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m’ont permis de développer mon intuition. Lilia, Sara, merci d’exister.
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General Introduction

—————————————————————–

This thesis is devoted to the study of the existence, multiplicity, nonnegativity and local-

ization of solutions for abstract equations of the form:

Tx+ Fx = x, x ∈ Ω, (1)

where Ω is a closed convex subset of a Banach space.

This work is motivated by the fact that many problems that arise from different areas of sci-

ence (chemical reactors, neutron transport, population biology, infection diseases, epidemiology,

economics, applied mechanics, fluid mechanics, . . . ) can be recast in the abstract formulation

(1). In particular, ordinary, fractional, partial differential equations and integral equations can

be formulated like abstract equations of the form (1). Note that the nonnegativity is a very

important notion as the solutions may represent stuff that cannot be negative such as density,

speed, volume, mass, voltage, distance, amperage, gravity, etc. The nonnegativity condition

can, mathematically, be described by a closed convex subset P in a Banach space which satisfies

λP ⊂ P for all nonnegative real number λ and P ∩ (−P) = {0}. We are interested in solving

Equation (1) in P .

As a very important part of nonlinear analysis, fixed point theory plays a key role in the solv-

ability of many complex problems from applied mathematics. The theory itself was developed

in many directions starting from Brouwer’s fixed point theorem (1910), Banach’s contraction

principle (1922), and Schauder’s fixed point theorem for compact mappings (1930). Kras-

nosel’skii’s fixed point theorem concerns the sum of a contraction and a compact mapping, and
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Introduction

turns out to be an extension and a combination of these previous two results (see [24, 27, 73]).

Among the very rich and recent literature on the development of the fixed point theory for the

sums of operators, we quote, e.g., [20, 64, 79, 80].

Another fixed point result established by Krasnosel’skii in 1960 is the cone compression-

expansion fixed point theorem; it is mostly used for proving existence, localization and mul-

tiplicity of nonnegative solutions for various nonlinear problems in some conical shells of a

Banach space (see [46, 50, 51]). Recently, its extension have attracted many researchers (see

[7, 54, 55, 65] and references therein).

Let P be a cone of a Banach space X. Assume that there exist two positive constants r, R with

r 6= R. The Krasnosel’skii-Guo compression-expansion of cone fixed point theorem guarantees

that a completely continuous map F : Pr,R → P has a fixed point in the conical shell

Pr,R := {x ∈ P : r ≤ ‖x‖ ≤ R}

under the following conditions:

‖Fu‖ ≤ ‖u‖ for every u ∈ P with ‖u‖ = r,

‖Fu‖ ≥ ‖u‖ for every u ∈ P with ‖u‖ = R.
(2)

An illustration of this result in the special case where X is the two-dimensional plan R2 is

depicted in the following figure

2
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Note that the conditions (2) are imposed only on points of the two curved boundaries of Pr,R.

Interior points and points on the sides of the cone can be moved in any direction (as long as

the image remains inside P). Also it is not stipulated that any particular image point Fu must

lie inside Pr,R. The adjectives “compressive” and “expansive” in the names of the two forms of

the theorem are conventional, and they are not meant to correctly describe the behaviour of F

under all circumstances. Recently, many researchers have been interested in the extension of

the above theorem in various directions (see [4, 7, 54, 55, 65, 69] and references therein). Our

contribution is part of those generalizations leading to fixed point theory for sums of operators.

More precisely, we derive several existence results for nonlinear equations of type (1).

In parallel to the development of the krasnosel’skii’s type theorems and since 1979, there was

the one of Leggett-Williams. While the Krasnosel’skii type compression-expansion fixed point

theorems gives us fixed points localized in a conical shell of the form {x ∈ P : a ≤ ‖x‖ ≤ b},

where a, b ∈ (0,∞), with the Leggett-Williams type they are localized in a conical shell of the

form P(α, β, a, b) := {x ∈ P : a ≤ α(x) and β(x) ≤ b}, where α is a concave nonnegative

functional and β a convex nonnegative functional. The original Leggett-Williams fixed point

theorem (see [56, Theorem 3.2]) discusses the existence of at least one fixed point in a conical

shell of the form {x ∈ P : a ≤ α(x) and ‖x‖ ≤ b}, where a, b ∈ (0,+∞) and α is a concave

nonngative functional. Noting that this result has been widely extended in many directions,

(see, e.g., [4, 8]).

The fixed point theory has also been greatly influenced by the parallel progress of the

research works made on the topological degree for different classes of mappings (see, e.g.,

[3, 54, 55]). In these regards, the pioneer works of Petryshyn [66, 67] have initiated important

steps in establishing the relationship between the fixed point theory and the index fixed point

theory. Our contribution ([10, 11, 12]) is a continuity in this direction. In [29], Djebali and

Mebarki studied Equation (1) in the case where T is an expansive mapping with constant h > 1

and F a k-set contraction with 0 6 k < h−1. To do so, they developed a new fixed point index

and then some fixed point theorems, including Krasnosel’skii type theorems, have been showed.

The usefulness of the obtained fixed point theorems was showed in the same article and also in

3
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[13, 14, 15, 16, 34, 35, 39, 36, 37]. In [10], we continue to extend the theory to the sum T + F

where T is an expansive mapping with constant h > 1 and the perturbation I − F is a k-set

contraction with 0 ≤ k < h. Our aim is to provide a new contribution to the fixed point index

theory for this class of operators. First, we define and compute a topological index and then

we prove several fixed point results in translates of cones. In [11], we used the fixed point index

developed in [10] to establish an extension of a Leggett-Williams type expansion-compression

fixed point theorem for a sum of two operators. It is also applied to prove the existence of

nonnegative nontrivial solutions for two-point BVP and three-point BVP (see Section 4.2). In

[12], we still use some results from [29] to get existence of multiple nonnegative solutions to a

class of fourth-order boundary value problems with integral boundary conditions (see Chapter

5).

This thesis is organized as follows:

The chapter 1 gives a survey over some of the most important tools and results of nonlinear

functional analysis in ordered Banach spaces. It provides the mathematical background needed

to be applied in the rest of this work. We start in Section 1.1 with cones and partial ordering

in Banach spaces which is required in this study since it is the tool that provides the ordering

needed to describe the nonnegativity of the solution. Then in Section 1.2, we present some

compactness criteria for functions defined on compact and noncompact intervals and we give a

survey on the Kuratowski’s measure of noncompactness. In Section 1.3, we will present different

classes of operators. Then, we end this first chapter by a presentation of the topological degree

theory.

In Chapter 2, we are concerned with the fixed point index theory for various classes of

mapping: completely continuous mappings, strict-set contractions, condensing mappings and

1-set mappings.

In Chapter 3, we continue with the presentation of the fixed point index theory for the sum

of two operators. In Sections 3.1, 3.2, and 3.3, we present the generalized fixed point index

developed by Djebali and Mebarki for the sum T + F where T is an expansive mapping with

constant h > 1 and F a k-set contraction with 0 ≤ k < h − 1 as well as we discuss the limit
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case where F is a (h − 1)-set contraction, and then the case where T is nonlinear expansive

mapping. In each case, we give the definition and the computation of the fixed point index. In

Section 3.4, we go on with the case where T is h-expansive with h > 1 and I − F is a k-set

contraction with k < h and we present the definition of this index with respect to a translate

of a cone K neither than to a cone.

In Chapter 4, we present fixed point theorems of several forms and some of their applications.

In Section 4.1, three cone compression-expansion fixed point theorems of Krasnosel’skii type

are established for sums T +F, where T is an expansive map with constant h > 1 and I −F is

a k-set contraction with 0 6 k < h. The proofs are based on the properties of the topological

index i∗ presented in Section 3.4. An extension of a cone expansion-compression fixed point

theorem of Legget-Williams type for the same class of mappings is established in Section 4.2.

Chapter 5 is devoted to study a class of fourth-order boundary value problems with integral

boundary conditions. The nonlinearity may have time-singularity and change sign. Moreover,

it satisfies general polynomial growth conditions. A recent multiple fixed point theorem in

cones is applied to prove the existence of at least two nonnegative classical solutions. Precisely,

we investigate the existence of at least two nonnegative solutions to the fourth-order nonlinear

boundary value problem

x(4)(t) = w(t)f(t, x(t), x′′(t)), t ∈ (0, 1),

x(0) =
∫ 1

0
h1(s)x(s)ds, x(1) =

∫ 1

0
k1(s)x(s)ds,

x′′(0) =
∫ 1

0
h2(s)x′′(s)ds, x′′(1) =

∫ 1

0
k2(s)x′′(s)ds,

(3)

where

(H1) w ∈ L1([0, 1]) is nonnegative and may be singular at t = 0 and (or) t = 1, f ∈ C([0, 1]×

R× R),

|f(t, u, v)| ≤ a1(t)|u|p1 + a2(t)|v|p2 + a3(t), t ∈ [0, 1], u, v ∈ R,

a1, a2, a3 ∈ C([0, 1]) are given nonnegative functions, p1, p2 are given nonnegative con-

stants.

(H2) h1, h2, k1, k2 ∈ L1([0, 1]) with m1ν1 + n1µ1 6= 0, m2ν2 + n2µ2 6= 0,

5
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for

m1 =

∫ 1

0

sh1(s)ds, m2 =

∫ 1

0

sh2(s)ds,

n1 = 1−
∫ 1

0

sk1(s)ds, n2 = 1−
∫ 1

0

sk2(s)ds,

µ1 = 1−
∫ 1

0

h1(s)ds, µ2 = 1−
∫ 1

0

h2(s)ds,

ν1 = 1−
∫ 1

0

k1(s)ds, ν2 = 1−
∫ 1

0

k2(s)ds.

6
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Table of Notations

The most frequently used notations, symbols, and abbreviations are listed below.

R The set of real numbers.

R+ The set of all nonnegative real numbers.

Rn The n-dimensional Euclidean space.

inf(A) The infimum of the set A.

sup(A) The supremum of the set A.

d(x, y) The distance between x and y.

diam(A) The diameter of the set A,where A is a subset of a metric space X.

conv(.) The convex hull.
◦
P The set of interior points of P .

C(G) The set of all real continuous functions from G into R.

C1([a, b]) Space of all continuously differentiable and real valued functions defined on [a, b].

a.e. Almost everywhere.

BVPs Boundary value problems.

u.s.c Uniformly semicontinuous.

I The identity application.

f |V The restriction of f on V .

i (f, U,D) Fixed point index of f on U with respect to D.

Fix(f) The set of fixed points of f .

mes(D) The Lebegues measure of the set D.
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In this chapter, we will present some basic tools that make the reading of this thesis easier.

For more details on these tools, we refer the reader to the references [45] (for Section 1.1),
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1.1. Cones and partial ordering

[6, 17, 26, 32, 34, 41, 47, 49, 53, 70, 72, 82] (for Section 1.2), [18, 30, 33, 60, 79, 80] (for Section

1.3) and [19, 52, 61] (for Section 1.4).

1.1 Cones and partial ordering

Let E be a Banach space.

Definition 1.1.1 A closed convex subset P of E is said to be a cone if it satisfies these two

conditions:

(1) λP ⊂ P , ∀λ ≥ 0,

(2) P ∩ (−P) = {0}.

We denote by P∗ = P \ {0} the punctured cone.

Every cone P defines a partial ordering ≤ in E defined by :

x ≤ y if and only if y − x ∈ P .

Thus we make every Banach space E a partial ordered set. We say that

I x < y ⇔ x ≤ y and x 6= y.

I x� y ⇔ y − x ∈ P̊ if P̊ 6= ∅.

I x 
 y ⇔ y − x 6∈ P .

Definition 1.1.2 A segment of a cone P is defined by:

[x, y] = {z ∈ P : x ≤ z ≤ y}.

Example 1.1.3 1. For E = R, the set P = {x ∈ R, x ≥ 0} is a cone in R and the order

that it introduces is simply the usual one ”≤”.

2. For E = R2, the set P = {x = (x1, x2) ∈ R2, x1 ≥ 0 and x2 ≥ 0} is a cone in E. Here

the order introduced is not usual. For x, y ∈ E saying that x ≤ y means y1 − x1 ≥ 0 and

y2 − x2 ≥ 0.

10



1.1. Cones and partial ordering

3. Consider the Banach space E = C([0, 1],R) with the sup-norm ‖x‖∞ = max
t∈[0,1]

|x(t)|. The

set P = {x ∈ E : x(t) ≥ 0} is a cone in E. And saying that x ≤ y for x, y ∈ E means

that y(t)− x(t) ≥ 0, ∀t ∈ [0, 1].

Definition 1.1.4 1. A cone P is said to be normal if there exists a positive constant N 6= 0

such that, for all x, y ∈ P, we have x ≤ y ⇒ ‖x‖ ≤ N‖y‖, The least positive constant N

is called the normal constant of P.

2. P is called solid if his interior is not the empty set.

Remark 1.1.5 Geometrically, the normality of a cone means that the angle between any two

positive unit vectors cannot exceed π. In other words, a normal cone cannot be too wide.

Example 1.1.6 1. Let E = Rn and P1 = {(x1, . . . , xn) ∈ Rn: xi ≥ 0, i = 1, . . . , n} = R+
n.

(a) P1 is a solid cone in Rn, in fact P̊1 = (R∗+)n 6= ∅;

(b) Furthermore, since all the norms of Rn are monotone we have

∀x, y ∈ Rn, 0Rn ≤ x ≤ y ⇒ ‖x‖ ≤ ‖y‖.

Then, P1 is normal with N = 1.

2. Let E = C(G), the space of continuous functions in a closed bounded space G ⊂ Rn,

provided with the norm ‖x‖C(G) = sup
t∈G
|x(t)| and P2 = {x ∈ C(G) : x(t) ≥ 0, ∀t ∈ G}.

(a) P2 is a solid cone in C(G).

(b) P2 is normal, since the norm ‖.‖C(G) is monotone in C(G).

(c) We define other cones in C(G) such that:

P3 = {x ∈ C(G) : x(t) ≥ 0, and

∫
G0

x(t)dt ≥ ε0‖x(t)‖C(G)},

P4 = {x ∈ C(G) : x(t) ≥ 0, and min
t∈G1

(x(t)) ≥ ε1‖x(t)‖C(G)},

where G0, G1 are closed subsets of G, and ε0 and ε1 are two constants such that :

0 < ε0 < mes(G0) and 0 < ε1 < 1. We have P3 ⊂ P2 et P4 ⊂ P2 and the two are

solid and normal cones in C(G).
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1.1. Cones and partial ordering

3. Let E = Lp(Ω), be the Lebesgue-integrable space on Ω ⊂ Rn with p ≥ 1 and 0 < mes(Ω) <

∞ provided with the norm ‖x‖ =

(∫
Ω

|x(t)|p dt
) 1

p

and

P5 = Lp+(Ω) = {x ∈ Lp(Ω) : x(t) ≥ 0 a.e in Ω}.

It is clear that P5 is a normal cone, since the norm of Lp(Ω) is increasing, but not solid,

since
◦
P5 = ∅ except the cone L∞+ (Ω) which has an empty interior. Indeed, if

◦
P5 6= ∅, then

∃f ∈
◦
P5, i.e. ∃δ > 0 such that B(f, δ) ⊂ P5.

We take Ω = [0, 1], and consider the sequence (fn)n∈N defined by:

fn(t) =

 −f(t), if t ∈ [0, 1
n
],

f(t), if t ∈] 1
n
, 1].

Then ∫ 1

0

|fn(t)− f(t)|pdt =

∫ 1
n

0

|fn(t)− f(t)|pdt+

∫ 1

1
n

|fn(t)− f(t)|pdt

=

∫ 1
n

0

| − f(t)− f(t)|pdt+

∫ 1

1
n

|f(t)− f(t)|pdt

= 2p
∫ 1

n

0

|f(t)|pdt.

Therefore, ‖fn − f‖ =
(

2
∫ 1
n

0
|f(t)|pdt

) 1
p → 0 when n→∞, since f ∈ Lp+(Ω),

so

∀δ > 0,∃n0 ∈ N, n ≥ n0 ⇒ ‖fn − f‖ ≤ δ.

Hence

∀δ > 0, ∃n0 ∈ N, n ≥ n0 ⇒ fn ∈ B(f, δ),

which contradicts the fact that fn is not in P5, since mes
(
[0, 1

n
]
)
6= 0.

Definition 1.1.7 Let P be a cone in a Banach space E. For any θ ∈ P. The set K = θ + P

is called a translate of the cone P.

Example 1.1.8 Consider the Banach space E = C([0, 1],R) with the sup-norm ‖x‖∞ = max
t∈[0,1]

|x(t)|.

The set K = {x ∈ E : x(t) ≥ 1} is a translate of a cone in E. In fact ∀x ∈ K, we can find

y ∈ P such that x = θ + y where θ ≡ 1 and P = {x ∈ E : x(t) ≥ 0}.
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1.2. Compactness and noncompactness

Noting that cones are a particular case of the translate of cones. Indeed, for θ = 0 we have

K = P , but translate of cones are not always cones, indeed for θ 6= 0, K does not satisfy all the

conditions of Definition 1.1.1.

1.2 Compactness and noncompactness

1.2.1 Some results about the compactnees

Compactness grew out of one of the most productive periods of mathematical activity. In

mid to late nineteenth century, advanced mathematics began to take the form we know today.

In the background was Cantor’s work establishing the beginning of a systematic study of set

theory and point-set topology. Also, many mathematicians, including Weierstrass, Hausdorff

and Dedekind, were worried about the foundations of mathematics and began to make rigorous

many of the ideas that had for centuries been taken for granted. We first recall two different

characterizations of the compactness notion. One characterization, developed by Bolzano and

Weierstrass among others, grew out of the study of sequence convergence. The second char-

acterization, which grew out of work by Heine, Borel, and Lebesgue, was based on topological

features, such as the covering of sets by open neighborhoods.

Definition 1.2.1 Let (X, d) be a metric space. A subset C of X is compact if every sequence

in C contains a convergent subsequence with a limit in C. Equivalently, a subset C of X is called

compact if every open cover of C has a finite subcover.

Definition 1.2.2 A subset C of X is said to be totally bounded if for each ε > 0, there exists

a finite number of elements {x1, x2, · · ·, xn} such that C ⊂
n⋃
i=1

B(xi, ε). The set {x1, x2, · · ·, xn}

is called a finite ε-net.

Remark 1.2.3 1. Every subset of totally bounded set is totally bounded.

2. Every totally bounded set is bounded, but a bounded set dos not need to be totally bounded.

Proposition 1.2.4 A subset of a compact metric space is compact if and only if it is closed.
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1.2. Compactness and noncompactness

Proposition 1.2.5 Let X be a metric space. Then, the following assertions are equivalent:

(a) X is compact.

(b) Every sequence in X has a convergent subsequence.

(c) X is complete and totally bounded.

Proposition 1.2.6 Let C be a subset of a complete metric space X. Then we have :

(a) C is compact if and only if C is closed and totally bounded.

(b) C is compact if and only if C is totally bounded.

Remark 1.2.7 1. X = (0, 1) with usual metric is totally bounded, but not compact.

2. X = R with usual metric is complete. But it is not totally bounded and hence not compact.

Definition 1.2.8 A subset C of a topological space is said to be relatively compact if its closure

is compact, i.e., C is compact. In particular, we have an interesting result:

Proposition 1.2.9 Let C be a closed subset of a complete metric space. Then C is compact if

and only if it is relatively compact.

We now state the following fundamental theorem concerning compactness.

Theorem 1.2.10 (The Heine-Borel property) A subset C of R is compact if and only if it

is closed and bounded.

Definition 1.2.11 A topological space is said to be locally compact if it is separable and if each

of its points admits a compact neighborhood.

Example 1.2.12 1. A compact topological space E is locally compact because E is a neigh-

borhood of each one of its points.

2. R is locally compact because for all x ∈ R the interval [x − 1, x + 1] is a compact neigh-

borhood of x. Rn is locally compact because its closed unit ball is compact.

14



1.2. Compactness and noncompactness

It is well known that infinite dimensional spaces like C([a, b],R) are not as well behaved as

finite dimensional spaces like Rn. For instance, closed, bounded subsets of continuous functions

on R do not necessarily have the Heine-Borel property. The work in this area was done by

Ascoli and in the last decades of the 1800s.

The following example illustrates that a closed, bounded subset of continuous functions on

R is not compact.

Example 1.2.13 Consider B = {f ∈ C([0, 1],R) : ‖f‖ ≤ 1}, where ‖ · ‖ is the sup norm.

We will show that there is a sequence in B that does not have a convergent subsequence.

Let fn(x) = xn, n ∈ N∗. This sequence lies in B, but we cannot find a subsequence that

converges uniformly to a function in C([0, 1],R). Suppose to the contrary f is such a function.

Then

f(x) = lim
k→∞

fnk(x),

which would imply that

f(x) =

 0, if x < 1;

1, if x = 1.

Since f is a discontinuous function, it is not in C([0, 1],R). Hence the sequence (fn)n∈N has no

uniformly convergent subsequence.

The problem in this example comes from how functions converge. If convergence means

pointwise convergence, then we get a behaviour different from that of sequences in closed unit

balls of Rn. In order to avoid this problem, Ascoli introduced the notion of equicontinuity.

Let (X, τ) be a topological space, (Y, d) a metric space, and C(X, Y ) denotes the space of

continuous functions from X to Y . Let H ⊂ C(X, Y ).

Definition 1.2.14 H is said to be equicontinuous at a point x0 ∈ X if

∀ ε > 0, ∃Uε ∈ V(x0), ∀x ∈ X,

(x ∈ Uε =⇒ f(x) ∈ B(f(x0), ε)) , ∀ f ∈ H.
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1.2. Compactness and noncompactness

H is equicontinuous if it is equicontinuous at every point x0 ∈ X. Noting that the prefix ”equi”

indicates uniformity with respect to the functions f ∈ H.

Remark 1.2.15 When (X, d) is a compact metric space, then H is equicontinuous if and only

if (it is uniformly equicontinuous):

∀ ε > 0, ∃ δ > 0 ∀x, y ∈ X,

(d(x, y) < δ =⇒ d(f(x), f(y)) < ε), ∀ f ∈ H.

Proof. Since uniform equicontinuity is a stronger condition, we only prove necessity. So,

let H be an equicontinuous family of functions and let ε > 0. By assumption, for every x ∈ X,

there exists δ = δ(ε) > 0 such that d(f(x), f(y)) < ε for all f ∈ H and d(x, y) < δ. Since

X is compact, it can be covered by a finite number of balls B(xi, δxi) (1 ≤ i ≤ m). Let

δ = min
1≤i≤m

{δxi} and let x, y ∈ X be such that d(x, y) < δ. Then there exists i0 ∈ {1, . . . ,m}

such that x ∈ B(xi0 , δxi0/2). Hence, y ∈ B(xi0 , δxi0/2) and for all f ∈ H,

d(f(x), f(y)) ≤ d(f(x), f(xi0)) + d(f(y), f(xi0)) < ε.

Proposition 1.2.16 Let H be equicontinuous and T : H → T (H) a continuous mapping.

Then, T (H) is equicontinuous.

Example 1.2.17 Let X and Y be metric spaces. By definition we can see that any family

H of a single function is equicontinuous. More generally, every finite subset of C(X, Y ) is

equicontinuous.

Example 1.2.18 If all the functions of H are k-lipschitzian, for a same constant k, then H

is equicontinuous. More generally, it suffices that each point x ∈ X has a neighborhood Vx that

contains only kx-Lipschitzian functions, where kx is the same constant and only depends on x.

Example 1.2.19 If X and Y are normed vector spaces, and H is a bounded part of linear

functions of C(X, Y ), then H, considered as a part of C(X, Y ), is equicontinuous.
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1.2. Compactness and noncompactness

Example 1.2.20 Let c > 0 and H = {f ∈ C([0, 1];R) :
∫ 1

0
|f ′(t)|2dt ≤ c}. Notice that, if

f ∈ C([0, 1],R) and if x < y, we can write

f(y)− f(x) =

∫ y

x

f ′(t)dt.

Then, the Cauchy-Schwarz inequality leads

|f(y)− f(x)| ≤
(∫ y

x

|f ′(t)|2dt
) 1

2

|y − x|
1
2 ≤
√
c|y − x|

1
2 ,

provided f ∈ H. Taking δ = ε2

c
, we can see that H is equicontinuous.

Example 1.2.21 Let fn(x) = sin nx, x ∈ [0, 2π] and H = {fn(.) : n ∈ N}. Then H is

bounded. However, it is not equicontinuous in C([0, 2π],R) (for this, consider the sequence

xn = π
n

, so |fn(xn)− fn(x2n)| = 1). Hence, H is not relatively compact, i.e., we cannot extract

a convergent subsequence.

Example 1.2.22 Let X = [0, 1], Y = R, and for n ∈ N, let fn(t) = tn. Then, the sequence

(fn)n∈N is not equicontinuous. Indeed, let ε = 1
2
, and suppose that there exists δ1 > 0, such

that the condition of equicontinuity is satisfied. Define δ = min(δ1, 1).

Consider now x = 1, y = 1− δ
2
. It is clear that

|x− y| = |1− 1 +
δ

2
| = δ

2
< δ,

However, we have already seen that the sequence (fn)n≥1 is in the unit ball, and it converges

to 0 for all x ∈ [0, 1) and to 1 for x = 1. Thus, |fn(1) − fn(1 − δ
2
)| could be as close to 1 as

wanted for all fixed δ > 0.

Remark 1.2.23 From Example 1.2.22, we conclude that the unit ball of C([0, 1],R) is not

equicontinuous, although it is bounded and closed.

The Arzelà-Ascoli theorem then states the following.

Theorem 1.2.24 (Arzelà-Ascoli Theorem) Any bounded equicontinuous sequence of func-

tions in C([a, b],R) has a uniformly convergent subsequence.
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1.2. Compactness and noncompactness

We can state a consequence of this theorem, analogous to the Heine-Borel Property.

Theorem 1.2.25 [72, Corollary 2.14.31] A subset of C([a, b],R) is compact if and only if it is

closed, bounded, and equicontinuous.

Remark 1.2.26 The Arzelà-Ascoli Theorem gives necessary and sufficient conditions for com-

pactness in the space of continuous functions defined on a compact space X and taking values

in R or, more generally, in any finite-dimensional Banach space.

Corollary 1.2.27 Let M ⊂ C1([a, b],R) satisfy the following conditions:

(a) there exists L > 0 such that for all t ∈ [a, b] and u ∈M ,

|u(t)| ≤ L and |u′(t)| ≤ L.

(b) For every positive ε > 0, there exists δ(ε) > 0 such that for all t1, t2 ∈ [a, b] with |t1−t2| <

δ(ε) and for all u ∈M ,

|u(t1)− u(t2)| ≤ ε and |u′(t1)− u′(t2)| ≤ ε.

Then, the set M is relatively compact in C1([a, b],R).

Proof. Let {un}n∈N be a sequence of M ⊂ C1([a, b],R).

To prove that M is relatively compact in C1([a, b],R), it is equivalent to prove that {un}n∈N

has a subsequence converging in C1([a, b],R). Since {un}n∈N is a sequence of M ⊂ C1([a, b],R),

{u′n}n∈N (resp. {un}n∈N) is a sequence of C([a, b],R).

Arzelà-Ascoli Theorem and the assumptions (a)-(b) guarantee that the sequence of derivatives

{u′n}n∈N (resp. {un}n∈N) is relatively compact in C([a, b],R).

As a consequence, there exists a subsequence, also denoted {un}n∈N which converges in C([a, b],R)

to a limit u ∈ C([a, b],R), and a subsequence of {u′n}n∈N, also denoted {u′n}n∈N, converging in

C([a, b],R) to a limit v ∈ C([a, b],R).

Using the integral representation of un, we find that for all t, t0 ∈ [a, b],

un(t) = u(t0) +

∫ t

t0

u′n(s)ds→ u(t0) +

∫ t

t0

v(s)ds,
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1.2. Compactness and noncompactness

as n→∞. Then for all t ∈ [a, b], lim
n→∞

un(t) = u(t) and the uniqueness of the limit yields that

u(t) = u(t0) +
∫ t
t0
v(s)ds. Hence u ∈ C1([a, b],R) and u′ = v.

Corollary 1.2.28 Every bounded sequence in C1 has a convergent subsequence in C.

Corollary 1.2.29 For all k ∈ N, the space Ck+1([a, b],R) is imbedded compactly in Ck([a, b],R).

Proof. Let k ≥ 1 and M bounded in Ck+1([a, b],R). Then, M is bounded in C([a, b],R) and

there exists a sequence {un}n∈N in M such that un → u ∈ C([a, b]R). Furthermore {u′n}n is

also bounded in C([a, b],R), therefore there exists a subsequence of {un}n such that u′n → u′ ∈

C([a, b]R). We repeat the process until we get:

u(i)
n → u(i)

for all i such that 0 ≤ i ≤ k.

Example 1.2.30 The set F of functions f on [a, b] that is uniformly bounded and satisfies the

Hölder condition of order 0 < α ≤ 1 with a fixed constant K

|f(x)− f(y)| ≤ K|x− y|α, x, y ∈ [a, b],

is relatively compact in C([a, b],R).

Let (X, d) be a compact metric space and (Y, ‖ · ‖) be a Banach space. The space E =

C(X, Y ) is endowed with the norm:

‖f‖ = sup
x∈X
‖f(x)‖Y .

Theorem 1.2.31 (Arzelà-Ascoli Theorem) (see, e.g., [17, Corollary 1] or [26]) A subset

H ⊂ C(X, Y ) is relatively compact if and only if

(a) H is equicontinuous.

(b) ∀x ∈ X, the set H(x) = {f(x), f ∈ H} is relatively compact in Y .

Next, let J = [a, b]. Then we have
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1.2. Compactness and noncompactness

Corollary 1.2.32 (Arzelà-Ascoli Theorem) Let Y be a finite dimensional Banach space.

If H ⊂ C(J, Y ) is bounded and equicontinuous, then H is relatively compact.

Now, we consider the higher-order derivative spaces E = Cm(J, Y ), which denotes the space

of continuously differentiable functions defined on some interval J ⊂ R and taking values in

a Banach space Y . For H ⊂ Cm(J, Y ) and k = 1, 2, . . . ,m, we denote by H(k), the space of

functions H(k) = {x(k) : x ∈ H} and H(k)(t) = {x(k)(t) : x ∈ H}.

Now, we present a generalization of Arzelà-Ascoli Theorem to the space Cm(J, Y ), when

J = [a, b] is compact. We have

Theorem 1.2.33 [47, Theorem 1.2.7] H ⊂ Cm(J, Y ) is relatively compact if and only if

(a) H(m) is equicontinuous and, for any t ∈ J , H(m)(t) is relatively compact in Y ,

(b) for each k ∈ {0, 1, . . . ,m}, there exists tk ∈ J such that H(k)(tk) is relatively compact in Y .

Lemma 1.2.34 [23, Page 62] Let M ⊆ Cb(R+,R). Then M is relatively compact in Cb(R+,R)

if the following conditions hold:

(a) M is uniformly bounded in Cb(R+,R).

(b) The functions belonging to M are almost equicontinuous on R+, i.e. equicontinuous on

every compact interval of R+.

(c) The functions from M are equiconvergent, that is, given ε > 0, there corresponds T (ε) > 0

such that |x(t)− l| < ε for any t ≥ T (ε) and x ∈M.

Concluding remarks

Compactness criteria in typical function spaces not only constitute important results describing

properties of these spaces, but they also give a basic tool for investigating the existence of

solutions to nonlinear equations of many kinds. The best known criterion is the Arzelà-Ascoli

theorem that gives necessary and sufficient conditions for compactness in the space of continuous

functions defined on a compact space X and taking values in R or, more generally, in any

Banach space E. The natural topology in C(X,E) is the topology of uniform convergence

given by the norm ‖f‖ := sup
x∈X
‖f(x)‖E. If X is not a compact space but only a locally compact
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1.2. Compactness and noncompactness

one, Arzelà-Ascoli theorem gives a compactness criterion in the space of continuous functions

C(X, Y ), where Y is a metric space, with the topology of compact convergence ([62], page

290). A sequence (fn) tends to f ∈ C(X, Y ), if fn|K → f |K uniformly for each compact subset

K ⊂ X. If one needs the boundedness of this limit f , then one should work in the space of

bounded continuous functions Cb(X, Y ) with its natural topology of uniform convergence. To

deal with bounded closed subsets that are not compact, mathematicians introduced the concept

of mesaures of non compactness.

1.2.2 Kuratowski’s measure of noncompactness

In what follows, we consider a real Banach space (E, ‖.‖) and we let ΩE be the class of all

bounded subsets of E.

Definition 1.2.35 (Measure of noncompactness) A fonction ϕ : ΩE → [0,+∞[ is called

measure of noncompactness if it satisfies the following conditions:

1. ϕ (A) = 0⇐⇒ A is relatively compact, ∀A ∈ ΩE.

2. ϕ (A) = ϕ
(
A
)
, ∀A ∈ ΩE.

3. ϕ (A1 ∪ A2) = max {ϕ (A1) , ϕ (A2)} , ∀A1, A2 ∈ ΩE.

There exist many measures of noncompactness, in the following, we shall present some of the

most used in application. We will focus on Kuratowski measure of noncompactness since it is

the one that we will use throughout this document.

Definition 1.2.36 The Kuratowski measure of noncompactness (KMNC for short)

α : ΩE → [0,+∞) is defined as

α(V ) = inf

{
δ > 0 : ∃ (Vi)

n
i=1 ⊂ E such that V ⊂

n⋃
i=1

Vi and diam (Vi) ≤ δ, ∀ i = 1, . . . , n

}
,

where diam (Vi) = sup{‖x− y‖E, x, y ∈ Vi} is the diameter of Vi.

Proposition 1.2.37 (Monotonicity) Let A and B be bounded subsets of E such that A ⊂ B.

Then

α(A) ≤ α(B)
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1.2. Compactness and noncompactness

Proof. The proof comes directly from the Definition 1.2.36.

Proposition 1.2.38 (Invariance under passage to the closure) Let A be a bounded sub-

set of E. Then

α(A) = α(A)

Proof. Since A ⊂ A, we get

α(A) ≤ α(A). (1.1)

Let now, ε > 0 be arbitrarily chosen and fixed. Then there exists a partition

A ⊂
m⋃
j=1

Aj

such that

Aj ⊂ E,

diam(Aj) < α(A) + ε, j ∈ {1, · · ·,m}.

Now, using that

A ⊂
m⋃
j=1

Aj

and

diam(Aj) = diam(Aj)

< α(A) + ε, j ∈ {1, · · · ,m},

we obtain

α(A) < α(A) + ε.

Because ε > 0 was arbitrarily chosen, we obtain

α(A) ≤ α(A). (1.2)

From (1.1) and (1.2), we get

α(A) = α(A).

This completes the proof.

Proposition 1.2.39 (Subadditivity) Let A and B be bounded subsets of E. Then

α(A ∪B) = max (α(A), α(B)) .
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1.2. Compactness and noncompactness

Proof. Let

η = max(α(A), α(B)).

Then

η ≤ α(A ∪B). (1.3)

Take ε > 0 arbitrarily. Then there are partitions

A ⊂
m⋃
j=1

Aj, B =
k⋃
l=1

Bl,

such that

Aj ⊂ E,

Bl ⊂ E,

diam(Aj) ≤ α(A) + ε

≤ η + ε, j ∈ {1, · · · ,m}

diam(Bl) ≤ α(B) + ε

≤ η + ε, l ∈ {1, · · · , k}.

Because

A ∪B ⊂

(
m⋃
j=1

Aj

)⋃(
k⋃
l=1

Bl

)
,

we get

α(A ∪B) ≤ η + ε.

Since ε > 0 was arbitrarily chosen, we go to

α(A ∪B) ≤ η. (1.4)

From (1.3) and (1.4), we arrive to

α(A ∪B) = η.

This completes the proof.

Proposition 1.2.40 (Algebraic subadditivity) Let A and B be bounded subsets of E. Then

α(A+B) ≤ α(A) + α(B),

where

A+B = {x+ y : x ∈ A, y ∈ B}.
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Proof. Take ε > 0 arbitrarily. Then there are partitions

A ⊂
m⋃
j=1

Aj, B ⊂
k⋃
l=1

Bl,

such that

Aj ⊂ E,

Bl ⊂ E,

diam(Aj) ≤ α(A) + ε, j ∈ {1, · · · ,m}

diam(Bl) ≤ α(B) + ε, l ∈ {1, · · · , k}.

Denote

Vjl = {x+ y : x ∈ Aj, y ∈ Bj}, j ∈ {1, · · · ,m}, l ∈ {1, · · · , k}.

we have

A+B ⊂
m⋃
j=1

(
k⋃
l=1

Vjl

)
=

k⋃
l=1

(
m⋃
j=1

Vjl

)
and

diam(Vjl) ≤ diam(Aj) + diam(Bl)

≤ α(A) + ε+ α(B) + ε

= α(A) + α(B) + 2ε, j ∈ {1, · · · ,m}, l ∈ {1, · · · , k}.

Consequently

α(A+B) ≤ α(A) + α(B) + 2ε.

Because ε > 0 was arbitrarily chosen, we get

α(A+B) ≤ α(A) + α(B).

This completes the proof.

Proposition 1.2.41 (Invariance under shifting) Let A be a bounded subset of E. Then

α(A+ {x}) = α(A).

Proof. Proposition 1.2.40 yields α(A+ {x}) ≤ α(A) + α({x}) = α(A). Note that

α({x}) ≤ diam({x}) = 0⇒ α({x}) = 0.
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Hence

A = A+ {x}+ {−x} ⇒ α(A) = α(A+ {x}+ {−x}) ≤ α(A+ {x}) + α({−x})

⇒ α(A) ≤ α(A+ {x}).

Then α(A+ {x}) = α(A).

Proposition 1.2.42 (Semi-homogeneity) Let A be a bounded subset of E and λ ∈ R. Then

α(λA) = |λ|α(A),

where

λA = {λx : x ∈ A}

Proof.

1. Let λ = 0. Then

λA = {0}.

Hence,

0 = α(λA) = |λ|α(A).

2. Let λ 6= 0. Take ε > 0 arbitrarily. Then there is a partition

A ⊂
m⋃
j=1

Aj,

such that

Aj ⊂ E,

diam(Aj) ≤ α(A) + ε, j ∈ {1, · · · ,m}.

We have

λA =
m⋃
j=1

(λAj)

and

diam(λAj) ≤ |λ|(α(A) + ε).

Consequently,

α(λA) ≤ |λ|α(A) + |λ|ε.
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1.2. Compactness and noncompactness

Because ε > 0 was arbitrarily chosen, by the last inequality, we get

α(λA) ≤ |λ|α(A). (1.5)

On the other hand, using that

A = λ−1(λA),

as in above, we obtain

α(A) = α(λ−1(λA))

≤ |λ|−1α(λA),

whereupon

|λ|α(A) ≤ α(λA). (1.6)

From (1.5) and (1.6), we get

α(λA) = |λ|α(A).

This completes the proof.

Proposition 1.2.43 (Invariance under the convex hull) ([34], pp 8-11).

Let A be a bounded subset of E. Then

α(convA) = α(A).

Proof. The proof follows from the following facts:

(a) diam(A) = diam(conv A),

(b) A ⊂ conv A⇒ α(A) ≤ α(conv A),

and uses the following Caratheodory’s characterization of the convex hull:

conv A =

{
n∑

i=1

λi ai, ai ∈ A, n ∈ N∗, λi ≥ 0,
n∑

i=1

λi = 1

}
.

Proposition 1.2.44 (Lipschitzianity) Let A and B be bounded subsets of E. Then

|α(A)− α(B)| ≤ 2 dh(A,B),
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1.2. Compactness and noncompactness

where dh(A,B) denotes the Hausdorff distance between the sets A and B, i.e.,

dh(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y, A)

}
,

where d(·, ·) denotes the distance from an element of E to a subset of E.

Proof. Take ε > 0 arbitrarily. Then there exists a partition A ⊂
m⋃
j=1

Aj such that

Aj ⊂ E,

diam(Aj) < α(A) + ε, j ∈ {1, · · · ,m}.

Let

µ = dh(A,B) + ε

and define

Bj = {y ∈ B : ∃x ∈ Aj : ‖x− y‖ < µ}, j ∈ {1, · · · ,m}.

Since dh(A,B) < µ, we have B =
m⋃
j=1

Bj. Let j ∈ {1, · · · ,m} and y1, y2 ∈ Bj be arbitrarily

chosen. Then there exist x1, x2 ∈ Aj such that

‖x1 − y1‖ < µ,

‖x2 − y2‖ < µ.

Hence,

‖y1 − y2‖ = ‖y1 − x1 + x1 − x2 + x2 − y2‖

≤ ‖y1 − x1‖+ ‖x1 − x2‖+ ‖x2 − y2‖

< 2µ+ diam(Aj).

Therefore

diam(Bj) ≤ 2µ+ diam(Aj)

< 2dh(A,B) + 2ε+ α(A) + ε

= 2dh(A,B) + α(A) + 3ε

and

α(B) ≤ 2dh(A,B) + α(A) + 3ε.

As in above, one can prove

α(A) ≤ 2dh(A,B) + α(B) + 3ε.
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1.2. Compactness and noncompactness

consequently

|α(A)− α(B)| ≤ 2dh(A,B) + 3ε.

Because ε > 0 was arbitrarily chosen, we obtain

|α(A)− α(B)| ≤ 2dh(A,B).

This completes the proof.

Remark 1.2.45 It is not easy to calculate the measure of noncompactness for any bounded

subset. Hence, we only know it from its different characteristics.

Historically, KMNC given by (1.2.36) was the first measure of noncompactness introduced in

nonlinear analysis in connection with metric spaces [53], 1930. Other measures of noncompact-

ness have been defined since then. The most important ones are the measure of noncompactness

of Hausdorff [41], 1957 and the measure of noncompactness of Istratescu [49], 1972. In what

follows, we give the definition of these measures.

a) The Hausdorff measure of noncompactness (HMNC for short), also called ball measure of

noncompactness, γ : ΩE → [0,+∞) is defined by

γ(V ) = inf {ε > 0 : there exists a finite ε− net for V in E} ,

where by ε-net, we mean a set {z1, z2, · · · , zm} ⊂ E such that the balls

B(z1, ε), B(z2, ε), · · · , B(zm, ε) cover V .

b) The Istratescu measure of noncompactness (IMNC for short), also called lattice measure of

noncompactness, χ : ΩE → [0,+∞) is defined by

χ(V ) = sup {ρ > 0: there exists a sequence (xn)n in V such that ||xm − xn|| ≥ ρ for m 6= n}

Lemma 1.2.46 Let (E, d) be a metric space. For any set V ∈ ΩE, we have

γ(V ) ≤ α(V ) ≤ 2γ(V ).
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1.2. Compactness and noncompactness

Proof. Define the sets:

K(V ) = {δ > 0 : ∃n ∈ N, ∃ (Vi)
n
i=1 ⊂ E such that V ⊂

n⋃
i=1

Vi with diam(Vi) ≤ δ, ∀ 1 ≤ i ≤ n}.

H(V ) = {ε > 0 : ∃m ∈ N, ∃ {z1, z2, · · · , zm} ⊂ E, such that V ⊂
m⋃
i=1

B(zi, ε)}.

The following inclusions are immediate.

2H(V ) ⊂ K(V ) ⊂ H(V ).

Indeed,

(a) Given δ ∈ K(V ), we have

∃n ∈ N, ∃ (Vi)
n
i=1 ⊂ E such that V ⊂

n⋃
i=1

Vi with diam(Vi) ≤ δ, ∀ 1 ≤ i ≤ n.

Since Vi is bounded for all 1 ≤ i ≤ n, then

Vi ⊂ B(zi, δ), with zi ∈ Vi, ∀ 1 ≤ i ≤ n.

Hence,
N⋃
i=1

Vi ⊂
n⋃
i=1

B(zi, δ)⇒ V ⊂
n⋃
i=1

B(zi, δ).

Therefore,

δ ∈ H(V ), and K(V ) ⊂ H(V ).

(b) For ε ∈ H(V ), there exist m ∈ N and {z1, z2, · · · , zm} ⊂ E such that

V ⊂
m⋃
i=1

B(zi, ε) where diam(B(zi, ε)) ≤ 2ε, ∀ 1 ≤ i ≤ m.

Therefore

2ε ∈ K(V )⇒ 2H(V ) ⊂ K(V ).

Immediately, we have

(i) 2H(V ) ⊂ K(V ) ⊂ H(V ). Hence

inf(H(V )) ≤ inf(K(V )) ≤ 2 inf(H(V )) and γ(V ) ≤ α(V ) ≤ 2γ(V ).
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1.2. Compactness and noncompactness

(ii) Taking n = 1 and δ = diam(V), we get V ⊂ V . Then

diam(V) ∈ K(V) ⇒ inf (K(V )) ≤ diam(V),

⇒ α(V ) ≤ diam(V),

⇒ γ(V ) ≤ α(V ) ≤ diam(V).

Proposition 1.2.47 Let E be a metric space and A ⊂ E be a bounded subset.

α(A) = 0 ⇔ γ(A) = 0

⇔ A is totally bounded.

Proof. The first equivalence follows from Lemma 1.2.46. As for the second one, we have

γ(A) = 0 ⇔ inf {ε > 0 : A has an ε-net} = 0

⇔ A has an ε-net, ∀ ε > 0

⇔ A totally bounded.

Recall that a subset

1. A is totally bounded if and only if A has an ε-net, for all ε > 0.

2. H(A) = {ε > 0 : A has an ε-net}.

Corollary 1.2.48 Let E be a complete metric space and A ⊂ E be a bounded subset.

We have

α(A) = 0⇔ γ(A) = 0⇔ A is relatively compact.

Proof. According to Proposition 1.2.47, if one MNC is zero, then A is totally bounded.

Since A is a closed subset of the complete metric space E, then A is compact. The reverse

implication is clear.
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Remark 1.2.49 Let A ⊂ B ⊂ E be two bounded subsets of the metric space E. Then if B

is relatively compact, then A is relatively compact. Moreover if A is relatively compact subset

of E, then 0 = α(A) ≤ α(B), that is the farther B is from A, the larger is its measure. This

justifies why α and γ are called measures of noncompactness (MNCs).

Recall the classical result from functional analysis.

Lemma 1.2.50 (Riesz Lemma) [70] A normed linear space is finite-dimensional if and only if

its closed unit ball is compact.

Proposition 1.2.51 Let B = B(0, 1) be the unit ball in a Banach space (E, ‖ · ‖). Then

γ(B) =

 0, if dim(E) <∞,

1, if dim(E) =∞.

Proof. By Riesz Lemma, we have, since E is complete

dim(E) <∞ ⇔ B is relatively compact

⇔ B is totally bounded

⇔ γ(B) = 0.

Assume now that diam(E) =∞. Then

B(0, 1) ⊂ B(0, 1)⇒ 1 ∈ H(B)⇒ γ(B) ≤ 1.

To prove that γ(B) = 1, we proceed by contradiction and assume that γ(B) < 1 and

let 0 < ε < 1− γ(B). Then there exist ε > 0, m ∈ N, {z1, z2, · · · , zm} ⊂ E such that

B ⊂
m⋃
i=1

B(zi, ε) and γ(B) ≤ ε < γ(B) + ε < 1.

Since B ⊂
m⋃
i=1

B(zi, ε), thus

γ(B) ≤ max
1≤i≤m

γ(B(zi, ε))

= max
1≤i≤m

γ({zi}+ εB(0, 1))

= γ(εB)

= εγ(B).

By Riesz Theorem, γ(B) 6= 0, which is a contradiction with 1 > ε, so γ(B) = 1.
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Corollary 1.2.52 Let (E, ‖ · ‖) be a Banach space and B = B(x0, r) ⊂ E. Then

γ(B) =

 0, if dim(E) <∞,

r, if dim(E) =∞.

Proof. Since B(x0, r) = {x0}+ rB(0, 1), then

γ(B(x0, r)) = γ({x0}+ rB(0, 1)),

= γ(rB(0, 1)),

= rγ(B(0, 1)),

=

 0, if dim(E) <∞,

r, if dim(E) =∞.

Remark 1.2.53 Let (E, ‖ · ‖) be a normed space and S the unit sphere.

Since conv(S) = B(0, 1), from the properties of KMNC and HMNC, we deduce that

β(S) = β(conv(S)) = β(B(0, 1)) = β(B(0, 1)), where β = α or β = γ.

However, in order to compute α(B(0, 1)), we need the following lemma.

Lemma 1.2.54 (Ljusternik-Schrinelman-Borsuk Theorem)[82]. Let S be the unit sphere in a

normed space E with dim(E) = n. Then, for every covering of S by closed sets (Ai)
n
i=1, there

exists at least one set Ai0 that contains two antipodal points of the sphere S.

Recall that, two points on the sphere are antipodal if they are opposite through the center.

Proposition 1.2.55 Let (E, ‖ · ‖) be a normed space and B = B(0, 1) be the unit ball in E.

Then

α(B) =

 0, if dim(E) <∞,

2, if dim(E) =∞.

Proof. By Riesz Lemma, we have

dim(E) <∞ ⇒ B(0, 1) is relatively compact,

⇒ α(B) = 0.
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Assume that dim(E) =∞. Then by Proposition 1.2.51

γ(B) ≤ α(B) ≤ 2γ(B)⇒ α(B) ≤ 2.

By contradiction, assume that α(S) = α(B) < 2 (by Remark 1.2.53). Then

∀ ε ∈ (0, 2− α(S)), ∃n > 0, ∃ (Ai)
n
i=1 (chosen closed) such that

S ⊂
n⋃
i=1

Ai with diam(Ai) < α(S) + ε < 2, ∀ i ∈ [1, n].

Let L = {x1, x2, · · · , xn} be a linearly independent subset of E and F = [L].

Then dim(F) = n. Let Sn = {x ∈ F : ‖x‖ = 1}. Then S∩Sn = Sn ⊂
n⋃
i=1

(Sn∩Ai) with diam(Sn∩

Ai) ≤ diam(Ai) < 2, ∀ i ∈ [1, n]. This is a contradiction with Lemma 1.2.54. Therefore

α(B) = 2.

The Kuratowski measure is very important in application since it does not only give a new

tool to deal with bounded sets in infinite dimension spaces but also helps to define new classes

of operators that we will see in the next section.

1.3 Related classes of mappings

1.3.1 Compact and completely continuous maps

Let (E, ‖ · ‖E), (F, ‖ · ‖F ) be two Banach spaces and f : E → F a map. ΩE will denote the

family of all bounded subsets of E.

We start by giving the definition of a bounded map, a compact map and a completely

continuous map.

Definition 1.3.1 Let f : D ⊂ E → F be a map. f is said to be:

(1) bounded if it maps bounded sets into bounded sets;

(2) compact if the set f (D) is relatively compact;

(3) completely continuous if it is continuous and it maps bounded sets into relatively compact

sets.
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Remark 1.3.2 1. If f is a continuous map and D is a bounded set, then the definitions (2)

and (3) coincide.

2. For finite-dimensional spaces, continuous and completely continuous operators are the

same. Indeed, if M ⊂ D is bounded, then M is relatively compact, since dim(E) < ∞.

Then f(M) is compact, and hence f(M) is relatively compact, since f(M) ⊂ f(M).

Example 1.3.3 Let G : [a, b]× [a, b]→ R be a continuous function and

T : C([a, b],R)→ C([a, b],R) be the linear operator defined by

Tx(t) =

∫ b

a

G(t, s)x(s)ds.

Then T is compact.

Example 1.3.4 Let f be a p-integrable function on [0, 1](1 < p ≤ ∞) and define F by

F (x) =

∫ x

0

f(t)dt.

Let H be the set of functions F corresponding to functions f in the unit ball of the space

Lp([0, 1]). If q is the Hölder conjugate of p, then Hölder’s inequality implies that all functions

in H satisfy the Hölder condition with α = 1
q

and constant K = 1. Hence, H is compact

in C([0, 1]), that is the correspondence f 7→ F is a linear compact operator from Lp([0, 1]) to

C([0, 1]). Composing with the injection of C([0, 1] into Lp([0, 1]), we find that F acts compactly

from Lp([0, 1]) into itself.

Example 1.3.5 Typical examples of compact operators on infinite-dimensional spaces are in-

tegral operators with sufficiently regular conditions. Set

(Tx)(t) =

∫ b

a

K(t, s, x(s))ds,

(Sx)(t) =

∫ t

a

K(t, s, x(s))ds for all t ∈ [a, b].

Suppose we have a continuous function

K : [a, b]× [a, b]× [−R,R]→ R,
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where a, b ∈ R. Set

M = {x ∈ C([a, b]),K) : ‖x‖ ≤ R}.

Then the integral operators S and T map M into C([a, b],R) and are compact and continuous.

Proof. We will consider the operator S. The remaining cases are treated similarly.

(I) The set A = [a, b] × [a, b] × [−R,R] is compact, whence K is bounded and uniformy

continuous on A. Thus, there is a number δ such that |K(t, s, x)| ≤ δ, for all (t, s, x) ∈ A,

and for every ε > 0 there is a δ = δ(ε) > 0 such that

|K(t1, s1, x1)−K(t2, s2, x2)| < ε

for all (ti, si, xi) in A, i = 1, 2, satisfying |t1 − t2|+ |S1 − S2|+ |x1 − x2| < δ.

(II) Let z = Sx and x ∈M . Then

|z(t)| ≤ |
∫ t

a

K(t, s, x(s))ds| ≤ (b− a)δ, for all t ∈ [a, b].

Furthermore, for |t1 − t2| ≤ min(δ, ε), we have the inequality

|z(t1)− z(t2)| = |
∫ t1

a

K(t1, s, x(s)ds−
∫ t2

a

K(t2, s, x(s))ds|

= |
∫ t1

a

K(t1, s, x(s))ds−
∫ t1

a

K(t2, s, x(s))ds

−
∫ t2

t1

K(t2, s, x(s))ds|

≤ (b− a)ε+ |t1 − t2|δ ≤ ((b− a) + δ)ε.

(III) The inequalities in (II) are uniformly true for all z = Sx with arbitrary x ∈ M . By the

Arzelà- Ascoli theorem, the set S(M) is relatively compact.

(IV) The operator S is continuous on M . To see this, let (xn) be a sequence in M with

‖xn − x‖ → 0 as n→∞, i.e, the functions xn(·) converge uniformly on [a, b] to x(·).

Let zn = Sxn and z = Sx. Then, Lebesgue’s dominated convergence theorem leads

‖z − zn‖ = max
a≤t≤b

|z(t)− zn(t)|

= max
a≤t≤b

|
∫ t

a

(K(t, s, x(s))−K(t, s, xn(s))) ds|

→ 0 as n→∞.

35



1.3. Related classes of mappings

Note the uniform continuity of K and the uniform convergence of the functions xn(·) to

x(·).

(III) and (IV) together imply that S is completely continuous.

1.3.2 k-set contraction maps

We consider two Banach spaces (E, ‖ · ‖) and (F, ‖ · ‖)and we let ΩE be the class of all bounded

subsets of E and f : E → F .

Remark 1.3.6 Lipschitz maps can be characterized by:

f is k − Lipschitz ⇔ ∀A ∈ ΩE, diam(f(A)) ≤ k diam(A).

Indeed,

f is k − Lipschitz ⇒ ∃ k ≥ 0 : ‖f(x)− f(y)‖F ≤ k ‖x− y‖E, ∀x, y ∈ A;

⇒ ‖f(x)− f(y)‖F ≤ k sup
x,y∈A

‖x− y‖E = k diam(A), ∀ x, y ∈ A;

⇒ diam(f(A)) ≤ k diam(A).

Conversely, let A = {x, y} ∈ ΩE. Then

diam(f(A)) ≤ k diam(A) ⇒ ‖f(x)− f(y)‖F ≤ k ‖x− y‖E

⇒ f is k − Lipschitz.

The observation in Remark 1.3.6 suggests to introduce k-set Lipschitz maps for the Kuratowski

measure of noncompactness α:

Definition 1.3.7 (a) f is called a k-set contraction, for some number k ≥ 0, if it is continuous,

bounded and

α(f(A)) ≤ kα(A), ∀A ∈ ΩE.

(b) f is called a 1-set contraction, if k = 1.

(c) f is called a strict k-set contraction if 0 ≤ k < 1.

(d) f is called a condensing, if ∀A ∈ ΩE with α(A) > 0, we have α(f(A)) < α(A).
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Example 1.3.8 Let E be an infinite dimentional Banach space and let T : E → E be defined

by:

T (x) =

 −x, if ‖x‖ ≤ 1;

− x
‖x‖ , if ‖x‖ ≥ 1.

Then, T is a 1-set contraction. To see that, it suffices to show that for all subset K of E, we

have T (K) = conv(−K ∪ {0}). Indeed,

let x ∈ K. If ‖x‖ ≤ 1 then T (x) = −x ∈ −K. If ‖x‖ ≥ 1, then

T (x) =
1

‖x‖
(−x) + (1− 1

‖x‖
)0 ∈ conv(−K ∪ {0}).

Thus, By Propositions 1.2.42, 1.2.39, 1.2.38, 1.2.37 and the fact that α({0}) = 0 we have

α(T (K)) ≤ α(conv(−K ∪ {0})) = α(K).

which shows that T is a 1-set contraction.

Remark 1.3.9 (a) f is completely continuous if and only if f is 0-set contraction. Indeed

f is completely continuous ⇒ f(A) is compact, ∀A ∈ ΩE,

⇒ α(f(A)) = α(f(A)) = 0,

⇒ f is 0− set contraction.

Conversely,

f is 0− set contraction ⇒ α(f(A)) = α(f(A)) = 0, ∀A ∈ ΩE,

⇒ f(A) is compact, (since E is complete),

⇒ f is completely continuous.

(b) If f is a strict k-set contraction, then f is condensing. Indeed, let A ∈ ΩE with α(A) > 0.

Then, since f is a strict k-set contraction, there exists 0 ≤ k < 1 such that α(f(A)) ≤ k α(A) <

α(A), that is f is condensing.

(c) If f is condensing, then f is 1-set contraction. Indeed, suppose that f is condensing. Then

(i) if α(A) > 0, then α(f(A)) ≤ α(A)⇒ f is 1-set contraction,
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(ii) if α(A) = 0, then A is compact and E is complete. Hence f(A) is compact for f is

continuous. As a consequence α(f(A)) = 0 ≤ α(A), since f(A) ⊂ f(A) and α(f(A)) = 0).

(d) Let f : (E, ‖ · ‖E) → (F, ‖ · ‖F ) be a k-set contraction, and g : (E, ‖ · ‖E) → (F, ‖ · ‖F ) be

a completely continuous mapping. Then f + g is a k-set contraction. Indeed let A ∈ ΩE. We

have

α((f + g)(A)) = α(f(A) + g(A)),

≤ α(f(A)) + α(g(A))

= α(f(A)) + 0,

≤ k α(A).

Hence f + g is a k-set contraction.

Proposition 1.3.10 Every k-Lipschitz map is a k-set contraction (with respect to the Kura-

towski measure of noncompactness).

Proof. Let A ∈ ΩE. Then

∀ ε > 0, ∃ δε > 0, ∃n ∈ N, ∃ {A1, A2, · · · , An} ⊂ E : A ⊂
n⋃
i=1

Ai,

with diam(Ai) ≤ δε, ∀ i ∈ {1, ..., n} such that α(A) ≤ δε < α(A) + ε. We have

f(A) ⊂ f

(
n⋃
i=1

Ai

)
=

n⋃
i=1

f(Ai).

Then

α(f(A)) ≤ α

(
n⋃
i=1

f(Ai)

)
≤ max

1≤i≤n
α(f(Ai)) ≤ max

1≤i≤n
diam(f(Ai)).

By Remark 1.3.6, we have

α(f(A)) ≤ max
1≤i≤n

diam(f(Ai)) ≤ max
1≤i≤n

k diam(Ai), (since f is Lipschitz)

≤ k δε < k (α(A) + ε), ∀ ε > 0.

Hence α(f(A)) ≤ k α(A).

38



1.3. Related classes of mappings

Remark 1.3.11 In case of the Hausdorff MNC, we can show in a similar manner that every

k-Lipschitz map is 2k-set contraction. Thus, according to Propositions 1.2.51 and 1.2.55, we

can say that every k-Lipschitz map is β(B(0, 1))k-set contraction, where β is either α or γ and

B(0, 1) the unit ball.

Proposition 1.3.12 Let f : (E1, ‖ · ‖E1) → (E2, ‖ · ‖E2) and g : (E1, ‖ · ‖E1) → (E2, ‖ · ‖E2)

be k1-set and k2-set contraction, respectively. Then f + g : (E1, ‖ · ‖E1) → (E2, ‖ · ‖E2) is a

(k1 + k2)-set contraction.

Proof. Given A ∈ ΩE, we have

α(f(A) + g(A)) ≤ α(f(A)) + α(g(A))

≤ k1 α(A) + k2 α(A)

= (k1 + k2)α(A).

Proposition 1.3.13 Let f : (E1, ‖ · ‖E1)→ (E2, ‖ · ‖E2) and g : (E2, ‖ · ‖E2)→ (E3, ‖ · ‖E3) be

k1-set and k2-set contraction, respectively. Then g ◦f : (E1, ‖ · ‖E1)→ (E3, ‖ · ‖E3) is a k1.k2-set

contraction.

Proof. Let A ∈ ΩE. Then

α(g(f(A))) ≤ k2 α(f(A)) (since g is k2-set contraction)

≤ k2.k1 α(A) (since f is k1-set contraction).

1.3.3 Expansive and nonexpansive maps

Definition 1.3.14 Let A mapping T : D ⊂ X → X, where (X, d) is a metric space.

(1) T is called expansive, if there exists a constant h > 1 such that

d(Tx, Ty) ≥ h d(x, y) for all x, y ∈ D;
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(2) T is called nonexpansive, if

d(Tx, Ty) ≤ d(x, y) for all x, y ∈ D;

(3) T is called a contraction, if there exists a constant 0 ≤ k < 1 such that

d(Tx, Ty) ≤ k d(x, y) for all x, y ∈ D;

(4) T is nonlinear expansive (or ψ-expansive) if

d(Tx, Ty) ≥ ψ(d(x, y)), ∀x, y ∈ D,

where ψ : [0,∞)→ [0,∞) satisfies ψ(0) = 0 and ψ(t) > t, for all t ≥ 0.

(5) T is called a nonlinear contraction (or a φ-contraction) if

d(Tx, Ty) ≤ φ(d(x, y)), ∀x, y ∈ D,

where φ : [0,∞)→ [0,∞) satisfies φ(0) = 0 and φ(t) < t, for all t ≥ 0.

Example 1.3.15 (1) Let T : R+ → R+ be defined by Tx = x3 + λx. Then T is expansive with

constant h = λ > 1.

(2) Let T : R→ R be defined by Tx = ex. Then T is ψ-expansive with ψ(t) = t+ 1
2
t2. Indeed,

∀x, y ∈ R, |ex − ey| = emin(x,y)(e|x−y| − 1) ≥ |x− y|+ 1

2
|x− y|2.

(3) In [33, Example 3.3], it is showed that, if r is the unit ball retraction of an infinite Ba-

nach space X, then T = −r is a 1-set contraction and I−T is h-expansive with constant h > 1.

Remark 1.3.16 Noting that:

(i) If we take ψ(t) = ht with h > 1, the nonlinear expansive in (4) reduces to an expansion with

constant h.

(ii) If we take φ(t) = kt with 0 < k < 1, the nonlinear contraction in (5) reduces to a contraction

with constant k.

(iii) The sum of a nonexpansive map and a completely continuous one is a 1-set contraction.

(vi) The sum of a contraction and a completely continuous map is a strict k-set contraction,

hence a condensing mapping and then a 1-set contraction.
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The following example demonstrates the usefulness of writing a map as the sum of two other

ones to study it properties. Precisely, it is illustration of point (iii), Remark 1.3.16.

Example 1.3.17 Let l1 = {x = (x1, x2, x3, x4, ...) :
∞∑
n=1

|xn| < ∞} the set of sommable se-

quences provided with the norm ‖x‖1 =
∞∑
n=1

|xn|. Then the mapping T : Bl1 → Bl1 defined as

follows :

T (x) = (1−
∞∑
n=1

|xn|, x1, x2, ..., xn, ...),

is a 1-set contraction. It is obvious that with a direct reasoning we can only show that T is a

2-Lipschitz, it is then a 2-set contraction. Indeed, for all x = (xn), y = (yn) in Bl1 we have

‖T (x)− T (y)‖1 =

∣∣∣∣∣
∞∑
n=1

(|yn| − |xn|)

∣∣∣∣∣+
∞∑
n=1

|xn − yn| ≤ 2‖x− y‖1.

Now, to show that T is a 1-set contraction, we consider

T = S +R,

where S,R : Bl1 → Bl1 are tow continuous maps defined by

S(x) = (1−
∞∑
n=1

|xn|)e1 = (1−
∞∑
n=1

|xn|, 0, 0, 0, ...),

R(x) =
∞∑
n=1

xnen+1 = (0, x2, x3, x4, ...).

In what follows, we show that S is a compact map and R is a nonexpansive one.

Let (x(m))m∈N such that x(m) = (x
(m)
1 , x

(m)
2 , ...., x

(m)
n , ...) a sequence of Bl1 , it is easy to show that

the sequence (y(m))m∈N such that

y(m) = (y
(m)
1 , y

(m)
2 , ...., y(m)

n , ...) = S(x(m)) = (1−
∞∑
n=1

|x(m)
n |, 0, 0, 0, ...),

has a convergent subsequence in l1. In fact, for all m ∈ N, we have
∞∑
n=1

|x(m)
n | ≤ 1,

so |y(m)
n | ≤ 1 (n = 1, 2, 3, ...). Hence, the sequence (y

(m)
n )m is bounded in R, which implies the

existence of a convergent sub-sequence (y
(mk)
n ) such that y

(mk)
n → ȳn, when mk → +∞.

Thus, ȳ = (ȳ1, ȳ2, ..., ȳn, ...) ∈ l1 and ‖y(mk) − ȳ‖1 =
∞∑
n=1

|y(mk)
n − ȳn| → 0 when mk → +∞.

Therefore, S is a compact, continuous map.

In the other hand, for all x = (xn), y = (yn) in Bl1 we have

‖R(x)−R(y)‖1 = 0 +
∞∑
n=2

|xn − yn| ≤ ‖x− y‖1.
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Therefore, R is a nonexpansive map.

Now, we give some properties and results of expansive mappings that will be useful in the

sequel.

Lemma 1.3.18 Let (E, ‖.‖) be a linear normed space and D ⊂ X. Assume that the mapping

T : D → E is expansive with constant h > 1. Then the inverse of T : D → T (D) exists and

‖T−1x− T−1y‖ ≤ 1

h
‖x− y‖, ∀x, y ∈ T (D).

Proof. It is a direct consequence of the definition of expansive mapping.

Proposition 1.3.19 ([80, Lemma 2.1]) Let (E, ‖.‖) be a normed linear space, D ⊂ E, and I

be the identity map of E. If a mapping T : D → E is expansive with a constant h > 1, then the

mapping I − T : D → (I − T )(D) is invertible and

‖(I − T )−1x− (I − T )−1y‖ ≤ 1

h− 1
‖x− y‖ for all x, y ∈ (I − T )(D).

Proof. For each x, y ∈ D, we have

‖(I − T )x− (I − T )y‖ = ‖(Tx− Ty)− (x− y)‖ ≥ (h− 1)‖x− y‖, (1.7)

which shows that (I − T )−1 : (I − T )(D) → D exists. Hence, for x, y ∈ (I − T )(D), we have

(I − T )−1x, (I − T )−1y ∈ D. Thus, using (I − T )−1x, (I − T )−1y substitute for x, y in (1.7),

repesectively, we obtain

‖(I − T )−1x− (I − T )−1y‖ ≤ 1

h− 1
‖x− y‖.

Proposition 1.3.20 [79, Lemma 2.5] Let (E, ‖·‖) be a linear normed space, M ⊂ E. Assume

that the mapping T : M → E is a contraction with a constant k < 1, then the inverse of

I − T : M → (I − T )(M) exists, and

‖(I − T )−1x− (I − T )−1y‖ ≤ (1− k)−1‖x− y‖ for all x, y ∈ (I − T )(M).
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Proposition 1.3.21 [30] Let (E, ‖.‖) a normed space. We have

(a) If T is φ-contraction, then (I − T ) is ψ-expansive, invertible, and (I − T )−1 is continuous

mapping.

(b) If T is ψ-expansive, then (I−T ) is (ψ−1)-expansive, invertible, and (I−T )−1 is continuous

mapping.

Proof. (a)

‖(I − T )x− (I − T )y‖ ≥ ‖x− y‖ − ‖Tx− Ty‖

≥ ‖x− y‖ − φ(‖x− y‖) = ψ(‖x− y‖),

where ψ(s) = s− φ(s), for s > 0.

(b)

‖(I − T )x− (I − T )y‖ ≥ ‖Tx− Ty‖ − ‖x− y‖

≥ ψ(‖x− y‖)− ‖x− y‖ = ψ̃(‖x− y‖),

where ψ̃(s) = ψ(s) − s, for s > 0. In particular, if ψ(s) = hs with h > 1, then (I − T )−1 is

(h− 1)−1-Lipschitz.

Remark 1.3.22 Let T : R2 → R2 be defined by T (x, y) = (y,−x). Then (I−T ) is ψ-expansive

with ψ(t) =
√

2t but T is not a nonlinear contraction, showing that the converse in part (a) is

not true.

1.3.4 Some related fixed point theorems

Let us mention the following fixed point result for expansive mappings which accompanies the

contraction fixed point theorem.

Proposition 1.3.23 ([80, Theorem 2.1]) Let (X, d) be a complete metric space and D be a

closed subset of X. Assume that the mapping T : D → X is expansive and D ⊂ T (D), then

there exists a unique point x∗ ∈ D such that Tx∗ = x∗.

Proof. Since T is expansive, there exists h > 1 such that

d(Tx, Ty) ≥ h d(x, y), ∀x, y ∈ D.
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So T : D → T (D) is injective. Hence T−1 : T (D) → D exists and it is 1
h
-contraction. Indeed,

Let y1, y2 ∈ T (D), then there exist x1, x2 ∈ D such that

d(y1, y2) = d(Tx1, Tx2) ≥ h d(x1, x2).

Therefore

d(T−1y1, T
−1y2) ≤ 1

h
d(y1, y2), for each y1, y2 ∈ T (D).

Since, D ⊂ T (D), from Banach’s contraction principle, the equation T−1x = x has a unique

solution on D which is the unique fixed point of T.

Corollary 1.3.24 Assume that the mapping T : E → E is expansive and onto, then there

exists a unique point x∗ ∈ E such that Tx∗ = x∗.

Corollary 1.3.25 Let T : E → E. Assume that there exists a positive integer n such that T n

is expansive and onto, then there exists a unique point x∗ ∈ E such that Tx∗ = x∗.

Proof. According to Corollary 1.3.24, there exists a unique point x∗ ∈ E such that T nx∗ = x∗,

which implies that Tx∗ is a fixed point of T n. In view of uniqueness, we have Tx∗ = x∗. And

x∗ is the unique fixed-point of T . This completes the proof.

Now, combining the Banach contraction mapping principle and Corollary 1.3.24, we obtain

the following result

Corollary 1.3.26 Let T : E → E. If one of the following conditions holds

(i) the mapping T is a contraction; or

(ii) the mapping T is expansive and onto.

Then there exists a unique point x∗ ∈ E such that Tx∗ = x∗.

Example 1.3.27 Let x0 ∈ R, k be a positive odd number, h > 1 and T : R→ R defined by

Tx = xk + hx+ x0.

It is easy to check that the assumptions of Corollary 1.3.24 are satisfied, so there exists a unique

point x∗ ∈ R such that Tx∗ = x∗. We cautiously note that the Banach contraction mapping

principle cannot be directly applied in this case.
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Remark 1.3.28 (a) A nonexpansive mapping dosen’t necessary have a fixed point, as shows

the shift operator x 7−→ x+ v for v 6≡ 0.

(b) The identity operator shows that a fixed point for a nonexpansive mapping is not necessary

unique.

Remark 1.3.29 Clearly if T : Ω −→ X is a ψ-expansive mapping, then T is injective and T−1

is uniformly continuous on the image set.

Proposition 1.3.30 [33, Lemma 3.1] Let Ω be a bounded closed convex subset of X and T :

Ω −→ X such that

(a) T is continuous,

(b) (I − T ) is ψ-expansive,

(c) T has a sequence of approximate fixed points.

Then T has a unique fixed point.

Corollary 1.3.31 Assume that Ω is a nonempty closed convex subset and T : Ω −→ Ω satisfies

(a) T is nonexpansive,

(b) I − T is ψ-expansive,

Then T has a unique fixed point.

Proof. For clarity, let Ω = B(0, R). Then
(
1− 1

n

)
T is a contraction, hence admits a unique

fixed point xn, for each n ∈ N. Hence

0 ≤ ‖T (xn)− xn‖ = ‖T (xn)−
(

1− 1

n

)
T (xn)‖ ≤ 1

n
‖T (xn)‖ ≤ R

n
.

Proposition 1.3.30 completes the proof.

Remark 1.3.32 (a) Boyd and Wong (1969, [18]) proved existence of a unique fixed point for

a φ-contraction when φ is further u.s.c. from the right.

(b)Matkowski ([60], 1975) replaced the condition φ(t) < t, ∀ t > 0 by lim
n→∞

φn(t) = 0, for t > 0

whenever φ is non-decreasing.

45



1.4. Topological degree theory

1.4 Topological degree theory

In this section we present an introduction to the concept of topological degree from an analytic

viewpoint. In particular, we summarize two of the most relevant constructions of the degree in

literature: the Brouwer degree for continuous maps between Euclidean spaces of finite dimension

and the Leray–Schauder degree for compact perturbations of the identity in real Banach spaces.

We start by asking the following question : what is the topological degree? As a rough answer,

the degree is a tool, precisely a number, which gives information about the solutions of equations

of the form:

f(x) = y0, x ∈ Ω (1.8)

where

(i) f : X → Y is a given function, supposed at least continuous;

(ii) X and Y are finite or infinite dimensional Banach spaces;

(iii) y0 is a fixed element of Y ;

(iv) Ω is an open subset of X.

In the cases where a direct computation does not solve an equation as the equation above,

neither give suitable approximations of the solutions, we can look for other methods to get

information about the set of solutions. For example we can ask if the set of solutions is not

empty. Is it finite or infinite? Where the solutions or some of them are? Are the solutions

localized in Ω? Are they stable with respect to perturbations of f or y0? And other even more

complicated issues.

1.4.1 Brouwer’s topological degree

After a pioneering work of Kronecker [52] in 1869, the first definition of degree for maps between

Euclidean spaces is due to Brouwer [19] in 1912. In 1951, Nagumo [61] redefines the concept,

today commonly known as Brouwer degree, by an analytical approach, which is different from
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the original Brouwer construction and uses Sard’s Theorem [71]. We give in this section a short

summary of the Brouwer degree with its most important properties.

Axiomatic definition of the degree

We consider the space C(Ω) of continuous maps f : Ω→ Rn with the supremum norm

‖f‖∞ = sup
x∈Ω

|f(x)|.

Let y0 ∈ Rn. We will be interested in the following subspace of C(Ω):

K(Ω) = {f ∈ C(Ω) : y0 /∈ f(∂Ω)}.

That is f ∈ K(Ω) if and only if f ∈ C(Ω) and f(x) 6= y0 for x ∈ ∂Ω.

Now, we define a relation in the set K(Ω), that will appear to be one of the most important

tools that we will use.

Definition 1.4.1 We call two maps f , g ∈ K(Ω) homotopic if there exists a continuous map

H : [0, 1]× Ω→ Rn, such that

• H(t, ·) ∈ K(Ω), for t ∈ [0, 1];

• H(0, ·) = f ;

• H(1, ·) = g.

We call the map H homotopy joining maps f and g.

Example 1.4.2 Let f, g : [−1, 1]→ R be given by f(x) = x2 and g(x) = 2. As we can see the

map H : [0, 1]× [−1, 1]→ R given by

H(t, x) = (1− t)f(x) + tg(x)

is a valid homotopy joining f and g.

Let us now proceed to the axiomatic definition of the topological degree.
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Definition 1.4.3 By topological degree we mean the family of maps deg(·,Ω, y0) : K(Ω)→ Z,

defined for open and bounded subset Ω ⊂ Rn and satisfying the following axioms:

(A1) (Normalization) If y0 ∈ Ω, then deg(I,Ω, y0) = 1, where I is the indentity map in Rn;

(A2) (Additivity) Let Ω1,Ω2 ⊂ Ω be such open subsets that Ω1∩Ω2 = ∅ and y0 /∈ f(Ω\(Ω1∪Ω2)),

then

deg(f,Ω, y0) = deg(f |Ω1,Ω1, y0) + deg(f |Ω2
,Ω2, y0).

(A3) (Homotopy invariance) Let f, g ∈ K(Ω) be homotopic, then deg(f,Ω, y0) = deg(g,Ω, y0).

We call the integer value deg(f,Ω, y0) the topological degree of the map f on y0 relative to

Ω.

Other Properties of the degree

We are going to present several simple properties that may be inferred from the set of axioms

presented before.

Proposition 1.4.4 (Invariance on the boundary) Assume f, g ∈ K(Ω) are maps satisfying

f(x) = g(x) for x ∈ ∂Ω. Then deg(f,Ω, y0) = deg(g,Ω, y0).

Proof. Let us define the homotopy h : [0, 1]× U → Rn by

h(t, x) = (1− t)f(x) + tg(x).

As we can see that h(t, x) = f(x) = g(x) for all (t, x) ∈ [0, 1] × ∂Ω. But as f ∈ K(Ω), we are

sure that f(x) 6= y0. This means that maps f and g are homotopic and hence by the homotopy

axiom, we can see that deg(f,Ω, y0) = deg(g,Ω, y0).

Proposition 1.4.5

deg(f, ∅, y0) = 0.

Proof. Let us take Ω = Ω1 = Ω2 = ∅. As we can see, we may apply the additivity axiom and

conclude that

deg(f,Ω, y0) = deg(f,Ω1, y0) + deg(f,Ω2, y0);
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deg(f, ∅, y0) = deg(f, ∅, y0) + deg(f, ∅, y0) = 2 deg(f, ∅, y0).

Hence

deg(f, ∅, y0) = 0.

Proposition 1.4.6 (Excision property). Let f ∈ K(Ω).

a) If V ⊂ Ω is such open bounded set that y0 /∈ f(Ω \ V ), then

deg(f,Ω, y0) = deg(f, V, y0).

b) If W ⊂ Ω is closed and y0 /∈ f(W ) ∪ f(∂Ω), then

deg(f,Ω, y0) = deg(f,Ω \W, y0).

Proof. a) Let us take Ω1 = V and Ω2 = ∅. We can see that applying additivity axiom to the

sets Ω, Ω1, and Ω2 we arrive to

deg(f,Ω, y0) = deg(f |V , V, y0) + deg(f, ∅, y0).

b) Let us take Ω1 = Ω \W and Ω2 = ∅. We can see that applying additivity axiom to the sets

Ω, Ω1, and Ω2 we arrive to deg(f,Ω, y0) = deg(f |Ω\W ,Ω \W, y0) + deg(f, ∅, y0).

Proposition 1.4.7 Let f ∈ K(Ω) be such that y0 /∈ f(Ω). Then deg(f,Ω, y0) = 0.

Proof. By using the excision property given above for V = ∅ and the Proposion 1.4.5, we get

that deg(f,Ω, y0) = deg(f, ∅, y0) = 0.

Proposition 1.4.8 (Existence property) Assume deg(f,Ω, y0) 6= 0. Then there exists x0 ∈ Ω,

such that f(x0) = y0.

Proof. This is just the logical transposition of the Property given in Proposition 1.4.7.

Proposition 1.4.9 ( Translation property ) Let f ∈ K(Ω). For all z ∈ Rn,

deg(f,Ω, y0) = deg(f − z,Ω, y0 − z).
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Proof. We consider the natural homotopy between (f, y0) and (f − z, y0 − z), that is

h(t, x) = (1− t)f(x) + t(f(x)− z) = f(x)− tz and y(t) = (1− t)y0 + t(y0 − z) = y0 − tz.

For t ∈ [0, 1], if there exists some x0 in ∂Ω such that h(t, x0) = y(t), that is f(x0)− tz = y0− tz.

So f(x0) = y0, Contradicting the assumption. The result then follows from the homotopy

invariance axiom in Definition 1.4.3.

Proposition 1.4.10 ( Continuity property: Continuity with respect to the function and y0)

Let f ∈ K(Ω) and r = dist(y0, f(∂Ω)) > 0. If g : Ω→ Rn continuous and z ∈ Rn are such that

sup
∂Ω

(|g − f |) + |y0 − z| < r, then deg(f,Ω, y0) = deg(g,Ω, z).

Proof. Let us note first that r is indeed strictly positive because Ω being bounded leads to ∂Ω

is compact, so that f(∂Ω) is closed (in fact compact). Then all point which does not belong

to f(∂Ω) is at a strict positive distance from this set (i.e., y0 6∈ f(∂Ω) means r > 0). Let

h(t, x) = tg(x) + (1 − t)f(x) and y(t) = tz + (1 − t)y0. If there exist t1 ∈ [0, 1] and x1 ∈ ∂Ω

such that t1g(x1) + (1− t1)f(x1) = t1z + (1− t1)y0, then

|y0 − f(x1)| ≤ t1|g(x1) − f(x1)| + t1|y0 − z| < r ( since |g(x) − f(x)| + |y0 − z| < r), which

contradicts the definition of r. The result then follows from the homotopy invariance axiom in

Definition 1.4.3.

Proposition 1.4.11 (Invariance on the connected components of Rn \ f(∂Ω)). Let f ∈ K(Ω).

Then, deg(f,Ω, ·) is constant on the connected components of Rn \ f(∂Ω).

Proof. The application y0 7→ deg(f,Ω, y0) is defined on Rn \ f(∂Ω) and, by the Proposition

1.4.10, is locally constant, we deduce that it is constant on the connected components of

Rn \ f(∂Ω), which ends the proof.

Remark 1.4.12 The Existence property shows the main power of the topological degree as the

tool for solving different problems. By showing that the degree has the nonzero value in the given

open set Ω, we may conclude that there must exists zero of the map f − y0 somewhere in the

open set Ω. Although we don’t know how the value of the degree may be computed yet, we can
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feel that if this technical issue is overcome, we can have quite nice tool of showing that a solution

to our problem exists. When deg(f,Ω, y0) 6= 0, then not only f(x) = y0 admits a solution in Ω,

but this equation is still soluble in Ω for every second members in a small neighborhood of y0.

Determinant formula of the degree on K(Ω) ∩ C1(Ω,Rn)

The process of constructing Brouwer’s degree deg(f,Ω, y0), in this case, is done in two steps.

In the following, we say that y0 ∈ f(Ω) is a regular value of f if Jf (x0) 6= 0 for all x0 ∈ f−1(y0).

The points x0 ∈ Ω for which Jf (x0) = 0 are called critical points of f. The set of critical points

of f is denoted by Kf . We start by defining the degree map (f,Ω, y0) 7→ deg(f,Ω, y0) in the

”generic” case, that is, for f ∈ C1(Ω,Rn) ∩ C(Ω,Rn) and y0 ∈ Rn \ f(Kf ∪ ∂Ω). In this case,

f−1(y0) 6= ∅ if and only if y0 is a regular value,

in which case f−1(y0) is compact and discrete (by virtue of the inverse function theorem, since

Jf (x0) 6= 0 for all x ∈ f−1(y0)); hence f−1(y0) is finite. Therefore, the following definition

makes sense.

Definition 1.4.13 If Ω ⊂ Rn is nonempty, bounded, and open, f ∈ C1(Ω,Rn)∩C(Ω,Rn), and

y0 ∈ Rn \ f(Kf ∪ ∂Ω), then

deg(f,Ω, y0) =


∑

x∈Ω∩f−1(y0)

sgnJf (x), if Ω ∩ f−1(y0) 6= ∅,

0, if Ω ∩ f−1(y0) = ∅,

where signJf (x0) is the sign of the determinant of the Jacobian matrix Df(x0).

Then, as a second step in the construction, we remove the assumption that y0 is regular, f still

being C1. This step in the construction will be based on the Sard’s Theorem. One fundamental

property of the degree in Definition 1.4.13 is that

deg(f,Ω, y1) = deg(f,Ω, y2)

whenever y1, y2 ∈ Rn \ f(Kf ∪ ∂Ω) belong to the same connected component of Rn \ f(∂Ω).

This property makes it possible to extend the degree to the case of y ∈ f(Kf ) \ f(∂Ω), i.e., the

next definition makes sense.
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Definition 1.4.14 Let Ω ⊂ Rn be nonempty, bounded and open subset f ∈ C1(Ω,Rn) ∩

C(Ω,Rn), and y0 ∈ f(Kf ) \ f(∂Ω). We define

deg(f,Ω, y0) = deg(f,Ω, y1)

whenever y1 ∈ Rn \ f(Kf ∪ ∂Ω) is such that ‖y1 − y0‖ < d(y0, f(∂Ω)), (where d(y0, f(∂Ω))

stands for the distance from y0 to f(∂Ω)).

Remark 1.4.15 In the preceding definition, the existence of y1 is guaranteed by Sard’s theorem,

which assures that the set of critical values of f is Lebesgue-null in Rn.

The degree defined in Definitions 1.4.13 and 1.4.14 for a function f ∈ C1(Ω,Rn)∩C(Ω,Rn)

and y0 ∈ Rn \ f(∂Ω) satisfies the following continuity property: if g ∈ C1(Ω,Rn) ∩ C(Ω,Rn)

satisfies ‖f − g‖∞ < d(y0, f(∂Ω)), thus y0 /∈ g(∂Ω)), then

deg(f,Ω, y0) = deg(g,Ω, y0).

This leads to the following definition.

Definition 1.4.16 Let Ω ⊂ Rn be nonempty, bounded and open subset, f ∈ C(Ω,Rn), and

y0 /∈ f(∂Ω). Then Brouwer’s degree deg(f,Ω, y0) is defined by

deg(f,Ω, y0) = deg(g,Ω, y0)

whenever g ∈ C1(Ω,Rn) ∩ C(Ω,Rn) satisfies ‖f − g‖∞ < d(y0, f(∂Ω)).

In Definition 1.4.16, the existence of g is guaranteed by the density of C1(Ω,Rn) ∩ C(Ω,Rn) in

C(Ω,Rn).

Example 1.4.17 Let the problem

(P) Find x ∈ Ω such that f(x) = y0,

where n = 1 et Ω =]0, 1[ and f : Ω→ R be a function of a class C1 that verifies:

for all solution x of the problem (P), f ′(x) 6= 0. (1.9)

We introduce then the integer

deg(f,Ω, y0) =


∑
i∈I
sgn(f ′(xi)), if {xi, i ∈ I} is the solutions set of (P),

0, if (P)has no solution..

(1.10)
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1.4.2 Leray–Schauder’s topological degree

We now wish to construct a degree with the same purpose as Brouwer’s degree, but in infinite

domension spaces, which means a tool that makes it possible to ensure that an equation of the

form f(x) = y0, where f is continuous from a Banach space X in itself, has at least one solution

x.

An obstruction in infinite dimension

However, we quickly realize, on one example, that there is no hope to such a tool to happen in

the infinite dimension. Indeed, let X = {(xn)n≥1 ⊂ E such that (xn) is bounded ∀n ≥ 1 }, and

S : X → X the right shift, that is

S(x) = (0, x1, x2, · · ·).

Let H(t, x) = tx+ (1− t)S(x) = (tx1, tx2 + (1− t)x1, tx3 + (1− t)x2, · · ·) the natural homotopy

between I and S.

We see that, for all t ∈ [0, 1], the only solution of H(t, x) = 0 is the null sequence. If the Brouwer

degree was defined for all continuous fucntions on X, from homotopy invariance property, we

would get

deg(S,B(0, 1), 0) = deg(I, B(0, 1), 0) = 1.

Using homotopy invariance, since dist(0, S(∂B(0, 1))) = 1 > 0, we still get

deg(S,B(0, 1), z) = 1 for all z ∈ X close to 0; but for z = (ε, 0, 0, · · ·) has no precedent by S as

soon as ε 6= 0.

The Brouwer degree in infinite dimension cannot therefore be defined for all continuous appli-

cations of a Banach space X in itself. We must then restrict the functions we are considering.

There exist several degrees in infinite dimension, whose main difference is precisely the classe

of functions to which each applies; the degreee we are going to study here, called the Leray-

Schauder degree, is built on applications that differ from identity by compact application.
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Definition of the Leray-Schauder degree

The Leray–Schauder degree theory follows from Brouwer’s degree theory. The key step is

provided by the next lemma.

Lemma 1.4.18 Let X be a Banach space, Ω ⊂ X nonempty, bounded, and open subset, and

K : Ω → X a completely continuous map with 0 /∈ (I − K)(∂Ω), so that ρ := d(0, (I −

K)(∂Ω)) > 0. If K1, K2 : Ω→ X are finite rank maps such that

‖Ki −K‖∞ < ρ and Ki(Ω) ∈ Z for i ∈ {1, 2},

where Z ∈ X is a finite-dimensional vector subspace intersecting Ω, then

deg((I −K1) |Ω∩Z ,Ω ∩ Z, 0) = deg((I −K2) |Ω∩Z ,Ω ∩ Z, 0),

where deg((I − Ki) |Ω∩Z ,Ω ∩ Z, 0) stands for the Brouwer degree of the map (I − K1) |Ω∩Z∈

C(Ω ∩ Z,Z), i ∈ {1, 2}.

Now we give the definition of the Leray–Schauder degree.

Definition 1.4.19 Let X be a Banach space, Ω ⊂ X a nonempty, bounded, and open subset,

and f : Ω→ X a compact perturbation of the identity, that is, f = I −K, where K : Ω→ X

is a completely continuous map.

(a) If 0 /∈ f(∂Ω), then the Leray-Schauder degree of the triple (f,Ω, 0) is defined by

degLS(f,Ω, 0) = deg((I − K̃) |Ω∩Z ,Ω ∩ Z, 0), (1.11)

where Z ⊂ X is a finite-dimensional vector subspace intersecting Ω and K̃ : Ω→ X is a

finite-rank map such that ‖K − K̃‖∞ < d(0, f(∂Ω)) and K̃(Ω) ∈ Z.

(b) If y0 ∈ X \ f(∂Ω), y0 6= 0, then the Leray-Schauder degree of the triple (f,Ω, y0) is defined

by

degLS(f,Ω, y0) = degLS(f − y0,Ω, 0).

Remark 1.4.20 If X = Rn (n ≥ 1) and f ∈ C(Ω,Rn), then f is a compact perturbation of the

identity and degLS(f,Ω, y0) = deg(f,Ω, y0) for all y0 ∈ Rn \ f(∂Ω).
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By virtue of (1.11), the main properties of the Leray-Schauder degree follow from the cor-

responding properties of Brouwer’s degree. We consider triples (f,Ω, y0) such that Ω ⊂ X

nonempty, bounded, and open subset, f = I −K, with K : Ω → X is completely continuous

map, and y0 /∈ f(∂Ω).

Theorem 1.4.21 The Leray-Schauder degree map (f,Ω, y0) 7→ degLS(f,Ω, y0), defined on

triples (f,Ω, y0) as previously, introduced in Definition 1.4.19, is the unique integer-valued map

satisfying the following properties:

(a) Normalization property:

degLS(I,Ω, y0) =

 1, if y0 ∈ Ω,

0, if y0 /∈ Ω.

(b) Additivity property: if Ω1,Ω2 ⊂ Ω are disjoint, nonempty, open subsets and y0 /∈ (I −

K)(∂Ω1) ∪ (I −K)(∂Ω2), then

degLS(I −K,Ω1 ∪ Ω2, y0) = degLS(I −K,Ω1, y0) + degLS(I −K,Ω2, y0);

(c) Homotopy invariance property: if h : [0, 1] × Ω → X is completely continuous and for

all t ∈ [0, 1], letting ft = I − h(t, .), we have y0 /∈ ft(∂Ω), then degLS(ft,Ω, y0) does not

depend on t ∈ [0, 1];

(d) Existence property: if degLS(I−K,Ω, y0) 6= 0, then there exists x ∈ Ω such that I−K(x) =

y0;

(e) Excision property: if V ⊂ Ω is closed and y0 /∈ I −K(V ) ∪ I −K(∂Ω), then

degLS(I −K,Ω, y0) = degLS(I −K,Ω \ V, y0);

(f) Continuity with respect to the function property: if K,G : Ω→ X are completely continu-

ous maps, y0 /∈ (I−K)(∂Ω), and ‖K−G‖∞ < d(y0, (I−K)(∂Ω)), then y0 /∈ (I−G)(∂Ω)

and

degLS(I −K,Ω, y0) = degLS(I −G,Ω, y0).

Moreover, degLS(I−K,Ω, .) is constant on each connected component of X \(I−K)(∂Ω);
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(g) Boundary invariance property: if K,G : Ω → X are compact maps, K |∂Ω= G |∂Ω, and

y0 /∈ (I −K)(∂Ω), then degLS(I −K,Ω, y0) = degLS(I −G,Ω, y0);

(h) Translation property: degLS(I −K,Ω, y0) = degLS(I −K − u,Ω, y0 − u) for all u ∈ X.

1.4.3 Applications of the topological degree

Study of the existence of solutions for nonlinear equations

The topological degree has been constructed with in head the solving of equations of the form

(1.8). It is therefore natural that many of its applications revolve around this problem.

Fixed point theorems

Theorem 1.4.22 (Brouwer fixed point) Let B the closed unit ball of Rn and let f : B → B

be continuous. Then, f has a fixed point: x ∈ B.

Theorem 1.4.23 (Schauder fixed point) Let B the closed unit ball of a Banach space E

and let f : B → B be completely continuous. Then, f has a fixed point: there exists x ∈ B

such that f(x) = x.

The Brouwer and Leray-Schauder theorems in question are, however, similar (in fact, the theo-

rem of Brouwer is a special case of Schauder’s theorem, since any continuous map is completely

continuous in finite dimension), and it would be natural to have similar proofs for each of

them. Thanks to the topological degrees, we can give a quick proof and totally common to the

theorems of Brouwer and Schauder.

Proof of the two theorems. If there is a fixed point on ∂B, then we are done. Otherwise

f(x) 6= x for all x ∈ ∂B. On this case deg(I − f,B, 0) is well-defined; we will show that

deg(I − f,B, 0) = 1, which will prove that I − f has at least one zero in B, and therefore f

has at least one fixed point in this set.

Let H(t, x) = tf(x), a continuous function over [0, 1] × B (and completely continuous in the

framework of Schauder’s theorem). If, for some t ∈ [0, 1] and x ∈ ∂B, we have x−H(t, x) = 0,
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then tf(x) = x; like |x| = 1 and |f(x)| ≤ 1, this imposes t = 1, which leads to a contradiction.

From the invariance homotopy and normalization properties of the degree, we deduce

deg(I − f,B, 0) = deg(I, B, 0) = 1,

which ends proof of the two theorems.

The topological degree is a much more powerful tool, more general and often even easier to use

than some fixed point theorems. In what follows we give a simple example which confirms this

observation.

Example 1.4.24 Let ϕ : R→ R be a continuous function which, for some α, β ∈ R, satisfies

ϕ(α) > α and ϕ(β) < β. Then, as an immediate consequence of the intermediate value theorem,

ϕ has at least one fixed point in (α, β). Suppose now, we can find a second interval (γ, δ) ⊂ R

with β < γ such that ϕ(γ) > γ and ϕ(δ) < δ then, by the same argument, there exists at least

one fixed point in the interior of each of the intervals I1 ≡ [α, β], I2 ≡ [β, γ], I3 = [γ, δ].

Suppose now in addition that ϕ, is nondecreasing. Then, we find a fundamental difference in

the behavior of ϕ, on the intervals Ii, i = 1, 3, compared with its behavior on I2. In fact, ϕ maps

each of Ii, i = 1, 3 into itself, but this is not true for the middle interval I2.

Hence we can deduce the existence of fixed points in each of Ii, i = 1, 3 also by Brouwer’s

fixed-point theorem. This method generalizes to nonlinear operational equations in infinite-

dimensional spaces, but by this method one does not obtain the “middle” fixed point.

Consider now the equivalent problem of finding zeros of the function ψ : R → R defined by

ψ(x) = x − ϕ(x) and suppose for convenience that ψ is differentiable and has only simple

zeros. Then it is obvious that on each interval Ij, j = 1, 2, 3, ψ must have an odd number of

zeros. Moreover, if we take an algebraic count of the number of the zeros ξ has the value +1 if

ψ′(ξ) > 0 and the value −1 otherwise, then, denoting by i(I) the algebraic number of zeros in

the interval I, obviously i(I1) = i(I3) = +1 and i(I2) = −1. Since on the boundary of the large

interval I ≡ I1 ∪ I2 ∪ I3 the function ϕ has the same behavior as on the boundary of I1, we

have i(I) = 1. Hence we see that we can compute i(I2) also indirectly by means of the behavior

formula

i(I2) = i(l)− i(I1)− i(I3) = −1. (1.12)
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But the algebraic number i(I) of zeros of ψ in l is nothing else than the one-dimensional version

of the Leray-Schauder degree or, more generally, of the fixed-point index for nonlinear mappings

in Banach.
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Fixed point index
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2.1 Introduction

We have seen that the Leray-Schauder degree is an important tool, in nonlinear analysis,

allowing to show the existence of fixed points for a mapping defined on an open bounded

subset of a Banach space to this space. But there are many interesting problems for which we

cannot use the entire Banach space, but instead their formulation leads us to a map of a closed

convex subset of a Banach space that is not a vector subspace, as the non solid cones. There

is a generalization of the Leray–Schauder degree, called the fixed point index, that is, designed

to find fixed points of such a map. Our goal in this chapter is to define this index and list its

properties for the class of completely continuous mappings then extend it to larger classes like

the class of strict-set contractions and that of 1-set contraction mappings.
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Recall that a subset D 6= ∅ of a metric (more generally : topological) space Y is called a retract

of Y if there exists a continuous map r : Y → D, called a retraction, such that r(x) = x,

∀x ∈ D. The key to define the fixed point index is the following result of Dugundji [75]:

If X is a nonempty closed, convex subset of a Banach space E, then X is a retract of E. In

particular, every cone P ⊂ E is a retract of E.

2.2 Fixed point index for completely continuous maps

Now, we present the definition and the most important properties of the fixed point index in

the class of completely continuous mappings. For more details, see [2, 25, 46].

Theorem 2.2.1 Let X be a retract of E. For every open bounded subset U ⊂ X and every

compact mapping f : U → X without fixed point on the boundary ∂U, there exists a unique

integer i(f, U,X) satisfying the following conditions:

(i) (Normalization property). The index i(f, U,X) = 1 whenever f is constant on U .

(ii) (Additivity property). Let U1, U2 be two disjoint open subsets of U such that f has no

fixed point on U \ (U1 ∪ U2), then

i(f, U,X) = i(f, U1, X) + i(f, U2, X)

where i(f, Uk, X) = i(f |Uk , Uk, X), k = 1, 2.

(iii) (Homotopy Invariance property). The index i(h(·, t), U,X) does not depend on the pa-

rameter t ∈ [0, 1], where h : U × [0, 1] → X is a compact mapping and h(x, t) 6= x for

every x ∈ ∂U and 0 ≤ t ≤ 1.

(iv) (Permanence property). If Y is a retract of X and f(U) ⊂ Y , then

i (f, U,X) = i (f, U ∩ Y, Y )

where i (f, U ∩ Y, Y ) := i (f |U∩Y , U ∩ Y, Y ).

60



2.2. Fixed point index for completely continuous maps

The integer i (f, U,X) is called fixed point index of f on U with respect to X.

Sketch of the proof.

Let i(f, U,X) satisfying the conditions (i)-(v). With X = E, conditions (i)-(v) are just the

main properties of the Leray-Schauder degree with

i(f, U,E) = deg(I − f, U, 0). (2.1)

Let r : E → X be a retraction. The fixed point index i (f, U,X) is defined by:

i(f, U,X) = i(f ◦ r, r−1(U), E) = degLS(I − f ◦ r, r−1(U), 0). (2.2)

Indeed, r : E → X is a retraction, thus continuous. Then,

• U ⊂ X is open, thus r−1(U) ⊂ E is also open.

• f ◦ r : E → X is a compact mapping, has no fixed point on the boundary ∂r−1(U) and

satisfies [f ◦ r](r−1(U) ⊂ X for

f ◦ r is continuous ⇒ [f ◦ r](r−1(U)) ⊂ [f ◦ r](r−1(U))

⊂ f(U) ⊂ X = X.

By the permanence property of the degree, we have

i(f ◦ r, r−1(U), E) = i(f ◦ r, r−1(U) ∩X,X)

= i(f ◦ r, U,X) = i(f ◦ r|U , U,X)

= i(f, U,X).

Since (2.1) implies that

i(f ◦ r, r−1(U), E) = degLS(I − f ◦ r, r−1(U), 0),

we deduce (2.2). We may further check that (2.2) does not depend on the retraction r. Indeed,

ler r1 : E → X be another retraction. Let V := r−1(U) ∩ r−1
1 (U) and r0 := r. By the excision

property of the Leray-Schauder degree, we find that:

deg((I − f ◦ rj, r−1
j (U), 0) = degLS(I − f ◦ rj, V, 0), j = 0, 1.
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Define a compact mapping h : [0, 1]× V → X by

h(λ, x) = r0[(1− λ)f(r0(x)) + λf(r1(x))].

Notice that h(λ, x) 6= x, ∀(λ, x) ∈ [0, 1]× ∂V . The Leray-Schauder degree deg(I − h(λ, ·), V, 0)

is well defined ∀λ ∈ [0, 1]. The invariance under homotopy of the degree impliers that:

degLS(I − f ◦ r0, V, 0) = degLS(I − f ◦ r1, V, 0),

and our claim follows.

Corollary 2.2.2 The fixed point index satisfies:

(v) Excision property. Let V ⊂ U an open subset such that f has no fixed point in U \ V ;

then

i(f, U,X) = i(f, V,X).

(vi) Existence property. If i (f, U,X) 6= 0, then f has a fixed point in U .

Proof.

(v) Given U1 = U,U2 = ∅, the additivity property of the fixed point index yields

i (f, U,X) = i (f, U1, X) + i (f, U2, X) = i (f, U,X) + i (f, ∅, X).

This implies that i(f, ∅, X) = 0. Taking U1 = V and U2 = ∅, we get

i(f, U,X) = i(f, V,X) + i(f, ∅, X) = i (f, V,X).

(vi) Assume f has no fixed point in U . So f has no fixed point in U ∪ ∂U = U .

Let V = ∅ in the excision property, i.e U \ V = U . Then i (f, U,X) = i (f, ∅, X) = 0,

which contradicts the fact that i (f, U,X) 6= 0.

The fixed point index has been extended to wider classes of maps. We describe three of these

extensions: to the classes of strict-set contractions, condensing and 1-set contraction maps.
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2.3 Fixed point index for strict-set contraction maps

We now describe the definition of the fixed point index for strict-set contractions. For more

details, see [3, 24, 45, 46]. The key result here is the following:

Lemma 2.3.1 Let C be a closed convex subset of a Banach space E. Let U be a bounded open

subset of C and f : U → C be a strict k-set contraction. Then:

(i) there exists a compact convex C∞ ⊂ C such that f(U ∩ C∞) ⊂ C∞.

(ii) there exists a completely continuous map F : U → C∞ extending the restriction f|U :

U ∩ C∞ → C∞ and satisfying Fix(F ) = Fix(f); any two such extensions are homotopic

via a completely continuous homotopy Ht : U → C∞ such that Fix(Ht) = ∅ for each

t ∈ [0, 1].

Proof. Define inductively a descending sequence C1 ⊃ C2 ⊃ ... of closed convex sets by setting

C1 = conv(f(U)), Cn = conv(f(U ∩ Cn−1)).

Letting C∞ = ∩∞n=1Cn and using f(U ∩ Cn−1) ⊂ Cn gives f(U ∩ C∞) ⊂ C∞.

Because f is strict k-set contraction,

α(Cn) ≤ kα(Cn−1) ≤ kn−1α(C1),

and as k ∈ (0, 1), the generalized Cantor’s intersection theorem shows that C∞, is compact.

Now, from [46, Theorem A.5.1], f : U ∩ C∞ → C∞ extends to F : U → C∞, and since C∞

is compact it follows that F is completely continuous.

If x = F (x) for some x ∈ U? then x ∈ U∩C∞? so x = F (x) = f(x), and thus Fix(F ) = Fix(f).

Now assume that G : U → C∞ were another such extension and define a completely continuous

homotopy Ht : U → C∞ by

Ht(x) = (I − t)F (x) + tG(x).

If x = Ht(x) for some x ∈ U and some t ∈ I then x ∈ U ∩ C∞, and therefore x = F (x) = f(x),

i.e., Fix(Ht) = Fix(f) for all t ∈ [0, 1].
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2.3. Fixed point index for strict-set contraction maps

The fixed point index i (F,U, C), i (G,U, C) are the same, and we define

i (f, U, C) = i (F,U, C).

It can be shown that i (f, U, C) satisfies the main axioms for the index on the class of

strict-set contraction maps. In particular, it is also unique.

The basic properties of fixed point index for strict k-set contractions are collected in the

following lemma. For the proof, we refer the reader to [45, Theorem 1.3.5] or [3, 46].

Lemma 2.3.2 Let X be a retract of a Banach space E. For every open bounded subset U ⊂ X

and every strict k-set contraction f : U → X without fixed point on the boundary ∂U, there

exists uniquely one integer i (f, U,X) satisfying the following conditions:

(a) (Normalization property). If f : U → U is a constant map ( that is, f(x) = y0 for all

x ∈ U), then i (f, U,X) = 1.

(b) (Additivity property). For any pair of disjoint open subsets U1, U2 in U such that f has no

fixed point on U \(U1 ∪ U2), we have

i (f, U,X) = i (f, U1, X) + i (f, U2, X),

where i (f, Uj, X) : = i (f | Uj , Uj, X), j = 1, 2.

(c) (Homotopy Invariance property). The index i (h(t, ·), U,X) does not depend on the param-

eter t ∈ [0, 1], where

(i) h : [0, 1]× U → X is continuous and h(t, x) is uniformly continuous in t with respect

to x ∈ U,

(ii) h(t, .) : U → X is a strict k-set contraction, where k does not depend on t ∈ [0, 1],

(iii) h(t, x) 6= x, for every t ∈ [0, 1] and x ∈ ∂U.

(d) (Permanence property). If Y is a retract of X and f(U) ⊂ Y , then

i (f, U,X) = i (f, U ∩ Y, Y ),

where i (f, U ∩ Y, Y ) := i (f | U∩Y , U, Y ).
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2.3. Fixed point index for strict-set contraction maps

(e) (Excision property). Let V ⊂ U an open subset such that f has no fixed point in U\V .

Then

i (f, U,X) = i (f, V,X).

(f) (Existence property). If i (f, U,X) 6= 0, then f has a fixed point in U .

In the following, we compute the fixed point index for the class of mappings under consideration.

Note that these computations follow directly from the properties of this index.

Proposition 2.3.3 Let X be a closed convex of a Banach space E and U ⊂ X an open bounded

subset with 0 ∈ U. Assume that A : U → X is a strict k-set contraction that satisfies the Leray-

Schauder boundary condition:

Ax 6= λx, ∀x ∈ ∂U, ∀λ ≥ 1.

Then i (A,U,X) = 1.

Corollary 2.3.4 Let P be a cone of a Banach space E and U ⊂ P an open bounded subset

with 0 ∈ U. Assume that A : U → P is a strict k-set contraction satisfying

‖Ax‖ ≤ ‖x‖ and Ax 6= x for all x ∈ ∂U.

Then i (A,U,P) = 1.

Proposition 2.3.5 [45, Corollary 1.3.1] Let X be a closed convex of a Banach space E and

U ⊂ X a nonempty open bounded convex subset of X. Assume that A : U → X is a strict set

contraction such that A(U) ⊂ U. Then i (A,U,X) = 1.

Proposition 2.3.6 [45, Theorem 1.3.8] Let X be a closed convex of a Banach space E and

U ⊂ X be an open bounded subset. Assume that A : U → X is a strict k-set contraction. If

there exists u0 ∈ X, u0 6= 0, such that λu0 ∈ X, ∀λ ≥ 0 and

x− Ax 6= λu0, ∀x ∈ ∂U, ∀λ ≥ 0,

then i (A,U,X) = 0.
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2.4 Fixed point index for condensing maps

In this section, we explain how to extend the definition of the fixed point index given in section

2.3 to the class of condensing mappings. For more details, (see [6, 46, 67]). In what follows, let

X be a nonempty closed convex subset of a Banach space E, U a relative bounded open set

with respect to X, and U and ∂U the closure and boundary of U in X respectively.

Let F : U → C be a condensing map with Fix(F ) ⊂ U. Take

0 < δ < δ0 = inf{‖x− F (x)‖ : x ∈ ∂U}.

Select any x0 ∈ U and let

Kt(x) = (1− t)x0 + tF (x) for x ∈ U and t ∈ [0, 1].

Now choosing t0 sufficiently close to 1 so that ‖Kt0(x)− F (x)‖ < δ for all x ∈ ∂U.

Noting that Kt0 : U → X is a strict-set contraction with Fix(Kt0) ⊂ U. Thus, we define

i (F,U,X) = i (Kt0 , U,X).

It can be verified that the definition does not depend on t0, x0 chosen and that i (F,U,X)

satisfies the main axioms for the index on the class of condensing maps that are fixed point

free on ∂U. In particular, it is also unique.

2.5 Fixed point index for 1-set contraction maps

Now, we extend the concept of fixed point index to the class of 1-set contraction mappings. For

the proofs and more details, we refer the reader to the reference [48]. Suppose that F : U → X

is a 1-set contraction mapping and 0 /∈ (I − T )∂U , so there exists δ > 0 such that

inf
x∈∂U

‖x− Fx‖ ≥ δ. (2.3)

We set Fk = kF , where k ∈ (1− δ
M
, 1), M = sup

x∈U
‖Fx‖+ δ.

Obviously Fk is a strict-set contraction mapping. Thus the fixed point index i (Fk, U, U) is well
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2.5. Fixed point index for 1-set contraction maps

defined. Then we put

i (T, U,X) = i (Tk, U,X). (2.4)

Note that the index i (F,U,X) is independent of Tk. In fact, suppose that Wi : U → X is a

ki-set contraction mapping (0 < ki < 1) with

‖Wix− Fx‖ < δ, x ∈ ∂U i, i = 1, 2. (2.5)

We make a homotopic mapping on U as follows

H(t, x) = tW1x+ (1− t)W2x x ∈ U , t ∈ [0, 1].

Ht : U → X is a l-set contraction mapping, where l = max{k1, k2}. For every x ∈ ∂U , we have

‖x−H(t, x)‖ = ‖x− tW1x− (1− t)W2x‖

≥ ‖x− Tx‖ − t‖Tx−W1x‖ − (1− t)‖Tx−W2x‖

> δ − tδ − (1− t)δ = 0.

By homotopy invariance property of the index ( Theorem 2.2.1 (iii)), we get

i(W1, U,X) = i(W2, U,X).

This equality proves our claim.

The fixed point index i (F,U,X) defined in (2.4)) for 1-set contractions has the following

properties:

(i) (Normalization property). If F : U → U is a constant mapping ( that is, Fx ≡ y0 for all

x ∈ U), then i(T, U,X) = 1.

(ii) (Additivity property). If U1 and U2 are disjoint open subsets of U such that F has no

fixed point in U \ (U1 ∪ U2), then

i (F,U,X) = i(F,U1, X) + i (F,U2, X).

(iii) (Homotopy Invariance property). If we assume that

(a) H : [0, 1] × U → X is continuous and H(t, x) is uniformly continuous in t with

respect to x ∈ U and 0 6∈ (I −H(t, x))([0, 1]× ∂U);
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2.5. Fixed point index for 1-set contraction maps

(b) H(t, ·) : U → X is a 1-set contraction;

then i(H(t, ·), U,X) = constant for all t ∈ [0, 1].
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3.1. The case where T is h-expansive mapping and F is a k-set contraction with 0 ≤ k < h− 1

In all what follows, P will refer to a cone in a Banach space E, Ω is a subset of P , and U

is a bounded open subset of P . For some constant r > 0, we will denote Pr = P ∩ Br, where

Br = {x ∈ E : ‖x‖ < r} is the open ball centered at the origin with radius r.

3.1 The case where T is h-expansive mapping and F is

a k-set contraction with 0 ≤ k < h− 1

In [29], Djebali and Mebarki have developped a generalized fixed point index theory for the

sum of a k-set contraction and an expansive mapping with constant h > 1 when 0 ≤ k < h− 1.

In what follows, we present the definition of this index as well as some of its properties.

3.1.1 Definition of the index

Assume that T : Ω → E is an expansive mapping with constant h > 1 and F : U → E is a

k-set contraction. Suppose that

0 6 k < h− 1,

F (U) ⊂ (I − T )(Ω), (3.1)

and

x 6= Tx+ Fx, for all x ∈ ∂U ∩ Ω. (3.2)

Then x 6= (I−T )−1Fx, for all x ∈ ∂U and the mapping (I−T )−1F : U → P is a strict k
h−1

-set

contraction. Indeed, (I − T )−1F is continuous and bounded; and for any bounded set B in U ,

we have

α(((I − T )−1F )(B)) 6
1

h− 1
α(F (B)) 6

k

h− 1
α(B).

By Lemma 2.3.2, the fixed point index i ((I − T )−1F,U,P) is well defined. Thus we put

i∗ (T + F,U ∩ Ω,P) =

 i ((I − T )−1F,U,P) if U ∩ Ω 6= ∅

0, if U ∩ Ω = ∅.
(3.3)
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3.1. The case where T is h-expansive mapping and F is a k-set contraction with 0 ≤ k < h− 1

This integer is called the generalized fixed point index of the sum T + F on U ∩Ω with respect

to the cone P .

Using the main properties of the fixed point index for strict set contractions, Djebali and

Mebarki in [29] have discussed the properties of the generalized fixed point index i∗.

Theorem 3.1.1 The fixed point index defined in (3.3) satisfies the following properties:

(a) (Normalization property). If U = Pr, 0 ∈ Ω, and Fx = z0 ∈ B(−T0, (h − 1)r) ∩ P for all

x ∈ Pr, then

i∗ (T + F,Pr ∩ Ω,P) = 1.

(b) (Additivity property). For any pair of disjoint open subsets U1, U2 in U such that T +F has

no fixed point on (U \(U1 ∪ U2)) ∩ Ω, we have

i∗ (T + F,U ∩ Ω,P) = i∗ (T + F,U1 ∩ Ω,P) + i∗ (T + F,U2 ∩ Ω,P),

where i∗ (T + F,Uj ∩ Ω, X) : = i∗ (T + F | Uj , Uj ∩ Ω,P), j = 1, 2.

(c) (Homotopy Invariance property). The fixed point index i∗ (T + H(t, .), U ∩ Ω,P) does not

depend on the parameter t ∈ [0, 1] whenever

(i) H : [0, 1] × U → E is continuous and H(t, x) is uniformly continuous in t with respect to

x ∈ U,

(ii) H([0, 1]× U) ⊂ (I − T )(Ω),

(iii) H(t, .) : U → E is a l-set contraction with 0 6 l < h−1 and l does not depend on t ∈ [0, 1],

(iv) Tx+H(t, x) 6= x, for all t ∈ [0, 1] and x ∈ ∂U ∩ Ω.

(d) (Existence property). If i∗ (T + F,U ∩ Ω,P) 6= 0, then T + F has a fixed point in U ∩ Ω.

Proof. Properties (b), (c) and (d) follow directly from the (3.3) and the corresponding prop-

erties of the fixed point index for strict-set contractions (see Lemma 2.3.2). We only check that

if U = Pr, then

i ((I − T )−1z0, U,P) = 1.
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3.1. The case where T is h-expansive mapping and F is a k-set contraction with 0 ≤ k < h− 1

For this, we show that y0 := (I −T )−1z0 ∈ Pr ∩Ω. We have F (Pr) = {z0} ⊂ (I −T )(Ω), which

gives y0 ∈ Ω and since T is an expansive operator with h > 1 and F (Pr) ⊂ B(−T0, (h−1)r)∩P ,

Lemma 1.3.18 guarantees that

‖(I − T )y0 + T0‖ = ‖(I − T )y0 − (I − T )0‖ ≥ (h− 1)‖y0‖.

Hence

(h− 1)‖y0‖ ≤ ‖(I − T )y0 + T0‖ = ‖z0 − (−T0)‖ < (h− 1)r,

that is y0 = (I − T )−1z0 ∈ Pr. By property (a) in Lemma 2.3.2, we deduce that

i ((I − T )−1z0,Pr,P) = 1.

Therefore i∗ (T + z0,Pr ∩ Ω,P) = 1, which completes the proof.

Remark 3.1.2 Theorem 3.1.1 still holds if instead of the cone P, we consider a retract X of

E. In this case, the set Pr is replaced by X ∩ Br.

3.1.2 Computation of the index

The following results give the computation of the generalized fixed point index i∗. For Proofs

and more details see [29].

Proposition 3.1.3 Assume that T : Ω ⊂ P → E is an expansive mapping with constant

h > 1, F : Pr → E is a k-set contraction with 0 6 k < h− 1, and tF (Pr) ⊂ (I − T )(Ω) for all

t ∈ [0, 1]. If 0 ∈ Ω, ‖T0‖ < (h− 1)r, and

Fx 6= λ(x− Tx) for all x ∈ ∂Pr ∩ Ω and λ > 1, (3.4)

then i∗ (T + F,Pr ∩ Ω,P) = 1.

As a consequence of Proposition 3.1.3, we have the following result.

Proposition 3.1.4 Assume that T : Ω ⊂ P → E is an expansive mapping with constant h > 1,

F : Pr → E is a k-set contraction with 0 6 k < h−1, F (∂Pr∩Ω) ⊂ P , and tF (Pr) ⊂ (I−T )(Ω)

for all t ∈ [0, 1]. If 0 ∈ Ω, ‖T0‖ < (h− 1)r, and

Fx 6> x− Tx for all x ∈ ∂Pr ∩ Ω,
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3.1. The case where T is h-expansive mapping and F is a k-set contraction with 0 ≤ k < h− 1

then i∗ (T + F,Pr ∩ Ω,P) = 1.

Proposition 3.1.5 Let U be a bounded open subset of P with 0 ∈ U ∩Ω. Assume that T : Ω ⊂

P → E is an expansive mapping with constant h > 1, F : U → E is a k-set contraction with

0 6 k < h− 1, and F (U) ⊂ (I − T )(Ω). If

‖Fx+ T0‖ 6 (h− 1)‖x‖ and Tx+ Fx 6= x, for all x ∈ ∂U ∩ Ω, (3.5)

then i∗ (T + F,U ∩ Ω,P) = 1.

Proposition 3.1.6 Let U be an open bounded subset of P . Assume that T : Ω ⊂ P → E is an

expansive mapping with constant h > 1, F : U → E is a k-set contraction with 0 6 k < h− 1,

and F (U) ⊂ (I − T )(Ω). If there exists u0 ∈ P∗ such that

Fx 6= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U ∩ (Ω + λu0), (3.6)

then the fixed point index i∗ (T + F,U ∩ Ω,P) = 0.

As a consequence of Proposition 3.1.6, we have the following result.

Proposition 3.1.7 Assume that T : Ω ⊂ P → E is an expansive mapping with constant h > 1,

F : Pr → E a k-set contraction with 0 6 k < h−1, and F (Pr) ⊂ (I−T )(Ω). Assume in addition

that there exists w0 ∈ P∗ such that T (x − λw0) ∈ P , for all λ > 0 and x ∈ ∂Pr ∩ (Ω + λw0),

and

Fx 66 x− λw0 for all x ∈ ∂Pr and λ > 0. (3.7)

Then i∗ (T + F,Pr ∩ Ω,P) = 0.

Proposition 3.1.8 Let U be an open bounded subset of P . Assume that T : Ω ⊂ P → E is an

expansive mapping with constant h > 1, F : U → E a k-set contraction with 0 6 k < h − 1,

and F (U) ⊂ (I − T )(Ω). Suppose further that there exists u0 ∈ P∗ such that T (x − λu0) ∈ P ,

for all λ > 0 and x ∈ ∂U ∩ (Ω + λu0), and one of the following conditions holds:

(a) Fx 66 x− λu0, ∀x ∈ ∂U, ∀λ > 0.

(b) ‖Fx‖ > ‖x− λu0‖, ∀x ∈ ∂U, ∀λ > 0 and the cone P is normal with constant N = 1.

Then the fixed point index i∗ (T + F,U ∩ Ω,P) = 0.
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3.2 The case where T is h-expansive mapping and F is

an (h− 1)-set contraction

The results of this section are obtained by Djebali and Mebarki. For Proofs and more details

we refer the reader to [29].

3.2.1 Definition of the index

Suppose that T : Ω → E is h-expansive and F : U → E is an (h − 1)-set contraction. Since

(I − T )−1 is 1
h−1

-Lipschtzian, then (I − T )−1F : U → P is a 1-set contraction. Assume that

tF (U) ⊂ (I − T )(Ω), ∀ t ∈ [0, 1] (3.8)

and

0 6∈ (I − T − F )(∂U ∩ Ω). (3.9)

Then there exists γ > 0 such that

inf
x∈∂U∩Ω

‖x− Tx− Fx‖ ≥ γ.

Thus

0 6∈ (I − T − kF )(∂U ∩ Ω), ∀ k ∈ (1− γ/M, 1),

where M = γ + sup
x∈U
‖Fx‖. In fact, for all x ∈ ∂U ∩ Ω, we have

‖0− (x− Tx− kFx)‖ ≥ ‖x− Tx− Fx‖ − (1− k)‖Fx‖

≥ γ − (1− k)M > 0.

In other words, x 6= (I − T )−1kFx, for all x ∈ ∂U and k ∈ (1 − γ
M
, 1). Clearly, (I − T )−1kF

is a strict k-set contraction mapping. As a consequence, by (3.3) and Lemma 2.3.2, the fixed

point index i∗ (T + kF, U ∩ Ω,P) is well defined. Thus we set

i∗ (T + F,U ∩ Ω,P) = i∗ (T + kF, U ∩ Ω,P)

= i ((I − T )−1kF, U,P), k ∈ (1− γ
M
, 1).

(3.10)
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3.2. The case where T is h-expansive mapping and F is an (h− 1)-set contraction

However we must check that i∗ (T+F,U∩Ω,P) does not depend on the parameter k ∈ (1− γ
M
, 1).

For this, let Gj = kjF : U → E be kj(h − 1)-set contractions with kj ∈ (1 − γ
M
, 1) (j = 1, 2).

Then ‖Gjx− Fx‖ = (1− kj)‖Fx‖ ≤ (1− kj)M < γ, ∀x ∈ ∂U. Define the convex deformation

H : [0, 1]× U → E:

H(t, x) = tG1x+ (1− t)G2x.

The operator H is continuous, uniformly continuous in t for each x, and H([0, 1] × U) ⊂

(I − T )(Ω). In addition H(t, .) is a k(h− 1)-set contraction for each t, where k = max(k1, k2)

and T +H(t, .) has no fixed point on ∂U ∩ Ω. In fact, for all x ∈ ∂U ∩ Ω, we have

‖x− Tx−H(t, x)‖ = ‖x− Tx− tG1x− (1− t)G2x‖

≥ ‖x− Tx− Fx‖ − t‖Fx−G1x‖

−(1− t)‖Fx−G2x‖

> γ − tγ − (1− t)γ = 0.

From the invariance property by homotopy of the index in Theorem 3.1.1, we deduce that

i∗ (T +G1, U ∩ Ω,P) = i∗ (T +G2, U ∩ Ω,P),

which shows that the index i∗ (T + F,U ∩ Ω,P) does not depend on k.

The integer defined in (3.10) satisfies some properties grouped in the following:

Theorem 3.2.1

(a) (Normalization property). If U = Pr = P ∩Br is a conical shell and Fx = z0 ∈ B(−T0, (h−

1)r) ∩ P, for all x ∈ Pr, then i∗ (T + F,Pr ∩ Ω,P) = 1.

(b) (Additivity property). For any pair of disjoint open subsets U1, U2 in U such that

0 6∈ (I − T − F )((U \(U1 ∪ U2)) ∩ Ω), we have

i∗ (T + F,U ∩ Ω,P) = i∗ (T + F,U1 ∩ Ω,P) + i∗ (T + F,U2 ∩ Ω,P),

where i∗ (T + F,Uj ∩ Ω, X) : = i∗ (f | Uj , Uj ∩ Ω,P), j = 1, 2.

(c) (Homotopy Invariance property). The fixed point index i∗ (T + H(t, .), U ∩ Ω,P) does not

depend on the parameter t ∈ [0, 1], where
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3.2. The case where T is h-expansive mapping and F is an (h− 1)-set contraction

(i) H : [0, 1] × U → E is continuous and H(t, x) is uniformly continuous in t with respect to

x ∈ U ,

(ii) H(t, .) : U → E is an (h− 1)-set contraction,

(iii) tH([0, 1]× U) ⊂ (I − T )(Ω), for all t ∈ [0, 1],

(iv) 0 6∈ (I − T −H(t, .))(∂U ∩ Ω), for all t ∈ [0, 1],

(d) (Existence property). If i∗ (T + F,U ∩ Ω,P) 6= 0, then 0 ∈ (I − T − F )(U ∩ Ω).

Proof.

(a) Since F is a constant mapping, it is a 0-set contraction (completely continuous), which

implies that (I−T )−1F is a 0-set contraction. As in the proof of Theorem 3.1.1, part (a),

y0 = (I − T )−1z0 ∈ Pr. By the normalization property in Lemma 2.3.2, we deduce that

i ((I − T )−1z0,Pr,P) = 1.

Therefore i∗ (T + z0,Pr ∩ Ω,P) = 1, proving our claim.

(b) Let

γ = inf
(U \(U1∪U2))∩Ω

‖x− Tx− Fx‖ > 0.

Suppose that G = kF : U → E is a k(h− 1)-set contraction and

‖Gx− Fx‖ < γ, ∀x ∈ U \(U1 ∪ U2) ∩ Ω. (3.11)

From (3.10), we have

i∗ (T + F,U ∩ Ω,P) = i∗ (T +G,U ∩ Ω,P)

and

i∗ (T + F,Uj ∩ Ω,P) = i∗ (T +G,Uj ∩ Ω,P), j = 1, 2.

Hence T +G has no fixed point in U \(U1 ∪U2)∩Ω. In fact, if there exists x0 ∈ U \(U1 ∪

U2) ∩ Ω such that x0 = Tx0 +Gx0, then

γ ≤ ‖x0 − Tx0 − Fx0‖ = ‖x0 − Tx0 −Gx0 +Gx0 − Fx0‖ = ‖Gx0 − Fx0‖,
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3.2. The case where T is h-expansive mapping and F is an (h− 1)-set contraction

which contradicts (3.11). The claim follows from (3.10) and property (b) of the fixed

point index in Theorem 3.1.1.

(c) By the property of the function H, there exist γ > 0 and N > 0 such that

‖x− Tx−H(t, x)‖ ≥ γ, for all x ∈ ∂U ∩ Ω and t ∈ [0, 1],

as well as ‖H(t, x)‖ ≤ N , for all x ∈ U and t ∈ [0, 1]. Let K(t, x) = kH(t, x), where

k ∈ (1− γ
2N
, 1). Then for all x ∈ ∂U ∩ Ω and t ∈ [0, 1], we have

‖x− Tx−K(t, x)‖ = ‖x− Tx−H(t, x)‖+ ‖H(t, x)−K(t, x)‖

≥ γ − (k − 1)N > γ − γ
2
> 0.

Obviously, K(t, .) : U → E is a k(h − 1)-set contraction, where k does not depend on

t ∈ [0, 1] and K([0, 1]× U) ⊂ (I − T )(Ω).

Then our claim follows from (3.10) and property (c) of the fixed point index in Theorem

3.1.1.

(d) Consider a sequence (kn)n ⊂ (0, 1) such that kn → 1, as n → ∞ and define the function

Gn = knF n = 1, 2, . . . Then Gn : U → E is a k(h − 1)-set contraction. Since ‖Fx‖ <

∞, ∀x ∈ U, we obtain that

‖Fx−Gnx‖ = ‖Fx− knFx‖ = (1− kn)‖Fnx‖ → 0, as n→ +∞.

Hence there exists n0 > 0 such that for every n ≥ n0

‖Fx−Gnx‖ < γ, where 0 < γ < inf
x∈∂U∩Ω

‖x− Tx− Fx‖.

By assumption and Definition 3.10,

i∗ (T + F,U ∩ Ω,∩P ) = i∗ (T +Gn, U ∩ Ω,∩P ) 6= 0.

Thus, property (d) in Theorem 3.1.1 guarantees that for all n = 1, 2, . . ., the mapping

T +Gn has a fixed point xn in U ∩ Ω. Consequently,

‖xn − Txn − Fxn‖ = ‖xn − Txn −Gnxn +Gnxn − Fxn‖

= ‖Gnxn − Fxn‖ → 0, as n→ +∞.
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3.2. The case where T is h-expansive mapping and F is an (h− 1)-set contraction

Then xn − Txn − Fxn → 0, as n→ +∞, that is 0 ∈ (I − T − F )(U ∩ Ω).

Remark 3.2.2 As for the additivity property in Theorem 3.2.1, we cannot replace the condition

0 6∈ (I − T − F )((U \(U1 ∪ U2)) ∩ Ω) by the weaker one that T + F has no fixed point on

(U \(U1 ∪ U2)) ∩ Ω. In fact, let us consider the Banach space c0 of real sequences converging

to zero with the sup-norm and the cone P of sequences (an) with only positive entries an. Let

r : P5 → P1 be the radial retraction, s : P1 3 (a1, a2, . . .) 7→ (1, a1, a2, . . .) ∈ P1 the well-known

shift map, and let F̂ := s◦r. For T = 2I, F = −F̂ , and U = Ω = P5, U1 = P3\P2, U2 = P5\P4,

we get

i∗ (T + F,P5,P) = 1 6= 0 + 0 = i∗ (T + F,U1,P) + i∗ (T + F,U2,P).

Remark 3.2.3 Notice that a sufficient condition for (3.9) to hold is:

∃ δ > 0, ∀x ∈ ∂U ∪ Ω, ‖x− Tx− Fx‖ ≥ δ.

3.2.2 Computation of the index

The proofs are omitted. For more details, we refer the reader to [30].

Proposition 3.2.4 Assume that T : Ω ⊂ P → E is an expansive mapping with constant

h > 1 and F : Pr → E is an (h − 1)-set contraction with F (∂Pr ∩ Ω) ⊂ P and tF (Pr) ⊂

(I − T )(Ω), for all t ∈ [0, 1] and 0 6∈ (I − T − F )(∂Pr ∩ Ω). If 0 ∈ Ω, ‖T0‖ < (h− 1)r, and

Fx 6> x− Tx, ∀x ∈ ∂Pr ∩ Ω,

then the fixed point index i∗ (T + F,Pr ∩ Ω,P) = 1.

Proposition 3.2.5 Assume that T : Ω ⊂ P → E is an expansive mapping with constant h > 1

and F : Pr → E is a (h − 1)-set contraction with tF (Pr) ⊂ (I − T )(Ω), for all t ∈ [0, 1] and

0 6∈ (I − T − F )(∂Pr ∩ Ω). If 0 ∈ Ω, ‖T0‖ < (h− 1)r, and

Fx 6= λ(x− Tx) for all x ∈ ∂Pr ∩ Ω and λ > 1,

then the fixed point index i∗ (T + F,Pr ∩ Ω,P) = 1.
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3.2. The case where T is h-expansive mapping and F is an (h− 1)-set contraction

Proposition 3.2.6 Assume that T : Ω ⊂ P → E is an expansive mapping with constant h > 1

and F : Pr → E is an (h− 1)-set contraction with tF (Pr) ⊂ (I − T )(Ω), for all t ∈ [0, 1] and

0 6∈ (I − T − F )(∂Pr ∩ Ω). If 0 ∈ Ω, ‖T0‖ < (h− 1)r, and

‖Fx‖ ≤ ‖x− Tx‖ for all x ∈ ∂Pr ∩ Ω,

then the fixed point index i∗ (T + F,Pr ∩ Ω,P) = 1.

Proposition 3.2.7 Let U be a bounded open subset of P such that 0 ∈ U. Assume that T :

Ω ⊂ P → E is an expansive mapping with constant h > 1 and F : U → E is an (h − 1)-set

contraction with F (U) ⊂ (I − T )(Ω) and 0 6∈ (I − T − F )(∂U ∩ Ω). If

Fx 6= (I − T )(λx), for all x ∈ ∂U ∩ Ω and λ > 1,

then the fixed point index i∗ (T + F,U ∩ Ω,P) = 1.

Proposition 3.2.8 Let U be a bounded open subset of P such that 0 ∈ U ∩ Ω. Assume that

T : Ω ⊂ P → E is an expansive mapping with constant h > 1 and F : U → E is an (h− 1)-set

contraction with F (U) ⊂ (I − T )(Ω) and 0 6∈ (I − T − F )(∂U ∩ Ω). If

‖Fx+ T0‖ ≤ (h− 1)‖x‖ for all x ∈ ∂U ∩ Ω, (3.12)

then the fixed point index i∗ (T + F,U ∩ Ω,P) = 1.

Proposition 3.2.9 Let U be a bounded open subset of P . Assume that T : Ω ⊂ P → E is an

expansive mapping with constant h > 1 such that F : U → E is an (h− 1)-set contraction with

tF (U) ⊂ (I − T )(Ω), for all t ∈ [0, 1] and 0 6∈ (I − T − F )(∂U ∩ Ω). If there exists u0 ∈ P∗

such that

γFx 6= (I − T )(x− λu0), for all λ ≥ 0, x ∈ ∂U ∩ (Ω + λu0), and γ ∈ (0, 1), (3.13)

then the fixed point index i∗ (T + F,U ∩ Ω,P) = 0.

Proposition 3.2.10 Let U be a bounded open subset of P . Assume that T : Ω ⊂ P → E is

an expansive mapping with constant h > 1 such that F : U → E is an (h − 1)-set contraction
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with tF (U) ⊂ (I − T )(Ω), for all t ∈ [0, 1] and 0 6∈ (I − T − F )(∂U ∩ Ω). Suppose that there

exists u0 ∈ P∗ such that T (x − λu0) ∈ P , for all λ ≥ 0 and x ∈ ∂U ∩ (Ω + λu0), and one of

the following conditions is satisfied:

(a) γFx 6≤ x− λu0, for all x ∈ ∂U, λ ≥ 0, and γ ∈ (0, 1).

(b) Fx ∈ P, γ‖Fx‖ > ‖x− λu0‖, for all x ∈ ∂U, λ ≥ 0, γ ∈ (0, 1), and the cone P is normal

with constant N = 1.

Then the fixed point index i∗ (T + F,U ∩ Ω,P) = 0.

Proposition 3.2.11 Let U be a bounded open subset of P . Assume that T : Ω ⊂ P → E is

an expansive mapping with constant h > 1, and F : U → E is an (h− 1)-set contraction with

F (∂U) ⊂ P and tF (U) ⊂ (I−T )(Ω),∀ t ∈ [0, 1] and 0 6∈ (I − T − F )(∂U ∩ Ω). Suppose further

that there exists u0 ∈ P∗ such that

c0Fx 6≤ x− T (x− λu0), for all λ ≥ 0, x ∈ ∂U ∩ (Ω + λu0) and c0 ∈ (0, 1). (3.14)

Then the fixed point index i∗ (T + F,U ∩ Ω,P) = 0.

3.3 The case where T is nonlinear expansive mapping

and F is a k-set contraction

The results given in this section are obtained by Djebali and Mebarki. For Proofs and more

details we refer the reader to [29].

Let (X, d) be a metric space. Following [77], we put

Definition 3.3.1 The mapping T : X → X is said to be nonlinear expansive, if there exists a

function φ : [0,+∞)→ [0,+∞) such that

d(Tx, Ty) ≥ φ(d(x, y)), ∀x, y ∈ X,

with φ(t) > t, ∀ t > 0 and

∃ r > 0, ω = inf
t∈(0,2r]

φ(t)− t
t

> 0, (3.15)

that is T is (ω + 1)-expansive. We will denote by D = B(0, r).
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3.3. The case where T is nonlinear expansive mapping and F is a k-set contraction

Lemma 3.3.2 Let (X, ‖.‖) be a linear normed space and T : D → X a nonlinear expansive

mapping. Then the inverse of A := I − T : D → (I − T )(D) exists and is 1
ω

-Lipschtzian.

Proof. For each x, y ∈ D, x 6= y, and 0 < ‖x− y‖ ≤ 2r, we have

‖Ax− Ay‖ = ‖(Tx− Ty)− (x− y)‖ ≥ φ(‖x− y‖)− ‖x− y‖ ≥ ω‖x− y‖, (3.16)

showing that A is injective. Thus A−1 : D → A(D) exists. Taking x, y ∈ A(D) and using

(3.16), we get

‖A−1x− A−1y‖ ≤ 1

ω
‖x− y‖, for all x, y ∈ A(D).

3.3.1 Definition of the index

In this section, P will refer to a cone in a Banach space E. Let Ω = P∩Br and U be a bounded

open subset of P such that U ∩ Ω 6= ∅. Assume that T : Ω → X is a nonlinear expansive

mapping and F : U → E is a k-set contraction. By Lemma 3.3.2, the operator (I − T )−1 is

1
ω

-Lipschtzian on (I − T )(Ω).

Suppose that 0 ≤ k < ω, F (U) ⊂ (I − T )(Ω), and x 6= Tx + Fx, for all x ∈ ∂U ∩ Ω.

Then x 6= (I − T )−1Fx, for all x ∈ ∂U and the mapping (I − T )−1F : U → P is a strict k
ω

-set

contraction. Indeed, for any bounded set B in U , we have

α(((I − T )−1F )(B)) ≤ 1

ω
α(F (B)) ≤ k

ω
α(B).

By Lemma 2.3.2, the fixed point index i ((I − T )−1F,U,P) is well defined. Thus we put

i∗ (T + F,U ∩ Ω,P) = i ((I − T )−1F,U,P). (3.17)

3.3.2 Computation of the index

In what follows, we compute the fixed point index for the class of mappings under consideration

by appealing to some results of Section 2.3.
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3.4. The case where T is h-expansive mapping and I−F is a k-set contraction with 0 ≤ k < h

Proposition 3.3.3 Assume that T : Ω→ E is a nonlinear expansive mapping. Let ρ > 0 and

F : Pρ → E be a k-set contraction with 0 ≤ k < ω, tF (Pρ) ⊂ (I − T )(Ω), for all t ∈ [0, 1] and

F (∂Pρ ∩ Ω) ⊂ P . If 0 ∈ Ω, ‖T0‖ < ωρ and

Fx 6≥ x− Tx, for all x ∈ ∂Pρ ∩ Ω,

then the fixed point index i (T + F,Pρ ∩ Ω,P) = 1.

Proposition 3.3.4 Let U be an open bounded subset of P with 0 ∈ U ∩ Ω. Assume that

T : Ω→ E is a nonlinear expansive mapping, F : U → E is a k-set contraction with 0 ≤ k < ω,

and F (U) ⊂ (I − T )(Ω). If

‖Fx+ T0‖ ≤ (ω − 1)‖x‖ and Tx+ Fx 6= x, for all x ∈ ∂U ∩ Ω, (3.18)

then the fixed point index i (T + F,U ∩ Ω,P) = 1.

Corollary 3.3.5 Assume that T : Ω→ E is a nonlinear expansive mapping, F : Pρ → E is a

k-set contraction with 0 ≤ k < ω, and F (Pρ) ⊂ (I − T )(Ω). If 0 ∈ Ω and

‖Fx+ T0‖ < (ω − 1)ρ, for all x ∈ Pρ, (3.19)

then i (T + F,Pρ ∩ Ω,P) = 1.

Proposition 3.3.6 Let U be an open bounded subset of P . Assume that T : Ω → E is a

nonlinear expansive mapping, F : U → E is a k-set contraction with 0 ≤ k < ω and F (U) ⊂

(I − T )(Ω). If there exists u0 ∈ P∗ such that

T (x− λu0) ∈ P and Fx 6≤ x− λu0 for all (x, λ) ∈ ∂U × [0, 1],

then the fixed point index i (T + F,U ∩ Ω,P) = 0.

3.4 The case where T is h-expansive mapping and I − F

is a k-set contraction with 0 ≤ k < h

In [10], Benslimane, Djebali and Mebarki developed a fixed point index for the sum T + F

where T is an expansive mapping with constant h > 1 and I − F a k-set contraction with
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3.4. The case where T is h-expansive mapping and I−F is a k-set contraction with 0 ≤ k < h

k < h. In this section, we present the definition of this index with respect to a translate of a

cone K neither than to a cone.

3.4.1 Definition of the index

Given a real Banach space (E, ‖.‖), let Y ⊂ E be a closed convex subset. Let Ω be any subset

of Y and U be a bounded open subset of Y. Consider an expansive mapping T : Ω → E with

constant h > 1 and let I − F : U → E be a k-set contraction with 0 ≤ k < h and supppose

that

(I − F )(U) ⊂ T (Ω).

If x 6= Tx+ Fx, for all x ∈ ∂U ∩ Ω, then x 6= T−1(I − F )x, for all x ∈ ∂U.

As in [29], a fixed point index of the sum T +F on U ∩Ω with respect to the closed convex

set Y can be defined by

i∗ (T + F,U ∩ Ω, Y ) =

 i (T−1(I − F ), U, Y ), if U ∩ Ω 6= emptyset

0, if U ∩ Ω = ∅.
(3.20)

Theorem 3.4.1 The fixed point index i ∗(T + F,U ∩ Ω, Y ) defined in (3.20) has the following

properties:

(i) (Normalization property). If U = Y ∩ B(ω, r), ω ∈ Ω, and (I − F )x = z0 for all x ∈ U,

where z0 ∈ Y and ‖z0 − Tω‖ < hr, then

i∗ (T + F,U ∩ Ω, Y ) = 1.

(ii) (Additivity property). For any pair of disjoint open subsets U1, U2 ⊂ U such that T + F

has no fixed point on (U \(U1 ∪ U2)) ∩ Ω, we have

i ∗(T + F,U ∩ Ω, Y ) = i ∗(T + F,U1 ∩ Ω, Y ) + i ∗(T + F,U2 ∩ Ω, Y ).

(iii) (Homotopy invariance property). The generalized fixed point index i ∗(T+H(., t), U∩Ω, Y )

does not depend on the parameter t ∈ [0, 1], where

(a) (I−H) : [0, 1]×U → E is continuous and H(t, x) is uniformly continuous in t with respect

to x ∈ U,
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3.4. The case where T is h-expansive mapping and I−F is a k-set contraction with 0 ≤ k < h

(b) (I −H)([0, 1]× U) ⊂ T (Ω),

(c) (I −H(t, .)) : U → E is a `-set contraction with 0 ≤ ` < h, for all t ∈ [0, 1],

(d) Tx+H(t, x) 6= x for all t ∈ [0, 1] and x ∈ ∂U ∩ Ω.

(iv) (Existence property). If i ∗(T + F,U ∩Ω, Y ) 6= 0, then T + F has a fixed point in U ∩Ω.

Proof. We argue as in [29, Theorem 2.1]. Properties (ii), (iii), and (iv) are consequences of

(3.20) and of the properties of the fixed point index for strict set contractions (see [45, Theorem

1.3.5]). It remains to check the normalization property. If U = Y ∩ B(w, r), then

i (T−1(I − F ), U, Y ) = i (T−1z0, U, Y ) = 1.

For this purpose, we show that y0 := T−1z0 ∈ B(ω, r) ∩ Ω. (I − F )(U) = {z0} ⊂ T (Ω) implies

that y0 ∈ Ω and since T is an expansive operator with h > 1, then

‖Ty0 − Tω‖ ≥ h‖y0 − ω‖.

Then

h‖y0 − ω‖ ≤ ‖Ty0 − Tω‖ = ‖z0 − Tω‖ < hr,

and thus y0 = T−1z0 ∈ U. Using the normalization property of the index [45, Theorem 1.3.5],

we find that

i (T−1z0, U, Y ) = 1.

Finally i∗ (T + F,U ∩ Ω, Y ) = 1, as claimed.

Remark 3.4.2 Let P ⊂ E be a cone, 0 ∈ Ω, and U = P ∩ {x ∈ E : ψ(x) < R} , where ψ is a

nonnegative continuous functional on P satisfying ψ(x) ≤ ‖x‖ for all x ∈ P . If (I −F )x = z0,

for all x ∈ U, where z0 ∈ P and ‖z0 − T0‖ < hR, then we can prove as for the normalization

property that

i∗ (T + F,U ∩ Ω,P) = 1.

3.4.2 Computation of the index

In this section, we show that the fixed point index can be computed in case of a translate of

a cone, rather than in a cone, and in some cases even in an arbitrary closed convex subset.
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3.4. The case where T is h-expansive mapping and I−F is a k-set contraction with 0 ≤ k < h

A fixed point index in translates of cones of Banach spaces is defined in [28] for completely

continuous mappings and can be extended to the case of a strict set contractions. Let P 6= {0}

be a cone in E and K = P + θ (θ ∈ E) a θ-translate of P . Let Ω ⊂ K be a subset and U ⊂ K

be a bounded open subset such that Ω ∩ U 6= ∅. Since K is a closed convex of E, the fixed

point index i∗ (T + F,U ∩ Ω,K) is well defined whenever T : Ω → E is an expansive mapping

with constant h > 1, I − F : U → E a k-set contraction with 0 ≤ k < h, (I − F )(U) ⊂ T (Ω),

and x 6= Tx+Fx for all x ∈ ∂U ∩Ω, where U and ∂U denote the closure and the boundary of

U in K, respectively. For two real numbers 0 < r < R, define the sets:

Kr = {x ∈ K : ‖x− θ‖ < r}

∂Kr = {x ∈ K : ‖x− θ‖ = r}

Kr,R = {x ∈ K : r < ‖x− θ‖ < R}.

Proposition 3.4.3 Let T : Ω ⊂ K → E be an expansive mapping with constant h > 1 and

I−F : Kr → E be a k-set contraction with 0 ≤ k < h such that t(I−F )(Kr)+(1− t)θ ⊂ T (Ω),

for all t ∈ [0, 1]. Assume that θ ∈ Ω, ‖Tθ − θ‖ < hr, and

Tx 6= λ(x− Fx) + (1− λ)θ, for all x ∈ ∂Kr ∩ Ω and 0 ≤ λ ≤ 1. (3.21)

Then i∗ (T + F,Kr ∩ Ω,P) = 1.

Proof. Define the line homotopy H : [0, 1]×Kr → E by

H(t, x) = tFx+ (1− t)(x− θ).

Then, the operator (I −H) is continuous and uniformly continuous in t for each x. Moreover

the mapping (I −H(t, .)) is a k-set contraction for each t. Actually, for any bounded set B in

Kr, we have

α((I −H(t, .))(B)) = α(t(I − F )(B) + (1− t)θ) ≤ kα(B).

In addition, T + H(t, .) has no fixed point on ∂Kr ∩ Ω. If not, there exist some x0 ∈ ∂Kr ∩ Ω

and t0 ∈ [0, 1] such that

Tx0 + t0Fx0 + (1− t0)(x0 − θ) = x0.
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3.4. The case where T is h-expansive mapping and I−F is a k-set contraction with 0 ≤ k < h

Then Tx0 = t0(x0 − Fx0) + (1 − t0)θ, leading to a contradiction with the hypothesis. By

properties (i) and (iii) of the fixed point index in Theorem 3.4.1, we get

i∗ (T + F,Kr ∩ Ω,K) = i∗ (T + I − θ,Kr ∩ Ω,K) = 1.

From Proposition 3.4.3, we capture the following two results.

Corollary 3.4.4 Assume that T : Ω ⊂ K → E is an expansive mapping with constant h > 1,

I − F : Kr → E is a k-set contraction with 0 ≤ k < h, and
(
t(I − F )(Kr) + (1− t)θ

)
⊂ T (Ω),

for all t ∈ [0, 1]. If θ ∈ Ω, ‖Tθ − θ‖ < hr, and

‖Tx− θ‖ ≥ ‖x− Fx− θ‖ and Tx+ Fx 6= x, for all x ∈ ∂Kr ∩ Ω.

Then i∗ (T + F,Kr ∩ Ω,K) = 1.

Proof. It is sufficient to prove that Assumption (3.21) holds. By contradiction, let x0 ∈

Kr∩Ω and let 0 ≤ λ0 ≤ 1 satisfy Tx0 = λ0(x0−Fx0)+(1−λ0)θ. If λ0 = 1, then x0−Fx0 = Tx0

which is impossible. If 0 ≤ λ0 < 1, then ‖Tx0 − θ‖ = λ0‖x0 − Tx0 − θ‖ < ‖x0 − Tx0 − θ‖,

which is a contradiction.

Corollary 3.4.5 Let T : Ω ⊂ K → E be an expansive mapping with constant h > 1 and let

I − F : Kr → E be a k-set contraction with 0 ≤ k < h such that
(
(I − F )(Kr) + (1− t)θ

)
⊂

T (Ω), for all t ∈ [0, 1]. Assume further that θ ∈ Ω, ‖Tθ − θ‖ < hr,

x− Fx ∈ K for all x ∈ ∂Kr ∩ Ω,

and

Tx � x− Fx for all x ∈ ∂Kr ∩ Ω.

Then i∗ (T + F,Kr ∩ Ω,K) = 1.

Proof. Assumption (3.21) is readily checked for otherwise there would exist some x0 ∈

Kr∩Ω and 0 ≤ λ0 ≤ 1 such that Tx0 = λ0(x0−Fx0)+(1−λ0)θ. Hence Tx0−θ = λ0(x0−Fx0−θ).

Since x0−Fx0− θ ∈ P , then λ0(x0−Fx0− θ) ≤ x0−Fx0− θ, which is a contradiction to our

assumption.
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3.4. The case where T is h-expansive mapping and I−F is a k-set contraction with 0 ≤ k < h

Proposition 3.4.6 Let U ⊂ K be a bounded open subset with θ ∈ U1 and T : Ω ⊂ K → E be

an expansive mapping with constant h > 1, I −F : U → E a k-set contraction with 0 ≤ k < h,

and (I − F )(U) ⊂ T (Ω). Assume further that

x− Fx 6= T (λx+ (1− λ)θ), for all x ∈ ∂U, λ ≥ 1 and λx+ (1− λ)θ ∈ Ω.

Then i∗ (T + F,U ∩ Ω,K) = 1.

Proof. The mapping T−1(I − F ) : U → K is a strict set contraction and it is clear that

T−1(I − F )x− θ 6= λ(x− θ), for all x ∈ ∂U and λ ≥ 1. (3.22)

Owing to [28, Proposition 2.2], i (T−1(I −F ), U,K) = 1. Then Equality (3.20) ends this proof.

Proposition 3.4.7 Let U ⊂ K be a bounded open subset, T : Ω ⊂ K → E be an expansive

mapping with constant h > 1, I − F : U → E a k-set contraction with 0 ≤ k < h, and

(I − F )(U) ⊂ T (Ω). Assume that θ ∈ Ω,

‖x− Fx− Tθ‖ ≤ h‖x− θ‖, and Tx+ Fx 6= x, for all x ∈ ∂U ∩ Ω. (3.23)

Then i∗ (T + F,U ∩ Ω,P) = 1.

Proof. According to Lemma 1.3.18, T−1(I − F ) : U → K is a strict set contraction. From

the inclusion (I−F )(U) ⊂ T (Ω), for all x ∈ U, we can find some y ∈ Ω such that x−Fx = Ty.

For all x ∈ U, we have T−1(x− Fx) ∈ Ω and

T ((T−1(x− Fx)) = x− Fx,

which implies that

‖T (T−1(x− Fx))− Tθ‖ = ‖x− Fx− Tθ‖.

Since T is expansive with constant h, we have

‖T (T−1(x− Fx))− Tθ‖ ≥ h‖T−1(x− Fx)− θ‖.
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Hence

h‖T−1(I − F )x− θ‖ ≤ ‖x− Fx− Tθ‖. (3.24)

From (3.24) and Assumption (3.23), we get

‖T−1(I − F )x− θ‖ ≤ 1

h
‖x− Fx− Tθ‖ ≤ ‖x− θ‖, ∀x ∈ ∂U.

Therefore for all x ∈ ∂U ∩ Ω

‖T−1(I − F )x− θ‖ ≤ ‖x− θ‖ and T−1(I − F )x 6= x.

Due to [28, Corollary 2.2], i (T−1(I − F ), U,K) = 1. Equality (3.20) completes the proof.

In case of a cone, i.e., θ = 0, Proposition 3.4.6 and Proposition 3.4.7 become

Corollary 3.4.8 Let U ⊂ K be a bounded open subset and T : Ω ⊂ P → E be an expansive

mapping with constant h > 1, I − F : U → E be a k-set contraction with 0 ≤ k < h, and

(I − F )(U) ⊂ T (Ω). Assume further that

x− Fx 6= T (λx), for all x ∈ ∂U ∩ Ω, λ ≥ 1, and λx ∈ Ω.

Then i∗ (T + F,U ∩ Ω,P) = 1.

Corollary 3.4.9 Assume that T : Ω ⊂ P → E is an expansive mapping with constant h > 1,

I − F : U → E is a k-set contraction with 0 ≤ k < h, and (I − F )(U) ⊂ T (Ω). Let 0 ∈ Ω,

‖x− Fx− T0‖ ≤ h‖x‖, and Tx+ Fx 6= x, for all x ∈ ∂U ∩ Ω. (3.25)

Then i∗ (T + F,U ∩ Ω,P) = 1.

The following result can be directly proved by replacing the operator A in [45, Corollary

1.3.1] by T−1(I − F ).

Proposition 3.4.10 Assume that T : Ω ⊂ K → E is an expansive mapping with constant

h > 1, I − F : Kr → E is a k-set contraction with 0 ≤ k < h, and (I − F )(Kr) ⊂ T (Ω). In

addition, if T−1(I − F )(Kr) ⊂ Kr, then i∗ (T + F,Kr ∩ Ω,K) = 1.

In particular, we have
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Corollary 3.4.11 Assume that T : Ω ⊂ K → E is an expansive mapping with constant h > 1,

I − F : Kr → E is a k-set contraction with 0 ≤ k < h, and (I − F )(Kr) ⊂ T (Ω). If θ ∈ Ω, and

‖x− Fx− Tθ‖ < hr, for all x ∈ Kr. (3.26)

Then i∗ (T + F,Kr ∩ Ω,K) = 1.

Proof. From (3.24) and Assumption (3.26), for all x ∈ Kr, we conclude that

‖T−1(I − F )x− θ‖ ≤ 1

h
‖x− Fx− Tθ‖ < r.

Hence T−1(I − F )(Kr) ⊂ Kr.

A special situation of Corollary 3.4.11 is

Corollary 3.4.12 Assume that T : Ω ⊂ K → E is an expansive mapping with constant

h > 1, I − F : Kr → E is a k-set contraction with 0 ≤ k < h, r is sufficiently large, and

(I − F )(Kr) ⊂ T (Ω). If further θ ∈ Ω and

‖x− Fx‖ ≤ ‖x− θ‖, for all x ∈ Kr, (3.27)

then T + F has at least one fixed point in Kr ∩ Ω.

Proof. Notice that

‖x− Fx− Tθ‖ ≤ ‖x− Fx‖+ ‖Tθ‖

≤ ‖x− θ‖+ ‖Tθ‖

≤ r + ‖Tθ‖

≤ hr,

for all r > ‖Tθ‖
h−1

. By Corollary 3.4.11, i∗ (T + F,Kr ∩ Ω,P) = 1. As a consequence, T + F has

a fixed point in Kr ∩ Ω.

Before giving results for zero index i∗, we need an auxiliary lemma on index fixed point of

strict set contractions.

Lemma 3.4.13 Let K be a translate of a cone P 6= ∅ and U be a bounded open subset of K.

Assume that A : U → K is a strict set contraction and there is w0 ∈ P∗ such that

x− Ax 6= λw0, for all x ∈ ∂U, λ ≥ 0. (3.28)
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Then i(A,U,K) = 0.

Proof. Define the homotopy H : [0, 1]× U → K by

H(t, x) = Ax+ tλ0w0,

for some

λ0 > sup
x∈U

(‖w0‖−1(‖x‖+ ‖Ax‖)). (3.29)

Such a choice is possible since U is a bounded subset and so is A(U). The operator H is

continuous and uniformly continuous in t for each x, and the mapping H(t, .) is a strict set

contraction for each t ∈ [0, 1]. In addition, H(t, .) has no fixed point on ∂U . On the contrary,

there would exist some x0 ∈ ∂U and t0 ∈ [0, 1] such that

x0 = Ax0 + t0λ0w0,

contradicting the hypothesis. By Lemma 2.3.2,, we get

i(A,U,K) = i(H(0, .), U,K) = i(H(1, .), U,K) = 0. (3.30)

Indeed, suppose that i(H(1, .), U,K) 6= 0. Then there would exist x0 ∈ U such that Ax0 +

λ0w0 = x0, which implies that λ0 ≤ ‖w0‖−1(‖x0‖+ ‖Ax0‖), contradicting (3.29).

Proposition 3.4.14 Let U ⊂ K be a bounded open subset, T : Ω ⊂ K → E be an expansive

mapping with constant h > 1, I − F : U → E a k-set contraction with 0 ≤ k < h, and

(I − F )(U) ⊂ T (Ω). Let u0 ∈ P∗ be such that

x− Fx 6= T (x− λu0), for all x ∈ ∂U ∩ (Ω + λu0) and λ ≥ 0. (3.31)

Then i∗ (T + F,U ∩ Ω,K) = 0.

Proof. The mapping T−1(I − F ) : U → K is a strict set contraction and in view of (3.31),

we have

x− T−1(I − F )x 6= λu0 for all x ∈ ∂U and λ ≥ 0.

By (3.20) and Lemma 3.4.13, we deduce that

i∗ (T + F,U ∩ Ω,P) = i (T−1(I − F ), U,P) = 0.
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3.5. Concluding remarks

The following two propositions are direct consequences of Proposition 3.4.14; the proofs are

omitted.

Proposition 3.4.15 U ⊂ K be a bounded open subset and T : Ω ⊂ K → E be an expansive

mapping with constant h > 1, I − F : U → E a k-set contraction with 0 ≤ k < h, and

(I − F )(U) ⊂ T (Ω). Suppose further that there exists u0 ∈ P∗ such that T (x − λu0) ∈ P, for

all x ∈ ∂U ∩ (Ω + λu0) and

Fx 6≤ x, for all x ∈ ∂U and λ ≥ 0.

Then i∗ (T + F,U ∩ Ω,K) = 0.

Proposition 3.4.16 Let U ⊂ K be a bounded open subset. Assume that T : Ω → E is an

expansive mapping with constant h > 1, I − F : U → E a k-set contraction with 0 ≤ k < h,

and (I − F )(U) ⊂ T (Ω). Let u0 ∈ P∗ satisfy T (x− λu0) ∈ P, for all x ∈ ∂U ∩ (Ω + λu0) and

λ ≥ 0. Suppose that the following conditions hold:

Fx ∈ K, and ‖Fx− θ‖ > N‖x− θ‖, for all x ∈ ∂U.

Then i∗ (T + F,U ∩ Ω,K) = 0.

Remark 3.4.17 (1) Letting θ = 0, we obtain computations of the index in case of a cone.

(2) Proposition 3.4.3 and Corollary 3.4.4 remain valid in the more general setting of Y ∩B(θ, R),

where Y ⊂ E is an arbitrary closed convex subset and B(θ, R) = {x ∈ E : ‖x− θ‖ < R}.

(3) Proposition 3.4.6 holds in the framework of any closed convex subset Y of E containing θ.

3.5 Concluding remarks

In this section, we will compare between the generalized fixed point index developed by Djebali

and Mebarki in [29] and the one developed by Benslimane, Djebali and Mebarki in [10].

(1) Since T and I − T have the same properties in terms of invertibility and since I − F is

an `-set contraction with ` < h, one could think that the fixed point index developed in [10] is
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a generalization of the one developed in [29]. Unfortunately the implication

F (U) ⊂ (I − T )(Ω)⇒ (I − F )(U) ⊂ T (Ω)

does not in general hold. For example:

(a) Let T : [0, 1]→ R be such that Tx = −5
2
ex and F : [0, 4]→ R is Fx = e−x + 3. Then, the

conditions of the fixed point index developed in [29] are satisfied. Indeed, T is a 5
2
-expansive

mapping and F is a 1-set contraction. In addition F ([0, 4]) = [e−4 + 3, 4] ⊂ (I − T )([0, 1]) =

[5
2
, 1 + 5e

2
] but (I − F )([0, 4]) = [−4, 1− 1

e
] 6⊂ T ([0, 1]) = [−5e

2
,−5

2
].

(b) Let T : [0, 1] → R be such that Tx = 2x and F : [0, 5] → R is Fx = − 1
10
x + g(x),

where g : [0, 5] → [−1
2
, 0] is a 4

5
-set contraction such that the equation g(x) + 9

10
x = 0

has a solution in (0, 1]. Then the conditions of the fixed point index developed in [29] are

satisfied. Indeed, T is a 2-expansive mapping and F is a 9
10

-set contraction. In addition

F ([0, 5]) ⊂ [−1, 0] = (I − T )([0, 1]) but (I − F )([0, 5]) 6⊂ T ([0, 1]) = [0, 2].

(2) Conversely, define two mappings T, F : [0, 1]→ R by Tx = 3
2
ex and Fx = −2e−x. Then

T is a 3
2
-expansive mapping, (I − F )x = x + 2e−x is a 1-set contraction, and (I − F )([0, 1]) =

[2+e
e
, 2] ⊂ T ([0, 1]) = [3

2
, 3

2
e]. It is clear that the conditions of the fixed point index developed

in [10] are satisfied, while that of the index defined in [29] are not (F is a 2-set contraction).

Moreover, the equation Fx + Tx = x cannot be rewritten in the abstract form T̃ x + F̃ x = x,

where T̃ is h̃-expansive and F̃ 6≡ 0 is k̃-set contraction with k̃ < h̃− 1.

(3) These two examples show that the fixed point index presented in [10] and the one

developed in [29] do not coincide and are not easily comparable.

93



Chapitre 4
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4.1. Expansion-Compression fixed point theorem of Krasnosel’skii type for the sum of two
operators

After computing the new index i∗, several fixed point theorems and recent results are derived.

In [10, 11], we have obtained some new Krasonesl’skii type and Leggett-Williams type fixed

point theorems for the sum of two operators T + F , where T is expansive with constant h > 1

and I − F is a k-set contraction with 0 ≤ k < h. These are extensions of a Krasnosel’skii type

as well as of a Leggett-Williams type expansion-compression fixed point theorem on cones for a

sum of two operators. Each section ends with applications to nonlinear integral or differential

equations illustrating the abstract results obtained in our works.

Throughout this chapter, P will refer to a cone in a Banach space (E, ‖.‖).

4.1 Expansion-Compression fixed point theorem of Kras-

nosel’skii type for the sum of two operators

The results given in this section are obtained by Benslimane-Djebali-Mebarki in [10].

4.1.1 Main results

Some results from the section 3.4 are combined to establish three fixed point theorems of cone

compression and expansion type. The proofs are based on the properties of the topological

index i∗. We omit the details.

Theorem 4.1.1 (Homotopy version). Let E be a Banach space, P ⊂ E a cone, and K = P+θ

a translate of P. Let Ω ⊂ K with θ ∈ Ω. Let U1 and U2 be two open bounded subsets of K

such that θ ∈ U1 ⊂ U2. Let T : Ω → E be an expansive mapping with constant h > 1 and

I − F : U2 → E a k-set contraction with 0 ≤ k < h such that (I − F )(U2) ⊂ T (Ω). Assume

that (U2 \U1)∩Ω 6= ∅ and there exists u0 ∈ P∗ such that either one of the following conditions

holds:

(i) x− Fx 6= T (x− λu0), for all x ∈ ∂U1 ∩ (Ω + λu0), and λ > 0

x− Fx 6= T (λx+ (1− λ)θ), for all x ∈ ∂U2, λ > 1 and λx+ (1− λ)θ ∈ Ω.

(ii) x− Fx 6= T (x− λu0) for all x ∈ ∂U2 ∩ (Ω + λu0), and
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4.1. Expansion-Compression fixed point theorem of Krasnosel’skii type for the sum of two
operators

x− Fx 6= T (λx+ (1− λ)θ), for all x ∈ ∂U1, λ > 1 and λx+ (1− λ)θ ∈ Ω.

Then T + F has a fixed point x ∈ (U2 \ U1) ∩ Ω.

Proof. Without loss of generality, suppose that Tx+ Fx 6= x on ∂U1 ∩Ω and on ∂U2 ∩Ω,

otherwise we are finished. If condition (i) holds, by Propositions 3.4.6 and 3.4.14, we have

i∗ (T + F,U1 ∩ Ω,K) = 1 and i∗ (T + F,U2 ∩ Ω,K) = 0.

The additivity property of the index yields

i∗ (T + F, (U2 \ U2 ∩ Ω,K) = −1.

By the existence property of the index, the sum T +F has at least one fixed point in the closed

set (U2 \ U1) ∩ Ω. The proof is similar in case (ii).

Theorem 4.1.2 (Norm version). Let E be a Banach space, P ⊂ E a normal cone with

constant N , and K = P + θ a translate of P. Let θ ∈ Ω ⊂ K and U1, U2 be two bounded open

subsets of K such that θ ∈ U1 ⊂ U2. Let T : Ω → E be an expansive mapping with constant

h > 1 and I − F : U2 → E a k-set contraction with 0 ≤ k < h such that (I − F )(U2) ⊂ T (Ω).

Assume that (U2 \ U1) ∩ Ω 6= ∅ and there are u0 ∈ P∗ with T (x − λu0) ∈ P , for all λ >

0 and x ∈ ∂U1 ∩ ∂U2 ∩ (Ω + λu0). Let one of the following conditions holds:

(i) ‖x−Fx−Tθ‖ < h‖x−θ‖, for all x ∈ ∂U1∩Ω and Fx ∈ K, ‖Fx−θ‖ > N‖x−θ‖, for all x ∈ ∂U2,

(ii) ‖x−Fx−Tθ‖ < h‖x−θ‖ for all x ∈ ∂U2∩Ω and Fx ∈ K, ‖Fx−θ‖ > N‖x−θ‖, for all x ∈ ∂U1.

Then T + F has a fixed point x ∈ (U2 \ U1) ∩ Ω.

Proof. The proof uses Propositions 3.4.7 and 3.4.16.

Theorem 4.1.3 (Order version). Let E be a Banach space, P ⊂ E a cone, and K = P + θ a

translate of P. Let Ω ⊂ K with θ ∈ Ω, γ, β > 0, γ 6= β, r = min {γ, β}, and R = max {γ, β} .

Let T : Ω → E be an expansive mapping with constant h > 1 such that ‖Tθ − θ‖ < hγ, and

I − F : KR → E be a k-set contraction with 0 ≤ k < h. Assume that Kr,R ∩ Ω 6= ∅,

(I − F )(∂Kγ ∩ Ω) ⊂ K,
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and there is

u0 ∈ P∗ with T (x− λu0) ∈ P , for all λ > 0, x ∈ ∂Kβ ∩ (Ω + λu0).

If further  Tx � x− Fx, for all x ∈ ∂Kγ ∩ Ω,

Fx 6≤ x, for all x ∈ ∂Kβ,

then T + F has a fixed point x ∈ Kr,R ∩ Ω.

Proof. The proof uses Corollary 3.4.5 and Proposition 3.4.15.

Clearly, the following result on a cone is a particular case of Theorem 4.1.1.

Corollary 4.1.4 Let E be a Banach space, P ⊂ E a cone, and Ω ⊂ P with 0 ∈ Ω. Let U1 and

U2 be two open subsets of P such that 0 ∈ U1 ⊂ U2. Let T : Ω → E be an expansive mapping

with constant h > 1 and I − F : U2 → E a k-set contraction with 0 ≤ k < h. Assume that

(U2 \ U1) ∩ Ω 6= ∅ and

(I − F )(U2) ⊂ T (Ω).

Assume that there exists u0 ∈ P∗ such that either one of the following conditions holds:

(i) x− Fx 6= T (λx), for all x ∈ ∂U1 ∩ λ > 1 and λx ∈ Ω, and

(I − F )x 6= T (x− λu0), for all x ∈ ∂U2 ∩ (Ω + λu0), λ > 0,

(ii) x− Fx 6= T (λx), for all x ∈ ∂U2 ∩ Ω and λ > 1, and

(I − F )x 6= T (x− λu0), for all x ∈ ∂U1 ∩ (Ω + λu0), λ ≥ 0.

Then T + F has a fixed point x ∈ (U2 \ U1) ∩ Ω.

4.1.2 Applications

Application 1

Consider the nonlinear equation

p(t)x3(t)− x(t) = g(t, x(t)), 0 < t < 1, (4.1)
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where

(H1) p : [0, 1]→ R+ is continuous, g : [0, 1]×R+ → R+ is continuous, and for each bounded

function x on [0, 1], the superposition operator g(·, x(·)) is equicontinuous on [0, 1].

Let

p1 : = min
0≤t≤1

p(t) and p2 =: max
0≤t≤1

p(t).

Assume that

(H2) 1 ≤ p1 ≤ p2 < 1 + 2p1.

(H3) There exists R > 0 such that

p(t)− 1 ≤ g(t, x) ≤ p1R
3 −R, ∀ (t, x) ∈ [0, 1]× [0, R + 1] (4.2)

and

3p1R− p1R
3 ≥ p2 − 1. (4.3)

Remark 4.1.5 (Discussion of Hypothesis (H3)) (a) A sufficient condition for (H3) to hold is

that g is uniformly bounded and

0 < p2 − 1 ≤ ‖g‖0 <
3p1 − 1

2

√
3p1 + 1

2p1

, (4.4)

where ‖g‖0 = sup
0≤t≤1, x≥0

g(t, x). To see this, let the functions φ(R) = 3p1R− p1R
3 and ψ(R) =

p1R
3−R. Then the function φ is positive on (0,

√
3) and assumes 2p1 as a maximum at the point

R = 1. The function ψ is positive increasing function over ( 1√
p1
,+∞). The functions φ and

ψ intersect at the point R0 =
√

3p1+1
2p1

with φ(R0) = ψ(R0) = 3p1−1
2

√
3p1+1

2p1
. As a consequence,

(4.2) and (4.3) hold for all R ∈ (R1, R2), where R1 = ψ−1(‖g‖0) and R2 = φ−1(p2−1) (actually

1 < R1 < R2 <
√

3).

(b) As for the first inequality in (4.2), it suffices that it holds for (t, x) ∈ [0, 1]× [0,+∞).

Our main existence result is

Theorem 4.1.6 Under Assumptions (H1)-(H3), Equation (4.1) has at least one solution x ∈

C([0, 1]) such that x(t) ≥ 1, for 0 ≤ t ≤ 1.
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Proof. Consider the Banach space E = C([0, 1],R) with the sup-norm ‖x‖0 = max
t∈[0,1]

|x(t)|.

Let the cone

K = {x ∈ E : x(t) ≥ 1}

and the set

KR = K ∩ B(1, R) = {x ∈ K : ‖x− 1‖0 < R},

where R is defined in (H3). In view of Proposition 3.4.7, we introduce the operators T, F :

KR → E by

(Tx)(t) = x(t)− p(t)x3(t)

and

(Fx)(t) = x(t) + g(t, x(t)),

respectively, for t ∈ [0, 1]. Then Equation (4.1) is equivalent to the abstract equation x =

Tx+ Fx.

Step 1. (a) T and F clearly map KR into E. Moreover

‖Tx− Ty‖0 ≥ (3p1 − 1)‖x− y‖0, ∀x, y ∈ KR,

that is T : KR → E is expansive with constant h = 3p1 − 1 > 1.

(b) If x ∈ KR, then ‖x− 1‖0 ≤ R and

‖x− Fx‖0 ≤ sup
0≤t≤1; 1≤u≤1+R

g(t, u) < +∞, (4.5)

which implies that (I − F )(KR) is uniformly bounded. (H1) further implies that (I −

F )(KR) is equicontinuous in E. By Arzéla-Ascoli Lemma, (I − F ) maps bounded sets

of KR into relatively compact sets. Since g is continuous, then so is (I − F ). Hence

I − F : KR → E is completely continuous, i.e., is a 0-set contraction.

(c) By (4.3), for all x ∈ ∂KR and t ∈ [0, 1], we have

|x− Fx(t)− Tθ(t)| = | − g(t, x(t)) + p(t)− 1|

≤ p1R
3 −R + p2 − 1

≤ (3p1 − 1)R = hR,
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i.e.,

‖x− Fx+ Tθ‖0 ≤ h‖x− θ‖0, ∀x ∈ ∂KR.

Step 2. We claim that

(I − F )(KR) ⊂ T (KR). (4.6)

Let y ∈ (I − F )(KR) and x ∈ KR be such that y = (I − F )x.

(a) First we claim that

KR ⊂ y + (I − T )(KR). (4.7)

Let u ∈ KR and

v(t) = 3

√
u(t) + g(t, x(t))

p(t)
, t ∈ [0, 1].

Using Assumptions (H2)− (H3), for all t ∈ [0, 1], we obtain the estimates

1 ≤ 3

√
1 + g(t, x(t))

p(t)
≤ v(t) ≤ 3

√
1 +R + g(t, x(t))

p(t)
≤ 3

√
p1R3 + 1

p(t)
≤ R + 1.

Thus, v ∈ KR and

u(t) = −g(t, x(t)) + p(t)v3(t), t ∈ [0, 1].

Since y = x − Fx = −g(·, x(·), then u = y + (I − T )(v) with v ∈ KR, that is

u ∈ y + (I − T )(KR), proving (4.7).

(b) To show (4.6), notice that the mapping y + (I − T ) : KR → E is 3p1-expansive.

Owing to Lemma 1.3.23 with D = KR and using (4.7), we conclude that y+ (I −T )

has a unique fixed point, i.e., there exists w ∈ KR such that

y + (I − T )(w) = w ⇐⇒ y = T (w),

that is y ∈ T (KR), proving (4.6). Finally, assume that Tx + Fx 6= x on ∂KR,

otherwise we are done. Letting U = KR and Ω = KR in Proposition 3.4.7, we obtain

i∗ (T + F,KR,K) = 1.

By the existence property of the index, the mapping T +F has at least one positive fixed

point x in KR, solution of Equation (4.1).
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Application 2

Consider the nonlinear integral equation

x(t) =

∫ +∞

0

G(t, s) f(s, x(s)) ds, t ≥ 0, (4.8)

where f,G ∈ C(R+×R+,R+) and lim
t→+∞

G(t, s) = `, for all positive s. Suppose that the following

conditions hold:

(H1) ∃ p > 0, p 6= 1, 0 ≤ f(t, x) ≤ a(t) + b(t)xp, ∀ (t, x) ∈ [0,+∞)× [0,+∞),

where the coefficients a, b ∈ C(R+,R+).

(H2) Assume that 
M1 := sup

t∈[0,+∞)

∫ +∞
0

G(t, s)a(s) ds <∞

M2 := sup
t∈[0,+∞)

∫ +∞
0

G(t, s)b(s) ds <∞,

and there exist ε ∈ (0, 1) and R > 1+ε
2

such that

M1 +M2R
p <

1 + ε

2
.

Remark 4.1.7 As example, the values M1 = 1
20

, M2 = 1
10

, p ∈ R, ε = 1
2
, and R = 1 validate

the inequality in Assumption (H2).

Theorem 4.1.8 Under Assumptions (H1) and (H2), Equation (4.8) has at least one positive

solution x ∈ C([0,+∞),R) such that 0 < x(t) ≤ R, ∀ t ≥ 0.

Proof. Consider the Banach space

E =

{
x ∈ C([0,+∞),R) : lim

t→+∞
x(t) exists

}
with norm

‖x‖ = sup
t∈[0,+∞)

|x(t)|

and the positive cone

P = {x ∈ E : x(t) ≥ 0, t ≥ 0}.

101



4.1. Expansion-Compression fixed point theorem of Krasnosel’skii type for the sum of two
operators

Let R1 =
εR +M1 +M2R

p

1 + ε
and let BR = B(0, R) denote the open ball centered at the origin

with radius R. Consider the open sets:

U = BR ∩ {x ∈ E : x(t) ≥ 1 + ε

2
, ∀ t ∈ J},

Ω = BR1 ∩ P ,

for some compact sub-interval J ⊂ [0,+∞). Since R < 1+ε
2

, then U 6= ∅. On E, define the

operators

Tx(t) = (1 + ε)x(t),

Fx(t) = (1− ε)x(t)−
∫ +∞

0

G(t, s)f(s, x(s))ds.

Then Equation (4.8) is equivalent to the operator equation x = Tx+ Fx. Next, we check that

all assumptions of Corollary 3.4.8 are satisfied. First we have T : Ω→ E and

‖Tx− Ty‖ = (1 + ε)‖x− y‖,

for all x, y ∈ Ω, i.e., T : Ω→ E is an expansive operator with a constant h = 1 + ε.

1. Step 1. We have I − F : U → E is continuous, bounded mapping and for x ∈ U ,∫ +∞

0

G(t, s)|f(s, x(s))|ds ≤
∫ +∞

0

G(t, s)(a(s) + b(s)s(s))ds

≤ M1 +M2R
p <∞.

Hence, by the properties of the kernel G, Lebesgue’s dominated convergence theorem

yields ∣∣∣∣∫ +∞

0

G(t1, s)f(s, x(s)) ds−
∫ +∞

0

G(t2, s)f(s, x(s)) ds

∣∣∣∣
≤

∫ ∞
0

|G(t1, s)−G(t2, s)|f(s, x(s)) ds,

which tends to 0, uniformly in x ∈ BR, as |t1 − t2| → 0. Moreover

lim
t→+∞

∣∣∣∣∫ +∞

0

G(t, s)f(s, x(s)) ds− lim
y→+∞

∫ +∞

0

G(y, s)f(s, x(s)) ds

∣∣∣∣
= lim

t→+∞

∣∣∣∣∫ +∞

0

G(t, s)f(s, x(s)) ds− l
∣∣∣∣ = 0.
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As a consequence, Corduneanu’s compactness criterion Lemma 1.2.34 assures that for all

t ∈ [0,+∞) and every bounded subsetB ⊂ U, the set
{
t 7→

∫ +∞
0

G(t, s)f(s, x(s))ds, x ∈ B
}

is relatively compact. Furthermore, the operator I−F is written as sum of a ε-contraction

and a completely continuous mapping. Thus, I − F : U → E is a ε-set contraction.

2. Step 2. Let y ∈ BR be arbitrarily chosen. For t ≥ 0, take

z(t) =
εy +

∫ +∞
0

G(t, s)f(s, y(s))ds,

1 + ε
.

Then

0 ≤ z(t) ≤ εR +M1 +M2R
p

1 + ε
= R1,

i.e., z ∈ Ω and

εy +

∫ +∞

0

G(t, s)f(s, y(s)) ds = (1 + ε)z(t) = Tz(t), t ≥ 0.

Therefore (I − F )(U) ⊂ T (Ω).

3. Step 3. Assume that there exist some x0 ∈ ∂U and λ0 ≥ 1 such that λ0x0 ∈ Ω and

x0(t)− Fx0(t) = T (λ0x0(t)), t ≥ 0.

Then

εx0(t) +

∫ +∞

0

G(t, s)f(s, x0(s))ds = λ0(1 + ε)x0(t), t ≥ 0.

Hence ∫ +∞

0

G(t, s)f(s, x0(s))ds = (λ0 + (λ0 − 1)ε)x0(t).

Let t1 ∈ J be such that

x0(t1) ≥ 1 + ε

2
.

Since λ0 ≥ 1, we have the estimates

1 + ε

2
≤ x0(t1) ≤ (λ0 + (λ0 − 1)ε)x0(t1)

=

∫ +∞

0

G(t1, s)f(s, x0(s))ds

≤ M1 +M2R
p <

1 + ε

2
,
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which is a contradiction. By Corollary 3.4.8, Equation (4.8) has a non trivial positive

solution x in C([0,+∞)) such that 0 ≤ x(t) ≤ R, for all x ∈ [0,+∞). This completes the

proof of Theorem 4.1.8.

4.2 Expansion-Compression fixed point theorem of Leggett-

Williams type for the sum of two operators

The results given in this section are obtained by Benslimane-Goergiev-Mebarki in [11].

Let Ψ and δ be nonnegative continuous functionals on P ; then, for positive real numbers a

and b, we define the sets:

P(Ψ, b) = {x ∈ P : Ψ(x) ≤ b},

and

P(Ψ, δ, a, b) = {x ∈ P : a ≤ Ψ(x) and δ(x) ≤ b}.

Krasnosel’skii type compression-expansion fixed point theorems gives us fixed points localized

in a conical shell of the form {x ∈ P : a ≤ ‖x‖ ≤ b}, where a, b ∈ (0,∞), while with the

Leggett-Williams type they are localized in a conical shell of the form P(α, β, a, b), where α is a

concave nonnegative functional, and β a convex nonnegative functional. The original Leggett-

Williams fixed point theorem (see [56, Theorem 3.2]) discusses the existence of at least one fixed

point in a conical shell of the form {x ∈ P : a ≤ α(x) and ‖x‖ ≤ b}, where a, b ∈ (0,+∞)

and α is a nonnegative concave functional. Noting that this result has been widely extended

in many directions, (see for example [4, 8, 38, 43, 56]).

In [5, Theorem 4.1], Anderson and al. have discussed the existence of at least one solution

in P(β, α, r, R) or in P(α, β, r, R) for the nonlinear operational equation Ax = x, where A is

a completely continuous nonlinear map acting in P , α is a nonnegative continuous concave

functional on P and β is a nonnegative continuous convex functional on P . In this result, the

authors have used techniques similar to those of Leggett-Williams that require only subsets of
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both boundaries to be mapped inward and outward, respectively, as well as in Krasnosel’skii’s

cone compression and expansion one. Moreover, conditions involving the norm in the original

Leggett-Williams fixed point theorem are replaced by more general conditions on a convex

functional.

In this context, the Leggett-Williams approach provides more general results than those ob-

tained by using the Krasnosel’skii one. Noting that, in [5], the authors provided more general

results than those obtained in [4, 9, 43, 44, 56, 76] for completely continuous mappings.

In this work, Benslimane-Goergiev-Mebarki use the fixed point index theory developed in

[29] to generalize the main result of [5] for the sum T + F where T is an expansive mapping

with constant h > 1 and I − F is a k-set contraction with k < h.

4.2.1 Main result

Let Ω be a subset of P such that 0 ∈ Ω. We consider the nonlinear equation

Tx+ Fx = x, (4.9)

where T : Ω → E is an expansive mapping with constant h > 1, and I − F : P → E a k-set

contraction with 0 ≤ k < h.

In what follows, we will establish an extension of [5, Theorem 4.1], which guarantees the

existence of at least one non trivial nonnegative solution of Equation (4.9).

Theorem 4.2.1 Let α be a nonnegative continuous concave functional on P and β be a non-

negative continuous convex functional on P with β(x) ≤ ‖x‖ for all x ∈ P. Assume that

there exist nonnegative numbers a, b, c, d and z0 ∈ P such that ‖T0‖ < hmin(b, d) and

α(T−1z0) > max(a, c).

Suppose that:

(A1) if x ∈ P with β(x) = b, then α(Tx+ x) ≥ a;

(A2) if x ∈ P with β(x) = b and α(x) ≥ a, then β(Tx+ Fx) < b and β(Tx+ x) ≤ b;

(A3) if x ∈ P with β(x) = b and α(Tx+ Fx) < a, then β(Tx+ Fx) < b and β(Tx+ x) ≤ b;
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(A4) if x ∈ P with α(x) = c, then β(Tx+ x− z0) ≤ d;

(A5) if x ∈ P with α(x) = c and β(x) ≤ d, then α(Tx+ Fx) > c and α(Tx+ x− z0) ≥ c;

(A6) if x ∈ P with α(x) = c and β(Tx+Fx) > d, then α(Tx+Fx) > c and α(Tx+x−z0) ≥ c.

Then,

1. (Expansive form) T + F has a fixed point x∗ in P(β, α, b, c) ∩ Ω if

(H1) a < c, b < d, {x ∈ P : b < β(x) and α(x) < c}∩Ω 6= ∅, P(β, b) ⊂ P(α, c), P(β, b)∩

Ω 6= ∅ and P(α, c) is bounded and

t(I − F )(P(β, b)) ⊂ T (Ω), for all t ∈ [0, 1], (4.10)

t(I − F )(P(α, c)) + (1− t)z0 ⊂ T (Ω), for all t ∈ [0, 1]. (4.11)

2. (Compressive form) T + F has a fixed point x∗ in P(α, β, a, d) ∩ Ω if

(H2) c < a, d < b, {x ∈ P : a < α(x) and β(x) < d}∩Ω 6= ∅, P(α, a) ⊂ P(β, d), P(α, a)∩

Ω 6= ∅, and P(β, d) is bounded and

t(I − F )(P(β, d)) ⊂ T (Ω), for all t ∈ [0, 1], (4.12)

t(I − F )(P(α, a)) + (1− t)z0 ⊂ T (Ω), for all t ∈ [0, 1]. (4.13)

Proof. We will prove the expansion form. The proof of the compression form is nearly identical.

If we list

U = {x ∈ P : β(x) < b}, (4.14)

V = {x ∈ P : α(x) < c}, (4.15)

then, the interior of V − U is given by

W = (V − U)o = {x ∈ P : b < β(x) and α(x) < c}.

Thus U , V and W are bounded (they are subsets of V which is bounded by condition (H1)),

not empty (by condition (H1)) and open subsets of P . To prove the existence of a fixed point
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for the sum T +F in P(β, α, b, c)∩Ω, it is enough for us to show that i∗(T +F,W ∩Ω,P) 6= 0

since W is the interior of P(β, α, b, c).

Claim 1. Tx+ Fx 6= x for all x ∈ ∂U ∩ Ω.

Let x0 ∈ ∂U ∩ Ω, then β(x0) = b. Suppose that x0 = Tx0 + Fx0, then β(Tx0 + Fx0) = b. If

α(x0) ≥ a, then β(Tx0 +Fx0) < b by condition (A2), and if α(x0) < a, then α(Tx0 +Fx0) < a,

then β(Tx0 + Fx0) < b by condition (A3).

This is a contradiction. Thus we have Tx+ Fx 6= x for all x ∈ ∂U ∩ Ω.

Claim 2. Tx+ Fx 6= x for all x ∈ ∂V ∩ Ω.

Let x1 ∈ ∂V ∩ Ω, then α(x1) = c. Suppose that x1 = Tx1 + Fx1, then α(Tx1 + Fx1) = c. If

β(x1) ≤ d, then α(Tx1 +Fx1) > c by condition (A5), and if β(x1) > d, then β(Tx1 +Fx1) > d,

then α(Tx1 + Fx1) > c by condition (A6).

This is a contradiction. Thus we have Tx+ Fx 6= x for all x ∈ ∂V ∩ Ω.

Claim 3. i∗(T + F,U ∩ Ω,P) = 1.

? Let H1 : [0, 1]× U → E be defined by

H1(t, x) = tFx+ (1− t)x.

Clearly H1 is uniformly continuous in t with respect to x ∈ U and (I −H1) is continuous, and

from (4.10) we easily see that (I − H1([0, 1] × U)) ⊂ T (Ω). Moreover (I − H1(t, .)) : U → E

is a k-set contraction for all t ∈ [0, 1] and Tx + H1(t, x) 6= x for all (t, x) ∈ [0, 1] × ∂U ∩ Ω.

Otherwise, there would exists (t2, x2) ∈ [0, 1]× ∂U ∩ Ω such that Tx2 +H1(t2, x2) = x2. Since

x2 ∈ ∂U , β(x2) = b. Either α(Tx2 + Fx2) < a or α(Tx2 + Fx2) ≥ a.

Case (1): If α(Tx2 + Fx2) < a, the convexity of β and the condition (A3) lead

b = β(x2) = β (Tx2 +H1(t2, x2))

= β (Tx2 + t2Fx2 + (1− t2)x2)

≤ t2β (Tx2 + Fx2) + (1− t2) β(Tx2 + x2)

< b,

which is a contradiction.
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Case (2): If α(Tx2 + Fx2) ≥ a, from the concavity of α and the condition (A1), we obtain

α(x2) ≥ a. Indeed,

α(x2) = α (Tx2 +H1(t2, x2))

≥ t2α (Tx2 + Fx2) + (1− t2)α(Tx2 + x2)

≥ a,

and thus by condition (A2), we have β(Tx2 + Fx2) < b, which is the same contradiction we

arrived at in the previous case.

Being T−10 ∈ U (we have hβ(T−10) ≤ h‖T−10‖ ≤ ‖T0‖ < hb), the homotopy invariance

property (iii) and the normality property (i) of the fixed point index i∗ lead

i∗(T + F,U ∩ Ω,P) = i∗(T + I, U ∩ Ω,P) = 1.

Claim 4. i(T + F,W ∩ Ω,P) = −1.

Let H2 : [0, 1]× V → E be defined by

H2(t, x) = tFx+ (1− t)(x− z0).

Clearly H2 is uniformly continuous in t with respect to x ∈ V and (I −H2) is continuous, and

from (4.11) we easily see that (I − H2([0, 1] × V )) ⊂ T (Ω). Moreover I − H2(t, .) : V → E

is a k-set contraction for all t ∈ [0, 1] and Tx + H2(t, x) 6= x for all (t, x) ∈ [0, 1] × ∂V ∩ Ω.

Otherwise, there would exists (t3, x3) ∈ [0, 1]×∂V ∩Ω such that H2(t3, x3) = x3. Since x3 ∈ ∂V

we have that α(x3) = c. Either β(Tx3 + Fx3) ≤ d or β(Tx3 + Fx3) > d.

Case (1): If β(Tx3 + Fx3) > d. the concavity of α and the condition (A6) lead

c = α(x3) = α(Tx3 +H2(t3, x3))

= α(Tx3 + t3Fx3 + (1− t3)(x3 − z0))

≥ t3α(Tx3 + Fx3) + t3α(Tx3 + x3 − z0)

> c.

This is a contradiction.
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Case (2): If β(Tx3 + Fx3) ≤ d, from the convexity of β and the condition (A4), we obtain

β(x3) ≤ d. Indeed,

β(x3) = β(Tx3 +H2(t3, x3))

≤ t3β(Tx3 + Fx3) + (1− t3)β(Tx3 + x3 − z0)

≤ d,

and thus by condition (A5), we have α(Tx3 + Fx3) > c, which is the same contradiction we

arrived at in the previous case.

The homotopy invariance property (iii) of the fixed index i∗ yields

i∗(T + F, V ∩ Ω,P) = i∗(T + I − z0, V ∩ Ω,P),

and by the solvability property (iv) of the index i∗ ( since T−1z0 6∈ V the index cannot be

nonzero) we have

i∗(T + F, V ∩ Ω,P) = i∗(T + I − z0, V ∩ Ω,P) = 0.

Since U and W are disjoint open subsets of V and T + F has no fixed point in V − (U ∪W )

(by claims 1 and 2), from the additivity property (ii) of the index i∗, we deduce

i∗(T + F, V ∩ Ω,P) = i∗(T + F,U ∩ Ω,P) + i∗(T + F,W ∩ Ω,P).

Consequently, we have

i(T + F,W ∩ Ω,P) = −1,

and thus by the solvability property (iv) of the fixed point index i∗, the sum T +F has a fixed

point x∗ ∈ W ⊂ P(β, α, b, c) ∩ Ω.

4.2.2 Applications

Application 1

In this subsection, we will investigate the three-point BVP

y′′ + f(t, y) = 0, t ∈ (0, 1),

y(0) = ky(η), y(1) = 0,
(4.16)

where
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(B1) f ∈ C([0, 1]×R+), 0 < Ã ≤ f(t, u) ≤ A, t ∈ [0, 1], u ∈ [0,∞), for some positive constants

A ≥ Ã.

(B2) η ∈ (0, 1), k > 0, k(1−η) < 1, B = 1+kη
1−k(1−η)

ε ∈ (1, 2), c = 0 and there exist a, b, d, z0 > 0

so that z0 = a and

a < d < b, 2z0 < εd, (ε− 1)b+ 2z0 <
d
2
,

(ε− 1)b+ εAB < d, a < εAB+2z0
ε

≤ d.

After the proof of the main result in this subsection, we will give an example for a function f

and constants A, Ã, B, η, k, a, b, d, ε, z0 which satisfy (B1) and (B2). We will investigate the

BVP (4.16) for existence of at least one non trivial nonnegative solution. Our main result is as

follows.

Theorem 4.2.2 Suppose (B1) and (B2). Then the BVP (4.16) has at least one non trivial

nonnegative solution y.

To prove our main result, we will use Theorem 4.2.1.

In [84] the BVP (4.16) is investigated when the function f satisfies the following conditions

(B3) f(t, u) is nonnegative and continuous on (0, 1) × [0,∞), f(t, u) is monotone increasing

on u for fixed t ∈ (0, 1), there exists q ∈ (0, 1) such that

f(t, ru) > rqf(t, u), 0 < r < 1, (t, u) ∈ (0, 1)× [0,∞),

and in [84] it is proved that the BVP (4.16) has a unique solution u ∈ C([0, 1])
⋂
C2((0, 1)).

We will note that there are cases for the function f for which we can apply Theorem 4.2.2 and

we can not apply Theorem 4.1 in [84] and the conversely. For example, if f(t, u) = 1 + 1
1+u

,

t, u ∈ [0,∞), then it is bounded below and above and we can apply Theorem 4.2.2. At the

same time, it is decreasing with respect to u for t, u ∈ [0,∞) and we can not apply Theorem

4.1 in [84]. If f(t, u) =
∑m

j=1 aj(t)u
αj , where aj ∈ C([0,∞)) are nonnegative functions and

αj ∈ (0, 1), j ∈ {1, . . . ,m}, as it is shown in [84], it satisfies (B3). On the other hand, it is

unbounded above and we can not apply Theorem 4.2.2. Thus, our result Theorem 4.2.2 and

Theorem 4.1 in [84] are complementary to one another.
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Proof. of Theorem 4.2.2

Set

H(t, s) =

 s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1,

and

G(t, s) = H(t, s) +
k(1− t)

1− k(1− η)
H(η, s), t, s ∈ [0, 1].

Note that 0 ≤ H(t, s) ≤ 1, t, s ∈ [0, 1]. Hence,

0 ≤ G(t, s) ≤ 1 +
k

1− k(1− η)
=

1− k + kη + k

1− k(1− η)
=

1 + kη

1− k(1− η)
= B,

t, s ∈ [0, 1]. Moreover, for t, s ∈
[
η
3
, η

2

]
, we have

H(t, s) ≥ η

3

(
1− η

2

)
and

G(t, s) ≥ H(t, s) ≥ η

3

(
1− η

2

)
.

Next,

Ht(t, s) =

 −s, 0 ≤ s ≤ t ≤ 1,

1− s, 0 ≤ t ≤ s ≤ 1.

Hence, |Ht(t, s)| ≤ 1, t, s ∈ [0, 1], and

|Gt(t, s)| =

∣∣∣∣Ht(t, s)−
k

1− k(1− η)
H(η, s)

∣∣∣∣
≤ |Ht(t, s)|+

k

1− k(1− η)
H(η, s)

≤ 1 +
k

1− k(1− η)
=

1 + kη

1− k(1− η)
= B, t, s ∈ [0, 1].

Let E = C([0, 1]) be endowed with the maximum norm

‖y‖ = max
t∈[0,1]

|y(t)|.

On E, define

α(y) = min
t∈[ η3 ,

η
2 ]
|y(t)|+ z0, β(y) = max

t∈[0,1]
|y(t)|.
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In [84] it is proved that the solution of the BVP (4.16) can be expressed in the following form

y(t) =

∫ 1

0

G(t, s)f(s, y(s))ds, t ∈ [0, 1].

Set

k1 =
min

{
εη

2

18

(
1− η

2

)
Ã, z0

}
dε

.

Define

P = {y ∈ E : y(t) ≥ 0, t ∈ [0, 1], min
t∈[ η3 ,

η
2 ]
y(t) ≥ k1 max

t∈[0,1]
y(t)},

Ω = {y ∈ P : ‖y‖ ≤ 2z0 + εAB

ε
}.

Note that 0 ∈ Ω and Ω ⊂ P . For y ∈ P , define the operators

Ty(t) = −εy(t) + 2z0,

Fy(t) = y(t)− 2z0 + ε

∫ 1

0

G(t, s)f(s, y(s))ds, t ∈ [0, 1].

Note that if y ∈ P is a fixed point of the operator T + F , then it is a solution to the BVP

(4.16). Next, if y ∈ P and β(y) ≤ b, we have

|Ty(t) + y(t)| ≤ (ε− 1)y(t) + 2z0

≤ (ε− 1)b+ 2z0

<
d

2
, t ∈ [0, 1],

and

|Ty(t) + Fy(t)| =

∣∣∣∣−(ε− 1)y(t) + ε

∫ 1

0

G(t, s)f(s, y(s))ds

∣∣∣∣
≤ (ε− 1)y(t) + ε

∫ 1

0

G(t, s)f(s, y(s))ds

≤ (ε− 1)b+ εA

∫ 1

0

G(t, s)ds

≤ (ε− 1)b+ εAB

< d.

Therefore, if y ∈ P and β(y) ≤ b, we have

β(Ty + y) < d (4.17)
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and

β(Ty + Fy) < d. (4.18)

For y, z ∈ P , we have

|Ty(t)− Tz(t)| = ε|y(t)− z(t)|, t ∈ [0, 1].

Hence,

‖Ty − Tz‖ = ε‖y − z‖.

Thus, T : P → E is an expansive operator with constant h = ε.

Let now, y ∈ P . Then

|(I − F )y(t))| = ε

∣∣∣∣∫ 1

0

G(t, s)f(s, y(s))ds

∣∣∣∣
≤ εA

∫ 1

0

G(t, s)ds

≤ εAB, t ∈ [0, 1],

whereupon

‖(I − F )y‖ ≤ εAB

and I − F : P → E is uniformly bounded. Moreover,∣∣∣∣ ddt(I − F )y(t)

∣∣∣∣ =

∣∣∣∣∫ 1

0

Gt(t, s)f(s, y(s))ds

∣∣∣∣
≤

∫ 1

0

|Gt(t, s)|f(s, y(s))ds

≤ AB, t ∈ [0, 1].

Consequently, I − F : P → E is completely continuous. Then I − F : P → E is a 0-set

contraction.

Note that

‖T0‖ = 2z0 < εmin{b, d}.

For y ∈ E, we have

T−1y = −y − 2z0

ε
.
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Hence,

α
(
T−1z0

)
= α

(z0

ε

)
=
z0

ε
+ z0 > max{a, c}.

Suppose that y ∈ P with β(y) = b. Then

α(Ty + y) = min
t∈[ η3 ,

η
2 ]
|Ty(t) + y(t)|+ z0 ≥ z0 = a.

Consequently (A1) holds.

Now, we take y ∈ P with β(y) = b, α(y) ≥ a. Then, using d < b, (4.17) and (4.18), we

obtain

β(Ty + y) < b and β(Ty + Fy) < b.

Consequently (A2) holds.

Observe that, if y ∈ P , β(y) = b and α(Ty + Fy) < a, using d < b and (4.17), (4.18), we

find

β(Ty + Fy) < b and β(Ty + y) < b.

Thus, (A3) holds.

Since c = 0 and α(y) > 0 for any y ∈ P , the case α(y) = c is impossible.

Let now, a1 ∈
(
a, εAB+z0

ε

)
be arbitrarily chosen. Then

α(a1) = a1 + z0 > a

and

β(a1) = a1 <
εAB + 2z0

ε
≤ d.

Therefore

{y ∈ P : a < α(y) and β(y) < d} ∩ Ω 6= ∅.

Let y ∈ P(α, a). Then y ∈ P and α(y) ≤ a. Hence,

a ≥ min
t∈[ η3 ,

η
2 ]
y(t) + z0 = min

t∈[ η3 ,
η
2 ]
y(t) + a.

Therefore min
t∈[ η3 ,

η
2 ]
y(t) = 0 and using the definition of the cone P , we find

β(y) = max
t∈[0,1]

y(t) ≤ 1

k1

min
t∈[ η3 ,

η
2 ]
y(t) = 0 ≤ d.
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Thus, y ∈ P(β, d) and P(α, a) ⊂ P(β, d).

Since 0 ∈ P(α, a), we have P(α, a) ∩ Ω 6= ∅.

Note that P(β, d) is bounded.

Let λ ∈ [0, 1] is fixed and u ∈ P(α, a) is arbitrarily chosen. Then β(u) ≤ d < b. Set

v(t) =
λε
∫ 1

0
G(t, s)f(s, u(s))ds+ (1− λ)z0

ε
, t ∈ [0, 1].

We have that v(t) ≥ 0, t ∈ [0, 1], and

v(t) ≤ εAB + z0

ε
≤ d, t ∈ [0, 1],

and

‖v‖ ≤ εAB + z0

ε
≤ d.

min
t∈[ η3 ,

η
2 ]
v(t) ≥

λε
∫ η

2
η
3

min
t∈[ η3 ,

η
2 ]
G(t, s)f(s, u(s))ds+ (1− λ)z0

ε

≥
λε
(
η
2
− η

3

)
η
3

(
1− η

2

)
Ã+ (1− λ)z0

ε

≥
min

{
εη

2

18

(
1− η

2

)
Ã, z0

}
ε

=
min

{
εη

2

18

(
1− η

2

)
Ã, z0

}
dε

d

≥ k1 max
t∈[0,1]

v(t).

Thus, v ∈ Ω. Next,

λ(I − F )u(t) + (1− λ)z0 = 2λz0 − λε
∫ 1

0

G(t, s)f(s, u(s))ds+ z0 − λz0

= −λε
∫ 1

0

G(t, s)f(s, u(s))ds+ (1 + λ)z0

= −ε
λε
∫ 1

0
G(t, s)f(s, u(s))ds+ (1− λ)z0

ε
+ 2z0

= Tv(t), t ∈ [0, 1].

Therefore

λ(I − F )(P(α, a)) + (1− λ)z0 ⊂ T (Ω).
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Let λ ∈ [0, 1] be fixed and u ∈ P(β, d) be arbitrarily chosen. Take

w(t) =
2(1− λ)z0 + λε

∫ 1

0
G(t, s)f(s, u(s))ds

ε
, t ∈ [0, 1].

We have v(t) ≥ 0, t ∈ [0, 1], and

w(t) ≤ εAB + 2z0

ε
≤ d, t ∈ [0, 1].

Moreover,

min
t∈[ η3 ,

η
2 ]
w(t) ≥

λε
∫ η

2
η
3

min
t∈[ η3 ,

η
2 ]
G(t, s)f(s, u(s))ds+ 2(1− λ)z0

ε

≥
λε
(
η
2
− η

3

)
η
3

(
1− η

2

)
Ã+ (1− λ)z0

ε

≥
min

{
εη

2

18

(
1− η

2

)
Ã, z0

}
ε

=
min

{
εη

2

18

(
1− η

2

)
Ã, z0

}
dε

d

≥ k1 max
t∈[0,1]

w(t).

Therefore w ∈ Ω. Also,

λ(I − F )u(t) = λ

(
2z0 − ε

∫ 1

0

G(t, s)f(s, u(s))ds

)
= −ε

ε
∫ 1

0
G(t, s)f(s, u(s))ds+ 2(1− λ)z0

ε
+ 2z0

= −εw(t) + 2z0

= Tw(t), t ∈ [0, 1].

Therefore

λ(I − F )(P(β, d)) ⊂ T (Ω).

By Theorem 4.2.1, it follows that the BVP (4.16) has at least one solution in {y ∈ P : a <

α(y) and β(y) < d} ∩ Ω ⊂ P (α, β, a, d) ∩ Ω.

An Example

Consider the BVP

y′′ + 1
300(1+t2)(1+y)

+ 1
300

= 0, t ∈ (0, 1),

y(0) = y
(

1
2

)
, y(1) = 0.

(4.19)
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Here

f(t, y) =
1

300(1 + t2)(1 + y)
+

1

300
, t ∈ (0, 1), y ∈ [0,∞), k = 1, η =

1

2
.

Note that for the function f we can not apply Theorem 4.1 in [84] because it is a decreasing

function with respect to y for t, y ∈ [0,∞). Take the constants

ε = 41
40
, B = 3, A = 1

123
, Ã = 1

300
, b = 1, d = 1

2
,

z0 = 1
400
, a = 1

400
, q = 1

1000
.

We have

a < d < b, 2z0 = 2a =
1

200
<

41

80
= εd,

(ε− 1)b+ 2z0 =
1

40
+

1

200
=

3

100
<

1

4
=
d

2
,

(ε− 1)b+ εAB =
1

40
+

41

40
· 3

123
=

1

40
+

1

40
=

1

20
<

1

2
= d,

1

400
= a <

εAB + 2z0

ε
=

40

41
·
(

41

40
· 3

123
+

1

200

)
<

1

2
= d.

Thus, (B2) holds. Next, f ∈ C([0, 1]× R+) and

1

300
≤ f(t, y) =

1

300(1 + t2)(1 + y)
+

1

300
≤ 1

150
≤ 1

123
= A,

i.e., (B1) holds. By Theorem 4.2.1, it follows that the BVP (4.19) has at least one nonnegative

solution.

Application 2

In this part, we will investigate the following BVP

x′′(t) + g(x(t)) = 0, t ∈ (0, 1),

x(0) = 0 = x′(1),
(4.20)

where

(C1) g ∈ C(R+), 0 < Ã1 ≤ g(x) ≤ A1, x ∈ [0,∞), for some positive constants A1 ≥ Ã1.

(C2) The nonnegative constants z1, a1, b1, c1, d1, ε1 satisfy

ε1 ∈ (1, 2), (ε1 − 1)b1 + 2z1 <
d1

2
, (ε1 − 1)b1 + ε1A1 < d1,
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c1 = 0, 2z1 < ε1 min{b1, d1},
z1

ε1
+ z1 > max{a1, c1}, z1 = a1,

a1 < d1 < b1, a1 <
ε1A1 + 2z1

ε1
≤ d1.

Our main result in this subsection is as follows.

Theorem 4.2.3 Suppose (C1) and (C2). Then the BVP (4.20) has at least one non trivial

nonnegative solution.

The BVP (4.20) is investigated in [5] under the following conditions

(C1.1) τ ∈ (0, 1) is fixed, b and c are positive constants with 3b ≤ c, g : [0,∞) → [0,∞) is a

continuous function such that

1. g(w) > c
τ(1−τ)

, w ∈
[
c, c

τ

]
,

2. g is decreasing on [a, bτ ] with g(bτ) ≥ g(w) for w ∈ [bτ, b].

3.
∫ τ

0
sg(s)ds ≤ 2b−g(bτ)(1−τ2)

2
,

and it is proved that the BVP (4.20) has at least one nonnegative solution. Note that there are

cases for the function g for which we can apply Theorem 4.2.3 and we can not apply Theorem

5.1 in [5] and the conversely. For instance, if g(x) = x
1+x

+ 1, x ∈ [0,∞), then it is bounded

above and below and we can apply Theorem 4.2.3. On the other hand, g is an increasing

function on [0,∞) and we can not apply Theorem 5.1 in [5]. If g(x) = 1√
x

+ ex−2, x ∈ (0,∞),

as it is shown in [5], we can apply for it Theorem 5.1 in [5]. Since it is unbounded above, we

can not apply Theorem 4.2.3. Therefore the main result of [11] Theorem 4.2.1 and the main

result Theorem 4.1 in [5] are complementary to one another.

After the proof of Theorem 4.2.3, we will give an example for a function g and constants

A1, Ã1, z1, a1, b1, c1, d1, ε1 that satisfy (C1) and (C2).

Proof. of Theorem 4.2.3. Let E = C([0, 1]) be endowed with the maximum norm

‖x‖ = max
t∈[0,1]

|x(t)|.

Define

G1(t, s) = min{t, s}, (t, s) ∈ [0, 1]× [0, 1].
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Note that

0 ≤ G1(t, s) ≤ 1, (t, s) ∈ [0, 1]× [0, 1],

and

G1(t, s) ≥ 1

3
, t, s ∈

[
1

3
,
1

2

]
.

On E, define the following functionals

α1(x) = min
t∈[0,1]

|x(t)|+ z1, β1(x) = max
t∈[0,1]

|x(t)|.

In [5] it is proved that the solution of the BVP (4.20) can be represented in the form

x(t) =

∫ 1

0

G1(t, s)g(x(s))ds, t ∈ [0, 1].

Set

k2 =
min

{
ε1Ã1

3
, z1

}
d1ε1

.

Define

P1 = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1], min
t∈[ 13 ,

1
2 ]
x(t) ≥ k2 max

t∈[0,1]
x(t)},

Ω1 =

{
x ∈ P1 : ‖x‖ ≤ 2z1 + ε1A1

ε1

}
.

Note that 0 ∈ Ω1 and Ω1 ⊂ P1. For x ∈ P1, define the following operators.

T1x(t) = −ε1x(t) + 2z1,

F1x(t) = x(t)− 2z0 + ε1

∫ 1

0

G1(t, s)g(x(s))ds, t ∈ [0, 1].

Now, the proof of Theorem 4.2.3 follows similar arguments to those in the proof of ([11] Theo-

rem4.1).

An example

Consider the BVP

x′′(t) + x(t)
400(1+x(t))

+ 1
400

= 0, t ∈ (0, 1),

x(0) = 0 = x′(1).
(4.21)
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Here

g(x) =
x

400(1 + x)
+

1

400
, x ∈ [0,∞).

Note that the function g is an increasing function on [0,∞) and then we cannot apply Theorem

5.1 in [5]. Take

ε1 =
41

40
, A1 =

1

123
, Ã1 =

1

400
, b1 = 1, d1 =

1

2
,

z1 =
1

400
, a1 =

1

400
, c1 = 0.

Then, ε1 > 1 and

(ε1 − 1)b1 + 2z1 =
1

40
+

1

200
<

1

4
=
d1

2
,

(ε1 − 1)b1 + ε1A1 =
1

40
+

41

40
· 1

123
=

1

40
+

1

120
<

1

2
= d1,

ε1 min{b1, d1} =
41

40
· 1

2
=

41

80
>

1

200
= 2z1,

z1

ε1
+ z1 =

1
400
41
40

=
1

410
+

1

400
>

1

400
= max{a1, c1},

a1 < d1 < b1,

a1 =
1

400
<
ε1A1 + 2z1

ε1
=

41
40
· 1

123
+ 1

200
41
40

=
1

120
+ 1

200
41
40

=
1
3

+ 1
5

41
=

8

615
<

1

2
= d1.

Thus, (C2) holds. Next,

1

400
≤ g(x) ≤ 1

200
, x ∈ [0,∞).

So, (C2) holds. Hence, applying Theorem 4.2.3, we conclude that the BVP (4.21) has at least

one nonnegative solution.
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5.1. Introduction

5.1 Introduction

Since 1970, the interest for fourth order boundary value porblems (BVPs for short ) has risen

due to their important applications in pratical problems. For instance, the deformation of

an elastic beam under an external force h supported at both ends is described by the linear

boundary value problem

x(4)(t) = h(t), t ∈ (0, 1),

x(0) = x(1) = x′′(0) = x′′(1) = 0,

where vanishing moments at the ends of the attached beam motivate the boundary conditions

(see [42] for more details). The existence of solutions for nonlinear fourth-order BVPs has

gained much interest in the last years (see, e.g., [57, 58, 59, 74, 78, 81, 83]). Boundary value

problems with integral boundary conditions constitute a very interesting and important class

of problems. They include two, three, multi-point, and nonlocal boundary conditions as special

cases.

In this work, we investigate the existence of at least two nonnegative solutions to the fourth-

order nonlinear boundary value problem with integral boundary conditions:

x(4)(t) = w(t)f(t, x(t), x′′(t)), t ∈ (0, 1),

x(0) =
∫ 1

0
h1(s)x(s)ds, x(1) =

∫ 1

0
k1(s)x(s)ds,

x′′(0) =
∫ 1

0
h2(s)x′′(s)ds, x′′(1) =

∫ 1

0
k2(s)x′′(s)ds,

(5.1)

where

(H1) w ∈ L1([0, 1]) is nonnegative and may be singular at t = 0 and (or) t = 1, f ∈ C([0, 1]×

R× R) and satisfies the polynomial growth condition:

|f(t, u, v)| ≤ a1(t)|u|p1 + a2(t)|v|p2 + a3(t), t ∈ [0, 1], u, v ∈ R,

a1, a2, a3 ∈ C([0, 1]) are given nonnegative functions, p1, p2 are given nonnegative con-

stants.

(H2) h1, h2, k1, k2 ∈ L1([0, 1]) with m1ν1 + n1µ1 6= 0, m2ν2 + n2µ2 6= 0,
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for

m1 =

∫ 1

0

sh1(s)ds, m2 =

∫ 1

0

sh2(s)ds,

n1 = 1−
∫ 1

0

sk1(s)ds, n2 = 1−
∫ 1

0

sk2(s)ds,

µ1 = 1−
∫ 1

0

h1(s)ds, µ2 = 1−
∫ 1

0

h2(s)ds,

ν1 = 1−
∫ 1

0

k1(s)ds, ν2 = 1−
∫ 1

0

k2(s)ds.

In 2003 and 2004, the authors of [57, 86] studied the existence of solutions of Problem (5.1)

for h1 = h2 = k1 = k2 = 0, by using the Krasnels’kii’s fixed point theorem and fixed point

index theory on cones of Banach spaces respectively.

By using the Krasnosel’skii fixed point theorem of cone expansion and compression, in [78]

is proved the existence of at least two positive solution of BVP (5.1) when w may be singular

at t = 0 and (or) t = 1, w ∈ L1([0, 1]), f : [0, 1]× [0,∞)× (−∞, 0]→ [0,∞) is continuous, h1,

h2, k1, k2 ∈ L1([0, 1]) are nonnegative with µ1 > 0, ν1 > 0, µ2 > 0, ν2 > 0.

This work complements and improves similar results obtained in [78]. In Section 5.5, we

discuss and compare our result with those obtained in [78]. We end by giving an example of

application with some numerical computations.

5.2 Multiple fixed points theorem

The following theorem is useful to provide existence of two fixed points in a cone. It will be

used to prove the main result of [12]. We refer the reader to [40] and [29] for more details.

Theorem 5.2.1 Let P be a cone of a Banach space E; Ω a subset of P and U1, U2 and U3 three

open bounded subsets of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1. Assume that T : Ω→ P is an

expansive mapping with constant h > 1, S : U3 → E is a k-set contraction with 0 ≤ k < h− 1

and S(U3) ⊂ (I − T )(Ω). Suppose that (U2 \ U1) ∩ Ω 6= ∅, (U3 \ U2) ∩ Ω 6= ∅, and there exists

u0 ∈ P∗ such that the following conditions hold:

(i) Sx 6= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω + λu0),
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(ii) there exist ε > 0 small enough and Sx 6= (I − T )(λx), for all λ ≥ 1 + ε, x ∈ ∂U2 and

λx ∈ Ω,

(iii) Sx 6= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω + λu0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω

or

x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω.

5.3 Integral formulation of the problem

Let

G(t, s) =

 s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1,

H1(t, s) = G(t, s) +
m1 + µ1t

m1ν1 + n1µ1

∫ 1

0

k1(ν)G(t, ν)dν

+
n1 − ν1t

m1ν1 + n1µ1

∫ 1

0

h1(ν)G(t, ν)dν,

H2(t, s) = G(t, s) +
m2 + µ2t

m2ν2 + n2µ2

∫ 1

0

k2(ν)G(t, ν)dν

+
n2 − ν2t

m2ν2 + n2µ2

∫ 1

0

h2(ν)G(t, ν)dν,

H(t, s) =

∫ 1

0

H1(t, ν)H2(ν, s)dν, t, s ∈ [0, 1],

K1 =

∫ 1

0

|k1(ν)|dν, K2 =

∫ 1

0

|k2(ν)|dν,

H1 =

∫ 1

0

|h1(ν)|dν, H2 =

∫ 1

0

|h2(ν)|dν,
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A1 = 1 +
|m1|+ |µ1|
|m1ν1 + n1µ1|

K1 +
|n1|+ |ν1|
|m1ν1 + n1µ1|

H1,

A2 = 1 +
|m2|+ |µ2|
|m2ν2 + n2µ2|

K2 +
|n2|+ |ν2|
|m2ν2 + n2µ2|

H2,

A3 =

∫ 1

0

w(s)a1(s)ds,

A4 =

∫ 1

0

w(s)a2(s)ds,

A5 =

∫ 1

0

w(s)a3(s)ds.

Then

0 ≤ G(t, s) ≤ 1, t, s ∈ [0, 1],

and

|H1(t, s)| ≤ G(t, s) +
|m1|+ |µ1|
|m1ν1 + n1µ1|

∫ 1

0

|k1(ν)|G(t, ν)dν

+
|n1|+ |ν1|
|m1ν1 + n1µ1|

∫ 1

0

|h1(ν)|G(t, ν)dν

≤ 1 +
|m1|+ |µ1|
|m1ν1 + n1µ1|

K1 +
|n1|+ |ν1|
|m1ν1 + n1µ1|

H1

= A1,

|H2(t, s)| ≤ G(t, s) +
|m2|+ |µ2|
|m2ν2 + n2µ2|

∫ 1

0

|k2(ν)|G(t, ν)dν

+
|n2|+ |ν2|
|m2ν2 + n2µ2|

∫ 1

0

|h2(ν)|G(t, ν)dν

≤ 1 +
|m2|+ |µ2|
|m2ν2 + n2µ2|

K2 +
|n2|+ |ν2|
|m2ν2 + n2µ2|

H2

= A2,

|H(t, s)| =

∣∣∣∣∫ 1

0

H1(t, ν)H2(ν, s)dν

∣∣∣∣
≤

∫ 1

0

|H1(t, ν)||H2(t, ν)|dν

≤ A1A2, t, s ∈ [0, 1].

In [78, Lemma 5], it is proved that if x ∈ C2([0, 1]) is a solution to the integral equation

x(t) =

∫ 1

0

H(t, s)w(s)f(s, x(s), x′′(s))ds,

then x ∈ C2([0, 1]) ∩ C4((0, 1)) and it satisfies the BVP (5.1).
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In addition of above conditions, we assume the following.

(H3) Let m > 0 be large enough and A, r1, L1 and R1 be positive constants satisfy the

following conditions

r1 < L1 < R1, R1 >

(
2

5m
+ 1

)
L1,

A (R1 + A1A2 (Rp1
1 A3 +Rp2

1 A4 + A5)) <
L1

5
,

(H4) There exists a nonnegative function g ∈ C([0, 1]) with g 6≡ 0 so that∫ 1

0

(
(1− s)2 + 2(1− s) + 2

)
g(s)ds ≤ A.

In the last section, we will give an example for the constants p1, p2, A, m, A1, A2, A3, A4,

A5, r1, L1, R1 and the function g that satisfy (H3) and (H4). For x ∈ C2([0, 1]), define the

operator

Fx(t) =

∫ t

0

(t− s)2g(s)

(
−x(s) +

∫ 1

0

H(s, s1)w(s1)f (s1, x(s1), x′′(s1)) ds1

)
ds, t ∈ [0, 1].

Lemma 5.3.1 Suppose (H1), (H2) and (H4). If x ∈ C2([0, 1]) is a solution to the equation

0 =
L1

5
+ Fx(t), t ∈ [0, 1], (5.2)

then x ∈ C2([0, 1]) ∩ C4((0, 1)) is a solution to the BVP (5.1).

Proof. Let x ∈ C2([0, 1]) is a solution to Equation (5.2). We differentiate three times with

respect to t Equation (5.2) and we get

0 = g(t)

(
−x(t) +

∫ 1

0

H(t, s1)w(s1)f (s1, x(s1), x′′(s1)) ds1

)
, t ∈ [0, 1],

whereupon

x(t) =

∫ 1

0

H(t, s1)w(s1)f (s1, x(s1), x′′(s1)) ds1, t ∈ [0, 1].

Then x ∈ C2([0, 1]) ∩ C4((0, 1)) is a solution to the BVP (5.1). This completes the proof.
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Lemma 5.3.2 Assume (H1), (H2) and (H4). If x ∈ C2([0, 1]) and ‖x‖ ≤ c for some positive

constant c, then

‖Fx‖ ≤ A (c+ A1A2 (A3c
p1 + A4c

p2 + A5)) .

Proof. Let x ∈ C2([0, 1]) and ‖x‖ ≤ c. Then

|Fx(t)| =

∣∣∣∣ ∫ t0 (t− s)2g(s)
(
−x(s) +

∫ 1

0
H(s, s1)w(s1)f(s1, x(s1), x′′(s1))ds1

)
ds

∣∣∣∣
≤

∫ t
0
(t− s)2g(s)

(
|x(s)|+

∫ 1

0
|H(s, s1)|w(s1)|f(s1, x(s1), x′′(s1))|ds1

)
ds

≤
∫ 1

0
(1− s)2g(s)

(
c+ A1A2

∫ 1

0
w(s1) (a1(s1)|x(s1)|p1 + a2(s1)|x′′(s1)|p2 + a3(s1)) ds1

)
ds

≤
∫ 1

0
(1− s)2g(s)

(
c+ A1A2

(
cp1
∫ 1

0
w(s1)a1(s1)ds1 + cp2

∫ 1

0
w(s1)a2(s1)ds1

+
∫ 1

0
w(s1)a3(s1)ds1

))
ds

≤ (c+ A1A2 (cp1A3 + cp2A4 + A5))
∫ 1

0
(1− s)2g(s)ds

≤ A (c+ A1A2 (cp1A3 + cp2A4 + A5)) , t ∈ [0, 1],

and

|(Fx)′(t)|

=

∣∣∣∣2 ∫ t0 (t− s)g(s)
(
−x(s) +

∫ 1

0
H(s, s1)w(s1)f(s1, x(s1), x′′(s1))ds1

)
ds

∣∣∣∣
≤ 2

∫ t
0
(t− s)g(s)

(
|x(s)|+

∫ 1

0
|H(s, s1)|w(s1)|f(s1, x(s1), x′′(s1))|ds1

)
ds

≤ 2
∫ 1

0
(1− s)g(s)

(
c+ A1A2

∫ 1

0
w(s1) (a1(s1)|x(s1)|p1 + a2(s1)|x′′(s1)|p2 + a3(s1)) ds1

)
ds

≤ 2
∫ 1

0
(1− s)g(s)

(
c+ A1A2

(
cp1
∫ 1

0
w(s1)a1(s1)ds1 + cp2

∫ 1

0
w(s1)a2(s1)ds1

+
∫ 1

0
w(s1)a3(s1)ds1

))
ds

≤ 2 (c+ A1A2 (cp1A3 + cp2A4 + A5))
∫ 1

0
(1− s)g(s)ds

≤ A (c+ A1A2 (cp1A3 + cp2A4 + A5)) , t ∈ [0, 1],
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and

|(Fx)′′(t)|

=

∣∣∣∣2 ∫ t0 g(s)
(
−x(s) +

∫ 1

0
H(s, s1)w(s1)f(s1, x(s1), x′′(s1))ds1

)
ds

∣∣∣∣
≤ 2

∫ t
0
g(s)

(
|x(s)|+

∫ 1

0
|H(s, s1)|w(s1)|f(s1, x(s1), x′′(s1))|ds1

)
ds

≤ 2
∫ 1

0
g(s)

(
c+ A1A2

∫ 1

0
w(s1) (a1(s1)|x(s1)|p1 + a2(s1)|x′′(s1)|p2 + a3(s1)) ds1

)
ds

≤ 2
∫ 1

0
g(s)

(
c+ A1A2

(
cp1
∫ 1

0
w(s1)a1(s1)ds1 + cp2

∫ 1

0
w(s1)a2(s1)ds1

+
∫ 1

0
w(s1)a3(s1)ds1

))
ds

≤ 2 (c+ A1A2 (cp1A3 + cp2A4 + A5))
∫ 1

0
g(s)ds

≤ A (c+ A1A2 (cp1A3 + cp2A4 + A5)) , t ∈ [0, 1].

Consequently

‖Fx‖ ≤ A (c+ A1A2 (cp1A3 + cp2A4 + A5)) .

This completes the proof.

5.4 Main Result

Theorem 5.4.1 Under the assumptions (H1)-(H4), the BVP (5.1) has at least two non trivial

nonnegative classical solutions in C2([0, 1]) ∩ C4((0, 1)).

Consider the Banach space E = C2([0, 1]) endowed with the norm

‖x‖ = max{max
t∈[0,1]

|x(t)|, max
t∈[0,1]

|x′(t)|, max
t∈[0,1]

|x′′(t)|},

and the positive cone

P = {x ∈ E : x ≥ 0 on [0, 1]}.

Let ε be positive constant. For x ∈ E, define the operators

Tx(t) = (1 +mε)x(t)− εL1

10
,

Sx(t) = −εFx(t)−mεx(t)− εL1

10
, t ∈ [0, 1].
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Note that any fixed point x ∈ E of the operator T + S is a solution to the IVP (5.1).

Define

Pr1 = {v ∈ P : ‖v‖ < r1},

PL1 = {v ∈ P : ‖v‖ < L1},

PR1 = {v ∈ P : ‖v‖ < R1},

R2 = R1 +
A

m
(R1 + A1A2 (Rp1

1 A3 +Rp2
1 A4 + A5)) +

L1

5m
,

Ω = PR2 = {v ∈ P : ‖v‖ < R2}.

1. For x1, x2 ∈ Ω, we have

‖Tx1 − Tx2‖ = (1 +mε)‖x1 − x2‖,

whereupon T : Ω→ E is an expansive operator with a constant 1 +mε > 1.

2. We prove that S is 0-set contraction.

(a) S is continuous. Indeed, let {xn} be a sequence such that xn → x as n → ∞ in E.

We have

|Sxn(t)− Sx(t)| ≤ ε|Fxn(t)− Fx(t)|+mε|xn(t)− x(t)|, ∀t ∈ [0, 1]. (5.3)

We know that |xn(t)− x(t)| → 0, as n→∞ and

|Fxn(t)− Fx(t)|

≤
∫ t

0

(t− s)2g(s) (|xn(s)− x(s)|

+

∫ 1

0

H(s, s1)w(s1)|f (s1, xn(s1), x′′n(s1))− f (s1, x(s1), x′′(s1)) |ds1) ds, t ∈ [0, 1].

By continuity of f

lim
n→+∞

f (s1, xn(s1), x′′n(s1)) = f (s1, x(s1), x′′(s1)) ,

Then, Lemma 5.3.2 and the Lebesgue Dominated Convergence Theorem imply that∫ 1

0

H(s, s1)w(s1)|f (s1, xn(s1), x′′n(s1))− f (s1, x(s1), x′′(s1)) |ds1 → 0, as n→∞.
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So |Fxn(t)− Fx(t)| → 0, as n→∞. Thus |Sxn(t)− Sx(t)| → 0, as n→∞.

In the same way, we prove that |(Sxn)′(t)−(Sx)′(t)| → 0 and |(Sxn)′′(t)−(Sx)′′(t)| →

0, as n → ∞, and then conclude that Sxn → Sx, as n → ∞ in E, which ends the

proof.

(b) S(PR1) is uniformly bounded. Indeed, for x ∈ PR1 , we get

‖Sx‖ ≤ ε‖Fx‖+mε‖x‖+ ε
L1

10

≤ ε

(
A (R1 + A1A2 (Rp1

1 A3 +Rp2
1 A4 + A5)) +mR1 +

L1

10

)
.

(c) S(PR1) is equicontinuous in E. Indeed, let t1, t2 ∈ [0, 1], t1 < t2 and x ∈ PR1 .

From Lemma 5.3.2, we deduce

|Fx(t1)− Fx(t2)|

=

∣∣∣∣ ∫ t10
(t1 − s)2g(s)

(
−x(s) +

∫ 1

0
H(s, s1)w(s1)f(s1, x(s1), x′′(s1))ds1

)
ds

−
∫ t2

0
(t2 − s)2g(s)

(
−x(s) +

∫ 1

0
H(s, s1)w(s1)f(s1, x(s1), x′′(s1))ds1

)
ds

∣∣∣∣
≤

∫ t1
0

((t1 − s)2 − (t2 − s)2) g(s)
(
|x(s)|+

∫ 1

0
|H(s, s1)|w(s1)|f(s1, x(s1), x′′(s1))|ds1

)
ds

+
∫ t2
t1

(t2 − s)2g(s)
(
|x(s)|+

∫ 1

0
|H(s, s1)|w(s1)|f(s1, x(s1), x′′(s1))|ds1

)
ds

≤
∫ 1

0
((t1 − s)2 − (t2 − s)2) g(s)

(
|x(s)|+

∫ 1

0
|H(s, s1)|w(s1)|f(s1, x(s1), x′′(s1))|ds1

)
ds

+
∫ t2
t1

(1− s)2g(s)
(
|x(s)|+

∫ 1

0
|H(s, s1)|w(s1)|f(s1, x(s1), x′′(s1))|ds1

)
ds

→ 0, as t1 → t2.

Similarly,

|(Fx)′(t2)− (Fx)′(t1)| → 0, as t1 → t2,

and

|(Fx)′′(t2)− (Fx)′′(t1)| → 0, as t1 → t2.

Consequently,

|Sx(t2)− Sx(t1)| ≤ ε|Fx(t2)− Fx(t1)|+ εm|x(t2)− x(t1)| → 0,

|(Sx)′(t2)− (Sx)′(t1)| ≤ ε|(Fx)′(t2)− (Fx)′(t1)|+ εm|x′(t2)− x′(t1)| → 0,

|(Sx)′′(t2)− (Sx)′′(t1)| ≤ ε|(Fx)′′(t2)− (Fx)′′(t1)|+ εm|x′′(t2)− x′′(t1)| → 0,

as t1 → t2.
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Therefore, S(PR1) is equicontinuous.

According to the Arzela-Ascoli compactness criteria, we conclude that S : PR1 → E is

completely continuous. So, it is 0-set contraction.

3. Let v1 ∈ PR1 . Set

v2 = v1 +
1

m
Fv1 +

L1

5m
.

Note that by the second inequality of (H3) and by Lemma 5.3.2, it follows that

εFv1 + εL1

5
≥ 0 on [t0,∞). We have v2 ≥ 0 on [t0,∞) and

‖v2‖ ≤ ‖v1‖+
1

m
‖Fv1‖+

L1

5m

≤ R1 +
A

m
(R1 + A1A2 (Rp1

1 A3 +Rp2
1 A4 + A5)) +

L1

5m

= R2.

Therefore, v2 ∈ Ω and

−εmv2 = −εmv1 − εFv1 − ε
L1

10
− εL1

10

or

(I − T )v2 = −εmv2 + ε
L1

10

= Sv1.

Consequently, S(PR1) ⊂ (I − T )(Ω).

4. Assume that for any u0 ∈ P∗ there exist λ0 > 0 and x0 ∈ ∂Pr1 ∩ (Ω + λ0u0) or x0 ∈

∂PR1 ∩ (Ω + λ0u0) such that

Sx0 = (I − T )(x0 − λ0u0).

Then

−εFx0(t)− εmx0(t)− εL1

10
= −εm(x0(t)− λ0u0) + ε

L1

10
, t ∈ [0, 1].

Whereupon,

Fx0(t) = −λ0mu0 −
L1

5
, t ∈ [0, 1].
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So,

‖Fx0‖ = ‖λ0mu0 +
L1

5
‖ > L1

5
,

which contradicts Lemma 5.3.2 and the second inequality of (H3).

5. Let ε1 = 2
5m

. Assume that there exist λ1 ≥ ε1 + 1 and x1 ∈ ∂PL1 , λ1x1 ∈ PR1 such that

Sx1 = (I − T )(λ1x1).

Note that x1 ∈ ∂PL1 and λ1x1 ∈ PR1 imply(
2

5m
+ 1

)
L1 < λ1L1 = λ1‖x1‖ ≤ R1.

Then

−εFx1 −mεx1 − ε
L1

10
= −λ1mεx1 + ε

L1

10
,

or

Fx1 +
L1

5
= (λ1 − 1)mx1.

Hence,

2
L1

5
> ‖Fx1 +

L1

5
‖ = (λ1 − 1)m‖x1‖ = (λ1 − 1)mL1,

or

λ1 <
2

5m
+ 1,

which is a contradiction.

Therefore all conditions of Theorem 5.2.1 hold. Hence, the BVP (5.1) has at least two solutions

x1 and x2 such that

r1 ≤ ‖x1‖ < L1 < ‖x2‖ ≤ R1.

5.5 Concluding remarks

1. The conclusion of the main result of [12] remains true if we replace the condition w ∈

L1([0, 1]) by the following one:

w : [0, 1]→ R is a nonnegative function such that wai ∈ L1([0, 1]), i = 1, 2.
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2. In [78], the BVP (5.1) is investigated in the case when

(A1) w may be singular at t = 0 and (or) t = 1, w ∈ L1([0, 1]), f : [0, 1] × [0,∞) ×

(−∞, 0] → [0,∞) is continuous, h1, h2, k1, k2 ∈ L1([0, 1]) are nonnegative with

µ1 > 0, ν1 > 0, µ2 > 0, ν2 > 0.

If (A1) holds and Nf0 > 1, Nf∞ > 1, and there exists b > 0 such that

max
t∈[0,1],0<|x|+|y|≤b

f(t, x, y) < b
L

, where

fβ = lim inf
|x|+|y|→β

min
t∈[0,1]

f(t, x, y)

|x|+ |y|
, β = 0, β =∞,

and

L =
(η1η2

16
+
η2

4

)∫ 1

0

w(s)ds,

N =
(ρ1ρ2

120
+
ρ2

4

)
δ2

∫ 1−δ

δ

e(s)w(s)ds,

η1 =
m1 + n1 + µ1(1− ν1)

m1ν1 + n1µ1

, η2 =
m2 + n2 + µ2(1− ν2)

m2ν2 + n2µ2

,

ρ1 =
1

m1ν1 + n1µ1

(
µ1

∫ 1

0

e(τ)k1(τ)dτ + ν1

∫ 1

0

e(τ)h1(τ)dτ

)
,

ρ2 =
1

m2ν2 + ν2µ2

(
µ2

∫ 1

0

e(τ)k2(τ)dτ + ν2

∫ 1

0

e(τ)h2(τ)dτ

)
,

e(t) = t(1− t), t ∈ [0, 1],

in [78], it is proved that the BVP (5.1) has at least two positive solutions.

Moreover, if (A1) holds and Lf 0 < 1, Lf∞ < 1, and there exist δ ∈
(
0, 1

2

)
and B > 0 such

that f(t, x, y) > δ2B
N

for all t ∈ Jδ, x ∈ [δ2B,B], y ∈ [−B,−δ2B], where Jδ = [δ, 1− δ],

fβ = lim sup
|x|+|y|→β

max
t∈[0,1]

f(t, x, y)

|x|+ |y|
, β = 0, β =∞,

in [78], it is proved that the BVP (5.1) has at least two positive solutions.

When µ1 < 0 or ν1 < 0, or µ2 < 0, or ν2 < 0, then we can not apply the results in [78]

and we can apply the main result of [12]. Thus, the main result of [12] and the results in

[78] are complementary.
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5.6 Example

Let

r1 = 1, L1 = 10, R1 = 20,

p1 = p2 = 0, m = 1000, A =
1

102
.

Let also,

h1(s) = h2(s) = k1(s) = k2(s) = s, a1(s) = a2(s) = a3(s) =
1

3
, w(s) =

1√
s
, s ∈ [0, 1].

Then

m1 = m2 =

∫ 1

0

s2ds =
1

3
,

n1 = n2 = 1− 1

3
=

2

3
,

µ1 = µ2 = ν1 = ν2 = 1−
∫ 1

0

sds =
1

2
,

K1 = K2 = H1 = H2 =

∫ 1

0

sds =
1

2
,

A1 = A2 = 1 +
1
3

+ 1
2

1
6

+ 1
3

· 1

2
+

2
3

+ 1
2

1
6

+ 1
3

· 1

2

= 1 +
5
6
3
6

· 1

2
+

7
6
3
6

· 1

2

= 1 +
5

6
+

7

6
= 1 + 2 = 3,

A3 = A4 = A5 =
1

3

∫ 1

0

ds√
s

=
2

3

√
s

∣∣∣∣s=1

s=0

=
2

3
.

Then

A (R1 + A1A2 (Rp1
1 A3 +Rp2

1 A4 + A5)) =
1

102
(20 + 9 · 2)

< 2 =
L1

5
.

R1

L1

= 2 >
2

5000
+ 1 =

2

5m
+ 1.

Thus, (H3) holds. Let g(s) = 1
103

, s ∈ [0, 1]. Then∫ 1

0

((1− s)2 + 2(1− s) + 2)g(s)ds =
1

103

∫ 1

0

(s2 − 4s+ 5)ds =
1

3 · 102
< A.
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Therefore (H4) holds. Consequently the BVP

x(4)(t) =
1√
t

(
1

1 + (x′′(t))2

)
, t ∈ (0, 1),

x(0) = x(1) =

∫ 1

0

sx(s)ds, x′′(0) = x′′(1) = x′(1),

has at least two nonnegative solutions.
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Chapitre 6

Appendix: Green’s functions for some

boundary value problems in ODEs

The Green’s function plays an important role in solving boundary value problems of ordinary

differential equations. The solutions of some boundary value problems for linear ordinary dif-

ferential equations can be expressed by their respective Green’s functions, in what follows, we

give some examples. The interest of Green’s function resides mainly in the resolution of non-

homogeneous differential equations, it is necessary on the one hand to determine the general

solution of the homogeneous equation associated, and on the other hand, to find a particular

solution of the complete equation, then add both solutions to determine the integration con-

stants with indispensable additional data. Green’s function makes it possible to find precisely

this particular solution. Some boundary value problems for nonlinear differential equations

can be transformed into nonlinear integral equations whose kernel are the Green’s functions of

corresponding linear differential equations. Such integral equations can be studied using the

properties of Green’s functions. The concept, the significance and the development of Green’s

functions can be seen in [21, 22, 31, 68].
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Second-order differential equation with linear boundary

conditions

Consider the following linear second order differential equation

(E) p(x)y′′ + q(x)y′ + r(x)y = f(x), x ∈ [a, b],

where p, q, r and f are continuous functions in [a, b], associated to non separated linear boundary

conditions :

(F)

 U1(y) = α1y(a) + α2y
′(a) + α3y(b) + α4y

′(b) = γ,

U2(y) = β1y(a) + β2y
′(a) + β3y(b) + β4y

′(b) = δ,

where αi, βi, i = 1, 4 and γ, δ are real constants.

We call associated homogeneous boundary value problem to (E) + (F) the problem (EH) +

(FH) such that :

(EH) p(x)y′′ + q(x)y′ + r(x)y = 0, a < x < b

and

(FH)

 U1(y) = 0,

U2(y) = 0.

If (f 6= 0 and γ = δ = 0) or (f = 0 and (γ 6= 0 or δ 6= 0)), we say that the problem (E) + (F)

is semi homogeneous.

Remark 6.0.1 1. The boundary value problem (E)+(F) is said to be regular if a and b are

finite numbers, p, q, r are bounded functions on [a, b] and p(x) 6= 0 ∀x ∈ [a, b], otherwise

we say that it is singular.

2. The linear boundary conditions (F) are general, in particular they

include :

a) The Dirichlet’s conditions : y(a) = γ, y(b) = δ ;

b) Neuman’s conditions : y′(a) = γ, y′(b) = δ ;

c) The mixed conditions: y(a) = γ, y′(b) = δ or y′(a) = γ, y(b) = δ ;
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d) The linear separated boundary conditions α1y(a) + α2y
′(a) = γ

β1y(b) + β2y
′(b) = δ,

where α2
1 + α2

2 6= 0 and β2
1 + β2

2 6= 0;

e) The linear periodic boundary conditions y(a) = y(b)

y′(a) = y′(b).

In what follows, we present a result, called Fredholm alternative, that assures the existence

and the unicity of the solution of the problem (E) + (F).

Theorem 6.0.2 (Fredholm alternative) ([1], page 236)

The nonhomogeneous problem (E) + (F) admits a unique solution if and only the homogeneous

problem (EH) + (FH) admits only the trivial solution y ≡ 0.

Definition 6.0.3 G : [a, b]× [a, b]→ R is called Green’s function of the problem (EH) + (FH)

if it verifies the following properties :

1. G is continuous in [a, b]× [a, b];

2. ∂G
∂x

is continuous in each point (x, t) ∈ [a, b]× [a, b] such that x 6= t;

3. ∂G
∂x

(x, x−)− ∂G
∂x

(x, x+) = 1
p(x)

∀x ∈ [a, b], where

∂G

∂x
(x, x−) = lim

t→x−

∂G

∂x
(x, t) and

∂G

∂x
(x, x+) = lim

t→x+

∂G

∂x
(x, t);

4. ∀t ∈ (a, b) the function x 7→ G(x, t) verifies the homogeneous equation (EH) in each of the

intervals [a, t) and (t, b];

5. ∀t ∈ (a, b) the function x 7→ G(x, t) verifies the homogeneous conditions (FH).

Theorem 6.0.4 ([1], pp 240-244) Suppose that the homogeneous problem (EH) + (FH) has

only the trivial solution. Then, there exists a unique function G, called Green’s function, such
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that for every continuous function f the solution y of the semi homogeneous problem (E)+(FH)

is uniquely written like the following:

y(x) =

∫ b

a

G(x, t)f(t)dt.

Proof. Existence, uniqueness and construction of the function G

Let ϕ1, ϕ2 two independent solutions of (EH). By defintion, the partial function x 7→ G(x, t)

is solution of the equation (EH) in each interval [a, t[ and ]t, b], there exist four functions on t

such that :

G(x, t) =

 λ1(t)ϕ1(x) + λ2(t)ϕ2(x) if a ≤ x ≤ t

µ1(t)ϕ1(x) + µ2(t)ϕ2(x) if t ≤ x ≤ b,
(6.1)

Next, the Properties 1 and 3 give the system : λ1(t)ϕ1(t) + λ2(t)ϕ2(t) = µ1(t)ϕ1(t) + µ2(t)ϕ2(t)

µ1(t)ϕ′(t) + µ2(t)ϕ′(t)− λ1(t)ϕ′(t)− λ2(t)ϕ′(t) = 1
p(t)
.

(6.2)

Posing v1(t) = µ1(t)− λ1(t) et v2(t) = µ2(t)− λ2(t), the System (6.2) becomes v1(t)ϕ1(t) + v2(t)ϕ2(t) = 0

v1(t)ϕ′(t) + v2(t)ϕ′(t) = 1
p(t)
.

(6.3)

Since the Wronksian W (ϕ1, ϕ2)(x) 6= 0 for all t ∈ [a, b] the system (6.3) admits a unique

solution (v1(t), v2(t)). Using the relations µ1(t) = λ1(t) + v1(t) et µ2(t) = λ2(t) + v2(t), the

Green’s function G becomes :

G(x, t) =

 λ1(t)ϕ1(x) + λ2(t)ϕ2(x), if a ≤ x ≤ t ≤ b

λ1(t)ϕ1(x) + λ2(t)ϕ2(x) + v1(t)ϕ1(x) + v2(t)ϕ2(x), if a ≤ t ≤ x ≤ b.

Next, the Property 5 gives the system U1(ϕ1)λ1(t) + U1(ϕ2)λ2(t) = k1(t)

U2(ϕ1)λ1(t) + U2(ϕ2)λ2(t) = k2(t),
(6.4)

where  k1(t) = −v1(t)[α3ϕ1(b) + α4ϕ
′(b)]− v2(t)[α3ϕ2(b) + α4ϕ

′(b)],

k2(t) = −v1(t)[β3ϕ1(b) + β4ϕ
′(b)]− v2(t)[β3ϕ2(b) + β4ϕ

′(b)].
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Indeed, we have

G(a, t) = λ1(t)ϕ1(a) + λ2(t)ϕ2(a), (a ≤ t)

∂G
∂x

(a, t) = λ1(t)ϕ′(a) + λ2(t)ϕ′(a),

G(b, t) = λ1(t)ϕ1(b) + λ2(t)ϕ2(b) + v1(t)ϕ1(b) + v2(t)ϕ2(b), (t ≤ b)

∂G
∂x

(b, t) = λ1(t)ϕ′(b) + λ2(t)ϕ′(b) + v1(t)ϕ′(b) + v2(t)ϕ′(b).

Since the function x 7→ G(x, t) verifies the boundary conditions (FH) for all t ∈ [a, b], then

α1G(a, t) + α2
∂G
∂x

(a, t) + α3G(b, t) + α4
∂G
∂x

(b, t) = 0,

which gives the equation

λ1(t)[α1ϕ1(a) + α2ϕ
′(a) + α3ϕ1(b) + α4ϕ

′(b)] + λ2(t)[α1ϕ2(a) + α2ϕ
′(a)+

α3ϕ2(b) + α4ϕ
′(b)] + ν1(t)[α3ϕ1(b) + α4ϕ

′(b)] + v2(t)[α3ϕ2(b) + α4ϕ
′(b)] = 0,

which is equivalent to

λ1(t)[α1ϕ1(a) + α2ϕ
′(a) + α3ϕ1(b) + α4ϕ

′(b)] + λ2(t)[α1ϕ2(a) + α2ϕ
′(a)+

α3ϕ2(b) + α4ϕ
′(b)]

= −v1(t)[α3ϕ1(b) + α4ϕ
′(b)]− v2(t)[α3ϕ2(b) + α4ϕ

′(b)] = k1(t).

In the same way, we get

β1G(a, t) + β2
∂G
∂x

(a, t) + β3G(b, t) + β4
∂G
∂x

(b, t) = 0

which gives the second equation of the system(6.4).

By hypothesis, the homogeneous problem (EH)+(FH) admits only the trivial solution, the deter-

minant of the system (6.4) is non-zero. Thus, this system admits a unique solution (λ1(t), λ2(t)).

Example 6.0.5 Let us consider the following periodic boundary problem :

(P )


y′′(x) + k2y(x) = 0, 0 < x < a, k > 0

y(0) = y(a),

y′(0) = y′(a), a > 0.
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Let ϕ1(x) = cos kx and ϕ2(x) = sin kx two linearly independent solutions of the equation

y′′(x) + k2y(x) = 0. The homogeneous problem associated to the problem (P ) having only one

solution y ≡ 0 if and only if ∆ = 4k sin2 ka

2
6= 0.

Let a ∈]0, 2π
k

[. The Green’s function G associated to the problem (P ) is written like the following

G(x, t) =

 λ1(t) cos kx+ λ2(t) sin kx if 0≤ x < t

µ1(t) cos kx+ µ2(t) sin kx if t < x ≤ a.

Let v1(t) = µ1(t)− λ1(t) and v2(t) = µ2(t)− λ2(t). Then, v1(t) et v2(t) verify the system cos(kt)v1(t) + sin(kt)v2(t) = 0,

−k sin(kt)v1(t) + k cos(kt)v2(t) = 1,

which gives

v1(t) = −1

k
sin kt et v2(t) =

1

k
cos kt.

Then, λ1(t) and λ2(t) verify the system
(1− cos ka)λ1(t)− sin kaλ2(t) =

1

k
sin k(a− t)

sin kaλ1(t) + (1− cos ka)λ2(t) =
1

k
cos k(a− t).

The determinant ∆ of this system in (λ1(t), λ2(t)) is nonzero, then λ1(t) and λ2(t) are well

defined and unique such that

λ1(t) =
1

2k sin k
2

cos k(t− a

2
) et λ2(t) =

1

2k sin k
2

sin k(t− a

2
).

We replace these functions in the expression of the Green’s function and we get

G(x, t) =
1

2k sin k
2


cos k(x− t+

a

2
) 0 ≤ x ≤ t

cos k(t− x+
a

2
) t ≤ x ≤ a

.

Particular case: separate linear boundary conditions

Let consider the following linear differential second order equation

(E) p(x)y′′ + q(x)y′ + r(x)y = f(x), x ∈ [a, b],

where p, q, r et f are regular functions associated to separated linear boundary conditions :

(F)

 α1y(a) + α2y
′(a) = γ

β1y(b) + β2y
′(b) = δ,
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where α2
1 +α2

2 6= 0 et β2
1 + β2

2 6= 0. In this case, The Green’s function associated to the problem

(EH) + (FH) can be determined with an easier way like the following :

G(x, t) =
1

p(t)W (t)

 φ1(x)φ2(t), a ≤ x ≤ t,

φ1(t)φ2(x), t ≤ x ≤ b,

where φ1 and φ2 are the solutions of the initial conditions problems respectively

(EH) +

 φ1(a) = α2

φ′1(a) = −α1

and (EH) +

 φ2(b) = β2

φ
′
2(b) = −β1,

W (t) = φ1(t)φ′2(t)− φ′1(t)φ2(t) 6= 0 is their Wronskian and p(t) = exp
(∫ t q(s)

p(s)
ds
)
.

Note that the product pW is constant in [a, b].

Example 6.0.6 Consider the Dirichlet’s problem posed in [a, b]

(P)

 y′′= f(x), a < x < b

y(a) = y(b) = 0.

Let build the functions φ1 and φ2 solutions of Cauchy’s problems :
φ′′1= 0

φ1(a) = 0

φ′(a) = −1.

and


φ′′2= 0

φ2(b) = 0

φ′(b) = −1.

We find φ1(x) = a− x, φ2(x) = b− x, W (φ1, φ2) = b− a 6= 0 et p(t) = 1, t ∈ [a, b].

Hence the Green’s function

G(x, t) =


(x−a)(t−b)

b−a , if a≤ x ≤ t ≤ b

(t−a)(x−b)
b−a , if a≤ t ≤ x ≤ b.

(6.5)

Second-order differential equation with three point bound-

ary conditions

In this paragraph, we consider the Green’s functions for a second-order linear ordinary dif-

ferential equation with some three-point boundary conditions. The results presented here are

developed by Zhao in [85].
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We consider the second-order linear differential equation

y′′ + f(t) = 0, t ∈ [a, b], (6.6)

satisfying the boundary conditions

y(a) = ky(η), y(b) = 0, (6.7)

where k is a given real number and η ∈ (a, b) is a given point.

The Green’s function of Equation (6.6) with the boundary condition (6.7)

Theorem 6.0.7 Assume k(b − η) 6= b − a. Then, the Green’s function for the (6.6)-(6.7), is

given by

G(t, s) = K(t, s) +
k(b− t)

b− a− k(b− η)
K(η, s),

where

K(t, s)


(s−a)(b−t)

b−a , a ≤ s ≤ t ≤ b

(t−a)(b−s)
b−a , a ≤ t ≤ s ≤ b.

(6.8)

Proof. It is well known that the Green’s function is K(t, s) as in (6.8) for the second order

two-point linear boundary value problem u′′ + f(t) = 0, t ∈ (a, b),

u(a), u(b) = 0,
(6.9)

and the solution of (6.9) is given by

w(t) =

∫ b

a

K(t, s)f(s)ds, (6.10)

and

w(a) = 0, w(b) = 0, w(η) =

∫ b

a

K(η, s)f(s)ds. (6.11)

The three-point boundary value problem (6.6)−(6.7) can be obtained from replacing u(a) =

0 by u(a) = ku(η) in (6.9). Thus, we suppose that the solution of the three-point boundary

value problem (6.6)− (6.7) can be expressed by

u(t) = w(t) + (c+ d t)w(η); (6.12)
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where c and d are constants that will be determined. From (6.11),(6.12), we know that

u(a) = (c+ da)w(η),

u(b) = (c+ db)w(η),

u(η) = (c+ dη + 1)w(η).

Putting these into (6.7) yields  c+ da = k(c+ dη + 1),

c+ db = 0.

Since k(b− η) 6= b− a, by solving the system of linear equations on the unknown numbers c, d,

we obtain  c = kb
b−a−k(b−η ,

d = −k
b−a−k(b−η)

,

hence, c+ dt = k(b−t)
b−a−k(b−η)

. By substitution in (6.12), we get

u(t) = w(t) +
k(b− t)

b− a− k(b− η)
.

This together with (6.10) implies that

u(t) =

∫ b

a

K(t, s)f(s) +
k(b− t)

b− a− k(b− η)

∫ b

a

K(η, s)f(s)ds.

Consequently, the Green’s function G1(t, s) for the boundary value problem (6.6)− (6.7) is as

described in Theorem 6.0.7.

From Theorem 6.0.7 we obtain the following corollary.

Corollary 6.0.8 If k(b − η) 6= b − a, then the second-order three-point linear boundary value

problem  u′′ + f(t) = 0, t ∈ [a, b],

u(a) = ku(η), u(b) = 0

has a unique solution

u(t) =

∫ b

a

G(t, s)f(s)ds.

Consequetly, for a = 0 and b = 1, we have the following result.
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Corollary 6.0.9 If k(1 − η) 6= 1, then the Green’s function for the second-order three-point

boundary value problem  u′′ + f(t) = 0, t ∈ [0, 1],

u(0) = ku(η), u(1) = 0
(6.13)

is

G(t, s) = H(t, s) +
k(1− t)

1− k(1− η)
H(η, s), (6.14)

where

H(t, s)

 s(1− t), 0 ≤ s ≤ t ≤ 1

t(1− s), 0 ≤ t ≤ s ≤ 1.
(6.15)

Hence the problem (6.13) has a unique solution

u(t) =

∫ 1

0

G(t, s)f(s)ds.

If g(t, u) is continuous in [0, 1]× R, then the nonlinear boundary value problem u′′ + g(t, u) = 0, t ∈ [0, 1],

u(0) = ku(η), u(1) = 0

is equivalent to the integral equation

u(t) =

∫ 1

0

G(t, s)g(s, u(s))ds.

Fourth-order differential equation with integral boundary

conditions

We consider the following fourth-order boundary value problem with integral conditions
x(4)(t) = w(t)f (t, x(t), x′′(t)) , t ∈ (0, 1),

x(0) =
∫ 1

0
h1(s)x(s)ds, x(1) =

∫ 1

0
k1(s)x(s)ds,

x′′(0) =
∫ 1

0
h2(s)x′′(s)ds, x′′(1) =

∫ 1

0
k2(s)x′′(s)ds,

(6.16)

where

(A1) w is nonnegative, and w ∈ L1[0, 1] may have singularities at t = 0 and(or) t = 1;
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(A2) f ∈ C([0, 1]× R× R;

(A3) h1, h2, k1, k2 ∈ L1[0, 1] are nonnegative and

µ1 = 1−
∫ 1

0

h1(s)ds > 0,

v1 = 1−
∫ 1

0

k1(s)ds,

µ2 = 1−
∫ 1

0

h2(s)ds > 0,

v2 = 1−
∫ 1

0

k2(s)ds,

In order to get the Green’s function of problem (6.16) we need the following Lemma.

Lemma 6.0.10 If h, k ∈ L1[0, 1] are nonnegative, and µ = 1 −
∫ 1

0
h(s)ds > 0, v = 1 −∫ 1

0
k(s)ds > 0, then for any y ∈ C(0, 1), the BVP −x

′′(t) = y(t), t ∈ (0, 1),

x(0) =
∫ 1

0
h(s)x(s)ds, x(1) =

∫ 1

0
k(s)x(s)ds,

(6.17)

has a unique solution x which is given by

x(t) =

∫ 1

0

H̃(t, s)y(s)ds, (6.18)

where

H̃(t, s) = G(t, s) +
m+ µt

mv + nµ

∫ 1

0

k(τ)G(s, τ)dτ +
n− vt
mv + nµ

∫ 1

0

h(τ)G(s, τ)dτ, (6.19)

G(t, s) =

 s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1,
(6.20)

and

m =

∫ 1

0

sh(s)ds, n = 1−
∫ 1

0

sk(s)ds. (6.21)

Proof. The general solution x′′(t) = y(t) can be written as

x(t) = −
∫ 1

0

(t− s)y(s)ds+ At+B. (6.22)
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Now, we solve for A, B by x(0) =
∫ 1

0
h(s)x(s)ds and x(1) =

∫ 1

0
k(s)x(s)ds, it follows that

B = −
∫ 1

0
h(τ)

∫ τ
0

(τ − s)y(s)dsdτ + A
∫ 1

0
τh(τ)dτ +B

∫ 1

0
h(τ)dτ,

−
∫ 1

0
(1− s)y(s)ds+ A+B

= −
∫ 1

0
k(τ)

∫ τ
0

(τ − s)y(s)dsdτ + A
∫ 1

0
τk(τ)dτ +B

∫ 1

0
k(τ)dτ,

(6.23)

that is,

A
∫ 1

0
τh(τ)dτ −B

(
1−

∫ 1

0
h(τ)dτ

)
=
∫ 1

0
h(τ)

∫ τ
0

(τ − s)y(s)dsdτ,

A
(

1−
∫ 1

0
τk(τ)dτ

)
+B

(
1−

∫ 1

0
k(τ)dτ

)
=
∫ 1

0
(1− s)y(s)ds−

∫ 1

0
k(τ)

∫ τ
0

(τ − s)y(s)dsdτ.

(6.24)

Solving the above equations, we get

A = 1
mv+nµ

(v
∫ 1

0
h(τ)

∫ 1

0
h(τ)

∫ τ
0

(τ − s)y(s)dsdτ + µ(
∫ 1

0
(1− s)y(s)ds

−
∫ 1

0
k(τ)

∫ τ
0

(τ − s)y(s)dsdτ)),

B = 1
mv+nµ

(m(
∫ 1

0
(1− s)y(s)ds−

∫ 1

0
(k(τ)

∫ τ
0

(τ − s)y(s)dsdτ)

−n
∫ 1

0
h(τ)

∫ τ
0

(τ − s)y(s)dsdτ).

(6.25)

Therefore, (6.17) has a unique solution

x(t) =

−
∫ t

0
(t− s)y(s)ds+ 1

mv+nµ
×
[
vt
∫ 1

0
h(τ)

∫ τ
0

(τ − s)y(s)dsdτ

+µt
(∫ 1

0
(1− s)y(s)ds−

∫ 1

0
k(τ)

∫ τ
0

(τ − s)y(s)dsdτ
)

+m
(∫ 1

0
(1− s)y(s)ds−

∫ 1

0
k(τ)

∫ τ
0

(τ − s)y(s)dsdτ
)

− n
∫ 1

0
h(τ)

∫ τ
0

(τ − s)y(s)dτ
]
.
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The unique solution of (6.17) is expressed as the following

x(t) =
∫ t

0
s(1− t)y(s)ds+

∫ 1

t
t(1− s)y(s)ds

+ 1
mv+nµ

[
µt
∫ 1

0
τk(τ)

∫ 1

0
(1− s)y(s)ds − µt

∫ 1

0
(1− s)y(s)ds

−vt
∫ 1

0
τh(τ)dτ

∫ 1

0
(1− s)y(s)ds+ vt

∫ 1

0
h(τ)

∫ τ
0

(τ − s)y(s)dsdτ

+µt
∫ 1

0
(1− s)y(s)ds− µt

∫ 1

0
k(τ)

∫ τ
0

(τ − s)y(s)dsdτ

+
∫ 1

0
τh(τ)dτ

∫ 1

0
(1− s)y(s)ds−

∫ 1

0
τh(τ)dτ

∫ 1

0
k(τ)

∫ τ
0

(τ − s)y(s)dsdτ

−
∫ 1

0
h(τ)

∫ τ
0

(τ − s)y(s)dsdτ +
∫ 1

0
τk(τ)dτ

∫ 1

0
h(τ)

∫ τ
0

(τ − s)y(s)dsdτ

−
∫ 1

0
τk(τ)dτ

∫ 1

0
τh(τ)dτ

∫ 1

0
(1− s)y(s)ds

+
∫ 1

0
τh(τ)

∫ 1

0
τk(τ)dτ

∫ 1

0
(1− s)y(s)ds

]
=

∫ t
0
s(1− t)y(s)ds+

∫ 1

t
t(1− s)y(s)ds

+ 1
mv+nµ

[
µt
(
k(τ)

∫ τ
0
s(1− τ)y(s)dsdτ +

∫ 1

0
k(τ)

∫ 1

τ
τ(1− s)y(s)dsdτ

)
−vt

(∫ 1

0
h(τ)

∫ τ
0
s(1− τ)y(s)dsdτ +

∫ 1

0
h(τ)

∫ 1

τ
τ(1− s)dsdτ

)
+
(∫ 1

0
h(τ)

∫ τ
0
s(1− τ)y(s)dsdτ +

∫ 1

0
g(τ)

∫ 1

0
τ(1− s)dsdτ

)
−
∫ 1

0
τk(τ)dτ

×
(∫ 1

0
h(τ

∫ τ
0
s(1− τ)y(s)dsdτ

+
∫ 1

0
h(τ)

∫ 1

τ
τ(1− s)y(s)dsdτ

)
+
∫ 1

0
τh(τ)dτ

×
(∫ 1

0
k(τ)

∫ τ
0
s(1− τ)y(s)dsdτ

+
∫ 1

0
k(τ)

∫ 1

τ
τ(1− s)y(s)dsdτ

)]
=

∫ 1

0
G(t, s)y(s)ds+ 1

mv+nµ
×
[
µt
∫ 1

0
k(τ)

∫ 1

0
G(s, τ)y(s)dsdτ

−vt
∫ 1

0
h(τ)

∫ 1

0
G(s, τ)y(s)dsdτ

+
∫ 1

0
h(τ)

∫ 1

0
G(s, t)y(s)dsdτ

−
∫ 1

0
τk(τ)dτ

∫ 1

0
h(τ)

×
∫ 1

0
G(s, τ)y(s)dsdτ

+
∫ 1

0
τh(τ)dτ

∫ 1

0
k(τ)

×G(s, τ)y(s)dsdτ ]

=
∫ 1

0
G(t, s)y(s)ds+ m+µt

mv+nµ

∫ 1

0
y(s)

∫ 1

0
k(τ)G(s, τ)dτds

+ n−vt
mv+nµ

∫ 1

0
y(s)

∫ 1

0
h(τ)G(s, τ)dτds.

(6.26)

Therefore, the unique solution of (6.17) is x(t) =
∫ 1

0
H̃(t, s)y(s)ds.
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Theorem 6.0.11 Assume that (A1)-(A3) hold. If x(t) ∈ C2[0, 1] is a solution of the following

integral equation

x(t) =

∫ 1

0

H(t, s)w(s)f(s, x(s), x′′(s))ds, (6.27)

then x(t) ∈ C2[0, 1] ∪ C4(0, 1) is a solution of BVP (6.16), where

H(t, s) =

∫ 1

0

H1(t, τ)H2(τ, s)dτ, (6.28)

H1(t, τ) = G(t, τ) + m1+µ1t
m1v1+n1µ1

∫ 1

0
k1(v)G(τ, v)dv

+ n1−v1t
m1v1+n1µ1

∫ 1

0
h1(v)G(τ, v)dv,

(6.29)

H2(τ, s) = G(τ, s) + m2+µ2τ
m2v2+n2µ2

∫ 1

0
k2(v)G(s, v)dv

+ n2−v2τ
m2v2+n2µ2

∫ 1

0
h2(v)G(s, v)dv,

(6.30)

m1 =
∫ 1

0
sh1(s)ds, n1 −

∫ 1

0
sk1(s)ds,

m2 =
∫ 1

0
sh2(s)ds, n2 = 1−

∫ 1

0
sk2(s)ds.

(6.31)

Proof. By using Lemma (6.0.10), the conclusion is abvious.

Example 6.0.12 Let consider the following fourth-order boundary value problem
x(4)(t) = 1√

s

(
1

1+(x′′(t))2

)
, t ∈ (0, 1),

x(0) = x(1) =
∫ 1

0
sx(s)ds,

x′′(0) = x′′(1) =
∫ 1

0
s(s)x′′(s)ds.

(6.32)

Then

m1 = m2 =

∫ 1

0

s2ds =
1

3
,

n1 = n2 =
2

3
.

µ1 = µ2 = v1 = v2 =
1

2

and we have

H1(t, τ) =

 τ(1
3
− t) + 2

3
, 0 ≤ τ ≤ t ≤ 1

τ(1
3
− t) + t, 0 ≤ t ≤ τ ≤ 1,

with
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H2(τ, s) =

 s(1
3
− τ) + 2

3
, 0 ≤ s ≤ τ ≤ 1

s(1
3
− τ) + τ, 0 ≤ τ ≤ s ≤ 1,

and finaly we get

H(t, s) =


1
18

(3st+ 10− 3s− 6t) 0 ≤ s ≤ t ≤ 1

1
18

(3t− s+ 2) 0 ≤ t ≤ s ≤ 1.
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Conclusion

This work is a contribution to the fixed point theory on cones of Banach spaces for the sum

of two operators. The motivation for this study stems from the fact that many problems

emanating from other fields of science are modeled as a sum of two operators. More precisely,

the purpose of this thesis work is twofold, firstly, we construct a generalized fixed point index

for operators that are sums of the form T +F, where T is an expansive operator and I −F is a

k-set contraction. For this, we appeal to the fixed point index theory for strict set contractions.

After computing this new index, several fixed point theorems and recent results are derived,

including Krasnosel’skii type theorems and Leggett-Williams type ones. Secondly, we use some

of our obtained results to investigate the existence, nonnegativity, localization and multiplicity

of solutions for two-point BVPs and for three-point BVPs as well as to study a class of fourth-

order boundary value problems with integral boundary conditions. The study of these types of

problems is driven not only by a theoretical interest, but also by the fact that several phenomena

in engineering, physics, and the life sciences can be modeled in this way.

Fixed point theory is a flourishing area of research for many mathematicians with an enor-

mous number or a wide range of applications in various fields of mathematics. The subject

has become so vast that no single work can cover all its theoretical and applied parts and this

theory still the object of intense research activity.

This work is a contribution to both theoretical and applied parts of the fixed point theory.

We suggest the following topics to study later:

• Discrete Fixed Point Theory (Tarski’s Fixed Point Theorem).

• Application to Navier-Stokes equations.
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• Fixed point theory under weak topology.

• Application to fractional differential equations (FDEs).

• Random fixed point theory.
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Abstract

This thesis consists on the study of the fixed point index theory for the sum T+F

on ordered Banach spaces and applications to some problems emanating from

other fields. First, we present the necessary elements for the elaboration of this

thesis such as the Kuratowski’smeasure of noncompactness, the topological

degree theory as well as the fixed point index theory in cones. Secondly, we

develop a new fixed point index for the same sum in the case where T is an h-

expansive mapping with h > 1 and I-F is a k-set contraction with 0 ≤ k < h. 

Finally, we use this fixed point index to develop fixed point theorems for this

class of operators which will allow us to prove existence of nonnegative

solutions for some boundary value problems.

Résumé

Cette thèse consiste en l'étude de la théorie de l'indice du point fixe pour la

somme T+F dans des espaces de Banach ordonnés et ses applications à certains

problèmes émanant d'autres domaines de la science. Dans un premier temps

nous présentons les éléments nécessaires à l'élaboration de cette thèse tels que la

mesure de non compacité de Kuratowski, la théorie du degré topologique ainsi

que la théorie de l'indice du point fixe sur les cônes. Ensuite, nous développons

un indice du point fixe pour cette somme dans le cas où T est un opérateur

expansif avec la constante h>1 et I - F est un opérateur k-contractant

d'ensembles avec 0 ≤ k < h.Finalement, en utilisant cet indice, nous développons 

des théorèmes du point fixequi nous permettent de trouver des solutions

positives à des problèmes aux limites associés à des équations différentielles

d'ordre deux et d'ordre quatre.

ملخّص

مؤشر النقطة الصامدة الخاصة بالمؤثرات التي تكتب على شكل مجموع نھتم في ھذه الأطروحة بدراسة 

ھذا المؤشر .مؤثرین ذات خصائص مختلفة والمعرّفة على مجموعات محدبة ومغلقة من فضاء بناخي

تطویر نظریات النقطة الصامدة على المخروطات بالنسبة لھذا سوف یمكّننا فیما بعد، من جھة، من 

الصنف من المؤثرات، ومن جھة أخرى سوف یمكّننا من إثبات وجود حلول موجبة لبعض المعادلات 

للإشارة .التكاملیة وكذا لبعض المعادلات التفاضلیة الغیر خطیة المرفقة بأنماط مختلفة من الشروط الحدیة

لصامدة تأثرت بشكل كبیر بالتقدم الموازي للأعمال البحثیة المنجزة على الدرجة فإن نظریة النقطة ا

یعود التطور الھائل الذي عرفتھ نظریة المؤشر الطوبولوجي .الطوبولوجیة لأصناف مختلفة من المؤثرات

ل إلى أنھ أداة قویة ومرنة من أجل دراسة وجود الحلو)الدرجة الطوبولوجیة ومؤشر النقطة الصامدة(

.للكثیر من المسائل الغیر خطیة
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