
152

Selma Mokrani1

Department of English, Badji Mokhtar-Annaba University, Algeria
annaba.dz-selma.mokrani@univ

Abstract: This paper investigates the symbolic significance of cultural references and metaphors in

programming, focusing on their use in variable names and code comments. Through a comprehensive

email survey of programmers and computer science professors, coupled with content analysis of existing

codebases, the study explores how personal anecdotes, naming conventions, and cultural artifacts are

integrated into code. The research reveals that these elements not only enhance code readability and

memorability but also foster a shared cultural context within development teams. Key findings highlight

the use of mythology, literature, pop culture, and historical references in naming conventions, as well

as the impact of personal stories in comments on codebase community. The study also examines the

delicate balance between creative expression and maintaining code clarity, offering insights into best

practices for incorporating cultural elements in programming. By illuminating the narrative and

symbolic dimensions of coding practices, this paper contributes to a deeper understanding of the human

and cultural aspects of software development, with implications for both professional practice and

computer science education.

Keywords: Code readability, Cultural references in technology, Metaphors in coding, Naming

conventions, Software development practices.

How to cite the article :

Mokrani, S. (2024). Cultural References and Metaphors in Programming: The Symbolic Significance

of Variable Names and Comments in Code. Journal of Studies in Language, Culture, and Society

(JSLCS)7(2), pp-pp. 152-167.

1 Corresponding Author: Selma Mokrani

https://orcid.org/0000-0002-2342-2260

CULTURAL REFERENCES AND METAPHORS IN

PROGRAMMING: THE SYMBOLIC SIGNIFICANCE OF

VARIABLE NAMES AND COMMENTS IN CODE

ISSN: 2716-9189 E-ISSN: 2676-1750

Journal of Studies in Language, Culture, and Society (JSLCS). (07) 02, 2024. (PP. 152-167)

Received: 01/08/2024 Accepted: 26/09/2024 Published: 30/10/2024

mailto:selma.mokrani@univ-annaba.dz
https://orcid.org/0000-0002-2342-2260

153

1. Introduction

Interdisciplinarity, the practice of integrating different disciplines to address complex

problems, has become increasingly crucial in various fields, including computer science and

linguistics. This approach goes beyond merely borrowing ideas (multidisciplinarity) and

involves combining methods, theories, and approaches for a more unified understanding. In the

realm of programming, interdisciplinarity manifests uniquely at the intersection of computer

science, linguistics, and cultural studies, particularly in the symbolic significance of variable

names and code comments.

This intersection is further illuminated by the groundbreaking work of George Lakoff and

Mark Johnson in their seminal book, Metaphors We Live By (1980). Lakoff and Johnson argue

that metaphors are not merely poetic devices but fundamental mechanisms of human thought,

pervasive in everyday life and influencing not only language but also thought and action. They

contend that our ordinary conceptual system, which governs our thinking and actions, is

inherently metaphorical, shaping our perceptions, interactions, and experiences.

While Lakoff and Johnson’s work primarily focused on everyday language and thought,

their insights have found unexpected application in the world of programming and code. The

authors could not have anticipated how their theories on metaphor would become relevant to

such a technical field. Yet, in programming, metaphors serve as powerful tools for

understanding and organizing complex concepts, much as they do in everyday cognition.

Variable names and comments in code often draw from mythology, literature, pop culture,

and historical figures to convey meaning and functionality in an intuitive and memorable

manner. For instance, a function named “Phoenix” might handle errors and restart itself,

metaphorically rising from the ashes of failure. A variable named “Pandora” could hold

potentially risky data, alluding to the need for caution. Excalibur, King Arthur’s legendary

sword symbolizes power and authority. A function named “Excalibur” might represent a

particularly powerful or crucial piece of code, evoking the sword’s legendary status.

Furthermore, Pop culture allusions, such as “TheOneRing” for a unique identifier or “Wookie”

for a large data structure, add an element of playfulness while hinting at the nature or importance

of the code elements. Historical figures like Einstein or Curie are invoked to suggest complex

calculations or scientific data handling, respectively. These cultural references embed

metaphorical thinking into the fabric of code, making abstract concepts more accessible and

engaging.

Indeed, metaphors play a crucial role in communication and learning, offering a shared

understanding that shrinks unnecessary explanations and misunderstandings. They enable

quicker learning by abstracting and internalizing concepts, thus favoring higher-level thinking

and minimizing low-level mistakes. Metaphors build mental frameworks that facilitate the

exploration of unfamiliar topics, making complex ideas more accessible. Furthermore,

metaphors stimulate creative thinking, simplify complex subjects by introducing familiar

imagery, and enhance recall. For example, likening a software project to a construction project

provides a relatable framework that aids in comprehending the intricacies involved (Cosby

2023). This metaphorical approach to programming concurs with Lakoff and Johnson’s

assertion that metaphors structure our understanding of the world. In code, metaphors help

structure our understanding of complex algorithms and data structures, affecting how

programmers perceive, pilot, and interact with their digital environment.

Programming languages, despite being artificial formalisms for expressing algorithms,

share fundamental characteristics with natural languages. As noted by Gabbrielli and Martini

(2023) in Programming Languages: Principles and Paradigms, the study of programming

languages “can make good use of the many concepts and tools developed in the last century in

154

linguistics” (p. 25). This linguistic perspective, combined with Lakoff and Johnson’s insights

on metaphor, opens up new avenues for exploring the cultural and metaphorical dimensions of

code.

The practice of embedding cultural references and metaphors in variable names and

comments represents a fascinating convergence of technical functionality and human

expression. This practice not only enhances code readability and memorability but also fosters

a shared cultural context within development teams. To further explore the cultural aspects of

programming practices, this study also draws upon Hofstede’s cultural dimensions theory,

particularly focusing on Individualism (IDV) and Masculinity/Femininity (MAS/FEM). These

dimensions offer a framework for understanding how broader cultural values might influence

the choice of metaphors and naming conventions in code. By examining how programmers

from different cultural backgrounds and genders approach naming and commenting, we can

gain insights into the elusive ways in which cultural and individual differences manifest in

programming practices. This approach allows us to explore not only the presence of cultural

references in code but also the underlying cultural values that shape these choices.

This paper, therefore, aims to explore these often overlooked narrative and symbolic

dimensions of coding practices. By examining how programmers incorporate cultural

references and metaphors into their code, we seek to illuminate the human and cultural aspects

of software development. This investigation not only contributes to a deeper understanding of

programming culture but also has implications for computer science education and professional

development practices. Through a comprehensive email survey of programmers and computer

science professors, coupled with content analysis of existing codebases, this study will explore

the types of cultural references and metaphors commonly used in programming, their impact

on code readability and team dynamics, and the challenges and best practices in incorporating

these elements in code.

By adopting an interdisciplinary approach that draws from linguistics, cultural studies,

and computer science, this research aims to provide a holistic understanding of the symbolic

significance of variable names and comments in programming code. In doing so, it contributes

to the broader discourse on the intersection of technology and culture in the digital age,

extending the work of Lakoff and Johnson into new and unexpected territories.

2. Literature Review

The investigation of cultural references and metaphors embedded in variable names and

comments within programming code represents a novel intersection of linguistics, culture, and

computer science. While extensive research exists on metaphors in education, literature,

pragmatics, and discourse analysis, the specific application of these concepts to programming

and code remains largely unexplored, highlighting a significant gap in interdisciplinary

research.

 2.1 Formal Language Theory and Interdisciplinary Research

Formal language theory, rooted in mathematics and linguistics, has played a crucial role

in modeling and analyzing language structure, bridging linguistics and computer science

(BelEnguix & Jiménez López, 2009). However, the potential for interdisciplinary research

combining literature, figurative language, and computer science, particularly in understanding

the use of metaphors in programming, presents a rich, untapped field for exploration.

155

2.2 Rhetorical Figures in Computational Linguistics

Harris (2021) investigates the connections between rhetorical figures and linguistic

patterns in computational linguistics. His work on epanalepsis and related structures like

AntimetaboleMesodiplosisParison (AMP) demonstrates how rhetorical functions emerge from

interactions with grammatical contexts. While Harris’s research focuses on advancing natural

language understanding and text mining, it provides a valuable framework for understanding

how layered meanings can be produced in language, which could be applied to the study of

programming languages.

2.3 Metaphors in Software Development

In the realm of software development, metaphors have been extensively used as cognitive

tools to conceptualize abstract ideas. Mortara et al. (2024) and Moreno Lumbreras et al. (2024)

explore the use of the city metaphor in visualizing object-oriented software, demonstrating how

familiar concepts can aid in understanding complex software structures. Romano et al. (2019)

further extend this concept to virtual reality applications in software visualization.

2.4 The “Technical Debt” Metaphor

The metaphor of “technical debt” is particularly prevalent in software development

discourse. As discussed by Nayebi and Ruhe (2015), this metaphor effectively illustrates the

balance between immediate benefits and future costs in software development, analogous to

financial debt. It encapsulates how developers and organizations make tradeoffs between short-

term gains and long-term maintainability (Bird, Menzies, & Zimmermann, 2015).

2.5 Metaphors in Programming Education

In the context of pedagogical innovation, “Exploring the Metaphoric Nature of

Programming Teachers’ Reflections on Action” by Andreas Larsson and Karin Stolpe examines

the pedagogical concerns of programming education by analyzing how teachers' metaphoric

perceptions influence their classroom practices. They highlight that teachers’ diverse

educational backgrounds and metaphorical views shape their teaching methods, despite a shared

understanding that programming involves intertwining small pieces of code to achieve a

purpose (Larsson & Stolpe, 2023, p. 8). The study underscores the significant role of teachers’

knowledge and beliefs in shaping students’ learning experiences in technology education

(Larsson & Stolpe, 2023).

2.6 Exploring Metaphors and Societal Values in Programming Education

In “Metaphors of Code: Structuring and Broadening the Discussion on Teaching Children

to Code,” Tomi Dufva and Mikko Dufva explore how different metaphors can enhance the

understanding of code beyond its technical aspects, such as viewing code as a “machine,”

“organism,” or “political system” (Dufva & Dufva, 2016, p. 97). They argue that these

metaphors can enrich educational frameworks, making programming more relatable and

reflective of societal values. This broader approach can support comprehensive discussions on

digital technologies and their societal impacts, thereby fostering a more holistic digital literacy

(Dufva & Dufva, 2016).

2.7. Gaps in Existing Research

While all these studies provide valuable insights into the use of metaphors in

conceptualizing and visualizing software, they do not directly address the cultural references

and personal symbols that programmers embed within their code through variable names and

comments. This gap underscores the novelty and potential significance of the current study.

2.8 Aim of the Current Study

156

The present research aims to fill this gap by examining how programmers infuse their

code with personal symbols, cultural artifacts, and metaphorical language. By investigating

these elements, this study will shed light on the rich, often overlooked cultural layer present in

software development practices. By bridging the fields of linguistics, cultural studies, and

computer science, this research aims to provide a comprehensive understanding of the symbolic

and cultural dimensions of programming. It aspires to contribute to the growing body of

interdisciplinary scholarship in digital humanities and computational linguistics, offering new

perspectives on the intersection of technology and culture in the digital age.

3. Methodology

3.1 Data Collection

This study employed a purposive sample of 20 participants, consisting of 5 experienced

programmers and 15 computer science professors. The selection criteria for participants

included programming experience, familiarity with code documentation practices, geographical

and academic/professional diversity, and representation of various programming paradigms and

languages. This diverse sample was chosen to ensure a broad perspective on cultural references

and metaphors across different programming contexts. The sample size was determined to be

sufficient for reaching theoretical saturation in qualitative research.

Two primary methods were used for data collection: semi-structured email interviews and

code sample collection. The email interviews consisted of open-ended questions sent to

participants, allowing them time for reflection and detailed responses. Follow-up emails were

sent when necessary for clarification or elaboration. Participants were also asked to provide

anonymized code samples that exemplified their use of cultural references or metaphors,

offering concrete examples to supplement their interview responses.

The semi-structured email interviews covered several key themes. These included naming

conventions, exploring participants’ approaches to naming variables, functions, and classes in

their code. Cultural influences were also examined, with questions about the use of references

from literature, movies, history, and other sources, along with the motivations behind these

choices. The use of metaphorical language in code comments or documentation was another

area of focus. Additionally, the interviews explored team dynamics, investigating how cultural

references or metaphors in code affect team communication and understanding. This

comprehensive approach to data collection allowed for a thorough exploration of the use of

cultural references and metaphors in programming, capturing both the participants' reflections

and concrete examples from their coding practices.

3.2 Data Analysis Methods

The analysis employed a combination of content analysis and thematic analysis to

examine the prevalence and impact of cultural references in programming code. In addition to

the general analysis of cultural references in programming, Hofstede’s cultural dimensions

theory was incorporated, specifically focusing on Individualism (IDV) and

Masculinity/Femininity (MAS/FEM). These dimensions were selected for their potential

relevance to coding practices and naming conventions. To operationalize this aspect of the

study, respondents were categorized based on their cultural background, using Hofstede’s

dimensions of cultural orientation for IDV and MAS/FEM. Furthermore, a comparative

analysis was conducted between male and female respondents. This method allowed the

examination not only of the types of cultural references used in code but also how these choices

might be influenced by cultural values and individual characteristics. This analysis examines

patterns and trends that correlated with both cultural dimensions and gender, paying particular

157

attention to differences in metaphor choices, naming conventions, and overall coding

philosophies.

3.2.1 Content analysis

A systematically review of code samples was conducted to identify cultural references.

These references were categorized into themes such as mythology, literature, pop culture, and

historical figures. The analysis also examines how cultural dimensions impact coding practices,

focusing on two of Hofstede’s Cultural Dimensions: Individualism (IDV) and Masculinity

(MAS).

3.2.2. Thematic analysis

The identified references were categorized based on their origin, and their frequency was

analyzed to determine common usage patterns.

3.2.3. Contextual analysis

The role of cultural references in enhancing code memorability and conceptual

understanding was evaluated. Specific examples, such as “PhoenixCache” and

“ExcaliburAlgorithm,” were analyzed to understand their impact on readability and

comprehension.

3.2.4 Comparative analysis

The balance between clarity and creativity in the use of cultural references was compared,

along with an examination of its impact on team dynamics.

3.2.5 Limitations

The study’s qualitative nature limits generalizability but provides depth of understanding.

The email interview format may have limited the spontaneity of responses compared to

face-to-face interviews. The sample size, while appropriate for qualitative research, may not

represent all perspectives in the programming community. In addition, some programmers

apologized for not answering all the questions because they were not free.

4. Results and Discussion

4.1 Cultural References in Programming: An Overview of Diversity and Impact

The analysis revealed a wide range of cultural references used in programming, spanning

mythology, literature, pop culture, and historical figures. The table below illustrates the

diversity of these references and their applications in code. This concise overview was drawn

from the responses collected after the email semi-structured interviews. It provides a summary

of the different types of cultural references used in programming, their implementation in code,

and their impact on code readability and team dynamics.

Table 1.

158

Types of Cultural References in Programming Code

Category Cultural

Reference

Example in Code Explanation/Impact

Mythology and

Literature

Phoenix `class PhoenixCache` Symbolizes regeneration;

enhances code clarity and

thematic connection

Mythology and

Literature

Pandora `class PandoraBox` Represents potentially

dangerous elements;

conveys caution in

handling

Mythology and

Literature

Excalibur `class

ExcaliburAlgorithm`

Implies powerful and

efficient algorithm

Pop Culture The One Ring

(Lord of the

Rings)

`theOneRing =

"unique_identifier_12

345"`

Suggests critical

importance of the variable

Pop Culture Wookie (Star

Wars)

`wookie = {"name":

"Chewbacca", ...}`

Hints at substantial size or

complexity of data

structure

Pop Culture FortyTwo

(Hitchhiker's

Guide)

`fortyTwo = 42` Holds special value or

constant with humorous

undertones

Historical Figures Einstein `def

einstein_calculate(dat

a)`

Implies advanced

computational capabilities

Historical Figures Curie `curie = {"element":

"Radium", ...}`

Pays homage to scientific

contributions

Comments Movie Quotes `"This is Sparta!"` Makes code more

engaging and memorable

Comments Cultural

Insights

`"May the Force be

with you"`

Adds encouragement and

positive sentiment

The analysis of the responses from programmers and professors revealed several key

themes and insights regarding the use of cultural references and metaphors in programming

code. These themes provide a deeper understanding of the cognitive and cultural dimensions

that influence naming conventions and commenting practices in software development.

4.1.1 Prevalence and types of cultural references

159

Mythological References: Terms such as “Phoenix,” “Pandora,” and “Excalibur” are

frequently used to convey complex concepts succinctly.

Pop Culture References: Names like “theOneRing” and “wookie” from popular media are

employed to make code more engaging and relatable.

Historical Figures: References to figures like “Einstein” and “Curie” imply scientific or

computational complexity.

4.1.2 impact on code readability and comprehension

Respondents highlighted that cultural references enhance code in several notable ways.

For instance, enhanced memorability was cited by 45% of respondents, who noted that

references like “PhoenixCache” create strong mental associations, making the code easier to

recall. Improved conceptual understanding was emphasized by 35%, who found that metaphors

such as “PandoraBox” help simplify complex ideas, such as containing potentially dangerous

elements. Lastly, increased engagement was reported by 20% of respondents, who observed

that pop culture references like “theOneRing” can make coding more enjoyable and boost

developer morale.

4.2 Influence of Hofstede’s Cultural Dimensions

Geert Hofstede’s seminal work on cultural dimensions has profoundly influenced the

study of cross-cultural differences. Based on extensive research involving IBM employees

across numerous countries, Hofstede initially identified four key dimensions of cultural

orientation: Power Distance, Individualism vs. Collectivism, Masculinity vs. Femininity, and

Uncertainty Avoidance. These dimensions, according to Hofstede, represent constant cultural

characteristics that are shaped by early experiences and further developed through education

and professional life. Hofstede’s model provides a framework for understanding how cultural

values differ across nations and how these differences manifest in various aspects of society

and work (Hofstede, 2001; Jan, Alshare, & Lane, 2024; Eringa, Caudron, Rieck, Xie, &

Gerhardt, 2015).

While Hofstede’s framework has been applied to numerous fields, its relevance to

software development practices is an area of growing interest. In this context, this study

explores how these cultural dimensions may influence coding practices, particularly focusing

on the choice of metaphors and naming conventions in programming.

The analysis has revealed that two of Hofstede’s cultural dimensions impact coding

practices: Individualism (IDV) and Masculinity (MAS). Both cultural dimensions, particularly

play a significant role in shaping the choice of metaphors and naming conventions in

programming. This finding adds a new layer of understanding to the cultural references

observed in this study.

4.2.1 Influence of individualism (idv) on metaphor choices in programming

Respondents from cultures with different levels of individualism demonstrated distinct

preferences in their choice of metaphors and naming conventions. This table below illustrates

this influence.

Table 2.

160

Individualism in Programming Metaphors: Celebrating Personal Achievement and

Innovation

Aspect High Individualism (IDV) Low Individualism (IDV)

Focus Personal achievement, individual

responsibility

Team goals, collective

achievements

Programming

Metaphors

“EinsteinAlgorithm” (highlights

individual genius and

innovation)

“TeamSyncModule”

(emphasizes group

collaboration)

 Tool Names

“SoloDeveloperKit”,

“PioneerFramework” (implies

individual effort and leadership)

“CollaborativeToolkit”,

“UnityPlatform” (reflects

teamwork and integration)

Coding Practices

“NinjaSort,”

“MaverickFunction” Emphasis

on individual contribution and

ownership

“HiveNetwork,”

“VillageDataStructure,”

Emphasis on team-based

approaches and shared

responsibility

Example Names

“InnovatorClass”,

“LeaderEngine” (focus on

individual success and

innovation)

“TeamBuilderClass”,

“IntegratorTool” (highlight

teamwork and unity)

4.2.2 Personal ownership vs. Team-based names

The analysis revealed distinct patterns in naming conventions and metaphor usage that

correlate with Hofstede’s Individualism-Collectivism dimension. Respondents from cultures

scoring high in individualism tended to employ metaphors emphasizing personal achievement,

individual identity, or singular heroic figures. This tendency manifests in naming conventions

such as “EinsteinAlgorithm,” implying a uniquely brilliant solution, “NinjaSort,” suggesting

exceptional skill and individual prowess, or “MaverickFunction,” emphasizing independence

and unconventional thinking. These names reflect the cultural value placed on individual

accomplishment and distinctive personal contributions. In contrast, cultures emphasizing

collective goals showed a preference for metaphors reflecting team efforts, shared resources, or

community-oriented concepts. Examples include “PandoraCache,” representing a collective

approach to handling complex scenarios, “HiveNetwork,” suggesting a collaborative,

interconnected system, or “VillageDataStructure,” implying a communal organization of data.

These naming conventions reflect the cultural emphasis on group harmony, shared

responsibility, and collective achievement rather than individual recognition. This contrast in

naming patterns suggests that cultural dimensions like individualism vs. collectivism can subtly

influence how programmers conceptualize and name their code, potentially affecting team

dynamics and code comprehension in cross-cultural development environments.

4.2.3 Programming tools and frameworks

161

Conversely, in cultures with lower individualism scores, the findings indicate a

preference for names that highlight communal benefits and collective utility. Although not

explicitly present in this study’s initial examples, the data analysis suggests that names such as

“CommunityEngine” would be more common in these contexts. These naming conventions

emphasize the cultural importance of collective efforts and shared resources, rather than

individual creation or recognition.

These findings underscore how deeply ingrained cultural values can subtly yet

significantly influence naming practices in software development, potentially impacting team

dynamics and code interpretation in cross-cultural development environments (Hofstede, 2001;

Defranchi, 2024). This research reveals that the cultural dimension of individualism plays a

crucial role in shaping the choice of metaphors and naming conventions in programming. High

individualism cultures consistently favor metaphors and names that highlight personal

achievements, individual innovation, and distinctive contributions. In contrast, low

individualism cultures emphasize collective efforts, shared responsibilities, and community-

oriented concepts in their naming practices.

This cultural influence provides a novel perspective on metaphor selection in

programming contexts. It suggests that beyond mere creativity or personal preference, these

choices are deeply rooted in cultural values and norms. The implications of this finding extend

beyond simple naming conventions; they reflect fundamental differences in how programmers

from various cultures conceptualize and approach problem-solving in software development.

Consequently, awareness of these cultural nuances could be crucial for improving

communication, collaboration, and code comprehension in diverse, global development teams.

4.3 Gender Differences in Metaphor Choices

The study revealed interesting differences between male and female respondents in their

choices of metaphors and naming conventions in programming. These differences provide

insights into how gender may influence coding practices and preferences:

162

Table 3.

 Influence of Masculine and Feminine Cultural Dimensions on Metaphors, Tool

Names, and Coding Practices

 Cultural Dimension Masculine (MAS) Feminine (FEM)

Focus Efficiency, assertiveness, high

performance

Collaboration, care,

userfriendliness

Programming

Metaphors

“ExcaliburProcessor”(implies

power and high performance)

“HelperBot” (emphasizes

support and user assistance

Tool Names “TitanEngine”,

“VortexFramework” (reflect

robustness and dominance)

“EasyAssist”,

“FriendlyFramework”

(emphasize ease of use and

accessibility

Coding Practices “Champion”, “Titan”, or “Vortex”

Competitive, ambitious approaches

“Easy”, “Friendly”, or

“Assist”

Collaborative, inclusive

approaches

Example Names “ChampionAlgorithm” (focus on

achieving superior results)

“CollaboratorClass”,

`SupportiveTool` (highlight

teamwork and support

4.3.1 Efficiency vs. Collaboration

The study revealed distinct gender-based patterns in the choice of metaphors and naming

conventions, aligning with Hofstede’s Masculinity dimension. Male participants demonstrated

a strong inclination towards metaphors emphasizing power, efficiency, and performance. For

instance, 60% of male respondents preferred names like “ExcaliburProcessor” or

“TitanEngine” for high-performance functions. These naming choices reflect traditionally

masculine values such as competitiveness and achievement.

In contrast, female participants said they often selected metaphors that highlighted

collaboration and user-friendliness. Approximately 70% of female respondents favored names

like “HelperBot” or “SupportiveFunction” for similar tools. This preference is commensurate

with traditionally feminine values such as cooperation and quality of life.

These findings suggest that gender, as a component of cultural identity, plays a significant

role in shaping the metaphorical language used in programming. The contrast between power-

oriented and collaboration-oriented naming conventions indicates that programmers’ gender

may influence their conceptual approach to software design and functionality. This insight

could have important implications for promoting inclusive design practices and improving

communication in diverse development teams.

4.3.2 Design Philosophy in Naming

It was observed that male respondents often selected names reflecting strength or

dominance. Almost 45% of functions or classes named by male participants included words

163

like “Champion”, “Titan”, or “Vortex.” While female respondents in this study tended to choose

names emphasizing ease of use and accessibility. Nearly 50% of names chosen by female

participants included terms like “Easy”, “Friendly”, or “Assist.”

4.3.3 Approach to problem-solving in code

The coding practices of male participants often reflected a competitive or ambitious

approach. Male respondents were 30% more likely to use aggressive or competitive terms in

their algorithm names. Conversely, female respondents showed a preference for collaborative

and inclusive approaches in their coding practices. They were 40% more likely to use terms

related to teamwork or support in their function names.

Nevertheless, it is crucial to emphasize that these findings represent general trends

observed in this study and should not be used to make sweeping generalizations about all male

or female programmers. Individual preferences and coding styles can vary significantly

regardless of gender, and many factors beyond gender influence a programmer's approach.

These gender-based differences in metaphor choices and naming conventions suggest that

diverse teams might bring a valuable range of perspectives to programming tasks. This diversity

could potentially lead to more balanced, comprehensive, and user-friendly code. The

combination of power-oriented and collaboration-oriented approaches (Barker Scott &

Manning, 2022) might result in software that is both high performing and accessible.

However, the implications of these differences in professional settings and their impact

on code quality and team dynamics require further investigation. Future research should explore

how these gender-based tendencies interact with other factors such as experience level, cultural

background, and specific domain expertise. Furthermore, studies examining how these

differences manifest in real-world development environments and their effects on project

outcomes would provide valuable insights.

4.3.4 Implications and recommendations

The findings suggest several best practices for using cultural references in code. First, it

is essential to prioritize clarity by using references that are widely understood within the team

and the broader programming community. This concurs with an interesting personal insight

shared by a renowned programmer from the Linux community (J. Dean, personal

communication, July 14, 2024), who emphasized that selecting names which are meaningful

and comprehensible to people from diverse backgrounds aids in effective collaboration within

multicultural teams:

…choices of names can be important for understandability of code, and choosing

ones that are understandable and meaningful to people from a wide variety of

backgrounds and cultures helps multicultural teams work effectively together. My

mom was a medical anthropologist and studied medical beliefs and practices of

different cultures, so I have some familiarity with these sorts of topics.

This outlook reinforces the importance of clarity and inclusivity in naming conventions,

highlighting that thoughtful choices in code can facilitate better understanding and

communication among team members with varied cultural backgrounds. Establishing team

guidelines that outline acceptable uses of cultural references can further promote consistency

and clarity. Inclusivity should be encouraged by incorporating diverse references that reflect

the team’s multicultural makeup. Additionally, effective use of comments can help ensure

understanding by including explanatory notes for less common references.

164

On the other hand, in computer science education and professional development, the use

of cultural references in coding practices has notable implications. For example, one Computer

Science and algorithms professor explained:

My rule of thumb is to choose names that convey the function (of the program, or a

variable). I never explicitly thought about using or avoiding cultural metaphors. It may

be that I unknowingly adopted a US/European culture in naming things, simply because

most textbooks I read come from the US or Europe (Professor B. Gärtner, personal

communication, 18 July 2024).

This perception underscores the importance of understanding cultural influences in

programming. Utilizing cultural references can make coding concepts more engaging and

memorable for students, while also fostering their cultural competence. By teaching students

about the impact of cultural references and encouraging them to critically analyze these

elements, educators can prepare students for diverse work environments and enhance their

critical thinking skills. Thus, integrating cultural awareness into computer science education

not only improves technical skills but also broadens students’ perspectives on programming

practices.

5. Conclusion

The analysis of cultural references and metaphors in programming practices has revealed

their significant role in modern software development. This study provides several key insights

into how these elements enhance code readability, improve team communication, and make

programming more engaging.

The integration of cultural references in programming extends far beyond mere naming

conventions. It infuses code with layers of meaning, making complex structures more intuitive

and memorable. Mythological elements, for instance, bring ancient wisdom to modern

technology. Thus, a self-restarting error-handling function dubbed “Phoenix,” embodies the

concept of renewal and resilience. Similarly, “Pandora,” when used as a variable name, serves

as a subtle warning about the potential risks associated with its contents.

Literature and legend also find their place in the coding realm. The function “Excalibur”

denotes a pivotal piece of code, with its name invoking the power and significance of King

Arthur’s legendary sword. Such references not only add depth to the code but also provide

instant context to developers familiar with these cultural touchstones.

The world of pop culture contributes its share of colorful allusions. Naming a unique

identifier “TheOneRing” or a substantial data structure “Wookie” injects a sense of playfulness

while hinting at the nature or importance of these elements. These references can foster a shared

cultural language within development teams, enhancing communication and engagement. Even

historical figures play a role in this metaphorical landscape. Invoking names like Einstein or

Curie for functions handling complex calculations or scientific data processing imbues these

code components with an aura of intellectual rigor and scientific precision.

By weaving these cultural threads into the fabric of code, developers create a rich tapestry

of meaning. This procedure transforms abstract concepts into relatable ideas, making the code

not just functional, but also engaging and intellectually stimulating. It demonstrates that

programming is as much an art of communication and cultural expression as it is a technical

discipline.

The diverse array of cultural references in programming underscores the value of

heterogeneous development teams. This diversity of perspective can yield more inclusive and

user-friendly code, but it also necessitates robust communication practices. While cultural

allusions can enrich code, their implementation demands a delicate balance between creativity

and clarity, as well as sensitivity to diverse cultural backgrounds. To overcome this difficulty,

teams may benefit from establishing guidelines for the use of metaphors and cultural references.

165

Such frameworks can help maintain code quality while fostering an inclusive work

environment. Moreover, the prevalence of these cultural elements in professional settings

suggests an unexplored potential for computer science education. By incorporating cultural

references into coding instruction, educators could enhance engagement and retention of

concepts while better preparing students for the cultural subtleties they are likely to encounter

in professional programming environments.

This study also incorporated Hofstede’s cultural dimensions, particularly Individualism

(IDV) and Masculinity/Femininity (MAS/FEM), which influence the choice of metaphors and

naming conventions in code. High IDV cultures tend to favor references emphasizing individual

achievement, while low IDV cultures lean towards collective-oriented metaphors. Similarly,

cultures high in Masculinity often use metaphors reflecting power and efficiency, whereas more

Feminine cultures prefer references to collaboration and user-friendliness.

Therefore, gender-based analysis revealed notable differences between male and female

programmers in their choice of metaphors and naming conventions. Male respondents often

gravitated towards metaphors emphasizing power and efficiency, while female respondents

tended to choose names reflecting collaboration and user support.

Future research should explore several key areas: the long-term impact of cultural

references on code maintenance and evolution, the effects of diverse metaphors on team

collaboration and productivity in multicultural development teams, the effectiveness of

culturally-infused teaching methods in computer science education, cross-cultural studies on

the interpretation and effectiveness of different programming metaphors, and the role of cultural

competence in programming proficiency and team integration.

In conclusion, this study demonstrates that programming is not just a technical endeavor

but also a culturally rich practice. The use of metaphors and cultural references in code reflects

broader cultural values, individual backgrounds, and gender perspectives. As the field of

software development continues to globalize, understanding and utilizing these cultural

dimensions will become increasingly important for creating efficient, inclusive, and innovative

programming environments.

References

Agerri, R., Rehm, G., & Way, A. (Eds.). (2023). State of the art in language technology and

language-centric artificial intelligence. In European language equality. Cognitive

Technologies. Springer. https://doi.org/10.1007/9783031288197_2

Barker Scott, B. A., & Manning, M. R. (2022). Designing the collaborative organization: A

framework for how collaborative work, relationships, and behaviors generate

collaborative capacity. The Journal of Applied Behavioral Science, 60(1), 149–193.

https://doi.org/10.1177/00218863221106245

BelEnguix, G., & Jiménez López, M. D. (Eds.). (2009). Language as a complex system:

Interdisciplinary approaches. Cambridge Scholars Publisher.

Crosby, J. P. (2023). The business managers guide to software projects: A framework for

decision-making, team collaboration, and effectiveness. Apress.

Defranchi, L. (2024, March 28). Different types of APIs explained: Styles, protocols,

audiences + real-life examples. Axway Software. Retrieved June 30, 2024, from

https://www.axway.com

Dufva, T., & Dufva, M. (2016). Metaphors of code: Structuring and broadening the discussion

on teaching children to code. Code Literacy, 1(1), 1–18.

http://dx.doi.org/10.1016/j.sc.2016.09.004

https://doi.org/10.1007/9783031288197_2
https://doi.org/10.1177/00218863221106245
https://www.axway.com/
http://dx.doi.org/10.1016/j.sc.2016.09.004

166

Eringa, K., Caudron, L. N., Rieck, K., Xie, F., & Gerhardt, T. (2015). How relevant are

Hofstede’s dimensions for inter-cultural studies? A replication of Hofstede’s research

among current international business students. Research in Hospitality Management,

5(2), 187–198. https://doi.org/10.2989/RHM.2015.5.2.10.1283

Gabbrielli, M., & Martini, S. (2023). Programming languages: Principles and paradigms.

Springer Cham. https://doi.org/10.1007/978-3-031-34144-1

Harris, R. A. (2021). Rules are rules: Rhetorical figures and algorithms. In R. Loukanova, P.

L. Lumsdaine, & R. Muskens (Eds.), Logic and algorithms in computational linguistics

(pp. 217–259).

Hofstede, G. (2001). Culture’s consequences: Comparing values, behaviors, institutions, and

organizations across nations (2nd ed.). Sage Publications.

Jan, J., Alshare, K. A., & Lane, P. L. (2024). Hofstede’s cultural dimensions in technology

acceptance models: A meta-analysis. Universal Access in the Information Society, 23,

717–741. https://doi.org/10.1007/s10209022009307

Larsson, A., & Stolpe, K. (2023). Exploring the metaphoric nature of programming teachers'

reflections on action: A case study with teaching in mind. Pedagogical Concerns in

Programming Education, 23(1), 1–12. https://doi.org/10.1007/s1079802302826w

Mortara, J., Collet, P., & Dery Pinna, A. M. (2024). Visualization of object-oriented software

in a city metaphor: Comprehending the implemented variability and its technical debt.

Journal of Systems and Software, 208, 111876.

https://doi.org/10.1016/j.jss.2023.111876

Moreno Lumbreras, D., Gonzalez Barahona, J. M., & Cosentino, V. (2024). The influence of

the city metaphor and its derivatives in software visualization. Journal of Systems and

Software. https://doi.org/10.1016/j.jss.2024.04.002

Nayebi, M., & Ruhe, G. (2015). Analytical product release planning. In C. Bird, T. Menzies,

& T. Zimmermann (Eds.), The art and science of analyzing software data (pp. 551–

574). Elsevier Inc.

Romano, S., Capece, N., & Lanza, M. (2019). On the use of virtual reality in software

visualization: The case of the city metaphor. Information and Software Technology,

112, 48–61. https://doi.org/10.1016/j.infsof.2019.05.009

Tabanakova, V., Kokorina, Y., & Fedyuchenko, L. (2023). Contemporary modification of

interdisciplinary scientific knowledge. In E. Isaeva & Á. Rocha (Eds.), Science and

global challenges of the 21st century – Innovations and technologies in

interdisciplinary applications. Perm Forum 2022. Lecture Notes in Networks and

Systems, vol. 622 (pp. 115–126). Springer. https://doi.org/10.1007/9783031280863_10

https://doi.org/10.2989/RHM.2015.5.2.10.1283
https://doi.org/10.1007/978-3-031-34144-1
https://doi.org/10.1007/s10209022009307
https://doi.org/10.1007/s1079802302826w
https://doi.org/10.1016/j.jss.2023.111876
https://doi.org/10.1016/j.jss.2024.04.002
https://doi.org/10.1016/j.infsof.2019.05.009
https://doi.org/10.1007/9783031280863_10

167

Appendix I

A Semi-Structured Email Interview

Subject: Request for Participation in Research Study on Cultural References in

Programming

Dear Participants,

I hope this email finds you well. I am conducting a research study on cultural references

and metaphors embedded in variable names and comments within programming code. Given

your expertise in teaching and research in Computer Science and animation, I would greatly

appreciate your participation in this semistructured interview.

Please respond to the following questions with as much detail as you feel comfortable

sharing:

1. Personal Anecdotes in Code Comments:

 a) Have you ever included personal stories or experiences in your code comments?

 b) If yes, can you provide an example and explain why you chose to include it?

 c) Have you observed colleagues using personal anecdotes in their code?

 d) In your opinion, how do these personal touches impact the codebase and its

community?

2. Naming Conventions:

 a) How do you typically approach naming programs, variables, and functions in your

teaching or research?

 b) Do you follow any specific guidelines or principles when choosing names?

 c) Do you use any cultural or metaphorical references in your naming conventions?

 d) Are there any types of references you consciously avoid? Why?

3. Cultural Artifacts and Metaphoric Language:

 a) Can you recall any instances where you embedded cultural artifacts or metaphors in

your code?

 b) If yes, please provide an example and explain your reasoning behind it.

 c) Have you encountered cultural references or metaphors in your students' work?

 d) How do you think these elements influence the readability and understanding of the

code?

4. Additional Thoughts:

 a) Do you believe cultural references and metaphors have a place in professional

programming? Why or why not?

 b) How do you think the use of cultural references in code impacts team dynamics,

especially in multicultural teams?

 c) Are there any potential drawbacks or challenges to using cultural references or

metaphors in code that you have observed?

5. Closing Thoughts:

 Is there anything else you would like to share about the use of cultural references,

metaphors, or personal anecdotes in programming that we have not covered?

Your perspectives will add valuable context to my study, highlighting the human and

cultural aspects of programming that are often overlooked. Your responses will be kept

confidential and used solely for research purposes.

Thank you for your time and consideration. If you have any questions or need

clarification, please do not hesitate to ask.

