République Algérienne Démocratique et Populaire
Ministere de ’Enseignement Supérieur et de la Recherche Scientifique
Université Abderahmane MIRA - Béjaia
Faculté des Sciences Exactes
Département d’Informatique
Mémoire de fin de cycle
en vue d’obtention du diplome de master recherche en informatique
spécialité : Réseaux et systemes distribués

THEME

Une modelisation hybride des
connaissances contextuelles dans le
domaine des systemes ubiquitaires

Présenté par :
M ACHOUR Kahina
M KERKAR Douriya

Soutenu devant le jury composé de :

M"™ F. MIR Président U. A/Mira Béjaia.
M™ H.KHALED Examinatrice U. A/Mira Béjaia.
Me'e N. KHOULALENE Examinatrice U. A/Mira Béjaia.
M™ S. BOUTRID Encadreur U. A/Mira Béjaia.

Remerciement

Nous tenons a exprimer notre gratitude a M™ S. BOUTRID, notre promotrice pour nous
avoir fait profiter de son expérience de recherche et son savoir faire, sa patience et pour nous

avoir orienté. Ses conseils ont été tres utiles et nous ont permis de mener a bien ce travail.

Nous voudrons exprimer toute notre gratitude a M" F. MIR, pour nous avoir fait I’honneur

de présider le Jury de soutenance.

Nos remerciements vont également a M™¢ H. KHALED et M€ N. KHOULALENE qui

nous ont fait I'honneur de participer au jury de soutenance.

Nous voudrons témoigner tous nos remerciements a nos familles pour leur encouragement

et leur soutien.

Enfin, nos sinceéres remerciements sont adressés a nos amis et a toutes les personnes qui

nous ont aidé et soutenu tout en long de la réalisation de ce mémoire.

Deédicaces

Je dédie ce mémoire...
A mes trés chers parents
Aucune dédicace ne saurait exprimer 'amour, [’estime, le
dévouement et le respect que j7’ai toujours eu pour vous.
Ce travail est le fruit des sacrifices que vous avez
consentis pour mon éducation et mes études.
A mon trés cher fiancé Walid
Ton soutien, tes conseils et tes encouragements m’ont appris
a ne pas me sous-estimer et m’ont permis de réussir mes études.
A mon trés cher grand pere
L’homme au grand coeur généreux. C’est avec tous
mon respect et mon admiration que je te dédie ce travail
A mes trés chers freres et soeurs
Vous avez toujours été présents dans les moments difficiles, votre
soutien m’a été d’un grand secours tout au long de mes études.
A mon trés cheér bindme et amie Kahina
Malgré les obstacles et les difficultés qui se sont interposent,nous avons
pu les surmontés. En témoignage de l'amitié qui nous uni et des souvenirs de tous
les moments que nous avons passé ensemble, je te dédie ce travail
et je te souhaite une vie pleine de santé et de bonheur
A tous les membres de ma famille

Je vous dédie ce travail avec tous mes voeux de bonheur, de santé et de réussite.

Douriya

Deédicaces

Je dédie ce mémoire...
A mes trés chers parents Abdallah et Malika.
Vous vous avez dépensés pour moi sans compter.
En reconnaissance de tous les sacrifices consentis pour me
permettre d’atteindre cette étape de ma vie.
A mes chers freres Salim et Naserdine.
A mes cheres soeurs Kamela et Naima.
Vous avez de prés ou de loin contribué a ma formation.
A ma copine Douriya et a sa famille.
Je te souhaite une belle vie.
A Khoudir et d sa famille.
Affectueuse reconnaissance et Sincere gratitude
Vous avez contribué en fonction de vos moyens a affermir ma formation.

Merci infiniment pour tous.

Kahina

Résumé

L’évolution technologique des dispositifs mobiles a donné naissance a de nouveaux besoins
applicatifs pour assurer ’exécution des applications dans des environnements dynamiques. Ces
applications appelées applications sensibles au contexte doivent détecter les variations de 1’en-
vironnement et s’adapter en conséquence.

La modélisation du contexte est la premiere démarche dans le processus de création d’ap-
plications sensibles au contexte, pour permettre de simplifier leur développement.

En ce document nous discutons les besoins aux lesquels les approches de modélisation et
de raisonnement de contexte devraient répondre. Donc nous proposons une approche hybride

OWL/EC afin de résoudre le probleme de négation dans les ontologies.

Mots clés : informatique ubiquitaire, sensibilité au contexte, modélisation du contexte,

modélisation hybride, Ontologie et Event Calculus.

Abstract

The technological evolution of the mobile devices gave rise to new applicatifs needs to ensure
the execution of the applications in dynamic environments. These applications called context-
awarness applications must detect the variations of the environment and adapt consequently.

The modeling of the context is the first step in the creative process of context-awarness
applications, to make it possible to simplify their development.

In this document we discuss the needs which the approaches of modeling and reasoning of
context should answer. Thus we propose a hybrid approach OWL/EC in order to solve the
problem of negation in ontologies.

Keywords : ubiquitous computing, context-awarness, context modeling, hybrid modeling,

ontology and Event Calculus.

Table des Matieres

Table des Matieres i
Liste des tableaux i
Table des figures i
liste des acronymes vii
Introduction générale 1
1 Généralités sur les systémes ubiquitaires 4
1.1 Imntroduction 4
1.2 Définition de 'informatique ubiquitaire 4

1.3 Définition d’un environnement ubiquitaire 0L)
1.4 Caractéristiques de 'environnement ubiquitaire 6
1.5 Equipements d’un environnement ubiquitaire L. 7
1.5.1 Equipements matériels L 7

1.5.1.1 Les dispositifs mobiles 7

1.5.1.2 Les réseaux filaires et non filaires 8

1.5.2 Outils logiciels 9

1.5.2.1 Définition d’un middleware (intergiciel) 9

1.6 Scénarios utilisant I'informatique ubiquitaireo 9
1.7 Des champs d’application de l'informatique ubiquitaire 11
1.8 Conclusion 13

2 Définitions et gestion du contexte

2.1
2.2

2.3
24
2.5
2.6

2.7
2.8

2.9

3.1
3.2

3.3

Introduction
Définitions
221 Contexte
2.2.2 Le contexte en informatique ubiquitaireo 0L
2.2.3 Contexte pertinent
2.2.4 Sensibilité au contexte Lo L o
2.2.5 Entités observables, observables
Les premicres applications sensibles au contexte00
Types d’informations contextuelles
Caractéristiques des informations du contexte
Architecture d'un systeme sensible au contexte
2.6.1 Couche acquisition(capture)du contexte,
2.6.2 Couche d’interprétation et d’agrégation du contexte
2.6.3 Couche de stockage et historique du contexte
2.6.4 Couche dissémination du contexte
2.6.5 Couche application
Exigences des gestionnaires du contexte
Approches de modélisation de contexteo
2.8.1 Modeles classiques

2.8.1.1 Approches clés/valeurs

2.8.1.2 Approches orientées modele

2.8.1.3 Approches basées sur la logique

2.8.1.4 Approches orientées ontologie
2.8.2 Modeles hybrides

2.8.2.1 Modele hybride faits/ontologie

2.8.2.2 Le modele hybride balisage/ontologie

Conclusion

Etude du modele loqgique Event Calculus et du modele ontologique OWL

Introduction,
Event calculus
3.2.1 Types et formes de base de EC 0.

Les capacités représentationnelles de EC

1

16

3.3.1 Lacirconscription Lo 34

3.3.2 Le raisonnement révisable o000 oL 35
3.3.3 Manipuler les contradictions 35
3.3.4 Le changement continu, 35
3.3.5 Laloidiinertie 36
3.3.6 Laconcurrence 36
Caractéristiques de EC 36
3.4.1 Parcimonie de la représentation oo 36
3.4.2 Flexibilité expressiveo oL 36
3.4.3 La tolérance a ’élaboration oo 37
Les différentes versions d’Event Calculus 37
3.5.1 Original Event Calculus (OEC) 37
3.5.2 Simplified Event Calculus (SEC) 38
3.5.3 Basic Event Calculus (BEC)0 39
3.5.4 Event Calculus (EC) 40
3.5.5 Discrete Event Calculus (DEC) 41
Tableau comparatif des différentes versionsde EC 43
Formalismes alternatifs a Event Calculus, 44
3.7.1 Situation Calculus 44
3.72 Fluent Calculus 45
La logique de description 46
3.8.1 Langage de base AL 46
3.8.2 Syntaxe du langage AL 46
383 LaABoxetlaTBox 46
3.84 Inférence 48

3.8.4.1 Inférence au niveau TBox 48

3.8.4.2 Inférence au niveau ABox 49
Les ontologies et le langage ontologique OWL 49
3.9.1 Définition des éléments d'une ontologie OWL 51
3.9.2 OWL-DL 51

3.9.2.1 Axiomes 51

3.9.22 Faits 53
3.9.3 Raisonnement avec OWL 54
3.94 Regles SWRL 55

111

3.10 Synthese

3.11 Conclusion

4 Problématique et proposition

4.1 Imtroduction

4.2 Problématiqueo

4.3 Proposition

4.4 Architecture de la plateforme L L

4.5 Conclusion

5 Validation

5.1 Introduction

5.2 Exemple d’application

5.2.1 Autosurveillance glycémique

5.2.2 L’ontologie de 'exemple

5.2.3 L’exemple en logique descriptive

5.3 Outils et langages
5.3.1 Protégé
532 SWRL Tab
5.3.3 Pellet

5.3.4 Protégé-OWL API pour le traitement des ontologies OWL

5.4 Implémentation du scénario d’autosurveillance glycémique avec DEC

5.4.1 Cas ou le patient fait sa prise

5.4.2 Cas ou le patient ne fait pas sa prise

5.5 Synthese

5.6 Conclusion

Conclusion générale et perspectives

Bibliographie

v

57
o7
o7
99
99
61

62
62
62
62
63
65
65
65
66
69
69
69
69
71
72
72

73

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

0.1

Liste des tableaux

Exemples de capteurs de contexte 19
Comparaison entre les modeles classiques existants 30
Comparaison entre les modeles hybrides existants 31
Prédicats et fonctions de OEC. Lo 38
Prédicats et fonctions de SECo Lo 39
Prédicats et fonctions de BECo 40
Prédicats et fonctions de EC. 42
Tableau comparatif des différentes versions de event calculus 44
Axiomes et concepts de basede AL L. 47
Comparaison entre SWRL et DEC 56
Outils et langages pour la création et manipulation de l'ontologie 66

1.1
1.2

2.1
2.2
2.3
24

3.1

4.1

5.1
2.2
5.3
5.4

[
<t

0.6
5.7
5.8

Table des figures

Exemple d’un environnement ubiquitaireo 5t
Architecture d'un intergiciel (middleware)[1] oL 9
Architecture générale d'un systéme sensible au contexte[2] 18
Un méta-modele de ContextUMLI[3] 25
Exemple de modélisation avec CML[3] 26
Exemple d’ontologie[4] 29
Le fonctionnement de Event Calculus 33
Architecture générale de la proposition L. 60
Scénario Autosurveillance glycémiqueo 63
L’ontologie du scenario 64
L’ontologie sous protégé 66
Etapes d’exécution des regles SWRL sous Protégé[5] 67
Execution d'une regle SWRL sous protégé 68
Exécution d'une regle SWRL contenant la négation de la propriété "do” 69
Résultat d’execution des prédicats dans le cas de prise sous EC. 70
Résultat d’execution des prédicats dans le cas non prise sous EC 71

vi

Liste des acronymes

ADSL : Asymmetric Digital Subscriber Line.

AL : Attributive Language.

API : Application Programming Interface.

BEC : Basic Event Calculus.

CC/PP : Composit Capability/Prefrence Profile.
CML : Context Modeling Langage.

DEC : Discrete Event Calculus.

DSL : Digital Suscriber Line.

DTD : Document Type Definition.

EC : Event Calculus.

GPRS : General Packet Radio System.

GPS : Global Positionning System.

GSM : Global System for Mobile communication.
IA : Intelligence Artificielle.

OEC : Original Event Calculus.

ORM : Object Role Modeling.

OWL : Web Ontology Language.

OWL-LD : Web Ontology Language-Description Logic.
PC : Personnel Computer.

PDA : Personnel Digital Assistants.

RDF : Resource Description Framework.

vii

RFID : Radio Frequency Identification.
RuleML : Rule Markup Langage.

SWRL : Semantic Web Rule Language.

SEC : Simplified Event Calculus.

UML : Unified Modeling Language.

UMTS : Universal Mobile Telecommunication System.
URI : Uniform Resource Identifier.

W3C : World Wide Web Consortium.

WIFI : Wireless Fidelity.

WLAN : Wireless Local Area Network.
WMAN : Wireless Metropolitan Area Network.
WPAN : Wireless Personal Area Network.
WWAN : Wireless Wide Area Network.

XML : eXtensible Markup Language.

Viil

Introduction générale

"The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life
until they are indistinguishable from it.”

Marec Weiser, (1952 - 1999),

The Computer for the 21" Century (1991)

Depuis les années 1940, I'informatique a accéléré de plus en plus la diffusion de 'information
et des connaissances. L’invention du transistor !, la démocratisation de ’ordinateur personnel, la
révolution du Web ou I'acces aux réseaux sociaux depuis des terminaux mobiles, sont des étapes
qui ont de plus en plus rapproché les technologies de I'information et de la communication de
notre vie de tous les jours.

En 1991, Mark Weiser [6] présentait sa vision futuriste de l'informatique du 217 siccle
en établissant les fondements de ce que nous appelons aujourd’hui I'informatique ubiquitaire
(Ubiquitous Computing) : les ordinateurs doivent s’intégrer dans notre environnement et devenir

omniprésents.

Le dictionnaire définit le terme ubiquitaire comme quelque chose "qui est ou semble ¢tre
partout a la fois.” Dans le cas de I'informatique, cet adjectif traduit que les dispositifs informa-
tiques, capables de nous assister dans nos taches quotidiennes, vont continuer a nous entourer
progressivement. Nous allons passer d’une interaction de type "bureau”, un-vers-un, vers une
autre de type ubiquitaire, plusieurs-vers-plusieurs. Au lieu de nous asseoir face a un ordinateur
pour lui demander des actions, une multitude d’ordinateurs, de capteurs et d’actionneurs vont

interagir autour et avec nous dans nos batiments, dans nos moyens de transport, dans nos

1. Dispositif a semi-conducteurs, utilisé en électronique comme amplificateur, modulateur, oscillateur, inter-

rupteur. Récepteur radiophonique portatif, muni de ce dispositif

rues... etc. Ces dispositifs vont devenir de plus en plus petits et nombreux, ce qui va changer
radicalement notre fagon de les utiliser. Pour désigner ces espaces riches en dispositifs et en

interactions, on parle d’environnements ubiquitaires.

L’essence meéme de cette vision consiste a mettre les nouvelles technologies de I'information
et de la communication au service des utilisateurs non l'inverse. L’objectif est de permettre a ces
derniers d’accéder aux différentes fonctionnalités offertes par les divers dispositifs informatiques
hétérogenes présents dans leur environnement immédiat, a partir de n’importe quel terminal,

par exemple leur téléphone portable, ou leur PDA (Personal Digital Assistant).

Afin que les applications répondent au mieux aux attentes des utilisateurs, il est nécessaire
de prendre en considération les informations contextuelles. La prise en compte du contexte
d’utilisation dans les applications, est un domaine de recherche d’actualité connu sous le nom
de "sensibilité au contexte” (ou contert-awareness en anglais) : une application sensible au
contexte doit percevoir la situation de l'utilisateur dans son environnement et adapter par
conséquent son comportement a la situation en question, I'idée principale de l'informatique

sensible au contexte est de réduire au maximum les interactions entre I’homme et la machine.

L’étude de la sensibilité au contexte nous amene tout d’abord a étudier les travaux de
recherche effectués pour définir et modéliser le contexte. La modélisation permet d’offrir les

fondations pour une représentation expressive du contexte et de simplifier son utilisation.

Pour stocker une information, nous avons besoin de définir un modele pour la décrire.
Ainsi, un modele de contexte est requis pour pouvoir l'utiliser dans ’application. Strang et
Linnhoff-Popien [7] ont résumé les approches de modélisation de contexte les plus intéressantes
de la littérature. Ils ont proposé une classification des approches de modélisation basée sur la
structure de données utilisée pour la description et I’échange du contexte. Nous présentons ces
approches en quatre catégories par degré de complexité de leur structure de données : approches

clés/valeurs, orientées modele, logique et les modeles basés sur les ontologies.

L’objectif de ce travail est de proposer une approche de modélisation hybride entre le modele
ontologique OWI et le modele logique temporel Event Calculus, pour modéliser et raisonner sur

les informations du contexte dans les systemes ubiquitaires.

Ce mémoire comporte cing chapitres :
Les deux premiers chapitres présentent un état de ’art. Dans le premier chapitre, nous
définirons des généralités sur les systéemes ubiquitaires a savoir : définition de 'informatique

ubiquitaire et de son environnement, les caractéristiques de I’environnement ubiquitaire, et des

champs d’applications.

Dans le deuxieme chapitre, nous détaillerons la notion de contexte, la sensibilité au contexte
et nous étudions les approches de modélisation du contexte en informatique ubiquitaire.

Le troisieme chapitre détaillera les deux modeles Event Calculus et OWL, ainsi que leurs
avantages et limites.

Le quatrieme chapitre sera consacré a ’exposition de la problématique, notre proposition et
architecture.

Le dernier chapitre sera consacré a la validation de la proposition.

Enfin, ce mémoire se clotura par une conclusion générale résumant les différents points qui

ont été traités, ainsi que les perspectives a accomplir prochainement.

Généralités sur les systemes ubiquitaires

1.1 Introduction

L’évolution technologique réalisée dans le domaine de l'informatique ne cesse de croitre,
cette derniere est appelée a étre de plus en plus présente au quotidien. L'intégration des objets
mobiles tels que les puces dans les voitures, I'explosion de la téléphonie mobile, 'arrivée sur le
marché des ordinateurs portables et maintenant des ultra-portables, donnent une idée de ce qui
peut nous attendre en informatique dans les années a venir.

Grace a ces terminaux mobiles et les services offerts, les objets du quotidien sont partout
accessibles a tous moment.

L’informatique ubiquitaire est un paradigme dans lequel des systemes numériques, intégrés
dans les objets de la vie quotidienne, sont mis en réseau pour coopérer et fournir un envi-
ronnement intelligent qui facilite 'utilisation et automatise I'exécution de services pour les
utilisateurs.

Dans ce premier chapitre, nous abordons les généralités sur les systemes ubiquitaire a sa-
voir : définition de I'informatique ubiquitaire et de son environnement, les caractéristiques de

I’environnement ubiquitaire, et des champs d’applications.

1.2 Définition de 'informatique ubiquitaire

Le concept de I'informatique ubiquitaire ou informatique ambiante converge vers la vision
de l'informatique du futur que donnait Mark Weiser en 1991 dans son article[6] intitulé ”The
computer for the 21°¢ Century”.

L’informatique ubiquitaire appelée également informatique pervasive, a pour but de rendre
accessible toutes sortes de services, n’importe ou, ce qui offre aux utilisateurs la possibilité de

surmonter les contraintes actuelles d’utilisation d’un ordinateur (étre assis devant un clavier,

4

Chapitre : 1 Les Généralités sur les systemes ubiquitaires

un écran... etc) lui rend sa liberté d’actions, notamment sa liberté de mouvement. L'ubiquité
permet donc souvent la mobilité.

L’informatique ubiquitaire a donné naissance a plusieurs termes, parmi eux nous trouvons :

Ubiquitaire : accessible de n’importe ou;

Mobile : qui integre les terminaux mobiles ;

Pervasif : capacité du dispositif a détecter des éléments du contexte ;

Sensibilité au contexte (context-aware) : qui prend en compte le contexte d’exécution ;

Ambiante : qui est intégré dans les objets quotidiens.

1.3 Définition d’un environnement ubiquitaire

Un environnement ubiquitaire[8] est un espace physique (une maison, un hopital, une école,
une autoroute, ou une ville) équipé d’une multitude d’entités matérielles ou logicielles commu-
niquantes grace a un réseau. Ces entités sont des capteurs (de température, de luminosité),
des actionneurs (lampes, caméra), des technologies mobiles, ou encore des composants logi-
ciels (agendas, applications Web). Ces entités capturent les informations de ’environnement

ubiquitaire et sont programmables, donnant ainsi acces a leurs fonctionnalités.

Fi1GURE 1.1 — Exemple d'un environnement ubiquitaire

Chapitre : 1 Les Généralités sur les systemes ubiquitaires

1.4 Caractéristiques de ’environnement ubiquitaire

L’environnement ubiquitaire releve plusieurs défis, certains d’entre eux sont présentés par

les points suivants|9] :

1. Limitation de ressources
Le fonctionnement des systemes pervasifs réside en partie sur la collaboration des pe-
tits dispositifs mobiles. La taille réduite de ces objets mobiles implique des capacités de
calcul, des capacités de mémoire et autonomie ¢énergétique limitées. Cette dernicre est
une contrainte critique a prendre en compte dans le développement des applications. En
effet, lorsqu'un dispositif n’a plus d’énergie, tous les services qu’il hébergeait deviennent
inutilisables.
2. Variation du contexte

Les systemes pervasifs doivent étre sensibles a leur environnement afin de prendre des
décisions appropriées et fournir des services adéquats aux utilisateurs. Cette sensibilité
consiste en la prise en compte de I'évolution des parametres physiques de l’environne-
ment. Ces parametres constituent le contexte de Ienvironnement. La mobilité dans un
environnement ubiquitaire provoque des changements dans le contexte des applications.
En effet, les applications sensibles au contexte en informatique ubiquitaire sont sensibles
a la localisation. De fagon générale, le contexte décrit la situation de l'utilisateur en
termes de localisation, du temps, d’environnement et du terminal utilisé, de profil utili-
sateur... etc par exemple, une situation contextuelle peut étre définie par les parametres
suivants : profil utilisateur = "enseignent”, terminal utilisé = "PDA”, localisation = "salle
de conférence”. Le changement d’une valeur sur 'un de ces parametres définit une nouvelle
situation contextuelle a laquelle I'application doit s’adapter. On parle alors de dynamicité

du contexte.

3. Mobilité
La mobilité est un atout pour les systemes pervasifs, mais cela n’empéche pas d’étre un
probleme. La mobilité des dispositifs entraine des variations de connexion qui peuvent
avoir de lourdes conséquences sur le fonctionnement des services : faible débit et donc la
lenteur des transmissions et parfois la déconnexion, tous comme 1’épuisement d’une bat-
terie, les déconnexions provoquant 'indisponibilité temporaire des services ce qui entraine
la dégradation de qualités de services.

4. Hétérogénéité

Les équipements utilisés dans un environnement ubiquitaire sont tres variés tel que les or-

Chapitre : 1 Les Généralités sur les systemes ubiquitaires

dinateurs portables, les capteurs, PDA, appareils électroménagers, appareils médicaux...
etc. Ces dispositifs sont différents a tous niveaux : matériel et logiciel. De plus, ils s’ap-
pliquent sur diverses technologies de communications filaires ou non filaires (ADSL, Wifi,

Bluetoot)...etc

5. Limitation réseaux
Les connexions sans fil utilisées dans les dispositifs mobiles ont généralement une bande
passante limitée et instable. La vitesse de transmission des technologies standard sans fils
(exemple : WI-FI, IEEE 802.11a, le Bluetooth...etc) lente comparée au réseau filaire a été
toujours un obstacle pour exécuter des applications complexes et déplacer des données

volumineuses sur les mobiles.

1.5 Equipements d’un environnement ubiquitaire

1.5.1 Equipements matériels

Le développement rapide de 'informatique ubiquitaire a été favorisé par les dernieres avan-

cées technologiques, nous citons quelques équipements :

1.5.1.1 Les dispositifs mobiles

Dans un environnement ubiquitaire, différents terminaux mobiles[10] sont utilisés tel que :

a) Personnel Digital Assistants (PDA) : C’est un ordinateur de poche sous forme de
boitier compact de petite taille qui possede un écran tactile et qui est a la fois micro-

ordinateur, calendrier, agenda, téléphone, fax... etc.

b) Smartphone : Un Smartphone ou téléphone intelligent, est un téléphone mobile disposant
aussi des fonctions d'un assistant numérique personnel. La saisie des données se fait par
le biais d’un écran tactile ou d’un clavier. Il fournit des fonctionnalités basiques comme :
I’agenda, le calendrier, la navigation sur le Web, la consultation de courrier électronique,

de messagerie instantanée, le GPS... etc.

c) Tablet PC : C’est un ultra portable équipé de stylet, permettant d’écrire ou de dessiner
manuellement a ’écran, comme sur un bloc-notes de format A4. Il est muni d’un systeme

de reconnaissance de I’écriture naturelle et parfois de reconnaissances vocales.

d) Les puces Radio Frequency Identification (RFID) : L’identification par radiofréquence

(RFID) est une méthode pour stocker et récupérer des données a distance en utilisant des

Chapitre : 1 Les Généralités sur les systemes ubiquitaires

marqueurs appelés Tag RFID. Les Tags RFID sont de petits objets, tels que des étiquettes
autoadhésives, qui peuvent étre collés ou incorporés dans des produits. Les Tags RFID
comprennent une antenne qui leur permet de recevoir et de répondre aux requetes radio

émises depuis ’émetteur au récepteur.

e) Capteurs : Capteurs de température, humidité, luminosité, détecteur de présence, ca-

méra...etc.

1.5.1.2 Les réseaux filaires et non filaires

Ces dernieres années, de nombreux standards ont vu le jour pour couvrir différents types de

réseaux sans fil a savoir les réseaux : WPAN, WLAN, WMAN et WWAN.

a) Les réseaux personnels sans fil (WPAN) : Le réseau WPAN pour Wireless Personal
Area Network, concerne les réseaux sans fil d’une faible portée. Ce type de réseau sert
principalement a relier des périphériques (imprimante, appareils domestiques, téléphone
portable, ou un assistant personnel...etc.) & un ordinateur sans liaison filaire. Plusieurs
technologies sont utilisées pour les WPAN dont la principale est la technologie Bluetooth
(IEEE 802.15.1) proposant un débit théorique de 1Mb/s pour une portée maximale de

trentaines de metres et possede ’avantage d’étre peu gourmande en énergie.

b) Les réseaux locaux sans fil (WLAN) : Le réseau WLAN pour Wireless Local Area
Network, est un réseau sans fil permettant de couvrir I’équivalent d’un réseau local d’en-
treprise, soit une portée d’environ une centaine de metres. Il permet de relier les terminaux
présents dans la zone de couverture. Plusieurs technologies concurrentes existent dont la

principale est le Wifi (ou IEEE 802.11), offrant des débits allant jusqu’a 54Mbps.

c) Les réseaux Métropolitains sans fil (WMAN) : Le WMAN pour Wireless Metropo-
litan Area Network se base sur la norme IEEE 802.16 offrant un débit de 1 & 10Mb/s

pour une portée de 4 a 10Km.

d) Les réseaux Etendus sans fil (WWAN) : Le WWAN pour Wireless Wide Area Net-
work, est connu sous le nom de réseau cellulaire sans fil. Il s’agit des réseaux de la télépho-
nie mobiles qui inclue les technologies GSM (Global System for Mobile communication),
GPRS (General Packet Radio System), UMTS (Universal Mobile Telecommunication Sys-

tem).

Pour les réseaux filaires, ils offrent un débit plus élevé par rapport aux réseaux sans fil

comme les réseaux Ethernet, DSL (Digital Suscriber Line).

Chapitre : 1 Les Généralités sur les systemes ubiquitaires

1.5.2 Outils logiciels
1.5.2.1 Définition d’un middleware (intergiciel)

Un intergiciel désigne la couche logicielle intermédiaire qui fournit un haut niveau d’abstrac-
tion de programmation permettant de masquer I'hétérogénéité des réseaux de communications,
des ressources matérielles, des systemes d’exploitation et des langages de programmation, il
se situe au dessus du systeme d’exploitation et au dessous des applications de son hote. Un
intergiciel a pour objectif de faciliter le développement, évolution, réutilisation des applications

et leurs portabilités entre plates-formes.

FIGURE 1.2 — Architecture d’un intergiciel (middleware)[1]

1.6 Scénarios utilisant ’informatique ubiquitaire

Pour mieux éclaircir les concepts fondamentaux des systémes ubiquitaires, nous présenterons
deux exemples de scénario concret dans lesquels un utilisateur interagit avec différents services

de son environnement.

Scénariol

Dans ce scénario[1], I'utilisateur cherche les clés de la maison. Il dit : "oll sont mes clés ?”

Hypotheses

— Le systeme de reconnaissance vocale reconnait ce qui a été dit et est capable de l'inter-
préter

— Le systeme est capable de connaitre la position des clés

— Nous disposons d'une techno audio 3D, d’agents animés, d'un robot mobile

Chapitre : 1 Les Généralités sur les systemes ubiquitaires

Réponse du systeme
— Emission d’un son 3D donnant I'impression de provenir de ’endroit ou se trouvent les clés
— Affichage d'un agent animé sur I’écran du vidéo projecteur et qui fait un geste dans la
direction de I’endroit ou se trouvent les clés
— Déplacement d'un robot vers I'endroit ot se trouvent les clés
Autres variations possibles
— Si l'utilisateur est aveugle, pas d’agent animé
— Si utilisateur sourd, pas de son

— Si vidéo projecteur occupé, utilisation de 1’écran plasma pour affichage de 'agent animé

Scénario2

Les grandes conférences de recherches sont tres dynamiques, il y a de nombreuses sessions
de conférences en parallele, sur des sujets tres variés impliquant forcément des contextes chan-
geants. Le Conférence assistant est un programme chargé dans 'ordinateur du participant et
qui va lui permettre de décider, quelles conférences sont intéressantes pour lui, d’étre au cou-
rant des activités de ses collegues, d’effectuer des interactions avec son environnement lors du
déroulement de la conférence.

Les éléments de contexte utilisés sont tres nombreux : temps, identité, localisation et acti-

vité.
Lors de son arrivée a la conférence, le participant se voit remettre 1’assistant sous la forme
d'un logiciel qu’il va charger dans son ordinateur. Les informations qu’il a donné lors de son
inscription (centre d’intérét, collegues présents, coordonnées) vont étre intégrées par le logiciel
assistant et serviront de contexte de base.

Lorsqu’il n’assiste pas a une conférence, ’application se présente a 1'utilisateur sous la forme
d’un planning de la conférence avec une présélection grisée des conférences qui peuvent l'inté-
resser.

Il peut aussi savoir a quelles conférences assistent ses collegues. Si le participant rentre dans
une salle de conférence, l'assistant détecte un changement de contexte et réagit en affichant
le nom du conférencier, le titre, le theme et d’autres informations sur la conférence. Lors du
déroulement de la conférence, 'utilisateur recoit via 'assistant les diapositives qui sont en train
d’étre passées et peut prendre des notes sur celles-ci. Il lui est possible a la fin de la présentation,
lors de questions, de désigner et faire apparaitre la diapositive sur laquelle porte sa question

sur I’écran du conférencier. Le participant a la possibilité de noter I'intéréet qu’il accorde a une

10

Chapitre : 1 Les Généralités sur les systemes ubiquitaires

conférence dans son planning, cette information est répercutée chez ses collegues qui peuvent
savoir quelles sont les sessions intéressantes.

Il est enfin possible a l'utilisateur, une fois rentré chez lui de retrouver les présentations de
la conférence en fonction des sessions auxquelles il a participé, annoté avec ses informations
de contexte (Quand est-il arrivé dans la session ? Quelle question a t-il posée? Quand est il

parti?).

Analyse

D’apres les deux scénarios, on peut dégager, les caractéristiques fondamentales d'un systeme
informatique ubiquitaire.il offre :
e Un service transparent sur un réseau;
e Des équipements connectés par différents moyens (Wifi, Bluetooth...etc.);
e Un systeme qui surveille le contexte et les parametres du service qu’il offre aux utilisateurs ;
e L’informatique ubiquitaire suppose donc de déterminer 1’état courant du contexte grace
aux caractéristiques pervasives du dispositif, pour fournir les informations ou les interac-

tions adaptées a la situation de I'utilisateur.

1.7 Des champs d’application de 'informatique ubiqui-
taire

L’informatique ubiquitaire s’est développée dans de nombreux champs d’applications. Ces
applications peuvent étre classées selon les services qu’elles offrent aux utilisateurs. Elles doivent
pouvoir étre facilement adaptées pour satisfaire leurs besoins et préférences en confort, sécurité,

ou encore assistance quotidienne.

1. Domotique
La domotique désigne[8] 'ensemble des technologies et techniques mises en oeuvre pour
apporter des fonctions de gestion de la maison, tel que I’automatisation du fonctionnement
d’appareils pour délester ses habitants de certaines taches. Des applications ordinaires de
la domotique sont les systemes de gestion d’énergie, servant a automatiser les appareils de
climatisation et d’éclairage pour le confort de I'habitant. Ces applications doivent pouvoir
étre paramétrées selon les préférences de I'habitant et 1’état courant de ’environnement

(par exemple, la température, la luminosité ambiante, ou I’heure de la journée).

11

Chapitre : 1 Les Généralités sur les systemes ubiquitaires

2.

Gestion de l'information

L’information numérique est désormais disponible partout : dans les espaces publics, les
lieux professionnels, les entités mobiles. Des exemples d’information numérique sont la
publicité, la météorologie, les actualités politiques. Ces informations sont constamment
mises a jour et doivent étre personnalisées selon les personnes a qui elles sont destinées.
Un objectif des applications de gestion d’information est de recueillir et traiter des sources
d’informations aussi variées que versatiles, telles que des agendas personnels ou d’entre-
prise. Des applications typiques de ce champ sont les gestionnaires de conférence ou de
bulletins d’information dans les entreprises et 'affichage d’emplois du temps des ¢tudiants

dans les écoles.

A

Assistance a la personne

[’assistance a la personne est l’ensemble des aides apportées a une personne pour lui
permettre de vivre de maniere digne et autonome a domicile. Les applications d’aide a
une personne ont pour objectif de lui fournir une assistance technologique compensant ses
déficiences. En particulier, par un suivi adapté des actions d’une personne déficiente, ces
applications pourront l’aider a coordonner ses activités quotidiennes, par exemple pour
compenser ses problemes de mémorisation. Pour cela ces applications doivent mettre
a sa disposition des technologies d’assistance agissante de maniere approprie pour la
guider dans ’accomplissement de ses activités. L’avantage de telles applications est de
minimiser 'intervention de tiers pour assister les personnes déficientes et d’augmenter

leur indépendance.

12

Chapitre : 1 Les Généralités sur les systemes ubiquitaires

1.8 Conclusion

Nous retenons dans ce chapitre 'aspect de I'informatique, I’environnement ubiquitaire et
I'impact que pourrait avoir la mobilité des entités communicantes sur le contexte.

L’informatique ubiquitaire fait en sorte de déterminer 1’état courant du contexte grace aux
caractéristiques pervasives du dispositif pour fournir des informations/interactions adaptées
a la situation de l'utilisateur. Pour cela, il est nécessaire de décrire les caractéristiques des

informations contextuelles et développer des applications sensibles au contexte.

13

Définitions et gestion du contexte

2.1 Introduction

L’étude de la sensibilité au contexte nous conduit a étudier les travaux de recherche effectués
pour définir et modéliser le contexte.

Dans ce chapitre, nous étudions les approches de modélisation du contexte qui tentent d’in-
tégrer différents modeles et différents types de raisonnement afin d’obtenir une représentation
expressive du contexte et simplifier son utilisation.

Nous entamons ce chapitre par présenter une synthése des définitions données pour le
contexte, la sensibilité au contexte en informatique ubiquitaire et nous décrivons les carac-
téristiques des informations contextuelles. Nous présentons ensuite ’architecture générale d'un
systeme sensible au contexte tirée d’une synthese des travaux existants. De plus, nous dressons
un état de I'art des travaux de modélisation du contexte puis nous analysons ces différentes

approches.

2.2 Définitions

2.2.1 Contexte

Le dictionnaire encyclopédie Larousse considere le contexte comme :"l’ensemble des condi-
tions naturelles, sociales, culturelles dans lesquelles se situe un énoncé, un discours”; ou en-
core :un ensemble de circonstances dans lesquelles se produit un événement, se situe une ac-

tion”.

14

Chapitre : 2 Définitions et gestion du contexte

2.2.2 Le contexte en informatique ubiquitaire

Le contexte étant une notion complexe et abstraite, que sa définition differe d’une équipe
de recherche a une autre. Les définitions générales sont les plus nombreuses ; nous listons ici les
principales :

Parmi les premiers a essayer de définir le contexte, se trouvent Schilit et Theimer[11], pour
lesquels le contexte est constitué de la localisation de 1'utilisateur, ainsi que des identités et des
états des personnes et des objets qui ’entourent.

Brown et al.[12], ajoutent a cette définition des données telles que Iidentité de 1'utilisateur,
son orientation ou la température.

Ryan et al.[13] ajoutent la notion de temps.

Pascoe [14] introduit un élément important : U'intérét. En effet, il définit le contexte comme
un sous-ensemble d’états physiques et conceptuels qui ont un certain intérét pour une entité
donnée. Cette notion d’intérét ou de pertinence est reprise par Abowd, Dey et al.[15] dans
leur définition, qui est communément acceptée : “Le contexte couvre toutes les informations qui
peuvent étre utilisées pour caractériser la situation d’une entité. Une entité est une personne, un
endroit ou un objet que 'on considere pertinent par rapport a linteraction entre un utilisateur
et une application, y compris lutilisateur et ['application eux-mémes.”

Winograd[16] reprend cette définition pour la détailler, car il consideére que, malgré le fait
qu’elle couvre tous les travaux existants, elle est trop générale : tout élément peut etre considéré
comme faisant partie du contexte. En premier lieu, il précise que le contexte est un ensemble
d’informations. Cet ensemble est structuré et partagé, et il peut évoluer dans le temps. En
deuxieme lieu, selon lui, 'appartenance d’une information au contexte ne dépend pas de ses
propriétés inhérentes, mais de la maniere dont elle est utilisée. Une information fait partie du

contexte seulement si le systeme dépend d’elle, d’'une fagon ou d’une autre.

2.2.3 Contexte pertinent

Un contexte pertinent pour une application est un sous ensemble du contexte observé dont
les changements de valeur affectent cette application. En d’autres termes, du point de vue de

I’application tous les contextes observables ne sont pas pertinents pour I'application.

2.2.4 Sensibilité au contexte

Schilit and al, 1994 ; [17] disent d’un systeme qu'’il est sensible au contexte s'il peut tirer,

interpréter et utiliser des informations issues du contexte et adapter sa réponse en fonction du

15

Chapitre : 2 Définitions et gestion du contexte

contexte d’utilisation.

Salbert and al ;[18] définissent la sensibilité au contexte comme étant la capacité d’un systeme
a agir en temps réel avec des données provenant du contexte.

Brown, 1997;[12] dit d'une application sensible au contexte qu’elle doit automatiquement
extraire de I'information ou effectuer des actions en fonction du contexte utilisateur détecté par
les capteurs.

Dey et al, 2001 ; [19] proposent qu’'un systeme soit sensible au contexte s’il utilise le contexte

pour offrir des informations ou des services pertinents pour 'utilisateur.

2.2.5 Entités observables, observables

Entité observable : une entité est un élément représentant un phénomene logique ou phy-
sique (personne, concept, etc.) qui peut étre une unité indépendante ou membre d’une catégorie
et auquel des observables peuvent étre attachés. Une personne, une machine, une piece, un en-
semble de personnes sont des exemples d’entités présentes dans l'environnement et qui peuvent
etre observées.

Observable : un observable est une abstraction qui définit un élément a surveiller (ou obser-
ver).

Observation : une observation représente 1’état de I'observable a un instant donné.

Exemples

e Une personne est une entité observable.

Les observables associés : sa localisation, sa préférence langue.

e Une salle est une entité observable.

Les observables associés : le nombre de personnes présentes, la luminosité.

2.3 Les premieres applications sensibles au contexte

e Shopping Assistant guide :[20]utilise la localisation de l'utilisateur pour le guider dans
un magasin.

e CyberGuide :[21]offre des informations touristiques sur une carte interactive (sites a
visiter selon (1) localisation utilisateur et (2) historique des visites).

e Conference Assistant :[22]assiste les participants a une conference ; suggestion de pré-

sentations a laquelle assister ; affichage automatique des présentations en cours.

16

Chapitre : 2 Définitions et gestion du contexte

e Adaptive GSM phone and PDA :[23]assiste les utilisateurs de terminaux mobiles;
change la taille d’écriture en fonction de I'activité de 'utilisateur ; sélection automatique
des profils de téléphones portables en fonction du contexte (sonner, vibrer ou rester silen-
cieux).

e Call Forwarding :[24] grace au systeme de localisation d’Active Badge, le réceptionniste
utilise la localisation de l'utilisateur pour faire suivre les appels téléphoniques vers le

téléphone le plus proche de I'utilisateur.

2.4 Types d’informations contextuelles

Vu la diversité des sources de contexte, les informations contextuelles existantes sont nom-

breuses. Chen[25] a identifié quatre types :

e Le contexte physique : Toutes les données pouvant étre mesurées dans le monde phy-
sique, comme la luminosité, le bruit, les embouteillages, la température, la distance, la
vitesse...etc.

e Le contexte utilisateur : Tout ce qui concerne l'utilisateur et ce qui I’entoure : son
profil, sa localisation, son humeur, ses intentions... etc.

e Le contexte d’exécution : Toutes les données virtuelles ou logicielles : connectivité
réseau, bande passante, ressources informatiques disponibles ou a proximité, activité des
périphériques...etc.

e Le contexte temporel : Tout ce qui a une relation avec le temps : dates, heure, durée,

agenda, saison, événements périodiques...etc.

2.5 Caractéristiques des informations du contexte

Les informations de contexte sont des informations collectées a partir de plusieurs sources
hétérogenes. De ce fait, elles ont des caractéristiques variables[3].

Chaque contexte observable peut étre statique ou dynamique. Les observables statiques,
représentent des informations qui ne changent pas au cours du temps. Il suffit de les collecter
au lancement de 'application. Parmi les observables statiques, nous avons la taille de ’écran
ou le profil d’un utilisateur. Les observables dynamiques représentent des informations dont
les valeurs changent fréquemment, une observation de leur état peut devenir tres rapidement
obsolete.

Les observations de contexte effectuées a partir de capteurs physiques peuvent étre des sujets

17

Chapitre : 2 Définitions et gestion du contexte

a des bruitages ou des erreurs de capture. Donc, ces observations sont incorrectes lorsqu’elles ne
refletent pas ’état réel de I’environnement, incohérentes lorsqu’elles contiennent des informa-
tions contradictoires et incompletes lorsque certains aspects du contexte ne sont pas renseignés.

Afin d’utiliser les informations de contexte dans des applications informatiques, il est né-
cessaire de connaitre pour chaque observable les caractéristiques citées ci-dessus. De plus, il est

tres important d’avoir une description abstraite de ces informations afin de pouvoir les utiliser.

2.6 Architecture d’un systéme sensible au contexte

Un systéme sensible au contexte est représenté par cing couches : couche acquisition(capture)
du contexte, couche d’Interprétation et d’agrégation du contexte,couche de stockage et histo-

rique du contexte, couche dissémination du contexte et la couche application.

Application

2V
A

IDissemination

A
A

Stockage/Historigue

%
AR

Interpretation J/Agregation

A

Acquisition{Capture)

FIGURE 2.1 — Architecture générale d’un systeme sensible au contexte[2]

2.6.1 Couche acquisition(capture)du contexte

La premiere couche d'une architecture sensible au contexte est composée d'une collection de
capteurs. Un capteur est une source matérielle ou logicielle qui peut générer une information

contextuelle. Nous distinguons trois types de capteurs : physiques, virtuels et logiques [26].

18

Chapitre : 2

Définitions et gestion du contexte

Capteurs physiques

Les capteurs physiques sont des dispositifs matériels qui sont capables de fournir des don-

nées de contexte. La table 2.1 donne quelques exemples de capteurs physiques selon le type

d’information qu’ils fournissent.

Type d’information fournie

Capteurs disponibles

Lumieére

capteurs de couleurs, capteurs

d’infrarouge et d’ultra violet...

Contexte visuel

Camdras numdriques

Audio

Microphones

Localisation

GPS (Global Positionning Sys-
tem), GSM (Global System for
Mobile Communications), Active

Badge System[24]...

Mouvements et accélérations

capteurs d’angles, accélérometres,
détecteurs de mouvement,

champs magnétiques...

Température

Thermométres numériques

Caractéristiques biologiques

Capteurs Biométriques (Tension,

résistance de peau...)

TABLE 2.1 — Exemples de capteurs de contexte

Capteurs virtuels

Les capteurs virtuels fournissent des informations contextuelles a partir d’applications ou
services logiciels. Par exemple, il est possible de détecter I'’emplacement d’un livreur de mar-
chandise en consultant son carnet électronique de rendez-vous sans avoir recours a des cap-
teurs physiques. Les capteurs virtuels sont beaucoup moins cotiteux que les capteurs physiques

puisqu’ils sont basés sur des composants logiciels qui sont généralement moins chers que des

appareils électroniques.

Capteurs logiques

Ce type de capteurs utilise généralement plusieurs sources d’information contextuelles pour

fournir une autre information de synthese plus précise. Ces capteurs peuvent réutiliser des

19

Chapitre : 2 Définitions et gestion du contexte

capteurs physiques et virtuels pour fournir un contexte de plus haut niveau.

2.6.2 Couche d’interprétation et d’agrégation du contexte

Cette couche offre des moyens d’interprétation des données contextuelles fournies par les
capteurs du contexte. Elle sert a I'analyse et a la transformation des données brutes fournies
par la couche de capture du contexte dans d’autres formats de haut niveau qui sont plus faciles
a manipuler et a utiliser. En effet, les capteurs fournissent généralement des données techniques
qui ne sont pas appropriées pour une utilisation directe par 'application. Les transformations
effectuées sur les données brutes fournies par les capteurs peuvent étre réalisées par plusieurs
opérations : extraction, quantification, raisonnement, agrégation...ctc. Par exemple, les coor-
données GPS d'une personne peuvent étre moins significatives qu'une adresse physique sous
forme de numéro de rue et de ville. [27].

La complexité des interprétations de contexte peut varier d'une simple agrégation de valeurs
qui proviennent de plusieurs capteurs a des raisonnements ou analyses statistiques complexes.
Par exemple, la localisation de plusieurs personnes dans une seule salle peut inférer le fait qu’ils
sont en réunion. Dans ce cas, le niveau de bruit peut aussi étre une information importante
pour savoir s’ils sont en réunion de travail ou de loisir.

Cette couche doit aussi assurer la résolution de conflits causés par 1'utilisation de plu-
sicurs sources de contexte. En effet, ces sources peuvent donner des résultats contradictoires ou
peuvent aboutir a des situations imprécises. Cette couche doit donc avoir une certaine intelli-

gence d’interprétation pour résoudre ces conflits [27],[28].

2.6.3 Couche de stockage et historique du contexte

La troisieme couche "stockage et historique du contexte” organise les données capturées et
interprétées et les stocke pour une utilisation ultérieure. Ce stockage peut étre centralisé ou
distribué. La solution centralisée est 1'option la plus répandue et la plus utilisée puisqu’elle
facilite la gestion des mises a jours et des variations des valeurs du contexte. La gestion dis-
tribuée du contexte est beaucoup plus complexe puisqu’elle inflige des fonctions additionnelles
de découvertes de ressources et d’actualisation des valeurs du contexte. De plus, cette gestion
distribuée alourdit la tache de I’application qui doit gérer la collecte des différentes informations

contextuelles d’'une facon interne.

20

Chapitre : 2 Définitions et gestion du contexte

2.6.4 Couche dissémination du contexte

Cette couche assure la transmission des différentes informations contextuelles a 'application.
Ces informations sont distribuées sur différents lieux géographiques et proviennent de plusieurs
types de dispositifs. Elle assure une transparence totale de la communication avec ’applica-
tion. En conséquence, le développement de I'application devient plus simple. Sans cette couche,
on serait amené a développer des protocoles de communications avec les différentes sources de
contexte. La couche de dissémination du contexte offre des moyens de communication standards
pour notifier 'application des changements de contextes et leur transmission a 'application.
Plusieurs systemes offrent des mécanismes de gestion d’évenements qui se basent essentielle-
ment sur les fonctions de gestion de requétes directes ou de notification [29]. L’application peut
demander un acces direct a une information contextuelle précise mais elle peut aussi s’abon-
ner pour recevoir tous les changements des valeurs de cette information. Ces deux fonctions
principales assurent un moyen de communication transparent et efficace pour la dissémination
des valeurs de contexte a application[30]. L’implantation de ces types de communication est

nécessaire pour garantir la sensibilité au contexte dans une application.

2.6.5 Couche application

La couche application dans les systeémes sensibles au contexte existant [31] est représentée
par I'application qui offre ses services aux différents clients concernés. Elle est responsable
de l'extraction des informations des différentes sources de données attachées a ’application.
Elle doit aussi implémenter les réactions nécessaires aux changements du contexte. Chaque
application s’abonne a la couche de dissémination du contexte pour accéder aux différentes
informations contextuelles et étre informée de leurs changements. Une application peut accéder
a ces informations de deux fagons différentes : synchrone et asynchrone. Dans le cas d’un acces
synchrone, 'application demande a la couche de dissémination de lui fournir une information
contextuelle précise. Ceci est réalisé généralement par des appels directs de fonctions au niveau
de la couche dissémination. Dans le cas de la communication asynchrone, I’application s’abonne
a des évenements spécifiques qui correspondent a des changements de valeurs de contexte. Des
qu'un événement est déclenché, ’application est simplement notifiée ou bien I'un de ses services
est directement invoqué en utilisant des fonctions de callback implémentées dans la couche

dissémination.

21

Chapitre : 2 Définitions et gestion du contexte

2.7 Exigences des gestionnaires du contexte

Plusieurs conditions doivent étre prises en compte lors de la modélisation du contexte d’in-

formations, Bittini et al. Dans [32] ont présenté certains d’entre eux dans les points suivants :

a) L’hétérogénéité et la mobilité : Les modeles de contextes doivent faire face a une grande
variété de sources de contexte qui différent suivant leurs taux de mis a jour et leur ni-
veau sémantique, les modeles de contextes doivent ainsi étre capable d’exprimer différents
types d’information et le systéme de gestion de contexte doit fournir une gestion de ces

informations suivant leurs types.

b) Relations et dépendances : Il existe différentes relations entre les types d’informations
contextuelles capturés pour assurer un comportement correct des applications. Une telle
relation est la dépendance ou les entités d’information de contexte peuvent dépendre
d’autres entités d’'informations de contexte : par exemple, un changement de la valeur
d’une propriété (exemple, le réseau bande passante) peut influer sur les valeurs d’autres

propriétés (par exemple, autonomie de la batterie puissance).

c) Raisonnement : Les applications sensibles au contexte utilisent des informations de contexte
pour évaluer s'il y a un changement de contexte de l'utilisateur et/ou la situation de 1'en-
vironnement ; de prendre une décision si une adaptation a ce changement est nécessaire,
qui, souvent requierent des capacités de raisonnement. Les Techniques de raisonnement
peuvent également étre adoptées pour obtenir plus d’informations de contexte. Par consé-
quent, il est important que les techniques de modélisation du contexte soient en mesure
de soutenir a la fois la vérification de cohérence, et le raisonnement sur des situations

complexes.

d) Timeliness : Les applications sensibles au contexte peuvent nécessiter 'acces a des états
précédant et états futurs. Ainsi, histoires de contexte est une autre caractéristique des
informations de contexte qui doit étre capturé par les modeles contextuels. La gestion de

I’historique du contexte est difficile si le nombre de mises a jour est tres élevé.

e) Imperfection (incomplétude) : En raison de sa nature dynamique et hétérogene, des
informations de contexte peut étre de qualité variable ou méme incorrect. La plus part des
capteurs disposent d’une inexactitude inhérente (par exemple, de quelques metres pour
des positions GPS), les informations de contexte peuvent étre incomplétes : un capteur
qui détecte le nombre de personnes dans une piece peut manquer quelqu'un. ainsi, une
bonne approche de modélisation de contexte doit prendre en considération le parametre

de qualité des informations du contexte.

22

Chapitre : 2 Définitions et gestion du contexte

2.8 Approches de modélisation de contexte

Pour décrire la sensibilité d'une application a son contexte d’exécution, il faut déterminer les
contextes auxquels cette application est sensible et les décrire dans un modele. Nous proposons

dans cette section deux types d’approches : approches classiques et approches hybrides.

2.8.1 Modeles classiques

Nous résumons les approches de modélisation de contexte les plus connues dans la littérature,
ils sont classifiés en quatre types d’approches[3] : 'approche clés/valeurs, I'approche orientée

modele, modeles basée sur la logique et 'approche orientée ontologie.

2.8.1.1 Approches clés/valeurs

Plusieurs architectures présentent le contexte sous forme de paires (attribut, valeur). Ou
I’attribut représente un nom d’une information contextuelle et la valeur représente la valeur
actuelle de cette information. Par exemple, (Name = “contextl”, User = "doctorEH102”, Lo-
calisation = "Edouard Herriot Hospital”, Time = "Mon Jul 09 16 :51 :20 CEST 2007”). Le
contexte contextl est défini par ” l'utilisateur x est localisé dans un emplacement y a un temps

¢

Discussion

La modélisation clés-valeur est la modélisation la plus simple, elle présente ’avantage de la
facilité d’implantation. En effet, la gestion du contexte revient a parcourir la liste des contextes
disponibles. Cependant, cette modélisation manque d’expression de relations et de complétude.
En effet, sa structure trop "plate” ne permet pas de définir tous les aspects contextuels de
I’application, mais qu'une seule correspondance exacte. Ce genre de modéle est aussi une source
de conflits. Par exemple, si nous définissons un nouveau contexte : (Name = “context2”, User
= "z, Localisation = 2", Time = "t”) avec ’emplacement z est dans 'hopital Edouard Herriot
(par exemple la chambre 220 de ’hopital), on ne peut pas dire que context2 est un sous contexte
de contextl et que toutes les fonctionnalités offertes par 'application dans context! doivent aussi

exister dans context2.

23

Chapitre : 2 Définitions et gestion du contexte

2.8.1.2 Approches orientées modele

L’approche orientée modele utilise des modeles formels pour modéliser les informations de
contexte. Son objectif principal est d’offrir la possibilité d’encapsuler le contexte et de permettre
sa réutilisation. Nous décrivons quelques approches appartenant a cette catégorie de modélisa-
tion, les informations qui peuvent etre décerites avec ces modeles, et les outils utilisés par chaque

modele pour décrire les informations de contexte.

e Unified Modeling Language (UML)

Bauer|[33] a utilisé le langage UML afin de modéliser le contexte auquel une application de
gestion de trafic aérien est sensible. Mais, le modele proposé est spécifique a ’application
et ne peut étre utilisé dans d’autres applications sans modification.

Sheng et Benatallah [34] ont proposé un méta-modele basé sur une extension d’'UML
qui permet de modéliser le contexte auquel des services Web sont sensibles. Ce langage
est appelé ContextUML.Comme lillustre la figure 2.2, ce méta-modele est composé de
plusieurs classes qui permettent de créer des services sensibles au contexte. Une classe
permet de décrire un contexte observable. Ce dernier peut étre un contexte de bas niveau
ou bien un contexte interprété. Pour chaque contexte de niveau bas, le modele permet de
spécifier la source a partir de laquelle il a été collecté. Le méta-modele Context UML permet
aussi la description des actions d’adaptation et les situations pertinentes qui permettent

de les déclencher.

Discussion

Le méta-modele Contert UML est un modele basé sur 'UML, il est caractérisé par sa géné-
ricité, il permet de décrire le contexte de maniere plus riche que les approches clés/valeurs.
Mais, il ne prend pas en considération la description des relations de dérivation et de dé-
pendance entre les informations de contexte. De plus, ce méta-modele n’offre pas le moyen

de décrire la qualité des informations de contexte ni leur validité temporelle.

24

Chapitre : 2 Définitions et gestion du contexte

FIGURE 2.2 — Un méta-modele de ContextUML[3]

e Context Modeling Langage (CML)

Afin de pouvoir modéliser les caractéristiques des informations de contexte et leurs pro-
priétés, Henricksen et al.[35][36] ont proposé un langage orienté objet dérivé de I’'ORM
(Object Role Modeling)[37]. Ce langage appelé CML (Context Modeling Language)[38]
permet de modéliser le contexte auquel une application est sensible d’une maniere for-
melle. Un outil graphique assiste le concepteur d’applications dans la tache de description
du contexte auquel son application est sensible. Il lui offre un moyen de décrire les ca-
ractéristiques des informations de contexte (capturé, statique, dérivé ou information de
profil) et les dépendances entre ces informations. CML permet aussi de spécifier la qualité
de chaque information observée et sa validité temporelle.

Dans cette modélisation, les informations de contexte sont groupées en un ensemble d’en-
tités, chacune d’elle décrit un objet conceptuel ou physique tel qu'une personne, un dis-
positif ou un réseau. Les propriétés des entités telles que le nom de la personne, le nom du
dispositif ou I'identificateur du réseau sont représentées par des attributs. Les entités sont
lides & leurs attributs ou & d’autres entités A travers des relations. A I'aide de ces relations,

le concepteur peut classifier les informations de contexte associées a chaque entité. S’il

25

Chapitre : 2 Définitions et gestion du contexte

utilise une association de type sensed entre une entité et son attribut, cela veut dire que
cet attribut est un contexte obtenu a partir de capteurs matériels ou logiciels, comme la
localisation d’une personne.

La figure 2.3 illustre un exemple de modélisation de contexte avec loutil CML en utilisant

différents types dassociations entre les informations modélisées.

FIGURE 2.3 — Exemple de modélisation avec CML[3]

Discussion

CML est venu remédier a certains des manques de 'UML en proposant un modcle avec
visualisation graphique qui permet de décrire un ensemble de relations entre plusieurs
contextes observables et de typer le contexte, ce qui entraine une gestion plus complexe .
Les approches orientées modeles permettent de décrire le contexte de maniere plus pra-
tique que les approches clés/valeurs et elles offrent aux concepteurs d’applications la

possibilité de réutiliser le modele pour d’autres applications.

26

Chapitre : 2 Définitions et gestion du contexte

2.8.1.3 Approches basées sur la logique

Les modeles basés sur la logique sont caractérisés par un tres grand degré de formalité. Ils
utilisent 'algebre booléenne! et la logique du premier ordre pour modéliser le contexte. La
logique permet de définir des conditions qui nécessitent de déduire des faits ou des expressions
a partir d’'un autre ensemble d’expressions ou de faits. Par conséquent, dans les modeles basés
sur la logique, le contexte est défini comme des faits, des expressions ou des regles.

La premiere approche de modélisation du contexte en utilisant la logique a été publiée en
1993 par McCarthy et son équipe [39],[40]. McCarthy définit le contexte comme une entité
mathématique abstraite ayant des propriétés. Cette formalisation logique est fondée sur une
réification du contexte et un méta-prédicat ist; ist(p,c) signifie que I'assertion p est vraie dans
le contexte c. Par exemple la formalisation ¢ : (ist(contextof("Histoire de Sherlock Holmes”),
“Sherlock Holmes est un détective”) considere que le personnage Sherlock Holmes est un détec-
tive dans 'histoire de Sherlock Holmes. Ce type de modélisation est utilisé dans le domaine de
I'intelligence artificielle o les connaissances sont regroupées en micro-théories [41]; selon les

valeurs du contexte, on se place dans ou hors d’une micro-théorie.

Discussion

Les approches basées sur la logique utilisent 1’algebre booléenne ou la logique du premier
ordre pour modéliser le contexte dans le but de raisonner sur les informations collectées. Cette
modélisation ne permet pas de décrire la validité temporelle des informations ni les relations qui
peuvent exister entre les informations de contexte, mais elle est tres efficace pour raisonner sur le
contexte et déduire des actions de réaction si une situation pertinente est détectée. L’approche
basée sur la logique peut étre utilisée dans I'informatique sensible au contexte afin d’intégrer et

d’interpréter les données collectées.

2.8.1.4 Approches orientées ontologie

Une ontologie est une description sémantique, structurée et formelle des concepts d'un do-
maine et de leurs inters-relations [42]. En informatique, une ontologie est définie comme un

ensemble structuré de savoirs dans un domaine particulier de la connaissance ou un ensemble

1. Algebre booléenne ou calcul booléen, est la partie des mathématiques, de la logique et de I’électronique
qui s’intéresse aux opérations et aux fonctions sur les variables logiques. Elle permet de modéliser des raison-
nements logiques, en exprimant un "état” en fonction de conditions. Par exemple : communication= Emetteur

ET Récepteur Communication est "VRAI” si Emetteur actif et Récepteur actif.

27

Chapitre : 2 Définitions et gestion du contexte

de concepts organisés en graphe dont les relations peuvent étre sémantiques, de composition ou
d’héritage.

Une ontologie est un ensemble de classes et de relations existant entre ces classes, de proprié-
tés attachées aux classes et d’axiomes [43]. La création d'une ontologie se fait avec un langage
logique, de facon a ce que l'on puisse faire des distinctions détaillées, précises, cohérentes et
logiques entre les classes, les propriétés et les relations. Les ontologies sont caractérisées par la
possibilité de partager des connaissances entre plusieurs systemes. De plus, elles sont ouvertes
et extensibles, ce qui permet a chaque systeme de les enrichir et dexploiter les notions qui y
sont déja définies. En effet, les langages d’ontologies offrent le moyen de publier, d’¢tendre des
ontologies existantes et d’employer diverses ontologies existantes pour compléter une nouvelle
ontologie.

A chaque ontologie, on peut associer un moteur d’inférence ?[44] qui permet de raisonner sur
les informations de contexte en exécutant des regles d’inférence. Les moteurs d’inférence four-
nissent un ensemble d’opérations basiques prédéfinies (opérations de comparaison et d’ajout
d’'instances dans 'ontologie... etc) et offrent aux développeurs la possibilité de définir leurs
propres opérations.

La Figure 2.4 représente un exemple d’ontologie,dans cette ontologie, il y a 8 classes : Per-
sonne, TravailleurManuel, Plombier, Politicien, Métier, MétierManuel, Plomberie et Politique.
Les fleches is-a représentent les relations de super-classe/sous-classe. La relation aMétier relie
Personne a Métier, ce qui veut dire que les personnes peuvent avoir un métier. Les relations
pere, oncle et frere relient la classe Personne a elle-méme, car le pere, l'oncle ou le frere d’'une

personne sont aussi des personnes.

Discussion

Les approches orientées ontologie sont des approches formelles qui tirent parti des caracté-
ristiques des ontologies pour modéliser le contexte. En effet, les caractéristiques de partage et
de distribution des données ont été exploitées afin de définir des méta-modeles de description
du contexte. De plus, les moteurs d’inférence fournis par les ontologies ont été utilisés pour

déduire des contextes de haut niveau a partir des données collectées.

2. Un programme qui effectue des déductions logiques d’un systéme a partir d’'une base de connaissance et

d’une base de regles. Les regles sont utilisées pour manipuler les connaissances et aboutir a des conclusions

28

Chapitre : 2 Définitions et gestion du contexte

pére frére
B aMetier
Metier Personne b~ - o
Instance-of
o Ty
aMgter : louis |
---------- qisa Is-a

[MétierManuelM Politique [TravailleurManueI [Politicien J

is-a

Plombier

[Plomberie] S 5

| jean —
Ve " instanca-of

FIGURE 2.4 — Exemple d’ontologie[4]

Synthese

Le modele clés-valeurs est plus simple et facile a implémenter. Cependant, cette modélisation
manque d’expression de relations et de complétude. De plus elle ne permet pas de définir tous
les aspects contextuels de ’application, elle est aussi une source de conflits.

Les approches orientées modele sont caractérisées par leurs possibilité de réutilisation dans
d’autres applications. Néanmoins elles ne permettent pas de raisonner sur des informations
contextuelles ni la publication de ces dernieres.

Pour ce qui consterne les approches basées sur la logique, clles sont tres efficaces pour
raisonner sur le contexte et déduire des actions de réaction si une situation pertinente est
détectée. Cependant elle ne permet pas de décrire la validité temporelle des informations ni les
relations qui peuvent exister entre les informations de contexte.

Enfin, les modeles ontologiques ont des avantages évidents en termes d’expressivité et de
I'interopérabilité, pour la représentation des relations complexes et les dépendances entre les
données de contexte. Toute fois ces modeles restent souvent difficiles a implémenter dans des

cas réels.

29

Chapitre : 2

Définitions et gestion du contexte

Modele Clés/Valeurs Orienté Modele | Basée sur la lo- | Basée sur I'onto-
gique logie
Caractéristiques | Simplicité Utilisation d’un | Tres formel Difficile a implé-

d’utilisation,

modele global

menter dans le

pauvreté d’ex- cas réel

pression.
Relations et dé- | Non Oui Non Oui
pendance
Raisonnement Non Non Oui Oui
Publication des | Non Non Non Oui
données

TABLE 2.2 — Comparaison entre les modeles classiques existants
2.8.2 Modeles hybrides

Un modele hybride est une combinaison entre les modeles classiques, en tenant en compte
des avantages de chacun pour la modélisation du contexte qui tente d’intégrer différents modeles
et différents types de raisonnement afin d’obtenir des systemes plus souples et généraux. Nous
présentons dans ce qui suit les deux approches hybrides[32] : Modele hybride fait/ontologie et

le modele balisage/ontologie.

2.8.2.1 Modele hybride faits/ontologie

Henricksen et al.[45]] proposent une approche de modélisation du contexte hybride, combi-
nant les ontologies et ’approche basée sur les faits fournis par le langage CML. L’objectif est
de combiner les avantages de modeles CML (en particulier le traitement des ambiguités et des
informations de contexte imparfaites) et ceux du modele ontologique notamment l'interopéra-
bilité et les divers types de raisonnement. L’approche hybride est basée sur une cartographie

de CML pour modélisation les classes et les relations OWL-DL.

Discussion

En raison de certaines limitations d’expressivité d’OWL-DL, une cartographie complete
entre CML et OWL-DL ne peut pas étre obtenue. En ce qui concerne les questions d’interopé-
rabilité, les avantages acquis par une représentation ontologique du contexte sont clairement

reconnaissables. Cependant, par rapport a la dérivation de nouvelles données de contexte, les

30

Chapitre : 2 Définitions et gestion du contexte

expériences avec le modele hybride ont montré que le raisonnement ontologique avec OWL-DL

et son extension SWRL n’a apporté aucun avantage par rapport au raisonnement avec le modele

CML.

2.8.2.2 Le modeéle hybride balisage/ontologie

CARFE[46] adopte pour la sensibilité au contexte une approche de modélisation du contexte
basée sur une interaction entre un modele de balisage et un modele ontologique. L’interaction
entre ces modeles est réalisée a travers la représentation des données de contexte par l'inter-
médiaire CC/PP qui contiennent une référence aux classes OWL-DL et leurs relations. Afin
de préserver l'efficacité. Chaque fois que de nouvelles données pertinentes du contexte sont ac-
quises, le raisonnement ontologique est démarré, et U'information dérivée est utilisée, si elle est
encore valide au moment de service d’approvisionnement avec évaluation des regles efficaces.
Les données du contexte complexe (par exemple, lactivité actuelle de 'utilisateur) dérivées
par un raisonnement ontologique peuvent étre utilisées comme pré-conditions de la regle pour

dériver de nouvelles données de contexte telles que les préférences de I'utilisateur.

Discussion

Ce modele a comme intermédiaire CC/PP qui est basé sur RDF et qui utilise une structure
de profils, c’est un modele dont le vocabulaire est pauvre, il est restreint a la description de

profil. Cependant, il est réutilisable et interopérable.

Synthese
Modele Faits/ Ontologie Balisage/Ontologie
Caractéristiques Basé sur CML Intermédiaire CC/PP
Relations et dépendance Oui Oui
Raisonnement Faible Faible
Publication des données Oui Oui
Expressivité Aucun avantage Aucun avantage

TABLE 2.3 — Comparaison entre les modeles hybrides existants

Le modele hybride faits/ontologie a I'avantage d’étre interopérable, grace a une représenta-
tion ontologique du modele du contexte. Cependant, il ne permet pas la dérivation de nouvelles

données de contexte.

31

Chapitre : 2 Définitions et gestion du contexte

Le modele hybride Balisage/Ontologie assure 'interopérabilité grace a la caractéristique de

I'ontologie, mais il n’exprime pas la validité temporelle.

2.9 Conclusion

L’objectif de I’étude que nous avons effectuée consiste a montrer 'apport de chaque approche
de modélisation de contexte. Notre choix d'une approche de modélisation comporte plusieurs
criteres : l'expressivité du modele, I'interopérabilité,le raisonnement sur le contexte,la capacité
d’exprimer les relations qui existent entre les informations contextuelles, la possibilité de sa
réutilisation, de son extension et la publication des informations qu’elle permet de décrire.

Dans le prochain chapitre, nous allons étudier le modele logique Event Calculus et le langage

ontologique OWL.

32

Etude du modele loqique Event Calculus et

du modele ontologique OWL

3.1 Introduction

Dans ce chapitre, nous exposerons I’approche de modélisation Event calculus, ses différents
concepts ainsi que ses différentes versions et nous présenterons la logique de description et pour
finir nous donnerons un apergu du langage ontologique OWL.

L’objectif de départ de Event Calculus est, assez ambitieux, pouvoir traduire naturellement,
et traiter des situations complexes faisant intervenir le temps, dans un langage de programma-

tion logique.

3.2 Event calculus

Event calculus est introduit par Kowalski et Sergot[47] comme un formalisme de program-
mation logique pour la représentation des événements et leurs effets.
Event calculus est un mécanisme logique qui permet d’inférer ce qui est vrai, sachant :

— Ce qui se passe, et quand, et

— Ce que provoquent les événements.

Ce qui se passe, quand \

Ce que provoguent les événements

Machine logique |, Ce qui est vrai, quand

FIGURE 3.1 — Le fonctionnement de Event Calculus

33

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

3.2.1 Types et formes de base de EC

Il existe trois types de base dans EC : events, fluents et les points temporels. Il inclut aussi

un ensemble de prédicats et d’axiomes.

FEvent : peut étre une action qui se produit dans le monde réel.
E (variables e,eq,...)

Fluent : défini comme une fonction dont le domaine est 1’espace des situations. La valeur
du fluent change dans le temps (ga peut étre : une propriété ” il pleut”, quantité "tempé-
rature”), les fluents sont donc réifiés.
F variables (f,fi,...)

Point temporel : les points temporels sont utilisés dans EC afin de renforcer la notion
de séquence. Un point temporel peut étre une période (les premieéres versions de EC),
des réels positifs ou négatifs (certaines versions considerent que le temps est positif). Les
opérateurs utilisés pour la comparaison des points temporels sont :<, >, >= <= =.
T (variables t, t1,...)

Prédicats : Les prédicats permettent
— D’exprimer quels événements se produisent, et quand ils vont se produire.
— De décrire les effets de ces événements.
— De donner des valeurs de fluents, selon le temps.
Chaque version de EC définit ses propres prédicats.

Les axiomes :C’est un ensemble de propositions considérées vraies. Chaque version de

EC définit ses propres axiomes de base.

3.3 Les capacités représentationnelles de EC

3.3.1 La circonscription

Dans EC, la circonscription est le fait de ne considérer que les événements connus (il n'y a

pas d’autres types d’events), et le raisonnement ne s’effectuera que sur ces événements connus

148)].

La circonscription, dans EC, est appliquée sur tous les prédicats.

34

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

3.3.2 Le raisonnement révisable

Le raisonnement révisable est un type particulier de raisonnement non démonstratif, ou le
raisonnement ne produit pas une démonstration compléete ou définitive d’une assertion [49].

Dans un formalisme a raisonnement révisable [50], un argument est utilisé comme révisable
pour appuyer des conclusions. Une conclusion sera considérée comme valide uniquement lorsque
I’argument qui I’appuie devient une justification.

Dans EC, le prédicat terminates permet au raisonnement révisable d’étre possible en
arrétant un fluent d’étre vrai a un certain instant. Le prédicat a comme parametre un event e,
un fluent f et un instant ¢, terminates (e,f,t) qui veut dire que I'event e termine (essaie de
terminer) f apres 'instant ¢. Inversement, le prédicat Initiates (e,f,t) met le fluent f a vrai
apres t. De cette facon, il est possible que les hypotheses d’un modele peuvent étre contestées
(challenged), par des changements potentiels des valeurs de vérité des états d’un fluent. Les

formules associées aux prédicats Initiates et terminates sont comme étant des faits.

3.3.3 Manipuler les contradictions

Il est possible de faire face aux observations contradictoires des faits dans EC. Pour le fluent
f linstant ¢, les deux prédicats HoldsAt (f, t) et—HoldsAt(f, t) sont contradictoire quand
ils apparaissent dans une méme base de connaissances de EC. Alors, les contradictions doivent

étre évitées dans ’ensemble des prédicats de EC.

3.3.4 Le changement continu

La nécessité de représenter les changements continus est une exigence bien établie dans les
schémas de représentation en TA [51].

Dans EC, ce probleme est résolu en intégrant, les prédicats Tragectory et Antitrajectory.
Trajectory apparait dans les premiers travaux de shanahan. Antitrajectory est ajouté dans
EC par la suite par Miller et Shanahan [52],[53],[54].
cond = Trajectory (f1, t1, 2, t2)
f1, 2 représentent les fluents qui varient dans U'intervalle [t1, t2[.

Si un event initie f1 a U'instant t1 alors f2 doit se produire a l'instant ¢2.

35

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

3.3.5 La loi d’inertie

Le concept de la loi d’inertie est d’abord défini par référence au calcul de situation par
Lifschitz [55] ou il est présenté comme la loi qui veille 4 ce qu'un fluent est vrai par défaut
apres qu’il a été rendu vrai par une action. Cela se traduit par EC dans les prédicats Release
et Released At, présentés par Miller et Shanahan [54]. Une déclaration de la forme Release(e,
f, t) dit que I’événement e libére un fluent f a l'instant ¢, ce qui signifie que son état devient
sujet aux changements, tandis que la déclaration ReleasedAt (f, t) est une observation que

f est libéré de la loi d’inertie a I'instant t.

3.3.6 La concurrence

La concurrence est relativement facile a représenter dans EC, deux événements peuvent étre
considérés comme concurrents s’ils se produisent au méme point temporel.

Dans toutes les versions de EC, les fluents peuvent étre utilisés pour représenter les processus
qui se produisent sur des intervalles, et dans le but de représenter deux fluent f1 et f2 qui se
produisent en meéme temps, il est seulement nécessaire d’avoir deux états HoldsAt(f1, t1)
et HoldsAt (f2, t2) : par défaut, f1 et f2 sont supposés se produire en concurrence sur un
intervalle t1 et t2.

3.4 Caractéristiques de EC

Nous pouvons résumer les caractéristiques de EC dans les points suivants :

3.4.1 Parcimonie de la représentation

EC permet de résoudre le probleme de cadre (frame problem : concerne la représentation
des non effets d’un event) en utilisant un minimum des nouvelles informations.Comme la cir-
conscription assure qu’il est suffisant de considérer seulement les effets d'un événement et il

n’est pas nécessaire de prendre ses non effets [56].

3.4.2 Flexibilité expressive

La flexibilité expressive de EC est démontrée par sa capacité de faire face a tous les besoins
représentationnels y compris les événements concurrents, les événements révisables (defeasible

events), les contradictions, le non-déterminisme et le changement continu (countinous change).

36

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

3.4.3 La tolérance a 1’élaboration

Selon la définition de McCarthy’s, un formalisme logique est tolérant a 1’élaboration (tolerant
elaboration formalism) si 'ensemble des efforts requis pour 1’ajout d’une nouvelle information
a la représentation est proportionnel a la complexité de cette information [57].

EC est considéré comme étant un formalisme tolérant a 1’élaboration, car I'ajout d’un nou-
veau fait (exemple : valeur d’un fluent) a la base de connaissance de EC nécessite seulement
'ajout d’une nouvelle phrase (concernant la nouvelle information) et ne requiert pas I’ajuste-

ment de la base de connaissance existante.

3.5 Les différentes versions d’Event Calculus

Event Calculus a considérablement évolué par rapport a sa premiere version originale. Dans

la section qui suit, nous allons présenter les plus importantes versions de EC.

3.5.1 Original Event Calculus (OEC)

OEC est introduit par Kowalski et Sergot [47]. Les types de base de OEC sont les occurrences
d’event, les fluents et les périodes de temps.
Les prédicats et les fonctions de base de OEC sont donnés dans la table 3.1 Les axiomes de
OEC sont les suivants :
OEC1 :Initiates(e, f) = Holds(After(e, f)).
OEC2 :Terminates(e, f) = Holds(Before(e, f)).
OECS3 :Start(After(e, f),e).
OECY :End(Before(e, f),e).
OECS5 :After(el, f) = Before(e2, f) D Start(Before(e2, f),el).
OECE6 :After(el, f) = Before(e2, f) D End(After(el, f), e2).
OEC'7 :Holds(After(el, f)) N Holds(Before(e2, f)) AN el < e2 A =Broken(el, f,e2) D
After(el, f) = Before(e2, f).
OECS8 :Broken(el, f,e2) = de, f1((Holds(After(e, f1)) V Holds(Before(e, f1))) A
Incompatible(f, f1) Nel < e < €2).
OEC est la conjonction entre OEC1 et OECS
Ou :

D : représente une implication.

: représente une bi-implication.

37

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

Sachant que (e, el, e2 = occurrences d’event, f, fl, f2 = fluents, p = période de temps)

Prédicat ou fonction Le sens

Holds(p) p a eu lieu

Start(p, e) e débute p

End(p, e) e termine p

Initiates(e,) e initie f

Terminates(e, f) e termine f

el < e2 el précede e2

Broken(el, f, e2) f est interrompu entre el et e2
Incompatible(fl, £2) f1 2 sont incompatible

After(e,) f est vrai durant la période déclenchée par e
Before(e, f) f est vrai la période terminée par e

TABLE 3.1 — Prédicats et fonctions de OEC.

3.5.2 Simplified Event Calculus (SEC)

Simplified Event Calculus(SEC) est proposé par Kowalski en 1986[58] et développé par
Sadri[59], Eshghi[60], et Shanahan[61].
Les différences entre SEC et OEC sont résumées dans les points suivants :
e Remplace les périodes de temps par les instants de temps qui peuvent étre des entiers
positifs ou des réels positifs.
e Remplace la notion d’occurrence d'un event par la notion de type d’event.
Exemple : le prédicat Happens(e,t) veut dire que : le type d’event e se déroule a I'instant
t.
e [l élimine I'incompatibilité.
e Ajoute le prédicat Imitially(f) qui veut dire que le fluent f est initialement vrai.
Les prédicats et les fonctions de base de SEC sont donnés dans la table 3.2. Les axiomes de
SEC sont les suivants :
SEC1 :((Initially(f) A ~StoppedIn(0, f,t)) V Je, t1(Happens(e,t1) A Initiates(e, f,t1) A
t1 <t A —StoppedIn(tl, f,t))) = HoldsAt(f,t).
SEC2 :StoppedIn(tl, f,12) = Je, t(Happens(e,t) ANtl <t < t2 A Terminates(e, f,t)).
SEC est la conjonction entre SEC1 et SEC2.
Sachant que (e, el, e2 = type d’event, f, f1, {2 = fluents, t = instants de temps)

38

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

Prédicat ou fonction Le sens

Initially(f) f est vrai a l'insatant 0

HoldsAt(f, t) f est vrai a1’ instant t

Happens(e, t) e se produit & l'instant t

Initiates(e, f, t) si e se produit a l'instant t, alors f est vrai
apres t

Terminates(e, f, t) si e se produit & l'instant t, alors f est faux
apres t

StoppedIn(t1, f, t2) f est interrompu entre t1 et t2

TABLE 3.2 — Prédicats et fonctions de SEC

3.5.3 Basic Event Calculus (BEC)

Shanahan [56],[62] a étendu le SEC en permettant au fluents d’étre libéré de la loi d’inertie
par le prédicat Releases, et en ajoutant la capacité de représenter le changement continu via
le prédicat Trajectory.Le prédicat Initially est divisé en deux prédicats InitiallyP et Ini-
tiallyN. Nous appelons cette version d’event calculus Basic Event Calculus (BEC).

Les prédicats et les fonctions de base de BEC sont donnés dans la table 3.3. Les axiomes de
BEC sont les suivants :
BEC1 :StoppedIn(tl, f,12) = Je, t(Happens(e,t) ANtl < t < t2 A\ (Terminates(e, f,t) V
Releases(e, f,t))).
BEC2 :StartedIn(tl, f,12) = de, t(Happens(e,t) ANtl <t < 2 A (Initiates(e, f,t) V
Releases(e, f,t))).
BECS3 :Happens(e, t1) A Initiates(e, f1,t1) A0 < t2 A Trajectory(f1,t1, f2,t2) A
—StoppedIn(tl, f1,t1 +t2) D HoldsAt(f2,t1 + t2).
BECY :InitiallyP(f) N =StoppedIn(0, f,t) D HoldsAt(f,t).
BECS5 :InitiallyN(f) A =StartedIn(0, f,t) D =HoldsAt(f,t).
BEC6 :Happens(e, t1) A Initiates(e, f,t1) Atl < t2 AN =StoppedIn(tl, f,t2) D HoldsAt(f,t2).
BEC'7 :Happens(e,t1) A Terminates(e, f,t1) Atl < t2 A =StartedIn(tl, f,t2) D
—HoldsAt(f,12).
BEC est la conjonction BEC1 entre BEC7.
Sachant que (e, = type d’event, f, {1, f2 = fluents, t1,t2 = instants de temps)

39

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

Prédicat ou fonction Le sens

InitiallyN(f) f est faux a l'insatant 0

InitiallyP(f) f est vrai a1’ instant t

HoldsAt(f, t) f est vrai a1’ instant t

Happens(e, t) e se produit a I'instant t

Initiates(e, f, t) si e se produit a l'instant t, alors f est vrai

apres t et f n’est pas libéré de la loi d’inertie.
Terminates(e, f, t) si e se produit a l'instant t, alors f est faux
apres t et f n’est pas libéré de la loi d’inertie.
Releases(e, f, t) si e se produit a l'instant t, alors f est est

libéré de la loi d’inertie apres t.

StoppedIn(t1, f, t2) f est interrompu entre t1 et t2
StartedIn(t1, f, t2) f est déclenché entre t1 et t2
Trajectory(fl, t1, 2, t2) fl est initié par un event qui se produit a

I'instant t1, alors 2 est vrai a I'instant t1+t2

TABLE 3.3 — Prédicats ¢t fonctions de BEC
3.5.4 Event Calculus (EC)

Miller et Shanahan [54],[48] ont introduit plusieurs formulations alternatives de BEC. Un
certain nombre de leurs axiomes peuvent étre combinés [63] pour produire ce que nous appelons

Event Calculus EC, qui differe d’event calculus de base dans les points suivants :

Il permet le temps négatif. Les points temporels sont des nombres entiers ou réels.

Il élimine les prédicats InitiallyN et InitiallyP.

Il représente explicitement qu'un fluent est libéré de la loi de l'inertie en utilisant le

prédicat ReleasedAt.

Il ajoute le prédicat AntiTrajectory.

Il traite StoppedIn et StartedIn comme des abréviations plutot que des prédicats, et
introduit d’autres abréviations.

Les prédicats et les fonctions de base de EC sont donnés dans la table3.4. Les axiomes de EC
sont les suivants :

EC1 :Clipped(tl, f,t2) = Je, t(Happens(e, t) Ntl <t < t2 A Terminates(e, f,t)).

EC?2 :Declipped(t1, f,t2) = de, t(Happens(e,t) ANtl < t < t2 A Initiates(e, f,t)).

EC3 :StoppedIn(tl, f,t2) = Je, t(Happens(e,t) N tl <t < t2 A Terminates(e, f,1)).

40

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

ECY :StartedIn(tl, f,t2) = de, t(Happens(e,t) AN tl < t < t2 A Initiates(e, f,t)).

ECS5 :Happens(e, t1) A Initiates(e, f1,t1) A0 < t2 A Trajectory(f1,t1, f2,12) A
—StoppedIn(tl, f1,t1 +12) D HoldsAt(f2,t1 + t2).

EC6 :Happens(e,tl) A Terminates(e, f1,t1) A0 < t2 N AntiTrajectory(f1,t1, f2,12) A
StartedIn(t1, f1,t1 +¢2) D HoldsAt(f2,t1 + t2).

EC7 :PersistsBetween(tl, f,12) = =3t(Released At(f,t) Ntl <t < t2).

EC8 :ReleasedBetween(tl, f,t2) = Je, t(Happens(e,t) Ntl <t < t2 A Releases(e, f,1)).

EC9 :HoldsAt(f,t1) ANtl < t2 A PersistsBetween(t1, f,t2) A =Clipped(t1, f,t2) D
HoldsAt(f,12).

EC10 :—HoldsAt(f,t1) ANtl < t2 A\ PersistsBetween(t1, f,12) A =Declipped(t1, f,t2) D
—HoldsAt(f,12).

EC11 :ReleasedAt(f,t1) Ntl < t2 A =Clipped(t1, f,t2) N ~Declipped(t1, f,12) D
Released At(f,12).

EC12 :—ReleasedAt(f,t1) ANtl < 12 A =Released Between(tl, f,t2) D —Released At(f,12).

EC13 :ReleasedIn(tl, f,t2) = Je, t(Happens(e,t) ANtl <t <12 A Releases(e, f,t)).

EC14 :Happens(e,tl) A Initiates(e, f,t1) Atl < t2 A ~StoppedIn(t1, f,t2) A
—ReleasedIn(t1, f,t2) D HoldsAt(f,t2).

EC15 :Happens(e,t1) A Terminates(e, f,t1) Atl < t2 A =StartedIn(t1, f,t2) A
—ReleasedIn(t1, f,t2) D —HoldsAt(f,12).

EC16 :Happens(e,t1) A Releases(e, f,t1) Atl < t2 A\ =StoppedIn(t1, f,t2) A
~StartedIn(tl, f,t2) D Released At(f,12).

EC17 :Happens(e,tl) A (Initiates(e, f,t1) V Terminates(e, f,t1)) N tl < t2 A
—ReleasedIn(tl, f,12) D —Released At(f,t2).

EC est la conjonction entre EC5, EC6, EC9, EC10, EC11, EC12, EC14, EC15,
EC16, et EC17 .
Sachant que (e = type d’event, f, f1, 2 = fluents, t1,t2 = instants de temps).

3.5.5 Discrete Event Calculus (DEC)

Mueller [63],[64] a développé Discret Event Calculus (DEC) afin d’améliorer Uefficacité du
raisonnement automatisé dans Event Calculus. DEC améliore I'efficacité en limitant le temps
a des entiers. Les prédicats de DEC sont les mémes que ceux de EC, comme le montre la table
3.4. Les axiomes et les définitions de DEC sont les suivants :

DEC1 :StoppedIn(tl, f,t2) = e, t(Happens(e,t) ANtl <t < t2 A\ Terminates(e, f,t)).

41

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

Prédicat ou fonction Le sens

HoldsAt(f, t) f est vrai a |’ instant t.

Happens(e, t) e se produit a l'instant t.

Released At(f, t) f est libéré de la loi d’'inertie a 'instant t.
Initiates(e, f, t) si e se produit a l'instant t, alors f est vrai

apres t et f n’est pas libéré de la loi d’inertie.
Terminates(e, f, t) si e se produit & l'instant t, alors f est faux
apres t et f n’est pas libéré de la loi d’inertie.
Releases(e, f, t) si e se produit a l'instant t, alors f est est
libéré de la loi d’inertie apres t.

Trajectory(fl, t1, f2, £2) if f1 | si fl est initié par un event qui se produit a
is initiated I'instant t1, alors 2 est vrai a U'instant t1+t2.
AntiTrajectory(f1,t1,f2,t2) | si fl est terminé par un event qui se produit a
I'instant t1, alors {2 est vrai a I'instant t1+t2.

Clipped(t1, f, t2) le fluent f est terminé entre 'instant t1 et t2.

TABLE 3.4 — Prédicats et fonctions de EC.

i.e : Un fluent f est arrété entre 'instant t1 et t2 s’il y a un event qui termine f apres t1 et avant
t2.
DEC?2 :StartedIn(tl, f,t2) = e, t(Happens(e,t) ANtl < t < t2 A Initiates(e, f,1)).
i.e : Un f fluent est commencé entre I'instant t1 et t2 s’il y a un event qui lance f apres t1 et
avant t2.
DECS3 :Happens(e,t1) A Initiates(e, f1,t1) A0 < t2 A Trajectory(f1,t1, f2,t2) A
—StoppedIn(tl, f1,t1 +12) D HoldsAt(f2,t1 + t2).
i.e : Si un event e se produit pour lancer le fluent f1 a l'instant t1 et s’il y a un Trajectory qui
fait a ce déclenchement fluent un autre f2 apres une période le t2, alors le fluent {2 est vrai a
t14+t2, supposant que fl n’est pas arrété entre t1 et t1+t2.
DECY :Happens(e,tl) A Terminates(e, f1,t1) A0 < t2 A AntiTrajectory(f1,t1, f2,12) A
—StartedIn(tl, f1,t1 +t2) D HoldsAt(f2,t1 + 12).
i.e : Ceci définit I’équivalent au DEC3 pour un Antitrajectory, ainsi si un événement se produit
pour terminer le fluent f1 a t1 et un Antitrajectory fait que f1 déclenche f2 a t1+t2, alors le 2
est vrai a t1+t2, supposant que f1 n’est pas remis en marche entre le t1 et t14t2.
DECS5 :HoldsAt(f,t) N —~ReleasedAt(f,t + 1) A ~Je(Happens(e, t) A Terminates(e, f,t))
D HoldsAt(f,t+1).

42

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

i.e : Si un fluent f est vrai a l'instant t et n’est pas libéré de la loi d’inertie a I'instant t et un
event ne se produit pas a t pour terminer fluent f a I'instant t, alors le fluent f se produira t+1.
DECG6 :—HoldsAt(f,t) N —~ReleasedAt(f,t + 1) A —me(Happens(e,t) A Initiates(e, f,t)) D
—HoldsAt(f,t+1).
i.e : Clest identique au DECSH, sauf qu’il traite des cas ou fluent f ne se produit pas a t et
implicitement a t+1.
DEC7 :ReleasedAt(f,t) N ~3e(Happens(e,t) A (Initiates(e, f,t) V Terminates(e, f,t))) D
ReleasedAt(f,t+1).
i.e : Ceci déclare que si un fluent f est libéré de la loi d'inertie a t et un événement ne se produit
pas pour terminer fluent f a t, alors le fluent f sera toujours libéré de la loi d’inertie a t+1.
DECS8 :—ReleasedAt(f,t) N —Je(Happens(e,t) A Releases(e, f,t)) D
—ReleasedAt(f,t + 1).
i.e : C’est identique au DECT, sauf qu’il traite des cas ou f n’est pas libéré a t et implicitement
a t+1.
DECY :Happens(e,t) A Initiates(e, f,t) D HoldsAt(f,t +1).
i.e : Si un event e initié un fluent f & l'instant t, alors f est vrai a t+1.
DEC10 :Happens(e,t) A Terminates(e, f,t) D ~HoldsAt(f,t+ 1).
i.e : Sil'event e termine f a t, alors f ne se produira pas a t+1.
DEC11 :Happens(e,t) A Releases(e, f,t) D ReleasedAt(f,t+1).
i.e : L'axiome DECI1 déclare que si un événement e se produit a t et il libere le fluent f a
I'instant t, alors f sera libéré de la loi d’inertie a t+1.
DEC12 :Happens(e,t) A (Initiates(e, f,t) V Terminates(e, f,t)) D
—ReleasedAt(f,t + 1).
i.e : Si un event e initié ou termine un fluent f a t, alors f ne sera pas libéré de la loi d’inertie
t+1.
DEC est la conjonction entre DEC1 et DEC2.

3.6 Tableau comparatif des différentes versions de EC

43

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

Version Temps Changement | Concurrence | Circonscription Contradictions
continu

OEC Période Non OUI OUI NON

SEC Instant NON OUI OUI OUI
Réel > 0
Entier> 0

SEC Instant NON OUI OUI OUI
Réel > 0
Entier> 0

BEC Instant OUI OUI OUI OUI
Réel > 0
Entier> 0

EC Instant OUI OUI OUI OUI
Réel ou
Entier

DEC Instant OUI OUI OUI OUI
Entier

TABLE 3.5 — Tableau comparatif des différentes versions de event calculus

Nous avons choisi la version DEC parmi les autres versions pour sa capacité de représenter
le changement continu, détecter la contradiction si elle existe dans la base de connaissance
(HoldsAt(f,t) et ~HoldsAt(f,t)) , les événements concurrents, la circonscription de plus il
limite le temps a des entiers.De plus, c¢’est la seul version qui a un raisoneur implémenté (DEKT

Reasoner implémenté en 2010)

3.7 Formalismes alternatifs a Event Calculus

Nous avons choisi EC parmi d’autres formalismes temporels pour différentes raisons. Nous
allons voir dans ce qui suit les autres formalismes temporels existants et expliciter les raisons

pour lesquelles nous avons opté pour EC.

3.7.1 Situation Calculus

Situation Calculus est proposé par Mc Carthy et Hayes en 1961[65]. Il donne une définition

logique des concepts fluents et action, qui ont été par la suite pris comme points de départ pour

44

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

EC et Fluent Calculus.

La différence clé entre EC et Situation Calculus est que SC traite les événements hypothé-
tiques en créant un graphe ramifié des situations d’événements. Situation Calculus ne manipule
pas facilement les événements concurrents mais des extensions de Situations Calculus ont été

proposées afin de remédier a ces problemes.

3.7.2 Fluent Calculus

Fluent Calculus [66] est un formalisme qui étend les concepts de Situation Calculus et ajoute
la notion d’état qui correspond a un ensemble de fluents.

Fluent Calculus partage certaines similitudes avec EC. Comme EC, Fluent Calculus utilise
le prédicat holds pour décrire les fluent qui deviennent vrai pour une situation donnée. Notons,
cependant, qu’aucune valeur primitive ne représente un point dans le temps ou un intervalle.
Fluent Calculus utilise le concept de situation, il se base sur la ramification plutot que sur
le temps linéaire. Le changement de 1’état d’un fluent est provoqué par la modification de la
situation existante.

Dans certains contextes, les traitements avec Fluent Calculus deviennent plus longs que EC.
Par exemple : quand il s’agit de représenter des actions concurrentes qui nécessite trois regles
avec Fluent Calculus alors qu’avec EC, on peut exprimer la méme chose en une seule regle.

Pour notre cas, Event Calculus offre une syntaxe compréhensible. Sur le plan pratique, il
est probable que les regles de fluent Calculus seront plus longues. En particulier, dans le cas ou

le temps est important, car on sait que Fluent Calculus manque de notion de temps.

Disscussion

Il existe plusieurs similitudes entre EC et les formalismes étudiés dans cette section. La
classification de Sandewall’s des logiques temporelles montre les pouvoirs expressifs des diffé-
rentes logiques, et que EC est juste une des nombreuses approches permettant de représenter
les changements d’état a travers le temps. Cependant, EC rivalise avec les autres formalismes

pour sa facilité d’utilisation et sa concision (exprimer un état avec un minimum de regle).

45

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

3.8 La logique de description

Ce que nous entendons par logique descriptive est en fait une famille de formalismes pour
représenter une base de connaissances d’'un domaine d’application. Plus spécifiquement, ces
logiques permettent de représenter des concepts (aussi appelés classes) d'un domaine et les

relations (aussi appelées roles) qui peuvent étre établies entre les instances de ces classes[67].

3.8.1 Langage de base AL

Les langages de la logique descriptive sont déterminés par la forme des énoncés qui sont
permis. La plupart des langages utilisés découlent du langage AL (attributive language), dont

I'expressivité est plutot limitée.

3.8.2 Syntaxe du langage AL

Dans ce langage, les axiomes sont construits a partir d’'un ensemble de concepts.

Le tableau suivant résume les axiomes et concepts de base de AL.

Symbole Signification | Concept Exemple

A Concept ato- Humain, Homme, Femme, Animal, Rai-
mique sonnable...

R Role aEnfant, mariéAvec

C Inclusion AC C HumainC Animal

Humain est inclus dans Animal

Définition A=C Humain= Animal MRaisonable

Humain est un individu Animal et Raison-

nable

M Intersection AnC Femme=Personne M Feminin

Une Femme est une Personne et Feminin

- Négation -A —Humain

Les individus qui ne sont pas Humain

3.8.3 La ABox et la TBox

Dans une base de connaissances en logique descriptive, on distingue deux composantes :

Terminological Box (TBox) et Assertion Box (ABox). La premiere contient tous les axiomes

46

Chapitre : 8

Etude du modele logique Event Calculus et du modéle ontologique OWL

1 Concept im- | ACL Extraterrestre C_L
possible
Impossible d’avoir un individu du type
Extraterrestre
T Concept uni- | AC T AnimalC T
versel
Tout les individus sont du type Animal
v Quantificateur | V R.C Humain MV aEnfant.Femme
universel
Les individus Humains ayant au moins un
enfant et dont tous les enfants sont des
femmes.
= Quantificateur | 9R. T JaEnfant. T
existentiel
Individu qui n’a pas d’enfants
L Union Ccub Humain=Hommel/Femme
Humain est l'union des deux ensembles
Homme et Femme
F Fonction Fun (R) F un (mariéAvec)
Le Role mariéAvec est une fonction
I Inversion (7) | C=D~ estRegardéPar(Maria,Paulo)=Regarde
~(Paulo, Maria)
Paulo regarde Maria,on sait aussi que Ma-
ria est regardée par Paulo.
N Restriction >n R Femmel >0 aEnfant (Femme qui n’a pas
non qualifiée d’enfants)
(< ouz)
<n R FemmeMarié=Femme M JmariéAvec. T M
<1 mariéAvec (Femme mariée avec au
plus 1 seul homme)
Q Restriction >n R.C FemmeMarié=Femmel
qualifiée(<>) dmariéAvec. TN <1 mariéAvec.Homme
<n R.C

TABLE 3.6 — Axiomes et concepts de base de AL

47

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

définissant les concepts du domaine, comme la définition du concept mere qui est défini comme
étant une femme qui est le parent d’au moins un humain . La ABox contient des assertions
sur des individus, en spécifiant leur classe et leurs attributs. C’est dans la ABox, par exemple,
qu’on indiquerait que Marie est une femme et qu’elle a deux enfants.

Exemple : voici un exemple d’ontologie.

TBox
Clibataire = Personnel < OmariAvec
Personne C dnom M dage
Homme T Personne
Femme C Personne
Pre = Personne I daEn fant. Personne
PreDeFilles = PreMaEnfant.Femme

aEnfant = aParent(role inverse)

ABox
Homme(Bernard)
age(Bernard,56)
Femme(Sabine)
age(Sabine,46)
Homme(Valentin)
age(Valentin,10)
mariéAvec(Bernard,Sabine)

aEnfant(Bernard, Valentin)

3.8.4 Inférence

3.8.4.1 Inférence au niveau TBox

En logique descriptive, il y a quatre propriétés qu’on peut étre intéressé a prouver pour une
TBox T :
e Satisfaisabilité
Un concept C1 est consistant, si au moins, un individu du monde décrit appartient a

I’ensemble d’individus associés a ce concept C1. Contre-exemple :

C1 = Homme N Femme

48

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

e Subsomption
concept C1 subsume un concept C2, si C1 est plus général que C2 et surtout si les individus

contenus dans C2 sont aussi des individus contenus dans C1. Exemple :
Homme T Humain

° Equivalence
Deux concepts C1 et C2 sont équivalents, si ’ensemble des individus associés au concept

C1 est égal a 'ensemble des individus associés au concept C2. Exemple :
Humain = Personne

e Disjonction

Deux concepts C1 et C2 sont disjoints si leur intersection est vide. Exemple :

HommeN Femme C L

3.8.4.2 Inférence au niveau ABox

Le raisonnement sur une ABox se focalise sur le test de la correction d’'un modele du domaine.
Il faut effectuer les deux taches suivantes :

e Vérifécation d’instance
Vérifier si un individu a d’'une ABox A est une instance d’une description de concept
donnée C.

e Vérification de consistance
Une ABox A est consistante par rapport a une TBox T, s'il existe une interprétation 'qui
est un modele des deux, A et T.
Ezemple : si on définit une classe (concept) comme étant a la fois une sous-classe des
classes Homme et Femme, et que la TBox spécifie aussi que ces 2 classes sont disjointes
(aucun individu ne peut a la fois étre un Homme et une Femme) : ce nouveau concept est

alors inconsistant.

3.9 Les ontologies et le langage ontologique OWL

Comme nous 'avons définie dans le chapitre précédent, une ontologie est un ensemble struc-
turé de consente représentant le sens d’'un domaine de connaissance dont I'objectif en informa-

tique ubiquitaire est de représenter le contexte des situations. Elle comprend : les concepts de

1. Une interprétation revient a donner une situation concrete. C’est-a-dire que 'on va affecter a chaque

constante un personnage et indiquer ce qui est vrai ou faux pour ceux-ci.

49

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

'ontologie, les instances des concepts (bases de connaissance) et la relation entre les instances.

De nombreux langages informatiques sont apparus pour construire et manipuler des ontolo-
gies. Dans le but de mettre au point un langage standardisé, le W3C a créé en novembre 2001
un groupe de travail qui a abouti & la recommandation OWL (Ontology Web Language) en
février 2004 [43]. OWL définit une syntaxe basée sur RDF /XML pour décrire et construire des
vocabulaires afin de créer des ontologies.

Le langage OWL offre trois sous-langages d’expression croissante congus pour des commu-
nautés de développeurs et d’utilisateurs spécifiques : OWL-Lite, OWL-DL et OWL-Full.

e Lc langage OWL-Lite concerne les utilisateurs ayant principalement besoin d’une hiérar-

chie de classification et de mécanismes de contraintes simples. Par exemple, les contraintes
de cardinalité, en effet il ne permet que des valeurs de cardinalité de 0 ou 1.

e Le langage OWL-DL concerne les utilisateurs souhaitant une expressivité maximum sans
sacrifier la complétude de calcul et la décidabilité des systemes de raisonnement. Le lan-
gage OWL-DL comprend toutes les structures de langage OWL avec des restrictions
comme la séparation des types (une classe ne peut pas étre en méme temps un individu
ou une propriété). Le langage OWL-DL, congu pour gérer le secteur existant de la logique
de description.

e Le langage OWL-Full est la version la plus complexe de OWL, mais également celle qui
permet le plus haut niveau d’expressivité. Toutefois, il ne garantit pas la décidabilité des
calculs liés a Pontologie (tous les calculs se font dans un intervalle de temps infini).

Tout document OWL est une ontologie, qui peut avoir un identificateur unique représenté
par URI, et qui contient des faits et des axiomes. Les faits sont des descriptions d’individus,
alors que les axiomes fournissent les descriptions de concepts. Un document OWL a donc la
forme suivante :
ontologie : := Ontology([ontologielD]directive)
directive : := axiome | fait

Donc, l'ontologie OWL la plus simple que 'on peut écrire (et stirement pas la plus intéres-
sante) est celle-ci :
ontology()

Notons, finalement, que OWL comprend les deux classes pré-définies owl : Thing et owl :No-

thing qui correspondent, respectivement, a T et L.

20

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

3.9.1 Définition des éléments d’une ontologie OWL

Nous fournissons des définitions nécessaires pour comprendre le principe des ontologies
OWLI[4].

e Domaine du discours : Le domaine du discours est le domaine que ’on représente dans
une ontologie, c¢’est-a~dire, la partie du monde qui est l'objet de la modélisation. Ensuite,
nous définissons les éléments principaux que ’'on trouve dans une ontologie OWL

e Classe : Une classe définit un groupe d’individus possédant des caractéristiques simi-
laires. Dans toute ontologie OWL, il existe une superclasse, nommée Thing, dont toutes
les autres classes définies par l'utilisateur sont implicitement des sous-classes. Ceci nous
amene directement au concept d’héritage, disponible a 'aide de la propriété subClassOf.

e Individu/instance : Les individus ou instances sont les objets du domaine de discours
que 'on représente dans une ontologie

e Propriété : Les propriétés permettent d’exprimer les faits au sujet des classes déclarées et
de leurs instances. Le langage OWL distingue entre deux principaux types de propriétés :
— Les propriétés d’objet qui relie des instances a d’autres instances.

— Les propriétés de type de donnée qui relie des individus a des valeurs de donndées.

3.9.2 OWL-DL
3.9.2.1 Axiomes

En OWL-DL, les axiomes sont plus expressifs qu’en OWL-Lite. Contrairement a ce dernier
langage, qui ne permet que des définitions contenant des concepts atomiques ou des restrictions
limitées, OWL-DL permet d’utiliser des descriptions complexes dans une définition :
axiome::= Class([classeID | modalité { description })

modalité::= complete | partial

description::= classelD
| restriction
|unionOf({description})
| intersectionOf({ description})
| complementOf(description)
| oneOf({individuID})

Déclarer des classes disjointes

ol

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

axiome:= DisjointClasses(description description {description })
| EquivalentClasses(description { description })

| SubClassOf(description description)

Définir une classe par énumération

axiome::= EnumeratedClass(classeID { individulD})

Les restrictions
restriction:: =
restriction(propriétéIndividulD élémentRestrictionIndividu)
| restriction(propriétéLitterallID élémentRestrictionLittéral)
élémentRestrictionIndividu : := allValuesFrom(description)
| someValuesFrom(dedscription)
| value(individulD)
| cardinalité
élémentRestrictionLittéral::= allValuesFrom(dataRange)
| someValuesFrom(dataRange)
| value(littéral)
| cardinalité
cardinalité::= minCardinality (entierNonNégatif)
| maxCardinality (entierNonNégatif)
| cardinality (entierNonNégatif)
dataRange::= typeLittérallD | rdfs :Literal | oneOf({ littéral })

Les axiomes sur les propriétés

axiom::= DatatypeProperty(propriétéLittérallD
{super(propriétéLittérallD)}
[Functional |
{domain(description)}
{range(dataRange)})
| ObjectProperty(propriétéIndividul D
{super(propriétéIndividulD)}
{inverseOf(propriétéIndividulD)}

[Functional | InverseFunctional | Functional InverseFunctional | Transitive]

o2

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

{domain(description)}

{range(description)})

axriom:.=
EquivalentProperties(propriétéLittérallD propriétéLittérallD {propriétéLittérallD}
)

| SubPropertyOf(propriétéLittéralID propriétéLittérallD)

| EquivalentProperties(propriétéIndividul D propriétéIndividul D
{propriétéIndividulD})

| SubPropertyOf(propriétéIndividulD propriétéIndividulD)

3.9.2.2 Faits

Les faits en OWL-DL permettent de fournir des informations sur des entités spécifiques
(appelées individus). Essentiellement, on peut spécifier les classes auxquelles un individu ap-
partient, ainsi que les valeurs des propriétés qui le concernent, qui sont des individus ou des

littéraux, selon le type de propriété.

En OWL-DL, la classe d’un individu dans la ABox peut étre n’importe quelle description

complexe :

fait : := individu
| Samelndividual(individulD individulD { individulD })
| DifferentIndividuals(individulID individulD { individuID })
individu : := Indwidual([individuID | { type(description) } { valeur})
valeur : := value(propriétéIndividu IndividulD)
| value(propriétéIndividu Individu)

| value(propriétéLittéral Littéral)

Exemple

En logique descriptive

Animal DeCompagnie = Animal Domestique M (Chien U C'hat)

23

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

(Chien1 Chat) CL

Animal Domestique = Animal LI =~AnimalSauvage

En OWL-DL

Namespace(local=<http ://www.polymtl.ca>)
Ontology(
Class(local :Animal partial)
Class(local :AnimalSauvage partial)
Class(local :AnimalDeCompagnie complete
local :AnimalDomestique
unionOf (
local :Chien
local :chat))
DisjointClasses(local :Chien local :Chat)
Class(local :AnimalDomestique complete
local :Animal

completementOf(local :AnimalSauvage)))

3.9.3 Raisonnement avec OWL

Comme nous l'avons mentionné, le fait qu’OWL possede une base théorique formelle (la
logique de description) permet I'implantation de logiciels appelés moteurs d’inférence ou rai-
sonneurs, qui sont capables de traiter une ontologie OWL pour déduire des faits qui ne sont pas
explicitement déclarés [68]. C’est-a-dire, ils peuvent trouver des informations qui sont implici-
tement contenues dans l'ontologie pour les rendre explicites. Ce processus s’appelle inférence
ou raisonnement.

Parmi les caractéristiques importantes du raisonnement avec OWL est la monotonicité. Le
fait qu’ OWL soit monotone implique que tout fait présent dans une ontologie ne peut pas étre
supprimé[69]apres I'ajout d'une nouvelle information, méme si l'information ajoutée contredit
celle qui existait précédemment,.

Le raisonnement dans OWL applique le principe connu comme hypothese du monde ouvert,
cette caractéristique offre la possibilité d’étendre 'ontologie.

OWL-DL est capable d’exprimer certains types d’implications (Exp : héritage, propriété

04

Chapitre : 8 Etude du modele logique Event Calculus et du modéle ontologique OWL

transitive.), il peut étre utilisé si son expressivité est suffisante. Si une expressivité plus im-
portante est souhaitée, alors l'intégration de SWRL est nécessaire, car il permet 'usage des

variables ainsi que des propriétés et des classes dans les regles.

3.9.4 Regles SWRL

Le Semantic Web Rule Langage (SWRL)[70] est un langage de régles basé sur la logique
descriptive. Il est proposé par le W3C qui combine OWL-DL avec le Rule Markup Langage
(RuleML) 2 pour fournir plus d’expressivité au langage OWL, cette expressivité implique la

perte de la décidabilité[71].

Une regle est composée de fagon générale d'une téte et d’un corps sous la forme d’une
implication : Ay A...NA, = Bi1AN...\NB,

Ou A;A...A A, est le corps ou antécédent de la regle et ByA...A B, est ’entéte ou conséquent.

Les termes A;...A,, By..., B, sont des atomes SWRL.

Un atome A; ou B; est une expression de la forme p(arg, ..., arg,) ol p est un prédicat et
arg; est un terme ou un argument de 1’expression.

L’interprétation de la regle est la suivante : si les conditions spécifiées dans l'antécédent sont
vérifiées, alors on peut déduire que les propositions spécifiées dans le conséquent sont vérifiées

aussi.

Disscussion

Apres I’étude, nous avons conclu que le langage de regles SWRL apporte une solution au
manque d’expressivité du langage OWL, en permettant d’écrire des regles basées sur les concepts
d’OWL-DL. Cependant, le manque de négation dans les regles de SWRL est un probleme
sérieux.

L’autre contrainte liée & SWRL est le recouvrement d'une propriété [5] effectivement les
valeurs d'une propriété ne peuvent pas changer avec le temps, elle n’exprime pas comment les
états peuvent changer au fil du temps ce qui implique le manque de la sensibilité au contexte

dans les ontologies OWL.

25

Chapitre : 8

Etude du modele logique Event Calculus et du modéle ontologique OWL

Caractéristiques)] o]
Relation et | Raisonnement | Négation Point tempo-
Modele
dépendance rel
SWRL Oui faible Non Non
EC Non Fort Oui Oui

TABLE 3.7 — Comparaison entre SWRL et DEC

3.10 Synthese

SWRL irrite des propriétés d’OWL, dont la capacité d’exprimer les relations et les dépen-

dances entre les classes, mais le fait qu’il ne représente pas la négation des propriétés ni les

points temporels le rend faible en raisonnement.

EC permet la négation, ainsi que la représentation des donnes contextuelles et leur variation

dans le temps. Par conséquent amélioration de la performance du raisonnement. Cependant, il

n’exprime pas relation et dépendance entres les informations du contexte.

3.11 Conclusion

L’étude des différents articles nous a permis de noter et analyser les diverses approches de

modélisations et de raisonnements sur les informations contextuelles. Ainsi, ils ont contribué a

I’élaboration de notre proposition. Dans le prochain chapitre, nous exposerons en détail notre

contribution a la problématique.

2. Est un lanquage de regles utilisant des variables

o6

Problématique et proposition

4.1 Introduction

Les caractéristiques de U'environnement ubiquitaire telles que la mobilité et 'hétérogénéité
au niveau matériel et logiciel rendent la satisfaction des besoins de I'utilisateur difficile. En effet,
les applications doivent étre capables doffrir aux utilisateurs nomades des services adaptés par
tous et a tous moments. Afin de mieux répondre aux attentes des utilisateurs, il est nécessaire
de disposer dinformations contextuelles qui serviront a adapter les applications au contexte
percu.

Notre travail consiste a modéliser les informations contextuelles capturées a partir de diffé-

rentes sources et raisonner sur ces informations dans le but de sélectionner le meilleur service.

4.2 Problématique

Le choix d’approche de modélisation se base sur ses capacités de représenter et raisonner
sur les informations contextuelles telles que 'expressivité, possibilité de réutiliser le modele et
le partage des données. Apres I'étude effectuée dans les chapitres précédents, nous avons conclu
que chaque modele a des limites et ne répond pas a toutes les exigences.

Le modele clé - valeur est un modele simple et facile a implémenter, mais il manque d’ex-
pression de relation. Les approches orientées modeles sont réutilisables, cependant elles ne
permettent pas de raisonner sur les informations contextuelles. Les approches logiques sont tres
efficaces pour raisonner sur le contexte, mais elles n’expriment pas les relations qui peuvent
exister entre les informations du contexte. Finalement, ’approche ontologique est expressive et
représente les relations et les dépendances entre les données du contexte.

Aucune de ces approches ne peut répondre simultanément a toutes les exigences illustrées

précédemment. Ce qui a incité les chercheurs a combiner entre plusieurs approches et proposer

57

Chapitre : 4 Proposition

des modeles hybrides pour plus d’expressivité et de raisonnement.

Le modele hybride fait/ontologie qui est basé sur CML et OWL-DL n’apporte aucun avan-
tage par rapport au raisonnement ontologique. Mais il hérite la caractéristique dinteropérable
de OWL et la possibilité de réutiliser le modeéle.

Le modele hybride balisage/ontologie ¢’est un modele dont le vocabulaire est pauvre, car il
est restreint a la description de profil. Cependant, il est réutilisable et interopérable.

Apres I'analyse des modeles cités précédemment, nous avons conclu qu’aucun d’eux ne re-
médie au probleme de négation dans OWL/SWRL.

OWL offre un moyen de faire des descriptions sémantiques, en effet, il définit la nature des
¢éléments qui composent le domaine de I'ontologie et les relations existantes entre ses concepts,
ainsi que celles existantes entre les instances de ses classes. Il permet aussi de réutiliser, d’enri-
chir plus facilement 'ontologie et de publier les données décrites a travers le réseau. Cependant,
les résultats expérimentaux avec une ontologie complexe (ayant plus de 500 classes) prouvent
que l'exécution des taches de raisonnement prend plus de temps par rapport au raisonnement
sur une ontologie simple.

L’utilisation de SWRL permet la définition des regles d’implication, en liant des variables
aux éléments dans 'ontologie. En revanche, il est limité par certaines contraintes : il ne comporte
aucun opérateur de disjonction, ne soutient pas la négation et il n’exprime pas le changement
des valeurs des propriétés dans le temps.

Il existe deux types de négations : négation de classes et négation de propriétés.

Pour remédier au probleme de la négation d'une classe, il est possible de définir son complé-
ment a l'aide de 'opérateur complementOf, ce qui signifie qu’elle décrit ’ensemble de tous les
individus qui ne sont pas membres de la classe. Par exemple, owl : Class X owl : complementOf
(owl : Class Y) signifie que la classe X comprend chaque individu possible qui est introduit dans
la base de connaissances, quelle que soit sa catégorie, a condition qu’elle ne soit pas membre
de Y. Mais cette solution n’est pas pratique, car il est nécessaire de créer les compléments de
toutes les classes ce qui augmente la complexité de 1'ontologie. Par contre, il n’existe aucun
moyen pour remédier au probleme de la négation d’une propriété dans SWRL.

EC est fondée sur un raisonnement non monotone, ce qui suppose un monde de faits connais-
sables limités. Ainsi, quelques regles dans I'EC peuvent défaire d’autres et les événements
peuvent déterminer les valeurs de vérité des fluents. EC inclut également les observations qui
enregistrent les valeurs de vérité des fluents a des moments différents, et les historiques, qui
enregistrent la séquence d’opérations.

En outre, il définit des axiomes généraux au sujet des événements et les rapports temporels,

o8

Chapitre : 4 Proposition

il inclut également les axiomes qui décrivent comment les événements et les fluents agissent 1'un
sur l'autre.

EC est I'idée que des événements, leurs conséquences et leurs conditions peuvent tous étre
représentés avec le sous-ensemble de clause de Horn!. En effet, il supporte la négation en uti-
lisant l'atome —HoldsAt(f,t), par contre il n’ya aucun moyen d’exprimer son équivalent en

SWRL.

4.3 Proposition

Notre travail consiste particulierement a résoudre le probleme de négation dans SWRL. Nous
proposons une plateforme permettant une modélisation hybride basée sur une combinaison du
modele ontologique OWL-DL et la version DEC du formalisme logique temporel EC. Cette
plateforme comprant trois étapes.

Dans la premiere étape, nous allons modéliser les différentes informations caractérisant notre
domaine d’étude sous forme d’une ontologie. Ces informations seront enregistrées dans un fichier
XML 2, formant ainsi une base de connaissances.

Dans la deuxieme étape, les données seront transmises a Event Manager pour les traduire
en regles de DEC compréhensibles par le raisonneur d’Event Calculus.

La troisieme étape consiste a raisonner sur les évenements regus et produire des actions de
réaction a exécuter par les agents concernés, apres qu’EC Reasoner a raisonné sur les événements

recus de la part d’Event Manager.

4.4 Architecture de la plateforme

L’architecture générale correspondant a la proposition est la suivante :

1. Une clause de Horn est une clause contenant au plus un littéral positif. Exemples :[-A, =B, C] est une

clause de Horn
2. (eXtensible Markup Language) est un langage de balisages, les balises sont définies dans une DTD (Do-

cument Type Definition).

29

Chapitre : 4 Proposition

FIGURE 4.1 — Architecture générale de la proposition

e EC Reasoner : le Cerveau de l'infrastructure, c’est I’agent responsable des décisions des
différents événements qu’il recoit d’autres agents, 'environnement est décrit en utilisant
des prédicats et fluents de Event Calculus, la prise de décision est réalisée en envoyant
différentes actions a exécuter aux Actuation Agents ou par des déclenchements d’alertes
en les envoyant aux Alerts Manager.

e Events Manager : Coeur de l'infrastructure, il joue le role de passerelle pour relier les
différents agents. Cet agent est tres important parce qu’il permet une architecture tres
flexible, en effet il simplifie le développement de nouveaux agents puisque tous les agents
communiquent seulement avec lui d’'une maniere directe, si un agent veut envoyer un

message a un autre agent, il doit passer par Fvent Manager. De plus, il traduit :

Les informations fournies en entrée par les différents agents sous forme d’événements

et fluents de EC.

Les prédicats et fluent recues de EC Reasoner en actions a exécuter par Actuation
Agents.

— Les prédicats et fluent recues de EC Reasoner en alertes a déclencher par Alerts
Manager.

— Les informations communiquées par I'ontologie en Event, Fluent et Sort.

60

Chapitre : 4 Proposition

e OWL : contient la base de connaissance obtenue en modélisant le domaine d’étude.

e Field Of Study : domaine d’étude, est le domaine que 1’on représente dans une ontologie,
c’est-a~dire, la partie du monde qui est I'objet de la modélisation.

e Alerts Manager : Cet agent est tres particulier, il controle le systeme d’alerte. Lors
de réception d’une alerte du Reasoner, il produit un déclenchement qui sera envoyé au
Reasoner apres un moment défini par ce dernier. Il peut également désactiver quelques
alertes actives par ordre du Reasoner.

e Actuation Agents : Exécute les actions recues du Reasoner qui provoque un événement,

ce dernier sera envoy¢ au Reasoner.

Fonctionnement

4.5 Conclusion

Dans ce chapitre, nous avons défini notre proposition, ainsi que son architecture. Pour la
valider, nous proposerons lexemple d’application de 'autosurveillance glycémique que nous

détaillerons dans le prochain chapitre.

61

Validation

5.1 Introduction

Dans ce chapitre, nous développons ’exemple d’application de la proposition qui est 'auto-
surveillance glycémique, nous le modélisons avec 1’éditeur d’ontologie protégé et I'implémenté

avec Event Calculus.

5.2 Exemple d’application

5.2.1 Autosurveillance glycémique

L autosurveillance glycémique consiste a controler le taux de glycémie par soi-méme quoti-
diennement a ’aide d’un lecteur de glycémie capillaire (équipé d’'un moyen de communication),
au minimum le matin a jeun et 2 h apres le début de chacun des trois principaux repas. C’est
sur les valeurs de glycémie qu'une décision de modifications thérapeutiques peut étre prise.

L’environnement du patient est équipé de différents capteurs (capteur de mouvement, de
bruit...etc.) et de multiples dispositifs de communication (IPhone, Tablet, ordinateur...etc.)

L’application sensible au contexte serra installée sur 'un des dispositifs, dans notre cas,
nous avons choisi [Phone.

Quand I’heure de controle glycémique arrive, un message écrit ou sonore annongant ’heure
de la prise serra affiché sur I'un des dispositifs, selon le contexte du patient.

A Theure venue -> afficher un message sur le dispositif selon le contexte du patient "c’est
le moment de la prise” (1)

Si non prise (2*) (non-réception du taux par le dispositif) alors rappel (3%)

62

Chapitre : 5 Validation

Si réception du résultat (2, 3) alors - I'envoyer au service médical (4)
- Analyse du résultat (4)
Si (5) valeur normale alors afficher "normal”
Sinon
Si hypoglycémie alors afficher le traitement qui convient
Si hyperglycémie alors afficher le traitement a suivre
Si service médical recoit la nouvelle valeur du taux concernant le patient alors
- Mise a jour (6)

- Intervention si ¢’est nécessaire (7)

La figure 5.1 illustre le scénario de L’autosurveillance glycémique.

FIGURE 5.1 — Scénario Autosurveillance glycémique

5.2.2 L’ontologie de ’exemple

L’ontologie de I'exemple d’application contient les concepts de base suivants :

PATIENT : personne concerné par I’auto-surveillance glycémique.

GLYCEMIA-READER : lecteur de taux de glycémie(Stylet).

63

Chapitre : 5 Validation

DEVICE : Dispositif utilisé par le patient (IPhone).

READING : événement qui se produit suite a la détection du sang au niveau de lecteur.
RATE-ANALYZES, SEND-MESSAGE : événements qui se produisent suite a la réception du
taux.

POSTING-TRAITEMENT : événement qui se produit suite a ’analyse du taux (glycémie nor-
male ou anormale).

TEST : situation pertinente, le fait qu’un patient effectue une prise de sang, provoque des évé-

nements.

MEDICAL-SERVICE : service médical consulté par le patient.

GLYCEMIA_READER

FATIENT

Consult TEST EVENT

i5an
SEND_MESSAGE RATE _ANALYZES e POSTING_TRAITEMENT || READING
generatechy generatedBy generatedBy
l generatedby
RECEPTION_VALUE_RATE
providedsy DETECTION _BLOCD
has ¥
* DEVICE
MEDICAL_SERVICE
has

MEAN_CONMM

FI1GURE 5.2 — L’ontologie du scenario

64

Chapitre : 5 Validation

5.2.3 L’exemple en logique descriptive

TBox
RATE-ANALYZES, SEND-MESSAGE et POSTING-TRAITEMENT sont des sous classes de
la classe EVENT
DETECTION-BLOOD = generated ByREADING
PATIENT = 3has(DEVICENGLY CEMIA—READER)Nconsulte MEDICAL—SERVICEN
faitTEST
GLYCEMIA — READER = Jid : StringM MOY — COM.
POSTING—-TRAITEMENT C EVENT MNdprovide ByDEV IC EMdgenerated ByRATE —
ANALY ZE
RATE—-ANALY ZES C EVENTMN3provide ByDEV IC EMdgeneratedByRECEPTION —
VALUE — RATE
SEND — MESSAGE C EVENT N 3provideByDEV ICEMdgeneratedByRECEPTION —
VALUE — RATE

ABox

DEVICE(iphone).
GLYCEMIA — READER(stylet).
MEAN — COM M (bluetooth).
PATIENT (person)
MEDICAL — SERVICE(service — madical).
TEST (prisel).
do(person, prisel).
consult(person, service — medical).

has(person, stylet).

5.3 Outils et langages

5.3.1 Protégé

Protégé est un éditeur d’ontologies distribué en open source par 'université en informatique
médicale de Stanford. Il n’est pas spécialement dédié a OWL, mais un éditeur hautement
extensible, capable de manipuler des formats tres divers.

C’est un outil employé par les développeurs et des experts de domaine pour développer

des systemes basés sur les connaissances (Ontologies). L'outil Protégé possede une interface

65

Chapitre : 5 Validation

Outils/ Langage Choix

Création/édition d’ontologies Protégé 3.5
Création/édition de regles SWRL SWRLTab pour Protégé
Moteur d’inférence Pellet 1.5.2

Acces par programme aux ontologies Protégé-OWL API

TABLE 5.1 — Outils et langages pour la création et manipulation de I'ontologie

utilisateur graphique (GUI) lui permettant de manipuler facilement tous les éléments d’une
ontologie : classe, méta-classe, propriété, instance...etc. Protégé peut etre utilisé dans n’importe
quel domaine ou les concepts peuvent étre modélisés en une hiérarchie des classes.

Apres avoir défini les classes de notre domaine et les relations existantes entre les classes

sous Protégé, nous avons obtenu 'ontologie ci-dessous.

Fatient:
3 do Test (Meceszary)

FIGURE 5.3 — L’ontologie sous protégé

5.3.2 SWRL Tab

SWRLTab est un outil pratique pour éditer des regles de SWRL et vérifier la syntaxe des

regles écrites. Ces regles sont exécutées par le langage de requéte SQWRL, il ne permet aucun

66

Chapitre : 5 Validation

changement a l'information qu’elles pourraient extraire a partir de I'ontologie.

La figure 5.4 montre les étapes d’exécution des regles de SWRL sur un ensemble de données
de Protégé. Les regles doivent étre traduites et présentées dans le moteur de regle (1). Apres,
I'ontologie et la base de connaissance doivent étre traduites et présentées dans le moteur de
regle (2). Apres le raisonnement (3), les résultats du raisonnement devraient étre traduits de

nouveau dans le format de Protégé (4).

FIGURE 5.4 — Etapes d’exécution des regles SWRL sous Protégé[5]

Exemple de regle

1. Cas ou la personne a fait la prise
Afficher le nom des femmes qui ont fait leurs prises, ainsi que les dates de chaque prise.
Women(?x)Aname(?z, Tnom) A Test(?y) Adate(?y, 7d) Arote(?y, Ttauz) Ado(?z, Ty) —
squrl : select(?nom, ?d, Mtaux)

Le résultat de 'exécution de la regle précédente est affiché sur la figure 5.5 :

67

Chapitre : 5 Validation

O Rule-1 = thoxisClass(?c) — sl select(?c) A sgwrlorderBy(7c)

O Rule-2 —HthowisProperty(?p) —+ sowerlsglect(?) A sgwerlorderBy(?p)

O Rule-4 = Men(?x) A name(?x, fnom) a Test(?p) a do(%x, P00 sowerl select{?nom, ¥p)

O Rule-5 =*'Women(Tx) A name(Tx, Tnom) A Testi?y) A dated?y, 7o) A doi?x, 7y) = sgwerl:select(Pnom, Td)

Rule-6 = WWOmen(7x) A name(?x, Fnam) A Test(Ty) A dete(?y, 7d) A rate(?y, Haux) A dol?x, 7y - sqwrlselect(Fnom, d, Haux)

(50l sowRLouenyTab | (il owL2RL | () Ruie |
7nom | d Haux
Marie 2013-06-14T15:5432 24
Sophie 2013-06-12T13.00:09 10
Sophie 2013-06-12T13:30:14 12
‘ Saveas CSV... ‘ ‘ Rerun ‘ ‘ Cloze ‘

FIGURE 5.5 — Execution d'une regle SWRL sous protégé

2. Cas ou la personne n’a pas fait la prise
Il est impossible d’exprimer la négation de la propriété "do” en utilisant une regle SWRL.En
effet, il n’est pas permis d’insérer un symbole de négation.

La figure 5.6 prouve qu’on ne peut pas présenter la négation de la propriété ” do ”

68

Chapitre : 5 Validation

Rule-1 = thowcisClass(?e) + sowrlselect(?c) A sqwriorderBy(?c)

Rule-2 = thoxcisProperty(?p) — sgwrlselect(Tp) a sopwrlorderBy(7p)

Rule-4 = Men(7x) A name(?x, ?nom) A Test(?p) A do(%x, 700 = sowrl:select{?nom, 7p)

Rule-5 —*ikiomen(?x) A name(?x, Tnom) A Test(Py) a date(?y, 7o) A da(?x, Py) = sowrl select; ?nom, 7d)

Rule-5 =t Women(7x) A name(?x, Tnom) A Test(Ty) » date(?y, 7o) A rote(?y, Haux) A dol?x, Ty) = sqwrlselecti7nom, 7d, Haux)

[|

|H Emor: Invalid atom name Natdo. H

FIGURE 5.6 — Exécution d'une regle SWRL contenant la négation de la propriété "do”

5.3.3 Pellet

Le raisonneur Pellet a été construit pour raisonner sur des ontologies ’OWL-DL[72], c’est

le raisonneur par défaut dans Protégé 3.x.

5.3.4 Protégé-OWL API pour le traitement des ontologies OWL

Protégé fournit une interface de programmation d’application (API) écrite en JAVA. Cette
API permet aux programmeurs en JAVA de développer des applications qui peuvent accéder aux
bases de connaissances de Protégé. Cette API fournit des packages et des classes JAVA pouvant
effectuer des opérations complexes. L’interface entre les programmes et les projets de bases de
connaissances de Protégé se fait en utilisant la classe “edu.standford .smi.protege.model. Project”
qui se trouve dans le package "protege.jar”fourni avec Protégé. Cette classe posseéde une méthode

getKnowledgeBase() permettant d’accéder au contenu de la base de connaissances.

5.4 Implémentation du scénario d’autosurveillance gly-

cémique avec DEC

5.4.1 Cas ou le patient fait sa prise

Les prédicats correspondants sont :
Domain Aximozation

Happens(TimeActivity(? Mobil Device), 7t) => Happens(PlayActivityMessage(? Patient,

69

Chapitre : 5

Validation

?Mobil Device), 7t)

Happens(PlayActivityMessage(? Patient, ? M obil Device), 7t) A Holds At(PriseDone(
?Patient), 7t) NHolds At(RecevedV alue(?GlycemiaReader,? M obil Device, 7V alue), 7t) =>
Happens(SendIn formation(?Mobil Device, ? Medical Service), 7t).

Happens(PlayActivityMessage(? Patient, ? M obil Device), 7t) A Holds At(PriseDone(
?Patient),7t) N HoldsAt(RecevedV alue(?GlycemiaReader, ? Mobil Device, ?V alue), 7t)

=> Happens(AnalyzesValue(?V alue, ? Mobil Device), 7t).

Happens(AnalyzesV alue(?V alue, ?Mobil Device), 7t)) => Happens(PostingT raitement(

?Patient,? Mobil Device), 7t).

Partie narrative(informations regus)

Happens(TimeActivity(I Phone), 1).

HoldsAt(PriseDone(person),1).
HoldsAt(RecevedV alue(stylet, I Phone, tauz), 1).

Le résultat du raisonnement avec EC est présenté dans la figure ci-dessous :

[y Model 1

Run

uuuuu

1| timepoints.

Add event or observation

Flush

Display only changes:

FIGURE 5.7 — Résultat d’execution des prédicats dans le cas de prise sous EC

70

Chapitre : 5 Validation

5.4.2 Cas ou le patient ne fait pas sa prise

Les prédicats associés sont :

Domain Aximozation

Happens(TimeActivity(? Mobil Device), 7t) => Happens(PlayActivity Message(? Patient,
?Mobil Device), 7t).

Happens(PlayActivityM essage(? Patient, ? Mobil Device), 7t)\ ~ HoldsAt(Prise Done(
?Patient), 7t+3) => Happens(PlayRemainingMessage(? Patient, ? Mobil Device), 7t+3).

Partie narrative
Happens(TimeActivity(I Phone), 1).
~ HoldsAt(PriseDone(person),1).

Le résultat du raisonnement avec EC est présenté dans la figure ci-dessous :

[Model 1

rson,IPhone), 1)

erson,IPhone),4)

Run 1| timepoints. Add event or observation Flush Display only changes:

FIGURE 5.8 — Résultat d’execution des prédicats dans le cas non prise sous EC

71

Chapitre : 5 Validation

5.5 Synthese

Les caractéristiques de notre proposition sont les suivantes :

— L’architecture proposée permet de modéliser tous types de contexte collectés a partir
des différents capteurs en utilisant le langage ontologique OWL-DL, donc elle assure
I'interopérabilité et le partage des données.

— Elle exprime les relations et les dépendances qui existent entre les informations contex-
tuelles et nous offre la possibilité d’enrichir et étendre le modele.

— De plus, le raisonnement avec DEC permet une forte expressivité, car DEC exprime le
déroulement des événements en fonction du temps.

— Elle apporte une solution au probleme de négation dans les ontologies (OWL-DL).

— Event-Manager et EC-Reasoner sont des programmes qui peuvent étre appliqué non seule-
ment sur I’exemple proposé, mais aussi, il est réutilisable pour d’autres applications.

Néanmoins, la solution proposée est complexe, car il est nécessaire de disposer d’un pro-

gramme (Events-Manager) qui permet de présenter les concepts et les relations de OWL en sort

et prédicats. De plus, il faut maintenir une communication entre Event-Manager et OWL.

5.6 Conclusion

Dans ce chapitre, nous avons pu montrer la possibilité d’exprimer la négation avec Event
Calculus, et pour ce faire : 'étape de modélisation prend en entrée les informations collectées
par les différentes sources d’informations, qu’elles soient matérielles ou logicielles, afin d’établir
les relations qui existent entre ces informations, cette tache revient a OWL. Puis, vient I’étape
d’interprétation et présentation des informations sous forme de prédicats et sorts, qui sont effec-

tués par Event-Manager. Pour finir, I’étape de raisonnement qui est effectué par EC-Reasoner.

72

Conclusion générale et perspective

Les technologies mobiles et leur large adoption par les nouvelles générations, sont appelées
a transformer notre mode de vie par 'invention de nouveaux services adaptables au contexte
utilisateur, facilement accessible en mobilité, et tres pratiques pour une utilisation courante
dans la vie quotidienne moderne.

La diversité des informations de contexte et leur utilisation dans divers domaines engendrent
différentes facons de les modéliser. En effet, la modélisation du contexte est la premiere étape
dans le processus de création d’applications sensibles au contexte. Cette modélisation permet a
I’application de faciliter 'interaction avec le contexte en fournissant une description abstraite
des observables. C’est dans le cadre de cette problématique que notre travail de recherche s’est
effectué.

Apres les différentes études des travaux menés sur le langage ontologique OWL/SWRL,
nous avons pu déterminer certaines limites dans la description des informations en utilisant
SWRL, mais il comporte aussi ’avantage de représenter les relations et les dépendances entre
elles. Nous avons approfondi notre étude sur le probleme de négation que SWRL ne peut pas
représenter.

D’autres études ont démontré que 'approche de modélisation logique Event Calculus est
forte en raisonnement, il permet d’exprimer la négation. Cependant, il ne décrit pas les relations
et les dépendances entre les données contextuelles.

Dans le but de remédier au probleme de la négation dans les ontologies tout en conservant
le raisonnement et les interrelations, nous avons proposé une architecture hybride qui se base
sur OWL et EC en utilisant Event-Manager. De ce fait, nous avons illustré notre proposition
par 'exemple de 'autosurveillance glycémique.

Cependant, notre travail n’a pas été finalisé, car le cur de 'architecture (Event-Manager)

est a développer. De plus, nous n’avons pas pu établir la communication entre OWL et Event-

73

Chapitre : 5 Validation

Manager.

A travers cette contribution, nous avons pu découvrir plusieurs domaines utilisant 'infor-
matique ubiquitaire, comprendre le fonctionnement des systemes ubiquitaires et leur nécessité
dans la vie courante. De plus, ce projet nous a initié a la recherche et au découvert de nouveaux
outils (Protégé, Event Calculus).

Pour terminer, nous tenons a souligner que nous n’avons nullement la prétention d’avoir pré-
senté un travail parfait, car aucun travail scientifique ne peut I’étre, ainsi nous laissons le soin
a tous ceux qui le liront et qui sont du domaine de nous parvenir leur remarques et suggestions

pour 'enrichir et 'amélioré.

74

Annexe A

Etapesde création del’ ontologie

Définition des classes

Appuyer sur I'onglet OWLClasses et cliquer sur le mot Thing dans la vue Asserted
hierarchy qui est la racine de toutes les classes que nous allons créer. En appuyant sur le
premier bouton en haut a droite de cette vue, un dialogue apparait qui permet de créer une
classe.

Définition des propriétés

Appuyer sur I'onglet Properties et, en utilisant le bouton en haut & droite dans la vue Object
properties créer les propriétés dont vous avez besoin. Votre fenétre ressemblera a ceci :

Ajout d’individus

Pour gjouter des instances de classes appuyer dans l'onglet Individuals, ensuite
sélectionnant une classe dans la vue de gauche et gjouter un individu comme membre.
Comme lafigure si dessous.

Définir lesrelations entreles classes

Appuyer sur l'onglet Classes pour compléter les descriptions de classes. Choisissez
une classe la vue Asserted hierarchy et cliquer sur le bouton droit de la souris, un menu
apparaitra. Choisisz Object restriction creator pour faire apparaitre une fenétre permettant de
définir une expression comme dans la figure suivante :

Annexe B

Le code RDF entier del’ontologie sous protégé

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
<IENTITY owl "http://www.w3.0rg/2002/07/owl#" >
<IENTITY swrl "http://www.w3.0rg/2003/11/swrl#" >
<IENTITY swrlb "http://www.w3.0rg/2003/11/swrlb#" >
<IENTITY xsd "http://www.w3.0rg/2001/XMLSchema#" >
<IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#" >
<IENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" >
<IENTITY protege "http://protege.stanford.edu/plugins/owl/protege#" >
<IENTITY xsp "http://www.owl-ontologies.com/2005/08/07/xsp.owl#" >
<IENTITY swrla "http://swrl.stanford.edu/ontologies/3.3/swrla.owl#" >
<IENTITY abox "http://swrl.stanford.edu/ontologies/built-ins/3.3/abox.owl#" >
<IENTITY tbox "http://swrl.stanford.edu/ontologies/built-ins/3.3/tbox.owl#" >
<IENTITY sqwrl "http://sqwrl.stanford.edu/ontologies/built-ins/3.4/sqwrl.owl#" >
1>

<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1371496954.owl#"
xml:base="http://www.owl-ontologies.com/Ontology1371496954.owl"
xmlns:sqwrl="http://sqwrl.stanford.edu/ontologies/built-ins/3.4/sqwrl.owl#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlins:swrl="http://www.w3.0rg/2003/11/swrl#"
xmlns:protege="http://protege.stanford.edu/plugins/owl|/protege#"
xmlins:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"
xmlins:swrlb="http://www.w3.0rg/2003/11/swrlb#"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlins:owl|="http://www.w3.0rg/2002/07/owl#"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:tbox="http://swrl.stanford.edu/ontologies/built-ins/3.3/tbox.owl#"
xmlins:abox="http://swrl.stanford.edu/ontologies/built-ins/3.3/abox.owl#"
xmlins:swrla="http://swrl.stanford.edu/ontologies/3.3/swrla.owl#">
<owl:Ontology rdf:about="">
<owl:imports rdf:resource="http://sqwrl.stanford.edu/ontologies/built-ins/3.4/sqwrl.owl" />
<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/3.3/swrla.owl"/>
<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/abox.owl"/>
<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/tbox.owl"/>
</owl:Ontology>
<swrl:Variable rdf:ID="c"/>
<owl:DatatypeProperty rdf:ID="adresse">

<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#MedicalService"/>
<owl:Class rdf:about="#Patient"/>
</owl:unionOf>
</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="age">

<rdfs:domain rdf:resource="#Patient"/>

<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<MeanComm rdf:ID="bleutooth"/>
<owl:ObjectProperty rdf:ID="consult"/>
<owl:DatatypeProperty rdf:ID="date">

<rdfs:domain rdf:resource="#Test"/>

<rdfs:range rdf:resource="&xsd;dateTime"/>
</owl:DatatypeProperty>
<owl:Class rdf:ID="DetectionBlood"/>
<owl:Class rdf:ID="Device"/>
<owl:ObjectProperty rdf:ID="do"/>
<owl:ObjectProperty rdf:ID="doBy"/>
<owl:Class rdf:ID="Event"/>
<Women rdf:ID="F1">

<adresse rdf:datatype="&xsd;string">345REZ</adresse>

<age rdf:datatype="&xsd;int">28</age>

<consult rdf:resource="#ServiceMed1"/>

<do rdf:resource="#Test4"/>

<do rdf:resource="#Test5"/>

<has rdf:resource="#L4"/>

<has rdf:resource="#Tablet"/>

<name rdf:datatype="&xsd;string">Sophie</name>

<phoneNum rdf:datatype="8&xsd;string">4357789</phoneNum>
</Women>
<Women rdf:ID="F2"/>
<Women rdf:ID="F3">

<adresse rdf:datatype="&xsd;string">rue234</adresse>

<age rdf:datatype="&xsd;int">50</age>

<consult rdf:resource="#Service2"/>

<do rdf:resource="#Test6"/>

<has rdf:resource="#L3"/>

<has rdf:resource="#Tablet"/>

<name rdf:datatype="&xsd;string">Marie</name>

<phoneNum rdf:datatype="8&xsd;string">8665545</phoneNum>
</Women>
<owl:ObjectProperty rdf:ID="generatedBy"/>
<owl:Class rdf:ID="GlycemiaReader">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#has"/>
<owl:someValuesFrom rdf:resource="#MeanComm"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="&owl;Thing"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="has"/>
<MeanComm rdf:ID="infrarouge"/>
<Device rdf:ID="IPhone"/>
<owl:ObjectProperty rdf:ID="isAn"/>
<GlycemiaReader rdf:ID="L1">
<has rdf:resource="#bleutooth"/>
</GlycemiaReader>
<GlycemiaReader rdf:ID="L2">
<has rdf:resource="#bleutooth"/>
</GlycemiaReader>
<GlycemiaReader rdf:ID="L3">
<has rdf:resource="#infrarouge"/>
</GlycemiaReader>
<GlycemiaReader rdf:ID="1L4">
<has rdf:resource="#bleutooth"/>
</GlycemiaReader>
<owl:Class rdf:ID="MeanComm"/>
<owl:Class rdf:ID="MedicalService"/>
<owl:Class rdf:ID="Men">
<rdfs:subClassOf rdf:resource="#Patient"/>
</owl:Class>
<Men rdf:ID="Men2">
<adresse rdf:datatype="8&xsd;string">rue num 2</adresse>
<age rdf:datatype="8&xsd;int">50</age>
<consult rdf:resource="#ServiceMed1"/>
<do rdf:resource="#Test3"/>
<has rdf:resource="#IPhone"/>
<has rdf:resource="#L2"/>
<name rdf:datatype="&xsd;string">David</name>
<phoneNum rdf:datatype="&xsd;string">12345</phoneNum>
</Men>
<Men rdf:ID="Men_1">
<adresse rdf:datatype="8&xsd;string">rue num 1</adresse>

<age rdf:datatype="8&xsd;int">44</age>
<consult rdf:resource="#Service2"/>
<do rdf:resource="#Test1"/>
<do rdf:resource="#Test2"/>
<has rdf:resource="#L1"/>
<has rdf:resource="#Tablet"/>
<name rdf:datatype="&xsd;string">Pierre</name>
<phoneNum rdf:datatype="8&xsd;string">324567</phoneNum>
</Men>
<owl:DatatypeProperty rdf:ID="name">
<rdfs:domain rdf:resource="#Patient"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:ObjectProperty rdf:ID="objectProperty 21"/>
<owl:Class rdf:ID="Patient">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#has"/>
<owl:someValuesFrom rdf:resource="#Device"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#has"/>
<owl:someValuesFrom rdf:resource="#GlycemiaReader"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#do"/>
<owl:someValuesFrom rdf:resource="#Test"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#consult"/>
<owl:someValuesFrom rdf:resource="#MedicalService"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="&owl;Thing"/>
</owl:Class>
<owl:DatatypeProperty rdf:ID="phoneNum">
<rdfs:domain rdf:resource="#Patient"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

<owl:Class rdf:ID="PostingTraitment">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#providedBy"/>
<owl:someValuesFrom rdf:resource="#Device"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#generatedBy"/>
<owl:someValuesFrom rdf:resource="#RateAnalyzes"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Event"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="providedBy"/>
<owl:Class rdf:ID="RateAnalyzes">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#providedBy"/>
<owl:someValuesFrom rdf:resource="#Device"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#generatedBy"/>
<owl:someValuesFrom rdf:resource="#ReceptionValueRate"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Event"/>
</owl:Class>
<owl:Class rdf:ID="Reading">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#doBy"/>
<owl:someValuesFrom rdf:resource="#GlycemiaReader"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="ttgeneratedBy"/>
<owl:someValuesFrom rdf:resource="#DetectionBlood"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>
<owl:Class rdf:ID="ReceptionValueRate"/>
<owl:DatatypeProperty rdf:ID="rote">
<rdfs:domain rdf:resource="#Test"/>
<rdfs:range rdf:resource="8&xsd;float"/>
</owl:DatatypeProperty>
<owl:Class rdf:ID="SendMessage">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#providedBy"/>
<owl:someValuesFrom rdf:resource="#Device"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#generatedBy"/>
<owl:someValuesFrom rdf:resource="#ReceptionValueRate"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Event"/>
</owl:Class>
<MedicalService rdf:ID="Service2">
<adresse rdf:datatype="&xsd;string">rue num 13</adresse>
</MedicalService>
<MedicalService rdf:ID="ServiceMed1">
<adresse rdf:datatype="&xsd;string">rue num 12</adresse>
</MedicalService>
<Device rdf:ID="Tablet"/>
<owl:Class rdf:ID="Test"/>
<Test rdf:ID="Test1">
<date rdf:datatype="&xsd;dateTime"
>2013-06-24T08:00:51</date>
<doBy rdf:resource="#Men_1"/>
<rote rdf:datatype="8&xsd;float">2.0</rote>
</Test>
<Test rdf:ID="Test2">
<date rdf:datatype="&xsd;dateTime"
>2013-06-24T10:10:39</date>
<doBy rdf:resource="#Men_1"/>
<rote rdf:datatype="8&xsd;float">2.5</rote>
</Test>
<Test rdf:ID="Test3">
<date rdf:datatype="&xsd;dateTime"
>2013-06-24T13:00:16</date>
<doBy rdf:resource="#Men2"/>

<rote rdf:datatype="8&xsd;float">0.9</rote>
</Test>
<Test rdf:ID="Test4">
<date rdf:datatype="&xsd;dateTime"
>2013-06-24T11:17:01</date>
<rote rdf:datatype="8&xsd;float">1.0</rote>
</Test>
<Test rdf:ID="Test5">
<date rdf:datatype="&xsd;dateTime"
>2013-06-24T13:29:34</date>
<rote rdf:datatype="8&xsd;float">1.2</rote>
</Test>
<Test rdf:ID="Test6">
<date rdf:datatype="&xsd;dateTime"
>2013-06-23T07:30:10</date>
<rote rdf:datatype="8&xsd;float">3.0</rote>
</Test>
<owl:Class rdf:ID="Women">
<rdfs:subClassOf rdf:resource="#Patient"/>
</owl:Class>
</rdf:RDF>

Annexe C

Code entier

sort: Patient(person).

sort: MobilDevice(IPhone).

sort: GlycemiaReader(stylet).

sort: MedicalService(serviceMed).

sort: Value(Taux).

event: TimeActivity(MobilDevice).

event: PlayActivityMessage(Patient,MobilDevice).
event: PlayRemainingMessage(Patient,MobilDevice).
event: SendInformation(MobilDevice,MedicalService).
event: AnalyzesValue(Value,MobilDevice).

event: PostingTraitement(Patient,MobilDevice).
fluent: PriseDone(Patient).

fluent: RecevedValue(GlycemiaReader,MobilDevice,Value).

Casou le patient fait saprise
Happens(TimeActivity(?MobilDevice),?t)=>
Happens(PlayActivityMessage(?Patient, ?MobilDevice), ?t).

Happens(PlayActivityMessage(?Patient,?MobilDevice), ?t) » HoldsAt(PriseDone(?Patient),?t)*
HoldsAt(RecevedValue(?GlycemiaReader,?”MobilDevice,?Value), ?t) =>
Happens(Sendinformation(?MobilDevice,?MedicalService), ?t).

Happens(PlayActivityMessage(?Patient,?MobilDevice), ?t) » HoldsAt(PriseDone(?Patient),
?t) HoldsAt(RecevedValue(?GlycemiaReader,?MobilDevice,?Value), ?t) => Happens(
AnalyzesValue(?Value,?MobilDevice), ?t).

Happens(AnalyzesValue(?Value, ?MobilDevice), ?t))=>
Happens(PostingTraitement(?Patient,?MobilDevice), ?t).

%% % %%%%%% %% %% %Narrative %%%%%%%% %% % %% %%%%%%
Happens (TimeActivity(IPhone), 1).

HoldsAt (PriseDone(person), 1).

HoldsAt(RecevedValue(stylet, IPhone, taux), 1).

Casou lepatient n’a pasfait saprise

Happens(TimeActivity(?MobilDevice), ?t)=>
Happens(PlayActivityMessage(?Patient,?MobilDevice), ?t).

Happens(PlayActivityMessage(?Patient,?MobilDevice), ?t) » ~HoldsAt(PriseDone(?Patient),
?t+3) => Happens(PlayRemainingMessage(?Patient,?MobilDevice),?t+3).

%% % %%%%%% %% %% %Narrative %%%%%% %% % % % %% %%%%%%
Happens (TimeActivity(IPhone), 1).

1]
2]

3]

Bibliographie

[.Rebai. Informatique ubiquitaire et pervasive. Bretagne, février 2012.

M.Baldauf and S.Dustdar. A survey on context-aware systems. International Journal of

Ad Hoc and Ubiquitous Computing, forthcoming, Vol.2(N"4) :263-277, 2007.

N.Belhanafi Behlouli. Ajout de mécanismes de réactivité au contexte dans les intergiciels
pour composants dans le cadre d’utilisateurs nomades. PhD thesis, Université dEvry Val

dEssonne, 2006.

G.Sancho. Adaptation d’architectures logicielles collaboratives dans les environnements
ubiquitaires. Contribution a ['interopérabilité par la sémantiqgue. PhD thesis, Université

Toulouse 1 Capitole (UT1 Capitole), décembre 2010.

D.Plas and al. Manipulating context information with SWRL. Ericsson Telecommunicatie

B.V., March 7 2006.

M.Weiser. The computer for the 21st century. Scientific American, 265(3) :94-104, sep-
tembre 1991.

C.Linnhoff-Popien and Strang. A context modeling survey. In UbiComp 1st International
Workshop on Advanced Context Modelling, Reasoning and Management, pages 34—41, 2004.
Nottingham.

Z.Drey. Vers une méthodologie dédiée a l'orchestration d’entités communicantes. These de

doctorat en informatique, Ecole doctorale EDMI, Bordeaux.

M.Miraoui. Architecture logicielle pour l'informatique diffuse : modélisation du contexte et
adaptation dynamique des services. These de doctorat en informatique, école de technologie

supérieure université du Québec, Montréal, Juillet 2009.

Bibliographie

[10]

[11]

[12]

[13]

[14]

[15]

[20]

[21]

S.Ghanem and Z.bouanani. Gestion de contexte et découverte de service sensible au

contexte dans un environnement ubiquitaire. Master’s thesis, Université A.Mira, Béjaia,

2012.

B.Schilit and M.Theimer. Disseminating active map information to mobile hosts. IEEE

Network, 8(5) :22-32, 1994.

P.Brown, J.Bovey, and X.Chen. Context-aware applications : from the laboratory to the

marketplace. IEEE Personal Communications, 4(5) :58-64, October 1997.

N.Ryan, J.Pascoe, and D.Mors. nhanced Reality Fieldwork : the Context aware Archaeolo-
gical Assistant. In V. Gaffney, M. van Leusen et S. Exxon. British Archaeological Reports,

Oxford, tempus reparatum edition, october 1998.

J.Pascoe. Adding generic contextual capabilities to wearable computers. In Wearable
Computers, Digest of Papers. Second International Symposium on, pages 92-99, October
1998.

G.Abowd and al. Towards a better understanding of context and context-awareness. In
HUC °99 : Proceedings of the 1st international symposium on Handheld and Ubiquitous
Computing, pages 304-307, 1999.

T.Winograd. Architectures for context. human-computer interaction. 16 :401-419, 2001.

N.Schilit, N.Adams, and R.Want. Context-aware computing applications. In Workshop
on Mobile Computing Systems and Applications.Sta Cruz, EtatsUnis, December 1994.

D.Salber, A.Dey, and G.Abowd. Ubiquitous computing : Defining an hci research agenda
for an emerging interaction paradigm. Technical report, In Georgia Tech GVU technical

report, Janvier 1998.

A.Dey, G.Abowd, and D.Salber. A conceptual framework and toolkit for supporting the
rapid prototyping of context-aware applications. Human-computer Interaction, 16(2-4 (spe-

cial issue on context-aware computing)) :97-166, 2001.

A.Asthana, M.Cravatts, and P.Krzyzanowski. An indoor wireless system for personalized
shopping assistance. In Proceedings of IEEE Workshop on Mobile Computing Systems and
Applications, pages 6974, December 1994. Santa Cruz, California.

G.Abowd and al. A mobile context-aware tour guide. Wireless Networks, 3(5) :421-433,
1997.

Bibliographie

[22]

[23]

[24]

[25]

[20]

[27]

28]

[29]

A.Dey and al. The conference assistant combining context-awareness with wearable com-
puting. In Proceedings of the 3rd International Symposium on Wearable Computers (ISWC
'99), pages 21-28, October 1999.

A.Schmidt and al. Advanced interaction in context. In Proceedings of the First Internatio-
nal Symposium on Handheld and Ubiquitous Computing, HUC’99, pages 89101, September
1999.

R.Want and al. The active badge location system. ACM Transactions on Information

Systems, 10(1) :91-102, January 1992.

G.Chen and D.Kotz. A survey of context-aware mobile computing research. Technical

report, Technical report TR2000-381, Dept. of Computer Science, Dartmouth college, 2000.

J.Indulska and al. Experiences in using cc/pp in context-aware systems. In Proceedings of
the 4th international Conference on Mobile Data Management, Melbourne, Australia, Vol.

2574 :247-261, January 21 - 24 2003.

A.Dey, G.Abowd, and A.Wood. A framework for providing self- integrating context-aware
services. Knowledge Based Systems, Vol.11(N°1) :3-13, 1998.

E.Kiciman and A.Fox. Using dynamic mediation to integrate cots entities in a ubiquitous
computing environment. In Proceedings of the 2nd International Symposium on Handheld

and Ubiquitious Computing (HUC2K). Heidelberg, Germany : Springer Verlag, 2000.

M.Bauer and al. A collaborative wearable system with remote sensing. Proceedings of
the 2nd International Symposium on Wearable Computers (ISWC98), CA : IEEE,Los
Alamitos, pages 10-17, 1998.

T.Rodden and al. Exploiting context in hci design for mobile systems. In Proceedings of

the Workshop on Human Computer Interaction with Mobile Devices, 1998.

H.Chen and al. An ontology for context-aware pervasive computing environments. In

Workshop on Ontologies and Distributed Systems (IJCAI 2003), Mezxico, August 2003.
C.Bittini and al. A survey of context modelling and reasoning techniques. 27 March 2008.

J.Bauer. dentification and modeling of context for different information in air traffic.

Master’s thesis, Université d’eléctronique et d’informatique de Berlin, Mars 2003.

Q. Sheng and Benatallah. ContextUML : A UML-Based Modeling Language for Model-
Driven Development of Context-Aware Web Services. IEEE Computer Society, Sydney,
Australia, July 11-13 2005.

Bibliographie

[35]

[36]

[37]

[38]

[43]
[44]

[45]

[46]

[47]

[48]

K.Henricksen and J.Indulska. Developing context-aware pervasive computing applications :
Models and approach. Journal of Pervasive and Mobile Computing, volume 2(1) :37-64,
2006.

K.Henricksen, J.Indulska, and A.Rakotonirainy. Modeling context information in perva-
sivecomputing systems. In the First International Conference on Pervasive Computing,

pages 167-180, 2002.

K.Henricksen and T.McFadden. Modelling context information with orm. volume 3762 of

Lecture Notes in Computer Science :626—635, 2005.

K.Henricksen and J.Indulska. Modelling and using imperfect context information. In

PerCom Workshops, pages 33-37, 2004.

J.McCarthy. Notes on Formalizing Contexts. Proceedings of the Fifth National Conference
on Artificial Intelligence, Los Altos, California, morgan kaufmann edition, 1993. 555-560.

J.McCarthy and S.Buvac. Formalizing context (expanded notes). Technical report, Tech-
nical report, Stanford, CA, USA, 1994.

R.Guha. Contexts : a formalization and some applications. PhD thesis, PhD thesis,
Stanford, CA, USA, 1992.

M.Uschold and M.Griininger. Ontologies : principles, methods, and applications. Know-
ledge Engineering Review, 11(2) :93-155, 1996.

W3c. owl web ontology language use cases and requirements, 10 February 2004.

Jena2 Inference support. http ://jena.sourceforge.net/inference/index.html, 2006.

K.Henricksen, S.Livingstone, and J.Indulska. a Hybrid Approach to Context Modelling,
Reasoning and Interoperation. Proceedings of the First International Workshop on Advan-
ced Context Modelling, Reasoning And Management, in conjunction with UbiComp 2004,
Nottingham, England : University of Southhampton, 2004.

A.Agostini, C.Bettini, and D.Riboni. Hybrid reasoning in the care middleware for context-
awareness. International Journal of Web Engineering and Technology, To appear, Extended

and revised version of papers appeared in proc. of MobiQuitous 2005 and CoMoRea 2007.

R.Kowalski and Sergot. Alogic based calculus of events. New Generation Computing, vol

4 :67-95, 1986.

M.Shanahan and R.Miller. Some alternative formulations of the event calculus. in Com-

putational Logic : Logic Programming and Beyond, pages 95-111, 2002.

Bibliographie

[49]

[50]
[51]

[53]

[54]

[55]

[59]

[60]

[61]

[62]
[63]

[64]
[65]

D.Nute. Defeasible logic. INAP’01 Proceedings of the Applications of prolog 14th inter-

national conference on Web knowledge management and decision support.
J.Pollock. Defeasible reasoning. Cognitive Science journal, volume 11, 1987.

G.Hendrix. Modeling simultaneous actions and continuous processes. Artificial Intelligence,

vol. 4 :145-180, 1973.

R.Miller and M.Shanahan. Narratives in the situation calculus. Journal of Logic and
Computation, vol. 4(no. 5) :513-530, 1994.

M.Shanahan. A circumscriptive calculus of events. Artificial Intelligence, vol.77(no.
2) :249-284, 1995.

R.Miller and M.Shanahan. The event calculus in classical logic - alternative axiomatiza-
tions. FElectronic Transactions in Artificial Intelligence, vol. 4 :77-105, 1999.

V.Lifschitz. Formal theories of action (preliminary report). in Proc. of IJCAI vol. 87 :966—
972, 1987.

M.Shanahan. Solving the frame problem : a mathematical investigation of the common

sense law of inertia. MIT press, 1997.

J.McCarthy. Mathematical logic in artificial intelligence. Daedalus, vol. 117(no. 1) :297—
311, Winter 1988.

R.Kowalski. Database updates in the event calculus. Technical report, Technical Report

DOC 86/12, London : Imperial College of Science, Technology, and Medicine, 1986.

F.Sadri. Three recent approaches to temporal reasoning. Temporal Logics and their Appli-

cations, Academic Press, London, 1987.

K.Eshghi. Abductive planning with event calculus, volume vol. 1. Logic Programming :
Proceedings of the Fifth International Conference and Symposium, MIT Press, Cambridge,
MA, 1988.

M.Shanahan. Prediction is deduction but explanation is abduction. Proceedings of the

Eleventh International Joint Conference on Artificial Intelligence, San Mateo, CA, 1989.
M.Shanahan. Epresenting continuous change in the event calculus. Pitman, London, 1990.

E.Mueller. Event calculus reasoning through satisfiability. Journal of Logic and Compu-
tation, 14(5) :703-730, 2004.
E.Mueller. Commonsense reasoning. Morgan Kaufmann, San Francisco, 2006.

J.McCarthy and al. Some philosophical problems from the standpoint of artificial intelli-
gence. Stanford University, 1968.

Bibliographie

[66] M.Thielscher. Introduction to the fluent calculus. FElectronic Transactions in Artificial

Intelligence, pages 179-192, 1998.

[67] F.Baader and W.Nutt. Basic description logics. The Description Logic Handbook : Theory,
Implementation, and Applications, Cambridge University Press, 2003.
[68] D.Baader and al. The description logic handbook. Theory, Implementation, and Applica-

tions.

[69] M.Smith, C.Welty, and D.McGuinness. Owl web ontology language guide. w3c recommen-
dation, février 2004.

[70] I.Horrocks and al. A semantic web rule language combining owl and ruleml. W3C Member

Submission, 21 May 2004.

[71] B.Parsia and al. Cautiously approaching swrl. Url :http ://www.mindswap.org/papers/CautiousSWRL
2005.

[72] E.Sirin and al. "pellet : A practical owl-dl reasoner”. Web Semantics : science, services

and agents on the World Wide Web, 5(2) :51-53, 2007.

	01.pdf
	annexe.pdf
	Annexes.pdf
	02.pdf

