

Democratic and Popular Republic of Algeria

Ministry of Higher Education and Scientific Research

University A. Mira of Bejaia

 Faculty of Exact Sciences

Computer science Department

Thesis submitted for the Master degree

in Software Engineering

Presented by

Deployment of ML models as web applications

M. Abdelkader TAGMOUNI M. Islem MERZOUG

Evaluated by the jury composed of

Supervisor : M. A. BELAID

Member : M. A. AKILAL

Member : Ms. H. BRAHAMI EL BOUHISSI

2020 - 2021

Acknowledgements

First and foremost, we thank Allah for assisting us in completing this project and for
being with us throughout our lives.

We would like to express our gratitude to our mentor, Dr. BELAID Ahror, for
providing us with an amazing opportunity to carry out this research and gain valuable
information and expertise in the field of MLOps. His patience, drive, and vast knowledge
constantly lead us in the right direction.

We also appreciate the jury members, Dr. AKILAL Abdellah and Dr. BRAHAMI El

BOUHISSI Houda, for taking the time to assess our work.

We'd also like to express our gratitude to all of our instructors and colleagues at the

University of Bejaia.

Thank you to all of our friends who have consistently pushed us ahead.

Last but not least, we want to express our gratitude to our parents and families for

always being there for us and for supporting in such difficult moment.

 Table of contents

Acknowledgements

Introduction: .. 1

Chapter 1

1.1- Chapter introduction: .. 2

1.2- Machine learning: ... 2

1.3- Different Types of machine learning:.. 2

1.4- What is MLOps? .. 3

1.5- MLOps challenges: .. 4

1.6- Who is concerned during the MLOps process? .. 5

1.7- MLOps life cycle: ... 6

1.8- Chapter conclusion: .. 8

Chapter 2

2.1- Introduction .. 9

2.2- The methodology and languages adopted ... 9

2.3- Specification of functional needs .. 9

2.3.1- Medical images processing: ... 10

2.3.2- Object detection processing:.. 10

2.3.3- Face and gender detection processing: ... 10

2.3.4- Contact admin by mailing form: ... 10

2.3.5- Backoffice: .. 10

2.4- Specification of non-functional needs: ... 10

2.5- UML language: .. 10

2.6- Use case diagram: ... 11

2.6.1- Identification of the different actors: ... 11

2.6.2- Identification of the use cases:... 12

2.6.3- Global use case diagram: .. 12

2.6.4- Textual description of each use case: .. 12

2.7- The proposed solutions ... 14

2.7.1- Solution 1: ... 14

2.7.1.1- Global view of the solution: .. 14

2.7.1.2- Sequence diagrams for the proposed solution: .. 15

2.7.1.3- Deployment diagram .. 17

2.7.1.4- Required configurations for the deployment: .. 17

2.7.1.5- Application screenshots: ... 25

2.7.2- Solution 2: ... 29

2.7.2.1- Global view of the solution: .. 29

2.7.2.2- Sequence diagrams for the proposed solution: .. 29

2.7.2.3- Deployment diagram .. 31

2.7.2.4- The required configurations for deployment: .. 31

2.7.2.5- Application screenshots .. 36

2.8- Solutions comparison .. 39

2.9- Chapter conclusion: .. 40

Chapter 3

3.1- Introduction: ... 41

3.2- Front office .. 41

3.2.1- ReactJS .. 41

3.2.1.1- Advantages of React ... 42

3.2.2- Laravel .. 42

3.2.3- Bootstrap 4 ... 43

3.3- Virtual machine management (Container Management) .. 44

3.3.1- Docker ... 44

3.4- HTTP Webserver .. 46

3.4.1- Nginx ... 46

3.5- Application Programming Interface (API) ... 47

3.5.1- FastApi .. 47

3.5.2- Google Drive ... 47

3.6- Back Office... 49

3.6.1- Jupyter .. 49

3.6.2- Google Colab .. 50

3.7- Database.. 50

3.7.1- MySQL ... 51

3.7.2- MongoDB .. 51

3.8- Deployment ... 52

3.8.1- Google Cloud Platform ... 52

3.8.2- Cloudways [39] ... 54

3.9- Programming Tools ... 55

3.9.1- Visual Studio Code .. 55

3.9.2- Postman .. 55

3.10- Tools comparison .. 56

3.11- Chapter Conclusion ... 58

Chapter 4

4.1- Introduction: ... 59

4.2- Skin segmentation model: .. 59

4.2.1- Unet Architecture: .. 59

4.2.2- Image processing: ... 60

4.2.3- Execution process: .. 60

4.3- Object detection model: ... 60

4.3.1- Yolo v5 architecture: .. 61

4.3.2- Execution process: .. 61

4.4- Face and gender detection: .. 62

4.4.1- Execution process: .. 62

4.4.1.1- Face detection: .. 62

4.4.1.2- Gender detection: ... 63

4.5- Chapter conclusion: .. 64

Conclusion: ... 65

Bibliography

Abstract

Resumé

Tasenselkimt

Table of figures
FIGURE 1 DIFFERENT TYPES OF ML ALGORITHMS .. 3
FIGURE 2 INTEREST IN MLOPS OVERTIME .. 4
FIGURE 3 MLOPS CHALLENGES ... 5
FIGURE 4 INVOLVED PEOPLE IN THE MLOPS PROCESS ... 6
FIGURE 5 ML PROJECT LIFECYCLE.. 8
FIGURE 6 SCRUM METHODOLOGY .. 9
FIGURE 7 USE CASE DIAGRAM .. 12
FIGURE 8 DEPLOY MACHINE LEARNING PIPELINE ON THE CLOUD USING DOCKER CONTAINER AND A REACTJS

CLIENT INTERFACE ... 14
FIGURE 9 SEQUENCE DIAGRAM OF THE CASE: MEDICAL IMAGE PROCESSING .. 15
FIGURE 10 SEQUENCE DIAGRAM OF THE CASE: OBJECT DETECTION PROCESSING .. 16
FIGURE 11 SEQUENCE DIAGRAM OF THE CASE: FACE AND GENDER DETECTION PROCESSING 16
FIGURE 12 SEQUENCE DIAGRAM OF THE CASE: MANAGE APPLICATION ... 17
FIGURE 13 DEPLOYMENT DIAGRAM OF THE FIRST SOLUTION ... 17
FIGURE 14 .DOCKERIGNORE SOURCE CODE ... 18
FIGURE 15 DOCKERFILE SOURCE CODE ... 18
FIGURE 16 DOCKERFILE SOURCE CODE ... 20
FIGURE 17 SUPERVISOR SOURCE CODE .. 20
FIGURE 18 LAUNCH OF THE DOCKER INSTANCE ... 21
FIGURE 19 SKIN SEGMENTATION ROUTES .. 22
FIGURE 20 GOOGLE CLOUD PLATFORM DASHBOARD .. 24
FIGURE 21 SERVICES WEBPAGE SCREENSHOT .. 26
FIGURE 22 SKIN SEGMENTATION WEBPAGE SCREENSHOT .. 26
FIGURE 23 OBJECT DETECTION WEBPAGE SCREENSHOT .. 27
FIGURE 24 FACE AND GENDER DETECTION WEBPAGE SCREENSHOT ... 28
FIGURE 25 DASHBOARD FILES LIST SCREENSHOT ... 28
FIGURE 26 DEPLOYING MACHINE LEARNING PIPELINE USING GOOGLE DRIVE API AND GOOGLE COLAB VIRTUAL

MACHINE ... 29
FIGURE 27 SEQUENCE DIAGRAM OF THE CASE: MEDICAL IMAGE PROCESSING .. 30
FIGURE 28 SEQUENCE DIAGRAM OF THE CASE: OBJECT DETECTION PROCESSING .. 30
FIGURE 29 DIAGRAM OF THE CASE: FACE AND GENDER DETECTION PROCESSING ... 31
FIGURE 30 DEPLOYMENT DIAGRAM OF THE SECOND SOLUTION .. 31
FIGURE 31 CLIENTID,CLIENTSECRET AND REFRESHTOKEN GENERATION STEPS .. 33
FIGURE 32 LARAVEL CONFIGURATION FILE .. 34
FIGURE 33 SSH CONFIGURATION FILE IN LARAVEL ... 35
FIGURE 34 ADDING THE APPLICATION TO THE CLOUDWAYS SERVER .. 35
FIGURE 35 APPLICATION DEPLOYMENT USING GIT .. 36
FIGURE 36 HOMEPAGE SCREENSHOT ... 36
FIGURE 37 SERVICES WEBPAGE SCREENSHOT .. 37
FIGURE 38 SKIN SEGMENTATION SCREENSHOT.. 37
FIGURE 39 OBJECT DETECTION WEBPAGE SCREENSHOT .. 38
FIGURE 40 FACE AND GENDER DETECTION SCREENSHOT .. 38
FIGURE 41 DASHBOARD FILES LIST SCREENSHOT ... 39
FIGURE 42 DASHBOARD FILES DISPLAY SCREENSHOT .. 39
FIGURE 43 THE DIFFERENT TOOLS USED IN THIS PROJECT ... 41
FIGURE 44 REACT LOGO .. 42
FIGURE 45 LARAVEL LOGO .. 43
FIGURE 46 BOOTSTRAP LOGO ... 44
FIGURE 47 DOCKER LOGO ... 45
FIGURE 48 DOCKER CONTAINERIZATION TECHNOLOGY FOR DEVOPS ... 45
FIGURE 49 NGINX LOGO .. 46
FIGURE 50 FASTAPI LOGO ... 47
FIGURE 51 GOOGLE DRIVE LOGO .. 48
FIGURE 52 RELATIONSHIP BETWEEN GOOGLE DRIVE APP, GOOGLE DRIVE, AND GOOGLE DRIVE API. 48

file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278194
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278195
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278196
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278197
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278197
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278198
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278199
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278200
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278201
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278208
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278209
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278220
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278222
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278232
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278233
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278234
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278235
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278236
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278237
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278238
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278239

FIGURE 53 JUPYTER LOGO .. 49
FIGURE 54 GOOGLE COLABORATORY ... 50
FIGURE 55 MYSQL LOGO ... 51
FIGURE 56 MONGODB LOGO .. 52
FIGURE 57 GOOGLE CLOUD PLATFORM LOGO ... 53
FIGURE 58 GOOGLE COMPUTE ENGINE SERVICES .. 54
FIGURE 59 CLOUDWAYS LOGO ... 54
FIGURE 60 VISUAL STUDIO CODE LOGO ... 55
FIGURE 61 POSTMAN LOGO .. 56
FIGURE 62 UNET ARCHITECTURE .. 59
FIGURE 63 SKIN SEGMENTATION INPUT IMAGE ... 60
FIGURE 64 SKIN SEGMENTATION OUTPUT IMAGE ... 60
FIGURE 65 YOLO V5 ARCHITECTURE ... 61
FIGURE 66 YOLO V5 OUTPUT EXAMPLE .. 62
FIGURE 67 YOLO V5 INPUT EXAMPLE ... 62
FIGURE 68 CVLIB FACE DETECTION OUTPUT FILE ... 63
FIGURE 69 CVLIB FACE DETECTION INPUT FILE ... 63
FIGURE 70 CVLIB GENDER DETECTION OUTPUT FILE .. 63
FIGURE 71 CVLIB GENDER DETECTION INPUT FILE ... 63

file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278242
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278243
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278244
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278245
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278246
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278247
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278248
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278249
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278250
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278251
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278252
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278253
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278254
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278255
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278256
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278257
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278258
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278259
file:///C:/Users/kader%20tagmouni/Desktop/memoire-finalisév1%20(1).docx%23_Toc87278260

1

Introduction:

Nowadays, Machine learning (ML) has become essential in our daily lives due to the

nearly limitless quantity of available data, affordable data storage, and the growth of less

expensive and more powerful processing, which permitted its prosperity. As we can see, it has

become one of the most influential and powerful technologies globally, but we are still far

from reaching its ultimate consequences.

Most of us are unaware that we are using it every day and at every moment. Still, with

a simple click on the smartphone to do research on google or by scrolling on YouTube

suggested videos, we call machine learning services.

But before we can take full advantage of its benefits, a big job has been done, from the

modelization to the coding and finally the deployment. This last one is the most crucial phase

because everything remains just ink on a sheet without it, and these different steps are called

Machine Learning operations (MLOps) process.

The MLOps is a new technology, appeared for the first time on 2015. It

combines the long-established practice of DevOps with the emerging field of Machine

Learning; therefore, the deployment of the ML models is still complex as it is still a new field.

The process of deployment into production is as complicated as it is crucial. It requires

skills in both software development and machine learning skills. Because during the

deployment, you may have to go back to the top levels of the MLOps life cycle to modify the

data or train the model with a new data dictionary to adapt the project to the deployment

environments.

This thesis defines the MLOps and its challenges and describes the MLOps lifecycle in

the first chapter. The second chapter, consists of the modelling and development details then

it will be followed by a third chapter that gives an idea about the used tools during the

development and the deployment processes and explains their advantages. Finally, it ends

with a fourth chapter which describes the different deployed models and their architectures.

Chapter 1

Generalities about

Machine Learning Operations

2

 Chapter 1: Generalities about Machine Learning Operations

1.1- Chapter introduction:

In this chapter, we present the field of machine learning and its actual use cases, then

briefly explain the machine learning operations (MLOps) and their challenges. To finish, we

describe the MLOps systems life cycle.

 1.2- Machine learning:

According to Andrew Ng, it's the science of getting computers autonomous without

being explicitly programmed. This science is so pervasive that it is used dozens of times in a

day without knowing it. [1]

Arthur Samuel also defined ML as a field of study that gives the ability of computers to

learn without being learned. During his career, he programmed thousands of games against

himself, and by analyzing the game situations that lead to winning and those that lead to

losing, the game program learned over time what to do in each case. From this, a new AI field

named machine learning was born. [1]

Nowadays, many fields and industries use it: manufacturing, retail, healthcare and life

sciences, travel and hospitality, financial services, energy, feedstock, and utilities.

It helps make the right decisions, detect diseases, risk analytics, regulate and optimize

the businesses.

Therefore, this technology can change our way of life and make our future more

accessible, and it becomes just a question of three clicks.

1.3- Different Types of machine learning:

There exist four types of machine learning algorithms: supervised, unsupervised, semi-

supervised, and reinforcement. [2]

 Supervised learning: in this type of learning, the operator provides a specific data set to the

machine, including the desired inputs and outputs. In this type, algorithms find ways to fit

inputs and outputs, and then operators correct the resulting predictions.

Unsupervised learning: the ML algorithm looks for patterns by studying the data. There is no

operator or a human to provide instructions. The algorithm alone understands the

relationship between the inputs and the outputs, and it can make predictions by interpreting

this relation.

Semi-supervised learning: it's similar to the previous type. The only difference is that this one

use labelled and unlabeled data, while labelled data are pieces of information that contain

meaningful tags, and the unlabeled data lacks that information.

3

 Chapter 1: Generalities about Machine Learning Operations

Reinforcement learning: focuses on structured learning processes. It introduces algorithms

with initial actions, parameters, and values. Then, based on the rules, it explores new

possibilities to get the results to determine the optimal one. Thus, it earns from past

experiences and adapts its approach to the situation to get optimal results.

Figure 1 Different types of ML algorithms

1.4- What is MLOps?

MLOps is a set of practices that unifies machine learning systems' development (dev)

and deployment (ops) to simplify the management process. MLOps also addresses the

automation of Machine Learning deployment, including Deep Learning models. [3]

These practices aim to standardize and streamline the life cycle management in chine

learning systems because it became a vital component to successful data science project

implementation. [4]

It is a solution for assisting companies, and business executives generate long-term

value and reduce risk connected with data science, machine learning, and artificial intelligence

programs. Nevertheless, it is a relatively new concept that started in 2015 from a paper titled

"Hidden Technical Debt in Machine Learning Systems”. From that, Its growth has exponentially

increased, and the market of MLOps solutions expects to reach 4$ billion by 2025. [5]

The following figure describes the interest in MLOps over time.

4

 Chapter 1: Generalities about Machine Learning Operations

Figure 2 Interest in MLOps overtime

1.5- MLOps challenges:

Developing machine learning models and their deployment in a production

environment is still relatively new for most traditional companies.

But recently, the number of the deployed ML models has increased mainly with the

arrival of decision automation, where models have become more critical. On the other side,

the management of its risks became more important at the top level. [6]

Setting a machine learning model in enterprises is much more complex in terms of

needs and materials.

To understand the significant challenges that face MLOps, we can resume them in

three main points:

● The data and the business needs are constantly changing, so the results need to be

continually relayed back to the business to ensure that the actual results align with the

expectations and, critically, meet the original goal of this model.

● The second major challenge is that MLOps involves many people from the business,

data science, and IT teams. And none of these groups is using the same technical

language and materials. In fact, in many cases, they use the same fundamental skills

to communicate with each other.

● As a third major challenge, most data scientists are specialized in model building and

assessment. But the problem is that they may find themselves playing the role of a

software engineer and becoming specialists more on the deployment or operational

side, which is not easy for them.

We can have a better idea about these challenges from the following figure.

5

 Chapter 1: Generalities about Machine Learning Operations

Figure 3 MLOps challenges

1.6- Who is concerned during the MLOps process?

 Although data scientists build ML models, it's wrong to think that only data scientists

can benefit from robust MLOps processes. MLOps involves many people in the life cycle of the

ML system: [6]

Subject matter experts: provide the business questions and goals and ensure that the model

aligns with the initial needs.

Data scientists: mainly work on the model and its delivery to be used in production

environments and with production data.

Data engineers: their primary mission is to optimize the retrieval and use of data to power ML

models.

Software engineers: as they are software specialists, they integrate the models in the

company's systems and software and ensure the seamless working of these ML programs with

non-ML-based applications.

DevOps: They Conduct and build operational systems and test them. They also ensure

continuous Integration/Delivery (CI/CD) pipeline management.

Model risk managers/auditors: they reduce the company's overall risk due to ML models in

production and make sure that they comply with internal and external standards.

Machine learning architects: they prepare the environment of the models from design to

development and monitoring and introducing new technologies to improve the model's

performances.

6

 Chapter 1: Generalities about Machine Learning Operations

Figure 4 Involved people in the MLOps process

1.7- MLOps life cycle:

To better understand the MLOps process, we have to go ahead and analyze its life cycle

that we can resume in 4 primary phases, according to Andrew Ng, the founder of

DeepLearning.AI. [7]

1.7.1- Scoping:

The first step of any machine-learning project is the definition of the objectives. Then,

it helps to determine feasible solutions to a problem. Often, this is a good starting point for

most projects because we often find out that there is someone who might have tried to tackle

the same problem statement, sins we would have to adapt the pre-developed open-source

model to our data sets.

Principally, these pre-existing models give an idea about the solution to the main

problem such that the other phases of the life cycle become easy.

1.7.2- Data collection:

After the project definition, it's essential to select the data which feeds the future

model. It's necessary mainly in supervised learning because the data quality affects the model

quality automatically.

While working with the data, it's necessary to ensure the clean labels and their

uniformity; for this, taking enough time in the data collection is more than essential, and it's

preferable to start working with the model simultaneously.

Andrew ng divided data collection into two different steps. The first one is the data

definition, which consists of establishing a data baseline. The second step is data labelling

7

 Chapter 1: Generalities about Machine Learning Operations

which is crucial in the case of supervised learning. It aims to identify each element within an

image by annotating the content manually.

1.7.3- Modelling:

Most researchers and scientists may think that it's the most crucial phase, but they are

wrong. The real-world data that the model interacts with differs from the data introduced in

the precedent phase. Indeed, it may force a come back to the last step to introduce new data

to improve the model's performance in the future.

During the modelling, the engineers can repeat three main steps many times to

optimize the results. For example, suppose a company wants to change the model

environment or introduce a different data set. In that case, the data scientist must select new

data, train the model, and analyze any error if it occurs.

1.7.4- Deployment:

If the process stops in the last phase, it is like nothing was done. The integration of ML

models in production is vital to becoming useful for the end-user. We can classify the

deployment into three types:

● Shadow Deployment: in this type of deployment, humans take the final decision,

irrespective of what the model predicts. It's mainly used to determine if the model is

processing well and which points it fails on.

● Canary Deployment: here, the model interacts with a small set of data, on which he is

allowed to make decisions. So, depending on the model's performance, the traffic may

be increased or pulling back this model to adjust it.

● Blue-Green deployment: blue-green deployment refers respectively to old and new

versions of deployment. They are principally used to separate the development

version from the deployed versions of the model. Thus, it allows detecting bugs, and

the rollback to the old stable versions becomes accessible.

8

 Chapter 1: Generalities about Machine Learning Operations

1.8- Chapter conclusion:

In this chapter, we gave a general idea about the MLOps, as it is a new field that

involves people from different computer science fields. Then we presented the significant

challenges facing this new field, and we finished describing the MLOps lifecycle process.

In the next chapter, we talk about the project needs and the different required configurations

in order to implement the expected solutions.

Figure 5 ML project lifecycle

Chapter 2

Modeling and development

9

 Chapter 2: Modeling and development

2.1- Introduction
We present in this chapter the working methodology of our project and the different

configurations made during the development process, the functional needs necessary for the

actors to interact with the system, and the non-functional needs to improve the software

quality of the system.

2.2- The methodology and languages adopted
We are always looking for the most efficient and fastest methods for the realization of

our project. We use the agile methodology for this purpose. Scrum is the most straightforward

agile framework

Scrum guarantees us the best overview of the project, aims to reduce difficulties such

as lack of planning, work is done through short cycles called Sprints. Within a Sprint, our team

works from a list of items called the Backlog (see figure below).

We use the UML (Unified Modeling Language) modelling language to specify the needs

and requirements of the actors, the system, and the overall architecture

2.3- Specification of functional needs
The application to be produced must offer a set of functionalities related to a group of

user needs. These define the services that users expect to see provided by this application.

This web application must meet the following functional needs:

Figure 6 Scrum methodology

10

 Chapter 2: Modeling and development

2.3.1- Medical images processing:

One of the main functionalities of this application is to permit the user to analyze his

medical images as skin images to get a segmented skin image.

2.3.2- Object detection processing:

The user can scan images and videos of his own choice, and in return, he gets a file of

the same type as the one uploaded containing all the objects detected.

2.3.3- Face and gender detection processing:

This functionality allows the user to detect the faces and the gender of the people

contained in the uploaded images.

2.3.4- Contact admin by mailing form:

The user of this application has the right to contact the administrator by email just

using a contact form visible to all the website visitors.

2.3.5- Backoffice:

This part is the most important service of this application. It allows the administrator

to have a general view of the application. He can view the results of the predictions made by

the different services, getting the id of the user who did the action and mostly the date and

time of the prediction.

2.4- Specification of non-functional needs:
 A non-functional need is a restriction or constraint on a service in the system, such as

environmental and implementation constraints and performance requirements, project

dependencies, ease of maintenance, scalability, and reliability.

As part of this work, the application must meet these needs:

Security: The upload of files is secured with data encryption, and the sending of the emails via

the website uses TLS encryption.

Efficiency: The application must be functional regardless of any circumstances that may

surround the user (a practical solution)

Validity: (correction, correctness, conformity), carry out precisely the tasks defined in the

specification

The performance: The response time is short.

Reliability: The data provided by the application must be reliable, and the solution must give

correct results.

2.5- UML language:
UML was used in this project as a modelling language. UML (Unified Modeling

Language) is a graphical modelling language. It appeared in the world of software engineering

as part of "object-oriented modelization".

11

 Chapter 2: Modeling and development

it represents several advantages as:

● The UML is based on the mechanisms of abstraction, hierarchy, and decomposition.

● It is a powerful communication medium: it allows, thanks to its graphic representation,

to visually express an object solution, to facilitate the comparison and the evolution of

the solution

● it is a formal and standardized language. It allows access to precise information and

guarantees stability.

● It facilitates the understanding of complex abstract representations. It is based on the

implementation of diagrams representing static and dynamic views in developing a

computer application.

To better design our application, we need to use the use case diagram, which allows us to

specify the functionalities of our system and their interactions with the user. Also, the

sequence diagram aims to explain in detail how operations perform in chronological order.

2.6- Use case diagram:
Use case diagrams are a technique for capturing the functional needs of the system;

They describe the interactions between users of the system and the system itself. In other

words, they help to formalize the way that future users operate with the application.

2.6.1- Identification of the different actors:

An actor is a person, hardware, or software that interacts with the system to perform

functions regarding the use cases, in the following, an identification of the main actors who

interact directly with our application.

there are 2 types of actors:

The administrator: He is a user with power. He is responsible for the administration of the

application.

The user: It is a user with restricted power. He can use the different services of the web

application.

12

 Chapter 2: Modeling and development

2.6.2- Identification of the use cases:
Actor Use case

Admin
● Authentification
● Manage the web application

User

● Medical image processing
● Object detection processing
● Face and gender detection processing
● Contact the admin by email

2.6.3- Global use case diagram:

The figure below represents the different use cases of our system.

2.6.4- Textual description of each use case:

These descriptions permit us to have a general view of the workflow of each use case,

and then we can model the different sequence diagrams.

2.6.4.1- Textual description of the use case "medical image processing":

Title: medical image processing

Actor User

precondition access to the web application and select the service medical image processing

post-condition Upload a file

Scenario
After the uploading file, the system checks the validation of this file.
In the backend, the skin segmentation script is running.
It returns the prediction result.

exception File uploaded is not a nifti file, or it's a corrupt file

Figure 7 Use case diagram

13

 Chapter 2: Modeling and development

2.6.4.2- Textual description of the use case "object detection processing":

Title: object detection processing

Actor User

precondition access to the web application and select the service object detection processing

post-condition Upload a file

Scenario
After the uploading file, the system checks the validation of this file.
In the backend, the object detection script is running.
It returns the prediction result.

exception File uploaded is not an image nor a video, or it's a corrupt file

2.6.4.3- Textual description of the use case "face and gender detection processing":

Title: face and gender detection processing

Actor User

precondition
Access to the web application and select the service face and gender detection
processing

post-condition Upload a file

Scenario
After the uploading file, the system checks the validation of this file.
In the backend, the face and gender detection script is running.
It returns the prediction result.

exception File uploaded is not an image, or it's a corrupt file

2.6.4.4- Textual description of the use case "contact admin by email":

Title: contact admin by email

Actor User

precondition Access to the contact us web page

post-condition Filling the contact form fields

Scenario
the system checks the validation of the inserted data.
If everything is ok, the SMTP server sends an email to the admin containing the
inserted data.

exception Data not valid or SMTP server error

2.6.4.5- Textual description of the use case "authentification":

Title: authentification

Actor Admin

precondition Access to the administration page

post-condition The admin is logged-in

Scenario

The system shows the authentification page.
The admin fills the login form.
The system checks the validity of the inserted data, and if they are correct, the
admin is redirected to the administration dashboard

exception Mail/password credentials are not valid

2.6.4.6- Textual description of the use case "manage application":

Title: manage application

Actor Admin

precondition authentification

14

 Chapter 2: Modeling and development

post-condition The files list is shown

Scenario The system shows the list of the different files predicted with their date

exception No file records in the database to show

2.7- The proposed solutions
To meet the needs mentioned above, we propose two solutions with different tools and

architectures:

● Solution 1: Deploy Machine Learning Pipeline on the cloud using Docker Container and
a ReactJS client interface

● Solution 2: Deploy Machine Learning Pipeline using Google Drive API and Google Colab
virtual machine.

2.7.1- Solution 1: Deploy Machine Learning Pipeline on the cloud using Docker Container and

a ReactJS client interface

2.7.1.1- Global view of the solution:

This part demonstrates deploying a machine learning pipeline as a web app using the
Google cloud platform service for hosting.

In this technique, we created a frontend ReactJS application where the user can
navigate through the various pages, select a service to use, upload a file to a particular model,
and finally receive the result with the option to download it. Thanks to a FastAPI API, when
the user uploads a file, it is stored on a cloud server directory. The model performs on the
cloud virtual machine, and the results are returned to the main application (see figure below).

Figure 8 Deploy Machine Learning Pipeline on the cloud using Docker Container and a ReactJS client interface

15

 Chapter 2: Modeling and development

2.7.1.2- Sequence diagrams for the proposed solution:

In this part, we introduce the sequence diagrams of the 4 prominent use cases, which are:

● medical image processing

● object detection processing

● face and gender detection processing

● management of the application

Sequence diagram of the case "medical image processing":

Figure 9 Sequence diagram of the case: medical image processing

16

 Chapter 2: Modeling and development

Sequence diagram of the case "object detection processing":

Sequence diagram of the case "face and gender detection processing":

Figure 10 Sequence diagram of the case: object detection processing

Figure 11 Sequence diagram of the case: face and gender detection processing

17

 Chapter 2: Modeling and development

Sequence diagram of the case "manage application":

2.7.1.3- Deployment diagram

This diagram describes the way that the application is deployed on the server.

Figure 13 deployment diagram of the first solution

2.7.1.4- Required configurations for the deployment:

For the deployment of this solution, we have to make many configurations that we can

categorize as follows:

● Frontend configurations

● Backend configurations

● Hosting server configurations

● Programming tools configurations.

Figure 12 Sequence diagram of the case: manage application

18

 Chapter 2: Modeling and development

Frontend configurations :

 Virtualizing a solution based on ReactJS.

Prerequisites:

● Install Docker locally

● Install NPM

Writing the Dockerfile:
In step 1, we transfer our application code to the "app" folder, install the application

dependencies from the package.json file, and make a production build.
In step 2, we establish an Nginx server using the Nginx server image and deploy our app to it

by transferring the build components from the "/app/build" folder to the Nginx server at the

"/usr/share/nginx/html" directory

Creating a ".dockerignore" file:

Although this file isn't required, it's a good idea to include it since it may speed up the
image build process and keep the image slim by removing redundant code from the Docker
build context, so it doesn't end up in the picture.

Here is the content of our .dockerignore :

Figure 14 .dockerignore source code

Creating a Docker image:

Run the Docker build command to generate a Docker image of our app based on the
Dockerfile we just created:

~$ cd /path/to/project/Dockersfile’s-folder

~$ docker build -t docker-img-name

Based on the Dockerfile that contain:

Figure 15 Dockerfile source code

19

 Chapter 2: Modeling and development

Let's break down this command and its flags:

● –t: builds a Docker image called docker-img-name

To get a list of the images produced with our ReactJS app image, we have the Docker
command:

~$ docker images

We also used node and Nginx images and an intermediary image <none> to construct

our app image. These pictures, however, aren't necessary and may be removed.

Running the Docker container:

To build a Docker container based on the image produced in the previous step, we

used the following Docker command:

~$ docker run --rm -p 80:80 -v ~:/home/the_user_name/ docker-img-name

The –p option is used to map the container port to the external host port using 80:80/TCP

because the app in the container runs on port 80.

Backend configurations:

Virtualizing a solution based on FastAPI and Jupiter.

Prerequisites:

● Install Docker locally.

Writing the Dockerfile:

● In step 1: transfer the application code to the "app" folder.
● In step 2: Install the application dependencies from the "requirements.txt" file.
● In step 3: we start "Supervisord" to run two different processes in the same

container with different execution ports.

Creating a Docker image:

We built a Dockerfile with all of the necessary parts to launch our solution using Docker.

The image needed to perform this ungraded lab locally may be run using the following

command:

~$ cd /path/to/project/dockerfile_folder

~$ docker build -t docker-image-name .

20

 Chapter 2: Modeling and development

Based on the Dockerfile that contain:

Figure 16 Dockerfile source code

The last line of the Dockerfile is launching the servers in the same container (FastAPI
and Jupyter) using Supervisor which is a Process Control System, here is its configuration file
content:

Figure 17 Supervisor source code

21

 Chapter 2: Modeling and development

Running the Docker container:

We used the following Docker command to create a Docker container based on the

image created in the previous step:

~$ docker run --rm -p 8888:8888 -p 8000:8000 -e JUPYTER_ENABLE_LAB=yes -v
~:/home/user/ docker-image-name

Let's break down this command and its flags:

● -it: Runs the container in interactive mode and connects a pseudo-terminal to it so we

can see what's printing in the container's standard streams. It is critical since we need

to copy and paste the Jupyter lab access token.

● --rm: After stopping the container, this option deletes it.

● -p: This option lets us map a port on our PC to a port on the container. In this scenario,

we need two ports: one for the Jupyter server and one for the ungraded lab server.

● -v: this option tells Docker which folders should be mounted inside the container so

they may be accessed. Docker is in charge of managing the placement of anonymous

volumes. It's worth noting that referring to the same volume while it's anonymous

might be challenging. Run docker run -v /path/in/container -e to establish an

anonymous volume. JUPYTER ENABLE LAB=yes - Tells the startup script to use the

Jupyter lab command instead of the standard Jupyter notebook command. Setting

environment variables is more accessible than altering command-line arguments in

container orchestration settings.

When the container begins to run, some information is printed in the terminal. To utilize

the Jupyter lab, we'll usually need to authenticate. We need to copy the token that appears

on the console and paste it at http://ip_address:8888/.

The output from our terminal should look something like this, with the token highlighted for

reference:

Figure 18 launch of the docker instance

After we've authenticated, we navigate into the "/home/the_user_name/ directory", where

we shall see all of our current local directory's files. To begin the ungraded lab, look for the

"/notebooks/. file" and open it.

http://ip_address:8888/

22

 Chapter 2: Modeling and development

We hit "Ctrl + C" twice to close the container when we're through with the lab. The container

is deleted as well.

Serving the models using FastAPI:

The installation is created as part of the docker image building process. Before we start

deployment, we go over some key ideas and how they apply to FastAPI. Let's make a directory

to store the images sent to the server via a post request.

The following step concerns the use of this instance to construct endpoints that handles the

prediction logic.

Endpoints:

To manage our project using routes, we need to develop our Endpoints. Here is the skin

Segmentation endpoint example (see figure below):

● http://ip_address:8000/predict_skinseg

○ Import the inputs into the Virtual Machine
○ Run the model
○ Store the outputs

● http://ip_address:8000/api/export_skinseg/{file_name}
○ To export the model's output according to the file name

FastApi provides an integrated interface that we may use to execute our API for

development purposes instead of installing other applications (such as Postman).

Once all of the code is in place, all we have to do is launch the server using the command:

~$ uvicorn.run(app)

The API is written in FastAPI, while the serving is handled by Uvicorn, a lightning-fast

implementation of the Asynchronous Server Gateway Interface (ASGI). Both technologies are

intertwined, so we won't have to worry about the implementation specifics. For this lab,

knowing that Uvicorn is in charge of serving is adequate.

We're attempting to run many services in the same container, as we can see:

● [program:uvicorn_script]: to start the FastApi application on port 8000

● [program:jupyter_service]: to start the Jupyter notebook in port 8888

This manipulation is not possible. As a result, we'll use a process manager such as Supervisord.

It is a somewhat heavy-weight method that needs us to package Supervisord and its settings

and the many programs it controls in our image (or base our image on one that contains

supervisord).

And finally we created the last container using the command :

~$ docker run --rm -p 27018:27017 -v ~:/home/user mongo

Figure 19 Skin segmentation routes

http://localhost:8000/image
http://localhost:8000/image
http://localhost:8000/image
http://localhost:8000/image

23

 Chapter 2: Modeling and development

Which pulls a predefined docker hub image for mongodb deployment and runs it, as it
is this database chosen for the monitoring and the authentication options.

and in case of wanting to access the database using the shell, here is the command to use:

~$ mongo --port 27018

Hosting server configurations:

Google Cloud Platform is a Google cloud computing platform that provides hosting on

the same infrastructure that Google uses internally for products like its search engine.

We may manage our Google Cloud projects and resources using the Google Cloud Console, a

web-based graphical user interface. When we use the Cloud Console, we either start a new

project or choose an existing one and then use the resources we generate in that project.

Technology selection: new clients receive $300 in free credits to explore and assess Google

Cloud Platform for 90 days thoroughly. We won't be charged unless and until we want to

upgrade. To be used for:

● Run workloads with no cost.

● There are over 20 free items available.

● Get free hands-on experience with popular products like Compute Engine and Cloud

Storage up to a monthly limit. These free services do not have an expiration date.

To complete our free trial registration, we'll need to set up a cloud services billing account

and verify our identity using a credit card or other payment method. No worries, creating a

cloud billing account prevents them from charging us. We are not invoiced until we upgrade

our Cloud Invoicing account to a paid account and expressly activate billing. During the trial

term, we can upgrade to a paid account at any moment. We can still utilize any remaining

credits after upgrading (within the 90-day limit).

Google cloud platform reporting:

Dashboards are one way to see and analyze metric data that is important to us. Custom

dashboards are those that we create or install on our own. The Dashboards tab of the Google

24

 Chapter 2: Modeling and development

Cloud Console (see figure below) provides a selected set of dashboards that we may preview

and subsequently install.

Suppose we have access to a dashboard's JSON representation, such as if it is stored

on GitHub or a local server, we may install it using the Cloud Console or the Cloud monitoring

API. Dashboard definitions for several Google Cloud services may be found in the monitoring-

dashboard-samples project on GitHub.

This Dashboard contains presentations using widgets such as:

● The graph in a line
● Graph of stacked areas
● stacked bar graph
● Heatmap diagram
● Chart of warnings

Google Cloud Platform provides analysis reports that give a high-level view of the latency

to our application for all or a subset of requests. Google Cloud Platform provides a daily report

using a "Trace" that compares the previous day's performance to the same day the previous

week. The daily report is shown on the Trace Overview page and listed on the Analysis report

page.

Access the GCP remotely:

To access the cloud virtual machine remotely and manage our source code, we had
to generate an SSH key by running these commands on our local shell:

~$ docker run --rm -p 27018:27017 -v ~:/home/user mongo

~$ ssh-keygen -t rsa -f ~/.ssh/keyfile -C "comment for a keyfile "

~$ cd ~/.ssh

~$ nano keyfile.pub

Figure 20 Google cloud platform dashboard

25

 Chapter 2: Modeling and development

We are then copying the content of the "remote_server_public_ssh_key.pub" file.

Finally, navigate to "Compute Engine" and paste our ssh key into our virtual machine instance

information.

To access the server remotely using SSH run from our local shell:

~$ ssh -i keyfile user_name@ip_adress

Configuration of the programming tools:

To modify our code hosted on the server using VScode, we shall set these configurations:

● Install Remote-SSH extension on VS Code.

To use this extension, we follow these steps:

● we need to press on F1 and then: Open SSH Host

● Select: ~/ssh/config

● In the input box that opens, we should type the user’s name and host/IP address in the

following format and click enter: user@host-or-ip or user@domain@host-or-ip

● Enter our password if prompted (but we suggest setting up key-based authentication).

Example:

Host hostname

 HostName x.x.x.x

User keyfile

IdentityFile ~/.ssh/ keyfile

We may also receive a list of the most popular commands by clicking on the "Quick

Access" status bar item in the lower-left corner.

2.7.1.5- Application screenshots:

Here are some screenshots of the application proposed for this solution (see figures below).

26

 Chapter 2: Modeling and development

Figure 21 Services webpage screenshot

Figure 22 Skin segmentation webpage screenshot

27

 Chapter 2: Modeling and development

Figure 23 Object detection webpage screenshot

28

 Chapter 2: Modeling and development

Figure 24 Face and gender detection webpage screenshot

Figure 25 Dashboard files list screenshot

29

 Chapter 2: Modeling and development

2.7.2- Solution 2: Deploying Machine Learning Pipeline using Google Drive API and Google

Colab virtual machine

2.7.2.1- Global view of the solution:

In this method, we worked on a Laravel application as the main application. The user

can surf across the different pages, choose a service to test, upload a file to test the specific

algorithm and finally get the result with the possibility of downloading this last one.

When the user uploads the file, it is stored on Google Drive using Google Drive API. the

Google Colab virtual machine runs the Machine Learning model using this file, and the result

is returned to the main application through an ssh tunnel. Then, it is displayed on the view

and give the user the right to download it.

Figure 26 Deploying Machine Learning Pipeline using Google Drive API and Google Colab virtual machine

2.7.2.2- Sequence diagrams for the proposed solution:

As we have two applications with different architectures, the sequence diagrams are

also different, so in the following, the sequence diagrams of the second solution:

30

 Chapter 2: Modeling and development

Sequence diagram of the case "medical image processing":

Figure 27 Sequence diagram of the case: medical image processing

Sequence diagram of the case "object detection processing":

Figure 28 Sequence diagram of the case: object detection processing

31

 Chapter 2: Modeling and development

Sequence diagram of the case "face and gender detection processing":

Figure 29 Diagram of the case: face and gender detection processing

Sequence diagram of the case "manage application":

This sequence diagram is the same as the sequence diagram of the case "manage

application" in the first solution. (See the figure 30)

2.7.2.3- Deployment diagram

Figure 30 deployment diagram of the second solution

2.7.2.4- The required configurations for deployment:

For the deployment of this solution, we had to make many configurations that we may

classify into:

● Frontend configurations

● Backend configurations

● Hosting server configurations

32

 Chapter 2: Modeling and development

Frontend configurations :

For the frontend, we used the Bootstrap framework to style the website interfaces. It makes

the web applications responsive and mobile-friendly.

Bootstrap 4.x integration:

The installation of bootstrap 4 requires nodejs to be installed, so for these following

steps, we consider that the npm command is already installed.

So first, we need to add the laravel/ui package to the composer environment with the

following commands:

~$ composer require laravel/ui

Then the installation of Bootstrap is done with:

~$ php artisan ui bootstrap

~$ php artisan ui bootstrap --auth

After the installation, it needs to be compiled with these commands:

~$ npm run dev

~$ npm run production

After this, Boostrap is ready to use. All we need is to import it into the project.

33

 Chapter 2: Modeling and development

Backend configurations:

We have to configure our application to store the uploaded files in the Google Drive

folder and make an SSH connection into a Google Colab virtual machine to run the ML model

on the backend side.

Google Drive API configuration:

To upload/download files from the web application into Google Drive, we have to use

the google drive API.

we start by enabling this API on the desired google account from this URL:

console.cloud.google.com/apis/library/drive.googleapis.com

Then to configure this API with the Laravel application, we need to get the clientId,

clientSecret, and the refreshtoken that we can get by creating credentials to our API by

following steps:

These steps above permit the generation of the clientID and ClientSecret. The

refreshtoken can be generated from https://developers.google.com/oauthplayground.

Figure 31 Clientid,clientSecret and refreshtoken generation steps

https://developers.google.com/oauthplayground

34

 Chapter 2: Modeling and development

These three pieces of information are used in our Laravel filesystem configuration file shown

below.

Figure 32 Laravel configuration file

After these steps, the application uses google drive as a filesystem, storing the

uploaded files.

SSH tunnel configuration:

The SSH configuration file doest appear in the application files since Laravel 5.x. So to

be able to configure a remote connection, an alternative is used, which is the Laravel

collectives package that can be installed using the following steps:

~$ composer require laravelcollective/remote

~$ php artisan vendor:publish --provider="Collective\Remote\RemoteServiceProvider"

35

 Chapter 2: Modeling and development

After installing the package, we add the virtual machine SSH accessing information to the SSH

configuration file in Laravel (see the figure).

Hosting server configurations:

We deploy our application using Cloudways hosting service. But before this, we have

to push the application into GitHub to ease the deployment task.

So we select a server with 4GB RAM and a two-core processor to ensure that our

application runs without problems.

After the server selection, we add our application to this server, as described in the

figure below.

Figure 34 Adding the application to the Cloudways server

The reason for pushing our application to GitHub is to import it directly to its

reserved space on the Cloudways server using the "deployment from git" option as displayed

on this figure.

Figure 33 SSH configuration file in Laravel

36

 Chapter 2: Modeling and development

Figure 35 Application deployment using GIT

2.7.2.5- Application screenshots

In this part, we have some screenshots of the deployed application according to the

second solution.

Figure 36 Homepage screenshot

37

 Chapter 2: Modeling and development

Figure 37 Services webpage screenshot

Figure 38 Skin segmentation screenshot

38

 Chapter 2: Modeling and development

Figure 39 Object detection webpage screenshot

Figure 40 Face and gender detection screenshot

39

 Chapter 2: Modeling and development

Figure 41 Dashboard files list screenshot

Figure 42 Dashboard files display screenshot

2.8- Solutions comparison
We used two different solutions based on various programming languages and

frameworks because we wanted to replicate our first thought while getting the project idea
from our supervisor.

From the beginning, we considered using an existing virtual machine, which could be
a good solution if data preservation is not a priority. Then we got an idea of developing our
virtual machine, which can be a good solution if data preservation is a priority.

40

 Chapter 2: Modeling and development

At the end, we made a small comparison between the two solutions, and we got
these results:

Solution advantages inconvenient

Solution 1

The uploading and downloading time
are fast.

The prediction time is slow.

The deployment cost of the solution
may be handled as needed.

He has to add configurations to install the
needed ML libraries.

The data are saved and between our
hands since it's a costume VM

Solution 2

Separate the display and the
processing servers

The connection between the servers may
be slow as they are not in the same
location

Possibility to use the exact data for
other applications due to google drive
API.

The deployment of this solution may be
expensive for meaningful use.

Google Colab environment contains
almost all the libraries used in ML, so
compatibility problems rarely occur
during the execution.

the data are sored my google, so they have
the right to use theme since we agreed on
the Terms, Data Policy

2.9- Chapter conclusion:
This chapter gave us a vision of our work and gave the conceptual aspect of the

application through the different diagrams described in UML. A diagram illustrating the

different use cases of sequence diagrams illustrates the visualization process—cases of use.

We have also described the steps and configurations necessary for implementing the

proposed solutions and compared the two solutions.

In the next chapter, we will discuss the different materials used during this developement and

deployment process.

Chapter 3

Materials used in this project

41

 Chapter 3: Materials used in the project

3.1- Introduction:
In this project, we focused on the deployment of some machine learning models for

web applications.

 For this, we used many tools that are reviewed in this chapter. We can classify them

into different categories, which are detailed below:

3.2- Front office
Our project consists in making life easier for the user by using different services. Is this

could not be possible without an ergonomic user interface. That's why we have developed
using the materials explained below:

There is a multitude of tools. We have chosen the following ones, and the motivation
is presented for each one.

3.2.1- ReactJS

React (also known as React.js or ReactJS) is a free frontend JavaScript toolkit for
building user interfaces and components. Several developer communities use it, including
social networking giant Facebook.

React can be used to create single-page or mobile apps as a foundation. Because it
only manages data and renders in the DOM (Document Object Model), building React apps
typically demands the use of other frameworks for routing and client-side functionality.

According to the official ReactJS description, it promotes the development of reusable
user interface components that take advantage of dynamic data.

The MVC model is frequently referred to as React (Model-View-Controller), where
React ensures the view. since it isolates the DOM, resulting in a more straightforward
programming approach and improved speed. [8] [9]

Figure 43 The different tools used in this project

42

 Chapter 3: Materials used in the project

It may also render on the server using an API and power native apps using React Native.
Compared to traditional data binding, React creates a one-way reactive data flow, which
eliminates mistakes and simplifies reasoning.

3.2.1.1- Advantages of React

● The virtual DOM is a JavaScript object that is used. Because the JavaScript virtual
DOM is quicker than the regular DOM, this enhances application speed.

● It works on both the client and server sides, as well as with other frameworks.
● Components and data models increase readability, allowing for the maintenance

of more significant programs.
● The material can be cited.
● ReactJS is a lightning-fast framework.
● Components dominate web development in the future.
● ReactJS quickly gained popularity among JS developers.
● Because Intelligibility generates "clean" (easy-to-read) code, reading it reveals the

program's functionality right away.
● ReactJS uses a unique syntax known as JSX, which allows HTML and JavaScript to

be mixed. Although it is not compulsory, it is strongly recommended to try this new
syntax to make writing components much more accessible. [10] [11]

3.2.2- Laravel

Laravel is a web application framework with a syntax that is both expressive and
elegant. To be meaningful, we believe development must be a fun and creative experience.
Laravel aims to simplify development by simplifying typical chores seen in most online
applications, such as authentication, routing, sessions and caching.

This framework includes the best libraries helpful in creating a website. In addition,
the excellent framework also integrates many other exclusive features. It is particularly true
of its Blade template engine.

Laravel has its template blade system that it uses. As a result, it has been viewed with
the blade.php extension, and the contents of PHP variables may be shown. In addition, it's
important to note that such a material uses an MVC design for its view controller model. This
framework may be used to create forms and layouts. These layouts serve as templates for
HTML pages. With Blade, you can quickly and easily provide various instructions, including

Figure 44 React logo

43

 Chapter 3: Materials used in the project

conditional and iterative instructions. They have a high level of efficiency when it comes to
code management.

Laravel, on the other hand, provides a high level of security through its operation.
Among other things, the created forms generate tokens that prevent several attacks, such as
CSRF attacks (Cross-Site Request Forgery), which involves circumventing a site's
authentication to carry out malicious activities that can be sent through a form.

Furthermore, the framework has a routing system that is compatible with all HTTP
methods. [12] [13]

3.2.2.1- Advantages of Laravel

● Interfaces, overloading, shorter array syntax, Namespaces, and Anonymous
functions are just a few of the new features available in PHP.

● The documentation is meant to make Laravel developer-friendly.
● The framework provides an API instead of utilizing the SwiftMailer library. It also

contains SMTP, Mailgun, SparkPost, Mandrill, PHP's "mail" function, Amazon SES,
and "send email" drivers, allowing you to send emails using local or cloud-based
services.

● Backends for standard caches are supported.
● Packages and the availability of resources are two important factors to consider.
● It gives an easy and beneficial ActiveRecord implementation for running with your

database. Put differently, and it intends that the models you build in the MVC have
a corresponding table in the database. [14]

3.2.3- Bootstrap 4

Bootstrap is a frontend programming framework for building websites and online apps
that is free and open source. It uses HTML, CSS, and JavaScript (JS) to create responsive,
mobile-first websites and apps.

The mobile-first approach assumes that smartphones, tablets, and task-specific
devices can access a website or app. Responsive design allows a website or app to detect the
visitor's screen size and orientation and adapt the display accordingly; the mobile-first
approach assumes that smartphones, tablets, and task-specific devices are used to access a

Figure 45 Laravel logo

44

 Chapter 3: Materials used in the project

website or app. Employees' primary materials for getting work done are mobile applications,
which satisfy the design needs of such technologies.

Along with the framework for implementation, Bootstrap contains user interface
components, layouts, and JS materials. Pre-compiled or source code versions of the program
are available. [15] [16]

3.2.3.1- Advantages of Bootstrap

● Bootstrap is Basic to Use: Bootstrap is an effortless and easy to use framework for
designing and developing websites. There is a lot to learn from this framework
because it is so fresh. It may be utilized with CSS, LESS, or SaaS, among other things.

● It's Simple to Form a Partnership: Bootstrap is a framework that can be simply
linked with other frameworks without disrupting current or new sites.

● Bootstrap is a quick and time-saving framework. It is an agile framework that is
significantly faster than other frameworks. Because of its standard ready-made
code blocks, responsiveness, and cross-browser features, it saves time. [17] [18]

3.3- Virtual machine management (Container Management)
A virtual machine is a computer-generated illusion created by emulation software and

installed on a computer. In this scenario, we engaged:

3.3.1- Docker

Docker automates tedious configuration chores and is utilized across the development
lifecycle for quick, simple, portable desktop and cloud application development. Docker's end-
to-end platform comprises user interfaces, command line interfaces, APIs, and security
features designed to operate together across the application development lifecycle. Docker
has over 318 billion container image downloads. Container-based apps are popular and easy
to consume and publish, with millions of applications accessible on Docker Hub.

Docker leverages the Linux kernel and technologies such as Cgroups and namespaces
to separate processes and allow them to operate independently. The ability to execute many
processes and programs separately to make greater use of your infrastructure while
maintaining the security you'd get with separate systems is the goal of containers.

Figure 46 Bootstrap logo

45

 Chapter 3: Materials used in the project

Container technologies, such as Docker, allow for image-based deployment. It makes
it simple to share an application, or a collection of services, across various contexts, along with
all of its dependencies. Docker also automates the deployment of a program (or a collection
of processes that make up an app) within this container environment.

Users have unparalleled access to programs, the ability to deploy swiftly, and control
over versions and version distribution thanks to these technologies built on top of Linux
containers, making Docker user-friendly and unique.

Docker is a technology that allows you to distribute your software together with all of
its dependencies.

Within the Docker ecosystem, images play an essential role. They are considered a
collection of all the components (libraries, files and other stuff) that software needs to
execute. [19] [20]

3.3.1.1- Advantages of Docker

● Cost-effectiveness with rapid deployment in a consistent and isolated
environment.

● The ability to run anywhere is known as mobility. Docker makes any deployment
consistent, movable (portable), and scalable. Containers have the added benefit of
running anywhere.

● Test for repeatability and automation, as well as rollback and deployment
flexibility.

● Collaboration, modularity, and scalability are all critical factors to consider.
● Consistent and Isolated Environment. [21] [22]

Figure 47 Docker logo

Figure 48 Docker Containerization Technology for DevOps

46

 Chapter 3: Materials used in the project

3.4- HTTP Webserver
A web server is either software or a computer server that answers World Wide Web

queries across a public or private network, mainly utilizing the HTTP protocol. in our case, we
used:

3.4.1- Nginx

NGINX, pronounced "engine-ex," is an open-source web server that is now being
utilized as a reverse proxy, HTTP cache, and load balancer, thanks to its early popularity as a
web server.

Autodesk, Atlassian, Intuit, T-Mobile, GitLab, DuckDuckGo, Microsoft, IBM, Google,
Adobe, Salesforce, VMWare, Xerox, LinkedIn, Cisco, Facebook, Target, Citrix Systems, Twitter,
Apple, Intel, and many other well-known businesses utilize NGINX (source). It was designed
by Igor Sysoev and initially released to the public in October 2004. Igor created the program
to solve the C10k problem, which is a performance issue involving 10,000 concurrent
connections. NGINX typically outperforms other popular web servers in benchmark testing
due to its roots in performance optimization at scale, especially in scenarios with static
content and large concurrent requests, which is why Kinsta utilizes it to power its hosting. This
web server is designed to have a low memory footprint and a high concurrency level, rather
than creating new processes for each Web request.

With NGINX, a single process master may manage many worker processes. The master
oversees the worker's processes while the workers carry out the treatment as directed.
Because it is asynchronous, the worker may process each request simultaneously without
interfering with other requests. It is an event-driven approach in which all requests are
handled in a single thread. [23]

3.4.1.1- Advantages of NGINX

● The setup and configuration are basic and straightforward.
● It's a quick and effective method for providing static files.
● When compared to Apache, there are four times as many concurrent connections

handled.
● Compatibility with widely used web applications
● Support for Load Balancing
● Nginx accelerates websites, allowing them to get higher Google rankings. [24]

Figure 49 Nginx logo

47

 Chapter 3: Materials used in the project

3.5- Application Programming Interface (API)
An application programming interface (API) is a standardized collection of classes,

methods, functions, and constants that act as a front end for software to deliver services to
other software. In our situation, we employed:

3.5.1- FastApi

FastAPI is a modern and robust web framework for creating APIs using standard Python
type indices in Python 3.6 and above. FastAPI is a Starlette subclass that is built on asyncio.
The bulk of the features are recognizable to you if you're familiar with or have used Starlette
before. Fast API, similar to Nodejs, promises to be one of the fastest web frameworks
accessible. [25]

3.5.1.1- Advantages of FastAPI

● Fast: On par with NodeJS and Go in terms of performance (thanks to Starlette and
Pydantic). One of the quickest Python frameworks on the market.

● Increase the pace with which features are developed by 200 per cent to 300 per cent.
● Fewer bugs: Reduce human (developer)-caused mistakes by roughly 40%.
● Great editor support. Intuitive: Everywhere, there is completion. Debugging takes less

time.
● Simple: Designed to be simple to use and understand and less time spent reading

documents.
● In a nutshell, reduce code duplication. Each parameter declaration has several

characteristics. There are few bugs.
● Robust: Get code that is ready for production. With interactive documentation that is

generated automatically.
● Standards-based: Based on (and completely compatible with) the OpenAPI (formerly

known as Swagger) and JSON Schema open API standards. [26] [27]

3.5.2- Google Drive

Google Drive is a Google-developed file storage and syncing service, allows users to
store files in the cloud (on Google's servers), sync files across devices, and share files. Google
Drive offers programs for Windows and macOS PCs, as well as Android and iOS smartphones
and tablets, in addition to a web interface.

Figure 50 FastAPI logo

48

 Chapter 3: Materials used in the project

Figure 51 Google drive logo

The Google Drive API allows us to create apps that take full use of Google's cloud storage. So
we may use this API to connect our app to Google Drive and access and save files. [28]

The link between your Google Drive app, Google Drive, and the Google Drive API is
depicted in the figure below:

Figure 52 Relationship between Google Drive app, Google Drive, and Google Drive API.

3.5.2.1- Advantages of Google Drive

● Streaming File Drive, by enabling direct access to Drive files stored in the cloud, you

may save space on your hard drive and network bandwidth. As a result, you'll always

have the most recent version of the papers.

● Shared drives, the files in a shared Drive belong to the team rather than to a single

person, ensuring that all team members have constant access to the information they

want.

● Drive's data loss prevention (DLP) feature may identify files containing sensitive

information and block access to anybody who isn't a member of your company.

● Offline access, changes made offline are automatically synchronized as soon as your

device is connected to the Internet.

49

 Chapter 3: Materials used in the project

3.6- Back Office
The back office collects support, control, and administrative activities carried out

within an organization, so to manage our VMs files manually, we deployed:

3.6.1- Jupyter

The Jupyter project (for Julia, Python, and R) is the outcome of the IPython project,
which consists of an advanced Python interpreter that allows you to increase the productivity
of your Python code. IPython was progressively expanded with Notebooks, a JSON-based
online interface that allows users to execute a Python kernel and code directly in the browser,
with intermediate results shown. It was a significant step forward in terms of collaboration
and "interactive" creation.

IPython is python-oriented, as the name implies, and the solution's creators rapidly
discovered that Python was only one of many potential languages. To develop directly in this
language, we need to add a kernel connected with another language (R or Julia). As a result,
the Jupyter project and its Jupyter Notebooks were born (the Notebooks files' names are
*.ipynb files, derived from IPython Notebooks). The IPython project is still alive and well, but
it focuses solely on Python, with the Notebook component removed.

Overwhelmed by their success, the Jupyter Notebooks developers had to respond to a
slew of development requests, and the notebooks quickly evolved to include notebook
extensions (which I'll discuss in more detail in a later article), as well as a new and more
advanced development interface: the JupyterLab! [29]

3.6.1.1- Advantages of Jupyter

● Users are welcome to participate (working with notebooks, code and data).
● JupyterLab allows you to integrate notebooks, documents, and activities to a great

degree.
● Drag and drop notebook cells to reorganize them and copy them across notebooks.
● Interactively run code chunks from text files (.py, .R, .md, .tex, etc.).
● Connect a coding terminal to a notebook kernel to communicate with code while

keeping the notebook clean. [30]

Figure 53 Jupyter logo

50

 Chapter 3: Materials used in the project

3.6.2- Google Colab

Colaboratory, or 'Colab' for short, is a product from Google Research. Colab allows

anybody to write and execute arbitrary Python code through the browser and is especially

well suited to machine learning, data analysis and education. More technically, Colab is a

hosted Jupyter notebook service that requires no setup while providing free access to

computing resources, including GPUs.

We used this service by creating a virtual machine that is accessed from the main

application using an SSH tunnel then execute the machine learning model using the specific

data uploaded by the user. [31]

3.6.2.1- Advantages of Google Colab

● You can simply share your Google Colab notes.
● With versioning, you can easily save your notebook to Github with a single click.
● Google Colab provides a beautiful collection of code snippets that you can copy and

paste into your code.
● Google Colab provides a beautiful collection of code snippets that you can simply put

into your code.
● In the case of non-technical users, Python is beneficial for nearly everyone in an office

job, not only programmers, who must evaluate data.
● Python programs demand a lot of computer power and might take a long time to run.

You won't have to worry about anything if you execute your scripts on the cloud. While
running Python programs on your local system, the performance of your machine does
not suffer.

● The best part is that it is entirely free. [32]

3.7- Database
In simple words, data can be facts about any object under investigation. Databases are

necessary in our case because we deal with files and users. In our circumstance, we used the
following:

Figure 54 Google colaboratory

51

 Chapter 3: Materials used in the project

3.7.1- MySQL

MySQL is a free and open-source relational database server. Instead of storing all of
the data in a single table, a database server stores the data in several tables. It improves the
overall speed and consistency. Tables are linked together by defined relationships, allowing
data to be combined from several tables within a single query. The SQL in "MySQL" stands for
"Structured Query Language," a standard language for dealing with databases.

3.7.1.1- Advantages of MySQL

● MySQL is a multi-user database.
● It may be used with other programming languages.
● You don't need a lot of RAM.
● A portable software
● The table's structure is adaptable.
● Open Source SGBD
● It is possible to use it with low material specifications.
● Comprehensive administrative tools
● Variable data types
● Guaranteed security is number ten. [33]

3.7.2- MongoDB

MongoDB is cross-platform document-oriented database software that is open source.
MongoDB is a NoSQL database software that stores data as flexible JSON documents. It means
that the fields can change from one document to the next, and the data structure can change
over time. [34]

Figure 55 MySQL logo

52

 Chapter 3: Materials used in the project

3.7.2.1- Advantages of MongoDB

● The document model maps the objects in your application's code, making data
processing easier.

● Ad hoc requests, indexing, and real-time aggregation provide potent tools for
accessing and analyzing your data.

● MongoDB is a distributed database with high availability, horizontal scaling, and
geographic dispersion, all of which are integrated and simple to use.

● MongoDB is entirely free to use. All versions published after October 16, 2018,
including corrections for previous versions, are licensed under the Server Side Public
License (SSPL) v1. [35]

3.8- Deployment
The term "software deployment" refers to the activities that go into making a software

system available. In general, the deployment process consists of several interdependent
activities with probable transitions between them; for this need, we used the following
servers:

3.8.1- Google Cloud Platform

The Google Cloud Platform is a grouping of Google's public cloud computing services.
The platform provides a range of hosted services for compute, storage, and application
development run on Google infrastructure. Google Cloud Platform services are available to
software developers, cloud administrators, and other corporate IT experts through the public
Internet or a customized network connection.

Google Cloud Platform offers services such as computing, storage, networking, big
data, machine learning, the Internet of things (IoT), and cloud management, security, and
developer materials. Among the effective cloud computing solutions provided by Google
Cloud Platform are:

● Google Compute Engine is an infrastructure-as-a-service (IaaS) provider that provides
virtual machine instances to customers for workload hosting.

Figure 56 MongoDB logo

53

 Chapter 3: Materials used in the project

● Google App Engine is a platform-as-a-service (PaaS) offering by Google that provides
scalable hosting for software developers. Developers may also utilize a software
development kit (SDK) to create software applications that run on App Engine.

● Google Cloud Storage is a cloud storing system that allows for the storage of massive
volumes of unstructured data. Google also offers database storage services, including
Cloud Datastore for NoSQL non-relational storage, Cloud SQL for MySQL fully relational
storage, and Google's proprietary Cloud Bigtable database.

● Google Container Engine is a Docker container management and orchestration system
that runs in Google Cloud. Google Container Engine is built on Google Kubernetes, a
container orchestration engine.

3.8.1.1- Advantages of Google Cloud Platform

● Pricing that is lower than competitors'
● Live Migration of Virtual Machines over a Private Global Fiber Network
● Improved Performance Cutting-Edge Security Commitment to Continued Expansion
● Redundant backups [36]

3.8.1.2- Advantages of Google Compute Engine

● Across all regions, Compute Engine's network input/output is far faster than AWS's.
● Efficient Block Storage's persistent disks have a storage capacity of 257 TB.
● It delivers more dependable services because of its ability to facilitate live VM

movement across hosts.
● GCP is equipped with a robust, redundant backup system. This platform provides the

foundation for Google's essential products, including the Search Engine and Gmail.

Figure 57 Google Cloud Platform logo

54

 Chapter 3: Materials used in the project

● For more than two decades, Google has been around. When you use Google Cloud
Platform, you get access to the security measures that Google has built over the years
to secure its powerful products like Google Search and Gmail. [37] [38]

3.8.2- Cloudways [39]

Cloudways is a well-known platform as a service provider that enables developers to
build, grow, and manage apps rapidly. This platform supports various programming languages,
including Java, Ruby, PHP, Node.js, Python, Scala, and Clojure.

Cloudways charges clients based on the number of virtual machines required for their
apps.

3.8.2.1- Advantages of Cloudways

● Online assistance is provided for free, with possible add-ons to improve your service.
● With pay-as-you-go billing, you only pay for the resources you use.
● Your first website is migrated to Cloudways for free.
● SSL certificates are simple to install and are available for free.
● Unrestricted access to services without the need to sign a contract.
● On every subscription, you have the option of hosting an infinite number of

applications.
● Lets developers concentrate on coding and not server management

Figure 58 Google Compute Engine Services

Figure 59 Cloudways logo

55

 Chapter 3: Materials used in the project

● It offers developers a secure way of developing applications due to its set of security
features. [40]

3.9- Programming Tools
The processes that go into making a software system available are referred to as

"software deployment." In general, the deployment process consists of numerous
interdependent actions with possible transitions between them; for this purpose, we utilized
the servers listed below.

3.9.1- Visual Studio Code

Visual Studio Code is a free and open-source code editor created by Microsoft that
supports a wide range of programming languages through extensions. It supports
autocompletion, syntax colouring, debugging, and git commands. [41]

3.9.1.1- Advantages of Visual Studio Code
● Customize each feature to your taste and install as many third-party extensions as you

like.
● VS Code provides enhanced built-in support for Node.js programming using JavaScript

and TypeScript, driven by the same underlying technologies that power Visual Studio.
VS Code also provides excellent tooling for web technologies like JSX/React, HTML,
CSS, SCSS, Less, and JSON.

● Architecturally, Visual Studio Code blends the finest of web, native, and language-
specific technology. [42]

3.9.2- Postman

Postman allows you to create and execute HTTP requests, save them in history so you
can re-use them, and organize them into Collections. This categorization allows for grouping
queries in a "functional" manner (for example, the addition of an item to a shopping cart or
an identifying procedure).

Figure 60 Visual Studio Code logo

56

 Chapter 3: Materials used in the project

Postman also manages environments, allowing you to contextualize variables and
execute queries or series of queries in various settings. [43]

3.9.2.1- Advantages of Postman

● User-friendliness. Testers may quickly create test suites by filling out templates with a
simple UI. in addition to code snippets

● Accessibility. Signing into the account on a device with the Postman application or the
Postman browser extension allows Postman users to access their files effortlessly.

● Postman lets you make and execute HTTP requests, preserve them in a history for later
use, and arrange them into Collections.

● Postman also maintains environments, which allow variables to be contextualized and
queries to be run.

3.10- Tools comparison
We used various programming languages and frameworks, and hosting servers and

finally, we made a comparison between them under different categories, and we got these
results:

Tools Laravel FastAPI

Service
Web

 It's useful for creating RESTful
APIs.

 It has a fantastic built-in ORM.
 Documentation is excellent.
 Handles event queuing
 It has its own CLI.
 Web apps with authentication

are simple to create.
 Gives developers a lot of

flexibility in how they build their
projects.

 Template system with a lot of
power

 Excellent Ecosystem
 Fantastic Community
 It has too many magic methods,

which makes debugging and
autocompletion more difficult.

 Dependency injection system
 Based on Starlette and Pydantic,

so, it's one of the fastest Python
frameworks

 Automatic docs, it generates
interactive API documentation
automatically from your code

 Editor completion
 Based on Async IO, which gives it

high concurrency
 World class documentation
 Independent of database or ORM,

but compatible with all of them
 Support for background tasks,

thanks to being based on Starlette
 Data validation
 Its community is smaller than

Django Rest Framework

Figure 61 Postman logo

57

 Chapter 3: Materials used in the project

 Model attributes are difficult to
use.

Tools Cloudways Colaboratory

Deployment

 It is based on local
hardware.

 The system processor is
used, and There is no access
to an external GPU, CPU, or
TPU.

 Installation of a library by
hand

 The amount of time it takes
to complete a task is
determined by the amount
of memory available on the
machine.

 It is possible to share it with
others without having to
download it.

 Require anaconda or python
to be installed on your
machine

 Without your hard drive, we
won't be able to access our
notebooks

 Free of charge

 Google's server is used.
 The GPU and TPU are offered for

free, and the local machine can
still be used.

 The majority of the essential
libraries are already installed.

 It is possible to share it with others
without having to download
anything.

 Runtime is 12/24 hours and can be
halted by Google.

 There is no need to install
anything; it may be accessed
through a web browser.

 Because it's saved in Google Disk,
it can be accessed from anywhere
without a hard drive.

 It is partially costless.

Tools Jupyter Lab Colaboratory

Deployem
ent

 It is based on local hardware.
 The system processor is used,

and There is no access to an
external GPU, CPU, or TPU.

 Installation of a library by
hand

 The amount of time it takes to
complete a task is determined
by the amount of memory
available on the machine.

 It is possible to share it with
others without having to
download it.

 Require anaconda or python
to be installed on your
machine

 Google's server is used.
 The GPU and TPU are offered for

free, and the local machine can
still be used.

 The majority of the essential
libraries are already installed.

 It is possible to share it with others
without having to download
anything.

 Runtime is 12/24 hours and can be
halted by Google.

 There is no need to install
anything; it may be accessed
through a web browser.

 Because it's saved in Google Disk,
it can be accessed from anywhere
without a hard drive.

 It is partially costless

58

 Chapter 3: Materials used in the project

 Without your hard drive, we
won't be able to access our
notebooks

 Free of charge

3.11- Chapter Conclusion
 We have seen various materials used in the development phase of the life cycle, which
we have defined in this chapter, and the advantages that motivated us to make such choices.
Yet, as we can see. These were the tools used without explaining the “what”, so what exactly
are we going to deploy?

In order to answer these questions, we need to explain the algorithms deployed in the
next chapter.

Chapter 4

Deployed models and their
architectures

59

 Chapter 4: Deployed models and their architectures

4.1- Introduction:
This last chapter is dedicated to the description of the deployed models in the

proposed applications. Our project focused mainly on deploying four different machine

learning models into production with different architectures. The first model concers the

medical field, it is developed to the purpose of skin segmentation images. The second one is

a model that aims to detect objects within images and videos. The third and the fourth ones

are models based on the cvlib python library that permits facial and gender detection.

4.2- Skin segmentation model:
Medical image segmentation has an essential impact on computer-aided diagnosis

systems. It's considered one of the most vital medical imaging processes. It helps to divide the

image into areas based on a specific description.

The problem with medical imaging, in general, is the lack of data to train the models

because it is considered confidential data. The second major problem is that these data are

not labelled, so training the model with a few unlabelled images is complex and avoiding the

overfitting is almost impossible.

Primarily, medical image segmentation is based on Unet and EfficientNet

architectures. But the proposed model in this project has a different architecture that uses

the model B0 of EfficientNet to optimize the predictions speed and economize the used

memory. [44]

4.2.1- Unet Architecture:

It's an architecture developed by Olaf Ronneberger for biomedical images

segmentation's use. It is a convolutional architecture consisting of two parts: the applet

encoder's contraction part, which captures the context in the image and the decoder part

used for symmetric expansion. [44]

Figure 62 Unet architecture

60

 Chapter 4: Deployed models and their architectures

4.2.2- Image processing:

This method performs multiple operations on the images to prepare them to adapt

them to the neural network. The reason to make these operations is to get more images to

train the model. These operations consist of Creating labels for the images, Data

augmentation and Data normalization.

4.2.3- Execution process:

The skin segmentation model needs input data that must be a medical image resulting

from skin MRI. There are many medical image formats, but the model deals only with nifti files

in this case.

After the execution, it generates two different files. The first is a medical image file of

nifti format, and the second is a .jpg image representing the 2D mask image.

Here is an example of an input file and its appropriate resulted image:

4.3- Object detection model:
Object detection is a critical computer vision functionality that detects objects of

predefined classes (such as persons, cars, animals, and other classes) from digital supports,

including photos and video frames.

This project integrates the YOLO v5 model, a family of compound-scaled object detection

models trained on the COCO (Common Objects in Context) dataset. [45]

 Figure 64 Skin segmentation output image Figure 63 Skin segmentation input image

61

 Chapter 4: Deployed models and their architectures

4.3.1- Yolo v5 architecture:

The Yolo v5 model is based on Darknet architecture, an Open-Source

convolutional neural network written in C and CUDA. It is considered the backbone of the Yolo

v5 architecture.

This model also integrates the PANet in the neck of the general architecture. The

model mainly adopts it to improve the process of instance segmentation by preserving spatial

information.

Finally, the architecture's head comprises Yolo Layers to mix and combine image

features to pass them to prediction. [46]

4.3.2- Execution process:

The Yolo v5 model can detect objects from diverse digital media types as images and

videos. It decomposes the input data into frames for video detection and treats each frame as

a single image.At the end of the execution, the model calls the OpenCV library to build the

result file before returning it to the output path.

The major problem we faced at this level was to specify a codec used to build the

resulted video. As the returned files are being used on the web, we had to find a specific codec

supported by the OpenCV library and at the same time compatible with the web browser. For

this reason, we adopted the VP09 videos codec to generate the resulted videos.

Figure 65 Yolo v5 architecture

62

 Chapter 4: Deployed models and their architectures

Here is an example of the Yolo v5 execution:

4.4- Face and gender detection:
The last model deployed in this project is a face and gender detection model. It is

based on the CVlib python library, which is a specialized library in object detection.

This library is fed principally by two compelling libraries: OpenCV and TensorFlow. [47]

It supports both image and video files as input and includes three principal functions:

● Face detection

● Gender detection

● Object detection

We focused only on the image input files, the face and the gender detection options in

this project. [48]

4.4.1- Execution process:

4.4.1.1- Face detection:

The python script needs to call the detect_face() function from the CVlib library to

detect the face. The function returns an array of all the faces it found and an array of

numbers to show how sure it is that those are faces which represents the confidence of the

prediction.

The figure below represents an example of an input and output file using this function:

Figure 67 Yolo v5 input example Figure 66 Yolo v5 output example

63

 Chapter 4: Deployed models and their architectures

4.4.1.2- Gender detection:

Gender detection is one of the popular computer vision applications. It is possible to

make gender detection using CVlib by calling the prebuilt function detect_gender()

associating with the face frame already detected.

The following figures are an example of the execution of this option.

 Figure 68 CVlib face detection output file Figure 69 CVlib face detection input file

Figure 71 CVlib gender detection input file Figure 70 CVlib gender detection output file

64

 Chapter 4: Deployed models and their architectures

4.5- Chapter conclusion:
Along with this chapter, we described the deployed models in our project. We also

highlighted the architecture of each model as the Unet architecture of the skin segmentation

model and the Yolo v5 architecture based on DarkNet and PAnet neural networks. We

finished with giving an example of inputs and outputs of each case to give a general idea of

the use of these scripts.

65

Conclusion:
The popularity of web applications has increased dramatically with agencies

specializing in artificial intelligence, to use their intelligent software in an entrepreneurial
setting to generate revenue, hence the term MLOps which is a booming new research field.
The objective of our project was to offer simple, secure and above all fast deployment
requests, while setting up ergonomic interfaces, with options that can facilitate users'
navigation. This Work resulted in the creation and deployment of two web applications,
separate from one to another that take care of the different tasks that allow users to test the
different algorithms offered, which we can quote:

• Facilitate the insertion of the image or video with the appropriate extention
• Test the algorithm on the uploaded input.
• Show up the output with the possibility of downloading if weshed
• Possibility to create a user profile for monitoring, which provides access to

dashboard presenting the past operations.
• Ability to contact the administrator at any time through the contact page.

 we have implemented the options that machine learning users may need, these
features that we call "Sprint" have been translated into UML diagrams, the design
methodology used was driven by the SCRUM method which is considered among the most
used agile methods, in order to ensure the smooth running of the project accompanied by
UML which is considered among the most used modeling languages to illustrate the design
process In perspective, the Web application can be improved by adding other features such
as:

• Include full virtual machine management from the administrator interface
• Include full file and profile management from the user interface
• Deploy even more models such as “Color Model” “Demographics Face

Recognition Model”, “AI Food Recognition Model”, “Subject Visual Segment”,
“Arabic manuscript recognition” and many more 'others.

• Add a rather revolutionary product that we call "Custom Model" which allows
the user to create his own model, use his own inputs or texts with his own
concepts.

• Create an API that allows our customers to use our models and our servers
• Develop a payment system according to a market study that we will carry out

soon. We hope that these two platforms will be perpetually improving in
terms of performance and functionality as new technologies appear. [33]

Bibliography

[1] A. Ng, "Apprentissage automatique," 2015. [Online]. Available:
www.coursera.org/learn/machine-learning. [Accessed 17 06 2021].

[2] K. Wakefield, "A guide to the types of machine learning algorithms and their
applications," 6 May 2018. [Online]. Available:
https://www.sas.com/en_gb/insights/articles/analytics/machine-learning-
algorithms.html. [Accessed 3 07 2021].

[3] P. Canuma, "MLOps: What It Is, Why it Matters, and How To Implement It -
neptune.ai," 14 1 2021. [Online]. Available: https://neptune.ai/blog/mlops-what-it-is-
why-it-matters-and-how-to-implement-it-from-a-data-scientist-perspective. [Accessed
12 6 2021].

[4] H. Tyagi, "What is MLOps — Everything You Must Know to Get Started," 2020 march
25. [Online]. Available: https://towardsdatascience.com/what-is-mlops-everything-
you-must-know-to-get-started-523f2d0b8bd8. [Accessed 18 06 2021].

[5] "Introduction to MLOps," 30 11 2020. [Online]. Available:
https://medium.com/illumination/introduction-to-mlops-f877ccf10db1. [Accessed 25
07 2021].

[6] mark treveil and dataiku team, Introducing MLOps, 1005 Gravenstein Highway North,
Sebastopol, CA 95472: O’Reilly Media, Inc, November 2020.

[7] A. NG, "Introduction-to-machine-learning-in-production," 2021. [Online]. Available:
https://www.coursera.org/learn/introduction-to-machine-learning-in-production.
[Accessed 10 06 2021].

[8] T. Sufiyan, "What is ReactJS: Introduction To React and Its Features," 30 09 2021.
[Online]. Available: https://www.simplilearn.com/tutorials/reactjs-tutorial/what-is-
reactjs. [Accessed 07 2021].

[9] S. Morris, "Tech 101: What Is React JS?," 23 08 2020. [Online]. Available:
https://skillcrush.com/blog/what-is-react-js/. [Accessed 12 06 2021].

[10] "7 Advantages of ReactJS for Building Interactive User Interfaces," 05 08 2020. [Online].
Available: https://www.clariontech.com/blog/7-advantages-of-reactjs-for-building-
interactive-user-interfaces. [Accessed 03 05 2021].

[11] O. Kopachovets, "ReactJS Advantages: Scalability, Challenges, Pitfalls," 20 11 2020.
[Online]. Available: https://procoders.tech/blog/advantages-of-using-reactjs/.
[Accessed 28 07 2021].

[12] Laravel, "Introduction," 01 01 2021. [Online]. Available:
https://laravel.com/docs/4.2/introduction.

[13] Kinsta, "Le framework PHP Laravel – la construction d’applications web pour tous," 16
04 2021. [Online]. Available: https://www.pappleweb.com/index/definition-de-
laravel/. [Accessed 25 08 2021].

[14] D. Garbar, "The Top 10 Advantages Of Using Laravel PHP Framework," 05 01 2020.
[Online]. Available: https://belitsoft.com/laravel-development-services/10-benefits-
using-laravel-php-framework. [Accessed 20 07 2021].

[15] JDN, "Bootstrap : définition, tutoriels, astuces, pratiques," 28 08 2021. [Online].
Available: https://www.journaldunet.com/web-tech/developpeur/1159810-bootstrap-
definition-tutoriels-astuces-pratiques/. [Accessed 08 07 2021].

[16] T. Contributor, "DEFINITION," 01 01 2017. [Online]. Available:
https://whatis.techtarget.com/definition/bootstrap. [Accessed 10 08 2021].

[17] graygrids, "The 7 Great Advantage and Reasons to Use Bootstrap as a Front-end CSS
Framework," 2021. [Online]. Available: https://graygrids.com/advantage-reasons-use-
bootstrap-front-end-css-framework/. [Accessed 20 07 2021].

[18] "Top 10 Benefits of Using Bootstrap!," 01 01 2020. [Online]. Available:
https://www.xeliumtech.com/blog/Top-10-Benefits-of-Using-Bootstrap. [Accessed 15
07 2021].

[19] Redhat, "What is Docker?," 09 01 2018. [Online]. Available:
https://www.redhat.com/en/topics/containers/what-is-docker. [Accessed 01 09 2021].

[20] S. Yegulalp, "Why you should use Docker and containers," 10 10 2028. [Online].
Available: https://www.infoworld.com/article/3310941/why-you-should-use-docker-
and-containers.html. [Accessed 15 08 2021].

[21] Simplilearn, "What is Docker: Advantages and Components," 18 09 2021. [Online].
Available: https://www.simplilearn.com/tutorials/docker-tutorial/what-is-docker.
[Accessed 21 07 021].

[22] Docker, "Use containers to Build, Share and Run your applications," 2021. [Online].
Available: https://www.docker.com/resources/what-container. [Accessed 01 05 2021].

[23] Nginx, "What is NGINX?," 2021. [Online]. Available:
https://www.nginx.com/resources/glossary/nginx/. [Accessed 10 06 2021].

[24] Coolicehost, "Ten Great Advantages of Nginx," 18 07 2015. [Online]. Available:
https://blog.coolicehost.com/ten-great-advantages-of-nginx/. [Accessed 05 08 2021].

[25] S. Yegulalp, "Get started with FastAPI," 18 09 2021. [Online]. Available:
https://www.infoworld.com/article/3629409/get-started-with-fastapi.html. [Accessed
01 05 2021].

[26] J. Sandy, "Choosing between Django, Flask, and FastAPI," 04 01 2021. [Online].
Available: https://www.section.io/engineering-education/choosing-between-django-
flask-and-fastapi/. [Accessed 14 05 2021].

[27] R. Naushad, "Flask Vs FastAPI which one should you choose?," 11 11 2020. [Online].
Available: https://blog.accubits.com/flask-vs-fastapi-which-one-should-you-choose/.
[Accessed 18 05 2021].

[28] Developers.google, "Introduction to Google Drive API," 2021. [Online]. Available:
https://developers.google.com/drive/api/v3/about-sdk. [Accessed 04 06 2021].

[29] Jupyter, "https://jupyter.org/," 2021. [Online]. Available:
https://jupyter.org/documentation. [Accessed 12 06 2021].

[30] A. Bhandari, "10 Compelling Reasons you Should Use JupyterLab for Data Science
Coding," 25 06 2020. [Online]. Available:
https://www.analyticsvidhya.com/blog/2020/06/10-powerful-reasons-jupyterlab-data-
science/. [Accessed 24 05 2021].

[31] R. google, "Colaboratory, Frequently Asked Questions," 2021. [Online]. Available:
https://research.google.com/colaboratory/faq.html?hl=fr. [Accessed 10 04 2021].

[32] M. V. D. Reym, "7 Advantages of Using Google Colab for Python," 04 01 2020. [Online].
Available: https://python.plainenglish.io/7-advantages-of-using-google-colab-for-
python-82ac5166fd4b. [Accessed 28 04 2021].

[33] CONTRIBUTOR, "8 Advantages of Using MySQL," 07 26 2017. [Online]. Available:
https://devops.com/8-advantages-using-mysql/. [Accessed 05 09 2021].

[34] Mongodb, "Qu'est-ce que MongoDB ?," 2021. [Online]. Available:
https://www.mongodb.com/fr-fr/what-is-mongodb. [Accessed 13 09 2021].

[35] Mongodb, "Advantages of MongoDB," 2021. [Online]. Available:
https://www.mongodb.com/advantages-of-mongodb. [Accessed 12 09 2021].

[36] "Les 7 meilleurs avantages à choisir l’hébergement Google Cloud," 02 03 2021.
[Online]. Available: https://kinsta.com/fr/blog/hebergement-google-cloud/. [Accessed
01 05 2021].

[37] "Google Compute Engine: Features and Advantages," 27 09 2021. [Online]. Available:
https://www.whizlabs.com/blog/google-compute-engine-features-and-advantages/.
[Accessed 23 06 2021].

[38] "What Are the Advantages of Google Compute Engine?," 3 September 2021. [Online].
Available: https://www.parallels.com/blogs/ras/compute-engine/. [Accessed 01 03
2021].

[39] Digital, "Best web hosting," 3 10 2021. [Online]. Available: https://digital.com/best-
web-hosting/cloudways/. [Accessed 20 06 2021].

[40] Cloudways, "Hosting Made Simple, Fast and Convenient," 2021. [Online]. Available:
https://www.cloudways.com/en/features.php. [Accessed 27 06 2021].

[41] P. Pedamkar, "What is Visual Studio Code?," 2020. [Online]. Available:
https://www.educba.com/what-is-visual-studio-code/. [Accessed 02 03 2021].

[42] O. A. ,. P. Greg Van Liew, "Why did we build Visual Studio Code?," 02 9 2021. [Online].
Available: https://code.visualstudio.com/docs/editor/whyvscode. [Accessed 9 03
2021].

[43] O. Howard, "Postman for API Testing — Pros, Cons, and Alternative Solutions," 14 09
2020. [Online]. Available: https://dzone.com/articles/postman-for-api-testing-pros-
cons-and-alternative. [Accessed 10 03 2021].

[44] A. M. Lamine and Z. Ahcene, "MASTER THESIS 2D/3D medical image segmentation by
embedding EfficientNet in Convolutional neural network: Application on BraTS
challenge 2020," 2020.

[45] J. Solawetz, "How to Train A Custom Object Detection Model with YOLO v5," 15 01
2020. [Online]. Available: https://towardsdatascience.com/how-to-train-a-custom-
object-detection-model-with-yolo-v5-917e9ce13208. [Accessed 15 08 2021].

[46] R. Xu, K. Lu, Lin Cao and Yunfei Liu, "A Forest Fire Detection System Based on Ensemble
Learning," forests, 2021.

[47] G. Sharma, "cvlib : Yolo Object Detection in Seconds!," 26 06 2021. [Online]. Available:
https://www.analyticsvidhya.com/blog/2021/06/yolo-object-detection-in-seconds-
cvlib/. [Accessed 12 08 2021].

[48] "Home - cvlib," [Online]. Available: https://docs.cvlib.net/.

Abstract:
The thesis was written with a view to obtaining the diploma at the end of study in

computer science, software engineering course. It deals with the problems encountered
during the step of the deployment of several Machine Learning algorithms on the web.

To implement the solutions, we used an agile method called SCRUM which is based
on UML as a modeling language, and the Model-View-Controller as a design pattern.

The implementation was done under the integrated development environment
Visual Studio Codes using several languages such as Javascript, PHP and Python, and
programming frameworks ReactJS, Laravel and FastAPI, regarding the creation of isolated
virtual machines we used Docker and Google Colab, we used NGINX too in order to set the
HTTP server, when it comes to the deployment cloud servers we had faith in Google Cloud
Compute engine and Cloudways, an since we had to manage data we trusted a relational
database with MySQL and NoSQL database with MongoDB

Meanwhile the goal is to run the Machine Learning algorithms so we were obliged to
understand and to modify the programmes, especially dealing with inputs and outputs.

The security layer of the application was exposed by a certain number of mechanisms
allowing to increase the achievement of the security objectives (authentication, access
control etc.).

Resumé:
Le mémoire a été rédigé en vue de l'obtention du diplôme de fin d'études en

informatique spécialité génie logiciel. Il traite des problèmes rencontrés lors de l'étape de
déploiement de plusieurs algorithmes de Machine Learning sur le web.

Pour implémenter les solutions, nous avons utilisé une méthode agile appelée
SCRUM qui est basée sur l'UML comme langage de modélisation et le Modèle-vue-
contrôleur comme modèle de conception.

 La mise en œuvre a été faite sur l'environnement de développement intégré Visual
Studio Code utilisant plusieurs langages tels que Javascript, PHP et Python, et les frameworks
de programmation ReactJS, Laravel et FastAPI, en ce qui concerne la création de machines
virtuelles isolées, nous avons utilisé Docker et Google Colab. Nous avons utilisé NGINX afin
de définir le serveur HTTP. En ce qui concerne les serveurs de déploiement, nous avons fait
confiance au Google Cloud Engine et à Cloudways, et comme nous devions gérer des
données, nous avons fait appel à une base de données relationnelle avec MySQL et à une
base de données NoSQL avec MongoDB.

Tandis que le but est d'exécuter les algorithmes de Machine Learning, nous avons
donc été obligés de comprendre et de modifier les programmes, en particulier en ce qui
concerne les entrées et les sorties de données.

La couche de sécurité de l'application a été exposée par un certain nombre de
mécanismes permettant d'augmenter l'atteinte des objectifs de sécurité (authentification,
contrôle d'accès etc.)

Tasenselkimt:
Nura tazrawt-a iwakken ad nawi yes-s agerdas ɣer taggara n useggas. Taɣult n tselselkimt,

tuzzigt n tesmedna n useɣzan.
S umata, iqeddec ɣef uguren i d-yemlal lawan n umecwar n uzuzer n waṭas n ilguritmen n

tmacint Learning deg Web.
Iwakken ad nselkem tifratin, nessemres tarrayt i yettusemman SCRUM, tin i isenden ɣef UML

am tutlayt n tmudemt akked MVC tamudemt n useɣwes.
Deg lawan n uselkem, yella-d waya s ukeččum n twennaḍt n usnerni n Visual Studio code

akked useqdec n tutlayin i yemgaraden am Javascript, PHP d Python akked usihel ReactJS, Laravel d
FastAPI. Ma yella deg wayen yerzan asnulfu n tmacinin tuḥlisin yettwaɛezlen, nessemras Docker d
Google Colab. Nesseqdec daɣen NGINX iwakken ad d-nesbadu aqeddac http. Deg wayen yerzan
iqeddacen n uzuzer, nexdem taflest deg Google Cloud Engine akked Cloudways imi i d-yewwi ad
nesselḥu inefkan anida i nger tiɣri i yiwen n wadda n yinefkan assaɣan akked MySQL rnu yiwen n
wadda n yinefkan NoSQL akked MongoDB.

Seg tama-nniḍen, iswi d aselkem n ilguritmen n Machine Learning, dɣa yessefk ad negzu, ad
nbeddel ahilen ladɣa deg wayen yerzan akeččum d tuffɣa n yinefkan.

Tettwafser tissi n laman n usnas sɣur kra n umḍan n tmacinin i izemren ad ǧǧent asemɣer
(zzyada) deg usiweḍ ɣer yiswan n laman (asesteb, asuddes n ukeččum atg.)

