REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Université ABDERRAHMANE MIRA de Bejaia

Faculté de la technologie

Département d'Hydraulique

Mémoire de

MAGISTER EN HYDRAULIQUE

Option: Hydraulique générale

Présenté par :

KESSILI ABDELHAK

Thème

Etude expérimentale de la dispersion du polluant actif dans les écoulements à surface libre

Devant les jurys:

Président du jury : Dr MAZA. M Maitre de conférences à l'université de Bejaïa

Directrice du mémoire : Dr BENMAMAR. S Maitre de conférences à E.N.P d'Alger

Examinateur : Dr KADRI. M Maitre de conférences à l'université de Boumerdes

Examinateur : Dr MADANI. K Maitre de conférences à l'université de Bejaia

Année 2008/2009

Remerciements

Je tenais à remercier comme il se doit les personnes qui ont partagé avec moi l'aventure de ce travail.

Ma première pensée va tout naturellement à Mme S. BENMAMAR. Je tiens à la remercier pour son encadrement et son soutien. Je la remercie pour la confiance qu'elle m'a témoignée en me confiant ce travail et pour m'avoir donné les moyens d'arriver au bout de ce projet. J'ai apprécié sa grande chaleur humaine et sa disponibilité quotidienne.

Je remercie tout particulièrement Dr M. MAZA, Chef du département d'hydraulique et Maitre de conférences à l'université de Béjaïa de m'avoir fait l'honneur de présider le jury.

Je remercie vivement Dr M. KADRI Maitre de conférences à l'université de Boumerdes, d'avoir accepté juger ce document en tant que rapporteur.

Je tiens à adresser mes sincères remerciements à Dr K.MADANI Maitre de conférences à l'université de Béjaïa, d'avoir bien voulu porter un jugement pour cette thèse en tant que rapporteur.

Je remercie Monsieur S.BENZIADA enseignant à E.N.S.P d'avoir été disponible pour les difficultés rencontrées ainsi que son encouragement dans le travail et surtout les moments de besoins.

Un grand merci au technicien Said avec qui j'ai travaillé toujours avec joie et bonne humeur.

J'adresse ma profonde reconnaissance aux personnels de laboratoire (LRS), laboratoire de l'environnement et laboratoire de génie civil, de l'école (E.N.S.P) qui m'ont chaleureusement accueilli et d'avoir mis à notre disposition le matériel nécessaire, afin d'effectuer ce projet et de le faire dans de bonnes conditions.

Je tiens aussi à adresser mes chaleureux remerciements à mes amis : Chifi, Farid, karim, Idir, Sabri, Malek, Djimi, Nadir, Nacer, Amirouche, Mouloud, Nabil, Brahim pour leur précieux soutien.

Merci infiniment à ma famille (mon père, mes soeurs et mes frères), pour leurs soutiens et leurs encouragements et à ma seconde famille à Alger, la famille Kessili chez qui j'étais toujours le bienvenu.

Je remercie toutes personnes qui ont participé à l'élaboration de ce travail de près ou de loin.

DEDICACES

Je dédie ce travail à :

- . Mes très chers parents ma mère et mon père ;
- . Mes frères et sœurs, à toute ma famille ;
- .Tous mes amis et amies.

Liste des figures

Liste des figures

Figure I.1:	Tirant d'eau, largeur au miroir et section mouillée	5
Figure I.2 :	Schéma pour l'équation de continuité	6
Figure I.3:	Ligne d'eau du régime graduellement varié en canal uniforme	13
Figure II.1.1:	Série de données de Fischer	18
Figure II.1.2 :	Modèle de convection, diffusion et modèle de convection+diffusion comparés aux données de Fischer	19
Figure II.1.3:	Comparaison entre modèle des systèmes – convectifs - multiple aux données de Fischer	20
Figure II.1.4:	Comparaison entre modèle des systèmes – convectifs - multiple aux données de la rivière Clinche	20
Figure II.1.5:	Comparaison entre modèle des systèmes – convectifs – multiple aux données de la rivière Missouri	21
Figure II.1.6:	Comparaison entre modèle des systèmes – convectifs – multiple aux données de la rivière Missour	21
Figure II.3.1:	Distribution de concentration moyennée sur la verticale mesurée à deux stations d'échantillonnage en aval, pour une émission uniforme en surface Montfort	24
Figure II.3.2:	Distribution de la concentration moyennée sur la verticale mesurée à une section aval x=1000 m pour deux nombres de Reynolds différents : (a) R _e = 1000 et (b) R _e = 55000	24
Figure II.3.3:	Distribution de concentration moyennée sur la verticale à deux stations d'échantillonnage en aval pour une émission de pollution en surface à Montfort. Mesures nature, (b) Simulation numérique	25
Figure II.3.4:	Distribution de la concentration moyennée sur la verticale sur deux stations d'échantillonnage en aval pour une émission de polluant en surface à Leighton	26
Figure II.4.1:	Solutions analytiques exactes et approximatives	29
Figure II.5.1:	Profils de Concentration dans le fleuve de Waikato	30
Figure II.5.2:	Profils de Concentration dans le fleuve de Waikato dans une zone éloignée de la source	31
Figure II.6.1:	Rapport entre D_L et (a) H , (b) B , (c) U et (d) U *	33
Figure II.6.2 :	Rapport entre D_L et (a) B U et (b) HU	33
Figure II.6.3:	Rapport entre $D_{\rm L}$ et U/U_*	33
Figure II.6.4:	Variation de D _L avec HU (U/U*)	34
Figure II.6.5:	Comparaison entre deux coefficients longitudinaux de dispersion ($D_{\rm Lm}$)	35

	mesuré $(D_{\rm Lp})$ prévu, utilisant équations (II-6.11) et (II-6.12). (a) (II-6.11), (b) (II-6.12)	
Figure II.6.6	Erreur moyenne de pourcentage dans des concentrations de prévision en polluant pour différentes formulations de dispersion dans l'équation advection-dispersion	36
Figure II.7.1:	Comparaison du profile des concentrations moyennées sur la profondeur au données expérimentales de Fischer Re=46000	37
Figure II.8.1:	Comportement du champ de concentration pour différentes rugosités	38
Figure II.8.2 :	Comportement du champ de concentration pour différentes pentes du lit	39
Figure II.9.1:	Comparaison des profils de concentration calculée avec la solution analytique donnée par l'équation (II-9.6), l'équation (II-9.9) et les résultats numériques obtenus avec OTIS	41
Figure II.10.1:	Variation des concentrations mesurées (représentées par les pointes) et des concentrations simulées (représentées par les lignes) de SF6 dans le fleuve Hudson	42
Figure II.10.2:	Variation des concentrations mesurées (représentées par les pointes) et des concentrations simulées (représentées par les lignes) de SF6 en fonction du temps dans le fleuve Vent-Wind-Bighorn	43
Figure II.10.3:	Variation des concentrations mesurées (représentées par les pointes) et des concentrations simulées (représentées par les lignes) de rhodamine en fonction du temps dans le fleuve de Missouri	43
Figure II.10.4:	Variation des concentrations mesurées (représentées par les pointes) et des concentrations simulées (représentées par les lignes) de MITC en fonction du temps dans le fleuve de Sacramento	44
Figure III.1:	Déversoir à mince paroi	49
Figure III.2 :	Déversoir triangulaire	49
Figure III.3:	Echancrure du déversoir	50
Figure III.4:	Courbe d'étalonnage du déversoir	52
Figure III.5:	Courbe de remous pour $Q = 0.16 \text{ l/s}$	55
Figure III.6:	Courbe de remous pour $Q = 0.28 \text{ l/s}$	55
Figure III.7:	Courbe de remous pour $Q = 0.36 \text{ l/s}$	55
Figure III.8:	Courbe de remous pour $Q = 0$, $4l/s$	56
Figure III.9:	Courbe de remous pour $Q = 0.62 \text{ l/s}$	56
Figure III.10:	Courbe de remous pour $Q = 1,0 \text{ l/s}$	56
Figure III.11:	Courbe de remous pour Q = 1,27 l/s	56
Figure III.12:	Courbe d'étalonnage du phénol	60
Figure III.13:	Courbe granulométrique du sable utilisé	62
Figure IV.1:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.20 \text{ l/s}$ et $C_0 = 500 \text{mg/l}$ - Cas d'injection	65

	discontinue de la pollution	
Figure IV.2 :	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.35\ l/s$ et $C_0=500mg/l$ - Cas d'injection discontinue de la pollution	65
Figure IV.3:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0,42$ l/s et $C_0 = 500$ mg/l - Injection discontinue de la pollution	66
Figure IV.4:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.54$ l/s et $C_0 = 500$ mg/l- Injection discontinue de la pollution	66
Figure IV.5:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0,63$ l/s et $C_0 = 500$ mg/l- Injection discontinue de la pollution	66
Figure IV.6:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.20 \text{ l/s}$ et $C_0 = 500 \text{mg/l}$ - Injection discontinue de la pollution	67
Figure IV.7:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.20 \text{ l/s}$ et $C_0 = 600 \text{mg/l}$ - Injection discontinue de la pollution	67
Figure IV.8:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.35$ l/s et $C_0 = 600$ mg/l - Injection discontinue de la pollution	68
Figure IV.9:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.42$ l/s et $C_0 = 600$ mg/l - Injection discontinue de la pollution	68
Figure IV.10:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.54\ l/s$ et $C_0=600mg/l$ - Injection discontinue de la pollution	68
Figure IV.11:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.62$ l/s et $C_0=600$ mg/l - Injection discontinue de la pollution	69
Figure IV.12 :	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0,75\ l/s$ et $C_0=600mg/l$ - Injection discontinue de la pollution	69
Figure IV.13:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.20\ l/s$ et $C_0=700mg/l$ - Injection discontinue de la pollution	70
Figure IV.14:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.20 \text{ l/s}$ et $C_0 = 700 \text{mg/l}$ - Injection discontinue de la pollution	70
Figure IV.15:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0,42 \text{ l/s}$ et $C_0 = 700 \text{mg/l-}$ Injection discontinue de la pollution	70
Figure IV.16:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.54 \text{ l/s}$ et $C_0 = 700 \text{mg/l}$ - Injection discontinue de la pollution	71
Figure IV.17:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.62\ l/s$ et $C_0=700mg/l$ - Injection discontinue de la pollution	71

Figure IV.18:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.75 \text{ l/s}$ et $C_0 = 700 \text{mg/l}$	71
Figure IV.19:	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0.2$ l/s et $C_0=500$ mg/l - Injection	72
Figure IV.20 :	discontinue de la pollution Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q = 0.35 \text{ l/s}$ et $C_0 = 500 \text{mg/l}$ - Injection	73
Figure IV.21:	discontinue de la pollution Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q = 0.42 \text{ l/s}$ et $C_0 = 500 \text{mg/l}$ - Injection discontinue de la pollution	73
Figure IV.22 :	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q = 0.54 \text{ l/s}$ et $C_0 = 500 \text{mg/l}$ - Injection discontinue de la pollution	73
Figure IV.23:	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0.62\ l/s$ et $C_0=500 mg/l$ - Injection discontinue de la pollution	74
Figure IV.24 :	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0,75\ l/s$ et $C_0=500mg/l$ - Injection discontinue de la pollution	74
Figure IV.25 :	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0,2$ l/s et $C_0=600 mg/l$ - Injection discontinue de la pollution	75
Figure IV.26:	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0.35\ l/s$ et $C_0=600mg/l$ - Injection discontinue de la pollution	75
Figure IV.27:	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0.42\ l/s$ et $C_0=600mg/l$ - Injection discontinue de la pollution	75
Figure IV.28:	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0,54\ l/s$ et $C_0=600mg/l$ - Injection discontinue de la pollution	76
Figure IV.29:	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0.62\ l/s$ et $C_0=600mg/l$ - Injection discontinue de la pollution	76
Figure IV.30:	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0.75\ l/s$ et $C_0=600mg/l$ - Injection discontinue de la pollution	76
Figure IV.31:	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0,2$ l/s et $C_0=700$ mg/l - Injection discontinue de la pollution	77
Figure IV.32 :	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0.35\ l/s$ et $C_0=700mg/l-Cas$ d'injection discontinue de la pollution	77
Figure IV.33:	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0,42\ l/s$ et $C_0=700mg/l$ - Injection discontinue de la pollution	78
Figure IV.34:	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0,54\ l/s$ et $C_0=700mg/l$ - Injection discontinue de la pollution	78

Figure IV.35:	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q = 0.62$ l/s et $C_0 = 700$ mg/l - Injection discontinue de la pollution	78
Figure IV.36 :	Evolution de la concentration du phénol à 2 cm du fond du canal en fonction du temps à différentes sections pour $Q=0,75\ l/s$ et $C_0=700mg/l$ - Injection discontinue de la pollution	79
Figure IV.37:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.2\ l/s$ et $C_0=500 mg/l$ – Cas d'injection continue de la pollution	80
Figure IV.38:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.35\ l/s$ et $C_0=500 mg/l$ – Cas d'injection continue de la pollution	88
Figure IV.39:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.42$ l/s et $C_0 = 500$ mg/l $-$ Cas d'injection continue de la pollution	80
Figure IV.40:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.54l/s$ et $C_0=500mg/l$ – Cas d'injection continue de la pollution	81
Figure IV.41:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.62\ l/s$ et $C_0=500 mg/l$ – Cas d'injection continue de la pollution	81
Figure IV.42:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.751/s$ et $C_0=500 mg/l$ – Cas d'injection continue de la pollution	81
Figure IV.43:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.2\ l/s$ et $C_0=600 mg/l$ – Cas d'injection continue de la pollution	82
Figure IV.44:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.35l/s$ et $C_0=600mg/l-Cas$ d'injection continue de la pollution	82
Figure IV.45:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.42\ l/s$ et $C_0=600mg/l-Cas$ d'injection continue de la pollution	83
Figure IV.46:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.54\ l/s$ et $C_0=600mg/l$ - Cas d'injection continue de la pollution	83
Figure IV.47:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.62$ l/s et $C_0=600$ mg/l – Cas d'injection continue de la pollution	83
Figure IV.48:	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.75\ l/s$ et $C_0=600 mg/l-Cas$ d'injection continue de la pollution	84
Figure IV.49 :	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.2$ l/s et $C_0 = 700$ mg/l – Cas d'injection continue de la pollution	84
Figure IV.50 :	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.351/s$ et $C_0 = 700 \text{mg/l}$ - Cas d'injection continue de pollution	85
Figure IV.51 :	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.42 \text{ l/s}$ et $C_0 = 700 \text{mg/l}$ - Cas d'injection	85

	continue de la pollution	
Figure IV.52 :	Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q=0.54l/s$ et $C_0=700mg/l$ - Cas d'injection	85
Figure IV.53 :	continue de la pollution Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour $Q = 0.62 \text{ l/s}$ et $C_0 = 700 \text{mg/l}$ - Cas d'injection	86
Figure IV.54 :	continue de la pollution Evolution de la concentration du phénol à la surface libre en fonction du temps	86
	à différentes sections pour $Q=0.751/s$ et $C_0=700 \text{mg/l}$ - Cas d'injection continue de la pollution	
Figure IV.55:	Evolution de la concentration du phénol à 2cm du fond du canal en fonction du temps pour $Q = 0.2$ l/s et $C_0 = 500$ mg/l - Cas d'injection continue de la pollution	87
Figure IV.56:	Evolution de la concentration du phénol à 2cm du fond du canal en fonction du temps pour $Q=0.351/s$ et $C_0=500mg/l$ - Cas d'injection continue de la pollution	87
Figure IV.57:	Evolution de la concentration du phénol à 2cm du fond du canal en fonction du temps pour $Q=0,42l/s$ et $C_0=500mg/l$ - Cas d'injection de pollution continue	88
Figure IV.58:	Evolution de la concentration du phénol à 2cm du fond du canal en fonction du temps pour $Q = 0.54 l/s$ et $C_0 = 500 mg/l$ - Cas d'injection continue de la pollution	88
Figure IV.59:	Evolution de la concentration du phénol à 2cm du fond du canal en fonction du temps pour $Q = 0.62$ l/s et $C_0 = 500$ mg/l - Cas d'injection continue de la pollution	88
Figure IV.60 :	Evolution de la concentration du phénol à 2cm du fond en fonction du temps pour $Q = 0.751/s$ et $C_0 = 500$ mg/l - Cas d'injection continue de la pollution	89
Figure IV.61 :	Evolution de la concentration du phénol à 2cm du fond en fonction du temps pour $Q = 0.2$ l/s et $C_0 = 600$ mg/l - Cas d'injection continue de la pollution	89
Figure IV.62:	Evolution de la concentration du phénol à 2cm du fond en fonction du temps pour $Q = 0.351/s$ et $C_0 = 600 \text{mg/l}$ - Cas d'injection continue de la pollution	90
Figure IV.63:	Evolution de la concentration du phénol à 2cm du fond du canal en fonction du temps pour $Q = 0.42$ l/s et $C_0 = 600$ mg/l - Cas d'injection continue de la pollution	90
Figure IV.64 :	Evolution de la concentration du phénol à 2cm du fond en fonction du temps pour $Q = 0.54 l/s$ et $C_0 = 600 mg/l$ - Cas d'injection continue de la pollution	90
Figure IV.65:	Evolution de la concentration du phénol à 2cm du fond en fonction du temps pour $Q = 0.62$ l/s et $C_0 = 600$ mg/l - Cas d'injection continue de la pollution	91
Figure IV.66 :	Evolution de la concentration du phénol à 2cm du fond en fonction du temps pour $Q = 0.751/s$ et $C_0 = 600 \text{mg/l}$ - Cas d'injection continue de la pollution	91
Figure IV.67 :	Evolution de la concentration du phénol à 2cm du fond en fonction du temps pour $Q = 0.2 \text{ l/s}$ et $C_0 = 700 \text{ mg/l}$ - Cas d'injection continue de la pollution	92
Figure IV.68 :	Evolution de la concentration du phénol à 2cm du fond en fonction du temps pour $Q = 0.35 \text{ l/s}$ et $C_0 = 700 \text{ mg/l}$ - Cas d'injection continue de la pollution	92
Figure IV.69 :	Evolution de la concentration du phénol à 2cm du fond en fonction du temps pour $Q = 0.42 \text{ l/s}$ et $C_0 = 700 \text{ mg/l}$ - Cas d'injection continue de la pollution	92
Figure IV.70 :	Evolution de la concentration du phénol à 2cm du fond en fonction du temps pour $Q = 0.541/s$ et $C_0 = 700 \text{mg/l}$ - Cas d'injection continue de la pollution	93
Figure IV.71:	Evolution de la concentration du phénol à 2cm du fond en fonction du temps	93

	pour $Q = 0.62 l/s$ et $C_0 = 700 mg/l$ - Cas d'injection continue de la pollution	
E. 17.70	Evolution de la concentration du phénol à 2cm du fond en fonction du temps	02
Figure IV.72 :	pour Q = 0.751 /s et C ₀ = 700 mg/l - Cas d'injection continue de la pollution	93
E. 17/72		0.4
Figure IV.73:	Evolution de la concentration en fonction du temps à la surface libre $x = 1m$	94
	pour différents débits et $C_0 = 500 \text{mg/l}$ -	
Figure IV.74:	Evolution de la concentration en fonction du temps à la surface libre $x = 2m$	94
	pour différents débits et C ₀ = 500mg/l	
Figure IV.75:	Evolution de la concentration en fonction du temps à la surface libre x=3m	95
	pour différents débits et C ₀ = 500mg/l	
Figure IV.76:	Evolution de la concentration en fonction du temps à la surface libre $x = 4m$	95
1 18410 1 7 . 7 0 .	pour différents débits et $C_0 = 500 \text{mg/l}$	
Figure IV.77:	Evolution de la concentration en fonction du temps à la surface libre $x = 5m$	95
riguic i v.//.	pour différents débits et $C_0 = 500 \text{mg/l}$	
Figure IV.78:	Evolution de la concentration en fonction du temps à la surface libre $x = 6m$	96
riguic iv./o.	pour différents débits et $C_0 = 500 \text{mg/l}$	70
Figure IV 70 :	Evolution de la concentration en fonction du temps à la surface libre $x = 7m$	96
Figure IV.79 :	pour différents débits et $C_0 = 500 \text{mg/l}$	90
Eigura IV 90 :	Evolution de la concentration en fonction du temps à la surface libre $x = 8m$	96
Figure IV.80 :	pour différents débits et $C_0 = 500 \text{mg/l}$	90
F: IV/ 01 .	Evolution de la concentration en fonction du temps à la surface libre $x = 1m$	07
Figure IV.81 :	pour différents débits et $C_0 = 600 \text{mg/l}$	97
E. M. 03	Evolution de la concentration en fonction du temps à la surface libre $x = 2m$	0.5
Figure IV.82 :	pour différents débits et $C_0 = 600 \text{mg/l}$	97
E: MY 02	Evolution de la concentration en fonction du temps à la surface libre $x = 3m$	00
Figure IV.83:		98
77.04	pour différents débits et $C_0 = 600 \text{mg/l}$ Evolution de la concentration en fonction du temps à la surface libre $x = 4 \text{m}$	0.0
Figure IV.84 :	pour différents débits et $C_0 = 600 \text{mg/l}$	98
E: W. 0.5	Evolution de la concentration en fonction du temps à la surface libre $x = 5m$	00
Figure IV.85 :	pour différents débits et $C_0 = 600 \text{mg/l}$	98
E. MYOC	Evolution de la concentration en fonction du temps à la surface libre x=6m	00
Figure IV.86 :		99
	pour différents débits et $C_0 = 600 \text{mg/l}$	
Figure IV.87:	Evolution de la concentration en fonction du temps à la surface libre $x = 7m$	99
	pour différents débits et $C_0 = 600 \text{mg/l}$	
Figure IV.88 :	Evolution de la concentration en fonction du temps à la surface libre $x = 8m$	99
	pour différents débits et $C_0 = 600 \text{mg/l}$ Evolution de la concentration en fonction du temps à la surface libre $x = 1 \text{m}$	
Figure IV.89 :		100
	pour différents débits et $C_0 = 700 \text{mg/l}$	
Figure IV.90 :	Evolution de la concentration en fonction du temps à la surface libre $x = 2m$	100
	pour différents débits et $C_0 = 700 \text{mg/l}$	
Figure IV.91:	Evolution de la concentration en fonction du temps à la surface libre $x = 3m$	101
	pour différents débits et $C_0 = 700 \text{mg/l}$	
Figure IV.92 :	Evolution de la concentration en fonction du temps à la surface libre $x = 4m$	101
	pour différents débits et $C_0 = 700 \text{mg/l}$	
Figure IV.93:	Evolution de la concentration en fonction du temps à la surface libre $x = 5m$	101
	pour différents débits et $C_0 = 700 \text{mg/l}$	
Figure IV.94:	Evolution de la concentration en fonction du temps à la surface libre $x = 6m$	102
	pour différents débits et $C_0 = 700 \text{mg/l}$	
Figure IV.95:	Evolution de la concentration en fonction du temps à la surface $x = 7m$	102
	pour différents débits et $C_0 = 700 \text{mg/l}$	

Figure IV.96:	Evolution de la concentration en fonction du temps à la surface libre $x = 8m$	102
	pour différents débits et $C_0 = 700 \text{mg/l}$	
Figure IV.97:	Evolution de la concentration en fonction du temps à $x = 1m$ et $Q = 0.2 \text{ l/s}$	103
	pour différentes concentrations initiales	100
Figure IV.98 :	Evolution de la concentration en fonction du temps à $x = 2m$ et $Q = 0.2$ l/s	104
1 18410 1 7 .50 .	pour différentes concentrations initiales	101
Figure IV.99 :	Evolution de la concentration en fonction du temps à $x = 3m$ et $Q = 0.2$ l/s	104
rigare iv.	pour différentes concentrations initiales	104
Figure IV.100:	Evolution de la concentration en fonction du temps à $x = 4m$ et $Q = 0.2$ l/s	104
1 15010 1 7 .100 .	pour différentes concentrations initiale	104
Figure IV.101:	Evolution de la concentration en fonction du temps à $x = 5m$ et $Q = 0.2 \text{ l/s}$	105
1 15010 1 7 .101 .	pour différentes concentrations initiales	105
Figure IV.102:	Evolution de la concentration en fonction du temps à $x = 6m$ et $Q = 0.2$ l/s	105
11guic 1 v .102 .	pour différentes concentrations initiales	103
Figure IV.103:	Evolution de la concentration en fonction du temps à $x = 7m$ et $Q = 0.2 \text{ l/s}$	105
riguic IV.103.	pour différentes concentrations initiales	103
Eigung IV 104	Evolution de la concentration en fonction du temps à $x = 8m$ et $Q = 0.2$ l/s	100
Figure IV.104:	pour différentes concentrations initiale	106
	pour uniterentes concentrations initiate	

Liste des photographies

Liste des photographies

Photographie III.1: Installation expérimentale	45
Photographie III.2 : Réservoir d'alimentation	46
Photographie III.3: Bacs du polluant	46
Photographie III.4 : Canal rectangulaire	47
Photographie III.4 : Déversoir triangulaire	47
Photographie III.6 : Dispositif de mesure de la hauteur d'eau (Papier millimétré)	54
Photographie III.7: Spectrophotomètre.	59
Photographie III.8: Tamiseuse électrique.	6

Liste des tableaux

Liste des tableaux

Tableau III-1:	Variation du débit en fonction de l'épaisseur de la lame déversante	51
Tableau III-2:	Données pour le calcul du coefficient de corrélation	52
Tableau III-3:	Résultats expérimentaux des coefficients de débit	53
Tableau III-4:	Hauteur critique pour différents débits d'écoulement	54
Tableau III-5:	Calcul les hauteurs normales en fonction des différents débits	55
Tableau III-6:	Différents régimes d'écoulement selon Reynolds	57
Tableau III-7:	Différents régimes d'écoulement selon Froude	58
Tableau III-8:	Le volume de la solution mère pour avoir les solutions étalons	58
Tableau III-9:	Résultats d'étalonnage du phénol	60
Tableau III-10:	Dimension nominales des tamis	61
Tableau III-11:	Résultats de la granulométrie	62

Notation principales

Notation Principales

Symbole	Notation	Unités
A	Section de l'écoulement	$[m^2]$
В	Largeur du canal	[m]
b_d	Largeur du déversoir	[m]
C	Concentration du polluant	[mg/l]
C_0	Concentration initiale	[mg/l]
$\overline{\mathrm{C}}$	Concentration moyenne à travers la section	[mg/l]
C_{ch}	Coefficient de Chézy	[-]
$C_1(x, t)$	Solution de l'équation d'advection-dispersion	[-]
C_{u}	Coefficient de Hazen	[-]
C_S	Concentration moyenne dans la zone morte	[mg/l]
C_6H_6O	Formule brute du phénol	[-]
D_0	Densité optique	[-]
D_h	Diamètre hydraulique	[m]
$D_{Lm} \\$	Valeurs mesurées du coefficient longitudinal de dispersion	$[m^2/s]$
D_{Lp}	Valeurs prévues du coefficient longitudinal de dispersion	$[m^2/s]$
$\mathrm{D_{L}}$	Coefficient de dispersion longitudinale	$[m^2/s]$
E	Energie spécifique	[m]
erf	Fonction d'erreur	[-]
erfc	Fonction d'erreur complémentaire	[-]
Fr	Nombre de Froude	[-]
$ m f_{f}$	Facteur de forme	[-]
g	Accélération de la gravite	$[m/s^2]$
Н	Hauteur de l'écoulement	[m]
H_p	Hauteur de la pelle	[m]
H_{E}	Hauteur de l'échancrure	[m]
h	Hauteur d'eau	[m]
h_c	Hauteur d'eau critique	[m]
h_n	Hauteur normale	[m]

I	Pente du canal	[%]
I_{C}	Pente critique	[%]
J	Pente hydraulique	[%]
K	Débitance	$[m^3/s]$
K_0	Coefficient expliquant la diminution du corps dissous dans le fleuve	[-]
K_d	due à la végétation Facteur de dispersion	[-]
L	Distance à l'aval de la source de pollution	[m]
1	Longueur du canal	[m]
M_0	Masse du traceur injectée	[kg]
n	Coefficient de Manning	[-]
P_{m}	Périmètre mouillé	[m]
p	Pression	[Pa]
Q	Débit déversé	$[m^3/s]$
R_e	Nombre de Reynolds	[-]
R_h	Rayon hydraulique	[m]
R^2	Coefficient de corrélation	[-]
S	Section transversale du canal	$[m^2]$
S_{C}	Source de la pollution	[-]
S_{m}	Section mouillée	$[m^2]$
S_{ox}	Pente de lit du fleuve	[%]
t	Temps	[s]
U	Vitesse d'écoulement	[m/s]
U_*	Vitesse de frottement	[m/s]
V	Vitesse moyenne d'écoulement	[m/s]
$\overrightarrow{V}_{\sigma} = (u,v,w)$	Vecteur de champ de vitesse	[-]
v	Vitesse en un point de l'écoulement	[m/s]
X	Direction longitudinale	[-]
Y	Direction latérale	[-]
Z	Direction verticale	[-]
α	Coefficient d'échange de masse entre le canal principal et la zone de stockage	[-]

β	Rapport du volume de la zone de stockage par le volume de la rivière	[-]
$\delta(x)$	Fonction de Dirac	[-]
γ	Poids volumique	$[N/m^3]$
φ	Paramètre numérique pour le coefficient longitudinal de dispersion	[-]
κ	Constante de Von Karman	[-]
λ	Taux d'affaiblissement	$[s^{-1}]$
λ_{S}	Coefficients de l'affaiblissement dans les zones mortes	$[s^{-1}]$
μ	Coefficient de viscosité dynamique	[N.s/m]
μ_{d}	Coefficient du débit	[-]
v	Coefficient de viscosité cinématique	$[m^2/s]$
θ	Angle d'échancrure	[°]
ρ	Masse volumique	[Kg/m]
ρ_{s}	Densité du corps dissous	[-]
τ	Durée de la source continue	[s]

Résumé:

Ce mémoire est une contribution à la modélisation du comportement d'un polluant actif dans un écoulement à surface libre.

La dispersion d'un polluant dans un canal rectangulaire se fait en présence de deux phénomènes :

- La convection qui est due aux vitesses moyennes de l'écoulement; qui transporte en masse le nuage du polluant dans la direction de l'écoulement.
- La diffusion qui étire le nuage du polluant dans toutes les directions de l'espace et va dans le sens d'une uniformisation de la concentration.

Dans le cas d'injection continue, il existe deux périodes : La période de la croissance rapide de la concentration correspond à la période convective. La deuxième période corresponde à la diffusion du polluant.

Dans le cas d'un prélèvement au fond du canal, le polluant atteint le fond au cours de sa dispersion.

Cette étude fait apparaître deux grandes parties :

- Une étude bibliographique approfondie qui nous permet d'avoir une idée sur les différents travaux effectués et approches adoptées pour étudier le phénomène de dispersion.
- Une étude expérimentale où on a citant les différents équipements utilisés, et les moyens de mesure mis en œuvre.

Mots clés: la dispersion, transport du polluant actif, la diffusion, les écoulements à surface libre

Abstract:

This thesis is a contribution to the modelling of the behaviour of an active pollutant in free-surface flow. The dispersion of a pollutant in a rectangular channel is in the presence of two phenomena:

- The convection which is due to the mean velocities of flow which carries the mass of the pollutant cloud in the direction of flow.
- The diffusion which stretches the cloud of the pollutant in all the directions of space and goes in the direction of a uniform concentration.

In the case of continuous injection, there are two periods: The period of rapid growth of the concentration corresponds to the convective period. The second period corresponds to the diffusion of the pollutant.

In the case of a levy at the bottom of the channel the pollutant reaches the bottom during its dispersal.

- A bibliographical study that allowed as to have a idea of the different works undertaken to understand the dispersion phenomena.
- An experimental study where we quote the different equipment used, and ways to measure implemented.

Key words: dispersion of the pollutant, advection, diffusion, free surface flow.

Sommaire

Introduction générale	1
Chapitre I : Généralités sur les écoulements à surface libre 1. Définitions	2
1.1. Les canaux.	2
1.2. Les paramètres hydrauliques.	2
1.3. Les paramètres géométriques.	4
2. Classification des écoulements.	5
2.1. Type d'écoulement.	5
2.2. Régime d'écoulement.	6
3. Equation de continuité	6
4. Equation de l'énergie	7
5. Energie spécifique	8
6. Ecoulement critique	8
6.1 Hauteur critique	8
6.2 Pente critique.	9
6.3 Calcul de la hauteur normale.	9
7. Ecoulement graduellement varié	9
7.1 Calcul des courbes de remous.	9
7.2. Méthode Bakhmeteff	11
7.3. Courbe de remous typique	12
8. Phénomènes de transport dans les cours d'eau	14
8.1. Diffusion	15
8.2. Advection.	15
8.3. Dispersion.	15
9. Types de la Pollution dans les cours d'eau	15
9.1. Pollution par les micro-organismes.	15
9.2. Pollution urbaine	15

9.3. Pollution par les pesticides.	
9.4. Pollution par les nitrates et les phosphates	
9.5. Pollution par les métaux lourds	
9.6. Pollution par les produits toxiques.	
Chapitre II : Etat de connaissance sur l'étude de la dispersion d'un polluant da les cours d'eau	
1. Travaux de R. McQuievy et T. N. Keefer.	
2. Travaux de G. Sabol et C. F. Nordin. 2. Travaux de G. Sabol et C. F. Nordin.	
3. Travaux S. E. Heslop et C. M. Allen.	
4. Travaux de R. L. Runkel	
4.1. Source continue de durée infinie	
4.2. Source continue de durée τ	
4.3 Résultats et conclusion.	
5. Travaux d'Y R. Fares	
6. Travaux de S. M. Kashefipour et R. A. Falconer	
7. Travaux de M. Graba	
8. Travaux de P.Chagas. et R.Souza	
9. Travaux de F. De Smedt.	
10. Travaux de F. L. Hellweger	
Chapitre III: Etude expérimentale de la dispersion d'un polluant actif dans u canal rectangulaire	
Introduction	
1. Installation expérimentale	
1.1. Réservoir d'alimentation	
1.2. Bacs du polluant.	
1.3. Canal rectangulaire.	
2. Le déversoir triangulaire	

3. Polluant utilisé	48
3.1.Appellation.	48
3.2.Propriétés physico-chimiques.	48
3.3.Toxicité.	48
4. Moyens de mesures.	49
4.1.Mesure du débit	49
4.2.Mesure de la hauteur d'eau	53
5. Mesure de la concentration du polluant	58
5.1. Préparation des solutions étalons	58
5.2. Préparation des réactifs	58
5.3. Mesure de la densité optique	59
6. Analyse granulométrique	60
6.1 But de l'essai	60
6.2. Principe de l'essai.	60
6.3. Matériel nécessaire.	60
6.4. Description de l'essai.	61
Conclusion.	63
Chapitre IV : Analyse les résultats expérimentaux	
Introduction	64
1. Détermination l'influence de la distance sur l'évolution de la concentration	64
1.1. Cas d'une injection de pollution discontinue.	64
1.2. Cas d'une injection de pollution continue	79
2. Détermination l'influence du débit sur l'évolution de la concentration	94
3. Détermination l'influence de la concentration initiale sur l'évolution de la concentration en fonction du temps	103
Conclusion	100
Conclusion générale	108
Références bibliographiques	

Annexes

Introduction générale

Introduction générale

L'eau est un bien vital qui doit être géré et protégé au mieux de nos possibilités. Elle occupe une place importante sur l'échelle des valeurs de nos ressources naturelles, et elle constitue un des facteurs de développement de toute société.

Les pollutions qui affectent les cours d'eau ont des origines diverses. Elles peuvent provenir de déversements effectués par les industriels, les agriculteurs...etc., ou être provoquées par des actes accidentels (comme des fuites ou des ruptures de canalisation...).

Les conséquences de ces contaminations sur les écosystèmes sont parfois très graves. Par conséquent, nous voulons des outils qui soient capables de prévoir très précisément la progression de la pollution au cours du temps afin d'anticiper les mesures à appliquer et limiter la dégradation du milieu environnant.

Dès lors que le polluant est émis dans la nature et plus particulièrement dans un cours d'eau, il est soumis à de nombreux phénomènes physiques ou chimiques, qui conditionnent son évolution.

Dans cette optique plusieurs expériences et modèles ont été élaborés pour déterminer les différents mécanismes présents dans la dispersion du polluant dans un cours d'eau.

Dans le cadre de ce travail, des essais ont été effectués au sein du laboratoire d'hydraulique de l'Ecole Nationale Polytechnique. Dans le but d'étudier le phénomène de dispersion d'un polluant actif en l'occurrence le phénol dans un canal rectangulaire.

Ce mémoire est subdivisé en quatre parties :

- Dans le premier chapitre, nous donnons quelques rappels succincts sur les écoulements à surface libre et les différentes sources de pollution des milieux aquatiques, en citant les types de pollution qui peuvent dégrader les eaux de surfaces.
- ➤ Dans le deuxième chapitre est présenté un état d'art succinct sur la dispersion de la pollution dans les écoulements à surface libre.
- Dans le troisième chapitre est donnée la description de l'installation expérimentale, en citant les différents équipements utilisés, et les moyens de mesure mis en œuvre.
- ➤ Une analyse des résultats expérimentaux obtenus est présentée dans le quatrième chapitre.
- Et enfin nous terminons ce mémoire par une conclusion générale.

Chapitre 1

Généralités sur les écoulements à surface libre

Chapitre I

Généralités sur les écoulements à surface libre

Les écoulements à surface libre sont des écoulements qui s'écoulent sous l'effet de la gravité en étant en contact partiellement avec un contenant (canal, rivière, conduite) et avec l'air. Contrairement aux écoulements en charge, la section d'écoulement devient une caractéristique de l'écoulement et non plus seulement de la géométrie du contenant.

1. Définitions

1.1 Les canaux

Un canal est un système de transport dans lequel l'eau s'écoule et dont la surface libre est soumise à la pression atmosphérique (*Graf et Altimakar*, 1993).

On distingue deux catégories de canaux :

- Les canaux naturels: sont les cours d'eau qui existent naturellement sur terre, tels que les ruisselets, torrents, rivières, fleuves et estuaires.
- Les canaux artificiels: sont des cours d'eau réalisés par l'homme tel que : les canaux découverts construits au ras du sol (canaux de navigation, d'adduction et d'évacuation ...) ou les canaux couverts (tunnels hydrauliques, égouts..).

1.2 Les paramètres hydrauliques

1.2.1 Masse volumique

La masse volumique ρ , est la masse contenue dans l'unité de volume.

La masse volumique de l'eau à 20°c, est $\rho_w = 1000 \text{ Kg/m}^3$ (Ranald, 1987).

1.2.2 Poids volumique

Le poids volumique est la force d'attraction que la terre exerce sur l'unité de volume, c'est-àdire le poids de l'unité de volume.

Le poids volumique et la masse volumique sont liés par la relation fondamentale : $\gamma = \rho g$.

Dans les cours d'eau naturels, le poids volumique peut être plus élevé, en raison de l'existence de matériaux solides en suspension (*Carlier*, 1986).

1.2.3 Coefficient de viscosité dynamique

Le coefficient de viscosité dynamique, μ , est le paramètre qui traduit l'existence d'efforts tangentiels dans les liquides en mouvement.

Pour l'eau à 20°C, le coefficient de viscosité dynamique est $\mu = 10^{-3} \text{ N.s/m}^2$.

1.2.4 <u>Coefficient de viscosité cinématique</u>

Le coefficient de viscosité cinématique, v, est le rapport entre le coefficient de viscosité dynamique μ et la masse volumique ρ : $v = \frac{\mu}{\rho}$.

Pour l'eau à 20°C, le coefficient de viscosité cinématique est $v = 10^{-6}$ m²/s.

1.1.5 La pression hydrostatique en un point

Dans un liquide au repos, $z_P + \frac{p}{\gamma}$ est constant en tout point P de la masse liquide. z_P , désigne

la cote du point P. p, désigne la pression appliquée à une facette passant par ce point et ne dépend pas de l'orientation de cette facette. Elle s'exprime en Pascal (symbole Pa ou N/m^2). Dans ce qui suit, p désignera la pression relative (autrement dit, en surface d'un liquide la pression est nulle). A une profondeur h sous la surface libre $p = \gamma \times h$.

1.2.6 Débit

Le débit, Q est le volume d'eau qui traverse une section perpendiculaire à l'axe du canal par unité de temps.

1.2.7 <u>Débitance</u>

Elle représente la mesure de la capacité du transport d'eau dans une section transversale, elle est donnée par : $K = \frac{Q}{\sqrt{J}}$, où : J représente la pente hydraulique.

1.2.8 Vitesse en un point de l'écoulement

Par définition, la vitesse (v) en un point de l'écoulement est celle de la particule qui passe en ce point au moment considéré.

1.2.9 Vitesse moyenne

La vitesse moyenne est par définition : $V = \frac{Q}{S}$, c'est à dire $V = \frac{\iint v.ds}{S}$, ds désignant un élément de surface ($S = \iint ds$).

1.2.10 Ligne du courant

Une ligne de courant est une courbe tangente en chacun de ses points P au vecteur vitesse en ce point. En écoulement non permanent, la vitesse v au point P évolue dans le temps et les lignes de courant se déforment avec le temps.

En écoulement permanent, les lignes de courant ne se déforment pas et constituent des

trajectoires de particules d'eau. Le profil de la surface libre est une ligne de courant particulière.

1.2.12 Nombre de Froude

Le nombre de Froude est le rapport entre les forces d'inerties et les forces de pesanteurs. Il est

donné par : Fr =
$$\frac{V}{\sqrt{g \times h}}$$

On peut classer les écoulements selon la valeur du nombre de Froude comme suit:

- Fr > 1: **Ecoulement torrentiel**.
- Fr < 1: **Ecoulement fluvial**.
- Fr = 1: **Ecoulement critique**.

1.2.13 Nombre de Reynolds

Le nombre de Reynolds est le rapport entre les forces de frottement et les forces de pesanteur :

$$Re = \frac{VD_h}{v}$$
 avec, D_h : le diamètre hydraulique; $v = \frac{\mu}{\rho} = 10^{-6} \, \text{m}^2 \, / \, \text{s}$: la viscosité

cinématique de l'eau et μ : la viscosité dynamique de l'eau.

Les régimes d'écoulements sont classés suivant le nombre de Reynolds comme suit:

- Re < 2000 : *Ecoulement laminaire*.
- 2000 < Re < 4000 : *Ecoulement transitoire*.
- Re > 4000 : *Ecoulement turbulent*.

1.2 Les paramètres géométriques

La section transversale d'un canal est une section plane normale à la direction de l'écoulement (*Degoutte*, 2006).

Un canal dont la section ne varie pas et dont la pente longitudinale et la rugosité restent constantes, la hauteur d'eau peut cependant varier, est appelé canal prismatique ; sinon, on l'appelle canal non prismatique.

Les éléments géométriques d'une section, sont les suivants : Le tirant d'eau (y), la section mouillée (S_m) , la largeur au miroir (L) ou la largeur de la section mouillée et le périmètre mouillé (P_m) . Ils sont définis dans la figure (I.1).

Il faut noter que le périmètre mouillé représente la longueur de paroi au contact de l'eau (berge et fond), mais ne comporte pas le contact entre l'eau et l'atmosphère. Le tirant d'eau est mesuré perpendiculairement au fond du canal, il ne doit théoriquement pas être confondu avec la hauteur d'eau qui est une mesure verticale. Mais en rivières à faibles pentes, ces deux valeurs sont pratiquement égales.

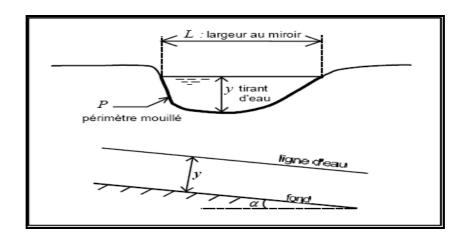


Figure I.1: Tirant d'eau, largeur au miroir et section mouillée

Par définition, le rayon hydraulique est le rapport entre la section mouillée et le périmètre mouillé $R_h = \frac{S}{P}$. Si le canal est rectangulaire, alors $R_h = \frac{B \times h}{B + 2h}$, et si le canal est infiniment large $R_h = h$.

La pente du canal, notée I est la pente de son fond, mesurée tout le long de son axe, et comptée positivement si le canal est descendant.

Si z_f désigne la cote du fond mesurée positivement vers le haut, alors : $I = -\frac{dz_f}{dx} = \sin \alpha$.

Tous les paramètres B, h, S, P et R_h dépendent du débit et ne sont donc pas des constantes géométriques.

2. Classification des écoulements

2.1 Type d'écoulement

Une classification des écoulements peut se faire selon la variation de la profondeur, h, par rapport au temps et à l'espace (*Graf et Altimakar*, 1993): h = f(t, x).

2.1.1 Variabilité dans le temps

- Le mouvement est permanent si les vitesses moyennes V, ainsi que la profondeur h restent invariables dans le temps en grandeur et en direction. Par conséquent, le débit est constant.
- Le mouvement est non permanent si la profondeur, h ainsi que les autres paramètres varient avec le temps. Par conséquent, le débit n'est pas constant

2.1.2 Variabilité dans l'espace

• Le mouvement est uniforme si la profondeur h, ainsi que les autres paramètres, restent invariables dans les diverses sections du canal. La ligne de la pente de fond est donc parallèle à la ligne de la surface libre.

• Le mouvement est non uniforme ou varié si la profondeur, h ainsi que les autres paramètres, changent d'une section à l'autre. La pente de fond diffère alors de celle de la surface libre.

Un mouvement varié peut être accéléré, dV/dx > 0, ou décéléré, dV/dx < 0, suivant que la vitesse croit ou décroit dans le sens du mouvement.

2.2 Régime d'écoulement

L'écoulement d'un fluide réel dans un canal à surface libre engendre les forces suivantes :

- Forces d'inertie,
- Forces de gravité,
- Forces de frottement (viscosité et rugosité).

Les effets du nombre de Reynolds Re, et du nombre de Froude Fr, donnent quatre régimes d'écoulement :

• Fluvial – lamin	naire :	Fr < 1	et	Re < 2000.
• Fluvial - turbu	lent :	Fr < 1	et	Re > 4000.
• Torrentiel – la	minaire :	Fr > 1	et	Re < 2000.
• Torrentiel – tu	rbulent ·	Fr > 1	et	Re > 4000

3. Equation de continuité

L'équation de continuité, qui est une des équations fondamentales de la mécanique des fluides, exprime le principe de conservation de la masse (*Graf et Altimakar*, 1993).

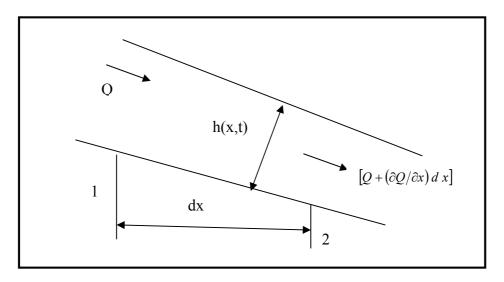


Figure 1.2 : Schéma pour l'équation de continuité

Avec, Q: débit entrant.

Le volume entrant par la première section dans le temps, dt, est Qdt.

Le volume sortant par la deuxième section, distance de dx de la première, est

$$[Q + (\partial Q/\partial x) dx]dt$$

La variation de volume entre ces deux sections pendant le temps dt est donc :

$$-\left(\frac{\partial Q}{\partial x}\right) dx dt$$

Cette variation de volume est le résultat d'une modification de la surface libre, $\frac{\partial h}{\partial t}$, entre les

deux sections pendant le temps dt, ce qui correspond à : $(B dx)\frac{\partial h}{\partial t} dt$

où, B(h) est la largeur à la surface libre et h(x,t) la profondeur d'eau.

Supposant le fluide incompressible, on a :

$$\frac{\partial Q}{\partial x} + \frac{\partial S}{\partial t} = 0 \tag{I-1}$$

Avec la profondeur hydraulique, $D_h = 4R_h$, on peut aussi écrire :

$$D_h \frac{\partial V}{\partial x} + V \frac{\partial D_h}{\partial x} + \frac{\partial h}{\partial t} = 0 \tag{I-2}$$

L'équation ci-dessus représente l'équation de continuité pour les canaux prismatique.

4. Equation de l'énergie

L'équation de l'énergie est une expression du premier principe de la thermodynamique (*Graf et Altimakar*, 1993).

L'énergie pour un élément d'un fluide incompressible est donnée par la formule suivante :

$$\frac{V^2}{2g} + \frac{p}{\gamma} + Z_P = \frac{P_t}{\gamma} = \text{cte}$$
 (I-3)

Avec, $\gamma = \rho g$: le poids volumique.

Les différents termes représentent :

 $V^2/2g$: la hauteur due à la vitesse, p/γ : la hauteur due à la pression, Z_p : la cote, $P_t/\gamma = H$ l'énergie mécanique ou la charge totale.

$$\frac{p}{\gamma} + Z_P = \frac{P^*}{\gamma}$$
 La hauteur piézométrique.

5. Energie spécifique

L'énergie spécifique (charge spécifique) dans une section transversale mouillée est la valeur moyenne de l'énergie des molécules du liquide de cette section par unité de poids du liquide

Par définition, l'énergie spécifique dans la section (S) sera :

$$E = h \cos i + \alpha \frac{V^2}{2g}$$
 (I-4)

Très souvent, la pente est très faible, on supposera cos i = 1; de plus on fera l'approximation $\alpha = 1$, on aura

$$E = h + \frac{V^2}{2g} \tag{I-5}$$

En introduisant le débit Q, on a :

$$E = h + \frac{Q^2}{2gS^2} \tag{I.6}$$

6. Ecoulement critique

L'écoulement critique apparaît lorsque l'énergie spécifique de l'écoulement est minimale (*Graf et Altimakar*, 1993 ; *Hibbs et col.* 1999). L'énergie spécifique E est définie comme la somme de la hauteur d'écoulement et de la hauteur de l'énergie cinétique, soit :

$$E = h + \frac{V^2}{2g} = h + \frac{Q^2}{2gS^2}$$
 (I-7)

On constate que l'énergie spécifique est minimale lorsque la hauteur d'écoulement est égale à la hauteur critique. Cette valeur peut être obtenue par annulation de la dérivée de l'énergie spécifique par rapport à h.

$$\frac{\mathrm{dE}}{\mathrm{dh}} = 1 - \frac{\mathrm{Q}^2}{\mathrm{gS}^3} \frac{\mathrm{dS}}{\mathrm{dh}} = 0 \tag{I-8}$$

Sachant que : dS = B(h)dh, l'équation (I-8) devient :

$$\frac{Q^2}{g} = \frac{S^3}{B} \text{ ou encore } \frac{V^2}{2g} = \frac{S}{2B}$$
 (I-9)

6.1 Hauteur critique

Pour un débit, il existe indépendamment de la pente du canal une hauteur critique h_c que l'on peut calculer à partir de l'équation (I-9). La difficulté de calcul dépend de l'expression de S.

Pour un canal à section rectangulaire, on a : $S = Bh_c$

d'où :
$$\frac{Q^2}{g} = \frac{B^3 h_c^3}{B}$$
, donc :

$$h_{c} = \left(\frac{Q^2}{gB^2}\right)^{1/3} \tag{I-10}$$

6.2 Pente critique

Une fois la profondeur critique déterminée, on peut aussi calculer la pente d'écoulement pour laquelle un débit donné coulera à la hauteur critique.

Avec h_c, on calcule S_c et R_c et l'on tire de l'équation de Manning la pente correspondante :

$$I_{c} = \frac{n^{2}Q^{2}}{\alpha^{2}S^{2}R_{h}^{4/3}}$$
 (I-11)

6.3 Calcul de la hauteur normale

On appelle hauteur normale h_n pour un débit Q et une pente I, la profondeur du courant dans la partie uniforme du mouvement. La surface libre, parallèle au fond, est distante de celui ci de h_n . Elle se calcule en associant les deux formules suivantes :

- Formule de l'écoulement en régime uniforme (Chézy) : $V = C_{ch} \sqrt{R_h I}$ (I-12)
- Formule du débit : Q = V. S_m

Soit
$$Q = S_m C_{ch} \sqrt{R_h I} = f(h_n)$$
 (I-13)

avec, C : le coefficient de Chézy donné par :
$$C_{ch} = \frac{1}{n} R_h^{1/6}$$
 (I-14)

où, n : désigne le coefficient de Manning en s/m^{1/3}.

7. Ecoulement graduellement varié

Le problème qui se pose dans l'étude d'un écoulement graduellement varié est de déterminer la position, x, et la forme, h(x), de la surface libre pour un débit Q, et une forme géométrique de section S, donnés.

7.1 Calcul des courbes de remous

7.1.1 Equation de la surface libre

L'équation différentielle du mouvement graduellement varié est (*Carlier*, 1986) :

$$\frac{dh}{dx} = I. \frac{1 - Q^2/C^2 R_h IS^2}{1 - \frac{Q^2 B}{gS^3}}$$
 (I-15)

avec, C_{ch} coefficient de Chezy; R_h: rayon hydraulique et B: largeur superficielle du canal.

Cette équation, valable pour un canal prismatique permet de tracer les formes de la surface libre.

Elle peut aussi être écrite en utilisant la notion de débitance (Carlier, 1986):

$$K(h) = \frac{1}{n} R_h^{2/3} S = C_{ch} R_h^{1/2} S$$
 (I-16)

Pour l'écoulement uniforme, cette relation prend la valeur suivante :

$$K_{n}(h) = \frac{Q}{\sqrt{I}}$$
 (I-17)

L'expression dans le dénominateur de l'équation (I-15) peut alors être exprimée comme suit :

$$\frac{Q^2 B}{g S^3} = \frac{Q^2}{C_{ch}^2 S^2 R_h I} \frac{C_{ch}^2 S^2 R_h I}{g S^3 / B} = \frac{\left(Q / \sqrt{I}\right)^2}{\left(C_{ch} S R_h^{1/2}\right)^2} \frac{I}{g S / C_{ch}^2 B R_h} = \frac{K_n^2}{K^2} \frac{I}{I_c}$$
(I-18)

où, I_c est la pente critique donnée par : $I_c = \frac{gS}{C^2 BR_h}$.

En utilisant les trois relations précédentes (I-16, I-17, et I-18), on écrit l'équation (I-15) sous la forme présentée par Bakhmeteff (1932) :

$$\frac{dh}{dx} = I. \frac{1 - \left(\frac{K_n}{K}\right)^2}{1 - \left(\frac{K_n}{K}\right)^2 \frac{I}{I_c}}$$
 (I-19)

7.1.2 Calcul de la surface libre

L'intégration de l'équation de la surface d'eau, équation (I-19), est nécessaire pour procéder aux calculs et à la construction exacte des formes de la surface libre (*Carlier*, 1986).

On connaît le débit Q, la pente du fond I, et le coefficient de frottement, n ou C. Les variables sont l'abscisse, x, et la profondeur d'eau h correspondante.

Il existe différentes méthodes avec lesquelles on peut rendre intégrable l'équation différentielle (I-19). On peut distinguer trois méthodes :

Méthodes par approximations successives ;

- > Méthodes par intégration directe ;
- Méthodes par intégration graphique.

Le membre à droite de l'équation (I-19) est une fonction de la profondeur h, de sorte qu'une relation de dx = f(h)dh est une équation différentielle à variables séparées.

Par intégration entre deux sections, x_i et $x_{i=1}$, on obtient :

$$x_i - x_{i+1} = \int_{h_{i+1}}^{h_i} f(h) dh$$
 (I-20)

Il s'avère difficile de résoudre analytiquement cette intégrale. L'intégration est possible par exemple pour le cas d'un canal rectangulaire de largeur importante ou dans le cas d'un canal parabolique : c'est la méthode de Bresse ou de Tolkmitt respectivement. Pour quelques autres sections du canal, des méthodes ont été développées par Bakhmeteff et par Chow.

7.2 Méthode Bakhmeteff

La méthode de Bakhmeteff est une des méthodes les plus utilisées pour les canaux à section transversale quelconque.

Equation de calcul du profil en long de la surface libre dans un canal avec une pente I > 0

En régime uniforme, la profondeur d'eau n'est autre que la profondeur normale que nous notons h_0 = h_n . Affectons l'indice ($_0$) les valeurs des fonctions C, S, R_h et K pour $h = h_0$, nous obtenons :

$$Q = C_0.S_0.\sqrt{R_{h_0}.I} = K_0\sqrt{I}$$
 (I-20)

$$Q = K.\sqrt{J}$$
 (I-21)

alors,

$$\frac{J}{I} = \left(\frac{K_0}{K}\right)^2 \tag{I-22}$$

par la suite l'équation (I-19) s'écrit :

$$\frac{dh}{ds} = I. \frac{1 - \frac{K_0^2}{K^2}}{1 - I. \frac{K_0^2 \cdot B}{g \cdot S^3}}$$
 (I-23)

Appelons I_C, la pente critique correspondant à la profondeur h_C. Nous avons :

$$C_{ch}^2 S^2 R_h I_C = \frac{g.S^3}{B}$$
 (I-24)

D'où :
$$\frac{g.S^3}{B} = K^2.I_C$$

L'équation (I-23) devient :

$$\frac{dh}{ds} = I. \frac{1 - \left(\frac{K_0}{K}\right)^2}{1 - \frac{I}{I_c} \left(\frac{K_0}{K}\right)^2}$$
 (I-25)

Bakhmeteff a posé $K = A.h^{n/2}$

avec, A : coefficient constant et n : exposant qui dépend de la forme du profil en travers du canal.

En posant aussi : $\beta = \frac{I}{I_C}$; $\eta = \frac{h}{h_0}$ et $d\eta = \frac{dh}{h_0}$, l'équation (I-23) devient :

$$\frac{d\eta}{ds} = \frac{I}{h_0} \frac{\eta^n - 1}{\eta^n - \beta} \qquad (I-26) \implies d\eta = \frac{\eta^n - 1}{\eta^n - \beta} \cdot \frac{I}{h_0} ds \qquad (I-27)$$

Pour intégrer cette équation, supposons que $\beta(h)$ varie très peu avec h. Choisissons deux (02) sections d'abscisses s_1 et s_2 suffisamment voisines et intégrons :

$$s_{2} - s_{1} = \frac{h_{0}}{I} \left[\eta_{2} - \eta_{1} + (1 - \beta) \int_{\eta_{1}}^{\eta_{2}} \frac{d\eta}{\eta^{n} - 1} \right]$$
 (I-28)

Pour calculer les valeurs numériques de l'expression $\int_{\eta_1}^{\eta_2} \frac{d\eta}{\eta^n - 1}$, Bakhmeteff a posé

 $\int_0^{\eta} \frac{d\eta}{\eta^n - 1} = - \Phi(\eta) \text{ et ainsi l'équation (I-28) devient alors :}$

$$s_2 - s_1 = \frac{h_0}{I} [(\eta_2 - \eta_1) + (1 - \beta) [\Phi(\eta_2) - \Phi(\eta_1)]]$$
 (I-29)

Les valeurs de $\Phi(\eta)$ sont données dans le tableau I.1 (Annexe I).

7.3 Courbe de remous typique

Les écoulements graduellement variés sont groupés en différentes classes (*Lencastre*, 1999).

En cas de canal descendant I > 0, l'allure des courbes dépend essentiellement :

- De la valeur de la pente I du lit et de la pente critique I_c.
- De la position de la ligne d'eau par rapport aux niveaux N_n et N_c .

Les classes des courbes sont caractérisées par une lettre majuscule M, S et C dépendant de la pente :

M pour $I < I_C$ (le cours d'eau est un fleuve)

S pour $I > I_C$ (le cours d'eau est un torrent) C pour $I = I_C$ (le cours d'eau possède la pente critique)

Pour un canal horizontal (I = 0): classe H

Pour un canal ascendant (I < 0): classe A

Les classes sont présentées par un chiffre, allant de 1 à 3.

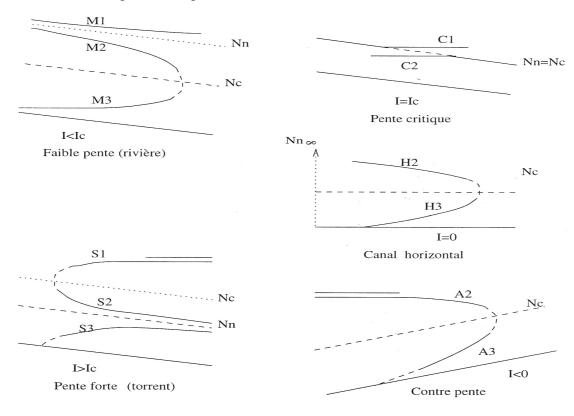


Figure 1.3 : Ligne d'eau du régime graduellement varié en canal uniforme.

> Courbe M1

La hauteur d'écoulement h connue est plus grande que la hauteur normale h_n . En amont, elle tend vers la pente de la profondeur normale. En aval, elle tend vers l'horizontale. Le calcul progresse de l'aval vers l'amont. Elle représente l'entrée d'un écoulement permanent uniforme dans un réservoir.

Courbe M2

La hauteur d'écoulement h connue est comprise entre la hauteur critique h_c et la hauteur normale h_n . En amont, elle tend vers la pente de la profondeur normale. En aval, elle chute brusquement vers la hauteur critique. Le calcul progresse de l'aval vers l'amont. Elle représente le passage d'un écoulement permanent uniforme vers une section critique comme une chute ou encore une augmentation forte de la pente d'écoulement.

Courbe M3

La hauteur d'écoulement h connue est inférieure à la hauteur critique h_c. En amont, sa pente commence à remonter rapidement. En aval, elle remonte brusquement vers la hauteur critique. Le calcul progresse de l'amont vers l'aval. Elle représente le passage d'un écoulement permanent uniforme torrentiel vers un ressaut hydraulique comme au pied d'un déversoir ou d'un orifice.

> Courbe S1

La hauteur d'écoulement h connue est plus grande que la hauteur normale h_n.

En amont, elle coupe perpendiculairement la ligne de hauteur critique (ressaut). En aval, elle tend vers 'horizontale. Le calcul progresse de l'aval vers l'amont. Elle représente l'entrée d'un écoulement après ressaut dans un réservoir.

Courbe S2

La hauteur d'écoulement h connue est comprise entre la hauteur critique h_c et la hauteur normale h_n . En amont, elle naît brusquement de la hauteur critique x. En aval, elle tend vers la hauteur normale. Le calcul progresse de l'amont vers l'aval. Elle représente le passage rapide d'un écoulement permanent uniforme torrentiel lors d'une augmentation de pente.

> Courbe S3

La hauteur d'écoulement h connue est inférieure à la hauteur normale h_n. En amont, sa pente commence à remonter rapidement. En aval, elle remonte brusquement vers la hauteur critique. Le calcul progresse de l'amont vers l'aval. Elle représente le passage d'un écoulement du pied d'un déversoir ou d'un orifice vers un canal rapide.

> Courbe C1

La courbe C1 représente le passage entre M1 concave et S1 convexe, elle est donc droite et horizontale

> Courbe C2

La courbe C2 n'existe pas car les hauteurs normales et critiques sont confondues.

> Courbes C3

La courbe C3 représente le passage entre M3 convexe et S3 concave, elle est donc droite et horizontale.

8. Phénomènes de transport dans les cours d'eau

Le transport de matière dans les cours d'eau (fleuve, rivière, canaux...) est généré par différents phénomènes tel que : la diffusion, l'advection, la dispersion (*shen et al., 1995*; *Hibbs et al., 1999*). Ces phénomènes dépendent à la fois de la nature de la matière rejetée et des caractéristiques hydrodynamiques intrinsèques au cours d'eau.

8.1 Diffusion

La diffusion est une vibration intermoléculaire caractéristique de chaque produit soluble. Elle permet le mouvement des molécules d'un milieu ou le potentiel chimique est élevé vers un milieu ou le potentiel est inférieur. Le coefficient de diffusion d'une molécule est généralement de l'ordre de 10⁻⁹ m²/s (*Rutherford*, 1994).

Dans le cas ou la vitesse de l'eau est nulle, la diffusion moléculaire devient le phénomène prédominant (*Runckel et Bencala*, 1995).

Une fois que le régime d'écoulement du cours d'eau devient turbulent, l'effet combinatoire de la diffusion moléculaire et la fluctuation turbulente des vitesses du courant, donne naissance à la diffusion turbulente.

Le coefficient de diffusion turbulente est généralement de l'ordre de 10⁻³ m²/s (*Rutherford*, 1994).

8.2 Advection

C'est un pur phénomène de translation de la matière (soluble ou en suspension) d'un point à un autre dans les sens vertical, transversal, ou longitudinal. Cette translation, imposée par le flux du courant (gradient hydraulique), n'affecte en aucun cas les concentrations du produit rejeté (*Jabbour*, 2006).

8.3 Dispersion

Le phénomène de dispersion est crée par la non uniformité des champs de vitesses horizontaux et verticaux. Cette non uniformité est due essentiellement à la rugosité du lit du cours d'eau qui réduit les amplitudes des champs de vitesse à proximité du fond et des bords (*Jabbour*, 2006).

9. Types de la Pollution dans les cours d'eau

Nous allons citer quelques types de pollutions auxquelles peut être exposé un cours d'eau, ainsi que l'influence de ces pollutions sur l'environnement.

9.1 Pollution par les micro-organismes

La présence de micro-organismes (bactéries, virus) est associée à l'existence d'une pollution fécale. Toutefois, on ne sait pas facilement mesurer leur présence dans l'eau des rivières, c'est pourquoi on recherche la présence de bactéries plus courantes (coliformes, streptocoques, entérocoques) qui sont des indicateurs d'un risque de contamination.

9.2 Pollution urbaine

Induite par le lavage des rues, des trottoirs et des marchés, mais aussi par les eaux usées des commerces et artisanats qui peuvent rejeter certaines matières nocives et sont à l'origine des nuisances provoquées sur le milieu naturel telles que le rejet de pollution toxique, de pollution

organique....etc.

9.3 Pollution par les pesticides

Ces substances chimiques (on en dénombre aujourd'hui plus de 300 types) destinées à protéger les végétaux contre les insectes, les champignons ou les mauvaises herbes peuvent pénétrer dans le sol pour atteindre les eaux souterraines ou se déverser directement dans les cours d'eau

9.4 Pollution par les nitrates et les phosphates

Ils proviennent principalement d'apports agricoles et urbains. Ces composés sont généralement présents naturellement en faible quantité dans l'eau des rivières. Lorsque leur concentration devient trop importante, elle peut perturber l'équilibre des milieux aquatiques et provoquer dans certains cas leur eutrophisation.

9.5 Pollution par les métaux lourds

Les métaux lourds présentent un risque sur les milieux aquatiques à cause de leur toxicité tel que: L'Arsenic, Le mercure, Le plomb et le Cadmium.

9.6 Pollution par les produits toxiques

Nous citons l'effet de quelques produits toxiques sur les cours d'eau :

- ✓ Le tétrachloréthane : se dépose dans l'eau du fait de sa tension de vapeur élevée et de sa faible solubilité dans l'eau. Il est toxique pour les organismes aquatiques. Il parvient dans le milieu aquatique au travers des rejets d'effluents industriels.
- ✓ Les composés de vanadium sont plus lourds que l'eau et tendent donc à se déposer. Le pentoxyde de vanadium se dissout lentement dans un grand volume d'eau et forme des mélanges toxiques.
- ✓ Le phénol est plus lourd que l'eau et tend à se déposer. Il se dissout lentement et, même dilué, continue de former des solutions toxiques. En raison de sa forte toxicité dans l'eau.

Chapitre II

Etat de connaissance sur l'étude de la dispersion d'un polluant dans les cours d'eau

Chapitre II

Etat de connaissance sur l'étude de la dispersion d'un polluant dans les cours d'eau

Introduction

La pollution des cours d'eau constitue l'une des préoccupations actuelles majeures des gouvernements et des populations, les recherches scientifiques sur ce type de problème sont toujours en cours.

Les premières études de transport de la matière ont commencé des l'année 1855 quand le physiologiste Adolphe Fick publiait dans un papier intitulé « Uber diffusion le processus de diffusion moléculaire ». Ce travail s'inspirait de celui de fourrier qui avait étudié en 1822 l'écoulement de la chaleur.

Depuis cette période, plusieurs recherches ont été menées afin d'améliorer les modèles déjà mis en place ou bien d'en établir d'autres.

Dans ce chapitre, nous allons étudier un certains nombres de travaux effectués selon leur ordre chronologique.

1. Travaux de R. McQuievy et T. N. Keefer

La dispersion longitudinale, qui est la propagation de substances le long de l'écoulement turbulent, est due à deux types de transport qui sont :

- La convection par les vitesses moyennes sur le temps,
- > La diffusion par fluctuations turbulentes.

Elle a été décrite par Taylor à l'aide d'un modèle de diffusion Fickien unidimensionnel :

$$\frac{\partial \overline{C}}{\partial t} + V \frac{\partial \overline{C}}{\partial x} = D_L \frac{\partial^2 \overline{C}}{\partial x^2}$$
 (II-1.1)

avec, \overline{C} : Concentration moyenne à travers la section; V: Vitesse d'écoulement moyenne à travers la section ; t: le temps ; x: distance dans la direction de déroulement et D_L : coefficient de dispersion longitudinale.

Cette relation est une forme unidimensionnelle simplifiée de l'équation générale de diffusion Fickien pour des écoulements turbulents uniformes non permanents. Sa solution exacte est une distribution gaussienne de x pour une fonction Delta à t=0 quand V et D_L sont constants.

Cependant, il a été remarqué que la distribution de la concentration juste après l'émission du polluant est pointue; ce qui est une caractéristique du transport convectif pure. Elle devient gaussienne après une certaine période appelée période convective.

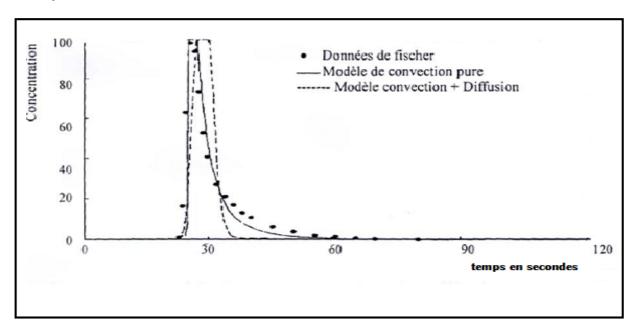
En terme de distance, Fischer a trouvé que le modèle Fickien unidimensionnel peut être

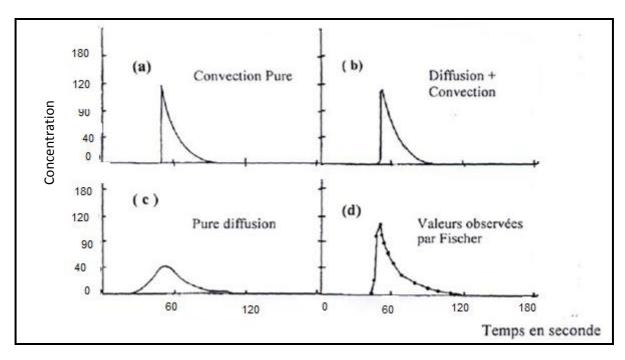
appliqué seulement après une longueur
$$L \ge \frac{1.8l^2}{R_h} \times \frac{\overline{V}}{V^*}$$

avec, L distance à l'aval de la source (m) ; l: longueur caractéristique du canal qui est égale à la moitié de la largeur du canal (m) et R_k : rayon hydraulique (m).

Cela suggéra à Mc Quievy et N Keefer (*Mcquievy*, *Keefer*, 1976) de décrire la dispersion par un modèle de convection pure pour de petites distances et périodes de temps. Ils ont alors développé une technique basée sur le concept de convection pure pour le calcul des distributions de concentration dans les écoulements avec des profils de vitesse logarithmiques.

La figure (II.1.1) montre les résultats d'application de cette technique comparés aux séries de données collectées par Fischer et à la solution analytique de l'équation de transport simplifiée de Taylor.




Figure II.1.1: Série de données de Fischer

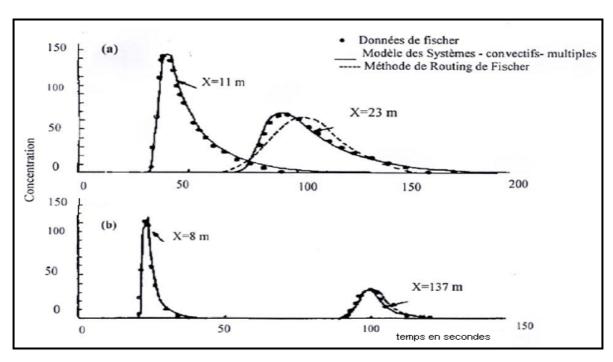
Les résultats indiquent que le modèle de convection pure est à priori une représentation acceptable du processus de dispersion.

Dans la figure (II.1.2) sont illustrées les trois situations possibles comparées aux données réelles de fischer.

La figure II.1.2 (a): convection pure, donc avec un coefficient de dispersion nul.

La figure II.1.2 (b): convection + diffusion.

Figure II.1.2: Modèle de convection, diffusion et modèle de convection+diffusion comparés aux données de Fischer


La comparaison des données de terrain collectées par Yostsukura dans la rivière du Missouri et les résultats d'application du modèle convectif pur à ce site, a montré qu'au-delà d'une

distance de longueur $L = 0.3 \frac{l^2}{R} \times \frac{V}{V^*}$ qui représente un sixième de la période convective, la

distribution de concentrations devient plus arrondie, donc sur une distance de cinq sixièmes de la période convective, le modèle de convection pure n'est plus applicable.

Pour décrire le transport sur toute la période convective, un modèle de systèmes convectifs multiples a été décrit et appliqué par R. McQuievy et T.N. Keefer.

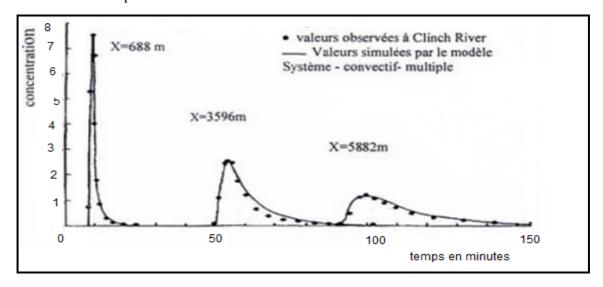

La procédure consiste à subdiviser la période convective en sous périodes de longueurs inférieures ou égales au sixième de la période convective et de calculer les concentrations par le modèle convectif pure pour chaque sous période en considérant les résultats finaux d'une période comme condition initiale de la période suivante. Les résultats d'application de cette méthode sont représentés dans la figure (II.1.3) en comparaison avec la série de données de Fischer.

Figure II.1.3 : Comparaison entre modèle des systèmes – convectifs - multiple aux données de Fischer

Le modèle des systèmes convectifs multiples a aussi été généralisé avec certaines modifications à des longueurs d'écoulement au-delà de la période convective.

Les figures (II-1.4), (II-1.5) et (II-1.6) illustrent une comparaison de ces résultats avec des données collectées par Yotsukura et Materns.

Figure II.1.4 : Comparaison entre modèle des systèmes – convectifs - multiple aux données de la rivière Clinche

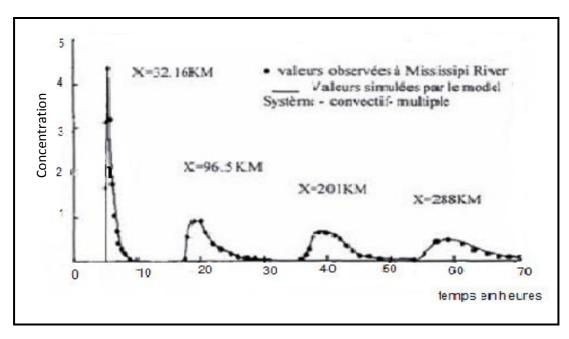


Figure II.1.5 : Comparaison entre modèle des systèmes – convectifs – multiple aux données de la rivière Missouri

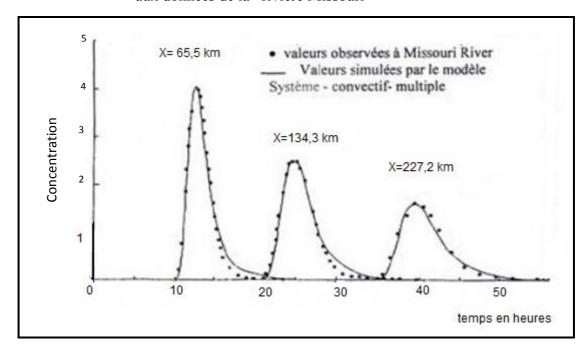


Figure II.1.6 : Comparaison entre modèle des systèmes – convectifs – multiple aux données de la rivière Missouri

2. Travaux de G. Sabol et C. F. Nordin

En 1978, G. Sabol et C. F. Nordin ont remarqué que la dispersion est généralement décrite comme un processus de gradient de transfert *(Sabo & Nordin, 1978)*. Comme conçu par Fick (1964) et avancé par Taylor (1921)) et plus spécialement la dispersion dans les rivières est considérée généralement comme un processus Fickien uni - dimensionnel avec un terme de diffusion convective suivant l'equation (II-2.1):

$$\frac{\partial \overline{C}}{\partial t} + V \frac{\partial \overline{C}}{\partial x} = D_L \frac{\partial^2 \overline{C}}{\partial x^2}$$
 (II-2.1)

Dont la solution pour une condition initiale de la fonction Delta de Dirac est une distribution Gaussienne de la concentration (C) en fonction de la position longitudinale x. Alors qu'ils ont montré à l'aide de données empiriques de 49 testes effectués dans les rivières et des canaux à ciel ouvert que la théorie Fickienne ne décrit pas assez adéquatement la dispersion longitudinale. Des résultats similaires obtenus par Day (1974) montrent un détachement consistant de la théorie Fickienne; en fait :

- La distribution de concentration en fonction de la position n'est pas Gaussienne et ne tend pas à le devenir avec la croissance du temps elle est plutôt « pointue » avec une queue de basse concentration à l'aval qui devient longue à l'amont.
- La dispersion mesurée par la variance de la distribution concentration-temps (d'après la théorie Fickienne) croit plus rapidement que linéairement avec le temps.
- Le pic de concentration s'atténue plus rapidement que la racine carrée du temps.

De plus les canaux de rivière sont assez irréguliers et caractérisés par des zones de piégeage (zone morte) où les particules sont arrêtées pendant des durées de temps considérables puis émises et ré entrainées dans l'écoulement. Cela a un effet signifiant sur la dispersion longitudinale et compte probablement dans les déviations observées de la forme Fickienne.

Plusieurs modèles ont été proposés pour décrire les effets de piégeage et réentraînement dans le processus de dispersion dans les rivières ; on citera l'étude de Hays (1966) qui introduit un terme additionnel à l'équation (II-2.1) pour tenir compte de l'emmagasinement et du réentraînement.

Kaijser (1971) se détacha radicalement de l'approche diffusion type gradient et développa un modèle statistique pour la dispersion longitudinale; Son équation est similaire à celle d'Einstein (1937).

Le modèle probabiliste développé par les auteurs décrit le mouvement d'une seule particule neutre vers l'aval dans une série de mouvements longitudinaux qui sont séparées par des périodes d'emmagasinement.

L'utilisation de ce modèle nécessite la connaissance des vitesses convectives ainsi que deux paramètres dépendant du temps qui peuvent être estimés par des techniques simples à partir de données de dispersion.

Le modèle a été testé en comparant la distribution qu'il génère à la distribution générée par le modèle Fickien ainsi qu'à la distribution observée dans des testes de dispersion dans 4 sites du Conocheague Creek en Maryland (USA).

Le modèle qui reproduit les données observées avec une précision supérieure à la théorie Fickienne, fournit un nouvel outil prédictif pour la dispersion dans les rivières et montre un besoin de réévaluer la fiabilité de la théorie Fickienne.

3. Travaux S. E. Heslop et C. M. Allen

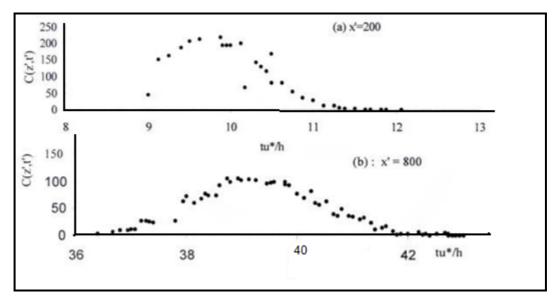
En 1993, S. E. Heslop et C. M. Allen ont élaboré un programme d'étude comprenant à la fois des travaux sur le terrain et des travaux de modélisation (*Heslop, Allen, 1993*). Les études pratiques consacrées à la structure turbulente de la rivière de Servern ont permis de définir les paramètres du modèle probabiliste bidimensionnel de déplacement d'une particule. Le modèle a été ensuite utilisé pour simuler la dispersion dans deux biefs de la rivière severn.

Contrairement au modèle traditionnel de la dispersion par advection et diffusion :

$$\frac{\partial C}{\partial t} + U\nabla C = D\nabla^2 C \tag{II-3.1}$$

où, C: concentration du polluant, U: la vitesse d'écoulement et D_L : coefficient de dispersion longitudinale, qui tient compte des valeurs moyennes de la concentration et de la vitesse d'écoulement, et dont la résolution analytique donne des distributions gaussiennes de la concentration moyenne est très important de connaître les valeurs extremums des concentrations de matières toxiques dans les cours d'eau. Le modèle de déplacement probabiliste basé sur une formulation Lagrangienne utilise les composantes de la vitesse turbulentes obtenues à partir de mesures faites dans la rivière de Severn.

La simulation de ce modèle est faite sur les deux biefs Monford et Leighton de la rivière Severn sous les configurations suivantes:


a- L'émission de la pollution se fait uniformément sur une ligne verticale avec un nombre de Reynolds de l'ordre de 1000. Cette configuration est utilisée initialement pour voir le comportement de la distribution de concentration à des distances x = 200 m et x = 800 m à l'aval de l'écoulement.

b- L'émission du polluant se fait uniformément sur une surface verticale pour un nombre de Reynolds R_e = 1000 ; Les mesures de concentration se font à une distance x = 2000 m.

c- L'émission est la même que dans (b) mais le nombre de Reynolds est de l'ordre de 1000. Cette configuration est utilisée pour simuler la dispersion dans les deux biefs de la Severn à des distances x' = 1420 m et x' = 2336 m pour le Monford, et à une distance x' = 1290 m et x' = 2070 m pour le leighton.

Les distributions de concentrations résultant de ces simulations sont comparées avec les distributions de concentrations mesurées à des stations d'échantillonnage se trouvant à la même distance. Les résultats de ces configurations sont représentés dans les figures (II.3.1) et (II.3.2).

Dans la figure (II.3.1) qui correspond à la configuration (a), on remarque que plus la distance augmente, la valeur du Pic diminue et le profil de concentration tend vers un profil Gaussien.

Figure II.3.1 : Distribution de concentration moyennée sur la verticale mesurée à deux stations d'échantillonnage en aval, pour une émission uniforme en surface Montfort

La figure (II.3.2) montre les deux profils de concentrations pour les deux nombres de Reynolds R_e =1000 et R_e =55000, où on constate que la croissance du nombre de Reynolds mène à des temps de traversée moins importants et à un profil de concentrations plus pointu.

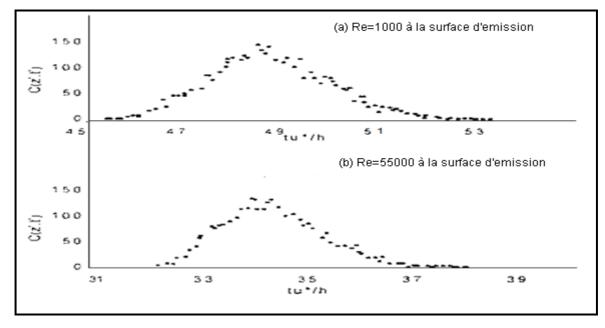
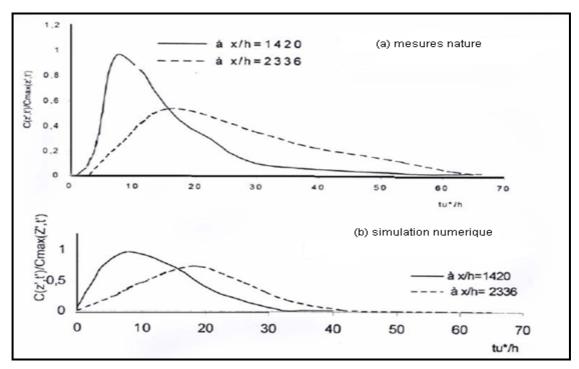
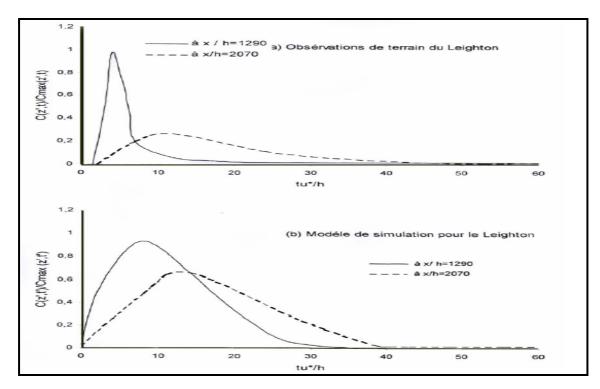



Figure II.3.2 : Distribution de la concentration moyennée sur la verticale mesurée à une section aval $\vec{x}=1000$ m pour deux nombres de Reynolds différents : (a) $R_e=1000$ et (b) $R_e=55000$.

Les résultats de la simulation pour les deux biefs de la Severn sont représentés dans les Figures (II.3.3) et (II.3.4) avec des valeurs mesurées correspondantes pour la comparaison.


Les résultats montrent un bon accord entre les distributions des valeurs mesurées et des valeurs simulées de la concentration pour le bief Monford (Figure II.3.3), bien que les pics de concentrations simulées sont moins applicables pour les distributions de concentrations mesurées et simulées pour le bief de Leighton (Figure II.3.4).

Cela peut s'expliquer par le fait que la rivière de Severn sur le bief de Leighton est caractérisée par des sinuosités accentuées donc par un écoulement tridimensionnel ; ainsi le modèle de simulation bidimensionnel utilisé ne produit pas les valeurs mesurées avec précision. On voit ainsi que les distribuions des concentrations mesurées sont caractérisées par des queues plus importantes que les distributions de concentration simulées. Cela est dû au fait que le modèle de prédiction utilisé ne prend pas en considération les effets des zones mortes qui ont un rôle important dans la production de ces queues.

Figure II.3.3: Distribution de concentration moyennée sur la verticale à deux stations d'échantillonnage en aval pour une émission de pollution en surface à Montfort.

(a) Mesures nature, (b) Simulation numérique.

Figure II.3.4: Distribution de la concentration moyennée sur la verticale sur deux stations d'échantillonnage en avale pour une émission de polluant en surface à Leighton.

4. Travaux de R. L. Runkel

Les travaux Runkel réalisés en 1996 à l'USGS portent sur la solution de l'équation advection – dispersion (*Runkel*, 1996).

Il a considéré un système dans lequel le transport physique est principalement unidimensionnel ; le processus du mélange suivant les directions verticale et horizontale a été négligé de sorte que les concentrations changent seulement dans la direction longitudinale. En outre, un champ d'écoulement régulier et uniforme est imposé et les effets de la dispersion sont constants dans l'espace. En tenant compte de ces hypothèses, la conservation de la masse donne l'équation d'advection - dispersion à paramètres constants.

$$\frac{\partial C}{\partial t} = -U \frac{\partial C}{\partial x} + D_L \frac{\partial^2 C}{\partial x^2} - \lambda C$$
 (II-4.1)

où, C: concentration [m.l⁻³]; t: temps [T]; U: vitesse d'écoulement [LT^{-1}]; x: distance [L]; D_L : coefficient de dispersion [L^2 T^{-1}]; λ : Taux d'affaiblissement [T^{-1}].

Plusieurs solutions analytiques ont été proposées pour deux scénarii différents.

4.1 Source continue de durée infinie

Deux solutions analytiques peuvent être trouvées dans la littérature pour le cas d'une source continue de durée infinie. Les conditions aux limites et les conditions initiales sont données comme suite :

$$C(x,0) = 0$$
 pour $x \ge 0$ (II-4.2)

$$C(0,t) = C_0 \qquad \text{pour } t \ge 0 \tag{II-4.3}$$

$$C(\infty, t) = 0$$
 pour $t \ge 0$ (II-4.4)

où, C_0 est la concentration initiale [ml⁻³].

Pour les corps dissous conservatifs ($\lambda = 0$), la solution analytique est donnée par (Ogata et Banks, 1961) :

$$C(x,t) = \frac{C_0}{2} \left[erfc \left(\frac{x - Ut}{2\sqrt{D_L t}} \right) + exp \left(\frac{U.x}{D_L} \right) erf \left(\frac{x + Ut}{2\sqrt{D_L t}} \right) \right]$$
(II-4.5)

La solution analytique pour les corps dissous non conservatifs ($\lambda \neq 0$) est présentée par l'Ours (1972) et développée par O'Loughlin et Bowmer (1975) en utilisant la transformation de Laplace :

$$C(x,t) = \frac{c_0}{2} \left[exp \left\{ \frac{v.x}{2D} \left[(1-\Gamma) \right] \right\} erfc \left(\frac{x-v.t.\Gamma}{2\sqrt{D_L.t}} \right) + exp \left\{ \frac{v.x}{2D_L} (1+\Gamma) \right\} erfc \left(\frac{x+v.t.\Gamma}{2\sqrt{D_L.t}} \right) \right]$$
(II.4.6)

Avec:
$$\Gamma = \sqrt{1 + 2B_b}$$
 (II-4.7)

$$B_b = \frac{2k_r D_L}{U^2} \tag{II-4.8}$$

En posant les hypothèses selon lesquelles les termes (x + Ut) sont relativement petits par rapport aux autres termes, l'équation (II-4.6) devient :

$$C(x,t) = \frac{C_0}{2} \left[exp \left\{ \frac{Ux}{2D_L} \left[(1-\Gamma) \right] \right\} erfc \left(\frac{x - Ut\Gamma}{2\sqrt{D_L t}} \right) \right]$$
(II-4.9)

L'équation (II-4.9) peut être encore simplifiée en notant que pour B_b petit (de l'ordre de 0.0025), Γ peut être rapproché comme suite (*O'Loughlin & Bowmer*, 1975) : $\Gamma \approx 1 + H$

$$C(x,t) = \frac{C_0}{2} \left[\exp\left(\frac{-k_r x}{U}\right) \operatorname{erfc}\left(\frac{x - Ut\{1 + B_b\}}{2\sqrt{D_L t}}\right) \right]$$
(II-4.10)

4.2 Source continue de durée τ

Bien que les solutions ci-dessus soient d'intérêt, un problème bien plus utile est celui dans lequel une source continue est présente pendant une période finie.

τ, représente la durée de la source continue.

Conditions initiales et des états de frontière

Elles sont données par :

$$C(x,0) = 0$$
 pour $x \ge 0$ (II-4.11)

$$C(0,t) = C_0$$
 pour $\tau \ge t \ge 0$ (II-4.12)

$$C(0,t) = 0$$
 pour $t > \tau$ (II-4.13)

$$C(\infty, t) = 0 \qquad \text{pour } t \ge 0 \tag{II-4.14}$$

Une solution analytique pour les conditions données en (II-4.11), (II-4.12), (II-4.13) et (II-4.14) a été développée par Rose (1977). Rose a correctement appliqué le principe de la superposition (Equation II-4.10), rapportant une solution analytique approximative.

Pour $t \le \tau$, la solution est donnée par l'équation (II-4.10).

Pour $t > \tau$, la solution est :

$$C(x,t) = \frac{C_0}{2} \exp\left(\frac{-k_r x}{U}\right) \left[\operatorname{erfc}\left\{\frac{x - Ut(1 + B_b)}{2\sqrt{D_L t}}\right\} - \operatorname{erfc}\left\{\frac{x - U(t - \tau)(1 + B_b)}{2\sqrt{D_L(t - \tau)}}\right\} \right]$$
(II-4.15)

Après la transformation, l'équation (I-4.15), s'écrit :

$$C(X,t) = \frac{c_0}{2} \left[exp \left\{ \frac{UX}{2D_L} (1-\Gamma) \right\} \left\{ erfc \left(\frac{X-Uc\Gamma}{2\sqrt{D_L t}} \right) - exp \left\{ \frac{UX}{2D_L} (1+\Gamma) \right\} \left\{ ercf \left(\frac{X+Uc\Gamma}{2\sqrt{D_L t}} \right) - erfc \left(\frac{X+U(t-\tau)\Gamma}{2\sqrt{D_L (t-\tau)}} \right) \right\} \right]$$

$$erfc \left(\frac{X+U(t-\tau)\Gamma}{2\sqrt{D_L (t-\tau)}} \right) \left\{ ercf \left(\frac{X+U(t-\tau)\Gamma}{2\sqrt{D_L (t-\tau)}} \right) - erfc \left(\frac{X+U(t-\tau)\Gamma}{2\sqrt{D_L (t-\tau)}} \right) \right\}$$

L'équation (II-4.16) constitue une solution analytique approchée pour une source continue à durée finie d'un polluant actif.

4.3 Résultat et conclusion

Une solution analytique exacte à l'équation d'advection - dispersion sujet à une charge continue de la durée finie est donnée par l'équation (II-4.16). Le développement de la solution analytique approximative donnée par l'équation (II-4.15) se base sur deux paramètres D/U_x et H.

Dans l'exemple, une source continue avec une durée de deux heures ($\tau = 2$ heures) est imposée tels que la concentration à la frontière ascendante est 100 unités de concentration ($C_0 = 100$). La vitesse d'écoulement et le coefficient de dispersion sont fixés (à 0.1 m/s et à 5.0 m²/s, respectivement) et on permet aux paramètres D/Ux et H de changer en fonction de la distance (x) et du taux d'affaiblissement (λ).

Des résultats pour l'exemple hypothétique sont montrés graphiquement dans la figure (I.4.1). Les figures II.4.1a. et II.4.1b montrent les résultats pour un corps dissous conservatif (λ = 0) à 100 et 2000 mètres, respectivement.

Les Figues II.4.1c. et II.4.1d. montrent les résultats pour un corps dissous non conservatif ($\lambda = 1 \times 10^{-4}$) à 100 et 2000 mètres.

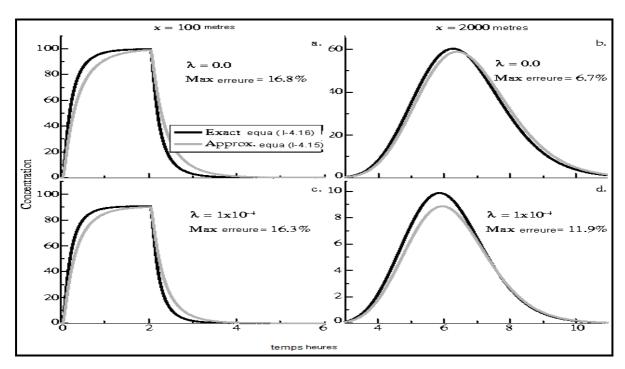


Figure II.4.1: Solutions analytiques exactes et approximatives

D'une manière générale, les erreurs liées à l'utilisation de la solution analytique approximative diminuent avec l'augmentation de la distance pour un corps dissous conservateur (D/U_x diminue) et augmentent avec l'augmentation de k_r pour un corps dissous non conservative.

5. Travaux d'Y R. Fares

Les travaux de Fares portent sur le transport des polluants dans les réservoirs et les fleuves (*Fares*, 2000).

Pour la modélisation du processus de dispersion, l'équation de transport a été établie comme

suite:
$$\frac{\partial C(x, y, z, t)}{\partial t} = -V_e \operatorname{grad} C + \operatorname{div}(D_L \operatorname{grad} C)$$
 (II-5.1)

avec, $\vec{V}_e = (u, v, w)$: vecteur de champ de vitesse où les composantes (u, v, w) représentent la vitesse dans la direction longitudinale x, dans la direction latérale y et dans la direction verticale z et $D_L = (Dx, Dy, Dz)$: coefficient de dispersion spatiale.

L'équation (II-5.1) peut être écrite sous la forme suivante :

$$\frac{\partial C(x,t)}{\partial t} = -U \frac{\partial C(x,t)}{\partial x} + D_L \frac{\partial^2 C(x,t)}{\partial x^2} + S_C$$
 (II-5.2)

où, D_L : coefficient de dispersion longitudinale ; S_C : terme source qui peut entraîner une diminution ou une augmentation de la concentration.

On suppose que O(v, w) < < O(u), par conséquent leurs contributions dans le phénomène d'advection ont été ignorées. En connaissant les conditions initiales et les conditions aux limites, une solution analytique exacte pour C(x, t) est donnée par :

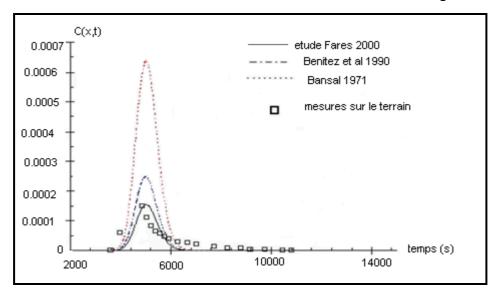
$$C(x,t) = \frac{1}{K} \frac{\rho_{s} F U}{Q \sqrt{4\rho_{s} D_{L} t}} exp \left[-\frac{(x - U t)^{2}}{4D_{L} t} \right] \left(1 - K_{0} \frac{x}{U t} \right)$$
(II-5.3)

où, ρ_s : densité du corps dissous ; K: facteur de dispersion; K_0 : coefficient expliquant la diminution du corps dissous dans le fleuve due à la végétation, les zones mortes, ou bien les matières en suspension.

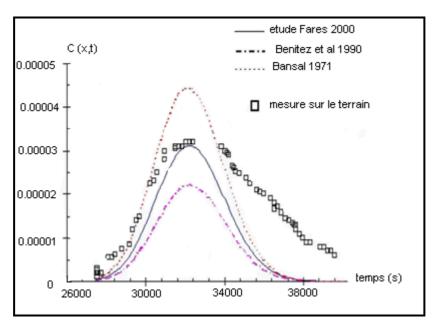
Notons que la réussite d'un modèle de dispersion est étroitement liée à une bonne modélisation du coefficient de dispersion. Plusieurs formules ont été développées pour déterminer le coefficient de dispersion.

Une expression pour D_L lié à l'écoulement d'un fleuve est donnée par :

$$D_{L} = 0.18 \left(\frac{U}{U_{*}}\right)^{\frac{3}{2}} \frac{Q^{2}}{UR_{h}^{3}}$$
 (II-5.4)


où, R_h: rayon hydraulique et U*: la vitesse de frottement.

En utilisant une équation modélisant le frottement, par exemple l'équation de Manning, la formule de D_L a été simplifiée comme suite :


$$D_{L} = (S_{ox}^{0,75} n) [U^{-1,5} R^{-2,92} Q^{2}]$$
 (II-5.5)

où, n : coefficient de rugosité de Manning et Sox la pente de lit du fleuve.

Enfin, la mise en application du modèle ainsi établi a été appliquée pour surveiller la qualité des eaux dans le fleuve de Waikato en Nouvelle Zélande. Un traceur a été utilisé et plusieurs mesures ont été effectuées. Les résultats sont résumés sur les courbes de la figure II.5.1.

Figure II.5.1 : Profils de Concentration dans le fleuve de Waikato à proximité de la source

Figure II.5.2 : Profils de Concentration dans le fleuve de Waikato dans une zone éloignée de la source.

De l'analyse des résultats, une concordance raisonnablement bonne a été trouvée entre les profils calculés à partir du modèle proposé par l'auteur, et des mesures sur le terrain pour des situations de champs proches et de champs lointains.

6. Travaux de S. M. Kashefipour et R. A. Falconer

Kashefipour et Falconer en 2001 ont présenté une étude basée sur 81 ensembles de données mesurées, obtenus à partir de 30 fleuves aux Etats-Unis (*Kashefipour*, *Falconer*, 2001).

La formulation a été comparée à beaucoup d'autres équations empiriques existantes, fréquemment employées pour déterminer le coefficient longitudinal de dispersion dans la rivière, avec les comparaisons basées sur quatre méthodes statistiques différentes. Ces comparaisons statistiques ont prouvé que la nouvelle équation semble être plus précise que les autres équations considérées.

L'équation de la dispersion longitudinale d'un polluant dans une rivière est donnée par l'équation d'advection-dispersion suivante :

$$\frac{\partial(AC)}{\partial t} + \frac{\partial(UAC)}{\partial x} = \frac{\partial}{\partial x} \left[D_L A \frac{\partial C}{\partial x} \right] - k_r AC$$
 (II-6.1)

dans laquelle C(x, t): concentration de masse; A(x, t): section transversale du canal; U(x, t): vitesse moyenne d'écoulement suivant la direction x; $D_L(x, t)$: coefficient longitudinal de dispersion et K: coefficient lié à la diminution ou à l'augmentation du polluant; x: coordonnées suivant la direction longitudinale et t: temps.

Les auteurs de cette étude ont utilisé les formules ci-dessous pour déterminer le coefficient de dispersion longitudinale. Ces formules sont données dans les équations proposées

respectivement par Elder (1959), McQuivey et Keefer (1974), Fischer (1975), Liu (1977), Iwasa et Aya (1991), Seo et Cheong (1998), et Koussis et Rodriguez-Mirasol (1998).

Elder (1959):
$$D_L = \left(\frac{0.4041}{\kappa^3} + \frac{\kappa}{6}\right) HU$$
 et $D_L = 5.93 \text{ HU}*$ (II-6.2)

 κ : la constante de Von Karman presque égale 0,41 ; U_* : la vitesse de cisaillement ; H: hauteur de l'écoulement et B: la largeur de canal.

Formule de McQuivey et Keefer (1974):
$$D_L = 0.58 \frac{HU}{S_{ox}}$$
 (II-6.3)

Fischer (1975):
$$D_L = 0.011 \frac{U^2 B^2}{HU_*}$$
 (II-6.4)

Formule de Liu (1977):
$$D_{L} = 0.18 \left(\frac{U}{U_{*}}\right)^{1.5} \frac{U^{2}B^{2}}{HU_{*}}$$
 (II-6.5)

Formule de Iwasa et Aya (1991):
$$\frac{D_L}{HU_*} = 2\left(\frac{B}{H}\right)^{1,5}$$
 (II-6.7)

Formule de Seo et Cheong (1998):
$$\frac{D_L}{HU_*} = 5.915 \left(\frac{B}{H}\right)^{0.620} \left(\frac{U}{U_*}\right)^{1.428}$$
 (II-6.8)

Koussis et Rodriguez-Mirasol (1998) :
$$D_L = \varphi \frac{U*B^2}{H}$$
 (II-6.9)

φ : paramètre numérique pour le coefficient longitudinal de dispersion.

Développement de l'équation de Kashefipour et Falconer

La plupart des études relient le coefficient longitudinal de dispersion aux propriétés liquides, aux caractéristiques hydrauliques et aux paramètres géométriques. Ainsi, on peut postuler cela par :

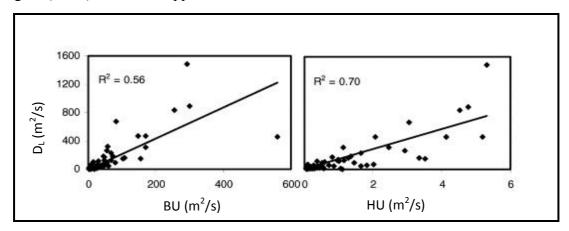
$$D_L = f(U, H, B, U_*, v, f_f)$$
 (II-6.10)

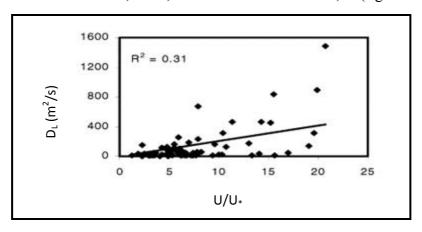
 ν : est la viscosité cinématique et f_f : le facteur de forme.

En outre, les paramètres hydrauliques principaux employés pour estimer la D_L , telle que la vitesse de cisaillement, sont également liés au facteur de forme.

L'analyse dimensionnelle prouve qu'il y a beaucoup de différentes combinaisons de H, de U, de B et de U_* , qui peuvent mener à déterminer le coefficient de dispersion D_L (figure II.6.1).

Le coefficient longitudinal de dispersion peut être directement lié à la profondeur de l'eau (figure II.6.1a), de la largeur de canal (figure II.6.1b) et de la vitesse (figure II.6.1c), tandis que les points sont dispersés dans la D-U* (figure I.6.1d).


Figure II.6.1: Rapport entre D_L et (a) H, (b) B, (c) U et (d) U_* .

La figure (II.6.2) montre le rapport existant entre D_L et BU et HU.

Figure II.6.2: Rapport entre D_L et (a) BU et (b) HU.

La vitesse relative de cisaillement, U/U*, donne une valeur R² de 0,31 (figure II.6.3) .

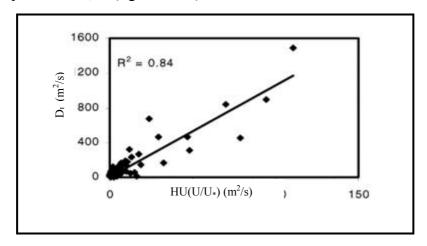


Figure II.6.3: Rapport entre D_L et U/U_* .

Le coefficient de corrélation de toutes les combinaisons principales des paramètres hydrauliques choisis ayant les mêmes dimensions que le coefficient longitudinal de dispersion ont été considérés, y compris la régression multiple entre HU, BU et D_L. Ces combinaisons ont été analysées et une équation simple convenable a été proposée :

$$D_{L} = 10,612 \text{ HU} \left(\frac{U}{U_{*}} \right)$$
 (II-6.11)

R² pour cette équation est 0,84 (figure II.6.4).

Figure II.6.4: Variation de D_L avec HU (U/U*)

Comparaison des modèles avec les données mesurées

Le coefficient longitudinal de dispersion est généralement affecté par beaucoup de propriétés d'écoulement et paramètres de la géométrie de canal et change dans une marge étendue pour différentes tailles et types de canaux.

Une grande erreur relative ((>100%) peut se produire en prévoyant ce paramètre, particulièrement valeurs relativement petites. Par conséquent, en utilisant des méthodes statistiques basées sur les valeurs mesurées et prévues telles que l'erreur normalisée, c.-à-d. $100\% (D_{Lp}-D_{Lm})/D_{Lm}$, ou erreur type $(1/N \sum_{i=1}^{n} |D_{Lp}-D_{Lm}|)$

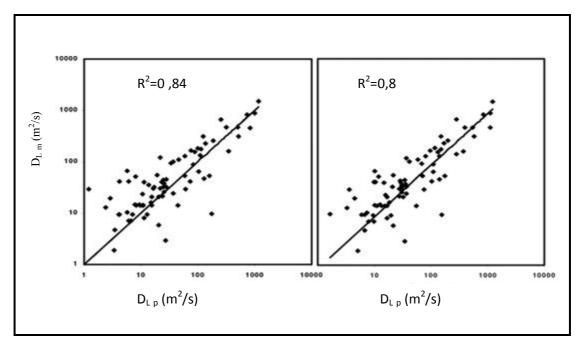
où, D_{Lp} : les valeurs prévues du coefficient longitudinal de dispersion. D_{Lm} sont les valeurs mesurées du coefficient longitudinal de dispersion.

Dans l'étude courante, des méthodes statistiques différentes ont été appliquées pour évaluer l'exactitude de chaque modèle en prévoyant le coefficient longitudinal de dispersion.

Les coefficients prévus de dispersion obtenus en utilisant Equation (II.6.11) ont été comparés aux données mesurées, aussi bien qu'avec d'autres modèles, y compris ceux de McQuivey et Keefer, Fischer, Seo et Cheong, Koussis et Rodriguez-Mirasol.

Par conséquent, il a semblé approprié aux auteurs de combiner ces équations d'une façon linéaire, d'estimer le coefficient longitudinal de dispersion plus exactement et d'obtenir une bonne distribution.

Par épreuve et erreur et comparaison des coefficients longitudinaux prévus de dispersion avec les valeurs mesurées correspondantes, l'équation la plus appropriée a été obtenue, donnée par :


$$D_{L} = \left[7,428 + 1,775 \left(\frac{B}{H} \right)^{0,620} \left(\frac{U_{*}}{U} \right)^{0,572} \right] HU \left(\frac{U}{U_{*}} \right)$$
 (II-6.12)

Equation (II-6.12) a été obtenue en combinant linéairement 30% de l'équation de Seo et Cheong et 70% de l'équation (II-6.11)

Le rapport de D_L/HU_* pour cette équation étaient 1073,00, qui est près du rapport mesuré correspondant.

Une comparaison de (II-6.11) et de (II-6.12) prouve que le coefficient constant de 10,612 a été remplacé près $[7,428 + 1,775 (B/H)^{0,620} (U_*/U)^{0,572}]$.

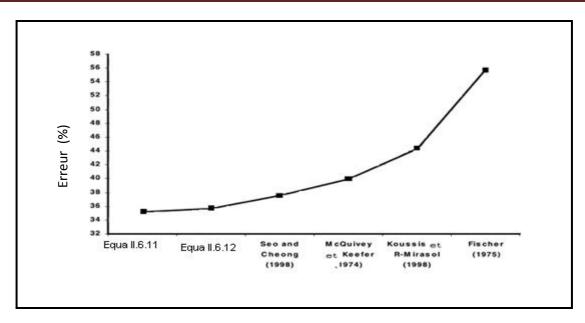

Les données mesurées ont été tracées avec les données prévues en utilisant les nouveaux modèles proposés (c.-à-d. (équation II-6.11) et (équation II-6.12)) dans les figures. II.6.5a et II.6.5b.

Figure II.6.5: Comparaison entre deux coefficients longitudinaux de dispersion ($D_{\rm Lm}$) mesure ($D_{\rm Lp}$) prévu, utilisant équation (II-6.11) et (II-6.12).

En considérant les discussions et les comparaisons citées ci-dessus, les valeurs prévues de D_L obtenues à partir des équations (II-6.11) et (II-6.12) sont plus précises que celles obtenue avec les modèles considérés.

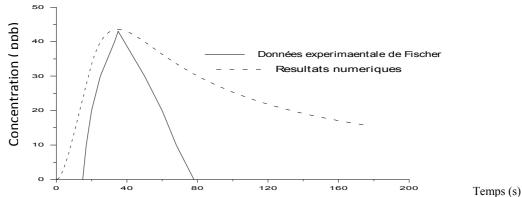
La Figure II.6.6 montre l'erreur moyenne de pourcentage en prévoyant les concentrations de polluant dues aux formulations appliquées pour estimer le coefficient longitudinal de dispersion (D_L) dans l'équation advection-dispersion (Equation (II-6.1)).

Figure II.6.6: Erreur moyenne de pourcentage dans des concentrations de prévision en polluant pour différentes formulations de dispersion dans l'équation advection-dispersion.

De ces résultats, on peut voir que les erreurs obtenues en utilisant les équations proposées (II-6.11) et (II-6.12) pour estimer le coefficient longitudinal de dispersion sont moins importantes que celles des résultats correspondants aux autres formulations.

Ainsi, les équations (II-6.11) et (II-6.12) sont suggérés comme des formulations améliorées pour estimer les coefficients longitudinaux de dispersion dans des études hydraulique environnementales.

7. Travaux de M. Graba


En 2002, Graba a présenté dans son mémoire de magistère en hydraulique (hydraulique générale) sous la direction S. Benmamar, l'étude de la simulation numérique de la dispersion de substances polluantes conservatives dans les écoulements turbulents à surface libre à travers la résolution numérique 2.5D.

Graba a élaboré un modèle hydrodynamique 2,5D permettant de décrire les écoulements turbulents à surface libre caractérisés par une largeur aux moins cinq fois plus importantes que la profondeur. Elle a élaboré un système d'équations permettant de décrire la turbulence par intégration du modèle k-ɛ sur la profondeur (*Graba*, 2002).

La discrétisation du système d'équations est obtenue par un schéma aux différences finies qui est le schéma explicite de Mac Cormack.

Pour valider le modèle elle a comparé à l'un des essais de Fischer avec les conditions d'écoulement uniforme suivants : Largeur du canal B=1.1m, Une pente de 0.000257, Un débit d'écoulement Q= 0.0509(m3/s), Coefficient de rugosité Ks= 70.

Elle a considéré une source de pollution uniforme sur toute la largeur d'une section en amont de l'écoulement qui s'arrête après 10 secondes de rejet d'une concentration C_0 =1300ppb. Les résultats obtenus sont analysés et comparés aux résultats de Fischer.

Figure II.7.1 : Comparaison du profile des concentrations moyennées sur la profondeur au données expérimentales de Fischer Re=46000

Les deux courbes ont la même allure des pics très rapprochés et des centres de gravité très rapprochés mais le pic obtenu numériquement est plus important que le pic obtenu expérimentalement ; cela peut s'expliquer par le fait que comme le schéma numérique utilisé est un schéma explicite avec un pas de temps très petit la variation de la concentration y est très sensible à chaque pas de temps ainsi l'augmentation de la concentration se fait graduellement avec une certaine surestimation .

8. Travaux de P.Chagas. et R.Souza

Chagas et Souza en 2005 ont présenté une étude du comportement et le processus de transport de polluant dans les rivières, un modèle mathématique a été élaboré basé sur les équations hydrodynamiques, combinées à l'équation de transport *(Chagas, Souza, 2005)*.

Equation de la continuité :

$$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = 0 \tag{II-8.1}$$

Equation de la quantité de mouvement :

$$\frac{\partial Q}{\partial t} + \frac{\partial (Q^2/A)}{\partial x} + gA \left(\frac{\partial y}{\partial x} - S_0\right) + gAS_f = 0$$
 (II-8.2)

X: la distance longitudinale du canal (m), t: le temps (s), A: la section de l'écoulement (m²), y: la hauteur d'eau dans le canal (m), S_0 : la pente du fond du canal, S_f : la pente de la ligne d'énergie, B: la largeur du canal (m) et g: l'accélération de la gravite (m/s²).

Pour calculer S_f, on utilise la formule de Manning :

$$V = \frac{1}{n} R_h^{2/3} S_f^{1/2}$$
 (II-8.3)

V : la vitesse moyenne (m/s), R_h : le rayon hydraulique (m), n : coefficient de rugosité.

D'après les relations (II-8.1), (II-8.2) et (II-8.3), Keskin (1997) a trouvé la relation :

$$\frac{\partial Q}{\partial t} + \alpha \frac{\partial Q}{\partial x} + \beta = 0 \tag{II-8.4}$$

où,
$$\alpha = 2\frac{Q}{A} + \frac{\frac{gA}{B} - \frac{Q^2}{A^2}}{\frac{Q}{A} \left(\frac{5}{3} - \frac{4R}{3B}\right)}$$
 (II-8.5)

$$\beta = gA(S_f - S_0) \tag{II-8.6}$$

Le processus de transport de polluant

Pour évaluer le comportement d'un champ de concentration dans le canal, l'équation d'advection – diffusion est employée. Cette équation est une représentation mathématique qui décrit le processus de transport de masse dans l'eau en mouvement sous l'action du champ de vitesse

$$\frac{\partial C}{\partial t} + \psi \frac{\partial C}{\partial x} + C \frac{\partial u}{\partial x} = D_L \frac{\partial^2 C}{\partial x^2} - KC$$
 (II-8.8)

où, C: la concentration de polluant, D_L : le coefficient longitudinal de dispersion, K: le taux d'affaiblissement, t: le temps, A: la section de canal. Ψ : est une fonction définie par :

$$\Psi = \left[\mathbf{u} - \frac{\mathbf{E}}{\mathbf{A}} \frac{\partial \mathbf{A}}{\partial \mathbf{x}} - \frac{\partial \mathbf{E}}{\partial \mathbf{x}} \right]$$
 (II-8.9)

Après le développement du programme de calcul, plusieurs simulations ont été réalisées pour évaluer la concentration de polluant dans la rivière.

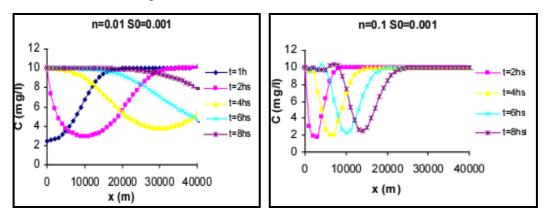


Figure II.8.1 : Comportement de champ de concentration pour différentes rugosités

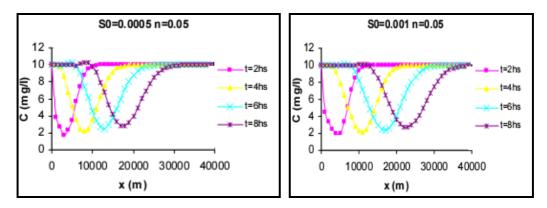


Figure II.8.2 : Comportement du champ de concentration pour différentes pentes du lit

Les résultats permettent de conclure que la pente du lit et le coefficient de rugosité, jouent un rôle dans le processus de dispersion de polluants dans les rivières.

À travers les graphiques, il est remarqué que l'effet de la rugosité est plus intense que l'effet de la pente du lit.

9. Travaux de F. De Smedt

Ces travaux réalisés au cours de l'année 2005 (*De Smedt, 2005*) portent sur la comparaison entre les solutions analytiques qui présente le transport des polluants dans les cours d'eau sur l'effet des zones mortes avec le modèle numérique OTIS (One-dimensional Transport with Inflow and Storage).

Le transport longitudinal de corps dissous dans les rivières avec des zones mortes peut être modélisé comme suit :

$$\frac{\partial C}{\partial t} = D_L \frac{\partial^2 C}{\partial x^2} - V \frac{\partial C}{\partial x} - \alpha (C - C_S) - \lambda C$$
 (II-9.1)

$$\beta \frac{\partial C_S}{\partial t} = \alpha (C - C_S) - \beta \lambda_S C_S \tag{II-9.2}$$

où, C est la concentration moyenne dans le tronçon principal de la rivière; C_s est la concentration moyenne dans la zone morte; v est la vitesse d'écoulement; D_L est le coefficient dispersion longitudinale; x est la coordonnée dans le sens de l'écoulement; t est le temps; β : est le rapport du volume de la zone de stockage par unité longueur au volume de la rivière par unité de longueur; λ et λ_S désignent les coefficients de l'affaiblissement dans le canal principal et les zones mortes et α : le coefficient d'échange de masse entre le canal principal et la zone de stockage.

Détermination des solutions analytiques

Au temps t_0 , une masse M_0 du traceur est injectée instantanément à x_0 , de sorte que les conditions initiales sont données par :

$$C(x,t) = \left(\frac{M}{A}\right)\delta(x)$$
 (II-9.3)

avec, δ : fonction de Dirac

La zone morte (de stockage) est considérée comme initialement libre de soluté :

$$C_S(x, t) = 0$$
 (II-9.4)

En outre, il est supposé qu'il n'y a pas de traceur à l'infini dans le canal principal :

$$C(x = \infty, t) = 0 \tag{II-9.5}$$

En utilisant la technique de transformation de Laplace, l'auteur a présenté une solution des équations (II-9.1) et (II-9.2), soumis aux conditions définies par les équations (II-9.3), (II-9.4) et (II-9.5).

$$C(x,t) = C_1(x,t)\exp(-\alpha t) + \alpha/\beta \int_0^t C_1(x,\tau)\exp(-p-q-\lambda_s(t-\tau))\sqrt{p/qI_1}(2\sqrt{pq})d\tau \qquad (II-9.6)$$

p et q sont définis comme suite $p = \alpha \tau$, et $q = \alpha (t - \tau)/\beta$

 C_1 (x, t) est la solution de l'équation d'advection-dispersion y compris la pollution dans le canal principal, soumis aux mêmes conditions aux limites et initiales.

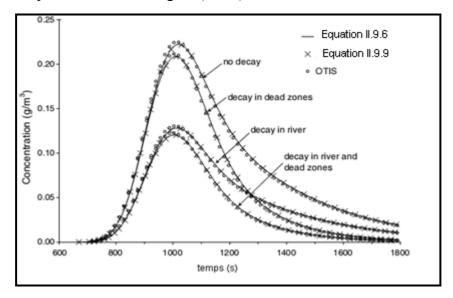
$$C_1(x,t) = C_0(x,t) \exp(-\lambda t) = \frac{M/A}{2\sqrt{\pi D_L t}} \exp\left[-\frac{(x-vt)^2}{4D_L t} - \lambda t\right]$$
 (II-9.7)

 $C_0(x,t)$: est la solution de l'équation d'advection-dispersion, soumise aux mêmes conditions

aux limites et initiales :
$$C_0(x,t) = \frac{M/A}{2\sqrt{\pi D_L t}} \exp\left(-\frac{(x-vt)^2}{4D_L t}\right)$$
 (II-9.8)

On développe la fonction de Bessel II dans l'équation (II-9.2), on obtient :

$$C(x,t) = C_1(x,t) \exp(-\alpha t) + \frac{\alpha}{\beta} \int_{0}^{t} C_1(x,\tau) \exp(-p - q - \lambda_s(t - \tau)) \left(\sum_{n=0}^{\infty} \frac{p^{n+1}}{(n+1)!} \frac{q^n}{n!} \right) d\tau \qquad (II-9.9)$$


Résultats et discussion

Afin d'illustrer et de vérifier les solutions analytiques, les résultats sont comparées aux résultats numériques obtenus avec OTIS.

L'exemple traité par l'auteur est qu'il injecte 1 kg de soluté dans le canal principal d'un ruisseau d'une section $A=10~\text{m}^2$, soit une moyenne de la vitesse d'écoulement de 1 m/s, et d'un coefficient de dispersion $D_L=5~\text{m}^2/\text{s}$. La section transversale de la zone morte est prise comme 2m^2 , le coefficient de transfert de masse entre les principaux flux et les zones mortes à 0,001~s-1.

Les concentrations dans le canal principal sont calculées à une distance de 1000 m en aval du lieu d'injection.

Les courbes sont présentées dans la figure (II.9.1).

Figure II.9.1 : Comparaison des profils de concentration calculée avec la solution analytique donnée par l'équation (II-9.6), l'équation (II-9.9) et des résultats numériques obtenus avec OTIS.

On remarque un bon accord entre les calculs numériques obtenus avec OTIS et les résultats de la solution analytique. Les petites différences peuvent être attribuées à l'approximation numérique des conditions aux limites.

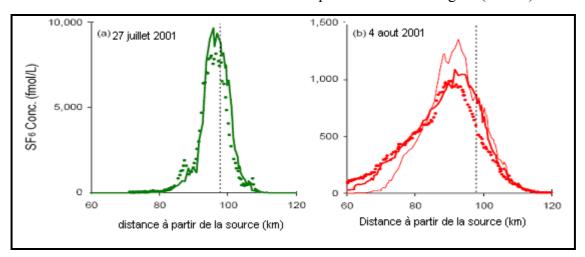
10. Travaux de F. L. Hellweger

Les travaux de Hellweger portent sur les techniques de mesure et de modélisation de la dispersion des polluants dans les eaux à surfaces libres (*Hellweger*, 2005). Pour cela, des études expérimentales ont été réalisées sur plusieurs rivières. Dans ces expériences, des injections instantanées des traceurs ou des polluants ont été effectuées et l'étude de certains accidents sur des rivières a été mentionnée. Pour chaque cas, une étude comparative entre les résultats obtenus à partir des mesures et les résultats obtenus à partir des simulations a été effectuée.

Dans cette étude, le modèle de la zone morte a été utilisé.

Techniques de mesure de la dispersion à partir des traceurs.

Les traceurs sont employés pour mesurer la dispersion. Un grand nombre de traceurs est disponible et plusieurs facteurs devraient être considérés pour leur choix tels que :

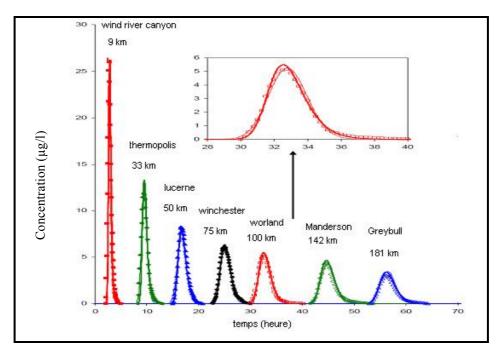

- Détectabilité ;
- Niveau de concentration de fond ;
- Toxicité ;
- Esthétique ;

- Coût ;
- Propriétés et devenir du traceur.

Application

Fleuve de Hudson (New York)

Le 25 Juillet 2001 environ 4,3 moles de SF6 ont été délibérément déversées de manière instantanée dans le fleuve de Hudson par Ho et al (2001). Les courbes obtenues à partir des données mesurées et des données simulées sont présentées dans la figure (II.10.1).


Figure II.10.1: Variation des concentrations mesurées (représentées par les pointes) et des concentrations simulées (représentées par les lignes) de SF6 dans le fleuve Hudson

Fleuve de Vent-Wind-Bighorn (Wyoming)

Le 21 Mars et le 29 juin 1971 environ 3,8 kilogrammes de rhodamine avaient été injecté dans le fleuve de Wind-Bighorn et plusieurs stations de mesures ont été installées en aval.

Les courbes obtenues à partir des mesures et des données simulées à différentes localités sont présentées sur la figure II.10.2.

Les traits fins représentent le profil obtenu à partir du modèle d'advection – diffusion et les trais large représentent le profil obtenu à partir du modèle de la zone morte. On voit bien qu'il y a une bonne concordance entre les deux modèles.

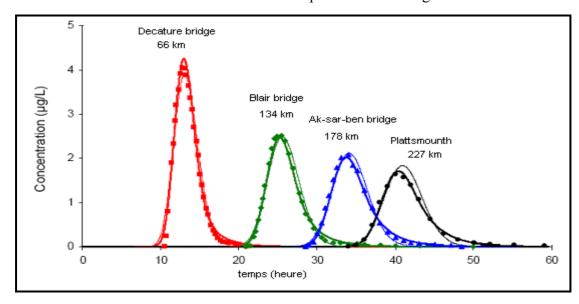


Figure II.10.2 : Variation des concentrations mesurées (représentées par les pointes) et des concentrations simulées (représentées par les lignes) de SF6 en fonction du temps dans le fleuve Vent-Wind-Bighorn.

Fleuve de Missouri (USA)

Le 13 Novembre 1967, 54 kilogrammes de rhodamine ont été injectés dans le fleuve du Missouri et la concentration a été mesurée à plusieurs endroits tels que Decatur, Blair, Ak-sarben, et Plattsmouth.

Les résultats des mesures et de la simulation sont présentés sur la figure II.10.3.

Figure II.10.3: Variation des concentrations mesurées (représentées par les pointes) et des concentrations simulées (représentées par les lignes) de rhodamine en fonction du temps dans le fleuve de Missouri.

Les traits fins représentent le profil obtenu à partir du modèle d'advection – diffusion et les traits large représentent le profil obtenu à partir du modèle de la zone morte. On voit bien qu'il y a une bonne concordance entre les deux modèles.

Fleuve de Sacramento (La Californie)

Le 14 juillet 1994, un train avait déraillé et avait déversé 19 à 27 tonnes de pesticide. Ce pesticide par des phénomènes de photolyse et d'hydrolyse, se transforme en plusieurs produits par lesquels le méthyle iso thiocyanate (MITC) . Les données sont a été étudié.

Les résultats des mesures et de la simulation sont présentés sur la figure II.10.4.

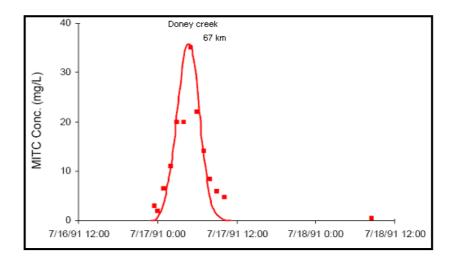


Figure II.10.4 : Variation des concentrations mesurées (représentées par les pointes) et des concentrations simulées (représentées par les lignes) de MITC en fonction du temps dans le fleuve de Sacramento.

Les différentes courbes présentées montrent une certaine concordance entre les résultats obtenus à partir des mesures et les résultats de la simulation. Cependant certaine présentent des déviations considérables entre les mesures et la simulation. Cela peut être dû à plusieurs facteurs tels que la zone morte, le changement du régime de l'écoulement, le mélange non complet dans certaines zones...

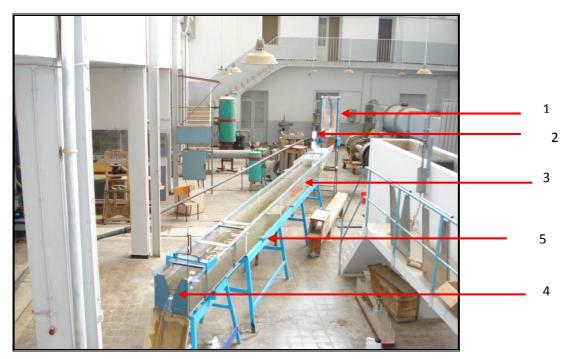
Conclusion

Dans ce chapitre nous avons mis une recherche bibliographique sur l'étude de la dispersion d'un polluant sur les cours d'eau (naturel et artificiel). Pour cela, des études expérimentales ont été réalisées sur plusieurs sites (rivières, fleuves, ruisseaux, canaux...) . Dans ces expériences, des injections instantanées et continues des traceurs (des polluants) ont été effectuées pour déterminer les différents modèles mathématiques comme le modèle advection-dispersion et numériques comme OTIS ont été proposés pour décrire le phénomène de transport du polluant dans un cours d'eau.

Dans notre étude, on s'intéressera à la dispersion d'un polluant actif (phénol) dans un canal rectangulaire.

Chapitre III

Etude expérimentale de la dispersion d'un polluant actif dans un canal rectangulaire


Chapitre III

Etude expérimentale de la dispersion d'un polluant actif dans un canal rectangulaire

Pour décrire le comportement du polluant actif (phénol) dans les écoulements à surface libre, nous proposons de faire une étude expérimentale comportant des essais au laboratoire, dans le but de suivre l'évolution de la concentration de ce polluant en fonction du temps et de l'espace.

1. <u>Installation expérimentale</u>

Les essais ont été effectués dans le laboratoire d'hydraulique (LRS-EAU, de l'Ecole Nationale Supérieur Polytechnique d'Alger), sur un canal rectangulaire en plexiglass dont le squelette est en acier, l'ensemble est posé sur des supports en bois. L'installation expérimentale complète comporte les éléments montrés sur la Photographie III.1.

Photographie III.1: Installation expérimentale

- 1. Réservoir d'alimentation.
- 2. Bacs du polluant
- 3. Canal rectangulaire.
- 4. Déversoir triangulaire.
- 5. Support en bois.

1.1 Réservoir d'alimentation

Le réservoir d'alimentation est conçu en plexiglass, et a pour dimensions, 51,5 cm de largeur, 51,5 cm de longueur, et 124 cm de hauteur. Il est surélevé de 150 cm sur un support en bois, et muni d'une plaque tranquillisante afin de d'éliminer toute forme de vibration.

Le réservoir est alimenté à partir de la bâche d'eau du laboratoire au moyen d'une pompe centrifuge.

Photographie III.2: Réservoir d'alimentation

1.2 Bacs du polluant

Nous avons utilisé un système de deux bacs dont l'un alimente l'autre, et ce dernier à son tour injecte le polluant dans le canal. Ce système permet de garder la charge constante dans le second bac et aussi obtenir un débit d'injection constant. L'ensemble des deux bacs est placé en amont du canal sur la section origine (x = 0m).

Photographie III.3: Bacs du polluant

1.3 Canal rectangulaire

L'élément principal de notre installation est un canal rectangulaire en plexiglass de section (39 cm x 39 cm) et de 10 m de longueur, il est surélevé de 1,2 m sur un support en bois.

A l'amont du canal, nous avons déposé un grillage qui contient des billes pour tranquilliser l'écoulement.

Sur le fond du canal, nous avons mis une couche de sable d'environ 3,5 cm d'épaisseur ramené de « oued Beghlia (Boumerdes) » pour avoir un écoulement similaire à un cours d'eau naturel.

Photographie III. 4: Canal rectangulaire

2. <u>Le déversoir triangulaire</u>

Le canal dispose d'un déversoir triangulaire vertical à mince paroi installé à l'aval. Il est formé d'une échancrure en V symétrique d'un angle $\theta = 34^{\circ}$.

Photographie III.5: Déversoir triangulaire

3. Polluant utilisé

Notre travail expérimental étudie la dispersion d'un polluant actif, qui a une propriété non conservative dans le milieu aquatique, contrairement au polluant passif, pour cela nous avons choisi le phénol.

3.1 Appellation

Nom de la substance : Phénol

Synonymes, noms commerciaux : Acide carbolique, benzophénol, acide phénique, benzénol, phénol ordinaire.

Description générale : Substance incolore/rosée ou fusion incolore; odeur douceâtre.

3.2 Propriétés physico-chimiques

- Formule brute : C₆H₆O ;

- Masse atomique relative : 94,11 g;

- Masse volumique : 1,07 g/cm³ à 20°C ;

- Densité de gaz : 3,24

- Point d'ébullition: 181,75°C;

- Point de fusion : 40,8°C;

- Tension de vapeur : 0,2 hPa à 20°C; 3,5 hPa à 50°C; 54 hPa à 100 °C;

- Point d'éclair : 82°C;

- Température de combusion : 595°C ;

- Limite d'explosivité: 1,3 - 9,5 % Vol;

- Seuil olfactif: $0.18 \text{ mg/m}^3 = 0.046 \text{ ppm}$;

- Solubilité : Dans l'eau : 82 g/l; facilement soluble dans l'alcool, l'éther, le chloroforme, les graisses et les huiles essentielles;

- Facteurs de conversion: 1 ppm = 3.91 mg/m^3 , $1 \text{ mg/m}^3 = 0.26 \text{ ppm}$.

3.3 Toxicité

Les vapeurs et solutions de phénol sont toxiques et pénètrent aisément dans l'organisme par voie cutanée. L'inhalation de vapeurs a un effet caustique sur les voies respiratoires et les poumons. Le contact cutané et oculaire avec des solutions de phénol entraîne de sévères brûlures (poison puissant pour le protoplasme). L'exposition prolongée entraîne une paralysie du système nerveux central ainsi que des atteintes rénales et pulmonaires. Cette paralysie peut finalement entraîner la mort. L'intoxication s'accompagne de symptômes tels que maux de tête, bourdonnements, vertiges, troubles gastriques et intestinaux, étourdissement, collapsus, empoisonnement, perte de conscience, respiration irrégulière, défaillance respiratoire, troubles cardiaques, et parfois convulsions. Selon HORN (1989), le phénol possède un potentiel tératogène et cancérogène. Selon le test d'Ames, le phénol n'a pas d'effets mutagènes.

Formule topologique

Le phénol C₆H₅ - OH

Page 48 Mémoire de Magister

Généralement, l'effet organoleptique des phénols halogénés (odeur et goût) permet d'éviter les lésions faisant suite à une ingestion par voie orale.

4. Moyens de mesures

4.1 Mesure du débit

Le débit traversant le canal est mesuré au moyen d'un déversoir triangulaire à mince paroi se trouvant en aval du canal rectangulaire.

4.1.1 <u>Définition du déversoir</u>

Un déversoir est un orifice ouvert à sa partie supérieure qui permet de contrôler le débit.

Déversoir à paroi mince est caractérisé par une hauteur P du fond du canal jusqu'à la crête, sa largeur b et la hauteur d'eau déversante h_d (figure III.1). H est la charge amont sur le déversoir. *(Carlier, 1986).*

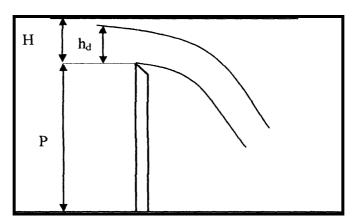


Figure III.1: Déversoir à mince paroi.

4.1.2 Détermination du débit à travers un déversoir triangulaire

Le déversoir triangulaire à mince paroi est caractérisé par les paramètres suivants (figure III.2):

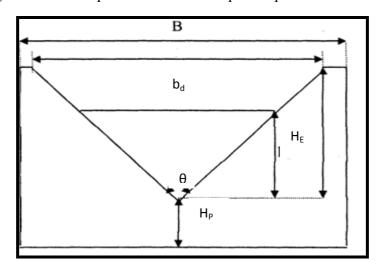


Figure III.2: Déversoir triangulaire

 b_d [m] : Largeur du déversoir ; H_p [m] : Hauteur de la pelle ; H_E [m] : Hauteur de l'échancrure ; h_d [m] : Hauteur d'eau déversée ; θ [°] : Angle d'échancrure et B : largeur du canal.

Détermination de la formule du débit

La vitesse moyenne dans la tranche d'eau de largeur x et de hauteur dz située à une profondeur z au dessous de la surface libre, est approximativement $\sqrt{2gh_d}$ (figure III.3).

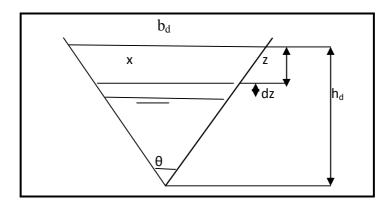


Figure III.3: Echancrure du déversoir

Si nous désignons par μ_d , le coefficient de débit approprié, le débit élémentaire de cette tranche sera :

$$dQ = \mu_d \times dz \sqrt{2 g z}$$

On a:
$$x = \frac{b_d}{h}(h-z)$$

d'où :
$$dQ = \mu_d \frac{b_d}{h} (h - z) \sqrt{2gz} dz$$

$$Q = \int_{0}^{h} \mu_{d} \frac{b_{d}}{h} (h - z) \sqrt{2gz} dz$$

En supposant que μ_d est une constante, l'intégration donne : $Q = \frac{4}{15} \ \mu \, b \, h_d \ \sqrt{2g \, h_d}$

En introduisant l'angle θ de l'échancrure du déversoir, le débit est donné par :

$$Q = \frac{8}{15} \mu_d h_d^{5/2} tg \left(\frac{\theta}{2}\right) \sqrt{2g}$$
 (III-1)

4.1.3 Etalonnage du déversoir

Afin d'obtenir des mesures de débit assez précises, nous avons fait un étalonnage du déversoir.

Le canevas de mesure du débit est comme suit.

- Nous alimentons le canal rectangulaire en eau à partir du réservoir d'eau. Nous remplissons le canal d'eau jusqu'à la hauteur de la crête du déversoir. Nous arrêtons l'alimentation et nous déterminons la position de la crête du déversoir (H_p) à l'aide d'un limnimétre.
- Ensuite, nous ouvrons la vanne d'alimentation d'eau ;
- Nous fixons un débit donné (écoulement permanent).
- Après la stabilisation du niveau d'eau dans le canal, nous prélevons la hauteur de la lame d'eau déversante (h_d).
- Nous mesurons le débit correspondant à la lame d'eau déversante (h_d) en utilisant la méthode volumétrique.

Les résultats sont donnés dans le tableau (III-1).

Tableau III-1: Variation du débit en fonction de l'épaisseur de la lame déversante

h _d (mm)	Q (l/s)
38	0,16
48	0,28
54	0,36
59	0,40
66	0,62
73	1,00
92	1,27

La figure III.4 donne la courbe log Q en fonction de log h. Cette dernière représente la courbe d'étalonnage du déversoir triangulaire utilisé.

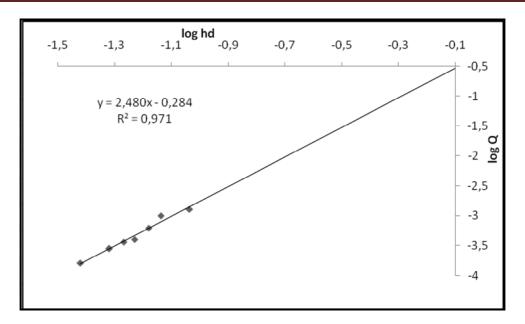


Figure III.4: Courbe d'étalonnage du déversoir

Le coefficient de corrélation est calculé en injectant les valeurs données par le tableau III-2 dans la formule suivante :

$$R = \sum (X - \overline{X})(Y - \overline{Y}) / \left(\sum (X - \overline{X})^2 \sum (Y - \overline{Y})^2\right)^{1/2}$$

Tableau III-2 : Données pour le calcul du coefficient de corrélation

Q(l/s)	h (cm)	logQ = Y	logh = X	$(x-\overline{x})$	$(x-\overline{x})^2$	$\left(Y - \overline{Y}\right)$	$(Y - \overline{Y})^2$	$(x-\overline{x})(y-\overline{y})$
0,16	3,8	-3,795	-1,420	-0,193	0,037	-0,468	0,219	0,090
0,28	4,8	-3,552	-1,318	-0,091	0,008	-0,225	0,050	0,020
0,36	5,4	-3,443	-1,267	-0,040	0,001	-0,115	0,013	0,004
0,4	5,9	-3,397	-1,229	-0,002	0,000	-0,070	0,004	0,0001
0,62	6,6	-3,207	-1,180	0,046	0,002	0,120	0,014	0,0055
1,00	7,3	-3,000	-1,136	0,090	0,008	0,327	0,107	0,029
1,27	9,2	-2,896	-1,036	0,190	0,036	0,431	0,186	0,083

Le coefficient de corrélation est donc : R =1, ce qui explique une forte dépendance entre x et y c'est-à-dire entre Q et h, donc on peut exprimer Q en fonction de h et vis versa.

A partir du graphe de la figure III.4, on remarque que la courbe obtenue est une droite d'équation :

Y = 2,4805 X - 0,2841

Donc: $Log(Q) = 2,480 Log(h_d) - 0,284$

$$Q = 10^{2,480} \log (h_d) - 0.284$$

$$Q = 10^{-0.284} \times h_d^{2.480}$$

Donc le débit est donné par l'équation : $Q = 0,519 \times h_d^{2,480}$

Détermination du coefficient de débit

En remplaçant l'équation d'étalonnage $Q = 0.519 \times h_d^{2,480}$ dans l'équation (III-1), nous trouvons :

$$\mu_{d} = \frac{0.519 \times 15}{8 \text{ tg} \left(\frac{\theta}{2}\right) \sqrt{2g}} h_{d}^{0.019}$$

Pour
$$\theta = 34^{\circ}$$
 et $g = 9.81 \text{m/s}^2$, on a: $\mu_d = 0.718 \times h_d^{0.019}$

En calculant le coefficient de débit en fonction des différentes hauteurs mesurées antérieurement, nous obtenons les résultats présentés dans le tableau III-3.

La moyenne des coefficients de débits déterminés expérimentalement est μ_d = 0,698. C'est cette dernière que nous prendrons comme valeur du coefficient de débit pour le calcul du débit dans nos prochains essais.

Tableau III-3: Résultats expérimentaux des coefficients de débit

Q (1/s)	h (cm)	$\mu_{d\mathrm{exp}}$
0,16	3,8	0,692
0,28	4,8	0,695
0,36	5,4	0,696
0,40	5,9	0,697
0,62	6,6	0,699
1,00	7,3	0,700
1,27	9,2	0,703

4.2 Mesure de la hauteur d'eau

Pour la mesure de la hauteur d'eau, nous avons utilisé un limnimétre qui est fixé sur le canal à une distance L à l'amont du déversoir. Et pour tracer la ligne d'eau et repérer les différentes sections, nous avons utilisé du papier millimétré transparent collé sur l'une des parois latérale du canal.

Photographie III.6 : Dispositif de mesure de la hauteur d'eau (Papier millimétré).

4.2.1 Courbes de remous

a. Calcul de la hauteur critique

Dans un écoulement à surface libre en canal rectangulaire de largeur B la hauteur critique pour

un débit donné est exprimé par :
$$h_c = \left(\frac{Q^2}{gB^2}\right)^{1/3}$$

En calculant les hauteurs critiques en fonction des différents débits mesurés antérieurement, nous obtenons les résultats présentés dans le tableau III -4.

Tableau III-4: Hauteur critique pour différents débits d'écoulement

Q (1/s)	0,16	0,28	0,36	0,40	0,62	1,00	1,27
h _c (cm)	0,25	0,37	0,44	0,74	0,63	0,78	1,02

La hauteur de la pelle (H_p) du déversoir triangulaire est égale à 15,5 cm, donc le niveau critique est égal à : $N_C = h_C + H_P$.

b. Calcul de la hauteur normale

On a:
$$Q = \frac{1}{n} R_h^{2/3} S \sqrt{I}$$
 avec, $S = b. h_n$ et $R_h = \frac{S}{P_m} = \frac{b h_n}{b + 2 h_n}$

Donc, nous avons :
$$Q = \frac{1}{n} \left(\frac{b h_n}{b + 2 h_n} \right)^{2/3} (b h_n) \sqrt{I}$$

La pente du canal de notre installation est : I = 0.01. Le coefficient de Manning est : n = 0.013.

Pour la détermination de la hauteur normale, nous utilisons la méthode de l'approximation successive.

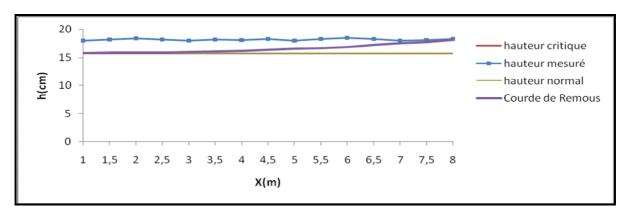
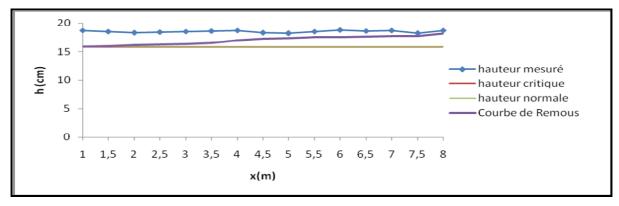

En calculant les hauteurs normales en fonction des différents débits mesurés antérieurement, nous obtenons les résultats présentés dans le tableau III-5.

Tableau III-5: Hauteurs normale pour différents débits d'écoulement


Q (l/s)	0,16	0,28	0,36	0,4	0,62	1,00	1,27
h _n (cm)	0,28	0,39	0,44	0,48	0,61	0,78	0,96

c. Tracés des courbes de remous

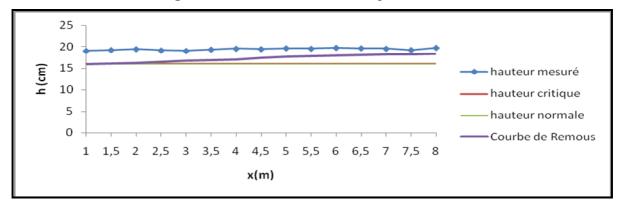
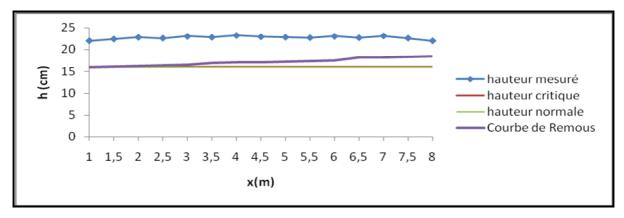
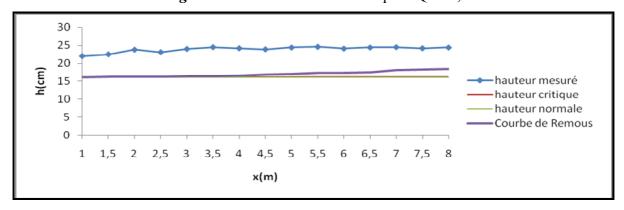
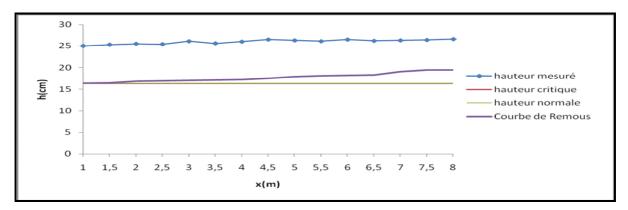

Dans ce qui suit, nous allons représenter les courbes de remous théorique et expérimentales pour différents débits Q, ainsi que les niveaux critique et normal de l'écoulement.

Figure III.5: Courbe de remous pour Q = 0.16 l/s

Figure III.6: Courbe de remous pour Q = 0.28 l/s

Figure III.7: Courbe de remous pour Q = 0.36 l/s

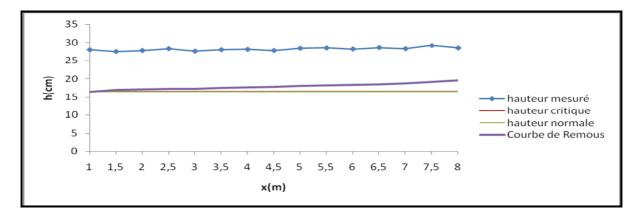

Figure III.8: Courbe de remous pour Q = 0, 41/s

Figure III.9: Courbe de remous pour Q = 0.62 l/s

Figure III.10: Courbe de remous pour Q = 1,0 l/s

Figure III.11: Courbe de remous pour Q = 1,27 l/s

Interprétation des courbes

Les figures III.5 ÷ III.11 ci-dessus donnent l'allure générale de la courbe de remous le long du canal pour différents débits à un état d'écoulement permanent.

On remarque que quelque soit le débit d'écoulement Q, on a la hauteur mesurée supérieure à la hauteur normale et à la hauteur critique, donc notre courbe de remous appartient à la classe M1. Elle représente l'entrée d'un écoulement permanent uniforme : c'est le cas d'un cours d'eau naturel.

4.2.2 Régime d'écoulement

• Détermination du nombre de Reynolds

D'après le chapitre I paragraphe (1.2.12), on a : Re =
$$\frac{V D_h}{v}$$
 avec, $v = \frac{\mu}{\rho} = 10^{-6} \, \text{m}^2 \, / \text{s}$

Comme: Q = V .S et
$$D_h = 4\frac{S}{P} = \frac{4bh}{2h+b}$$
, nous avons: $R_e = \frac{4Q}{p}\frac{1}{v} = \frac{4Q}{(b+2h)}\frac{1}{v}$

Pour déterminer le régime d'écoulement, nous calculons le nombre de Reynolds pour différents débits et différentes hauteurs, nous obtenons les résultats présentés dans le tableau III-6.

Tableau III-	- 6 : Différents re	égimes d'écouleme	ent selon Reynolds

Q(l/s)	H _{max} (cm)	R _e	Régime d'écoulement
0,16	19,3	824,74	Laminaire
0.28	20,3	1407,03	Laminaire
0,36	20,9	1784,17	Laminaire
0,40	21,4	1955,99	Laminaire
0,62	22,1	2980,76	Transitoire
1,00	22,8	4728,13	Turbulent
1,27	24,7	5746,60	Turbulent

• Détermination du régime d'écoulement

Le nombre de Froude est donné par (chapitre I) : $Fr = \frac{V}{\sqrt{g \times h}}$.

Nous pouvons classer les écoulements selon la valeur du nombre de Froude (tableau III.7).

Q(1/s)	H _{max} (cm)	F_{r}	Régime d'écoulement
0,16	19,3	0,0016	Fluvial
0,28	20,3	0,0021	Fluvial
0,36	20,9	0,0023	Fluvial
0,4	21,4	0,0024	Fluvial
0,62	22,1	0,0029	Fluvial
1,00	22,8	0,0035	Fluvial
1,27	24,7	0,0037	Fluvial

Tableau III-7: Différents régimes d'écoulement selon Froude.

Nous remarquons que le nombre de Froude est inferieur à 1 ($F_r < 1$) et donc le régime d'écoulement est fluvial.

5. Mesure de la concentration du polluant

5.1 Préparation des solutions étalons

La solution mère est de 500 mg/l (500 mg de phénol dans un litre d'eau).

Pour préparer les solutions étalons de 5mg/l jusqu'a 100mg/l : nous appliquons la formule suivante : $N_1.V_1 = N_2.V_2$

Donc $V_1 = N_2 \cdot V_2 / N_1$

N₁: La concentration de la solution mère est égale à 500 mg/l

 V_1 : Le volume de la solution mère pour avoir N_2

 N_2 : La Concentration de la solution étalon est égale à [5mg/l - 100 mg/l]

V₂: Le volume de la solution étalon est égal à 100 ml

Les résultats obtenus sont donnés dans le tableau III-8 ci-dessous :

Tableau : III-8 : le volume de la solution mère pour avoir les solutions étalons

N ₂ (mg/l)	5	15	25	35	45	55	65	75
V_1 (ml)	1	3	5	7	9	11	13	15

Donc pour avoir une solution étalon de 5 mg/l, nous prenons 1ml de la solution mère, nous ajoutons l'eau distillée jusqu'à 100 ml.

5.2 Préparation des réactifs

Pour préparer 11 de la solution tampon, nous avons réalisé les étapes suivantes :

- Nous dissolvons dans 700ml d'eau distillée 34g de NH₄Cl, 200g de tartrate double de potassium et sodium, nous ajustons avec de l'ammoniaque jusqu'à avoir un PH = 9.5, enfin nous ajoutons de l'eau distillée jusqu'à 11.
- Nous avons préparé 1 l de solution de ferricyanure de potassium à 20 g/l.

- Nous avons également préparé 1 l de solution de 4-amino antipyrine à 20 g/l (flacon en verre teinté, fermé par un bouchon rôdé).

5.3 Mesure de la densité optique

- Nous mettons dans un bécher de 125 ml notre solution et nous ajoutons 5,0 ml de la solution tampon;
- Nous additionnons 1,0 ml de la solution de 4-amino antipyrine, et nous agitons immédiatement;
- nous ajoutons 2,0 ml de solution de ferricyanure de potassium, et nous agitons ;
- Nous laissons la coloration se développer à température ambiante pendant 5 min.

Pour déterminer la densité optique du phénol, nous réglons le spectrophotomètre (Photographie III.7) à une longueur d'onde $\lambda = 510$, et nous faisons le tarage avec de l'eau distillée avant chaque mesure.

Photographie III.7: Spectrophotomètre

Les résultats obtenus sont donnés dans le tableau III-9.

Tableau III-9: Résultats d'étalonnage du phénol

C (mg/l)	0	100	200	300	400	500	600	700	800
Densité	0,000	1,123	2,441	2,906	3,602	4,963	5,844	6,977	7,960
optique (D ₀)									

Après avoir mesuré les valeurs de la densité optique, nous traçons la droite Do = f (C) qui représente la courbe d'étalonnage du phénol.

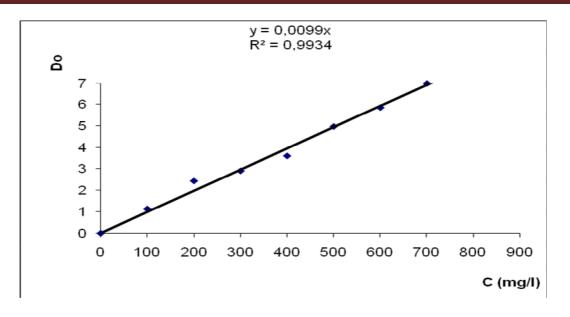


Figure III.12 : Courbe d'étalonnage du phénol

La courbe d'étalonnage du phénol est une droite qui passe par l'origine d'équation y = 0,0099x

D'où :
$$D_o = 0.0099 C$$

La concentration de chaque prélèvement est calculée en fonction de sa densité optique par l'équation suivante : $C = 101,01 D_0$

6. Analyse granulométrique

6.1 But de l'essai

L'analyse granulométrique permet de déterminer les dimensions et les pourcentages pondéraux respectifs des différentes familles de grains constituant les échantillons. Elle s'applique à tous les granulats de dimension nominale inférieure ou égale à 63 mm, à l'exclusion des fillers.

6.2 Principe de l'essai

L'essai consiste à classer les différents grains constituants l'échantillon en utilisant une série de tamis, emboîtés les un sur les autres, dont les dimensions des ouvertures sont décroissantes du haut vers le bas. Le matériau étudié est placé en partie supérieure des tamis et les classements des grains s'obtiennent par vibration de la colonne de tamis.

6.3 Matériel nécessaire

Pour un travail d'essai aux résultats reproductibles, il est conseillé d'utiliser une machine à tamiser électrique qui comprime un mouvement vibratoire horizontal, ainsi que des secousses verticales, à la colonne de tamis.

Photographie III.8: Tamiseuse électrique

Afin d'éviter toute ambiguïté, un tamis et une passoire équivalents ont été désignés par un même numéro de module.

Pour notre expérience, nous avons utilisé les tamis de modules suivants : 41, 40, 39, 37, 36, 35, 32, 31 et 27.

Tableau III-10: Dimensions nominales des tamis

Module	27	31	32	35	36	37	39	40	41
Diamètre de tamis (mm)	0,40	1,00	1,25	2,50	3,15	4,00	6,30	8,00	10,00

6.4 Description de l'essai

- Nous emboîtons les tamis les uns sur les autres, dans un ordre tel que la progression des ouvertures soit croissante du bas de la colonne vers le haut. En partie inférieure, nous dispose d'un fond étanche qui permettra de récupérer les fillers. Un couvercle est disposé en haut de la colonne afin d'interdire toute perte de matériau pendant le tamisage.
- Nous versons 1kg de matériau étudié en haut de la colonne de tamis et celle-ci entre en vibration à l'aide de la tamiseuse électrique. Nous prenons le temps de tamisage égal à 10 minutes.
- ➤ Le refus du tamis ayant la plus grande maille est pesé. Soit R₁ la masse de ce refus.
- ➤ Le refus du tamis immédiatement inférieur est pesé avec le refus précédent. Soit R₂ la masse du deuxième refus. Cette opération est poursuivie pour tous les tamis pris dans l'ordre des ouvertures décroissantes.
- ➤ La somme des refus cumulés mesurés sur les différents tamis et du tamisât sur le fond (fillers) doit coïncider avec le poids de l'échantillon introduit en tête de colonne. La perte éventuelle de matériaux pendant l'opération de tamisage ne doit pas excéder plus de 2% du poids total de l'échantillon de départ.

Les résultats sont présentés dans le tableau III-11 suivant :

Diamètre tamis	Module tamis	Refus cumulé	Refus cumule	Passant cumulé
(mm)		(g)	(%)	(%)
10,00	41		0,0	100,0
8,00	40		0,0	100,0
6,30	39		0,0	100,0
4,00	37	78	7,8	92,2
3,15	36	226	22,6	77,4
2,50	35	441	44,1	55,9
1,25	32	799	79,9	20,1
1,00	31	876	87,6	12,4
0,40	27	980	98,0	2,0
Fond		997	99,7	0,3

La distribution des particules solides en fonction de leurs dimensions (diamètres), est représentée sur un diagramme granulométrique en coordonnées semi-logarithmiques. La figure III.13 donne la courbe granulométrique du sable utilisé

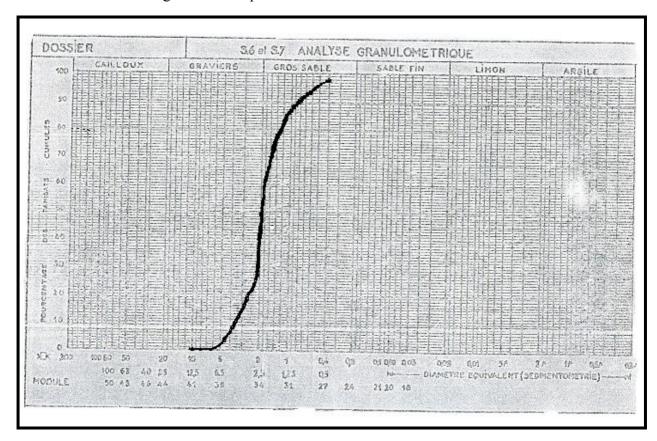


Figure III.13: Courbe granulométrique

Deux paramètres permettent d'estimer la forme de la courbe granulométrique :

- Le degré d'uniformité $C_u = \frac{D_{60}}{D_{10}}$ (coefficient de Hazen)
- Et la courbe $C_c = \frac{(D_{30})^2}{(D_{10} \times D_{60})}$

 D_{10} , D_{30} , D_{60} étant respectivement les diamètres correspondant aux 10,30,60, de la courbe granulométrique

$$C_u = \frac{1.6}{3.5} = 0.46$$

$$C_C = \frac{2.5^2}{1.6 \times 3.5} = 1.11$$

Nous remarquons que notre sable appartient au gravier sableux.

Conclusion

Dans ce chapitre, nous avons présenté les outils nécessaires pour notre expérimentation. Afin d'obtenir des mesures assez précises, nous avons fait :

- > Etalonnage du déversoir :
 - Nous avons déterminé l'équation du débit en fonction de l'épaisseur de la lame déversante et le coefficient du débit.
- Détermination du régime d'écoulement :
 - A partir de nombre de Reynolds, nous remarquons que notre régime est turbulent lorsque Q est supérieur ou est égale 11/s.
- > Etalonnage du phénol :
 - Détermination la concentration du phénol en fonction de la densité optique.
- > Granulométrie du sable :
 - D'après l'analyse granulométrique, nous remarquons que notre sable appartient à la classe de gravier sableux.

Chapitre IV

Analyse des résultats expérimentaux

Chapitre IV

Analyse des résultats expérimentaux

Introduction

Dans notre expérimentation, nous avons étudié la dispersion d'un polluant actif, en l'occurrence le phénol, dans un canal rectangulaire.

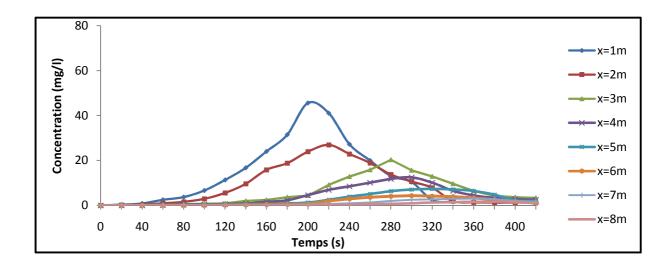
Nous avons injecté une solution du phénol avec des concentrations initiales différentes (500mg/l, 600mg/l, 700mg/l) avec un débit d'injection constant de 25 ml/s.

Nous avons étudié deux types d'injection :

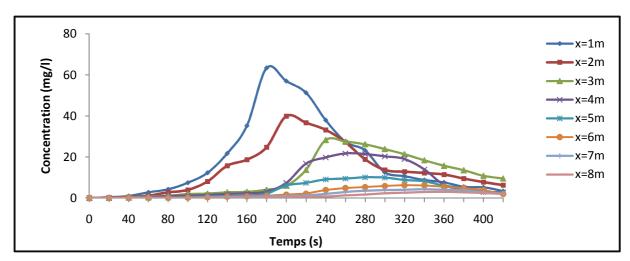
- Injection discontinue pendant 25s.
- Injection continue.

Nous avons suivi l'évolution de la concentration du phénol à la surface libre de l'écoulement et à 2cm du fond du canal en fonction du temps à différentes distances de l'origine (le point d'injection du polluant) et pour différents débits d'écoulement.

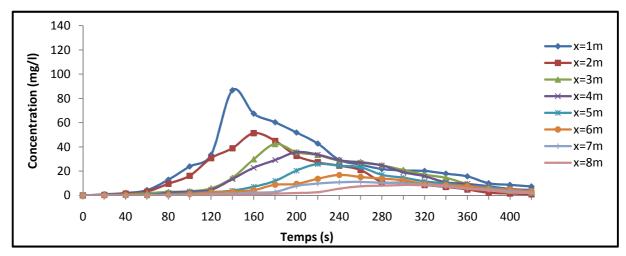
1. <u>Détermination de l'influence de la distance sur l'évolution de la concentration du</u> polluant

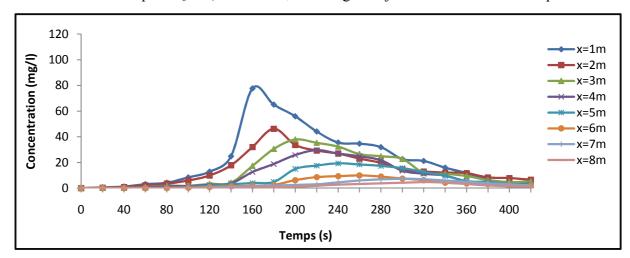

1.1 Cas d'une injection discontinue de la pollution

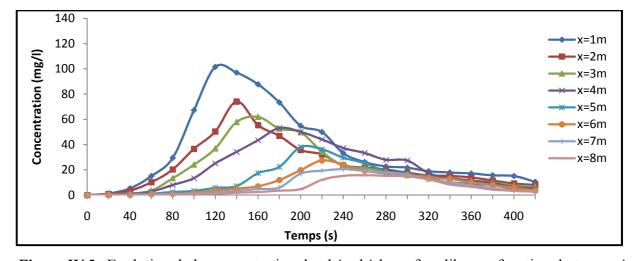
Lors de nos essais, la période d'injection du phénol dans le canal est de 25s.


1.1.1 Prélèvement à la surface libre de l'écoulement

a) Pour une concentration initiale du phénol de $C_0 = 500 \text{mg/l}$


Les profils de la concentration obtenus expérimentalement à x=1 m, x=2 m, x=3 m, x=4 m, x=5 m, x=6 m, x=7 m et x=8 m de l'origine (point d'injection du polluant) pour différents débits avec une concentration du phénol injecté de 500mg/l, sont présentés sur les figures (IV.1) \div (IV.6).


Figure IV.1: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.20 l/s et $C_0 = 500 \text{mg/l}$ - Injection discontinue de la pollution.


Figure IV.2: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.35 l/s et $C_0 = 500$ mg/l - Injection discontinue de la pollution.

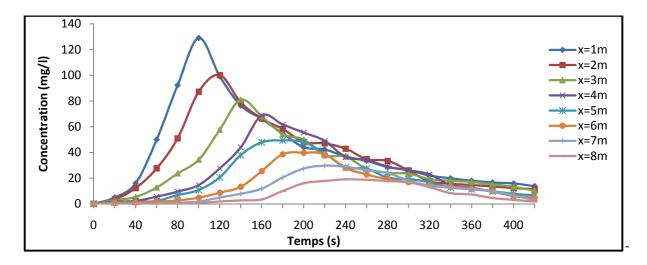
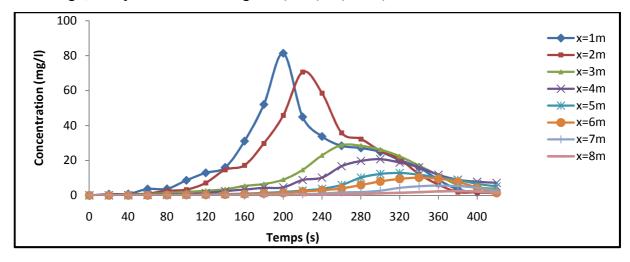
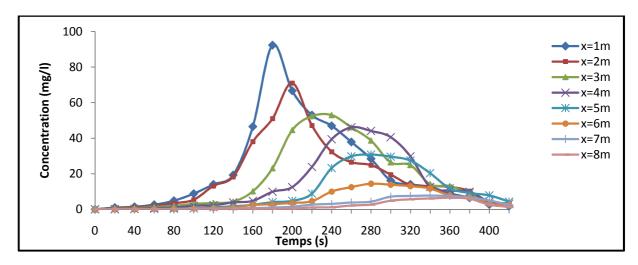
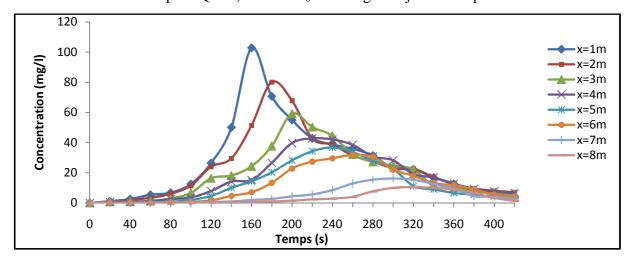

Figure IV.3: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.42 l/s et $C_0 = 500 \text{mg/l}$ - Injection discontinue de la pollution.

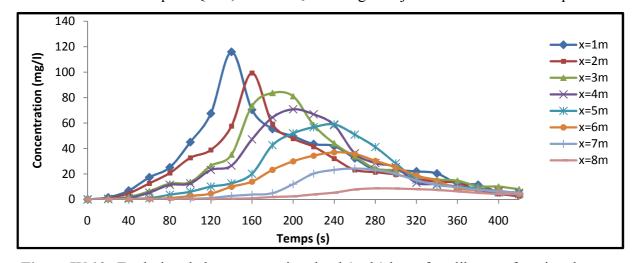
Figure IV.4: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.54 l/s et $C_0 = 500$ mg/l - Injection discontinue de la pollution.

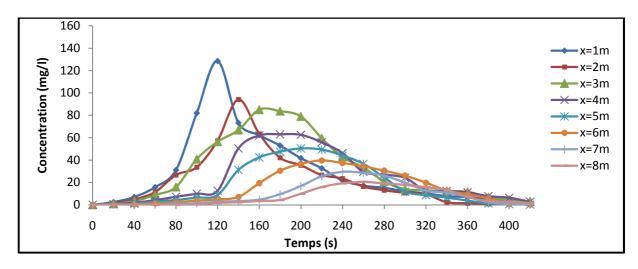

Figure IV.5: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.62 l/s, et $C_0 = 500 \text{mg/l}$ - Injection discontinue de la pollution.


Figure IV.6: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.75 l/s et $C_0 = 500$ mg/l - Injection discontinue de la pollution.

b) Pour une concentration initiale du phénol $C_0 = 600 \text{mg/l}$


Les profils de la concentration obtenus expérimentalement à différentes sections de l'origine (point d'injection du polluant) pour différents débits avec une concentration du phénol injecté de 600mg/l, sont présentés sur les figures (IV-7) ÷ (IV-12).


Figure IV.7: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.2 l/s et $C_0 = 600$ mg/l - Injection discontinue de la pollution.


Figure IV.8: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.35 l/s et $C_0 = 600$ mg/l - Injection de pollution discontinue.

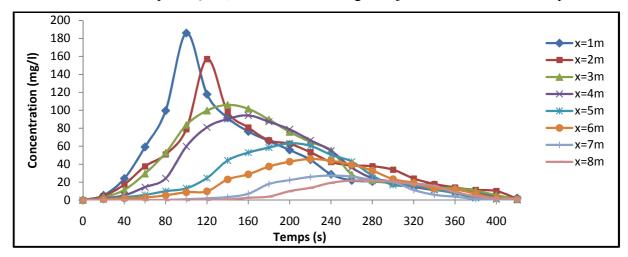
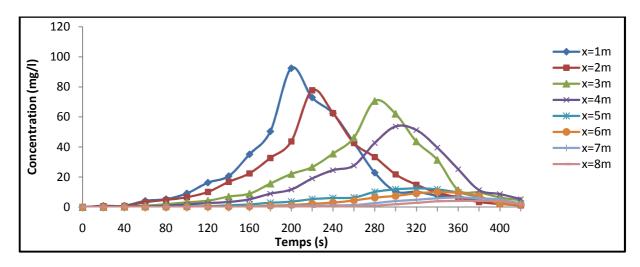
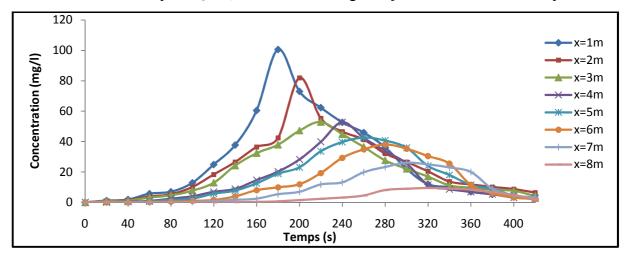
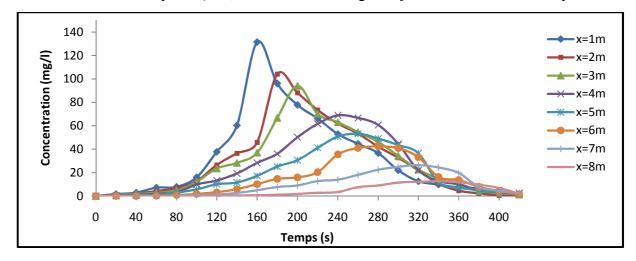

Figure IV.9: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.42 l/s et $C_0 = 600 \text{mg/l}$ - Injection discontinue de la pollution.

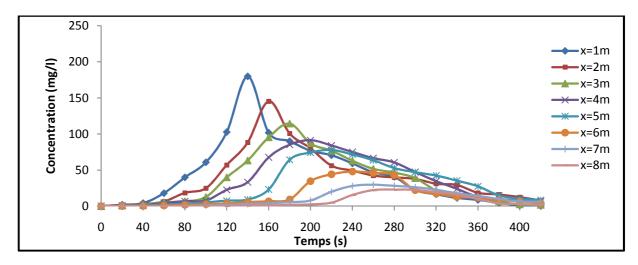
Figure IV.10: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.54 l/s et $C_0 = 600$ mg/l - Injection discontinue de la pollution

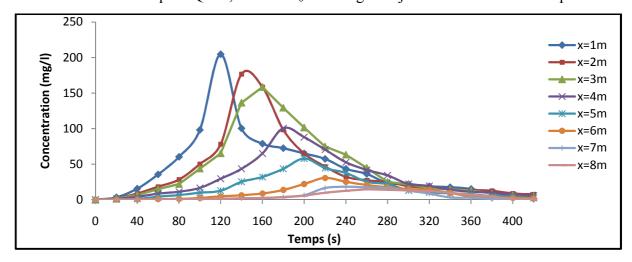

Figure IV.11: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.62 l/s et $C_0 = 600 \text{mg/l}$ - Injection discontinue de la pollution.


Figure IV.12: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.75 l/s et $C_0 = 600$ mg/l - Injection discontinue de la pollution.

c) Pour une concentration initiale du phénol $C_0 = 700 \text{mg/l}$


Les profils de la concentration obtenus expérimentalement à différentes sections de l'origine (point d'injection du polluant) pour différents débits avec une concentration du phénol injecté de 700mg/l, sont présentés sur les figures (IV.13) ÷ (IV.18).


Figure IV.13: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.2 l/s et $C_0 = 700$ mg/l - Injection discontinue de la pollution.


Figure IV.14: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.35 l/s et $C_0 = 700$ mg/l - Injection discontinue de la pollution.

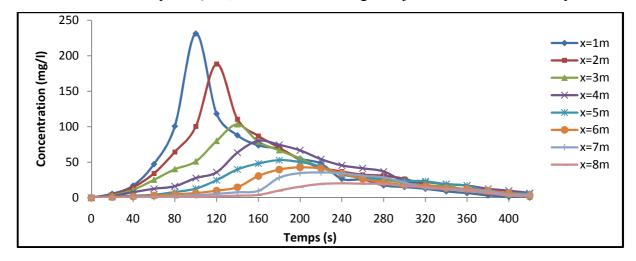

Figure IV.15: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.42 l/s et $C_0 = 700 \text{mg/l}$ - Injection discontinue de la pollution.

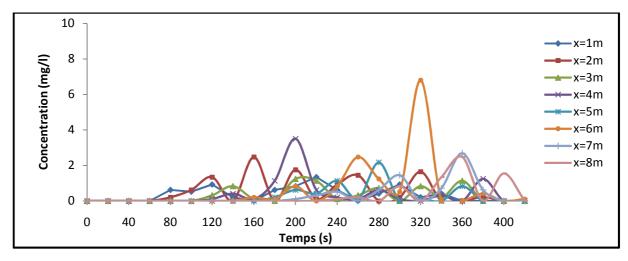
Figure IV.16: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.54 l/s et $C_0 = 700 \text{mg/l}$ - Injection discontinue de la pollution.

Figure IV.17: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.62 l/s et $C_0 = 700 \text{mg/l}$ - Injection discontinue de la pollution.

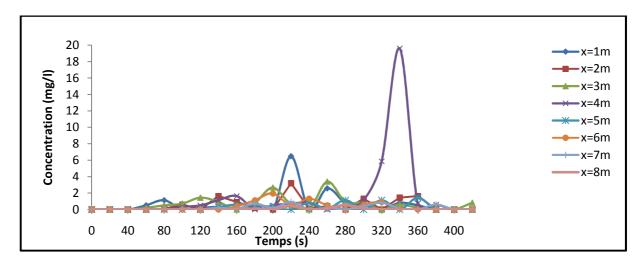
Figure IV.18 : Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.75 l/s et $C_0 = 700 \text{mg/l}$ - Injection discontinue de la pollution.

d) Interprétation des graphes

Nous remarquons que:

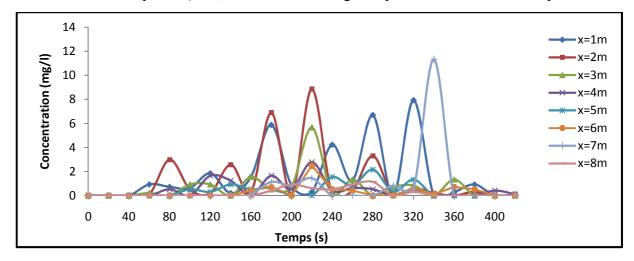

- Les courbes ont la même allure quelques soient la concentration initiale injectée (500mg/l, 600mg/l, 700mg/l), le débit de l'écoulement dans le canal (0.21/s, 0.35 1/s, 0.421/s, 0.54 1/s, 0.62 1/s, 0.75 1/s) et la distance par rapport au point d'injection du polluant.
- La concentration du polluant actif (phénol) augmente rapidement jusqu'à atteindre un pic, puis elle commence à diminuer lentement avec le temps.
- Pour un même débit d'écoulement et à des sections différentes, nous observons un décalage temporel dans l'apparition du phénol. Les concentrations aux pics décroissent en s'éloignant du point de l'injection. Le temps de séjour du polluant augmente.

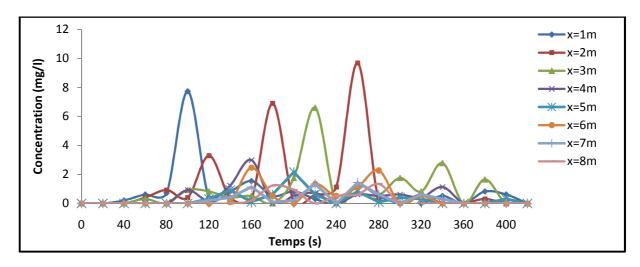
Nous pouvons expliquer les résultats observés par la domination du caractère convectif du transport du polluant au voisinage de l'injection. En s'éloignant du point d'injection du polluant, le transport devient de plus en plus diffusif.


1.1.2 Prélèvement à 2 cm du fond du canal

a) Pour une concentration du phénol $C_0 = 500 \text{mg/l}$

Les profils de la concentration obtenus expérimentalement à 2cm du fond du canal à différentes sections pour des différents débits d'écoulements avec une concentration du phénol injecté de 500 mg/l, pendant une période de 25s, sont présentés Sur les figures (IV.19) ÷ (IV.24).


Figure IV.19: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.2 l/s et $C_0 = 500$ mg/l - Injection discontinue de la pollution.


Figure IV.20: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.35 l/s et $C_0 = 500 \text{mg/l}$ - Injection discontinue de la pollution.

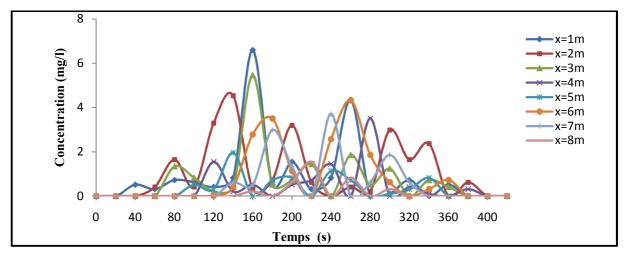
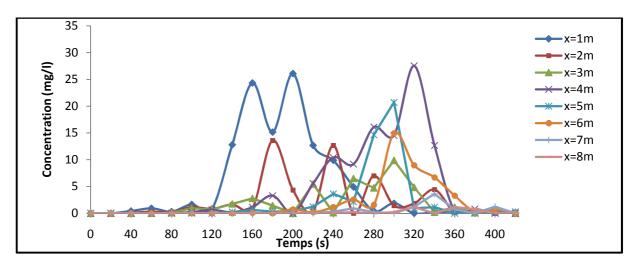
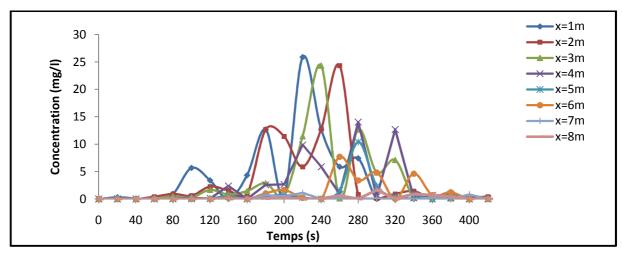
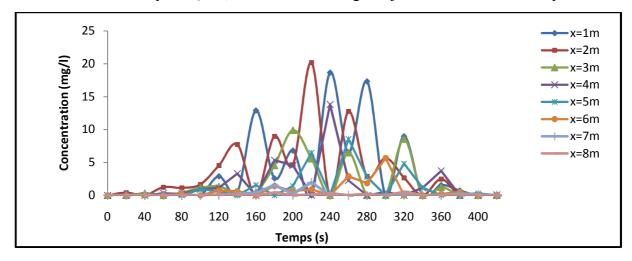

Figure IV.21: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.62 l/s et $C_0 = 500 \text{mg/l}$ - Injection discontinue de la pollution.

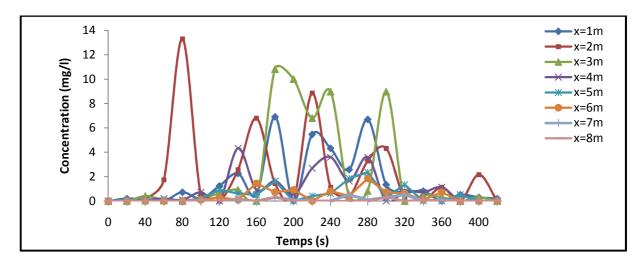
Figure IV.22: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.62 l/s et $C_0 = 500$ mg/l - Injection discontinue de la pollution.

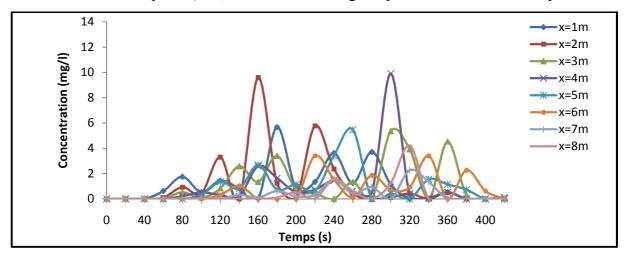

Figure IV.23: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.62 l/s et $C_0 = 500$ mg/l - Injection discontinue de la pollution.


Figure IV.24: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.62 l/s et $C_0 = 500$ mg/l - Injection discontinue de la pollution.

b) Pour une concentration initiale du phénol $C_0 = 600 \text{mg/l}$


Les profils de la concentration obtenus expérimentalement à 2cm du fond du canal à différentes sections de l'origine (point d'injection du polluant) pour différents débits d'écoulements avec une concentration du phénol injecté de 600 mg/l, sont donnés sur les figures (IV.25) ÷ (IV.30).


Figure IV.25: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.2 l/s et $C_0 = 600 \text{mg/l}$ - Injection discontinue de la pollution.


Figure IV.26: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.35 l/s et $C_0 = 600$ mg/l- Injection discontinue de la pollution.

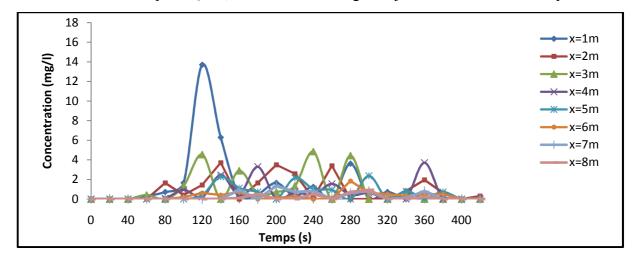
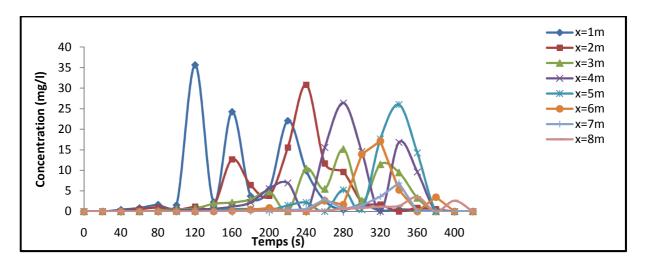
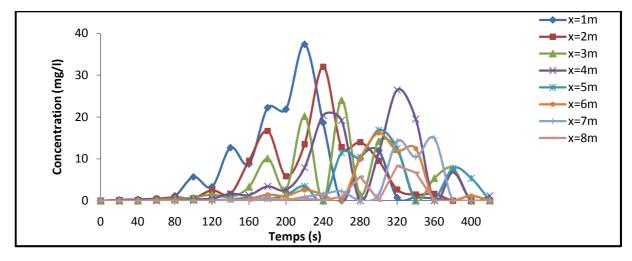
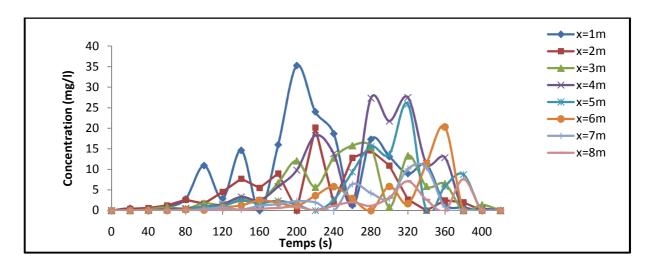

Figure IV.27: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.42 l/s et $C_0 = 600 \text{mg/l}$ - Injection discontinue de la pollution

Figure IV.28: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.54 l/s et $C_0 = 600$ mg/l- Injection discontinue de la pollution.


Figure IV.29: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.62 l/s et $C_0 = 600$ mg/l - Injection discontinue de la pollution.


Figure IV.30: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.75 l/s et $C_0 = 600$ mg/l - Injection discontinue de la pollution.

c)Pour une concentration initiale du phénol C₀=700mg/l


Les profils de la concentration obtenus expérimentalement à 2cm du fond du canal à différentes distances de l'origine (point d'injection du polluant) pour différents débits d'écoulements avec une concentration initiale du phénol injecté de 700mg/l, sont donnés sur les figures (IV.31) ÷ (IV.36).

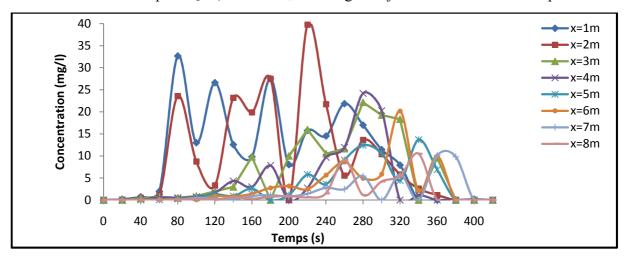

Figure IV.31: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.2 l/s et $C_0 = 700$ mg/l - Injection discontinue de la pollution.

Figure IV.32: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.35 l/s et $C_0 = 700$ mg/l - Injection discontinue de la pollution.

Figure IV.33: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q=0,42 l/s et C_0 = 700mg/l - Injection discontinue de la pollution

Figure IV.34: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.54 l/s et $C_0 = 700$ mg/l - Injection discontinue de la pollution.

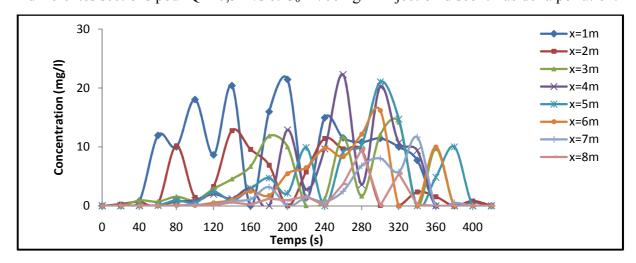
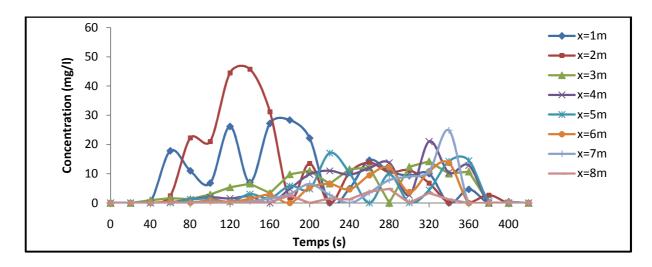



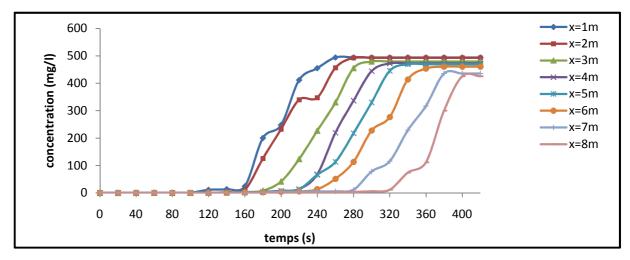
Figure IV.35: Evolution de la concentration en fonction du temps à 2 cm du fond pour Q = 0.62 l/s, pour différentes sections et $C_0 = 700 \text{mg/l}$ - Injection discontinue de la pollution.

Figure IV.36: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.75 l/s et $C_0 = 700$ mg/l - Injection discontinue de la pollution.

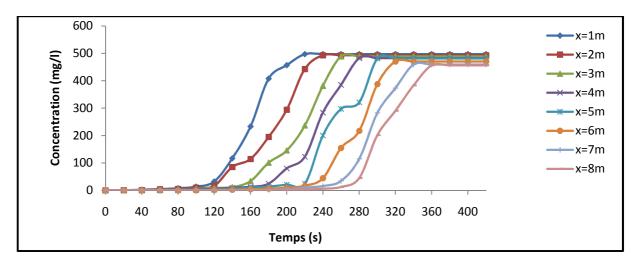
Interprétation des graphes

Nous remarquons que les profils de la concentration du phénol à différentes sections pour six débits d'écoulement différents n'ont pas une allure bien déterminée à cause de la présence de plusieurs pics de concentration, ce qui est peut être expliqué par la présence forte de la turbulence.

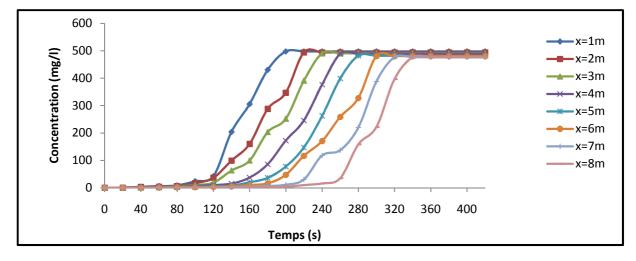
Ce que nous pouvons conclure est que le phénol au cours de sa dispersion atteint le fond du canal.

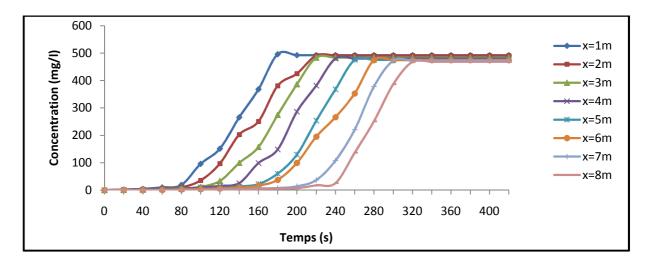

1.2 Cas d'une injection continue de pollution

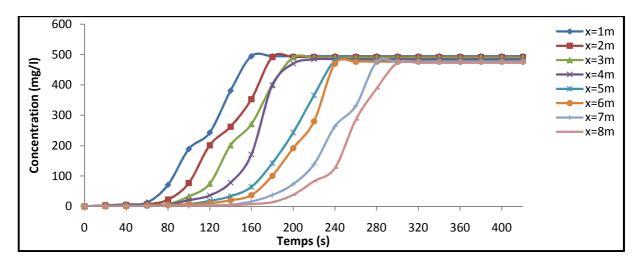
1.2.1 Prélèvement à la surface libre de l'écoulement


a) Pour une concentration initiale du phénol $C_0 = 500 \text{mg/l}$

Dans le cas de l'injection continue du polluant, le débit de la solution du phénol injectée est constant et dure jusqu'à la fin de tous les prélèvements.


Les profils de la concentration obtenus expérimentalement à différentes distance de l'origine (point d'injection du polluant) pour différents débits d'écoulement et avec une concentration du phénol injecté de 500mg/l, sont présentés sur les figures (IV.37) ÷ (IV.42).


Figure IV.37: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.2 l/s et $C_0 = 500 \text{mg/l}$ - Cas d'injection continue de pollution


Figure IV.38: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.35 l/s et $C_0 = 500 \text{mg/l}$ - Cas d'injection continue de pollution

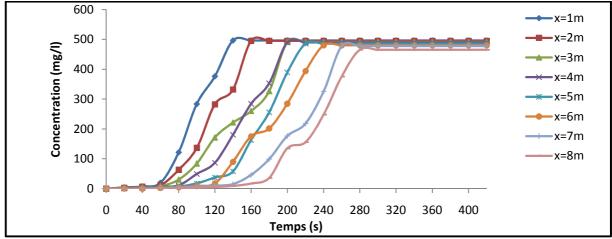

Figure IV.39: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.42 l/s et $C_0 = 500 \text{mg/l}$ - Cas d'injection continue de pollution

Figure IV.40: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.54 l/s et $C_0 = 500 \text{mg/l}$ - Cas d'injection continue de pollution

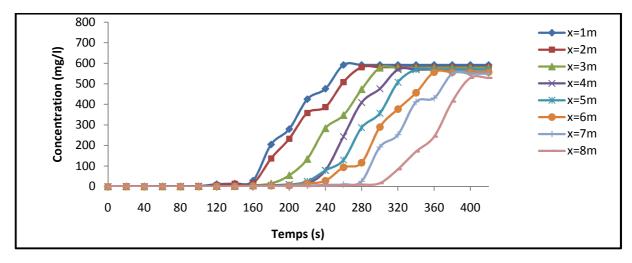
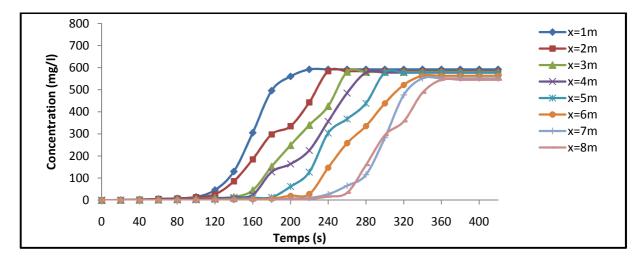
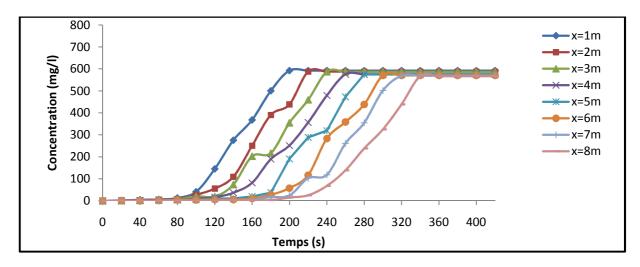
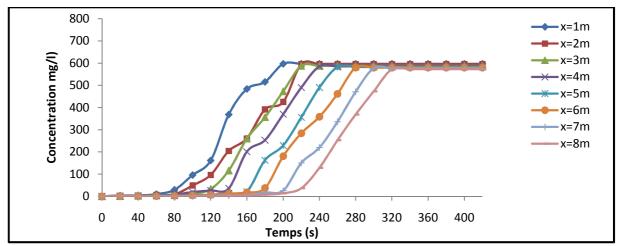

Figure IV.41: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.62 l/s et $C_0 = 500 \text{mg/l}$ - Cas d'injection continue de pollution

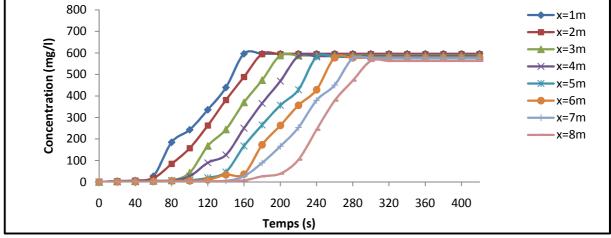
Figure IV.42: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.75 l/s et $C_0 = 500 \text{mg/l}$ - Cas d'injection continue de pollution

b) Pour une concentration du phénol $C_0 = 600 \text{mg/l}$

Les profils de la concentration obtenus expérimentalement à différents sections de l'origine (point d'injection du polluant) pour différents débits d'écoulement et avec une concentration du phénol injecté de 600 mg/l, sont donnés sur les figures (IV.43) ÷ (IV.48).

Figure IV.43: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.2 l/s et $C_0 = 600 \text{mg/l}$ - Cas d'injection continue de pollution


Figure IV.44: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.35 l/s et $C_0 = 600$ mg/l - Cas d'injection continue de pollution

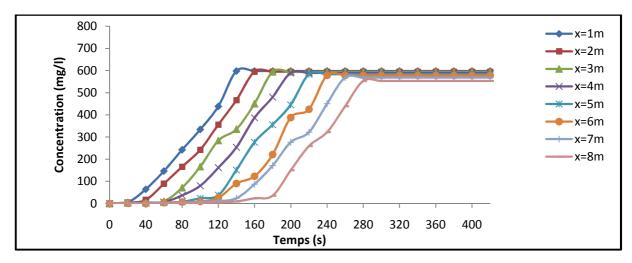
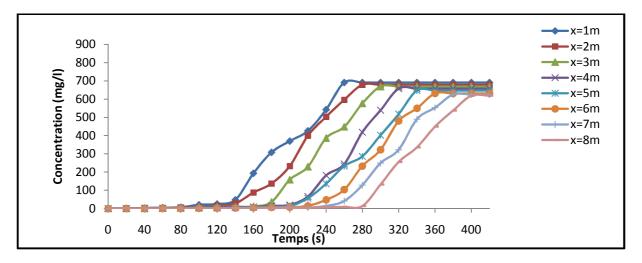
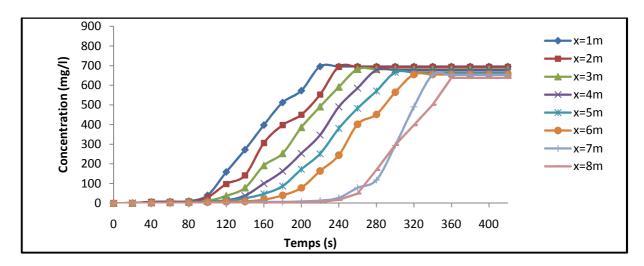
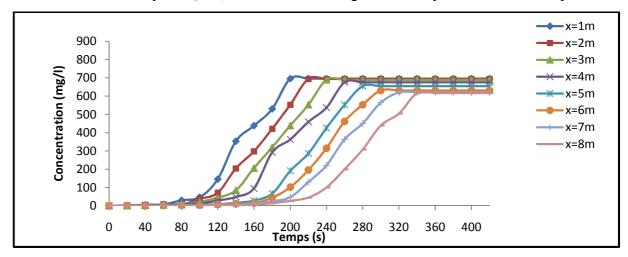

Figure IV.45: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.42 l/s et $C_0 = 600 \text{mg/l}$ - Cas d'injection continue de pollution

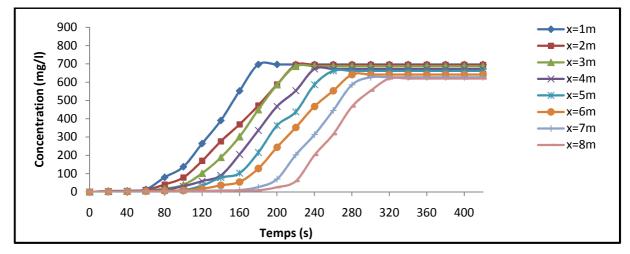
Figure IV.46: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.54 l/s et $C_0 = 600 \text{mg/l}$ - Cas d'injection continue de pollution

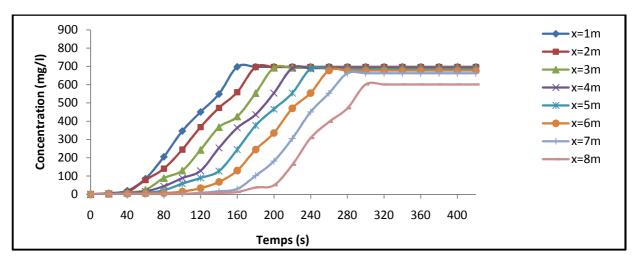

Figure IV.47: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.62 l/s et $C_0 = 600$ mg/l - Cas d'injection continue de pollution


Figure IV.48: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.75 l/s et $C_0 = 600$ mg/l - Cas d'injection continue de pollution

c) Pour une concentration initiale du phénol $C_0 = 700 \text{mg/l}$


Les profils de la concentration obtenus expérimentalement à différents sections de l'origine (point d'injection du polluant) pour différents débits d'écoulement et avec une concentration du phénol injecté de 700 mg/l, sont présentés sur les figures (IV.49) ÷ (IV.54).


Figure IV.49: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.20 l/s et $C_0 = 700 \text{mg/l}$ - Cas d'injection continue de pollution


Figure IV.50 : Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.35 l/s et $C_0 = 700 \text{mg/l}$ - Cas d'injection continue de pollution

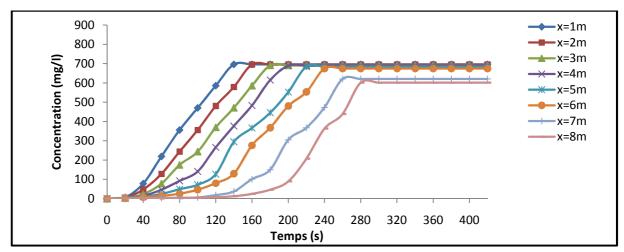

Figure IV.51: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0,42 l/s et $C_0 = 700$ mg/l- Cas d'injection continue de pollution

Figure IV.52 : Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.54 l/s et $C_0 = 700$ mg/l- Cas d'injection continue de pollution

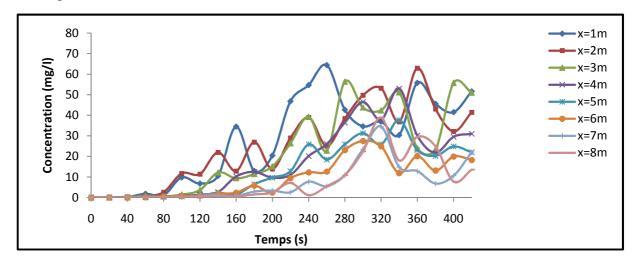
Figure IV.53: Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.62 l/s et $C_0 = 700$ mg/l - Cas d'injection continue de pollution

Figure IV.54 : Evolution de la concentration du phénol à la surface libre en fonction du temps à différentes sections pour Q = 0.75 l/s et $C_0 = 700$ mg/l - Cas d'injection continue de pollution

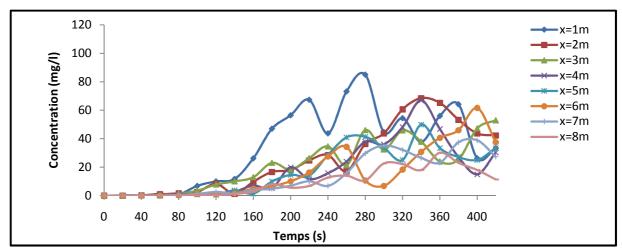
Interprétation des graphes

Au cours de l'injection continue du polluant, le débit de la solution du phénol injectée est constant et dure jusqu'à la fin de tous les prélèvements.

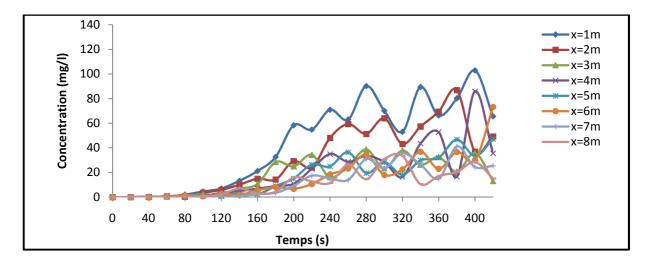
Nous remarquons que dans toutes les sections la concentration du phénol augmente rapidement pendant un certain laps de temps, avant qu'elle ne devient de plus en plus lente et tend à être constante.

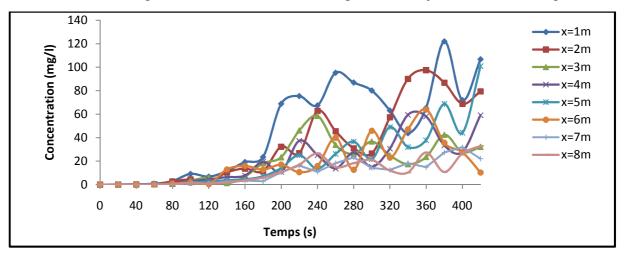

La période de la croissance rapide de la concentration du phénol correspond à la période convective. Alors que la deuxième période correspond à la période de diffusion du polluant.

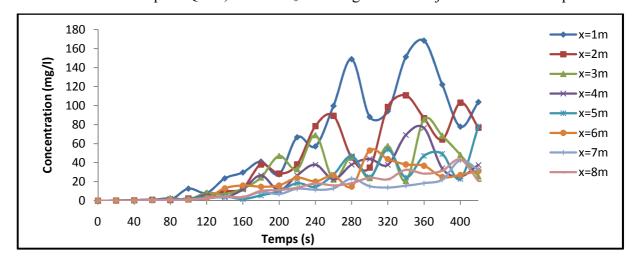
1.2.2 Prélèvement à 2cm du fond du canal


a) Pour une concentration initiale du phénol $C_0 = 500 \text{mg/l}$

Les figures (IV.55) ÷ (IV.60) donnent les profils de la concentration du phénol obtenus expérimentalement à 2cm du fond du canal à différentes sections de l'origine (point d'injection


du polluant) pour différents débits d'écoulement et avec une concentration du phénol injecté de 500 mg/l.


Figure IV.55: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.2 l/s et $C_0 = 500$ mg/l - Cas d'injection continue de pollution


Figure IV.56: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.35 l/s et $C_0 = 500 \text{mg/l}$ - Cas d'injection continue de pollution

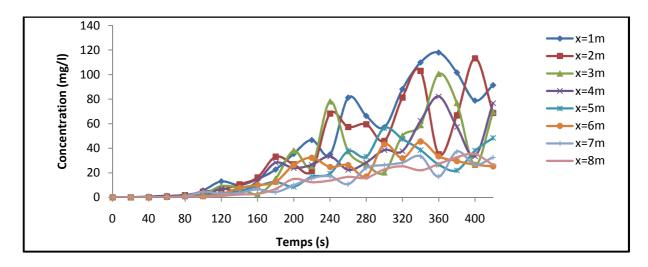
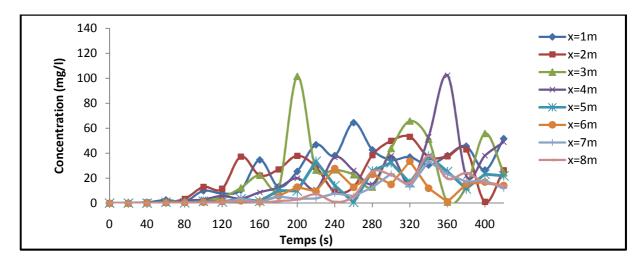
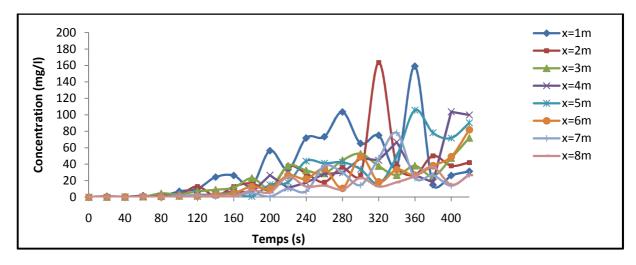
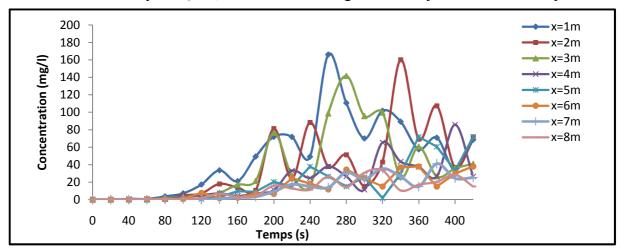

Figure IV.57: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.42 l/s et $C_0 = 500 \text{mg/l}$ - Cas d'injection continue de pollution

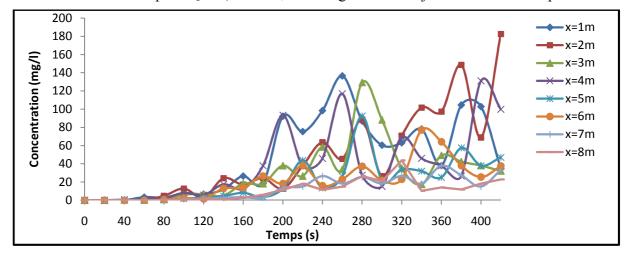
Figure IV.58: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.54 l/s et $C_0 = 500$ mg/l - Cas d'injection continue de pollution

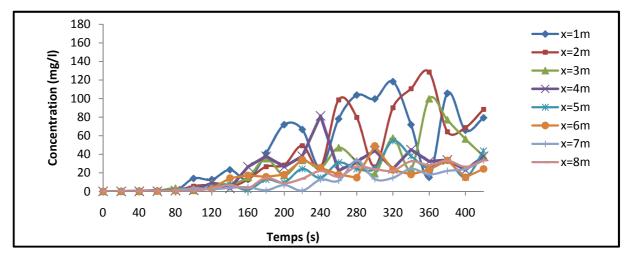

Figure IV.59: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.62 l/s et $C_0 = 500 \text{mg/l}$ - Cas d'injection continue de pollution


Figure IV.60: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.75 l/s et $C_0 = 500 \text{mg/l}$ - Cas d'injection continue de pollution

b) Pour une concentration du phénol $C_0 = 600 \text{mg/l}$


Les profils de la concentration du phénol obtenus expérimentalement à 2cm du fond du canal à différentes sections de l'origine (point d'injection du polluant) pour des différents débits d'écoulements avec une concentration du phénol injecté de 600mg/l, sont présentés sur les figures (IV.61) ÷ (IV.66).


Figure IV.61: Evolution de la concentration du phénol à 2cm du fond en fonction du temps à différentes sections pour Q = 0.20 l/s et $C_0 = 600 \text{mg/l}$ - Cas d'injection continue de pollution


Figure IV.62: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.35 l/s et $C_0 = 600 \text{mg/l}$ - Cas d'injection continue de pollution

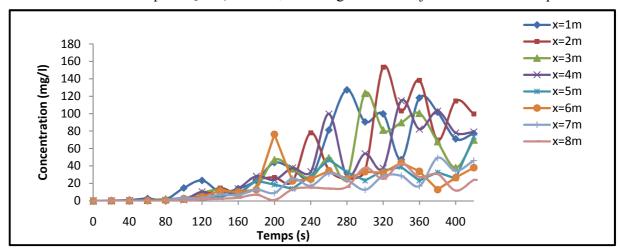
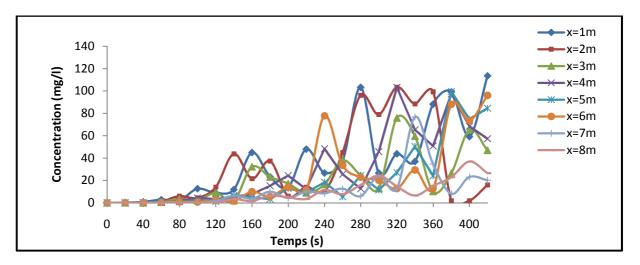
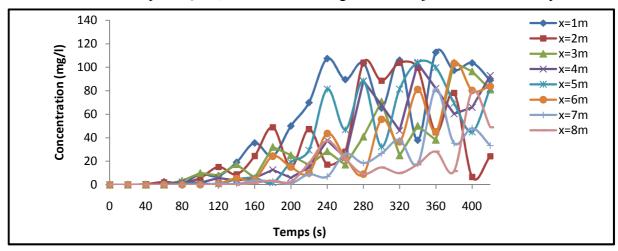
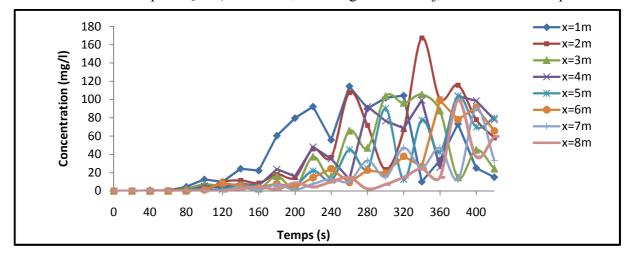

Figure IV.63: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour $Q = 0.42 \text{ l/s } C_0 = 600 \text{mg/l}$ - Cas d'injection continue de pollution.

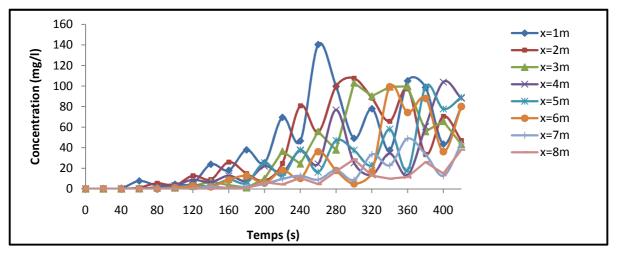
Figure IV.64: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour $Q = 0.54 \text{ l/s } C_0 = 600 \text{mg/l}$ - Cas d'injection continue de pollution

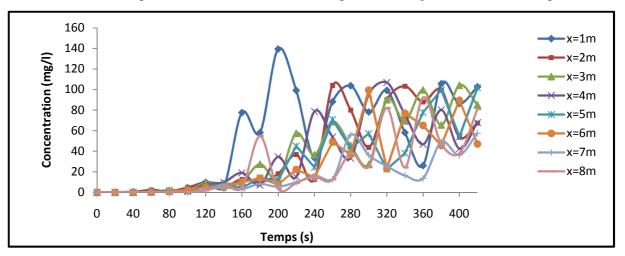

Figure IV.65: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour $Q = 0.62 \text{ l/s } C_0 = 600 \text{mg/l}$ - Cas d'injection continue de pollution


Figure IV.66: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.75 l/s et $C_0 = 600 \text{mg/l}$ - Cas d'injection continue de pollution

c) Pour une concentration du phénol C_0 =700mg/l


Les profils de la concentration obtenus expérimentalement à 2cm du fond du canal à différentes sections de l'origine (point d'injection du polluant) pour différents débits d'écoulements avec une concentration du phénol injecté de 700 mg/l, sont présentés sur les figures (IV.67) ÷ (IV.72).


Figure IV.67: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.2 l/s et $C_0 = 700$ mg/l - Cas d'injection continue de pollution


Figure IV.68: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.35 l/s et $C_0 = 700 \text{mg/l}$ - Cas d'injection continue de pollution

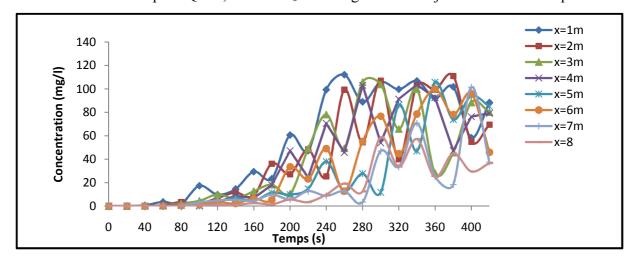

Figure IV.69: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.42 l/s et $C_0 = 700 \text{mg/l}$ - Cas d'injection continue de pollution

Figure IV.70: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.54 l/s et $C_0 = 700$ mg/l - Cas d'injection continue de pollution.

Figure IV.71: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.62 l/s et $C_0 = 700 \text{mg/l}$ - Cas d'injection continue de pollution

Figure IV.72: Evolution de la concentration du phénol à 2 cm du fond en fonction du temps à différentes sections pour Q = 0.75 l/s et $C_0 = 700 \text{mg/l}$ - Cas d'injection continue de pollution

Interprétation des graphes

Nous remarquons que l'allure de la courbe de concentration est aléatoire, de telle façon qu'il y a plusieurs pics de concentration, ce qui est peut être expliqué par la présence forte de la turbulence au fond du canal. Nous observons aussi que les pics de la concentration au fond du canal augmentent avec le temps de l'injection.

2. Détermination de l'influence du débit sur l'évolution de la concentration

2.1 Injection à la surface pour 500 mg/l

Les figures (IV.73) ÷ (IV.80) représentent les profils de la concentration obtenus à différentes sections et pour des différents débits d'écoulement avec une concentration du phénol injecté de 500 mg/l.

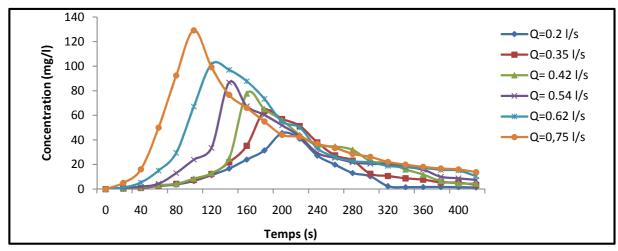


Figure IV.73: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 1m pour différents débits et $C_0 = 500$ mg/l.

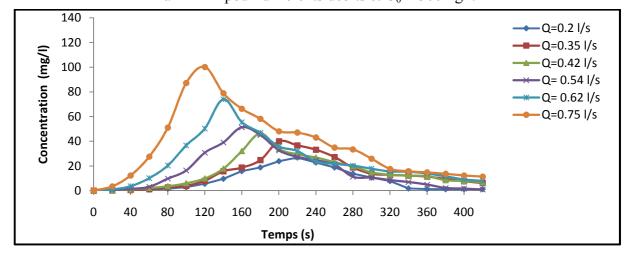
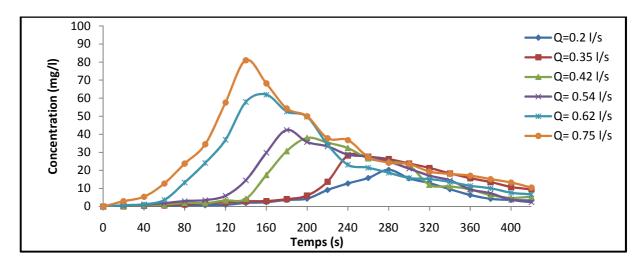



Figure IV.74: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 2m pour différents débits et $C_0 = 500 mg/l$.

Figure IV.75: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 3m pour différents débits et $C_0 = 500mg/l$.

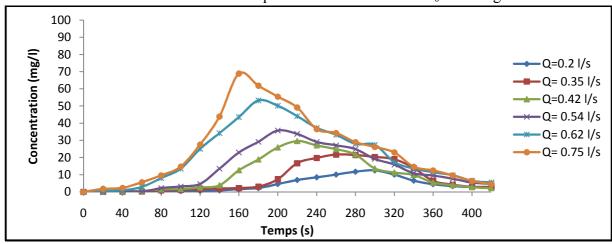


Figure IV.76: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 4m pour différents débits et $C_0 = 500 \text{mg/l}$.

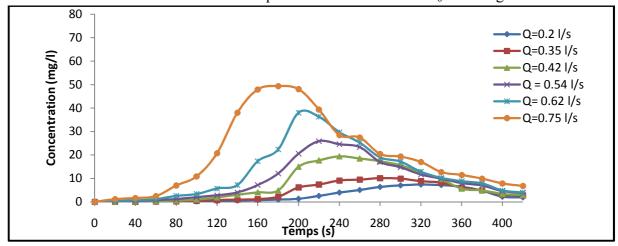


Figure IV.77: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 5m pour différents débits et $C_0 = 500mg/l$.

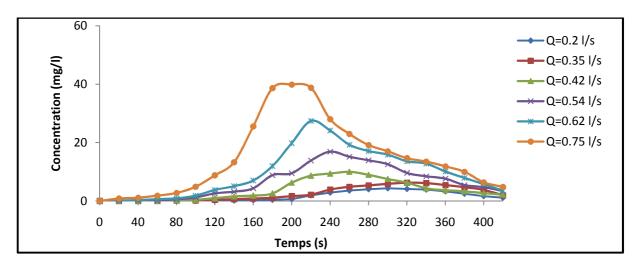


Figure IV.78 : Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 6m pour différents débits et $C_0 = 500mg/l$.

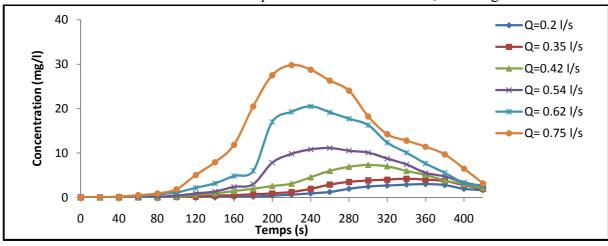
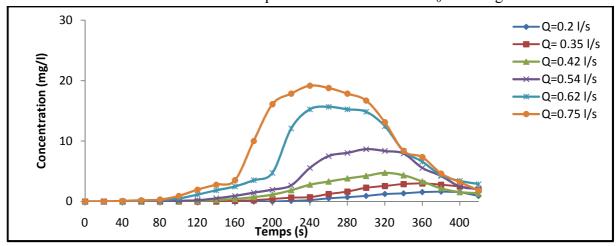



Figure IV.79 : Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 7m pour différents débits et $C_0 = 500mg/l$.

Figure IV.80: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 8m, pour différents débits et $C_0 = 500mg/l$.

2.2 Injection à la surface pour 600 mg/l

Les figures (IV.81) ÷ (IV.88) représentent les profils de la concentration obtenus à différentes sections et pour différents débits d'écoulement avec une concentration du phénol injecté de 600 mg/l.

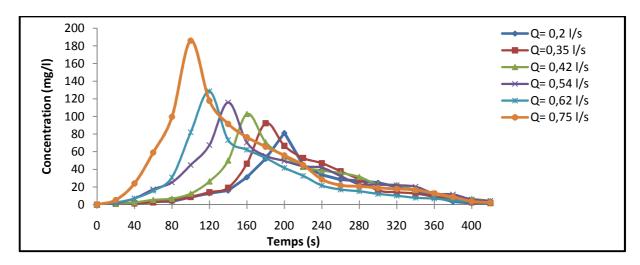
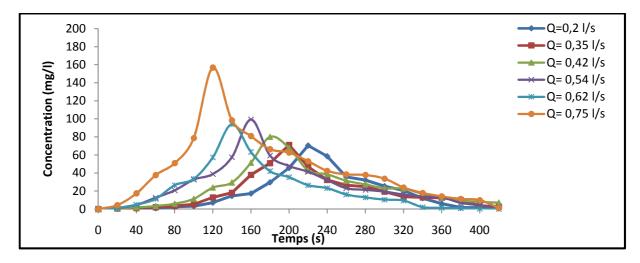



Figure IV.81: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 1m, pour différents débits et $C_0 = 600$ mg/l.

Figure IV.82: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 2m, pour différents débits et $C_0 = 600 mg/l$.

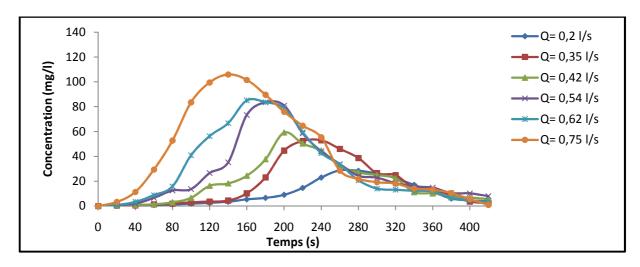


Figure IV.83 : Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 3m pour différents débits et $C_0 = 600mg/l$.

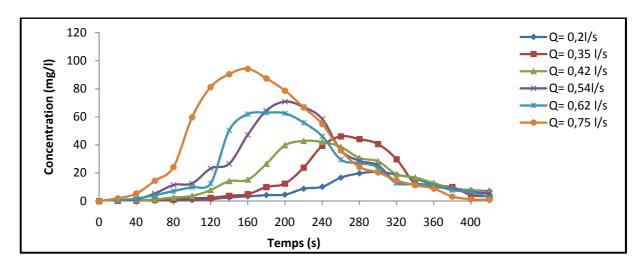


Figure IV.84: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 4m pour différents débits et $C_0 = 600 \text{mg/l}$.

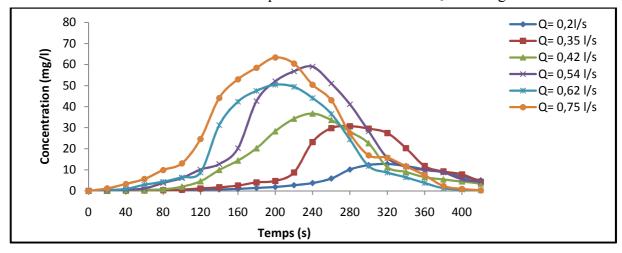
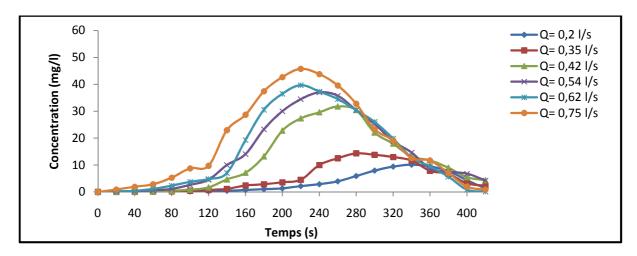



Figure IV.85: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 5m, pour différents débits et $C_0 = 600mg/l$.

Figure IV.86: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 6m, pour différents débits et $C_0 = 600mg/l$.

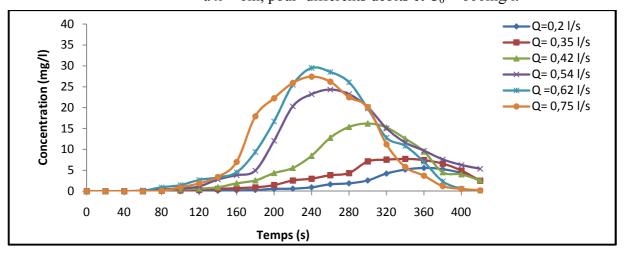


Figure IV.87: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 7m pour différents débits et $C_0 = 600mg/l$.

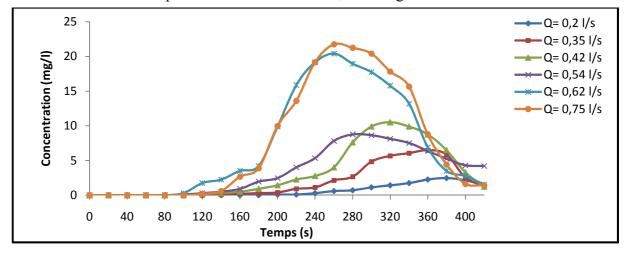


Figure IV.88: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 8m, pour différents débits et $C_0 = 600mg/l$.

2.3 <u>Injection à la surface pour $C_0 = 700 \text{ mg/l}$ </u>

Les figures (IV.89) ÷ (IV.96) représentent les profils de la concentration obtenus à différentes sections et pour des différents débits d'écoulement avec une concentration du phénol injecté de 700 mg/l.

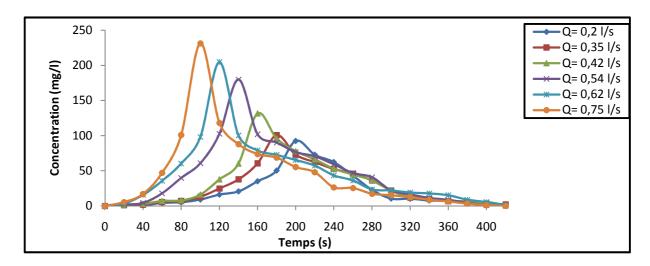


Figure IV.89 : Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 1 m, pour différents débits et $C_0 = 700 \text{mg/l}$

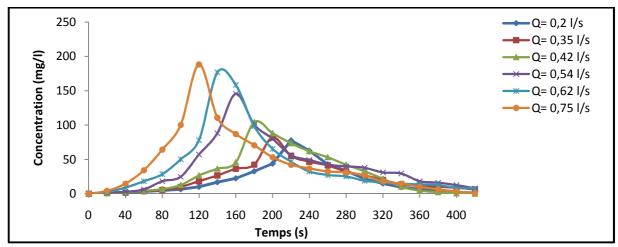


Figure IV.90 : Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 2m pour différents débits et $C_0 = 700 mg/l$.

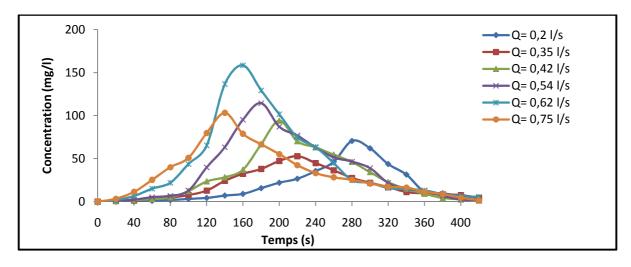


Figure IV.91: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 3m pour différents débits et $C_0 = 700mg/l$.

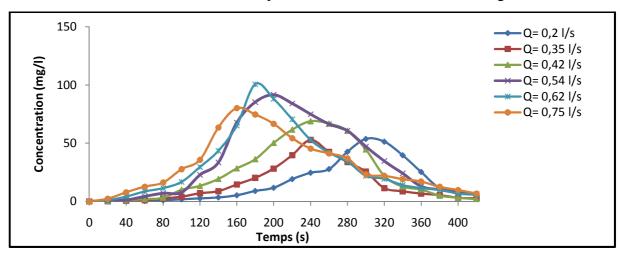


Figure IV.92 : Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 4m, pour différents débits et $C_0 = 700 \text{mg/l}$.

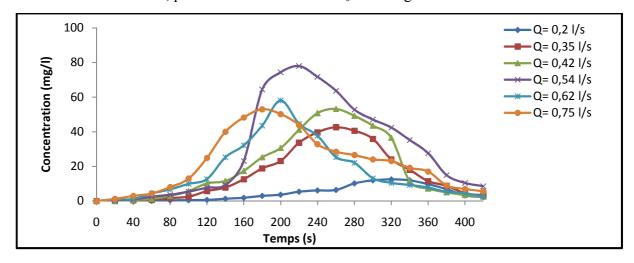


Figure IV.93: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 5m pour différents débits et $C_0 = 700mg/l$.

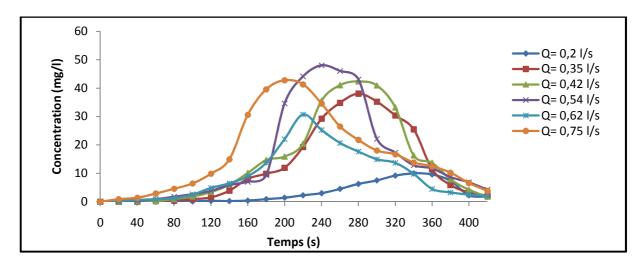
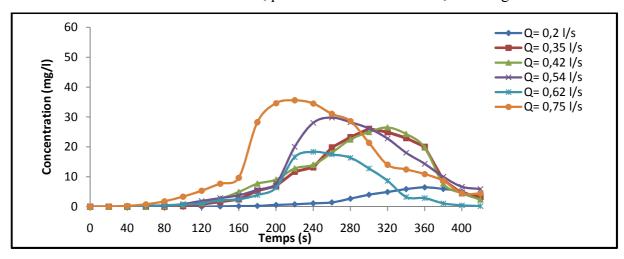



Figure IV.94: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 6m, pour différents débits et $C_0 = 700mg/l$.

Figure IV.95: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 7m, pour différents débits et $C_0 = 700mg/l$.

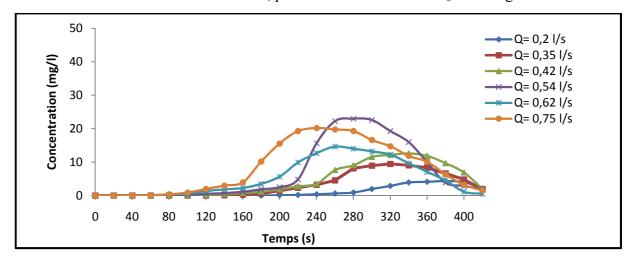


Figure IV.96: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 8m, pour différents débits et $C_0 = 700 mg/l$.

Interprétation des graphes

Les figures ci-dessus montrent l'influence de la variation du débit d'écoulement sur l'évolution de la concentration du phénol. Nous remarquons que les pics de la concentration sont plus importants lorsque le débit augmente, Ces pics sont atteints plus rapidement pour les grands débits que pour les faibles débits, contrairement au temps de séjours qui augmente avec la diminution du débit. Du fait que la section du canal est constante, la croissance du débit implique la croissance de la vitesse, et par conséquent la dominance de la convection par rapport à la diffusion.

3. Détermination de l'influence de la concentration initiale sur l'évolution de la concentration en fonction du temps

Les profils de la concentration obtenus expérimentalement à différents sections de l'origine (point d'injection du polluant) pour un débit d'écoulement Q= 0,2 l/s, avec des concentrations du phénol injecté de 500mg/l, 600 mg/l et 700 mg/l sont présentés sur les figures (IV.97) ÷ (IV.104).

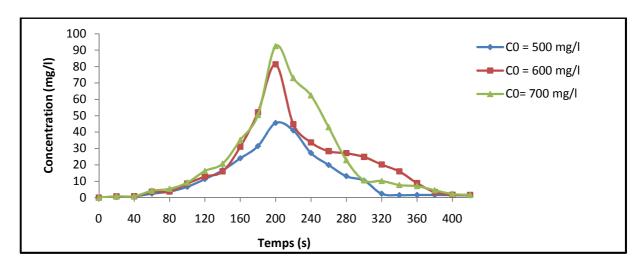


Figure IV.97: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 1m pour Q = 0.2 l/s et pour différentes concentrations initiales

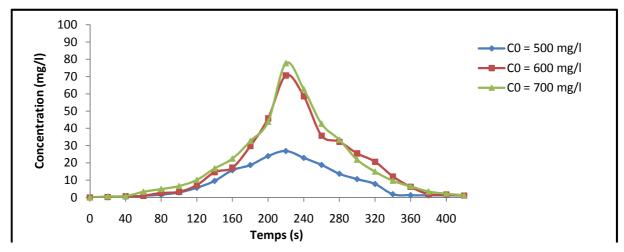


Figure IV.98: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 2m pour Q = 0.2 l/s et pour différentes concentrations initiales

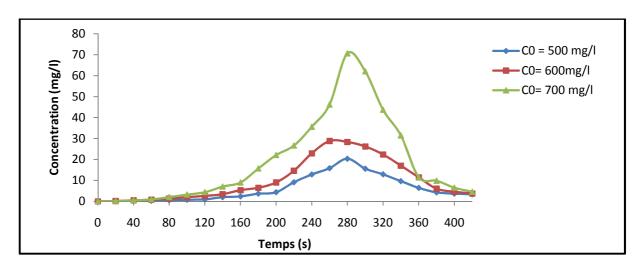
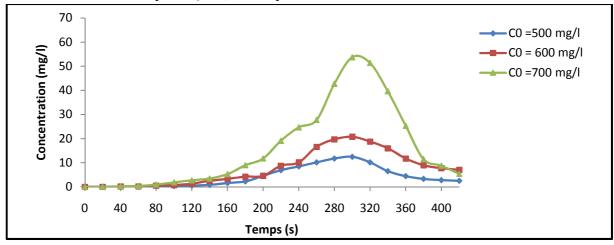



Figure IV.99: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 3m pour Q = 0.2 l/s et pour différentes concentrations initiales

Figure IV.100: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 4m pour Q = 0,2 l/s et pour différentes concentrations initiales

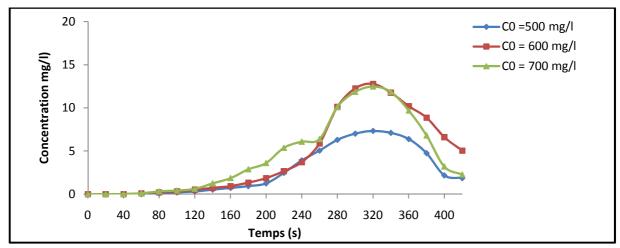


Figure IV.101: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 5m pour Q = 0.2 l/s et pour différentes concentrations initiales

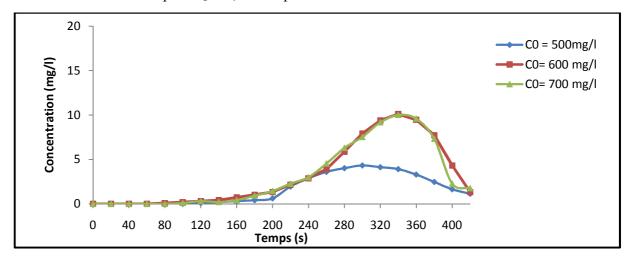
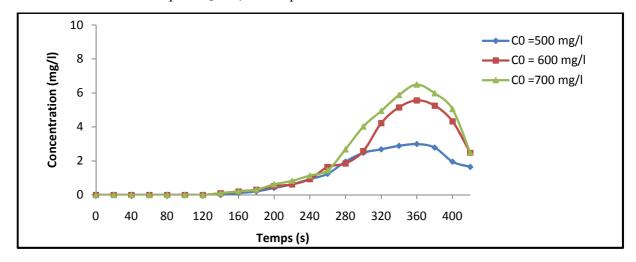



Figure IV.102: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 6m pour Q = 0.2 l/s et pour différentes concentrations initiale

Figure IV.103: de la concentration du phénol à la surface libre en fonction du temps à x = 7m pour Q = 0.2 l/s et pour différentes concentrations initiales

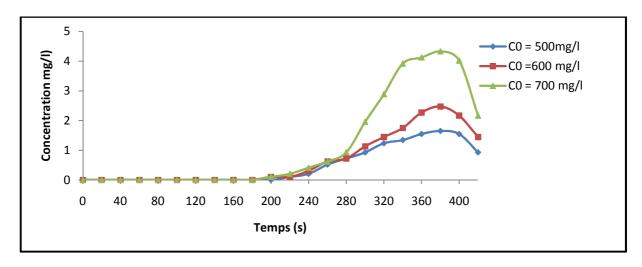


Figure IV.104: Evolution de la concentration du phénol à la surface libre en fonction du temps à x = 8m pour Q = 0.2 l/s et pour différentes concentrations initiales

Interprétation des graphes

A partir des figures ci-dessus, nous remarquons que le pic de la concentration augmente avec l'augmentation de la concentration initiale de l'injection.

Conclusion

a. Cas d'une injection discontinue

- Les profils de la concentration du phénol présentent une allure bien déterminée en variant le débit d'écoulement et la section de prélèvement. La concentration augmente jusqu'à atteindre une valeur maximale, puis diminue mais plus lentement.
- Le pic (valeur maximale) de la concentration augmente avec l'augmentation de la concentration initiale du phénol lors de l'injection.
- La diminution du débit d'écoulement provoque l'augmentation du temps de séjours du polluant et la diminution du pic de la concentration.
- Le pic de la concentration diminue lorsqu'on s'éloigne du point de l'injection de la pollution.
- Au voisinage de l'injection, le transport du polluant est convectif et il devient diffusif en s'éloignant de la source de pollution.
- Dans le cas d'un prélèvement au fond du canal, la concentration du polluant existe, mais son évolution n'est pas bien déterminée.

b. Cas d'une injection continue

- Les profils de concentration obtenus suite à une injection continue du polluant ont la même allure qui est une augmentation rapide au début de l'apparition du phénol, et elle devient de plus en plus lente avant d'être constante après un certain laps de temps.

- La valeur maximale atteinte par la concentration décroît en allant vers l'aval à cause de la diminution de la convection, et de l'intervention de la diffusion.
- La valeur maximale de la concentration du phénol est atteinte plus rapidement lorsque le débit d'écoulement augmente.
- Dans le cas d'un prélèvement au fond du canal, la concentration du polluant existe, et les pics de la concentration sont plus importants avec le temps de l'injection.

Conclusion générale

Conclusion générale

L'objectif de ce travail était la modélisation physique du comportement d'un polluant actif en l'occurrence le phénol dans un écoulement à surface libre.

A partir des résultats obtenus expérimentalement, nous pouvons conclure que :

La distribution de la concentration juste après l'injection du phénol est pointue c'est une caractéristique du transport convectif pure. Elle devient gaussienne après une certaine distance donc l'évolution de la concentration dans l'espace, nous a conduit de constater que le transport du polluant est convectif au voisinage de la source d'injection, alors qu'il devient diffusif plus qu'en s'éloignant.

L'étude de l'influence du débit a montré que la croissance du débit provoque une augmentation du pic de concentration, et une diminution du temps de séjour du polluant dans le milieu.

Ce que concerne l'influence de la concentration initiale montre que le pic de la concentration augmente avec l'augmentation de la concentration initiale de l'injection.

Donc la dispersion d'un polluant dans un canal rectangulaire se fait en présence de deux phénomènes :

- La convection qui est due aux vitesses moyennes de l'écoulement; qui transporte en masse le nuage du polluant dans la direction de l'écoulement.
- La diffusion qui étire le nuage du polluant dans toutes les directions de l'espace et va dans le sens d'une uniformisation de la concentration.

Dans le cas d'injection continue, nous pouvons conclure qu'il existe deux périodes :

- La période de la croissance rapide de la concentration correspond à la période convective.
- La deuxième période corresponde à la diffusion du polluant.

Dans le cas d'un prélèvement au fond du canal, nous n'avons pas eu un profil de concentration bien déterminé, mais nous avons constaté que le polluant atteint le fond au cours de sa dispersion.

A travers l'interprétation des résultats obtenus, nous pouvons les juger satisfaisants, et peuvent être utilisé pour la validation des modèles numériques.

BIBLIOGRAPHIE

- Carlier, M., (1986). « Hydraulique générale et appliquée ». Collection de la Direction des Etudes et Recherches d'Electricité de France. Édition Eyrolles, 565 pages.
- Chagas, P. & Souza, R., (2005). «Study of the depuration capacity of a river, considering the propagation of a dynamic wave». Journal of Hydraulic Engineering, pp. 198-204.
- **Chassing, P., (1997).** « Mécanique des fluides Eléments d'un premier parcours ». Édition Cepadues, 468 pages.
- **Degoutte G., (2006).** « Diagnostic, aménagement et gestion des rivières ». Édition Lavoisier, 394 pages.
- **De Smedt, F., (2005).** «Analytical solutions for transport of decaying solutes in the rivers with transient storage».« Journal of Hydrology . Volume 330, pp 672-680.
- **Dysli, M. (1991).** « Le gel et son action sur les sols et les fondation ». Presses polytechniques et universitaire romandes, 250 pages.
- **Elder, J., (1959).** « The dispersion of a marked fluid in a turbulent shear flow ». Journal of Fluid Mechanics, Volume 5, pp. 544 560.
- **Fares, Y. R., (2000).** «dispersion processes in reservoirs and natural streams ». Journal of mechanical engineering science. Volume. 214. no. 6. pp 857-866.
- **Fischer, B. H., (1975).** « Discussion of simple method for predicting dispersion in streams». Journal of Environmental Engineering Division, Volume.101. no.3. pp 453-455.
- **Graba, M., (2002).** «Simulation de la dispersion de la pollution dans les écoulements à surface libre». Mémoire de magister, Université Abderahmane Mira de Bejaia, 93 pages.
- Graf, W. H. & Altimakar, M. S., (1993). «Hydraulique fluviale ». Traité de Génie Civil de l'école polytechnique fédérale de Lausanne, 261 pages.
- **Hellweger**, F. L., (2005). «Measuring and modeling large-scale pollutant dispersion in surface waters ». In collection systems, Water Environment Federation (WEF), pp. 812-835.
- **Heslop, S. & Allen, C. M., (1993)** «Modélisation de la dispersion d'un polluant dans la rivière Severn au moyen d'un modèle de déplacement probabiliste. » Journal of the Hydraulic Research, Volume 31, pp. 323 331.
- **Hibbs, D. & Gulliver, J., & Voller, V. & Chen, Y. F. (1999).** «An aqueous concentration model for riverine spills ». Journal of Hazardous Materials, A64: pp 37-53.
- **Iwasa, Y. & Aya, S., (1991).** « Predicting longitudinal dispersion coefficient in open channel flow». Proceeding International Symposium on Environmental Hydrology, Hong Kong, pp. 505 510.

Jabbour, D., (2006). « Etude expérimentale et modélisation de la dispersion en champ lointain suite à un rejet accidentel d'un polluant miscible dans un cours d'eau. Application à la gestion de crise ». Thèse de doctorat de l'université d'Aix-Marseille I, 216 pages.

Kashefipour, S. M. & Falconer, R. A., (2001). «Longitudinal dispersion coefficients in natural channels». Journal of Water Research, Volume 36, N°6, pp. 1596-1608.

Keskin, M.E. & Agiralioglu, N. (1997). « A simplified Dynamic model for flood routing in rectangular channels». Journal of Hydrology, Volume 202. pp 302-314.

Koussis, A. D. & Rodriguez- Mirasol, J., (1998). « Hydraulic estimation of dispersion coefficient for streams». Journal of hydraulic engineering, Volume 124. N°3, pp. 317-320.

Lencastre, A., (1999). « Hydraulique générale ». Édition Eyrolles, 407pages.

Lui, H., (1977). «Predicting dispersion coefficient of streams». Journal of the Environmental Engineering Division, Volume 103, pp. 59 - 69.

McQuivey, R. S., & Keefer, T. N., (1974). « Simple method for predicting dispersion in streams». Journal of Environmental Engineering Division, Volume 100, N°4, pp. 997 - 1011.

McQuivey, R. S. & Keefer, T. N., (1976). « Convective model of longitudinal dispersion». Journal of the Hydraulics Division, Volume 102, N° Hy10, pp. 1409 - 1423.

Ranald, V. G., (1987). « Mécanique des fluides et Hydraulique : Cours et problèmes » Édition française Michel Lobenberg, 272 pages.

Runkel, R. L. & Bencala, K. E., (1995). « Transport of Reacting Solutes in Rivers and Streams ». U.S. Geological Survey in Environmental hydrology, V.P. Singh Edition, pp. 137-164.

Runkel, R. L., (1996). «Solution of the advection-dispersion continuous load of finite duration». Journal of Environmental Engineering, American society of civil Engineering, Volume 122, N°9, pp. 830-832.

Rutherford, J. C., (1994). « River mixing». Wiley and Sons, New York, 347 pages.

Sabol, G.V. & Nordin, C. F., (1978). « Dispersion in Rivers as related to storage zones». Journal of the Hydraulics Division, Volume104, N°5, pp. 695-708.

Seo, I. & Cheong, T., (1998). «Predicting longitudinal dispersion coefficient in natural stream». Journal of Hydraulic Engineering, Volume 124, N°1, pp. 25-32.

Shen, H.T. & Yapa, P. D. & Zhang, B. Z., (1995). «A simulation model for chemical spills in the upper St Lawarence River ». Journal of Great Lakes Research, Volume 21, N° 10, pp. 652-664.

Annexes

Annexe 1

Tableau 1 : Les valeurs de $\Phi \big(\eta \big)$ en fonction de la forme du canal (n) et $\eta {=} \; h/h_0$

η	n=2,8	n=3	n=3,2	n=3,4	n=3,6	n=3,8	n=4	n=4,2
1,001	-1,398	-1.183	-1.007	-0.855	-0.724	-0.609	-0.507	-0.416
1,005	-0.813	-0.644	-0.501	-0.379	-0.274	-0.183	-0.102	-0.031
1,010	-0.562	-0.409	-0.281	-0.172	-0.079	0.003	0.074	0.137
1,015	-0.413	-0.271	-0.151	-0.050	0.037	0.113	0.179	0.237
1,02	-0.307	-0.171	-0.058	0.038	0.120	0.192	0.254	0.309
1,03	-0.156	-0.030	0.075	0.164	0.240	0.305	0.362	0.412
1,04	-0.046	0.073	0.172	0.255	0.326	0.387	0.440	0.486
1,05	0.040	0.154	0.248	0.327	0.394	0.452	0.502	0.546
1,06	0.112	0.222	0.312	0.388	0.452	0.507	0.554	0.596
1,07	0.174	0.280	0.367	0.440	0.501	0.554	0.599	0.639
1,08	0.229	0.331	0.415	0.485	0.545	0.95	0.639	0.677
1,09	0.278	0.377	0.459	0.527	0.584	0.633	0.675	0.711
1,10	0.323	0.419	0.499	0.564	0.620	0.667	0.708	0.743
1,11	0.364	0.458	0.535	0.599	0.653	0.699	0.738	0.772
1,12	0.402	0.494	0.569	0.632	0.684	0.728	0.766	0.799
1,13	0.438	0.528	0.601	0.662	0.713	0.756	0.793	0.825
1,14	0.471	0.559	0.631	0.690	0.740	0.782	0.818	0.849
1,15	0.503	0.589	0.660	0.718	0.766	0.807	0.842	0.872
1,16	0.533	0.618	0.687	0.743	0.791	0.831	0.865	0.894
1,17	0.562	0.645	0.712	0.768	0.814	0.853	0.887	0.915
1,18	0.589	0.671	0.737	0.792	0.837	0.875	0.908	0.936
1,19	0.616	0.696	0.761	0.815	0.859	0.896	0.928	0.955

1,20	0.641	0.720	0.784	0.837	0.880	0.917	0.948	0.974
1,22	0.689	0.766	0.828	0.879	0.921	0.956	0.985	1.011
1,24	0.735	0.809	0.869	0.918	0.959	0.992	1.021	1.045
1,26	0.778	0.850	0.909	0.956	0.995	1.027	1.055	1.078
1,28	0.819	0.889	0.946	0.992	1.030	1.061	1.087	1.110
1,30	0.858	0.927	0.982	1.026	1.063	1.093	1.119	1.140
1,32	0.896	0.963	1.016	1.060	1.095	1.124	1.149	1.170
1,34	0.932	0.998	1.050	1.092	1.126	1.155	1.178	1.198
1,36	0.967	1.031	1.082	1.123	1.156	1.184	1.207	1.226
1,38	1.002	1.064	1.114	1.154	1.186	1.213	1.235	1.253
1,40	1.035	1.096	1.144	1.183	1.215	1.241	1.262	1.280
1,42	1.067	1.127	1.174	1.212	1.243	1.268	1.289	1.306
1,44	1.099	1.158	1.204	1.241	1.271	1.295	1.315	1.332
1,46	1.130	1.187	1.233	1.259	1.298	1.321	1.341	1.357
1,48	1.160	1.217	1.261	1.296	1.324	1.347	1.367	1.382
1,50	1.190	1.245	1.289	1.323	1.351	1.373	1.392	1.407
1,55	1.262	1.315	1.356	1.389	1.415	1.436	1.453	1.467
1,60	1.331	1.382	1.421	1.452	1.477	1.497	1.513	1.526
1,65	1.399	1.447	1.485	1.514	1.537	1.556	1.571	1.583
1,70	1.464	1.511	1.547	1.575	1.597	1.614	1.628	1.640
1,75	1.538	1.573	1.607	1.634	1.655	1.671	1.685	1.696
1,80	1.591	1.634	1.667	1.692	1.712	1.728	1.740	1.751
1,85	1.652	1.694	1.725	1.750	1.768	1.783	1.795	1.805
1,90	1.712	1.753	1.783	1.806	1.824	1.838	1.850	1.859
1,95	1.772	1.811	1.840	1.862	1.880	1.893	1.904	1.912
2,00	1.831	1.868	1.896	1.918	1.934	1.947	1.947	1.965
2,1	1.946	1.981	2.008	2.027	2.042	2.054	2.063	2.070

2,2	2.059	2.093	2.117	2.135	2.149	2.160	2.168	2.175
2,3	2.171	2.202	2.225	2.242	2.255	2.265	2.272	2.278
2,4	2.281	2.311	2.332	2.348	2.360	2.369	2.376	2.381
2,5	2.390	2.418	2.438	2.453	2.464	2.472	2.478	2.483
2,6	2.498	2.524	2.543	2.557	2.567	2.575	2.581	2.585
2,7	2.605	2.630	2.648	2.661	2.671	2.678	2.683	2.687
2,8	2.711	2.735	2.752	2.764	2.773	2.780	2.785	2.788
2,9	2.817	2.840	2.856	2.865	2.876	2.882	2.886	2.890
3,0	2.922	2.944	2.959	2.970	2.978	2.983	2.988	2.991
3,5	3.441	3.459	3.471	3.479	3.485	3.489	3.492	3.494
4	3.954	3.969	3.978	3.985	3.990	3.993	3.995	3.996
4,5	4.463	4.475	4.483	4.489	4.492	4.495	4.496	4.497
5	4.969	4.980	4.987	4.991	4.994	4.996	4.997	4.998
6	5.978	5.986	5.991	5.994	5.996	5.998	5.998	5.999
7	6.983	6.990	6.994	6.996	6.998	6.998	6.999	6.999
8	7.987	7.992	7.995	7.997	7.998	7.999	7.999	
9	8.989	8.994	8.996	8.998	8.999	8.999		
10,0	9.991	9.995	9.997	9.998	9.999	9.999		

Annexe 2

Tableau 2 : Courbes de remous pour différents débits

V (m)				H (m)			
X (m)	Q = 0.16 l/s	Q = 0.28 l/s	Q = 0.36 l/s	Q = 0.4 l/s	Q = 0.62 l/S	Q=1 1/s	Q= 1,27 l/s
1	18	18,7	19	22	22	25	28
1,5	18,2	18,5	19,2	22,4	22,5	25,3	27,5
2	18,4	18,3	19,4	22,8	23,8	25,5	27,8
2,5	18,2	18,4	19,1	22,6	23,1	25,4	28,3
3	18	18,5	19	23	24	26,1	27,6
3,5	18,2	18,6	19,3	22,8	24,5	25,6	28
4	18,1	18,7	19,5	23,2	24,2	26	28,1
4,5	18,3	18,3	19,4	22,9	23,9	26,5	27,8
5	18	18,2	19,6	22,8	24,4	26,3	28,4
5,5	18,3	18,5	19,5	22,7	24,6	26,1	28,5
6	18,5	18,8	19,7	23	24,1	26,5	28,2
6,5	18,3	18,6	19,6	22,7	24,4	26,2	28,6
7	18	18,7	19,5	23,1	24,5	26,3	28,3
7,5	18,1	18,2	19,2	22,6	24,2	26,4	29,2
8	18,3	18,7	19,7	22	24,4	26,6	28,5

Annexe 3 : Injection discontinue à la surface pour Q = 0.2 l/s et $C_0 = 500 \text{ mg/l}$

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3 m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0,30927	0,10204	0	0	0	0	0	0
40	0,82472	0,30927	0,10204	0	0	0	0	0
60	2,47416	0,92781	0,30927	0,10204	0	0	0	0
80	3,71124	1,54635	0,51545	0,30927	0,10309	0	0	0
100	6,59776	2,88652	0,72163	0,41236	0,20618	0	0	0
120	11,3399	5,56686	0,92781	0,51545	0,30927	0,10309	0	0
140	16,70058	9,58737	1,95871	0,82472	0,51545	0,20618	0	0
160	24,01997	15,77277	2,37107	1,54635	0,72163	0,30927	0,10309	0
180	31,44245	18,76238	3,60815	2,26798	0,92781	0,41236	0,20618	0
200	45,56578	23,91688	4,32978	4,53596	1,23708	0,61854	0,41236	0
220	41,02982	26,90649	9,07192	6,90703	2,47416	1,95871	0,61854	0,10309
240	27,21576	22,88598	12,78316	8,45338	3,91742	2,88652	0,92781	0,20618
260	19,89637	18,86547	15,77277	10,10282	5,05141	3,60815	1,23708	0,51545
280	13,09243	13,71097	20,30873	11,75226	6,28849	4,02051	1,95871	0,72163
300	10,41209	10,61827	15,56659	12,47389	7,01012	4,32978	2,47416	0,92781
320	2,37107	7,83484	12,88625	10,10282	7,31939	4,1236	2,68034	1,23708
340	1,54635	1,85562	9,58737	6,49467	7,11321	3,91742	2,88652	1,34017
360	1,64944	1,34017	6,39158	4,43287	6,39158	3,29888	2,98961	1,54635
380	1,64944	1,23708	4,22669	3,29888	4,74214	2,47416	2,78343	1,64944
400	1,54635	1,23708	3,60815	2,78343	2,16489	1,64944	1,95871	1,54635
420	1,34017	1,13399	3,29888	2,47416	1,85562	1,13399	1,64944	0,92781

Injection discontinue à la surface pour Q =0,35 l/s et C_0 =500 mg/l

	Concentration (mg/l)										
t(s)	X=1 m	X=2 m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m			
0	0	0	0	0	0	0	0	0			
20	0,41236	0,20408	0,10204	0	0	0	0	0			
40	0,92781	0,51545	0,30612	0,10204	0	0	0	0			
60	2,78343	1,13399	0,61854	0,30612	0,10204	0	0	0			
80	4,22669	2,78343	1,13399	0,92781	0,20618	0,10204	0	0			
100	7,42248	3,91742	1,85562	1,13399	0,41236	0,20408	0,10309	0			
120	12,26771	8,04102	2,16489	1,44326	0,72163	0,41236	0,20618	0			
140	21,75199	15,66968	2,78343	1,95871	0,92781	0,61854	0,41236	0			
160	35,25678	18,65929	2,98961	2,26798	1,13399	0,82472	0,51545	0,10309			
180	63,40035	24,7416	4,02051	3,0927	2,16489	1,13399	0,72163	0,20618			
200	57,00877	39,89583	5,97922	7,31939	6,08231	1,64944	0,92781	0,41236			
220	51,33882	36,70004	13,71097	16,70058	7,31939	2,16489	1,23708	0,61854			
240	37,93712	33,19498	28,24666	19,79328	9,07192	3,91742	1,95871	0,72163			
260	27,42194	27,21576	27,52503	21,75199	9,48428	4,84523	2,88652	1,23708			
280	23,19525	18,86547	26,18486	21,44272	10,10282	5,36068	3,50506	1,64944			
300	12,47389	13,71097	23,81379	20,30873	9,89664	5,87613	3,81433	2,26798			

320	10,61827	12,78316	21,33963	18,96856	8,76265	6,28849	4,02051	2,57725
340	8,76265	12,16462	18,35002	13,91715	8,14411	6,08231	4,22669	2,88652
360	7,62866	11,44299	15,66968	6,39158	5,97922	5,46377	4,02051	2,98961
380	5,46377	9,48428	13,50479	4,22669	4,84523	4,74214	3,71124	2,78343
400	5,1545	7,73175	10,82445	2,98961	2,98961	3,81433	2,78343	2,47416
420	3,40197	6,28849	9,48428	2,78343	2,68034	1,95871	1,95871	1,95871

Injection discontinue à la surface pour Q =0,42 l/s et C_0 =500 mg/l

	Concentration (mg/l)										
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m			
0	0	0	0	0	0	0	0	0			
20	0,61854	0,40816	0,30612	0,10204	0	0	0	0			
40	1,23708	0,92781	0,5102	0,30612	0,10204	0	0	0			
60	3,19579	2,26798	0,92781	0,5102	0,30612	0,10204	0	0			
80	4,22669	3,50506	1,95871	1,44326	0,51545	0,20408	0,10204	0			
100	8,45338	5,97922	1,85562	1,64944	0,92781	0,40816	0,20618	0			
120	12,88625	9,89664	3,29888	2,57725	1,85562	0,92781	0,61854	0,10309			
140	24,84469	17,83457	4,22669	3,81433	2,98961	1,54635	0,92781	0,20618			
160	77,72986	32,06099	17,42221	12,57698	4,02051	1,85562	1,44326	0,41236			
180	65,04979	46,28741	30,61773	18,86547	4,84523	2,57725	1,95871	0,72163			
200	55,97787	33,71043	37,93712	25,87559	14,94805	6,28849	2,57725	1,13399			
220	44,12252	29,38065	35,35987	29,58683	17,62839	8,65956	3,0927	1,85562			
240	35,56605	26,90649	32,37026	27,00958	19,38092	9,38119	4,53596	2,78343			
260	34,63824	23,09216	26,59722	24,84469	18,45311	9,99973	5,97922	3,29888			
280	31,9579	19,69019	24,84469	21,75199	17,31912	8,96883	6,90703	3,81433			
300	22,78289	14,74187	22,78289	13,60788	15,56659	7,52557	7,31939	4,22669			
320	21,23654	12,98934	11,95844	11,23681	12,68007	6,28849	7,01012	4,74214			
340	15,97895	12,16462	11,13372	9,79355	9,69046	4,32978	5,97922	4,32978			
360	11,75226	11,75226	9,48428	5,36068	5,56686	3,71124	5,05141	3,29888			
380	6,49467	8,45338	6,28849	3,91742	4,84523	3,29888	3,81433	2,16489			
400	4,63905	7,93793	4,74214	2,68034	3,29888	2,68034	2,98961	1,54635			
420	4,43287	6,70085	5,36068	2,16489	2,88652	2,16489	2,0618	1,34017			

Injection discontinue à la surface pour Q = 0.54 l/s et $C_0 = 500 \text{ mg/l}$

	Concentration (mg/l)										
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m			
0	0	0	0	0	0	0	0	0			
20	0,92781	0,61224	0,40816	0,20408	0,10204	0	0	0			
40	1,95871	1,44326	0,91836	0,5102	0,30612	0,10204	0	0			
60	4,32978	3,19579	1,85562	0,122448	0,71428	0,20408	0,10204	0			
80	12,98934	9,69046	2,98961	2,26798	1,13399	0,61224	0,20408	0			
100	23,91688	16,28822	3,50506	3,19579	1,95871	1,22448	0,41236	0,10204			
120	33,50425	30,72082	5,87613	4,63905	2,78343	2,57725	0,92781	0,20618			
140	86,69869	38,96802	14,53569	13,50479	4,02051	3,19579	1,34017	0,51545			
160	67,42086	51,33882	29,79301	22,88598	7,11321	4,32978	2,37107	0,92781			
180	60,30765	45,05033	42,36999	29,17447	12,06153	8,86574	2,98961	1,44326			
200	51,85427	32,67953	35,66914	35,66914	20,51491	9,48428	7,83484	1,95871			
220	42,78235	27,31885	33,29807	33,71043	25,87559	13,81406	9,79355	2,68034			
240	29,38065	24,63851	28,65902	29,07138	24,53542	16,90676	10,82445	5,56686			

260	25,36014	21,03036	27,62812	27,11267	23,29834	15,15423	11,13372	7,52557
280	21,75199	11,23681	24,84469	24,84469	17,00985	13,91715	10,51518	8,04102
300	20,618	10,51518	21,03036	19,17474	14,74187	12,57698	10,10282	8,65956
320	20,20564	8,55647	17,11294	15,87586	11,64917	9,58737	8,76265	8,35029
340	18,04075	7,01012	14,53569	10,82445	9,89664	8,45338	7,42248	7,93793
360	15,77277	4,94832	9,48428	9,48428	7,93793	7,62866	5,56686	5,56686
380	9,99973	2,26798	7,31939	7,62866	6,90703	5,46377	4,74214	4,22669
400	8,76265	1,64944	3,71124	5,36068	4,53596	4,74214	3,40197	2,47416
420	7,42248	0,92781	2,37107	4,53596	3,71124	3,40197	2,57725	2,0618

Injection discontinue à la surface pour Q =0,62 l/s et C_0 =500 mg/l

			C	oncentration	(mg/l)			
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	1,23708	0,91836	0,71428	0,5102	0,30612	0,10204	0	0
40	5,36068	3,60815	1,22448	0,91836	0,61224	0,30612	0,10204	0
60	15,05114	10,10282	3,60815	2,85712	1,12244	0,61224	0,30612	0,10204
80	29,48374	20,30873	13,29861	8,04102	2,47416	0,91836	0,71428	0,20408
100	67,21468	36,70004	24,12306	13,50479	3,29888	1,83672	1,13399	0,5102
120	101,54365	50,30792	36,90622	25,05087	5,66995	3,81433	2,16489	1,13399
140	97,00769	74,01862	57,83349	34,22588	7,11321	5,05141	3,19579	1,85562
160	87,72959	55,46242	61,95709	43,50398	17,31912	7,01012	4,84523	2,47416
180	73,40008	46,90595	52,67899	53,19444	22,37053	11,95844	5,97922	3,50506
200	54,94697	35,77223	49,68938	50,10174	38,04021	19,79328	17,00985	4,74214
220	49,99865	32,16408	34,32897	44,12252	36,28768	27,42194	19,27783	12,06153
240	33,19498	23,60761	23,09216	37,31858	29,68992	24,12306	20,51491	15,25732
260	26,08177	21,75199	21,44272	33,29807	25,25705	19,27783	19,17474	15,66968
280	22,6798	20,20564	18,65929	27,93739	18,96856	17,11294	17,73148	15,25732
300	21,6489	17,73148	15,77277	27,42194	17,11294	15,87586	16,28822	14,84496
320	18,86547	15,56659	15,15423	17,31912	12,78316	13,60788	12,3708	12,47389
340	17,83457	15,25732	13,60788	13,60788	10,20591	12,78316	10,10282	8,35029
360	17,11294	13,91715	11,44299	11,44299	8,76265	10,10282	7,62866	6,59776
380	15,66968	11,54608	10,10282	9,69046	7,83484	7,93793	5,56686	4,32978
400	15,05114	9,07192	7,62866	6,39158	4,84523	5,77304	3,29888	3,40197
420	10,51518	7,93793	6,70085	5,46377	3,91742	3,50506	2,68034	2,88652

Injection discontinue à la surface pour Q =0,75 l/s et C_0 =500 mg/l

	Concentration (mg/l)										
t(s)	X=1m	X=2 m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m			
0	0	0	0	0	0	0	0	0			
20	5,05141	3,5714	2,85712	1,73468	1,12244	0,81632	0,10204	0			
40	16,08204	12,3708	5,40812	2,34692	1,63264	1,12244	0,20408	0,10204			
60	49,99865	27,62812	12,78316	5,6122	2,44896	1,83672	0,5102	0,20408			
80	92,36864	51,02955	23,7107	9,58737	6,90703	2,75508	0,91836	0,30612			
100	129,06868	87,21414	34,43206	14,74187	10,82445	4,89792	1,85562	0,91836			
120	99,17258	100,20348	57,62731	27,62812	20,72109	8,76265	5,05141	1,95871			
140	76,59587	78,96694	81,02874	43,91634	38,04021	13,29861	7,93793	2,78343			

160	66,08069	66,38996	68,14249	68,86412	47,93685	25,56632	11,85535	3,50506
180	54,94697	58,24585	54,32843	61,75091	49,38011	38,65875	20,51491	9,99973
200	44,12252	48,14303	49,99865	55,46242	48,03994	39,89583	27,52503	16,08204
220	42,36999	47,00904	37,83403	49,07084	39,38038	38,76184	29,79301	17,83457
240	36,80313	42,98853	36,80313	36,49386	28,45284	28,04048	28,76211	19,17474
260	33,50425	34,84442	27,42194	34,32897	27,42194	22,98907	26,28795	18,76238
280	28,65902	33,50425	24,22615	28,96829	20,41182	19,17474	24,01997	17,83457
300	26,18486	25,97868	23,50452	26,18486	19,27783	17,00985	18,24693	16,70058
320	22,06126	17,62839	19,27783	22,88598	17,00985	14,63878	14,22642	13,09243
340	19,89637	15,66968	18,04075	14,63878	12,68007	13,50479	12,78316	8,35029
360	18,04075	14,74187	17,11294	12,47389	11,44299	11,85535	11,44299	7,31939
380	16,70058	13,60788	15,15423	9,58737	9,89664	9,99973	9,69046	4,63905
400	15,97895	12,3708	13,29861	6,28849	7,83484	6,39158	6,49467	3,19579
420	13,81406	11,44299	10,41209	4,43287	6,70085	4,84523	3,19579	1,85562

Injection continue à la surface pour Q = 0.2 l/s et $C_0 = 500 \text{ mg/l}$

				Concentratio	n (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0,20618	0,10309	0	0	0	0	0	0
40	0,30927	0,20618	0,10309	0	0	0	0	0
60	0,41236	0,30927	0,20618	0,10309	0	0	0	0
80	0,61854	0,41236	0,30927	0,30927	0,10309	0	0	0
100	0,92781	0,72163	0,51545	0,41236	0,30927	0,10204	0	0
120	11,44299	0,92781	0,72163	0,61854	0,51545	0,41236	0,10204	0
140	13,60788	2,98961	1,54635	1,13399	0,92781	0,61854	0,20408	0
160	24,01997	11,64917	2,78343	2,57725	2,26798	1,64944	0,41236	0
180	200,51005	125,97598	8,14411	3,81433	3,19579	2,37107	1,13399	0
200	247,62218	232,67413	41,44218	7,73175	7,2163	4,22669	2,98961	0,10309
220	412,15382	339,88773	123,50182	14,22642	13,50479	5,66995	3,50506	0,30927
240	455,03926	347,61948	226,69491	67,93631	66,38996	13,29861	5,77304	0,72163
260	494,52273	456,99797	330,19727	219,89097	113,70827	51,64809	6,08231	2,26798
280	494,52273	493,07947	455,34853	336,38267	218,24153	113,70827	12,06153	3,81433
300	494,52273	493,07947	479,47159	444,52408	329,99109	228,03508	78,45149	6,08231
320	494,52273	493,07947	479,47159	472,77074	445,65807	276,89974	115,77007	11,95844
340	494,52273	493,07947	479,47159	472,77074	469,98731	414,21562	228,96289	74,01862
360	494,52273	493,07947	479,47159	472,77074	469,98731	453,90527	317,10484	111,64647
380	494,52273	493,07947	479,47159	472,77074	469,98731	461,12157	435,65834	300,09499
400	494,52273	493,07947	479,47159	472,77074	469,98731	461,12157	435,65834	425,86479
420	494,52273	493,07947	479,47159	472,77074	469,98731	461,12157	435,65834	425,86479

Injection continue à la surface pour Q =0,35 l/s et C_0 =500 mg/l

	Concentration (mg/l)										
t(s)	t(s) X=1m X=2m X=3m X=4m X=5m X=6m X=7m X=8m										
0	0	0	0	0	0	0	0	0			
20	0,82472	0,61854	0,41236	0	0	0	0	0			
40	2,57725	1,23708	0,92781	0,51545	0	0	0	0			
60	4,53596	3,40197	2,26798	1,23708	0,10204	0	0	0			
80	7,83484	5,56686	4,02051	2,88652	0,20618	0,10204	0	0			

100	13,29861	9,99973	5,66995	3,29888	1,34017	0,30612	0,10204	0
120	32,06099	16,39131	8,86574	4,74214	2,88652	1,44326	0,20408	0,10204
140	117,00715	85,46161	11,85535	9,48428	5,66995	2,68034	0,5102	0,20408
160	233,29267	114,73917	33,71043	12,98934	9,69046	3,91742	1,13399	0,5102
180	407,72095	195,04628	100,92511	24,53542	13,50479	6,49467	1,64944	0,91836
200	456,89488	294,52813	145,56308	79,99784	20,30873	9,48428	4,84523	2,16489
220	496,99689	442,97773	236,59155	122,47092	23,81379	17,00985	9,99973	3,29888
240	496,99689	492,97638	381,32991	284,11604	200,40696	44,22561	16,08204	5,87613
260	496,99689	492,97638	488,74969	384,83497	297,20847	154,73809	34,22588	12,57698
280	496,99689	492,97638	488,74969	482,77047	321,33153	217,62299	115,15153	44,94724
300	496,99689	492,97638	488,74969	482,77047	481,32721	387,82458	282,67278	201,74713
320	496,99689	492,97638	488,74969	482,77047	481,32721	470,19349	373,49507	290,30144
340	496,99689	492,97638	488,74969	482,77047	481,32721	470,19349	458,85359	383,28862
360	496,99689	492,97638	488,74969	482,77047	481,32721	470,19349	458,85359	455,96707
380	496,99689	492,97638	488,74969	482,77047	481,32721	470,19349	458,85359	455,96707
400	496,99689	492,97638	488,74969	482,77047	481,32721	470,19349	458,85359	455,96707
420	496,99689	492,97638	488,74969	482,77047	481,32721	470,19349	458,85359	455,96707

Injection continue à la surface pour Q =0,42 l/s et C₀=500 mg/l

			(Concentratio	n (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	1,13399	0,82472	0,61854	0,30927	0,10204	0	0	0
40	3,71124	2,98961	1,64944	1,13399	0,30612	0,10204	0	0
60	6,39158	4,32978	3,29888	2,68034	1,12244	0,61224	0,10204	0
80	9,07192	6,59776	4,94832	3,81433	2,78343	1,83672	0,30612	0,10204
100	23,91688	17,21603	9,99973	6,70085	3,91742	2,75508	0,71428	0,20408
120	42,36999	36,70004	19,17474	9,89664	6,08231	3,40197	1,5306	0,5102
140	203,80893	99,48185	63,40035	15,66968	7,52557	5,36068	2,34692	0,91836
160	305,86803	160,09877	99,68803	37,73094	19,99946	10,10282	4,32978	1,5306
180	430,40075	287,93037	203,60275	86,28633	36,28768	16,80367	6,90703	2,75508
200	497,61543	347,10403	252,05505	172,77884	77,93604	47,62758	11,44299	4,53596
220	497,61543	494,52273	391,22655	246,17892	147,52179	117,00715	30,61773	9,89664
240	497,61543	494,52273	490,60531	376,89704	262,26096	170,51086	118,14114	16,18513
260	497,61543	494,52273	490,60531	488,95587	399,26757	258,85899	137,31588	35,25678
280	497,61543	494,52273	490,60531	488,95587	482,15193	327,92929	220,30333	158,34624
300	497,61543	494,52273	490,60531	488,95587	482,15193	480,91485	388,03076	222,36513
320	497,61543	494,52273	490,60531	488,95587	482,15193	480,91485	476,58507	396,58723
340	497,61543	494,52273	490,60531	488,95587	482,15193	480,91485	476,58507	476,17271
360	497,61543	494,52273	490,60531	488,95587	482,15193	480,91485	476,58507	476,17271
380	497,61543	494,52273	490,60531	488,95587	482,15193	480,91485	476,58507	476,17271
400	497,61543	494,52273	490,60531	488,95587	482,15193	480,91485	476,58507	476,17271
420	497,61543	494,52273	490,60531	488,95587	482,15193	480,91485	476,58507	476,17271

Injection continue à la surface pour Q = 0.54 l/s et $C_0 = 500 \text{ mg/l}$

	Concentration (mg/l)										
t(s)	t(s) X=1m X=2m X=3m X=4m X=5m X=6m X=7m X=8m										
0	0	0	0	0	0	0	0	0			
20	2,57725	1,85562	0,92781	0,61854	0,30612	0,10204	0	0			

40	4,43287	3,29888	2,68034	1,95871	0,71428	0,30612	0,10204	0
60	9,99973	6,49467	4,32978	3,50506	2,14284	0,91836	0,30612	0,10204
80	19,27783	9,99973	5,77304	4,84523	3,29888	2,551	0,5102	0,20408
100	96,07988	35,77223	12,06153	9,79355	5,46377	3,67344	0,71428	0,40816
120	151,12994	97,11078	33,50425	15,25732	7,42248	5,97922	2,14284	0,81632
140	265,66293	202,57185	99,58494	25,97868	13,71097	9,58737	3,46936	2,44896
160	367,82512	250,81797	157,41843	98,55404	22,06126	16,28822	5,77304	3,26528
180	496,06908	380,71137	274,73485	148,14033	60,41074	37,62785	7,52557	5,71424
200	492,25475	425,24625	386,07205	285,97166	129,48104	99,27567	13,91715	7,01012
220	492,25475	491,43003	483,38901	381,22682	253,29213	195,35555	36,80313	17,42221
240	492,25475	491,43003	483,38901	480,09013	367,82512	266,38456	107,83214	25,46323
260	492,25475	491,43003	483,38901	480,09013	475,34799	352,98016	220,81878	136,59425
280	492,25475	491,43003	483,38901	480,09013	475,34799	474,31709	378,03103	251,12724
300	492,25475	491,43003	483,38901	480,09013	475,34799	474,31709	472,56456	386,69059
320	492,25475	491,43003	483,38901	480,09013	475,34799	474,31709	472,56456	468,75023
340	492,25475	491,43003	483,38901	480,09013	475,34799	474,31709	472,56456	468,75023
360	492,25475	491,43003	483,38901	480,09013	475,34799	474,31709	472,56456	468,75023
380	492,25475	491,43003	483,38901	480,09013	475,34799	474,31709	472,56456	468,75023
400	492,25475	491,43003	483,38901	480,09013	475,34799	474,31709	472,56456	468,75023
420	492,25475	491,43003	483,38901	480,09013	475,34799	474,31709	472,56456	468,75023

Injection continue à la surface pour Q =0,62 l/s et C_0 =500 mg/l

			(Concentration	n (mg/l)			
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	3,29888	2,98961	1,85562	0,92781	0,61224	0,30612	0	0
40	6,70085	4,84523	3,91742	2,78343	1,12244	0,61224	0,20408	0,10204
60	12,78316	7,11321	5,36068	4,53596	3,46936	1,93876	0,5102	0,30612
80	70,61665	22,06126	7,62866	6,49467	5,87613	4,28568	0,91836	0,61224
100	188,86088	77,00823	32,67953	20,10255	7,52557	6,83668	1,73468	1,12244
120	242,88004	201,33477	74,74025	35,66914	17,73148	10,10282	3,26528	2,14284
140	381,12373	262,67332	201,23168	77,93604	33,50425	20,20564	5,51016	4,48976
160	494,62582	353,28943	270,81743	170,71704	64,32816	36,90622	16,08204	7,34688
180	494,62582	492,04857	399,47375	399,67993	142,47038	100,71893	37,42167	13,87744
200	494,62582	492,04857	490,19295	470,50276	242,88004	192,05667	73,29699	37,93712
220	494,62582	492,04857	490,19295	484,31682	365,86641	279,88935	138,86223	82,98745
240	494,62582	492,04857	490,19295	484,31682	479,16232	470,50276	263,49804	126,49143
260	494,62582	492,04857	490,19295	484,31682	479,16232	476,68816	331,33126	285,04385
280	494,62582	492,04857	490,19295	484,31682	479,16232	476,68816	475,76035	388,23694
300	494,62582	492,04857	490,19295	484,31682	479,16232	476,68816	475,76035	472,87383
320	494,62582	492,04857	490,19295	484,31682	479,16232	476,68816	475,76035	472,87383
340	494,62582	492,04857	490,19295	484,31682	479,16232	476,68816	475,76035	472,87383
360	494,62582	492,04857	490,19295	484,31682	479,16232	476,68816	475,76035	472,87383
380	494,62582	492,04857	490,19295	484,31682	479,16232	476,68816	475,76035	472,87383
400	494,62582	492,04857	490,19295	484,31682	479,16232	476,68816	475,76035	472,87383
420	494,62582	492,04857	490,19295	484,31682	479,16232	476,68816	475,76035	472,87383

Injection continue à la surface pour Q =0,75 l/s et C_0 =500 mg/l

				Concentration	n (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	4,53596	3,60815	2,57725	1,75253	0,91836	0,61224	0,20408	0
40	7,73175	6,49467	5,05141	3,60815	2,14284	0,112244	0,81632	0,30612
60	20,30873	11,44299	8,96883	6,80394	4,48976	2,65304	1,63264	0,91836
80	122,16165	63,29726	30,51464	11,44299	7,62866	5,30608	3,77548	1,83672
100	283,70368	136,80043	84,22453	49,58629	17,83457	9,99992	6,53056	3,46936
120	376,38159	282,77587	171,64485	87,11105	37,73094	18,04075	10,40808	5,91832
140	496,58453	332,77452	221,84968	181,02604	58,14276	90,30684	16,02028	9,59176
160	496,58453	495,75981	260,30225	284,11604	163,29456	175,66536	46,49359	17,55088
180	496,58453	495,75981	326,69221	352,77398	255,76629	201,64404	99,27567	35,91808
200	496,58453	495,75981	491,63621	490,39913	389,26784	284,73458	176,38699	135,46026
220	496,58453	495,75981	491,63621	490,39913	485,65699	394,31925	218,24153	156,18135
240	496,58453	495,75981	491,63621	490,39913	485,65699	480,50249	326,38294	248,13763
260	496,58453	495,75981	491,63621	490,39913	485,65699	480,50249	477,71906	376,07232
280	496,58453	495,75981	491,63621	490,39913	485,65699	480,50249	477,71906	465,55444
300	496,58453	495,75981	491,63621	490,39913	485,65699	480,50249	477,71906	465,55444
320	496,58453	495,75981	491,63621	490,39913	485,65699	480,50249	477,71906	465,55444
340	496,58453	495,75981	491,63621	490,39913	485,65699	480,50249	477,71906	465,55444
360	496,58453	495,75981	491,63621	490,39913	485,65699	480,50249	477,71906	465,55444
380	496,58453	495,75981	491,63621	490,39913	485,65699	480,50249	477,71906	465,55444
400	496,58453	495,75981	491,63621	490,39913	485,65699	480,50249	477,71906	465,55444
420	496,58453	495,75981	491,63621	490,39913	485,65699	480,50249	477,71906	465,55444

Injection discontinue au fond du canal pour Q =0,2 l/s et C_0 =500 mg/l

	Concentration (mg/l)										
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m			
0	0	0	0	0	0	0	0	0			
20	0	0	0	0	0	0	0	0			
40	0	0	0	0	0	0	0	0			
60	0	0	0	0	0	0	0	0			
80	0,61854	0,20618	0	0	0	0	0	0			
100	0,51545	0,61854	0	0	0	0	0	0			
120	0,92781	1,34017	0,30927	0,10309	0	0	0	0			
140	0,20618	0	0,82472	0,41236	0	0	0	0			
160	0	2,47416	0,10309	0,10309	0	0,20618	0	0			
180	0,61854	0	0	1,13399	0,20618	0,10309	0	0			
200	0,82472	1,75253	1,23708	3,50506	0,61854	0,82472	0,10309	0			
220	1,34017	0,10309	1,13399	0,61854	0,41236	0	0,30927	0			
240	0,61854	0,92781	0,10309	0,20618	1,13399	0,82472	0,51545	0,10309			
260	0	1,44326	0,30927	0,10309	0,10309	2,47416	0	0,20618			
280	0,41236	0	0,72163	0,61854	2,16489	1,23708	0,61854	0			
300	0,92781	0,20618	0	0,10309	0	0,51545	1,44326	0,82472			
320	0,20618	1,64944	0,82472	0	0,10309	6,80394	0	0			
340	0,41236	0	0,20618	0,30927	0	0	0,72163	1,34017			
360	0	0	1,13399	0	0,82472	0	2,68034	2,47416			
380	0	0,20618	0	1,23708	0	0,41236	0,61854	0			

400	0	0	0	0	0	0	0	1,54635
420	0	0	0	0	0	0.10309	0	0

Injection discontinue au fond du canal pour Q =0,35 l/s et C_0 =500 mg/l

			Con	centration (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0
60	0,51545	0	0,20618	0	0	0	0	0
80	1,13399	0,10309	0,51545	0	0	0	0	0
100	0	0,61854	0,72163	0,30927	0	0	0	0
120	0,20618	0	1,44326	0,51545	0	0	0	0
140	0,30927	1,64944	0,92781	1,13399	0,30927	0	0,20618	0
160	0	0,92781	0	1,64944	0,61854	0,41236	0,10309	0
180	0,61854	0,20618	0,82472	0	0,51545	1,13399	0,72163	0,10309
200	0	0	2,68034	0,51545	0,30927	1,95871	0,20618	0
220	6,49467	3,19579	0,61854	0,72163	0	0,51545	0,92781	0,51545
240	0	0,10309	0	0,82472	0,82472	1,34017	0	0
260	2,57725	0,41236	3,40197	0	0,10309	0,51545	0,20618	0,10309
280	0,82472	0	0,92781	0	1,13399	0	0	0,61854
300	0,61854	1,34017	0,82472	1,13399	0	0,61854	0,41236	0,10309
320	0	0	0	5,87613	1,13399	0,92781	0,82472	0
340	0,82472	1,44326	0,61854	19,5871	0	0,10309	0,10309	0
360	0,51545	1,64944	0,20618	0,72163	1,44326	0	0	0
380	0	0	0	0,61854	0	0	0,61854	0
400	0	0	0	0	0	0	0	0
420	0	0	0,82472	0	0	0	0	0

Injection discontinue au fond du canal pour Q =0,42 l/s et C_0 =500 mg/l

	Concentration (mg/l)											
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m				
0	0	0	0	0	0	0	0	0				
20	0	0	0	0	0	0	0	0				
40	0,10309	0	0	0	0	0	0	0				
60	0	0,20618	0,82472	0	0	0	0	0				
80	0,20618	0,41236	0	0	0	0	0	0				
100	0,61854	1,64944	0,72163	0,10309	0	0	0	0				
120	0,82472	0,41236	0,30927	1,54635	0,10309	0	0,20618	0				
140	0,20618	0	0,92781	0	0,30927	0,20618	0,10309	0				
160	0	2,37107	0	2,47416	0,72163	0,41236	0,10309	0				
180	0	0,72163	1,54635	0,61854	0,30927	0,20618	0,51545	0,61854				
200	0,20618	0,10309	0,72163	0,51545	1,44326	1,13399	0,20618	0,92781				
220	0,30927	0,61854	0,51545	0,72163	0,41236	0	0,92781	0,51545				
240	0,10309	0	0,41236	0,41236	0,51545	0,61854	0	0				
260	1,23708	0,41236	0,30927	1,64944	0	0	0,20618	0,92781				
280	0,82472	0,20618	1,54635	0	0	0,82472	0,10309	0,10309				
300	0,72163	0,61854	0,10309	1,13399	0,30927	0,72163	0,82472	0				
320	0	0,41236	0,92781	0,72163	0,10309	0,61854	0	0				
340	0,82472	0	0	0	0	0	0,10309	0				
360	0	0	0	0,51545	0,72163	0	0,30927	0,20618				

380	0,30927	0,92781	0	0	0	0	0	0
400	0	0	0,20618	0	0	0,61854	0	0
420	0	0	0	0	0	0	0	0

Injection discontinue au fond du canal pour Q =0,54 l/s et C_0 =500 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0
60	0,92781	0,10309	0,20618	0	0	0	0	0
80	0,72163	2,98961	0	0,51545	0	0	0	0
100	0,61854	0,51545	0,92781	0	0,51545	0	0	0
120	1,85562	0,20618	0,92781	1,64944	0,30927	0	0	0
140	0,20618	2,57725	0	1,23708	0,92781	0	0	0
160	1,54635	0,30927	1,54635	0	0,51545	0,41236	0,10309	0
180	5,87613	6,90703	0,51545	1,64944	0,61854	0,72163	1,13399	0,41236
200	0,82472	0,10309	0,72163	0,51545	0	0	0,82472	0,92781
220	0,30927	8,86574	5,66995	2,78343	0	2,47416	1,44326	0,61854
240	4,22669	0,10309	0,20618	0,41236	1,54635	0,51545	0	0,51545
260	1,23708	0,41236	1,34017	0,61854	0,82472	0,41236	0	0,92781
280	6,70085	3,29888	0	0,51545	2,16489	0	0	1,13399
300	0	0	0,72163	0	0,30927	0	0,82472	0
320	7,93793	0,61854	0,82472	0,41236	1,34017	0,61854	0,61854	0,30927
340	0	0,20618	0	0,10309	0	0,10309	11,3399	0
360	0,30927	0	1,34017	0	0	0,72163	0	0
380	0,92781	0,30927	0	0	0	0,51545	0	0
400	0	0	0	0,41236	0	0	0	0
420	0,10309	0	0	0,10309	0	0	0	0

Injection discontinue au fond du canal pour Q =0,62 l/s et C_0 =500 mg/l

				Conc	entration (mg/l)			
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m	c(mg/l)
0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	20	0	0	0	0
40	0,20618	0	0	0	40	0	0	0	0
60	0,61854	0,41236	0,30927	0	60	0	0	0	0
80	0,72163	0,92781	0	0	80	0	0	0	0
100	7,73175	0,41236	0,92781	0,92781	100	0	0	0	0
120	0,41236	3,29888	0,82472	0,20618	120	0,30927	0	0,20618	0
140	0,82472	0,41236	0,41236	1,23708	140	0,92781	0,10309	0,41236	0
160	1,54635	0,30927	0,51545	2,98961	160	0,10309	2,47416	1,13399	0,20618
180	0,51545	6,90703	0	0	180	0,61854	0,51545	0,10309	1,23708
200	0,82472	0,10309	1,75253	0,51545	200	2,16489	0	0,20618	0,92781
220	0,30927	0,61854	6,59776	0,72163	220	0,61854	1,34017	1,34017	0
240	0	1,13399	0	0	240	0	0,51545	0	0,51545
260	1,23708	9,69046	1,34017	0,61854	260	0,82472	1,13399	1,44326	0,61854
280	0,51545	0,20618	0,61854	0,51545	280	0,10309	2,26798	0,61854	1,34017

300	0	0	1,75253	0,61854	300	0,41236	0	0	0
320	0	0,61854	0,82472	0,41236	320	0,30927	0,51545	0,61854	0
340	0,51545	0	2,78343	1,13399	340	0	0	0,30927	0
360	0	0	0	0	360	0	0	0	0
380	0,82472	0,30927	1,64944	0	380	0	0	0	0
400	0,61854	0	0	0	400	0,30927	0	0	0
420	0	0	0	0	420	0	0	0	0

Injection discontinue au fond du canal pour Q =0,75 l/s et C_0 =500 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
40	0,51545	0	0	0	0	0	0	0
60	0,30927	0,41236	0	0	0	0	0	0
80	0,72163	1,64944	1,34017	0	0	0	0	0
100	0,61854	0,41236	0,82472	0	0,51545	0	0	0
120	0,41236	3,29888	0,20618	1,54635	0,30927	0	0	0
140	0,82472	4,53596	0,41236	0,20618	1,95871	0,41236	0,61854	0
160	6,59776	0,30927	5,46377	0,51545	0	2,78343	0,51545	0,20618
180	0,51545	0,72163	0,51545	0	0,72163	3,50506	2,98961	0
200	1,54635	3,19579	0,72163	0,51545	0,82472	1,13399	1,34017	0,61854
220	0,30927	0,61854	1,44326	0,72163	0	0	0	1,54635
240	0,82472	0	0	1,44326	1,13399	2,57725	3,71124	0
260	4,32978	0,41236	1,85562	0	0,72163	4,32978	0	0,82472
280	0	0,20618	0,51545	3,50506	0	1,85562	0,61854	0
300	0,10309	2,98961	1,23708	0	0,10309	0,61854	1,85562	0,30927
320	0,72163	1,64944	0	0,41236	0,30927	0	0,61854	0
340	0	2,37107	0,72163	0,10309	0,82472	0,30927	0	0
360	0,51545	0	0,41236	0	0	0,72163	0	0
380	0	0,61854	0	0,30927	0	0	0	0
400	0	0	0	0	0	0	0	0
420	0	0	0	0	0	0	0	0

Injection continue au fond du canal pour Q =0,2 l/s et C_0 =500 mg/l

	Concentration (mg/l)											
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m				
0	0	0	0	0	0	0	0	0				
20	0,10309	0	0	0	0	0	0	0				
40	0,20618	0,30927	0,10204	0	0	0	0	0				
60	1,85562	0,82472	0,92781	0,10204	0,20408	0,10204	0	0				
80	1,13399	2,57725	0,51545	0,51545	0,72163	0,5102	0,10204	0,10204				
100	9,79355	11,75226	1,44326	0,82472	0,51545	0,71428	0,20618	0,10204				
120	6,80394	11,44299	3,71124	1,44326	0,92781	0,92781	0,72163	0,30927				
140	10,51518	21,95817	12,16462	2,68034	2,37107	1,85562	1,13399	0,72163				
160	34,53515	12,88625	9,38119	10,20591	1,54635	2,37107	0,72163	0,51545				
180	12,98934	27,00958	11,44299	12,47389	6,49467	5,77304	2,88652	1,54635				
200	20,41182	13,91715	15,15423	9,69046	9,69046	2,47416	3,40197	2,47416				

220	46,80286	28,96829	26,39104	11,03063	12,78316	9,48428	2,57725	7,11321
240	54,74079	38,96802	39,27729	20,20564	25,87559	12,26771	7,73175	1,13399
260	64,43125	25,05087	22,78289	26,08177	18,45311	12,68007	5,56686	5,46377
280	42,67926	38,45257	56,39023	36,49386	25,87559	23,09216	10,92754	10,82445
300	34,63824	49,79247	43,81325	46,49359	31,33936	27,52503	23,50452	22,47362
320	36,90622	53,19444	42,36999	37,83403	25,87559	24,94778	34,53515	38,96802
340	30,41155	36,90622	51,13264	53,09135	37,73094	11,85535	14,84496	18,04075
360	55,77169	62,98799	24,01997	30,20537	23,19525	20,10255	12,88625	29,48374
380	45,56578	43,09162	23,29834	21,85508	20,30873	13,09243	6,80394	24,84469
400	41,54527	32,16408	55,77169	29,58683	24,84469	19,99946	10,61827	7,73175
420	51,64809	41,44218	51,02955	31,03009	21,95817	18,24693	22,06126	13,60788

Injection continue au fond du canal pour Q =0,35 l/s et C_0 =500 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0,30927	0,10204	0	0	0	0	0	0
40	0,20618	0,30927	0,20408	0,10204	0,10204	0,10204	0	0
60	1,23708	0,92781	0,41236	0,10204	0,20408	0,10204	0,10204	0,10204
80	0,92781	1,75253	1,54635	1,23708	0,51545	0,30612	0,5102	0,10204
100	6,90703	2,68034	3,50506	0,92781	0,92781	1,12244	1,23708	0,61224
120	10,10282	8,35029	7,83484	1,54635	0,61854	0,92781	2,68034	0,30927
140	11,75226	1,34017	10,10282	2,88652	3,71124	1,64944	1,44326	1,23708
160	26,28795	9,79355	12,98934	7,01012	1,54635	4,84523	3,91742	2,88652
180	47,00904	16,70058	23,09216	5,36068	9,89664	6,70085	4,84523	8,04102
200	56,49332	18,04075	18,35002	19,99946	14,63878	10,20591	7,01012	5,66995
220	67,42086	24,84469	26,39104	11,64917	14,12333	16,39131	10,20591	6,90703
240	43,81325	28,65902	34,63824	15,77277	28,65902	27,62812	6,90703	12,78316
260	73,29699	17,11294	21,54581	24,01997	41,02982	34,32897	15,87586	14,02024
280	85,04925	36,39077	46,08123	37,93712	41,44218	10,72136	29,79301	10,82445
300	44,63797	43,81325	32,47335	36,18459	33,81352	6,90703	35,25678	22,6798
320	54,43152	60,61692	45,87505	48,14303	25,15396	18,35002	32,16408	22,16435
340	37,83403	68,55485	38,04021	66,90541	49,99865	30,72082	26,59722	18,04075
360	56,08096	65,25597	24,01997	46,80286	33,50425	40,61746	23,19525	30,20537
380	64,22507	53,40062	25,46323	27,11267	27,11267	46,08123	37,52476	23,09216
400	26,28795	43,81325	47,31831	15,05114	25,15396	61,64782	38,96802	18,04075
420	33,50425	42,36999	52,98826	30,41155	33,50425	37,62785	27,42194	11,44299

Injection continue au fond du canal pour Q =0,42 l/s et C_0 =500 mg/l

	Concentration (mg/l)										
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m			
0	0	0	0	0	0	0	0	0			
20	0,30927	0,10204	0	0	0	0	0	0			
40	0,20618	0,30927	0,20408	0,10204	0,10204	0,10204	0	0			
60	1,23708	0,92781	0,41236	0,10204	0,20408	0,10204	0,10204	0,10204			
80	0,92781	1,75253	1,54635	1,23708	0,51545	0,30612	0,5102	0,10204			
100	6,90703	2,68034	3,50506	0,92781	0,92781	1,12244	1,23708	0,61224			
120	10,10282	8,35029	7,83484	1,54635	0,61854	0,92781	2,68034	0,30927			

140	11,75226	1,34017	10,10282	2,88652	3,71124	1,64944	1,44326	1,23708
160	26,28795	9,79355	12,98934	7,01012	1,54635	4,84523	3,91742	2,88652
180	47,00904	16,70058	23,09216	5,36068	9,89664	6,70085	4,84523	8,04102
200	56,49332	18,04075	18,35002	19,99946	14,63878	10,20591	7,01012	5,66995
220	67,42086	24,84469	26,39104	11,64917	14,12333	16,39131	10,20591	6,90703
240	43,81325	28,65902	34,63824	15,77277	28,65902	27,62812	6,90703	12,78316
260	73,29699	17,11294	21,54581	24,01997	41,02982	34,32897	15,87586	14,02024
280	85,04925	36,39077	46,08123	37,93712	41,44218	10,72136	29,79301	10,82445
300	44,63797	43,81325	32,47335	36,18459	33,81352	6,90703	35,25678	22,6798
320	54,43152	60,61692	45,87505	48,14303	25,15396	18,35002	32,16408	22,16435
340	37,83403	68,55485	38,04021	66,90541	49,99865	30,72082	26,59722	18,04075
360	56,08096	65,25597	24,01997	46,80286	33,50425	40,61746	23,19525	30,20537
380	64,22507	53,40062	25,46323	27,11267	27,11267	46,08123	37,52476	23,09216
400	26,28795	43,81325	47,31831	15,05114	25,15396	61,64782	38,96802	18,04075
420	33,50425	42,36999	52,98826	30,41155	33,50425	37,62785	27,42194	11,44299

Injection continue au fond du canal pour Q =0,54 l/s et C_0 =500 mg/l

				Concentrat	ion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0,10309	0	0	0	0	0	0	0
40	0,20618	0,10309	0,10204	0,20408	0,10204	0	0	0,10204
60	0,61854	0,61854	0,41236	0,5102	0,30612	0,30612	0	0,10204
80	1,95871	0,30927	1,23708	0,92781	0,72163	1,22448	0,30612	0,30612
100	4,53596	3,40197	2,37107	1,13399	1,13399	0,61224	0,41236	0,5102
120	6,90703	5,77304	1,13399	3,29888	0,82472	2,47416	0,092781	1,95871
140	13,19552	9,99973	6,59776	4,84523	2,98961	1,64944	0,72163	6,90703
160	21,13345	14,94805	10,61827	6,80394	2,26798	5,46377	2,47416	2,88652
180	32,57644	14,22642	28,45284	8,96883	8,96883	8,04102	3,40197	4,32978
200	58,34894	29,17447	24,94778	10,82445	15,15423	6,70085	9,17501	15,97895
220	54,84388	24,01997	34,22588	22,88598	26,39104	10,61827	17,42221	12,68007
240	70,92592	48,03994	16,08204	34,94751	24,84469	18,35002	15,15423	11,44299
260	62,98799	59,37984	25,15396	28,65902	36,49386	23,19525	14,02024	26,39104
280	90,20375	51,33882	38,65875	33,50425	19,48401	34,53515	30,927	14,53569
300	69,99811	64,01889	23,19525	28,45284	28,45284	17,93766	23,29834	30,82391
320	52,98826	43,09162	37,73094	16,39131	18,14384	22,57671	35,56605	33,40116
340	89,37903	57,21495	26,18486	43,50398	29,79301	36,90622	26,49413	10,41209
360	66,18378	69,37957	32,47335	52,67899	32,06099	22,88598	14,94805	17,11294
380	80,10093	86,90487	20,618	16,59749	46,80286	36,59695	41,13291	20,41182
400	102,88382	36,90622	35,77223	85,87397	33,40116	29,79301	24,43233	28,45284
420	65,56524	49,27702	12,98934	35,56605	47,11213	73,29699	25,36014	15,05114

Injection continue au fond du canal pour Q =0,62 l/s et C_0 =500 mg/l

	Concentration (mg/l)									
t(s)	X=1m									
0	0	0	0	0	0	0	0	0		
20	0,10309	0,10204	0,10204	0	0	0	0	0		
40	0,51545	0,30927	0,30612	0,10204	0,10204	0,10204	0,10204	0		
60	0,92781	0,92781	0,72163	0,71428	0,30612	0,5102	0,61224	0,10204		

80	0,61854	0,61854	2,57725	2,16489	0,92781	0,91836	0,91836	0,20408
100	12,57698	2,37107	1,13399	0,92781	1,75253	1,12244	1,13399	0,91836
120	8,14411	4,84523	8,14411	5,77304	3,71124	2,88652	2,37107	2,57725
140	23,29834	9,69046	6,80394	3,40197	4,32978	12,88625	3,71124	4,53596
160	29,58683	12,88625	12,57698	11,75226	1,64944	15,97895	3,29888	3,71124
180	41,02982	37,93712	24,22615	26,59722	5,56686	14,63878	8,96883	10,20591
200	27,62812	28,34975	46,90595	10,82445	9,89664	15,97895	6,90703	11,03063
220	66,69923	37,93712	32,9888	26,59722	18,35002	24,01997	12,3708	13,60788
240	57,11186	78,45149	68,86412	37,83403	14,63878	20,20564	11,44299	18,04075
260	99,58494	89,17285	22,06126	22,26744	27,42194	26,39104	12,88625	15,97895
280	148,86196	45,3596	46,08123	37,83403	47,00904	14,84496	22,98907	18,35002
300	88,03886	34,84442	23,60761	43,81325	24,84469	52,88517	15,05114	24,01997
320	94,01808	98,65713	57,42113	37,73094	53,6068	43,71016	13,71097	22,37053
340	151,12994	110,71866	20,618	68,96721	24,32924	37,93712	15,66968	32,37026
360	168,34597	86,90487	85,35852	76,38969	47,11213	36,59695	18,35002	28,34975
380	122,05856	64,32816	68,24558	33,91661	49,07084	24,84469	22,06126	31,44245
400	77,83295	102,98691	48,14303	25,36014	22,88598	27,11267	42,36999	43,2978
420	103,70854	76,80205	25,36014	37,52476	78,14222	31,23627	32,37026	20,41182

Injection continue au fond du canal pour Q =0,75 l/s et C_0 =500 mg/l

	Concentration (mg/l)									
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	0,20618	0	0,10204	0	0	0	0	0		
40	0,72163	0,20618	0,20408	0,30612	0,10204	0,10204	0,10204	0		
60	1,13399	0,61854	0,51545	0,91836	0,20408	0,30612	0,30612	0		
80	0,61854	1,64944	1,95871	1,64944	0,61854	0,81632	0,71428	0,10204		
100	5,56686	4,53596	2,37107	0,82472	1,54635	0,91836	4,63905	0,40816		
120	12,98934	6,39158	9,17501	7,11321	2,88652	2,78343	2,88652	1,23708		
140	10,10282	10,51518	7,73175	4,74214	5,05141	7,73175	3,60815	2,37107		
160	14,84496	16,28822	2,68034	13,19552	9,17501	9,99973	6,49467	2,88652		
180	22,6798	33,09189	15,15423	28,24666	12,57698	12,68007	4,32978	6,90703		
200	35,46296	26,8034	38,04021	23,91688	8,76265	26,39104	9,89664	14,94805		
220	46,69977	21,6489	25,46323	26,59722	16,90676	32,37026	15,66968	12,3708		
240	34,94751	68,34867	78,14222	33,40116	19,27783	24,84469	17,21603	13,71097		
260	81,23492	57,42113	37,62785	22,47362	37,62785	26,39104	10,82445	16,70058		
280	66,38996	59,58602	26,59722	28,45284	33,09189	17,11294	24,01997	15,87586		
300	57,11186	46,08123	20,30873	38,55566	56,49332	43,2978	26,39104	22,78289		
320	88,14195	81,33801	50,20483	37,73094	47,62758	31,9579	28,34975	25,25705		
340	109,89394	103,19309	58,86439	62,26636	38,65875	45,46269	33,50425	22,06126		
360	118,03805	35,25678	100,51275	82,26582	26,70031	33,50425	16,90676	27,21576		
380	101,74983	66,69923	76,80205	57,52422	22,06126	29,58683	37,31858	32,67953		
400	78,86385	113,29591	26,39104	33,50425	38,04021	26,59722	26,59722	35,25678		
420	91,33774	68,86412	69,68884	76,80205	48,55539	25,25705	32,57644	26,28795		

Injection discontinue à la surface pour Q =0,2 l/s et C_0 =600 mg/l

		Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m			

0	0	0	0	0	0	0	0	0
20	0,72163	0,30612	0,10204	0	0	0	0	0
40	0,82472	0,61854	0,40816	0,10204	0	0	0	0
60	3,60815	0,92781	0,72163	0,20408	0,10204	0	0	0
80	3,71124	2,57725	1,23708	0,51545	0,20618	0,10204	0	0
100	8,55647	3,29888	1,95871	0,72163	0,30927	0,20408	0	0
120	12,88625	7,11321	2,57725	1,34017	0,51545	0,30927	0	0
140	15,97895	14,63878	3,40197	2,47416	0,72163	0,41236	0,10309	0
160	31,03009	17,21603	5,36068	3,29888	0,92781	0,72163	0,20618	0
180	52,06045	29,79301	6,49467	4,22669	1,34017	1,0309	0,30927	0
200	81,33801	45,77196	8,96883	4,53596	1,85562	1,34017	0,51545	0,10309
220	44,84415	70,61665	14,53569	8,76265	2,68034	2,16489	0,61854	0,10309
240	33,71043	58,55512	22,88598	10,10282	3,71124	2,88652	0,92781	0,30927
260	28,34975	35,77223	28,76211	16,59749	5,87613	3,91742	1,64944	0,61854
280	27,11267	32,26717	28,34975	19,69019	10,10282	5,87613	1,85562	0,72163
300	24,84469	25,46323	26,18486	20,72109	12,26771	7,93793	2,57725	1,13399
320	20,20564	20,72109	22,37053	18,76238	12,78316	9,38119	4,22669	1,44326
340	15,97895	12,16462	17,00985	15,97895	11,75226	10,10282	5,1545	1,75253
360	8,86574	6,08231	11,44299	11,75226	10,20591	9,48428	5,56686	2,26798
380	3,40197	1,85562	5,97922	8,96883	8,86574	7,73175	5,25759	2,47416
400	1,75253	1,64944	4,53596	7,73175	6,59776	4,32978	4,32978	2,16489
420	1,64944	1,13399	3,71124	7,11321	5,05141	1,34017	2,47416	1,44326

Injection discontinue à la surface pour Q =0,35 l/s et C_0 =600 mg/l

	Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	0,92781	0,61224	0,30612	0,10204	0	0	0	0		
40	1,44326	1,13399	0,5102	0,20408	0,10204	0	0	0		
60	2,57725	1,95871	1,23708	0,71428	0,20408	0,10204	0	0		
80	4,84523	3,40197	1,95871	0,92781	0,30927	0,20408	0,10204	0		
100	8,76265	5,36068	2,98961	1,95871	0,51545	0,40816	0,20618	0		
120	14,02024	13,09243	3,60815	2,26798	1,13399	0,72163	0,30927	0		
140	19,27783	18,24693	4,32978	3,81433	1,64944	1,13399	0,51545	0,10309		
160	46,49359	38,04021	10,10282	4,74214	2,47416	2,37107	0,72163	0,20618		
180	92,36864	51,02955	23,09216	9,89664	4,02051	2,88652	0,92781	0,30927		
200	66,69923	71,02901	44,53488	12,47389	4,74214	3,60815	1,44326	0,41236		
220	52,98826	47,11213	52,36972	23,81379	8,76265	4,53596	2,57725	0,92781		
240	47,00904	32,37026	52,98826	39,38038	23,19525	9,99973	2,98961	1,13399		
260	37,83403	26,49413	46,08123	46,08123	29,79301	12,47389	3,81433	2,16489		
280	28,45284	24,84469	38,65875	44,12252	30,72082	14,32951	4,32978	2,68034		
300	16,18513	19,48401	26,39104	40,61746	29,58683	13,81406	7,11321	4,84523		
320	14,02024	13,71097	24,84469	29,79301	27,42194	12,98934	7,52557	5,66995		
340	12,57698	13,09243	14,12333	12,57698	20,30873	11,64917	7,73175	6,08231		
360	8,96883	12,57698	12,98934	10,51518	11,75226	7,83484	7,42248	6,49467		
380	6,49467	10,20591	8,76265	9,89664	9,17501	6,70085	6,59776	5,87613		
400	2,68034	3,60815	3,60815	4,32978	7,83484	3,19579	4,94832	2,57725		
420	1,75253	2,98961	2,26798	3,19579	4,32978	2,26798	2,47416	1,34017		

Injection discontinue à la surface pour Q =0,42 l/s et C_0 =600 mg/l

				Concentrat	ion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	1,13399	0,91836	0,71428	0,5102	0,10204	0	0	0
40	2,47416	1,85562	0,91836	0,71428	0,20408	0,10204	0	0
60	5,36068	3,40197	1,34017	1,12244	0,5102	0,20408	0,10204	0
80	6,80394	5,97922	2,88652	2,47416	0,72163	0,40816	0,20408	0
100	12,47389	11,44299	6,49467	3,60815	1,95871	0,81632	0,41236	0
120	26,39104	23,91688	16,28822	7,83484	4,53596	1,64944	0,61854	0,20618
140	50,10174	29,48374	18,14384	14,12333	9,89664	4,63905	0,92781	0,30927
160	102,88382	51,33882	24,32924	15,15423	14,32951	7,11321	1,85562	0,51545
180	70,71974	80,10093	37,62785	26,49413	20,20564	13,19552	2,57725	0,92781
200	54,94697	67,83322	59,17366	39,68965	28,24666	22,78289	4,32978	1,44326
220	42,88544	42,78235	50,30792	42,78235	34,22588	27,31885	5,56686	2,26798
240	38,76184	38,65875	44,53488	42,06072	36,70004	29,58683	8,45338	2,78343
260	35,87532	31,44245	32,16408	38,55566	33,60734	31,75172	12,78316	4,02051
280	31,44245	27,31885	27,11267	30,72082	28,14357	30,41155	15,36041	7,62866
300	22,88598	23,09216	24,84469	28,24666	22,57671	22,06126	16,18513	9,89664
320	22,26744	22,78289	22,26744	19,07165	11,23681	17,93766	15,25732	10,51518
340	16,70058	17,00985	11,13372	16,80367	8,96883	13,09243	12,57698	9,89664
360	12,57698	12,47389	10,10282	12,78316	6,49467	11,75226	9,48428	8,76265
380	7,52557	9,48428	7,52557	9,17501	5,36068	8,96883	4,53596	6,49467
400	6,49467	8,04102	6,80394	7,62866	4,43287	5,46377	4,02051	3,29888
420	4,32978	7,11321	5,56686	6,39158	3,40197	4,32978	2,57725	1,23708

Injection discontinue à la surface pour Q =0,54 l/s et C_0 =600 mg/l

				Concentrat	tion (mg/l)			
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	1,54635	1,12244	0,71428	0,5102	0,30612	0,10204	0	0
40	7,01012	4,84523	1,93876	1,22448	0,5102	0,30612	0	0
60	17,42221	12,68007	6,49467	5,30608	1,12244	0,61224	0,10204	0
80	25,25705	20,82418	12,47389	11,44299	3,71124	1,12244	0,40816	0
100	45,05033	32,78262	13,60788	12,57698	6,08231	2,65304	0,61854	0,10204
120	67,62704	38,96802	26,49413	23,19525	10,10282	4,53596	1,13399	0,30927
140	115,97625	57,62731	35,15369	26,59722	12,68007	9,99973	2,78343	0,51545
160	70,51356	99,37876	73,40008	47,21522	20,20564	14,02024	3,81433	0,92781
180	55,35933	59,27675	83,60599	64,43125	42,67926	23,29834	4,94832	1,95871
200	49,58629	47,83376	81,02874	70,82283	51,95736	29,99919	12,06153	2,47416
220	43,50398	41,44218	58,55512	66,90541	56,80259	34,43206	20,30873	4,02051
240	41,95763	32,16408	44,01943	58,45203	58,96748	37,00931	23,19525	5,36068
260	32,37026	23,19525	33,81352	36,28768	51,02955	35,77223	24,32924	7,83484
280	23,19525	21,44272	24,32924	28,65902	41,13291	30,41155	23,19525	8,76265
300	22,78289	19,48401	22,78289	25,46323	28,34975	25,25705	20,10255	8,65956
320	22,06126	16,18513	18,35002	13,09243	15,66968	18,86547	15,05114	8,14411
340	20,41182	14,02024	15,66968	12,06153	11,44299	14,63878	11,64917	7,52557
360	12,57698	13,09243	14,74187	10,20591	9,89664	8,76265	9,69046	6,39158
380	11,54608	7,01012	10,41209	8,65956	8,76265	7,52557	7,62866	5,25759
400	5,87613	4,32978	10,10282	6,49467	5,46377	6,80394	6,28849	4,32978

420	4,22669	2.57725	7 93793	5 36068	4 22669	4 22669	5 36068	4 22669	
420	4,22009	2,31123	1,23123	3,30008	4,22009	4,22009	3,30000	4,22009	

Injection discontinue à la surface pour Q = 0.62 l/s et $C_0 = 600 \text{ mg/l}$

	Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	2,37107	1,42856	0,91836	0,61224	0,40816	0,20408	0	0		
40	7,01012	4,84523	3,26528	1,83672	0,91836	0,40816	0	0		
60	15,77277	11,44299	8,76265	4,18364	2,85712	1,12244	0,10204	0		
80	31,03009	26,59722	15,87586	7,11321	4,32978	2,34692	0,91836	0		
100	82,05964	33,60734	40,82364	9,89664	6,39158	3,77548	1,44326	0,30612		
120	128,55323	57,42113	56,39023	12,57698	8,76265	4,74214	2,68034	1,75253		
140	73,29699	94,22426	66,80232	50,41101	31,13318	7,01012	3,29888	2,26798		
160	62,26636	63,40035	85,04925	61,95709	42,36999	19,27783	4,53596	3,50506		
180	52,88517	42,06072	83,70908	62,98799	47,52449	30,51464	9,38119	4,22669		
200	41,64836	35,35987	78,96694	62,47254	50,41101	36,49386	16,70058	9,89664		
220	32,67953	26,59722	59,58602	55,87478	49,38011	39,68965	25,46323	15,87586		
240	21,75199	23,40143	42,67926	46,18432	44,12252	37,31858	29,48374	19,17474		
260	17,11294	16,28822	33,50425	29,48374	36,59695	34,53515	28,55593	20,41182		
280	15,15423	13,09243	20,72109	27,00958	24,43233	30,41155	26,08177	18,96856		
300	12,16462	10,61827	14,02024	24,01997	11,75226	25,97868	19,79328	17,73148		
320	10,10282	9,48428	13,09243	12,78316	8,65956	19,79328	12,78316	15,77277		
340	7,73175	2,26798	12,26771	12,26771	6,39158	12,78316	10,82445	13,19552		
360	6,80394	1,44326	11,64917	11,13372	3,71124	9,48428	7,01012	6,90703		
380	4,84523	0,92781	6,70085	7,73175	1,23708	5,66995	2,37107	3,50506		
400	3,40197	0,41236	4,53596	6,28849	0,61854	0,82472	0,61854	2,78343		
420	2,16489	0,30927	3,19579	2,78343	0,20618	0,10309	0,10309	1,54635		

Injection discontinue à la surface pour Q =0,75 l/s et C_0 =600 mg/l

	Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	5,25759	4,48976	3,16324	1,93876	1,12244	0,91836	0	0		
40	24,01997	17,42221	11,32644	5,30608	3,26528	1,93876	0	0		
60	59,17366	37,62785	29,38065	14,48968	5,6122	2,85712	0	0		
80	99,58494	50,92646	52,67899	24,22615	9,89664	5,30608	0,10204	0		
100	185,97436	78,86385	83,60599	59,58602	13,09243	8,77544	0,92781	0		
120	117,83187	156,90298	99,58494	81,13183	24,63851	9,69046	1,85562	0,20618		
140	91,54392	98,55404	105,97652	90,40993	44,12252	22,98907	3,40197	0,61854		
160	76,49278	80,92565	101,64674	94,22426	52,98826	28,65902	7,01012	2,68034		
180	65,77142	66,38996	89,58521	87,31723	58,45203	37,42167	17,93766	3,91742		
200	55,77169	62,67872	75,87424	78,65767	63,29726	42,67926	22,26744	9,99973		
220	44,94724	53,19444	64,74052	66,69923	60,41074	45,77196	25,87559	13,60788		
240	28,65902	42,47308	55,25624	54,84388	50,41101	43,81325	27,42194	19,17474		
260	21,95817	38,65875	28,45284	36,18459	42,98853	39,58656	26,18486	21,75199		
280	20,72109	37,83403	21,75199	24,32924	27,21576	32,78262	22,47362	21,23654		
300	19,07165	33,81352	19,17474	20,41182	16,90676	23,29834	20,10255	20,41182		
320	17,83457	24,01997	18,04075	14,74187	15,77277	19,17474	11,23681	17,83457		
340	16,70058	18,04075	14,02024	11,23681	11,64917	12,57698	5,77304	15,66968		

360	12,88625	14,02024	13,09243	8,86574	7,42248	11,64917	3,71124	8,76265
380	8,76265	11,44299	10,41209	3,19579	2,26798	7,01012	1,23708	4,43287
400	3,71124	10,10282	5,46377	1,23708	0,92781	1,95871	0,51545	1,64944
420	2,26798	1,34017	0,82472	0,82472	0,20618	0,82472	0,20618	1,44326

Injection continue à la surface pour Q =0,2 l/s et C_0 =600 mg/l

	Concentration (mg/l)									
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	0,41236	0,30927	0	0	0	0	0	0		
40	0,61854	0,51545	0,30927	0,20618	0	0	0	0		
60	0,82472	0,72163	0,51545	0,41236	0,10204	0	0	0		
80	0,92781	0,82472	0,72163	0,61854	0,20618	0,10204	0	0		
100	1,13399	1,0309	0,92781	1,13399	0,41236	0,20408	0,10204	0		
120	11,85535	5,77304	1,54635	1,44326	0,72163	0,51545	0,20408	0		
140	14,63878	13,71097	2,37107	1,95871	0,92781	0,82472	0,40816	0,10204		
160	28,55593	15,25732	5,87613	3,40197	2,47416	1,95871	0,61854	0,30612		
180	204,83983	136,90352	14,84496	5,97922	4,32978	3,40197	1,95871	0,5102		
200	279,58008	232,67413	54,6377	9,99973	8,35029	4,22669	3,71124	0,92781		
220	425,24625	358,34084	133,81082	14,22642	25,25705	14,94805	4,74214	1,44326		
240	475,65726	387,10295	283,08514	78,24531	78,24531	27,52503	7,42248	2,78343		
260	591,42733	508,54297	347,20712	243,91094	129,48104	92,88409	10,20591	5,87613		
280	591,42733	580,70597	472,77074	408,54567	286,28093	115,77007	25,15396	8,96883		
300	591,42733	580,70597	577,40709	475,45108	356,27904	289,88908	191,85049	16,39131		
320	591,42733	580,70597	577,40709	569,46916	507,51207	376,79395	251,84887	84,12144		
340	591,42733	580,70597	577,40709	569,46916	568,95371	456,17325	411,43219	170,51086		
360	591,42733	580,70597	577,40709	569,46916	568,95371	556,99527	430,50384	242,88004		
380	591,42733	580,70597	577,40709	569,46916	568,95371	556,99527	549,05734	413,49399		
400	591,42733	580,70597	577,40709	569,46916	568,95371	556,99527	549,05734	528,95479		
420	591,42733	580,70597	577,40709	569,46916	568,95371	556,99527	549,05734	528,95479		

Injection continue à la surface pour Q =0,35 l/s et C_0 =600 mg/l

	Concentration (mg/l)									
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	0,92781	0,82472	0,51545	0,10309	0	0	0	0		
40	3,19579	2,26798	1,23708	0,92781	0,10204	0	0	0		
60	5,36068	4,94832	2,26798	1,54635	0,30612	0,10204	0	0		
80	7,83484	7,01012	4,22669	3,91742	0,61854	0,30612	0,10204	0		
100	14,32951	12,78316	5,66995	4,63905	1,13399	0,5102	0,20408	0,10204		
120	45,46269	26,39104	10,10282	7,83484	2,88652	1,95871	0,40816	0,30612		
140	129,48104	85,46161	14,94805	12,68007	6,39158	3,29888	0,81632	0,5102		
160	305,45567	184,84037	44,84415	24,22615	10,20591	4,63905	1,13399	0,91836		
180	495,75981	298,13628	152,47011	127,62542	13,50479	6,49467	1,64944	1,12244		
200	559,98488	334,52705	248,65308	163,60383	61,54473	19,79328	6,80394	3,29888		
220	591,94278	442,97773	339,68155	225,56092	126,90379	27,31885	9,99973	5,77304		
240	591,94278	583,69558	425,24625	356,27904	303,49696	147,31561	26,59722	16,18513		
260	591,94278	583,69558	580,49979	484,83227	367,30967	257,82809	65,15288	33,19498		
280	591,94278	583,69558	580,49979	577,61327	438,75104	335,45486	115,15153	159,06787		

300	591,94278	583,69558	580,49979	577,61327	577,304	438,75104	282,67278	294,52813
320	591,94278	583,69558	580,49979	577,61327	577,304	521,73849	475,86344	356,48522
340	591,94278	583,69558	580,49979	577,61327	577,304	562,97449	551,63459	486,37862
360	591,94278	583,69558	580,49979	577,61327	577,304	562,97449	551,63459	545,24301
380	591,94278	583,69558	580,49979	577,61327	577,304	562,97449	551,63459	545,24301
400	591,94278	583,69558	580,49979	577,61327	577,304	562,97449	551,63459	545,24301
420	591,94278	583,69558	580,49979	577,61327	577,304	562,97449	551,63459	545,24301

Injection continue à la surface pour Q =0,42 l/s et C_0 =600 mg/l

	Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	1,95871	1,44326	0,92781	0,51545	0,30612	0,10204	0	0		
40	4,84523	3,40197	1,95871	1,64944	0,5102	0,20408	0,10204	0		
60	6,39158	5,66995	4,53596	3,81433	1,32652	1,12244	0,30612	0		
80	12,88625	6,59776	6,39158	4,74214	2,98961	3,5714	0,5102	0,20408		
100	40,72055	27,52503	20,30873	8,65956	4,84523	3,87752	0,71428	0,40816		
120	145,45999	55,25624	19,17474	16,28822	10,10282	5,56686	1,5306	0,5102		
140	275,97193	109,79085	73,70935	36,28768	10,61827	5,36068	2,34692	1,63264		
160	367,92821	250,81797	202,77803	82,05964	19,99946	10,10282	4,32978	2,95916		
180	500,60504	391,02037	216,79827	189,37633	36,28768	27,11267	17,21603	3,36732		
200	592,87059	438,54486	355,14505	251,95196	191,33504	57,93658	24,22615	14,84496		
220	592,87059	588,33463	459,57522	356,58831	288,44582	117,00715	102,78073	25,25705		
240	592,87059	588,33463	587,40682	479,98704	319,68209	283,90986	118,14114	67,73013		
260	592,87059	588,33463	587,40682	576,17001	472,77074	358,54702	261,02388	138,34678		
280	592,87059	588,33463	587,40682	576,17001	574,93293	439,06031	355,35123	238,55026		
300	592,87059	588,33463	587,40682	576,17001	574,93293	570,60315	502,56375	325,45513		
320	592,87059	588,33463	587,40682	576,17001	574,93293	570,60315	569,15989	438,95722		
340	592,87059	588,33463	587,40682	576,17001	574,93293	570,60315	569,15989	567,09809		
360	592,87059	588,33463	587,40682	576,17001	574,93293	570,60315	569,15989	567,09809		
380	592,87059	588,33463	587,40682	576,17001	574,93293	570,60315	569,15989	567,09809		
400	592,87059	588,33463	587,40682	576,17001	574,93293	570,60315	569,15989	567,09809		
420	592,87059	588,33463	587,40682	576,17001	574,93293	570,60315	569,15989	567,09809		

Injection continue à la surface pour Q =0,54 l/s et C_0 =600 mg/l

	Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	3,60815	3,40197	1,13399	0,92781	0,5102	0,30612	0	0		
40	4,43287	4,1236	3,40197	2,57725	0,71428	0,5102	0,20408	0		
60	10,10282	6,49467	5,56686	3,50506	2,65304	0,91836	0,30612	0,10204		
80	29,58683	9,99973	5,77304	6,90703	3,29888	2,551	0,71428	0,30612		
100	96,07988	49,07084	12,06153	20,10255	5,77304	4,28568	0,91836	0,40816		
120	161,43894	97,11078	33,50425	26,70031	7,42248	6,49467	2,95916	0,91836		
140	368,75293	204,83983	116,07934	36,28768	13,71097	12,57698	4,48976	3,26528		
160	484,00755	261,12697	260,50843	201,64404	22,06126	17,42221	5,77304	4,79588		
180	515,65618	391,22655	356,48522	253,18904	163,50074	37,62785	17,83457	8,06116		
200	596,78801	425,24625	473,08001	369,78383	229,68452	181,23222	26,59722	14,02024		
220	596,78801	595,34475	587,50991	490,50222	356,48522	284,11604	150,82067	36,70004		

240	596,78801	595,34475	587,50991	585,13884	490,29604	358,23775	220,09715	128,55323
260	596,78801	595,34475	587,50991	585,13884	582,56159	461,32775	335,86722	253,39522
280	596,78801	595,34475	587,50991	585,13884	582,56159	579,67507	470,91512	368,85602
300	596,78801	595,34475	587,50991	585,13884	582,56159	579,67507	576,47928	472,77074
320	596,78801	595,34475	587,50991	585,13884	582,56159	579,67507	576,47928	572,87113
340	596,78801	595,34475	587,50991	585,13884	582,56159	579,67507	576,47928	572,87113
360	596,78801	595,34475	587,50991	585,13884	582,56159	579,67507	576,47928	572,87113
380	596,78801	595,34475	587,50991	585,13884	582,56159	579,67507	576,47928	572,87113
400	596,78801	595,34475	587,50991	585,13884	582,56159	579,67507	576,47928	572,87113
420	596,78801	595,34475	587,50991	585,13884	582,56159	579,67507	576,47928	572,87113

Injection continue à la surface pour Q =0,62 l/s et C₀=600 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	4,32978	4,02051	2,98961	1,13399	0,81632	0,5102	0	0
40	6,70085	5,87613	4,63905	3,29888	1,12244	0,61224	0,30612	0,20408
60	26,59722	17,42221	5,36068	4,53596	3,5714	2,551	0,5102	0,30612
80	184,42801	83,91526	7,62866	6,80394	5,87613	4,28568	1,12244	0,61224
100	242,88004	157,31534	42,98853	26,59722	7,52557	5,30608	1,73468	1,12244
120	335,86722	263,18877	167,52125	89,58521	19,17474	10,10282	3,5714	2,551
140	438,95722	381,12373	244,22021	125,97598	47,21522	33,50425	5,51016	4,89792
160	596,37565	488,23424	369,99001	249,99325	167,41816	36,90622	26,59722	7,85708
180	596,37565	594,72621	473,08001	365,66023	264,73512	172,88193	88,96667	26,32632
200	596,37565	594,72621	587,71609	468,64714	356,48522	262,67332	166,07799	38,96802
220	596,37565	594,72621	587,71609	585,03575	428,64822	356,38213	253,29213	103,60545
240	596,37565	594,72621	587,71609	585,03575	581,22142	428,64822	379,78356	242,88004
260	596,37565	594,72621	587,71609	585,03575	581,22142	577,40709	450,29712	377,82485
280	596,37565	594,72621	587,71609	585,03575	581,22142	577,40709	574,62366	471,53366
300	596,37565	594,72621	587,71609	585,03575	581,22142	577,40709	574,62366	562,97449
320	596,37565	594,72621	587,71609	585,03575	581,22142	577,40709	574,62366	562,97449
340	596,37565	594,72621	587,71609	585,03575	581,22142	577,40709	574,62366	562,97449
360	596,37565	594,72621	587,71609	585,03575	581,22142	577,40709	574,62366	562,97449
380	596,37565	594,72621	587,71609	585,03575	581,22142	577,40709	574,62366	562,97449
400	596,37565	594,72621	587,71609	585,03575	581,22142	577,40709	574,62366	562,97449
420	596,37565	594,72621	587,71609	585,03575	581,22142	577,40709	574,62366	562,97449

Injection continue à la surface pour Q =0,75 l/s et C_0 =600 mg/l

	Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	5,36068	4,43287	3,60815	3,29888	2,34692	1,12244	0,91836	0,10204		
40	64,43125	16,80367	5,05141	3,91742	3,5714	0,244896	1,12244	0,5102		
60	147,00634	89,58521	10,10282	6,80394	4,48976	3,67344	2,65304	0,91836		
80	242,88004	166,38726	71,75064	37,31858	7,93793	6,6326	3,77548	2,44896		
100	334,52705	242,88004	166,69653	80,51329	24,32924	9,99992	6,53056	3,46936		
120	438,75104	356,48522	284,32222	161,74821	37,62785	26,39104	11,63256	6,32648		
140	597,922	466,58534	335,86722	253,39522	152,05775	90,30684	23,9794	9,99992		
160	597,922	595,34475	450,40021	387,41222	277,00283	124,12036	87,72959	23,9794		
180	597,922	595,34475	594,00458	480,19322	356,48522	221,12805	171,43867	35,91808		

200	597,922	595,34475	594,00458	589,6748	445,86425	387,82458	276,79665	150,30522
220	597,922	595,34475	594,00458	589,6748	583,28322	425,24625	322,15625	259,27135
240	597,922	595,34475	594,00458	589,6748	583,28322	578,54108	450,40021	322,15625
260	597,922	595,34475	594,00458	589,6748	583,28322	578,54108	568,43826	438,95722
280	597,922	595,34475	594,00458	589,6748	583,28322	578,54108	568,43826	553,49021
300	597,922	595,34475	594,00458	589,6748	583,28322	578,54108	568,43826	553,49021
320	597,922	595,34475	594,00458	589,6748	583,28322	578,54108	568,43826	553,49021
340	597,922	595,34475	594,00458	589,6748	583,28322	578,54108	568,43826	553,49021
360	597,922	595,34475	594,00458	589,6748	583,28322	578,54108	568,43826	553,49021
380	597,922	595,34475	594,00458	589,6748	583,28322	578,54108	568,43826	553,49021
400	597,922	595,34475	594,00458	589,6748	583,28322	578,54108	568,43826	553,49021
420	597,922	595,34475	594,00458	589,6748	583,28322	578,54108	568,43826	553,49021

Injection discontinue au fond du canal pour Q =0,2 l/s et C_0 =600 mg/l

				Concentra	ation (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
40	0,41236	0,10309	0	0	0	0	0	0
60	0,92781	0,30927	0	0	0	0	0	0
80	0,30927	0,20618	0,10309	0	0	0	0	0
100	1,64944	1,13399	0,92781	0,20618	0	0	0	0
120	0,82472	0,82472	0,72163	0,61854	0	0	0	0
140	12,78316	1,64944	1,75253	0,20618	0,20618	0	0	0
160	24,32924	0,92781	2,78343	1,13399	0,61854	0,10309	0	0
180	15,15423	13,60788	1,44326	3,29888	0,30927	0	0	0
200	26,08177	4,32978	0	0	0,41236	0,72163	0,10309	0
220	12,68007	0,41236	5,46377	5,56686	1,23708	0,20618	0	0
240	9,89664	12,68007	0,10309	10,41209	3,60815	1,13399	0,30927	0,10309
260	4,94832	0	6,49467	9,17501	2,16489	2,57725	0,92781	0,20618
280	0,41236	7,01012	4,74214	16,08204	14,63878	1,54635	0,20618	0
300	1,85562	1,44326	9,89664	14,53569	20,72109	14,94805	0	0,20618
320	0	1,85562	4,84523	27,52503	0,92781	8,96883	1,23708	1,13399
340	0,20618	4,43287	0,20618	12,68007	1,13399	6,70085	3,60815	0
360	0,30927	0,20618	1,13399	0,41236	0	3,29888	0,72163	1,13399
380	0	0,51545	0,10309	0,82472	0	0,30927	0	0,82472
400	0,20618	0	0,41236	0	0,20618	0,72163	1,23708	0
420	0,10309	0,20618	0	0	0,30927	0	0	0

Injection discontinue au fond du canal pour Q =0,35 l/s et C_0 =600 mg/l

	Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	0,30927	0,10204	0	0	0	0	0	0		
40	0,10309	0	0	0	0	0	0	0		
60	0	0,41236	0,10309	0	0	0	0	0		
80	0,92781	0,92781	0,51545	0,10309	0	0	0	0		
100	5,66995	0,61854	0,30927	0,20618	0	0	0	0		

120	3,40197	2,26798	1,64944	0,10309	0,10309	0	0	0
140	0	1,54635	0,82472	2,37107	0,51545	0,20618	0,10309	0
160	4,32978	0,92781	1,44326	0	0	0	0	0
180	12,68007	12,68007	2,88652	2,57725	0,51545	1,0309	0,72163	0,10309
200	0,51545	11,44299	0,72163	2,68034	0,72163	1,64944	0,51545	0,20618
220	25,87559	5,87613	11,44299	9,89664	0,30927	0,20618	1,13399	0
240	12,68007	12,78316	24,32924	5,87613	0	0	0	0,10309
260	5,87613	24,32924	0,10309	0,92781	1,54635	7,73175	0,20618	0,61854
280	7,42248	0,82472	12,68007	14,02024	10,41209	3,40197	0,10309	0
300	0	0,10309	4,84523	0,41236	2,37107	4,84523	0,092781	1,64944
320	0,30927	0,92781	7,11321	12,68007	0,41236	0	0	0
340	0	1,44326	0,20618	0,20618	0,82472	4,63905	0	0,92781
360	0	0	0	0,72163	0	0,72163	0,20618	0,72163
380	0,10309	0,51545	0,10309	0,20618	0,92781	1,23708	0	0,41236
400	0,20618	0,30927	0	0	0	0	0,82472	0
420	0	0,41236	0	0	0	0	0	0

Injection discontinue au fond du canal pour Q =0,42 l/s et C_0 =600 mg/l

				Concentra	ation (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0	0,40816	0	0	0	0	0	0
40	0,10309	0	0,30612	0	0	0	0	0
60	0,20618	1,23708	0	0,30612	0,10204	0	0	0
80	0,10309	1,13399	0,41236	0,20618	0	0,20408	0	0
100	0	1,64944	1,13399	0,92781	0,92781	0	0	0
120	2,88652	4,53596	1,34017	1,13399	0,61854	0,72163	0,10309	0,10309
140	0,51545	7,73175	0,30927	3,29888	0	0,61854	0,20618	0,10309
160	12,88625	0	0,51545	0	1,54635	0	0,41236	0
180	2,57725	8,96883	4,53596	5,36068	0	1,44326	1,54635	0,41236
200	6,80394	4,63905	9,89664	4,53596	1,44326	0,61854	0,20618	0
220	0	20,20564	5,56686	0	6,49467	0,92781	1,95871	0,10309
240	18,65929	0	0	13,81406	0	0	0	0,30927
260	6,49467	12,78316	6,49467	2,26798	8,55647	2,88652	0	0
280	17,31912	2,88652	0	0	2,78343	1,85562	0	0,20618
300	0,10309	5,66995	0	0,51545	0	5,66995	0	0
320	8,96883	2,68034	8,55647	0	4,84523	0	0,10309	0,51545
340	0	0	0	1,13399	1,13399	0	0	0
360	1,54635	2,47416	1,23708	3,71124	0	0,20618	0	0
380	0,72163	0	0	0	0,10309	0,51545	0,20618	0
400	0	0,10309	0	0	0,30927	0	0,10309	0
420	0,10309	0	0	0,10309	0	0	0	0

Injection discontinue au fond du canal pour Q =0,54 l/s et C_0 =600 mg/l

				Concentra	ation (mg/l)			
t(s)	X=1 m	X=2m	X=3 m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0,20618	0	0	0	0	0	0	0

40	0,10309	0,20618	0,40816	0,10204	0	0	0	0
60	0	1,75253	0,10309	0,20408	0	0	0	0
80	0,72163	13,29861	0	0,10309	0	0	0	0
100	0,20618	0,51545	0,20618	0,72163	0,20618	0,10204	0	0,10204
120	1,23708	0	0,61854	0	0,92781	0,30927	0	0
140	2,26798	2,57725	0,92781	4,32978	0,61854	0,10309	0,10309	0,20618
160	0,51545	6,80394	0	0,92781	0,51545	1,44326	0	0
180	6,90703	1,44326	10,82445	1,64944	1,64944	0,72163	0,30927	0,30927
200	0	0,10309	9,99973	0,51545	0	0,92781	0,10309	0
220	5,46377	8,86574	6,80394	2,68034	0,41236	0	0	0
240	4,32978	1,13399	8,96883	3,60815	0,61854	0,82472	0	0
260	2,57725	0,41236	0,41236	1,64944	1,85562	0,41236	0,51545	0
280	6,70085	3,29888	0,82472	3,60815	2,37107	1,85562	0,10309	0
300	1,34017	4,32978	8,96883	0	0,30927	0,72163	0,30927	0,30927
320	0,72163	0,20618	0	0,82472	1,34017	0,61854	0,51545	0
340	0,82472	0	0,51545	0,72163	0	0,10309	0	0,10309
360	0	1,13399	0,30927	1,13399	0	0,72163	0,10309	0
380	0,51545	0	0	0	0,51545	0	0	0
400	0,30927	2,16489	0,30927	0	0	0	0	0
420	0,20618	0	0	0	0	0	0	0

Injection discontinue au fond du canal pour Q =0,62 l/s et C_0 =600 mg/l

				Concentra	ation (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0
60	0,61854	0,10309	0	0	0	0	0	0
80	1,75253	0,92781	0,51545	0,20618	0	0	0	0
100	0,51545	0,41236	0,10309	0,51545	0,30927	0	0	0
120	1,44326	3,29888	0,82472	0,30927	1,34017	0,30927	0	0
140	0,82472	0	2,57725	0,20618	0,82472	1,0309	0,30927	0
160	0	9,58737	1,34017	2,57725	2,68034	0	0,10309	0
180	5,66995	1,23708	3,40197	1,64944	0,72163	0	0,61854	0,10309
200	0,82472	0,10309	0,72163	0,51545	1,13399	0	0,20618	0,51545
220	1,34017	5,77304	0,41236	0,72163	0,61854	3,40197	0,30927	0,020618
240	3,60815	2,37107	0	1,44326	3,40197	1,54635	1,54635	1,54635
260	1,23708	0,41236	1,34017	0,61854	5,46377	0,10309	0,41236	0,61854
280	3,71124	0	0	0,51545	0	1,85562	0,92781	0
300	1,13399	0,10309	5,36068	9,89664	0,41236	0,72163	0	1,23708
320	0	0,41236	3,91742	0,41236	0	0,92781	2,26798	4,22669
340	0	0	0	0,10309	1,54635	3,40197	1,34017	0
360	0,51545	0,51545	4,53596	0,51545	1,13399	0	0	0
380	0	0	0,30927	0	0,72163	2,26798	0	0
400	0	0	0	0	0	0,61854	0	0
420	0	0	0	0,10309	0	0	0	0

Injection discontinue au fond du canal pour Q =0,75 l/s et C_0 =600 mg/l

Concentration (mg/l)

t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0
60	0,30927	0	0,41236	0	0	0	0	0
80	0,72163	1,64944	0	0,10309	0	0	0	0
100	1,64944	0,41236	1,34017	0,92781	0	0,20408	0	0
120	13,71097	1,44326	4,53596	0,20618	0,41236	0,61854	0	0
140	6,28849	3,71124	0	2,47416	2,26798	0,41236	0	0
160	0,41236	0	2,88652	0,51545	1,13399	0,72163	0,92781	0,10309
180	0,51545	1,64944	0,51545	3,29888	0,72163	0	0	0,51545
200	1,64944	3,50506	0,72163	0	0	0,10309	1,34017	0
220	0,30927	2,57725	1,34017	0,72163	2,16489	0,30927	0,72163	0
240	1,23708	0,10309	4,84523	0,41236	1,0309	0	0,82472	0,51545
260	0	3,40197	0	1,54635	0,92781	0	0	0
280	3,60815	0	4,43287	0,41236	0	1,85562	0,61854	0,72163
300	0,10309	0	0	0,61854	2,37107	0,61854	0,82472	0,92781
320	0,72163	0	0	0	0	0,51545	0	0
340	0	0,82472	0,72163	0	0,82472	0,30927	0,10309	0
360	0	1,95871	0	3,71124	0,10309	0,51545	0,82472	0,20618
380	0,10309	0,61854	0	0	0,72163	0,51545	0	0
400	0	0	0	0	0	0	0	0
420	0,20618	0,30927	0	0	0	0	0	0

Injection continue au fond du canal pour Q =0,2 l/s et C_0 =600 mg/l

				Concentr	ration (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0,10309	0	0	0	0	0	0	0
40	0,51545	0,61854	0,30612	0	0	0	0	0
60	2,57725	0,82472	0,92781	0,10204	0,71428	0,30612	0	0
80	1,13399	3,40197	1,64944	1,85562	0,20618	0,5102	0,10204	0,30612
100	9,79355	12,88625	1,44326	2,88652	1,44326	0,71428	0,20618	0,10204
120	7,73175	11,44299	4,53596	5,66995	0,92781	1,23708	0,51545	0,51545
140	10,51518	37,31858	12,16462	3,71124	3,40197	1,85562	3,40197	1,64944
160	34,53515	22,16435	22,37053	8,65956	1,54635	0,92781	0,72163	0,51545
180	12,98934	27,00958	11,44299	12,47389	10,10282	5,77304	5,36068	1,64944
200	25,36014	37,93712	101,54365	19,99946	9,69046	12,78316	3,40197	2,88652
220	46,80286	28,96829	26,39104	11,03063	33,50425	9,48428	3,71124	7,11321
240	38,04021	9,38119	26,70031	36,70004	14,02024	27,62812	7,73175	0,92781
260	64,43125	12,88625	22,78289	26,08177	0,61854	12,68007	5,56686	5,46377
280	42,67926	38,45257	12,88625	15,25732	25,87559	23,09216	12,57698	25,36014
300	34,63824	49,79247	43,81325	37,93712	32,37026	14,94805	23,50452	22,47362
320	36,90622	53,19444	65,77142	15,15423	16,28822	33,50425	12,88625	16,39131
340	30,41155	36,90622	51,13264	53,09135	37,73094	11,85535	33,50425	38,04021
360	38,04021	37,52476	0,82472	102,36837	25,15396	0,92781	23,19525	19,48401
380	45,56578	43,09162	13,09243	21,85508	11,44299	15,15423	17,11294	24,01997
400	26,49413	0,92781	55,77169	38,04021	23,19525	16,90676	18,04075	16,28822
420	51,64809	26,39104	24,32924	48,96775	21,85508	14,02024	11,75226	14,02024

Injection continue au fond du canal pour Q =0,35 l/s et C_0 =600 mg/l

				Concentra	ation (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0,82472	0,61224	0	0	0	0	0	0
40	0,20618	0,30927	0,10204	0,10204	0,10204	0,10204	0	0
60	1,64944	1,13399	0,41236	0,40816	0,20408	0,61224	0,10204	0,10204
80	0,82472	1,75253	4,32978	1,23708	0,51545	0,30612	0,10204	0,20408
100	6,90703	2,68034	3,50506	0,92781	0,92781	1,12244	1,23708	0,20408
120	10,10282	12,88625	6,80394	2,68034	0,72163	1,13399	2,37107	1,13399
140	24,32924	1,34017	8,96883	2,88652	3,71124	2,88652	0,72163	1,23708
160	26,28795	12,88625	11,44299	7,01012	4,63905	4,84523	1,23708	0,82472
180	14,02024	16,70058	23,09216	5,66995	0,92781	12,88625	4,84523	8,04102
200	56,49332	9,17501	10,82445	26,59722	14,84496	10,20591	0,72163	5,66995
220	33,50425	37,62785	38,04021	11,03063	18,14384	26,39104	10,20591	24,84469
240	71,85373	28,65902	32,37026	17,42221	43,81325	21,85508	6,90703	12,78316
260	73,29699	18,04075	28,65902	28,24666	41,02982	34,32897	38,04021	14,02024
280	103,60545	36,39077	44,63797	29,58683	42,36999	10,72136	29,79301	9,17501
300	65,25597	26,70031	52,67899	47,21522	33,81352	49,27702	14,63878	23,09216
320	75,04952	163,70692	37,62785	44,63797	16,28822	18,35002	47,00904	12,88625
340	37,83403	37,93712	26,59722	66,90541	49,99865	33,50425	78,14222	18,04075
360	159,17096	26,59722	38,04021	26,59722	105,66725	26,59722	23,19525	25,46323
380	14,94805	50,10174	25,46323	17,93766	78,14222	38,04021	26,39104	36,70004
400	26,28795	38,04021	47,31831	103,70854	71,85373	49,27702	13,71097	15,15423
420	31,33936	42,06072	71,95682	99,79112	90,20375	81,95655	27,42194	26,59722

Injection continue au fond du canal pour Q =0,42 l/s et C_0 =600 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0,10309	0	0	0	0	0	0	0
40	0,10309	0,10309	0,10204	0,81632	0,10204	0,10204	0	0,10204
60	0,72163	0,82472	0,10309	0,5102	0,10204	0,81632	0	0,10204
80	3,71124	1,13399	1,64944	0,51545	0,61854	0,61224	0,30612	0,30612
100	7,11321	4,84523	3,40197	2,88652	1,13399	0,91836	0,41236	0,5102
120	17,21603	7,11321	5,56686	4,84523	0,82472	7,73175	0,092781	1,95871
140	33,50425	18,04075	7,83484	7,11321	2,98961	1,64944	0,72163	6,90703
160	21,13345	13,91715	17,11294	4,22669	9,48428	2,26798	2,47416	2,88652
180	49,27702	10,72136	21,44272	7,11321	8,96883	7,01012	3,40197	4,32978
200	71,95682	81,33801	76,49278	10,82445	20,41182	6,70085	9,17501	15,97895
220	71,95682	24,01997	27,62812	33,19498	14,94805	24,32924	17,42221	12,68007
240	49,07084	88,34813	15,15423	24,84469	38,04021	18,35002	15,15423	11,44299
260	166,07799	38,04021	98,76022	38,04021	26,59722	11,75226	14,02024	26,39104
280	110,82175	51,33882	141,74875	26,59722	15,15423	34,53515	30,927	14,53569
300	69,99811	15,15423	95,66752	11,44299	25,46323	24,32924	23,29834	30,82391
320	101,74983	43,09162	99,58494	65,46215	1,64944	15,15423	35,56605	33,40116
340	89,37903	160,30495	26,18486	43,50398	29,79301	36,90622	26,49413	10,41209

360	57,52422	69,37957	60,51383	37,62785	71,95682	38,04021	14,94805	17,11294
380	71,02901	107,52287	26,59722	26,59722	60,72001	15,15423	41,13291	20,41182
400	33,81352	36,90622	35,77223	85,87397	33,40116	29,79301	24,43233	28,45284
420	68,65794	71,95682	40,82364	26,59722	71,95682	37,93712	25,36014	15,05114

Injection continue au fond du canal pour Q =0,54 l/s et C_0 =600 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0,20618	0	0	0,10204	0	0	0	0
40	0,20618	0,10309	0,30612	0,61224	0,71428	0,10204	0	0
60	3,40197	0,92781	0,20618	1,12244	0,30612	0,10204	0,10204	0,10204
80	2,98961	4,74214	0,92781	1,95871	0,51545	0,71428	0,10204	0,10204
100	7,62866	12,88625	5,97922	8,04102	1,95871	2,551	1,13399	0,81632
120	6,80394	2,68034	6,90703	5,87613	2,78343	1,44326	1,85562	1,13399
140	11,95844	24,32924	4,94832	17,42221	4,53596	12,98934	2,78343	0,82472
160	26,59722	17,31912	18,35002	12,57698	8,14411	13,71097	3,40197	2,68034
180	18,35002	24,32924	18,14384	38,04021	3,40197	26,59722	2,88652	5,97922
200	92,26555	12,88625	37,93712	93,29645	12,88625	18,24693	13,60788	11,44299
220	75,46188	38,04021	26,49413	37,42167	43,81325	37,93712	15,15423	18,14384
240	98,45095	63,60653	58,55512	45,87505	13,60788	15,97895	26,59722	11,44299
260	136,59425	45,56578	33,81352	116,80097	26,18486	23,09216	18,35002	14,94805
280	87,00796	88,55431	129,27486	27,42194	92,47173	37,31858	25,46323	26,59722
300	60,51383	26,59722	88,24504	15,15423	21,75199	21,75199	18,35002	21,03036
320	63,09108	71,02901	35,15369	68,96721	33,60734	23,09216	26,70031	43,81325
340	78,14222	101,74983	17,42221	46,08123	32,06099	77,11132	18,35002	10,41209
360	38,04021	97,42005	49,27702	38,04021	25,25705	64,12198	37,93712	14,02024
380	104,53326	148,75887	42,47308	26,59722	57,42113	38,04021	27,42194	11,75226
400	102,88382	68,86412	38,04021	131,02739	38,04021	25,46323	15,15423	18,35002
420	34,63824	182,57239	32,16408	99,79112	47,21522	37,62785	33,50425	22,88598

Injection continue au fond du canal pour Q = 0.62 l/s et $C_0 = 600 \text{ mg/l}$

				Concentrati	ion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0,30927	0,30612	0,10204	0	0	0	0	0
40	0,72163	0,30927	0,10204	0,10204	0,10204	0,10204	0	0
60	0,92781	1,13399	0,72163	0,10204	0,71428	0,10204	0,10204	0,10204
80	0,30927	0,61854	3,40197	0,92781	1,23708	0,91836	0,91836	0,10204
100	14,02024	5,66995	1,13399	1,23708	0,92781	1,63264	3,29888	0,5102
120	12,78316	6,90703	8,76265	9,17501	4,32978	2,88652	2,37107	3,40197
140	23,29834	4,84523	7,73175	3,40197	7,01012	14,22642	3,71124	6,70085
160	12,88625	12,88625	15,15423	26,59722	1,64944	17,21603	4,53596	3,71124
180	41,02982	26,70031	35,25678	37,93712	12,78316	15,66968	1,23708	14,63878
200	71,95682	28,34975	17,42221	26,49413	9,89664	18,14384	6,90703	8,96883
220	66,69923	49,27702	33,40116	37,93712	24,32924	34,32897	0,92781	13,71097
240	25,46323	25,46323	25,46323	81,33801	14,63878	25,46323	12,68007	22,06126
260	78,14222	98,65713	47,00904	22,26744	31,03009	18,35002	11,54608	15,97895

280	103,81163	79,79166	32,37026	32,06099	24,32924	14,84496	33,50425	26,49413
300	99,68803	26,59722	19,07165	43,81325	24,84469	48,96775	13,19552	24,01997
320	118,24423	90,20375	57,42113	24,32924	54,32843	23,09216	14,63878	22,37053
340	71,95682	110,71866	24,32924	44,94724	38,04021	18,35002	24,32924	32,37026
360	15,15423	128,55323	99,68803	32,37026	24,84469	23,40143	18,35002	28,34975
380	105,66725	64,32816	77,11132	33,91661	33,50425	33,50425	22,06126	33,09189
400	65,77142	68,76103	56,39023	22,88598	15,15423	15,15423	24,32924	26,59722
420	79,27621	88,34813	38,04021	37,93712	43,81325	24,32924	33,50425	33,40116

Injection continue au fond du canal pour Q =0,75 l/s et C_0 =600 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0,30927	0	0,20408	0	0	0	0	0
40	0,92781	0,20618	0,20408	0,30612	0,10204	0,10204	0,10204	0
60	2,47416	0,20618	0,61854	0,30612	0,10204	0,10204	0,10204	0,10204
80	1,64944	1,44326	1,95871	0,92781	0,30927	0,61224	0,5102	0,10204
100	14,63878	3,40197	2,78343	0,82472	1,13399	1,83672	3,40197	0,40816
120	23,29834	5,56686	9,17501	10,20591	3,40197	4,84523	2,88652	1,64944
140	10,10282	14,63878	12,88625	4,74214	5,36068	11,44299	7,11321	2,37107
160	14,02024	8,65956	8,76265	13,71097	8,04102	9,99973	6,49467	3,40197
180	23,40143	23,09216	15,15423	28,34975	23,09216	12,88625	12,78316	6,90703
200	43,81325	26,8034	47,00904	23,91688	18,45311	76,49278	9,07192	0,92781
220	36,39077	22,26744	36,90622	37,62785	13,71097	22,78289	25,46323	13,19552
240	26,59722	78,14222	26,39104	33,40116	28,65902	24,84469	17,21603	15,15423
260	81,23492	35,56605	49,27702	99,79112	47,00904	34,32897	31,44245	14,02024
280	127,31615	25,46323	26,59722	28,45284	33,09189	25,25705	24,01997	15,87586
300	90,61611	34,74133	123,39873	54,01916	23,09216	33,40116	12,57698	37,93712
320	99,68803	153,50101	81,13183	37,73094	34,63824	32,06099	28,34975	25,25705
340	47,21522	103,19309	89,79139	114,84226	38,65875	43,81325	28,65902	42,78235
360	118,03805	138,34678	100,51275	82,26582	23,19525	33,81352	16,90676	27,21576
380	101,74983	69,79193	67,83322	102,88382	32,67953	12,88625	49,27702	30,72082
400	71,02901	114,63608	38,04021	78,14222	25,46323	26,59722	34,32897	11,75226
420	77,11132	99,79112	69,68884	78,96694	73,70935	38,04021	46,08123	24,12306

Injection discontinue à la surface pour Q =0,2 l/s et C_0 =700 mg/l

	Concentration (mg/l)										
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m			
0	0	0	0	0	0	0	0	0			
20	0,82472	0,61224	0,10204	0	0	0	0	0			
40	0,92781	0,72163	0,40816	0,20408	0	0	0	0			
60	4,22669	3,29888	0,92781	0,40816	0,10204	0	0	0			
80	5,36068	4,84523	1,95871	0,92781	0,30927	0	0	0			
100	9,17501	6,59776	3,19579	1,85562	0,41236	0,10204	0	0			
120	16,28822	10,10282	4,32978	2,68034	0,61854	0,30927	0	0			
140	20,72109	16,80367	7,01012	3,40197	1,23708	0,20618	0,10309	0			
160	35,15369	22,47362	8,96883	5,25759	1,85562	0,41236	0,20618	0			
180	50,41101	32,67953	15,66968	8,96883	2,88652	0,92781	0,30927	0			
200	92,47173	43,81325	22,06126	11,75226	3,60815	1,44326	0,61854	0,10309			

220	72,98772	77,72986	26,59722	19,07165	5,36068	2,26798	0,82472	0,20618
240	62,36945	62,67872	35,56605	24,63851	6,08231	2,98961	1,13399	0,41236
260	42,98853	42,67926	46,18432	27,73121	6,39158	4,53596	1,44326	0,61854
280	22,88598	33,40116	70,61665	42,67926	10,10282	6,28849	2,68034	0,92781
300	10,51518	21,85508	62,06018	53,70989	11,85535	7,52557	4,02051	1,95871
320	10,20591	14,94805	43,71016	51,33882	12,47389	9,17501	4,94832	2,88652
340	7,73175	9,69046	31,44245	39,58656	11,85535	9,99973	5,87613	3,91742
360	7,01012	6,39158	11,44299	25,25705	9,69046	9,58737	6,49467	4,1236
380	4,53596	3,40197	9,79355	11,44299	6,80394	7,31939	5,97922	4,32978
400	2,26798	2,16489	6,49467	8,76265	3,19579	2,26798	5,05141	4,02051
420	1,64944	1,23708	4,53596	5,36068	2,26798	1,75253	2,47416	2,16489

Injection discontinue à la surface pour Q =0,35 l/s et C_0 =700 mg/l

				Concentrat	ion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	1,13399	0,91836	0,71428	0,10204	0	0	0	0
40	1,85562	1,54635	1,12244	0,5102	0,30612	0	0	0
60	5,66995	3,81433	3,19579	0,91836	0,61224	0,20408	0	0
80	7,01012	5,36068	4,63905	2,47416	1,64944	0,40816	0	0
100	12,88625	10,10282	7,73175	4,02051	2,47416	0,91836	0,20618	0
120	24,84469	18,35002	12,88625	7,01012	5,66995	1,54635	0,82472	0
140	37,73094	26,59722	24,22615	8,86574	7,73175	3,91742	1,64944	0,10309
160	60,51383	36,49386	32,37026	14,63878	12,57698	8,04102	2,47416	0,30927
180	100,61584	42,47308	37,93712	20,20564	18,86547	9,89664	5,36068	0,61854
200	72,98772	81,95655	47,21522	28,24666	23,09216	11,95844	6,90703	1,44326
220	62,36945	55,25624	52,88517	39,79274	33,60734	19,27783	11,75226	2,37107
240	52,67899	46,59668	44,84415	52,78208	39,68965	29,27756	13,19552	3,19579
260	45,97814	41,33909	36,49386	42,47308	42,57617	34,84442	19,79328	4,53596
280	36,28768	32,16408	27,62812	33,81352	40,61746	38,04021	23,29834	8,14411
300	22,06126	26,59722	22,06126	25,56632	35,87532	35,25678	26,08177	8,96883
320	11,95844	20,41182	17,00985	11,44299	24,01997	30,41155	24,94778	9,48428
340	9,89664	13,71097	11,13372	8,65956	18,04075	25,46323	22,98907	9,07192
360	6,90703	11,75226	9,58737	6,80394	11,44299	11,44299	19,99946	8,35029
380	5,25759	10,10282	8,35029	5,36068	8,76265	5,87613	8,96883	6,59776
400	3,50506	8,76265	7,62866	3,19579	4,53596	3,29888	4,53596	4,84523
420	2,26798	6,39158	4,22669	2,57725	3,19579	2,16489	3,29888	1,85562

Injection discontinue à la surface pour Q =0,42 l/s et C_0 =700 mg/l

	Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	1,64944	1,12244	0,91836	0,30612	0,10204	0	0	0		
40	2,88652	1,95871	1,63264	0,91836	0,61224	0,10204	0	0		
60	7,11321	4,32978	2,88652	1,93876	1,12244	0,20408	0	0		
80	7,83484	6,80394	4,84523	3,19579	2,88652	0,91836	0,20408	0		
100	16,08204	12,78316	12,26771	9,89664	5,66995	1,83672	0,72163	0,10204		
120	37,73094	26,59722	23,50452	13,29861	10,10282	3,40197	1,23708	0,20618		
140	60,30765	36,49386	28,34975	19,27783	11,54608	5,97922	2,68034	0,41236		

160	131,54284	45,77196	37,00931	28,34975	17,31912	10,10282	4,94832	0,72163
180	96,18297	104,22399	66,69923	36,18459	25,25705	14,63878	7,73175	1,13399
200	77,83295	88,24504	94,01808	50,20483	30,61773	15,87586	9,07192	1,85562
220	66,18378	73,50317	70,20429	61,64782	41,13291	20,41182	12,78316	2,78343
240	52,98826	61,95709	63,09108	68,86412	50,72028	35,56605	14,02024	3,50506
260	44,63797	53,29753	54,53461	66,80232	53,19444	41,02982	18,04075	7,62866
280	36,70004	42,16381	46,18432	60,72001	49,17393	42,36999	22,47362	9,07192
300	22,06126	32,78262	34,32897	44,63797	43,50398	40,92673	24,94778	11,54608
320	12,57698	21,85508	22,57671	22,06126	36,49386	33,19498	26,49413	12,16462
340	9,89664	10,41209	14,84496	12,68007	11,44299	16,28822	24,32924	12,57698
360	7,31939	4,53596	9,17501	10,20591	7,11321	13,71097	19,79328	11,85535
380	6,70085	2,37107	4,22669	4,94832	4,94832	7,83484	7,73175	9,69046
400	4,43287	0,61854	2,57725	3,19579	3,40197	4,22669	4,53596	6,90703
420	1,13399	0,20618	1,23708	1,95871	2,47416	1,75253	2,37107	1,95871

Injection discontinue à la surface pour Q =0,54 l/s et C_0 =700 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	1,95871	1,63264	1,12244	0,61224	0,30612	0,10204	0	0
40	4,22669	2,88652	2,24488	1,32652	0,91836	0,20408	0	0
60	18,04075	6,49467	5,25759	4,28568	2,44896	0,91836	0,10204	0
80	39,89583	18,35002	6,80394	7,01012	3,60815	1,73468	0,30612	0,10204
100	60,72001	24,84469	12,78316	7,73175	5,36068	2,65304	0,92781	0,20408
120	102,78073	57,11186	39,89583	22,78289	7,62866	3,81433	1,95871	0,51545
140	179,89205	88,24504	63,29726	33,40116	9,17501	5,87613	2,88652	0,72163
160	101,95601	145,45999	95,35825	67,62704	23,09216	7,01012	3,81433	1,13399
180	90,20375	100,82202	114,53299	85,25543	64,43125	9,38119	5,66995	1,85562
200	76,80205	80,10093	87,11105	91,54392	74,32789	34,63824	7,83484	2,47416
220	70,61665	56,08096	76,80205	84,22453	77,93604	44,12252	19,99946	4,84523
240	59,17366	49,27702	62,98799	74,94643	71,75064	48,03994	28,04048	15,66968
260	46,90595	42,47308	51,64809	66,49305	63,70962	46,08123	29,79301	22,26744
280	40,72055	39,89583	46,59668	60,61692	52,78208	43,09162	28,24666	22,98907
300	22,16435	37,73094	38,86493	47,21522	47,00904	22,16435	26,18486	22,57671
320	16,39131	31,03009	21,85508	34,63824	42,47308	17,31912	22,78289	19,27783
340	11,44299	29,38065	14,53569	24,01997	35,25678	12,88625	18,04075	15,97895
360	8,76265	18,35002	12,78316	12,88625	27,62812	11,75226	14,32951	9,99973
380	4,63905	16,18513	6,70085	9,99973	14,94805	8,65956	9,99973	3,81433
400	1,23708	12,57698	2,37107	7,62866	10,41209	6,80394	6,70085	2,88652
420	0,20618	7,73175	1,75253	6,39158	8,45338	4,22669	5,97922	1,95871

Injection discontinue à la surface pour Q =0,62 l/s et C_0 =700 mg/l

	Concentration (mg/l)									
t(s)	X=1m	X=1m								
0	0	0	0	0	0	0	0	0		
20	3,40197	2,34692	1,63264	1,12244	0,81632	0,30612	0	0		
40	15,66968	8,96883	6,6326	4,18364	1,12244	0,61224	0,10204	0		
60	35,66914	18,35002	15,05114	8,57136	4,28568	0,91836	0,30612	0,10204		

80	60,41074	28,45284	22,06126	11,44299	6,70085	1,22448	0,5102	0,30612
100	98,14168	50,20483	43,81325	16,80367	9,89664	2,551	0,72163	0,5102
120	204,63365	78,14222	65,25597	29,58683	12,68007	4,84523	1,13399	1,34017
140	100,51275	176,69626	136,49116	43,50398	25,25705	6,49467	2,16489	1,85562
160	78,96694	158,55242	158,55242	65,25597	32,16408	8,96883	2,47416	2,26798
180	72,57536	98,45095	129,37795	100,71893	43,50398	13,71097	3,91742	3,50506
200	65,25597	65,25597	101,54365	88,14195	58,03967	22,06126	6,39158	5,66995
220	57,42113	46,59668	74,74025	70,51356	44,63797	30,72082	16,59749	9,89664
240	43,50398	32,37026	63,40035	52,78208	37,73094	25,25705	18,35002	12,68007
260	36,28768	27,42194	44,94724	41,85454	25,36014	20,72109	17,5253	14,63878
280	23,50452	25,15396	25,05087	34,32897	22,06126	17,62839	16,39131	14,02024
300	22,06126	19,07165	21,75199	22,06126	13,09243	14,94805	12,78316	13,19552
320	19,07165	16,70058	15,77277	19,38092	10,41209	13,71097	8,65956	12,26771
340	17,73148	14,84496	14,63878	14,02024	9,17501	9,79355	3,29888	9,69046
360	15,15423	13,50479	13,09243	11,44299	7,73175	4,53596	2,88652	7,11321
380	8,86574	12,78316	8,76265	10,10282	5,36068	3,29888	1,13399	4,53596
400	5,66995	8,76265	6,49467	6,70085	4,53596	2,47416	0,51545	1,13399
420	1,34017	7,83484	5,36068	5,66995	2,47416	1,95871	0,20618	0,51545

Injection discontinue à la surface pour Q =0,75 l/s et C_0 =700 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	5,56686	4,28568	3,36732	2,34692	1,12244	0,91836	0	0
40	17,11294	14,74187	11,32644	7,85708	2,95916	1,42856	0,30612	0
60	47,21522	34,32897	25,25705	12,65296	4,28568	2,85712	0,81632	0,10204
80	100,82202	64,43125	40,10201	16,18513	8,04102	4,5918	1,83672	0,40816
100	231,33396	100,40966	51,02955	27,62812	12,88625	6,42852	3,40197	0,91836
120	118,24423	188,44852	79,89475	35,77223	24,84469	9,89664	5,36068	1,95871
140	87,83268	110,71866	103,19309	63,60653	39,89583	14,94805	7,73175	2,98961
160	73,70935	87,00796	78,86385	80,20402	48,24612	30,61773	9,69046	3,91742
180	68,76103	70,71974	66,69923	74,63716	52,98826	39,58656	28,24666	10,20591
200	55,25624	53,29753	55,25624	66,69923	50,20483	42,78235	34,63824	15,56659
220	48,03994	42,36999	42,47308	54,32843	43,91634	41,33909	35,56605	19,27783
240	26,49413	36,90622	33,19498	45,46269	32,78262	34,53515	34,53515	20,20564
260	25,56632	32,37026	28,24666	41,33909	28,45284	26,49413	31,03009	19,79328
280	17,31912	31,03009	25,25705	37,00931	26,49413	21,75199	28,65902	19,27783
300	15,15423	26,59722	21,03036	23,29834	24,01997	18,04075	21,33963	16,59749
320	12,47389	18,14384	17,31912	22,06126	23,09216	16,70058	14,02024	14,74187
340	8,96883	14,84496	16,39131	19,07165	19,07165	13,81406	12,47389	11,85535
360	6,39158	10,10282	11,54608	17,00985	17,00985	12,47389	10,92754	10,10282
380	3,40197	6,49467	8,76265	12,47389	8,96883	10,20591	8,65956	6,39158
400	1,23708	3,29888	4,53596	9,79355	6,90703	6,59776	4,53596	3,19579
420	0,10309	0,82472	1,75253	6,80394	5,56686	3,81433	4,43287	1,54635

Injection continue à la surface pour Q = 0.2 l/s et $C_0 = 700 \text{ mg/l}$

		Concentration (mg/l)								
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		

20	0,61854	0,51545	0	0	0	0	0	0
40	2,78343	2,26798	0,82472	0,30927	0	0	0	0
60	4,43287	3,71124	2,57725	1,13399	0,30612	0	0	0
80	7,01012	5,97922	4,32978	3,60815	0,92781	0,20408	0,10204	0
100	20,30873	8,86574	7,73175	4,53596	1,95871	0,81632	0,40816	0
120	24,22615	15,66968	9,17501	7,01012	2,88652	1,23708	0,81632	0,10204
140	47,00904	27,73121	9,89664	7,52557	5,36068	2,47416	1,42856	0,40816
160	193,39684	88,03886	11,44299	8,76265	6,90703	4,32978	2,88652	0,81632
180	307,92983	136,90352	35,77223	14,63878	9,17501	5,56686	3,50506	1,83672
200	369,16529	232,67413	157,7277	20,20564	13,91715	6,49467	5,56686	3,50506
220	425,24625	399,57684	229,06598	65,77142	56,18405	14,94805	4,74214	4,32978
240	541,94413	502,56375	386,07205	181,33531	136,18189	47,00904	14,02024	7,01012
260	690,49682	596,27256	447,92605	243,91094	232,57104	103,19309	41,13291	8,96883
280	690,49682	678,12602	575,86074	418,85467	286,28093	232,67413	128,24396	13,09243
300	690,49682	678,12602	668,74483	538,74834	401,74173	322,05316	249,58089	131,43975
320	690,49682	678,12602	668,74483	657,50802	517,82107	479,88395	322,36243	255,14775
340	690,49682	678,12602	668,74483	657,50802	647,19902	548,95425	489,88368	334,73323
360	690,49682	678,12602	668,74483	657,50802	647,19902	630,60153	553,28403	449,06004
380	690,49682	678,12602	668,74483	657,50802	647,19902	630,60153	624,41613	537,40817
400	690,49682	678,12602	668,74483	657,50802	647,19902	630,60153	624,41613	618,64309
420	690,49682	678,12602	668,74483	657,50802	647,19902	630,60153	624,41613	618,64309

Injection continue à la surface pour Q =0,35 l/s et C_0 =700 mg/l

	Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	0,92781	0,82472	0,51545	0,30927	0	0	0	0		
40	6,49467	5,97922	3,40197	2,68034	0,30612	0,20408	0	0		
60	7,73175	7,11321	5,46377	4,22669	1,63264	1,12244	0	0		
80	9,99973	8,96883	7,11321	5,36068	3,50506	2,44896	0,10204	0		
100	39,89583	29,48374	10,92754	9,07192	9,17501	4,38772	0,5102	0,10204		
120	158,86169	97,62623	36,90622	14,02024	12,78316	7,11321	1,12244	0,40816		
140	272,05451	141,64566	78,14222	38,04021	25,25705	8,76265	2,34692	0,91836		
160	397,51504	305,97112	191,43813	99,58494	47,00904	17,42221	5,97922	1,22448		
180	512,04803	397,10268	252,87977	162,67602	87,11105	39,68965	6,49467	3,36732		
200	572,87113	450,29712	385,86587	253,39522	172,67575	78,24531	8,96883	5,97922		
220	695,65132	552,97476	491,01767	347,31021	251,95196	163,50074	12,88625	6,49467		
240	695,65132	694,10497	591,22115	490,29604	380,09283	244,22021	27,62812	16,80367		
260	695,65132	694,10497	681,52799	586,06665	483,18283	401,63864	77,93604	48,24612		
280	695,65132	694,10497	681,52799	677,61057	570,70624	452,35892	118,24423	168,96451		
300	695,65132	694,10497	681,52799	677,61057	665,65213	564,52084	294,11577	296,48684		
320	695,65132	694,10497	681,52799	677,61057	665,65213	654,82768	490,29604	397,30886		
340	695,65132	694,10497	681,52799	677,61057	665,65213	654,82768	652,14734	500,60504		
360	695,65132	694,10497	681,52799	677,61057	665,65213	654,82768	652,14734	638,02401		
380	695,65132	694,10497	681,52799	677,61057	665,65213	654,82768	652,14734	638,02401		
400	695,65132	694,10497	681,52799	677,61057	665,65213	654,82768	652,14734	638,02401		
420	695,65132	694,10497	681,52799	677,61057	665,65213	654,82768	652,14734	638,02401		

Injection continue à la surface pour Q =0,42 l/s et C_0 =700 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	2,26798	1,95871	1,13399	0,72163	0,40816	0,30612	0	0
40	5,87613	3,60815	2,88652	2,68034	0,71428	0,5102	0,20408	0
60	7,52557	7,01012	6,70085	4,94832	2,24488	1,12244	0,61224	0
80	29,79301	7,52557	9,17501	7,83484	3,91742	2,551	1,12244	0,30612
100	46,59668	38,04021	22,06126	12,88625	5,97922	3,26528	1,93876	0,61224
120	145,45999	71,02901	43,81325	28,65902	8,14411	7,73175	3,46936	1,83672
140	353,08325	204,63365	84,63689	48,34921	15,66968	10,10282	5,30608	3,46936
160	438,44177	298,44555	206,07691	95,35825	28,65902	14,02024	9,58737	6,83668
180	530,08878	421,94737	319,88827	292,46633	67,21468	43,81325	24,32924	14,48968
200	696,37295	553,49021	438,95722	363,18607	191,33504	101,74983	47,21522	26,39104
220	696,37295	694,10497	552,97476	459,36904	287,10565	195,56173	129,68722	44,94724
240	696,37295	694,10497	689,36283	537,51126	426,38024	314,83686	221,23114	99,79112
260	696,37295	694,10497	689,36283	675,75495	552,25313	461,63702	363,70152	200,20078
280	696,37295	694,10497	689,36283	675,75495	655,03386	553,38712	450,40021	307,92983
300	696,37295	694,10497	689,36283	675,75495	655,03386	631,32316	564,41775	438,95722
320	696,37295	694,10497	689,36283	675,75495	655,03386	631,32316	621,01416	504,72864
340	696,37295	694,10497	689,36283	675,75495	655,03386	631,32316	621,01416	617,19983
360	696,37295	694,10497	689,36283	675,75495	655,03386	631,32316	621,01416	617,19983
380	696,37295	694,10497	689,36283	675,75495	655,03386	631,32316	621,01416	617,19983
400	696,37295	694,10497	689,36283	675,75495	655,03386	631,32316	621,01416	617,19983
420	696,37295	694,10497	689,36283	675,75495	655,03386	631,32316	621,01416	617,19983

Injection continue à la surface pour Q =0,54 l/s et C_0 =700 mg/l

	Concentration (mg/l)									
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	3,81433	3,19579	2,47416	1,64944	0,91836	0,40816	0	0		
40	5,56686	4,32978	4,63905	3,71124	2,34692	1,32652	0,30612	0		
60	12,88625	10,10282	7,42248	7,11321	3,87752	3,26528	0,5102	0,20408		
80	79,27621	39,79274	16,80367	11,64917	7,11321	4,5918	0,91836	0,5102		
100	137,31588	78,86385	38,04021	30,41155	8,86574	7,04076	2,14284	1,63264		
120	264,52894	169,27378	101,54365	58,65821	33,40116	16,08204	3,5714	2,34692		
140	390,60801	276,79665	188,24234	89,58521	77,93604	35,25678	7,04076	4,28568		
160	552,04695	369,68074	301,74443	204,73674	101,74983	54,22534	9,17501	7,04076		
180	696,78531	473,08001	449,98785	335,86722	215,04574	127,31615	26,08177	8,57136		
200	696,78531	587,30373	585,96356	467,61624	363,49534	244,22021	69,58575	24,84469		
220	696,78531	694,00188	687,19794	552,97476	437,82323	353,08325	202,36567	58,03967		
240	696,78531	694,00188	687,19794	672,24989	586,99446	467,61624	312,87815	200,71623		
260	696,78531	694,00188	687,19794	672,24989	662,14707	553,49021	445,86425	315,24922		
280	696,78531	694,00188	687,19794	672,24989	662,14707	641,94143	586,06665	466,27607		
300	696,78531	694,00188	687,19794	672,24989	662,14707	641,94143	626,58102	553,49021		
320	696,78531	694,00188	687,19794	672,24989	662,14707	641,94143	626,58102	619,46781		
340	696,78531	694,00188	687,19794	672,24989	662,14707	641,94143	626,58102	619,46781		
360	696,78531	694,00188	687,19794	672,24989	662,14707	641,94143	626,58102	619,46781		
380	696,78531	694,00188	687,19794	672,24989	662,14707	641,94143	626,58102	619,46781		
400	696,78531	694,00188	687,19794	672,24989	662,14707	641,94143	626,58102	619,46781		
420	696,78531	694,00188	687,19794	672,24989	662,14707	641,94143	626,58102	619,46781		

Injection continue à la surface pour Q =0,62 l/s et C_0 =700 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	5,97922	4,32978	3,19579	2,57725	1,32652	0,91836	0	0
40	19,17474	12,78316	8,76265	6,59776	5,30608	2,34692	0,5102	0,20408
60	85,04925	77,93604	24,84469	15,66968	7,44892	4,48976	0,91836	0,40816
80	205,04601	139,99622	88,34813	43,81325	21,95817	6,6326	1,12244	0,61224
100	345,97004	244,22021	129,48104	88,55431	58,03967	14,7958	2,75508	1,63264
120	450,40021	368,44366	242,67386	129,17177	89,06976	33,50425	7,75504	3,36732
140	548,85116	473,08001	367,20658	253,18904	127,31615	67,31777	16,63252	6,93872
160	697,71312	559,26325	425,24625	363,49534	244,11712	129,48104	29,38065	12,55092
180	697,71312	696,37295	553,38712	436,58615	377,00013	244,11712	101,64674	37,2446
200	697,71312	696,37295	692,04317	553,38712	466,58534	335,86722	181,23222	49,27702
220	697,71312	696,37295	692,04317	690,49682	553,49021	470,39967	304,83713	161,33585
240	697,71312	696,37295	692,04317	690,49682	686,27013	553,38712	450,40021	307,82674
260	697,71312	696,37295	692,04317	690,49682	686,27013	677,71366	553,07785	396,38105
280	697,71312	696,37295	692,04317	690,49682	686,27013	677,71366	662,14707	470,39967
300	697,71312	696,37295	692,04317	690,49682	686,27013	677,71366	662,14707	601,53015
320	697,71312	696,37295	692,04317	690,49682	686,27013	677,71366	662,14707	601,53015
340	697,71312	696,37295	692,04317	690,49682	686,27013	677,71366	662,14707	601,53015
360	697,71312	696,37295	692,04317	690,49682	686,27013	677,71366	662,14707	601,53015
380	697,71312	696,37295	692,04317	690,49682	686,27013	677,71366	662,14707	601,53015
400	697,71312	696,37295	692,04317	690,49682	686,27013	677,71366	662,14707	601,53015
420	697,71312	696,37295	692,04317	690,49682	686,27013	677,71366	662,14707	601,53015

Injection continue à la surface pour Q =0,75 l/s et C_0 =700 mg/l

	Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	6,49467	5,56686	4,32978	3,71124	3,16324	1,93876	0,91836	0,20408		
40	77,93604	47,21522	23,81379	14,94805	9,99992	7,653	2,34692	0,71428		
60	219,16934	129,17177	77,93604	47,00904	24,59164	14,48968	3,36732	1,63264		
80	356,48522	243,91094	174,84064	92,16246	48,96775	26,32632	4,79588	2,44896		
100	470,29658	356,48522	243,70476	141,02712	71,95682	46,53024	6,6326	4,79588		
120	586,06665	480,29631	369,68074	266,69383	127,41924	80,82256	18,16312	8,06116		
140	696,06368	579,57198	471,01821	377,00013	294,52813	129,68722	37,44868	12,55092		
160	696,06368	695,23896	585,96356	482,97665	367,20658	276,69356	101,74983	24,9998		
180	696,06368	695,23896	690,80609	615,03494	445,45189	367,82512	150,30522	46,73432		
200	696,06368	695,23896	690,80609	689,36283	552,97476	480,19322	305,86803	89,58521		
220	696,06368	695,23896	690,80609	689,36283	684,72378	553,38712	367,92821	207,72635		
240	696,06368	695,23896	690,80609	689,36283	684,72378	674,93023	472,87383	363,49534		
260	696,06368	695,23896	690,80609	689,36283	684,72378	674,93023	621,01416	438,95722		
280	696,06368	695,23896	690,80609	689,36283	684,72378	674,93023	621,01416	601,32397		
300	696,06368	695,23896	690,80609	689,36283	684,72378	674,93023	621,01416	601,32397		
320	696,06368	695,23896	690,80609	689,36283	684,72378	674,93023	621,01416	601,32397		

340	696,06368	695,23896	690,80609	689,36283	684,72378	674,93023	621,01416	601,32397
360	696,06368	695,23896	690,80609	689,36283	684,72378	674,93023	621,01416	601,32397
380	696,06368	695,23896	690,80609	689,36283	684,72378	674,93023	621,01416	601,32397
400	696,06368	695,23896	690,80609	689,36283	684,72378	674,93023	621,01416	601,32397
420	696,06368	695,23896	690,80609	689,36283	684,72378	674,93023	621,01416	601,32397

Injection discontinue au fond du canal pour Q =0,2 l/s et C_0 =700 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
40	0,41236	0,10309	0	0	0	0	0	0
60	0,82472	0,51545	0	0	0	0	0	0
80	1,64944	0,92781	0,20618	0	0	0	0	0
100	1,54635	0,41236	0,51545	0,30927	0	0	0	0
120	35,66914	1,13399	0,72163	0,41236	0	0	0	0
140	2,26798	1,34017	1,85562	0,61854	0,20618	0	0	0
160	24,22615	12,68007	2,16489	1,13399	0,51545	0,10309	0	0
180	3,71124	6,39158	2,88652	2,16489	0,61854	0,41236	0	0
200	5,36068	3,81433	4,84523	5,56686	0,30927	0,82472	0,10309	0
220	22,06126	15,56659	0	6,90703	1,44326	0,20618	0,30927	0
240	9,89664	30,82391	10,41209	0	2,16489	0	0,51545	0,10309
260	2,57725	11,64917	5,46377	15,56659	0	2,57725	2,98961	0,20618
280	0,41236	9,58737	15,15423	26,39104	5,25759	1,64944	0,61854	0,61854
300	1,64944	2,37107	2,57725	14,53569	0,41236	13,91715	1,44326	0,82472
320	0,20618	1,64944	11,44299	0	17,62839	17,11294	3,60815	1,13399
340	0,51545	0	9,48428	16,80367	25,97868	5,25759	6,90703	1,34017
360	0,30927	0,82472	3,29888	9,58737	14,22642	0	0	3,50506
380	0	0,51545	0	0	0	3,50506	0	0
400	0	0	0	0	0	0	0	2,57725
420	0	0	0	0	0	0	0	0

Injection discontinue au fond du canal pour Q =0,35 l/s et C_0 =700 mg/l

	Concentration (mg/l)										
t(s)	X=1m	X=2m	X=3 m	X=4m	X=5m	X=6m	X=7m	X=8m			
0	0	0	0	0	0	0	0	0			
20	0,20618	20	0	0	0	0	0	0			
40	0,30927	40	0	0	0	0	0	0			
60	0,51545	60	0,20618	0	0	0	0	0			
80	1,13399	80	0,51545	0,10309	0	0	0	0			
100	5,66995	100	0,72163	0,30927	0	0	0	0			
120	3,29888	120	1,44326	0,51545	0,10309	0	0	0			
140	12,68007	140	0,92781	1,64944	0,30927	0,20618	0,20618	0			
160	8,76265	160	3,29888	1,34017	0,72163	0,41236	0,10309	0			
180	22,26744	180	10,10282	3,40197	0,51545	1,44326	0,72163	0,10309			
200	21,85508	200	2,68034	2,57725	1,34017	1,13399	0,20618	0,30927			
220	37,42167	220	20,20564	7,93793	3,50506	2,57725	0,92781	0,51545			
240	18,65929	240	0	20,41182	0	1,44326	1,54635	0,10309			

260	0	260	24,01997	19,17474	11,44299	0	2,26798	0,92781
280	10,10282	280	1,44326	0	10,41209	10,10282	0	5,77304
300	11,95844	300	14,22642	11,44299	16,90676	16,18513	1,44326	0
320	0,72163	320	12,26771	26,49413	12,47389	11,95844	14,22642	8,35029
340	0,82472	340	0	19,5871	0	12,47389	10,41209	6,70085
360	0,51545	360	5,36068	0	0,10309	0	14,94805	0
380	0	380	7,73175	6,80394	7,73175	0	0	0
400	0	400	0	0	5,36068	1,13399	0	0
420	0	420	0	1,13399	0	0	0	0

Injection discontinue au fond du canal pour Q =0,42 l/s et C_0 =700 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0,51545	0,40816	0	0	0	0	0	0
40	0,10309	0,61854	0,30612	0	0	0	0	0
60	0,92781	1,23708	0,82472	0,30612	0,10204	0	0	0
80	2,78343	2,57725	0,41236	0,51545	0,30927	0,20408	0	0
100	10,92754	1,64944	1,75253	0,92781	0,92781	0,10204	0,30927	0
120	2,88652	4,53596	1,34017	1,54635	1,13399	0,72163	0,72163	0,10309
140	14,63878	7,73175	2,98961	3,29888	2,37107	1,23708	0,20618	0,10309
160	0	5,46377	2,26798	2,47416	1,75253	2,47416	1,13399	0,41236
180	15,97895	8,96883	6,70085	5,77304	2,37107	1,85562	1,54635	0,61854
200	35,25678	0	12,06153	9,79355	1,44326	1,13399	2,26798	0,92781
220	24,01997	20,20564	5,66995	18,24693	0	3,60815	1,95871	0
240	18,65929	1,64944	12,78316	13,81406	2,57725	5,77304	0	1,13399
260	1,23708	12,78316	15,77277	1,64944	9,38119	2,88652	6,39158	1,95871
280	17,31912	14,63878	15,4635	27,31885	15,56659	0	4,22669	1,13399
300	13,09243	10,92754	0,82472	21,75199	13,71097	5,87613	2,88652	3,19579
320	8,96883	2,68034	13,29861	27,52503	25,87559	1,64944	10,10282	7,11321
340	11,13372	0	5,87613	11,44299	0	11,44299	10,41209	2,57725
360	1,54635	2,47416	6,49467	12,88625	5,87613	20,30873	0,82472	0
380	0,72163	1,95871	0	0	8,76265	0	0	7,62866
400	0	0	1,34017	0,41236	0	0	0	0
420	0	0	0	0	0	0	0	0

Injection discontinue au fond du canal pour Q =0,54 l/s et C_0 =700 mg/l

	Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	0,20618	0,10204	0	0	0	0	0	0		
40	0,72163	0,51545	0,40816	0,10204	0,10204	0	0	0		
60	1,95871	1,13399	0,72163	0,61224	0,10204	0,10204	0	0		
80	32,67953	23,60761	0,51545	0,51545	0,30927	0,20408	0,10204	0		
100	12,98934	8,76265	0,92781	0,72163	0,51545	0,10204	0,51545	0,20408		
120	26,59722	3,29888	1,95871	1,64944	1,34017	0,92781	0,30927	0,10309		
140	12,57698	23,19525	2,98961	4,32978	0,92781	0,82472	0,20618	0,61854		
160	9,79355	19,89637	9,79355	2,98961	2,57725	1,44326	0,92781	0,30927		
180	27,52503	27,52503	0	7,83484	0	2,78343	1,13399	0,72163		

200	8,04102	0	9,99973	0	1,13399	3,19579	0,82472	0,92781
220	15,77277	39,79274	15,97895	2,78343	5,77304	2,47416	1,44326	0,61854
240	14,53569	21,75199	10,51518	9,69046	3,60815	5,66995	2,78343	1,54635
260	21,85508	5,56686	11,64917	11,95844	9,07192	8,65956	2,47416	9,17501
280	17,00985	13,60788	22,16435	24,22615	12,47389	4,94832	5,46377	1,13399
300	11,44299	10,41209	19,27783	20,30873	10,61827	5,87613	0	4,22669
320	7,93793	5,77304	18,35002	0	4,43287	20,20564	5,77304	5,46377
340	0	2,57725	0	1,13399	13,71097	2,16489	0	10,51518
360	0	1,13399	9,58737	0	6,90703	9,99973	10,10282	0
380	0	0	0	0	0	0	9,79355	0
400	0,20618	0	0	0	0	0	0	0
420	0	0	0	0	0	0	0	0

Injection discontinue au fond du canal pour Q =0,62 l/s et C_0 =700 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0	0,30612	0	0	0	0	0	0
40	0,82472	0,72163	0,91836	0,10204	0	0	0	0
60	11,95844	0,41236	0,72163	0,10204	0,10204	0	0	0
80	9,99973	10,20591	1,54635	0,72163	0,92781	0,10204	0	0
100	18,04075	1,44326	0,92781	0,92781	0,51545	0,10204	0,20618	0,10204
120	8,65956	3,29888	2,88652	1,95871	2,37107	0,51545	0,20618	0,10309
140	20,41182	12,78316	4,53596	1,23708	0,92781	1,0309	0,82472	0,61854
160	0	9,58737	6,70085	2,98961	2,88652	2,47416	1,13399	0,20618
180	15,97895	6,90703	11,85535	0	4,74214	1,75253	3,19579	1,23708
200	21,44272	0	9,99973	12,88625	2,16489	5,46377	0	0,92781
220	1,34017	5,77304	0	2,78343	9,89664	6,49467	1,34017	1,64944
240	14,94805	11,44299	1,23708	9,69046	0	9,79355	0,72163	0
260	11,54608	9,69046	11,64917	22,26744	9,07192	8,35029	2,47416	3,71124
280	10,82445	9,48428	1,64944	3,60815	10,41209	12,16462	6,80394	9,58737
300	11,44299	0,10309	12,06153	20,20564	21,03036	16,18513	8,04102	0
320	9,99973	0	14,22642	10,72136	14,74187	0	5,77304	5,46377
340	7,73175	2,37107	0	9,38119	0	0	11,64917	0,20618
360	0	1,54635	9,69046	0	4,84523	9,99973	0	0
380	0	0	0	0	9,99973	0	0,51545	0
400	0,61854	0,82472	0	0	0	0	0	0
420	0	0	0	0	0	0	0	0

Injection discontinue au fond du canal pour Q =0,75 l/s et C_0 =700 mg/l

	Concentration (mg/l)									
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	0	0	0	0	0	0	0	0		
40	0,51545	0	0,91836	0	0,10204	0,10204	0	0		
60	17,83457	2,47416	1,64944	0,30612	0,10204	0,40816	0	0		
80	11,03063	22,26744	1,34017	1,23708	1,13399	0,10204	0,10204	0		
100	6,80394	21,03036	2,88652	1,95871	1,54635	0,91836	0,30927	0,10204		

120	26,18486	44,53488	5,36068	1,54635	0,30927	0,41236	0,20618	0,20618
140	7,01012	45,77196	6,59776	2,26798	2,98961	1,44326	0,61854	0,41236
160	27,21576	31,23627	3,40197	0	1,64944	2,78343	1,54635	0,20618
180	28,34975	1,75253	9,79355	4,84523	5,87613	0	2,98961	2,57725
200	22,16435	13,50479	11,03063	9,79355	4,84523	5,25759	6,49467	0
220	0	0	6,59776	11,03063	17,11294	6,49467	2,78343	1,54635
240	4,94832	10,41209	11,54608	9,69046	10,309	4,63905	0	1,23708
260	14,63878	13,81406	12,16462	11,95844	0	9,48428	3,50506	3,91742
280	10,82445	10,51518	0	13,81406	9,89664	12,16462	7,83484	4,84523
300	9,38119	11,23681	12,3708	2,68034	0,10309	3,71124	9,07192	0
320	9,99973	6,80394	14,22642	21,03036	4,43287	10,82445	10,92754	3,40197
340	0	0	9,99973	10,41209	14,22642	13,71097	24,84469	1,23708
360	4,63905	0	10,72136	12,88625	14,53569	0	0	0
380	0	2,68034	0	0	0,72163	0	0	0
400	0,41236	0	0	0	0	0,20618	0,20618	0
420	0	0	0	0	0	0	0	0

Injection continue au fond du canal pour Q = 0.2 l/s et $C_0 = 700 \text{ mg/l}$

				Concentra	ation (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0,30927	0	0	0	0	0	0	0
40	0,92781	0,20618	0	0	0	0	0	0
60	2,78343	1,13399	0,61854	0,20408	1,12244	0,5102	0	0
80	2,16489	5,97922	3,60815	1,64944	0,82472	0,91836	0	0
100	12,57698	4,53596	2,16489	4,53596	2,37107	0,71428	0	0
120	8,86574	14,02024	8,86574	3,29888	1,23708	2,37107	1,54635	0
140	11,85535	43,81325	1,85562	5,46377	6,80394	1,64944	6,49467	3,40197
160	44,94724	21,6489	32,16408	7,83484	4,84523	9,89664	3,81433	1,54635
180	23,19525	37,31858	23,09216	15,15423	3,29888	5,66995	9,89664	6,49467
200	13,71097	5,97922	17,21603	24,32924	12,78316	14,02024	4,32978	4,84523
220	48,03994	14,02024	8,86574	12,16462	9,17501	11,44299	9,89664	3,40197
240	26,59722	10,20591	16,39131	48,34921	18,35002	77,93604	8,45338	11,44299
260	37,52476	44,94724	37,93712	25,46323	5,46377	33,50425	12,68007	7,83484
280	103,19309	96,18297	24,32924	12,57698	24,32924	22,98907	5,97922	16,08204
300	26,59722	78,96694	12,88625	45,87505	11,54608	20,20564	24,22615	24,32924
320	43,81325	103,29618	75,87424	103,19309	27,11267	12,78316	12,78316	14,63878
340	36,90622	88,45122	59,58602	65,25597	50,41101	29,38065	76,80205	6,49467
360	88,24504	99,37876	10,10282	50,82337	24,01997	12,88625	34,63824	15,15423
380	99,27567	1,85562	26,49413	97,42005	99,48185	88,24504	8,14411	22,88598
400	59,17366	1,95871	65,25597	68,45176	74,74025	73,60626	23,09216	36,90622
420	113,50209	16,08204	46,90595	57,21495	84,63689	96,07988	20,20564	26,49413

Injection continue au fond du canal pour Q =0,35 l/s et C_0 =700 mg/l

	Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m		
0	0	0	0	0	0	0	0	0		
20	0	0	0	0	0	0	0	0		
40	0,20618	0,51545	0	0	0	0	0	0		

60	2,47416	2,0618	0	0	0	0	0	0
80	1,13399	1,64944	3,40197	2,47416	0,82472	0	0	0
100	8,76265	5,77304	9,89664	1,64944	1,13399	0	0	0
120	7,42248	15,15423	7,93793	5,66995	0,61854	0,92781	0,82472	0
140	19,07165	8,86574	17,31912	3,50506	4,43287	5,46377	0,72163	0
160	35,56605	24,32924	5,66995	5,77304	5,77304	4,32978	3,40197	1,64944
180	24,32924	48,96775	32,16408	12,68007	1,75253	24,22615	2,78343	3,40197
200	49,99865	15,05114	25,15396	5,87613	19,07165	15,15423	1,13399	2,57725
220	69,89502	47,21522	16,80367	14,63878	29,48374	9,89664	8,86574	18,35002
240	107,31669	17,21603	28,45284	37,73094	81,33801	43,60707	6,90703	37,31858
260	89,58521	28,24666	16,90676	22,88598	46,90595	23,09216	26,28795	21,75199
280	103,60545	104,01781	40,82364	88,34813	88,24504	8,96883	18,35002	9,17501
300	65,25597	88,55431	70,82283	67,83322	32,37026	55,77169	26,49413	14,63878
320	105,97652	103,81163	24,84469	46,08123	81,33801	36,49386	37,93712	9,89664
340	37,83403	99,48185	50,10174	103,29618	104,22399	81,02874	17,73148	17,31912
360	112,67737	44,63797	38,04021	82,05964	99,79112	45,15342	81,33801	28,24666
380	97,42005	78,24531	103,91472	60,41074	69,48266	103,29618	35,25678	11,54608
400	103,70854	6,49467	96,49224	65,77142	44,94724	80,20402	48,03994	79,27621
420	88,96667	24,22615	80,92565	92,88409	82,05964	83,60599	33,40116	48,96775

Injection continue au fond du canal pour Q =0,42 l/s et C_0 =700 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
40	0,61854	0	0	0	0	0	0	0
60	0,30927	0,92781	0	0	0	0	0	0
80	4,53596	2,37107	2,57725	0	0,92781	0	0	0
100	12,57698	0,41236	7,11321	5,36068	2,37107	1,42856	0	0
120	9,89664	9,89664	5,36068	3,50506	1,44326	8,55647	0,72163	0
140	24,32924	11,44299	6,80394	8,04102	6,80394	5,66995	3,40197	2,26798
160	22,16435	8,76265	2,37107	5,77304	4,94832	3,71124	1,23708	4,53596
180	60,41074	18,04075	16,08204	23,81379	6,39158	8,04102	6,90703	1,95871
200	79,68857	14,74187	3,40197	15,97895	5,66995	3,71124	1,34017	8,76265
220	92,36864	46,08123	37,31858	48,14303	22,06126	14,74187	7,73175	4,32978
240	55,87478	36,80313	15,66968	35,25678	11,54608	24,32924	12,88625	9,89664
260	114,53299	107,72905	65,77142	12,78316	44,94724	9,17501	10,41209	14,63878
280	90,20375	71,85373	47,11213	92,36864	24,32924	22,78289	33,19498	2,26798
300	101,85292	23,50452	103,60545	76,49278	90,20375	19,48401	15,15423	7,11321
320	104,32708	67,11159	96,18297	68,65794	12,57698	38,04021	47,00904	14,94805
340	9,99973	167,41816	105,66725	99,27567	77,62677	26,59722	25,46323	24,32924
360	33,40116	100,82202	87,93577	25,46323	42,47308	99,27567	47,00904	14,84496
380	73,40008	115,77007	14,63878	103,81163	104,01781	77,93604	12,78316	99,27567
400	25,05087	78,14222	44,94724	98,55404	69,89502	91,54392	90,61611	37,31858
420	14,94805	58,03967	24,22615	77,93604	80,10093	65,66833	33,40116	59,58602

Injection continue au fond du canal pour Q =0,54 l/s et C_0 =700 mg/l

		Concentration (mg/l)									
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m			
0	0	0	0	0	0	0	0	0			

20	0	0	0	0	0	0	0	0
40	0,51545	0	0	0	0	0	0	0
60	7,73175	1,13399	0,20618	0	0	0	0	0
80	3,40197	5,46377	1,13399	1,64944	0,72163	0	0	0
100	4,43287	3,40197	0,92781	3,40197	1,64944	1,22448	0	0
120	5,36068	12,78316	2,57725	8,76265	3,71124	2,88652	0,10309	0
140	23,91688	9,17501	7,01012	6,49467	2,57725	1,95871	2,26798	0,20618
160	18,04075	26,08177	3,60815	12,88625	8,96883	8,86574	0,92781	1,13399
180	37,93712	14,84496	1,13399	7,62866	5,77304	12,68007	1,64944	0,72163
200	25,25705	8,04102	9,89664	22,06126	25,46323	5,66995	4,84523	6,49467
220	69,58575	24,84469	36,70004	16,08204	12,68007	18,14384	9,58737	4,32978
240	46,59668	80,92565	24,32924	37,52476	37,93712	10,20591	12,68007	10,61827
260	140,40858	55,25624	55,87478	24,22615	16,28822	36,28768	8,96883	4,63905
280	99,79112	99,79112	37,83403	76,90514	47,11213	18,04075	18,14384	17,00985
300	49,07084	107,72905	103,19309	25,36014	37,62785	4,84523	8,86574	28,65902
320	77,93604	88,34813	90,20375	13,60788	23,09216	16,80367	33,50425	12,78316
340	37,62785	65,77142	99,27567	34,43206	58,03967	99,27567	22,88598	9,89664
360	105,04871	97,42005	99,68803	13,19552	18,04075	74,43098	48,96775	11,64917
380	98,65713	33,50425	55,77169	60,51383	99,27567	88,14195	33,50425	26,08177
400	43,50398	70,61665	65,77142	104,01781	77,83295	36,28768	12,68007	14,84496
420	79,89475	47,11213	43,40089	88,24504	88,96667	80,10093	43,81325	38,04021

Injection continue au fond du canal pour Q =0,62 l/s et C_0 =700 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1 m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
40	0,61854	0,30927	0,10204	0	0	0	0	0
60	1,13399	2,37107	0,61854	0,10204	0	0	0	0
80	0,92781	0,92781	2,26798	0,51545	1,85562	0,71428	0	0
100	4,32978	4,74214	1,64944	1,13399	0,82472	2,34692	0	0
120	9,89664	8,86574	9,58737	7,62866	5,77304	5,36068	2,57725	1,85562
140	5,66995	5,36068	8,45338	9,89664	7,83484	4,53596	4,74214	7,52557
160	77,52368	12,68007	10,61827	19,07165	4,32978	9,89664	3,29888	4,74214
180	58,03967	9,89664	27,42194	7,01012	14,02024	13,71097	8,04102	54,6377
200	139,37768	18,04075	12,78316	34,63824	11,44299	7,83484	5,46377	3,29888
220	99,27567	36,70004	57,42113	14,94805	44,94724	22,06126	9,89664	8,96883
240	33,50425	12,57698	36,49386	78,65767	24,32924	14,63878	15,05114	16,18513
260	88,24504	104,01781	68,86412	53,91607	70,82283	48,96775	12,68007	12,57698
280	103,81163	79,99784	45,46269	33,19498	42,47308	36,70004	55,87478	38,04021
300	78,14222	43,81325	27,11267	95,35825	57,21495	99,58494	36,28768	24,94778
320	99,27567	90,20375	90,20375	106,80124	22,37053	23,09216	25,46323	82,05964
340	58,03967	103,29618	69,48266	75,87424	37,93712	76,80205	16,28822	24,22615
360	26,08177	87,93577	99,58494	46,69977	77,72986	65,04979	13,60788	92,26555
380	105,66725	99,58494	65,46215	80,20402	99,79112	45,46269	48,96775	47,00904
400	86,38942	53,81298	104,22399	42,47308	54,01916	89,58521	36,28768	37,93712
420	102,67764	67,52395	85,04925	67,73013	101,74983	47,00904	57,42113	80,92565

Injection continue au fond du canal pour Q =0,75 l/s et C_0 =700 mg/l

				Concentra	tion (mg/l)			
t(s)	X=1m	X=2m	X=3m	X=4m	X=5m	X=6m	X=7m	X=8m
0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
40	0,72163	0,10309	0,20408	0	0	0	0	0
60	3,60815	0,72163	0,72163	0,40816	0,10204	0	0	0
80	2,26798	3,40197	2,26798	1,13399	0,41236	0,5102	0,5102	0,10204
100	17,31912	2,16489	4,53596	0,61854	0,10309	1,12244	3,19579	0,71428
120	9,89664	6,90703	9,89664	3,40197	3,29888	3,40197	4,84523	1,23708
140	14,63878	11,44299	6,49467	8,76265	7,01012	2,16489	5,46377	0,92781
160	29,38065	8,86574	12,68007	6,80394	4,53596	6,49467	4,53596	2,68034
180	23,40143	36,28768	18,24693	18,04075	11,54608	5,36068	9,89664	1,54635
200	60,72001	27,21576	10,51518	47,21522	9,89664	33,50425	5,66995	5,56686
220	47,31831	48,34921	48,96775	24,32924	14,84496	23,19525	12,78316	3,40197
240	99,27567	25,46323	78,14222	70,61665	37,93712	49,07084	8,76265	9,89664
260	112,16192	99,27567	49,27702	45,77196	12,88625	12,68007	12,68007	19,27783
280	88,86358	54,53461	105,66725	103,19309	27,73121	55,25624	3,40197	12,57698
300	105,66725	106,90433	103,81163	54,01916	11,75226	76,80205	47,00904	58,65821
320	99,68803	40,10201	65,77142	91,44083	86,18324	44,63797	33,50425	33,71043
340	106,80124	103,19309	99,79112	103,50236	47,00904	78,55458	70,82283	57,21495
360	92,05937	99,27567	28,34975	92,57482	105,66725	99,79112	25,36014	24,84469
380	101,74983	111,02793	45,56578	47,21522	73,91553	78,14222	18,35002	44,94724
400	58,34894	54,94697	88,34813	76,38969	94,01808	96,07988	101,54365	29,48374
420	88,34813	69,58575	80,10093	79,17312	85,15234	45,87505	37,62785	36,80313