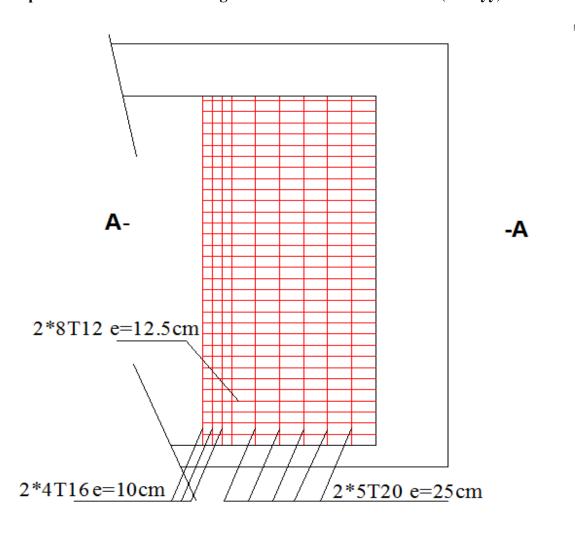


Figure V.14 : Schéma de ferraillage de voile V y4.

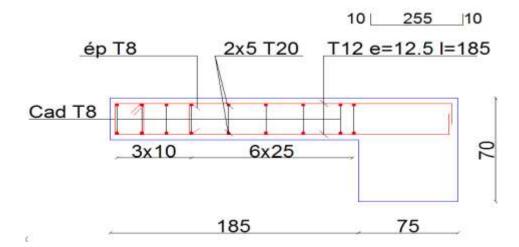


Figure V.15: coupe A-A

Conclusion

Les éléments principaux constituent les éléments qui assurent le contreventement de la structure. Au terme de ce chapitre, nous avons étudié ces différents éléments structuraux.

Les poteaux ont été calculés et ferraillé, le ferraillage adopté est le ferraillage maximum obtenu par deux logiciels de calcul (SAP 2000V14, Socotec) et celui donnée par le RPA. Il est noté que le ferraillage minimum du RPA est souvent plus important que celui du logiciel utilisé. On en déduit que le RPA favorise la sécurité avant l'économie.

Les poutres, quant à elles, ont été ferraillées en utilisant les sollicitations obtenues par le logiciel SOCOTEC.

Les voiles de contreventement ont été calculés à la flexion composée grâce au logiciel (Project).

Les ferraillages adoptés ont respecté les recommandations du RPA99 V2003 et le BAEL.

Chapitre VI

Etudes de l'infrastructure

Introduction

L'infrastructure est un ensemble des éléments qui ont pour objectif d'assurer la transmission des charges et surcharges au sol provenant de la superstructure. Cette transmission se fait soit directement au sol (Fondations superficielles : semellesou des radiers), soitindirectement (Fondations profondes : pieux par exemple). Donc c'est une partie essentielle de l'ouvrage sa bonne conception et réalisation forment une assise rigide et assure une bonne répartition des charges et évite les tassements différentiels.

VI.1.Choix de type de fondations

Le choix de type des fondations dépend essentiellement des facteurs suivants : La capacité portante du sol d'assise, la portance de l'ouvrage, La distance entre axes des poteaux, la profondeur de bon sol.

Selon le rapport du sol, le type de fondations suggéré est superficiel, ancrées à 1.3 m, du niveau de base, et la contrainte admissible est de 1,5 bars.

Dans notre cas on a un seul type de fondation à étudier .on vérifie dans l'ordre suivent : les semelles isolées, les semelles filantes et le radier général et enfin on opte pour le choix qui convient.

VI.2. Combinaisons d'actions à considérer

D'après RPA 99 (Article 10.1.4.1) les fondations superficielles sont dimensionnées selon les combinaisons d'actions suivantes :

1)
$$G + Q \pm E$$
; 2) $0.8 \times G \pm E$

VI.3. Etude des fondations

VI.3.1.Vérification des semelles isolées : La vérification à faire est : $\frac{N}{S} \le \overline{\sigma_{sol}}$

Pour cette vérification on prend la semelle la plus sollicitée.

- N_{sup} : l'effort normal agissant sur la semelle obtenu par le **SAP 2000V14.2**
- N_{inf} : l'effort normal transmis par le poteau de l'infrastructure plus le poids estime de la semelle
- S : surface d'appui de la semelle.
- σ_{sol} : Contrainte admissible du sol.

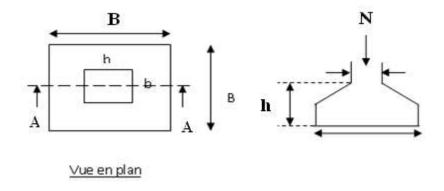


Figure VI .1. Semelle isolée de fondation

Le poteau le plus sollicité a une section rectangulaire ($a \times b$), donc $S = A \times B$ ($A \times B$).

$$N_{\text{sup}} = 2351.67 \text{ KN}, \quad \overline{\sigma_{sol}} = 0.15 \text{ MPa}$$

$$N_{inf}$$
=25[(0.75 × 0.70)2.52+0.45(1.5)²+1.60(0.75 × 0.70)] =79.387 KN

$$N_t=2351.67+79.387 \Rightarrow N_t=2431.057 \text{ KN}$$

$$\Rightarrow \frac{N}{S} \le \overline{\sigma_{sol}} \Rightarrow A \times B \ge \frac{N}{\overline{\sigma_{sol}}} \text{ , on } a: \quad \frac{a}{A} = \frac{b}{B} \quad (Semelle \ et \ p\^oteau \ hom odh\'etiques) \Rightarrow B = \sqrt{\frac{b \times N}{a \times \overline{\sigma_{sol}}}}$$
 AN: $B = 4.02 \text{ m}$

La distance entre axes des poteaux dans le sens y varie entre 2.95m et 3.00m

On remarque qu'il y a chevauchement entre les semelles, on tenant compte des entres axes des poteaux dans les deux sens, donc le choix des semelles isolées dans notre cas ne convient pas.

VI.3. 2. Vérification des semelles filantes

Choisissons une semelle filante, de largeur B et de longueur L situé sous un portique formé de 3poteaux.



Figure VI.2 : Schéma d'une Semelle filante

Avec:

 N_i : l'effort normal provenant du poteau « i ».

N_s: poids estimé de la semelle.

$$N_1 = 2133.361 \text{ KN}, \quad N_2 = 2105.861 \text{KN}, \quad N_3 = 2180.145 \text{ KN}.$$

$$\sum N_i = 6419.367 KN.$$

$$N_S = 3 \times 25 \Rightarrow N_S = 75KN$$

$$N = N_{S} + \sum N_{i} = 6494.367 \, KN.$$

$$\frac{N}{B \times L} \le \frac{-}{\sigma_{sol}} \Rightarrow B \ge \frac{N}{\sigma_{sol} \times L} \Rightarrow B \ge \frac{6494.367}{150 \times 10.50} = 4.12m$$

Vu la distance existante entre les axes de deux portiques parallèles, on constate qu'il y a un chevauchement entre les deux semelles. Se choix ne convient pas.

VI.3. 3. Vérification de Radier général

Le radier fonctionne comme un plancher renversé, dont les appuis sont constitués par des murs de l'ossature, soumis à la réaction du sol agissant du bas vers le haut d'une manière uniforme (radier supposé infiniment rigide).

Il est choisi selon ces trois principales caractéristiques :

- Un mauvais sol.
- Charges transmises au sol sont importantes.
- Les poteaux rapprochés (petites trames).

Dans le but d'augmenter sa rigidité, on opte pour un radier avec nervures supérieures.

VI.3. 3. 1. Pré dimensionnement

La Condition de coffrage

L_{max} =4.55m : la plus grande portée entre deux éléments de contreventement

 h_0 : Hauteur de la dalle.

 h_t : Hauteur de la nervure.

Nervure :

$$h_t \ge \frac{L_{max}}{10} = \frac{455}{10} \Rightarrow h_t \ge 45.5 \text{cm}; \text{ Soit } h_t = 50 \text{cm}$$

Dalle:

$$h_0 \ge \frac{L_{max}}{20} = \frac{455}{20} \Rightarrow h_0 \ge 22.75 \text{cm}$$
; on prend $h_0 = 30 \text{ cm}$.

Vérification de condition de rigidité

$$\begin{cases} L_{\text{max}} \leq \frac{\pi}{2} L_{e} \dots (1). \\ L_{e} = \sqrt[4]{\frac{4 \times E \times I}{K \times b}} \dots (2). \end{cases}$$

E : module d'élasticité du béton $E = 3.216 \times 10^7 \text{ KN/m}^2$.

Le longueur élastique, qui permet de déterminer la nature de radier (rigide ou flexible).

I : inertie de la section du radier $I = \frac{b \times h_t^3}{12}$.

K: module de résistance du sol.(on un sol moyen donc $K=4\times10^4 KN/m^3$).

b: largeur de radier, on prend une bande de 1 m.

de (1) et (2)
$$\Rightarrow$$
 h $\geq \sqrt[3]{\frac{48 \times L^4_{\text{max}} \times K}{E\pi^4}} \approx 0.64 \text{ m}$

on remarque que la condition n'set pas vérifie, Alors on augment la hauteur radier et de la nervure. Donc on opte pour une hauteur du radier $h_0 = 50cm$ qui vérifie les deux conditions de coffrage et de rigidité. Et une hauteur de 80cm pour les nervures

VI.3. 3.2.La surface du radier et poids du radier

- N=31435.33KN est charge totale transmise par la superstructure tirer a partir de SAP2000.v14.
- Poids du la nervures sens **x-x** $(75/70) = 0.7 \times 0.75 \times 18.35 \times 25 \times 3 = 722.53 \text{KN}$
- Poids du la nervures sens **y-y** (75/70) =0.7×0.75×9×25×5= 551.25KN N=31435.33+722.53+551.25=32709.11KN

La surface du bâtiment : $S_{bat} = L_x \times L_y \Rightarrow S_{bat} = 9.75 \times 19.05 \Rightarrow S_{bat} = 185.738 \text{m}^2$

$$\frac{N}{S_{_{rad}}} \leq \sigma_{_{S}} \Rightarrow S_{_{rad}} \geq \frac{N}{\sigma_{_{S}}} = \frac{33709.11}{150} \Rightarrow S_{_{rad}} \geq 231.39 m^2$$

 $S_{rad} > S_{b\hat{a}t} \Longrightarrow$ Le radier déborde

• Le radier déborde

$$D \ge \max(\frac{h}{2}, 30\text{cm})$$

On prend D = 1.00 m

$$P = 57.6 \text{ m}$$

D : débord et P : périmètre.

S radier = S bat +
$$D \times P = 280.50 \text{ m}$$
2

On opte pour une surface : S radier = 280.5m²

VI.3.4. Vérifications nécessaires

a) Vérification au poinçonnement

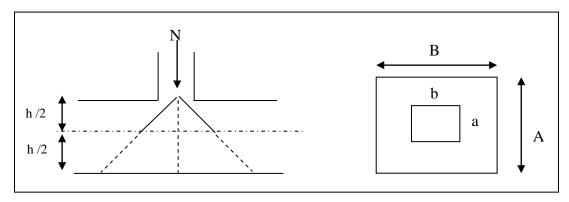


Figure VI.3 : Zone de contact poteau radier

Le calcul se fait pour le poteau le plus sollicité, on doit vérifier la condition suivante :

$$Q_u \leq 0.045 \times \mu_c \times h \times \frac{f_{c28}}{\gamma_b}.$$
 CBA93 (article A.5.2.4.2).

Avec :µc : périmètre du contour cisaillé projeté sur le plan moyen du radier.

Qu: charge de calcul à l'ÉLU pour le poteau le plus sollicité.

h₀: hauteur de radier.

 $h_0 = 50cm.$

 $A=a+h_0$.

 $B = b + h_0$.

$$\mu c = 2 (A + B) \Rightarrow \mu c = 2 \times ((0.7 + 0.50) + (0.75 + 0.50)) \Rightarrow \mu c = 4.90 \text{m}.$$

b) Vérification de la contrainte du sol

Cette vérification consiste à satisfaire la condition suivante dans le sens longitudinal et transversal.

$$\begin{split} \sigma_{m} &= \frac{3\sigma_{max} + \sigma_{min}}{4} < \sigma_{sol} \\ \sigma_{x,y} &= \frac{N}{S} \pm \frac{M}{I}(x,y) \end{split}$$

D'après le programme SOCOTEC

$$I_y = 5617.050m^4, Y_G = 4.5m.$$

$$I_x = 2171.39 \text{ m}^4, X_G = 9.17\text{m}.$$

N: L'effort normale du aux charges verticales.

My: Moment sismique à la base

N=31435.33KN.

Avec σ_{max} et σ_{min} : contrainte maximal et minimal dans les deux extrémités du radier.

\checkmark Sens X-X:

\checkmark Sens Y-Y:

 $N = 31435.33KN; M_y = 38354.318KN.m.$

$$\begin{split} \sigma_{\max} &= \frac{N}{S} + \frac{M_{y}}{I_{y}} \times x_{G} \implies \sigma_{\max} = 0.17MPa \\ \sigma_{\min} &= \frac{N}{S} - \frac{M_{y}}{I_{y}} \times x_{G} \implies \sigma_{\min} = 0.047MPa \\ \sigma_{moy} &= \frac{3 \times \sigma_{\max} + \sigma_{\min}}{4} \implies \sigma_{moy} = 0.139MPa < \overline{\sigma_{s}} = 0.15MPa.....C'est vérifiée. \end{split}$$

c) Vérification de la stabilité au renversement

Selon le RPA99, on doit vérifier que : $e = \frac{M}{N} \le \frac{B}{4}$

• **Dans le sens X-X** :
$$e = \frac{35174.387}{31435.33} \Rightarrow e = 1.11m < \frac{18.5}{4} = 4.62m$$
 Vérifiée

• **Dans le sens Y-Y:**
$$e = \frac{38354.318KN}{31435.33} \Rightarrow e = 1.2m < \frac{9}{4} = 2.25m \dots Vérifiée$$

Donc il n'y a pas risque de renversement.

d) Vérification de la poussé hydrostatique

Il faut assurer que : $N \ge F_s \times H \times S_{rad} \times \gamma_w$

 F_S : coefficient de sécurité (F_S = 1.5).

H: la hauteur d'ancrage du radier (H=1.35m).

 S_{rad} : Surface totale du radier ($S_{rad} = 280.5 \text{m}^2$).

E) Vérification au cisaillement

$$\tau_{u} = \frac{V_{u}}{b \times d} \le \overline{\tau} = \frac{0.07}{\gamma_{h}}.f_{c28} = 1.16Mpa$$

On considère une bande de largeur b=1m.

$$V_{u} = \frac{N_{u} \cdot L_{max} \cdot b}{2S}$$

$$V_U = \frac{32709.11 \times 4.55 \times 1}{2 \times 280.50} = 265.29 KN$$

$$d = 0.9 \times h_r = 0.9 \times 80 = 72cm$$

$$\tau_u = \frac{265.29 \times 10^{-3}}{1 \times 0.72} = 0.36 MPa \le \bar{\tau} = 1.16 MPa$$
. Condition vérifiée

VI.3.5. Ferraillage

a) La dalle du radier

La radier sera calculé comme un plancher renversé, appuyé sur les nervures en flexion simple, sachant que la fissuration est préjudiciable. Le calcul se fera pour le panneau le plus défavorable et on adoptera le même ferraillage pour tout le radier de dimension $L_x = 2.95m$; $L_y = 4.95m$.

✓ Calcul des sollicitations

• a l'É.L.U

$$q_u = \frac{N_u}{S_{rad}} \Rightarrow q_u = \frac{37442.55}{280.5} \Rightarrow q_u = 133.48KN$$

Nu=37442.48KN

 N_u : Effort normal (avec le poids du radier).

$$\rho = \frac{L_x}{L_y} \Rightarrow \rho = 0.99 > 0.4 \Rightarrow \text{La dalle travaille dans les deux sens.} \Rightarrow \begin{cases} \mu_x = 0.0376 \\ \mu_y = 0.9771 \end{cases} \quad \text{[Annexe 02]}$$

Sens x-x':
$$\mathbf{M}_{0}^{x} = \mu_{x} \times q_{u} \times l_{x}^{2} \Longrightarrow \mathbf{M}_{0}^{x} = 101.63 KNm$$

Sens y-y':
$$M_0^y = \mu_v \times M_0^x \implies M_0^y = 99.30 \text{KNm}$$

• En travée

Sens x-x':
$$M_t^x = 0.85 \times M_0^x \Rightarrow M_t^x = 86.38KNm$$

Sens y-y':
$$\mathbf{M}_{t}^{y} = 0.85 \times \mathbf{M}_{0}^{y} \Longrightarrow \mathbf{M}_{t}^{y} = 84.40 KNm$$

• En appui

$$\mathbf{M}_{\mathrm{a}}^{\mathrm{x}} = \mathbf{M}_{\mathrm{a}}^{\mathrm{y}} = 0.5 \times \mathbf{M}_{\mathrm{0}}^{\mathrm{x}} \Longrightarrow \mathbf{M}_{\mathrm{a}}^{\mathrm{x}} = 50.81 \mathrm{KNm}$$

Le ferraillage se fera pour une section $(b \times h_0)$

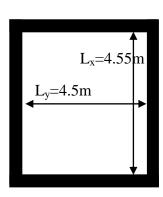


Figure VI.4: Schéma d'une dalle sur quatre appuis

Condition de non fragilité

On calcule A_{\min} : On a des HA $f_eE400 \Rightarrow \rho_0 = 0.0008$; $h_0 = 50cm$; b=100cm ; $\rho = 0.99cm$

$$\begin{vmatrix} h > 12cm \\ \rho > 0.4 \end{vmatrix} \Rightarrow \begin{cases} A_{\min}^{x} = \rho_{0} \times \frac{3 - \rho}{2} \times b \times h_{0} \\ A_{\min}^{y} = \rho_{0} \times b \times h_{0} \end{cases} \Rightarrow \begin{cases} A_{\min}^{x} = 4.02cm^{2} \\ A_{\min}^{y} = 4.00cm^{2} \end{cases}$$

,	Sens $M = A_{calc}(cm^2/ml)$		$A_{calc}(cm^2/ml)$	$A_{min}(cm^2/ml)$	$A_{adop}(cm^2/ml)$	S _t (cm)
		(KNm)				
X-X	Travée	86.38	5.36	4.02	5T12=5.65	20
у-у	Appui	50.81	3.13	4.02	4T12=4.52	25

Tableau VI.1. Résumé des résultats de ferraillage de radier

Même ferraillage dans les sens soit aux appuis ou en travée

✓ Calcul a l'É.L.U

• Vérification de l'efforttranchant

$$\tau_u = \frac{V_u}{b \times d} \le \bar{\tau} = 0.05 \times f_{c28} = 1.25 MPa.$$

$$V_{y} = \frac{q_{u} \times l_{y}}{2} \times \frac{1}{(1 + \frac{\rho}{2})} \Rightarrow V_{y} = 203.80KN$$

$$\Rightarrow V_{\text{max}} = 203.80KN$$

$$V_{x} = \frac{q_{u} \times l_{x}}{3} \Rightarrow V_{x} = 200.22KN$$

$$\tau_u = \frac{203.80 \times 10^{-3}}{1 \times 0.47} \Rightarrow \tau_u = 0.43 MPa < 1.25 MPa$$
 c'est vérifiée

✓ Vérification à l'E.L.S

On doit vérifier que : $\sigma_{b} = \frac{M}{I} \times y \le \overline{\sigma}_{adm} = 0.6 \times f_{c28} = 15 MPa$.

$$\sigma_{s} = 15 \times \frac{M}{I} \times (d - y) \le \overline{\sigma}_{s} = \min(\frac{2}{3} \times f_{e}; 150 \times \eta) = 201.63 MPa.$$

Sens	Moments	Valeurs	A_{adop}	y (cm)	I(cm ⁴)	$\sigma_{bc}(MPa)$	$\sigma_s(MPa)$	Observatio
		(KNm)	(cm ² /ml)					n
X-X	M_t	99.77	5T12=5.65	6.20	86349	5.55	398.68	Nonvérifiée
у-у	M_a	58.69	4T12=4.52	6.20	86349	3.60	292.43	Nonvérifiée

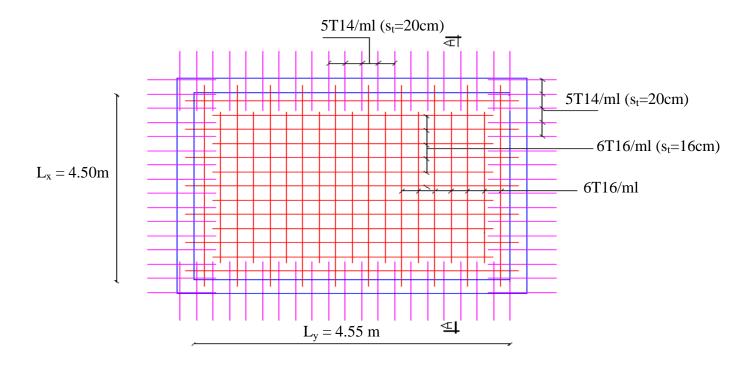
Tableau VI.2: vérification des contraintesde radier

On remarque que la condition $\sigma_{st} > \overline{\sigma_{st}}$ dans les deux sens n'est pas vérifiée. Donc on doit augmenter la section des aciers, en admettant que ces armatures travaillent au maximum possible, c'est-à-dire à la contrainte limite de service $\overline{\sigma_s}$.

-Vérification des contraites

Sen	Momen	Valeurs	A_{adop}	St	y	I(cm ⁴)	δ_{bc}	$\sigma_{\scriptscriptstyle s}$	Observat
S	t	(KNm)	(cm ² /ml)	(cm)	(cm)		(MPa)	(MPa)	ion
X-X	M_t	99.77	6T16=12.06	16	11.3	278648	4.066	191.44	vérifiée
у-у	M_a	58.69	5T14=7.70	20	9.33	190970	2.870	173.66	vérifiée

Tableau VI.3: vérification des contraintes nouvelles de radié


On remarque que toutes les contraintes sont vérifiées.

✓ Espacement des armatures

Conformément au RPA l'espacement doit vérifier la condition suivant:

Armatures // L_x : $S_t = 16 \text{ cm} \le \min (3 \text{ h}, 33 \text{ cm}) = 33 \text{ cm}.$

Armatures // L_y : $S_t = 16 \text{ cm} \le \min (4 \text{ h}, 45 \text{ cm}) = 45 \text{ cm}.$

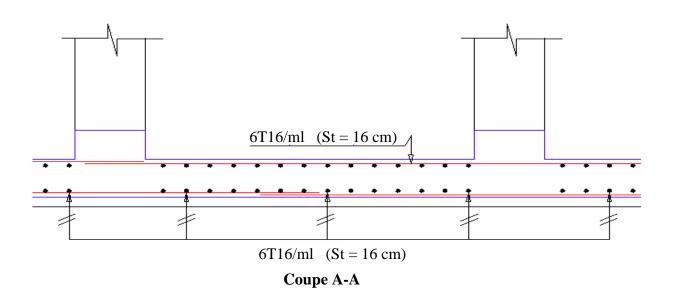


Figure VI.5 : Schéma de ferraillage de radier

VI.4.Ferraillage des nervures :

Les nervures servent d'appuis au radier, la répartition des charges sur chaque travée est triangulaire ou trapézoïdale (selon les lignes de rupture). Mais pour la simplification des calculs, on les remplace par des charges équivalentes uniformément reparties

A) Distribution des charges :

Charge trapézoïdale	Charge triangulaire
$P_{m} = \frac{Q_{u}}{2} \left[\left(1 - \frac{\rho_{g}^{2}}{3} \right) \times L_{xg} + \left(1 - \frac{\rho_{d}^{2}}{3} \right) \times L_{xd} \right]$	$P_{v}' = p_{m}' = \frac{Q_{u}}{2} \times \frac{\sum l_{xi}^{2}}{\sum l_{xi}}$
$P_{v} = \frac{Q_{u}}{2} \left[\left(1 - \frac{\rho_{g}}{2} \right) \times L_{xg} + \left(1 - \frac{\rho_{d}}{2} \right) \times L_{xd} \right]$	

Tableau VI.4: Distribution des charges

- Pm : charge uniforme qui produise le même moment maximum que la charge réelle ;
- -Pv: charge uniforme qui produise le même l'effort tranchant maximal que la charge réelle

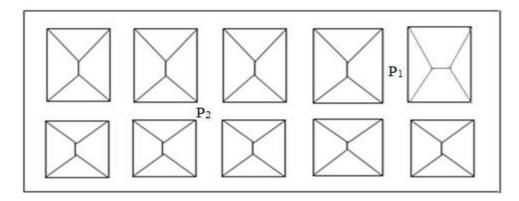


Figure VI.6 : Schéma de distribution des charges sur les nervures

Sens yy:

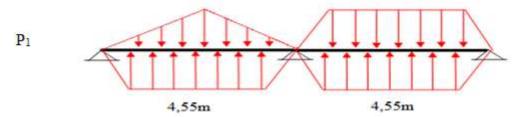


Figure VI.7 : Chargement de la nervure intermédiaire dans le sens y-y

• Sens xx

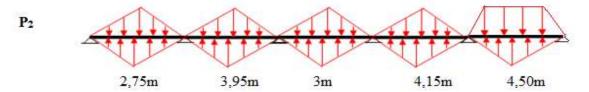


Figure VI.8 : Chargement de la nervure intermédiaire dans le sens x-x

B) Calcul des sollicitations :

Pour le calcul des sollicitations on utilise la méthode Forfaitaire on aura les résultats dans les tableaux suivant:

• Sens longitudinal (Y-Y):

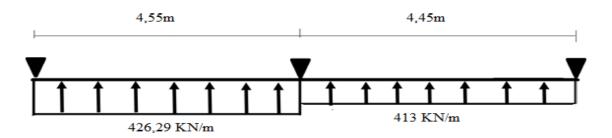


Figure VI.9: Schéma statique sens Y-Y

Localisation	Travée	Appui
M _U (KN.m)	559,61	-1000,64
M _S (KN.m)	540,79	-969,11
V (KN)	115	3,25

Tableau VI.5. Sollicitations sur la nervure dans le sens longitudinal

\checkmark Sens transversal (X-X):

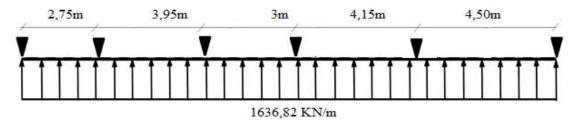


Figure VI.10 : Schéma statique sens X-X

Localisation	Travée	Appui
M _U (KN.m)	679,84	-757,703
M _S (KN.m)	657,56	-732,88
V (KN)	107	8,52

Tableau VI.6. Sollicitations sur la nervure dans le sens transversal

C) Ferraillage:

• **Sens Y-Y**:

Le ferraillage se fera pour une section en Té en flexion simple.

h=0.80 m

 $h_0 = 0,50 \text{m}$

 $b_0 = 0,75 m$

d=0,72m

$$b_1 \le \min\left(\frac{L_y}{10}, \frac{L_x}{2}\right) \Longrightarrow b_1 \le \min(0.45.2,22)$$

On prend : $b_1 = 0,40$ m.

Donc: $b=2b_1+b_0=2\times 40+75=1,55m$.

Figure. VI.11: Section à ferrailler.

Les résultats du ferraillage sont récapitulés dans le tableau ci-dessous :

Sens	Localisation	$M_u(KNm)$	A_{cal} (cm ²)	A_{min} (cm ²)	A _{adopté} (cm ²)	Choix
Y-Y	Travée	559,61	22,92	13,47	24 ,54	5HA25
1 1	Appui	-1000,64	41,88	13,47	43,39	6HA20+5HA25

Tableau VI.7. Résumé des résultats (ferraillage des nervures dans le sens Y-Y).

• Sens X-X:

D'une manière semblable au premier calcul, on trouve :

b=1.35m

Les résultats du ferraillage sont récapitulés dans le tableau ci-dessous :

Sens	Localisation	$M_u(KN.m)$	$A_{cal}(\text{cm}^2)$	A_{min} (cm ²)	$A_{adopt\acute{e}}({ m cm}^2)$	Choix
X 7 X 7	Travée	679,84	28,00	13,47	28,90	6HA20+5HA16
X-X	Appui	-757,70	31 ,33	13,47	32,21	4HA20+4HA25

Tableau VI.8. Résumé des résultats (ferraillage des nervures dans le sens X-X)

D) Vérifications :

• A L'E.L.U :

• Vérification de l'effort tranchant :

$$\tau_u = \frac{V_u}{b \times d} \le \bar{\tau} = \min(\frac{0.15 f_{c28}}{\gamma_b}; 4\text{MPa}) = 2.5\text{MPa}$$

Les résultats sont présentés dans le tableau ci-dessous :

Sens	Vu (KN)	$\tau_{bu}(\mathbf{MPa})$	$\overline{\tau_{bu}}$ (MPa)	Observation
Sens Y-Y	-1153,25	1,03	2.5	Vérifiée
Sens X-X	-1078,52	0,96	2.5	Vérifiée

Tableau VI.9. Vérification de l'effort tranchant.

• A l'ELS:

• État limite de compression du béton :

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

• Les contraintes dans l'acier :

La fissuration est préjudiciable donc La contrainte de traction des armatures est limitée, c'est le cas des éléments exposés aux intempéries.

$$\sigma_s \le \min(\frac{2}{3} \times f_e, 110\sqrt{\eta \times f_{ij}}) = 201,63 \text{ MPa}$$

$$\sigma_s = 15 \times \frac{M_{ser} \times (d - y)}{I} \le \overline{\sigma_s} = 201.63 \,\text{MPa}$$

Calcul de y :
$$\frac{b \times y^2}{2} + 15(A_s + A_s) \times y - 15 \times (d \times A_s + d' \times A_s) = 0$$

Calcul de:
$$I = \frac{b_0 \times y^3}{3} + 15 \times \left[A_s \times (d - y)^2 + A_s \times (y - d')^2 \right].$$

Les résultats sont récapitulés dans le tableau suivant :

S	Sens	M (KN.m)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\overline{\sigma_{bc}}$ (MPa)	σ_s (MPa)	σ_s (MPa)
Y -	travée	540,79	16,26	$13,04\times10^5$	6,73	15	346,45	201,63
Y	appui	-969,11	20,73	$20,44 \times 10^5$	9,81	15	364,43	201,63
X -	travée	657,56	17,46	$14,89 \times 10^5$	7,70	15	361,19	201,63
X	appui	-732,88	18,27	$16,23\times10^5$	8,24	15	363,76	201,63

Tableau VI.10: Résumé des résultats (vérification des contraintes).

On remarque que la contrainte dans les aciers n'est pas vérifiée donc on recalcule la section des aciers à L'ELS.

Les résultats sont résumés dans le tableau ci-dessous :

Ser	ıs	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\overline{\sigma_{bc}}$ (MPa)	σ_s (MPa)	σ_s (MPa)	Choix
Y-Y	travée	20,47	$2,11\times10^{6}$	6,73	15	199,25	201,63	14HA20
1-1	appui	26,23	$3,37\times10^{6}$	7,77	15	197,42	201,63	14HA25
X-X	travée	23,09	$2,48 \times 10^6$	6,12	15	194,23	201,63	7HA25+7HA20
12 12	appui	24,88	$2,83\times10^{6}$	6,18	15	183,58	201,63	14HA25

Tableau VI.11: Vérification des contraintes nouvelles

• Armatures transversales :

$$\emptyset_t \ge min\left(\frac{h}{35}, \frac{b_0}{10}, \emptyset\right) \Longrightarrow \emptyset_t \ge min(8, 7.5, 32)$$

Soit $\phi_t = 10mm$.

• Espacement des aciers transversaux :

Soit 4HA10=3.14 cm² (cadre entourant les barre des angles plus un petit cadre)

$$S_t \le \min(0.9d; 40) \text{cm} \implies S_t \le \min(64.8; 40) \text{cm} \implies S_t \le 40 \text{ cm}$$

$$S_t \le \frac{A_t \times fe}{0.4 \times b_0} = \frac{3.14 \times 10^{-4} \times 400}{0.4 \times 0.75} \Longrightarrow S_t \le 41.86cm$$

$$S_t \leq \frac{0.8 \times A_t \times fe}{b_0[\tau_u - 0.3 \times f_{t28}]} = \frac{0.8 \times 3.14 \times 10^{-4} \times 400}{0.75[1.53 - 0.3 \times 2.1]} \Longrightarrow S_t \leq 14,88 \text{ cm}$$

Soit $S_t=10cm$

• Les schémas de ferraillage :

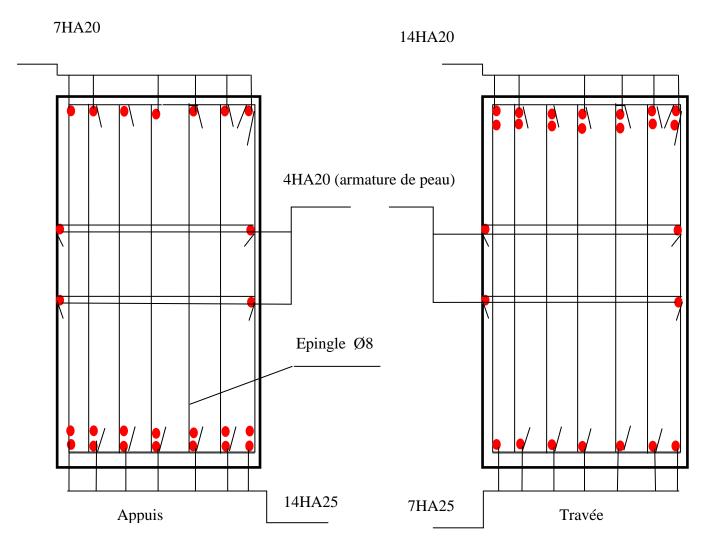


Figure VI.12 : schéma de ferraillage des nervures sens Y-Y

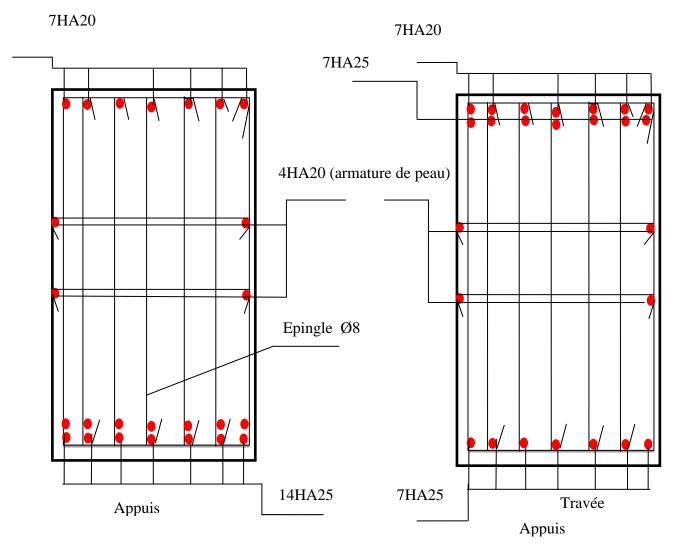


Figure VI.13 : schéma de ferraillage des nervures sens X-X

VI.5. Etude du voile périphérique

VI.5.1.Introduction

Selon le **RPA99**, les ossatures au-dessus du niveau de base du bâtiment, doivent comporter un mur de soutènement contenu entre le niveau des fondations et le niveau de base, il doit satisfaire les exigences minimales suivantes :

- L'épaisseur minimale est de 15 cm.
- Il doit contenir deux nappes d'armatures.
- Le pourcentage minimal des armatures est de 0.1% dans les deux sens.
- Les ouvertures dans le voile ne doivent pas réduire sa rigidité d'une manière importante.

VI.5.2.Dimensionnement du voile

On dimensionne le panneau le plus sollicité

La hauteur h=3.24m

La longueur L=4.50m

L'épaisseur e=20 cm

VI.5.3. Caractéristiques du sol

 $\gamma_h = 20.1 KN/m^3$: Le poids spécifique.

L'ongle de frottement $\varphi = 22^{\circ}$.

La cohésion c=0.26 bar

VI.5.4.Evaluation des charges et surcharges

Le mur de soutènement et soumis à :

• La poussée des terres :

$$\begin{split} G &= h \times (\gamma \times tg^2(\frac{\pi}{4} - \frac{\varphi}{2})) - 2 \times c \times tg(\frac{\pi}{4} - \frac{\varphi}{2}) \\ \Rightarrow G &= 3.24 \times ((20.1 \times tg^2(\frac{\pi}{4} - \frac{22^\circ}{2}) - 2 \times 0.26 \times tg(\frac{\pi}{4} - \frac{22^\circ}{2})) \\ \Rightarrow G &= 29.21 \text{KN/m}^2 \end{split}$$

• Surcharge accidentelle:

$$q=10 \text{ KN/} m^2$$

$$Q = q \times tg^{2}(\frac{\pi}{4} - \frac{\varphi}{2}) \Rightarrow Q = 10 \times tg^{2}(\frac{\pi}{4} - \frac{22^{\circ}}{2})$$
$$\Rightarrow Q = 3.51 \text{KN/m}^{2}$$

VI.5.5.Ferraillage du voile

Le mur de soutènement sera calculé comme une dalle pleine sur quatre appuis uniformément chargée, l'encastrement est assuré par le plancher, les poteaux et les fondations.

• à L'E.L.U:

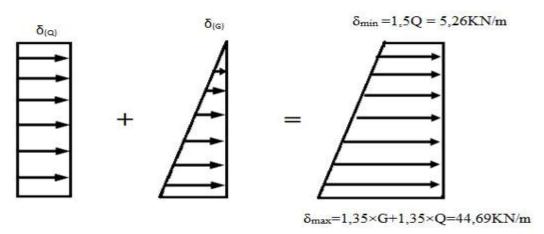


Figure VI.14: Schéma de répartition des contraintes sur le mur

$$\sigma_{moy} = \frac{3 \times \sigma_{max} \, + \sigma_{min}}{4} = 34,\!83\,KN/m^2 \Longrightarrow q_u = \sigma_{moy} = 34,\!83KN/m^2$$

Pour le ferraillage on prend le plus grand panneau dont les caractéristiques sont :

$$L_x = 3.24 \, m; L_y = 4.50 \, m$$
; b = 100 cm; h = 20 cm

$$\alpha = \frac{L_x}{L_y} = 0.72 > 0.4 \rightarrow \text{La dalle porte dans les deux sens.}$$

$$\boldsymbol{M}_{0x} = \boldsymbol{\mu}_x \times \boldsymbol{L}_x^2 \times \boldsymbol{q}_u; \qquad \boldsymbol{M}_{0y} = \boldsymbol{M}_{0x} \times \boldsymbol{\mu}_y$$

$$\alpha = 0.72 \Rightarrow \text{ ELU}: \begin{cases} \mu_x = 0.0658 \\ \mu_y = 0.4624 \end{cases} \quad \left[\text{Annexe 2} \right]$$

$$M_{0x} = 24.05 \, KN \times m.; M_{0y} = 11,12 KN \times m$$

$$M_{ty} = 0.85 \times M_{0y} = 9,45 \, KN.m$$

$$M_{tx} = 0.85 \times M_{dx} = 20.44 \, \text{KN.m}$$

$$M_{ap} = 0.5 \times M_{0x} = 12.02 \, KN.m$$

	Sens	M (KN.m)	μ_{bu}	α	Z (cm)	A	A_{adp} (cm ²)	St (cm)
						(cm ²)		
travée	XX	20,44	0.049	0.063	0.165	3,55	4T12= 4,52	25
	YY	9,45	0.023	0.029	0.168	1,61	4T10 = 3,14	25
Appui		12,02	0.029	0.037	0.167	2,07	4T10= 3,14	25

Tableau VI.12 : Section des armatures du mur de soutènement

A) Vérifications à l'E.L.U:

• Vérification de la condition de non fragilité :

Le pourcentage minimal exigé par le RPA est :

$$A_{min} = 0.1\% b \times h = 2cm^2$$
 (**RPA Art 7.7.4.2**)

• Vérification de l'effort tranchant :

Fissuration nuisible on doit vérifier que

$$\tau_{u} = \frac{V}{b \times d} \le \bar{\tau} = \min(0.1 \times f_{c28}; 3MPa) = 2.5 MPa$$
 (BAEL Art III.2)

$$V_y = \frac{q_u \times l_x}{2} \times \frac{1}{(1 + \frac{\rho}{2})} = 41,47KN.$$

$$V_x = \frac{q_u \times l_x}{3} = 37,61 \text{KN}.$$

On va vérifier Avec l'effort tranchant max dans les deux sens:

B) Vérifications à l'E.L.S:

$$\begin{split} &\sigma_{min} = Q = 3,51 KN/m^2; \quad \sigma_{max} = Q + G \Rightarrow \sigma_{max} = 29,21 + 3,51 \Rightarrow \sigma_{max} = 32,72 KN/m^2 \\ &.q_s = \sigma_{moy} = \frac{3 \times \sigma_{max} + \sigma_{min}}{4} = 25,41 KN/m^2 \end{split}$$

$$\begin{cases} \mu_x = 0.0719 \\ \mu_y = 0.6063 \end{cases}$$

[Annexe 02]

$$\mathbf{M}_{_{X}} = \mu_{_{X}} \times q_{_{S}} \times l_{_{X}}^{2} \Longrightarrow \mathbf{M}_{_{X}} = 19,17 \text{KN.m}$$

$$M_y = \mu_y M_x \Rightarrow M_y = 11,621KN.m$$

$$M_{tx} = 16,29 \text{ KN. m}$$

$$M_{ty} = 9,87 \text{ KN. m}$$

$$M_{ap} = 9,58 \text{ KN. m}$$

• Vérification des contraintes

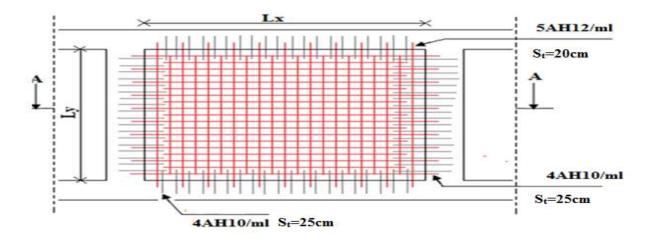
a) ans le béton :
$$\sigma_{bc} = \frac{M_{ser}}{I} \times y < \overline{\sigma_{bc}} = 0.6f_{c28} = 15 \text{ MPa}$$
 (BAEL91 Art E.III.1)

b) Dans l'acier : La fissuration est considérer nuisible.

$$\sigma_{s} = 15 \times \frac{M_{ser}}{I} (d - y) < \overline{\sigma_{s}}$$

$$\overline{\sigma_{s}} = \min \left(2 \times \frac{f_{e}}{3} , 201.63 , 110 \sqrt{\eta \times f_{t28}} \right) = 201.63 \text{ MPa}$$
(BAEL91 Art E.III.2)

	Sens	M (KN.m)	σ _b (MPa)	σ _s (MPa)	Observation
Travée	XX	16,29	5.70	329,87	Non Vérifiée
	YY	9,87	3,45	189,74	Vérifiée
Appuis		9,58	3,35	193 ,99	Vérifiée


Tableau VI.13: vérification des contraintes pour le voile périphérique.

On doit augmenter les sections d'acier en travée

	Sens	M	A(cm ²)	choix	$\sigma_b(MPa)$	σ_{s} (MPa)	Observation
		(KN.m)					
Travée	XX	16,29	5.65	5T12	4,59	186,49	Vérifiée
	YY	9,87	4.52	4T10	3,51	199,04	Vérifiée
Appuis		9,58	11.96	4T10	3,40	193,04	Vérifiée

Tableau VI.14 : section de ferraillage adopté après vérification

• Schéma de ferraillage

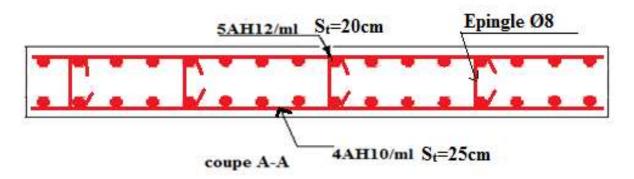


Figure IV. 15 : Schéma de ferraillage de voile périphérique

Conclusion.

L'étude de l'infrastructure constitue une étape importante dans le calcul d'ouvrage. Ainsi le choix de la fondation dépend de plusieurs paramètres liés au caractéristique du sol en place ainsi que des caractéristiques géométriques de la structure.

Pour notre structure nous avons procédé à un calcul avec semelle isolée. Ces dernières ne conviennent pas à cause du chevauchement qu'elle engendrait.

Ensuite on a passé aux semelles filantes mais les distances entre elles sont très petites.

Nous somme ensuite passé au calcul d'un radier général. Ce dernier s'est avéré le type de fondation qui convenait à notre structure. Le radier adopté a donc été calculé et ferraillé.

Au niveau de l'infrastructure, un voile périphérique est prévu pour supporter l'action des poussés des terres. Le voile est calculé donc ferraillé comme un plancher encastré au niveau de la semelle (radier).

Conclusion Genérale

Conclusion

Dans le cadre de ce modeste travail, on a pu prendre connaissances des principales étapes à

Mener lors de l'étude d'un projet de construction, et on a pu aussi débuter avec le logiciel SAP2000 version 14. Et d'enrichir les connaissances requises le long de notre cursus

Pour avoir un bon comportement dynamique de la structure et limiter les effets de torsion (moment de torsion),il faut essayer de rapprocher dans la mesure du possible le centre de torsion du centre de gravite de la structure (réduire l'excentricité) ,on a donc testés plusieurs dispositions de voiles dans le but d'aboutir à un système de contreventement mixte satisfaisant à la fois,une bonne répartition des charges entre portiques et voiles (interaction)et les contraintes architecturales de la structure.

Durant la recherche du meilleur comportement dynamique de la structure un certain nombre de conclusions ont été tirées, à savoir :

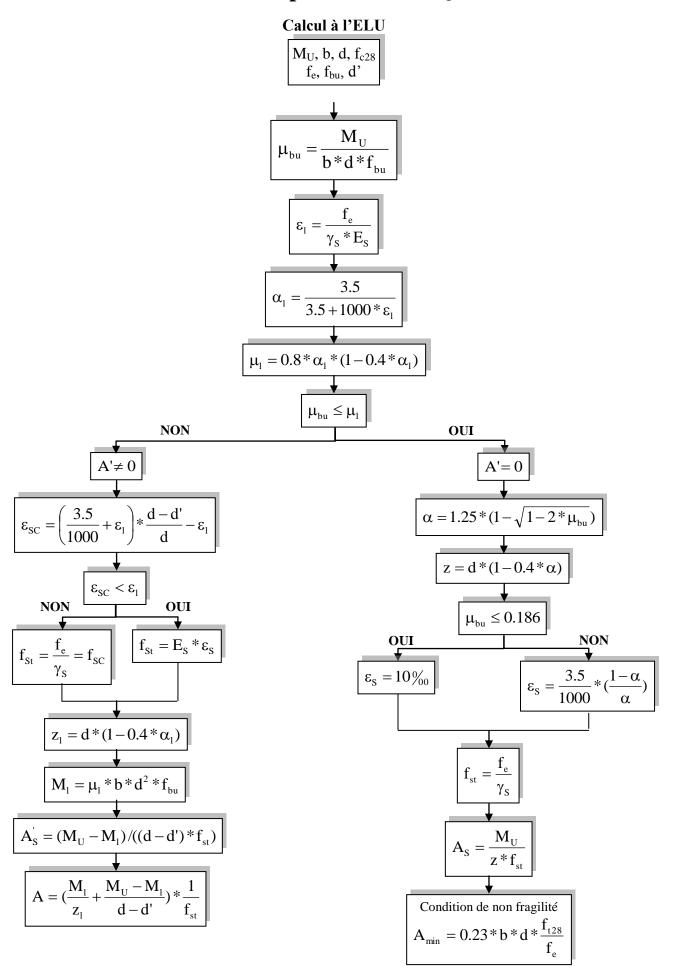
- ➤ les contraintes architecturales rendent difficile la recherche d'un bon comportement dynamique (disposition des voiles).
- ➤ La disposition et les dimensions des voiles jouent un rôle très important dans le comportement dynamique des structures mixtes.
- La modélisation des escaliers augmente davantage la période de vibration
- ➤ la résistance et l'économie est un facteur très important qu'on peut concrétiser par le choix des sections de béton et d'acier dans les éléments porteurs de l'ouvrage, tout en respectant les sections minimales imposées par le règlement.
- Le critère le plus prépondérant dans le choix de l'épaisseur des dalles pleines est le critère de coupe feu et l'isolation phonique.
- La vérification des moments résistants au niveau des nœuds nous a permis de vérifier que les rotules plastiques se forment dans les poutres plutôt que dans les poteaux.
- L'existence des voiles dans la structure a permis la réduction des efforts internes de flexion et de cisaillement au niveau des poteaux des portiques, ceci a donne lieu à des sections de poteaux soumises à des moments relativement faibles, donc le ferraillage avec le minimum du RPA s'est imposé

Bibliographie

- Règles BAEL 91 modifiées 99. (Edition Eyrolles Troisième édition 2000).
- Règles Parasismiques Algériennes.

 (Edition CGS RPA 99 / version 2003).
- ↓ DTR B.C.2.2 : charges permanentes et charges d'exploitations.

 (Edition CGS Octobre 1988).
- ♣ DTR –BC 2.331 : Règles de calcul des fondations superficielles. (Edition OPU 2005).
- Règles de conception et de calcul des structures en béton armé (CBA 93). (Edition CGS Décembre 1993).
- M.Belazougui : calcul des ouvrages en béton armé. (Edition OPU 1991).
- ♣ Gérard Philipponnat et Bertrand Hubert : Fondations et ouvrages en terre, (Edition Eyrolles 2003).
- **↓** Cours de béton armé, 3^{ème} et 4^{ème} année Génie Civil.
- ♣ Anciens mémoires de fin d'étude.


Logiciels

- **SAP 2000 V14.2**.
- **4** Auto CAD 2011.
- **BaelR V1.01.026**. Version d'évaluation. Socotec. 1998
- **BaelC, V1.01.026**. Version d'évaluation. Socotec. 1998

Annexe

Annexe 1

Flexion simple: Section rectangulaire

 $\begin{tabular}{ll} Annexe 2 \\ Dalles rectangulaires uniformément chargées articulées sur leur contour \\ \end{tabular}$

$\alpha = L_X$	ELU	v = 0	ELS 1	v = 0.2
L_{Y}	μ _x	μ_{y}	μ _x	μ _y
0.40	0.1101	0.2500	0.0121	0.2854
0.41	0.1088	0.2500	0.1110	0.2924
0.42	0.1075	0.2500	0.1098	0.3000
0.43	0.1062	0.2500	0.1087	0.3077
0.44	0.1049	0.2500	0.1075	0.3155
0.45	0.1036	0.2500	0.1063	0.3234
0.46	0.1022	0.2500	0.1051	0.3319
0.47	0.1008	0.2500	0.1038	0.3402
0.48	0.0994	0.2500	0.1026	0.3491
0.49	0.0980	0.2500	0.1013	0.3580
0.50	0.0966	0.2500	0.1000	0.3671
0.51	0.0951	0.2500	0.0987	0.3758
0.52	0.0937	0.2500	0.0974	0.3853
0.53	0.0922	0.2500	0.0961	0.3949
0.54	0.0908	0.2500	0.0948	0.4050
0.55	0.0894	0.2500	0.0936	0.4150
0.56	0.0880	0.2500	0.0923	0.4254
0.57	0.0865	0.2582	0.0910	0.4357
0.58	0.0851	0.2703	0.0897	0.4456
0.59	0.0836	0.2822	0.0884	0.4565
0.60	0.0822	0.2948	0.0870	0.4672
0.61	0.0808	0.3075	0.0857	0.4781
0.62	0.0794	0.3205	0.0844	0.4892
0.63	0.0779	0.3338	0.0831	0.5004
0.64	0.0765	0.3472	0.0819	0.5117
0.65	0.0751	0.3613	0.0805	0.5235
0.66	0.0737	0.3753	0.0792	0.5351
0.67	0.0723	0.3895	0.0780	0.5469
0.68	0.0710	0.4034	0.0767	0.5584
0.69	0.0697	0.4181	0.0755	0.5704
0.70	0.0684	0.4320	0.0743	0.5817
0.71	0.0671	0.4471	0.0731	0.5940
0.72	0.0658	0.4624	0.0719	0.6063
0.73	0.0646	0.4780	0.0708	0.6188
0.74	0.0633	0.4938	0.0696	0.6315
0.75	0.0621	0.5105	0.0684	0.6447
0.76	0.0608	0.5274	0.0672	0.6580
0.77	0.0596	0.5440	0.0661	0.6710
0.78	0.0584	0.5608	0.0650	0.6841
0.79	0.0573	0.5786	0.0639	0.6978
0.80	0.0561	0.5959	0.0628	0.7111
0.81	0.0550	0.6135	0.0617	0.7246
0.82	0.0539	0.6313	0.0607	0.7381
0.83	0.0528	0.6494	0.0956	0.7518
0.84	0.0517	0.6678	0.0586	0.7655
0.85	0.0506	0.6864	0.0576	0.7794
0.86	0.0496	0.7052	0.0566	0.7932
0.87	0.0486	0.7244	0.0556	0.8074
0.88	0.0476	0.7438	0.0546	0.8216
0.89	0.0466	0.7635	0.0537	0.8358
0.90	0.0456	0.7834	0.0528	0.8502
0.91	0.0447	0.8036	0.0518	0.8646
0.92	0.0437	0.8251	0.0509	0.8799
0.93	0.0428	0.8450	0.0500	0.8939
0.94	0.0419	0.8661	0.0491	0.9087
0.95	0.0410	0.8875	0.0483	0.9236
0.96	0.0401	0.9092	0.0474	0.9385
0.97	0.0392	0.9322	0.4065	0.9543
0.98	0.0384	0.9545	0.0457	0.9694
0.99	0.0376	0.9771	0.0449	0.9847
1.00	0.0368	1.0000	0.0441	0.1000

Annexe 3

Table de PIGEAUD

M1 et M2 pour une charge concentrique P=1 s'exerçant sur une surface réduite u*v au centre d'une plaque ou dalle rectangulaire appuyée sur son pourtour et de dimension Lx*Ly Avec Lx < Ly.

 $\rho = 0.5$

	u/lx v/ly	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Valeur de M ₁	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	/ 0.300 0.247 0.212 0.188 0.168 0.152 0.137 0.123 0.112 0.102	0.270 0.245 0.219 0.193 0.147 0.156 0.142 0.128 0.116 0.105 0.096	0.222 0.210 0.194 0.176 0.160 0.145 0132 0.119 0.108 0.098 0.099	0.189 0.183 0.172 0.160 0.147 0.134 0.123 0.111 0.100 0.092 0.083	0.167 0.164 0.156 0.143 0.135 0.124 0.114 0.103 0.093 0.086 0.078	0.150 0.147 0.140 0.133 0.124 0.114 0.105 0.096 0.087 0.079 0.072	0.134 0.132 0.128 0.122 0.114 0.105 0.098 0.088 0.081 0.073 0.066	0.122 0.120 0.116 0.110 0.104 0.097 0.090 0.082 0.074 0.067 0.062	0.111 0.109 0.106 0.102 0.096 0.089 0.083 0.075 0.068 0.063 0.057	0.101 0.099 0.097 0.093 0.088 0.081 0.075 0.068 0.063 0.058 0.053	0.092 0.090 0.088 0.085 0.080 0.075 0.068 0.064 0.058 0.053 0.048
Valeur de M ₂	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	/ 0.153 0.088 0.068 0.050 0.038 0.029 0.024 0.020 0.017 0.014	0.270 0.150 0.097 0.068 0.049 0.038 0.029 0.024 0.019 0.017	0.222 0.140 0.094 0.067 0.048 0.037 0.028 0.023 0.019 0.016 0.013	0.194 0.131 0.090 0.065 0.047 0.036 0.028 0.023 0.018 0.016 0.013	0.172 0.121 0.087 0.062 0.046 0.035 0.027 0.023 0.018 0.015 0.012	0.154 0.121 0.082 0.059 0.044 0.034 0.027 0.022 0.017 0.014 0.012	0.141 0.104 0.077 0.057 0.042 0.033 0.026 0.020 0.016 0.014 0.011	0.126 0.097 0.072 0.053 0.039 0.030 0.024 0.019 0.015 0.013	0.113 0.089 0.066 0.048 0.037 0.028 0.023 0.018 0.014 0.012 0.010	0.103 0.080 0.060 0.045 0.034 0.027 0.020 0.017 0.013 0.011 0.010	0.093 0.073 0.055 0.040 0.031 0.024 0.019 0.015 0.013 0.010 0.009

Annexe 4

Caractéristiques générales estantisco e en simblex A lab-rooving collective descente foor les dispositions en batterie. selective, à aralyse permanente de trada, consulter to table T311 Pours supprestiques à ouverture centrale itombre de faces de service simple acces trafic intense Distance in in entre niveaux 255 cm Dimensions mini (EN 81-1) Intensité pour 50 Hz. Puissanon. Réaction maxi en daN. sous dalle local des machines en Ampère. (2) local des machine HSK BO TO In DM - 120×100 B200 120×100 8200 1500 355 390 120 × 100 365 400 180 400 140 x 100 365 400 180 420 200 120 x 100 365 420 140 x 100 1 500 120 x 100 120 x 100 140 x 100 140 x 100 180 x 100 10 500 150 x 100 = T w 20G0 140 x 120 æ * 140 x 100 EQ. 3 500 120×100 160 x 100 1.500 140 × 100 30,00 200 x 120 5:0 150 x 120 = T 160 x 120 a. 古 T THESE 140 x 100 den 33 000 : 500 120 x 100 1.500 170 x 100 140 x 100 38: >40 33 500 210 x 120 =70 35,000 150 x 120 U w T t 38 000 200 x 120 59u T * t п T 230 x 140 -T 7.000

Performances & Raffinement

Ligne Building

Table dimensionnelle T30

ascenseurs de personnes machinerie supérieure entraînement électrique

630 <u>6</u> 8 pas. 8000 (6)	100	Dy S ACVF Dy S ACVF	12 12 12 12 18 18	32 32 32 32 50	BK x TK x HK 110 x 140 x 220 110 x 140 x 220 110 x 140 x 220 110 x 140 x 220	80 x 200 80 x 200 80 x 200	180 x 210 180 x 210	135	140
MINISTRATION OF THE RES		Dy'S ACVF Dy'S	12 9 12 18	37: 32 50	110 x 140 x 220 W	80 x 200	to a second	1000000	140
800 (23.1)	1.60	ACVF . Dy S	12 18	32 50	110 £ 140 x 220	The second second	180 x 210	1000000	
SOO (2)	160	DyS	18	50		90 x 200		135	140
800 g	(6)	200	The state of the s		110 x 140 x 220	THE RESIDENCE OF THE PARTY OF T	180 x 210	135	140
800		ADVF	18	50		80 x 200	180 x 210	150	# 160 M ((II) M (III)
800 (7)					110 x 140 x 220	80 x 200	180 x 210	150	160
		0			ALCOHOLD TO THE		100 mg 200 mg	3120	STATE OF STA
					技术的位置	and days	TO AVERAGE		
								ê.	
Mary Assessment	COLUMN TO SERVICE AND ADDRESS OF THE PARTY O	14				17		14	
ASSESSMENT OF THE PARTY OF THE	22	ALC:		Gı.	S. C. SEC.	40.00		4.5	
		XIV T	E		2000年6月	10.50		197	
2000年		WE SE		100	Control year	(10 m)			
1000 日	1,00	2 v .	12	32	160 x 140 x 230	110 × 210	240 x 230	140	140
13 pers		Dy S	12	32	160 x 140 x 230	110×210	240 x 230	140	140
	100	ACVF.	12	32	160 x 140 x 230 file	110 x 210	240 × 230	140	140
	1 60	DyS	18	50	160 x 140 x 230	110 x 210	240 × 230	155	160
	No. of Lot	ACVF	18	50	160 x 140 x 230	110 x 210	240 x 230	155	160
1	2.50	Dy MV	28	80	160 ± 140 × 230	110 x 210	240 x 230	180	220
	19.65	1D 2	31.	80	160 s 140 x 230	110 x 210	240 x 230	180	220
	4.00	TD 2	31	80	160 x 140 x 230	110 x 210	240 x 230	220	
101	1.00	Dy.S	12	32	195 x 140 x 230	110 x 210	250 x 230	140	160
16 pers	17/2007	ACVF	12	32	195 x 140 x 230	110 × 210	260 x 230	140	160
	1.50	Dy S	18	50	195 x 140 x 230	110 x 210	250 + 230	155	180
		ACVF	18	50	195 × 140 × 230	110 x 210	250 + 230	155	160
19	2.50	Dy MV	28	90	195 x 140 x 236	116 x 210	960 x 230	180	220
		ID 2	31	80	195 x 140 x 230	110 x 215	260 x 330	180 :	220
egoverna second fil		7D 2	31	80	195 x 140 × 230	110 - 210	260 + 230	320	
CONTRACTOR STATE	.70	Dys	12.	32	195 x 175 x 230	110 + 210	260 × 260	140	760
21 para		ACVF	12	32	195 x 175 x 230	110×210	260 x 260	140	160
31		Dy S	18	50	195 x 175 x 230	110 x 210	260 x 760	155	160
	STEEDER -	ACVF	18.	50	195 x 175 x 230	110 x 210	1 260 × 260	155	160
		Dy MV	28	90	195 x 175 x 230	110 x 210	265 x 260	180	220
		TD 2	31	30	195 x 175 x 230	110 x 216	260 x 260	180	220
-		TO:2	31	60	195 × 175 × 230 ,	110 x 210	260 x 260	320	
Merta: Journal les crises son (I) Entrativoport: 2 v = 2 v	0F 5	TD-2	31	80	196 x 175 x 230	140 x 210	265 x 260	400	200

SECTIONS RÉELLES D'ARMATURES

Section en cm^2 de N armatures de diamètre φ en mm.

φ:	5	6	8	10	12	14	16	20	25	32	40
1	0.20	0.28	0.50	0.79	1.13	154	2.01	3.14	4.91	8.04	12.57
2	0.39	0.57	1.01	1.57	2.26	3.08	4.02	6.28	9.82	16.08	25.13
3	0.59	0.85	1.51	2.36	3.39	4.62	6.03	9.42	14.73	24.13	37.70
4	0.79	1.13	2.01	3.14	4.52	6.16	8.04	12.57	19.64	32.17	50.27
5	0.98	1.41	2.51	3.93	5.65	7.70	10.05	15.71	24.54	40.21	62.83
6	1.18	1.70	3.02	4.71	6.79	9.24	12.06	18.85	29.45	48.25	75.40
7	1.37	1.98	3.52	5.50	7.92	10.78	14.07	21.99	34.36	56.30	87.96
8	1.57	2.26	4.02	6.28	9.05	12.32	16.08	25.13	39.27	64.34	100.53
9	1.77	2.54	4.52	7.07	10.18	13.85	18.10	28.27	44.18	72.38	113.10
10	1.96	2.83	5.03	7.85	11.31	15.39	20.11	31.42	49.09	80.42	125.66
11	2.16	3.11	5.53	8.64	12.44	16.93	22.12	34.56	54.00	88.47	138.23
12	2.36	3.39	6.03	9.42	13.57	18.47	24.13	37.70	58.91	96.51	150.8
13	2.55	3.68	6.53	10.21	14.70	20.01	26.14	40.84	63.81	104.55	163.36
14	2.75	3.96	7.04	11.00	15.83	21.55	28.15	43.98	68.72	112.59	175.93
15	2.95	4.24	7.54	11.78	16.96	23.09	30.16	47.12	73.63	120.64	188.5
16	3.14	4.52	8.04	12.57	18.10	24.63	32.17	50.27	78.54	128.68	201.06
17	3.34	4.81	8.55	13.35	19.23	26.17	34.18	53.41	83.45	136.72	213.63
18	3.53	5.09	9.05	14.14	2036	27.71	36.19	56.55	88.36	144.76	226.2
19	3.73	5.37	9.55	14.92	21.49	29.25	38.20	59.69	93.27	152.81	238.76
20	3.93	5.65	10.05	15.71	22.62	30.79	40.21	62.83	98.17	160.85	251.33

6-CONCLUSIONS:

Le site destiné pour la construction de six blocs en R+6 projetés à Bejaia, est situé a proximité de l'université Abderrahmane Mira (Targua Ouzzemour) Bejaia

Le site est constitué par des remblais importants, une couche de brèches de pente recimentées avec des passages alluvionnaire reposant sur des marnes fracturées.

En se basant sur la nature des sols qui constituent le site, ainsi que les résultats des essais pénétrométriques, nous vous recommandons des fondations superficielles, qu'il y' a lieu d'ancrer à 1,30 m de profondeur après terrassements des remblais et de prendre une contrainte admissible Qadm = 1.5 bars.

Ces sols ne sont pas agressifs pour les bétons de fondations.

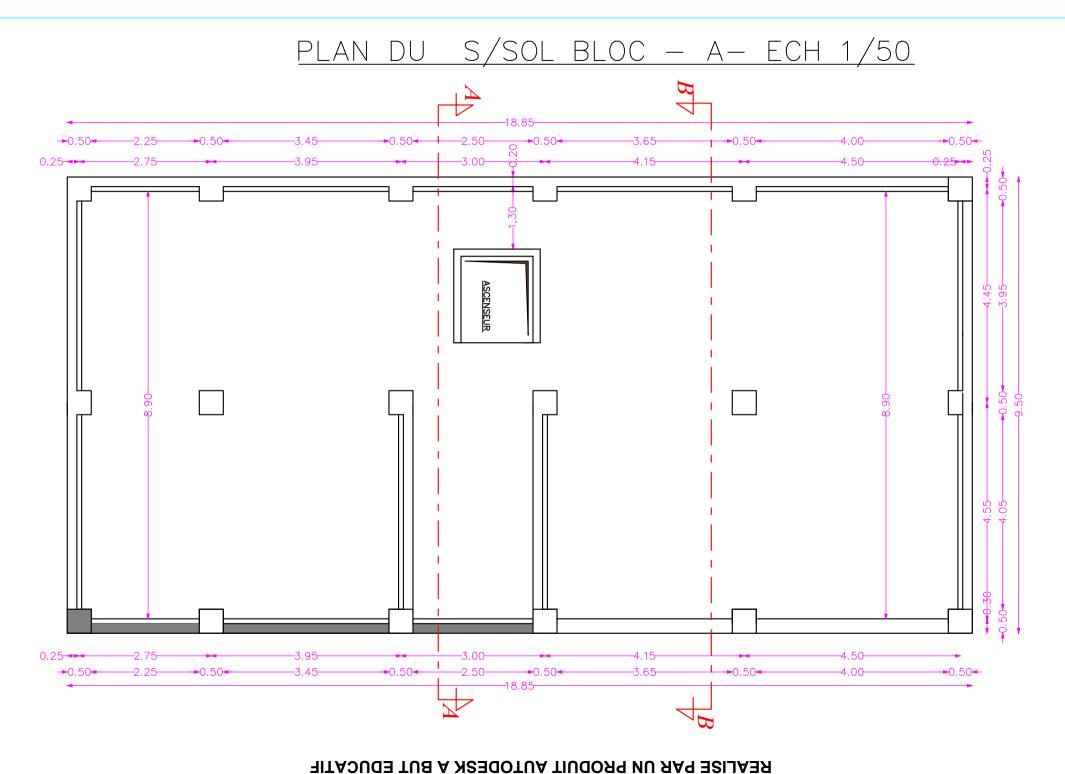
Selon les recommandations du C.G.S (2003), la région de Bejaia est classée en zone de moyenne sismicité II a et le site peut être classé en catégorie S2.

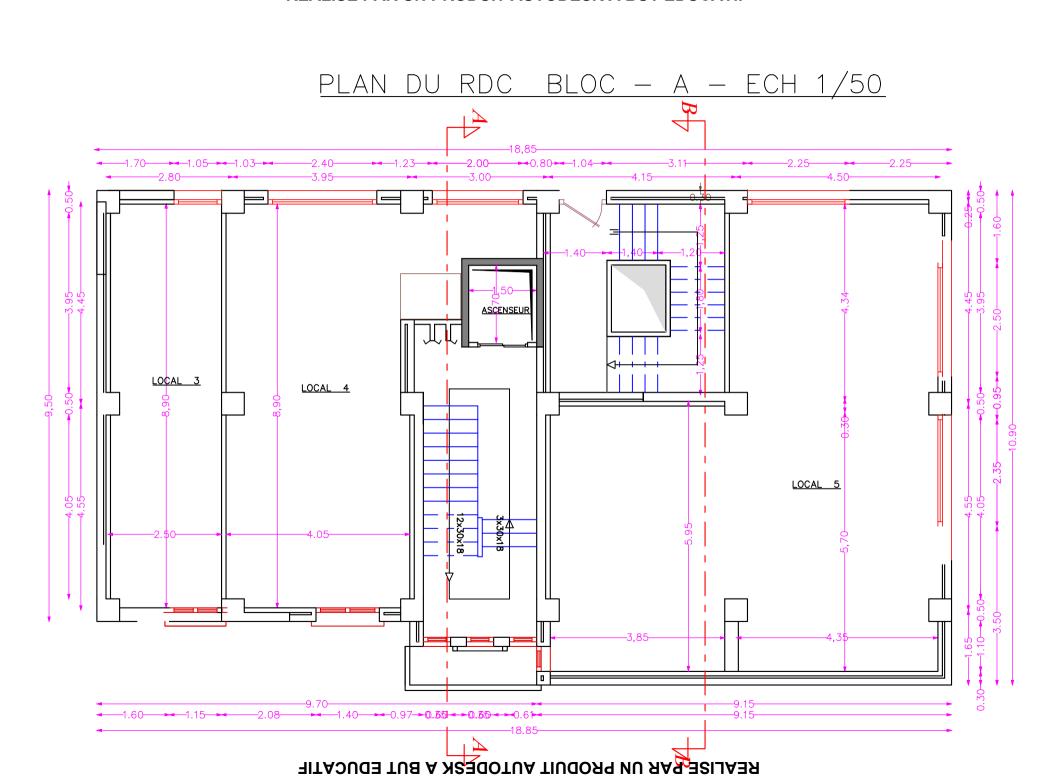
il y'a lieu de prendre en compte la sismicité de cette région dans le calcul des bétons armés.

LE CHARGE D'ETUDE

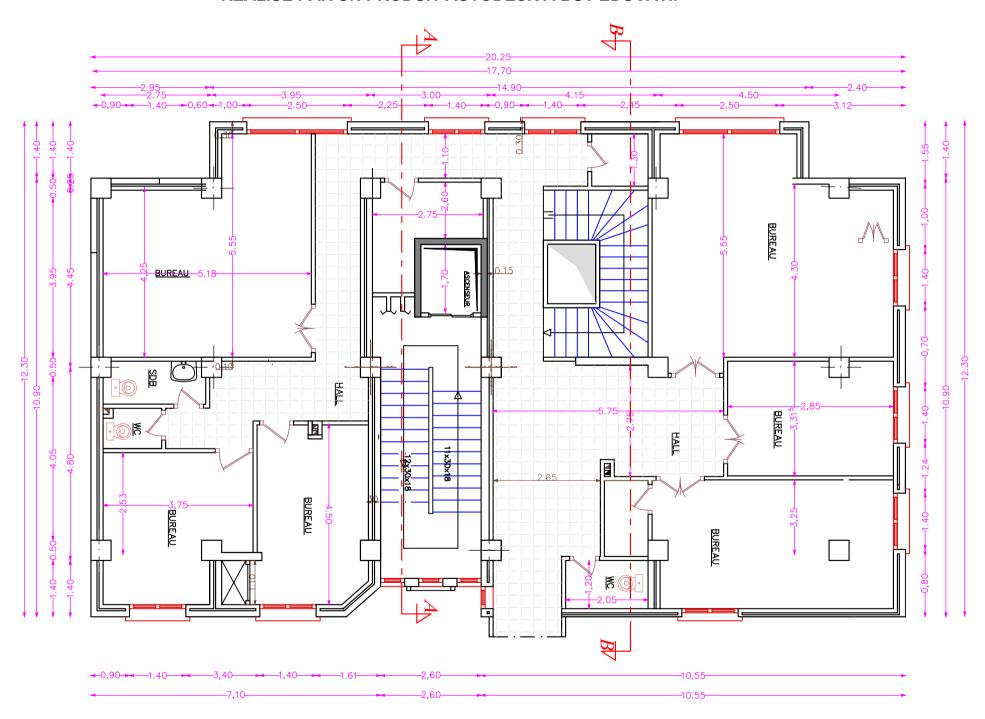
A. D.IOUDER

LE DIRECTEUR REGIÓNA

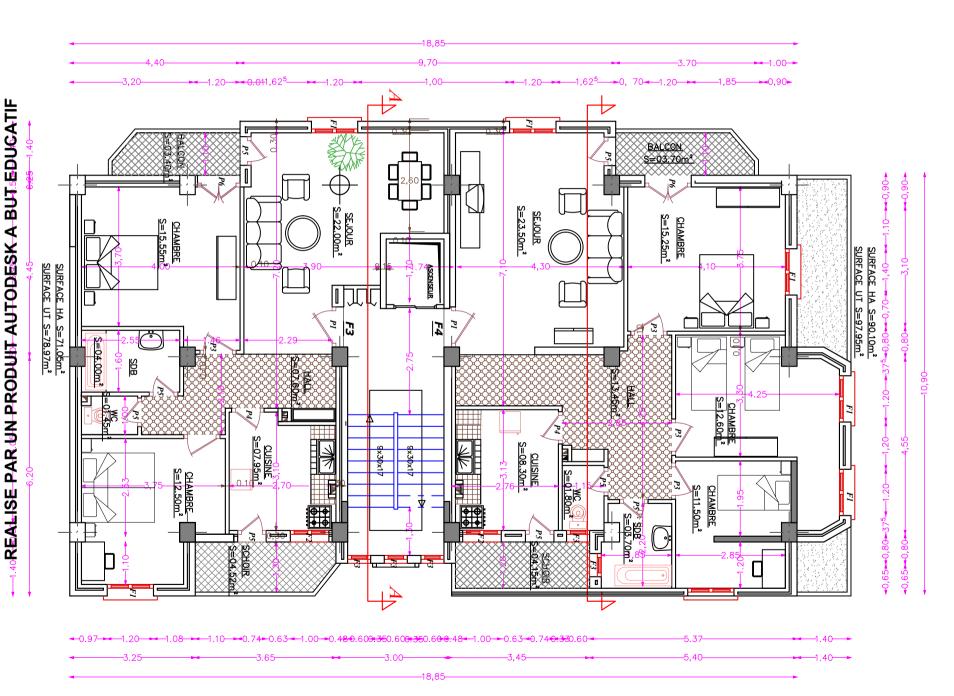

LE CHEF D'ANTENNE

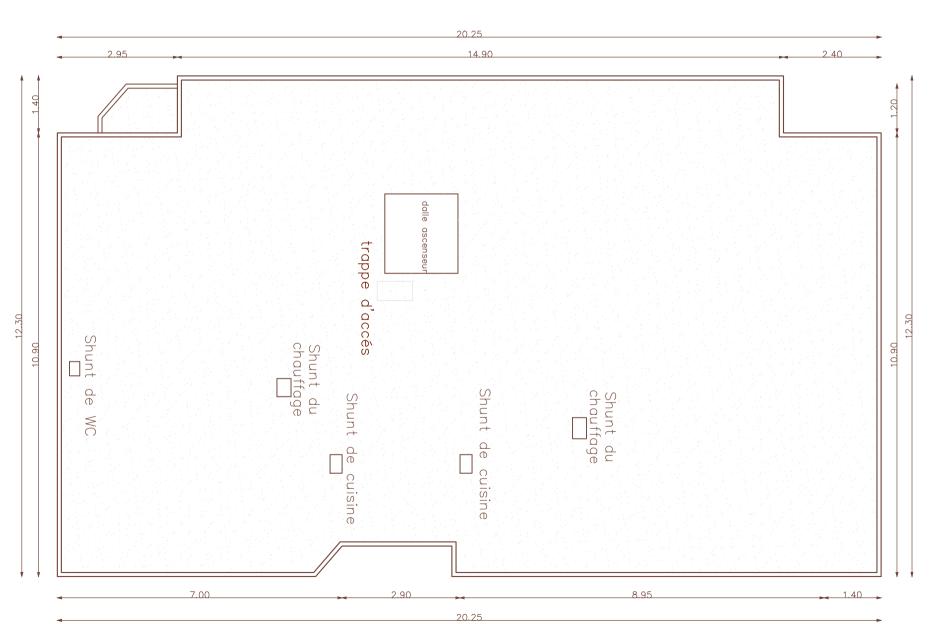

Vérifié par : L.BOUZEKRI

PLAN DU ENTRE SOL BLOC — A— ECH 1\20


REALISE PAR UN PRODUIT AUTODESK A BUT EDUCATIF LOCAL 2 LOCAL 1 S/SOL DU LOCAL 1

REALISE PAR UN PRODUIT AUTODESK A BUT EDUCATIF




<u>PLAN D'ETAGE SERVICE BLOC - A - ECH 1/50</u>

REALISE PAR UN PRODUIT AUTODESK A BUT EDUCATIF

PLAN D'EGAGES 2-3-4-5-6-7-8-9-10 BLOC-A-ECH 1/50

REALISE PAR UN PRODUIT AUTODESK A BUT EDUCATIF

PLAN DE TERRASSE BLOC - A - ECH 1/50

andrakana manan man. COUPE AA BLOC - A -ECH 1/50

REALISE PAR UN PRODUIT AUTODESK A BUT EDUCATIF

REALISE PAR UN PRODUIT AUTODESK A BUT EDUCATIF