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General introduction

Since the introduction of differential calculus by Newton and Leibniz, mathemati-

cians had sought to solve differential equations; they were looking for formulas ex-

pressing solutions as a function of time. The methods were often clever, but it work

only with very specific equations.

With Poincaré, the idea is no longer to solve the differential equation, but he real-

ized that the qualitative properties of the solutions could be investigated without such

solutions having to be determined explicitly. He turned to a qualitative approach

using geometric and topological techniques. These approach is currently known as

qualitative theory of differential equations [33,84], he observes remarkable situations

which can govern global behavior, such as attractive or repulsive fixed points, as well

as limit cycles, which are periodic solutions attracting (or repelling) neighboring so-

lutions.

Many systems, especially physical ones, are described by differential equations

[52,88], sometimes their solutions evolve toward limit cycles, the number of which is

the issue of the second part of the 16th problem of Hilbert [51,70,71], it focuses on

polynomial differential equations in the plane; that is a polynomial system of degree

n having the form 
dx
dt

= P (x,y)
dy

dt
= Q(x,y)

(1)

A limit cycle is a periodic trajectory which is also ”isolated”, that is the neighbor-

ing trajectories are not all periodic. Hilbert’s 16th problem in the second part asks :

What is the maximum numberH(n) of limit cycles that a polynomial system of degree

n can have?

The first step in the direction of 16th Hilbert problem was given by H. Dulac

[60] in 1923, he published a long article, titled ” Sur les cycles limites ”, in which

he demonstrated a theorem claiming that a polynomial differential equation in the

plane has only a finite number of limit cycles. This proof was considered valid for

many years. It was not until 1970s that Y. Ilyashenko did prove that it was false [56].

1



General introduction 2

So some years later and independently Y.Ilyashenko and J. Ecalle provided a correct

proof. Although the proof given by Dulac was wrong, the idea given by him were

very fruitful.

Over years many other works have been done in this direction of 16th Hilbert

problem [25,63]. But even the simplest case, n = 2 , is still unsolved. N. Bautin [4]

(1952) states that H(2) > 3. Later, simultaneously, S. Shi (1979) and L.Chen and M.

Wang [81] found an example withH(2) > 4. For the next case, n = 3, J. Li and Q. Huan

[55,61,92] (1987) showed thatH(3) > 11. Later (2009), C. Li, C. Liu and J. YANG [58]

provided a planar cubic system and demonstrate that it has at least 13 limit cycles.

According with Smale, except for the Riemann hypothesis, the second part of the

16th Hilbert problem seems to be the most elusive of the Hilbert’s problems. He

said that, first we must consider a special class of simpler polynomial differential

equations, and he propose to study the 16th Hilbert problem restricted to the Liénard

system [30,80] 
dx
dt

= y − f (x)
dy

dt
= −x

(2)

where f is a real polynomial of degree n satisfying f (0) = 0. The number H(n) for the

system (2) remains an open problem.

The existence of limit cycles becomes one of the more difficult objects to study in

the qualitative theory of differential equations in the plane. There is a huge literature

dedicated to this topic.

If H(x,y) is a real polynomial irreducible in the ring R[x,y] of all real polynomials

in the variables x and y, the zero set {H(x,y) = 0} is an algebraic curve. An algebraic

limit cycle is a limit cycle contained in an algebraic curve of the plane, otherwise

such a limit cycle is called non-algebraic. The degree of an algebraic limit cycle is the

degree of the irreducible polynomial which defines the algebraic curve containing the

limit cycle. It is well known that the orbits of a polynomial differential system (1) are

contained in analytic curves, which usually are not algebraic curves.

In general it is a difficult problem to distinguish if a limit cycle is algebraic or not.

The proof that the famous limit cycle exhibited in the Van der Pol equation in 1926

was not algebraic arrived in 1995 [83]. The differential equation of Van der Pol can be

written as a polynomial differential system of degree 3 ( related to Liénard system){
x′ = y − x3 + x
y′ = −x (3)

but we do not know explicitly its limit cycle. More precisely, we do not know the
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explicit expression of the analytic curve which contains the non-algebraic limit cycle

of Van der Pol equation.

The first algebraic limit cycle found in the quadratic polynomial differential sys-

tems is due to Qin and to Liu, they proved in 1957 and 1958 that such systems can

have algebraic limit cycles of degree 2, and that if a quadratic polynomial differential

system has an algebraic limit cycle then it is the unique limit cycle of the system.

Later on, it was proved by Evdokimenco [35,36,37] that quadratic polynomial differ-

ential systems cannot have algebraic limit cycles of degree 3 .

The first family of algebraic limit cycles of degree 4 in the quadratic polynomial

differential systems was found in 1966 by Yablonskii. In 1973 Filiptsov [38] found

a second family of algebraic limit cycles of degree 4, and other results was appeared

later.

New families of algebraic limit cycles of degrees 5 and 6 also for quadratic polyno-

mial differential systems were found by using birational transformation of the plane

[28] for some families of algebraic limit cycles of degree 4. Until now we know that

the quadratic polynomial differential systems have algebraic limit cycles of degree 6,

but it is unknown if these systems can have algebraic limit cycles of degree higher

than 6.

Recently, since 2006 up to now, many articles have been showing explicit non-

algebraic limit cycles in polynomial differential systems [2,6,43,45,49], i.e. in those

articles the authors provided the explicit expression of the analytic curve containing

the limit cycle.

The first paper providing an explicit non-algebraic limit cycle for polynomial dif-

ferential systems of degree less than 5 was given by Benterki and Llibre [10] in 2012

for a polynomial differential system of degree 3. Later on many other papers have

been published providing explicit non-algebraic limit cycles for polynomial differen-

tial systems of degree larger than or equal to 3.

In this thesis we deal with some classes of polynomial differential systems of the

form (1) by using qualitative techniques, we provide explicit expressions of their limit

cycles and first integrals. The work is structured as following:

• Chapter 01 : Concerned for preliminaries and some basic notions in qualitative

theory of differential equations.

• Chapter 02 : Devoted to studying two families of planar differentials system

having one limit cycle, given explicitly with an expression of a first integral.

The results developed on this chapter are already published in
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– S. E. Hamizi, R. Boukoucha, On a family of planar differential systems, Non-

linear Studies, vol. 28, No. 1, (2021), p. 179-188.

– S. E. Hamizi and R. Boukoucha, Stable hyperbolic limit cycles for a class of

differential systems, Russian Mathematics. vol. 65, No. 9 (2021), p. 41-51.

• Chapter 03 : Devoted to studying the coexistence of algebraic and non-algebraic

limit cycles for two classes of planar differentials systems, given explicitly with

an expression of a first integral. The results developed on this chapter are al-

ready published in

– S. E. Hamizi, R. Boukoucha, A class of planar differential systems with explicit

expression for two limit cycles, Siberian Electronic Mathematical Reports,

vol. 17, (2020), p. 1588-1597.

– S. E. Hamizi and R. Boukoucha; A family of planar differential systems with

explicit expression for algebraic and non algebraic limit cycles , Memoirs on

Differential Equations and Mathematical Physics, vol. 83, (2021), p. 71-81.

• General conclusion.



Chapter 1

Preliminaries

The laws of the universe are written in the language of mathematics. Algebra is suf-

ficient to solve many static problems, but the most interesting natural phenomena

involve change and are described by equations that relate changing quantities.

Because the derivative
dx
dt

= f ′(t) of the function f is the rate at which the

quantity x = f (t) is changing with respect to the independent variable t, it is natu-

ral that equations involving derivatives are frequently used to describe the changing

universe.

An equation relating an unknown function and one or more of its derivatives is

called a differential equation. The order of a differential equation is the largest deriva-

tive present in the differential equation.

A solution to a differential equation on an interval α < t < β is any function x(t)

which satisfies the differential equation in question on the interval α < t < β.

Initial Condition(s) are a condition(s) on the solution that will allow us to deter-

mine which solution that we are after, in other words, initial conditions are values

of the solution and/or its derivative(s) at specific points. Initial conditions are of the

form,

x(t0) = x0 and / or x(k)(t0) = xk

An initial value problem is a differential equation along with an appropriate num-

ber of initial conditions.

The most general first order differential equation can be written as,

dx
dt

= f (t,x)

The first special case of first order differential equations is the linear first order dif-

ferential equation.

5



1.1 First order linear differential equations 6

1.1 First order linear differential equations

Definition A linear first order differential equations is any differential equation of

the form

x′ + p(t)x = g(t), (1.1)

where both p and g are continuous functions.

The solution to a linear first order differential equation (1.1) is

x(t) =
1
µ(t)

(ˆ
µ(t)g(t)dt + c

)
,

where c is some real constant and µ(t) = exp
(ˆ

p(t)dt
)
, called the integrating factor.

1.2 Bernoulli differential equation

Definition A Bernoulli equations is a differential equations of the form,

x′ + p(t)x = q(t)xn, (1.2)

where p and q are continuous functions.

In order to solve it when n is other than 0 and 1, we divide the differential equation

(1.2) by xn to get,

x−nx′ + p(t)x1−n = q(t). (1.3)

Then we put v = x1−n and taking the derivative gives us,

v′ = (1−n)x−nx′.

Now, plugging this substitution into the differential equation (1.3) gives,

1
1−n

v′ + p(t)v = q(t).

This is a linear differential equation that we can solve for v and once we have this we

can also get the solution to the original differential equation by plugging v back into

our substitution and solving for x.

Example. We want to solve the following initial value problem.
x′+

4
t
x = t3x2,

x(2) = −1,
t > 0.



1.3 Riccati differential equation 7

Dividing everything by x2, gives

x−2x′ +
4
t
x−1 = t3.

The substitution and derivative that we will need here is,

v = x−1 , so v′ = −x−2x′.

With this substitution the differential equation becomes,

v′ − 4
t
v = −t3.

This is a linear differential equation that we know how to solve. Using the integrating

factor

µ(t) = exp
(ˆ
−4
t
dt

)
= exp (−4ln|t|) = t−4,

the solution for v is,

v(t) =
1
µ(t)

(ˆ
−µ(t)t3dt + c

)
,

=− t4
ˆ
t−1dt + ct4,

=− t4ln|t|+ ct4,

=t4 (c − ln(t)) .

So, x−1 = t4 (c − ln(t)) . Using the initial condition to determine the value of c

(−1)−1 = 24 (c − ln(2)) .

Solving for c, we get c = ln(2)− 1
16

So, the solution is

x(t) =
1

t4
(
ln(2)− 1

16 − ln(t)
) ; t > 0.

1.3 Riccati differential equation

Definition The Riccati equation is one of the most interesting nonlinear differential

equations of first order. It is written in the form:

x′ = a(t)x+ b(t)x2 + c(t), (1.4)

where a(t), b(t) and c(t) are continuous functions of t.

The differential equation (1.4) is called the general Riccati equation. In general the

Riccati equation is not solvable by elementary means. However it can be solved with

help of the following theorem:



1.4 Planar differential systems 8

Theorem 1.1. If a particular solution x1 of a Riccati equation is known, the general solu-

tion of the equation is given by

x = x1 +u,

Indeed, substituting the solution x = x1 +u into Riccati equation (1.4), we have

x′1 +u′ = a(t)x1 + b(t)x2
1 + c(t) + a(t)u + b(t)u2 + 2b(t)x1u,

we obtain the differential equation for the function u(t)

u′ = b(t)u2 + (2b(t)x1 + a(t))u,

which is a Bernoulli equation that can be converted into a linear differential equation

that allows integration.

1.4 Planar differential systems

Definition A planar system of differential equations is a collection of two interre-

lated differential equations of the form{
x′ = f (t,x,y) ,
y′ = g (t,x,y) .

(1.5)

Here the functions f and g are real-valued functions of variables x,y and t .

The system (1.5 ) is called autonomous if none of f and g depends on t.

The system (1.5 ) is called polynomial if it is of the form{
x′ = P (x,y),
y′ = Q(x,y),

(1.6)

where P and Q are polynomials with real coefficients. We denote by n =

max {degP ,degQ} the degree of the polynomial system, and we always assume that

the polynomials P and Q are relatively prime.

We write equivalently the system (1.6) by using the abbreviated notation

X ′ = F(X), (1.7)

where X = (x,y) and F(X) = F(x,y) = (P (x,y),Q(x,y)).

1.4.1 Vector field

We regard the right-hand side of equation (1.6) as defining a vector field on R2. That

is, we think of F(x,y) as representing a vector whose x- and y-components are P (x,y)

and Q(x,y), respectively. We visualize this vector as being based at the point (x,y).
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1.4 Planar differential systems 9

Definition A vector field on two dimensional space is a function F that assigns to

each point (x,y) a vector given by F(x,y) = (P (x,y),Q(x,y)). We denote it by a differ-

ential operator

χ = P (x,y)
∂
∂x

+Q(x,y)
∂
∂y
.

Example. The vector field associated to the system{
x′ = y,
y′ = −x, (1.8)

is displayed in Figure 1.1

Figure 1.1: The vector field and several solutions for system (1.8).

1.4.2 Solutions of a planar differential system

A solution of system (1.7) is a function X : J −→ R2 defined on some interval J ⊂ R
such that, for all t ∈ J ,

X ′(t) = F (X(t)) ,

that is {
x′(t) = P (x(t), y(t)) ,
y′(t) = Q (x(t), y(t)) .

Geometrically, X(t) is a curve in R2 whose tangent vector X ′(t) exists for all t ∈ J
and equals F (X(t)) . We think of this vector as being based at X(t), so that the map

F : R2 −→ R2 defines a vector field on R2.

We denote a solution on the initial value X0 = X(t0) by ϕ(t,X0) or ϕt(X0). This func-

tion ϕ : R × R2 −→ R2 is called the flow associated to the system (1.7). So ϕt(X0)

defines a solution curve, trajectory, or orbit through X0.

Remark A point X∗ = (x∗, y∗) for which F(X∗) = 0 i.e P (x∗, y∗) = 0 and Q (x∗, y∗) = 0, is

called an equilibrium point for the system (1.6). An equilibrium point corresponds

to a constant solution X(t) ≡ X∗.
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1.4.3 Periodic solutions of a planar differential system

A periodic solution for the system (1.7) is a non-equilibrium point X such that:

• X ′(t) = F(X(t)), for all t ;

• There exists a time T > 0 for which X(t + T ) = X(t), for all t.

The least such T > 0 is called the period of the solution.

Example. The curve (
x(t)
y(t)

)
=

(
a cos(t)
a sin(t)

)
,

for any a ∈ R is a solution of the system (1.8). These curves define circles of radius

|a| in the plane that are traversed in the clockwise direction as t increases. Hence the

solution is periodic of period 2π.

When a = 0, the solutions are the constant functions x(t) ≡ 0 ≡ y(t).

1.5 Phase plane and phase portraits

The solutions of X ′ = F(X) are a functions of time, it can be visualized as trajectories

moving on the (x,y) plane, in this context called the phase plane. For several impor-

tant equations, it is impossible to find an analytical solution and it’s useful to develop

methods for deducing the behavior of equations without solving them. The motion

in the phase plane is determined by a vector field that comes from the planar system

X ′ = F(X). Here X represents a point in the phase plane, and X ′ is the velocity vector

at that point. By flowing along the vector field, a phase point traces out a solution

X(t), corresponding to a trajectory winding through the phase plane. Furthermore,

the entire phase plane is filled with trajectories, since each point can play the role of

an initial condition. The overall picture of trajectories in phase space is called phase

portraits.

Example. The figure 1.2 displays the phase portraits of the system x′(t) = x2 − 1,

y′(t) = −xy +
1
2

(
x2 − 1

)
.

(1.9)
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Figure 1.2: Phase portraits of system (1.9).

1.6 Linear differential systems

Definition A two-dimensional linear differential system has the form{
x′ = ax+ by,
y′ = cx+ d y.

(1.10)

where a,b,c, and d are real parameters. Equivalently, in vector notation

X ′ = AX,

where

A =
(
a b
c d

)
and X =

(
x
y

)
.

1.6.1 Equilibrium points

Note that the origin is always an equilibrium point for a linear system (1.10 ). To find

other equilibria, we must solve the linear system of algebraic equations{
ax+ by = 0,
c x+ d y = 0.

This system has a nonzero solution if and only if detA = 0. Thus we have:

Proposition 1.1. The planar linear system X ′ = AX has:

1. A unique equilibrium point (0,0) if detA , 0.

2. A straight line of equilibrium points if detA = 0 (and A is not the 0 matrix).
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1.6.2 Eigenvalues and eigenvectors

Definition Consider the linear differential system X ′ = AX. A nonzero vector V0 is

called an eigenvector of A if AV0 = λV0 for some λ ∈ R. The constant λ is called an

eigenvalue of A.

There is an important relationship between eigenvalues, eigenvectors, and solu-

tions of linear systems

Theorem 1.2. Suppose that V0 is an eigenvector for the matrix A with associated eigen-

value λ. Then the function

X(t) = V0e
λt,

is a solution of the system X ′ = AX.

The collection of all such solutions is called the general solution of X ′ = AX.

Theorem 1.3. SupposeA has a pair of real eigenvalues λ1 , λ2 and associated eigenvectors

V1 and V2. Then the general solution of the linear system X ′ = AX is given by

X(t) = αV1e
λ1t + βV2e

λ2t.

1.6.3 Lyapunov stability

An equilibrium point X∗ ∈ R2 of the system (1.6) is stable provided that, for each

ε > 0, there exists δ > 0 such that

|X0 −X∗| < δ implies that |X(t)−X∗| < ε, for all t > 0.

Otherwise the equilibrium is said to be unstable.

The equilibrium X∗ ∈ R2 is asymptotically stable if it is stable and there exists δ > 0

such that

|X −X∗| < δ implies that lim
t−→∞

X(t) = X∗.

1.7 Classification of equilibrium points

Consider X ′ = AX, where

A =
(
a b
c d

)
,

the eigenvalues of A are given by the characteristic equation

det (A−λI) = det
(
a−λ b
c d −λ

)
= 0,
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where I is the identity matrix.

Expanding the determinant yields

λ2 − T λ+∆ = 0,

where

T = trace(A) = a+ d,

∆ = det(A) = ad − bc.

Then

λ1 =
T +
√
T 2 − 4∆
2

, λ2 =
T −
√
T 2 − 4∆
2

.

Hence, the eigenvalues depend only on the trace and determinant of the matrix A.

1.7.1 Real distinct eigenvalues

Suppose that A has two real eigenvalues λ1 < λ2. Assuming thatλi , 0, there are three

cases to consider:

Case 01: λ1 < 0 < λ2. In this case the equilibrium point is a saddle. It is always

unstable.

Example Take the system

X ′ =
(
1 1
4 −2

)
X. (1.11)

The matrix has T = −1 and ∆ = −6, so the characteristic equation is λ2 + λ − 6 = 0.

Hence

λ1 = −3, λ2 = 2.

The corresponding eigenvectors for λ1 = −3 and λ2 = 2 , are V1 = (1,−4) and V2 =

(1,1), respectively.

The general solution is

X(t) = αV1e
−3t + βV2e

2t.

Case 02: λ1 < λ2 < 0. In this case the equilibrium point is a sink. It is asymptotically

stable.
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1.7 Classification of equilibrium points 14

Figure 1.3: Saddle phase portrait of system (1.11).

Example Take the system

X ′ =
(
−3 0
0 −2

)
X. (1.12)

The matrix has the eigenvalues

λ1 = −3, λ2 = −2.

Figure 1.4: Sink phase portrait of system (1.12) .
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1.7 Classification of equilibrium points 15

Case 03: 0 < λ2 < λ1. In this case the equilibrium point is a source. It is unstable.

Example Take the system

X ′ =
(
3 0
0 2

)
X. (1.13)

The matrix has the eigenvalues λ1 = 3, λ2 = 2.

Figure 1.5: Source phase portrait of system (1.13) .

1.7.2 Repeated eigenvalues

Case 01: If λ , 0 and λ has two independent eigenvectors , then the equilibrium

point is a star node. It is asymptotically stable if λ < 0, unstable if λ > 0.

Example Take the system

X ′ =
(
−2 0
0 −2

)
X. (1.14)

The eigenvalue λ = −2 is repeated and has two independent eigenvectors V1 = (0,1)

and V2 = (1,0).

Figure 1.6: Star node phase portrait of system (1.14) .
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Case 02: If λ , 0 and λ has one eigenvector , then the equilibrium point is a degen-

erate node. It is asymptotically stable if λ < 0, unstable if λ > 0.

Example Take the system

X ′ =
(
−2 3
0 −2

)
X. (1.15)

The eigenvalue λ = −2 is repeated and has one eigenvectors V1 = (1,0).

Figure 1.7: Degenerate node phase portrait of system (1.15) .

1.7.3 Complex eigenvalues

Case 01 λ1,2 = ±iβ. In this case the equilibrium point is a center.

Example Take the system

X ′ =
(

0 1
−1 0

)
X. (1.16)

The characteristic polynomial is λ2 + 1 = 0, so the eigenvalues are now the imaginary

numbers ±i. The general solution is

X(t) = c1

(
cost
−sint

)
+ c2

(
sint
cost

)
.

Case 02 λ1,2 = α ± iβ. In this case the equilibrium point is a spiral sink ( asymptoti-

cally stable ) if α < 0 and spiral source ( unstable ) ( if α > 0 ).

Example Ttake the system

X ′ =
(

1 3
−3 1

)
X. (1.17)
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Figure 1.8: Center phase portrait of system (1.16) .

The eigenvalues are λ1,2 = 1± i3. The general solution is

X(t) = c1e
t

(
cos3t
−sin3t

)
+ c2e

t

(
sin3t
cos3t

)
.

Figure 1.9: Spiral source phase portrait of system (1.17).

1.7.4 Equilibrium points and linearization

The hope is that we can approximate the phase portrait of polynomial differential

system near an equilibrium point by that of a corresponding linear system.

Consider the autonomous system (1.10){
x′ = P (x,y),
y′ = Q(x,y),

suppose that (x∗, y∗) is a fixed point and let

u = x − x∗, v = y − y∗.
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The System (
u′

v′

)
=


∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y


(x∗,y∗)

(
u
v

)
, (1.18)

is called the linearized system and the matrix

A =


∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y


(x∗,y∗)

,

is called the Jacobian matrix at the equilibrium point (x∗, y∗).

The Hartman-Grobman theorem

Theorem 1.4. With the condition that every eigenvalue of the Jacobian matrix A has

nonzero real part, there is a homeomorphism H from a neighbourhood of (0,0) to a neigh-

bourhood of (x∗, y∗), which maps the flow of the linearized system to the flow of the original

system.

1.8 Limit cycles

Definition A limit cycle is an isolated closed trajectory. Isolated means that neigh-

boring trajectories are not closed; they spiral either toward or away from the limit

cycle.

• If all neighboring trajectories approach the limit cycle, we say the limit cycle is

stable or attracting.
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Figure 1.10: Stable limit cycle.

• If all neighboring trajectories spiral away from the limit cycle, we say the limit

cycle is unstable.

Figure 1.11: Unstable limit cycle.

• In exceptional cases, we say the limit cycle is half-stable.

Figure 1.12: Half - stable limit cycles.

Example : Van Der Pol oscillator The Van der Pol system is given by{
x′ = y − x3 + x,
y′ = −x. (1.19)
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The Jacobian matrix associated to the system (1.19) is

A =
(
−3x2

∗ + 1 1
−1 0

)
.

The Jacobian matrix evaluated at the equilibrium point (0,0) is

A(0,0) =
(

1 1
−1 0

)
The eigenvalues are

λ1,2 =
1± i
√

3
2

,

as the real part is
1
2
> 0 the origin is spiral source.

Figure 1.13: The phase portrait of the van der Pol system.

1.9 Existence and non-existence of periodic solutions

1.9.1 The Poincaré map

Suppose that there is a curve or straight line segment, say, Σ, that is crossed trans-

versely (no trajectories are tangential to Σ). Then Σ is called a Poincaré section. Con-

sider a point r0 lying on Σ. As shown in Figure (1.14), follow the flow of the trajectory

until it next meets Σ at a point r1. This point is known as the first return of the

discrete Poincaré map P : Σ −→ Σ, defined by

rn+1 = P(rn).
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Figure 1.14: A first return on a Poincaré section, Σ.

Definition A point r∗ that satisfies the equation P(r∗) = r∗ is called a fixed point of

period one.

Theorem 1.5. Define the characteristic multiplier M to be

M =
dP
dr

∣∣∣∣∣
r=r∗

.

where r∗ is a fixed point of the Poincaré map P corresponding to a limit cycle, say, (Γ ). Then

if

1. |M | < 1, (Γ ) is a hyperbolic stable limit cycle,

2. |M | > 1, (Γ ) is a hyperbolic unstable limit cycle,

3. |M | = 1 and
d2P
dr2 , 0, then the limit cycle is half-stable.

Example Consider the following system
x′ = −y + x

(
1−

√
x2 + y2

)
,

y′ = x+ y
(
1−

√
x2 + y2

)
,

(1.20)

and consider the line segment

Σ =
{
(x,y) ∈ R2 : 0 ≤ x <∞, y = 0

}
.

System (1.20) becomes in polar coordinates{
r ′ = r (1− r) ,
θ′ = 1.

(1.21)

The origin is an unstable focus, and there is a limit cycle, say (Γ ), of radius 1 centered

at the origin. A phase portrait showing two trajectories is given in Figure (1.15) .
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Figure 1.15: Phase portrait of system (1.21).

System (1.21) can be solved since both differential equations are separable. The

solutions are given by  r(t) =
1

1 +Ce−t
,

θ(t) = t +θ0,

where C and θ0 are constants. Trajectories flow around the origin with a period of

2π, suppose that a trajectory starts at some r0 = r(0) on Σ and θ(0) = 0 . Then

r(t) =
1

1 +Ce−θ(t)
.

The flow is counterclockwise, and the required successive returns occur when θ = 2π,

4π... A map defining these points is given by

rn =
1

1 +Ce−2nπ , (1.22)

where C is a constant. Therefore

rn+1 =
1

1 +Ce−2(n+1)π
. (1.23)

Substituting C =
1− rn
rne−2nπ from equation (1.22) into (1.23) gives the Poincaré map

rn+1 = P(rn) =
rn

rn + (1− rn)e−2π .

The Poincaré map has two fixed points, one at zero (a trivial fixed point) and the

other at r∗ = 1, corresponding to the critical point at the origin and the limit cycle (Γ ),

respectively. Now
dP
dr

=
e−2π

(r + (1− r)e−2π)2 ,
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using elementary calculus, and

dP
dr

∣∣∣∣∣
r∗=1

= e−2π ≈ 0.00187 < 1,

and so (Γ ) is a hyperbolic stable limit cycle.

1.10 Integrability of polynomial differential systems

1.10.1 Invariant curves

An algebraic curve defined by U (x,y) = 0 is an invariant curve for the system (1.6) if

there exists a polynomial K (x,y) ( called the cofactor ) such that

P
∂U
∂x

+Q
∂U
∂y

= KU.

We note that, since the polynomial system has degree n, any cofactor has degree at

most n− 1.

1.10.2 First integrals

The polynomial system (1.6) is integrable on an open set Ω of R2 if there exists a

non-constant analytic function H : Ω −→ R, called a first integral, such that

P
∂H
∂x

+Q
∂H
∂y
≡ 0.

1.10.3 Algebraic limit cycle

A limit cycle of system (1.6) is said to be algebraic if it is contained in the zero set of

an invariant algebraic curve of the system, else it is called non-algebraic.

1.10.4 Darboux integrability

A Darboux function is a function of the form

f λ1
1 .f λ2

2 ...f λnn .exp
(g
h

)
,

where fi , g and h are real polynomials , the λi ’s are real numbers and exp
(g
h

)
called the

exponential factor. System (1.6) is called Darboux integrable if it has a first integral

which is a Darboux function.
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1.10.5 Liouville integrability

Liouvillian functions are functions that are built up from elementary functions (using

exponentiation, integration, and algebraic functions). If a planar polynomial system

has a first integral expressed in term of liouvillian functions , then we say that the

system has a liouvillian first integral.

The following theorem says that the method of Darboux finds all liouvillian first

integrals.

Theorem 1.6. (see in [33] p 308) If a polynomial system has a Liouvillian first integral,

then the system has a Darbouxian first integral.



Chapter 2

First integral and limit cycle for some
families of polynomial differential
systems

This chapter consists of two main parts. The first part deals with the family of the

polynomial differential systems of the form
x′ = δx

(
x2 + y2

)n
+ (λy − βx)

(
ax2 + bxy + ay2

)m (
cx2 + dxy + cy2

)p
,

y′ = δy
(
x2 + y2

)n
− (βy +λx)

(
ax2 + bxy + ay2

)m (
cx2 + dxy + cy2

)p
,

where a, b, c,d, β, λ, δ are real constants and n, m, p ∈ N.

In the second part we concentrate our study to a multi-parameter planar polyno-

mial differential systems of the form
x′ = x+ (αy − βx)

n∏
i=1

(
aix

2 + bixy + aiy
2
)λi

y′ = y − (βy +αx)
n∏
i=1

(
aix

2 + bixy + aiy
2
)λi

where n, λi are positive integer and α, β, ai , bi , i = 1, ..n are real constants.

For each of the two families above, primarily we prove the integrablity, explicit

formulas of invariant curve and first integral are introduced. Moreover, we determine

sufficient conditions to possess an explicit algebraic or non-algebraic limit cycles. Fi-

nally; our study is accompanied with a concrete examples exhibiting the applicability

of our results.

25
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2.1 On a family of planar differential systems

In this section, we consider the family of the polynomial differential systems of the

form 
x′ = δx

(
x2 + y2

)n
+ (λy − βx)

(
ax2 + bxy + ay2

)m (
cx2 + dxy + cy2

)p
,

y′ = δy
(
x2 + y2

)n
− (βy +λx)

(
ax2 + bxy + ay2

)m (
cx2 + dxy + cy2

)p
,

(2.1)

where a, b, c,d, β, λ, and δ are real constants and n, m, and p ∈ N.

2.1.1 Main result

Our main result is contained in the following theorem.

Theorem 2.1. Consider a multi-parameter polynomial differential systems (2.1), then the

following statements hold.

(h1) The origin O (0,0) is the unique critical point at finite distance.

(h2) If m ≥ 1 and p ≥ 1, then the curve

U (x,y) = −λ
(
x2 + y2

)(
ax2 + bxy + ay2

)m (
cx2 + dxy + cy2

)p
= 0,

is an invariant algebraic of systems (2.1) .

(h3) If λ
(
a+

1
2
b sin2w

)m (
c+

1
2
d sin2w

)p
, 0 for all w ∈ R, then systems (2.1) has the

first integral

H (x,y) =
(
x2 + y2

)m−n+p
exp

(
β (n−m− p)

λ
arctan

y

x

)
−
ˆ arctan y

x

0
F (w)dw,

where F (w) =
(2n− 2m− 2p)δexp

( (2n−2m−2p)β
λ w

)
λ
(
a+ 1

2b sin2w
)m (

c+ 1
2d sin2w

)p .
(h4) If λ

(
a+

1
2
b sin2w

)m (
c+

1
2
d sin2w

)p
= 0 for all w ∈ R, then systems (2.1) has the

first integral H =
y

x
. Moreover, the systems (2.1) has no limit cycle.

(h5) If λ > 0,β > 0,δ > 0, m > n, 2a > |b| , and 2c > |d| , then systems (2.1) has an explicit

limit cycle, given in polar coordinates (r,θ) by

r (θ,r∗) = exp
(β
λ
θ
)(
r

2m−2n+2p
∗ +

ˆ θ

0
F (w)dw

) 1
2m− 2n+ 2p

,
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where

r∗ =

 −
´ 2π

0 F (w)dw

1− exp
( (4n−4m−4p)βπ

λ

)


1
2m−2n+2p

Proof of Theorem 2.1.

Proof of statement (h1)

In analysis, A (x∗, y∗) ∈ R2 is a critical point of systems (2.1) , if,
δx∗

(
x2
∗ + y2

∗
)n

+ (λy∗ − βx∗)
(
ax2
∗ + bx∗y∗ + ay

2
∗
)m (

cx2
∗ + dx∗y∗ + cy

2
∗
)p

= 0,

δy∗
(
y2
∗ + y2

∗
)n
− (βy∗ +λx∗)

(
ax2
∗ + bx∗y∗ + ay

2
∗
)m (

cx2
∗ + dx∗y∗ + cy

2
∗
)p

= 0,

that is to say λ
(
x2
∗ + y2

∗
)(
ax2
∗ + bx∗y∗ + ay

2
∗
)m (

cx2
∗ + dx∗y∗ + cy

2
∗
)p

= 0, according to λ , 0,

b2−4a < 0, and d2−4c < 0, hence x∗ = 0, y∗ = 0 is the unique singularity of this equation.

Thus the origin is the unique critical point at finite distance.

This completes the proof of statement (h1).

Proof of statement (h2)

We prove that

U (x,y) = −λ
(
x2 + y2

)(
ax2 + bxy + ay2

)m (
cx2 + dxy + cy2

)p
= 0,

is an invariant algebraic curve of the differential systems (2.1). We note that

S1 ≡ S1 (x,y) = ax2 + bxy + ay2 and S2 ≡ S2 (x,y) = cx2 + dxy + cy2.

Indeed, we have

∂U (x,y)
∂x

P (x,y) +
∂U (x,y)
∂y

Q (x,y)

=
∂U (x,y)
∂x

(
δx

(
x2 + y2

)n
+ (λy − βx)Sm1 S

p
2

)
+
∂U (x,y)
∂y

(
δy

(
x2 + y2

)n
− (βy +λx)Sm1 S

p
2

)
=

(
x
∂U (x,y)
∂x

+ y
∂U (x,y)
∂y

)
δ
(
x2 + y2

)n
+ (λy − βx)Sm1 S

p
2
∂U (x,y)
∂x

− (βy +λx)Sm1 S
p
2
∂U (x,y)
∂y

.

In what follows, we simplify each member of the last equation above(
x
∂U (x,y)
∂x

+ y
∂U (x,y)
∂y

)
δ
(
x2 + y2

)n
= −λ (λy − βx)Sm1 S

p
2

(
2xSm1 S

p
2 +m

(
x2 + y2

)
(2ax+ by)Sm−1

1 S
p
2 + p

(
x2 + y2

)
(2cx+ dy)Sm1 S

p−1
2

)
+λy

(
2ySm1 S

p
2 +m

(
x2 + y2

)
(bx+ 2ay)Sm−1

1 S
p
2 + p

(
x2 + y2

)
(dx+ 2cy)Sm1 S

p−1
2

)
δ
(
x2 + y2

)n
= −2λ

(
Sm1 S

p
2 +m

(
ax2 + bxy + ay2

)
Sm−1

1 S
p
2 + p

(
cx2 + dxy + cy2

)
Sm1 S

p−1
2

)
δ
(
x2 + y2

)n+1

= −2λ
(
x2 + y2

)
Sm1 S

p
2 (m+ p+ 1)δ

(
x2 + y2

)n
= 2δ (m+ p+ 1)

(
x2 + y2

)n
U (x,y) ,
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also, we have

(λy − βx)Sm1 S
p
2
∂U (x,y)
∂x

− (βy +λx)Sm1 S
p
2
∂U (x,y)
∂y

=

−λ (λy − βx)Sm1 S
p
2

(
2xSm1 S

p
2 +m

(
x2 + y2

)
(2ax+ by)Sm−1

1 S
p
2 + p

(
x2 + y2

)
(2cx+ dy)Sm1 S

p−1
2

)
+

λ (βy +λx)Sm1 S
p
2

(
2ySm1 S

p
2 +m

(
x2 + y2

)
(bx+ 2ay)Sm−1

1 S
p
2 + p

(
x2 + y2

)
(dx+ 2cy)Sm1 S

p−1
2

)
= −λ

(
x2 + y2

)
Sm1 S

p
2

(
−2(m+ p+ 1)βSm1 S

p
2 +mbλ

(
y2 − x2

)
Sm−1

1 S
p
2 + dλp

(
y2 − x2

)
Sm1 S

p−1
2

)
=

(
−2(m+ p+ 1)βSm1 S

p
2 +λ

(
y2 − x2

)(
mbSm−1

1 S
p
2 + dpSm1 S

p−1
2

))
U (x,y) .

Now, by substitution we have

∂U (x,y)
∂x

P (x,y) +
∂U (x,y)
∂y

Q (x,y)

=
(
2δ (m+ p+ 1)

(
x2 + y2

)n
− 2(m+ p+ 1)βSm1 S

p
2 +λ

(
y2 − x2

)(
mbSm−1

1 S
p
2 + dpSm1 S

p−1
2

))
U (x,y)

=U (x,y)K (x,y) ,

where

K (x,y) = 2δ (m+ p+ 1)
(
x2 + y2

)n
− 2(m+ p+ 1)βSm1 S

p
2 +

λ
(
y2 − x2

)(
mbSm−1

1 S
p
2 + dpSm1 S

p−1
2

)
.

Therefore,

U (x,y) = −λ
(
x2 + y2

)(
ax2 + bxy + ay2

)m (
cx2 + dxy + cy2

)p
= 0,

is an invariant algebraic curve of the polynomial differential systems (2.1) , with the

cofactor K (x,y) . Hence, statement (h2) is proved.

Proof of statements (h3), (h4) and (h5)

In order to prove our results (h3), (h4) and (h5) we write the polynomial differential

systems (2.1) in polar coordinates (r,θ) , defined by x = r cosθ and y = r sinθ, then the

systems become
r ′ = δr2n+1 − β

(
a+

1
2
b sin2θ

)m (
c+

1
2
d sin2θ

)p
r2m+2p+1,

θ′ = −λ
(
a+

1
2
b sin2θ

)m (
c+

1
2
d sin2θ

)p
r2m+2p,

(2.2)

where θ′ =
dθ
dt

, r ′ =
dr
dt
.

Taking as new independent variable the coordinate θ, this differential systems

write
dr
dθ

=
β

λ
r +

−δ
λ
(
a+ 1

2b sin2θ
)m (

c+ 1
2d sin2θ

)p r2n−2m−2p+1, (2.3)
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which is a Bernoulli equation.

By introducing the standard change of variables ρ = r2m−2n+2p we obtain the linear

equation

dρ

dθ
=

(2m− 2n+ 2p)β
λ

ρ+
− (2m− 2n+ 2p)δ

λ
(
a+ 1

2b sin2θ
)m (

c+ 1
2d sin2θ

)p . (2.4)

The general solution of the linear equation (2.4) is

r (θ) = exp
(β
λ
θ
)(
c+
ˆ θ

0
F (w)dw

) 1
2m−2n+2p

,

where c ∈ R, which has the first integral

H (x,y) =
(
x2 + y2

)m−n+p
exp

(
β (n−m− p)

λ
arctan

y

x

)
−
ˆ arctan y

x

0
F (w)dw.

Since this first integral is a function that can be expressed by quadratures of el-

ementary functions, it is a Liouvillian function, and consequently systems (2.1) are

Darboux integrable.

The curves H = h with h ∈ R, which are formed by trajectories of the differential

systems (2.1), in cartesian coordinates are written as

(
x2 + y2

)m−n+p
= exp

(
β (m−n+ p)

λ
arctan

y

x

)h+
ˆ arctan y

x

0
F (w)dw

 ,
where h ∈ R. Hence, statement (h3) is proved.

Proof of statement (h4)

Assume now that λ
(
a+

1
2
b sin2w

)m (
c+

1
2
d sin2w

)p
= 0 for all w ∈ R. Then, from

differential systems (2.2) it follows that θ′ = 0. So the straight lines through the origin

of coordinates of the differential systems (2.1) are invariant by the flow of this system.

Hence,
y

x
is a first integral of the systems. Then since all straight lines through the

origin are formed by trajectories, which can be written in Cartesian coordinates as

y = hx where h ∈ R. Consequently, there is no limit cycle.

This completes the proof of statement (h4) .

Proof of statement (h5)

According to λ > 0, δ > 0, m > n, 2a > |b| , and 2c > |d| , hence

−λ
(
a+

1
2
b sin2θ

)m (
c+

1
2
d sin2θ

)p
< 0,
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for all θ ∈ R, then θ′ is negative for all t, the orbits r (θ) of the differential equation

(2.3) has reversed their orientation with respect to the orbits (x (t) , y (t)) of the differ-

ential systems (2.1).

Notice that systems (2.1) has a periodic orbit if and only if equation (2.3) has a

strictly positive 2π periodic solution. This, moreover, is equivalent to the existence of

a solution of (2.3) that fulfills r (0, r∗) = r (2π,r∗) and r (θ,r∗) > 0 for any θ in [0,2π] .

The solution r (θ,r0) of the differential equation (2.3) such that r (0, r0) = r0 is

r (θ,r0) = exp
(β
λ
θ
)(
r

2m−2n+2p
0 +

ˆ θ

0
F (w)dw

) 1
2m− 2n+ 2p

,

where r0 = r (0) .

A periodic solution of systems (2.1) must satisfy the condition r (2π,r0) = r (0, r0) ,

which leads to a unique value r0 = r∗, given by

r∗ = 2m−2n+2p

√√√
−
´ 2π

0 F (w)dw

1− exp
( (4n−4m−4p)βπ

λ

) .
According to λ > 0,β > 0,δ > 0, m > n, 2a > |b| , and 2c > |d| , hence λβ (4n− 4m− 4p) < 0

and F (w) < 0 for all w ∈ R, then r∗ > 0.

After the substitution of these value r∗ into r (θ,r0) we obtain

r (θ,r∗) = exp
(β
λ
θ
)

−
´ 2π

0 F (w)dw

1− exp
(

(4n− 4m− 4p)βπ
λ

) +
ˆ θ

0
F (w)dw


1

2m− 2n+ 2p

.

In what follows it is proved that r (θ,r∗) > 0. Indeed

r (θ,r∗) = exp
(β
λ
θ
) −exp

( (4n−4m−4p)βπ
λ

)
1− exp

( (4n−4m−4p)βπ
λ

) ˆ 2π

0
F (w)dw −

ˆ 2π

θ
F (w)dw


1

2m− 2n+ 2p

≥ exp
(β
λ
θ
)(
−
ˆ 2π

θ
F (w)dw

) 1
2m− 2n+ 2p

> 0,

because F (w) =
δ (2n− 2m− 2p)exp

( (2n−2m−2p)β
λ w

)
λ
(
a+ 1

2b sin2w
)m (

c+ 1
2d sin2w

)p < 0 for all w ∈ R.

Moreover, we compute

dr (2π,r0)
dr0

∣∣∣r0=r∗ = exp
(

(4m− 4n+ 4p)βπ
λ

)
> 1.

This is a stable and hyperbolic limit cycle for the differential systems (2.1) .

This completes the proof of statement (h5).
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2.1.2 Examples

The following examples are given to illustrate our result.

Example 1 If we take n = p = 0 and a = −b =m = δ = λ = β = 1, then systems (2.1)

reads 
x′ = x+ (y − x)

(
x2 − xy + y2

)
,

y′ = y − (y + x)
(
x2 − xy + y2

)
.

(2.5)

The curve U (x,y) = −x4 + x3y − 2x2y2 + xy3 − y4 = 0 is an invariant algebraic curve

of the polynomial differential system (2.5) , with the cofactor

K (x,y) = −3x2 + 4xy − 5y2 + 4.

The system (2.5) is a cubic system which has a non-algebraic limit cycle whose

expression in polar coordinates (r,θ) is

r (θ,r∗) = eθ

√
r2
∗ − 4

ˆ θ

0

(
e−2ω

2− sin2ω

)
dω,

where w ∈ R, and the intersection of the limit cycle with the OX+ axes is the point

having r∗

r∗ =

√
2e4π

e4π − 1

ˆ 2π

0

( 2
2− sin2ω

e−2ω
)
dω ' 1.1912.

Moreover,
dr (2π,r0)

dr0

∣∣∣∣∣
r0=r∗

= exp(4π) > 1.

This limit cycle is a hyperbolic limit cycle. It is the results presented by J. Llibre

and R. Benterki in [10] .

Figure 2.1: Limit cycle of system (2.5).
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Example 2 If we take a = λ = β = δ =m = 1 and n = p = b = 0, then systems (2.1)

reads 
x′ = x − x3 + x2y − xy2 + y3,

y′ = y − x3 − x2y − xy2 − y3.
(2.6)

The curve U (x,y) = −x4 − 2x2y2 − y4 = 0 is an invariant algebraic curve of the

polynomial differential system (2.6) , with the cofactor

K (x,y) = −4x2 − 4y2 + 4.

System (2.6) is a cubic system which has an algebraic limit cycle whose expression

in polar coordinates (r,θ) is

r (θ,r∗) = 1,

where θ ∈ R, in cartesian coordinates are written as

x2 + y2 = 1.

Moreover,
dr (2π,r0)

dr0

∣∣∣∣∣
r0=r∗

= exp(4π) > 1.

This limit cycle is a hyperbolic limit cycle.

Figure 2.2: Limit cycle of system (2.6).

Example 3 If we take a = −b = c = −d = m = p = δ = 1,λ = β = 4 and n = 0, then

systems (2.1) reads
x′ = x − 4x5 + 12x4y − 20x3y2 + 20x2y3 − 12xy4 + 4y5,

y′ = y − 4x5 + 4x4y − 4x3y2 − 4x2y3 + 4xy4 − 4y5.
(2.7)
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The curve U (x,y) = −4
(
x2 + y2

)(
x2 − xy + y2

)2
= 0 is an invariant algebraic curve

of the polynomial differential system (2.7) , with the cofactor

K (x,y) = −16x4 + 40x3y − 72x2y2 + 56xy3 − 32y4 + 6.

The system (2.7) is a quintic system has a non-algebraic limit cycle whose expres-

sion in polar coordinates (r,θ) is

r (θ,r∗) = eθ 4

√(
r4
∗ − 4

ˆ θ

0

(
exp(−4w)

(2− sin2w)2

)
dw

)
,

where w ∈ R, and the intersection of the limit cycle with the OX+ axes is the point

having r∗

r∗ = exp(2π)
4

√√√√√√
4
´ 2π

0

(
exp(−4w)

(2− sin2w)2

)
dw

exp(8π)− 1
' 0.81628.

Moreover,
dr (2π,r0)

dr0

∣∣∣∣∣
r0=r∗

= exp(8π) > 1.

This limit cycle is a hyperbolic limit cycle.

Figure 2.3: Limit cycle of system (2.7).

Example 4 If we take a = −b = c = −d = 1,p = β = λ = δ = 1,n = 0 and m = 2, then

systems (2.1) reads
x′ = x − x7 + 4x6y − 9x5y2 + 13x4y3 − 13x3y4 + 9x2y5 − 4xy6 + y7,

y′ = y − x7 + 2x6y − 3x5y2 + x4y3 + x3y4 − 3x2y5 + 2xy6 − y7.
(2.8)

The curve U (x,y) =
(
x2 + y2

)(
xy − x2 − y2

)3
= 0 is an invariant algebraic curve of

the polynomial differential system (2.8) , with the cofactor

K (x,y) = −5x6 + 18x5y − 42x4y2 + 56x3y3 − 54x2y4 + 30xy5 − 11y6 + 8.
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The system (2.8) has a non-algebraic limit cycle whose expression in polar coordi-

nates (r,θ) is

r (θ,r∗) = eθ 6

√√√√√r6
∗ − 6

ˆ θ

0

 8exp(−6w)(
1− 1

2 sin2w
)3

dw
,

where w ∈ R, and the intersection of the limit cycle with the OX+ axes is the point

having r∗

r∗ = 6

√
exp(12π)

−1 + exp(12π)

ˆ 2π

0

(
48exp(−6w)

(2− sin2w)3

)
dw ' 1.1189.

Moreover,
dr (2π,r0)

dr0

∣∣∣∣∣
r0=r∗

= exp(12π) > 1.

This limit cycle is a hyperbolic limit cycle.

Figure 2.4: Limit cycle of system (2.8).

Example 5 If we take a = p = λ = δ = n = 1,b = d = −1, c = 4,β = 3 and λ =m = 2,

then systems (2.1) reads
x′ = x3 + xy2 + (2y − 3x)

(
x2 − xy + y2

)2 (
4x2 − xy + 4y2

)
,

y′ = x2y + y3 − (3y + 2x)
(
x2 − xy + y2

)2 (
4x2 − xy + 4y2

)
,

(2.9)

The curve U (x,y) =
(
−8x2 + 2xy − 8y2

)(
x2 + y2

)(
x2 − xy + y2

)2
= 0 is an invariant

algebraic curve of the polynomial differential system (2.9) , with the cofactor

K (x,y) = 8x2 + 8y2 − 78x6 + 192x5y − 408x4y2 + 456x3y3 − 456x2y4 + 240xy5 − 114y6.
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The system (2.9) has a non-algebraic limit cycle whose expression in polar coordi-

nates (r,θ) is

r (θ,r∗) = exp(3θ)

r4
∗ +
ˆ θ

0

−4exp(−12w)(
1− 1

2 sin2w
)2 (

4− 1
2 sin2w

)dw


1
4

,

where w ∈ R, and the intersection of the limit cycle with the OX+ axes is the point

having r∗

r∗ =

4

√√√√√√√√√´ 2π
0

4exp(−12w)(
1− 1

2 sin2w
)2 (

4− 1
2 sin2w

)dw
1− exp(−24π)

' 0.56783.

Moreover,
dr (2π,r0)

dr0

∣∣∣∣∣
r0=r∗

= exp(24π) > 1.

This limit cycle is a hyperbolic limit cycle.

Figure 2.5: Limit cycle of system (2.9).
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2.2 Stable hyperbolic limit cycles for a class of differen-
tial systems

Now, consider a multi-parameter planar polynomial differential systems of the form
x′ = x+ (αy − βx)

n∏
i=1

(
aix

2 + bixy + aiy
2
)λi

y′ = y − (βy +αx)
n∏
i=1

(
aix

2 + bixy + aiy
2
)λi (2.10)

where n, λi are positive integers and α, β, ai , bi , i = 1, ..,n are real constants.

2.2.1 Main result

Our first result on the critical point and the expression of invariant algebraic curves

of the system (2.10) is the following.

Theorem 2.2. Consider a multi-parameter planar polynomial differential systems (2.10),

then the following statements hold.

(1) If n ∈ N− {0} , λi ∈ N− {0} , b2
i − 4a2

i < 0 for i = 1, ...,n then the origin of coordinates

O (0,0) is the unique critical point at finite distance. Moreover,O (0,0) is a star node.

(2) The curve U (x,y) = α
(
x2 + y2

) n∏
i=1

(
aix

2 + bixy + aiy
2
)λi = 0, is an invariant alge-

braic curve of systems (2.10) with cofactor

K (x,y) =2 + 2
i=n∑
i=1

λi − 2β
n∏
i=1

(
aix

2 + bixy + aiy
2
)λi +

(αy − βx)
∂
∂x

i=n∏
i=1

(
aix

2 + bixy + aiy
2
)λi −

(βy +αx)
∂
∂y

n∏
i=1

(
aix

2 + bixy + aiy
2
)λi
.
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Proof of Theorem 2.2.

Proof of statement (1)

We say that A (x0, y0) ∈ R2 is a critical point of systems (2.10) if
x0 + (αy0 − βx0)

n∏
i=1

(
aix

2
0 + bix0y0 + aiy

2
0

)λi = 0,

y0 − (βy0 +αx0)
n∏
i=1

(
aix

2
0 + bix0y0 + aiy

2
0

)λi = 0,

then, α
(
x2

0 + y2
0

) n∏
i=1

(
aix

2
0 + bix0y0 + aiy

2
0

)λi = 0. According to the conditions b2
i −4a2

i <

0, for i = 1, ...n, we have x0 = 0, y0 = 0 is the unique solution of this equation. Thus the

origin is the unique critical point at finite distance.

We compute the Jacobian matrix of systems (2.10) evaluated at O (0,0) , we have

J =


∂P
∂x

(x,y)
∂P
∂y

(x,y)

∂Q
∂x

(x,y)
∂Q
∂y

(x,y)


∣∣∣∣∣∣∣∣∣∣
(0,0)

=
(

1 0
0 1

)
,

where

P (x,y) = x+ (αy − βx)
n∏
i=1

(
aix

2 + bixy + aiy
2
)λi

and

Q (x,y) = y − (βy +αx)
n∏
i=1

(
aix

2 + bixy + aiy
2
)λi
.

This matrix has repeated positive real eigenvalues λ = 1 > 0, then O (0,0) is the

unstable node of systems (2.10) .

This completes the proof of statement (1).

Proof of statement (2)

We prove that U (x,y) = α
(
x2 + y2

) i=n∏
i=1

(
aix

2 + bixy + aiy
2
)λi = 0 is an invariant al-

gebraic curve of the differential systems (2.10).
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A computation we have

∂U (x,y)
∂x

= 2αx
i=n∏
i=1

(
aix

2 + bixy + aiy
2
)λi +α

(
x2 + y2

) ∂
∂x

i=n∏
i=1

(
aix

2 + bixy + aiy
2
)λi
,

∂U (x,y)
∂y

= 2αy
i=n∏
i=1

(
aix

2 + bixy + aiy
2
)λi +α

(
x2 + y2

) ∂
∂y

i=n∏
i=1

(
aix

2 + bixy + aiy
2
)λi
,

P (x,y) = x+ (αy − βx)
i=n∏
i=1

(
aix

2 + bixy + aiy
2
)λi and

Q (x,y) = y − (βy +αx)
i=n∏
i=1

(
aix

2 + bixy + aiy
2
)λi
.

After the substitution of P (x,y) , Q (x,y),
∂U (x,y)
∂x

and
∂U (x,y)
∂y

in the linear par-

tial differential equation , we obtain

∂U (x,y)
∂x

P (x,y) +
∂U (x,y)
∂y

Q (x,y) =
∂U (x,y)
∂x

x+ (αy − βx)
n∏
i=1

(
aix

2 + bixy + aiy
2
)λi

+
∂U (x,y)
∂y

y − (βy +αx)
n∏
i=1

(
aix

2 + bixy + aiy
2
)λi .

Then, taking into account that

x
∂
∂x

n∏
i=1

(
aix

2 + bixy + aiy
2
)λi+y ∂

∂y

n∏
i=1

(
aix

2 + bixy + aiy
2
)λi = 2

 i=n∑
i=1

λi

 n∏
i=1

(
aix

2 + bixy + aiy
2
)λi
,

we have

∂U (x,y)
∂x

P (x,y) +
∂U (x,y)
∂y

Q (x,y) = (2 + 2
i=n∑
i=1

λi − 2β
n∏
i=1

(
aix

2 + bixy + aiy
2
)λi +

(αy − βx)
∂
∂x

n∏
i=1

(
aix

2 + bixy + aiy
2
)λi − (βy +αx)

∂
∂y

n∏
i=1

(
aix

2 + bixy + aiy
2
)λi )U (x,y)

Therefore, U (x,y) = α
(
x2 + y2

) n∏
i=1

(
aix

2 + bixy + aiy
2
)λi = 0 is an invariant alge-

braic curve of the polynomial differential systems (2.10) with the cofactor

K(x,y) =2 + 2
i=n∑
i=1

λi − 2β
n∏
i=1

(
aix

2 + bixy + aiy
2
)λi +

(αy − βx)
∂
∂x

i=n∏
i=1

(
aix

2 + bixy + aiy
2
)λi −

(βy +αx)
∂
∂y

n∏
i=1

(
aix

2 + bixy + aiy
2
)λi
.
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Our second result on the existence of a first integral and explicit expression of a

limit cycles of systems (2.10) is the following.

Theorem 2.3. Consider a multi-parameter planar polynomial differential systems (2.10),

then the following statements hold.

(1) The systems (2.10) has the first integral

H (x,y) =

(
x2 + y2

)λ1+...+λn

exp
(2β
α (λ1 + ...+λn)arctan y

x

) +F
(
arctan

y

x

)
,

where F (θ) =
ˆ θ

0

2(λ1 + ...+λn)exp(−2(λ1 + ...+λn)w)

α
∏n
i=1

(
ai + 1

2bi sin2w
)λi

dw.

(2) If n ∈ N− {0} ,α > 0, β > 0, λi ∈ N− {0} , 2ai > |bi | , for i = 1, ...,n then systems (2.10)

has non-algebraic limit cycle (Γ ), explicitly given in polar coordinates (r,θ) by the

equation

r (θ,r∗) =

 exp
(
4π βα (λ1 + ...+λn)

)
−1 + exp

(
4π βα (λ1 + ...+λn)

)F (2π)−F (θ)


1

2(λ1 + ...+λn)
exp

(β
α
θ
)
,

where

r∗ =

 exp
(
4π βα (λ1 + ...+λn)

)
−1 + exp

(
4π βα (λ1 + ...+λn)

)F (2π)


1

2(λ1 + ...+λn)
.

Moreover, this limit cycle is a stable hyperbolic limit cycle.

Proof of Theorem 2.3.

In order to prove our results (1) and (2), we write the polynomial differential sys-

tems (2.10) in polar coordinates (r,θ), defined by x = r cosθ and y = r sinθ, then the

systems become 

r ′ = r −

β n∏
i=1

(
ai +

1
2
bi sin2θ

)λir2(λ1+...+λn)+1,

θ′ = −

α n∏
i=1

(
ai +

1
2
bi sin2θ

)λir2(λ1+...+λn),

(2.11)
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We have n ∈ N− {0} , λi ∈ N− {0} , α > 0, 2ai > |bi | , for i = 1, ...,n then θ′ is negative

for all t ∈ R, the orbits (r(t),θ(t)) of systems (2.11) have the opposite orientation with

respect to those (x(t), y(t)) of systems (2.10).

Taking θ as an independent variable, we obtain the Bernoulli equation

dr (θ)
dθ

=
β

α
r − r1−2(λ1+...+λn)

α
∏n
i=1

(
ai + 1

2bi sin2θ
)λi . (2.12)

Via the change of variables ρ = r2(λ1+...+λn), this Bernoulli equation (3.4) is trans-

formed into the linear equation

dρ (θ)
dθ

=
2β
α

(λ1 + ...+λn)ρ − 2(λ1 + ...+λn)

α
∏n
i=1

(
ai + 1

2bi sin2θ
)λi . (2.13)

The general solution of linear equation (2.13) is

ρ (θ) = (h−F (θ))exp
(2β
α

(λ1 + ...+λn)θ
)
,

where h ∈ R and F (θ) =
ˆ θ

0

2(λ1 + ...+λn)exp(−2(λ1 + ...+λn)w)

α
∏n
i=1

(
ai + 1

2bi sin2w
)λi

dw.

Consequently, the general solution of (2.12) is

r (θ) = (h−F (θ))
1

2(λ1+...+λn) exp
(β
α
θ
)
,

where h ∈ R.

From this solution we obtain a first integral in the variables (x,y) of the form

H (x,y) =

(
x2 + y2

)(λ1+...+λn)

exp
(2β
α (λ1 + ...+λn)arctan y

x

) +F
(
arctan

y

x

)
.

Hence, statement (1) is proved.

Notice that systems (2.10) has a periodic orbit if and only if equation (2.12) has a

strictly positive 2π-periodic solution. This, moreover, is equivalent to the existence

of a solution of (2.12) that fulfills r (0, r∗) = r (2π,r∗) and r (θ,r∗) > 0 for any θ in (0,2π).

The solution r (θ,r0) of the differential equation (2.12) such that r (0, r0) = r0 is

r (θ,r0) =
(
r

2(λ1+...+λn)
0 −F (θ)

) 1
2(λ1 + ...+λn) exp

(β
α
θ
)
,

where r0 = r (0).
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A periodic solution of system (2.10) must satisfy the condition r (2π,r0) = r (0, r0),

which leads to a unique value r0 = r∗, given by

r∗ =

 exp
(
4π βα (λ1 + ...+λn)

)
−1 + exp

(
4π βα (λ1 + ...+λn)

)F (2π)


1

2(λ1 + ...+λn)
.

The r∗ is the intersection of the periodic orbit with the OX+ axes.

After the substitution of this value r∗ into r (θ,r0) we obtain

r (θ,r∗) =

 exp
(
4π βα (λ1 + ...+λn)

)
−1 + exp

(
4π βα (λ1 + ...+λn)

)F (2π)−F (θ)


1

2(λ1 + ...+λn)
exp

(β
α
θ
)
.

In what follows it is proved that r (θ,r∗) > 0. Indeed

exp
(
4π βα (λ1 + ...+λn)

)
−1 + exp

(
4π βα (λ1 + ...+λn)

)F (2π)−F (θ) =
−F (2π)

1− exp
(
4π βα (λ1 + ...+λn)

)
+
ˆ 2π

θ

2(λ1 + ...+λn)exp(−2(λ1 + ...+λn)w)

α
∏n
i=1

(
ai + 1

2bi sin2w
)λi

dw > 0

According to the conditions n ∈ N− {0} , λi ∈ N− {0} ,α > 0, β > 0, 2ai > |bi | ,
for i = 1, ...,n, hence ai +

1
2
bi sin2w > 0 for all θ ∈ (0,π), then we have

exp
(
4π βα (λ1 + ...+λn)

)
−1 + exp

(
4π βα (λ1 + ...+λn)

)F (2π)−F (θ) ,

this ensures that r∗ and r (θ,r∗) are well defined for all θ ∈ (0,π) , therefore we have

r∗ > 0 and r (θ,r∗) > 0 for all θ ∈ (0,π) and the limit cycle do not pass through the

equilibrium point O (0,0) of systems (2.10). This is the limit cycle for the differential

systems (2.10) , we note it by (Γ ).

This limit cycle (Γ ) is not algebraic, more precisely, in cartesian coordinates r2 =

x2 + y2 and θ = arctan
(y
x

)
, the curve (Γ ) defined by this limit cycle is (Γ ): L (x,y) = 0

where

L (x,y) =
(
x2 + y2

)λ1+...+λn − exp
(
2
β

α
(λ1 + ...+λn)arctan

y

x

)
 exp

(
4π βα (λ1 + ...+λn)

)
−1 + exp

(
4π βα (λ1 + ...+λn)

)F (2π)−F
(
arctan

y

x

) .
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According to the conditions, we have
β

α
(λ1 + ...+λn) , 0, then the non-algebraic

expression exp
(
2
β

α
(λ1 + ...+λn)arctan

y

x

)
appears in the L (x,y) , hence the expression

L (x,y) is not algebraic. Consequently, (Γ ): L (x,y) = 0 is non-algebraic and the limit

cycle will also be non-algebraic.

In order to prove the hyperbolicity of the limit cycle it is sufficient to use the

Poincaré return map. A computation shows that

dr (2π,r0)
dr0

∣∣∣∣∣
r0=r∗

= exp
(
4π
β

α
(λ1 + ...+λn)

)
> 1,

Therefore the limit cycle (Γ ) of the differential systems (2.10) is stable hyperbolic

limit cycle.

This completes the proof of statement (2) .

2.2.2 Examples

The following examples are given to illustrate our results.

Example 1 If we take α = β = n = a1 = λ1 = 1 and b1 = −1, then systems (2.10)

reads 
x′ = x+ (y − x)

(
x2 − xy + y2

)
,

y′ = y − (y + x)
(
x2 − xy + y2

)
.

(2.14)

The curve U (x,y) =
(
x2 + y2

)(
x2 − xy + y2

)
= 0, is an invariant algebraic curve of

system (2.14) with cofactor K (x,y) = −3x2 + 4xy − 5y2 + 4.

System (2.14) is a cubic system that has a non-algebraic limit cycle whose expres-

sion in polar coordinates (r,θ) is

r (θ,r∗) = eθ

√
r2
∗ − 4

ˆ θ

0

(
e−2w

2− sin2w

)
dw,

where w ∈ R, and the intersection of the limit cycle with the OX+ axes is the point

having r∗

r∗ =

√
2e4π

e4π − 1

ˆ 2π

0

( 2
2− sin2w

e−2w
)
dw ' 1.1912.

Moreover,
dr (2π,r0)

dr0

∣∣∣∣∣
r0=r∗

= exp(4π) > 1.

This limit cycle is a stable hyperbolic limit cycle. It is the results presented by J.

Llibre and R. Benterki in [10] .
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Figure 2.6: Limit cycle of system (2.14).

Example 2 If we take n = 2, α = β = λ2 = 1, λ1 = 2, a1 = a2 = 3,b1 = −1 and

b2 = −2, then systems (2.10) reads
x′ = x+ (y − x)

(
3x2 − xy + 3y2

)2 (
3x2 − 2xy + 3y2

)
,

y′ = y − (y + x)
(
3x2 − xy + 3y2

)2 (
3x2 − 2xy + 3y2

)
.

(2.15)

The curve U (x,y) =
(
x2 + y2

)(
3x2 − xy + 3y2

)2 (
3x2 − 2xy + 3y2

)
= 0, is an invariant

algebraic curve of system (2.15) with cofactor

K (x,y) = 8− 2
(
6x2 − 3xy + 7y2

)(
5x2 − 3xy + 6y2

)(
3x2 − xy + 3y2

)
.

System (2.15) is a quintic system that has a non-algebraic limit cycle whose expression

in polar coordinates (r,θ) is

r (θ,r∗) =
(

exp(12π)
−1 + exp(12π)

F (2π)−F (θ)
)1

6 exp(θ) .,

where θ ∈ R, F (θ) =
ˆ θ

0

 6exp(−6w)(
3− 1

2 sin2w
)2

(3− sin2w)

dw, and the intersection of the

limit cycle with the OX+ axes is the point having r∗

r∗ =

 exp(12π)
−1 + exp(12π)

ˆ 2π

0

 6exp(−6w)(
3− 1

2 sin2w
)2

(3− sin2w)

dw


1
6
' 0.60031.

Moreover,
dr (2π,r0)

dr0

∣∣∣∣∣
r0=r∗

= exp(12π) > 1.

This limit cycle is a stable hyperbolic limit cycle.
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Figure 2.7: Limit cycle of system (2.15).

Example 3 If we take n = 3, α = 3, β = 2, λ1 = 3, λ2 = 4, λ3 = 5, a1 = 10, b1 = 12,

a2 = 7, b2 = 5, a3 = 4 and b3 = 1, then systems (2.10) reads

x′ = x+ (3y − 2x)
(
10x2 + 12xy + 10y2

)3(
7x2 + 5xy + 7y2

)4 (
4x2 + xy + 4y2

)5
,

y′ = y − (2y + 3x)
(
10x2 + 12xy + 10y2

)3(
7x2 + 5xy + 7y2

)4 (
4x2 + xy + 4y2

)5
,

(2.16)

The curve

U (x,y) =
(
x2 + y2

)(
10x2 + 12xy + 10y2

)3 (
7x2 + 5xy + 7y2

)4 (
4x2 + xy + 4y2

)5
= 0,

is an invariant algebraic curve of systems (2.16) with cofactor

K (x,y) = 26− 8
(
6xy + 5x2 + 5y2

)2 (
5xy + 7x2 + 7y2

)3 (
xy + 4x2 + 4y2

)4
M (x,y) ,

where M (x,y) = 10517x6 + 19959x5y + 35881x4y2 + 33072x3y3 + 27247x2y4 +

11553xy5 + 4043y6.

This system (2.16) has a non-algebraic limit cycle whose expression in polar coor-

dinates (r,θ) is

r (θ,r∗) =
(

exp(32π)
−1 + exp(32π)

F (2π)−F (θ)
) 1

24 exp
(2
3
θ
)
,

where θ ∈ R and F (θ) =
ˆ θ

0

 24exp(−24w)

3(10 + 6sin2w)3
(
7 + 5

2 sin2w
)4 (

4 + 1
2 sin2w

)5

dw, and

the intersection of the limit cycle with the OX+ axes is the point having r∗

r∗ =

 exp(32π)
−1 + exp(32π)

ˆ 2π

0

 24exp(−24w)

3(10 + 6sin2w)3
(
7 + 5

2 sin2w
)4 (

4 + 1
2 sin2w

)5

dw


1
24
' 0.38365.
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Moreover,
dr (2π,r0)

dr0

∣∣∣∣∣
r0=r∗

= exp(32π) > 1.

This limit cycle is a stable hyperbolic limit cycle.

Figure 2.8: Limit cycle of system (2.16).

Example 4 If we take n = 2, α = β = 1, λ1 = 4, λ2 = 3, a1 = 5, b1 = −1, a2 = 4 and

b2 = −3, then system (2.10) reads
x′ = x+ (y − x)

(
5x2 − xy + 5y2

)4 (
4x2 − 3xy + 4y2

)3
,

y′ = y − (y + x)
(
5x2 − xy + 5y2

)4 (
4x2 − 3xy + 4y2

)3
.

(2.17)

The curve

U (x,y) =
(
x2 + y2

)(
5x2 − xy + 5y2

)4 (
4x2 − 3xy + 4y2

)3
= 0,

is an invariant algebraic curve of system (2.17) with cofactor

K (x,y) = 16 +
(
4x2 − 3xy + 4y2

)2 (
xy − 5x2 − 5y2

)3
M (x,y) ,

where M (x,y) = 259x4 − 283x3y + 688x2y2 − 325xy3 + 381y4.

This system (2.17) has a non-algebraic limit cycle whose expression in polar coor-

dinates (r,θ) is

r (θ,r∗) =
(

exp(28π)
−1 + exp(28π)

F (2π)−F (θ)
) 1

14 exp(θ) ,

where θ ∈ R and F (θ) =
ˆ θ

0

 14exp(−14w)(
5− 1

2 sin2w
)4 (

4− 3
2 sin2w

)3

dw, and the intersection

of the limit cycle with the OX+ axes is the point having r∗

r∗ =

 exp(28π)
−1 + exp(28π)

ˆ 2π

0

 14exp(−14w)(
5− 1

2 sin2w
)4 (

4− 3
2 sin2w

)3

dw


1
14
' 0.47765.
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Moreover,
dr (2π,r0)

dr0

∣∣∣∣∣
r0=r∗

= exp(28π) > 1.

This limit cycle is a stable hyperbolic limit cycle.

Figure 2.9: Limit cycle of system (2.17).



Chapter 3

On the coexistence of algebraic and
non-algebraic limit cycles for some
classes of planar differential systems

Limit cycles of planar polynomial differential systems are not, in general, algebraic.

It is not easy work to decide if a limit cycle is algebraic or not. In this chapter we

deal with the situation of coexistence of algebraic and non-algebraic limit cycles, we

introduce tow families: the first one is of the form
x′ =

dx
dt

= xS4(x,y) + P7(x,y) + xR8(x,y),

y′ =
dy

dt
= yS4(x,y) +Q7(x,y) + yR8(x,y),

where S4(x,y), P7(x,y),Q7(x,y) and R8(x,y) are real polynomials.

The second family is of the form
x′ =

dx
dt

= x+
(
x2 + y2

)2
(
P3 (x,y)− x

(
x2 + y2

)3
R2 (x,y)

)
,

y′ =
dy

dt
= y +

(
x2 + y2

)2
(
Q3 (x,y)− y

(
x2 + y2

)3
R2 (x,y)

)
,

where P3(x,y),Q3(x,y) and R2(x,y) are real polynomials.

For each of the families, at first we give an explicit expression of invariant alge-

braic curves, then we prove that these systems are integrable, with an explicit expres-

sion of a first integral. Moreover, we provide sufficient conditions for the polynomial

differential systems to possess two limit cycles explicitly given: one is algebraic and

the other is shown to be non-algebraic. Finally, some concrete examples are intro-

duced to illustrate the applicability of our results.

47
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3.1 A class of planar differential systems with explicit
expression for two limit cycles

Consider a multi-parameter planar polynomial differential systems of degree nine of

the form 
x′ =

dx
dt

= xS4(x,y) + P7(x,y) + xR8(x,y),

y′ =
dy

dt
= yS4(x,y) +Q7(x,y) + yR8(x,y),

(3.1)

where

P7(x,y) =
1
3

(
x2 + y2

)2 (
(2a− b)x3 + (15d − 6c)x2y + (2b − a)xy2 + (6d − 3c)y3

)
,

Q7(x,y) = −1
3

(
x2 + y2

)2 (
(6d − 3c)x3 + (b − 2a)x2y − 3dxy2 + (a− 2b)y3

)
,

S4(x,y) = αx4 +λx3y + δx2y2 +λxy3 + ηy4,

and R8(x,y) = −1
3

(
x2 + y2

)2
((3α + 2a− b)x4 + (3λ− 3c+ 9d)x3y + (3λ− 3c+ 9d)xy3

+ (a+ b+ 3δ)x2y2 + (2b − a+ 3η)y4),

in which a, b, c, d, α, δ, λ and η are real constants.

We define the trigonometric functions

F (θ) =
1
8

(3α + δ+ 3η) +
1
2
λsin2θ +

1
2

(α − η)cos2θ +
1
8

(α − δ+ η)cos4θ,

G (θ) =
1
6

(a+ b) +
1
2

(a− b)cos2θ +
1
2

(3d − c) sin2θ,

K (θ) = −1
6
a− 1

6
b − 3

8
α − 1

8
δ − 3

8
η +

1
2

(c − 3d −λ) sin2θ +
1
8

(δ −α − η)cos4θ

+
1
2

(b − a−α + η)cos2θ,

M (θ) =
ˆ θ

0

(
2K (t)
2d − c

exp
(ˆ t

0

(
2G (w) + 4K (w)

c − 2d

)
dw

))
dt,

and N (θ) = exp
(ˆ θ

0

(
2G (w) + 4K (w)

c − 2d

)
dw

)
.

3.1.1 Main result

Our main result is contained in the following Theorem.

Theorem 3.1. Consider a multi-parameter planar polynomial differential systems (3.1),

then the following statements hold.
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(1) If 2d−c , 0, then the origin of coordinatesO (0,0) is the unique critical point at finite

distance.

(2) The curve U (x,y) = x2 + y2 − 1, is an invariant algebraic curve of systems (3.1) with

cofactor

K (x,y) = −2
3

(
x2 + y2

)
((2a− b+ 3α)x6 + 3αx4 + 3ηy4 + (9d − 3c+ 3λ)xy

(
x2 + y2

)2
+

3x2y2
(
(a+α + δ)x2 + (b+ δ+ η)y2 + δ

)
+ 3λxy

(
x2 + y2

)
+ (2b − a+ 3η)y6).

(3) The systems (3.1) has the first integral

H (x,y) =
N

(
arctan y

x

)
+
(
1− x2 − y2

)
M

(
arctan y

x

)
x2 + y2 − 1

.

(4) The systems (3.1) has an explicit limit cycle, given in cartesian coordinates by

(Γ1) : x2 + y2 − 1 = 0.

(5) If

2
3
a+

2
3
b+ 3α + δ+ 3η > 2 |c − 3d − 2λ|+ 2

∣∣∣b − a− 2α + 2η
∣∣∣+

∣∣∣δ −α − η∣∣∣ ,
−1

3
a− 1

3
b − 3

4
α − 1

4
δ − 3

4
η > |c − 3d −λ|+

1
4

∣∣∣δ −α − η∣∣∣+
∣∣∣b − a−α + η

∣∣∣ , (3.2)

δ , α + η and c < 2d,

then the systems (3.1) has another limit cycle (Γ2), explicitly given in polar coordi-

nates (r,θ) by

r (θ,r∗) =

√
(N (2π)− 1)(N (θ) +M (θ)) +M (2π)

(N (2π)− 1)M (θ) +M (2π)
.

Moreover, the limit cycle (Γ1) lies inside the limit cycle (Γ2).

Proof.

Proof of statement (1).

By definition, A (x∗, y∗) ∈ R2 is a critical point of systems (3.1) if
x∗S4 (x∗, y∗) + P7 (x∗, y∗) + x∗R8 (x∗, y∗) = 0,

y∗S4 (x∗, y∗) +Q7 (x∗, y∗) + y∗R8 (x∗, y∗) = 0,
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we have y∗P7 (x∗, y∗) − x∗Q7 (x∗, y∗) = (2d − c)
(
x2
∗ + y2

∗
)4

= 0. According to the condition

2d − c , 0, then x∗ = 0, y∗ = 0 is the unique of this equation. Thus the origin is the

unique critical point at finite distance.

This completes the proof of statement (1) of Theorem 1.

Proof of statement (2).

A computation shows thatU (x,y) = x2+y2−1 satisfies the linear partial differential

equation (??), the associated cofactor being

K (x,y) = −2
3

(
x2 + y2

)
((2a− b+ 3α)x6 + 3αx4 + 3ηy4 + (9d − 3c+ 3λ)xy

(
x2 + y2

)2
+

3x2y2
(
(a+α + δ)x2 + (b+ δ+ η)y2 + δ

)
+ 3λxy

(
x2 + y2

)
+ (2b − a+ 3η)y6),

then the curveU (x,y) = 0 is an invariant algebraic curve of systems (3.1) with cofactor

K(x,y).

This completes the proof of statement (2) .

Proof of statements (3), (4) and (5)

In order to prove our results (3), (4) and (5) we write the polynomial differential

systems (3.1) in polar coordinates (r,θ), defined by x = r cosθ and y = r sinθ, then the

systems become 
r ′ =

dr
dt

= F (θ)r5 +G (θ)r7 +K (θ)r9,

θ′ =
dθ
dt

= (c − 2d)r6.

(3.3)

where the trigonometric functions F (θ) , G (θ) and K (θ) are given in introduction.

According to c < 2d, we get θ′ is negative for all t ∈ R, the orbits (r(t),θ(t)) of

systems (3.3) have the opposite orientation with respect to those (x(t), y(t)) of systems

(3.1).

Taking θ as an independent variable, we obtain the equation

dr
dθ

=
F (θ)
c − 2d

1
r

+
G (θ)
c − 2d

r +
K (θ)
c − 2d

r3. (3.4)

Via the change of variables ρ = r2, this equation (3.4) is transformed into the Ric-

cati equation
dρ

dθ
=

2F (θ)
c − 2d

+
2G (θ)
c − 2d

ρ+
2K (θ)
c − 2d

ρ2. (3.5)

This equation is integrable, since it possesses the particular solution ρ = 1.

By introducing the standard change of variables ρ = z + 1 we obtain the Bernoulli

equation
dz
dθ

=
(

2G (θ) + 4K (θ)
c − 2d

)
z+

2K (θ)
c − 2d

z2. (3.6)
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We note that z = 0 is solutions for (3.6) , assume now that z , 0 by introducing the

standard change of variables y =
1
z

we obtain the linear equation

dy

dθ
=

(
2G (θ) + 4K (θ)

2d − c

)
y +

2K (θ)
2d − c

. (3.7)

The general solution of linear equation (3.7) is

y (θ) =
µ+M (θ)
N (θ)

,

where µ ∈ R.
Consequently, the general solution of equation (3.6) is

z (θ) = 0, z (θ) =
N (θ)

µ+M (θ)
,

where µ ∈ R.

Then the general solution of equation (3.5) is

ρ(θ) = 1, ρ(θ) =
µ+N (θ) +M (θ)

µ+M (θ)
,

where µ ∈ R.

Consequently, the general solution of (3.4) is

r(θ,µ) = 1, r(θ,µ) =
(
µ+N (θ) +M (θ)

µ+M (θ)

) 1
2

,

where µ ∈ R.

From this solution we obtain a first integral in the variables (x,y) of the form

H (x,y) =
N

(
arctan y

x

)
+
(
1− x2 − y2

)
M

(
arctan y

x

)
x2 + y2 − 1

.

Hence, statement (3) is proved.

The curves H = µ with µ ∈ R, which are formed by trajectories of the differential

systems (3.1), in cartesian coordinates are written as

x2 + y2 = 1,

x2 + y2 =
µ+N

(
arctan y

x

)
+M

(
arctan y

x

)
µ+M

(
arctan y

x

) ,

where µ ∈ R.
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Notice that system (3.1) has a periodic orbit if and only if equation (3.4) has a

strictly positive 2π-periodic solution. This, moreover, is equivalent to the existence

of a solution of (3.4) that fulfills r (0, r∗) = r (2π,r∗) and r (θ,r∗) > 0 for any θ in [0,2π].

The solution r (θ,r0) of the differential equation (3.4) such that r (0, r0) = r0 is

r (θ,r0) =

√√√√√N (θ) +M (θ) + 1
−1+r2

0

M (θ) + 1
−1+r2

0

where r0 = r (0).

We have the particular solution ρ (θ) = 1 of the differential equation (3.4) , from

this solution we obtain r2 (θ,1) = 1 > 0, for all θ ∈ [0,π] is a particular solution of

the differential equation (3.4). This is the limit cycle for the differential systems (3.1),

corresponding of course to an invariant algebraic curve U (x,y) = x2 + y2 − 1 = 0.

More precisely, in cartesian coordinates r2 = x2 + y2 and θ = arctan
(y
x

)
, the curve

(Γ1) defined by this limit cycle is (Γ1): x2 + y2 − 1 = 0.

Hence, statement (4) is proved.

A periodic solution of systems (3.1) must satisfy the condition r (2π,r0) = r (0, r0),

which leads to unique value r0 = r∗, given by

r∗ =

√
N (2π) +M (2π)− 1

M (2π)
,

r∗ is the intersection of the periodic orbit with the OX+ axes.

After the substitution of this value of r∗ into r (θ,r0) we obtain

r (θ,r∗) =

√
(N (2π)− 1)(N (θ) +M (θ)) +M (2π)

(N (2π)− 1)M (θ) +M (2π)
.

In what follows it is proved that r (θ,r∗) > 0. Indeed

M (2π)−M (θ) =
ˆ 2π

0

(
2K (t)
2d − c

exp
(ˆ t

0

(
2G (w) + 4K (w)

c − 2d

)
dw

))
dt

+
ˆ 0

θ

(
2K (t)
2d − c

exp
(ˆ t

0

(
2G (w) + 4K (w)

c − 2d

)
dw

))
dt

=
ˆ 2π

θ

(
2K (t)
2d − c

exp
(ˆ t

0

(
2G (w) + 4K (w)

c − 2d

)
dw

))
dt

According to the conditions (3.2), hence
G (θ) + 2K (θ)

2d − c
< 0 and

K (θ)
2d − c

> 0 for all

θ ∈ (0,π), then we have M (2π) −M (θ) > 0 and N (2π) > 1, this ensures that r∗ and

r (θ,r∗) are well defined for all θ ∈ (0,π) , therefore we have r∗ > 0 and r (θ,r∗) > 0 for
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all θ ∈ [0,π] and the limit cycle do not pass through the equilibrium point O (0,0) of

system (3.1). This is the second limit cycle for the differential systems (3.1) , we note

it by (Γ2).

According to the conditions (3.2), we get

M (θ) =
ˆ θ

0

(
2K (t)
2d − c

exp
(ˆ t

0

(
2G (w) + 4K (w)

c − 2d

)
dw

))
dt > 0

and N (θ) = exp
(ˆ θ

0

(
2G (w) + 4K (w)

c − 2d

)
dw

)
> 1,

for all θ ∈ [0,π], then we have r∗ =

√
1 +

N (2π)− 1
M (2π)

> 1. Moreover,

r (θ,r∗) =

√
1 +

(N (2π)− 1)N (θ)
(N (2π)− 1)M (θ) +M (2π)

> 1,

this justified that the limit cycle (Γ1) lies inside the limit cycle (Γ2).

We conclude that system (3.1) has two limit cycles (Γ1) and (Γ2).

This completes the proof of statement (5).

3.1.2 Examples

The following examples are given to illustrate our results.

Example 1 If we take a = b = −50, c = −3,d = −1,α = η = 10,λ = 1 and δ = 28,

then systems (3.1) reads

x′ = x
(
10x4 + x3y + 28x2y2 + xy3 + 10y4

)
+

1
3

(3y − 50x)
(
x2 + y2

)3

−1
3
x
(
x2 + y2

)2 (
−20x4 + 3x3y − 16x2y2 + 3xy3 − 20y4

)
,

y′ = y
(
10x4 + x3y + 28x2y2 + xy3 + 10y4

)
− 1

3
(3x+ 50y)

(
x2 + y2

)3

−1
3
y
(
x2 + y2

)2 (
−20x4 + 3x3y − 16x2y2 + 3xy3 − 20y4

)
,

(3.8)

The curve x2+y2−1 = 0 is an invariant algebraic curve of system (3.8) with cofactor

K(x,y) = 2
(
x2 + y2

)
(8

(
x6 + y6

)
− 12

(
x4 + y4

)
+ 3xy

(
x4 + x2 + y2 + y4

)
+2x2y2

(
11x2 + 3xy + 11y2 − 13

)
).

The system (3.8) has the first integral

H (x,y) =
N

(
arctan y

x

)
+
(
1− x2 − y2

)
M

(
arctan y

x

)
x2 + y2 − 1

,
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where N (θ) = exp
(
1 +

32
3
θ − cos2θ − sin4θ

)
and

M (θ) = −1
2

exp
(32

3
θ − cos2θ − sin4θ

)
+

50e
3

ˆ θ

0
exp

(32
3
t − cos2t − sin4t

)
dt.

The system (3.8) has the limit cycle (Γ1) whose expression is (Γ1): x2 + y2 − 1 = 0.

The system (3.8) has another limit cycle (Γ2) whose expression in polar coordinates

(r,θ) is

r (θ,r∗) =

√
(N (2π)− 1)(N (θ) +M (θ)) +M (2π)

(N (2π)− 1)M (θ) +M (2π)
,

where θ ∈ R. The intersection of the limit cycle with the OX+ axes is the point having

r∗

r∗ =

√
e

64
3 π + 2.4047× 1029 − 1

2.4047× 1029 = 1.2376

We conclude that system (3.8) has two limit cycles (Γ1) and (Γ2). Since r∗ = 1.2376 > 1,

the limit cycle (Γ1) lies inside the limit cycle (Γ2).

Figure 3.1: Limit cycles of system (3.8).

Example 2 If we take a = b = −60, c = 3,d = 1,α = η = 12,λ = −3 and δ = 26, then

systems (3.1) reads

x′ =
dx
dt

= x
(
12x4 − 3x3y + 26x2y2 − 3xy3 + 12y4

)
−
(
x2 + y2

)3
(20x+ y)+

x
(
x2 + y2

)2 (
8x4 + 8y4 + 3xy3 + 3x3y + 14x2y2

)
,

y′ =
dy

dt
= y

(
12x4 − 3x3y + 26x2y2 − 3xy3 + 12y4

)
+
(
x2 + y2

)3
(x − 20y)+

y
(
x2 + y2

)2 (
8x4 + 8y4 + 3xy3 + 3x3y + 14x2y2

)
,

(3.9)

The curve U (x,y) = x2 + y2 − 1 = 0 is an invariant algebraic curve of system (3.9)
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with cofactor

K(x,y) = −2
3

(
x2 + y2

)
(20

(
x6 + y6

)
− 30

(
x4 + y4

)
−

3xy
(
x2 + y2 + 1

)(
x2 + y2

)
+ 36x2y2

(
x2 + y2 − 7

3

)
).

The system (3.9) has the first integral

H (x,y) =
N

(
arctan y

x

)
+
(
1− x2 − y2

)
M

(
arctan y

x

)
x2 + y2 − 1

,

where N (θ) = exp
(
3− 9θ +

1
4

sin4θ − 3cos2θ
)

and

M (θ) = −e
2

2
exp

(
−9θ +

1
4

sin4θ − 3cos2θ
)
−20e3

ˆ θ

0
exp

(
−9t +

1
4

sin4t − 3cos2t
)
dt.

The system (3.9) has the limit cycle (Γ1) whose expression is (Γ1): x2 + y2 − 1 = 0.

The system (3.9) has another limit cycle (Γ2) whose expression in polar coordinates

(r,θ) is

r (θ,r∗) =

√
(N (2π)− 1)(N (θ) +M (θ)) +M (2π)

(N (2π)− 1)M (θ) +M (2π)
,

where θ ∈ R. The intersection of the limit cycle with the OX+ axes is the point having

r∗

r∗ =

√
2.762× 10−25 − 2.6042− 1

−2.6042
= 1.1764

We conclude that system (3.9) has two limit cycles (Γ1) and (Γ2). Since r∗ = 1.

1764 > 1, the limit cycle (Γ1) lies inside the limit cycle (Γ2).

Figure 3.2: Limit cycles of system (3.9).
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3.2 A family of planar differential systems with explicit
expression for algebraic and non algebraic limit cy-
cles

Consider a multi-parameter planar polynomial differential systems of degree thirteen

of the form 
x′ =

dx
dt

= x+
(
x2 + y2

)2
(
P3 (x,y)− x

(
x2 + y2

)3
R2 (x,y)

)
,

y′ =
dy

dt
= y +

(
x2 + y2

)2
(
Q3 (x,y)− y

(
x2 + y2

)3
R2 (x,y)

)
,

(3.10)

where
P3 (x,y) = ax3 + bx2y + cxy2 − dy3,
Q3 (x,y) = ax2y + dx3 + (b+ 2d)xy2 + cy3 and
R2 (x,y) = (a+ 1)x2 + (b+ d)xy + (c+ 1)y2,

in which a,b,c and d are a real constants.

We define the trigonometric functions

G (θ) =
a+ c

2
+
a− c

2
cos2θ +

b+ d
2

sin2θ,

A (θ) =
ˆ θ

0

6 + 6G (t)
d

exp
(ˆ t

0

−12 − 6G (ω)
d

dω

)
dt,

and B (θ) = exp
(ˆ θ

0

−12 − 6G (ω)
d

dω

)
.

3.2.1 Main result

Our main result is contained in the following theorem.

Theorem 3.2. For the systems (3.10) the following statements hold.

1. If d , 0, then the origin of coordinates O(0,0) is the unique critical point of system

(3.10) at finite distance.

2. The curve U (x,y) = x6 + 3x4y2 + 3x2y4 + y6 − 1 is an invariant algebraic curve of

systems (3.10) with cofactor

K (x,y) = −6
(
x2 + y2

)3
(
1 +

(
x2 + y2

)2 (
(a+ 1)x2 + (b+ d)xy + (c+ 1)y2

))
.

3. The systems (3.10) has the first integral

H (x,y) =

(
1−

(
x2 + y2

)3
)
A
(
arctan

y

x

)
+B

(
arctan

y

x

)
(x2 + y2)3 − 1

.
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4. The systems (3.10) has an explicit limit cycle, given in cartesian coordinates by

(Γ1) : x6 + 3x4y2 + 3x2y4 + y6 − 1 = 0

.

5. If d < 0,−2− (a+ c) > |b+d|+ |c−a| and 4+a+c > |b+d|+ |c−a|, then systems (3.10)

has non-algebraic limit cycle (Γ2), explicitly given in polar coordinates (r,θ) by

r (θ,r∗) =
(

(B (θ) +A (θ)) (B (2π)− 1) +A (2π)
A (θ) (B (2π)− 1) +A (2π)

)1
6
.

Moreover, the algebraic limit cycle (Γ1) lies inside the non-algebraic limit cycle (Γ2).

Proof.

Proof of statement (1).

By definition A(x0, y0) ∈ R2 is a critical point of systems (3.10) if
x0 +

(
x2

0 + y2
0

)(
P3 (x0, y0)− x0

(
x2

0 + y2
0

)3
R2 (x0, y0)

)
= 0,

y0 +
(
x2

0 + y2
0

)(
Q3 (x0, y0)− y0

(
x2

0 + y2
0

)3
R2 (x0, y0)

)
= 0,

we have (
x2

0 + y2
0

)2
(y0P3 (x0, y0)− x0Q3 (x0, y0)) = −d

(
x0

2 + y0
2
)4
.

Since d , 0 then (x0, y0) = (0,0) is the unique solution of this equation. Thus the origin

is the unique critical point at finite distance.

This completes the proof of the statement 1.

Proof of statement (2).

A computation shows that

U (x,y) = x6 + 3x4y2 + 3x2y4 + y6 − 1,

satisfies the linear partial differential equation

∂U (x,y)
∂x

P (x,y) +
∂U (x,y)
∂y

Q (x,y) =U (x,y)K (x,y) ,

the associated cofactor being

K (x,y) = −6
(
x2 + y2

)3
(
1 +

(
x2 + y2

)2 (
(a+ 1)x2 + (b+ d)xy + (c+ 1)y2

))
.

This completes the proof of statement 2.
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Proof of statement (3).

To proving statement (3), we need to convert the systems (3.10) in polar coordi-

nates (r,θ) given by x = r cosθ and y = r sinθ, then the systems (3.10) become
r ′ =

dr
dt

= r +G (θ)r7 + (−G (θ)− 1)r13,

θ′ =
dθ
dt

= dr6.

(3.11)

Taking θ as an independent variable, we obtain the equation

dr
dθ

=
1
d
r−5 +

G (θ)
d

r +
−G (θ)− 1

d
r7. (3.12)

By using the change of variable ρ = r6, the equation (3.12) is transformed into the

Riccati equation

dρ

dθ
=

6
d

+
6G (θ)
d

ρ+
−6G (θ)− 6

d
ρ2. (3.13)

This equation is integrable, since it possesses the particular solution ρ = 1.

By introducing the standard change of variables z = ρ − 1 we obtain the Bernoulli

equation

dz
dθ

=
−6− 6G (θ)

d
z2 +
−12− 6G (θ)

d
z. (3.14)

We note that z = 0 is the solution for (3.14), by introducing the standard change of

variables y =
1
z

we obtain the linear equation

dy

dθ
= −6 + 6G (θ)

d
− 12 + 6G (θ)

d
y. (3.15)

The general solution of linear equation (3.15) is

y (θ) =
α +A (θ)
B (θ)

,

where α ∈ R. Then the general solution of equation (3.14) is

z (θ) = 0, z (θ) =
B (θ)

α +A (θ)
, where α ∈ R.

Then the general solution of equation (3.13) is

ρ (θ) = 1, ρ (θ) =
α +A (θ) +B (θ)

α +A (θ)
, where α ∈ R.
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Consequently, the general solution of (3.12) is

r (θ) = 1, r (θ) =
(
α +A (θ) +B (θ)

α +A (θ)

) 1
6

, where α ∈ R.

From this solution we obtain a first integral in the variables (x,y) of the form

H (x,y) =

(
1−

(
x2 + y2

)3
)
A
(
arctanyx

)
+B

(
arctanyx

)
(x2 + y2)3 − 1

.

Hence, statement 3 is proved.

Proof of statement (4).

The curves H = h with h ∈ R, which are formed by trajectories of the differential

systems (3.10), in cartesian coordinates are written as

x2 + y2 = 1,
(
x2 + y2

)3
=
α +A (θ) +B (θ)

α +A (θ)
,

where α ∈ R.

Notice that systems (3.10) has a periodic orbit if and only if equation (3.12) has a

strictly positive 2π-periodic solution. This is equivalent to the existence of a solution

of (3.12) that fulfills r (0, r∗) = r (2π,r∗) and r (θ,r∗) > 0 for any θ in [0,2π] .

The solution r (θ,r0) of the differential equation (3.12) such that r (0, r0) = r0 is

r (θ,r0) =


1

r6
0 − 1

+A (θ) +B (θ)

1

r6
0 − 1

+A (θ)


1
6

,

where r0 = r(0).

We have the particular solution ρ(θ) = 1 of the differential equation (3.13); from this

solution we obtain r6(θ) = 1 > 0, for all θ in [0,2π] is a particular solution of the

differential equation (3.12).

This is an algebraic limit cycle for the differential systemss (3.10), corresponding of

course to an invariant algebraic curve U (x,y) = 0.

More precisely, in cartesian coordinates r2 = x2 + y2 and θ = arctan
(y
x

)
the curve (Γ1)

defined by this limit cycle is (Γ1) : x6 + 3x4y2 + 3x2y4 + y6 − 1 = 0.

Hence, statement 4 is proved.
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Proof of statement (5).

A periodic solution of systems (3.10) must satisfy the condition r (0, r∗) = r (2π,r∗) ,

which leads to a unique value r0 = r∗, given by

r∗ =
(
A (2π) +B (2π)− 1

A (2π)

)1
6
.

The r∗ is the intersection of the periodic orbit with the OX+ axes. After the substitu-

tion of this value r∗ into r (θ,r0) we obtain

r (θ,r∗) =
(

(B (θ) +A (θ)) (B (2π)− 1) +A (2π)
A (θ) (B (2π)− 1) +A (2π)

)1
6
.

In what follows it is proved that r (θ,r∗) > 0. Indeed

A (2π)−A (θ) =
ˆ 2π

θ

6 + 6G (t)
d

exp

(ˆ t

0

−12− 6G (ω)
d

dω
)

dt.

According to d < 0,−2− (a+ c) > |b + d|+ |c − a| and 4 + a+ c > |b + d|+ |c − a|, hence
−2−G (θ)

d
and

1 +G (θ)
d

> 0 for all θ in [0,2π], then we have A (2π) −A (θ) > 0 and

B (2π) > 1; therefore we have r∗ > 0 and r (θ,r∗) > 0 for all θ in [0,2π] . This is the

second limit cycle for the differential systems (3.10), we note it by (Γ2) . This limit

cycle is not algebraic, due to the expression

B (θ) = exp
(ˆ θ

0

−12− 6G (ω)
d

dω
)
.

More precisely, in cartesian coordinates r2 = x2 + y2 and θ = arctan
(y
x

)
the curve

defined by this limit cycle (Γ2) is: F (x,y) = 0, where

F (x,y) =
(
x2 + y2

)3
−

(
B
(
arctan

y

x

)
+A

(
arctan

y

x

))
(B (2π)− 1) +A (2π)

A
(
arctan

y

x

)
(B (2π)− 1) +A (2π)

.

If the limit cycle is algebraic this curve must be given by a polynomial, but a poly-

nomial F (x,y) in the variables x and y satisfies that there is a positive integer n such

that
∂nF (x,y)
∂xn

= 0, and this is not the case, therefore the curve (Γ2) : F (x,y) = 0 is

non-algebraic and the limit cycle will also be non-algebraic.

According to d < 0,−2− (a+ c) > |b+ d|+ |c − a| and 4 + a+ c > |b+ d|+ |c − a|, we get

r∗ =
(
1 +

B (2π)− 1
A (2π)

)1
6
> 1,
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and

r (θ,r∗) =

1 +
B (θ)

1
r6
∗ − 1

+A (θ)


1
6

> 1,

We conclude that systems (3.10) has two limit cycles, the algebraic (Γ1) lies inside the

non-algebraic one (Γ2).

This completes the proof of statement 5 .

3.2.2 Examples

Example 1 If We take a = c = −6
5
,d = −5 and b =

51
10

, then systems (3.10) reads

x′ = x+
(
x2 + y2

)2
(
−6

5
x3 +

51
10
x2y − 6

5
xy2 + 5y3

)
−x

(
x2 + y2

)5
(
−1

5
x2 +

1
10
xy − 1

5
y2

)
,

y′ = y +
(
x2 + y2

)2
(
−6

5
x2y − 5x3 − 49

10
xy2 − 6

5
y3

)
−y

(
x2 + y2

)5
(
−1

5
x2 +

1
10
xy − 1

5
y2

)
.

(3.16)

In this case we get

A (θ) = − 3
50

ˆ θ

0
(sin (2t)− 4)exp

( 3
100

+
24
25
t − 3

100
cos (2θ)

)
dt,

B (θ) = exp
(
− 3

100
cos (2θ) +

24
25
θ +

3
100

)
.

The intersection of the non-algebraic limit cycle (Γ2) with theOX+ axes is the point

r∗ =


116.8 + exp

(48π
25

)
− 1

116.8


1
6

' 1.2876.
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Limit cycles of system (3.16)

Example 2 If We take a =
−11
10

, c =
−115
100

,d = −7 and b =
141
20

, then systems (3.10)

reads 

x′ = x+
(
x2 + y2

)2
(−11

10
x3 +

141
20

x2y − 23
20
xy2 + 7y3

)
−x

(
x2 + y2

)5
(
− 1

10
x2 +

1
20
xy − 3

20
y2

)
,

y′ = y +
(
x2 + y2

)2
(
−11

10
x2y − 7x3 − 139

20
xy2 − 23

20
y3

)
−

y
(
x2 + y2

)5
(
− 1

10
x2 +

1
20
xy − 3

20
y2

)
.

(3.17)

In this case we get

A (θ) = − 3
140

ˆ θ

0
(cos(2t) + sin(2t)− 5)exp

( 3
280

+
3

280
sin(2t)− 3

280
cos (2t) +

3
4

)
dt,

B (θ) = exp
(
− 3

280
sin (2θ)− 3

280
cos(2θ) +

3
4
θ +

3
280

)
.

The intersection of the non-algebraic (Γ2) limit cycle with theOX+ axes is the point

r∗ =


16.509 + exp

(2π
3

)
− 1

16.509


1
6

' 1.4047.

Limit cycles of system (3.17)
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Example 3 If We take a =
−101
100

, c =
−105
100

,d = −1 and b =
151
150

, then systems

(3.10) reads 

x′ = x+
(
x2 + y2

)2
(
−101

100
x3 +

151
50

x2y − 21
20
xy2 + y3

)
−x

(
x2 + y2

)5
(
− 1

100
x2 +

1
50
xy − 1

20
y2

)
,

y′ = y +
(
x2 + y2

)2
(
−101

100
x2y − x3 +

149
150

xy2 − 21
20
y3

)
−y

(
x2 + y2

)5
(
− 1

100
x2 +

1
150

xy − 1
20
y2

)
.

(3.18)

In this case we get

A (θ) = − 1
50

ˆ θ

0
(6cos(2t) + sin(2t)− 9)exp

( 1
100

+
3

50
sin(2t)− 1

100
cos (2t) +

291
50

t
)
dt,

B (θ) = exp
( 3
50
sin (2θ)− 1

100
cos (2t) +

291
50

θ +
1

100

)
.

The intersection of the non-algebraic limit cycle (Γ2) with theOX+ axes is the point

r∗ =


1.019× 1014 + exp

(291π
25

)
− 1

1.019× 1014


1
6

' 2.0566.

Limit cycles of system (3.18)

Example 4 If We take a =
−107
100

, c =
−109
100

,d = −5 and b =
507
100

, then systems

(3.10) reads 

x′ = x+
(
x2 + y2

)2
(
−107

100
x3 +

507
100

x2y − 109
100

xy2 + 5y3
)

−x
(
x2 + y2

)5
(
− 7

100
x2 +

7
100

xy − 9
100

y2
)
,

y′ = y +
(
x2 + y2

)2
(
−107

100
x2y − 5x3 − 493

100
xy2 − 109

100
y3

)
−y

(
x2 + y2

)5
(
− 7

100
x2 +

7
100

xy − 9
100

y2
)
.

(3.19)
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In this case we get

A (θ) = − 3
500

ˆ θ

0
(2cos(2t) + 7sin(2t)− 16)exp

( 21
1000

+
3

500
sin(2t)− 21

1000
cos (2t) +

138
125

t
)
dt,

B (θ) = exp
( 3
500

sin (2θ)− 21
1000

cos (2t) +
138
25

θ +
21

1000

)
.

The intersection of the non-algebraic limit cycle (Γ2) with theOX+ axes is the point

r∗ =


104.804 + exp

(276π
125

)
− 1

104.804


1
6

' 1.4870.

Limit cycles of system (3.19)



General conclusion and perspectives

In this thesis we are interested in the qualitative study of the planar differential poly-

nomial systems as well as that of the planar differential systems. It is important for

a differential system to know if it admits or not a first integral, a periodic solution,

moreover if this periodic solution is isolated, one speaks by definition of a limit cy-

cle. On the other hand, the calculation of the first integral of a planar differential

system completely determines the phase portrait of the system. For models resulting

from practice, it is important to study these questions: first integral, periodic solu-

tion, limit cycle, phase portrait. The results obtained in this thesis revolve around

these questions.

In the first chapter we presented some basic notions, concerning the qualitative

theory of differential systems, in particular planar differential systems.

In the second chapter we have dealt with classes of planar differential systems

having one limit cycle. This chapter is divided into two parts, in each part we have

determined the exact expression of the first integral and the formula of the curves

which are formed by the orbits of a class of planar differential systems. we used the

Bernoulli equation.

In the third chapter we have treated two classes of planar differential systems

having two limit cycles. This chapter is divided into two parts, in each part we have

studied the coexistence of algebraic and non-algebraic limit cycles for a class of planar

differential systems in which the expressions are given explicitly, we also determined

the exact expression of the first integral and the formula of the curves which are

formed by the orbits of a class of planar polynomial differential systems. We used the

Ricati equation.

To our knowledge, it is a difficult problem to distinguish if a limit cycle is algebraic

or not and it is rare to find, in the literature of differential systems, a differential

system with a non-algebraic limit cycle given explicitly.

For the perspectives, given the techniques that we have used to find a class of

systems with an algebraic and non-algebraic limit cycles, it is possible to hope to find

a class of quadratic differential systems which admit a non-algebraic limit cycle and
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given of a explicitly. Note that this issue is an open issue so far.

On the other hand, we have studied classes of planar systems from the point of view

of coexistence of limit cycles. There remains the problem of existence of algebraic and

non-algebraic limit cycle given explicitly for differential systems of a given degree n.

Our investment in the future is in this direction and this thesis serves as a powerful

tool in the search for the first integral and the existence of limit cycle.
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ABSTRACT

The objective of this thesis is the qualitative study of some classes of planar poly-
nomial differential systems. The results obtained in this study concerns the integra-
bility, the phase portraits and the existence of limit cycles of some classes of differ-
ential systems. In addition, we give explicitly an expression of the first integrals and
limit cycles algebraic or non-algebraic found for all the classes studied.

Keywords: Hilbert 16th problem, differential system, invariant curve, first inte-
gral, periodic solution, algebraic limit cycle, non-algebraic limit cycle.

RÉSUMÉ

L’objectif de cette thèse est l’étude qualitative de quelques classes de systèmes
différentiels polynômiaux planaires. Les résultats obtenus dans cette étude concer-
nent l’intégrabilité, les portraits de phase et l’existence de cycles limites de quelques
classes de systèmes différentiels. De plus nous donnons explicitement une expression
des intégrales premières et des cycles limites algébriques ou non algébriques trouvées
pour toutes les classes étudiées.
Mots clés: 16ème problème de Hilbert, système différentiel, courbe invariante,
intégrale première, solution périodique, cycle limite algébrique, cycle limite non
algébrique.
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