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General introduction

Since the introduction of differential calculus by Newton and Leibniz, mathemati-
cians had sought to solve differential equations; they were looking for formulas ex-
pressing solutions as a function of time. The methods were often clever, but it work
only with very specific equations.

With Poincaré, the idea is no longer to solve the differential equation, but he real-
ized that the qualitative properties of the solutions could be investigated without such
solutions having to be determined explicitly. He turned to a qualitative approach
using geometric and topological techniques. These approach is currently known as
qualitative theory of differential equations [33, 84], he observes remarkable situations
which can govern global behavior, such as attractive or repulsive fixed points, as well
as limit cycles, which are periodic solutions attracting (or repelling) neighboring so-
lutions.

Many systems, especially physical ones, are described by differential equations
[52,88], sometimes their solutions evolve toward limit cycles, the number of which is
the issue of the second part of the 16th problem of Hilbert [51,70,71], it focuses on
polynomial differential equations in the plane; that is a polynomial system of degree

n having the form

%= Py
45 (1)
a Q(x,)

A limit cycle is a periodic trajectory which is also ”isolated”, that is the neighbor-
ing trajectories are not all periodic. Hilbert’s 16th problem in the second part asks :
What is the maximum number H(n) of limit cycles that a polynomial system of degree
n can have?

The first step in the direction of 16th Hilbert problem was given by H. Dulac
[60] in 1923, he published a long article, titled ” Sur les cycles limites ”, in which
he demonstrated a theorem claiming that a polynomial differential equation in the
plane has only a finite number of limit cycles. This proof was considered valid for

many years. It was not until 1970s that Y. Ilyashenko did prove that it was false [56].
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So some years later and independently Y.Ilyashenko and J. Ecalle provided a correct
proof. Although the proof given by Dulac was wrong, the idea given by him were
very fruitful.

Over years many other works have been done in this direction of 16th Hilbert
problem [25,63]. But even the simplest case, n = 2, is still unsolved. N. Bautin [4]
(1952) states that H(2) > 3. Later, simultaneously, S. Shi (1979) and L.Chen and M.
Wang [81] found an example with H(2) > 4. For the next case, n = 3, J. Li and Q. Huan
[55,61,92] (1987) showed that H(3) > 11. Later (2009), C. Li, C. Liu and J. YANG [58]
provided a planar cubic system and demonstrate that it has at least 13 limit cycles.

According with Smale, except for the Riemann hypothesis, the second part of the
16th Hilbert problem seems to be the most elusive of the Hilbert’s problems. He
said that, first we must consider a special class of simpler polynomial differential
equations, and he propose to study the 16th Hilbert problem restricted to the Liénard
system [30, 80]

sy
45 (2)
- = —x
dt
where f is a real polynomial of degree n satisfying f(0) = 0. The number H(n) for the
system (2) remains an open problem.

The existence of limit cycles becomes one of the more difficult objects to study in
the qualitative theory of differential equations in the plane. There is a huge literature
dedicated to this topic.

If H(x,p) is a real polynomial irreducible in the ring R[x, y] of all real polynomials
in the variables x and y, the zero set {H(x,y) = 0} is an algebraic curve. An algebraic
limit cycle is a limit cycle contained in an algebraic curve of the plane, otherwise
such a limit cycle is called non-algebraic. The degree of an algebraic limit cycle is the
degree of the irreducible polynomial which defines the algebraic curve containing the
limit cycle. It is well known that the orbits of a polynomial differential system (1)) are
contained in analytic curves, which usually are not algebraic curves.

In general it is a difficult problem to distinguish if a limit cycle is algebraic or not.
The proof that the famous limit cycle exhibited in the Van der Pol equation in 1926
was not algebraic arrived in 1995 [83]. The differential equation of Van der Pol can be

written as a polynomial differential system of degree 3 ( related to Liénard system)

X = p-x+x (3)
y' o= —x

but we do not know explicitly its limit cycle. More precisely, we do not know the
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explicit expression of the analytic curve which contains the non-algebraic limit cycle
of Van der Pol equation.

The first algebraic limit cycle found in the quadratic polynomial differential sys-
tems is due to Qin and to Liu, they proved in 1957 and 1958 that such systems can
have algebraic limit cycles of degree 2, and that if a quadratic polynomial differential
system has an algebraic limit cycle then it is the unique limit cycle of the system.
Later on, it was proved by Evdokimenco [35,36,37] that quadratic polynomial differ-
ential systems cannot have algebraic limit cycles of degree 3 .

The first family of algebraic limit cycles of degree 4 in the quadratic polynomial
differential systems was found in 1966 by Yablonskii. In 1973 Filiptsov [38] found
a second family of algebraic limit cycles of degree 4, and other results was appeared
later.

New families of algebraic limit cycles of degrees 5 and 6 also for quadratic polyno-
mial differential systems were found by using birational transformation of the plane
[28] for some families of algebraic limit cycles of degree 4. Until now we know that
the quadratic polynomial differential systems have algebraic limit cycles of degree 6,
but it is unknown if these systems can have algebraic limit cycles of degree higher
than 6.

Recently, since 2006 up to now, many articles have been showing explicit non-
algebraic limit cycles in polynomial differential systems [2,6,43,45,49], i.e. in those
articles the authors provided the explicit expression of the analytic curve containing
the limit cycle.

The first paper providing an explicit non-algebraic limit cycle for polynomial dif-
ferential systems of degree less than 5 was given by Benterki and Llibre [10] in 2012
for a polynomial differential system of degree 3. Later on many other papers have
been published providing explicit non-algebraic limit cycles for polynomial differen-
tial systems of degree larger than or equal to 3.

In this thesis we deal with some classes of polynomial differential systems of the
form (1)) by using qualitative techniques, we provide explicit expressions of their limit

cycles and first integrals. The work is structured as following:

* Chapter 01 : Concerned for preliminaries and some basic notions in qualitative

theory of differential equations.

* Chapter 02 : Devoted to studying two families of planar differentials system
having one limit cycle, given explicitly with an expression of a first integral.

The results developed on this chapter are already published in
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- S. E. Hamizi, R. Boukoucha, On a family of planar differential systems, Non-
linear Studies, vol. 28, No. 1, (2021), p. 179-188.

— S. E. Hamizi and R. Boukoucha, Stable hyperbolic limit cycles for a class of
differential systems, Russian Mathematics. vol. 65, No. 9 (2021), p. 41-51.

» Chapter 03 : Devoted to studying the coexistence of algebraic and non-algebraic
limit cycles for two classes of planar differentials systems, given explicitly with
an expression of a first integral. The results developed on this chapter are al-

ready published in

- S. E. Hamizi, R. Boukoucha, A class of planar differential systems with explicit
expression for two limit cycles, Siberian Electronic Mathematical Reports,
vol. 17, (2020), p. 1588-1597.

- S. E. Hamizi and R. Boukoucha; A family of planar differential systems with
explicit expression for algebraic and non algebraic limit cycles , Memoirs on
Differential Equations and Mathematical Physics, vol. 83, (2021), p. 71-81.

¢ General conclusion.



Chapter 1

Preliminaries

The laws of the universe are written in the language of mathematics. Algebra is suf-
ficient to solve many static problems, but the most interesting natural phenomena

involve change and are described by equations that relate changing quantities.
dx

Because the derivative i f’(t) of the function f is the rate at which the
quantity x = f(¢) is changing with respect to the independent variable ¢, it is natu-
ral that equations involving derivatives are frequently used to describe the changing
universe.

An equation relating an unknown function and one or more of its derivatives is
called a differential equation. The order of a differential equation is the largest deriva-
tive present in the differential equation.

A solution to a differential equation on an interval a <t < is any function x(t)
which satisfies the differential equation in question on the interval @ <t < .

Initial Condition(s) are a condition(s) on the solution that will allow us to deter-
mine which solution that we are after, in other words, initial conditions are values
of the solution and/or its derivative(s) at specific points. Initial conditions are of the
form,

x(tg) = xo and / or xF(ty) = x;

An initial value problem is a differential equation along with an appropriate num-
ber of initial conditions.

The most general first order differential equation can be written as,

dx
I f(tx)

The first special case of first order differential equations is the linear first order dif-

ferential equation.



1.1 First order linear differential equations 6

1.1 First order linear differential equations

Definition A linear first order differential equations is any differential equation of

the form
X' +p(t)x=g(t), (1.1)
where both p and g are continuous functions.
The solution to a linear first order differential equation is

()= o [ ot +c),

where c is some real constant and p(t) = exp (/p(t)dt), called the integrating factor.

1.2 Bernoulli differential equation
Definition A Bernoulli equations is a differential equations of the form,
x +p(t)x = g(t)x", (1.2)

where p and g are continuous functions.

In order to solve it when # is other than 0 and 1, we divide the differential equation

(1.2) by x" to get,

x4 p(H)x T = q(1). (1.3)

1

Then we put v = x " and taking the derivative gives us,

v =(1-n)x"x".

Now, plugging this substitution into the differential equation (1.3) gives,

1
1-n

v+ p(t)v = q(¢).

This is a linear differential equation that we can solve for v and once we have this we
can also get the solution to the original differential equation by plugging v back into

our substitution and solving for x.

Example. We want to solve the following initial value problem.

4
x'+ ?x = t3x2,
x(2) = -1,
t > 0
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Dividing everything by x2, gives

x2x + ?x_l =13,

The substitution and derivative that we will need here is,

v=x"1,s0v =—x"%x.

With this substitution the differential equation becomes,
4
v ——v=-1.
t
This is a linear differential equation that we know how to solve. Using the integrating

factor A
u(t) =exp (/—?dt) = exp (—4ln|t]) = t7,

the solution for v is,

1
v(t :—(/— t t3dt+c),
(1) 0 p(t)
:—t4/t‘1dt+ct4,
=—t*n|t| + ct?,

=t*(c—In(t)).
So, x~! = t*(c—In(t)). Using the initial condition to determine the value of ¢

(-1)' = 2% (c—1n(2)).

1

Solving for ¢, we get ¢ = In(2) - 16
So, the solution is )
x(t) = ; 1> 0.

t4(In(2) - & - In(t))’

1.3 Riccati differential equation

Definition The Riccati equation is one of the most interesting nonlinear differential

equations of first order. It is written in the form:
x" = a(t)x + b(t)x* + c(t), (1.4)

where a(t), b(t) and ¢(t) are continuous functions of ¢.
The differential equation (|1.4) is called the general Riccati equation. In general the
Riccati equation is not solvable by elementary means. However it can be solved with

help of the following theorem:
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Theorem 1.1. If a particular solution x, of a Riccati equation is known, the general solu-
tion of the equation is given by

X=x1+1U,
Indeed, substituting the solution x = x; + u into Riccati equation (1.4), we have
Xy +u' = a(t)xg +b(t)xd +c(t) +a(t)u + b(t)u® + 2b(t)x  u,
we obtain the differential equation for the function u(t)
u =b(t)u®+ (2b(t)xy +a(t))u,

which is a Bernoulli equation that can be converted into a linear differential equation

that allows integration.

1.4 Planar differential systems

Definition A planar system of differential equations is a collection of two interre-

lated differential equations of the form

{X’ = f(txy), (1.5)

’

y = g(txvy).

Here the functions f and g are real-valued functions of variables x,y and t .
The system (1.5|) is called autonomous if none of f and g depends on .

The system (|1.5]) is called polynomial if it is of the form

x' = P(x),
{y’ = Qx), (1.6)

where P and Q are polynomials with real coefficients. @~We denote by n =
max{degP,degQ} the degree of the polynomial system, and we always assume that
the polynomials P and Q are relatively prime.

We write equivalently the system by using the abbreviated notation

X’ = F(X), (1.7)

where X = (x,y) and F(X) = F(x,y) = (P(x,v), Q(x,)).

1.4.1 Vector field
We regard the right-hand side of equation (1.6) as defining a vector field on R?. That

is, we think of F(x,y) as representing a vector whose x- and y-components are P(x,v)

and Q(x,p), respectively. We visualize this vector as being based at the point (x,p).
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Definition A vector field on two dimensional space is a function F that assigns to
each point (x,y) a vector given by F(x,y) = (P(x,), Q(x,v)). We denote it by a differ-

ential operator

0 J
X = P(x:}?)a + Q(x:}f)a—y-

Example. The vector field associated to the system

’
X = B
, = (1.8)
y = =%
is displayed in Figure
G e e w w R W W
e e e R LN VS
[ N RN NN,
PRI SIS
L bt
1 A
s e e
Sy
s
1 -0
TN
PN N
DR N
LR RN
RN RO ey
R e T
BT B T T ]
N P e T e T 5 s S
,,,,,,, P

Figure 1.1: The vector field and several solutions for system (/1.8].

1.4.2 Solutions of a planar differential system

A solution of system (1.7) is a function X : ] — R? defined on some interval ] c R
such that, forall t €],

that is

{ x'(t) = P(x(t),y(t)),
Q (x(t), p(t)).

Geometrically, X(t) is a curve in R? whose tangent vector X'(t) exists for all t € |
and equals F(X(#)) . We think of this vector as being based at X(t), so that the map
F : R? — R? defines a vector field on R
We denote a solution on the initial value Xy = X(t() by ¢(t, X) or ¢;(Xy). This func-
tion ¢ : R x R — R? is called the flow associated to the system . So @4(Xp)

defines a solution curve, trajectory, or orbit through Xj.

<
—_
~
~
Il

Remark A point X, = (x,,y.) for which F(X,) =01i.e P(x,,y.) =0 and Q(x,,y.) =0, is
called an equilibrium point for the system (1.6). An equilibrium point corresponds

to a constant solution X(t) = X,.
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1.4.3 Periodic solutions of a planar differential system

A periodic solution for the system (1.7) is a non-equilibrium point X such that:
« X'(t)=F(X(t)), forall t;
* There exists a time T > 0 for which X(t+ T) = X(¢), for all ¢.

The least such T > 0 is called the period of the solution.

x(t)\ _(a cos(t)
y(t))_ asin(t))’

for any a € R is a solution of the system (1.8)). These curves define circles of radius

Example. The curve

la|] in the plane that are traversed in the clockwise direction as t increases. Hence the
solution is periodic of period 2.

When a = 0, the solutions are the constant functions x(t) = 0 = y(¢).

1.5 Phase plane and phase portraits

The solutions of X’ = F(X) are a functions of time, it can be visualized as trajectories
moving on the (x,y) plane, in this context called the phase plane. For several impor-
tant equations, it is impossible to find an analytical solution and it’s useful to develop
methods for deducing the behavior of equations without solving them. The motion
in the phase plane is determined by a vector field that comes from the planar system
X" = F(X). Here X represents a point in the phase plane, and X’ is the velocity vector
at that point. By flowing along the vector field, a phase point traces out a solution
X(t), corresponding to a trajectory winding through the phase plane. Furthermore,
the entire phase plane is filled with trajectories, since each point can play the role of
an initial condition. The overall picture of trajectories in phase space is called phase

portraits.

Example. The figure[l.2|displays the phase portraits of the system

{x'(t) = x?-1,

V'(t) = —xy+%(x2—1). (1.9)
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Figure 1.2: Phase portraits of system (/1.9).

1.6 Linear differential systems

Definition A two-dimensional linear differential system has the form

x' = ax+by,
{y’ = cx+dy. (1.10)

where a,b,c, and d are real parameters. Equivalently, in vector notation
where

1.6.1 Equilibrium points

Note that the origin is always an equilibrium point for a linear system (1.10]). To find

other equilibria, we must solve the linear system of algebraic equations

{ ax+by 0,

cx+dy = 0.
This system has a nonzero solution if and only if detA = 0. Thus we have:
Proposition 1.1. The planar linear system X' = AX has:
1. A unique equilibrium point (0,0) if detA = 0.

2. A straight line of equilibrium points if detA = 0 (and A is not the 0 matrix).
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1.6.2 Eigenvalues and eigenvectors

Definition Consider the linear differential system X’ = A X. A nonzero vector V is
called an eigenvector of A if AVy = AV, for some A € R. The constant A is called an
eigenvalue of A.

There is an important relationship between eigenvalues, eigenvectors, and solu-

tions of linear systems

Theorem 1.2. Suppose that V), is an eigenvector for the matrix A with associated eigen-
value A. Then the function
X(t) = Voe/\t,

is a solution of the system X' = AX.

The collection of all such solutions is called the general solution of X" = AX.

Theorem 1.3. Suppose A has a pair of real eigenvalues Ay # A, and associated eigenvectors

Vy and V,. Then the general solution of the linear system X' = AX is given by
X(t) = aVieM' + pV, et

1.6.3 Lyapunov stability

An equilibrium point X, € R? of the system (1.6) is stable provided that, for each
e >0, there exists o > 0 such that

|Xo — X.| < 0 implies that |X(t) - X,| <e, forall t > 0.

Otherwise the equilibrium is said to be unstable.
The equilibrium X, € R? is asymptotically stable if it is stable and there exists 6 > 0
such that

|X — X.| < 0 implies that tli_r)r;oX(t) =X,.

1.7 Classification of equilibrium points

a b
a=(c )

the eigenvalues of A are given by the characteristic equation

Consider X’ = AX, where

a-A b
det(A—/\I)_det( c d_/\)—O,
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where I is the identity matrix.

Expanding the determinant yields

A2-TA+A=0,
where
T =trace(A)=a+d,
A=det(A)=ad-bc.
Then

_THNT?-4A | T-NT2-4A
B 2 S 2 '

Hence, the eigenvalues depend only on the trace and determinant of the matrix A.

Ay

1.7.1 Real distinct eigenvalues

Suppose that A has two real eigenvalues 1y < A,. Assuming thatA; # 0, there are three

cases to consider:

Case 01: )y <0 < A,. In this case the equilibrium point is a saddle. It is always
unstable.

Example Take the system

, (11
X :(4 _2)X. (1.11)

The matrix has T = —1 and A = —6, so the characteristic equation is A2 + A — 6 = 0.
Hence
/\1 = —3, /\2 = 2

The corresponding eigenvectors for Ay = -3 and A, =2, are V; =(1,-4) and V, =
(1,1), respectively.
The general solution is

X(t) = aVie 3 + pV,e*.

Case 02: A; <A, <0. In this case the equilibrium point is a sink. It is asymptotically
stable.
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Figure 1.3: Saddle phase portrait of system (1.11).

Example Take the system
X' =

The matrix has the eigenvalues

=
St e e e

e

N
N
B e s S T T S R T T
[P N

Figure 1.4: Sink phase portrait of system ((1.12 .

(1.12)
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Case 03: 0< A, < Ay. In this case the equilibrium point is a source. It is unstable.

Example Take the system
, (3 0
X = 0 2 X. (1.13)

The matrix has the eigenvalues A; =3, A, = 2.

Figure 1.5: Source phase portrait of system (1.13)) .

1.7.2 Repeated eigenvalues

Case 01: If A # 0 and A has two independent eigenvectors , then the equilibrium

point is a star node. It is asymptotically stable if A <0, unstable if A > 0.

Example Take the system
-2 0

X'=\"y L% (1.14)

The eigenvalue A = -2 is repeated and has two independent eigenvectors V; = (0,1)
and V, =(1,0).

Figure 1.6: Star node phase portrait of system (1.14) .
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Case 02: If A # 0 and A has one eigenvector , then the equilibrium point is a degen-

erate node. It is asymptotically stable if A <0, unstable if A > 0.

Example Take the system

,_ (-2 3
X:(O _2)X. (1.15)

The eigenvalue A = -2 is repeated and has one eigenvectors V; = (1,0).

\\\\\\\ alga e w
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amae e e e e
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R
o, o T T T e e
R L
T o e T e T e, T

M

\\\\\\

Figure 1.7: Degenerate node phase portrait of system (1.15 .

1.7.3 Complex eigenvalues

Case 01 A;, =+if. In this case the equilibrium point is a center.

Example Take the system

, (0 1
X:(_l O)X. (1.16)

The characteristic polynomial is A? + 1 = 0, so the eigenvalues are now the imaginary

numbers +i. The general solution is

Case 02 A;, = a +if. In this case the equilibrium point is a spiral sink ( asymptoti-
cally stable ) if @ < 0 and spiral source ( unstable ) (if a >0).

Example Ttake the system

, (1 3
X :(_3 1)X. (1.17)
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Figure 1.8: Center phase portrait of system (1.16) .

The eigenvalues are A; , =1 +i3. The general solution is

Figure 1.9: Spiral source phase portrait of system (1.17).

1.7.4 Equilibrium points and linearization

The hope is that we can approximate the phase portrait of polynomial differential
system near an equilibrium point by that of a corresponding linear system.
Consider the autonomous system (1.10)

x' = P(x),
v = Qxy)

suppose that (x,,v,) is a fixed point and let

U=X—X, V=0— D,
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The System
dP JP
u'\ _|ax ady u
)% | () e
dx dy (o20)
is called the linearized system and the matrix
dP JP
_|9x 9y
4=loQ | -
dx Iy )

is called the Jacobian matrix at the equilibrium point (x,, y.).

The Hartman-Grobman theorem

Theorem 1.4. With the condition that every eigenvalue of the Jacobian matrix A has

nonzero real part, there is a homeomorphism H from a neighbourhood of (0,0) to a neigh-

bourhood of (x.,v.), which maps the flow of the linearized system to the flow of the original

system.

1.8 Limit cycles

Definition A limit cycle is an isolated closed trajectory. Isolated means that neigh-

boring trajectories are not closed; they spiral either toward or away from the limit

cycle.

* If all neighboring trajectories approach the limit cycle, we say the limit cycle is

stable or attracting.
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Figure 1.10: Stable limit cycle.

* If all neighboring trajectories spiral away from the limit cycle, we say the limit

cycle is unstable.

Figure 1.11: Unstable limit cycle.

* In exceptional cases, we say the limit cycle is half-stable.

4

Figure 1.12: Half - stable limit cycles.

Example : Van Der Pol oscillator The Van der Pol system is given by

{ X' = yp-x’+x,

)

Yy = —Xx

(1.19)
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The Jacobian matrix associated to the system (1.19) is

“3x2+1 1
A_( “ 0).

The Jacobian matrix evaluated at the equilibrium point (0, 0) is

1 1
Ao = (—1 0)
The eigenvalues are
1+iV3
Ma=—H

1 e
as the real part is 5> 0 the origin is spiral source.

W
P I I D N N
e P ) J

e Sy
fra o o
[ e W e e
o o o i o o

Figure 1.13: The phase portrait of the van der Pol system.

1.9 Existence and non-existence of periodic solutions

1.9.1 The Poincaré map

Suppose that there is a curve or straight line segment, say, ¥, that is crossed trans-
versely (no trajectories are tangential to X). Then ¥ is called a Poincaré section. Con-
sider a point g lying on . As shown in Figure (1.14), follow the flow of the trajectory
until it next meets ¥ at a point r;. This point is known as the first return of the

discrete Poincaré map P: ¥ — ¥, defined by

Tn+l = P(rn)-
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Figure 1.14: A first return on a Poincaré section, ¥.

Definition A point r, that satisfies the equation P(r,) = r, is called a fixed point of
period one.
Theorem 1.5. Define the characteristic multiplier M to be

dP

B E r:r,,.
where r, is a fixed point of the Poincaré map P corresponding to a limit cycle, say, (I'). Then
if
1. M| <1,(T) is a hyperbolic stable limit cycle,

2. [M|>1,(T) is a hyperbolic unstable limit cycle,

a’pP
3. IM|=1and 77 = 0, then the limit cycle is half-stable.
r

Example Consider the following system

x’ —y+x(1—w/x2+y2),

(1.20)
Y = xw(l —W)
and consider the line segment
E:{(x,y)eR2:05x<oo,y:O}.
System becomes in polar coordinates
{5 _ ;_(l_r)’ (1.21)

The origin is an unstable focus, and there is a limit cycle, say (I'), of radius 1 centered

at the origin. A phase portrait showing two trajectories is given in Figure (1.15) .
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Figure 1.15: Phase portrait of system (1.21].

System (1.21]) can be solved since both differential equations are separable. The

solutions are given by
1

1+ Cet’
Q(t) = t+90,

where C and 6, are constants. Trajectories flow around the origin with a period of

<

—_

~

~
|

27, suppose that a trajectory starts at some ry = 7(0) on ¥ and 6(0) = 0. Then

(= —
r(t) = )
1+ Ce 00
The flow is counterclockwise, and the required successive returns occur when 6 = 27,

4m... A map defining these points is given by

1

" e

(1.22)

where C is a constant. Therefore

1

T+l

s -7 . . . . .
Substituting C = —— - from equation (1.22) into (1.23) gives the Poincaré map
rpe”

rn
o+ (1—r,)e 27

i1 = P(ry) =

The Poincaré map has two fixed points, one at zero (a trivial fixed point) and the
other at r, = 1, corresponding to the critical point at the origin and the limit cycle (T'),
respectively. Now

ap e~

dr (r+(1—r)e-2m)>
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using elementary calculus, and

dapP

— = e 2"~ 0.00187 <1,
dr r,=1

and so (I') is a hyperbolic stable limit cycle.

1.10 Integrability of polynomial differential systems

1.10.1 Invariant curves

An algebraic curve defined by U (x,y) = 0 is an invariant curve for the system (L.6)) if
there exists a polynomial K (x,y) ( called the cofactor ) such that

U U

W-i-Qa_y:KU

We note that, since the polynomial system has degree n, any cofactor has degree at
most n—1.
1.10.2 First integrals

The polynomial system (1.6)) is integrable on an open set Q of R? if there exists a

non-constant analytic function H : Q — R, called a first integral, such that

JH JH

Pg'FQa—yEO

1.10.3 Algebraic limit cycle

A limit cycle of system (1.6) is said to be algebraic if it is contained in the zero set of
an invariant algebraic curve of the system, else it is called non-algebraic.

1.10.4 Darboux integrability

A Darboux function is a function of the form
A Ay A,
A1 fa .exp(%),

where f;, g and h are real polynomials, the A;’s are real numbers and exp (%) called the
exponential factor. System (1.6 is called Darboux integrable if it has a first integral

which is a Darboux function.
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1.10.5 Liouville integrability

Liouvillian functions are functions that are built up from elementary functions (using
exponentiation, integration, and algebraic functions). If a planar polynomial system
has a first integral expressed in term of liouvillian functions , then we say that the

system has a liouvillian first integral.
The following theorem says that the method of Darboux finds all liouvillian first

integrals.

Theorem 1.6. (see in [33] p 308) If a polynomial system has a Liouvillian first integral,

then the system has a Darbouxian first integral.



Chapter 2

First integral and limit cycle for some
families of polynomial differential
systems

This chapter consists of two main parts. The first part deals with the family of the
polynomial differential systems of the form

x' = 5x(x2 + yz)n +(Ay — Bx) (axz +bxy + ayz)m (cx2 +dxy + Cyz)p,

v =6y (x2 + yz)n —(By + Ax) (ax2 +bxy + ayz)m (cx2 +dxy + cyz)p,
where a, b, ¢,d, B, A, 0 are real constants and n, m, p € N.
In the second part we concentrate our study to a multi-parameter planar polyno-

mial differential systems of the form

n

x'=x+(ay - px) I_I(aixz +bjxy + a,-yz)/\i

i=1

n

¥ =y-(By+ax) ]_[(aix2 +bixy + aiyz)Ai

i=1

where n, A; are positive integer and a, f8, a;, b;, i = 1,..n are real constants.

For each of the two families above, primarily we prove the integrablity, explicit
formulas of invariant curve and first integral are introduced. Moreover, we determine
sufficient conditions to possess an explicit algebraic or non-algebraic limit cycles. Fi-
nally; our study is accompanied with a concrete examples exhibiting the applicability

of our results.

25
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2.1 On a family of planar differential systems

In this section, we consider the family of the polynomial differential systems of the
form

x' = 6x (x2 + yz)n +(Ay - Bx) (ax2 +bxy + ayz)m (cx2 +dxy + cyz)p,

(2.1)
v =0dy (xz +y2)n —(By + )\x)(ax2 +bxy + ay2)m (cx2 +dxy + cy2)p,

where a, b, ¢,d, f, A, and ¢ are real constants and n, m, and p € N.

2.1.1 Main result
Our main result is contained in the following theorem.

Theorem 2.1. Consider a multi-parameter polynomial differential systems (2.1)), then the

following statements hold.
(h1) The origin O(0,0) is the unique critical point at finite distance.
(hy) If m>1andp>1, then the curve
Ux,y)=-A (x2 + yz)(axz +bxy + ayz)m (cx2 +dxy + cyz)p =0,
is an invariant algebraic of systems ([2.1)).

1 " 1 P
(h3) If /\(a+ Eb sin 2w) (c+ Ed sin 2w) # 0 for all w € R, then systems has the
first integral

?

— — _ arctan 3
H(x,v) = (x2+y2)m ”+Pexp(warctan£)—/ F(w)dw,
0

(2n—2m—2p) 6exp<ww)

where F(w) =
/\(a + %bsin Zw)m (c + %d sin Zw)p
1 " 1 p

(hy) If/\(a+ EbsinZw) (c+ EdsinZw) = 0 for all w € R, then systems has the

first integral H = % Moreover, the systems has no limit cycle.
(hs) If A>0,>0,6>0, m>n,2a>|b|, and 2c > |d|, then systems has an explicit

limit cycle, given in polar coordinates (r,0) by

1
6 —
0
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where

(4n—4m—4p)

1

_ 27‘(P(w) dw 2m—2n+2p

7, =
1- exp( 1 ﬁn)

Proof of Theorem 2.1.
Proof of statement (k)
In analysis, A (x,,y.) € R? is a critical point of systems (2.1), if,

0Xx, (x*2 + yf)n + (Ay. — Bx.) (axf +bx,y. + ayf)m (cx*2 +dx,p. + cyf)p =0,

5, (}&2 + yf)n — (By. + Ax,) (axf +bx,y, + ayf)m (cx*2 +dx,p, +cy? )p =0,

that is to say A(xf + yf) (ax*2 +bx. + ayf)m (cx*2 +dx.y. + cyf)p =0, according to A # 0,
b*—44 < 0,and d*—4c < 0, hence x, = 0, . = 01is the unique singularity of this equation.
Thus the origin is the unique critical point at finite distance.

This completes the proof of statement (k).
Proof of statement (h,)
We prove that
U(x,y)=-A (x2 + yz)(ax2 +bxy + ayz)m (cx2 +dxy + cyz)p =0,
is an invariant algebraic curve of the differential systems (2.1). We note that
S1=51(xy)= ax? + bxy + ay2 and S; =S, (x,p) = ex? + dxy + cyz.

Indeed, we have

53y, 2580
= W(éx(pﬂ+y2)”+(/\y—/jx)S{”S§)+a%;'y)(5y(x2+y2)n_(ﬁy+/\x)siﬂs§)

U (xy) OU(x, ) U e
:(x a(; y)+y a(;c y))é(x2+y2) +(Ay - px) S Sg%_(ﬁy_,_/\x)sl Sg%

In what follows, we simplify each member of the last equation above
dU (x,y) JdU(x,vp) ) o\
(x Y 7 6(x +y)
=-A(Ay - Bx)Si"s? (23(8{”857 + m(x2 + yz) (2ax +by)S" st 4+ p (x2 + yz) (2cx+dy) S{”S§_l)
+Ay (2;}8{”55 + m(x2 +?) (bx +2ay) S{" 'Sy +p (x2 +%)(dx +2cy) S{“Séj_l)é(xz + yz)n
= —2/\(5{”85 +m (ax2 +bxy + ayz) SP1sh 4+ p (cx2 +dxy + cyz)Sl”’Sg_l)é(x2 + yz)nﬂ
= —2/\(x2 +y2)5{”Sg(m+p + 1)6(x2 +y2)
=26(m+p+ 1)(x2 +y2)n U(x,v),
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also, we have

aU(x,y) m an(X,y) —
T—(ﬁy+/\x)51 528—3;_

~A(Ay - px)SP"sh (ZxS{”SS + m(x2 + y2) (2ax +by)S"1SY 4+ p (x2 + yz) (2cx +dy) S{”Sé’_l)+
A(By + Ax) S1"Sh (2yS7Sh + m(x? + yz) (bx +2ay) S 'S8+ p (x2 + yz) (dx +2cy) S{“SQH)
=-A(x?+2) SIS (<2 (m+ p+1) BSI"SY + mbA (2~ x?) SP1 Y + dAp (y2 - ) S}'Sh )

= (—Z(m +p+ 1)/38{”857 + )\(yz —xz)(mbS{“_135J + dpS{”Sg_l)) U(x,79).

(Ay - Bx)S;"Sh

Now, by substitution we have

U (x, U (x,
ey T oy

= (26(m+p+ 1)(x2 +y2)n—2(m+p+ 1)pSisy + /\(yz —x2)(mbS{”_lSé7 +dpS{”Sg_l))U(x,y)
=U(xy)K(xy),

where

K(x,y) = 26(m+p+ 1)(x2+y2)n—2(m+p+ 1)BSIsh +
A(p? - x?)(mbS}*15 + dpsysh ™).

Therefore,
U(x,y)=-A (x2 + yz)(axz +bxy + ayz)m (cx2 +dxy + cyz)p =0,

is an invariant algebraic curve of the polynomial differential systems (2.1)), with the

cofactor K (x,y). Hence, statement (h;) is proved.

Proof of statements (h3), (h4) and (hs)
In order to prove our results (h3), (h4) and (hs5) we write the polynomial differential
systems in polar coordinates (r,0), defined by x = rcos6 and y = rsin 6, then the
systems become
p
r

1 m 1
¥ = o2l - B (a + Ebsin 29) (c+ Ed sin 29) 2m+2p+l

, 1 . " L. . P oom2
0 :—/\(a+§bsm29) (C+Edsm26) pemtep,

ao d
where 0’ = T r = d—’;
Taking as new independent variable the coordinate O, this differential systems
write

dr B -0 2n-2m-2p+1
—_— = =1+ r Pt ) (23)
g A /\(a—i- %bsin29)m(c+ %dsinZ@)p
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which is a Bernoulli equation.
By introducing the standard change of variables p = r2"~2"*2F we obtain the linear

equation

d_p_(2m—2n+2p)/5 N —(2m—-2n+2p)o
do A A<a+%bsinZ@)m(c+%dsin29)p.

(2.4)

The general solution of the linear equation (2.4) is

1

r(0)= exp(é@)(c+/001~"(w)dw)2m_2n+2p,

where c € R, which has the first integral

_ o — arctan%
H(x,p)= (x2+y2)m n+pexp(warctan£)—/ F(w)dw.
0

Since this first integral is a function that can be expressed by quadratures of el-
ementary functions, it is a Liouvillian function, and consequently systems are
Darboux integrable.

The curves H = h with h € R, which are formed by trajectories of the differential

systems (2.1)), in cartesian coordinates are written as

B _ arctan%
(x2+y2)m P :exp(warctan }_))(h+/ F(w)dw],
0

X

where h € R. Hence, statement (h3) is proved.

Proof of statement (/)
1 m 1 p
Assume now that /\(a + Ebsin 2w) (c+ Ed sin 2w) = 0 for all w € R. Then, from

differential systems it follows that 6’ = 0. So the straight lines through the origin
of coordinates of the differential systems are invariant by the flow of this system.
Hence, Y is a first integral of the systems. Then since all straight lines through the
origin a?e formed by trajectories, which can be written in Cartesian coordinates as
y = hx where h € R. Consequently, there is no limit cycle.

This completes the proof of statement (/) .

Proof of statement (h5)
According to A >0, 6> 0, m>n, 2a > |b|, and 2c > |d|, hence

1 m 1 p
—)\(a+ EbsinZQ) (c+ EdsinZQ) <0,
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for all 6 € R, then 0’ is negative for all ¢, the orbits r(0) of the differential equation
has reversed their orientation with respect to the orbits (x(t),y(¢)) of the differ-
ential systems (2.1)).

Notice that systems has a periodic orbit if and only if equation has a
strictly positive 27t periodic solution. This, moreover, is equivalent to the existence of
a solution of that fulfills r(0,r,) = r (27, r,) and r(6,r,) > 0 for any O in [0, 27].

The solution r (6, ry) of the differential equation such that r(0,7y) = rg is

1

0 s
r(@,ro):exp(ge)(rgm_znﬂpjt/ F(w)dw)Zm_2n+2p,
0

where ry = 7(0).
A periodic solution of systems (2.1) must satisfy the condition r (27, ry) = r(0,7p),

which leads to a unique value ry = r,, given by

— [P"F(w)dw
r, = 2m—2n+2p .
1 -exp ( (4n—4ni\—4p)ﬁrc )

Accordingto A >0,>0,0>0,m>n,2a>|b|,and 2c > |d|, hence A (4n —4m—4p) <0
and F (w) <0 for all w € R, then r, > 0.

After the substitution of these value r, into r (6, ;) we obtain

1
2m—2n+2p
B — [7"F(w)dw &
r(@,n):exp(—@) +/ F(w)dw
A ((4n—4m—4p)/37z 0
1-exp 1

In what follows it is proved that r (6, r,) > 0. Indeed

1
(4n—4m—4p)pm )

8 —exp(—/\ 2 2 2m—2n+2p
r(G,r*):exp(XO) 1—exp((4n_4m_4p)ﬁ")/o F(W)dw_/e F(w)dw
A

2exp(é@)(—/@znP(w)dw)zm_2n+2p >0,

o0(2n—2m—2p)ex (Zn=2m=2p)B
P p( A )<0forallweR.

because F (w) =
A (a + %b sin Zw)m (c + %d sin 2w)
Moreover, we compute

dr(2m,1g) 3 (4m—4n+4p)pn
dry |r0:r* = exp( 1 > 1.

This is a stable and hyperbolic limit cycle for the differential systems (2.1)).
This completes the proof of statement (hs).
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2.1.2 Examples

The following examples are given to illustrate our result.
Example1 If wetaken=p=0anda=-b=m=96= A= =1, then systems (2.1)

reads

/

x :x+(y—x)(x2—xy+y2),
(2.5)
V' =y—(v+x)(x2—xp+?).

The curve U (x,p) = —x* + x°y — 2x%p? + xp> —p* = 0 is an invariant algebraic curve
of the polynomial differential system (2.5, with the cofactor

K(x,v) = =3x> + 4xy — 5y° + 4.

The system (2.5) is a cubic system which has a non-algebraic limit cycle whose

expression in polar coordinates (r,0) is

0 —2w
e fr2—a | [—S——)a
10 =e \/r* /0 (2—3in2w) @

where w € R, and the intersection of the limit cycle with the OX, axes is the point

having r,
41 2n
r, = 2 / (46_2“))(10)21.191 2.
efn—1Jy \2-sin2w
Moreover,
dr (2,
r(d—rnorO) =exp(4m) > 1.

ro=r.
This limit cycle is a hyperbolic limit cycle. It is the results presented by J. Llibre
and R. Benterki in [10].

Figure 2.1: Limit cycle of system (2.5].
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Example 2 If wetakea=A=B=96=m=1and n=p=>b=0, then systems (2.1
reads
X =x-x>+x*y-xp*+7°,
(2.6)
y/:y_x3_x2y_xy2_y3.

* _2x%y? —y* = 0 is an invariant algebraic curve of the

The curve U (x,y) = —x
polynomial differential system ({2.6]), with the cofactor

K(x,p) = —4x* —4y? + 4.

System ([2.6) is a cubic system which has an algebraic limit cycle whose expression

in polar coordinates (r,0) is

r(@,r,) =1,
where 0 € R, in cartesian coordinates are written as

x2+y2:1.

Moreover,
dr (27, 1g)

dTO
This limit cycle is a hyperbolic limit cycle.

=exp(4mn)> 1.

ro=r,

s o ST,
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Figure 2.2: Limit cycle of system (2.6).

Example 3 If wetakea=-b=c=-d=m=p=0=1,1=p=4and n=0, then
systems ([2.1) reads
X = x—4x° + 12x*y - 20x39? + 20x2y% — 12x9* + 495,

v’ =p—4x° +dxty — 4xPy? — 4x?yd + 4wyt — 4y



2.1 On a family of planar differential systems 33

2
The curve U (x,y) = -4 (x2 + yz)(xz - Xy +y2) = 0 is an invariant algebraic curve
of the polynomial differential system (2.7), with the cofactor

K(x,y) = -16x* + 40xy — 72x?p? + 56xp° - 329* + 6.

The system ([2.7)) is a quintic system has a non-algebraic limit cycle whose expres-

sion in polar coordinates (r,0) is

0 exn(—
r(0,r,) = e’ {/(rjl —4/0 (—(j—psiniz))z)dw),

where w € R, and the intersection of the limit cycle with the OX, axes is the point

having r,
) 277( exp (—4w) )dw
0 (2 —sin2w)?
r. = exp(2m) exp (870)— 1 ~(0.81628.
Moreover,
dr (2,
r(d—rn()ro) =exp(8m) > 1.

ro=r:

This limit cycle is a hyperbolic limit cycle.

R NE S R

R

R

L S

__________

Figure 2.3: Limit cycle of system (2.7)).

Example 4 If wetakea=-b=c=-d=1,p=f=A1=0=1,n=0and m =2, then
systems ([2.1) reads
X' =x—x" +4x%) - 9x7y? + 13x%p® - 13x3p* + 9x%p° — 4xy® + 97,
(2.8)
v =y —x7 +2x8y - 3x°p? + x93 + Pyt - 3x%p + 249 — 97,
3
The curve U (x,p) = (x2 +y2)(xy - x? —yz) = 0 is an invariant algebraic curve of
the polynomial differential system (2.8]), with the cofactor

K (x,v) = =5x% + 18x°y — 42x*9? + 56x%p> — 54x2p* + 30x9° - 11y° + 8.



2.1 On a family of planar differential systems 34

The system (2.8) has a non-algebraic limit cycle whose expression in polar coordi-
nates (r,0) is

0 _
r(0,r,)=e%" r§—6/ Bexp( 6w)3 dw |,
0 (1—%sin2w)

where w € R, and the intersection of the limit cycle with the OX, axes is the point

having r,
L _ o] _exp(12m) /2R(M)dwﬁl.1189.
T\ -l+exp(12n) Jo \(2—sin2w)®
Moreover,
2
ar@rn)|
drO ro=rx

This limit cycle is a hyperbolic limit cycle.
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Figure 2.4: Limit cycle of system (2.8]).

Example 5 If wetakea=p=A=6=n=1b=d=-1,c=4,f=3and A=m=2,
then systems (2.1) reads

X' =x>+xy? + (2y - 3x( xy+y2)2( xy+4y2),
(2.9)
v =224y~ (3y+20) (¥ ~xp +97) (4% -2y + 42),

2
The curve U (x,y) = (—8x2 +2xy - 8y2)(x2 + yz)(xz - XV + yz) = 0 is an invariant
algebraic curve of the polynomial differential system (2.9)), with the cofactor

K (x,v) = 8x% + 8y — 78x°% + 192x°y — 408x*y? + 456x°y> — 456x°y* + 240xy° — 1147°,
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The system (2.9) has a non-algebraic limit cycle whose expression in polar coordi-

nates (r,0) is

—4exp(-12w)

1 - Lsin2w)’ (4 Lsin2w)

4

r(0,r.) =exp(30) rf+/6(
0

where w € R, and the intersection of the limit cycle with the OX, axes is the point

having r,
o dexp(—-12w) q
4] J0O 1. 2 1. w
(1 - 751n2w) (4— 531n2w)
r, = ~ (0.567 83.
1 —exp(—24n)
Moreover,
dr (27, 1g)

=exp (24mn)> 1.

ro=r1,

dTO
This limit cycle is a hyperbolic limit cycle.

‘‘‘‘‘‘ = w08
e S
e

Figure 2.5: Limit cycle of system (2.9).
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2.2 Stable hyperbolic limit cycles for a class of differen-
tial systems

Now, consider a multi-parameter planar polynomial differential systems of the form

n

x' =x+(ay — Bx) H (az-x2 +bixy + al-yz)/\i
i=1
(2.10)

n

v =y~ (By +ax) ]_[ (aix® + bixy + aiyz)Ai

i=1

where 1, A; are positive integers and «, f8, a;, b;, i = 1,..,n are real constants.

2.2.1 Main result

Our first result on the critical point and the expression of invariant algebraic curves
of the system (2.10) is the following.

Theorem 2.2. Consider a multi-parameter planar polynomial differential systems (2.10),
then the following statements hold.

1) IfneN-{0}, A; e N—-{0}, bi2 _4“1'2 <0 fori=1,..,n then the origin of coordinates
O(0,0) is the unique critical point at finite distance. Moreover, O (0, 0) is a star node.

n

Aj . . .
(2) The curve U (x,y) = « (x2 +y2)l_[(aix2 +bixy + aiyz) = 0, is an invariant alge-
i=1
braic curve of systems (2.10) with cofactor

K (x,9) 2+ZZA l_[ ax2+bixy+aiy2)/\i+

=1

(ay —px) I—[ax +bixy+a;y )/\—

n

(By +ax) =— l_[ax +bixy+a;y )/\4

=1
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Proof of Theorem 2.2.
Proof of statement (1)
We say that A (x(,v,) € R? is a critical point of systems (2.10) if

n
Ai
xo + (@yg — Bxo) | | (aix(z) +bixoyo +a;vg) =0,
i=1

n

A
Yo~ (Byo + axo) ]_[ (aixg +bixopo +a;p3) " =0,

i=1

n
Aj . ..
then, a (x(z) + yé) ]_[ (aix(z) +bixoyo + a,-yg) = 0. According to the conditions bl-2 - 4“1'2 <
i=1
0, fori =1,...n, we have x5 = 0,y = 0 is the unique solution of this equation. Thus the
origin is the unique critical point at finite distance.

We compute the Jacobian matrix of systems (2.10) evaluated at O(0,0), we have

Pion Liny
[ = ox Y Iy wy (10
i a—Q(xy) a—Q(w) ey
ox dy (0,0)
where .
P(x,y)=x+(ay - px) (aix2 +bixy + aiyz)/\i
i=1
and

n
Ai
Q(x,y)=v—(By +ax) (aix2+bixy+a,-y2) .
i=1
This matrix has repeated positive real eigenvalues A = 1 > 0, then O(0,0) is the
unstable node of systems (2.10)) .

This completes the proof of statement (1).

Proof of statement (2)
i=n
Ai . . .
We prove that U (x,y) = « (x2 +y2) l_[ (az-x2 +bixy + aiyz) = 0 is an invariant al-
i=1
gebraic curve of the differential systems (2.10).
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A computation we have

i=n i=n

aUa(;c,y) = 2axl_[(aix2 +bixy + aiyZ)Ai +a(x’+?) % ]_[(aixz +bixy + aiyz)Ai,

Wiy N 5 i N

ay’y :Zayl_[(aix2+bixy+a,-y2) ’+a(x2+y2)a—yl_[(aix2+bixy+aiy2) g
i=1 i=1

i=n
P(x,y)=x+(ay— px) ]_[(aixz +bixy + aiyz)Ai and
)
Q(xy) =y—(By+ax)| [ (e +bixy+aip?) "
i=1
After the substitution of P (x,y), Q(x,p), 8Ua<:y) and aUa(;c,y) in the linear par-

tial differential equation , we obtain

n

aU (x,v) aU (x,p) U (x,v) 5 o\ Ai
Ep P(x,y)+ 7 Qx,y) = Ep X+ (ay — Bx) | (alx +b;xy +a;y )
8U(x ) s 2 2\
—(By + ax) a;x“+bixy+a; .
5 By iﬂ( y+a;y°)

Then, taking into account that

x%ﬁ(aix2+bixy+aiy2)/\i+y% ; (a,-x2+bixy+aiy2)/\i :2[2/\1-]
; ; :

i=1 =1

(czl-x2 +bixy + aiyz)/\i )

we have
U (x,9) U (x,7) I~ ST 2\
Ep P(x,y)+ 7 Q(x,y)_(2+2;A,—2ﬂg(alx +b;xy +a;y ) +

(ay — Bx) I_[ a;x* + bjxy + a;y ) i—([)’y+ax)%Ii[(aix2+bixy+aiy2)Ai)U(x,y)
=1 i=1

n
Ai . . .
Therefore, U (x,y) = a (x2 + yZ)]_[ (a,-x2 +bixy + aiyz) = 0 is an invariant alge-
i=1
braic curve of the polynomial differential systems (2.10]) with the cofactor

xX,y)=2+2 i/\i -2p ﬁ(aixz +bixy + ﬂiPZ)/\i +

(ay - Bx) 5 U a;x +bxy+aly) -

n

d A
(ﬁy+ax)8—y (aix2+bl~xy+aiy2)
i=1
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Our second result on the existence of a first integral and explicit expression of a
limit cycles of systems (2.10) is the following.

Theorem 2.3. Consider a multi-parameter planar polynomial differential systems (2.10)),

then the following statements hold.

(1) The systems (2.10)) has the first integral

(xz n yz)/\1+...+/\”
H(x,y) = > +P(arctan2),
exp(;ﬁ(/\l +...+/'\n)arctan§) X

dw.

where F(6) = /9 [ 2(A++Ap)exp(=2(A1 +...+ Ay w)
0

. Ai
allh, (ai +3b;sin Zw) ’

(2) IfneN-{0},a>0,>0,A; e N-{0}, 2a; > |b;|, for i = 1,...,n then systems (2.10)
has non-algebraic limit cycle ('), explicitly given in polar coordinates (r,0) by the

equation
1
r(G,n):[ exp(47E (A +...+1,)) o )F(G)]Z(Al+m+/\n)exp(ﬁ9),
~1+exp (4l (A +..+ 4,)) a
where

r*_[ exp (47l (A +...+ A,)) F o

-1+ exp(47z‘6 (A +...+ /\n))

a

]2(/\1 +... +/\n)

Moreover, this limit cycle is a stable hyperbolic limit cycle.
Proof of Theorem 2.3.
In order to prove our results (1) and (2), we write the polynomial differential sys-

tems (2.10) in polar coordinates (r,0), defined by x = rcos6 and y = rsin 8, then the

systems become

n A
1 i
r'=r— (ﬂ | | (611' + Ebl sin 29) ]1,2(/\1+...+A,1)+l’

i=1

n A
1 i
9/ = _(a | | (al + Ebl sin 26) ]rZ(/\1+.,.+/\n),

i=1

(2.11)
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We have n € N—{0}, A; e N-{0}, @ > 0, 2a; > |b;|, for i = 1,...,n then 0’ is negative
for all t e R, the orbits (r(t),0(t)) of systems have the opposite orientation with
respect to those (x(t),y(t)) of systems (2.10).

Taking 6 as an independent variable, we obtain the Bernoulli equation

d?’(@) _ Er_ r1—2(/\1+...+/\n) (2 12)

Aj
6« a]_[?zl(ai+%bisin26)

2(A1+...4+14,)

Via the change of variables p = r , this Bernoulli equation (3.4) is trans-

formed into the linear equation

dp(0) 2 2(A; +...+ A4,
Z—Q:;ﬁ()\1+...+/\n)p— h ) e (2.13)
alll, (ai +3b;sin 26)
The general solution of linear equation (2.13) is
2B
0(0) = (h—P(Q))exp(; (A 4. + /\n)(?),
0 _
where i € R and F(0) :/ 20 +...+ A, )exp (-2 (M +...; A,)w) Jw.
0 alll, (ai +%b;sin 2w) 1
Consequently, the general solution of (2.12) is
e o (B
r(0) = (h— F (0)) i+ exp(;@),
where h e R.
From this solution we obtain a first integral in the variables (x,y) of the form
(X2 +y2)(/\1+.,.+/\n) .
H(x,y) = +F(arctan;).

exp (% (A +...+ A,)arctan %)

o

Hence, statement (1) is proved.

Notice that systems has a periodic orbit if and only if equation has a
strictly positive 2m-periodic solution. This, moreover, is equivalent to the existence
of a solution of that fulfills r (0, r,) = r(2m,r,) and 7 (0,,) > 0 for any 6 in (0, 27).

The solution (6, ry) of the differential equation (2.12) such that r(0,ry) = rq is

1
r(6,ry) = (rguﬁ"'””) —F(Q))z(/\l +ot+A) exp(é@),

where rg = 7(0).
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A periodic solution of system (2.10) must satisfy the condition r (27, ry) = r(0,1y),

which leads to a unique value ry =r,, given by

1
]2(/\1+...+/\n)

r*_[ exp(4mL (A +..+ 1)) F o

~1+exp(4nl (A +..+ 1))
The r, is the intersection of the periodic orbit with the OX, axes.
After the substitution of this value r, into 7 (6, ry) we obtain

1
]2(A1+...+/\n)

a

exp (41 (A +...+ A,)) exp(ﬁg)_

F(2m)-F(0) "

0,r,) =
r(.r) [—1+exp(4nﬁ(/\1+...+/\n))

a
In what follows it is proved that r (6,r,) > 0. Indeed

exp (47‘(5 (A +...+ /\n))
-1 +exp(4ﬂ§ (A +..+ An))

+/2" 2(A 4.+ Ay exp(=2(A +...+ Ay w)
0

. A
allh, (ai +3b;sin 2w) 1

—-F(2n)
1—exp(4ml (A; +..+ 1,))

a

F(2m)-F(0) =

dw>0

According to the conditions n e N—{0}, A; e N—{0},a >0, $ >0, 2a; > |b;],
1
fori=1,..,n, hence a; + Ebisin 2w > 0 for all 6 € (0, 77), then we have
exp(4mcE (A +..+ 1))

—1+exp(4mL (A +..+ 1))

a

F(2m)-E(0),

this ensures that r, and r(6,r,) are well defined for all 6 € (0,7), therefore we have
r.> 0 and r(0,r,) > 0 for all 6 € (0,7) and the limit cycle do not pass through the
equilibrium point O (0, 0) of systems (2.10). This is the limit cycle for the differential
systems (2.10), we note it by ().

This limit cycle (I') is not algebraic, more precisely, in cartesian coordinates r? =
x%+ y2 and 6 = arctan(%), the curve (I') defined by this limit cycle is (I'): L(x,y) =0

where

L(x,y) = (x2 +3}2)/\1+m+/\'1 —exp(2E (A +.. + /\n)arctanz)
! x

exp(4mL (A +..+ 1))
-1 +exp(4nﬁ (A +..+ /\n))

a

F(2m)-F (arctan %)]
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According to the conditions, we have B (A1 +...+4,) =0, then the non-algebraic
a

y

expression exp (2§ (A1 +...+ A,)arctan ;) appears in the L(x,y), hence the expression
L(x,y) is not algebraic. Consequently, (I'): L(x,y) = 0 is non-algebraic and the limit
cycle will also be non-algebraic.
In order to prove the hyperbolicity of the limit cycle it is sufficient to use the
Poincaré return map. A computation shows that
dr(2m,1g)
dry

Therefore the limit cycle (') of the differential systems (2.10)) is stable hyperbolic

limit cycle.

= exp(4n§ (A +...+ /\H)) >1,

ro=r:

This completes the proof of statement (2) .

2.2.2 Examples

The following examples are given to illustrate our results.
Example 1 If we take « = f=n=a; = Ay =1 and b; = -1, then systems (2.10)

reads

x’ :x+(y—x)(x2—xy+y2),
(2.14)

v’ :y—(y+x)(x2—xy+y2).
The curve U (x,y) = (x2 +y2)(x2 - Xy +y2) = 0, is an invariant algebraic curve of

system with cofactor K (x,y) = —3x* + 4xy — 5y° + 4.
System ([2.14) is a cubic system that has a non-algebraic limit cycle whose expres-

sion in polar coordinates (r,0) is

0 2w
e\ r2—a | [—5—)d
rOn)=e \/r* /0 (2—sin2w) w

where w € R, and the intersection of the limit cycle with the OX, axes is the point

having r,
2etm [T 2
ro= | / (_—e‘zw)dwz 1.1912,
e —1Jy \2-sin2w
Moreover,
dr (271, 1
dr(2m,ro) =exp (4m) > 1.
drO ro=T%

This limit cycle is a stable hyperbolic limit cycle. It is the results presented by ]J.
Llibre and R. Benterki in [10].
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Figure 2.6: Limit cycle of system (2.14).

Example 2 If wetaken=2, a=p=1,=1, A4, =2,a, =a,=3,bp =-1 and
b, = -2, then systems (2.10) reads

X =x+(y —x)(3x2 —xy+ 3y2)2(3x2 —2xy + 3y2),
(2.15)
v =y (p+x)(3x2 —xy +3y%) (3x2 - 2xp + 3p?).

2
The curve U (x,y) = (x2 + y2) (3x2 - Xy + 3y2) (3x2 - 2xy + 3y2) =0, is an invariant
algebraic curve of system (2.15) with cofactor

K(x,y)=8-2 (6x2 - 3xp + 73.)2)(5x2 -3xy + 6y2)<3x2 -xy+ 3y2).
System ([2.15)) is a quintic system that has a non-algebraic limit cycle whose expression
in polar coordinates (r,0) is
1

exp(12m) F(2r) _F(Q))6 exp(0).,

-1 +exp(12n)

r(Q,n):(

6 -6
exp (~6w) dw, and the intersection of the

0
where@eR,P(Q):/ 5
0 (3 - %sin Zw) (3 —sin2w)
limit cycle with the OX, axes is the point having r,

1

exp (12m) n 6exp (-6w) °

=] = i / > dw| =0.60031.
-1 +exp(12m) /g (3—%sin2w) (3 —sin2w)

Moreover,
dr (21, 1p)

d?’o
This limit cycle is a stable hyperbolic limit cycle.

=exp(12m)>1.

ro=rx
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Figure 2.7: Limit cycle of system (2.15)).

Example 3 If wetaken=3,a=3,=2,1=3,1,=4,13=5,4a, =10, by =12,
a,=7,b,=>5,a; =4and bs =1, then systems (2.10) reads

x':x+(3y—2x)(10x2+12xy+10y2)3
2 2\ (4,2 2)>
7x°+5xy+7y ) (4x +xy+4y ) ,
(2.16)
y':y—(2y+3x)(10x2+12xy+10y2)3
(7x2+5xy+7y2)4(4x2+xy+4y2)5,

The curve
Ul(x,p) = (x2 +yz)(10x2 +12xy + 103}2)3 (7x2 +5xy + 73}2)4 (4x2 + XY+ 43;2)5 =0,
is an invariant algebraic curve of systems with cofactor
K (x,y) = 26— 8(6xy + 5x + 53/2)2 (5xp +7x° + 7y2)3 (xp+4x>+ 4y2)4M (x,),

where M (x,v) = 10517x® + 19959x%y + 35881x*y? + 33072x3y3 + 27247x%p* +
11553xp° + 40437°,

This system has a non-algebraic limit cycle whose expression in polar coor-
dinates (r,0) is

1
32 24 2
r(6,r,) = exp (327) F(2m)—F(0) 24 exp(—@),
-1 +exp(32m) 3
0
24 -24
where 6 € R and F(0) = / exp( w)4 dw, and
0 {3(10+65sin2w)’(7+ 3 sin 2w) (4 + }sin2w)
the intersection of the limit cycle with the OX, axes is the point having r,
1
24

exp (32n) /2“ 24exp (—24w)
L+exp(32m) Jo | 3(10+ 6sin 2w)? (7+3sin2w) (4 + 3 sin2w)

v —

dw ~0.38365.



2.2 Stable hyperbolic limit cycles for a class of differential systems 45

Moreover,
dr (27, 1p)

drO ro=re
This limit cycle is a stable hyperbolic limit cycle.

=exp(32m)>1.

e

R
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Figure 2.8: Limit cycle of system (2.16).

Example 4 If wetaken=2, a=p=1,1,=4,1,=3,a4,=50b=-1,a,=4and
b, = -3, then system (2.10) reads
4 3
X =x+(y —x)(Sx2 — Xy + 5;02) (4x2 —3xp + 4y2) ,
(2.17)
4 3
vV=v-(y +x)(5x2 - Xy + Syz) (4x2 —3xy + 4y2) :
The curve
4 3
Ulx,p) = (x2 + y2)(5x2 - Xy + 5;)2) (4x2 - 3xy + 4y2) =0,
is an invariant algebraic curve of system (2.17) with cofactor
2 3
K(x,y)=16+ (4x2 - 3xy + 43)2) (xy —5x% - 53}2) M(x,v),
where M (x,v) = 259x* — 283x3y + 688x?y? — 325xy° + 381p*,
This system ([2.17)) has a non-algebraic limit cycle whose expression in polar coor-
dinates (r,0) is

1

exp (28) F(2m)—F (9))E exp(0),

-1 +exp(28m)

r(6,r,) = (

14 -14
exp (~14w) dw, and the intersection

0

where 0 € R and P(Q):/ 1
0 (5 —$sin Zw) (4 - %sin2w)
of the limit cycle with the OX, axes is the point having r,

1
exp (28m) /2” 14exp (—-14w) Jw 14 ~ 0477 65
—1 +exp(287) Jo (5—lsin2w)4 (4—§sin2w)3 ‘ '
2 2

. —
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Moreover,
dr(2m,1g)

=exp(28m)>1.
drO ro=re P

This limit cycle is a stable hyperbolic limit cycle.
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Figure 2.9: Limit cycle of system (2.17).



Chapter 3

On the coexistence of algebraic and
non-algebraic limit cycles for some
classes of planar differential systems

Limit cycles of planar polynomial differential systems are not, in general, algebraic.
It is not easy work to decide if a limit cycle is algebraic or not. In this chapter we
deal with the situation of coexistence of algebraic and non-algebraic limit cycles, we

introduce tow families: the first one is of the form

, dx
x = E = XS4(X,}))+P7(-X;})) +XR8(x;y);

, d
y = d—f =54(x,9) + Q7(x,¥) + YRg(x, ),
where S4(x,v), P(x,v), Q7(x,v) and Rg(x,y) are real polynomials.

The second family is of the form

x' = % =x+ (x2 +y2)2(P3 (x,y)—X(x2+y2)3Rz (x,y)),

, dy 3

y'=— =y (o +y2)2(Q3 (x,9)-p(x*+7°) Rz(x,y)),

where P;(x,v), Q3(x,v) and R,(x,y) are real polynomials.

For each of the families, at first we give an explicit expression of invariant alge-
braic curves, then we prove that these systems are integrable, with an explicit expres-
sion of a first integral. Moreover, we provide sufficient conditions for the polynomial
differential systems to possess two limit cycles explicitly given: one is algebraic and
the other is shown to be non-algebraic. Finally, some concrete examples are intro-

duced to illustrate the applicability of our results.

47
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3.1 A class of planar differential systems with explicit
expression for two limit cycles

Consider a multi-parameter planar polynomial differential systems of degree nine of

the form p
) X
X' = = = xSy(x,) + Pr(x,9) + xRs(x,9),
(3.1)
, Ay
V== YS4(x,9) + Q7(x,v) + YRg(x,9),
where

P (x,p) = %(xz +y2)2((2a— b)x> +(15d — 6c)x2y +(2b —a)xy2 +(6d — 3c)y3),
Q7(x,p) = —% (x2 + yz)z((6d —3c)x3 + (b - 2a)x2y — 3dxy2 +(a— 2b)y3),
S4(x, ) = ax* + APy + 6x%p% + Axy® + vt
and Rg(x,p) = —%(x2 +y2)2((3a +2a-b)x*+ (31 —=3c+ 9d)x3y +(3A—-3c+ 9d)xy3
+(a+b+30)x*y2+(2b—a+3n)yh),

in which a, b, ¢, d, @, 6, A and 7 are real constants.

We define the trigonometric functions

(Ba+0+3n)+ %AsinZ@ + % (o —1)cos20 + % (¢ —0+1)cos 46,
(a+b)+ %(a—b)cosZG + %(3:1 —¢)sin 20,

K(0)= ——a——b——a——6—§17+%(c—3d—/\)sin29+%(5—a—17)cos49

1
+§(b—a—a+17)c0529,

(92K (1) L2G (w) + 4K (w)
0= (35 | (22K o

andN(Q):exp(/e(zG(W)+4K(W))dw)-
0

c—2d

3.1.1 Main result

Our main result is contained in the following Theorem.

Theorem 3.1. Consider a multi-parameter planar polynomial differential systems (3.1)),

then the following statements hold.
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(1) If2d—c # 0, then the origin of coordinates O (0, 0) is the unique critical point at finite
distance.

(2) The curve U (x,y) = x? + yz —1, is an invariant algebraic curve of systems (3.1) with

cofactor

K(x,y) = —g(xz+})2)((2ﬂ—b+3a)x6+30(x4+317})44.(9d_3c+3/\)xy(x2+y2)2+

xzyz((a+a+6)x2+(b+6+17)y2+5)+3/\xy(x2+y2)+(2b—a+317)y6).
(3) The systems has the first integral

N(arctan%) + (1 —x’ —}’Z)M(arctan§)

x2+y2-1

H(x,y) =

(4) The systems (3.1) has an explicit limit cycle, given in cartesian coordinates by

() : x> +y*-1=0.

(5) If
2 2
§a+§b+3a+6+317>2|c—3d—2/\|+2|b—a—2a+217|+|6—a—17|,
1 1 3 1 3 1.
—lg—bh-Zg-=5=-Z= —3d— —16—-a- —a-— 3.2
34 3b i 46 417>|c 3d /\|+4|b o 17|+|b a oc+;7|, (3.2)

oO#a+nandc<2d,

then the systems (3.1) has another limit cycle (1), explicitly given in polar coordi-
nates (r,0) by

_ [(N(2m)-1)(N (6) + M (0)) + M (27r)
”9’“)‘\/ (N@2m)-1)M(0)+ M (2rr)

Moreover, the limit cycle (I) lies inside the limit cycle (I3).

Proof.

Proof of statement (1).
By definition, A (x,,v,) € R? is a critical point of systems (3.1) if

XS4 (%0, V) + P (%0, ) + X Rg (%, 1.) = 0,

y*s4 (xa(-l yx-) + Q7 (xx-; }A«) + %Rs (x*l y*) = 01
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we have y.P (x,,1.) — x.Q7 (x,,v.) = (2d — C)(xf +y3)4 = 0. According to the condition
2d —c # 0, then x, = 0,9, = 0 is the unique of this equation. Thus the origin is the
unique critical point at finite distance.

This completes the proof of statement (1) of Theorem 1.

Proof of statement (2).

A computation shows that U (x,v) = x*+p*—1 satisfies the linear partial differential

equation (??), the associated cofactor being

K(x,y) = —%(x2+y2)((2a—b+3a)x6+3ax4+317y4+(9d_3c+3/\)xy(x2+y2)2+
3x7p? ((a+a+8)x” +(b+05+1)p” +5) +3Axy (x> +7) + (2b - a+ 31)y°),

then the curve U (x,y) = 0 is an invariant algebraic curve of systems with cofactor
K(x,v).

This completes the proof of statement (2) .

Proof of statements (3), (4) and (5)

In order to prove our results (3), (4) and (5) we write the polynomial differential
systems in polar coordinates (r,0), defined by x = rcos 6 and y = rsin 0, then the

systems become

’:%:P(Q)r5+G(6)r7+K(6)r9,

(3.3)
,_do 6
0 _E_(C 2d)r°.

where the trigonometric functions F(60), G(0) and K (6) are given in introduction.
According to ¢ < 2d, we get 0’ is negative for all ¢ € R, the orbits (r(t),0(t)) of
systems (3.3) have the opposite orientation with respect to those (x(t), y()) of systems

B1).

Taking 6 as an independent variable, we obtain the equation

dr _ F(0) 1 G(Q)r+ K(Q)r3
A0 c¢-2dr c¢c-2d c-2d

(3.4)

Via the change of variables p = r?, this equation (3.4) is transformed into the Ric-

cati equation
dp 2F(0) 2G(0)  2K(0) ,
40 c—2d " c—24" " c—2a""
This equation is integrable, since it possesses the particular solution p = 1.

(3.5)

By introducing the standard change of variables p = z+ 1 we obtain the Bernoulli

equation

dz _(2G(6)+4K(9)) 2K(6) »

10 c—2d ot (3.6)
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We note that z = 0 is solutions for (3.6]), assume now that z # 0 by introducing the

. 1 . . .
standard change of variables y = — we obtain the linear equation
z

dy  (2G(0)+4K(0)\  2K(6)
%_( 2d—c ) T 2d—c

The general solution of linear equation (3.7) is

_ p+M(0)
where p € R.
Consequently, the general solution of equation (3.6) is
N (6)
0)=0, z(0)=——,
2(0)=0, 2(0)= e
where p € R.
Then the general solution of equation (3.5) is
p+N(0)+M(0O)
0)=1, pO)= ,
PO =1, pl0)="

where py € R.
Consequently, the general solution of (3.4) is

;4+N(6)+M(6))§

r0,p =1, r<9,m:( L M(0)

where p € R.

From this solution we obtain a first integral in the variables (x,p) of the form

N (arctan?)+ (1 -2 -y?)M (arctan?)

x?+yp2-1

H(x,y) =

Hence, statement (3) is proved.
The curves H = p with u € R, which are formed by trajectories of the differential

systems ({3.1)), in cartesian coordinates are written as
X%+ yz = 1,

o ;4+N(arctan3y—c)+M(arctan§)
AR y+M(arctan§) l

where y € R.
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Notice that system has a periodic orbit if and only if equation has a
strictly positive 2m-periodic solution. This, moreover, is equivalent to the existence
of a solution of that fulfills r(0,7,) = (2w, r,) and r(0,r,) > 0 for any 0 in [0, 27].

The solution r (6, ry) of the differential equation such that r(0,ry) = rg is

N(@)+M(0)+—=
—1+r0

r(0,ry) =

M(6)+—L

2
—1+r,

where rg = 7(0).
We have the particular solution p(6) = 1 of the differential equation (3.4), from
this solution we obtain r2(6, 1) =1>0, for all O € [0, 7] is a particular solution of

the differential equation (3.4). This is the limit cycle for the differential systems (3.1),
corresponding of course to an invariant algebraic curve U (x,v) = x> + y> — 1 = 0.

2=x’+p*and 0 = arctan(%), the curve
(I1) defined by this limit cycle is (I}): x?+ y2 -1=0.

Hence, statement (4) is proved.

A periodic solution of systems must satisfy the condition r (27, 1y) = r(0, 1),
which leads to unique value ry = r,, given by

More precisely, in cartesian coordinates r

_IN@r)+M(2r)-1
= M (2n) ’

1. is the intersection of the periodic orbit with the OX, axes.

After the substitution of this value of r, into r (6, ry) we obtain

o1 |(N@r)=1)(N(0)+M(0)+M(2m)
r(0,r) = (N (210)— 1) M (6) + M (27)

In what follows it is proved that r (6, r,) > 0. Indeed

271 t
M(2r)-M(0) = /O (ifgexp(/o(2G(“;)_+22K(w))dw))dt

0 (2K (t) 112G (w) + 4K (w)
+/9 (Zd_cexp(/o( Y )dw))dt

_ [PT(2K (1) F2G(w)+ 4K (w)
AR

G(0)+ 2K (6)

K (o
According to the conditions (3.2, hence . <0 and Zd( )c > 0 for all

0 € (0,7), then we have M (2rt) — M (6) > 0 and N (2x) > 1, this ensures that r, and
r(0,r,) are well defined for all 6 € (0, 7t), therefore we have r, > 0 and r(6,r,) > 0 for
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all 6 € [0, 7] and the limit cycle do not pass through the equilibrium point O (0, 0) of
system (3.1). This is the second limit cycle for the differential systems (3.1), we note
it by (I3).

According to the conditions (3.2), we get

o [9(2K(1) L2G (w) + 4K (w)

M(O) = /0(2d_cexp(/o( Y )dw))dt>0
9 (2G (w) + 4K (w)

exp(/o( Y )dw)>1,

N(2n) -1
M (27)

and N (0)

for all 6 € [0, 7], then we have r, = \/1 + > 1. Moreover,

B (N (2m) - 1) N (6)
r(0,r.) = \/1 TN - DM@+ M@0

this justified that the limit cycle (I) lies inside the limit cycle (I3).
We conclude that system (3.1 has two limit cycles (I7) and (I3).
This completes the proof of statement (5). [

3.1.2 Examples

The following examples are given to illustrate our results.
Example 1 If wetakea=b=-50,c=-3,d=-1,a=1n=10,1=1and 6 =28,
then systems (3.1) reads
1 3
x' = x(le4 + X7y +28x°y? + xp° + 1Oy4) +3 (3y —50x) (x2 + yz)
1 2
—gx (x2 + yz) (—2Ox4 + 3x3y - 16x23.12 + 3xy3 - 20;}4),

Y = 3}(10x4 + X7y +28x°y? + xp° + 103/4) - % (3x+ 50}))(x2 +yz)3

1 2
~37 (xz + y2) (—20x4 + 3x3y - 16x2y2 + 3xy3 - 203}4),
The curve x*+y?—1 = 0is an invariant algebraic curve of system (3.8) with cofactor
K(x,y) = 2(x2 +y2)(8(x6 +y6)— 12(x4+y4)+ 3xy(x4+x2 +7° +y4)
+2x7p? (1127 + 3xp + 11y° - 13)).

The system (3.8 has the first integral

N(arctanZ)+(1-x2—9y2?)M (arctan?
gy - M)y ocns)
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32
where N (0) = exp(l + ?9 —c0s260 — sin49) and

1 32 50e (¢ (32
M(G):—Eexp(FG—COSZG—sin46)+Te/O eXp(?t—COSZt—SiHLU)dt.

The system (3.8) has the limit cycle (I}) whose expression is (I}): x> + yz -1=0.
The system (3.8) has another limit cycle (I;,) whose expression in polar coordinates
(r,0)is

01— |[(N@r)=1)(N(0)+M(0)+M(2m)
r(0,r) = (NQrn) -1)M(0)+M(2rn)

where 6 € R. The intersection of the limit cycle with the OX, axes is the point having

Ty

=1.2376
2.4047 x10%°

We conclude that system (3.8) has two limit cycles (I} ) and (I3). Since r, =1.2376 > 1,
the limit cycle (I}) lies inside the limit cycle (I3).

\/e?“+2.4047x 1029 -1
r, =

Figure 3.1: Limit cycles of system (3.8].

Example 2 If wetakea=b=-60,c=3,d=1,a=1n=12,1=-3 and 6 = 26, then
systems (3.1) reads

x' = % = x(12x4 —3x%y + 26x%p% - 3xp° + 12y4) - (x2 +y2)3(20x+y)+
x(x2 +;)2)2 (Sx4 + 83;4 + 3xy3 + 3x3y + 14x2y2),
. (3.9)
= d_zi =y(12x* - 323y + 26x7p” - 3x° + 12y4)+ (x2 +;;2)3 (x—20p)+

y(x2+?2)2(8x4+8y4+3xy3 +3x3y+ 14x2y2),

The curve U(x,p) = x* + »* — 1 = 0 is an invariant algebraic curve of system (3.9
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with cofactor
2
K(x,v) = -3 (x2 + 3.)2)(20(x6 + y6) - 30(x4 +y4) -
3xy (x2 +9%+ 1)(x2 + yz) +36x°y> (xz +9° - g))
The system (3.9) has the first integral

N(arctan%) + (1 —x? —yZ)M(arctan§)
x?+yp2-1

H(x,y)=

J

1
where N (0) = exp(3 -96 + Zsin49 —3cos 29) and

2 1 0 1
M(0) = —% exp (—99 +a sin46 — 3 cos 29)—2063/0 exp (—9t + Zsin4t —3cos 2t)dt.

The system (3.9) has the limit cycle (I7) whose expression is (I}): X%+ y2 -1=0.
The system (3.9) has another limit cycle (I;,) whose expression in polar coordinates
(r,0)is

’

o1 |[(N@r)=1)(N(0)+M(0)+M(2m)
r(0,r) = (N (210)— 1) M (6) + M (27)

where 6 € R. The intersection of the limit cycle with the OX, axes is the point having

T

=1.1764

\/2. 762x10725-2.6042 -1
T, =
—2.6042

We conclude that system has two limit cycles (I7) and (I3). Since r, = 1.
1764 > 1, the limit cycle (I3) lies inside the limit cycle (I;).
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Figure 3.2: Limit cycles of system (3.9).
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3.2 A family of planar differential systems with explicit
expression for algebraic and non algebraic limit cy-
cles

Consider a multi-parameter planar polynomial differential systems of degree thirteen

of the form
x = @ =x+ (x2 +y?‘)2 (P3 (x,y)—x(x2 +}’2)3R2 (x,y)),
dt
(3.10)
y = % = y+(x2+y2)2(Q3 (x:}))—?(xz +y2)3R2 (x,y)),
where

Ps(x,v) = ax® + bx*y + cxy* — dy°,
Qs (x,v) = ax’y +dx> + (b + 2d) xp* + cy® and
Ry(x,v)=(a+1)x*+(b+d)xy+(c+1)y?,

in which a,b,c and d are a real constants.

We define the trigonometric functions

- b+d
G(Q):a—;rc+achos29+ - sin 26,

2
0 t_ —

0
and B(0) = exp(/ —12—#66‘(0))(10)).
0

3.2.1 Main result

Our main result is contained in the following theorem.

Theorem 3.2. For the systems the following statements hold.

1. If d # 0, then the origin of coordinates O(0,0) is the unique critical point of system

at finite distance.

2. The curve U (x,v) = x® + 3x*p? + 3x%y* + v° — 1 is an invariant algebraic curve of

systems with cofactor
K(x,y)=-6 (x2 +y2)3(1 + (x2 +y2)2((a+ 1)x?+(b+d)xy + (c+ 1)y2)).

3. The systems has the first integral
(1 - (x2 + yZ)S)A (arctanz) +B (arctanz)
x x

(x2+32)° -1

H(x,y) =
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4. The systems has an explicit limit cycle, given in cartesian coordinates by

() :x®+3x*2+3x%p 405 -1=0

5. Ifd <0,-2—(a+c)>|b+d|+|c—al and 4+a+c > |b+d|+|c—al, then systems (3.10)

has non-algebraic limit cycle (I;), explicitly given in polar coordinates (r,0) by

1

(B(O)+A(O))(B(2mr)-1)+A(27)\6
AO)(B(2m)-1)+A(2n) '

r(0,r,) =

Moreover, the algebraic limit cycle (1) lies inside the non-algebraic limit cycle (I5).

Proof.
Proof of statement (1).
By definition A(x(,7,) € R? is a critical point of systems (3.10) if

3
Xo+ (x(2) + yé)(Pe, (x0,90) = Xo (X% +}’5) R, (Xo,}}o)) = 0

3
Yo+ (x5 + Vg)(Qs (x0,90) ~ %0 (x5 +3) Ro (xO,yo)) =0

we have
4

2
(x5 +3) (30Ps (x0,%0) — x0Q3 (0, 90)) = —d (%0 +0°) -

Since d = 0 then (xg, ) = (0, 0) is the unique solution of this equation. Thus the origin
is the unique critical point at finite distance.
This completes the proof of the statement 1.

Proof of statement (2).

A computation shows that
U(x,v)=x%+3x*2 +3x%p 490 -1,

satisfies the linear partial differential equation

0 , ) :
%P(x,y)—% %Q(x,y) —U(x9)K(xp),

the associated cofactor being
K(x,y)=-6 (x2 +y2)3(1 + (x2 +y2)2((a+ D)x?+(b+d)xy+(c+ 1)y2)).

This completes the proof of statement 2.



A family of planar systems with an algebraic and non algebraic limit cycles 58

Proof of statement (3).
To proving statement (3), we need to convert the systems (3.10) in polar coordi-
nates (r,0) given by x = rcos6 and y = rsin8, then the systems (3.10) become

d
v :é}:r+cwwﬁu4um—n#%
(3.11)
o
T =— =dr.
¢} T r
Taking O as an independent variable, we obtain the equation
dr —lr_5+G(9)r+_G(9)_lr7. (3.12)

a0~ d d d
By using the change of variable p = 1%, the equation (3.12) is transformed into the

Riccati equation
dp 6 6G(0) -6G(0)-6 ,
a0~ d " "a Pt——a
This equation is integrable, since it possesses the particular solution p = 1.

(3.13)

By introducing the standard change of variables z = p — 1 we obtain the Bernoulli

equation
dz —-6-6G(0) , -12-6G(0)
10" 7 z°+ 7 z.
We note that z = 0 is the solution for (3.14), by introducing the standard change of

(3.14)

. 1 . . .
variables y = — we obtain the linear equation
z

dy ~ 6+6G(0) 12+6G(0)

10" 7 7 V. (3.15)
The general solution of linear equation (3.15) is
_a+A(0)

where a € R. Then the general solution of equation (3.14) is

z(0)=0, z(0) = %, where a € R.

Then the general solution of equation (3.13) is

_a+A(0)+B(0)

p(0)=1, p(0) = 2+ A0) , where a € R.
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Consequently, the general solution of (3.12) is

, where a € R.

a+Aﬂﬂ+Bw»é

r(@)=1, r(@):( 2+ A0)

From this solution we obtain a first integral in the variables (x,y) of the form

(1 - (x2 + yz)s)A (arctan%) + B(arctan%)
H(x,y) = _

(x2+2)° -1

Hence, statement 3 is proved.

Proof of statement (4).

The curves H = h with h € R, which are formed by trajectories of the differential
systems (3.10), in cartesian coordinates are written as

2 2 2 23 _ a+A(0)+B(0)
x“+yp° =1, (x +y)_ atA0)

where a € R.

Notice that systems has a periodic orbit if and only if equation has a
strictly positive 27t-periodic solution. This is equivalent to the existence of a solution
of that fulfills r (0,r,) = r (27, ,) and r(6,r,) > 0 for any 0 in [0, 27] .

The solution r (6, ry) of the differential equation such that r(0,ry) = rg is

where 1y = 1(0).

We have the particular solution p(6) =1 of the differential equation ; from this
solution we obtain r®(0) = 1 > 0, for all 6 in [0,27] is a particular solution of the
differential equation (3.12).

This is an algebraic limit cycle for the differential systemss (3.10), corresponding of

course to an invariant algebraic curve U(x,y) = 0.

More precisely, in cartesian coordinates r?

=x% + yz and 0 = arctan(%) the curve (I3)
defined by this limit cycle is (I}) : x® + 3x%p? + 3x%p* + 10— 1 = 0.

Hence, statement 4 is proved.
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Proof of statement (5).
A periodic solution of systems (3.10) must satisfy the condition r(0,r,) = r(21,71.),

which leads to a unique value ry =r,, given by

1
_(A(2m)+B(2m)-1\6
*_( A(2m) ) '

The r, is the intersection of the periodic orbit with the OX, axes. After the substitu-
tion of this value r, into 7 (0, ry) we obtain
1
(B(O)+A(0)(B(2m)-1)+A(2n)\6
AO)(B(2m)-1)+A(2n) '

r(0,r,) = (
In what follows it is proved that r (6,r,) > 0. Indeed

AQ2r)-A(0) = /9271 %G(t)exp(/ot_lz%m(a))dw) dt.

Accordingtod <0,-2—(a+c¢)>|b+d|+|c—aland 4+a+c > |b+d|+|c—al, hence
2 _dG(G) and 1+G(0) > 0 for all 6 in [0,27], then we have A(21) — A(0) > 0 and
B(2m) > 1; therefore we have r, > 0 and r(60,r,) > 0 for all 6 in [0,27]. This is the
second limit cycle for the differential systems (3.10), we note it by (I5). This limit
cycle is not algebraic, due to the expression

9-12-6G(w
B(Q):exp(/0 %()dw).

2

More precisely, in cartesian coordinates r* = x*> + p* and 6 = arctan(z) the curve
X

defined by this limit cycle (I;) is: F (x,y) = 0, where

F(x,y) = (x2 N y2)3 ) (B (arctan%)+A(arctan£))(B(2 n)—1)+A(2n)

A(arctan%)(B(Z )—1)+A(2m)

If the limit cycle is algebraic this curve must be given by a polynomial, but a poly-

nomial F(x,y) in the variables x and p satisfies that there is a positive integer n such

that M
ox"

non-algebraic and the limit cycle will also be non-algebraic.

= 0, and this is not the case, therefore the curve (I;) : F(x,y) = 0 is

According tod <0,-2—(a+c)>|b+d|+|c—aland 4+a+c>|b+d|+|c—a|, we get
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and

1

(6) ‘
B(O

- >1,

ré—1

r@,r)=|1+

+A(0)

We conclude that systems (3.10) has two limit cycles, the algebraic (I7) lies inside the
non-algebraic one (I).

This completes the proof of statement 5 . O

3.2.2 Examples

6 51
Example 1 If We takea=c= —= d=-5and b = 10’ then systems (3.10) reads

,_ 2, 2\2(_6 3,51 > 6 )
X = x+(x +7v ) ( 55x1+ 1Ox1y xy +5vp
—x(x2+y2) (—§x2+—xy -7 ),
(3.16)

, 2. .2\ 6 » 3 49 5, 6 3
Y= y+(x +v ) (—gx y—-5x —Ex ——y )

—y(x2+y2)5(—% 2 1 y— éyz)

In this case we get

3 9 3 24 3
A(0) = —— in(2t) - = - cos(2
() 50/0 (sin(2t) 4)exp(100 251‘ 1Oocos( 6))d
3 24 3
B(6)=exp (—mcos(ZQ) + —9 100)

The intersection of the non-algebraic limit cycle (I;) with the OX, axes is the point

1
48 <
116.8+exp(2—n)—1 6

T, = ~1.2876.
116.8
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Limit cycles of system (3.16)

-11 -11 141
Example 2 If We take a = ,C = S,d— and b = —, then systems (3.10
10 100 20"
reads
o= x N ( 11 I 141x2 23x 2. )
- v’ 0" 20 AT RN
(2 +9) ( 0 0% 27 )
(3.17)
, 2 (AL o o5 139 5 23 3)_
Y = y+(x +y)( goxf x1 ZOXZ; 20;}
2 2 2
y(x +7y ) (—Ex +—xy y )

In this case we get

0

(cos(2t) +sin(2t) —5)exp (i + isin(2t) - icos (2t)+ Z)dt,

A(O) = ———
0)=-1% 280 280 280

280 280 4 280
The intersection of the non-algebraic (I) limit cycle with the OX, axes is the point

B(0) = exp (—ism (20) - icos(ze) 304 i)

1
, 1
16.509+exp(?n)—1 6

r, =

16.509

Limit cycles of system (3.17))
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-101 -105 151
Example 3 If We take a = c = ,d = -1 and b = ——, then systems

100’ 100 150
(3.10) reads

2( 101 151 21
X’: X+(X2+y2) (—Slme'l'Wlxz 1 Xy +y)
2 2 2
_x(x +y ) (—mx +%Xy—%y ), ( )
3.18

. s, (101 149 2 2L
R e N s 150" 7207

) s(. 1 L, 1 2)
y(x +y)( 100" 1507 " 207 )

In this case we get

0
A(0) = —51—0/0 (6cos(2t) +sin(2t)—9)exp (L + ism(Zt) - Lcos (2t) + ﬂt)dt

100 50 100 50
3 1 291 1
B = — 20) — — 2t)+ —0 + )
(0) exp(Soszn( 0) 1Oocos( )+ =0 100

The intersection of the non-algebraic limit cycle (I,) with the OX, axes is the point

1

291 @
1019x1014+exp( 5”) 1)6
Ty = ~2.0566.
1.019x 104
R

Limit cycles of system (3.18])

-107 -109 507

Example 4 If We take a = 100 ,C = 100 ,d =-5and b = 100’ then systems

(-10) reads

, 2, (107 5 507 5 109, 3)
_ _ 5
K= x(xey )( 100" T100 Y " 100 TY

) 5 7 5, 7 9 ,
~x(x?+y?) (_100x 100 " 1007 )

(3.19)
107 , 5 493 5, 109 3)

_ 2 2\ 107 5
y_“(x”’)(moxy X =100 " T00?

O A SR A )
y(x +y)( 100" 100" " 1007
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In this case we get

3 [ 21 3 . 21 138
AO) = ~%00 ; (2cos(2t) + 7sin(2t) — 16)exp(1000 + %szn(%) - 1000cos(2t) + Et)dt’
3 . 21 138 21
B(Q) = exp(%szn@@) — 1000C05(2t) + EQ + m)

The intersection of the non-algebraic limit cycle (I,) with the OX, axes is the point

1
104.804+exp(276")—1 6

r = 125 ~ 1.4870.

104.804

) S e e —ma—a—a—

Limit cycles of system (3.19)



General conclusion and perspectives

In this thesis we are interested in the qualitative study of the planar differential poly-
nomial systems as well as that of the planar differential systems. It is important for
a differential system to know if it admits or not a first integral, a periodic solution,
moreover if this periodic solution is isolated, one speaks by definition of a limit cy-
cle. On the other hand, the calculation of the first integral of a planar differential
system completely determines the phase portrait of the system. For models resulting
from practice, it is important to study these questions: first integral, periodic solu-
tion, limit cycle, phase portrait. The results obtained in this thesis revolve around
these questions.

In the first chapter we presented some basic notions, concerning the qualitative
theory of differential systems, in particular planar differential systems.

In the second chapter we have dealt with classes of planar differential systems
having one limit cycle. This chapter is divided into two parts, in each part we have
determined the exact expression of the first integral and the formula of the curves
which are formed by the orbits of a class of planar differential systems. we used the
Bernoulli equation.

In the third chapter we have treated two classes of planar differential systems
having two limit cycles. This chapter is divided into two parts, in each part we have
studied the coexistence of algebraic and non-algebraic limit cycles for a class of planar
differential systems in which the expressions are given explicitly, we also determined
the exact expression of the first integral and the formula of the curves which are
formed by the orbits of a class of planar polynomial differential systems. We used the
Ricati equation.

To our knowledge, it is a difficult problem to distinguish if a limit cycle is algebraic
or not and it is rare to find, in the literature of differential systems, a differential
system with a non-algebraic limit cycle given explicitly.

For the perspectives, given the techniques that we have used to find a class of
systems with an algebraic and non-algebraic limit cycles, it is possible to hope to find

a class of quadratic differential systems which admit a non-algebraic limit cycle and
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given of a explicitly. Note that this issue is an open issue so far.

On the other hand, we have studied classes of planar systems from the point of view

of coexistence of limit cycles. There remains the problem of existence of algebraic and

non-algebraic limit cycle given explicitly for differential systems of a given degree n.
Our investment in the future is in this direction and this thesis serves as a powerful

tool in the search for the first integral and the existence of limit cycle.
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ABSTRACT

The objective of this thesis is the qualitative study of some classes of planar poly-
nomial differential systems. The results obtained in this study concerns the integra-
bility, the phase portraits and the existence of limit cycles of some classes of differ-
ential systems. In addition, we give explicitly an expression of the first integrals and
limit cycles algebraic or non-algebraic found for all the classes studied.

Keywords: Hilbert 16th problem, differential system, invariant curve, first inte-
gral, periodic solution, algebraic limit cycle, non-algebraic limit cycle.

RESUME

L'objectif de cette these est I’étude qualitative de quelques classes de systemes
différentiels polyndmiaux planaires. Les résultats obtenus dans cette étude concer-
nent l'intégrabilité, les portraits de phase et ’existence de cycles limites de quelques
classes de systemes différentiels. De plus nous donnons explicitement une expression
des intégrales premieres et des cycles limites algébriques ou non algébriques trouvées
pour toutes les classes étudiées.

Mots clés: 16eéme probleme de Hilbert, systeme différentiel, courbe invariante,
intégrale premiere, solution périodique, cycle limite algébrique, cycle limite non
algébrique.
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