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General Introduction

This thesis is devoted to the study of the existence, multiplicity, nonnegativity and local-

ization of solutions for abstract equations of the form:

Tr+ Fr=ux, xe€, (1)

where () is a closed convex subset of a Banach space.

This work is motivated by the fact that many problems that arise from different areas of sci-
ence (chemical reactors, neutron transport, population biology, infection diseases, epidemiology,
economics, applied mechanics, fluid mechanics, ...) can be recast in the abstract formulation
(1). In particular, ordinary, fractional, partial differential equations and integral equations can
be formulated like abstract equations of the form (1). Note that the nonnegativity is a very
important notion as the solutions may represent stuff that cannot be negative such as density,
speed, volume, mass, voltage, distance, amperage, gravity, etc. The nonnegativity condition
can, mathematically, be described by a closed convex subset P in a Banach space which satisfies
AP C P for all nonnegative real number A and P N (—P) = {0}. We are interested in solving
Equation (1) in P.

As a very important part of nonlinear analysis, fixed point theory plays a key role in the solv-
ability of many complex problems from applied mathematics. The theory itself was developed
in many directions starting from Brouwer’s fixed point theorem (1910), Banach’s contraction
principle (1922), and Schauder’s fixed point theorem for compact mappings (1930). Kras-

nosel’skii’s fixed point theorem concerns the sum of a contraction and a compact mapping, and




Introduction

turns out to be an extension and a combination of these previous two results (see [24, 27, 73]).
Among the very rich and recent literature on the development of the fixed point theory for the
sums of operators, we quote, e.g., [20, 64, 79, 80].

Another fixed point result established by Krasnosel’skii in 1960 is the cone compression-
expansion fixed point theorem; it is mostly used for proving existence, localization and mul-
tiplicity of nonnegative solutions for various nonlinear problems in some conical shells of a
Banach space (see [46, 50, 51]). Recently, its extension have attracted many researchers (see
[7, 54, 55, 65] and references therein).

Let P be a cone of a Banach space X. Assume that there exist two positive constants r, R with
r # R. The Krasnosel’skii-Guo compression-expansion of cone fixed point theorem guarantees

that a completely continuous map F': P.r — P has a fixed point in the conical shell
Por={xeP:r<|z| <R}

under the following conditions:

|Ful| < ||ul]| for every w € P with [jul| =, )

|Ful| > |lu|]| for every u € P with |lu]| = R.

An illustration of this result in the special case where X is the two-dimensional plan R? is

depicted in the following figure

D , D Pr
Ry

Compressive form Expansive form
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Note that the conditions (2) are imposed only on points of the two curved boundaries of P, g.
Interior points and points on the sides of the cone can be moved in any direction (as long as
the image remains inside P). Also it is not stipulated that any particular image point Fu must
lie inside P, g. The adjectives “compressive” and “expansive” in the names of the two forms of
the theorem are conventional, and they are not meant to correctly describe the behaviour of F'
under all circumstances. Recently, many researchers have been interested in the extension of
the above theorem in various directions (see [4, 7, 54, 55, 65, 69] and references therein). Our
contribution is part of those generalizations leading to fixed point theory for sums of operators.
More precisely, we derive several existence results for nonlinear equations of type (1).

In parallel to the development of the krasnosel’skii’s type theorems and since 1979, there was
the one of Leggett-Williams. While the Krasnosel’skii type compression-expansion fixed point
theorems gives us fixed points localized in a conical shell of the form {z € P :a < ||z] < b},
where a,b € (0,00), with the Leggett-Williams type they are localized in a conical shell of the
form P(a, B,a,b) == {z € P : a < a(x) and f(x) < b}, where « is a concave nonnegative
functional and 3 a convex nonnegative functional. The original Leggett-Williams fixed point
theorem (see [56, Theorem 3.2]) discusses the existence of at least one fixed point in a conical
shell of the form {z € P : a < a(x) and ||z|| < b}, where a,b € (0,+00) and « is a concave
nonngative functional. Noting that this result has been widely extended in many directions,
(see, e.g., [4, 8]).

The fixed point theory has also been greatly influenced by the parallel progress of the
research works made on the topological degree for different classes of mappings (see, e.g.,
(3, 54, 55]). In these regards, the pioneer works of Petryshyn [66, 67] have initiated important
steps in establishing the relationship between the fixed point theory and the index fixed point
theory. Our contribution ([10, 11, 12]) is a continuity in this direction. In [29], Djebali and
Mebarki studied Equation (1) in the case where T is an expansive mapping with constant A > 1
and F a k-set contraction with 0 < k& < h—1. To do so, they developed a new fixed point index
and then some fixed point theorems, including Krasnosel’skii type theorems, have been showed.

The usefulness of the obtained fixed point theorems was showed in the same article and also in
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[13, 14, 15, 16, 34, 35, 39, 36, 37]. In [10], we continue to extend the theory to the sum T + F
where 7' is an expansive mapping with constant A > 1 and the perturbation I — F'is a k-set
contraction with 0 < k < h. Our aim is to provide a new contribution to the fixed point index
theory for this class of operators. First, we define and compute a topological index and then
we prove several fixed point results in translates of cones. In [11], we used the fixed point index
developed in [10] to establish an extension of a Leggett-Williams type expansion-compression
fixed point theorem for a sum of two operators. It is also applied to prove the existence of
nonnegative nontrivial solutions for two-point BVP and three-point BVP (see Section 4.2). In
[12], we still use some results from [29] to get existence of multiple nonnegative solutions to a
class of fourth-order boundary value problems with integral boundary conditions (see Chapter
5).

This thesis is organized as follows:

The chapter 1 gives a survey over some of the most important tools and results of nonlinear
functional analysis in ordered Banach spaces. It provides the mathematical background needed
to be applied in the rest of this work. We start in Section 1.1 with cones and partial ordering
in Banach spaces which is required in this study since it is the tool that provides the ordering
needed to describe the nonnegativity of the solution. Then in Section 1.2, we present some
compactness criteria for functions defined on compact and noncompact intervals and we give a
survey on the Kuratowski’s measure of noncompactness. In Section 1.3, we will present different
classes of operators. Then, we end this first chapter by a presentation of the topological degree
theory.

In Chapter 2, we are concerned with the fixed point index theory for various classes of
mapping: completely continuous mappings, strict-set contractions, condensing mappings and
1-set mappings.

In Chapter 3, we continue with the presentation of the fixed point index theory for the sum
of two operators. In Sections 3.1, 3.2, and 3.3, we present the generalized fixed point index
developed by Djebali and Mebarki for the sum 7"+ F where T is an expansive mapping with

constant h > 1 and F' a k-set contraction with 0 < k < h — 1 as well as we discuss the limit
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case where F' is a (h — 1)-set contraction, and then the case where T is nonlinear expansive
mapping. In each case, we give the definition and the computation of the fixed point index. In
Section 3.4, we go on with the case where T' is h-expansive with h > 1 and [ — F' is a k-set
contraction with k£ < h and we present the definition of this index with respect to a translate
of a cone K neither than to a cone.

In Chapter 4, we present fixed point theorems of several forms and some of their applications.
In Section 4.1, three cone compression-expansion fixed point theorems of Krasnosel’skii type
are established for sums 7"+ F, where 7' is an expansive map with constant h > 1 and I — F' is
a k-set contraction with 0 < k£ < h. The proofs are based on the properties of the topological
index i, presented in Section 3.4. An extension of a cone expansion-compression fixed point
theorem of Legget-Williams type for the same class of mappings is established in Section 4.2.

Chapter 5 is devoted to study a class of fourth-order boundary value problems with integral
boundary conditions. The nonlinearity may have time-singularity and change sign. Moreover,
it satisfies general polynomial growth conditions. A recent multiple fixed point theorem in
cones is applied to prove the existence of at least two nonnegative classical solutions. Precisely,
we investigate the existence of at least two nonnegative solutions to the fourth-order nonlinear

boundary value problem
I(4)<t> = w(t)f(tv l’(t), I//(t))’ te (07 1)7
2(0) = [lhi(s)x(s)ds, x(1) = [; ki(s)a(s)ds, (3)
2"(0) = [ ho(s)a"(s)ds, 2"(1) = [ ko(s)z"(s)ds,

where

(H1) w € L'(]0,1]) is nonnegative and may be singular at ¢ = 0 and (or) ¢t = 1, f € C([0,1] x

R x R),
w0 € @@ +ab)” +as®), te0,1], uwoveR,

aj,as,az € C([0,1]) are given nonnegative functions, p;, ps are given nonnegative con-

stants.

(H2) hl, hg, ]Cl, ]CQ S L1<[0, 1]) with mily + N1 7é 0, Mol + No 2 ?é 0,
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Table of Notations

The most frequently used notations, symbols, and abbreviations are listed below.

R The set of real numbers.

R4 The set of all nonnegative real numbers.

R The n-dimensional Euclidean space.

inf(A) The infimum of the set A.

sup(A) The supremum of the set A.

d(x,y) The distance between z and y.

diam(A) The diameter of the set A,where A is a subset of a metric space X.
conv(.) The convex hull.

703 The set of interior points of P.

C(G) The set of all real continuous functions from G into R.

C'([a, b)) Space of all continuously differentiable and real valued functions defined on [a, b].
a.e. Almost everywhere.

BVPs Boundary value problems.

u.s.c Uniformly semicontinuous.

1 The identity application.

flv The restriction of f on V.

i(f,U,D) Fixed point index of f on U with respect to D.

Fix(f) The set of fixed points of f.

mes(D) The Lebegues measure of the set D.




Chapitre 1

Preliminaries

Contents
1.1 Cones and partial ordering . . . . . . . . . . ... . 000000 10
1.2 Compactness and noncompactness . . . . . . ... ... .. 13
1.2.1 Some results about the compactnees . . . . . ... ... ... ..... 13
1.2.2 Kuratowski’s measure of noncompactness . . . . .. .. ... ... .. 21
1.3 Related classes of mappings . . . .. ... ... . 00000 33
1.3.1 Compact and completely continuous maps . . . . . . . . .. ... ... 33
1.3.2 k-set contraction maps . . . . . . . . . ... o 36
1.3.3 Expansive and nonexpansive maps . . . . . . . . .. ... 39
1.3.4 Some related fixed point theorems . . . . .. ... ... ... ..... 43
1.4 Topological degree theory . . ... ... ... ..., 46
1.4.1 Brouwer’s topological degree . . . . . .. ... ... ... ... ..., 46
1.4.2 Leray—Schauder’s topological degree . . . . . .. ... ... ... ... 53
1.4.3 Applications of the topological degree . . . . . . ... ... ... ... 56

In this chapter, we will present some basic tools that make the reading of this thesis easier.

For more details on these tools, we refer the reader to the references [45] (for Section 1.1),




1.1. Cones and partial ordering

[6, 17, 26, 32, 34, 41, 47, 49, 53, 70, 72, 82] (for Section 1.2), [18, 30, 33, 60, 79, 80] (for Section

1.3) and [19, 52, 61] (for Section 1.4).

1.1 Cones and partial ordering

Let E be a Banach space.

Definition 1.1.1 A closed convex subset P of E is said to be a cone if it satisfies these two

conditions:
(1) XPC P, VYA >0,
(2) Pn(=P)={0}.

We denote by P* =P \ {0} the punctured cone.

Every cone P defines a partial ordering < in E defined by :
r <y ifand only if y —x € P.
Thus we make every Banach space E a partial ordered set. We say that
> r<y<sx<yandzF#y.
> r<ysy—xeP if P£I.
> rLysy—agP.

Definition 1.1.2 A segment of a cone P is defined by:

Example 1.1.3 1. For E =R, the set P = {x € R, © > 0} is a cone in R and the order

that it introduces is simply the usual one "<7”.

2. For E = R?, the set P = {z = (z1,22) € R*, 21 > 0 and x5 > 0} is a cone in E. Here
the order introduced is not usual. For x,y € E saying that © <y means y; — x1 > 0 and

Y2 — x9 > 0.

10



1.1. Cones and partial ordering

3. Consider the Banach space E = C([0,1],R) with the sup-norm |||l = m[ax] |z(t)|. The
tefo,1

set P={x € E: z(t) > 0} is a cone in E. And saying that v < y for x,y € E means

that y(t) — x(t) > 0, Vt € [0,1].

Definition 1.1.4 1. A cone P is said to be normal if there exists a positive constant N # 0
such that, for all x,y € P, we have x <y = ||z|| < N||y||, The least positive constant N

is called the normal constant of P.
2. P is called solid if his interior is not the empty set.

Remark 1.1.5 Geometrically, the normality of a cone means that the angle between any two

positive unit vectors cannot exceed . In other words, a normal cone cannot be too wide.
Example 1.1.6 1. Let E=R" and P, = {(z1,...,2,) € R": 2; > 0,i=1,...,n} =R,"

(a) Py is a solid cone in R™, in fact P = (R%)™ # 0;

(b) Furthermore, since all the norms of R™ are monotone we have
Ve,y € R, Ope <2 <y = |lz|| < |yl
Then, Py is normal with N = 1.

2. Let E = C(G), the space of continuous functions in a closed bounded space G C R",

provided with the norm ||z||c) = sup |z(t)| and P, = {x € C(G) : z(t) > 0, Vt € G}.
teG

(a) Py is a solid cone in C(G).
(b) P is normal, since the norm ||.||c(q) is monotone in C(G).

(¢) We define other cones in C(G) such that:

Py ={z €C(Q): 2(t) >0, and /G z(t)dt = eoflz(t)llece) }

Pi={z€C(G):z(t) >0, and min(z(t)) > e1||z(t)llc}

teGy

where Go, Gy are closed subsets of G, and €y and €1 are two constants such that :
0 < eg <mes(Go) and 0 < e; < 1. We have P3 C Py et Py C Py and the two are

solid and normal cones in C(G).

11



1.1. Cones and partial ordering

3. Let E = LP(QY), be the Lebesque-integrable space on @ C R™ withp > 1 and 0 < mes(Q) <
oo provided with the norm ||z|| = (/ |z (t)|” dt) " and
Q
Ps=L"(Q) ={x e LP(Q): z(t) >0 a.ein Q}.
It is clear that Ps is a normal cone, since the norm of LP(Q) is increasing, but not solid,
since Ps = () except the cone L () which has an empty interior. Indeed, if Ps # 0, then

3f € Ps, ie. 36 > 0 such that B(f, ) C Ps.

We take Q2 = [0, 1], and consider the sequence (fn)nen defined by:

_f(t)a 7;f te [07 %]7
fo), i telg 1l

/ falt) = FloPdt = / falt) = F(O)PdE + / falt) — £t
- /0"|— 70 Ipdt+/ 70— F(o)ae

fn(t) =

Then

Therefore, ||f, — f|| = (2 S 14 |pdt> — 0 when n — oo, since f € L% (Q),
SO

V6 >0,3ng € Nyn >ng = ||fn — f]| <6.
Hence

Vo > 0,3dng € Nyn >ng = f, € B(f,9),

which contradicts the fact that f, is not in Ps, since mes ([ ]) #0.

Definition 1.1.7 Let P be a cone in a Banach space E. For any 6 € P. The set K =60+ P

is called a translate of the cone P.

Example 1.1.8 Consider the Banach space E = C([0, 1], R) with the sup-norm ||z||. = m[ax |z (t)).
t€[0,1

The set K = {x € E: x(t) > 1} is a translate of a cone in E. In fact Vx € K, we can find

y € P such that x =0 +y where 0 =1 and P ={z € E: z(t) > 0}.

12



1.2. Compactness and noncompactness

Noting that cones are a particular case of the translate of cones. Indeed, for § = 0 we have
IC = P, but translate of cones are not always cones, indeed for 6 # 0, K does not satisfy all the

conditions of Definition 1.1.1.

1.2 Compactness and noncompactness

1.2.1 Some results about the compactnees

Compactness grew out of one of the most productive periods of mathematical activity. In
mid to late nineteenth century, advanced mathematics began to take the form we know today.
In the background was Cantor’s work establishing the beginning of a systematic study of set
theory and point-set topology. Also, many mathematicians, including Weierstrass, Hausdorff
and Dedekind, were worried about the foundations of mathematics and began to make rigorous
many of the ideas that had for centuries been taken for granted. We first recall two different
characterizations of the compactness notion. One characterization, developed by Bolzano and
Weierstrass among others, grew out of the study of sequence convergence. The second char-
acterization, which grew out of work by Heine, Borel, and Lebesgue, was based on topological

features, such as the covering of sets by open neighborhoods.

Definition 1.2.1 Let (X, d) be a metric space. A subset C of X is compact if every sequence
in C contains a convergent subsequence with a limit in C. Equivalently, a subset C of X is called

compact if every open cover of C has a finite subcover.

Definition 1.2.2 A subset C of X is said to be totally bounded if for each € > 0, there exists

a finite number of elements {x1,x9,- - -, x,} such that C C |J B(x;,e). The set {xy,x9, -, x,}
=1

)

is called a finite e-net.

Remark 1.2.3 1. FEvery subset of totally bounded set is totally bounded.

2. Fvery totally bounded set s bounded, but a bounded set dos not need to be totally bounded.

Proposition 1.2.4 A subset of a compact metric space is compact if and only if it is closed.

13



1.2. Compactness and noncompactness

Proposition 1.2.5 Let X be a metric space. Then, the following assertions are equivalent:
(a) X is compact.
(b) Every sequence in X has a convergent subsequence.

(c) X is complete and totally bounded.

Proposition 1.2.6 Let C be a subset of a complete metric space X. Then we have :
(a) C is compact if and only if C' is closed and totally bounded.

(b) C is compact if and only if C is totally bounded.

Remark 1.2.7 1. X = (0,1) with usual metric is totally bounded, but not compact.

2. X = R with usual metric is complete. But it is not totally bounded and hence not compact.

Definition 1.2.8 A subset C of a topological space is said to be relatively compact if its closure

is compact, i.e., C is compact. In particular, we have an interesting result:

Proposition 1.2.9 Let C be a closed subset of a complete metric space. Then C is compact if

and only if it is relatively compact.

We now state the following fundamental theorem concerning compactness.

Theorem 1.2.10 (The Heine-Borel property) A subset C of R is compact if and only if it

1s closed and bounded.

Definition 1.2.11 A topological space is said to be locally compact if it is separable and if each

of its points admits a compact neighborhood.

Example 1.2.12 1. A compact topological space E is locally compact because E is a neigh-

borhood of each one of its points.

2. R is locally compact because for all x € R the interval [x — 1,z + 1] is a compact neigh-

borhood of x. R™ s locally compact because its closed unit ball is compact.

14



1.2. Compactness and noncompactness

It is well known that infinite dimensional spaces like C([a,b], R) are not as well behaved as
finite dimensional spaces like R™. For instance, closed, bounded subsets of continuous functions
on R do not necessarily have the Heine-Borel property. The work in this area was done by
Ascoli and in the last decades of the 1800s.

The following example illustrates that a closed, bounded subset of continuous functions on

R is not compact.

Example 1.2.13 Consider B = {f € C([0,1],R) : ||f]| < 1}, where || - || is the sup norm.
We wnill show that there is a sequence in B that does not have a convergent subsequence.
Let f.(z) = 2™, n € N*. This sequence lies in B, but we cannot find a subsequence that

converges uniformly to a function in C([0,1],R). Suppose to the contrary f is such a function.

Then

f(z) = lim f,, (z),

k—o0

which would imply that

Fa) = 0, if x<1;

1, ifx=1.

Since f is a discontinuous function, it is not in C([0,1],R). Hence the sequence (fn)nen has no

uniformly convergent subsequence.

The problem in this example comes from how functions converge. If convergence means
pointwise convergence, then we get a behaviour different from that of sequences in closed unit

balls of R™. In order to avoid this problem, Ascoli introduced the notion of equicontinuity.

Let (X, 7) be a topological space, (Y, d) a metric space, and C(X,Y) denotes the space of

continuous functions from X to Y. Let H C C(X,Y).

Definition 1.2.14 H is said to be equicontinuous at a point xo € X if

Ve>0, 3U. € V(xg), Vo € X,

(z € Uz = f(z) € B(f(w0),€)), Vf € M.

15



1.2. Compactness and noncompactness

H s equicontinuous if it is equicontinuous at every point xg € X. Noting that the prefix "equi”

indicates uniformity with respect to the functions f € H.

Remark 1.2.15 When (X,d) is a compact metric space, then H is equicontinuous if and only

if (it is uniformly equicontinuous):

Ve>0,36>0Vz,y € X,

(d(z,y) <6 = d(f(z), f(y)) <e), V[ EH.

Proof. Since uniform equicontinuity is a stronger condition, we only prove necessity. So,

let H be an equicontinuous family of functions and let £ > 0. By assumption, for every z € X,
there exists 0 = d(¢) > 0 such that d(f(z), f(y)) < ¢ for all f € H and d(x,y) < 4. Since
X is compact, it can be covered by a finite number of balls B(xz;,d,,) (1 < i < m). Let
= min {6,,} and let z,y € X be such that d(z,y) < 0. Then there exists 7o € {1,...,m}

1<i<m

such that = € B(z;,, d,, /2). Hence, y € B(w;,, 6., /2) and for all f € H,

d(f(x), f(y)) < d(f(2), f(xi,)) +d(f(y), [(2i)) < e

Proposition 1.2.16 Let H be equicontinuous and T : H — T(H) a continuous mapping.

Then, T(H) is equicontinuous.

Example 1.2.17 Let X and Y be metric spaces. By definition we can see that any family
H of a single function is equicontinuous. More generally, every finite subset of C(X,Y) is

equicontinuous.

Example 1.2.18 If all the functions of H are k-lipschitzian, for a same constant k, then H
is equicontinuous. More generally, it suffices that each point x € X has a neighborhood V, that

contains only k,-Lipschitzian functions, where k, is the same constant and only depends on x.

Example 1.2.19 If X and Y are normed vector spaces, and H is a bounded part of linear

functions of C(X,Y'), then H, considered as a part of C(X,Y), is equicontinuous.
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1.2. Compactness and noncompactness

Example 1.2.20 Let ¢ > 0 and H = {f € C([0, 1]; fo |f'(t)|?dt < c}. Notice that, if

- / " Pt

f€C([0,1],R) and if x <y, we can write

Then, the Cauchy-Schwarz inequality leads

1
y 2 ) )
= sl < ([ 17ran) 1y - alf < vely - ol
provided f € H. Taking 6 = %, we can see that H is equicontinuous.

Example 1.2.21 Let f,(z) = sin nz, z € [0,27] and H = {fu(.) : n € N}. Then H is
bounded. However, it is not equicontinuous in C([0,2x],R) (for this, consider the sequence

™

Tp ==, 50 |fu(n) — fulzan)| = 1). Hence, H is not relatively compact, i.e., we cannot extract

n?

a convergent subsequence.

Example 1.2.22 Let X = [0,1], Y = R, and for n € N, let f,(t) = t™. Then, the sequence

(fn)nen is not equicontinuous. Indeed, let ¢ = %, and suppose that there exists 61 > 0, such
that the condition of equicontinuity is satisfied. Define § = min(dy, 1).

Consider nowwzl,yzl—g. It is clear that
) )
—yl=[1-14+=- == <9,
=yl =11-1+5] =3

However, we have already seen that the sequence (fy)n>1 is in the unit ball, and it converges
to 0 for all x € [0,1) and to 1 for x = 1. Thus, |fu(1) — fo(1 — £)| could be as close to 1 as

wanted for all fired 6 > 0.

Remark 1.2.23 From Ezxample 1.2.22, we conclude that the unit ball of C([0,1],R) is not

equicontinuous, although it is bounded and closed.

The Arzela-Ascoli theorem then states the following.

Theorem 1.2.24 (Arzela-Ascoli Theorem) Any bounded equicontinuous sequence of func-

tions in C([a,b],R) has a uniformly convergent subsequence.
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1.2. Compactness and noncompactness

We can state a consequence of this theorem, analogous to the Heine-Borel Property.

Theorem 1.2.25 [72, Corollary 2.14.31] A subset of C([a,b],R) is compact if and only if it is

closed, bounded, and equicontinuous.

Remark 1.2.26 The Arzela-Ascoli Theorem gives necessary and sufficient conditions for com-
pactness in the space of continuous functions defined on a compact space X and taking values

in R or, more generally, in any finite-dimensional Banach space.

Corollary 1.2.27 Let M C C'([a,b],R) satisfy the following conditions:

(a) there exists L > 0 such that for all t € [a,b] and u € M,

lu(t)] < L and |u'(t)| < L.

(b) For every positive € > 0, there exists §(¢) > 0 such that for all t,,ty € [a,b] with |t, —t5| <

d(e) and for allu e M,

lu(th) — u(ty)| < e and |u'(t1) — u'(t2)] < e.

Then, the set M is relatively compact in C'([a,b], R).

Proof. Let {u,}nen be a sequence of M C C'([a,b], R).

To prove that M is relatively compact in C!([a,b],R), it is equivalent to prove that {u,}nen
has a subsequence converging in C!([a, b],R). Since {u, }nen is a sequence of M C C'([a,b], R),
{u), }nen (resp. {un,}nen) is a sequence of C([a, b], R).

Arzela-Ascoli Theorem and the assumptions (a)-(b) guarantee that the sequence of derivatives
{u), }nen (resp. {un}nen) is relatively compact in C([a, 0], R).

As a consequence, there exists a subsequence, also denoted {u,, } neny which converges in C([a, b], R)
to a limit u € C([a,b],R), and a subsequence of {u! },en, also denoted {u!, },en, converging in
C([a,b],R) to a limit v € C([a, ], R).

Using the integral representation of u,, we find that for all ¢, ty € [a, 0],

t

un(t) = u(to) +/ ul,(s)ds — u(ty) +/ v(s)ds,

to to

18



1.2. Compactness and noncompactness

as n — o0o. Then for all ¢t € [a,b], lim u,(t) = u(t) and the uniqueness of the limit yields that
n—oo

u(t) = u(to) + fti v(s)ds. Hence u € C'([a,b],R) and v/ =v. m
Corollary 1.2.28 FEwvery bounded sequence in C* has a convergent subsequence in C.
Corollary 1.2.29 For all k € N, the space C¥*1([a, b], R) is imbedded compactly in C*(|a, b], R).

Proof. Let k > 1 and M bounded in C**!([a,b],R). Then, M is bounded in C([a,b],R) and
there exists a sequence {up}nen in M such that u, — u € C([a,b]R). Furthermore {u} }, is
also bounded in C([a, b],R), therefore there exists a subsequence of {u,}, such that u!, — v’ €

C([a,b]R). We repeat the process until we get:

ul — 4™

for all 2 such that 0 << k. m

Example 1.2.30 The set F' of functions f on [a,b] that is uniformly bounded and satisfies the

Hoélder condition of order 0 < a < 1 with a fized constant K

’f(l’) - f(y)‘ S K’[L’ - y’a’x,y € [aab]v
is relatively compact in C([a,b],R).

Let (X,d) be a compact metric space and (Y, || - ||) be a Banach space. The space E =

C(X,Y) is endowed with the norm:

1FIF = sup [[f (@)l
zeX

Theorem 1.2.31 (Arzela-Ascoli Theorem) (see, e.g., [17, Corollary 1] or [26]) A subset
H C C(X,Y) is relatively compact if and only if
(a) H is equicontinuous.

(b) Vo e X, the set H(z) = {f(z), f € H} is relatively compact in'Y .

Next, let J = [a,b]. Then we have
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1.2. Compactness and noncompactness

Corollary 1.2.32 (Arzela-Ascoli Theorem) Let Y be a finite dimensional Banach space.

If H C C(J,Y) is bounded and equicontinuous, then H is relatively compact.

Now, we consider the higher-order derivative spaces E = C™(.J,Y"), which denotes the space
of continuously differentiable functions defined on some interval J C R and taking values in
a Banach space Y. For H € C™(J,Y) and k = 1,2,...,m, we denote by H"*), the space of
functions H®) = {a® . 2 € H} and HW (¢t) = {2¥(¢) : = € H}.

Now, we present a generalization of Arzela-Ascoli Theorem to the space C™(J,Y’), when

J = [a, b] is compact. We have

Theorem 1.2.33 [/7, Theorem 1.2.7] H C C™(J,Y") is relatively compact if and only if
(a) H™ is equicontinuous and, for anyt € J, H™(t) is relatively compact in'Y,

(b) for each k € {0,1,...,m}, there exists t;, € J such that H®(t}) is relatively compact in'Y .

Lemma 1.2.34 [23, Page 62] Let M C Cy(Ry,R). Then M is relatively compact in Cp(Ry, R)
if the following conditions hold:

(a) M is uniformly bounded in Cy(Ry,R).

(b) The functions belonging to M are almost equicontinuous on R, i.e. equicontinuous on
every compact interval of R,.

(c) The functions from M are equiconvergent, that is, given € > 0, there corresponds T'(g) > 0

such that |x(t) — 1| < e for any t > T(e) and x € M.

Concluding remarks

Compactness criteria in typical function spaces not only constitute important results describing
properties of these spaces, but they also give a basic tool for investigating the existence of
solutions to nonlinear equations of many kinds. The best known criterion is the Arzela-Ascoli
theorem that gives necessary and sufficient conditions for compactness in the space of continuous
functions defined on a compact space X and taking values in R or, more generally, in any
Banach space E. The natural topology in C(X, F) is the topology of uniform convergence

given by the norm || f|| := sup || f(z)||g. If X is not a compact space but only a locally compact
zeX
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1.2. Compactness and noncompactness

one, Arzela-Ascoli theorem gives a compactness criterion in the space of continuous functions
C(X,Y), where Y is a metric space, with the topology of compact convergence ([62], page
290). A sequence (f,,) tends to f € C(X,Y), if fu|k — f|x uniformly for each compact subset
K C X. If one needs the boundedness of this limit f, then one should work in the space of
bounded continuous functions C,(X,Y) with its natural topology of uniform convergence. To
deal with bounded closed subsets that are not compact, mathematicians introduced the concept

of mesaures of non compactness.

1.2.2 Kuratowski’s measure of noncompactness
In what follows, we consider a real Banach space (E,||.||) and we let Qg be the class of all

bounded subsets of F.

Definition 1.2.35 (Measure of noncompactness) A fonction ¢ : Qp — [0, +00[ is called

measure of noncompactness if it satisfies the following conditions:

1. p(A) =0 <= A is relatively compact, VA € Qp.
2. ¢(A)=¢(A), VA € Qp.

3. (A1 UAy)) =max{p(A1),9(As)}, VAL, Ay € Q.

There exist many measures of noncompactness, in the following, we shall present some of the
most used in application. We will focus on Kuratowski measure of noncompactness since it is

the one that we will use throughout this document.

Definition 1.2.36 The Kuratowski measure of noncompactness (KMNC' for short)

a: Qg — [0,+00) is defined as

a(V):inf{5>O : 3(Vi)ie, C E such that VCU Vi and diam (V;) <6, ‘v’izl,...,n},

i=1
where diam (V;) = sup{||x — y||g, X,y € Vi} is the diameter of V;.
Proposition 1.2.37 (Monotonicity) Let A and B be bounded subsets of E such that A C B.
Then

a(A) < a(B)
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1.2. Compactness and noncompactness

Proof. The proof comes directly from the Definition 1.2.36. =

Proposition 1.2.38 (Invariance under passage to the closure) Let A be a bounded sub-
set of E. Then

a(A) = a(4)
Proof. Since A C A, we get

a(A) < a(A). (1.1)
Let now, £ > 0 be arbitrarily chosen and fixed. Then there exists a partition

AclJ4
j=1
such that
A CE,
diam(A;) < a(A) +¢, j € {1, ---,m}.

Now, using that

AclJ4
j=1
and
diam(4;) = diam(A4;)
< a(A)+e, je{l,--- ,m},
we obtain

a(A) < a(A) +e.
Because € > 0 was arbitrarily chosen, we obtain
a(A) < a(A). (1.2)

From (1.1) and (1.2), we get

a(A) = a(A).
This completes the proof. m

Proposition 1.2.39 (Subadditivity) Let A and B be bounded subsets of E. Then

a(AUB) =max (a(A),a(B)).
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1.2. Compactness and noncompactness

Proof. Let

n = max(a(A), a(B)).

Then

n<alAUB). (1.3)

Take € > 0 arbitrarily. Then there are partitions

m k
AclJ4,B=]B,
j=1 =1

such that
A, C E,
B, C E,
diam(A4;) < a(4)+e
< n+e, jG {L 7m}
diam(B;) < «a(B)+e
< n+e, 16{17 7k}
Because
m k
AUBC (UAj> U (U&) :
j=1 I=1
we get

a(AUB) <n+e.
Since € > (0 was arbitrarily chosen, we go to
a(AUB) <n. (1.4)

From (1.3) and (1.4), we arrive to

a(AUB) =n.
This completes the proof. m
Proposition 1.2.40 (Algebraic subadditivity) Let A and B be bounded subsets of E. Then
a(A+ B) < a(A) + «(B),

where

A+B={x+y: €A, ye B}.
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1.2. Compactness and noncompactness

Proof. Take ¢ > 0 arbitrarily. Then there are partitions

j=1 =1
such that
Aj C E,
B, C ,
dlam<AJ> < Oé(A) +e, .] € {17 t 7m}
diam(B;) < «a(B)+e¢, le{l,--- k}.
Denote
Vi={r+y:xe€AjyeB;}, je{l,--- ,m}, le{l, -k}
we have .
avs e U (0w)
j=1 \U=1
k m
= U UV
=1 \j=1
and
diam(V;;) < diam(A;) + diam(B;)
< af(A)+e+a(B)+e
= a(A)+a(B)+2e je{l,--- ,m}, le{l, -k}
Consequently

m k
AclJ4, BB

a(A+ B) < a(A) + a(B) + 2.

Because € > 0 was arbitrarily chosen, we get

This completes the proof. m

Proposition 1.2.41 (Invariance under shifting) Let A be a bounded subset of E. Then

Proof. Proposition 1.2.40 yields a(A + {z}) < a(A) + a({z}) = a(A). Note that

a(A+ B) < a(A) + o(B).

a(A+{z}) = a(A).

a({z}) < diam({x}) =0 = a({x}) =0.
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1.2. Compactness and noncompactness

Hence

A=At o) +{o} = a(d)=a(A+ {2} +{-o}) < o(A+ {r}) + a({—s})
= «a(Ah) < a(A+{z}).

Then a(A+ {z}) =a(A). =
Proposition 1.2.42 (Semi-homogeneity) Let A be a bounded subset of E and A € R. Then
a(AA) = [Aa(A),

where

M={X z: ze A}
Proof.

1. Let A = 0. Then

A = {0},

Hence,

0=a(AA) = |Na(A).

2. Let A # 0. Take € > 0 arbitrarily. Then there is a partition

Ac |4,

j=1

such that
A; CE,
diam(4;) < a(A)+e¢, je{l,--- ,m}.
We have
A = J(A4))

j=1

and
diam(AA4;) < [A|(a(4) +¢).

Consequently,

a(AA) < [Aa(A) + | \e.
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1.2. Compactness and noncompactness

Because € > 0 was arbitrarily chosen, by the last inequality, we get
a(AA) < [A|a(A). (1.5)
On the other hand, using that
A= X"(\A),

as in above, we obtain
a(A) = a(AH(NA))
< [AlTla(r4),
whereupon
IAa(A) < a(AA). (1.6)
From (1.5) and (1.6), we get

a(AA) = [N a(A).
This completes the proof. m

Proposition 1.2.43 (Invariance under the convex hull) (/34/, pp 8-11).

Let A be a bounded subset of E. Then
a(convA) = a(A).

Proof. The proof follows from the following facts:
(a) diam(A) = diam(conv A),
(b) A C convA = a(A) < a(conv A),

and uses the following Caratheodory’s characterization of the convex hull:

conv A = {Z)\iai, a €A, ne N\ >0, Z)\izl}.

i=1 i=1

Proposition 1.2.44 (Lipschitzianity) Let A and B be bounded subsets of E. Then

(A) = a(B)| < 2du(A, B),
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1.2. Compactness and noncompactness

where dy(A, B) denotes the Hausdorff distance between the sets A and B, i.e.,

(A, B) = max {supa, B) sy, )}

€A yeB

where d(-,-) denotes the distance from an element of E to a subset of E.

Proof. Take ¢ > 0 arbitrarily. Then there exists a partition A C |J A; such that
j=1

A, C E,
diam(4;) < a(A)+e,j€{1,---,m}.
Let
p=dn(A B)+e
and define

Bj:{yGBZEIZL’GA]’ : ||$_y|| <:u}a]€{1a 7m}‘
Since dp(A, B) < p, we have B = |J B;. Let j € {1,--- ,m} and y;, y» € B; be arbitrarily

j=1
chosen. Then there exist 1,29 € A; such that

s =l < n

|z — w2l < n

Hence,
ly1 = vl = llyi =21+ 21 — 22 + 22 — 12|
< lyr — 2l + [y — 22l + [[22 — w2l
< 2p+ diam(A;).
Therefore
diam(B;) < 2u+ diam(A;)
< 2dp(A,B) +2e+a(A)+e
= 2dy(A,B)+ a(A) + 3¢
and

a(B) < 2d,(A, B) + a(A) + 3.

As in above, one can prove

a(A) < 2d(A, B) + o(B) + 3¢.
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1.2. Compactness and noncompactness

consequently

|a(A) — a(B)| < 2d,(A, B) + 3¢.
Because € > 0 was arbitrarily chosen, we obtain
[a(A) — a(B)| < 2d,(4, B).
This completes the proof. m

Remark 1.2.45 [t is not easy to calculate the measure of noncompactness for any bounded

subset. Hence, we only know it from its different characteristics.

Historically, KMNC given by (1.2.36) was the first measure of noncompactness introduced in
nonlinear analysis in connection with metric spaces [53], 1930. Other measures of noncompact-
ness have been defined since then. The most important ones are the measure of noncompactness
of Hausdorff [41], 1957 and the measure of noncompactness of Istratescu [49], 1972. In what

follows, we give the definition of these measures.

a) The Hausdorff measure of noncompactness (HMNC for short), also called ball measure of

noncompactness, v : Qg — [0, +00) is defined by
v(V) =1inf{e > 0: there exists a finite € — net for V in E},

where by e-net, we mean a set {z1, 29, - , 2, } C F such that the balls

B(z1,¢), B(z2,€), -+ , B(zm,€) cover V.

b) The Istratescu measure of noncompactness (IMNC for short), also called lattice measure of

noncompactness, y : Qg — [0, +00) is defined by

X(V) =sup{p > 0: there exists a sequence (x,), in V such that ||z, — x,|| > p for m # n}

Lemma 1.2.46 Let (E,d) be a metric space. For any set V € Qg, we have

(V) <a(V) <29(V).
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1.2. Compactness and noncompactness

Proof. Define the sets:

KWV) = {0>0:3neN, 3(V;), C E such that V C |J V; with diam(V;) <4, V1 <i<n}.

=1

HV) = {e>0:3meN, 3{z,2,--+,2zm} C E, such that V C |J B(z;,¢)}.

=1

The following inclusions are immediate.
2H(V)Cc K(V)C H(V).

Indeed,
(a) Given § € K(V'), we have
dn €N, 3(Vi)iL, C E such that V C | JV; with diam(V;) <6, V1 <i<n.
i=1

Since V; is bounded for all 1 <17 < n, then
Vi C B(z;,6), withz; € V;, V1 <i<n.

Hence,
N n

UWCUM%&iVCOM%&

=1 =1 =1

Therefore,

ye H(V), and K(V)C H(V).

(b) For e € H(V), there exist m € N and {z1, 22, -+ , 2} C E such that

V C U B(z;,€) where diam(B(z,¢)) <2¢, V1 <i<m.
i=1

Therefore

20 e K(V)=2H(V) C K(V).

Immediately, we have

(i) 2H(V) c K(V) Cc H(V). Hence

inf(H(V)) <inf(K(V)) < 2inf(H(V)) and y(V) < a(V) < 2v(V).

29



1.2. Compactness and noncompactness

(ii) Taking n = 1 and § = diam(V), we get V' C V. Then

diam(V) € K(V) = inf (K(V)) < diam(V),
= (V) < diam(V),

= (V) < a(V) < diam(V).

Proposition 1.2.47 Let E be a metric space and A C E be a bounded subset.

a(A)=0 <& v(A4)=0

< A s totally bounded.
Proof. The first equivalence follows from Lemma 1.2.46. As for the second one, we have

7(A)=0 < inf{e>0:A hasan e-net} =0
< A has an e-net, Ve >0

< A totally bounded.

Recall that a subset
1. A is totally bounded if and only if A has an e-net, for all £ > 0.

2. H(A) ={¢ > 0: A has an e-net}.

Corollary 1.2.48 Let E be a complete metric space and A C E be a bounded subset.

We have

a(A) =0« ~v(A) =0< A is relatively compact.

Proof. According to Proposition 1.2.47, if one MNC is zero, then A is totally bounded.
Since A is a closed subset of the complete metric space E, then A is compact. The reverse

implication is clear. m
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1.2. Compactness and noncompactness

Remark 1.2.49 Let A C B C E be two bounded subsets of the metric space E. Then if B
is relatively compact, then A is relatively compact. Moreover if A is relatively compact subset
of E, then 0 = a(A) < a(B), that is the farther B is from A, the larger is its measure. This

Justifies why o and v are called measures of noncompactness (MNCs).

Recall the classical result from functional analysis.

Lemma 1.2.50 (Riesz Lemma) [70] A normed linear space is finite-dimensional if and only if

its closed unit ball is compact.

Proposition 1.2.51 Let B = B(0,1) be the unit ball in a Banach space (E, || - ). Then

0, if dim(FE) < oo,
V(B) =
1, if dim(E) = oc.

Proof. By Riesz Lemma, we have, since F is complete

dim(FE) < oo < B is relatively compact
& B is totally bounded
< v(B) =0.

Assume now that diam(E) = co. Then
B(0,1) C B(0,1) =1 € H(B) = ~v(B) < 1.

To prove that v(B) = 1, we proceed by contradiction and assume that v(B) < 1 and

let 0 <& <1—~(B). Then there exist ¢ > 0, m € N,{z1, 22, , 2z} C E such that
B C UB(Z’i,&?) and y(B) <e<y(B)+e<1.
i=1

Since B C |J B(z;,¢), thus

=1

7(B) < max 5(B(z;¢))

= ~(eB)
= 57(3).

By Riesz Theorem, v(B) # 0, which is a contradiction with 1 > ¢, s0 y(B) =1. m
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Corollary 1.2.52 Let (E,|| - ||) be a Banach space and B = B(xg,r) C E. Then

0, if dim(F) < oo,
V(B) =
r, if dim(E) = occ.

Proof. Since B(xzg,7) = {xo} +rB(0,1), then

Y({zo} +rB(0,1)),
= 7(rB(0,1)),

= m(B(0,1)),
0, if dim(F) < oo,

v(B(o,7))

r, if dim(E) = occ.

Remark 1.2.53 Let (E, || - ||) be a normed space and S the unit sphere.

Since conv(S) = B(0, 1), from the properties of KMNC and HMNC, we deduce that
B(S) = B(conv(S)) = B(B(0,1)) = B(B(0,1)), where §=a orf=17.
However, in order to compute «(B(0, 1)), we need the following lemma.

Lemma 1.2.54 (Ljusternik-Schrinelman-Borsuk Theorem)[82]. Let S be the unit sphere in a
normed space E with dim(E) = n. Then, for every covering of S by closed sets (A;)l, there

exists at least one set A;, that contains two antipodal points of the sphere S.
Recall that, two points on the sphere are antipodal if they are opposite through the center.

Proposition 1.2.55 Let (E,|| - ||) be a normed space and B = B(0,1) be the unit ball in E.
Then
0, of dim(F) < oo,
. (B)
2, if dim(F)= .

Proof. By Riesz Lemma, we have

dim(E) < oo = B(0,1) is relatively compact,

= «(B)=0.
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1.3. Related classes of mappings

Assume that dim(E) = co. Then by Proposition 1.2.51

v(B) < a(B) <2vy(B) = a(B) < 2.

By contradiction, assume that a(S) = «(B) < 2 (by Remark 1.2.53). Then
Ve e (0,2—a(S)), I3n >0, I(A;)", (chosen closed) such that
Sc|JA; with diam(A;) < a(S)+e <2, Vi€ [1n].
i=1
Let L = {xy,x9, -+ ,x,} be a linearly independent subset of £ and F' = [L].
Then dim(F) =n. Let S,, = {x € F': ||z|| = 1}. Then SNS,, = S5, € J(S,NA;) with diam(S,N

=1
A;) < diam(A;) < 2, Vie [1,n]. This is a contradiction with Lemma 1.2.54. Therefore

a(B) = 2.

m The Kuratowski measure is very important in application since it does not only give a new
tool to deal with bounded sets in infinite dimension spaces but also helps to define new classes

of operators that we will see in the next section.

1.3 Related classes of mappings

1.3.1 Compact and completely continuous maps

Let (E,|| - |lg), (F,|| - |#) be two Banach spaces and f : E — F a map. Qg will denote the
family of all bounded subsets of F.
We start by giving the definition of a bounded map, a compact map and a completely

continuous map.

Definition 1.3.1 Let f: D C E — F be a map. f is said to be:

(1) bounded if it maps bounded sets into bounded sets;

(2) compact if the set f (D) is relatively compact;

(8) completely continuous if it is continuous and it maps bounded sets into relatively compact

sets.
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1.3. Related classes of mappings

Remark 1.3.2 1. If f is a continuous map and D is a bounded set, then the definitions (2)

and (8) coincide.

2. For finite-dimensional spaces, continuous and completely continuous operators are the
same. Indeed, if M C D is bounded, then M is relatively compact, since dim(E) < oo.

Then f(M) is compact, and hence f(M) is relatively compact, since f(M) C f(M).

Example 1.3.3 Let G : |a,b] X [a,b] — R be a continuous function and

T :C([a,b],R) = C([a,b],R) be the linear operator defined by

b
Tx(t) :/ G(t,s)z(s)ds.
Then T is compact.

Example 1.3.4 Let f be a p-integrable function on [0,1](1 < p < o0) and define F by

Flz) = /O " ryt.

Let ‘H be the set of functions F corresponding to functions f in the unit ball of the space
LP([0,1]). If q is the Hélder conjugate of p, then Hélder’s inequality implies that all functions
in H satisfy the Hoélder condition with o = % and constant K = 1. Hence, H is compact
in C([0,1]), that is the correspondence f — F' is a linear compact operator from LP([0,1]) to
C([0,1]). Composing with the injection of C([0, 1] into LP([0,1]), we find that F' acts compactly

from LP(]0,1]) into itself.

Example 1.3.5 Typical examples of compact operators on infinite-dimensional spaces are in-

tegral operators with sufficiently regular conditions. Set
b
(Tt = [ Klts.als)ds,

(Sx)(t) = /t K(t,s,z(s))ds for all t € [a,b].

Suppose we have a continuous function

K :la,b] X [a,b] x [-R, R] — R,
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1.3. Related classes of mappings

where a,b € R. Set

M = {x € C([a,0]),K) : [lz]| < R}.

Then the integral operators S and 7" map M into C([a,b], R) and are compact and continuous.

Proof. We will consider the operator S. The remaining cases are treated similarly.

(I) The set A = [a,b] X [a,b] x [-R, R] is compact, whence K is bounded and uniformy
continuous on A. Thus, there is a number ¢ such that |K (¢, s, z)| < 4, for all (¢,s,x) € A,

and for every € > 0 there is a 0 = d(¢) > 0 such that
| K (t1, 51, 1) — K(tg, 89, x2)| < €
for all (;,s;,2;) in A, i = 1,2, satisfying [t; — to| + |S1 — Sa| + |21 — 22| < 0.
(II) Let 2 = Sz and v € M. Then
|z(t)] < |/tK(t,s,x(s))ds| < (b—a)d, forallt € |a,b].
Furthermore, for |t; — t5] < min(d, e), we have the inequality

2(t1) — 2(t2)| = |/1K(t1,s,x(s)ds—/ZK(tQ,s,x(s))dS\

— |/“ K(tl,s,x(s))ds—/atl K(ta, s, 2(s))ds
_ / K(ty, s, 2(s))ds|

(b—a)e+[t;1 —t2|0 < ((b—a)+d)e.

IN

(III) The inequalities in (IT) are uniformly true for all z = Sx with arbitrary z € M. By the

Arzela- Ascoli theorem, the set S(M) is relatively compact.

(IV) The operator S is continuous on M. To see this, let (x,) be a sequence in M with
|z, — z|| = 0 as n — oo, i.e, the functions z,(-) converge uniformly on [a, b] to x(-).

Let z, = Sz, and z = Sx. Then, Lebesgue’s dominated convergence theorem leads

2=zl = max[2(t) = z(t)

a<t<b

= max|/ (K(t,s,x(s)) — K(t,s,2,(s)))ds|

— 0 asn — oc.
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1.3. Related classes of mappings

Note the uniform continuity of K and the uniform convergence of the functions z,(-) to

(IT1) and (IV) together imply that S is completely continuous. m

1.3.2 k-set contraction maps

We consider two Banach spaces (E, |- ||) and (F, || - ||)and we let Qg be the class of all bounded

subsets of F'and f: E — F.

Remark 1.3.6 Lipschitz maps can be characterized by:
f is k — Lipschitz <V A € Qp, diam(f(A)) < kdiam(A).
Indeed,

fis k— Lipschitz = 3k >0:|f(z) = fWllr <kl|z—yl|g, Va,y € A;
= [[f(x) = fW)lr <k sup ||z —yl|r = kdiam(A), Vx,y € A;

T,yeEA

= diam(f(A)) < kdiam(A).
Conversely, let A ={z,y} € Qp. Then

diam(f(A)) < kdiam(A) = [[f(z) = f(W)llr < kllz —ylle

= [ is k— Lipschitz.

The observation in Remark 1.3.6 suggests to introduce k-set Lipschitz maps for the Kuratowski

measure of noncompactness a:

Definition 1.3.7 (a) f is called a k-set contraction, for some number k > 0, if it is continuous,
bounded and

a(f(A) < ka(A), VA € Qp.

(b) f is called a 1-set contraction, if k = 1.
(¢) f is called a strict k-set contraction if 0 < k < 1.

(d) f is called a condensing, if VA € Qg with a(A) > 0, we have a(f(A)) < a(A).
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1.3. Related classes of mappings

Example 1.3.8 Let E be an infinite dimentional Banach space and let T : E — E be defined

by:

—x, if x| <1;
e o)

Then, T is a 1-set contraction. To see that, it suffices to show that for all subset K of E, we
have T(K) = conv(—K U {0}). Indeed,

let v e K. If ||z|]| <1 then T(z) = —x € =K. If ||z|| > 1, then

T(x) = +—(—z) 4+ (1 — —)0 € conv(—K U {0}).

1 1
] ]

Thus, By Propositions 1.2.42, 1.2.39, 1.2.58, 1.2.37 and the fact that a({0}) = 0 we have
a(T(K)) < a(conv(—K U {0})) = a(K).
which shows that T is a 1-set contraction.

Remark 1.3.9 (a) f is completely continuous if and only if f is 0-set contraction. Indeed

fis completely continuous = f(A) is compact, VA € Qp,

= a(f(4)) = a(f(4) =0,

= f s 0 — set contraction.

Conversely,

f is 0 — set contraction = o(f(A)) =a(f(A) =0, VA€ Qpg,

= f(A) is compact, (since E is complete),

= f s completely continuous.

(b) If f is a strict k-set contraction, then f is condensing. Indeed, let A € Qg with a(A) > 0.
Then, since f is a strict k-set contraction, there exists 0 < k < 1 such that o(f(A)) < ka(4) <
a(A), that is f is condensing.

(c) If [ is condensing, then f is 1-set contraction. Indeed, suppose that f is condensing. Then

(i) if a(A) > 0, then a(f(A)) < a(A) = f is 1-set contraction,
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1.3. Related classes of mappings

(ii) if a(A) = 0, then A is compact and E is complete. Hence f(A) is compact for f is
continuous. As a consequence o f(A)) =0 < a(A), since f(A) C f(A) and af(A)) = 0).

(d) Let f: (E,| - |lg) — (E,] - ||r) be a k-set contraction, and g : (E,|| - ||g) — (F,]| - ||r) be
a completely continuous mapping. Then f + g is a k-set contraction. Indeed let A € Q. We

have

a((f+9)(4) = alf(4)+g(A),

Hence f 4+ g is a k-set contraction.

Proposition 1.3.10 Every k-Lipschitz map is a k-set contraction (with respect to the Kura-

towski measure of noncompactness).
Proof. Let A € Qf. Then
Ve>0, 36.>0, IneN, I{A, A, A} CE:Ac| A,
i=1

with diam(A;) < 6., Vi€ {1,...,n} such that a(A) <. < a(A) + . We have

fA) Cf (U A,) = f(4).

=1

Then

1<i<n 1<i<n

a(f(A) <a <U f(Al)> < max a(f(A4;)) < max diam(f(A;)).

By Remark 1.3.6, we have

a(f(A)) < max diam(f(A;)) < max kdiam(4;), (since f is Lipschitz)

T 1<i<n 1<i<n

< kéd.<k(a(A)+e), Ve > 0.

Hence a(f(A)) <ka(A). =
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1.3. Related classes of mappings

Remark 1.3.11 In case of the Hausdorff MNC, we can show in a similar manner that every
k-Lipschitz map is 2k-set contraction. Thus, according to Propositions 1.2.51 and 1.2.55, we
can say that every k-Lipschitz map is 5(B(0,1))k-set contraction, where 5 is either o or ~y and

B(0,1) the unit ball.

PI‘OpOSitiOD 1.3.12 Let f : (El, || . ||E1) — (EQ, || . ||E2) and g : (El, || . ||E1) — (EQ, || : ||E2)
be ky-set and ky-set contraction, respectively. Then f+ g : (Ey, || - |lg) — (Eo, || - ||lg,) is a

(k1 + k2)-set contraction.

Proof. Given A € Qg, we have

a(f(A)+9(4)) < a(f(4) +a(g(4))

Proposition 1.3.13 Let f: (Ey,| - ||g) = (Ea | - ||g) and g : (B2, || - ||lg,) — (Es, || - ||Es) be
ki-set and ko-set contraction, respectively. Then go f : (Ev, |- ||g,) — (Es, |- ||&s) @5 a k1.ka-set

contraction.
Proof. Let A € Q. Then

alg(f(A))) < koa(f(A)) (since g is ke-set contraction)

< ko.ky a(A) (since f is ki-set contraction).

1.3.3 Expansive and nonexpansive maps

Definition 1.3.14 Let A mapping T : D C X — X, where (X, d) is a metric space.

(1) T is called expansive, if there exists a constant h > 1 such that

d(Tz,Ty) > hd(xz,y) forall z,y € D;
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(2) T is called nonexpansive, if
d(Tz, Ty) < d(z,y) for all z,y € D;
(3) T is called a contraction, if there exists a constant 0 < k < 1 such that
d(Tx,Ty) < kd(xz,y) forall z,y € D;
(4) T is nonlinear expansive (or -expansive) if
d(Tz,Ty) 2 ¥(d(z,y)), Va,y € D,
where 1 : [0,00) — [0,00) satisfies 1(0) =0 and ¥(t) > t, for allt > 0.
(5) T is called a nonlinear contraction (or a ¢-contraction) if
d(Tz,Ty) < ¢(d(z,y)), Va,y € D,
where ¢ : [0,00) — [0,00) satisfies ¢p(0) = 0 and ¢(t) < t, for all t > 0.
Example 1.3.15 (1) Let T : R, — R, be defined by Tx = 2+ \x. Then T is expansive with
constant h = \ > 1.
(2) Let T : R — R be defined by Tz = e®. Then T is ¢-expansive with ¢(t) =t + 5t Indeed,
Va,y € R, |e — €] = emh e (el - 1) > [y + e -y

(8) In [33, Example 3.3], it is showed that, if v is the unit ball retraction of an infinite Ba-

nach space X, then T' = —r is a 1-set contraction and I —T is h-expansive with constant h > 1.

Remark 1.3.16 Noting that:

(1) If we take ¥ (t) = ht with h > 1, the nonlinear expansive in (4) reduces to an expansion with
constant h.

(11) If we take ¢(t) = kt with 0 < k < 1, the nonlinear contraction in (5) reduces to a contraction
with constant k.

(11i) The sum of a nonexpansive map and a completely continuous one is a 1-set contraction.
(vi) The sum of a contraction and a completely continuous map is a strict k-set contraction,

hence a condensing mapping and then a 1-set contraction.
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The following example demonstrates the usefulness of writing a map as the sum of two other

ones to study it properties. Precisely, it is illustration of point (iii), Remark 1.3.16.

Example 1.3.17 Let I} = {x = (v1,29,23,24,...) : Y, |xs] < 00} the set of sommable se-
n=1
quences provided with the norm ||z||y = > |z,|. Then the mapping T : B, — By, defined as

n=1

follows :
T(x) = (1= |2a], 21,22, . Tn, o),
n=1

15 a 1-set contraction. It is obvious that with a direct reasoning we can only show that T is a

2-Lipschitz, it is then a 2-set contraction. Indeed, for all x = (x,),y = (y») in By, we have

1T () = Tl = D> (lynl = lzal)| + D 20 = yal < 2l|2 = yll1.
n=1 n=1

Now, to show that T is a 1-set contraction, we consider
T=S+R,

where S, R : B;, — By, are tow continuous maps defined by

S(l‘) = (1 - Zl |$n|)€1 = (1 - Zl |l‘n|,07070, )7

R(x) = lxn€n+1 = (0,-’E2,ZL'3,$4, )
n=

In what follows, we show that S is a compact map and R is a nonexpansive one.

Let (20™),,en such that (™) = (xgm), xém), s xq(lm), ...) a sequence of By, it is easy to show that

the sequence (Y men such that
y ™ = ™y ) = S = (1= [20M],0,0,0, ),
n=1

has a convergent subsequence in ly. In fact, for all m € N, we have |$7(1m)| <1,
n=1

50 \yr(Lm)| <1 (n=1,2,3,...). Hence, the sequence (yq(zm))m is bounded in R, which implies the

existence of a convergent sub-sequence (yflm’“)) such that y,(lmk) — Yn, when my — 400.

Thus, § = (J1, Y2y -, Un, --.) € Ly and ||y™) — gl = 3 |yq(lm’“) — Yn| = 0 when my — +oo.
n=1

Therefore, S is a compact, continuous map.

In the other hand, for all x = (x,),y = (y,) in By, we have

1R(2) = R)lli =0+ D |20 = yal < [z =yl

n=2
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Therefore, R is a nonexpansive map.

Now, we give some properties and results of expansive mappings that will be useful in the

sequel.

Lemma 1.3.18 Let (E,||.||) be a linear normed space and D C X. Assume that the mapping

T :D — E is expansive with constant h > 1. Then the inverse of T : D — T(D) exists and
-1 -1 1
1T Ty < 2lle —yll, Y,y € T(D).
Proof. It is a direct consequence of the definition of expansive mapping. =

Proposition 1.3.19 ([80, Lemma 2.1]) Let (E, ||.||) be a normed linear space, D C E, and I
be the identity map of E. If a mapping T : D — E is expansive with a constant h > 1, then the

mapping I —T : D — (I —T)(D) is invertible and

(7 =T) e — (I =T)7 'yl < |z =yl forall z,ye (I —-T)(D).

h—1
Proof. For each x, y € D, we have
(I =T)x— (I =Tyl =Tz —Ty) — (x —y)l| = (h =Dz =y, (1.7)

which shows that (I —T)~!: (I — T)(D) — D exists. Hence, for z,y € (I —T)(D), we have
(I-T) 'z, (I —T) 'y € D. Thus, using (I —T) 'z, (I —T) 'y substitute for z,y in (1.7),

repesectively, we obtain

(7 =T)"2 = (I =T) "yl < s— ll= =yl

Proposition 1.3.20 [79, Lemma 2.5] Let (E, ||-||) be a linear normed space, M C E. Assume
that the mapping T : M — E is a contraction with a constant k < 1, then the inverse of

I-T:M— (I —-T)(M) exists, and

I =T)" e = (I =T)yll <A =k) "z —yll forall z,ye I —T)(M).
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Proposition 1.3.21 [30] Let (E,|.||) a normed space. We have
(a) If T is ¢-contraction, then (I —T) is 1p-expansive, invertible, and (I — T)~! is continuous
mapping.

b) If T is -expansive, then (I —T) is (1) —1)-expansive, invertible, and (I —T)~' is continuous
(b) If T is ip-exp , D , ,

mapping.
Proof. (a)

(I =Tz = (I =Tyl = [lz—=yll = 1Tz =Ty
> |z =yl = o(lz —yll) = &z —yl)),
where 9(s) = s — ¢(s), for s > 0.

(b)
(I =T)e = (I =Tyl = [[Tz—Tyll - [z -yl

> Y(l|lz = yl) = lle = yll = & (llz - yl),
where 1(s) = 1(s) — s, for s > 0. In particular, if ¥(s) = hs with h > 1, then (I — T)~! is

(h — 1)~ -Lipschitz. m

Remark 1.3.22 Let T : R* — R? be defined by T'(x,y) = (y, —x). Then (I —T) is 1 -expansive
with (t) = /2t but T is not a nonlinear contraction, showing that the converse in part (a) is

not true.

1.3.4 Some related fixed point theorems

Let us mention the following fixed point result for expansive mappings which accompanies the

contraction fixed point theorem.

Proposition 1.3.23 ([80, Theorem 2.1]) Let (X,d) be a complete metric space and D be a
closed subset of X. Assume that the mapping T : D — X is expansive and D C T (D), then

there exists a unique point x* € D such that Tx* = z*.

Proof. Since T is expansive, there exists h > 1 such that

d(Txz,Ty) > hd(z,y), Vz,y € D.
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So T : D — T(D) is injective. Hence T7! : T(D) — D exists and it is ;-contraction. Indeed,

Let y1, y2 € T(D), then there exist x1, zo € D such that
d(y1,y2) = d(Tx1, Txg) > hd(wy,2).

Therefore

d(T y1, T ye) < —d(y1,y2), for each yy,y2 € T(D).

1
h
Since, D C T(D), from Banach’s contraction principle, the equation 7'z = x has a unique

solution on D which is the unique fixed point of 7. m

Corollary 1.3.24 Assume that the mapping T : E — FE is expansive and onto, then there

exists a unique point r* € E such that Txz* = x*.

Corollary 1.3.25 Let T : E — E. Assume that there exists a positive integer n such that T"

1s expansive and onto, then there exists a unique point x* € E such that Tx* = x*.

Proof. According to Corollary 1.3.24, there exists a unique point z* € F such that T"z* = x*,
which implies that T'x* is a fixed point of T™. In view of uniqueness, we have Tz* = z*. And
x* is the unique fixed-point of 1. This completes the proof. m

Now, combining the Banach contraction mapping principle and Corollary 1.3.24, we obtain

the following result
Corollary 1.3.26 Let T : E — E. If one of the following conditions holds
(1) the mapping T is a contraction; or
(i1) the mapping T is expansive and onto.
Then there exists a unique point x* € E such that T'x* = z*.
Example 1.3.27 Let g € R, k be a positive odd number, h > 1 and T : R — R defined by
Tx = 28 + ha + x0.

It 1s easy to check that the assumptions of Corollary 1.3.24 are satisfied, so there exists a unique
point ¥ € R such that Tx* = x*. We cautiously note that the Banach contraction mapping

principle cannot be directly applied in this case.
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Remark 1.3.28 (a) A nonexpansive mapping dosen’t necessary have a fived point, as shows

the shift operator v — x4+ v for v # 0.

(b) The identity operator shows that a fixed point for a nonexpansive mapping is not necessary

unique.

Remark 1.3.29 Clearly if T : Q — X is a y-expansive mapping, then T is injective and T~

15 uniformly continuous on the image set.

Proposition 1.3.30 [33, Lemma 3.1] Let Q be a bounded closed convex subset of X and T :
Q — X such that

(a) T is continuous,

(b) (I =T) is P-expansive,

(c) T has a sequence of approximate fized points.

Then T has a unique fized point.

Corollary 1.3.31 Assume that € is a nonempty closed convex subset and T : ) — § satisfies
(a) T is nonexpansive,
(b) I —T is 1-expansive,

Then T has a unique fized point.

Proof. For clarity, let Q = B(0, R). Then (1 — 1) T'is a contraction, hence admits a unique

fixed point z,,, for each n € N. Hence

0 TG = 2l = I7(e) ~ (1= 3 ) Tla)l < 2Tl <

S=

Proposition 1.3.30 completes the proof. m

Remark 1.3.32 (a) Boyd and Wong (1969, [18]) proved existence of a unique fized point for

a ¢-contraction when ¢ is further w.s.c. from the right.

(b)Matkowski ([60], 1975) replaced the condition ¢(t) < t, YVt > 0 by lim ¢"(t) =0, fort >0
n—o0

whenever ¢ is non-decreasing.
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1.4. Topological degree theory

1.4 Topological degree theory

In this section we present an introduction to the concept of topological degree from an analytic
viewpoint. In particular, we summarize two of the most relevant constructions of the degree in
literature: the Brouwer degree for continuous maps between Euclidean spaces of finite dimension
and the Leray—Schauder degree for compact perturbations of the identity in real Banach spaces.
We start by asking the following question : what is the topological degree? As a rough answer,
the degree is a tool, precisely a number, which gives information about the solutions of equations

of the form:
f(z)=v, €0 (1.8)

where
(i) f: X — Y is a given function, supposed at least continuous;
(ii) X and Y are finite or infinite dimensional Banach spaces;
(iii) o is a fixed element of Y
(iv) Q is an open subset of X.

In the cases where a direct computation does not solve an equation as the equation above,
neither give suitable approximations of the solutions, we can look for other methods to get
information about the set of solutions. For example we can ask if the set of solutions is not
empty. Is it finite or infinite? Where the solutions or some of them are? Are the solutions
localized in €27 Are they stable with respect to perturbations of f or yy? And other even more

complicated issues.

1.4.1 Brouwer’s topological degree

After a pioneering work of Kronecker [52] in 1869, the first definition of degree for maps between
Euclidean spaces is due to Brouwer [19] in 1912. In 1951, Nagumo [61] redefines the concept,

today commonly known as Brouwer degree, by an analytical approach, which is different from
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1.4. Topological degree theory

the original Brouwer construction and uses Sard’s Theorem [71]. We give in this section a short

summary of the Brouwer degree with its most important properties.

Axiomatic definition of the degree

We consider the space C(Q) of continuous maps f : Q — R™ with the supremum norm

[flloe = sup [f ()]

€

Let o € R". We will be interested in the following subspace of C(9Q):

K(Q) ={f €C(Q) 150 ¢ (0D}

That is f € K(Q) if and only if f € C(Q) and f(x) # yo for x € 9.
Now, we define a relation in the set K(Q), that will appear to be one of the most important

tools that we will use.

Definition 1.4.1 We call two maps f, g € K(Q) homotopic if there exists a continuous map

H:[0,1] x Q — R", such that

o H(t,-) e K(Q), fort € [0,1];

We call the map H homotopy joining maps [ and g.

Example 1.4.2 Let f,g:[-1,1] = R be given by f(x) = 2 and g(x) = 2. As we can see the

map H :[0,1] x [-1,1] = R given by
H(t,x) = (1 - )f(x) + tg(x)
is a valid homotopy joining f and g.

Let us now proceed to the axiomatic definition of the topological degree.
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Definition 1.4.3 By topological degree we mean the family of maps deg(-,Q,y0) : K(Q) — Z,

defined for open and bounded subset 2 C R™ and satisfying the following axioms:
(A1) (Normalization) If yo € Q, then deg(I,Q,y0) = 1, where I is the indentity map in R";

(A2) (Additivity) Let Qq, Qs C  be such open subsets that Q1NN = 0 and yo ¢ f(Q\(21U027)),

then

deg(f> Q7 yO) = deg(f|mv Qla ?/0) + deg(f|Q72a QQa yO)
(A3) (Homotopy invariance) Let f,g € K(Q) be homotopic, then deg(f, 2, yo) = deg(g, 2, yo).

We call the integer value deg(f,Q,vo) the topological degree of the map f on yo relative to

Other Properties of the degree

We are going to present several simple properties that may be inferred from the set of axioms

presented before.

Proposition 1.4.4 (Invariance on the boundary) Assume f,g € K(Q) are maps satisfying

f(z) = g(x) for x € 9Q. Then deg(f,Q,yo) = deg(g, 2, yo).

Proof. Let us define the homotopy A : [0,1] x U — R™ by

h(t,z) = (1 —1t)f(z) + tg(z).

As we can see that h(t,z) = f(x) = g(x) for all (t,x) € [0,1] x Q. But as f € K(Q), we are
sure that f(x) # yo. This means that maps f and g are homotopic and hence by the homotopy

axiom, we can see that deg(f, Q,vyo) = deg(g, 2, yo). ™

Proposition 1.4.5

d@g(f, wa yO) =0.

Proof. Let us take Q = Q; = Qy, = (). As we can see, we may apply the additivity axiom and

conclude that

deg(fa Qa yO) = d€g(f7 leyO) + deg(f7 927?/0)5
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deg(fa Q)u y()) - d@g(f, Q’yO) + deg(f? @, yO) = 2deg(f7 (Z)»yO)'

Hence

d@g(f, (Da yO) =0.

Proposition 1.4.6 (Excision property). Let f € K(Q).

a) If V.C Q is such open bounded set that yo & f(Q\ V), then

d@g(f, Qa yO) = deg(f7 ‘/7 ?/0)

b) If W C Q is closed and yo ¢ f(W) U £(09), then

de.g(fa QayO) = deg(f>Q \ W7 yO)

Proof. a) Let us take Q; = V and Q5 = (). We can see that applying additivity axiom to the

sets 2, )y, and 25 we arrive to

deg(fv Q> yO) = deg(f|7, ‘/a yO) + d@g(f, ®a yO)

b) Let us take Q; = Q\ W and Q5 = (). We can see that applying additivity axiom to the sets

Qu Qla and QQ we arrive to d@g(f, Qu yO) = deg(f|§)\7W7 Q \ W7 yO) + deg(f7 ®7 3/0) u
Proposition 1.4.7 Let f € K(Q) be such that yo & f(Q). Then deg(f,$2,yo) = 0.

Proof. By using the excision property given above for V' = () and the Proposion 1.4.5, we get

that deg<f7 Q? Z/O) = deg(fu (2)7 Z/O) =0. =

Proposition 1.4.8 (Ezistence property) Assume deg(f,Q,y0) # 0. Then there exists xy € €,

such that f(xg) = yo.
Proof. This is just the logical transposition of the Property given in Proposition 1.4.7. =

Proposition 1.4.9 ( Translation property ) Let f € K(Q). For all z € R",

deg(f, 2, y0) = deg(f — 2,9, y0 — 2).
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Proof. We consider the natural homotopy between (f,yo) and (f — z,yo — 2), that is

h(t,z) = (1 —t)f(z) +t(f(x) — 2) = f(x) —tz and y(t) = (1 — t)yo + t(yo — 2) = yo — t=z.

For ¢t € [0, 1], if there exists some x( in 02 such that h(t, zo) = y(t), that is f(z¢) —tz = yo —tz.
So f(zg) = yo, Contradicting the assumption. The result then follows from the homotopy

invariance axiom in Definition 1.4.3. =

Proposition 1.4.10 ( Continuity property: Continuity with respect to the function and yo)

Let f € K(Q) and r = dist(yo, f(0Q)) > 0. If g : Q@ — R" continuous and z € R" are such that

Sélé)(’g - f|> + |y0 - Z| <r, then deg(f7Q7y0) = deg(g,Q,z).

Proof. Let us note first that r is indeed strictly positive because 2 being bounded leads to 02
is compact, so that f(0€) is closed (in fact compact). Then all point which does not belong
to f(0N)) is at a strict positive distance from this set (i.e., yo & f(0S2) means r > 0). Let
h(t,z) = tg(x) + (1 —t)f(x) and y(t) = tz + (1 — t)yo. If there exist ¢; € [0, 1] and z; € 02
such that t1g(x1) + (1 — t1) f(z1) = t1z + (1 — t1)yo, then

lyo = f(@1)] < talg(ar) — f(z1)| + talyo — 2| < 7 (since [g(z) — f(z)] + |yo — 2| < r), which
contradicts the definition of . The result then follows from the homotopy invariance axiom in
Definition 1.4.3.

Proposition 1.4.11 (Invariance on the connected components of R™\ f(0S2)). Let f € K(Q).

Then, deg(f,$2,-) is constant on the connected components of R™\ f(012).

Proof. The application yy — deg(f, €2, yo) is defined on R™\ f(9€2) and, by the Proposition
1.4.10, is locally constant, we deduce that it is constant on the connected components of

R™\ f(0%2), which ends the proof. =

Remark 1.4.12 The FExistence property shows the main power of the topological degree as the
tool for solving different problems. By showing that the degree has the nonzero value in the given
open set ), we may conclude that there must exists zero of the map f — yo somewhere in the

open set 2. Although we don’t know how the value of the degree may be computed yet, we can
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feel that if this technical issue is overcome, we can have quite nice tool of showing that a solution
to our problem exists. When deg(f,Q,yo) # 0, then not only f(x) = yo admits a solution in €2,

but this equation is still soluble in 2 for every second members in a small neighborhood of vq.

Determinant formula of the degree on K(Q2) N C*(Q,R")

The process of constructing Brouwer’s degree deg( f, €2, o), in this case, is done in two steps.

In the following, we say that yo € f(€2) is a regular value of f if J;(xg) # 0 for all zg € f~'(yp).
The points g € € for which J¢(z) = 0 are called critical points of f. The set of critical points
of f is denoted by K;. We start by defining the degree map (f,Q,vo) — deg(f,2, o) in the

"generic” case, that is, for f € C1(Q,R") NC(,R") and yo € R™ \ f(K; U Q). In this case,
(o) # 0 if and only if yo is a regular value,

in which case f~!(y) is compact and discrete (by virtue of the inverse function theorem, since
Jr(zo) # 0 for all z € f~(yo)); hence f~'(yo) is finite. Therefore, the following definition

makes sense.

Definition 1.4.13 If Q C R" is nonempty, bounded, and open, f € C*(Q,R")NC(Q,R"™), and

Yo € R™\ f(K;U0Q), then

> sgndg(x), if QN fHy) # 0,
deg(f,Q,yo) = { =€ (o)

0, if QN fy) =0,
where signJg(xg) is the sign of the determinant of the Jacobian matriz D f(x).
Then, as a second step in the construction, we remove the assumption that yq is regular, f still

being C!. This step in the construction will be based on the Sard’s Theorem. One fundamental

property of the degree in Definition 1.4.13 is that

deg(f7 Qv 3/1) = deg(f? Q? y2)

whenever y;,y, € R*\ f(K; U 0Q) belong to the same connected component of R™ \ f(9€2).
This property makes it possible to extend the degree to the case of y € f(Ky)\ f(09), i.e., the

next definition makes sense.
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Definition 1.4.14 Let Q C R" be nonempty, bounded and open subset f € C'(Q,R™) N

C(QR"), and yo € f(K;) \ f(0Q). We define

deg(f7 Qa yO) = deg(f? Q> yl)

whenever y; € R™ \ f(K; U 0Q) is such that ||y1 — yol| < d(yo, f(OR2)), (where d(yo, f(OS2))

stands for the distance from yo to f(0N2)).

Remark 1.4.15 In the preceding definition, the existence of y; is guaranteed by Sard’s theorem,
which assures that the set of critical values of f is Lebesque-null in R™.

The degree defined in Definitions 1.4.13 and 1.4.14 for a function f € C*(Q,R™)NC(Q,R")
and yo € R™\ f(0) satisfies the following continuity property: if g € C*(Q,R") N C(Q,R")
satisfies || f — glloo < d(yo, f(O)), thus yo & g(0)), then

deg(f, 2, yo) = deg(g, €2, o).

This leads to the following definition.

Definition 1.4.16 Let Q C R" be nonempty, bounded and open subset, f € C(Q2,R"), and

yo & f(OR2). Then Brouwer’s degree deg(f,€),yo) is defined by
deg(f? Q> yO) = deg(ga Qa ?/0)
whenever g € CL(,R") NC(Q,R™) satisfies || f — glloo < d(vo, f(O)).

In Definition 1.4.16, the existence of g is guaranteed by the density of C*(€2,R") N C(£2, R") in

C(Q,R™).
Example 1.4.17 Let the problem
(P)  Find x € Q such that f(x) = yo,
where n =1 et Q =]0,1] and f : Q — R be a function of a class C' that verifies:
for all solution x of the problem (P), f'(x) # 0. (1.9)

We introduce then the integer

dosgn(f'(x:)), if {xi, i€ I} is the solutions set of (P),
deg(f,Q,y0) = ¢ ! (1.10)
0, if (P)has no solution..
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1.4.2 Leray—Schauder’s topological degree

We now wish to construct a degree with the same purpose as Brouwer’s degree, but in infinite
domension spaces, which means a tool that makes it possible to ensure that an equation of the
form f(z) = yo, where f is continuous from a Banach space X in itself, has at least one solution

x.

An obstruction in infinite dimension

However, we quickly realize, on one example, that there is no hope to such a tool to happen in
the infinite dimension. Indeed, let X = {(z,),>1 C E such that (x,) is bounded ¥n > 1 }, and

S 1 X — X the right shift, that is
S(I) = (O,$1,LE2, c )

Let H(t,x) =ta+ (1 —1)S(x) = (twy, txe + (1 —t)x1, tag+ (1 — t)xo, - - -) the natural homotopy
between [ and S.

We see that, for all ¢ € [0, 1], the only solution of H(¢,x) = 0 is the null sequence. If the Brouwer
degree was defined for all continuous fucntions on X, from homotopy invariance property, we
would get

deg(S, B(0,1),0) = deg(I, B(0,1),0) = 1.

Using homotopy invariance, since dist(0, S(0B(0,1))) = 1 > 0, we still get

deg(S,B(0,1),z) =1 for all z € X close to 0; but for z = (¢, 0,0, - - -) has no precedent by S as
soon as € # 0.

The Brouwer degree in infinite dimension cannot therefore be defined for all continuous appli-
cations of a Banach space X in itself. We must then restrict the functions we are considering.
There exist several degrees in infinite dimension, whose main difference is precisely the classe
of functions to which each applies; the degreee we are going to study here, called the Leray-

Schauder degree, is built on applications that differ from identity by compact application.

93



1.4. Topological degree theory

Definition of the Leray-Schauder degree

The Leray—Schauder degree theory follows from Brouwer’s degree theory. The key step is

provided by the next lemma.

Lemma 1.4.18 Let X be a Banach space, 2 C X nonempty, bounded, and open subset, and
K : Q — X a completely continuous map with 0 ¢ (I — K)(09), so that p := d(0, (I —

K)(0)) > 0. If K1, Ky : Q — X are finite rank maps such that
1K — Klloo < p and K;(Q) € Z for i€ {1,2},
where Z € X 1s a finite-dimensional vector subspace intersecting €2, then
deg((I — K1) lgrz, 2N Z,0) = deg((I — Kb) |grz, 2N Z,0),

where deg((I — K;) |grz, 2 N Z,0) stands for the Brouwer degree of the map (I — K1) |grz€

CQNZ,Z),ie{1,2}.
Now we give the definition of the Leray—Schauder degree.

Definition 1.4.19 Let X be a Banach space, 2 C X a nonempty, bounded, and open subset,
and f : Q — X a compact perturbation of the identity, that is, f =1 — K, where K : Q — X

15 a completely continuous map.
(a) If 0 & f(OR), then the Leray-Schauder degree of the triple (f,€,0) is defined by
degLS(faQaO) :d€g(([—K) ’W?szao)7 (111)

where Z C X is a finite-dimensional vector subspace intersecting Q and K : Q — X is a

finite-rank map such that | K — Ko < d(0, f(0Q)) and K(Q) € Z.

(b) Ifyo € X\ f(O), yo # 0, then the Leray-Schauder degree of the triple (f,Q,vo) is defined
by

degLS(fv Qa yO) - degLS(f — Yo, Q7 0)

Remark 1.4.20 If X =R" (n > 1) and f € C(Q,R"), then f is a compact perturbation of the

identity and degrs(f,$2,y0) = deg(f,$2 yo) for all yo € R™\ f(0Q).
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By virtue of (1.11), the main properties of the Leray-Schauder degree follow from the cor-
responding properties of Brouwer’s degree. We consider triples (f,€2,y9) such that Q@ C X

nonempty, bounded, and open subset, f = I — K, with K : Q — X is completely continuous

map, and yo ¢ f(09).

Theorem 1.4.21 The Leray-Schauder degree map (f,Q,yo) — degrs(f,$,v0), defined on
triples (f,€2,yo) as previously, introduced in Definition 1.4.19, is the unique integer-valued map
satisfying the following properties:

(a) Normalization property:

17 nyo € Qa

07 nyO ¢ Q.

degLS(L Q, yo) =

(b) Additivity property: if Q1,0 C Q are disjoint, nonempty, open subsets and yo ¢ (I —
K)(0921) U (I — K)(09s), then

degLS(I - K7 Ql U 92790) = degLS(I - K? QlayO) + degLS(I - K? QQJ 3/0)7
(c) Homotopy invariance property: if h : [0,1] x Q — X is completely continuous and for

all t € [0,1], letting f = I — h(t,.), we have yo & fi(O), then degrs(fi, 2, y0) does not

depend on t € [0, 1];
(d) FEzistence property: if degrs(I — K, y0) # 0, then there exists x € Q) such that [ — K (x) =
Yos
(e) Excision property: if V. C Q is closed and yo ¢ I — K(V) U I — K(02), then
degrs(I — K,Q,y0) = degrs(I — K,Q\ V,yo);
(f) Continuity with respect to the function property: if K,G : Q — X are completely continu-
ous maps, yo ¢ (I — K)(09), and | K — Gl < d(yo, (I — K)(@9), then yo ¢ (I - G)(00)

and

degLS(I - K7 Qa ZJO) = degLS(I - G7 Q? Z/O)

Moreover, degrs(I — K, Q,.) is constant on each connected component of X \ (I —K)(09);
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(9) Boundary invariance property: if K,G : Q — X are compact maps, K |so= G |sq, and

Yo ¢ ([ - K)(aQ)a then degLS(] - K7 Qv ?JO) = degLS(I - G7 Q??JO))

(h) Translation property: degrs(I — K,Q,yo) = degrs(I — K —u,Q,y9 — u) for allu € X.

1.4.3 Applications of the topological degree
Study of the existence of solutions for nonlinear equations

The topological degree has been constructed with in head the solving of equations of the form

(1.8). It is therefore natural that many of its applications revolve around this problem.

Fixed point theorems

Theorem 1.4.22 (Brouwer fixed point) Let B the closed unit ball of R and let f : B — B

be continuous. Then, f has a fized point: = € B.

Theorem 1.4.23 (Schauder fixed point) Let B the closed unit ball of a Banach space E
and let f : B — B be completely continuous. Then, f has a fized point: there exists x € B

such that f(x) = x.

The Brouwer and Leray-Schauder theorems in question are, however, similar (in fact, the theo-
rem of Brouwer is a special case of Schauder’s theorem, since any continuous map is completely
continuous in finite dimension), and it would be natural to have similar proofs for each of
them. Thanks to the topological degrees, we can give a quick proof and totally common to the
theorems of Brouwer and Schauder.

Proof of the two theorems. If there is a fixed point on 0B, then we are done. Otherwise
f(z) # x for all x € 0B. On this case deg(I — f, B,0) is well-defined; we will show that
deg(I — f, B,0) = 1, which will prove that I — f has at least one zero in B, and therefore f
has at least one fixed point in this set.

Let H(t,r) = tf(x), a continuous function over [0,1] x B (and completely continuous in the

framework of Schauder’s theorem). If, for some t € [0,1] and z € B, we have v — H(t,z) = 0,
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then ¢ f(z) = x; like |x| = 1 and |f(x)| < 1, this imposes ¢t = 1, which leads to a contradiction.

From the invariance homotopy and normalization properties of the degree, we deduce
deg(I — f,B,0) = deg(I, B,0) =1,

which ends proof of the two theorems. m
The topological degree is a much more powerful tool, more general and often even easier to use
than some fixed point theorems. In what follows we give a simple example which confirms this

observation.

Example 1.4.24 Let ¢ : R — R be a continuous function which, for some o, f € R, satisfies
o(a) > o and () < . Then, as an immediate consequence of the intermediate value theorem,
¢ has at least one fized point in («, 3). Suppose now, we can find a second interval (,0) C R
with B < v such that (y) > v and @(0) < 0 then, by the same argument, there exists at least
one fized point in the interior of each of the intervals I) = o, 5], 1o = [8,7], I3 = |7, d].
Suppose now in addition that ¢, is nondecreasing. Then, we find a fundamental difference in
the behavior of p, on the intervals 1;,i = 1,3, compared with its behavior on Iy. In fact, ¢ maps
each of I;,1 = 1,3 into itself, but this is not true for the middle interval I5.

Hence we can deduce the existence of fixed points in each of I;;i = 1,3 also by Brouwer’s
fixed-point theorem. This method generalizes to nonlinear operational equations in infinite-
dimensional spaces, but by this method one does not obtain the “middle” fized point.

Consider now the equivalent problem of finding zeros of the function ¢ : R — R defined by
Y(x) = v — p(x) and suppose for convenience that v is differentiable and has only simple
zeros. Then it is obvious that on each interval 1,7 = 1,2,3, 1 must have an odd number of
zeros. Moreover, if we take an algebraic count of the number of the zeros & has the value +1 if
Y'(€) > 0 and the value —1 otherwise, then, denoting by i(I) the algebraic number of zeros in
the interval I, obviously i(1,) = i(I3) = +1 and i(I3) = —1. Since on the boundary of the large
interval I = I, U Iy U I3 the function ¢ has the same behavior as on the boundary of Iy, we
have i(I) = 1. Hence we see that we can compute i(I5) also indirectly by means of the behavior

formula

i(I) = i(1) — (L) — i(I3) = —1. (1.12)
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But the algebraic number i(I) of zeros of 1 in 1 is nothing else than the one-dimensional version
of the Leray-Schauder degree or, more generally, of the fized-point index for nonlinear mappings

i Banach.
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Chapitre 2

Fixed point index
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2.1 Introduction

We have seen that the Leray-Schauder degree is an important tool, in nonlinear analysis,
allowing to show the existence of fixed points for a mapping defined on an open bounded
subset of a Banach space to this space. But there are many interesting problems for which we
cannot use the entire Banach space, but instead their formulation leads us to a map of a closed
convex subset of a Banach space that is not a vector subspace, as the non solid cones. There
is a generalization of the Leray—Schauder degree, called the fixed point index, that is, designed
to find fixed points of such a map. Our goal in this chapter is to define this index and list its

properties for the class of completely continuous mappings then extend it to larger classes like

the class of strict-set contractions and that of 1-set contraction mappings.
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2.2. Fixed point index for completely continuous maps

Recall that a subset D # () of a metric (more generally : topological) space Y is called a retract
of Y if there exists a continuous map r : Y — D, called a retraction, such that r(z) = =z,
Vx € D. The key to define the fixed point index is the following result of Dugundji [75]:

If X is a nonempty closed, convex subset of a Banach space E, then X is a retract of E. In

particular, every cone P C F is a retract of E.

2.2 Fixed point index for completely continuous maps

Now, we present the definition and the most important properties of the fixed point index in

the class of completely continuous mappings. For more details, see [2, 25, 46].

Theorem 2.2.1 Let X be a retract of E. For every open bounded subset U C X and every
compact mapping f : U — X without fized point on the boundary OU, there exists a unique

integer i(f, U, X) satisfying the following conditions:
(i) (Normalization property). The index i(f,U, X) = 1 whenever f is constant on U.

(11) (Additivity property). Let Uy, Uy be two disjoint open subsets of U such that f has no

fized point on U \ (U, U Us), then
Z(fv UaX) = Z(fv UlaX) +Z(f7 U27X)
where i(f, Uy, X) = i(flg, Ur, X), k= 1,2.

(11i) (Homotopy Invariance property). The index i(h(-,t),U, X) does not depend on the pa-
rameter t € [0,1], where h : U x [0,1] — X is a compact mapping and h(x,t) # x for

everyx € OU and 0 <t < 1.

(iv) (Permanence property). If Y is a retract of X and f(U) C Y, then
i(f,U,X)=i(f,UNY.Y)

where i (f,UNY,Y) =i(flgry, UNY,Y).
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2.2. Fixed point index for completely continuous maps

The integer i (f, U, X) is called fixed point index of f on U with respect to X.
Sketch of the proof.
Let i(f, U, X) satisfying the conditions (i)-(v). With X = FE, conditions (i)-(v) are just the

main properties of the Leray-Schauder degree with
i(f,U, E)=deg(I — f,U,0). (2.1)
Let r : E — X be a retraction. The fixed point index i (f, U, X) is defined by:
i(f,U,X)=i(for,r ' (U),E) =degrs(I — for,r ' (U),0). (2.2)
Indeed, r : E — X is a retraction, thus continuous. Then,

e U C X is open, thus r'(U) C E is also open.

e for:FE — X is a compact mapping, has no fixed point on the boundary dr~*(U) and

satisfies [f or](r—1(U) C X for

for s continuous = [for|(r~1(U)) C [for](r—YU))

By the permanence property of the degree, we have

i(forr H(U), B) = i(for,r (U)NX,X)
= i(for,UX)=i(forlg U X)
= i(f,U,X).

Since (2.1) implies that
i(for,r Y U),E) =degrs(I — for,r—(U),0),

we deduce (2.2). We may further check that (2.2) does not depend on the retraction r. Indeed,
ler r; : E — X be another retraction. Let V := r~1(U) Nr;*(U) and 7y := r. By the excision

property of the Leray-Schauder degree, we find that:

deg((I — forj,rj_l(U),O) =degrs(I — for;,V,0), j=0,1.
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2.2. Fixed point index for completely continuous maps

Define a compact mapping A : [0,1] x V' — X by

h(A,z) = ro[(1 = A)f(ro(x)) + Af (ri(2))]-

Notice that h(A\, z) # z, V(A z) € [0,1] x OV. The Leray-Schauder degree deg(I — h(A,-),V,0)

is well defined VA € [0, 1]. The invariance under homotopy of the degree impliers that:
degrs(I — fory,V,0)=degrs(I — fory,V,0),

and our claim follows. m

Corollary 2.2.2 The fized point index satisfies:

(v) Ezcision property. Let V. C U an open subset such that f has no fized point in U \ V;
then

itf, U, X) =i(f,V, X).
(vi) Existence property. If i (f,U, X) # 0, then f has a fized point in U.
Proof.
(v) Given Uy = U, U, = (), the additivity property of the fixed point index yields
i(f,UX)=i(f,U, X)+i(f,Us, X) =1 (f,U, X)+i(f,0,X).
This implies that i(f,0, X) = 0. Taking U; =V and U, = 0, we get

/L(f7U7X) :i(f7V7X>+Z(f7®7X) :Z(f7V7X)'

(vi) Assume f has no fixed point in U. So f has no fixed point in U U U = U.
Let V = ) in the excision property, i.e U\ V = U. Then i (f,U,X) = i(f,0,X) = 0,

which contradicts the fact that i (f, U, X) # 0.

The fixed point index has been extended to wider classes of maps. We describe three of these

extensions: to the classes of strict-set contractions, condensing and 1-set contraction maps.
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2.3. Fixed point index for strict-set contraction maps

2.3 Fixed point index for strict-set contraction maps

We now describe the definition of the fixed point index for strict-set contractions. For more

details, see [3, 24, 45, 46]. The key result here is the following:

Lemma 2.3.1 Let C be a closed convex subset of a Banach space E. Let U be a bounded open

subset of C and f : U — C be a strict k-set contraction. Then:
(i) there exists a compact convex Coo C C such that f(U N Cs) C Coo.

(ii) there exists a completely continuous map F : U — Co extending the restriction Jim
U N Cy — Co and satisfying Fix(F) = Fiz(f); any two such extensions are homotopic
via a completely continuous homotopy Hy, : U — Cs such that Fix(H;) = 0 for each

t€10,1].
Proof. Define inductively a descending sequence C; D Cy D ... of closed convex sets by setting
C, = conv(f(U)), Cn=conv(f(UNC,_1)).

Letting Coo = N> ,C,, and using f(U NC,_1) C C, gives f(UNCs) C Coo.

Because f is strict k-set contraction,

a(Cp) < ka(Ch_y) < K" 'a(Cy),

and as k € (0, 1), the generalized Cantor’s intersection theorem shows that C.,, is compact.
Now, from [46, Theorem A.5.1], f : U N Cy — Co extends to F' : U — Cs, and since Co

is compact it follows that F' is completely continuous.

If 2 = F(x) for some x € U? then x € UNCy? s0 v = F(x) = f(x), and thus Fiz(F) = Fiz(f).

Now assume that G : U — Cs were another such extension and define a completely continuous

homotopy H; : U — Cs by

Hi(z) = (I —t)F(x) + tG(x).

If # = Hy(x) for some z € U and some t € I then x € U N Cq, and therefore z = F(z) = f(x),

ie., Fix(H;) = Fix(f) for all t € [0,1]. m
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2.3. Fixed point index for strict-set contraction maps

The fixed point index i (F,U,C), i (G, U,C) are the same, and we define
i(f,UC)=1i(F,UZC).

It can be shown that i (f,U,C) satisfies the main axioms for the index on the class of
strict-set contraction maps. In particular, it is also unique.
The basic properties of fixed point index for strict k-set contractions are collected in the

following lemma. For the proof, we refer the reader to [45, Theorem 1.3.5] or [3, 46].

Lemma 2.3.2 Let X be a retract of a Banach space E. For every open bounded subset U C X
and every strict k-set contraction f : U — X without fized point on the boundary OU, there

exists uniquely one integer i (f,U, X) satisfying the following conditions:

(a) (Normalization property). If f : U — U is a constant map ( that is, f(z) = yo for all

v eU), theni(f,U X)=1.

(b) (Additivity property). For any pair of disjoint open subsets Uy, Uy in U such that f has no
fized point on U\ (U UUy), we have

Z(faUaX) :i<f7U17X)+i(f7U27X)7
where i (f,U;, X) ::i(flﬁj,Uj,X), j=1,2.

(¢) (Homotopy Invariance property). The indez i (h(t,-), U, X) does not depend on the param-

eter t € [0,1], where

(i) h:[0,1] x U — X is continuous and h(t,z) is uniformly continuous in t with respect

tox € U,
(i3) h(t,.): U — X is a strict k-set contraction, where k does not depend on t € [0,1],
(1it) h(t,z) # x, for every t € [0,1] and z € OU.
(d) (Permanence property). If Y is a retract of X and f(U) C Y, then
i(f,UX)=1i(f,UNY)Y),

where t (f,UNY,Y) :=i(f|gry, U,Y).
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2.3. Fixed point index for strict-set contraction maps

(e) (Excision property). Let V. C U an open subset such that f has no fized point in U\V.
Then

i(f,UX)=1i(f,V,X).
(f) (Ezistence property). If i (f,U,X) # 0, then f has a fized point in U.

In the following, we compute the fixed point index for the class of mappings under consideration.

Note that these computations follow directly from the properties of this index.

Proposition 2.3.3 Let X be a closed convex of a Banach space E and U C X an open bounded
subset with 0 € U. Assume that A : U — X is a strict k-set contraction that satisfies the Leray-

Schauder boundary condition:
Ax # dx, VxedU, VA > 1.
Then i (AU, X) = 1.

Corollary 2.3.4 Let P be a cone of a Banach space E and U C P an open bounded subset

with 0 € U. Assume that A : U — P is a strict k-set contraction satisfying
|Az|| < ||z|| and Az # x for all x € OU.
Then i (A,U,P) = 1.

Proposition 2.3.5 [}5, Corollary 1.53.1] Let X be a closed conver of a Banach space E and
U C X a nonempty open bounded convex subset of X. Assume that A : U — X is a strict set

contraction such that A(U) C U. Then i (A, U, X) = 1.

Proposition 2.3.6 [/5, Theorem 1.3.8] Let X be a closed convex of a Banach space E and
U C X be an open bounded subset. Assume that A : U — X is a strict k-set contraction. If

there exists ug € X, ug # 0, such that \ug € X, VA > 0 and
x — Ax # dug, Vo € OU, VA >0,

then i (A, U, X) =0.
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2.4. Fixed point index for condensing maps

2.4 Fixed point index for condensing maps

In this section, we explain how to extend the definition of the fixed point index given in section
2.3 to the class of condensing mappings. For more details, (see [6, 46, 67]). In what follows, let
X be a nonempty closed convex subset of a Banach space E, U a relative bounded open set

with respect to X, and U and OU the closure and boundary of U in X respectively.

Let I : U — C be a condensing map with Fiz(F) C U. Take
0<6<dy=inf{||lz — F(z)|| : =z €0U}.
Select any zg € U and let
Ki(r) = (1 —t)xg +tF(x) for x €U and t € [0,1].

Now choosing t, sufficiently close to 1 so that || Ky, (x) — F(x)| < § for all x € OU.

Noting that K;, : U — X is a strict-set contraction with Fiz(Ky,) C U. Thus, we define
i (FUX) =1 (K, U, X).

It can be verified that the definition does not depend on t,, o chosen and that i (F,U, X)
satisfies the main axioms for the index on the class of condensing maps that are fixed point

free on QU. In particular, it is also unique.

2.5 Fixed point index for 1-set contraction maps

Now, we extend the concept of fixed point index to the class of 1-set contraction mappings. For
the proofs and more details, we refer the reader to the reference [48]. Suppose that F : U — X

is a 1-set contraction mapping and 0 ¢ (I — T)0U, so there exists § > 0 such that
inf ||x — Fz|| > 0. (2.3)
xeolU

We set Fj, = kF, where k € (1 — 2.,1), M = sup ||[Fz| + 4.
zeU
Obviously F}, is a strict-set contraction mapping. Thus the fixed point index i (Fy, U, U) is well
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2.5. Fixed point index for 1-set contraction maps

defined. Then we put

i (T,U,X) =i (Ty, U, X). (2.4)

Note that the index i (F,U, X) is independent of T},. In fact, suppose that W; : U — X is a

k;-set contraction mapping (0 < k; < 1) with
Wiz — Fa|| <8, x € 0UG, i = 1,2. (2.5)
We make a homotopic mapping on U as follows
H(t,z) =tWiz+ (1 —t)Wer x€U,tel0,1].

H,: U — X is a l-set contraction mapping, where [ = max{k;, ko}. For every x € U, we have

|l — H(t,z)|| = |z—tWix—(1—t)Waz
> |lo—Tz| —t||Tx — Wiz| — (1 —t)||Tx — Waz||
> §—td—(1—1t)0 =0.

By homotopy invariance property of the index ( Theorem 2.2.1 (iii)), we get
(W, U, X) =i(Wy,U, X).

This equality proves our claim.
The fixed point index i (F,U, X) defined in (2.4)) for 1-set contractions has the following

properties:

(i) (Normalization property). If F': U — U is a constant mapping ( that is, Fa = y, for all

x € U), then i(T,U, X) = 1.

(ii) (Additivity property). If U; and U, are disjoint open subsets of U such that F' has no

fixed point in U \ (U; U Uy), then

i{(F,U,X) = i(F,Up, X) +i(F,Us, X).

(iii) (Homotopy Invariance property). If we assume that

(a) H :[0,1] x U — X is continuous and H(t,z) is uniformly continuous in ¢ with

respect to x € U and 0 & (I — H(t,2))([0,1] x OU);
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2.5. Fixed point index for 1-set contraction maps

(b) H(t,-): U — X is a 1-set contraction;

then i(H(t,-),U, X) = constant for all ¢ € [0, 1].
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3.1. The case where T' is h-expansive mapping and F' is a k-set contraction with 0 < k < h—1

In all what follows, P will refer to a cone in a Banach space E, €2 is a subset of P, and U
is a bounded open subset of P. For some constant r» > 0, we will denote P, = P N B,., where

B.={x € E: ||z| <r} is the open ball centered at the origin with radius r.

3.1 The case where T is h-expansive mapping and F’ is
a k-set contraction with 0 < k< h —1

In [29], Djebali and Mebarki have developped a generalized fixed point index theory for the
sum of a k-set contraction and an expansive mapping with constant h > 1 when 0 < k < h—1.

In what follows, we present the definition of this index as well as some of its properties.

3.1.1 Definition of the index

Assume that T : Q — F is an expansive mapping with constant h > 1 and F : U — E is a

k-set contraction. Suppose that

0<k<h-1,
F(T) c (1-T)(©), (3.1)
and
x#Tx+ Fzx, forall x € 0U NQ. (3.2)

Then z # (I —T)"'Fz, for all z € OU and the mapping (I —T)™'F : U — P is a strict ;X5-set
contraction. Indeed, (I — T)~'F is continuous and bounded; and for any bounded set B in U,

we have

o(((I =T)7'F)(B)) <

By Lemma 2.3.2, the fixed point index i (I —T)"'F, U, P) is well defined. Thus we put

(I=T)"'F.UP) it UNQ
nrirvnap -1 T ) EUNQAD (3.3)

0, if UNnQ=0.
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3.1. The case where T' is h-expansive mapping and F' is a k-set contraction with 0 < k < h—1

This integer is called the generalized fixed point index of the sum T+ F on U N ) with respect
to the cone P.

Using the main properties of the fixed point index for strict set contractions, Djebali and
Mebarki in [29] have discussed the properties of the generalized fixed point index i,.

Theorem 3.1.1 The fized point index defined in (3.3) satisfies the following properties:

(a) (Normalization property). If U = P,, 0 € Q, and Fx = zy € B(—=T0,(h — 1)r) NP for all
z € P,, then

i (T+F,P,NQ,P)=1.
(b) (Additivity property). For any pair of disjoint open subsets Uy, Uy in U such that T + F' has
no fized point on (U \(U; U Us)) N, we have

W (TH+FEUNQYUP)=i. (T+FUNQP)+i. (T+ F,U;NQ,P),

where i, (T'+ F,U; NQ, X) =i (T'+ Flg, U;nQ,P), j=12

(c) (Homotopy Invariance property). The fized point index i, (T + H(t,.),U N Q,P) does not

depend on the parameter t € [0, 1] whenever

(i) H : [0,1] x U — E is continuous and H(t,x) is uniformly continuous in t with respect to

relU,

(i) H([0,1] x U) C (I = T)(Q),

(ii) H(t,.): U — E is a l-set contraction with 0 <1 < h—1 and [ does not depend on t € [0, 1],
(iv) Tx + H(t,x) # x, for allt € [0,1] and x € OU NS

(d) (Ezistence property). If i, (T + F,UNQ,P) #0, then T + F has a fized point in U N Q.
Proof. Properties (b), (c) and (d) follow directly from the (3.3) and the corresponding prop-
erties of the fixed point index for strict-set contractions (see Lemma 2.3.2). We only check that

if U =P,, then

i (I —T) '2,U,P)=1.
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3.1. The case where T' is h-expansive mapping and F' is a k-set contraction with 0 < k < h—1

For this, we show that yo := (I —T) 'z € P, NQ. We have F(P,) = {2} C (I —T)(R), which

gives yo € ) and since T is an expansive operator with A > 1 and F'(P,) C B(—=T170, (h—1)r)NP,

Lemma 1.3.18 guarantees that
(I =T)yo +TO|| = [|(I = T)yo — (I = T)0[| = (h = 1)]|gol-

Hence

(h = Dllyoll < [[(I = T)yo + T0[| = [[20 — (=TO)|| < (h = 1)r,
that is yo = (I — T) 129 € P,. By property (a) in Lemma 2.3.2, we deduce that
i(I=T) " 2,P,,P)=1.
Therefore i, (T + 2z, P, N, P) = 1, which completes the proof. m

Remark 3.1.2 Theorem 3.1.1 still holds if instead of the cone P, we consider a retract X of

E. In this case, the set P, is replaced by X N B,.

3.1.2 Computation of the index

The following results give the computation of the generalized fixed point index ¢,. For Proofs

and more details see [29].

Proposition 3.1.3 Assume that T : Q0 C P — FE is an expansive mapping with constant
h>1, F:P,— E is a k-set contraction with 0 <k <h—1, and tF(P,) C (I —T)() for all

€ [0,1]. If0 € Q, ||T0|| < (h — 1)r, and
Frx# XNz —Tx) forall € 0P.NQ and A > 1, (3.4)
then i, (T + F,P,NQ,P) =1.
As a consequence of Proposition 3.1.3, we have the following result.

Proposition 3.1.4 Assume thatT : Q) C P — E is an expansive mapping with constant h > 1,
F : P, — E is a k-set contraction with0 < k < h—1, F(OP,NQ) C P, and tF(P,) C (I-T)()

for allt €[0,1]. If 0 € Q, || TO|| < (h — 1)r, and

Fx 2?2 x—Tx forall z€dP.NAQ,
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3.1. The case where T' is h-expansive mapping and F' is a k-set contraction with 0 < k < h—1

then i, (T + F, P, NQ,P) = 1.

Proposition 3.1.5 Let U be a bounded open subset of P with 0 € UNS). Assume that T : Q C
P — E is an expansive mapping with constant h > 1, F : U — E is a k-set contraction with

0<k<h—1,and F({U)C (I-T)Q). If
|Fz+T0| < (h—1)|z| and Tz + Fx #x, for allz € oUNQ, (3.5)
then i, (T + F,UNK,P) = 1.

Proposition 3.1.6 Let U be an open bounded subset of P. Assume that T : Q) C P — E is an

expansive mapping with constant h > 1, F : U — E is a k-set contraction with 0 < k < h — 1,

and F(U) C (I —T)(Q). If there exists ug € P* such that
Fx # (I —=T)(x — Aug), forall A= 0 and x € OU N (Q + Auy), (3.6)
then the fized point index i, (T + F,UNQ,P) = 0.
As a consequence of Proposition 3.1.6, we have the following result.

Proposition 3.1.7 Assume thatT : Q C P — FE is an expansive mapping with constant h > 1,
F : P, = E ak-set contraction with0 < k < h—1, and F(P,) C (I-T)(Q). Assume in addition
that there exists wy € P* such that T(x — Awg) € P, for all X\ = 0 and x € 0P, N (2 + Awy),
and

FrLax—Awy forall ve€dP, and X > 0. (3.7)

Then i, (T + F, P, NQ,P)=0.

Proposition 3.1.8 Let U be an open bounded subset of P. Assume that T : Q) C P — E is an
expansive mapping with constant h > 1, F : U — E a k-set contraction with 0 < k < h — 1,
and F(U) C (I —T)(Q). Suppose further that there exists ug € P* such that T(x — M) € P,
forall X >0 and x € 90U N (24 Aug), and one of the following conditions holds:

(a) Fx L x — Aug, Yo € OU, VA = 0.

(b) |Fz|| > ||z — Augl|, Yo € OU, YA = 0 and the cone P is normal with constant N = 1.

Then the fized point index i, (T + F,UNQ,P) = 0.
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3.2. The case where T is h-expansive mapping and F' is an (h — 1)-set contraction

3.2 The case where T is h-expansive mapping and F' is

an (h — 1)-set contraction

The results of this section are obtained by Djebali and Mebarki. For Proofs and more details

we refer the reader to [29].

3.2.1 Definition of the index

Suppose that T : Q — E is h-expansive and F : U — E is an (h — 1)-set contraction. Since

(I —T)'is ;2<-Lipschtzian, then (I — T)™'F : U — P is a l-set contraction. Assume that
tF(U) Cc (I -T)(Q), YVt e[0,1] (3.8)

and

0¢ (I —T—F)0UNQ). (3.9)

Then there exists v > 0 such that

inf ||z —Tx— Fz| > 7.
xeoUNQ

Thus

0¢(I—T—kF)(QUNQ), Vk € (1—~/M,1),

where M =~ + sup ||Fz||. In fact, for all z € OU N Q, we have
€U

|0 = (z —Tx — kFx)|| > ||t —Tzx— Fx| — (1 — k)| Fz|

> v—(1-k)M > 0.

In other words, x # (I — T) 'kFx, for all z € U and k € (1 — 3, 1). Clearly, (I — T) 'kF
is a strict k-set contraction mapping. As a consequence, by (3.3) and Lemma 2.3.2; the fixed

point index i, (T 4+ kF,U N, P) is well defined. Thus we set

wWw(T+FEUNQYP) = i .(TH+EFUNQ,P)
(3.10)

= i(I-T)""kF,U,P), ke (1-2,1).
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3.2. The case where T is h-expansive mapping and F' is an (h — 1)-set contraction

However we must check that i, (T+F, UNS, P) does not depend on the parameter k& € (1—4,1).
For this, let G; = k;F : U — E be kj(h — 1)-set contractions with k; € (1 — L, 1) (j = 1,2).
Then ||Gjz — Fz| = (1 —kj)||Fz|| < (1 —k;)M <, Yz € OU. Define the convex deformation
H:[0,1]xU — E:

H(t,x) =tGix + (1 — t)Gax.
The operator H is continuous, uniformly continuous in ¢ for each x, and H([0,1] x U) C
(I —T)(Q). In addition H(t,.) is a k(h — 1)-set contraction for each ¢, where k = max(ky, k)

and T + H(t,.) has no fixed point on OU N . In fact, for all z € OU N Q, we have

|t —Tex — H(t,z)|| = |z —Tzr—tGx— (1 —1)Gaz|
> ||z —Tx — Fz|| — t|Fz — Gyz||
—(1 =t)|[|Fz — Gy
> y—ty—(1—1t)y=0.
From the invariance property by homotopy of the index in Theorem 3.1.1, we deduce that

i* (T—FGl,UﬁQ,P) :Z* (T"‘GQ,UQQ,P),

which shows that the index i, (T'+ F,U N Q,P) does not depend on k.
The integer defined in (3.10) satisfies some properties grouped in the following:
Theorem 3.2.1

(a) (Normalization property). If U =P, = PNB, is a conical shell and Fx = zy € B(=T0, (h—

Vr)NP, for all x € Py, then i, (T + F, P, NQ,P) = 1.

(b) (Additivity property). For any pair of disjoint open subsets Uy, U, in U such that

0¢ (I —-T—F)((U\(UUly))NQ), we have
W (T+FUNQP)=i.(T+F,U NQP)+i. (T+ F,U,NQ,P),

where i, (T'+ F,U; NQ,X) 1 =i (fl7.U; NQ,P), j=1,2.

(c) (Homotopy Invariance property). The fized point indez i, (T + H(t,.),U N Q,P) does not

depend on the parameter t € [0, 1], where
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3.2. The case where T is h-expansive mapping and F' is an (h — 1)-set contraction

(i) H : [0,1] x U — E is continuous and H(t,) is uniformly continuous in t with respect to
reU,
(is) H(t,.) : U — E is an (h — 1)-set contraction,

(i5i) tH([0,1] x U) C (I = T)(Q), for all t € [0,1],

(w) 0& (I =T — H(t,.)(oU NQ), for all t € [0,1],

(d) (Ezistence property). If i, (T + F,UNQ,P)#0, then0e (I =T — F)(UNQ).
Proof.

(a) Since F' is a constant mapping, it is a 0-set contraction (completely continuous), which
implies that (I —T)~!F is a O-set contraction. As in the proof of Theorem 3.1.1, part (a),

yo = (I — )72y € P,. By the normalization property in Lemma 2.3.2, we deduce that
i(I=T)"2,P,P)=1
Therefore i, (T + 29, P- N, P) = 1, proving our claim.
(b) Let

v= _ inf |x —Tx — Fx| > 0.
(U\(U1UU2))NQ

Suppose that G = kF : U — E is a k(h — 1)-set contraction and
|Gx — Fx|| < v, Yo € U\(U; UUy) NA. (3.11)
From (3.10), we have
w(T+FUNQP)=i.(T+GUNQ,P)

and

iw(T+FUNQLP)=i. (T+GUNQP), j=1,2.

Hence T + G has no fixed point in U \(U; UU,) N Q2. In fact, if there exists xo € U \(U; U

Us) N Q such that z¢g = T'xg + Gz, then

v < |lxo — Txo — Fao|| = ||xo — Txog — Gro + Grg — Frgl| = ||Gro — Fao],
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3.2. The case where T is h-expansive mapping and F' is an (h — 1)-set contraction

which contradicts (3.11). The claim follows from (3.10) and property (b) of the fixed

point index in Theorem 3.1.1.

(c) By the property of the function H, there exist v > 0 and N > 0 such that

|z =Tz — H(t,z)|| >, forall z €U NN and ¢t € [0, 1],

as well as |H(t,z)|| < N, forall 2 € U and t € [0,1]. Let K(t,x) = kH(t,x), where

ke (1—3%,1). Then for all z € 90U NQ and ¢ € [0, 1], we have

> 7= (k—=1)N>~y—-3>0.
Obviously, K(t,.) : U — E is a k(h — 1)-set contraction, where k does not depend on

t€10,1] and K([0,1] x U) C (I — T)(%).

Then our claim follows from (3.10) and property (c) of the fixed point index in Theorem

3.1.1.

(d) Consider a sequence (k,), C (0,1) such that k, — 1, as n — oo and define the function

G,=k,Fn=12...Then G, : U — E is a k(h — 1)-set contraction. Since ||Fz| <

00, Yz € U, we obtain that
|Fo — Gpz|| = ||[Fx — k,Fx|| = (1 — k) || Fhz|| — 0, as n — +oo.
Hence there exists ng > 0 such that for every n > ng

|Fz — Gpz|| <7, where 0 <~y < inf |z —Tz— Fz|.
xeoUNQ

By assumption and Definition 3.10,

W (T+F,UNQNP) =14 (T+ G, UNQ,NP) #0.
Thus, property (d) in Theorem 3.1.1 guarantees that for all n = 1,2,..., the mapping
T + G, has a fixed point z,, in U N ). Consequently,

|zn — Txy — Fa,|| = |z —Tvn — Guen + Gua, — Fa,|

= ||Gpz, — Fz,|| = 0, as n — +oo.
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3.2. The case where T is h-expansive mapping and F' is an (h — 1)-set contraction

Then z, — Tz, — Fxr, -0, asn — 400, thatis0 e [ - T - F)(UNQ). =

Remark 3.2.2 As for the additivity property in Theorem 3.2.1, we cannot replace the condition

0 (I-T—F)((U\(U Uly))NQ) by the weaker one that T + F has no fived point on
(U\(U, UUy)) NS In fact, let us consider the Banach space cy of real sequences converging
to zero with the sup-norm and the cone P of sequences (a,) with only positive entries a,. Let
r: Ps — Py be the radial retraction, s : Py > (ay,as,...) > (1,a1,as,...) € Py the well-known
shift map, and let F := sor. For T =2I,F = —F, and U = Q = P5,U; = P\ Py, Uy = P5\ Py,
we get

iWw(T+F,Ps,P)=1#4#0+0=10,(T+ F,U;,P) + i. (T + F, Uy, P).
Remark 3.2.3 Notice that a sufficient condition for (3.9) to hold is:

30 >0,VeedUUQ, |z —Tz— Fz| > 6.

3.2.2 Computation of the index

The proofs are omitted. For more details, we refer the reader to [30].

Proposition 3.2.4 Assume that T : 2 C P — E is an expansive mapping with constant

h>1and F:P, = E is an (h — 1)-set contraction with F(OP, N Q) C P and tF(P,) C

(I =T)(Q), forallt €[0,1] and0 ¢ (I =T — F)(OP,NQ). If0 € Q, ||T0| < (h— 1)r, and
Fx#ao—Tzx, YredP. N,
then the fized point index i, (T + F,P, N, P) = 1.

Proposition 3.2.5 Assume thatT : Q C P — FE is an expansive mapping with constant h > 1

and F : P, — E is a (h — 1)-set contraction with tF(P,) C (I — T)(S), for allt € [0,1] and

0¢ (I —T—F)0P,NQ). If0e€Q, |T0| < (h—1)r, and

Fx # XNax—Tx) forallz € OP, N and X > 1,

then the fized point index i, (T + F,P, N, P) = 1.
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3.2. The case where T is h-expansive mapping and F' is an (h — 1)-set contraction

Proposition 3.2.6 Assume thatT : Q C P — FE is an expansive mapping with constant h > 1

and F : P, — E is an (h — 1)-set contraction with tF(P,) C (I —T)(), for allt € [0,1] and

0¢(I—T—F) 0P, NQ). If0€Q, |T0]| < (h— 1)r, and
|Fx| < ||z —Tz|| for allxz € OP. N,
then the fixed point index i, (T + F,P, NQ,P) = 1.

Proposition 3.2.7 Let U be a bounded open subset of P such that 0 € U. Assume that T :

Q C P — E is an expansive mapping with constant h > 1 and F : U — E is an (h — 1)-set

contraction with F(U) C (I =T)(Q) and 0 ¢ (I =T — F)(oU N Q). If
Fx# (I —-T)(Ax), forallxedUNKQ and A > 1,
then the fized point index i, (T + F,U N, P) = 1.

Proposition 3.2.8 Let U be a bounded open subset of P such that 0 € U N Q. Assume that

T:QCP — E is an expansive mapping with constant h > 1 and F : U — E is an (h — 1)-set

contraction with F(U) C (I —T)() and 0 ¢ (I — T — F)(0U N Q). If
|Fz 4+ TO|| < (h—D]z|| for all z € OU N1, (3.12)
then the fized point index i, (T + F,U N, P) = 1.

Proposition 3.2.9 Let U be a bounded open subset of P. Assume that T : QQ C P — E is an

expansive mapping with constant h > 1 such that F : U — E is an (h — 1)-set contraction with

tF(U) C (I =T)(), forallt € [0,1] and 0 & (I =T — F)(OU N Q). If there exists uy € P*

such that
vFz # (I —T)(x — Aug), for all A >0,z € 0U N (Q+ Aug), and v € (0,1), (3.13)
then the fized point index i, (T + F,UNQ,P) = 0.

Proposition 3.2.10 Let U be a bounded open subset of P. Assume thatT : Q C P — FE is

an expansive mapping with constant h > 1 such that F : U — E is an (h — 1)-set contraction
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3.3. The case where T is nonlinear expansive mapping and F' is a k-set contraction

with tF(U) C (I = T)(Q), for allt € [0,1] and 0 & (I — T — F)(0U N Q). Suppose that there
exists ug € P* such that T'(x — Aug) € P, for all X >0 and x € OU N (Q + Auy), and one of
the following conditions is satisfied:

(a) YFx £ x — Mg, for all x € OU, A >0, and vy € (0,1).

(b) Fx € P, v||Fz| > || — Aug||, for all z € OU, A > 0, v € (0,1), and the cone P is normal
with constant N = 1.

Then the fized point index i, (T + F,U NQ,P) = 0.

Proposition 3.2.11 Let U be a bounded open subset of P. Assume thatT : Q C P — FE is

an expansive mapping with constant h > 1, and F : U — E is an (h — 1)-set contraction with

FOU)CP andtF(U) C (I-T)(2),Vte€ [0,1] and0 & (I —T — F)(0U N Q). Suppose further
that there exists ug € P* such that

coFv Lo —T(x — Aug), forall X>0, 2z € 0UN(Q+ Aug) and ¢y € (0,1). (3.14)

Then the fized point index i, (T + F,U NQ,P) = 0.

3.3 The case where T is nonlinear expansive mapping
and [’ is a k-set contraction

The results given in this section are obtained by Djebali and Mebarki. For Proofs and more
details we refer the reader to [29].

Let (X, d) be a metric space. Following [77], we put

Definition 3.3.1 The mapping T : X — X is said to be nonlinear expansive, if there exists a

function ¢ : [0, +00) — [0, 4+00) such that
d(Tx, Ty) = ¢(d(z,y)), Y,y € X,

with ¢(t) > t, Vt >0 and

inf —gb(t) —t

dr>0, w=
te(0,2r] t

> 0, (3.15)

that is T is (w + 1)-expansive. We will denote by D = B(0,r).
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3.3. The case where T is nonlinear expansive mapping and F' is a k-set contraction

Lemma 3.3.2 Let (X, ||.||) be a linear normed space and T : D — X a nonlinear expansive

mapping. Then the inverse of A:=1—T : D — (I —T)(D) exists and is %—Lipschtzian.
Proof. For each 2,y € D, z # y, and 0 < ||z — y|| < 2r, we have
Az — Ay[| = [(Tz = Ty) — (z = y)ll = ¢(lz —yl}) — lo =yl = wlz —yll, (3.16)

showing that A is injective. Thus A™! : D — A(D) exists. Taking z,y € A(D) and using
(3.16), we get

1
|A7e = Ay < =[lz —y], forall z,y € A(D).

3.3.1 Definition of the index

In this section, P will refer to a cone in a Banach space E. Let 2 = PN B, and U be a bounded
open subset of P such that U N Q # 0. Assume that 7' : Q — X is a nonlinear expansive
mapping and F : U — E is a k-set contraction. By Lemma 3.3.2, the operator (I — T)7! is
1 _Lipschtzian on (I —T)(Q).

Suppose that 0 < k < w, F(U) € (I = T)(Q), and x # Tz + Fx, for all z € U N Q.
Then x # (I — T) ' Fux, for all # € QU and the mapping (I —T)™'F : U — P is a strict f—set

contraction. Indeed, for any bounded set B in U, we have

a(((I =T)"'F)(B)) <

a(F(B) < ¢

a(B).

gl

By Lemma 2.3.2, the fixed point index i (I —T)"'F, U, P) is well defined. Thus we put

i, (T+F,UNQP)=i((I—-T)'FUTP). (3.17)

3.3.2 Computation of the index

In what follows, we compute the fixed point index for the class of mappings under consideration

by appealing to some results of Section 2.3.
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3.4. The case where T' is h-expansive mapping and I — F' is a k-set contraction with 0 < k < h

Proposition 3.3.3 Assume that T : QQ — E is a nonlinear expansive mapping. Let p > 0 and
F:P,— E be ak-set contraction with 0 < k < w, tF(P,) C (I — T)(Q), for all t € [0,1] and

F(OP,NQ) CP.If0eQ, |TO|| <wp and
Fx % x—Tx, forall x € dP,NQ,
then the fized point index i (T'+ F,P,NQ,P) = 1.

Proposition 3.3.4 Let U be an open bounded subset of P with 0 € U N §. Assume that
T : Q — E is a nonlinear expansive mapping, F : U — E is a k-set contraction with 0 < k < w,

and F(U) C (I -T)(Q). If
|Fx+T0| < (w—1)||z]| and Tx+ Fx # x, forallxz € U N, (3.18)
then the fized point index i (T + F,UNQ,P) = 1.

Corollary 3.3.5 Assume that T : Q0 — E is a nonlinear expansive mapping, F : fp — FE isa

k-set contraction with 0 < k < w, and F(P,) C (I —T)(Q). If0 € Q and
|Fz +T0|| < (w—1)p, forallx € P, (3.19)
then i (T + F,P,NQ,P)=1.

Proposition 3.3.6 Let U be an open bounded subset of P. Assume that T : Q — E is a
nonlinear expansive mapping, F : U — E is a k-set contraction with 0 < k < w and F(U) C

(I =T)(). If there exists uy € P* such that
T(x — Aug) € P and Fx £ x — g for all (xz,\) € OU x [0, 1],

then the fized point index i (T + F, U NQ,P) =0.

3.4 The case where T' is h-expansive mapping and [ — F
is a k-set contraction with 0 < k < h

In [10], Benslimane, Djebali and Mebarki developed a fixed point index for the sum 7"+ F

where T' is an expansive mapping with constant h > 1 and I — F' a k-set contraction with
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3.4. The case where T' is h-expansive mapping and I — F' is a k-set contraction with 0 < k < h

k < h. In this section, we present the definition of this index with respect to a translate of a

cone K neither than to a cone.

3.4.1 Definition of the index

Given a real Banach space (E, ||.||), let Y C E be a closed convex subset. Let € be any subset
of Y and U be a bounded open subset of Y. Consider an expansive mapping 7T : 2 — E with
constant h > 1 and let ] — F : U — F be a k-set contraction with 0 < k < h and supppose
that

(I - F)(U)cCT(Q).

If # # Tx + Fu, for all z € 0U NQ, then x # T (I — F)z, for all z € OU.
As in [29], a fixed point index of the sum 7'+ F on U NQ with respect to the closed convex

set Y can be defined by

i(T~YI - F),U,Y), if UNQ # emptyset
L (T+FUNQY) = T =F)LY) 7 (3.20)

0, it UnQ=40.
Theorem 3.4.1 The fized point index i (T + F,U N, Y) defined in (3.20) has the following
properties:
(i) (Normalization property). If U =Y N B(w,7), w € Q, and (I — F)x = 2 for all x € U,

where zg € Y and ||zg — Tw|| < hr, then
i (T+FUNQY) =1

(11) (Additivity property). For any pair of disjoint open subsets Uy, Us C U such that T + F

has no fived point on (U \(U; U Uy)) NQ, we have
i (T+FUNQY) =i (T+EUNQY)+i (T +FUNQY).

(111) (Homotopy invariance property). The generalized fized point index i (T+ H(.,t),UNQ,Y)
does not depend on the parameter t € [0, 1], where
(a) (I —H):[0,1]xU — E is continuous and H(t,x) is uniformly continuous in t with respect

toxGU,
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3.4. The case where T' is h-expansive mapping and I — F' is a k-set contraction with 0 < k < h

(b) (I = H)([0,1] x U) C T(Q),
(c) (I —H(t,.)): U — E is a {-set contraction with 0 < £ < h, for all t € [0,1],
(d) Tz + H(t,x) # x for allt € [0,1] and x € OU NS

(i) (Existence property). Ifi. (T + F,UNQ,Y)#0, then T + F has a fized point in U N Q.

Proof. We argue as in [29, Theorem 2.1]. Properties (ii), (iii), and (iv) are consequences of
(3.20) and of the properties of the fixed point index for strict set contractions (see [45, Theorem

1.3.5]). It remains to check the normalization property. If U =Y N B(w,r), then
i(THI—F),U,Y)=1i(T 2,U0,Y) = 1.
For this purpose, we show that yo := T2y € B(w,r) N Q. (I — F)(U) = {2} C T() implies
that yo € 2 and since T' is an expansive operator with h > 1, then
ITyo — Twl[ = hlyo — w]l-
Then
hllyo —wl < [[Tyo = Twll = |20 — Tw|| < hr,

and thus yo = T~ 'z € U. Using the normalization property of the index [45, Theorem 1.3.5],
we find that

i(T 2, U,Y) =1.
Finally i, (T + F,UNQ,Y) =1, as claimed. =
Remark 3.4.2 Let P C E be a cone, 0 € Q, and U =PN{z € E:Y(x) < R}, wherey is a
nonnegative continuous functional on P satisfying ¥ (x) < ||z|| for allxz € P. If (I — F)x = 2,
for all x € U, where zy € P and ||zo — TO|| < hR, then we can prove as for the normalization

property that
W (T+F,UNQP)=1.

3.4.2 Computation of the index

In this section, we show that the fixed point index can be computed in case of a translate of

a cone, rather than in a cone, and in some cases even in an arbitrary closed convex subset.
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3.4. The case where T' is h-expansive mapping and I — F' is a k-set contraction with 0 < k < h

A fixed point index in translates of cones of Banach spaces is defined in [28] for completely
continuous mappings and can be extended to the case of a strict set contractions. Let P # {0}
be a cone in E and L =P + 60 (0 € E) a O-translate of P. Let Q@ C K be a subset and U C K
be a bounded open subset such that Q N U # (. Since K is a closed convex of F, the fixed
point index i, (T'+ F,U N, K) is well defined whenever T": Q) — F is an expansive mapping
with constant h > 1, [ — F : U — E a k-set contraction with 0 < k < h, (I — F)(U) C T(9),
and z # T + Fz for all x € 0U N, where U and U denote the closure and the boundary of

U in K, respectively. For two real numbers 0 < r < R, define the sets:
K. = {zek:|z-0|| <r}
Kk, = {zek:|z—-0|=r}

Kir = {x€ek:r<l|z—-0] <R}

Proposition 3.4.3 Let T : Q C K — E be an expansive mapping with constant h > 1 and
I—F: K, — E be ak-set contraction with 0 < k < h such that t(I — F)(KC,)+(1—1)8 C T(S2),

for all t € ]0,1]. Assume that 0 € Q, ||T0 — 0| < hr, and
Tx # Nx— Fz)+ (1 =X\, forall z € 0K, NQ and 0 <A< 1. (3.21)
Then i, (T + F, K, N Q,P) = 1.
Proof. Define the line homotopy H : [0,1] x K, — E by
H(t,z) =tFz+ (1 —t)(x —0).

Then, the operator (I — H) is continuous and uniformly continuous in ¢ for each x. Moreover
the mapping (I — H(t,.)) is a k-set contraction for each ¢. Actually, for any bounded set B in
K., we have

a((I—H(t,.)(B))=a(t(l—F)(B)+ (1 —-1)0) < ka(B).
In addition, 7"+ H(t,.) has no fixed point on 9K, N Q. If not, there exist some xy € 9K, N
and to € [0, 1] such that

Txo+ toFxo+ (1 —tg)(zo — 0) = xo.
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3.4. The case where T' is h-expansive mapping and I — F' is a k-set contraction with 0 < k < h

Then Txy = to(xg — Fxg) + (1 — )6, leading to a contradiction with the hypothesis. By

properties (i) and (iii) of the fixed point index in Theorem 3.4.1, we get

i (T+F K NULK) =i, (T+1—-6,KNQK) =1

From Proposition 3.4.3, we capture the following two results.

Corollary 3.4.4 Assume that T : Q C K — E is an expansive mapping with constant h > 1,
[ —F:K, — E is a k-set contraction with 0 < k < h, and (t(I — F)(K,) + (1 — t)f) C T(Q),

forallt €]0,1]. If 0 € Q, ||TO — 6|| < hr, and
|Tx— 0] > ||z — Fx — 0| and Tz + Fx # z, for all x € 0K, N
Then i, (T + F, K, NQ,K) = 1.

Proof. It is sufficient to prove that Assumption (3.21) holds. By contradiction, let z €
K,.NQand let 0 < A\g < 1 satisfy Txg = Ao(20— Fzo)+(1—Xo)0. If \g = 1, then zo— Fzg = Tz
which is impossible. If 0 < Ay < 1, then ||Tzo — 8| = Xo||zo — Txo — 8| < ||xo — Txog — 0],

which is a contradiction. m

Corollary 3.4.5 Let T : Q C K — FE be an expansive mapping with constant h > 1 and let
[ —F: K, — E be a k-set contraction with 0 < k < h such that (I — F)(K,)+ (1 —t)§) C

T(Q), for all t € [0,1]. Assume further that 6 € Q, ||T0 — 0| < hr,
x—Fx el forall x € 0K, N,

and

Tz £ x— Fa for all x € 0K, N Q.

Then i, (T + F, K, NQ,K) = 1.

Proof. Assumption (3.21) is readily checked for otherwise there would exist some zy €
K,NQand 0 < A\g < 1such that Txg = Ao(xo—Fzo)+(1—Xg)0. Hence T'xg—0 = A\o(xg— Fxo—0).
Since xg — F'xg — 0 € P, then A\o(xg — Fzg—0) < 29 — Fxg — 6, which is a contradiction to our

assumption. m
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3.4. The case where T' is h-expansive mapping and I — F' is a k-set contraction with 0 < k < h

Proposition 3.4.6 Let U C KC be a bounded open subset with 6 € Uy and T : Q2 C K — E be
an expansive mapping with constant h > 1, [ — F : U — E a k-set contraction with 0 < k < h,

and (I — F)(U) C T(). Assume further that
r—Foe#TA\x+ (1—=N)0), forallz € U, X>1 and \x + (1 —\)f € Q.
Then i, (T + F,UNQK) = 1.
Proof. The mapping T~'(I — F) : U — K is a strict set contraction and it is clear that
T Y —F)r—0+#Xx—0), forallz € OU and \ > 1. (3.22)

Owing to [28, Proposition 2.2}, i (T~!(I — F),U,K) = 1. Then Equality (3.20) ends this proof.

Proposition 3.4.7 Let U C K be a bounded open subset, T : Q C K — E be an expansive

mapping with constant h > 1, I — F : U — E a k-set contraction with 0 < k < h, and

(I —F)(U) CT(S). Assume that 0 € Q,
|lx — Fx —TO| < hllz —0||, and Tx+ Fx #x, forallz € dUNAQ. (3.23)
Then i, (T + F,UNQ,P) = 1.

Proof. According to Lemma 1.3.18, T™}(I — F) : U — K is a strict set contraction. From

the inclusion (I — F)(U) C T(Q), for all z € U, we can find some y € 2 such that  — Fx = Ty.

For all # € U, we have T~!(z — Fz) €  and
T(T 'z — Fz)) =2 — Fu,

which implies that

|T(T" Y2 — F2)) = T0|| = ||v — Fx —T40||.

Since T' is expansive with constant h, we have

|T(T (& — Fa)) = T6]| > h|T~(x — Far) - 6]
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3.4. The case where T' is h-expansive mapping and I — F' is a k-set contraction with 0 < k < h

Hence

h| T — F)z — 0| < ||z — Fx —T9)|. (3.24)
From (3.24) and Assumption (3.23), we get
1T-YI - F)z - 0| < %Hx — Fz—TO|| < ||lx— 0|, Vz € OU.
Therefore for all x € OU N
1T - F)x—0| < ||z —0] and T"'(I — F)x # .

Due to [28, Corollary 2.2], i (T-*(I — F),U,K) = 1. Equality (3.20) completes the proof. m

In case of a cone, i.e., # = 0, Proposition 3.4.6 and Proposition 3.4.7 become

Corollary 3.4.8 Let U C K be a bounded open subset and T : Q0 C P — E be an expansive

mapping with constant h > 1, I — F : U — E be a k-set contraction with 0 < k < h, and

(I —F)(U) CT(R). Assume further that
x—Fx#T(\x), foralzedUNQ, A>1, and \x € Q.
Then i, (T + F,UNQ,P) = 1.

Corollary 3.4.9 Assume that T : Q C P — E is an expansive mapping with constant h > 1,

I —F:U— E is ak-set contraction with 0 < k < h, and (I — F)(U) C T(). Let 0 € Q,
|x — Fx —T0| < hllz||, and Tx+ Fx # x, for allx € OU N Q. (3.25)
Then i, (T + F,UNQ,P) = 1.

The following result can be directly proved by replacing the operator A in [45, Corollary

1.3.1] by T-'(I — F).

Proposition 3.4.10 Assume that T : Q C K — E is an expansive mapping with constant
h>1,1-F:K,— Eis ak-set contraction with 0 < k < h, and (I — F)(K,) C T(Q2). In

addition, if T~Y(I — F)(K,) C K,, then i, (T + F, K, N Q,K) = 1.

In particular, we have
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Corollary 3.4.11 Assume that T : Q2 C K — E is an expansive mapping with constant h > 1,

I—F:K,— Eis ak-set contraction with 0 < k < h, and (I — F)(KC,) C T(Q). If 0 € Q, and
|z — Fx —TO| < hr, foralz € K,. (3.26)
Then i, (T + F,K, NQ,K) = 1.
Proof. From (3.24) and Assumption (3.26), for all z € K, we conclude that
. 1
T (1 — F)z — 0| < EHx— Fx —=T6| <.

Hence T~Y(I — F)(K,) CK,. =

A special situation of Corollary 3.4.11 is

Corollary 3.4.12 Assume that T : Q@ C K — E is an expansive mapping with constant
h>11—-F:K, = Eisa k-set contraction with 0 < k < h, r is sufficiently large, and

(I — F)(K,) C T(Q). If further 0 € Q and
|z — Fz| < ||z — 0|, forallzek,, (3.27)
then T+ F has at least one fized point in IC,. N €.

Proof. Notice that

le = Fo =T0 < |lz—Fz|+ 70|
< |z =0+ |[T0]
< r+ |76
< hr,

for all r > |LT—_91H‘ By Corollary 3.4.11, i, (T + F, K, NQ,P) = 1. As a consequence, T' + F has
a fixed point in . NQ. =
Before giving results for zero index 7,, we need an auxiliary lemma on index fixed point of

strict set contractions.

Lemma 3.4.13 Let K be a translate of a cone P # O and U be a bounded open subset of K.

Assume that A : U — K is a strict set contraction and there is wy € P* such that

r — Ax # Mwy, for all x € OU, A > 0. (3.28)
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3.4. The case where T' is h-expansive mapping and I — F' is a k-set contraction with 0 < k < h

Then i(A,U,K) = 0.
Proof. Define the homotopy H : [0,1] x U — K by
H(t, .Z') = Ax + t)\QUJ(),

for some

No > sup([|wol| ~H([|| + (| Az[]))- (3.29)
zeU

Such a choice is possible since U is a bounded subset and so is A(U). The operator H is
continuous and uniformly continuous in ¢ for each x, and the mapping H(t,.) is a strict set
contraction for each t € [0, 1]. In addition, H(t,.) has no fixed point on OU. On the contrary,

there would exist some zy € OU and ¢, € [0, 1] such that
xo = Axg + toAowo,
contradicting the hypothesis. By Lemma 2.3.2,, we get
i(A,U,K)=1i(H(0,.),U,K)=14(H(1,.),U,K)=0. (3.30)

Indeed, suppose that i(H(1,.),U,K) # 0. Then there would exist o € U such that Azy +

Aowoy = xo, which implies that A\g < |Jwo||~*(||lzo|| + || Azol|), contradicting (3.29). m

Proposition 3.4.14 Let U C K be a bounded open subset, T : Q2 C K — E be an expansive

mapping with constant h > 1, I — F : U — E a k-set contraction with 0 < k < h, and

(I —F)(U) CT(Q). Let up € P* be such that
x— Fo # T(x — Au), forall x € OUN(Q+ Aug) and A > 0. (3.31)
Then i, (T + F,UNQ,K) =0.

Proof. The mapping T-1(I — F) : U — K is a strict set contraction and in view of (3.31),
we have

v —T NI — F)x # Mg forall x € 9U and A > 0.

By (3.20) and Lemma 3.4.13, we deduce that

i.(T+F,UNQP)=i(T I~ F),UP)=0.
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3.5. Concluding remarks

The following two propositions are direct consequences of Proposition 3.4.14; the proofs are

omitted.

Proposition 3.4.15 U C K be a bounded open subset and T : Q C K — E be an expansive
mapping with constant h > 1, I — F : U — E a k-set contraction with 0 < k < h, and

(I — F)(U) C T(2). Suppose further that there exists uy € P* such that T'(x — Aug) € P, for

all x € OU N (2 4 Auyg) and
Fx Lx, forall x €U and X\ > 0.
Then i, (T + F,UNQ,K) =0.

Proposition 3.4.16 Let U C K be a bounded open subset. Assume that T : Q — FE is an
expansive mapping with constant h > 1, I — F : U — E a k-set contraction with 0 < k < h,

and (I — F)(U) C T(Q). Let uy € P* satisfy T'(x — Aug) € P, for all x € OU N (Q+ Aug) and

A > 0. Suppose that the following conditions hold:
Fz e K, and |Fz — 0| > N|x — 0|, for all x € 0U.
Then i, (T + F,UNQ,K) =0.

Remark 3.4.17 (1) Letting @ = 0, we obtain computations of the index in case of a cone.
(2) Proposition 3.4.3 and Corollary 3.4.4 remain valid in the more general setting of Y NB(0, R),
where Y C E is an arbitrary closed convex subset and B(6,R) = {zx € E : ||z — 0| < R}.

(3) Proposition 3.4.6 holds in the framework of any closed convezr subset Y of E containing 6.

3.5 Concluding remarks

In this section, we will compare between the generalized fixed point index developed by Djebali
and Mebarki in [29] and the one developed by Benslimane, Djebali and Mebarki in [10].
(1) Since T and I — T have the same properties in terms of invertibility and since I — F is

an (-set contraction with ¢ < h, one could think that the fixed point index developed in [10] is
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a generalization of the one developed in [29]. Unfortunately the implication
FU) cI-T)()=I-F)(U)cCTQ)

does not in general hold. For example:

(a) Let T : [0,1] — R be such that Tw = —2¢” and F : [0,4] — R is Fx = e™" + 3. Then, the
conditions of the fixed point index developed in [29] are satisfied. Indeed, T is a g—expansive
mapping and F is a 1-set contraction. In addition F([0,4]) = [e™ +3,4] C (I — T)([0,1]) =
[%7 1 + %] but (I - F)([Oa4]) = [_47 1-— %] ¢ T([Oa 1]) = [_52_67 _g]

(b) Let T : [0,1] — R be such that To = 2x and F : [0,5] — Ris Fz = —-2 + g(x),
where g : [0,5] — [—3,0] is a 3-set contraction such that the equation g(z) + %z = 0
has a solution in (0,1]. Then the conditions of the fixed point index developed in [29] are

satisfied. Indeed, T is a 2-expansive mapping and F' is a %—set contraction. In addition

F([0,5]) € [=1,0] = (I = T)([0,1]) but (I — F)([0,5]) & T'([0,1]) = [0,2].

(2) Conversely, define two mappings T, F': [0,1] — R by Tz = %e“’c and Fox = —2e¢~*. Then
T is a 3-expansive mapping, (I — F)z = z + 2¢™ is a 1-set contraction, and (I — F)([0,1]) =
[2£€,2] € T([0,1]) = [2, 3e]. It is clear that the conditions of the fixed point index developed
in [10] are satisfied, while that of the index defined in [29] are not (F' is a 2-set contraction).
Moreover, the equation Fx + Tx = x cannot be rewritten in the abstract form Tz + Fx =z,

where T is h-expansive and F Z= 0 is k-set contraction with k& < h — 1.

(3) These two examples show that the fixed point index presented in [10] and the one

developed in [29] do not coincide and are not easily comparable.
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4.1. Expansion-Compression fixed point theorem of Krasnosel’skii type for the sum of two
operators

After computing the new index 7,, several fixed point theorems and recent results are derived.
In [10, 11], we have obtained some new Krasonesl’skii type and Leggett-Williams type fixed
point theorems for the sum of two operators T+ F, where T' is expansive with constant h > 1
and I — F is a k-set contraction with 0 < k& < h. These are extensions of a Krasnosel’skii type
as well as of a Leggett-Williams type expansion-compression fixed point theorem on cones for a
sum of two operators. Each section ends with applications to nonlinear integral or differential
equations illustrating the abstract results obtained in our works.

Throughout this chapter, P will refer to a cone in a Banach space (F, ||.|).

4.1 Expansion-Compression fixed point theorem of Kras-
nosel’skii type for the sum of two operators

The results given in this section are obtained by Benslimane-Djebali-Mebarki in [10].

4.1.1 Main results

Some results from the section 3.4 are combined to establish three fixed point theorems of cone
compression and expansion type. The proofs are based on the properties of the topological

index 7,. We omit the details.

Theorem 4.1.1 (Homotopy version). Let E be a Banach space, P C E a cone, and K = P+0
a translate of P. Let Q@ C K with 0 € Q. Let Uy and Uy be two open bounded subsets of K
such that @ € Uy C Uy. Let T : Q — E be an expansive mapping with constant h > 1 and
I —F :U, = E a k-set contraction with 0 < k < h such that (I — F)(Uy) C T(S). Assume
that (Uy \ Uy) NQ # () and there exists ug € P* such that either one of the following conditions
holds:

(i) x — Fz # T(x — Aug), for all z € U1 N (Q+ Aug), and A > 0

g —Fo£TOx+ (1—\0), forallz € dUs, \> 1 and Az + (1 — \)f € Q.

(i) x — Fx # T(x — Aug) for all z € OUs N (L + Aug), and
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4.1. Expansion-Compression fixed point theorem of Krasnosel’skii type for the sum of two
operators

r—Frx#TMx+ (1—-N)0), forallzedUi, \>1 and Az + (1 —X)0 € Q.

Then T 4 F has a fized point x € (Uy \ Uy) N Q.

Proof. Without loss of generality, suppose that Tz + Fax # x on 0U; N §2 and on 90U N €2,

otherwise we are finished. If condition (i) holds, by Propositions 3.4.6 and 3.4.14, we have
W (T+F,UNQK)=1 and i, (T+ F,U;NQ,K) = 0.
The additivity property of the index yields
i (T+ F,(Uy\ Uy NQ,K) = —1.

By the existence property of the index, the sum 7"+ F' has at least one fixed point in the closed

set (Uy \ Up) NQ. The proof is similar in case (ii). m

Theorem 4.1.2 (Norm wversion). Let E be a Banach space, P C E a normal cone with
constant N, and K =P + 6 a translate of P. Let 0 € Q2 C KC and Uy, Uy be two bounded open
subsets of IC such that 6 € Uy C Uy. Let T : Q — E be an expansive mapping with constant
h>1and [ —F :Uy, — E ak-set contraction with 0 < k < h such that (I — F)(Us) C T(S2).
Assume that (Uy \ Uy) N Q # O and there are ug € P* with T(x — ug) € P, for all X >
0 and x € OU; N AU, N (L + Aug). Let one of the following conditions holds:

(i) ||lx—Fz—T0| < h||lz—0|, for all x € OU1NQ and Fz € K,||Fx—0| > Nl|jz—0||, for all x € dUs,
(ii) ||z — Fo—T0)| < hllz—0|| for all x € dUNQ and Fx € K, |Fz—0|| > N|z—0|, for all € dU.

Then T + F has a fized point x € (Uy \ Up) N Q.
Proof. The proof uses Propositions 3.4.7 and 3.4.16. =

Theorem 4.1.3 (Order version). Let E be a Banach space, P C E a cone, and K =P + 0 a
translate of P. Let Q C KC with 6 € Q, v, >0, v # B, r = min{~, 5}, and R = max{v, 5} .
Let T : Q — E be an expansive mapping with constant h > 1 such that |76 — 6| < hvy, and

I —F:Kgr— E be ak-set contraction with 0 < k < h. Assume that KirnQ#0,

(I - F)(0K,NQ) C K,
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and there is
up € P with T(x — Aug) € P, for all A >0, x € 0Kz N (2 + Auyg).

If further
Tx £ x—Fxz, forall x € dK,NQ,

Fz £ x, forall x € 0Kg,

then T + F has a fixed point x € EnR N €.

Proof. The proof uses Corollary 3.4.5 and Proposition 3.4.15. =

Clearly, the following result on a cone is a particular case of Theorem 4.1.1.

Corollary 4.1.4 Let E be a Banach space, P C E a cone, and 2 C P with 0 € Q. Let Uy and
U, be two open subsets of P such that 0 € Uy C U,. Let T : Q — E be an expansive mapping
with constant h > 1 and I — F : Uy — E a k-set contraction with 0 < k < h. Assume that
(U \U1)NQ#D and

(1= F)(T,) < T(9).

Assume that there exists ug € P* such that either one of the following conditions holds:
(i)  — Fx #T(\z), forall x€dU N A>1 and Az € Q, and

(I — F)x # T(x — Aug), forall x € Uy N (2+ Aug), A > 0,

(ii)) v — Fx #T(\x), forall x €dUsNQ and X\ > 1, and

(I — F)x #T(x — Aug), forall € dU; N (Q+ Aug), A > 0.

Then T + F has a fized point x € (Uy \ Uy) N K.

4.1.2 Applications
Application 1

Consider the nonlinear equation

p(t)2?(t) — z(t) = g(t,x(t)), 0<t<1, (4.1)
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where
(H1) p:[0,1] — Ry is continuous, ¢ : [0,1] x Ry — R, is continuous, and for each bounded
function z on [0, 1], the superposition operator g(-, z(-)) is equicontinuous on [0, 1].

Let

pi: = min p(t) and pp =: max p(f).

Assume that

(Ho) 1< p1 <pa<1+2p.

(H3) There exists R > 0 such that
p(t) —1<g(t,z) <pR*— R, V(t,z)€0,1] x[0,R+1] (4.2)

and

3p1R — p1R3 > P2 — 1. (43)

Remark 4.1.5 (Discussion of Hypothesis (Hs)) (a) A sufficient condition for (Hs) to hold is

that g is uniformly bounded and

3p1—1 [3p1+1
2 2p1

0<p2—1< gl < (4.4)

where ||gllo = sup  g(t,z). To see this, let the functions ¢(R) = 3p1 R — p1R® and ¢¥(R) =

0<t<1, >0

p1R*—R. Then the function ¢ is positive on (0,v/3) and assumes 2p, as a mazimum at the point

R = 1. The function v is positive increasing function over (—=,+o00). The functions ¢ and

Vb1’
Y intersect at the point Ry = ,/% with ¢(Ry) = Y (Ry) = 3p1—;1 %. As a consequence,

(4.2) and (4.3) hold for all R € (Ry, Ry), where Ry = ¢~ (||gllo) and Ry = ¢ *(pa—1) (actually
1< Ry, <Ry <V3).

(b) As for the first inequality in (4.2), it suffices that it holds for (t,x) € [0,1] x [0, +00).
Our main existence result is

Theorem 4.1.6 Under Assumptions (Hy)-(Hs), Equation (4.1) has at least one solution x €

C([0,1]) such that z(t) > 1, for 0 <t < 1.
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Proof. Consider the Banach space E = C([0, 1], R) with the sup-norm ||z|o = m[ax} |z ().
tel0,1
Let the cone

K={zeE: z(t)>1}
and the set
Kr=KnNB(1,R)={zeK: ||z—1| < R},
where R is defined in (H3). In view of Proposition 3.4.7, we introduce the operators T, F' :
ER — F by
(T)(t) = 2(t) — p(t)2*(t)
and

(Fz)(t) = 2(t) + g(t, =(1)),

respectively, for ¢ € [0,1]. Then Equation (4.1) is equivalent to the abstract equation x =

Txr + Fzx.

Step 1. (a) T and F clearly map Ky into E. Moreover
1Tz = Tyllo = (3p1 — Dllz = yllo, Y.y € Kg,

that is T : Kr — E is expansive with constant h = 3p; — 1 > 1.

(b) If z € Kg, then ||z — 1||p < R and

|z — Fzllp < sup g(t,u) < 400, (4.5)
0<t<1;1<u<i+R

which implies that (I — F)(Kg) is uniformly bounded. (#;) further implies that (I —
F)(Kg) is equicontinuous in E. By Arzéla-Ascoli Lemma, (I — F) maps bounded sets
of Kr into relatively compact sets. Since g is continuous, then so is (I — F). Hence

I — F: Kp — E is completely continuous, i.e., is a O-set contraction.

(c¢) By (4.3), for all € 0Kg and t € [0, 1], we have

|z — Fa(t) = To(t)] | —9(t,2(2)) + p(t) = 1]

leg—R-l-pQ—l

IN
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operators
ie.,
|t — Fx+T0|o < h||lx —0|lo, Ve dKg.
Step 2. We claim that

(I — F)(Kg) C T(Kg). (4.6)

Let y € (I — F)(Kg) and 2 € Kg be such that y = (I — F)a.

(a) First we claim that

KrCy+(I—-T)Kg). (4.7)

Let v € K and

o(t) = \3/“(” Tl o)

p(t)
Using Assumptions (Hz) — (H3), for all ¢ € [0, 1], we obtain the estimates
3
| < pfLtolt2(t) <o) < ¢ Lt Btglta®)  o/mB+1
p(t) p(t) p(t)
Thus, v € K and

ult) = —g(t 2(6)) + p(O(H), te0,1]
Since y = # — Fo = —g(-,z(-), then u = y + (I — T)(v) with v € Kg, that is
u€y+ (I —T)(Kg), proving (4.7).
(b) To show (4.6), notice that the mapping y + (I —T) : Kr — E is 3p;-expansive.
Owing to Lemma 1.3.23 with D = Ky and using (4.7), we conclude that y + (I —T)

has a unique fixed point, i.e., there exists w € Kp such that
y+ (I —T)(w)=w < y="T(w),

that is y € T(Kg), proving (4.6). Finally, assume that Tz + Fx # z on 0Kg,

otherwise we are done. Letting U = Ky and Q = K in Proposition 3.4.7, we obtain
i (T+ F,Kg,K) = 1.

By the existence property of the index, the mapping T+ F' has at least one positive fixed

point x in K, solution of Equation (4.1).
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Application 2

Consider the nonlinear integral equation

x(t) = /;OO G(t,s) f(s,z(s))ds, t>0, (4.8)

where f,G € C(Ry xR, Ry)and lim G(t,s) = ¢, for all positive s. Suppose that the following

t——+o0

conditions hold:

(Hy) 3Ip>0,p#1, 0< ft,x) < alt)+bt)xP, ¥V (t,z) € [0,4+00) x [0, +00),

where the coefficients a,b € C(Ry,R,).

(H2)  Assume that

M= sup [G(t s)a(s)ds <
t€[0,400)

My = sup ["°G(t, s)b(s)ds < oo,
te€[0,400)

and there exist € € (0,1) and R > = such that

1
M1—|—M2Rp< ;8.

Remark 4.1.7 As example, the values M; = %, My = %, peR, e= %, and R =1 validate

the inequality in Assumption (Hsz).

Theorem 4.1.8 Under Assumptions (H1) and (Hs), Equation (4.8) has at least one positive

solution x € C([0, +00),R) such that 0 < z(t) < R, Vt > 0.
Proof. Consider the Banach space
E = {x € C([0,+00),R) : lim x(t) exists}
t—-+o0

with norm

lzf| = sup |z(t)|
te[0,+00)

and the positive cone

P={xe€E: x(t)>0,t>0}.
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R+ M, + MyRP
Let Ry = i 1 :_—'— 2~ and let Bg = B(0, R) denote the open ball centered at the origin
5

with radius R. Consider the open sets:

1
U = Brpn{zeE: z(t) > +€,

teJ},

Q = Bp NP,

for some compact sub-interval J C [0,+00). Since R < =, then U # (). On E, define the

operators
Tx(t) = (1+¢e)z(t),
Fa(t) = (1—¢)x(t) — /0 h G(t,s)f(s,x(s))ds.

Then Equation (4.8) is equivalent to the operator equation x = T'x + Fx. Next, we check that

all assumptions of Corollary 3.4.8 are satisfied. First we have T': 2 — F and
[Tz =Tyl = (1 +¢)lz —yl,
for all z,y € Q, i.e., T : Q — E is an expansive operator with a constant h = 1 + €.

1. Step 1. We have I — F : U — F is continuous, bounded mapping and for z € U,

“+o00 —+00

G(t,s)|f(s,z(s))|ds < G(t,s)(a(s) +b(s)s(s))ds

0 0
< M1 +M2Rp < 00.

Hence, by the properties of the kernel G, Lebesgue’s dominated convergence theorem

yields

/O+OOG(t1, ) ds—/OJrOOG (b, 5) (5, 2(5)) ds

< /0°°;G<t1,> Glts, )| f(5,2(s)) d

which tends to 0, uniformly in x € Bg, as |t; — ta| — 0. Moreover

+o00 Lo
Jim | [ Gt s)f(s,e(9)ds— lim [ Gly,s)f(s.a(s)) ds
0 y—+oo Jo
+o0o
- tE+moo /0 G(t,s)[f(s,x(s))ds — l‘ =0.
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As a consequence, Corduneanu’s compactness criterion Lemma 1.2.34 assures that for all
t € [0, +00) and every bounded subset B C U, the set {t > f0+°o G(t,s)f(s,z(s))ds, x € B}
is relatively compact. Furthermore, the operator I — F' is written as sum of a e-contraction

and a completely continuous mapping. Thus, I — F : U — E is a e-set contraction.

. Step 2. Let y € Bg be arbitrarily chosen. For ¢ > 0, take

_ eyt Jo =Gt 9) f (s, y(s))ds,‘

2(t) T e

Then

My + My RP
0§2(t)§€R+ 1+ QR :Rl,
14+¢

ie., z € 2 and

—+00

ey + G(t,s)f(s,y(s))ds = (1+¢e)z(t) =T=(t), t>0.

S—

Therefore (I — F)(U) C T(9).
. Step 3. Assume that there exist some xq € OU and Ay > 1 such that A\gzg € 2 and

Then

+o0
exo(t) —{—/0 G(t,s)f(s,xo(s))ds = Xo(1 + €)zo(t), t>0.

Hence
“+o0

i G(t,s)f(s,xo(s))ds = (Ao + (Ao — 1)e)xo(t).

Let t; € J be such that

1+e¢

zo(t1) > 5

Since A\g > 1, we have the estimates

5 < zo(t1) < (Ao + (Ao — 1)e)zo(tr)

+oo
— /0 G(t1,8)f(s,xo(s))ds

1
< M, + MyRP < ;Lg,
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which is a contradiction. By Corollary 3.4.8, Equation (4.8) has a non trivial positive
solution z in C([0, +00)) such that 0 < x(t) < R, for all = € [0, +00). This completes the

proof of Theorem 4.1.8.

4.2 Expansion-Compression fixed point theorem of Leggett-
Williams type for the sum of two operators

The results given in this section are obtained by Benslimane-Goergiev-Mebarki in [11].
Let ¥ and ¢ be nonnegative continuous functionals on P; then, for positive real numbers a

and b, we define the sets:

PV, b) ={z € P :¥(z) <b},

and

P(V,d,a,b) ={z € P:a < V¥(x)and é(z) < b}.

Krasnosel’skii type compression-expansion fixed point theorems gives us fixed points localized
in a conical shell of the form {z € P : a < ||z|| < b}, where a,b € (0,00), while with the
Leggett-Williams type they are localized in a conical shell of the form P(«, 3, a, b), where « is a
concave nonnegative functional, and § a convex nonnegative functional. The original Leggett-
Williams fixed point theorem (see [56, Theorem 3.2]) discusses the existence of at least one fixed
point in a conical shell of the form {x € P : a < a(z) and ||z|| < b}, where a,b € (0, +00)
and « is a nonnegative concave functional. Noting that this result has been widely extended
in many directions, (see for example [4, 8, 38, 43, 50]).

In [5, Theorem 4.1], Anderson and al. have discussed the existence of at least one solution
in P(B,a,r, R) or in P(a, 3,7, R) for the nonlinear operational equation Ax = x, where A is
a completely continuous nonlinear map acting in P, « is a nonnegative continuous concave
functional on P and f is a nonnegative continuous convex functional on P. In this result, the

authors have used techniques similar to those of Leggett-Williams that require only subsets of
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both boundaries to be mapped inward and outward, respectively, as well as in Krasnosel’skii’s
cone compression and expansion one. Moreover, conditions involving the norm in the original
Leggett-Williams fixed point theorem are replaced by more general conditions on a convex
functional.
In this context, the Leggett-Williams approach provides more general results than those ob-
tained by using the Krasnosel’skii one. Noting that, in [5], the authors provided more general
results than those obtained in [4, 9, 43, 44, 56, 76] for completely continuous mappings.

In this work, Benslimane-Goergiev-Mebarki use the fixed point index theory developed in
[29] to generalize the main result of [5] for the sum 7'+ F where T' is an expansive mapping

with constant h > 1 and I — F' is a k-set contraction with k < h.

4.2.1 Main result

Let €2 be a subset of P such that 0 € 2. We consider the nonlinear equation
Tx+ Fr =z, (4.9)

where 7' : () — FE is an expansive mapping with constant h > 1, and I — F : P — E a k-set
contraction with 0 < k < h.
In what follows, we will establish an extension of [5, Theorem 4.1], which guarantees the

existence of at least one non trivial nonnegative solution of Equation (4.9).

Theorem 4.2.1 Let a be a nonnegative continuous concave functional on P and 3 be a non-
negative continuous convez functional on P with B(x) < ||z|| for all x € P. Assume that
there exist nonnegative numbers a, b, ¢, d and zy € P such that |T0| < hmin(b,d) and
a(T'z) > max(a, c).

Suppose that:
(A1) if x € P with B(x) = b, then a(Tx + ) > a;
(A2) if x € P with B(x) = b and a(z) > a, then 5(Tx + Fx) <b and 5(Tx + x) < b;

(A3) if z € P with 5(z) = b and o(Tx + Fx) < a, then f(Tx + Fz) <b and B(Tz + x) < b;
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(A4) if x € P with a(x) = ¢, then f(Tx +x — 29) < d;

(A5) if x € P with a(x) = ¢ and B(x) < d, then a(Tx + Fx) > ¢ and a(Tx + x — 29) > ¢;
(A6) ifx € P with a(x) = ¢ and f(Tx+ Fz) > d, then a(Tx+Fx) > ¢ and a(Tx+x—2y) > c.
Then,

1. (Ezxpansive form) T + F has a fized point x* in P(S,a, b, c) N Q if

(H1) a<c,b<d,{x €P:b< B(x) and a(x) < c}NQ # 0, P(B,b) C P(a,c), P(B,b)N

Q # 0 and P(a, c) is bounded and
t(I— F)(P(B,b)) C T(R), for all t € [0, 1], (4.10)
(I — F)(P(a,c)) + (1 — t)zo C T(Q), for all t € [0, 1]. (4.11)
2. (Compressive form) T+ F has a fived point z* in P(a, B,a,d) N Q if

(H2) c<a,d<b,{zxeP:a<alx)and f(x) <d}NQ # 0, Pla,a) C P(B,d), Pla,a)n
Q#0, and P(B,d) is bounded and

t(I — F)(P(B,d)) C T(2), for allt €]0,1], (4.12)

t(I — F)(P(a,a)) + (1 —t)zg C T(Q), forallt € [0,1]. (4.13)

Proof. We will prove the expansion form. The proof of the compression form is nearly identical.
If we list

U={xeP:p)<b}, (4.14)
V={xeP:alx)<c} (4.15)
then, the interior of V — U is given by
W=V-U)={zxeP: b<f(r)and a(z) < c}.

Thus U, V and W are bounded (they are subsets of V' which is bounded by condition (H1)),

not empty (by condition (H1)) and open subsets of P. To prove the existence of a fixed point
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for the sum T'+ F in P(f3, «,b,¢) N, it is enough for us to show that i.(T+ F, W NQ,P) #0

since W is the interior of P(S3, «, b, c).

Claim 1. Tz + Fx # x for all x € 0U N Q.
Let g € OU N, then f(xy) = b. Suppose that o = Txg + Fxg, then f(Tzq + Fxy) = b. If
a(zo) > a, then f(Tzo+ Fxy) < b by condition (A2), and if a(xy) < a, then a(Txo+ Fzo) < a,
then B(Txo + Fxo) < b by condition (A3).
This is a contradiction. Thus we have Tz + Fx # z for all x € 0U N Q.

Claim 2. Tz + Fa # z for all x € 0V N Q.
Let 1 € OV N, then a(x) = ¢. Suppose that 1 = Tz + Fxq, then a(Tzy + Fxy) = c. If
B(x1) < d, then a(Txq + Fx1) > ¢ by condition (A5), and if 5(z1) > d, then 5(Txy + Fxy1) > d,
then o(Tzy + Fx1) > ¢ by condition (AG6).
This is a contradiction. Thus we have Tx + Fx # x for all x € 9V N .

Claim 3. i,(T+ F,UNQ,P) = 1.

? Let Hy : [0,1] x U — E be defined by
Hi(t,z) =tFx+ (1 —1t)x.

Clearly H, is uniformly continuous in ¢ with respect to x € U and (I — H;) is continuous, and
from (4.10) we easily see that (I — H,([0,1] x U)) € T(Q2). Moreover (I — Hy(t,.)) : U — E
is a k-set contraction for all ¢t € [0,1] and Tz + H,(t,x) # z for all (t,x) € [0,1] x OU N Q.
Otherwise, there would exists (t2,22) € [0,1] x OU N Q such that T'zy + Hy(t2, 22) = x9. Since

xo € OU, B(x2) = b. Either a(Txs + Fxg) < a or a(Txs + Fxy) > a.

Case (1): If a(Txg + Fxs) < a, the convexity of 5 and the condition (A3) lead

b= f(x2) = B(Txe+ Hi(ts, 1))
= [(Txy+ taFxs + (1 —tg)xs)
< 2B (Tay + Faz) + (1 — t) B(Twa + x2)

< b,

which is a contradiction.
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Case (2): If a(T'zy + Fxo) > a, from the concavity of a and the condition (A1), we obtain

a(zy) > a. Indeed,

a(re) = a(Txy+ Hi(tz, 1))

v

toor (Txg + Fag) + (1 — to) a(Txg + 2)
> a,
and thus by condition (A2), we have f(Txs + Fxy) < b, which is the same contradiction we
arrived at in the previous case.
Being 7710 € U (we have h3(T~'0) < h||T7'0|| < ||T0]] < hb), the homotopy invariance

property (iii) and the normality property (i) of the fixed point index i, lead
WT+EUNQP)=i(T+1,UNQP)=1.

Claim 4. i(T + F,W N Q,P) = —1.

Let Hy: [0,1] x V — E be defined by
Hy(t,x) =tFx+ (1 —t)(z — 2).

Clearly H, is uniformly continuous in ¢ with respect to z € V and (I — Hs) is continuous, and
from (4.11) we easily see that (I — Hy([0,1] x V))) C T(2). Moreover I — Hy(t,.) : V — E
is a k-set contraction for all ¢ € [0,1] and Tx + Hs(t,z) # « for all (¢,x) € [0,1] x OV N Q.
Otherwise, there would exists (t3, z3) € [0, 1] x 9V N such that Hy(ts, z3) = 3. Since z3 € OV

we have that a(z3) = c. Either 5(Txzs + Fx3) < dor f(Txs+ Fxg) > d.

Case (1): If B(Tx3 + Fx3) > d. the concavity of o and the condition (A6) lead

c=ars) = o(Tzs+ Hy(ts, x3))
= a(Txs+t3Fr3+ (1 —t3)(z5 — 20))
> thé(Txg + Fxg) + t3()é<TSL’3 + 23 — Zo)

> C.

This is a contradiction.
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Case (2): If 5(T'z3 + Fz3) < d, from the convexity of § and the condition (A4), we obtain

B(x3) < d. Indeed,

Blxs) = B(Tws + Ha(tz, x3))
< t38(Txs+ Faz) + (1 —t3)8(Txs + x3 — 20)
< d,
and thus by condition (A5), we have a(T'z3 + Fx3) > ¢, which is the same contradiction we
arrived at in the previous case.

The homotopy invariance property (iii) of the fixed index i, yields
WT+EVAQP)=i.(T+1—2,VNQP),

and by the solvability property (iv) of the index i, ( since T7'zy ¢ V the index cannot be

nonzero) we have
WT+EVAQP)=i.(T+1—2,VNQ,P)=0.

Since U and W are disjoint open subsets of V and T + F has no fixed point in V — (U U W)

(by claims 1 and 2), from the additivity property (ii) of the index i, we deduce
WT+FEVNQP)=i,(T+F,UNQP)+i.(T+ F,WnQP).

Consequently, we have

(T+FWNQP)=—1,

and thus by the solvability property (iv) of the fixed point index i, the sum 7'+ F' has a fixed

point z* € W C P(B,a,b,c) N Q. =

4.2.2 Applications
Application 1

In this subsection, we will investigate the three-point BVP

y' + f(t,y) =0, te(0,1),

y(0) = ky(n), y(1)=0,

(4.16)

where
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(B1) feC(0,1]xR,),0< A< f(t,u) < A, t€[0,1],u € [0,00), for some positive constants

A> A

(B2) n€(0,1),k>0k(l-n) <1, B= 1},j(fﬁn) € € (1,2), ¢ = 0 and there exist a,b,d, zy > 0

so that zyp = a@ and

a<d<b, 2z<ed (e—1)b+2z<$,

(e—1)b+eAB <d, a< B < g

After the proof of the main result in this subsection, we will give an example for a function f
and constants A, Av, B, n, k, a, b, d, €, zo which satisfy (B1) and (B2). We will investigate the
BVP (4.16) for existence of at least one non trivial nonnegative solution. Our main result is as

follows.

Theorem 4.2.2 Suppose (Bl) and (B2). Then the BVP (4.16) has at least one non trivial

nonnegative solution vy.

To prove our main result, we will use Theorem 4.2.1.

In [84] the BVP (4.16) is investigated when the function f satisfies the following conditions

(B3) f(t,u) is nonnegative and continuous on (0,1) x [0,00), f(¢,u) is monotone increasing

on u for fixed ¢ € (0, 1), there exists ¢ € (0,1) such that

f(t,ru) >rif(t,u), 0<r<1, (t,u)e(0,1)x]0,00),

and in [84] it is proved that the BVP (4.16) has a unique solution u € C([0,1])(C?((0,1)).
We will note that there are cases for the function f for which we can apply Theorem 4.2.2 and
we can not apply Theorem 4.1 in [84] and the conversely. For example, if f(t,u) = 1+ 1%“,
t,u € [0,00), then it is bounded below and above and we can apply Theorem 4.2.2. At the
same time, it is decreasing with respect to u for ¢,u € [0,00) and we can not apply Theorem
4.1 in [84]. If f(t,u) = 771, a;(t)u®s, where a; € C([0,00)) are nonnegative functions and
a; € (0,1), j € {1,...,m}, as it is shown in [84], it satisfies (B3). On the other hand, it is

unbounded above and we can not apply Theorem 4.2.2. Thus, our result Theorem 4.2.2 and

Theorem 4.1 in [84] are complementary to one another.

110



4.2. Expansion-Compression fixed point theorem of Leggett-Williams type for the sum of two
operators

Proof. of Theorem 4.2.2

Set
s(1—t), 0<s<t<1,
H(t,s) =
t(l—s), 0<t<s<l,
and
B k(1 —1)
G(t75) - H(tv S) + m]—](na 3)7 l,s € [07 1]

Note that 0 < H(t,s) <1, t,s € [0,1]. Hence,

K | — k4 knp+k 1+ kn
B T e R Ty T R T e R
t,s € [0,1]. Moreover, for t,s € [£,%], we have
H(t,s)zﬁ(1—ﬂ>
3 2
and
n n
> > 11
G(t,s)_H(t,s)_3(1 2)
Next,
-5, 0<s<t<1,
Ht(tas):
1—s5, 0<t<s<1
Hence, |Hy(t,s)| <1, t,s € [0,1], and
t = |H(t,s) ——H
Gt = [Hit9) -
< |H(t —H
— | t(78)|+1_k(1_n) (7775)
k 1+k
<1 M _ B otselol].

TTTRI— 1=k -7

Let E = C(]0,1]) be endowed with the maximum norm

— £)].
[yl mmax ly (1)

On E, define

aly) = ten[flglr;] )|+ 20, Bly) = mmax ly(t)].
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In [84] it is proved that the solution of the BVP (4.16) can be expressed in the following form

y(t) :/0 G(t,s)f(s,y(s))ds, te]0,1].

Set

Define

P = {yeE:y(t)>0, te0,1, min y(t)>k maxy(t)},
te[.] tel0]

220 + €AB
Q= {yeP: |yl < ==

1.

Note that 0 € 2 and Q2 C P. For y € P, define the operators

Ty(t) = —ey(t) + 2z,
Fy(t) = y(t) — 2z + 6/0 G(t,s)f(s,y(s))ds, te€]0,1].

Note that if y € P is a fixed point of the operator 7'+ F', then it is a solution to the BVP

(4.16). Next, if y € P and B(y) < b, we have

Ty(t) +y®)] < (e=1)y(t) + 22

and

Ty(t) + Fy(t)| \—<e—1>y<t>+e Gt 5)f (s, y(s))ds

—_

< (e=1)b+ eA/ G(t,s)ds
0
< (e—=1)b+€AB

< d.
Therefore, if y € P and [(y) < b, we have

BTy+y) <d (4.17)
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and

B(Ty + Fy) < d. (4.18)
For y, 2z € P, we have
Ty(t) — Tz(t)| = ely(t) — z(t)], ¢ €[0,1].

Hence,

[Ty — Tz|| = elly — =]|.

Thus, T': P — E is an expansive operator with constant A = e.

Let now, y € P. Then

(I = F)y(t)| = gAGm@ﬂammw

1
< EA/ G(t, s)ds
0

< €AB, te]o,1],

whereupon

I(I = Fly|| < eAB

and I — F': P — E is uniformly bounded. Moreover,

1U—Fmﬂ — || et utsnas

dt

gtémﬁ@uamm@

< AB, te[o,1].

Consequently, I — F' : P — E is completely continuous. Then I — F : P — FE is a 0-set
contraction.
Note that
| 70| = 229 < emin{b, d}.

For y € E, we have

_ y—220
T ly=— p—
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Hence,

a(T'2) =a <@> =2 2o > max{a,c}.
€ €

Suppose that y € P with 5(y) = b. Then

a(Ty+y)= min_|Ty(t) +y(t)| + 20 > 20 = a.

te[2.3]
Consequently (A1) holds.
Now, we take y € P with f(y) = b, a(y) > a. Then, using d < b, (4.17) and (4.18), we

obtain
B(Ty+y)<b and [(Ty+ Fy) <b.

Consequently (A2) holds.
Observe that, if y € P, B(y) = b and o(Ty + Fy) < a, using d < b and (4.17), (4.18), we
find

B(Ty+ Fy) <b and [(Ty+y) <b.

Thus, (A3) holds.

Since ¢ = 0 and a(y) > 0 for any y € P, the case a(y) = ¢ is impossible.

eAB:—zo )

Let now, a; € (a, be arbitrarily chosen. Then

ala) =a1+ 20 > a

and

AB+2

€

Therefore

{yeP:a<aly) and By) <d}nQ#0D.

Let y € P(a,a). Then y € P and a(y) < a. Hence,
a> min y(t)+ 2o = min y(t) + a.
te[2,2] te[2,2]

Therefore Tin] y(t) = 0 and using the definition of the cone P, we find
tel3.3
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Thus, y € P(B,d) and P(a,a) C P(8,d).
Since 0 € P(«, a), we have P(a,a) NQ # (.
Note that P(f, d) is bounded.

Let A € [0, 1] is fixed and u € P(«, a) is arbitrarily chosen. Then f(u) < d < b. Set

e [ G(t,5) f(s,u(s))ds + (1 — Nz

v(t) ; , teo,1].
We have that v(t) >0, ¢t € [0,1], and
(t) < @ <d, telo1]
and
eAB + 2

loll < <d.

€

e fé] min_ G(t,s)f(s,u(s))ds + (1 — X)z

: > e[} 4]
min v(t) >
te2.2] €

v

vV
— —

Vv
=
=
"
e
=

Thus, v € €. Next,
1
MI = F)u(t) + (1= Nz = 2hz0— A / G(t, 5)f(5,u(s))ds + 20 — Ao
0

= —)\e/o G(t,s)f(s,u(s))ds + (1 + )z
e [ G(t,5) f(s,u(s))ds + (1 — A)z

€

—|— 220

= Tu(t), telo,1].

Therefore

AL — F)(P(a,a)) + (1 = N)zg C T(Q).
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Let A € [0, 1] be fixed and u € P(5,d) be arbitrarily chosen. Take

w(t) = 2(1— Nz + e [ G(t, S)f(s,u(s))ds,

We have v(t) > 0, t € [0,1], and

t €[0,1].

Moreover,

e fl,g min_ G(t,s)f(s,u(s))ds +2(1 — N)z

3 ¢ ﬂ7ﬂ
min w(t) > cl34]
e[34) :
L A(3-DI0- DA+ - Nz
B €
min 6% (1 — g) Z7 20

v
— —

Vv
G
:
"
=3
=

Therefore w € 2. Also,

MI = Flu(t) = A (220 y /0 G(t, ) f(s,u(s))ds)
_eefol G(t, s)f(s,u(s))ds +2(1 — )z

€

+ 22}0

= —ew(t) + 2z
= Tw(t), te]0,1].
Therefore
AI — F)(P(B,d)) C T(Q).
By Theorem 4.2.1, it follows that the BVP (4.16) has at least one solution in {y € P : a <

aly) and By) <d}nNQC Pla,B,a,d)N§. m

An Example

Consider the BVP
1 1
y' + 300(1+t2)(1+v) t30 = 0, te(0,1),

y(0)=y(3), y@1) = 0.

(4.19)
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Here

1 1

— € (0,1 € [0 E=1 =

flt,y) = %

Note that for the function f we can not apply Theorem 4.1 in [84] because it is a decreasing

function with respect to y for ¢,y € [0, 00). Take the constants

4 1 1 1
62@’ B:?), :m’ AZ%’ b:]_7 d:§7
1 1 1
0 = 2000 2= 2000 9= To00-
We have
1 41
<d<b 2zp=2a=—<—=cd
“ » ETAAT 000 Ss0 T Y

11 3 _1_d
Db+ 2 = — = 2 -
(e=Db+220="54505=100 <1~ 2’

1 41 3 1 1 1 1
(e-Dbt+edB=15+15 123 4_+__% 3= ¢

L _eAB+2:% 40 _L

400 " c 4 40 123 200) S22 ¢

Thus, (B2) holds. Next, f € C([0,1] x R;) and
1 111

— < f(ty) = << —A
500 =Y = sa sy T30 S 1m0 S 12 - N

i.e., (B1) holds. By Theorem 4.2.1, it follows that the BVP (4.19) has at least one nonnegative

solution.

Application 2

In this part, we will investigate the following BVP

a"(t) +g(z(t)) = 0, te(0,1),
2(0)=0 = 2/(1),

(4.20)

where
(C1) g€ C(RT),0< A, < g(x) < Ay, x € [0,00), for some positive constants A; > A;.
(C2) The nonnegative constants z1, a, by, c1, dy, €1 satisfy

d
€1 € (1,2), (61 — 1)b1 + 22 < 51, (61 — 1)b1 + ElAl < dl,

117



4.2. Expansion-Compression fixed point theorem of Leggett-Williams type for the sum of two
operators

21
— + 21 > max{ay, 1}, 21 = ay,
€1

c1 =0, 2z <€ min{by,di},

e1 A1 + 2%
€1

<d.

a1<d1<b1, a; <

Our main result in this subsection is as follows.

Theorem 4.2.3 Suppose (C1) and (C2). Then the BVP (4.20) has at least one non trivial

nonnegative solution.
The BVP (4.20) is investigated in [5] under the following conditions

(C1.1) 7 € (0,1) is fixed, b and ¢ are positive constants with 3b < ¢, g : [0,00) — [0,00) is a

continuous function such that

1. g(w) > w € [c,£],

2. g is decreasing on [a, bT] with g(bT) > g(w) for w € [br,b].

3. [T sg(s)ds < w’

and it is proved that the BVP (4.20) has at least one nonnegative solution. Note that there are
cases for the function g for which we can apply Theorem 4.2.3 and we can not apply Theorem
5.1 in [5] and the conversely. For instance, if g(z) = {77 + 1, @ € [0,00), then it is bounded
above and below and we can apply Theorem 4.2.3. On the other hand, g is an increasing

function on [0, 00) and we can not apply Theorem 5.1 in [5]. If g(z) = == +€" 2, z € (0, 00),
as it is shown in [5], we can apply for it Theorem 5.1 in [5]. Since it is unbounded above, we
can not apply Theorem 4.2.3. Therefore the main result of [11] Theorem 4.2.1 and the main
result Theorem 4.1 in [5] are complementary to one another.

After the proof of Theorem 4.2.3, we will give an example for a function g and constants

Ay, Ay, 21, aq, by, c1, dy, € that satisfy (C1) and (C2).

Proof. of Theorem 4.2.3. Let E = C([0, 1]) be endowed with the maximum norm

= t)].
] = max Ja(0)]

Define

G1(t,s) = min{t, s}, (t,s) € [0,1] x [0, 1].
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4.2. Expansion-Compression fixed point theorem of Leggett-Williams type for the sum of two
operators

Note that

0 < Gi(t,s) <1, (ts)€]0,1] x]0,1],

t,s € Ll
S —, = | .
) ) 372

and

G1(t,s) >

OJIH

On E, define the following functionals

() _fé%éri z(t)] + 21, Bi(z )—tem[guf [z (2)].

In [5] it is proved that the solution of the BVP (4.20) can be represented in the form

_ / Gh(t, s)g(a(s))ds, te0,1]

Set

min {ElAl zl}
ko = .
dye;

Define

P, = {ze€eFE:x(t)>0, te€[0,1], min x(t) > ke max z(t)},
t€[3.3] telo.1]

221 + 61./41 }

€1

Q0 = {x ePyx| <
Note that 0 € €2, and €2y C P;. For x € Py, define the following operators.

Tlx(t) = —€1l’<t>+221,

Fix(t) = () — 220+ € /01 Gi(t,s)g(z(s))ds, te]0,1].

Now, the proof of Theorem 4.2.3 follows similar arguments to those in the proof of ([11] Theo-

rem4.1). =

An example

Consider the BVP

x(t) 1 —
z"(t) + 200(1+x () ta = 0 tE€ (0,1), (4.21)

z(0)=0 = 2/(1).
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4.2. Expansion-Compression fixed point theorem of Leggett-Williams type for the sum of two
operators

Here

B x L 1
©400(1+2) 400

g()

x € [0, 00).

Note that the function g is an increasing function on [0, c0) and then we cannot apply Theorem

5.1 in [5]. Take
41 1 ~ 1 1
€1 = E’ A1=@7 AIZM7 by = , d1:§7
B 1 B 1 _0
T 00 M T 000 T

Then, ¢; > 1 and

111 4
N I PO I S R
(= Dbi+20 = 54555 <17 3
1 4 1 1 1 1
B T I . S S S
(e —Dh+eadi=pt 5 5= 0 1m0 <2 =W

41 1 41 1

€1 min{bl,dl} = E . 5 = % > % =2z,
1
21 100 1 1
— = == = RS > _ =
o TP T T 00 Tang ~aop - e al
a; < d1 < bl,
41 1 1 1 1
a = 1 €1A1—|—221 _ E'E‘Fﬁ:m‘i‘m
400 €1 i—[l) j—[l)
1 1
1l g
3 5
— - " - —q.
14 615 2 !
Thus, (C2) holds. Next,
1 1
— < < — 0 .

So, (C2) holds. Hence, applying Theorem 4.2.3, we conclude that the BVP (4.21) has at least

one nonnegative solution.
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5.1. Introduction

5.1 Introduction

Since 1970, the interest for fourth order boundary value porblems (BVPs for short ) has risen
due to their important applications in pratical problems. For instance, the deformation of
an elastic beam under an external force h supported at both ends is described by the linear

boundary value problem

z@W(t) = h(t), te(0,1),

z(0) =z(1) = 2"(0) = 2"(1) =0,
where vanishing moments at the ends of the attached beam motivate the boundary conditions
(see [42] for more details). The existence of solutions for nonlinear fourth-order BVPs has
gained much interest in the last years (see, e.g., [57, 58, 59, 74, 78, 81, 83]). Boundary value
problems with integral boundary conditions constitute a very interesting and important class
of problems. They include two, three, multi-point, and nonlocal boundary conditions as special
cases.

In this work, we investigate the existence of at least two nonnegative solutions to the fourth-

order nonlinear boundary value problem with integral boundary conditions:

W) = wt)f(t,z(t),2"(t), te(0,1),
2(0) = [lhi(s)a(s)ds, (1) = [ ki(s)a(s)ds, (5.1)

2"(0) = [l ho(s)a"(s)ds, x"(1) = [ ka(s)z"(s)ds,

where

(H1) w € L'(]0,1]) is nonnegative and may be singular at ¢ = 0 and (or) t = 1, f € C([0,1] x

R x R) and satisfies the polynomial growth condition:
|f(tu,0)] < ar()ul” +ax (@) 0] + as(t), t€[0,1], wu,veR,

aj,as,az € C([0,1]) are given nonnegative functions, pi, ps are given nonnegative con-

stants.

(H2) hy, ho, k1, ko € L'([0,1]) with myvy + nypn # 0, mavs + nops # 0,
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5.2. Multiple fixed points theorem

for

1 1
my = /shl(s)ds, mgz/ sho(s)ds,
— " 1

ng = 1—/ skq(s)ds, ngzl—/ ska(s)ds,
e !

H1 = 1_/ hl(S)dS, :U“2:1_/ hQ(S)dS,
o o

v = 1—/ ki(s)ds, 1/2:1—/ ka(s)ds.
0 0

In 2003 and 2004, the authors of [57, 86] studied the existence of solutions of Problem (5.1)
for hy = hy = k1 = ke = 0, by using the Krasnelskii’s fixed point theorem and fixed point
index theory on cones of Banach spaces respectively.

By using the Krasnosel’skii fixed point theorem of cone expansion and compression, in [78§]
is proved the existence of at least two positive solution of BVP (5.1) when w may be singular
at t =0 and (or) t =1, w € L'([0,1]), f:[0,1] x [0,00) X (—00,0] — [0, 00) is continuous, Ay,
ha, k1, ko € L([0,1]) are nonnegative with u; > 0, vy > 0, pg > 0, vy > 0.

This work complements and improves similar results obtained in [78]. In Section 5.5, we
discuss and compare our result with those obtained in [78]. We end by giving an example of

application with some numerical computations.

5.2 Multiple fixed points theorem

The following theorem is useful to provide existence of two fixed points in a cone. It will be

used to prove the main result of [12]. We refer the reader to [40] and [29] for more details.

Theorem 5.2.1 Let P be a cone of a Banach space E; ) a subset of P and Uy, Uy and Us three
open bounded subsets of P such that U, C Uy CU; and 0 € Uy. Assume that T : Q — P is an
expansive mapping with constant h > 1, S : Us — E is a k-set contraction with 0 < k < h —1
and S(Us) C (I —T)(Q). Suppose that (U \ U1) NQ # 0, (Us\ Uy) NQ # (), and there exists

ug € P* such that the following conditions hold:

(i) Sx# (I —T)(x — Aug), for all A\ >0 and x € OU; N (Q + Aug),
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5.3. Integral formulation of the problem

(ii) there exist € > 0 small enough and Sx # (I —T)(A\x), forall N> 1+¢, x € OUy and

A € €,
(iii) Sz # (I —T)(x — Aug), for all X >0 and xz € U3 N (2 + Aug).

Then T 4+ S has at least two non-zero fixed points x1,x9 € P such that
X € aUng and x9 € (US\UQ) NnQ

or

x| € (UQ\Ul)ﬂQ andxg € (Ug\UQ)ﬂQ

5.3 Integral formulation of the problem

Let

tl-s), 0<t<s<l,

—_

ml—i-,ult /
Hy(t = G(t SN — ki(v)G(t,v)d
(t5) = Oft) + T | )G

— it 1
Mmoo / hi(v)G(t, v)dv,
mivr +nipht Jo

mg + [l
Malo + Naflo

/ 1 ha (V)G (t, v)dv,

Mol + Nafia Jo

Hy(t,s) = G(t,s)+ /1 ke(v)G(t,v)dv

No — V2t

1
H(t,s) = / Hi(t,v)Hy(v,s)dv, t,s€0,1],
O1 1
Kl = / ‘kl(V)‘dV, KQ = / ’kz(VﬂdI/,
O1 01
H, = / |hi(v)|dv, ng/ |ha(v)|dr,
0 0
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5.3. Integral formulation of the problem

A

Ay

Then

and

|Hy (2, 5)]

|H2(ta 5)‘

[H(t, 5)|

14 [ma | + | | + [
|myvy + ng | |mivr + nq |
14 |[ma| + |pel [na| + [vs

|mavs + napts]

| o
= [ wlaatsris
/ " w(s)ag(s)ds

0<G(ts) <1,

< G(t,s)+ ———

1| + |11
|mivy + nqpn

|mavs + na o]

t,s €10,1],

’ + |M1
’lel + 1 fq |

/|k )|G(t,v)dv

| /0 |ha(V)|G(t,v)dv

1] + |11
|mavy + nq |

/]k )|G(t,v)dv

| / o () |G (t, 1)

2| + |12

|mars + ng ]

< [ma| + |
N |mavy + ny |
= Ala
S G(t, S) S L L Lo ‘m2’ =+ |:u2
|mavs + napis]
12| + |12
|mavs + napial Jy
< 1+ [ma| + | s
|mavy + nopisl
= A27
1
= / H,(t,v)Hy(v, s)dv
0
1
< / |H,(t,v)||Ha(t,v)|dv
0
< AlAQ, t, ENS [O, 1]

In [78, Lemma 5], it is proved that if z € C*([0,1]) is a solution to the integral equation

then o € C2([0, 1]) N C*((0,

_ /0 CH( s

s)f (s,

z(s), 2"(s))ds,

1)) and it satisfies the BVP (5.1).
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5.3. Integral formulation of the problem

In addition of above conditions, we assume the following.

(H3) Let m > 0 be large enough and A, r;, Ly and R; be positive constants satisfy the

following conditions
2
7’1<L1<R1, R1><—+1)L1,
om
D1 D2 Ly
(H4) There exists a nonnegative function g € C([0,1]) with g #Z 0 so that

/01 (1=s)*+2(1—s)+2)g(s)ds < A.

In the last section, we will give an example for the constants pq, ps, A, m, Ay, As, A3, Ay,
As, r1, Ly, Ry and the function g that satisfy (H3) and (H4). For x € C*([0,1]), define the

operator

Falt) - | (1~ 5Pa(s) (<ot + [ H (s, s f (s x(sn), 2" (1) s ) ds, te01]

Lemma 5.3.1 Suppose (H1),(H2) and (H4). If v € C*([0,1]) is a solution to the equation

L
0= ?1 + Fa(t), telo1], (5.2)
then x € C*([0,1]) N C*((0,1)) is a solution to the BVP (5.1).

Proof. Let z € C*([0,1]) is a solution to Equation (5.2). We differentiate three times with

respect to ¢ Equation (5.2) and we get

0=g(t) (—x(t) +/0 H(t,s1)w(s1)f (s1,z(s1),2"(s1)) dsl) , tel0,1],

whereupon
x(t):/o H(t, s0)w(s) f (s1,2(s1), " (s1)) dsy, ¢ € [0,1].

Then z € C3([0,1]) N C*((0,1)) is a solution to the BVP (5.1). This completes the proof. m
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5.3. Integral formulation of the problem

Lemma 5.3.2 Assume (H1),(H2) and (H4). If z € C*([0,1]) and ||z|| < ¢ for some positive

constant c, then

HF%H S A(C-'-AlAQ (Agcpl -+ 144C‘p2 + A5)) .

Proof. Let x € C*([0,1]) and ||z|]| < ¢. Then

[Fz(t)] =

and

INIA

IN

IN

IN

Syt = 57g(s) (=(s) + Ji H(s,s0)w(si) fls1,2(s1), 2" (s1))dss ) ds
< Jytt=s)g(s) (le(s)] + fy 1H(s snrw(sn\f(sl,x(sl),:c"<sl>>rdsl) s
< Sy = 5Pg(s) (e Avds [y wisn) (ar(sn) (s + aa(on) 2" (s1)[P* + as(s1) s ) ds
< fo (1 —5)%g(s) (c+A1A2 (cpl fO w(sy)ay(s1)dsy + P2 fO (s1)az(s1)ds;
+fy w(sl)ag(sl)d81>)ds
< (e+ AyAy (P Ag + 2 Ag+ As)) [ (1 - 5)2g(s)ds
< Alc+ A Ay (P As+ 2 Ay + As)),  telo,1],
(Fy ()]

230 $00(6) (=(6) + ) s uton) o) 7)) ds
2 Jy(t = $)g(s) (le(s)] + Jy [H (s sD)lw(s)l (51, 2(s1), 2" (51)) dsy ) ds

<C + A1 As [y wst) (ar(s1)|a(s1) [P + aa(s1)[a” (s1) 2 + as(s1)) d81> ds
2 [1(1—s)g(s) (c+A1A2 (cpl 3 w(si)ai(s1)dsy + ¢ [ w(si)as(s1)ds:

2(c+ AjAg (PP As + 2 Ay + As)) fol(l — 5)g(s)ds
A(C—I—AlAQ (Cp1A3+Cp2A4—|—A5)), t e [0,1],
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5.4. Main Result

and
|[(Fa)” (t)]
- 'zjgg(s)( s)+ [LH(s, s1)w sl)f(sl,x(sl),x”(sl))dsl> ds
< 2y 9(s) (J2(s) 4+ Jy 1H (s, s0) () F (51, 2(s0). " (1)) |ds ) ds
< 2y gls) (e+ Auda f} w(sy) (ax(sn) (o)l + aa(s)la? (s0)P + aa(s)) ds ) s
< 2[5 9(s) (c+A Ay (cm [ w(sy)ai(s1)dsy + c” [ w(si)as(s1)ds;
+ [ w(si)as(sy dsl)>ds
< 2(c+ AiAg (P Az + 2 Ay + A3)) [ g(s)ds
< A(ct AyAy (M Ag + 2 A, + As)), teo,1].
Consequently

||FIE|| S A(C+ A1A2 (CplAg + Cp2A4 + A5)) .

This completes the proof. m

5.4 Main Result

Theorem 5.4.1 Under the assumptions (H1)-(H4), the BVP (5.1) has at least two non trivial

nonnegative classical solutions in C*([0,1]) N C*((0,1)).
Consider the Banach space E = C%([0,1]) endowed with the norm

o] = masx{max |o(0)], max |o'(8)], max [+ (0)]}

and the positive cone

P={ze€E:x>0 on [0,1]}.

Let € be positive constant. For z € E, define the operators

Ta(t) — (1+me)x(t)—ef_5,
Sa(t) — —eFx(t)—mex(t)—e%,te[(),l].
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5.4. Main Result

Note that any fixed point x € E of the operator T + S is a solution to the IVP (5.1).

Define

P, = {veP:|v|| <r},
Pr, = {veP || <L},

Pr, = {veP:|v|| <R},
Ly

A
R2 — Rl + b (Rl —f‘ A1A2 (R€1A3 —|— R€2A4 —|— A5)) —|— o
m 5m
Q = Pr,={veP:|v] <R}
1. For z1, x5 € (), we have
Tz, — Tas|| = (1 + me)||x; — 2|,

whereupon 71" : 2 — FE is an expansive operator with a constant 1+ me > 1.

2. We prove that S is 0-set contraction.

(a) S is continuous. Indeed, let {z,} be a sequence such that x,, — = as n — oo in F.

We have
1Sz () — S(t)] < €| Fan(t) — Fa(t)] + melen(t) —2()], Vte[0,1].  (5.3)
We know that [z,(£) — 2(£)| — 0, as n — oo and
Fralt) - Fa(t)
< [t 57006) (nls) — o15)
b [ HO s 1l a261)) = 7 s1a(o0).a"(60) sy s, 2 € [0,1)
By continuity of f
i/ (su, (o) al(s1)) = £ (s1,0(s0), " (s1))

Then, Lemma 5.3.2 and the Lebesgue Dominated Convergence Theorem imply that

/0 H (s, s1)w(s1)|f (s1,2n(s1), 20 (1)) — f (s1,2(51),2"(s1)) |ds1 — 0, as n — oc.
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5.4. Main Result

So |Fx,(t) — Fx(t)| — 0, as n — oo. Thus | Sz, (t) — Sz(t)| — 0, as n — oo.

In the same way, we prove that |(Sz,)'(t)—(Sz)'(t)| — 0 and |(Sz,)"(t)—(Sx)"(t)| —

0, as n — oo, and then conclude that Sx,, — Sz, as n — oo in E, which ends the

proof.

(b) S(Pg,) is uniformly bounded. Indeed, for x € Pg,, we get

L,
1Sz < el[Fal + mellz| + EE

Ly
S E(A (Rl + A1A2 (Rll)lAg + R11)2A4 —+ A5)) + le + 10)

(¢) S(Pg,) is equicontinuous in E. Indeed, let t;,t, € [0,1],¢; < t, and x € Pg,.

From Lemma 5.3.2, we deduce

|FZE(1€1) — Fﬂf(tg)l
Dt — 5)%g(s) ( ) + fo (s,81)w )f(sl,:c(sl),x”(sl))dsl) ds
= Ji7 2 = 0(s) (= (s) i (s, sl (o1, a(sn), 2" (s1))ds ) ds

< o =97 = (2= 9 g(s) (Ja(s)| + fy [H (s, s0)lw(s)l (51, 2(s1), 2" (1) st ) d
2t = 2g(s) (12()] + Jy 1H (s, s0) w(s0)|f (51, 2(51),2" (51))ds1 ) ds
< o (=97 =t = 5)) 9(s) (Ie(s)] + fy [H (s, s0)lw(si)l (51, 2(s0), 2" (51)) ds ) ds
2= 9)%(5) (Ia(s)] + fo V(s s)lw(s)l f(s1,2(51), 2" (51))|dsy ) ds
— 0, asty — to.
Similarly,
[(F2)(ts) = (Fa) (t)] = 0, asty — b,
and
(Fz)"(ts) — (Fz)"(t)| — 0, as t; — to.
Consequently,
Sa(t2) = Sa(t)] < elFalts) — Falt)| +emla(ts) — 2(t)] -0,
(S2)(t2) = (Sz)(t)] < el(Fa)(ta) = (Fa)(t0)] + em|a’(t2) — /()] >0,

|(52)"(t2) = (S2)" (L) < el (F2)"(t2) — (Fx)"(ta)| + em|a”(t2) — 2" (t1)] = 0,

as t; — to.
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5.4. Main Result

Therefore, S(Pp,) is equicontinuous.

According to the Arzela-Ascoli compactness criteria, we conclude that S : Pr, — F is

completely continuous. So, it is O-set contraction.

. Let v; € 531. Set

1 L
U2:U1+—FU1+—1.
m 5m

Note that by the second inequality of (H3) and by Lemma 5.3.2, it follows that

eFvy + e >0 on [ty,00). We have vy > 0 on [tg, 00) and

Ly

1
< —||F —L
foall < ol + - P+ 22

1

A L
< Ri+ 2 (Ry+ AAy (RP Ag + R Ay + As)) + =&
m om

— RQ.
Therefore, v, € 2 and
B 7 Ly Ly
emvy = —emv; — eF'vy —eqo — o
or
L
(I —=T)vy, = —emuvy+ 61—(1)

= SUl.
Consequently, S(Pg,) C (I —T)().

. Assume that for any uy € P* there exist \g > 0 and xg € IP,, N (2 + Aug) or xg €

OPgr, N (24 Aoug) such that

Then

e Fag(t) — emao(t) — 2k = —em(zo(t) — Aotts) + €2k

Whereupon,

L
Fl’o(t) = —)\omuo — El, t e [O, 1]
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5.5. Concluding remarks

So,
Ly

Ly
Fxol = ||A —| > =
1F'zoll = [|Aomuo + == > =,
which contradicts Lemma 5.3.2 and the second inequality of (H3).
. Let g = slm Assume that there exist A, > ¢; + 1 and 2, € 0P, iz, € Pg, such that
SI‘l == (I - T)()\1$1)

Note that x; € 0P, and A\jx; € 7_331 imply

2
(_ + 1) Li< ML= )\1”1’1” < R;.

5m

Then

—eFxy — mexy — eﬁ = —A\imexr; + Pt

10 10’
or
L
F.I'l + El = ()\1 — 1)m:1:'1
Hence,
L L
231 > ||Fay + Elu =\ = Dm|zi]| = (A — D)mLy,

or

2
MN<—+1
! 5m+’

which is a contradiction.

Therefore all conditions of Theorem 5.2.1 hold. Hence, the BVP (5.1) has at least two solutions

z; and x5 such that

r1 < o] < Ly < o < Ra.

5.5 Concluding remarks

1. The conclusion of the main result of [12] remains true if we replace the condition w €

L'(]0,1]) by the following one:

w:[0,1] = R is a nonnegative function such that wa; € L'([0,1]), i = 1,2.
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2. In [78], the BVP (5.1) is investigated in the case when

(A1) w may be singular at t = 0 and (or) t = 1, w € L*([0,1]), f : [0,1] x [0,00) X
(—00,0] — [0,00) is continuous, hy, ho, ki, ko € L([0,1]) are nonnegative with

H1>O,V1>O,M2>O,l/2>0.

If (A1) holds and N fy > 1, N fo, > 1, and there exists b > 0 such that

b
max t,x < 2. where
tw%MWMQﬂ”w L

t
fs = liminf min —f( ,:U,y),
| +ly|—Bte0,1] |z| + |y]

f=0, f=o0,

and

1
mnz | N2

= <_ _> Y

L 16 + /Ow(s)ds

1-5
. PiP2 | P2 2
N = (—120 + 4>5/5 e(s)w(s)ds,

my +ny + (1 —vy) Ny = Mo + g + pio(1 — 1)
y =

m = )
mil1 + nifi Mol + Naflo

o= (m /Ole(T)kl(T)dT—i—Vl /Ole(f)hl(f)df),

mivy + Ny

py = L (m /Ole(f)/@(f)dww /Ole(f)hz(f)df),

Moly + Vally

e(t) = t1—1), telo1],

in [78], it is proved that the BVP (5.1) has at least two positive solutions.
Moreover, if (A1) holds and Lf° < 1, Lf* < 1, and there exist § € (O, %) and B > 0 such

that f(t,z,y) > ‘SQTB for all t € J;5, x € [0°B, B], y € [-B, —§°B], where Js = [0,1 — 4],

f(t,z,y)

f'B = limsup max ———==, [ =0, [ =00,
ja|+ly -6 t0.1] 2] + (Y]

in [78], it is proved that the BVP (5.1) has at least two positive solutions.
When p; < 0 or vy <0, or uy < 0, or vp < 0, then we can not apply the results in [78]

and we can apply the main result of [12]. Thus, the main result of [12] and the results in

[78] are complementary.

133



5.6. Example

5.6

Let

Let also,

hi(s)

Then

Then

Example
=1, L =10, R,=20,
1
= py,=0, m=1000, A:1—02.
hals) = ki (5) = ka(s) () = as(s) = az(s) = =, w(s) = —
= N9glS) = S) = S) =S8 ai\sS) = ao\Ss) = asls) = — wls) = —
2 1 2 ) 1 2 3 37 \/g?
1
my; = m22/82d82—,
0
1 2
= :1——:—
ny na 3 3’
1
p1 = #2=V1—V2—1—/3d32—,
10
Kl = KQZHl—HQ—/SdS——,
0
1 1 2 1
141 ¢ 241
A = A2:1_|_i{’ ?._+? %._
sts 2 sts 2
5 7
5 1 T 1
s 2 %2
5 7
— 1424+ —1492=
tetg =1t :
1 [Yds 2 7' 2
Ay = Ay=As=- [ —==2 ==
3 4 573 . V3 3\/5520 3
1
A(Ry + A1Ay (R As + RPP AL+ As)) = 1—02(20+9~2)
Ly
< 2=—.
5
R, 2 2
o> 1= 141
Ly 5000 " Bm
Thus, (H3) holds. Let g(s) = 145, s € [0,1]. Then
! 1/t 1
1—5)242(1— 2 ds = — 2 _4s+5)ds = ——
[a=spe20-9+200as = g [ —dse5)s =

s € 10,1].
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Therefore (H4) holds. Consequently the BVP

sy = Lt
0 = 7 (temr) 100

z(0) = z(1) :/0 sx(s)ds, z"(0)=2a"(1) =2'(1),

has at least two nonnegative solutions.
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Chapitre 6

Appendix: Green’s functions for some

boundary value problems in ODEs

The Green’s function plays an important role in solving boundary value problems of ordinary
differential equations. The solutions of some boundary value problems for linear ordinary dif-
ferential equations can be expressed by their respective Green’s functions, in what follows, we
give some examples. The interest of Green’s function resides mainly in the resolution of non-
homogeneous differential equations, it is necessary on the one hand to determine the general
solution of the homogeneous equation associated, and on the other hand, to find a particular
solution of the complete equation, then add both solutions to determine the integration con-
stants with indispensable additional data. Green’s function makes it possible to find precisely
this particular solution. Some boundary value problems for nonlinear differential equations
can be transformed into nonlinear integral equations whose kernel are the Green’s functions of
corresponding linear differential equations. Such integral equations can be studied using the
properties of Green’s functions. The concept, the significance and the development of Green’s

functions can be seen in [21, 22, 31, 68].

136



6. Appendix: Green’s functions for some boundary value problems in ODEs

Second-order differential equation with linear boundary

conditions

Consider the following linear second order differential equation

(&) p@)y" +q(x)y +r(x)y = f(z), =€ a,b],

where p, ¢, r and f are continuous functions in [a, b], associated to non separated linear boundary

conditions :

Ur(y) = awy(a) + aoy'(a) + azy(b) + auy'(b) = 7,

Us(y) = Bry(a) + Bay'(a) + Bsy(b) + Bay'(b) = 6,

where «;, 5;, 1 = 1,4 and v, J are real constants.

(F)

We call associated homogeneous boundary value problem to (£) + (F) the problem (£) +
(Fp) such that :
(&n) p(2)y" +q(@)y +r(2)y =0, a<z<b
and
Uir(y) =0,

Us(y) = 0.
If (f#A0andy=0=0)or (f =0and (v # 0 or d #0)), we say that the problem (&) + (F)

(Fu)

is semi homogeneous.

Remark 6.0.1 1. The boundary value problem (£)+ (F) is said to be reqular if a and b are
finite numbers, p, q, r are bounded functions on [a,b] and p(z) # 0 Va € [a,b], otherwise

we say that it 1s singular.

2. The linear boundary conditions (F) are general, in particular they

include :
a) The Dirichlet’s conditions : y(a) =, y(b) =96 ;
b) Neuman’s conditions : y'(a) =, y'(b) =0 ;

¢) The mized conditions: y(a) =, y'(b) = 3§ ory'(a) =, y(b) =0 ;
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6. Appendix: Green’s functions for some boundary value problems in ODEs

d) The linear separated boundary conditions
ary(a) + azy'(a) =7
Bry(b) + B2y’ (b) = 0,

where o2 + a3 # 0 and 7 + B3 # 0;

e) The linear periodic boundary conditions

In what follows, we present a result, called Fredholm alternative, that assures the existence

and the unicity of the solution of the problem (£) 4 (F).

Theorem 6.0.2 (Fredholm alternative) ([1], page 236)
The nonhomogeneous problem (£) + (F) admits a unique solution if and only the homogeneous

problem (Ey) + (Fg) admits only the trivial solution y = 0.

Definition 6.0.3 G : [a,b] X [a,b] — R is called Green’s function of the problem (Ex) + (Fu)
if it verifies the following properties :
1. G is continuous in [a,b] X [a,b];

2. %€ is continuous in each point (z,t) € [a,b] x [a,b] such that x # t;

3. 9o(w,am) = L(x,at) = ﬁ Va € [a, b], where
oG N . 0G oG n . 0G .
%(x,x )_tl—lglfﬁ_x(x’t) and %(1‘71’ )_tgraga_x(x,t),

4. Vt € (a,b) the function x — G(x,t) verifies the homogeneous equation () in each of the

intervals [a,t) and (t,b];
5. ¥Vt € (a,b) the function v — G(x,t) verifies the homogeneous conditions (Fr).

Theorem 6.0.4 ([1], pp 240-244) Suppose that the homogeneous problem (Ey) + (Fy) has

only the trivial solution. Then, there exists a unique function G, called Green’s function, such
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6. Appendix: Green’s functions for some boundary value problems in ODEs

that for every continuous function f the solution y of the semi homogeneous problem (€)+ (Fg)

s uniquely written like the following:

b
y(:z:):/ G(z,t)f(t)dt.

Proof. Existence, uniqueness and construction of the function G
Let ¢1, @2 two independent solutions of (£y). By defintion, the partial function z — G(z,1t)
is solution of the equation (£g) in each interval [a,t[ and ¢, b], there exist four functions on ¢

such that :

o) = M(t)p1(z) + Xo(t)pe(z) if a <z <t (6.1
pa(t)pr(x) + pa(t)pa(e) if ¢ <z <D,

Next, the Properties 1 and 3 give the system :

AM(B)p1(t) + Aa(t)pa(t) = pa(t)pr(t) + pa(t)p2(t)

(6.2)
(0@ () + pa() (£) = MO (1) = Xa(0)¢' (1) = .
Posing vy (t) = p1(t) — Ai(t) et va(t) = pa(t) — Xa(t), the System (6.2) becomes
(D1 (1) + ea(t)a(t) = 0 63

vi(t)¢'(t) + v2(t) ' (1) = -
Since the Wronksian W (1, p2)(z) # 0 for all ¢ € [a,b] the system (6.3) admits a unique
solution (vy(t), ve(t)). Using the relations uy(t) = A (t) + vi(t) et pa(t) = Aao(t) + va(t), the

Green’s function G becomes :

Glo.t) = M(t)p1(z) + Ae(t)pe(x), if a<x<t<b
M) e1(z) + Aa(t)pa(z) + vi(t)pr () + va(t)pa(z), if a<t<a <D

Next, the Property 5 gives the system

Ur(p1)Ai(t) + Ui(p2)Xa(t) = ki(t)

Us(1)Ai(t) + Uz(p2) Aa(t) = Ka(t),

(6.4)

where
ki(t) = —vi(t)[aszp1(b) + au'(b)] — v2(t)[azp2(b) + aug’(b)],

ka(t) = —01()[Bspr(b) + Bae'(D)] — v2(1) [P3pa(b) + Baie' ()]
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Indeed, we have

Gla,t) = M(t)eila) + Aa(t)pa(a), (a <)

Ge(a,t) = M) (a) + ()¢ (a),

Gb,1) = A(t)pi(b) + A2(t)p2(b) + v1()p1(b) + v2(t)2(b), (& <)
50, t) = ()¢ (D) + () (b) + vi(t)¢' (b) + va(t)¢/ (D).

Since the function z — G(z,t) verifies the boundary conditions (Fg) for all ¢ € [a, b], then
alG(a, t) + CYQ O (a t) + OégG(b t) + &48 (b Zf) O

which gives the equation
M(t)[eapi(a) + asp'(a) + azpr(b) + aue’ (D)) + Aa(t)[arpa(a) + azy'(a)+
azpa(b) + s’ (0)] + v1(t)[azp1(b) + cup’ (D)] + va(t)[azpa(b) + ca’ (D) = 0,
which is equivalent to
M) [eapi(a) + asp'(a) + azpr(b) + aue’ (D)) + Aa(t)[arpa(a) + azy'(a)+

azpa(b) + s’ (b)]

= —ui(B)]aspi(b) + u@(0)] = va(t)[aspa(b) + ca' ()] = ka (1),

In the same way, we get
/1G(a,t) + ﬁ28G(a t) + BsG(b,t) + 548G(b t)y=0

which gives the second equation of the system(6.4).
By hypothesis, the homogeneous problem (£ )+ (Fp) admits only the trivial solution, the deter-
minant of the system (6.4) is non-zero. Thus, this system admits a unique solution (A1 (%), Aa()).

Example 6.0.5 Let us consider the following periodic boundary problem :

y'(z) + K*y(z) =0, 0<z<a, k>0

(P)q 9(0) = y(a),
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Let pi(x) = coskx and ps(x) = sinkx two linearly independent solutions of the equation

y"(x) + k*y(z) = 0. The homogeneous problem associated to the problem (P) having only one
k

solution y = 0 if and only if A = 4k sin® ?a # 0.

Let a €]0, 2%[ The Green’s function G associated to the problem (P) is written like the following

A (t)coskx + Ao(t)sinkx of 0<x <t
I G (1)
pi(t) coskx + po(t)sinkzr if t <z <a.

Let vi(t) = pi(t) — A (t) and va(t) = pa(t) — Ao(t). Then, vi(t) et vy(t) verify the system
cos(kt)vy(t) + sin(kt)ve(t) = 0,
—ksin(kt)vy(t) + k cos(kt)va(t) = 1,

which gives

1 1
vi(t) = % sinkt et wvy(t) = 7 o8 kt.

Then, A\i(t) and \o(t) verify the system
(1 — coska) A (t) — sinkas(t) = % sink(a — t)
sin kaX; (t) + (1 — coska)\a(t) = % cosk(a —t).
The determinant A of this system in (A(t), A2(t)) is nonzero, then A\i(t) and \o(t) are well

defined and unique such that

. a
= W Slnk(t — 5)

2

A () —Cosk(t—%) et o(t)

- 2k sing

We replace these functions in the expression of the Green’s function and we get

1 cosk;(x—t—k%) 0<zx<t

" 2ksink

G(z,t)

COSk(t—ZL‘—f—%) t<z<a

Particular case: separate linear boundary conditions

Let consider the following linear differential second order equation

(&) p(@)y" +q(@)y' +r(z)y = f(z), € a,b],
where p, ¢, r et f are regular functions associated to separated linear boundary conditions :

ay(a) + ay'(a) =~
Bry(b) + Bay/(b) =6,

(3)

141



6. Appendix: Green’s functions for some boundary value problems in ODEs

where af + a3 # 0 et 87 + 32 # 0. In this case, The Green’s function associated to the problem

() + (Fu) can be determined with an easier way like the following :

1 P1(x)Pa(t), a <z <t
POWE |, (1)go(a), t <z <,

where ¢; and ¢s are the solutions of the initial conditions problems respectively

(En) + p1(a) = ay and  (Ex) + ¢2(b) = Bo

P)(a) = —ay d,(b) = — P4,
W(t) = 61 (£)dh(t) — &, ()a(t) # O is their Wronskian and p(t) = exp ( It %ds)

Note that the product pWW is constant in [a, b].

Example 6.0.6 Consider the Dirichlet’s problem posed in |a, b

"= f(x), a<x<b
) y'=flz), a<z<

Let build the functions ¢1 and ¢o solutions of Cauchy’s problems :

=0 4=0
¢1(a) =0 and { ¢,(b) =0
¢'(a) = —1. ¢'(b) = —1.

We find ¢y (z) = a—z, ¢o(x) =b—z, W(p1,ds) =b—a#0 etp(t) =1, t € [a,b].

Hence the Green’s function

Lm0 -y q< o <t <b
Gz, t) = (6.5)

b -y a<t <a <b.

Second-order differential equation with three point bound-

ary conditions

In this paragraph, we consider the Green’s functions for a second-order linear ordinary dif-

ferential equation with some three-point boundary conditions. The results presented here are

=

developed by Zhao in [85].
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We consider the second-order linear differential equation
y'+ f(t) =0, t € [a,b)], (6.6)
satisfying the boundary conditions

y(a) = ky(n), y(b) =0, (6.7)

where k is a given real number and 7 € (a,b) is a given point.

The Green’s function of Equation (6.6) with the boundary condition (6.7)

Theorem 6.0.7 Assume k(b —1n) # b — a. Then, the Green’s function for the (6.6)-(6.7), is

given by
k(b —t)

G(t’s):K(t’8)+b—a—k(b—n)

K(n,s),

where

e - g <s<t<b

K(t,s) (6.8)

(t=a)(b—s) a<t<s<h.

b—a ’
Proof. It is well known that the Green’s function is K (t,s) as in (6.8) for the second order

two-point linear boundary value problem

W+ f(t) =0, te (aab)7 (6 9)

u(a), u(b) =0,

and the solution of (6.9) is given by

b
w(t):/ K(t,s)f(s)ds, (6.10)

and
b
wl@) =0, w®)=0. wln) = [ K. 1) (6.11)
The three-point boundary value problem (6.6) —(6.7) can be obtained from replacing u(a) =

0 by u(a) = ku(n) in (6.9). Thus, we suppose that the solution of the three-point boundary

value problem (6.6) — (6.7) can be expressed by

u(t) = w(t) + (c + d t)w(n); (6.12)
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where ¢ and d are constants that will be determined. From (6.11),(6.12), we know that
u(a) = (¢ + da)w(n),
u(b) = (c+ db)uw(n),
u(n) = (e+dn+w(n).
Putting these into (6.7) yields
c+da=k(c+dn+1),
c+db=0.

Since k(b —mn) # b — a, by solving the system of linear equations on the unknown numbers ¢, d,

we obtain
_ kb
€= ako—
__ —k
d= b—a—k(b—n)’
hence, ¢+ dt = % By substitution in (6.12), we get
k(b—t)
t) = w(t .
ult) = 0t + Ty
This together with (6.10) implies that
k(b

b—a—

) = [ K5+ gt [ K oreas

Consequently, the Green’s function Gi(t, s) for the boundary value problem (6.6) — (6.7) is as
described in Theorem 6.0.7. m

From Theorem 6.0.7 we obtain the following corollary.

Corollary 6.0.8 If k(b —n) # b — a, then the second-order three-point linear boundary value

problem

u'+ f(t) =0, te€]a,b],

has a unique solution

u(t):/ G(t,s)f(s)ds.

Consequetly, for a = 0 and b = 1, we have the following result.
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Corollary 6.0.9 If k(1 —n) # 1, then the Green’s function for the second-order three-point

boundary value problem

(6.13)

H(n,s), (6.14)
where

H(t,s) N (6.15)

Hence the problem (6.13) has a unique solution

1
u(t) = / G(t, 5) f(s)ds.
0
If g(t,u) is continuous in [0, 1] x R, then the nonlinear boundary value problem

u' +g(t,u) =0, tel0,1],

u(0) = ku(n), wu(l)=0

15 equivalent to the integral equation

u(t) = /0 G(t, 5)g(s, u(s))ds.

Fourth-order differential equation with integral boundary

conditions

We consider the following fourth-order boundary value problem with integral conditions

eW(t) = w(t)f (t,x(t),2"(t)), te(0,1),
2(0) = [ ha(s)a(s)ds, (1) = [ ki(s)a(s)ds, (6.16)

2(0) = [\ ho(s)a"(s)ds, a"(1) = [y ka(s)a"(s)ds,

where

(A1) w is nonnegative, and w € L'[0, 1] may have singularities at ¢ = 0 and(or) ¢t = 1;
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(A2) feC(]0,1] x R x R;
(A3) hi, ha, ki, ke € L'[0, 1] are nonnegative and
1
H1 = 1 —/ hl(S)dS > 0,
o
v =1 —/ ki(s)ds,
o
Mo = 1 —/ hQ(S)dS > 0,
0

1
vg =1 —/ ko (s)ds,
0
In order to get the Green’s function of problem (6.16) we need the following Lemma.

Lemma 6.0.10 If h,k € L'[0,1] are nonnegative, and pp = 1 — fol h(s)ds > 0, v = 1 —

fol k(s)ds > 0, then for any y € C(0,1), the BVP

—2"(t) =y(t), te(0,1),

(6.17)
2(0) = [} h(s)z(s)ds, (1) = [, k(s)a(s)ds,
has a unique solution x which is given by
1 ~
x(t) :/ H(t,s)y(s)ds, (6.18)
0
where
~ B m+ut ! n — ot /1
H(t,s) = G(t,s) + p—————p /0 k()G (s, T)dT + pe—_ h(T)G(s,T)dT, (6.19)

G(t,s) = - (6.20)

and
1 1
m :/ sh(s)ds, n=1 —/ sk(s)ds. (6.21)
0 0

Proof. The general solution z”(t) = y(t) can be written as

x(t) = — /Ol(t — s)y(s)ds + At + B. (6.22)
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Now, we solve for A, B by z( fo s)ds and x( fo s)ds, it follows that

B=— [ h(r) ] (t = s)y(s)dsdr + A [ Th(7)dr + B [, h(r)d
— [l —s)y(s)ds+ A+ B (6.23)
= — [ k(7) [T(r — s)y(s)dsdr + A [} Th(r)dT + B [ k()d
that is,
Ay eh(rydr = B (1= [} h(r)dr) = [y b(7) [7 (7 = s)y(s)dsdr,
A (1 . rk(T)dT> B (1 — [ k(r) T> (6.24)
= Jy (1= 8)y(s)ds — [y k(r) [ (v — s)y(s)dsdr.

Solving the above equations, we get

A—mv+w fo fo Tfo T—38)y sdsd7+uf01—sy()ds
—fo Tfo T — 8)y(s)dsdr)),

mwnu fo (1 —s)y(s)ds — fo (k(r fo T — 8)y(s)dsdr)
-n fo fo 7 — 8)y(s)dsdr).

(6.25)

B =

Therefore, (6.17) has a unique solution
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The unique solution of (6.17) is expressed as the following
= [is(1—ty(s)ds + [ t(1 — s)y(s)ds
+ o [,uthTk fo (1—s)y ds—,utfo (1 — s)y(s)ds
—vt fo Th(r)dr fo (1— s)y(s)ds + vt [, h( fo T — s)y(s)dsdr
+put fol(l — s)y(s)ds — ut fo 7) [y (T = s)y(s)dsdr
+ [Lrh(r)dr [(1 = s)y(s)ds — [, Th(T deO 7) (T — 8)y(s)dsdr

— [Yh(r) [T (r = s)yy(s)dsdr + [ h(r)dr [ h(r) [T (7 — s)y(s)dsdr

— [Lrk(r)dr [ rh(r)dr [1(1 = s)y(s)ds

+ [Lrh(r) [ rk(r)dr L1 - s)y(s)ds}

= [is(1—ty(s)ds + [ (1 — s)y(s)ds

o it (K7 Jy (= P)y(s)dsdr + [, k(7) [17(1 = s)y(s)dsdr)

—ot (o hlr) Jy s(U=T)y(s)dsdr + fy h(r) [} (1~ s)dsdr)

+ (Jy ho) 7 51 = P)y(s)dsdr + Jy g(r) o m(1 = s)dsdr) — [, Th(r)dr
x (fy b Ji s(1 = m)y(s)dsdr

+ () [P (1= s)y (s)dsch)

+ [ Th(r)dr
x (o klr) Jy (1= m)y(s)dsdr

+ k() [ (= )y (S)deTﬂ

= [y Gt s)y(s)ds + b x|t fy k(7)) Gls,m)y(s)dsdr
—vt [} h(r) [} G s)dsdr
+ [ h(r) [y G(s,t)y(s)dsdr
- fol Th(r)dr fol
SNe s)dsdr (6.26)
+ [ Th(T)dT fo
x G (s, 7)y(s)dsdr]

— fl G(t, s)y(s)ds + -2trt fo fo G(s,7)drds

mu—+np

mv—i—nu

)
f—vt fo y(s) fo G(s,T)drds.
(

Therefore, the unique solution of (6.17) is z(t fo s)ds. m
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Theorem 6.0.11 Assume that (A1)-(A8) hold. If z(t) € C?[0,1] is a solution of the following

integral equation
1
— [ Hs)0s) (5, 05). 7 5)) s,
0

then x(t) € C*[0,1]UC*(0,1) is a solution of BVP (6.16), where

H(t,s):/o H,(t, 7)Hs (T, s)dr,

Hy(t,m) = G(t,7) + 4%%;%% v)dv
ni—ovit
m11;11+7;1,ul fO hl )dU,

H2 (Ta S) = G(T7 S) m?ﬁz—:-l:fz:m fD k2
mgigfi;tz fU h2 )d

my = fol shi(s)ds, ni— fol ski(s)ds
fo sho(s)ds, ny=1-— f01 sko(s)ds.

Proof. By using Lemma (6.0.10), the conclusion is abvious. m

Example 6.0.12 Let consider the following fourth-order boundary value problem

1) = & (mgmy)» te©1),
2(0) = x(1) = fy sa(s)ds,
2"(0) = 2"(1) = [y s(s)2"(s)ds.

Then

and we have

with

v)dv

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)
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S(%—T)-i-%, 0<s<7<1

s(%—7)+7', 0<7T<s<1,

and finaly we get

E(Bst+10—-3s—6t) 0<s<t<1

=Bt—s4+2) 0<t<s<1.
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Conclusion

This work is a contribution to the fixed point theory on cones of Banach spaces for the sum
of two operators. The motivation for this study stems from the fact that many problems
emanating from other fields of science are modeled as a sum of two operators. More precisely,
the purpose of this thesis work is twofold, firstly, we construct a generalized fixed point index
for operators that are sums of the form 7'+ F, where T is an expansive operator and [ — F'is a
k-set contraction. For this, we appeal to the fixed point index theory for strict set contractions.
After computing this new index, several fixed point theorems and recent results are derived,
including Krasnosel’skii type theorems and Leggett-Williams type ones. Secondly, we use some
of our obtained results to investigate the existence, nonnegativity, localization and multiplicity
of solutions for two-point BVPs and for three-point BVPs as well as to study a class of fourth-
order boundary value problems with integral boundary conditions. The study of these types of
problems is driven not only by a theoretical interest, but also by the fact that several phenomena
in engineering, physics, and the life sciences can be modeled in this way.

Fixed point theory is a flourishing area of research for many mathematicians with an enor-
mous number or a wide range of applications in various fields of mathematics. The subject
has become so vast that no single work can cover all its theoretical and applied parts and this
theory still the object of intense research activity.

This work is a contribution to both theoretical and applied parts of the fixed point theory.

We suggest the following topics to study later:
e Discrete Fixed Point Theory (Tarski’s Fixed Point Theorem).

e Application to Navier-Stokes equations.
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e Fixed point theory under weak topology.
e Application to fractional differential equations (FDEs).

e Random fixed point theory.
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Abstract

Thisthesis consists on the study of the fixed point index theory for the sum T+F
on ordered Banach spaces and applications to some problems emanating from
other fields. First, we present the necessary elements for the elaboration of this
thesis such as the Kuratowski’ smeasure of noncompactness, the topological
degree theory as well as the fixed point index theory in cones. Secondly, we
develop a new fixed point index for the same sum in the case where T isan h-
expansive mapping with h > 1 and I-F is a k-set contraction with 0 <k <h.
Finally, we use this fixed point index to develop fixed point theorems for this
class of operators which will alow us to prove existence of nonnegative
solutions for some boundary value problems.

Résumé

Cette these consiste en |I'éude de la théorie de I'indice du point fixe pour la
somme T+F dans des espaces de Banach ordonnés et ses applications a certains
problémes émanant d'autres domaines de la science. Dans un premier temps
nous présentons les éléments nécessaires al'éaboration de cette these tels que la
mesure de non compacité de Kuratowski, lathéorie du degré topologigque ainsi
gue lathéorie de I'indice du point fixe sur les cones. Ensuite, nous développons
un indice du point fixe pour cette somme dansle casou T est un opérateur
expansif avec laconstante h>1 et | - F est un opérateur k-contractant
d'ensembles avec 0 <k < h.Finalement, en utilisant cet indice, nous développons
des théorémes du point fixequi nous permettent de trouver des solutions
positives a des problémes aux limites associés a des équations différentielles
d'ordre deux et d'ordre quatre.

el

& sana U5 o (iS5l @l 5 pally ualal) saslial) Adaiill ydige Al o 35 kY1 sda b Jigs
Ddigall 13a | AL eliad (e dalha g Bpdaa Cle gena e AdTpmall g ddliaa (aibad I3 0p e
136d Ay ilda g jaall o sacbeall Adaiall il las o gk (e g (o 3 Lasd Wiy i g

Y alaall Giand s ge il 2 sa 5 L) (g0 Liay o gas (5 AT R (s el Jigall (ga Chinall
3OLED Aoaal) o g il (e Adlis Jalails 46yl Adad puad) Adealal) Y alaall oand 13S 5 ALal<)
da sl e 3 jaiall il Jlee DU (5 ) sall anilly S ISy < 3l asliall ddatill 4 s ()

> ssrshall el 4y ylai 458 je (3 il ) shaill 3 gay S gall (he Alide CiliaY dun ol ghall
Jstall 3 s 5 Al 50 ol e A e 4 58 811 4l ) (5aabiall Aaiill e 5 A o 53 sdall A 5ll)
Aobd jual) Jiluall (e SN




	1-WRD4037.pdf
	2-WRD0000 (1).pdf
	THESE2b (1) (1).pdf
	 General Introduction
	List of publications
	Table of notations
	1 Preliminaries
	1.1 Cones and partial ordering
	1.2 Compactness and noncompactness
	1.2.1 Some results about the compactnees
	1.2.2 Kuratowski's measure of noncompactness

	1.3 Related classes of mappings
	1.3.1 Compact and completely continuous maps
	1.3.2 k-set contraction maps
	1.3.3 Expansive and nonexpansive maps
	1.3.4 Some related fixed point theorems 

	1.4 Topological degree theory
	1.4.1 Brouwer's topological degree
	1.4.2 Leray–Schauder's topological degree
	1.4.3 Applications of the topological degree


	2 Fixed point index
	2.1 Introduction
	2.2 Fixed point index for completely continuous maps
	2.3 Fixed point index for strict-set contraction maps
	2.4 Fixed point index for condensing maps
	2.5 Fixed point index for 1-set contraction maps

	3 Generalized fixed point index for maps of the form T+F
	3.1 The case where T is h-expansive mapping and F is a k-set contraction with 0k<h-1 
	3.1.1 Definition of the index
	3.1.2 Computation of the index

	3.2 The case where T is h-expansive mapping and F is an (h-1)-set contraction
	3.2.1 Definition of the index
	3.2.2 Computation of the index

	3.3 The case where T is nonlinear expansive mapping and F is a k-set contraction
	3.3.1 Definition of the index
	3.3.2 Computation of the index

	3.4 The case where T is h-expansive mapping and I-F is a k-set contraction with 0k<h 
	3.4.1 Definition of the index
	3.4.2  Computation of the index 

	3.5 Concluding remarks 

	4 New fixed point theorems for the sum of two operators
	4.1 Expansion-Compression fixed point theorem of Krasnosel'skii type for the sum of two operators
	4.1.1 Main results
	4.1.2 Applications

	4.2 Expansion-Compression fixed point theorem of Leggett-Williams type for the sum of two operators
	4.2.1 Main result
	4.2.2 Applications


	5 Multiple nonnegative solutions for a class of fourth-order BVPs
	5.1 Introduction
	5.2 Multiple fixed points theorem 
	5.3 Integral formulation of the problem
	5.4  Main Result
	5.5 Concluding remarks
	5.6  Example

	6 Appendix: Green's functions for some boundary value problems in ODEs

	15-abstract-resume-ملخص-salim2.pdf

