Please use this identifier to cite or link to this item:
http://univ-bejaia.dz/dspace/123456789/18869
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Oukil, Samia | - |
dc.contributor.author | Kasmi, Reda ; directeur de thèse | - |
dc.date.accessioned | 2022-05-16T12:35:49Z | - |
dc.date.available | 2022-05-16T12:35:49Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/18869 | - |
dc.description | Option : Electronique | en_US |
dc.description.abstract | Le mélanome est connu comme une forme très agressive de cancer de la peau et l’une des tumeurs malignes dont la croissance est la plus rapide dans de nombreux pays. Le diagnostic assisté par ordinateur (CAD) est une technique populaire utilisée pour la détection du mélanome dans la littérature. Cependant, elle se heurte encore à de nombreuses complications, notamment lorsqu’il s’agit de distinguer les lésions malignes des lésions bénignes à un stade précoce. Cette thèse vise à discriminer le mélanome des lésions cutanées bénignes dans les images dermoscopiques afin d’améliorer le potentiel, l’efficacité et la précision d’un système d’aide à la décision médicale qui peut aider les dermatologues à diagnostiquer les lésions cutanées à un stade précoce. L’algorithme proposé utilise une segmentation automatique basée sur le k-means générant un masque assez précis pour chaque lésion. L’extraction de caractéristiques consiste en des attributs de couleur et de texture existants et nouveaux, mesurant comment la couleur et la texture varient à l’intérieur de la lésion. Afin de trouver les résultats optimaux, tous les attributs sont extraits des lésions sur cinq systèmes de couleurs différents (RGB, HSV, Lab, XYZ et YCbCr), et utilisés comme entrées pour trois classificateurs (KNN, SVM et ANN). L’ensemble d’images dermoscopiques PH2 de l’hôpital Pedro Hispano est utilisé pour évaluer la performance de l’algorithme proposé. Les résultats de notre algorithme sont comparés aux résultats d’articles publiés qui ont utilisé le même ensemble de données et il en ressort que la méthode proposée surpasse les résultats des travaux antérieurs en atteignant la sensibilité de 99,25%, la spécificité de 99,58% et la précision de 99,51%. Les résultats finaux montrent que les couleurs combinées à la texture sont des attributs puissants et pertinents pour la détection des mélanomes et montrent une amélioration par rapport à ce qui est montré dans la littérature en utilisant la même base de données. | en_US |
dc.language.iso | fr | en_US |
dc.publisher | Université Abderrahmane Mira- Bejaia | en_US |
dc.subject | Mélanome ; Segmentation ; Dermoscopie ; Super-pixel ; K-means ; Attributs | en_US |
dc.title | Détection de mélanomes-précoces par apprentissage automatique. | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Thèses de Doctorat |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
These- OUKIL Samia.pdf | 725.62 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.