Please use this identifier to cite or link to this item: http://univ-bejaia.dz/dspace/123456789/23126
Full metadata record
DC FieldValueLanguage
dc.contributor.authorItmacene, Ouardia-
dc.contributor.authorMilissa, Milissa Oubekkou-
dc.contributor.authorEl Bouhissi, Houda ; promotrice-
dc.date.accessioned2024-04-04T09:07:51Z-
dc.date.available2024-04-04T09:07:51Z-
dc.date.issued2023-
dc.identifier.other004MAS/1249-
dc.identifier.urihttp://univ-bejaia.dz/dspace/123456789/23126-
dc.descriptionOption : Administration et Sécurité des Réseauxen_US
dc.description.abstractMachine learning becomes necessary. consists in creating systems that learn or improve performance according to the data they process. It is a decision-making tool thanks to its predictive power. In our project, we will be focusing on the analysis of of sentiment in social networks, more specifically on the Twitter platform, in the context of the coronavirus pandemic. Our main objective will be to determine the emotional tone of users’ discourse by classifying their messages into three main categories: positive, neutral and negative . We will use machine learning and natural language processing techniques to classify tweets. We will combine Long ShortTerm Memory (LSTM) model with Elephant Herding Optimization (EHO) algorithm, .en_US
dc.language.isofren_US
dc.publisherUniversité Abderramane Mira-Bejaiaen_US
dc.subjectSentiment analysis : Crisis management : Smart citiesen_US
dc.titleSentiment analysis for health crisis management in smart citiesen_US
dc.typeThesisen_US
Appears in Collections:Mémoires de Master

Files in This Item:
File Description SizeFormat 
ITMACENE OUBEKKOU PFE.pdf752.36 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.