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Preface

The rise of the Internet of Things over the last few decades has transformed our relationship
with the cybernetic world. It has blurred the boundaries between the realm and virtual world,
making influences tangible in both directions. Through sensors capable of capturing information
about the environment and actuators capable of acting on it, the boundary between the two
worlds has been removed and this has given way to a whole new reality. All this has changed
the scale at which system administrators must operate to provide functional safety and cyber-
security services. We have gone from interconnecting small, local networks to a global network
interconnecting billions of objects and users worldwide.

The set of models organizing the functioning of the Internet of Things into layers allows us
to identify a trend: the presence of three main layers which are the perception layer, the core
layer aggregating the network and service sub-layers, and finally an application layer. Our work
focuses on identifying automation mechanisms at the perception and core layers, as well as on
large-scale practical applications.

It is important to emphasize that a set of technologies forms the foundation on which the IoT
infrastructure is built. Cloud Computing provides the computing power needed for processing
data generated by connected objects, while Big Data offers analytical models to exploit these
same data. Data can be obtained through sensors embedded in connected objects or collected
by dedicated Wireless Sensor Networks (WSNs).

As the complexity of manual management and operation increases, the primary objective
of this thesis is to equip operators with the necessary mechanisms to automate Internet of
Things (IoT) operations to the greatest extent possible, thereby minimizing the need for human
interventions. In navigating the landscape of IoT architectures, whether cloud-centric or edge-
oriented, we assert that a cloud-based datacenter solution is the most pragmatic. Our focus is
on developing solutions that enhance the automation of IoT processes within this organizational
framework.

The thesis adheres to a conventional research procedure, commencing with an in-depth study
of fundamental IoT concepts and an exhaustive review of recent and pertinent research endeav-
ors. Subsequently, we introduce novel contributions positioned within the existing literature,
backed by conclusive experiments. The overarching goal is to streamline IoT operations, re-
duce reliance on manual interventions, and foster a more efficient and automated paradigm for
managing the complexities inherent in the Internet of Things.
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During this thesis work, we conducted a comprehensive review of the state-of-the-art con-
cerning automation across various levels. Our approach involved an in-depth exploration of the
latest and most pertinent literature on the subject. Before formulating our scientific proposals,
we meticulously examined and critically compared the most recent works in the field. This
thorough review not only ensured that we were well-informed about the current advancements
but also provided a solid foundation upon which to build our own contributions to the academic
discourse. By synthesizing and critically analyzing existing literature, we positioned our re-
search within the broader context of automation, allowing us to make informed and innovative
contributions to the field.

In our research, we meticulously identified crucial automation mechanisms within each layer
of the Internet of Things (IoT) architecture. At the perception layer, our emphasis lies on the
election of a leader, a vital element for the self-organization of isolated Wireless Sensor Network
(WSN). Shifting to the core layer, our focus extends to load balancing and task scheduling within
a cloud computing environment. Lastly, within the application layer, our efforts are directed
towards proposing a fully automated, large-scaled architecture that integrates the Internet of
Things and blockchain technologies. This innovative approach aims to construct a reliable and
privacy-aware ecological footprint calculator, addressing contemporary concerns in sustainability
and environmental impact assessment.

Conclusive experiments were undertaken to showcase the effectiveness and significance of
the proposed solutions. The obtained results, subject to detailed discussion, proved highly
satisfactory, exhibiting notable performance and relevance. A comparative analysis with the
most recent and pertinent related works further emphasized the robustness and efficacy of the
proposed solutions.

This publication is a fulfillment of the scientific and ethical obligations mandated by research
in the field of computer science. A collaborative effort among a group of researchers has con-
tributed to its creation, encompassing the production of scientific articles and the subsequent
results derived from the study. This work aligns with the standards and principles that govern
scholarly pursuits, aiming to advance knowledge and contribute meaningfully to the scientific
community.
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Introduction

The Internet of Things (IoT) represents a technological paradigm that has transformed the
interaction between human societies and cyberspace. Since its inception in the past decade,
it has gradually and inconspicuously dismantled the barriers that once separated the physical
realm from the digital world. Its ubiquity is evident as individuals remain constantly connected
to smart objects, enabling access to information and other systems from anywhere at any time
[1].

What sets it apart from previous iterations of the Internet is that it is no longer merely a
straightforward support network with the sole task of transmitting data from one end to another.
Presently, it can actively gather data from the environment through a perception layer, collate
and aggregate this information, and subsequently translate it into actions that influence the
surrounding world. Needless to say, the intricacy of such a network has given rise to various
mechanisms designed, among other purposes, to automate a multitude of tasks associated with
control and self-organization activities.

These distinctive features have allowed it to transcend the conventional use-case and seam-
lessly integrate into the realm of companies and organizations. Consequently, it has revolution-
ized information systems practices from what we have known until now. It has facilitated the
automation of numerous laborious tasks, enhancing productivity and liberating human resources
to concentrate on tasks with higher value-added [2].

Obviously, a network expanding at such astronomical pace must be designed to autonomously
integrate new components, recover from failures, and make decisions in specific circumstances
without human intervention. Our thesis work addresses this challenge by exploring ways to
enhance the autonomy of the network at various levels. Recognizing the necessity for increased
autonomy, we focused on interventions at the three operational levels of the Internet of Things
(IoT): (i) At the perception level, our emphasis lies on leader election algorithms within the
wireless sensor networks constituting the perception infrastructure of the Internet of Things.
(ii) In the core and service layer, our efforts are directed towards implementing automatic load
balancing and task scheduling among datacenter servers within a cloud environment. Finally,
(iii) at the application layer, we figured out a massive deployment case of the IoT and underlying
technologies to address a global problem which is climate warming [3].

In the era of the Internet of Things (IoT), the escalating proliferation of connected devices
has emphasized the imperative for automation. The substantial number and heterogeneity of
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IoT device manufacturers, coupled with the continuous demand for services from users, necessi-
tate efficient and seamless automated processes. The complexity of managing and coordinating
these interconnected devices, each with its specific functions and interactions, poses a formidable
challenge. An automated approach is essential to streamline operations, enhance responsive-
ness, and reduce the need for human actions in handling tasks such as new devices joining or
security imperatives. The need for automation in the IoT era arises from the desire to optimize
resource utilization, alleviate operational complexities, and unleash the full potential of inter-
connected systems while liberating humans from redundant tasks to meet the growing demands
of a digitally connected world.

Cloud computing is analogous to a nuclear reactor for the Internet of Things, providing im-
mense computing power and facilitating centralization of user and connected object data. This
shift has centralized security and recovery strategies in the era of the Internet of Things, funda-
mentally altering users’ consumption patterns from ownership and investment to subscription-
based models. At the core of this infrastructure, several collaborative mechanisms play a crucial
role in maintaining the Quality of Service (QoS) and in meeting the Service-Level Agreement
(SLA) that cloud service providers enter into agreements with their clients [4].

Blockchain is another technology that has utilized in our work. It functions as a data medium
with a straightforward yet profoundly powerful structure. It allows transactions to be recorded
in a decentralized ledger, where each block of transactions undergoes collective validation by
numerous participants, and copies are distributed among them. This eliminates the necessity
for a centralized data storage unit and guarantees the integrity of transaction data, along with
non-repudiation by the involved users [5].

We initially introduced a novel algorithm for leader election in wireless sensor networks.
This algorithm possesses the distinctive feature of being entirely distributed while including a
fault tolerance module. In each area of the given network, a group of gateways competes to
become the local leader. At the conclusion of this process, a leader is designated, and a list
of potential substitutes is compiled to assume coordination in case of a failure. This algorithm
provides a significant acceleration in terms of execution time as it omits the phase common to
other algorithms, i.e., the construction of a spanning tree, and it also eliminates the need for
rerunning in the event of a failure, thanks to the fault tolerance module [6].

Our second contribution centered on a novel algorithm that hybridizes tasks scheduling and
load balancing in the cloud [7]. This algorithm possesses the unique feature of operating at
two levels and in multiple stages, allowing a reduction in the complexity of the missions of
these components and a robust decoupling of the roles of each of these modules. It utilizes
k-means-based clustering to divide the datacenter into a set of clusters containing a bounded
number of servers. Subsequently, it employs a round-robin method to assign a group of tasks to
a specific cluster, before ultimately assigning them to the servers within that cluster based on
a genetic algorithm. Consequently, load balancing concentrates on selecting overloaded clusters
and servers that need relief from their workload, while the scheduling module is responsible for
their rescheduling, thereby shortening the migration scheme typically done through approaches
like ant colonies.
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In the third contribution, we have introduced an innovative approach that, to the best of our
knowledge, is unique. We addressed a significant issue, namely global warming, by proposing
an infrastructure that governments should adopt to monitor ecological-impactful activities of
the population and companies while respecting individual privacy [8]. This is facilitated by the
ingenuity of the model we have modestly constructed, relying on three key components: (i)
the Internet of Things for collecting behavioral data on consumption habits, moving away from
declarative data that can be falsified; (ii) the blockchain to ensure anonymization, integrity,
immutability, and, most importantly, non-repudiation of actions through the distributed ledger
for storing the activities’ footprints of companies and individuals; (iii) a public key infrastructure
responsible for managing an asymmetric cryptographic system and an identification based on
public keys. The advantage of this digital ecological impact calculator is that it does not
require new technologies for implementation and ensures the accuracy of consumption data
while respecting privacy.

We have crafted this thesis report with the intention of maintaining conciseness and minimiz-
ing the inclusion of literature elements to the essential amount necessary for comprehending our
work. Simultaneously, we aimed to offer comprehensive details on our contributions, ensuring
their clear understanding. The report adheres to a traditional three-phase structure:

1. The chapter 1 is dedicated to important theoretical concepts on technologies used in
our work and can therefore be used to constitute background elements. Definitions and
generalities on the Internet of Things can be found in section 2. Section 3 introduces the
key elements of cloud computing, while section 4 is devoted entirely to blockchain.

2. The chapter 2 gives the state of the art and summarizes related works. Given the broad
scope of the problem and that we have contributed at different layers of the Internet
of Things model, it is a little bit more complex than it can commonly be found in other
reports. Indeed, section 2 gives an overview on most important leader election algorithms,
while section 3 reviews most recent and relevant approaches to ensure load balancing and
tasks scheduling in the cloud. The last section is a summary of digital ecological footprint
calculators.

3. We end this report by the chapter 3 in which we depict one by one our main contributions
realized during this thesis. Section 2 presents a distributed and reliable leader election
framework for wireless sensor networks. Then the section 3 introduces a novel hybrid
multi-level load balancing and tasks scheduling algorithm for cloud computing environ-
ment. A proposition which is made for the first time as best as we know and is presented in
section 4 to build a global privacy-aware infrastructure for a digital behavioural ecological
footprint calculator.

4. A conclusion summarizing this report and giving some perspectives and future research
directions is proposed in chapter 5.
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Chapter 1

Background on computing key
technological concepts in the Internet
of Things era
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1. INTRODUCTION

1 Introduction

The main purpose of this chapter is to briefly present all the concepts required for the re-
alization of the contributions we have made during this thesis and which are summarized in
chapter 3. As explained in the introduction, our work focuses on automation mechanisms in
cloud-based Internet of Things (IoT) environments on the one hand, and on fully automated
IoT applications to achieve high value-added objectives on the other.

Hence, this chapter will introduce all key concepts and elements on technologies we used to
build our contributions, it will dive deep on some critical points and give only an overview on
some secondary others. The chapter is organized as follows:

First, the section 2 introduces the Internet of Things which is the cornerstone technology we
rely on. The IoT is our main field of research and whether it is about integrated automation
mechanisms or application automation, all the technologies required can be structured around
and within the IoT. The three contributions we’ve made are set against the backdrop of the
Internet of Things and related technological domains.

Then the section 3 is dedicated to cloud computing. The interest in cloud computing is
twofold, firstly because the architectural organization of the IoT we are working on is cloud-
centric, and secondly because in order to maintain a high level of performance, a certain quality
of service and to respect service level agreements a lot of highly complex mechanisms collaborate
together to automate and to streamline operations in cloud environments.

Finally the section 4 introduces the blockchain concepts. We end this chapter by introducing
a last but not least important paradigm which is blockchain, or to focus on the aspect that
interests us distributed ledger technology. Indeed, the blockchain offers a novel distributed,
reliable and immutable support for data storage from which we draw a powerful tool to enhance
non-repudiation of users actions in IoT environment.

2 Internet of Things

All required technologies for achieving our research work orbit around the Internet of Things
(IoT), so it’s easy to understand why we’ve chosen this as the entry topic in our background
study. This section is dedicated to the study of the basic concepts of the IoT, its organizational
models, the underlying technologies, the analysis of related risks and the various applications
of this technological paradigm.

The Internet of Things represents a significant revolution in the field of computer science
since its inception. Over the past decade, it has not only revolutionized the interaction between
humans and cyberspace but has also influenced the approach of researchers to conventional
problems. Consequently, this section will delve into the examination of concepts associated
with the Internet of Things, emphasizing the aspects that have altered research practices.
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2. INTERNET OF THINGS

We first give core concepts and main definitions in subsection 2.1, we then move to introduce
architectural organizational models in 2.2 and underlying technologies in subsection 2.3. The
subsection 2.4 depicts main threats and vulnerabilities on the one hand and presents how the
IoT has transformed security services and public key infrastructure on the other one. To end
this section some application fields are described within subsection 2.5.

2.1 Core concepts

The Internet of Things constitutes a ubiquitous network connecting billions of individuals
and tens of billions of devices [9]. Diverging from the traditional internet, IoT establishes
an interactive interface bridging the realms of cyberspace and the physical world. This is
primarily due to the fact that connected objects are not merely computational devices but rather
intelligent entities embedding sensors and actuators, enabling them to perceive and interact
with the tangible world [10]. Notably, the prevalent trend of upgrading everyday objects into
smart ones, simply by integrating a network interface card, central processing unit, and storage
capacity, has accelerated the deployment of the Internet of Things. This rapid integration has
addressed various requirements, such as utilizing global addressing methods and communicating
via lightweight data exchange protocols

The Internet of Things can be characterized as a global network interconnecting diverse
devices, comprising everyday objects enhanced with a network interface card, computational
capabilities, and storage capacity [9]. This extension of the conventional internet possesses the
capability to capture environmental events and interact with the surroundings, enabling a myr-
iad of applications across domains such as home automation, industry, and agriculture. Our
interest in IoT for this work stems from two key aspects: (i) the availability of diverse archi-
tectures that integrate various technologies, including cloud or fog computing and massive data
management systems leveraging big data. This enables the utilization of computing capacities
across components and scales. (ii) Its ubiquity—from cloud platforms to homes and personal
areas through personal area networks—making it omnipresent and capable of performing diverse
tasks without the need for additional hardware [11].

It is important to note that the Internet of Things (IoT) encounters numerous security chal-
lenges. The interconnection of various technologies within IoT introduces a multitude of un-
derlying threats. To gain widespread acceptance and successfully deploy IoT comprehensively,
traditional security services must be ensured, and new mechanisms should be employed to estab-
lish a certain level of trust between users and IoT. Unfortunately, classical security approaches
are not applicable in this context due to the nature of the devices (connected objects) constitut-
ing the network. These devices have processing units and memories with very limited capacities,
making it impractical to implement standard protocols [12]. Public key infrastructure, coupled
with digital certificates, represents one of the most effective ways to manage identities and dis-
tribute cryptographic keys in large networks. Consequently, many researchers have endeavored
to create convenient and lightweight versions that maintain the same security level while re-
ducing computing and networking overhead [13]. We will leverage these propositions to handle
the identification and distribution of public keys in our contribution system 4 through trusted
certification authorities.
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2. INTERNET OF THINGS

2.1.1 Definition of smart objects

Defining an object is not an easy task; however, we operate under the assumption that it
can be considered as an object or a smart thing any entity with a unique global identifier,
possessing a physical existence and a collection of associated physical features. Furthermore, it
should possess minimal communication abilities and basic computing capabilities. Eventually,
an object can sense and/or interact with the real world [14].

For an object to be part of the IoT ecosystem, it must fulfill specific minimal prerequisites:
(i) It should be equipped with a network interface card featuring a distinctive global identifier,
(ii) It must integrate a central processing unit capable of executing dedicated cryptographic
and lightweight data processing protocols, and (iii) It needs to have a sufficiently large memory
capacity to store security parameters and firmware data [15].

Since objects are manufactured and have a service life before obsolescence, they adhere to a
specific life-cycle describing all steps since their production until their revocation [16]:

• Manufacturing: the object is created and physical features are integrated to it (Physical
address, set of embedded devices).

• Bootstrapping: the object is integrated or deployed to its functional environment, con-
figured (network address attribution, role acquisition, setting different parameters) and
started (work beginning on the network).

• Operational phase: the object works conforming to his initial specification and evolves in
the network with respect to comportment rules.

• Maintenance: if the object fails, a physical or software reparation can be invoked by an
automatic failure detection system. The object is repaired and then restarted from the
bootstrapping phase.

• Revocation: The last step of an object life-cycle is the revocation when it is definitely out
of service or considered as old made.

2.1.2 System-level characteristics

The Internet of Things unlike its predecessor presents some interesting properties due to the
nature of the linked things and the used intelligent algorithms, we can summarize them here
[9]:

• Heterogeneity: each device may exhibit a unique set of capabilities and be constructed by
integrating components from various vendors. The IoT addresses methodologies to enable
seamless communication and collaboration among these objects in a fully automated and
transparent manner.

• Dynamism and spontaneous interaction: this network is distinguished by its high mobility,
where objects can dynamically join the global network or a specific sub-network and depart
at any time. As a result, new links are constantly formed, and old ones are severed, leading
to an undetermined and evolving topology over time.
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2. INTERNET OF THINGS

• Resource constraints: the majority of connected devices are battery-powered, transforming
management systems as a significant portion of the network is transient and needs to
incorporate charging phases in its life cycle. Energy is not the sole constrained resource,
but it serves as a bottleneck, requiring optimization in the consumption of communication
and processing capacities. To address these limitations, researchers have introduced an
entirely new ecosystem of algorithms and protocols that prioritize energy efficiency.

2.1.3 Common layered-model

To elucidate the operational principles of the Internet of Things and the associated tech-
nologies, researchers and international organizations have introduced various layered models
illustrating the components of IoT, from the application perspective to the physical elements
and connections [15]. Figure 1.1 depicts a widely accepted stack of layers [17].

Application layer

Transport layer

Network layer

DataLink layer

Internet
stack

middleware or service - object management
layer

Perception/ action

components

Physical
medium

Physical layer

Figure 1.1: IoT layered model

Each layer provides services ensured by a set of standard protocols to higher layer, this model
can be summarized as follows:

• Application layer: this layer creates the interaction interface with end users, essentially
enabling the exposure of high-level applications and data exchange protocols.

• Middleware layer: this layer provides an abstraction, facilitating the development and the
use of high-level applications without requiring in-depth knowledge of physical or network
components. It offers the upper layer a set of virtualized functions in a modular way,
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2. INTERNET OF THINGS

making the lower layers transparent, and delivers services through simple access points
[18].

• Internet stack: the intermediate layers involved in ensuring network services vary between
architectures. To avoid a lengthy dichotomy, we focus on the most commonly used among
them. This level plays a crucial role in interconnecting disparate objects, connecting them
to cloud platforms, and ensuring a certain level of quality in data transport [9].

• Physical layer: This layer regroups two kinds of components:

– Devices: which can be sensors capturing environment parameters, actuators realizing
basic actions in their immediate environment, or more complicated objects like smart
things [15].

– Physical medium: regrouping physical connection technologies like bluetooth, wifi
and so on [9].

2.2 Organizational models

The Internet of Things is engendered around a hybridization of two previous paradigms, a
Cloud based computation on one hand, and a fully decentralized and distributed computing on
the other hand [12] [19].

2.2.1 Cloud-centric model

Cloud computing has emerged as a viable alternative to on-premise infrastructure and per-
sonal computing appliances in the last two decades. It provides tailored services over the Inter-
net, spanning from hardware to applications. Endpoint devices in the IoT are capacity-limited.
Therefore, a Cloud-centered architecture seems to be the only reliable alternative. In this type
of structure, connected objects primarily collect data, transfer them to Cloud servers, perform
some light tasks locally, or make actions in the environment. The major part of the processing
occurs on the Cloud side [20].

2.2.2 Edge and fog oriented model

Another approach emphasizes what is known as edge computing. In this architectural ar-
rangement, researchers highlight the potential of end-objects when combined. Individually,
smart things exhibit mediocre performance, but their collaboration yields substantial computa-
tional capabilities. It is obvious that not all problems can be distributed, and access to resources
is restricted by control policies; therefore, this solution has limitations when viewed from this
perspective [11]. Building on this concept, researchers propose deploying devices with relatively
high performance throughout the network to achieve an optimized number and distance to
end devices. This strategy aims to reduce response times and network saturation compared
to the Cloud-based approach. Furthermore, with fog computing, other specialized devices are
employed to bridge the gap between edge computing devices and Cloud servers [21].
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2.3 Underlying technologies

Internet of Things exploits and integrates a lot of existing technologies in order to make a
global automatic system, between these technologies, main ones are cited here [22]:

• Radio Frequency Identification (RFID): is one of the most extended identification systems,
these systems comprise (i) Radio Frequency (RF) Tags; a tag has some computation and
storage capabilities, and (ii) RF readers or transceivers. RFID technology is lower cost
than previous solutions (barcodes: UPC and EAN), and it’s more secure, the penetration
of RFID systems is mainly limited by privacy concerns [23].

• WSN: is an elementary component of IoT, one of the fundamental characteristics of au-
tomated networks is the ability to sense its environment, this is made possible thanks
to WSN. WSN play an important role in connecting physical and virtual world together
[22]. wireless sensor networks (WSN) Wireless Sensor Networks (WSNs) represent a sig-
nificant technology in the digital revolution [24]. They serve as the equivalent of senses
for computer and object systems, constituting the perception layer in a typical layered
model. A standard hierarchical representation of WSN breaks them down into two levels:
(i) Gateways, responsible for collecting data from sensors and relaying it to base stations,
and (ii) Sensors, tasked with capturing environmental information [25] [26].

• Cloud Computing: provides multiple services in three principle forms on the IoT; (i)
Infrastructure as a Service (IaaS) this kind of service provides users storage and computing
resources. (ii) Platform as a Service (PaaS) allow users to develop and deploy application
on the cloud using tools and Application Programming Interface (API). (iii) Service as a
Service (SaaS) provides applications for daily uses or interfaces to these applications [27].

• Big Data: the huge size of data generated by open networks, low cost storage and data
sharing, automation of devices treatments and synchronization, leads a lot of searchers
to find numerous techniques and politics for data management and coherence keeping.
these approaches are more adapted for IoT context than classical data-base algorithms
and methods. Indeed, regarding limited storage capacity of some kinds of thing, it’s easier,
for edge nodes, to analyze data flows than to filter and store information [28].

• Blockchain: the blockchain is one of the major revolutionary technologies developed in the
last decade. Initially transforming the way we handle transactions, it has subsequently
proven to have various applications in fields such as the IoT security.

2.4 Security analysis

This subsection gives an overview of the IoT security, Starting with the study of vulnerabili-
ties, up to the analysis of security products dedicated to the IoT. In particular, we’ll focus on
the security services identifying which ones are more relevant depending of the context.

2.4.1 A natural vulnerable network

The Internet of Things presents a lot of vulnerabilities due to its nature, some searchers
describe it like: ”interconnection of threats”. An example of this threat is the attack on 21
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October 2016. This attack was made possible by the large number of unsecured connected
objects over the internet global network, by unsecured we mean devices using default-passwords,
ignorance of users who download and install applications from unknown sources and without
verifying required permissions and so on. The attack directs a huge amount of bogus traffic at
the victim servers (Dyn Servers: Domain Name System (DNS) services company).

The IoT encounters numerous security challenges. For instance, in recent years, there has
been a rise in the number of distributed denial of service attacks based on botnets targeting
smart devices [29]. As illustrated in Figure 1.2, attacks on the IoT can be categorized based on
the targeted layer, as outlined in [11].

• Hardware or physical attacks: given the characteristics of the IoT, certain devices may
be deployed in remote and unmonitored areas, creating an opportunity for attackers to
physically access and manipulate the device’s nature or functionality. Once in posses-
sion, an attacker could potentially harm the device, attempt to brute-force access to its
cryptographic keys, or modify its firmware to execute actions on their behalf within the
network.

• Network attacks: an attacker may exploit the network stack, engaging in activities such as
conducting a man-in-the-middle attack by poisoning network services, altering a device’s
behavior to turn it into a sinkhole appliance, or simply sniffing traffic to gather data for
potential future attacks.

• Application or software attacks: applications are not exempt from threats. At this level,
an attacker can exploit weaknesses resulting from poor programming processes to in-
ject malicious scripts, or take advantage of users’ lack of awareness about best practices,
thereby conducting social engineering-based attacks.

2.4.2 Threats and vulnerabilities

The Internet of Things is an interconnection of existing technologies which presents numerous
vulnerabilities, when exposed on a global network these vulnerabilities are scope of malicious
people and become threats. Indeed, attackers can exploit any present security breach to damage
the system. Internet of Things is composed of objects carrying limited storage and computing
abilities. This fact make impossible the use of classical security mechanisms letting appear
numerous threats that can be exploit by an attacker in order to harm the victim system’s.
Among threats, some are more harmful, we summarize them here [30]

• Weak encryption: due to the low computing capacity of the objects, cryptograms have to
be light, it results a low level of data protection.

• Low-energy level: most of things are powered by a battery, a DoS attack consists to solicit
a sensor node, for example, until it consumes the entire battery.

• Compromising a sensor: A second effect of auto-integration, is the reducing of access
control level, it results that a compromised node has more chance to be accepted in a
network than in a classical WSN.
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Attacks against IoT

Physical Attacks Network Attacks Application attacks

Physical damage

Theft of cryptographic keys

Malicious code injection

Man in the middle

Routing information corruption

Sinkhole 

Traffic analysis

Phishing 

Injection and malicious scripts

malware

Social engineering

Figure 1.2: Common attacks against IoT

• Infringement of privacy: wearable things and monitoring smart spaces makes violation of
privacy by: localization, tracking, filming, alerting, and so on. Guidelines were proposed
to ensure privacy in this kind of environment, the main approach is to notify and make
the user accepting conditions.

• Undesirable actions: actuators make IoT able to impact the real world, hacking an actu-
ator can result in an undesirable action.

• Open data: IoT adopts the principle of open data, so any information exchanged on the
network can be accessed by authorized users. Getting access to a specific domain grants
the access to relative data flows, here again, auto-integration can offer opportunity for
attackers.

• Admissibility and corrupted data creation: we have to make attention to each node we
integrate into a network and if its data flow can be trusted or not, corrupted data can
lead to make wrong decisions and harm the environment.

• Identification: one of the most crucial aspect in IoT is the identification. So we need
to have mechanisms ensuring protection against identity usurpation and modification of
identification data.

• Physical Access: As the nodes are arbitrarily deployed in a large and open environment.
Attackers can directly and physically try to access the debug port of the object in order
to control it.
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• Rogue Access Point: this is an access point which doesn’t differ from normal one, but it
is used in order to eavesdrop the communication going through it.

2.4.3 Security services

In order to ensure user confidence and sustainability, researchers have enhanced classical
approaches to provide the required security services. These challenges can be reviewed by
categorizing them under the corresponding service [31].

• Authentication and Access Control: historically, authentication sought to offer ample ev-
idence for confirming an assumed identity. Within the realm of the IoT, authentication
functions across different stages: (i) user authentication, involving the system’s scrutiny
of credentials or biometric parameters via an end device such as a smartphone; (ii) device
authentication, a pivotal stage ensuring the ownership and identifier of a device before
establishing a connection; and finally, (iii) message authentication, incorporating informa-
tion into each message to facilitate the verification of the sender’s identity.

• Privacy: addressing privacy issues within the IoT entails broadening policies to man-
age user-controlled data exchange and the continuous capture of data without the user’s
awareness. Merely encrypting messages is no longer adequate, given that data from smart
devices in the user’s environment are consistently captured and transmitted, resulting in
permanent identification and ongoing tracking.

• Integrity: verifying the integrity of information or resources assumes a distinct dimension
within the IoT. A multitude of novel approaches leverage data from nearby devices or
depend on artificial intelligence algorithms to identify alterations or corruption in the
data.

• Availability: ensuring the availability of services in the Internet of Things (IoT) poses a
persistent challenge, particularly due to a substantial portion of network nodes relying
on battery power. Conventional methods are bolstered by mechanisms that facilitate an
automatic transition to sleep mode during standby phases.

2.4.4 Public key infrastructure

Asymmetric or public-key cryptography refers to cryptographic systems in which the keys
employed for encryption and decryption operations are not identical but exhibit a mathematical
complementary property [32]. The concept revolves around each node having two keys: a
public key, accessible to every entity on the network, used for encrypting messages destined for
the node, and a complementary private key, known only to the node, employed for message
decryption. This category of algorithms offers robust resistance to attacks and has gained
prominence in traditional networks due to the simplicity of key sharing and the non-propagation
of damage when a node is compromised. Unfortunately, the drawback of these approaches is
their resource-intensive implementation, making them impractical in the context of the Internet
of Things [33].
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One of the most frequently utilized asymmetric cryptography algorithms is Rivest–Shamir–Adleman
(RSA), employing keys with a length of up to 4096 bits. However, RSA is confronted with three
primary limitations: (i) it necessitates a large number of keys with significant sizes to ensure a
high level of security, (ii) it is slower and more intricate to implement than equivalent symmet-
ric algorithms, and (iii) it is susceptible to indirect attacks such as known or chosen plaintext,
among others [34]. Given the computational constraints of smart devices, RSA becomes imprac-
tical, prompting the need for lightweight approaches. One notable alternative is Elliptic-curve
cryptography (ECC) methods [35] [36]. In a comparative study by Vidya et al [13], it is demon-
strated that a crypto-system based on ECC offers a higher level of security with key sizes ranging
from 160 to 256, as opposed to 1024 to 4096 for RSA, all while reducing the time required for
key generation and encryption/decryption operations.

The digital signature employs the principle of asymmetric cryptography to establish a proof
of integrity for resources. A common use case involves verifying the integrity of a message.
In this scenario, when a sender sends a message to an entity, the sender hashes the message
and encrypts the resulting data with its private key. Upon receiving the message, the recipient
entity decrypts this signature using the sender’s public key. Subsequently, the recipient hashes
the entire message and compares it to the result of the previous operation. If the two match, it
indicates that the message has not been altered [37].

Ensuring the reliability of key sharing poses a significant challenge in the widespread use of
asymmetric cryptography. The bootstrap step, which involves the initial key exchange, creates
vulnerabilities and opens the door to various threats. To address this issue, digital certificates
play a crucial role. These certificates serve as numerical identity cards containing information
about the holder, such as a global identifier and public key. The integrity of these certificates
is guaranteed by trusted servers or authorities on the network, who sign the certificates with
their private keys. This process highlights the importance of digital signatures in securing the
delivery of certificates [38].

Certificates serve different purposes and can be categorized as either identity certificates or
attribute certificates. In the case of identity certificates, they convey identification details along
with public key information. On the other hand, attribute certificates contain specific pieces of
information that grant access to a predetermined set of services or resources [39].

Management of these certificates involves essential architectural components, particularly
cloud-based servers trusted by all entities building what is called Public Key Infrastructure
(PKI) [40]. These components provide the following key functionalities:

• Certificate Creation: the Certification Autority (CA) should issue a certificate for each
user generating a new public key or modifying an existing one.

• Distribution and Verification: entities aiming to verify the validity of a certificate for a
specific node in the network, before initiating a communication session, can achieve this
goal by interacting with the trusted authority that issued the certificate.

• Revocation: In the event of a key compromise or if a node changes its key for security
reasons, the CA must promptly revoke the corresponding certificate.
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2.5 Applications

The Internet of Things as said is omnipresent and offers a lot of opportunities in a very large
and various domains of application, for example we can find its usage in following fields [20]
[22]:

• Smart homes and cities: provides functionalities including monitoring structural integrity
and environmental parameters, automating home control, optimizing delivery times for
various services, and more.

• Industry, retail and logistics: the IoT facilitates product tracking and organization, stream-
lines fleet routing processes, and assists in managing assets and inventory information.

• Healthcare: the Internet of Things (IoT) enables the creation of reactive, mobile environ-
ments for monitoring the health and activity levels of individuals, providing, among other
things, improved medical follow-up and reduced latency in emergency care.

• agriculture and environment: Massive, industrialized agriculture has been taking over for
decades to meet the growing needs of populations and ensure human food security. The
Internet of Things (IoT) now makes it possible to monitor growth, optimize the use of
aquatic resources and enhance manage major risks.

• E-commerce and trading: even though this segment is the one that has cost connected ob-
jects the most criticism, the IoT has enabled improved targeting of advertising campaigns
thanks to the behavioral data collected and profiling operations assisted by machine and
deep learning.

Table 1.1 gives an overview of application fields with main mechanisms ensured or automated
by the Internet of Things. It is obvious that this list cannot be exhaustive.

2.6 Conclusion

This section allowed us to review the important concepts involved in the Internet of Things:
basic definitions, components, architectures, underlying technologies, security aspects and ap-
plications. These concepts are cornerstone in the realization of our contributions and will allow
a better understanding.

The next section will introduce cloud computing. As previously said we focus on a cloud-
centric architecture of Internet of Things and it will be hard to understand how it works on the
one hand and why our contribution described in section 3 is important without keeping in mind
some key concepts on cloud computing.

3 Cloud computing

Given that we’re working on a cloud-based version of the Internet of Things, it’s really
important to understand the ins and the outs of this technology and its functional model. Having
briefly discussed the cloud-centric architecture of the Internet of Things in the subsection 2.2
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Field Mechanisms

Smart Buildings
Air conditioning
Detection systems
Smart appliances

Smart cities

Intelligent roads
VANETs
Emergency systems
Smart health structures
Smart schools

Healthcare
Health and fitness monitoring
Wearable Electronics

Agriculture and environment

Green house control
Monitoring growth of plants
Smart irrigation
Weather monitoring
Air and noise pollution monitoring
Fire detection systems

Industry, retail and logistics

Machine diagnosis
Inventory management
Route generation and
fleet tracking
industrial conditions monitoring.

e-commerce
Smart payments
Inventory management
Smart suggestions and advertising

Table 1.1: IoT Application fields

from the previous section, we’re going here to take a closer look at the cloud-related elements
we consider important for our work.

In broad terms, cloud computing denotes the provision of hardware and software services
directly over the internet. The nature of these services depends on the specific requirements
of the customer and is governed by particular constraints outlined in the agreement contract
between the cloud service provider and the end-user. This section discusses the key elements
involved in cloud computing.

This section gives some preliminary definitions in subsection 3.1, then it depicts the commonly
used architectures and models of service provisioning respectively within subsections 3.2 and
3.3. The section ends with subsection 3.4 presenting the main mechanisms collaborating to
ensure quality of service and service-level agreement in cloud environment.

3.1 Preliminary elements

Cloud computing emerged as a transformative technology almost a decade ago, introducing a
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revolutionary paradigm by delivering resources as services directly over the internet to individ-
uals and companies. These resources can encompass hardware, software, or take various other
forms, presenting advantages such as elasticity, a pay-as-you-go model, multi-tenancy, and more
[41].

3.2 Architectural model

Upon examining various potential architectures and organizational structures for cloud op-
erations, we have determined that, irrespective of the model, the architectural elements can be
categorized into one of the three levels depicted in Figure 1.3:

• Requests handler: encompassing a set of components responsible for collecting requests
from clients and retrieving pertinent information, such as task length, priority, deadline,
required data, and so forth.

• Data-center controller: assumes an orchestration role by receiving information from the
requests handler regarding tasks to schedule and being provisioned with available resources
by the resource manager. Subsequently, the controller employs a scheduling strategy to
determine the assignment of tasks to specific Virtual Machine (VM) and the allocation of
those VM to particular hosts.

• Resources manager: responsible for monitoring the states and utilization rates of hosts
and virtual machines, it supplies vital information on which the controller relies for task
scheduling and load balancing.

3.3 Service provisioning models

The cloud providers deliver services in several standardized manners among which we retain
[42]:

• Infrastructure-as-a-Service (IaaS): the hardware is delivered to the client, who is respon-
sible for installing all stack components on the hardware, including operating systems,
middlewares, runtime environments, and applications. The cloud provider is solely re-
sponsible for managing the hardware portion.

• Platform-as-a-Service(PaaS): the supplier’s responsibility is elevated further up the stack,
as they will be responsible for installing and managing operating systems, middlewares,
and all required execution environments.

• Software-as-a-Service(SaaS): in this pattern, the client interacts with cloud services through
a Graphical User interface (GUI). All necessary services are delivered as ready-to-use ap-
plications, and the provider assumes responsibility for the entire infrastructure stack.

3.4 Operational mechanisms

Regardless of the specific features of a cloud service provider (Cloud Service Provider (CSP)),
they all need to incorporate a minimum set of mechanisms that collaborate in order to ensure the
smooth running of the environment and continuity of service delivery. Among these mechanisms,
we will introduce here the most important ones that are relevant to our work.
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Figure 1.3: Cloud datacenter organizational architecture

3.4.1 Tasks scheduling

This mechanism is responsible for task allocation across servers. Factoring in a set of con-
straints, it determines the optimal resource for a given set of tasks. This can be achieved through
static or dynamic means, depending on whether the scheduler relies on prior information about
tasks and resources for decision-making or continuously monitors node behavior to determine
the most suitable node for a specific job. The scheduler can be preemptive, allowing tasks to
be interrupted during runtime, or non-preemptive. Additionally, it can operate in an online or
offline manner based on whether tasks are directly planned on resources or grouped in batches
beforehand [43].

3.4.2 Load balancing

Load Balancing (LB) plays a pivotal role in ensuring optimal functionality in a cloud envi-
ronment. Its purpose is to delineate techniques responsible for distributing the workload across
servers within a datacenter. Essentially, LB is the methodology employed to sustain equilibrium
in the resource utilization of servers, preventing overloading or underloading. Load balancing
can be executed at one of two levels: (i) virtual machines (VM) level or (ii) hosts level. In the
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former case, the load balancing algorithm deals with the workload on virtual machines, oversee-
ing the distribution and migration of tasks to maintain favorable workload partition conditions.
In the latter case, it manages the distribution of virtual machines across physical servers.

3.4.3 Fault tolerance

Fault tolerance assesses a system’s ability to recover after a failure occurs, where a failure
is defined as a sequence of undesirable actions leading the system to an unsuitable or non-
specifications-conforming state. Two primary families of fault tolerance approaches can be
identified: (i) proactive, wherein technical efforts focus on anticipating failures and minimizing
their impact on the overall system, and (ii) reactive, which concentrates on methods to swiftly
recover after a fault occurs and restore the system to its last known coherent state. Various
established approaches, such as hardware redundancy, job replication, checkpoint and restart,
and others, are employed to ensure reliability, availability, and integrity in the cloud environment
[44].

3.5 Conclusion

This section introduced cloud computing paradigm and has given major components, orga-
nizational models and service provisioning patterns. All these elements are crucial if we are
to approach the automation mechanisms we’re interested in, namely load balancing and tasks
scheduling. We have been able to present them in general terms in this section, and we will
require this to understand the contribution we made in section 3.

The next section will be dedicated to the blockchain. It is the last required building-block
for our work. The section will give an overview on preliminary elements and focus on consensus
protocols which is the most automated level in this storage technology.

4 Blockchain

The third important technological paradigm we used is blockchain. It refers to a storage model
which is fully distributed and immutable. Instead of a central server maintaining the entire
database like in classic relational models, in a distributed ledger each user called participant
is asked to validate a number of transactions and to keep locally a partial version of the final
blockchain.

Blockchain stands as a foundational technology in our contemporary era. It operates as a
distributed ledger, taking the form of a database composed of blocks. Each block contains a
header with integrity check information and a set of transactions, including the Secure Hash
Algorithm (SHA)-3 hash of the previous block and the hash of the current one. The ledger is
maintained in a fully distributed manner by nodes (workers or miners). In other words, each
node in the network possesses a partial or complete copy of the chain [45]. The reliability of this
participatory storage method has been exemplified by its use in cryptocurrencies, demonstrat-
ing high performance in preserving data integrity without compromising participant identities
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[46]. Beyond finance, this principle has found applications in various domains such as health,
cybersecurity, and supply chain management [47].

This section is dedicated to blockchain concepts, it starts by some key concepts in subsection
4.1, it continues by presenting the working manner and most commonly used consensus protocols
in subsections 4.2 and 4.3. Finally it ends by subsection 4.4 giving some use cases.

4.1 Definition and structure

The blockchain is characterized as a fully distributed ledger composed of blocks, each con-
taining a specific number of transactions and cryptographic links to one another, as illustrated
in Figure 1.4. Moreover, its appeal in various fields stems from key elements, as outlined in [48]:

• Decentralized: it operates in a fully distributed manner and does not rely on central
servers.

• Immutable: deleting any information from the blockchain is prohibited. To reverse a
transaction, a new one with reverted data must be inserted into a new block.

• Privacy preserving: it does not necessitate any identification information; mechanisms for
ensuring trust between nodes are inherently built within it. It’s crucial to emphasize that
the recorded data are visible to every node in the network.

Block 1 header

transaction 1

...

transaction n

Block n header

transaction 1

...

transaction n

Block 2 header

transaction 1

...

transaction n

Block 1 Block 2 Block n
Header content

Hash of current block

Hash of previous block

Timestamp

Other information

Figure 1.4: Blockchain architecture

4.2 Layered model and typology

An alternative approach to enhance the utilization of blockchain involves adopting a layered
model. Although it doesn’t have a fixed structure, it can be represented in the stack depicted in
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Figure 1.1. The application layer facilitates user interaction and specific application program-
ming through dedicated interfaces. The core of the blockchain is situated in the operational
layer, which is further divided into sub-layers responsible for (i) smart contracts describing
transaction processes, (ii) consensus protocols used by nodes to validate block additions, and
(iii) network elements managing nodes participating in the blockchain. The data layer comprises
pure data blocks containing the included transactions [47].

Application layer

Contract layer

Operational
layer Consensus layer

Network layer

Data layer

Figure 1.5: Blockchain layered model

According to the accessing and participating mode there are several types of blockchain [46]
[49]:

• Public: in this type of blockchain, any node can join the network and possesses complete
rights to engage in transactions and consensus protocols.

• private: in this scenario, the blockchain adheres to an access control and privileges man-
agement policy. Therefore, nodes must undergo authentication before joining and are
restricted to perform only authorized actions [50].

4.3 Consensus protocols

To uphold the coherence of the blockchain, before adding a new block, the involved nodes
must verify the integrity of transactions and filter out invalid ones. Additionally, they need to
reach a consensus on the order of appending these new blocks to the existing chain. The steps
involved in verifying transactions and ordering blocks depend on the chosen consensus protocol
[47].
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The choice of consensus protocol is evidently influenced by the specific use case and context.
We can succinctly categorize the most common protocols based on whether they are used in
permissioned or permissionless blockchains [46]:

4.3.1 In permissioned blockchain

Depending on the kind of network type we can retain two permissioned blockchain environments
with specific consensus protocols:

1. Synchronous network: in these networks, communication operates under constrained de-
lays and adheres to a common time clock. Therefore, consensus protocols need to incor-
porate these constraints into their operating mode. Examples include [51]:

• Byzantine Fault Tolerance (BFT): this category outlines a general approach to tol-
erate up to one-third of corrupted nodes in a network while still maintaining correct
functionality. It’s noteworthy that achieving consensus in the system requires vali-
dation by at least two-thirds of the participants.

• RAFT: this approach relies on two key concepts: (i) consensus is achieved when N/2
+ 1 nodes agree on it, and (ii) the network is divided into clusters, each with a unique
leader responsible for exchanging information with external elements and informing
its followers.

2. Asynchronous network: in such systems, there are neither limited delays nor common
clocks, and the protocols used must adapt to ensure a reasonable quality of service and
response time. Notable protocols in this category include [46]:

• Practical Byzantine Fault Tolerance (PBFT): it is an enhancement of the BFT ap-
proach designed to make it practically usable. In this approach, consensus is achieved
by receiving favorable responses from the number of maximum tolerated faulty nodes
plus one. Similar to the BFT approach, primary nodes are elected to manage tasks
and communication, while secondary nodes act as miners. When a request is received
by a leader, it is forwarded to workers who process and respond to the requester.
The transaction is validated when the specified number of nodes provide the same
approval response.

• Delegated Byzantine Fault Tolerance (DBFT): it is an extension of the BFT ap-
proach where nodes are categorized as ordinary nodes and bookkeepers. Bookkeep-
ers, elected by ordinary nodes, represent them in the consensus process. When a
bookkeeper wishes to add a transaction, they broadcast it to the network, and at
least sixty-six percent of other bookkeepers must validate it before appending it to
the blockchain [52].

4.3.2 In permission-less blockchain

Commonly used protocols for public blockchain are [49]:

1. Proof of Work (PoW): in this kind of approaches, when a new transaction is submitted
to the blockchain before being appended, nodes organize themselves into groups to solve
a mathematical challenge. The group with a greater number of members will find the
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solution more quickly, fostering collaboration among a larger number of participants and
preventing the addition of erroneous transactions.

2. Proof of Stake (PoS): his approach simplifies consensus complexity by substituting the
selection of miners based on proof of computational ability with a selection based on
proof of ownership of some asset within the network. Nodes are rewarded for fulfilling
tasks under specified conditions and penalized for misbehavior, ensuring that no node can
join and continuously insert transactions.

4.4 Applications

Researchers have leveraged blockchain principles to enhance numerous classical security ap-
proaches. For instance, in the context of supply chain workflows, blockchain is utilized to ensure
non-repudiation. Suppliers publish contracts describing the services or goods they offer, and
interested parties adhere to these requirements, conducting transactions that are immutably
recorded in the blockchain. This logic is applied at each node in the chain, from the initial sup-
plier to the ultimate customer. Each intermediate element plays a dual role as both a producer
and a consumer, resulting in comprehensive traceability of economic activities [51] [47].

Applications are exploring the improvement of zero-trust architectures through the use of
blockchain. For instance, in [45], the authors introduced an approach based on reputation
for block validation. The validation consensus threshold is adjusted based on the number
of involved miners and their respective reputation. Blockchain has also been integrated into
distributed collaborative intrusion detection systems. This direction aims to leverage blockchain
for updating rules databases and to utilize consensus algorithms for detecting intrusions [53].

Blockchain was initially designed to ensure traceability and uphold privacy. The necessary
information on participating nodes serves as a proof of integrity rather than identity. In this
environment, nodes can operate while being identified based on their public keys, participate in
transactions by adhering to the specified contracts, and verify the integrity of all operations by
transparently accessing the information contained in the blockchain.

4.5 Conclusion

This section was dedicated to blockchain technology, it highlighted the elements crucial to
the construction of our work, in particular by presenting a common classification of consensus
protocols. However, it also addressed the layered model of a blockchain, its applications and
typology.

5 Chapter conclusion

This chapter has introduced three key technological paradigms which were game-changers in
the computer science research fields for the last decade. In broad outline, we have reviewed the
definitions, components, architectural organizations, functional models and applications of each
of these domains.
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The Internet of Things provides a viable infrastructure as a global interconnection network
on the one hand, and as a portal between the realm and cyberspace on the other. We benefit
from this every time we need to automatically capture behavioral information about users or
environment, or if we want to apply actions directly without human intervention.

As for the cloud, it provides considerable computing power to process the data collected by
the IoT and provide useful decision-making information. Combining IoT and cloud computing
produces what we call the cloud-centric Internet of Things, which will couple the ubiquity of
IoT sensors and actuators on the one hand, and the high computing power of the cloud on the
other, to create a unique synergy.

Blockchain is a prodigious way for data storing. Indeed, its organization as distributed ledger
shared between participants, the collective validation of transactions and the integrated hash
tree offer an unrivalled solution for guaranteeing the integrity and non-repudiation of the in-
formation it contains. In addition to being immutable and privacy-aware it integrates superbly
well with IoT edge devices thanks to the lightweight protocols and data structures that can be
embedded.

The next chapter will be dedicated to the state of the art. We will focus on levels were
automation mechanisms play a central role. For example at the level of perception layer of IoT
we will review leader election algorithms within wireless sensor networks (WSN) and at cloud
computing environments we will study tasks scheduling and load balancing algorithms.
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1 Introduction

In the context of this thesis which has as main purpose automation mechanisms at both
functional and application levels of the Internet of Things and the underlying domains, we have
decided to focus on three problems inherent to the field. The way in which we present the state
of the art is somewhat original, given that our work has a broad spectrum and is therefore not
concentrated on a single fragment of the problem.

Leader election in the Internet of Things (IoT) is a vital mechanism for selecting a subset of
nodes to manage others, a critical aspect for auto-organization given the vastness of the network
where manual intervention becomes impractical. Given the nature of connected objects, this
mechanism is designed to handle resource constraints. Numerous algorithms have been proposed
to achieve leader election, taking into account factors such as node capabilities, data quality,
energy efficiency, and network connectivity. A successful and robust leader election in the
IoT context contributes to enhanced system reliability, scalability, and coordination, resulting
in optimized resource utilization and improved overall performance. In the following, we will
review some recent leader election algorithms and discuss their limitations.

Load balancing in cloud computing is a critical module responsible for optimizing resource
utilization and achieving equitable distribution of workloads across servers. Its primary objective
is to minimize the occurrence of under-loaded or over-loaded servers. In this overview, we will
endeavor to highlight significant contributions categorized by their respective approaches and
discuss their inherent limitations.

In recent years, interest in the problem of global warming has grown as an alarming sign of
environmental and ecological danger. Researchers in computer science fields have come up with
a number of platforms that enable people to assess their impact on the environment directly
online and we’re going to take a brief look at how these solutions work.

The rest of this chapter is organized in sections covering each a particular set of works proposed
to deal with one of automation problem we worked on:

The section 2 is dedicated to solutions proposed to perform leader election in several fields of
the Internet of Things. The most recent works on leader election in robotic networks, in virtual
light traffic context and in wireless sensor networks are reviewed and briefly presented.

The section 3 summarizes all the works realized for ensuring load balance in cloud computing
context within the last years and for each class of algorithm. Indeed the subsection 3.1 is
dedicated to static methods, Indeed the subsection 3.2 summarizes dynamic algorithms and
Indeed the subsection 3.3 presents hybrid approaches.

The section 4 describes briefly the existing digital ecological footprint calculators. Despite
the preoccupations of governments and international organizations, the field is still uncharted
and there is a real lack of proposals. This can also be attributed to the fact that the subject is
still relatively recent.
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2 Leader election

The principal challenges in any technology deployment and achievement are security services
and automation mechanisms. Without establishing a dependable trust model between users
and devices, achieving widespread integration is impossible [54] [55]. Numerous solutions have
been proposed to ensure security services in a network context. For instance, when examining
authentication protocols, it becomes evident that they are often based on a set of assumptions
that imply the presence of a centrally reliable node, referred to as an authentication server, to
authenticate a set of edge nodes [56].

It is important to note that these central nodes are manually selected from a group of com-
puters or objects with high computational capabilities before deployment, and they remain
unchanged during runtime without human intervention. However, this limitation needs to be
addressed in modern networks that seek to enhance recovery speed from failures by minimizing
the degree of human intervention. This is where mechanisms such as leader election become
essential.

The leader election mechanism has played a central role in automation and self-management
since the inception of distributed systems. It enables the designation of a global leader or a set
of local leaders responsible for coordinating the work in a group of digital entities. This coordi-
nation can manifest in various forms, including task assignment to a set of nodes, distribution
of network load, allocation of resources for job completion, and more [57].

Numerous studies have proposed leveraging the leader election mechanism to address various
challenges in different application fields. Applications in distributed systems and ad-hoc net-
works, for instance, aim to select a node as a job manager to allocate tasks to other nodes [58]
[59] [60]. In the context of the IoT, this mechanism finds application for diverse purposes [61]
[62]. Some researchers tackle the Virtual traffic Lights (VTL) problem in the context of Vehic-
ular Ad-hoc Network (VANet) by introducing an election phase to designate a car responsible
for generating and broadcasting VTL [63] [64] [65]. Others apply this mechanism to choose a
robot leader for managing exploration and military tasks without human intervention [66] or
for selecting a protocol among population members [67].

The leader election mechanism is also applied in various use cases within the context of
WSN. Firstly, it can be utilized to organize a set of sensors that are out of the range of any
gateway. The mechanism selects one among them to coordinate and find a route to the nearest
zone managed by a gateway. Ahcene B et al. proposed BROGO, an approach that starts by
establishing a spanning tree from the initiator node to enable routing the value of each node
to it. Subsequently, this root node takes charge of deciding which node becomes the leader
by comparing received values and selecting the minimal one. It’s important to note that the
authors assume a flat network composed only of sensors [68] [57]. Secondly, in scenarios where
random deployment leads to multiple gateways managing the same area, responsible for tasks
such as authenticating sensors, the leader election mechanism can be employed. This approach
aims to extend the lifespan of the WSN by electing a leader and putting others in a hibernation
state until the elected leader fails.
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However all these algorithms present the following drawbacks :

• The size of the network has a significant impact on the performance of the algorithm. All
algorithms initiate the process by searching for a spanning tree from the root node, which
serves as the initiator of the election process. The duration of this initial phase directly
affects the overall execution time of the algorithm.

• The crucial role played by the root node introduces a single point of failure paradigm. In
other words, if the root node fails, the entire protocol execution will fail, and the network
will experience a delay before restarting it.

• These algorithms are grounded in the principle of maximal value, utilizing only one specific
piece of information from each node, such as battery level or computational capacity.
However, this approach overlooks the environment of sensors and gateways and is not
logical if the algorithm is executed shortly after the deployment of a homogeneous WSN.

2.1 Leader election algorithms

Traditionally, leader election algorithms find application in distributed systems and collabo-
rative networks to designate a coordinator responsible for autonomously distributing tasks and
synchronizing results. The election process involves a combination of criteria, including com-
putation and storage capacity, networking stability, physical position in the network topology,
and more.

In the context of the IoT, leader election also serves numerous beneficial purposes. An
example is the proposal made by Christoph Sommer et al. for self-organizing intersection
management [63]. They attempted to introduce a leader election-based approach to achieve
VTL, where vehicles approaching an intersection exchange messages to organize themselves and
avoid collisions.

The objective of the Virtual Traffic Light Algorithm is to elect a leader for each intersection
responsible for computing and disseminating a traffic light program to other cars. Three key as-
sumptions make this achievable: (i) vehicles are equipped with networking devices such as IEEE
802.11p, (ii) each car is equipped with GPS (Global Positioning System) and supplemented by
self-localization methods, and (iii) every car maintains a table of neighbors containing Identifier
(ID) of nearby vehicles. The approach builds upon the work of Vasudevan et al. [58], which is
an algorithm for dynamic ad-hoc networks that assumes: (i) a specific metric allows ordering
nodes based on the distance to the intersection, (ii) each node has a unique ID for breaking
ties, and the ID can be derived from the MAC Address, and (iii) every node keeps track of the
identifier of the current election session.

The VTL algorithm works as follows:

• Upon entering the service area of an intersection, a car broadcasts an announcement
message containing its distance to the intersection and its own ID. Initially, the initiator
considers itself as the nearest car to the intersection and utilizes a timeout to wait for
replies to the announcement.
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• Using the shortest distance to the intersection, when the timeout expires, the initiator
selects a leader and broadcasts a message to inform other cars.

• If a car, not currently involved in any election, receives an announcement message, it then
joins the ongoing election session and responds with its own distance.

• If a car, already participating in an election session, receives an announcement, it joins
the one with higher precedence determined by the election index or car ID in case of a tie.

This algorithm relies on a specific criterion, which is distance. This can be beneficial in a
particular context, such as in an ad-hoc network of nodes competing to gain access to a critical
zone, like road intersections. However, in other contexts, such as WSN, this approach becomes
impractical due to the static and heterogeneous nature of nodes. Additionally, the assumption
of fully reliable communications is not achievable in the WSN context.

The necessary architecture for this algorithm mandates that cars be equipped with wireless
networking devices and localization mechanisms, such as IEEE 802.11p and Global Positioning
System (GPS). However, it does not utilize crucial features when in motion, such as speed
and acceleration. No mechanisms were proposed to ensure tolerance to message loss; when a
message is lost, the Local Dynamic Map can be corrupted, potentially leading to accidents. On
the other hand, the criterion for choosing the leader is the distance to the intersection, with a
vehicle that is likely to leave it quickly triggering an immediate election restart.

The evaluation primarily focuses on the time taken for intersection crossing and does not
address the duration of the election or the number of iterations.

Florian Hagenauer et al. [63] introduced an Advanced Leader Election for Virtual Traffic
Lights. The algorithm follows these steps when VTL are active at an intersection:

• Vehicles broadcast data about their momentum.

• When a problem is detected as an imminent impact, a VTL is generated.

• The nearest car to the intersection is selected as leader and generates the VTL.

• Once done, a new election starts or the leader designates another one before leaving.

The authors assessed the performance of their algorithm using key criteria such as car density,
travel time, and message loss rate. Once again, the criterion employed for the election is the
distance to the junction, which may not be applicable in other contexts. The election times for
different traffic density values are not provided.

In [64], the authors introduced a novel algorithm for the leader election process in the virtual
traffic light protocol. Using Vehicle to Vehicle (V2V) communications, each vehicle broadcasts
its position and speed. If a risk is detected, the concerned vehicles follow a protocol that begins
by electing a lane-based leader based on proximity to the intersection. Subsequently, the leaders
of lanes elect one of them as responsible for traffic lights. This leader is tasked with deciding
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the order of vehicle movement. The leader can either halt or proceed when its lane displays
a green light. If it hands over control before there are no vehicles waiting at red lights, the
election process restarts. The authors compared and demonstrated that this VTL approach
reduces junction crossing time compared to classical traffic lights for infrequent scenarios with
30 vehicles. However, no comparison with other VTL algorithms was presented.

Several solutions have been proposed to align with the WSN context. One example is BROGO
(Branch Optima to Global Optimum). In this approach, Bounceur et al. [57] aim to create a
lightweight leader election algorithm suitable for the self-organization of sensors.

BROGO works as follows:

• First, a Flooding Leaf Founding (FLF) algorithm is used to build a spanning tree, indi-
cating its root and leaves.

• Then, each leaf routes sends a message to the root. This process is used to allow routing an
optimal value for each branch to the root node which will determine the global optimum.

• In the final step, the root node send a message to the global minimum node informing it
that it is the leader.

Upon closer inspection, two primary issues arise: (i) the consequences if the initiator node,
the root of the spanning tree, fails, and (ii) the FLF algorithm relies on a straightforward
message-acknowledgment mechanism; what occurs when a node is dormant or a message is
lost.

BROGO envisions a flat WSN comprising solely sensor nodes. The process begins by es-
tablishing a spanning tree that facilitates communication between nodes. It presupposes that
messages involved in the election procedure must traverse the root node, introducing a one-
point-to-failure paradigm in this assumption. The revised BROGO [68] addresses this concern
by incorporating a delay, employing the Wait-Before-Starting (WBS) procedure. If the root
node fails to respond within the specified time, another node takes its place. In the event of a
leader node failure, the election process must recommence.

In the ”wait before start” procedure, each node identified by x must wait for a duration defined
by x ∗w, where w should be sufficiently high to accommodate the prior process of informing all
nodes. After this waiting period, if no message is received, the root is deemed to have failed,
and a second node initiates the election process. While this revision provides a solution for root
failure, employing this approach introduces significant delays and does not address the issue of
lost or latent messages (the classical problem expressed as: how to distinguish between latency
or loss of a message).

No details were provided in the discussion section regarding energy consumption, which was
calculated based on the number of exchanged messages. Additionally, there is no further infor-
mation on the duration of the election phases.
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Bounceur et al. [61] introduced an algorithm based on a collection of local leaders. This
method assumes an arbitrarily flat network. Upon deployment, a set identifies nodes with local
minima values, designating them as roots (local leaders) to initiate the flooding process for
building a spanning tree. When two trees intersect, the one with the superior value persists,
and the other halts. After the algorithm runs for a sufficient duration, only one spanning tree
remains, and its root is declared the leader. While this algorithm is straightforward, it does not
consider specific constraints or real-world conditions.

Another instance of leader election in the IoT context is found in collaborative networks of
robots. Pasquale Pace et al. [66] presented a Management and Coordination Framework for
Aerial-Terrestrial Smart Drone Networks.

In numerous scenarios, collaborative efforts between aerial and terrestrial robots demand a
leader to coordinate their tasks effectively. The missions, initially defined outside the group of
drones, are distributed among the collaborative robots by the leader. Upon receiving a message
from the headquarters, nodes broadcast their willingness to take on the coordinator role to
others within their radio range. Subsequently, they collaboratively decide on the election of a
leader. It’s important to note that this leader is not absolute and undergoes changes based on
specific criteria over time.

The proposition is based on three functions:

• Look-up: this mechanism is implemented in particular cases during the neighbor discovery
phase, utilizing multi-cast communication to refresh data.

• The leader Election procedure: is employed for the initial leader election and is invoked
again in case of leader failure. It relies on multi-cast communication, selecting the leader
based on the criterion of maximum remaining charge, equivalent to the maximum ID

• Mission and task execution: utilized by the leader to delegate tasks to other nodes for the
successful execution of a particular mission.

This algorithm also assumes a flat architecture where all devices have approximately the same
capacities. It includes both aerial and terrestrial drones in the election process to appoint a
coordinator responsible for distributing tasks for collaborative mission completion. The objec-
tive involves a high-mobility model with dynamic leadership features, presenting a significant
challenge not encountered in the WSN context.The total time for the election procedure is ap-
proximately 1000 ms when the number of nodes reaches 10, which is relatively high for such a
small number of participants and may not be scalable to contexts with thousands of nodes.

Mahendra K.M et al.[69] proposed a bio-inspired ant colony approach for leader election in
the context of Cognitive Radio Network (CRN). In line with the utilization of ant colonies for
leader election in WSNs, the authors extended this concept to CRN. They specifically address
Secondary Users (SUs), with the leader responsible for monitoring communication channels
used by Primary Users (PUs) and assigning available ones to SUs as needed. The performance
measures of the algorithm lack conclusiveness, as the comparison was made against outdated
approaches that are not suitable for similar contexts.
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2.2 Conclusion

In this section we have introduced the main works existing in the literature which are actually
dealing with leader election problem. Despite their application cases they all try to reach out
a common objective by making a system as automated as possible. Generally they all start by
building a spanning tree and end by choosing only one global leader, we were inspired by these
approaches and revealed their limitations such that we can improve them and better match the
objective.

The next section continues by building the state of the art of another part of automation
problem in cloud-centric IoT. This time it will focus on load balancing in the cloud environment
and highlights the essential elements in the major part of recent works within the three main
categories of algorithms.

3 Load balancing

Our work focuses on the Load Balancing module, one of the critical mechanisms in the cloud
environment, responsible for maintaining equitable workload distribution between servers and
virtual machines (VM). This component plays a pivotal role in the operation of cloud services
and adherence to Service-Level Agreements (SLA). Ensuring optimal utilization of hardware
resources and a balanced workload distribution contributes to enhancing the overall system
performance by reducing the makespan of essential jobs [70]. Numerous proposals have been
put forward to meet the expectations of cloud service providers regarding load balancing. Upon
reviewing the literature, it becomes apparent that these solutions can be categorized based
on two criteria that influence the approach to workload distribution: (i) information on the
environment, tasks, and resources, and (ii) the phase during which the balancing takes place.

Indeed, the first category, which we label as static, operates solely upon the reception of new
tasks. It decides on task assignments based on a set of non-evolving information, such as task
length and the physical capabilities of servers. In contrast, the second category encompasses
dynamic approaches that operate continuously, considering information on the current workload
on each server, individual makespans of virtual machines, and primitives like tasks or VMs
migration. These dynamic approaches aim to maintain an optimal utilization rate of all servers
over time. The last category encompasses approaches that combine static and/or dynamic
methods, either with each other or with additional complementary mechanisms. The goal is to
enhance the performance of load balancing and address common shortcomings [71] [72].

The load balancing problem can be approached in various ways, commonly formulated as a
bin packaging problem, clustering problem, or even akin to a path-finding problem. Regardless
of the formal modeling, we can describe the elements constituting the problem as follows: given
a set of tasks and a set of resources organized into virtual machines and physical hosts, the
challenge is to determine, for each task, which virtual machine it should be assigned to and
which physical server should host that virtual machine. It is crucial to bear in mind that each
server is resource-limited in terms of Central Processing Unit (CPU), Random Access Memory
(RAM), storage, and Bandwidth (BW) [73].
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Many approaches have been proposed in the literature for load balancing in the cloud envi-
ronment. Subsections 3.1 to 3.3 will provide insights into some of the most significant ones. It
is crucial, however, to first comprehend the categorization used. The classification of algorithms
commonly encountered involves three main classes, as depicted below [71]:

• Static approaches [3.1]: this category relies on pre-existing information about jobs and
the capabilities of servers/virtual machines to determine the task assignment policy.

• Dynamic approaches [3.2]: in contrast with static methods, dynamic algorithms integrate
real-time information, such as workload on resources and utilization rates, to decide on
task assignment strategies.

• Hybrid approaches [3.3]: hybrid approaches are obtained by mixing static and dynamic
approaches to overcome the shortcomings of each. Furthermore, many researchers go
further and hybridize load balancing techniques with fault tolerance or task scheduling
mechanisms.

3.1 Static approaches

Static load balancing is a class of algorithms that allocates tasks to different resources without
considering their current states. Depending on the applied policy, the algorithm will distribute
new jobs equally or randomly over all treatment units, regardless of their actual workload [74].

Among the static load balancing methods, the min-min algorithm stands out. Its principle
involves evaluating the execution time of each task beforehand and identifying the task with
the shortest duration. Subsequently, the algorithm locates the resource with the minimum
completion time to execute this task and assigns it. These steps are repeated until all jobs
are completed. However, a major drawback of min-min algorithms occurs when the number of
short tasks exceeds the number of long ones, leading to suboptimal resource allocation. Another
category is the max-min approach, which addresses this drawback by scheduling larger tasks
first. However, this method penalizes short tasks, resulting in increased waiting times for them
[71].

Many enhancements have been proposed to improve the performance of static load balanc-
ing approaches and reduce makespan. For instance, in [75], Kokilavani et al. introduced an
algorithm that initiates with a min-min phase, rapidly dispatching the shortest tasks to the
most efficient resources. Subsequently, the algorithm evaluates the makespan of each resource,
reallocates tasks from heavily loaded resources, and assigns them to resources with a shorter
makespan. The LBMM approach, while simple in principle, demonstrated a reduction in overall
execution time and an improved distribution of jobs.

In a different line of improvement, another group of researchers extended the min-min ap-
proach by introducing a novel algorithm that considers three crucial constraints in the cloud
environment: quality of service, task priority, and cost of service. Their solution also starts
with a min-min phase where short tasks are initially assigned higher priority. Subsequently,
the algorithm reorganizes load balancing by incorporating these priorities along with the three
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constraints, expressed as numerical values, to generate dynamic priorities for ordering all jobs
across the available resources [76].

In the literature, there are approaches tailored for specific use-cases and based on meta-
heuristics inspired by nature. A noteworthy example that encompasses both aspects is the
work by Zhan et al. [77], where they employ a discrete Particle Swarm Optimization (PSO)
for constructing a static load balancing algorithm to ensure the distribution of tasks in a cloud
environment. They introduced adaptations to the functions responsible for updating personal
and global bests, as well as velocity. These modifications enhance the performance of PSO in
addressing this discrete problem, preventing it from getting stuck in local optima.

As powerful as these techniques may be, they have the disadvantage of being unable to
adapt to the increasingly dynamic nature of cloud environments. Static approaches schedule
tasks upon reception, relying on a logic independent of real-time workload distribution. This
limitation prevents them from dynamically adjusting load distribution as the utilization of
resources evolves. In essence, static load balancing performs well in cloud environments with
reduced workload variability, which may not be suitable for scenarios with peak periods.

3.2 Dynamic approaches

Dynamic load balancing techniques comprise algorithms that incorporate real-time informa-
tion about the utilization rate and remaining makespan on each server to determine the assign-
ment of new jobs and the manner in which already scheduled tasks should be migrated. These
approaches can be categorized into two main types based on their calculation mode: online or
offline. In online mode, tasks are assigned as they arrive in the system, whereas offline mode
operates in batches, with tasks being grouped and processed at predefined intervals [78].

Nature-inspired meta-heuristics emerge as an ideal solution for addressing the dynamic load
balancing challenge. Through various stages of adaptation, researchers have elevated them to
a dominant class of approaches for dynamic load balancing. It is crucial to note that before
enhancing these algorithms, it is necessary to establish a suitable mapping between the algo-
rithm’s parameters and the cloud environment. Additionally, defining novel search functions is
essential for the effectiveness of these algorithms in addressing the intricacies of load balancing
in dynamic cloud environments [79].

For instance, the authors of [80] introduced an enhancement to the bee colony optimization
algorithm to achieve dynamic load balancing. This approach integrates constraints to simultane-
ously avoid overloading and under-loading virtual machines, reduce makespan, and minimize the
number of migration operations. The fundamental concept behind this enhancement involves
using the standard deviation of processing time on each virtual machine (VM) as an input to
the load balancing model. A threshold is defined to classify VMs into two groups: overloaded
VMs modeled as honeybees and under-loaded VMs modeled as food. Given the dynamic nature
of the approach, the deviation values are updated each time a new task is received.
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On the other hand, Seyedeh et al. [81] have combined two meta-heuristic approaches to
better align with cloud SLA requirements. Initially, they utilize a firefly-based algorithm to
generate an initial population of potential task/resource assignments and then optimize it using
an Imperialist Competitive Algorithm (ICA). Initially, two instances of the firefly algorithm
are executed separately to find two assignments: one optimizing for the best makespan and
the other for the best load balancing. The outputs of these heuristics are aggregated into a
multi-objective function for the ICA algorithm, which incorporates both constraints and aims
to produce a workload balance ensuring a minimized makespan.

Another approach, utilizing a bio-inspired meta-heuristic, is proposed in [82], where the au-
thors frame load balancing as a clustering problem. This involves grouping sets of virtual
machines on physical servers with specified CPU and memory capacities. Clusters are initially
formed by randomly placing VMs according to a feasible distribution, and then they are updated
based on their respective workloads to maximize remaining resources on each server while elim-
inating workload on weakly utilized ones. The authors applied the bat algorithm to optimize
both global and local search for finding new cluster centers and speeding up convergence. This
entails reviewing the set of VMs and physical servers that constitute each cluster to dynamically
maintain equity.

Many other works have been proposed, attempting to create variants that improve specific
performance criteria. This objective can be achieved by eliminating or adding constraints de-
pending on the service-level agreement and the type of service provided. Additionally, it can
be accomplished by modifying hyperparameters of known models or by proposing new fitness
functions for meta-heuristics. For example, Dalia et al. [83] introduced constraints not com-
monly considered by other researchers in their algorithm system. They added complexity by
addressing the simultaneous arrival of requests, prioritizing tasks, and assuming a deadline for
each job based on the relative service-level agreement. A distinctive feature of this approach is
that if the workload on a server does not meet the requirement for correct execution of a given
task, it is migrated to another server. Therefore, to achieve efficient workload distribution,
the authors integrated load balancing and task scheduling within the same algorithm. Another
example is provided in [84], where the authors present a variant of a genetic algorithm that
considers the performance degradation of VMs during migration time and its impact on task
execution.

In [85], the authors delved deeper into the integration of key constraints by incorporating
elasticity into their model. Their architecture supports hardware proactive horizontal scale-up.
After assigning tasks, a component of the resource broker monitors activity on servers and
estimates whether there are scheduled tasks that will exceed their deadline. It then decides to
create new virtual machines to balance the workload.

It is noteworthy that while these meta-heuristics form the backbone around which most load
balancing algorithms in the cloud are built, other methods exist. These alternative approaches
tackle the problem through different modeling or statements and leverage the power of various
mathematical techniques.
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In the literature, fuzzy-based approaches are frequently encountered for tasks scheduling
and load balancing. For instance, in [86], the authors introduced a fuzzy-based algorithm for
multidimensional resource planning, with a specific emphasis on file-sharing services in a cloud
environment. The approach involves three stages: (i) collecting requests from users, (ii) utilizing
trapezoidal fuzzification and fuzzy square inference for multidimensional resource scheduling,
and (iii) designing a queuing network for the assigned tasks and resources.

Methods based on machine and deep learning are also prevalent, such as the one introduced
by Zhao et al. [87], where they combine a Q-learning approach with a neural network. Initially,
the scheduling plan is represented by a directed acyclic graph, with nodes characterized by
a quaternion comprising a specific task, the execution cost, communication cost, and edges
denoting relationships with successor tasks. The dynamic scheduler, before planning a workflow
by distributing its jobs on virtual machines, invokes the algorithm to evaluate the execution
scenario modeled as a graph. It applies a reward function aiding decision-making by emitting
an action for the scheduler to implement. Another hybridization with a meta-heuristic method
is proposed by Jena et al. [88], where a particle swarm algorithm is combined with a Q-learning
approach. This Q-learning approach is used to adjust the velocity of particles and global bests
to achieve quicker convergence towards an optimal load balancing solution.

Dynamic approaches are designed to adapt to real-time changes in constraints, ensuring an
ongoing and fair distribution of workload while actively balancing the load flow based on the
resource usage of each host. However, these approaches may introduce latency at the start of
the load balancing process and are constrained by reaction times, even when dealing with a
small number of tasks.

3.3 Hybrid approaches

Hybrid load balancing integrates both static and dynamic approaches, harnessing the advan-
tages of each category to address the limitations of the other. While static methods provide a
swift initial distribution of tasks, dynamic algorithms ensure ongoing optimal workload balanc-
ing. Hybridization extends beyond this combination and can involve integration with additional
mechanisms, such as fault tolerance or dynamic task scheduling.

Bio-inspired meta-heuristics play a pivotal role in hybrid approaches. The literature on hybrid
load balancing is abundant with examples, such as the proposal by Marwa et al.[89]. In this
work, the authors combined the swarm intelligence of bee and ant colonies to create an osmotic
hybrid optimization load balancing algorithm. Following an initial random distribution of jobs,
an artificial bee colony is employed to swiftly identify overloaded and under-loaded servers.
Subsequently, an ant colony is utilized to determine the optimal migration scheme for virtual
machines among osmotic servers.

In another study [90], a team of researchers chose to blend ant colonies with fuzzy models.
They incorporated a fuzzy module alongside Ant Colony Optimization (ACO) to assess the
quality of the migration pattern obtained. In a nutshell, the fuzzy component is employed to
update the pheromone traces, expediting the convergence process towards an optimal solution.
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In [91], the authors advocated the combination of a genetic algorithm and the gravitational
search method to amplify the searching process and diminish computational costs. The en-
hancement is achieved through a hybrid method for calculating particle positions at each step,
employing a crossover technique in tandem with a gravitational constant function. Similarly, in
[92], the authors fused a queuing model for virtual machine management with a crow search-
based approach to optimize task placement, concurrently minimizing time wastage and energy
consumption.

In [93], researchers extended their load balancing approach by integrating various reactive
and proactive fault tolerance techniques with an expedited decision-making process for swift re-
covery. At the core of their method lies a dynamic scheduling approach, emphasizing replication
as a fundamental constraint. Similarly, Haoran et al. [94] proposed a comparable integrated
approach by incorporating fault tolerance and task scheduling into their model to enhance load
balancing. The authors concentrated on hybrid real-time tasks categorized as data-intensive,
process-intensive, or balanced tasks. By applying the same categorization to virtual machines,
they increased the likelihood of improving system performance and facilitating the scheduler’s
operation. Moreover, they took a step further by combining checkpoint and primary backup
techniques to formulate the recovery policy and corresponding task description. Ultimately, the
resulting task list, including redundancy, was added as constraints to the scheduler.

In [95], Huaiying et al. put forward an approach aimed at ensuring quality of service in
edge-cloud environments by integrating fault tolerance with task planning to maintain balanced
load distribution. The authors improve upon the conventional primary/backup fault tolerance
method by introducing QoS constraints, including time-based constraints. The primary and
copy tasks are scheduled using a dedicated method that incorporates an adjustment procedure
ensuring the placement of copies in a way that reduces both recovery time in case of failure
and overlapping during normal operation. Another example of this hybridization approach is
found in [96]. In addition to task planning, the authors propose a solution for monitoring
activities on virtual machines forming logical clusters over physical hosts. They utilize metrics
based on previous server performance to enable the system to proactively anticipate deviations
and behaviors that do not adhere to specifications, facilitating a quick recovery from the last
consistent checkpoint.

In [32], the authors employ machine learning techniques to optimize resource utilization,
addressing both horizontal and vertical load balancing. They train an agent using a custom
reinforcement learning approach, rewarding the agent based on the desirability of selected ac-
tions such as task assignment on a specific virtual machine or migration to another host. It’s
important to note that our list is not exhaustive, and numerous other works in hybrid load bal-
ancing exist. For instance, [97] focuses on dynamic resource provisioning tailored for a specific
application in the intensive processing of meteorological data flows.

As demonstrated, hybrid approaches effectively address the limitations of isolated static or
dynamic techniques. They offer advantages such as increased responsiveness, better constraint
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management, and faster task distribution. However, it’s important to acknowledge that the
implementation of hybrid approaches can be complex.

3.4 Comparative analysis

The table 2.1 introduces a comparison of the most recent and relevant approaches from
the state of the art presented in this section. The comparison is based on structural criteria,
including:

• The nature highlighting the type of the approach (static, dynamic, or hybrid).

• Combination with any other mechanism such as fault tolerance or task scheduling.

• The fundamental method or metaheuristic on which the approach relies.

• The advantages the approach provides.

• The limitations it suffers from or how it is presented suffers.

• The performance metrics employed to validate and evaluate the approach.

3.5 Conclusion

In this section we have given a taxonomy of load balancing algorithms. We have introduced
the static ones characteristics, major contributions and limitations, then we moved to dynamic
algorithms which are more reactive and take into account real-time information on servers and
cloudlets but are slowly since they mainly rely on meta-heuristics. We have ended it with
hybrid methods which take advantage of combination between static and dynamic algorithms,
or some times literally combination between load balancing and other mechanisms to come over
limitations of the two first families.

The next section will introduce digital ecological footprint calculators which are platforms
allowing people and companies to declare their activity and to estimate approximately their
carbon footprint .
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Approach Nature Combination Core method Merits Limitations Metrics
[75] Static No Min-Min Fast Not adaptative Makespan

[77] Static No
Particle Swarm
Optimization

Fast Not adaptative Makespan

[80] Dynamic No Bee colony
- Fast
- Semi-adaptative

VM level migrations
- Makespan
- Migrations

[83] Hybrid Task scheduling
- Opportunistic load
balancing
- Min-min

- IaaS level
- Optimize resource

Ignore common
constraints

- Makespan
- Resource
utilization

[82] Hybrid Task scheduling Bat fly algorithm Considers pricing
Ignore common
constraints

- Makespan
- Flow time
- Resource
utilization

[98] Dynamic No Genetic algorithm Fast
Lack of performance
evaluation

Performance
degradation

[85] Hybrid Task scheduling Custom method
- Fast
- Task-level migration
- High scalability

Not adaptative
- Makespan
- Migrations

[81] Hybrid
-Task scheduling
- Sort of fault
tolerance

- Imperialist competitive
algorithm
- Firefly algorithm

- Fast
- Considers linked tasks

- Complexity
- Lack of performance
evaluation

- Resource
utilization
- Makespan

[86] Hybrid Task scheduling Fuzzy-based logic
- Very-responsive
- Fast
- Resource optimization

- Complexity
- Lack of performance
evaluation

Resource
utilization

[87] Hybrid Task scheduling Deep Q-learning
- Highly-adaptative
- Scalability

- Complexity
- Lack of performance
evaluation

Makespan

[90] Hybrid Task scheduling
- Ant colony algorithm
- Fuzzy-based logic

Highly responsive
- Complexity
- Lack of performance
evaluation

Response time

[89] Dynamic No
-Ant colony algorithm
-Bee colony algorithm

- Enhance QoS of service
- Optimize energy
consumption

- Complexity
- Lack of performance
evaluation

- Energy
consumption
- Migrations

[93] Hyrbid Fault tolerance Custom method
Optimize cloud resource
utilization for real-time
application

- Complexity
- Lack of performance
evaluation

Makespan

[96] Hybrid Fault tolerance Byzantine fault tolerance
Synchronous checkpointing
which keeps a global job
consitency

- Ignore common
constraints
- Slow

- Makespan
- Energy
consumption
- SLA violations

Table 2.1: Comparison of load balancing algorithms

4 Digital ecological footprint calculators

The 2022 report from the Intergovernmental Panel on Climate Change highlighted that human
activities resulted in a net emission of fifty-nine gigatonnes of greenhouse gases globally in 2019
[99]. Despite numerous commitments by nations, attempts to stabilize the impact of global
warming, driven by increased industrialization and hydrocarbon use, have proven unsuccessful
[100]. According to a World Health Organization report, the impending drought is expected to
lead to the migration of millions of people in the coming years [101]. It is evident that climate
change will pose the most significant challenge for humanity in the decades ahead. To mitigate
carbon dioxide CO2 emissions from industries and individual activities, states play a crucial
role in enacting regulations and implementing strategic planning [102].
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Field Category Features

Individual

Transportation
- car trips
- public transport
- airplane travels

Energy and water
- home consumption
- hobbies
- heating and air conditioning

Food
- organic and farmed foodstuffs
- meats
- ration of locally produced food

Health & education
an overall average expressed as the total amount
of carbon dioxide generated by utilities relative
to the number of citizens

States & campanies

Infrastructure & buildings
- lifecycle of buildings and infrastructure projects
- transportation infrastructure maintenance
- building and evolving energy production structures

Supply chain
- energy and food supply
- importing raw materials and transport of finished
products

water pollution and consumption
- estimation of the volume of water consumed in
production or construction processes
- polluted water rate by industrial waste

deforestation
- cost in green space of each project
- impact on living beings (human or not) and
neighbouring ecosystems

Table 2.2: Commonly used features for ecological footprint calculation

4.1 Digital ecological footprint calculators

Various digital ecological footprint calculators have been introduced to assess the environ-
mental impact of individuals and companies [103]. However, a common limitation is that they
rely on reported information rather than directly collecting behavioral data on activities. En-
hancing regulatory mechanisms by directly tracking the behavior of companies and individuals
can provide more accurate insights for informed decision-making by states and help individu-
als understand their true environmental impact. Nevertheless, a significant challenge arises in
balancing activity tracking with privacy and confidentiality considerations.

To the best of our knowledge, this is the first instance of such a method being proposed.
Existing literature lacks approaches that enable the calculation of an ecological footprint based
on directly collected data during the activities of both companies and individuals. Over the last
decade, numerous research papers have addressed the ecological emergency, presenting various
methods for calculating carbon footprints and emphasizing the impact of using such calculators
on societal behavior. Table 2.2 provides a summary of the commonly requested information by
these calculators, typically presented in the form of web platforms.

Mulrow et al. [103] conducted an assessment of the design and user interaction patterns
of digital footprint calculators, emphasizing those dedicated to individuals. They introduced
a feature index, concentrating on two key concepts: (i) depth of inputs, which measures the
variety of categories of collected information and the level of detail for each category; (ii)
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user engagement, assessing display quality and the intuitiveness of user interaction. In their
review of thirty-one calculators, none were found to be behavioral, reinforcing the absence of
calculators similar to ANPA-GIEFC. Another study by Jiayi, Qiuchen, & others [104] focused
on a more specialized comparison of calculators dedicated to buildings and infrastructure. This
focus was driven by the fact that one-third of global energy consumption is attributed to these
sectors. Their specialization allowed for a more in-depth exploration of features used, especially
in evaluating the environmental impact of different life-cycle stages in building processes.

After extensive searches on reference engines such as Google Scholar, it was found that digital
ecological footprint calculators are scarce, primarily adopting a declarative approach and often
focusing on individual footprints.

4.2 Conclusion

This section was dedicated to digital ecological footprint calculators. As it is easy to see, there
is a real lack of works in this field that attempt to estimate the ecological footprint of individuals
and companies. It is also important to note that they are all declarative and therefore not based
on real activities or behavioral data which makes them very imprecise.

5 Chapter conclusion

This chapter was dedicated to the state of the art, it has given the opportunity to introduce
major works related to ours. We namely introduced some important leader election algorithms,
presented three families of load balancing algorithms and finally summarized existing digital
ecological footprint calculators.

The leader election problem represent a key point in all automated or self-organized systems,
we have shown that this is an active research field where lot of contributors have given lot
of improvement in many application domains like virtual traffic lights, robotic networks or
moreover in perception layer of the Internet of Things.

The load balancing and tasks scheduling are the Swiss-knives of the cloud automated en-
vironments, their performance directly impact quality of service (QoS) and thus act on the
service-level agreement (SLA). Lot of approach exists which are stateless like static ones which
encourages speed on QoS, others are stateful and take in consideration real-time information on
their environment. A last category stand for a hybridization of the two previous one and tries
to come over their drawbacks.

Calculating one’s impact on the environment directly is an impossible task, so digital tools
have been created to help individuals and companies calculate it and track their activities in an
attempt to reduce their impact.
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The next chapter will focus on our own contributions. It will show how we proceed to
reduce leader election complexity in flatten networks environment like in wireless sensor network
context. It will then detail our multi-level hybrid load balancing and tasks scheduling algorithm
which rely on meta-heuristics and clustering to perform better workload distribution in cloud
environments. It will end by introducing the global privacy aware infrastructure for an automatic
global ecological footprint calculation.
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1 Introduction

The preceding chapters have enabled us to respectively introduce the theoretical elements
needed to understand our thesis work, and then to position ourselves among existing solutions
known in the literature. This chapter will be devoted exclusively to the presentation of our
research work carried out during this thesis.

We have proposed a fully distributed, fault-tolerant leader election algorithm, which outper-
forms its competitors. This is due to a reduced complexity since it removes building spanning
tree step which is a common initial phase in election process. Moreover it avoids the need to
regularly re-run the election algorithm, as it prepares a list of substitutes who are designated
to take over in the event of the leader’s failure [6].

We then proposed a new hybrid mechanism that enables task scheduling and load balancing
in a cloud environment that operates on two levels. Indeed, it improves workload distribution
among servers and reduces makespan through a multi-step procedure: k-means-based clustering,
job scheduling on clusters using round-robin, then job scheduling on servers within the same
cluster using a genetic algorithm, and finally a multi-level load balancing function. Although it
has a complex structuring, this mechanism enables a high degree of decoupling in the functions
of its modules that make and which cooperate to complete its missions Thus reducing overall
task execution times and better meeting the constraints of service-level agreement with clients
[7].

We end by presenting our digital footprint calculator. It is as best as we know the first
contribution of kind since it relies on behavioural and not declarative data to calculate the
impact score. It is feasible because it is built upon existing technologies which are the Internet
of Things and the blockchain and it preserves privacy. A public key infrastructure is used to
improve the infrastructure security and allow all actors (customers or producers) to interact in
a reliable and anonymous trackable manner [8].

We have undertaken a comparative analysis of machine and deep learning techniques for
detecting botnet-based attacks in the Internet of Things (IoT) [105]. As this study aligns more
with a security-focused approach, we deemed it as beyond the scope of this thesis and have
chosen not to incorporate it in this work.

This chapter is organized as follows: first the section 2 presents the distributed and reliable
leader election framework for wireless sensor network. Then the section 3 introduces in details
the novel multi-level hybrid load balancing and tasks scheduling algorithm for cloud computing
environment. It end by presenting A novel privacy-aware global infrastructure for ecological
footprint calculator (ANPA-GIEFC) based on Internet of Things and blockchain in the section
4.
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2 Distributed and reliable leader election framework (DR-

LEF)

In this section, we present a leader election algorithm designed to choose a subset of gateways
to serve as local leaders responsible for authenticating and managing sensors within their range.
To overcome the challenges discussed in Section 2, we introduce a novel algorithm named Dis-
tributed and Reliable Leader Election Framework (DRLEF). This innovative approach aims to
address the limitations found in existing solutions and offers the following advantages:

• Utilizing multiple gateways within each area to mitigate the single point of failure scenario.

• The centrality criterion significantly influences the leader designation process.

• An algorithm is employed to compute disjointed lists, identifying broadcast areas without
intersections. The union of these areas equals the set of all sensors within the reach of the
competing gateways, enabling the transmission of election messages to each sensor only
once.

• The election result provides a list of candidates to assume leadership in the event of a
failure by the elected leader.

• DRLEF has the potential for generalization to various use cases due to its applicability in
hierarchical systems and reliance on standard criteria. Minor adaptations of parameters
and thresholds may be adequate to make it suitable for other scenarios.

This section is structured as follows: subsection 2.1 presents assumptions and used nota-
tions. Then 2.2 is devoted to our algorithm. Subsection 2.3 is dedicated to simulation and
implementation method. Finally 2.4 discusses the obtained results.

2.1 Assumptions and notations

We begin by enumerating the assumptions that render our algorithm feasible, followed by
a step-by-step presentation of the main phases of DRLEF. Table 3.1 outlines the variables
employed by DRLEF along with brief descriptions.

For our implementation, we assume a classic WSN composed of sensors with limited calcu-
lation capacities and gateways which are in charge of data synchronisation, routing and local
management. We assume the following:

• WSN are ramdomyl deployed.

• Nodes are not highly mobile.

• A constant ratio Sensors number/Gateways number is maintained.
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Variable role
gwsi Gateway indexed i
List of Direct Neighbors: Nodes (LDNN)i Set of sensor nodes in radio range of Gateway (GW)i
Number of Direct Neighbors: Nodes (NDNN)i Lenght of LDNNi
List of Direct Neighbors: Gateways (LDNG)i Set of Gateways in radio range of GWi
Number of Direct Neighbors: Gateways (NDNG)i Lenght of LDNGi
Election Initialization Message (EIM) Election Initialization Message
DEVij Deviation of a \GWi to a GWj in its radio range
Election Concerned Gateways (ECG) Election Concerned Gateways List

Start Election Message (SEM)
A message sent by the Central Gateway to inform
participants that they can start the election process

Candidacy Message (CM)
A message sent by a Gateway to the central
Gateway to notify that it participates in the election

Active Status Message (ASM)
A periodic message sent by the elected gateway
to its relay to indicate that it remains active.

Table 3.1: DRLEF Variables and messages

An essential concept that we leverage in the DRLEF algorithm is centrality. Node centrality
is a measure of the importance of a node in the network, particularly crucial in the context of
the Internet of Things (IoT) where edge nodes play pivotal roles. The most commonly used
methods for researching node centrality can be classified into the following categories:

1. Between-ness: nodes are assigned a score calculated as the fraction of the number of
shortest paths passing through a specified node relative to the total number of shortest
paths. The higher the ratio, the more central the node is considered.

2. Closeness: A node is deemed to have higher closeness if the sum of its shortest path
distance to all other nodes is smaller.

3. Degree: takes into account the number of direct neighbors of a particular node.

4. Local Fielder Vector Centrality (LFVC) [106]: measures the network’s sensitivity to spe-
cific node deletion.

5. Others: a lot of other approaches exist like Eigenvector centrality or more over the Ego
Centrality method.

2.2 Algorithm and main steps

The DRLEF algorithm for leader election aims to designate a set of Gateways to coordinate
the WSN, with other gateways in the same radio range serving as hibernating candidates. These
candidates will wake up in a specific order to replace the designated leader in case of failure.
The complete algorithm and its main phases are outlined in Algorithm 1.

2.2.1 Exploration phase

This follows a classical approach to construct a local network map. Each gateway initiates an
exploration message, and the gateways or sensors within radio range respond with a message
containing their network parameters. Subsequently, each gateway creates two lists of direct
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Algorithm 1: DRLEF Algorithm
Data: Randomly deployed WSN
Result: Leader per area and ordered successor lists
// Exploration phase

1 foreach gwsi ∈ listgws do
2 apply a classical flood procedure to detect the direct neighbors of gwsi from its area;
3 if gwsi is alone and there is no another one around then
4 leave algorithm;
5 else
6 go to initialization phase (line 9);
7 end

8 end
// Initialization phase

9 foreach gwsi ∈ listgws do
10 gwsi creates an EIM (election initialization message) containing its identifier and a list of

its neighbours gateways and sensors;
11 end
12 The gateway with the maximal number of neighbouring gateways is considered as CGW

(Central) and is in charge of computing the deviation of each neighbour gateway; // the

deviation is the average of deviations in the number of neighbours sensors

between the gateway and the other gateways in the same area

13 The CGW adds gateways with a deviation greater than a defined threshold to a list called
ECG (Election Concerned Gateways);

14 The CGW sends a SEM (Start Election Message) containing ECG;
15 if the number of gateways in ECG and in radio range of each other is greater or equal to two

then
16 go to election phase (line 20);
17 else
18 leave algorithm;
19 end

// Election phase

20 foreach gwsi ∈ ECG do
21 if gwsi has the minimal score then
22 the gateways in the same ECG reduces the score of gwsi by the score of the other

gateways;
23 end
24 gwsi compares its score to those of other gateways in the same ECG;
25 gwsi sends to the CG (Central Gateway) a CM (Candidacy Message) containing its final

score;
26 end
27 Based on the received scores, the CG computes an ordered list of candidates of which the first

element is the local leader;
// Failure tolerance phase

28 repeat
29 the elected gws sends an ASM (Active Status Message) to the next gateway gwsnext in

the ordered list which will stay in hibernating mode;
30 until there is an interruption for a certain delay ;

31 gwsnext sends an EM (Elected Message) to the other gateways in the same list to inform
them that it takes over;
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neighbors—one for sensor nodes and the other for gateways. It is important to note that if
a gateway is the sole one in its radio range, it is automatically considered the leader in that
network segment.

This phase is summarized by Algorithm 2.

Algorithm 2: Network Exploration
Data: Randomly deployed WSN
Result: Gateways with neighbor lists

1 foreach i ∈ N do
2 //N set of gateway indices
3 GWi sends exploration message to direct neighbors

4 end
5 foreach i ∈ N do
6 GWi builds LDNNi, LDNGi ; // List of Direct Neighbor: //sensor nodes

(LDNN) and Gateways (LDNG)

7 end
8 if GW0 has no gateway as neighbor then
9 GW0 is a local Leader;

10 Stop the Algorithm;

11 end

2.2.2 Initialization phase

‘

This phase, along with the subsequent ones, takes place when two or more gateways are
within radio range of each other. In the initialization phase, each of these gateways prepares
the necessary lists and information for the election phase. The steps of this phase are as follows:

• Each gateway prepares an Election_Initialization_Message containing its own iden-
tifier along with the two lists previously built. Subsequently, it sends this message to all
gateways within its radio range.

• Upon receiving all messages, each gateway checks if it has the maximum number of gate-
ways as direct neighbors. If not, it enters a hibernation state and awaits further messages.

• Otherwise, the gateway that has the maximum number of gateways as direct neighbors is
identified as Central_Gateway (CGW), It is crucial to distinguish this central gateway,
chosen for intermediary calculations, from the elected one, which will be designated to
lead its zone of the WSN at the algorithm’s conclusion.

• The CGW calculates deviations for each gateway in comparison to others. The local
deviation for a gateway is then computed as the average of all individual deviations of
that node. The goal is to identify gateways with a high average number of sensors differing
from others. If this value exceeds a threshold, indicating that if the gateway hibernates,
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a significant number of sensor nodes will be unreachable, an Election_Abort_Message

is sent to these gateways, rendering them ineligible to participate in the election. On the
contrary, if the deviation is within a reasonable range, the concerned gateway is added to
the Election_Concerned_Gateways (ECG) list, ordered according to NDNNi, allowing
them to be candidates for leader election.

• The CGW broadcasts a Start Election Message (SEM) containing a keyword to initiate
the election process and the ECG, which will be utilized by each GWi to compute its final
list of direct neighbors (sensors), to all gateways in the ECG.

Algorithm 3 Describes the operations of this phase.

Algorithm 3: initialization phase
Data: Gateways with local knowledge
Result: Local lists of election participants

1 foreach i ∈ LDNGi do
2 EIMi={GID, LDNNi, LDNGi}; // GID: Gatway-Identifier

3 foreach j ∈ LDNGi do
4 Send(EIMi,j)
5 end

6 end
// After a waiting delay

7 if NDNGi ̸= MAX(NDNGj) then
8 Wait for a message reception;
9 else

// The concerned Gateway is noted CGW as local central one

10 DEVi=AV GDEVij ; // The local deviation(DEVi) of each Gateway is then

given as the Average of DEVij

11 if DEVi > Threshold then
12 Send(EAM ,i); // EAM: Election Abort Messages

13 // GWi must stay on

14 end
15 ECG = ECG

⋃
{i};

// ECG: Election Concerned Gateways

16 send(SEM ,ECG); // SEM: Start Election Message

17 }
18 end
19 if there are 2 or more gateways in radio-range of each other then
20 Goto phase 3 ;
21 end

2.2.3 Election phase

Once all lists and candidates are prepared, the election phase can commence, at the conclusion
of which the leaders will be determined. It is outlined in Algorithm 4, and the steps can be
described as follows:

• On each gateway receiving SEM:

51



2. DISTRIBUTED AND RELIABLE LEADER ELECTION FRAMEWORK (DRLEF)

• Initialize the Final List of Direct Neighbors (LDNFi, sensor nodes) to the initial one
(LDNNi).

• For each GWj from ECG, the GWi checks if the NDNNj > NDNFi then it concedes the
common sensor nodes to GWj and LDNFi = LDNFi - LDNNi.

• At the end we assume NDNFi = |LDNFi |, each gateway checks if its NDNFi is greater
than Threshold, it sends a candidacy message to the CGW containing its Identifier and
NDNFi.

• When receiving the first CMi, the CGW waits a predefined laps time for receiving other
CMi and does not accept anymore Candidacies after this delay.

• It creates then an ordered list Elected List(EL) according to NDNFi and attributes
rank to each GWi.

• The GWi which has the first rank is the elected one (noted EGW) and will stay on.

• CGW sends the EL to all concerned GWi.

• Other GWi sends a sleep command to sensor nodes in their LDNFi and activate hibernate
mode.

Algorithm 4: Election phase
Data: Local Lists of Election Participants
Result: Local Leaders

1 for i ∈ {1, · · · , N} do
2 LDNFi = LDNNi;
3 for j ∈ {1, · · · , Len(ECG)} do
4 if NDNFj > NDNFi then
5 LDNFi = LDNFi - LDNNj ;
6 end

7 end

8 end
9 NDNFi = Len(LDNFi);

10 if NDNFi > Threshold2 then
11 CM = {GID,NDNFi}; // CM: Candidacy Message

12 Send(CM , CGW ); // CGW: Central GateWay

13 end
// On CGW when all CM received Estimated by waiting delay from first

message receiving event

// Create an ordered list according to NDNFi in descending order

14 ElectedList = {(GID1, Rank = 1), · · · , (GIDn, Rank = n)};
15 Send(ElectedList, GWi);
16 if GWi.rank = 1 then
17 ElectedMessage = {GID, Statut =’Elected’};
18 Send(ElectedMessage, LDNFi);

19 end
20 HibernateMessage = {GID, Statut =’Not Elected’};
21 Send(HibernateMessage, LDNFi);
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2.2.4 Failure tolerance

This phase introduces a crucial mechanism that prevents the need for a complete restart of
the algorithm when the leader fails. It can be broken down into the following steps:

• The CGW periodically transmits an
Active_Statut_Message (ASM) to the next GWi in the Elected List, to inform it that
it is always active.

• If the second gateway does not receive a message within a predefined interval of time from
the last ASM, it wakes up and sends K periodic Status_Check_Messages. If the CGW
does not respond, the second gateway then sends an elected message to gateways and
sensor nodes within its radio range.

• Then the last gateway takes over and become the leader, the fault-tolerance function is
then restarted with the following gateway in the same list.

Algorithm 5: Failure tolerance phase
Data: A local leader
Result: a recovery on failure without re-election
// Current Local Leader is noted EGW as elected gateway

// ASM is an Active Status Message used to inform VGW that EGW is still active

// Vice gateway, VGW is one with rank next to EGW

// On EGW:

1 while True do
2 EGW.wait(T ) ; // T is a prefixed delay

3 Send(ASM , V GW );

4 end
// On VGW:

5 while Receiving ASM within T do
6 Stay in hibernate mode ;
7 end
8 V GW.wakeup();
9 i = 0;

10 while (i < k) and (no ASM received) do
11 Send(CSM,EGW) ;
12 i = i+ 1 ;

13 end
14 if receiving ASM then
15 Restart Failure tolerance phase ;
16 end
17 EGW = V GW ;
18 ElectedMessage = {GID, Statut = ”Elected”};
19 Send(ElectedMessage, LDNFi);
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2.3 Implementation

We will present the environment of our simulation, the main results of experiments and a
brief comparison with existing solutions.

Parameter value

Nodes 200 - 1000
Radio Range 100 m
Ratio —Sensors—/—gateways— 0.1
Routing protocol Routing Protocol for Low-Power and Lossy Networks (RPL)
Threshold 0.2
Threshold2 10

Table 3.2: DRLEF Simulation Parameters

We have implemtend DRLEF in the JBOTSIM framework with the given parameters in Table
3.2 on a machine with the following characteristics:

• Processor: Intel®Core ™i7-4600U CPU @ 2.10GHz 2.70GHz.

• RAM: 8 GO.

• OS: Windows 64 bit, x64-based processor.

JbotSIM is a Java library that facilitates the description, execution, and evaluation of dis-
tributed algorithms. Additionally, it provides a graphical interface for visualizing simulation
scenarios in real-time [107].

Various criteria have been employed in the literature to assess the effectiveness of election
algorithms, with some being tailored to specific contexts. For instance, Pasquale Pace et al.
[66] assessed their management and coordination framework for aerial-terrestrial smart drone
networks based on the average election session duration. We consider this criterion to be optimal
for standardizing simulations and enabling the comparison of different approaches, irrespective
of specific scenarios.

We implemented our algorithm and conducted multiple scenarios with varying numbers of
sensors (nodes), while maintaining a constant number of sensors per gateway at 10. To obtain
more realistic estimates of election duration, we repeated the experiment 50 times for each
value.

2.4 Results discussion

The results of simulation are summarized in Table 3.3 which gives duration by step and total
time for each configuration.
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200 400 600 800 1000
Exploration 6.36 17.19 39.7 104.3 233.1
Initialization 0.7 1.4 5.4 3.1 15.3
Election 11.7 157.3 573.2 1965.1 5032.4
Total 18.76 263.86 618.3 2072.5 5280.8

Table 3.3: DRLEF average election session duration

Each row corresponds to a distinct stage of our algorithm. The initial cell in each column indi-
cates the number of sensors for the respective simulation scenario. Throughout our experiments,
we maintained a consistent ratio of 1 gateway for every 10 sensors.

Figure 3.1 to 3.4 present time evolution according to the number of nodes during the algorithm
phases.
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Figure 3.1: DRLEF exploration phase duration

Results for exploration phase from Table 3.3 are shown in Figure 3.1. The curve adheres to
the shape of a second-degree polynomial, and this observation holds true for the other phases as
well. Being entirely distributed, our approach maintains scalability without incurring a notable
increase in computations and, consequently, time. As a refresher, the initial phase is exploration,
which involves the exchange of messages. During this phase, gateways dispatch requests and
await responses to construct a direct neighbors list comprising other gateways and sensors.

Figure 3.3 shows the Election phase results described in Table 3.3, this phase consumes the
majority of the total time. All calculations to designate the set of gateways elected as local
leaders are performed during this step. This is based on direct neighbors found in phase 1 and
using lists prepared and exchanged via messages during the second one.
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Figure 3.2: DRLEF initialization phase duration
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Figure 3.3: DRLEF election phase duration

Fig 3.4 tracing the total time of the protocol, from the start to the end of the election, shows
that it remains polynomial. Due to the distributed aspect of the algorithm execution, multiple
instances are running simultaneously in different zones of the WSN topology, making it scalable
without having a significant impact on the duration of the steps.

Table 3.4 (traced in Figure 3.5) presents a comparison, focusing on the overall duration,
between DRLEF and three other leader election algorithms discussed in related works. Time
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Figure 3.4: DRLEF total running duration

serves as the key criterion since it includes (i) the building of the network map, (ii) the calculation
time correlated with the algorithm’s complexity, and (iii) the duration of message exchanges,
influenced by the number of messages. Given these considerations, we regard time as the central
factor for evaluating and comparing algorithms, offering an estimation of other criteria. Based
on the comparison, it is evident that our algorithm is less time-consuming, demanding fewer
messages and computational operations.

Additionally, it is worth noting that BROGO [57] demonstrates the best performance from a
thousand nodes onwards. This can be attributed to its consideration of a flat WSN composed
solely of sensors (without gateways), resulting in a complexity close to that of spanning tree
algorithms. However, it is crucial to emphasize that this approach may not be suitable for
real-world situations and lacks adaptability to diverse scenarios and conditions.

Sensors 200 400 600 800 1000

DRLEF 68,25 153,33 911,83 2054,14 4531,4
MCFATD[66] 1890 3690 5490 7290 9090
ICNP [58] 2000 5000 7500 12000 14000
BROGO [68] 3400 3500 3600 3700 3800

Table 3.4: Leader election algorithms comparison

2.5 Conclusion

This section introduced the design of DRLEF, a lightweight leader election protocol suitable
for designating an authentication server within a collaborative group of Gateways. DRLEF
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Figure 3.5: Leader election comparative summary

utilizes a logical criterion, centrality, which corresponds to the number of direct competitive
neighbors and can be applied in various contexts.

The effectiveness of DRLEF has been demonstrated through simulations, highlighting its
scalability with reasonable processing overhead. This efficiency is attributed to the distributed
nature of the election procedure. Unlike constructing spanning trees and other structures to
cover the entire WSN, we conduct elections locally in each WSN zone. Additionally, we have
introduced a failure-tolerance procedure to restart the election when a leader fails.

As a future prospect, we aim to incorporate a procedure to manage mobility. While our
algorithm currently supports disconnected or failing nodes, it may face challenges in extreme
mobility conditions. Another potential improvement involves enhancing the leader election
mechanism by integrating a machine learning-based module.
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3 A novel multi-level hybrid load balancing and tasks

scheduling algorithm for cloud computing environment

Cloud computing stands as a pivotal technology in our era, revolutionizing practices for
individuals and companies by offering various computing resources as services over the internet.
One crucial element contributing to its continued prominence is the assurance of user trust
through the maintenance of availability, reliability, and scalability. Upon closer examination
of the workings of this technology, it becomes apparent that behind the simplicity of use and
service delivery lies a set of highly complex mechanisms working in tandem to ensure optimal
functionality [108].

The objective of this work is to introduce a novel hybrid algorithm designed for task scheduling
and load balancing in cloud environments [109]. The rationale behind this combination stems
from the understanding that effective workload distribution commences with optimizing the
task assignment process. Our algorithm encompasses three key stages:

• Servers Clustering (k-means Based): in this initial stage, servers with similar occupa-
tion characteristics are partitioned into clusters with limited sizes using a k-means-based
procedure.

• Tasks Assignment: this stage involves a two-phase process. Initially, a round-robin algo-
rithm is employed to determine the cluster to which a task will be assigned. Subsequently,
a genetic-based algorithm is utilized to select the specific server within this cluster for task
scheduling.

• Load Balancing: this phase consists of two steps. The algorithm decides which cluster
to unload and precisely which servers to target. Once determined, the cloudlets (virtual
machines running them) are retrieved and sent (migration) to the tasks assignment module
of the destination cluster for reassignment.

By traversing these stages, our hybrid algorithm addresses the intricacies of tasks scheduling
and load balancing in cloud environments.

To achieve this, our architectural model incorporates the following components. Initially, we
introduce a new module called the cluster manager, responsible for managing primitives related
to the creation and updating of clusters. Subsequently, we utilize a conventional datacenter-
level task scheduler, referred to as global, to which we integrate a local monitor within each
cluster. Finally, we adopt a similar organizational structure for the load balancer, comprising a
central module and local probes deployed in each cluster.

The method we propose relies on realistic assumptions and utilizes specific configurations of
existing architectural components. The primary contributions of our work include:

• An algorithm with hot-deployment capability that can be seamlessly integrated into ex-
isting operational cloud environments.
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• A highly scalable algorithm that maintains consistent performance even with a substantial
increase in the number of servers and cloudlets in the datacenters, achieved through the
division into clusters and operation at two levels.

• A robust interoperability and complementarity strategy that prevents interference in the
mission of each component and redundancy of actions among clusters’ management, load
balancing, and task scheduling mechanisms. This minimizes non-essential delays associ-
ated with cloud management and significantly reduces the number of SLA violations.

The rest of this section is organized as follows: We start by formulating the problem statement
with the subsection 3.1, then we put forward a few assumptions in subsection 3.2. The subsection
3.3 introduces our architectural model, we finally depict our method and give corresponding
algorithms in 3.4. Results of realized simulation are given and discussed in subsection 3.6. The
subsection 3.5 depicts the implementation methodology.

3.1 Problem statement

Considering that the primary objective of a hybrid algorithm for task scheduling and load
balancing is to determine the assignment of a task to a specific virtual machine running on a
particular server, and subsequently, to address the approach that maintains a workload distri-
bution, eliminating overloaded and under-loaded servers to achieve a balanced and equitable
usage level. In this section, we will formalize the problem and introduce the relevant formulas.

Let assume that each datacenter is composed of a set denoted S of N serversS = {S1, S2, ..., Sn}
to which corresponds a set of Resources such that:

Resources = {{Rcpu
1 (t), Rram

1 (t), Rbw
1 (t), Rstr

1 (t)}, {Rcpu
2 (t), Rram

2 (t), Rbw
2 (t), Rstr

2 (t)}, ...,
{Rcpu

n (t), Rram
n (t), Rbw

n (t), Rstr
n (t)}}

(3.1)

Where Rresource
i (t) gives the remaining level of resource of server i at instant t. We as-

sume also that on each server evolve a set VM of M virtual machines such that: VM =
{vm1, vm2, ..., vmn}. Each virtual machine lives on a physical server and has dedicated re-
sources, for example the first vm assigned to the first host noted vm11 has {Rcpu

11 (t), Rram
11 (t), Rbw

11 (t),
Rstr

11 (t)} as remaining resources at instant t. We assume that all virtual machines are initially
of a same fixed amount of resources: 2 CPU cores with each 5000 MIPS and 4 Go of RAM .

Each task is characterized by two primary parameters: its length and resource utilization
model, often referred to as the cloudlet model. Based on its type, a cloudlet has a specified size
in Millions of Instructions Per Second (MIPS) and a variable percentage (ranging from 0.2 to
0.8) of available resource utilization, such as RAM. Table 3.5 provides an overview of available
server types with corresponding resources (number of processing cores, RAM, and each core’s
calculation capacity) and potential cloudlet sizes.
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Type CPU cores RAM (Go) Core size (MIPS) Cloudlet size (MIPS)
Small 2 8 10 000 30 000
Medium 4 16 20 000 50 000
Large 8 32 30 000 70 000
Extra large 16 64 40 000 100 000

Table 3.5: Hosts and cloudlets configuration

To formally articulate the problem, we will introduce key parameters and related equations,
categorizing them into two main groups: (i) temporal-based parameters (equations 3.2 to 3.8)
and (ii) load-based parameters (equations 3.9 to 3.14).

The equation 3.2 allows the calculation of computation power of a host or a virtual machine:

CPi = |P.U | ∗ sizeof(p.u) (3.2)

where P.U is the set of allocated processing units, |P.U | is its cardinality and sizeof(p.u) is the
individual capacity of a processing unit in millions of instructions per second (MIPS).

The execution time of a task on a specific virtual machine is given by equation 3.3:

ETji =
sizeof(taskj)

CPVMi

(3.3)

The equation 3.4 gives the full completion time of a task on a virtual machine:

CTji = WTji + ETji (3.4)

where WTji is the waiting time of the taskj on the virtual machinei and is given by equation
3.5:

WTji =

j−1∑
k=1

CTki (3.5)

i.e: waiting time of a task on a specific virtual machine is the sum of completion times of all
preceding tasks.

We can now define the makespan, a crucial parameter measuring the overall completion time
of all tasks. It is respectively given at the virtual machine, host, and cluster levels by equations
3.6, 3.7, and 3.8:

makespan(VMi) =
n∑

j=1

CTji (3.6)

makespan(hosti) = max{makespan(VMji)} (3.7)

makespan(clusteri) = max{makespan(hostji)} (3.8)
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Now, having covered the temporal or time-based parameters, we will proceed to define the
most crucial load-related parameters. First of all, the parameter estimating the load on the
processing unit is given by equation 3.9:

CLt
i = CLt−1

i + CL(Taskstji) − CL(finished taskstji) (3.9)

In the same manner we can obtain the load on the RAM and storage at a particular timestamp
by the equations 3.10 and 3.11 respectively:

RLt
i = RLt−1

i + RL(Taskstji) −RL(finished taskstji) (3.10)

SLt
i = SLt−1

i + SL(Taskstji) − SL(finished taskstji) (3.11)

This estimation is straightforward, as on a particular virtual machine at a specific timestamp,
the load corresponds to the already present workload, to which we add the load induced by
newly assigned tasks and subtract the load of finished ones. The bandwidth utilization on a
virtual machine is obtained by summing the amounts of data streams generated by active tasks:

BDU t
i =

n∑
i=1

data stream(taski) (3.12)

The global load score on a virtual machine is then given by equation 3.13:

Load(VMi) = α ∗ CLi + β ∗RLi + γ ∗ SLi + σ ∗BDUi (3.13)

where α, β, γandσ are pondering and normalizing factors, Then we can calculate the load of a
particular server by the equation 3.14:

Load(serveri) =

∑m
i=1 Load(VMji)

M
(3.14)

These formulas are common and will be utilized in our method to build clusters, define a task
scheduling strategy based on a genetic algorithm, and enhance load balancing within a cloud
environment.

3.2 Assumptions

To avoid confusion, it is important to establish certain assumptions upon which our approach
is built:

• Load balancing is conducted at the cloudlet level; thus, once a virtual machine is created
on a specific server, it cannot be migrated to another one.

• A workload is pre-existing in the datacenter before deploying our algorithm, and it is
randomly distributed across the servers. An essential advantage of our approach is its
capability to facilitate hot deployment in already operational datacenters. Nevertheless,
our framework is also applicable to new datacenters without an existing workload.
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• We are only interested in the main resources of a server which are: the CPU , RAM ,
bandwidth, storage.

• A task is executed continuously without interruption and randomly utilizes virtual ma-
chine resources according to a specific model (chosen for the simulation scenario).

• A virtual machine is terminated if it completes the execution of tasks in its queue before
the scheduler assigns it new tasks (i.e., there are no fully idle virtual machines).

3.3 Organizational model

Our approach is based on the architectural structure depicted in Figure ??, which closely
resembles standard configurations (refer to Figure 1.3). Combining tasks scheduling and load
balancing, our method introduces a critical new module known as the cluster manager, which
is central to the focus of this paper. For simplicity, other components such as energy efficiency
are deliberately omitted.

We will categorize mechanisms operating at the datacenter level as level-2, and those at the
cluster level as level-1. The key components/modules in our solution can be described as follows:

• Requests Handler (RH): Constructs the interaction interface with end users, gathering
vital information regarding each request, such as length and deadline. It analyzes, models,
and transmits each request to the datacenter broker in the form of a set of tasks.

• Datacenter broker (Broker): is the central module responsible for coordinating all other
functional components. It receives information, ensures consistency, synchronizes, and
transmits commands to other modules.

• Cluster Manager (CM): is responsible for organizing clusters, meaning it builds and main-
tains clusters of servers inside a datacenter while relying on the following criteria and
primitives:

– Cluster size: which is a dynamic parameter, but for the first iteration, we randomly
fix it to the ratio defined as N/50 where N is the total number of servers in the dat-
acenter. It can take any integer value, and experiments are performed to determine
its optimal value.

– Server utilization information: To set up clusters, the module is provided with infor-
mation on the utilization rates of the resources of each server, mainly: CPU , RAM ,
Bandwidth, storage.

– Fusion and fission primitives: dynamic thresholds are selected to determine when a
subset of a cluster should leave it (fission) and create another autonomous cluster.
The same mechanism is implemented to determine when and which clusters should
fuse to build a larger cluster.

• Cluster monitor: in the assigned cluster, it is responsible for monitoring the evolution
of resource utilization on servers. It is recommended to deploy it as a virtual machine
in each cluster (similar recommendation for other local components) since clusters are

63



3. A NOVEL MULTI-LEVEL HYBRID LOAD BALANCING AND TASKS SCHEDULING
ALGORITHM FOR CLOUD COMPUTING ENVIRONMENT

dynamic and change over time. It continuously collects data from servers, aggregates
them into statistical metrics, and transmits decision-making information on which the
cluster manager relies to trigger fusion and fission primitives.

• Tasks scheduler: corresponds to the classic module responsible for assigning tasks to the
VMs hosted by the servers; however, in our model, it operates on two levels.

– Level-2 Global Tasks Scheduler (GTS): decides which of the least loaded clusters will
receive the incoming tasks.

– Level-1 Local Tasks Scheduler (LTS): is responsible, within a cluster, for determining
which virtual machines will execute the tasks assigned by the GTS.

• Load balancer: is responsible for maintaining a fair workload distribution among servers
in the cloud environment. For our purposes, it operates within two levels:

– Level-2 Global Load Balancer (GLB): decides at datacenter level which cluster (among
overloaded ones) should be relieved of workload and to which cluster (among under-
loaded ones) the virtual machines should be migrated.

– Level-1 Local Load Balancer (LLB): selects source servers from the origin cluster for
the virtual machines migration process. Sink ones within the destination cluster are
selected by Local scheduler.

3.4 Algorithm and main phases

Our approach is designed to minimize complexity and reduce delays in task scheduling and
load balancing operations. To achieve this objective, it aims to decrease the amount of infor-
mation and constraints that the task scheduling and load balancing modules need to handle. It
begins by decomposing the entire datacenter into clusters, allowing the mechanisms to act on
size-reduced sets of hosts. We will first provide an overview of the proposed hybrid algorithm
as shown in Figure 3.7and then delve into the details of each step.

3.4.1 Overview

There are two approaches to providing a comprehensive overview of our solution. The first
emphasizes the functional model and can be categorized as follows:

1. Clustering: in the initial phase, we employ a clustering procedure based on k-means to
categorize servers into four major groups based on their utilization rates and makespans.
Subsequently, we further divide these categories into clusters with limited sizes. We in-
troduce primitives called fission and fusion, enabling clusters to evolve in a quasi-cellular
manner. Fission allows certain sub-groups of servers to leave a cluster when approaching
the centroid of another category. Fusion, on the other hand, facilitates the merging of two
clusters if they are in the same category and meet specific size constraints.

2. Tasks scheduling: The second phase focuses on job scheduling, and the module operates
at two levels: (i) at the datacenter level, a round-robin procedure determines the cluster
to which a group of jobs will be assigned, and (ii) at the cluster level, a genetic algorithm
assigns tasks to servers.
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Figure 3.6: Our datacenter organizational model

3. Load balancing: The load balancing stage starts once the tasks are scheduled. Our solution
is designed to focus on two tasks: (i) identifying the clusters to be lightened and (ii)
locating the servers to be freed. Once this is done, the reallocation of released tasks is
handled by the scheduling module.

The second perspective focus on architectural levels on which the mechanisms act and can
be depicted as follows:

1. At datacenter level: the mechanisms at this level deal with clusters and are responsible
for realizing their respective missions independently while relying on their local modules.

(a) Cluster manager: is responsible for cluster creation and development. During hot
deployment, it initiates the k-means-based clustering procedure. It then supervises
cluster evolution by gathering information from local monitors and decides on fission
and fusion operations.

(b) Global tasks scheduler: is in charge of executing a round-robin procedure between
clusters to decide which will receive the next jobs. It groups tasks into groups of size
equal to the standard number of servers in a cluster, then decides to which cluster
to send them.

(c) Global load balancer: it identifies the overloaded clusters to be relieved by applying
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Figure 3.7: Functional model flowchart

a round-robin algorithm between clusters in the fourth category, if any, and those in
the third category if none exist.

2. At cluster level: the modules at this level operate within clusters and are responsible
for carrying out their tasks on servers, following instructions from global managers and
providing them with local information.

(a) Cluster monitor: keeps track of evolving information within its own cluster, such as
server load and cluster size. It continuously monitors the movement of the cluster
center and its proximity to the centroids of main categories. It is responsible for
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sending alerts regarding the Eulerian distance to the cluster manager when a fission
or fusion procedure needs to be triggered.

(b) Local tasks scheduler: receives groups of jobs to schedule from the global module
and applies a genetic algorithm to decide on tasks assignment over the servers within
the same cluster.

(c) Local load balancer: when summoned by the global load balancer, it executes a
specific function to compute a score based on the makespan and utilization rate per
server. It then relies on these scores to determine which cloudlets should be retrieved
from servers and migrated to another cluster.

This provides a general overview of how the load balancing and task scheduling mechanisms
operate based on the architectural organization of the environment. The next subsection delves
into the specifics of each step.

First, we’ll delve into the construction of clusters at the datacenter level, and subsequently,
we’ll zoom in on the cluster level, elucidating the fusion and fission primitives.

3.4.2 Clustering

Intuitively, we can conceive a classification of servers according to the criteria of makespan
length and scores relative to resources utilization rate, those criteria were previously calculated
by the formulas 3.7 and 3.14 and allow to get the following categories as shown in Figure 3.8:

• Category 1: grouping servers with short makespan and low resource utilization rate.

• Category 2: including servers with short makespan and high resource utilization rate.

• Category 3: including servers with long makespan and low resource utilization rate.

• Category 4: grouping servers with long makespan and high resource utilization rate.

Category 1 encompasses under-loaded servers, while category 3 represents a suboptimal group,
consisting of poorly utilized servers. Category 4 comprises overloaded servers. The ideal cat-
egory is category 2, consisting of servers that efficiently use resources, resulting in a reduced
makespan. In the load balancing algorithm detailed in 3.4.4, migration operations aim to max-
imize the number of servers within category 2.

In order to perform this clustering we propose the algorithm 6 which is based on k-means
method and can be explained as follows:

• First the algorithm 6 takes as input the list of servers and is expected to return a set of
clusters with corresponding servers.

• In order to realize k-means clustering informative features on servers must be modeled.
We propose the feature representation given in instructions 2 and 3 respectively using
equation 3.7 for the first feature which is the makespan of the server. Then combining
equations 3.13 with 3.14 for calculating what we call resource utilization rate score to
build the second feature.
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Figure 3.8: Datacenter servers categorization

• Instructions 7 and 8 allow initialization of what we call main centroids coordinates to
optimize running time in such a manner that those centroids are initially positioned within
the servers features range. Where k is the parameter specifying the number of expected
clusters which is four in this case.

• Instruction 11 calls a standard k-means clustering procedure. It takes as argument a
list of four main centroids generated randomly which should be updated through several
iterations by using euclidean distance and the list of concerned servers. It returns four
clusters grouping servers with similar characteristics. This classification around these four
main centroids will serve as the basis for our next primitives and algorithms.

• Finally instruction 12 cuts clusters into smaller server pools to render them easier to
manage. It takes as input the list of clusters and the desired size which is here equal to
50 and returns a list of clusters of limited size. Local centroids must be recalculated for
each cluster and the CM (cluster manager) keeps track of the initial four main centroids.

After creation, the cluster manager installs a cluster monitor as a virtual machine on each
cluster. The cluster monitor is tasked with collecting information on servers and relaying it to
the cluster manager. The coordinates of the four main centroids obtained from the k-means
algorithm are communicated to each cluster monitor, enabling it to execute fusion and fission
primitives.

68



3. A NOVEL MULTI-LEVEL HYBRID LOAD BALANCING AND TASKS SCHEDULING
ALGORITHM FOR CLOUD COMPUTING ENVIRONMENT

Algorithm 6: K-means servers clustering
Data: List of servers
Result: Clustered servers

1 foreach Si ∈ Servers do
2 makespan(Si) = max{makespan(VMji)};
3 utilization score(Si) =

∑
(α ∗ CLji + β ∗RLji + γ ∗ SLji + σ ∗BDUji);

4 end
5 i = 0;
6 while i < k do
7 centroid[i][X coordinate]=random[min(makespani),max(makespani)];
8 centroid[i][Y coordinate] =

random[min(utilization rate scorei),max(utilization rate scorei)];
9 i = i+ 1

10 end
11 clusters = KMeans clustering(List centroids, List servers);
12 split clusters(clusters, 50);

• Fission: is a function that allows to update clusters so that they stay consistent.

– When the cluster monitor identifies that one-third of its servers have shifted in prox-
imity, moving closer to one of the three main centroids than to the local centroid, it
notifies the cluster manager.

– The CM initiates a fission operation that produces two clusters.

– The CM installs a cluster monitor on the new cluster.

– Obviously, the original cluster updates its local centroid and the new one calculates
its own local center.

• Fusion: is a function designed to prevent clusters from becoming overcrowded. The cluster
manager monitors the sizes of clusters and, under certain conditions, can initiate the fusion
primitive:

– Two or more clusters are near to the same main centroid.

– Two or more clusters have number of participant servers under a threshold, let it
be 25. Tests can be conducted to evaluate its ideal value which allows a better
performance of the method.

– The cardinality of the union of two or more clusters does not exceed a certain thresh-
old, assuming it is set to 75 for our case.

If the datacenter is devoid of workload at the deployment of this framework, we skip the k-means
clustering and initially divide servers into groups of a fixed size.

Now that we have demonstrated how clusters are constructed and established the strategy
governing their management, we can proceed to the task assignment and load balancing algo-
rithms.
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3.4.3 Tasks assignment and scheduling

After outlining the procedures for cluster creation and management, we will now detail the
algorithms for task assignment. It’s crucial to note that we have decomposed the datacenter into
a set of clusters, enabling us to carry out the required operations at two levels: the datacenter
and cluster levels.

At the datacenter level, our attention is directed towards the approach used to assign tasks
to clusters. The global scheduler determines which cluster will host incoming tasks, irrespective
of how they will be managed locally by the local task scheduler module. To achieve this, the
global scheduler operates as follows:

• First, it selects the targeted category of clusters. It naturally prioritizes clusters of category
1, given that they contain under-loaded servers. If no cluster is available in this category,
the global task scheduler (GTS) explores possibilities in class 3. The optimistic approach
is taken here, as this category underutilizes its resources, and there is a chance to enhance
this ratio without significantly impacting the makespan. As a last resort, it will opt for
class 2, representing the ideal exploitation model that should not be disturbed.

• Then, it determines the targeted cluster using a round-robin algorithm. Once the category
is selected, the global scheduler compiles a list of all corresponding clusters and subse-
quently redirects the received tasks to these clusters in a sequential manner. Based on a
given parameter, representing a specific number of tasks, after scheduling this quantity on
the clusters, it repeats the process by revisiting the initial step.

We suggest commencing with the definition of an algorithm to locate clusters corresponding
to a specific category in relation to the four main centroids. Algorithm 7 elucidates the process.

Algorithm 7: Find clusters
Data: List of clusters, category
Result: All clusters of specific category

1 found = Null;
2 i = 0;
3 foreach cluster ∈ clusters do
4 if cluster.category = category then
5 found[i] = cluster.id;
6 i = i+ 1;

7 end

8 end
9 return found;
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The algorithm 8 relies on the algorithm 7 and allows to select the clusters that will be
concerned by round-robin tasks assignment procedure.

Algorithm 8: Select clusters
Data: List of clusters
Result: Selected clusters for tasks assignment

1 selected clusters = find clusters(clusters, 1);
2 if selected clusters = NULL then
3 selected clusters = find clusters(clusters, 3);
4 end
5 if selected clusters = NULL then
6 selected clusters = find clusters(clusters, 2);
7 end
8 if selected clusters = NULL then
9 selected clusters = find clusters(clusters, 4);

10 end
11 return selected clusters;

An essential procedure for the round-robin algorithm needs to be outlined. Algorithm 9
receives a list of selected clusters and a single task, assigns the task to one of these clusters, and
outputs the remaining list.

Algorithm 9: Assign task
Data: List of clusters, one task
Result: task assigned to one cluster

1 cluster = random(clusters[0..Length]);
2 schedule(task, cluster);
3 clusters = clusters− {cluster};
4 return clusters;

Now we have defined all necessary functions we can introduce the round robin method as
shown in algorithm 10.

Algorithm 10: Round robin tasks assignment among selected clusters
Data: List of clusters, List of tasks
Result: tasks assigned to clusters

1 selected clusters = select clusters(clusters);
2 task = random[0..Length];
3 while not empty(clusters) or not empty(tasks) do
4 selected clusters = assign(selected clusters, task);
5 tasks = tasks− task;

6 end
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Element Description

Coding

- Gene: binary value expressing if the ith
server is in charge of a task.
- Chromosome / Individual: Vector of N
genes where N is the number of servers
in the cluster. Each expresses a particular
disposition which is a feasible solution
- Population: a set of individuals

Fitness function Fitness= 1 - CUR+CMS
2

Parents selection Elitist, tournament
Crossover Uniform crossover

Mutation
Randomly made on each gene according
to a fixed mutation rate threshold

Table 3.6: Genetic algorithm based local scheduler parameters

The local task scheduler functions at the cluster level and does not impact the global scheduler
policy. For local task scheduling, the relevant module utilizes a genetic algorithm. Configuration
elements of the algorithm are provided in Table 3.6, where CUR represents cluster utilization
rate, and CMS represents cluster makespan generated (added) by a particular solution and can
be obtained by equations 3.15 and 3.16:

CUR =

∑N
1 URi

N
(3.15)

CMS =

∑N
1 makespani

N ∗ max{makespani}
(3.16)

To perform task scheduling at the cluster level, we chose to employ a variant of genetic algo-
rithms due to their suitability for the type of problem and the conclusive results obtained by
works based on them. To design a robust and efficient genetic algorithm, we need to carefully
consider three elements: (i) the generation of individuals and the population, (ii) the opera-
tors for the evolution of populations, and (iii) the procedure for executing these operations on
individuals based on the fitness function.

For the initial generation, we need to create a random population of feasible solutions. This
is achieved by generating one feasible solution at a time using Algorithm 11. This algorithm
incorporates constraints such as the number of available servers and arriving tasks, producing
a random realizable solution.

Then we repeat the procedure for individual creation a certain desired number of times to
create the first generation population, this is explained in algorithm 12.
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Algorithm 11: create an individual
Data: Number of tasks, number of servers
Result: A feasible solution

1 individual = [0, 0, ..., 0]
2 for i = 0; i < servers.length; i++ do
3 while count < tasks.length do
4 gene = random{0, 1};
5 individual[i] = gene;
6 count = count+ 1;

7 end

8 end
9 return individual;

Algorithm 12: Generating population algorithm
Data: number of individuals
Result: Population of feasible solutions

1 for i = 0; i < desired number; i++ do
2 population[i] = create individual(M,N);
3 end
4 return population;

After generating a random set of individuals to build the first generation of solutions we move
on now to introduce the operators handling theses chromosomes.

The selection operator, as outlined in Algorithm 13, is crucial for choosing the most suit-
able individuals to act as parents for reproduction. We have employed a tournament selection
method, offering the advantages of speed, diversity, and giving less optimal individuals a chance
to participate with better chromosomes in the creation of the new generation. The method ran-
domly selects a certain number of individuals from the entire population and pits them against
each other to determine the best one.

Algorithm 13: Tournament selection operator
Data: Population, number of participants
Result: Best individual (fittest)

1 best = NULL;
2 for i = 0; i < number of participants; i++ do
3 individual = random(population[0..Length]);
4 population = population− individual;
5 if individual.fitness() > best.fitness() or best = NULL then
6 best = individual;
7 end
8 return best;

9 end
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The first evolutionary operator is the crossover operator, outlined in Algorithm 14. This op-
erator is evolutionary in the sense that it creates a new generation from the original population,
and the offspring is expected to consist of better solutions than those in the parent genera-
tion. We chose to use the uniform crossover approach for this operator, where each gene of the
offspring is inherited from either parent 1 or 2 based on a uniformly distributed probability.

Algorithm 14: Crossover evolution operator
Data: Population
Result: New generation

1 individuals = NULL;
2 while not empty(population) do
3 parents[0] = tournament selection(population);
4 parents[1] = tournament selection(population);
5 for i = 0; i < parents[0].length; i++ do
6 choice = random{0, 1};
7 if choice = 0 then
8 genes[i] = parents[0][i];
9 end

10 else
11 genes[i] = parents[1][i];
12 end
13 individuals[j] = genes;
14 population = population− parents;
15 j = j + 1;

16 end

17 end
18 return individuals

Now that all the elements that go into the operation of a genetic algorithm are assembled,
the overall orchestration is performed by the algorithm 15.
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Algorithm 15: Genetic algorithm for in-cluster tasks scheduling
Data: List of ordered tasks, lists of servers, number of iterations
Result: Best solution as execution planning on servers

1 populations[0] = generate population();
2 for i = 0; i < number of iterations; i++ do
3 foreach individual ∈ populations[i] do
4 fitness[j] = individual.fitness();
5 j = j + 1;

6 end
7 populations[i+ 1] = crossover(population[i]);
8 foreach individual ∈ populations[i+ 1] do
9 individual = mutate[individual];

10 end

11 end
12 fittest = NULL;
13 foreach individual ∈ population[i] do
14 if individual.fitness() > fittest.fitness() or fittest = NULL then
15 fittest = individual;
16 end

17 end
18 return fittest;

3.4.4 Load balancing

The effectiveness of our approach relies on two key elements. First, clustering enables the
management mechanisms to operate on two levels, allowing us to handle a reduced number of
entities—whether clusters at the datacenter level or servers at the cluster level. The second key
element is the high degree of decoupling in the missions of the various modules. As mentioned
earlier, during the load balancing step, our focus is on a single question at two levels: determining
which clusters to relieve and identifying the specific servers to be lightened. This is because
the load balancer is no longer responsible for migrating cloudlets; instead, the scheduler will
reassign them to other servers in category one clusters.

1. At datacenter level: the initial stage of the load balancing process involves identifying
clusters within the fourth category—those characterized by high resource utilization rates
and long makespans. If category four clusters are available, the algorithm attempts to
locate clusters in category three that exhibit suboptimal utilization rates but still have a
long makespan. This is accomplished through the use of Algorithm 16.

Once found, the clusters of category four or ones of category three if the fourth one
is empty should be lighten. A round-robin algorithm described in 17 is again used at
datacenter level to ensure fairness between clusters.

2. At cluster level: Upon receiving instructions from the global load balancer, the local load
balancer initiates the process of determining the servers to be freed and the cloudlets to be
migrated to another cluster. To achieve this goal, the load balancer begins by calculating
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Algorithm 16: Select clusters to unload
Data: List of clusters
Result: Selected clusters to unload

1 selected clusters = find clusters(clusters, 4);
2 if selected clusters = NULL then
3 selected clusters = find clusters(clusters, 3);
4 end
5 return selected clusters;

Algorithm 17: Round robin to relieve selected clusters
Data: List of clusters
Result: Cluster to relieve

1 selected clusters = select clusters(clusters);
2 i = 0;
3 while not empty(clusters) do
4 relieved cluster = relieve(selected clusters[i]);
5 selected clusters = selected clusters− relieved cluster;
6 i = i+ 1;

7 end

the mean makespan of servers in the cluster, denoted as MMS, as determined by Equation
3.17:

MMSCi
= Mean(Makespan(serverij)) (3.17)

The final step in our method is executed using Algorithm 18, which the local load
balancer employs to determine the cloudlets that need to be relieved from servers and
migrated to another cluster. It’s important to note that the task of migrating these
cloudlets is handled by the global tasks scheduler, and it falls outside the scope of this
algorithm.

Algorithm 18: Determine cloudlets to migrate
Data: List of cloudlets within the cluster
Result: List of cloudlets to migrate

1 foreach cloudlet ∈ cloudlets do
2 Planned time = cloudlet.getP lannedOnTime();
3 if Planned time > MMS then
4 migration list = migration list+ cloudlet;
5 end

6 end
7 return migration list;
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Now that we have provided a detailed explanation of our method, including each step, the
roles of individual architectural components, and the strategies employed to trigger primitives,
we will proceed to the next section to elucidate our validation method. We will delve into the
implementation details, discuss the results obtained, and compare them to the best findings in
the existing literature.

3.5 Implementation

In order to validate our method, we implemented it using the standard cloud simulator called
CloudSim Plus. Table 3.7 outlines the necessary implementations in terms of objects and their
corresponding parameters.

CloudSim is an open-source simulation library extensively used for modeling and evaluating
cloud computing systems. It provides researchers and developers with the capability to simulate
cloud datacenters and applications, allowing them to assess performance metrics such as energy
consumption, makespan, and more. CloudSim offers a simple and flexible interface for creating
customized simulation scenarios, enabling researchers to focus on implementing their algorithms,
such as virtual machine placement, tasks scheduling, and load balancing. These algorithms can
then be evaluated based on specific criteria, such as the number of virtual machine migrations
[110]. CloudSim Plus serves as an extension to the CloudSim simulation library, introducing
advanced features and performance enhancements to expedite the modeling and simulation of
cloud computing environments [111].

Simulation Datacenter Hosts Virtual machine Cloudlets
Datacenter List of hosts CPU CPU Length (MIPS)
Broker VM allocation policy RAM RAM Utilization model
List of hosts Bandwidth Bandwidth
List of VMs Storage Storage
List of cloudlets Resource provisioner Cloudlet scheduler

Table 3.7: Cloudsim simulation model and elements

The simulation was conducted on a laptop with following characteristics:

• Processor: Intel ®Core ™i7-10510U CPU @ 1.80GHz.

• RAM: 16 GO.

• OS: Windows 11 64 bit, x64-based processor.

To validate the accuracy of our results, we executed our algorithms in multiple scenarios,
manipulating crucial parameters such as the number of servers, cloudlets, and cluster sizes.
We gathered essential metrics, including the duration across different stages and the number
of operations. Subsequently, we conducted a comparative and analytical study, comparing our
method against those considered most relevant in the existing literature.
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The gathered metrics are derived from calculating mean values across one hundred repetitions
for each scenario. Cloudlets and servers are generated with random parameters, as detailed in
Table 3.5, to enhance the realism of the scenarios.

3.6 Results discussion

Table 3.8 presents the primary performance metrics used to assess the efficiency of our method
and to facilitate comparisons with other approaches. Given the negligible time involved in load
balancing processes, our focus is on three key metrics: response time, the number of migrations,
and the number of SLA violations.

Parameter Description

Duration

• Clusters management duration:

– Clustering

– Primitives: fission and fusion

• Tasks scheduling times:

– Round-robin among clusters

– Genetic algorithm inside a cluster

Migrations
Number of cloudlets selected by local load
balancer for migration

SLA violations
Number of cloudlets violating the service-
level agreement

Makespan Obtained by equation 3.7

Response time
Refers to the time required by the load bal-
ancer to detect an unbalanced situation and
to determine cloudlets to migrate

Table 3.8: Load balancing evaluation metrics

We calculated the clustering time based on the number of servers within a datacenter and
for varying cluster sizes. The results are presented in Table 3.9. In comparison, the approach
proposed by [112] takes 4 seconds for clustering one thousand servers. With the parameters used
in the k-means algorithm, our approach allows for clustering operations within a very minimal
time frame.

Number of servers 2000 5000 10000 20000
Cluster size 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500
Clustering duration 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.05 0.05

Table 3.9: K-means clustering duration
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Evaluating task scheduling involves considering two durations: (i) the time required for the
global scheduler to process group tasks in batches and execute round-robin to designate the
target cluster, and (ii) the time required for the local scheduler to execute the genetic algorithm
and assign tasks to servers. The detailed results are presented in Table 3.10. When focusing
on overall times, it becomes evident that smaller clusters yield better performance. This is
attributed to the negligible round-robin time, even with a large number of clusters, and the
substantial increase in runtime of the genetic algorithm as the number of servers grows.

Number of servers 5000 10000
Cluster size 50 100 200 500 50 100 200 500
Round-robin duration 0.002 0.002 0.002 0.002 0.005 0.005 0.005 0.005
Genetic algorithm duration 0.2 0.31 0.68 3.19 0.47 0.46 2.39 3.5
Total scheduling time 0.202 0.312 0.682 3.192 0.475 0.465 2.395 3.505

Table 3.10: Tasks scheduling duration

The results from Table 3.10 are visualized in the graphs presented in Figure 3.9. The graphs
reveal a degree of irregularity, as the regression is not entirely linear between cluster sizes and
scheduling times. This observed phenomenon is attributed to the random generation of task
characteristics and server capacities. The results are obtained by aggregating the outputs of
various scenario repetitions into average values.
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Figure 3.9: NHL-BA2C tasks scheduling duration according to cluster size

Table 3.11 provides a comprehensive overview of the key performance metrics for our approach
across various cluster sizes. The main observations can be summarized as follows:

• The number of cloudlets to migrate logically increases with the cluster size. This is
attributed to the size of the task batches transferred by the global scheduler to the cluster,
which equals the number of servers within the cluster. As the cluster receives batches of
tasks with varying sizes, the load balancer decides to migrate a higher number of cloudlets

79



3. A NOVEL MULTI-LEVEL HYBRID LOAD BALANCING AND TASKS SCHEDULING
ALGORITHM FOR CLOUD COMPUTING ENVIRONMENT

to prevent potential SLA violations. It’s noteworthy that the proportion of cloudlets to
migrate remains close to the ratio of 12% relative to the cluster size (batch of tasks).

• Regarding the given makespan, it pertains to a single batch of tasks with random sizes.
The observed makespan falls within a notably favorable range of values. Larger clusters
may exhibit a longer makespan due to the increased diversity in the characteristics of the
cloudlets they receive.

• The number of SLA violations tends to increase with larger clusters. With a higher
number of tasks received, the probability of some tasks violating the SLA also increases.
Nevertheless, it is essential to highlight that these violations remain below an acceptable
threshold, approximately 8%.

• The last row of Table presents the results of the load balancing module’s response time
evaluation. This duration encompasses the process of identifying the cluster to be light-
ened and specifying the servers to be relieved. Essentially, it includes the time from de-
tecting an imbalance to determining the list of cloudlets to migrate. Notably, the observed
delays are negligible. In comparison, the solution proposed in [86] requires 0.008seconds
to determine the tasks to migrate among a total of just 30.

Cluster size 50 100 200 500
Migrations 5 13 20 76
Makespan 1.35 1.2 1.5 1.7
SLA violations 5 8 18 35
Response time 0 0.004 0.005 0.009

Table 3.11: NHL-BA2C Global performance evaluation

Now, let’s proceed to the comparative analysis. We will begin by comparing the key metrics
obtained from our approach with those of other relevant hybrid approaches in the literature.
Table 3.12 provides a side-by-side comparison between our method and selected alternatives,
using standard parameters. The results were evaluated for a datacenter with 2000 servers
and 2000 cloudlets. Notably, our method demonstrates a superior average makespan, a lower
migration ratio, and a significantly reduced number of SLA violations.

Makespan migrations SLA violations
Our method 1.18 12% 8%
[88] 3.5 19% unknown
[80] 8 35% unknown
[85] 3.8 unknown 18%

Table 3.12: Load balancing techniques comparative analysis
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Figure 3.10 visualizes the results presented in Table 3.12. The left plot provides a visual com-
parison of our method with those presented in [88] and [80] based on the number of performed
cloudlet migrations. Meanwhile, the right graph compares our method with [85] in terms of
SLA violations. The red lines are included as reference points.
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Figure 3.10: NHL-BA2C migrations and SLA violations

The performance evaluation of our method has yielded promising results, showcasing excellent
scalability and a reduction in delays, migrations, and SLA violations.

3.7 Conclusion

In this study, we introduced a novel hybrid approach for job scheduling and load balancing
in cloud environments. This approach presents several advantages, including hot-deployability,
high scalability, decoupling, and robust interoperability among the components managing the
cloud ecosystem. Its effectiveness is rooted in its operational method. Initially, servers are
clustered using a k-means algorithm, considering criteria such as utilization rate and makespan.
This allows us to address challenges on two levels: at the datacenter level and within each
cluster. The tasks scheduler comprises two modules—one global and utilizing round-robin to
distribute task batches to specific clusters, and the other local, employing a genetic algorithm
for task assignment to servers. The load balancer also operates on both levels: a global module
using round-robin to identify the cluster for load reduction, and a specific algorithm employing
individual scores to determine the servers for unloading. The clustering mechanism includes
probes within each cluster, predicting their evolution to execute fission and fusion actions aimed
at maintaining cluster coherence.

We successfully validated the effectiveness of our approach by implementing it with CloudSim
Plus, yielding highly conclusive results in terms of makespan, response times, service-level agree-
ment (SLA) violations, and cloudlet migrations. The comparative study demonstrated a signif-
icant improvement over recent and relevant works in the literature. Moving forward, we aim to
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explore future enhancements, leveraging the capabilities of machine and deep learning to opti-
mize cloudlet migration processes. Additionally, we intend to define more optimal thresholds
for controlling the actions of our algorithms.
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4 A novel privacy-aware global infrastructure for eco-

logical footprint calculator (ANPA-GIEFC) based on

Internet of Things and blockchain

In this work, we introduce a novel global infrastructure and the corresponding functional
framework for collecting data on activities involving ecological footprints without the need for
declarations, new physical devices, or the invention of new technological concepts [8]. The
only assumptions required are: (i) each entity must have at least a device connected to the
internet, (ii) the existence of trusted authorities on the cloud, namely: first, a Certification
Authority (CA) for identities and certificates management, secondly, an authority for register-
ing production and consumption of goods and services, let’s call it Prodction/ Consumption
Autority (PCA), and finally, a Scoring Authority (Scoring Autority (SA)). The main steps can
be depicted as follows:

1. Each entity must register with the Certification Authority (CA), which issues a digital
certificate containing information about the owner: a unique identifier, its public key, and
its role (producer or consumer). Each entity, having a network of connected objects, must
then elect a representative for future actions in the blockchain.

2. Each entity with a producer role must register each new good or service with the Pro-
duction/Consumption Authority (PCA) using its public certificate. The PCA then issues
an attribute certificate, which is embedded in the device or the service platform. The
certificate contains information such as a unique ID, producer ID, a precise category of
goods/services, an attached unitary ecological impact, and more. The PCA transmits the
certificate to the Sustainability Authority (SA), which updates the impact score of the
producer in a global table. Subsequently, the SA pushes the certificate to the blockchain
to be stored in the distributed ledger.

3. When a customer purchases a good or service and wishes to activate it, they need to
subscribe to the PCA. Subsequently, the ID of the consumer is added to the attribute
certificate. The PCA then transfers the certificate to the Sustainability Authority (SA),
which updates the customer’s score and pushes the new certificate to the blockchain for
storage as a transaction.

As best as we know this is the first time a such approach is proposed, the elements which
make it realist and its main contributions can be summarized in the following points:

• A global behavioural approach to track activities with ecological impacts.

• The approach is preserving privacy and confidentiality since:

– It relies on public key identification.

– It saves activities in a permissioned distributed ledger using the public identifiers.
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– Only authorized authorities can assemble tracks and decode the real identity of each

entity.

• It provides a real and precise impact score since it does not rely on declarative but be-
havioural data.

• It is easily achievable as it does not require additional assumptions or devices acquisition.

• It works independently of payment method, it does not require on crypto-currencies or
particular method.

Validating such an architecture is a challenging task as it commonly relies on implementation
and non-standardized metrics for performance evaluation. In this work, we propose a two-step
method to provide evidence of the correct operation of our system:

• Implementation involves using the Python language and related packages for discrete event
system simulation. The aim of this step is to provide a runtime step-by-step process that
will aid in modeling in the next step.

• Modeling involves two formal methods: (i) Colored Petri networks to demonstrate that
our system correctly provides the expected services starting from an initial deployment
state. (ii) Queue modeling to verify the stability of our system over time.

The results obtained are positive, indicating that the objectives have been achieved, and the
architecture is evolving towards a stable state.

The rest of this section is organized as follows: assumptions are made in 4.1, architectural
components are depicted in 4.2, main phases and steps are described in subsection 4.3. In order
to validate the ANPA-GIEFC model we propose in subsection 4.4 a validation methodology in
three steps, we discuss its performance metrics in the subsection 4.5.

4.1 Assumptions

Some assumptions are mandatory to make our contribution feasible, those are:

• There is a set of trusted certification authorities, and the number is proportional to the
volume of activities, and consequently, to the number of network users.

• A user, whether a producer or a consumer, uses a device such as a smartphone or a
computer equipped with the capability to interact with a web interface for their initial
registration.

• DNS propagation times are ignored because they are out of the scope ou this research
proposal.

4.2 Architectural and functional components

In the preceding section, we briefly introduced the fundamental elements required to construct
ANPA-GIEFC and provided an overview of existing ecological footprint digital calculators. In
this section, we will present our solution, its architectural components, functional elements, and
model it with flowcharts. An overview is depicted in Figure 3.11.
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Figure 3.11: Global architecture of ANPA-GIEFC

4.2.1 Architectural components

We will first depict architectural components which are main servers or authorities that form
core structure of our model:

1. Certification authority (CA): This is a fundamental element for establishing trust in the
network. All identification and access control will rely on it, and its main functions can
be summarized in the following primitives:

• Registering: When a new user (customer or producer) joins the network, they need
to register with the Certification Authority (CA), which collects the necessary in-
formation, validates their identity and public key, and then generates a dedicated
digital certificate for them.

• Verification: When a transaction is pending, concerned stakeholders can choose to
send a request to the Certification Authority to verify the integrity of each other’s
digital certificates.
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• Revocation: When a user is banned, or when their key is leaked or compromised, the

respective CA should be able to revoke it. This ensures that subsequent verification
requests from participants will receive negative responses.

2. Production/ consumption authority (PCA): it is proposed to assign complementary tasks
to the CA. Instead of managing users (producers or consumers) and their identities, it
processes the operations between them concerning products and services. It offers the
following primitives:

• Registration of production of new goods or services: when a producer proposes a
new service or good for sale, they have to register it within the PCA, which will
deliver an attribute certificate containing information about the product or service,
the producer, and the ecological impact category.

• Registration of consumption of a good or a service: when a customer buys a product
or uses a service, in order to activate it, they have to register it within the PCA, which
will update the information of the attribute certificate by adding the consumer’s
identifier to it.

• Deletion of a good or service: when a service or product is obsolete or no longer
usable PCA will revoke its attribute certificate.

3. Scoring authority: The functions ensured by this authority are the main purpose of this
model; it maintains a global table of identifiers and corresponding ecological impact scores
on one hand, and pushes transactions in the form of final attribute certificates to the
underlying blockchain.

To completely separate the missions and ensure objectives of transparency and privacy, the
model assigns isolated tasks to different authorities. To enable cooperation, a communication
model is proposed in this section. Summarily, the functions described here are as follows: (i)
CA manages identities, (ii) PCA is in charge of tracking production and consumption activities,
(iii) SA calculates ecological impacts for each user, registers it in a dedicated table, and pushes
each transaction to the blockchain.

4.2.2 Functional components

After we have defined main architectural components we will now discuss functional elements
and justify our choice of each brick.

In order to collect data on activities we decided to choose Internet of Things based approach
because of some key features which can be summarized as:

1. Ubiquity and mobility: to enhance accessibility for users, the ideal solution is to provide
interfaces that allow them to perform tasks at any time and from anywhere. Instead of
considering new terminal equipment or alternative solutions, it is preferable to leverage
ubiquitous technology that already offers high mobility. This approach ensures fluid and
familiar interactions for users.
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2. Integrated sensor layer: in addition to ubiquity, devices within the Internet of Things,

such as smartphones, can incorporate sensors to rapidly collect user information, includ-
ing geolocation. This not only enhances convenience but also strengthens security by
integrating features like biometric readers for authentication before conducting purchase
operations.

3. Ad-hoc and personal area networks technologies: another useful characteristic of the Inter-
net of Things is the hybridization of accessibility modes: both direct access via the global
network and organization in personal area networks. In other words, devices around a
user are organized to stay interconnected in ad-hoc mode. Simultaneously, one or more
of their devices are connected to the internet and act as relays. This ensures that each
user is represented on the network by at least one device, allowing them to participate in
blockchain activities.

4. Existence of security approaches and communication protocols: with the Internet of
Things (IoT), we discovered lightweight communication protocols that do not overload
bandwidth or computational units on one hand, and security mechanisms that have been
adapted and improved by researchers on the other hand. This provides a fertile ground
to deploy our architecture without concerns about these two aspects.

We chose the distributed ledger option for data storage by progressively evaluating our needs
and aligning them with the flowcharts proposed by VIKAS et al. [113] for determining the
suitability of using blockchain technology. The flowchart in Figure 3.12 outlines the controls
and corresponding responses (dotted arrows) that led us to this decision. The reasons for our
choice can be explained as follows:

1. The need for a shared database and the presence of multiple writers to the database led
us to opt for the distribution of the database. This ensures a high level of transparency,
allowing all users to access data on activities with ecological impact. By distributing
the database, each participant can have a copy of at least one fork of the distributed
ledger. This approach requires active participation from entities across the network, both
in registering new transactions and preserving integrity. Additionally, it aligns with our
goal of accommodating various payment methods. Traditional payments can be processed
through central servers connected to the PCA, while cryptocurrency payments can be
directly added to transactions in the same blockchain.

2. The presence of a trusted third party could be addressed by adding a central server
to maintain the database. The SA currently employs this approach by managing a table
containing the ID and global score of each user for faster access. However, fully centralizing
operations at the level of such an entity would contradict the principle of transparency
and limit our ability to integrate cryptocurrency payments.

3. The exposure to untrusted stakeholders and the need to restrict data modification are
apparent. While blockchain participants are users registered with the CA and transactions
involve goods and services declared to the PCA, it’s still possible for a malicious user to
attempt interference, such as reducing their own score or increasing another user’s score.
Therefore, modifications must be restricted, and the suitable model for this purpose is a
private blockchain.
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Another crucial element is the consensus protocol employed in the blockchain. For our current

purpose, we will depend on a modified version of the Delegated Byzantine Fault Tolerance
(dBFT) method for the following reasons:

• Keeps its coherence even when one third of participants are corrupted, further it admits
to a lesser extent but still useful a certain number of corrupted delegates.

• Maintains coherence even when up to one-third of participants are corrupted, and to a
lesser extent, tolerates a certain number of corrupted delegates, which remains useful.

• The system of delegation and election of representatives used helps reduce the complexity
of consensus, minimize resource over-consumption, while maintaining the same level of
security and consistency.

4.2.3 Communication pattern and primitives

As depicted in Figure 3.11, there are various communication patterns constituting a global
model. We define a communication pattern as each pair of architectural or functional compo-
nents with a set of dedicated primitives. These primitives represent atomic actions from the
caller’s perspective but involve a group of operations on the receiver side. Table 3.13 illustrates
this model. To ensure consistency, transparency, and confidentiality preservation, no action will
be permitted in the network that deviates from this communication model.

Components and actors User CA PCA SA Blockchain participants

User - Register
- Publish product/ service
- Report a purchase

- Contribute as participant

CA
- Generate certificate
- Revoke certificate

- Generate certificate
- Revoke certificate

- Generate certificate
- Revoke certificate

PCA
- Generate attribute certificate
- Add purchase information to
attribute certificate

- Check users digital certificates
- Check SA digital certificate

- Attribute certificate transmission

SA - Confirm transaction registration - Push transaction to blockchain
Blockchain participants - Confirm transaction registration

Table 3.13: ANPA-GIEFC communication patterns

Table 3.13 provides a summary of communication patterns and should be interpreted in the
direction where rows provide primitives to columns. To enhance comprehension, let’s examine
the specific primitives for each pair of components:

• A user can be a costumer, producer or both and can interact with:

– Certification authority: a digital personal representative registers on behalf of a user
and transmits information about the user along with a generated public key.

– Production/ consumption authority: a user, if a producer, can publish a new product
or service, and if necessary (when crypto-currency payment mode is enabled), publish
the corresponding smart contract. Conversely, if the user is a customer, they should
send information on the purchase operation.

– Blockchain participants : each user participates in the blockchain; more precisely,
one of their devices (the elected one) participates on their behalf.
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Figure 3.12: Blockchain suitability flowchart

• Certification authority provides the same pair of services to users and authorities PCA
and SA. Once registered with it, it issues them a digital identity certificate. In case of an
end of activities or a revelation of the key, it also handles the revocation of this certificate.

• Production/ consumption authority: as previously said PCA is in charge of production and
consumption activities, to accomplish its mission in good conditions, it must incorporate
the following primitives:

– User: it generates an attribute certificate for each new good are service and then
alter it by adding owner information after purchase operation.

– CA: since it interacts with users and SA, it should be able to contact CA in order to
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check identity certificate validity of each.

– SA: After production/ acquisition operation, PCA transmit corresponding attribute
certificate to scoring authority.

• Scoring authority: this instance interposes itself between the PCA and blockchain partic-
ipants, it interacts with both in this way:

– PCA: transmit information on completion of the registration of each transaction.

– blockchain participants: pushes attribute certificate in order to register corresponding
operation as a transaction.

• blockchain participants: interact exclusively with SA to verify the validity of attribute
certificates. This provides the flexibility to implement a version where stakeholders can
directly push attribute certificates to the blockchain and confirm the completion of trans-
action registration.

• Depending on whether the solution is informative, primarily used by users to assess their
impacts, or legislative, employed by governmental bodies to regulate the activities of
stakeholders, an additional interface with specific primitives should be established. This
interface can be opened either for users or for governmental platforms, enabling the re-
trieval of a score per user.

4.3 Phases and algorithms

Now that we have established our assumptions, defined the functional and architectural ele-
ments involved in our proposal we can explain stages of its development.

4.3.1 User registration

Before becoming part of the ANPA-GIEFC network, individuals, whether producers or con-
sumers, need to undergo the initial registration process. This process follows a conventional
procedure, commencing with the completion of a standard form containing general user in-
formation. It concludes with the issuance of a digital identity certificate. The registration
procedure is illustrated in Figure 3.13 and can be understood as follows:

1. As presumed, for the initial interaction, the user is new and has at least one physical device.
To activate it, the user initiates contact with the ANPA-GIEFC platform through an auto-
landing browser page that appears upon startup, similar to those used for bootstrapping
Android devices.

2. The request is directed to the certification authority, which replies with its digital certifi-
cate, primarily containing the ID and public key. Additionally, the authority provides a
form for the user to fill out and requests a public key proposal from the user.

3. On receiving this response:

• The user fills into the form.

• The device generate a pair of asymmetric keys on his behalf.
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• On post command, the device builds and ciphers (using CA public key) a response

message with general information and his own all new public key.

4. The registration data are transmitted to the certification authority.

5. The certification authority validates the transmitted data. In instances of governmental
oversight, it is advisable to employ identifiers such as national or commercial ones to ensure
the uniqueness of registrations by entity. Upon successful verification, the Certification
Authority issues a digital certificate and publishes it.

6. The user receives a registration success message along with the digital certificate, signifying
their admission into the network, and their device is now active.

The used certificates are X.509 like ones and contain standard information as shown in Figure
3.14, the two most important entries are:

• The ID which can be generated by using pattern of bio inspired universal unique identifier
proposed by the authors in [114].

• The public key concerned by this certificate and which will be used by user for digital
signature.

4.3.2 Activities reporting to PCA

After completing the registration process and having at least one active device, each user,
depending on whether they are a customer, producer, or both, can suggest products, services,
or engage in consumption activities. This is illustrated in Figure 3.15.

1. When a user want to publish a new service or product he must register it to the PCA:

• He sends a request for product/ service declaration.

• On receive the PCA first checks the validity of its certificate as legitimate service/
product provider.

• The PCA generates an attribute certificate, primarily comprising a unique ID for
each service/product, producer ID, and other descriptive information. Subsequently,
the certificate is transferred to the producer.

2. The producer publishes his new service/ product on classic dedicated interfaces.

3. A costumer can then buy a published service or product.

4. Before starting to use it, he has to activate it by reporting the purchase operation to the
PCA which will:

(a) Contact CA in order to check the validity of user’s certificate.

(b) Update the attribute certificate by adding owner ID and forward it to the costumer
with an active status.
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Figure 3.13: Registration stage flowchart
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Figure 3.14: Digital certificate main structure

4.3.3 Scoring

Upon reporting an activity to the PCA, it sends an attribute certificate to the scoring author-
ity SA, containing information regarding the publication or acquisition of a product or service.
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Figure 3.15: Reporting activities to PCA steps

Figure 3.16 illustrates this phase and its stages. Upon receipt, the Scoring Authority (SA)
updates the score of the corresponding user. If the transmitted attribute certificate pertains
to a new product or service (with a null owner ID), a production score impact is added to the
existing score, dependent on the nature of the concerned good. Conversely, if the attribute
certificate concerns an acquisition (with a non-null owner ID), a usage score is added to the
corresponding user. Various methods exist to evaluate this score, and while it falls outside the
scope of our work, it’s important to note that experts propose grids considering factors such as
ecological impact, measured by the quantity of CO2 emitted during the production or use of a
good or service over a specified duration or distance (e.g., for cars, smartphones, air transport
services, etc.).

Upon completion of these steps, the activities need to be permanently recorded in a blockchain.
To function on a distributed ledger, the approach must incorporate methods that enable:

• In a prior study [6], we introduced a fully distributed and dependable leader election
algorithm designed for isolated and fully automated networks. We suggest employing
this same mechanism to designate representatives among all participants. Our previous
research demonstrated that this approach is both lightweight and reliable compared to
conventional methods. It provides the advantage of organizing nodes in a sequential list
of delegates, which can then assume responsibility for validating transactions

• Define the structure of transactions and blocks: We suggest treating each attribute cer-
tificate as a transaction and capping the length of a block at a thousand operations.

• Achieve consensus (DBFT): This selection can be justified based on two factors: (i) the
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Figure 3.16: ANPA-GIEFC scoring phase

distributed nature of DBFT, which relies on representative elements, and (ii) this consen-
sus approach tolerates up to a third of corrupted or faulty nodes in the network.

4.4 Validation methodology

Recent review papers indicate the absence of a standardized approach for validating such
architectures or methods. There is a lack of comparative studies or readily available bench-
mark frameworks, and experimentation often depends on simulation and custom implementation
[115].

To validate our architecture, we followed a three-step validation procedure: (i) Initially, we
implemented our solution in a Python environment with the primary aim of extracting the
execution time for each step in our functional model. (ii) Subsequently, we provided a validation
proof using formal methods, specifically Petri networks—a graphical and mathematical tool
employed to validate approaches like ours by offering a visual process to verify the achievability
of objectives. Additionally, we utilized queue modeling to demonstrate that our architecture
is in a steady state. (iii) Finally, we concluded the validation process with an evaluation of
attack resilience. However, it is important to note that this is the first instance, to the best of
our knowledge, of such a proposal, and as a result, conducting a formal comparative study is
currently not feasible.
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4.4.1 Implementation

To implement our solution, we utilized the Python programming language along with several
standard libraries, including:

• Basic python: an exceptionally potent programming language, Python is highly extensible
thanks to its abundance of libraries. With a vast community, it finds applications across
diverse fields.

• SimPy: SimPy is a discrete-event simulation framework based on standard Python that
operates on the concept of generator functions. It facilitates the creation of comprehensive
scenarios for our architecture by providing a straightforward and fluid means of defining
the entities and resources involved in its operation.

• Uuid: this is a Python module that generates unique identifiers following the RFC 4122
standard. Primarily, we will utilize UUID version 4, as recommended, to handle unique
IDs for objects in our scenario.

• OwnCa: A lightweight library designed for handling identity certificates for hosts, servers,
or clients.

• Statistics and Random: as implied by their name, these are libraries specifically designed
for statistics. They assist us in gathering metrics on scenarios and generating random
values, serving as the engine that empowers the generator functions at the core of SimPy
logic.

4.4.2 Formal approaches

Petri networks, mathematical and graphical modeling languages, serve as a powerful tool
for validating systems with simultaneous or concurrent tasks [116]. They view the systems
in question as a collection of states known as places connected by transitions. A marking
system allows tracking the progress and feasibility of specific activities. Validating a protocol or
architecture using a Petri net involves demonstrating that, starting from a coherent initial state,
one reaches a stable marking that enables the completion of all desired tasks within a specified
time frame. We have represented the operation of GEFC through a Petri net, as illustrated in
Figure 3.17, with positions and transitions detailed in Table 3.14.

Petri nets offer the advantage of easy readability and interpretation of the model, facilitated
by three key elements: places, transitions, and the initial marking. As mentioned earlier, the
graph is depicted in Figure 3.17, and the components for interpretation are provided in Table
3.14. By combining these elements, we arrive at the following step-by-step interpretation:

• The system starts with arrival of the first user at position p0.

• The registration phase initiates at transition t0 and concludes with the issuance of dig-
ital identity certificates. At the conclusion of this phase, users find themselves in either
position p2 or p3, according their roles as producers or consumers, respectively.

95



4. A NOVEL PRIVACY-AWARE GLOBAL INFRASTRUCTURE FOR ECOLOGICAL
FOOTPRINT CALCULATOR (ANPA-GIEFC) BASED ON INTERNET OF THINGS AND

BLOCKCHAIN
• After a producer has completed the registration process and intends to introduce a new

product or service, they need to notify the PCA through transition t4. To activate this
transition, the producer must first be in position p5, representing a producer with a verified
identity.

• A customer can initiate a purchase of a product or service through transition p6. This
transition has p5 and p7 as predecessors, indicating that the product is available and the
customer’s ID has been verified, respectively. Upon completion, the system moves to p8
signifying that the product is in the instance of the declaration and activation process.

• To be activated a product must be reported to PCA through transition t7 then to SA by
transition t8.

For our purposes, we employed CPN Tools, a comprehensive framework designed for modeling
and evaluating colored Petri networks. Its extensive community, encompassing both researchers
and developers, positions it as a favorable choice for our modeling requirements [117].

Figure 3.17: ANPA-GIEFC modeling by Petri network

Position description Transition description
p0 new user arrival t0 start registering to CA

p1 user subscribing to CA t1
ending of registering to CA
and certificate delivering

p2 active producer t2 create product
p3 active customer t3 check producer Id
p4 new product t4 declare product to PCA
p5 producer Id checked t5 check customer Id
p6 available product t6 buy product
p7 customer Id checked t7 register operation to PCA
p8 pre-activated product t8 register operation to SA
p9 declared product
p10 active product

Table 3.14: ANPA-GIEFC Petri network positions and transitions map
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Queue models are widely used mathematical tools for illustrating the stability and sustain-

ability of systems in which components are interconnected in series or in parallel to perform
complementary tasks. These components are active treatment units characterized by two pa-
rameters: queue length and service time. In a broader sense, requests arrive in a system and
accumulate in a buffer, awaiting processing. Dedicated units process requests at a constant
speed. The time interval between two successive arrivals to the queue is referred to as the
inter-arrival rate, denoted as λ. The number of requests processed per unit of time is termed
the service rate and is denoted as µ.

If we aim to examine our architecture and its functional model from a more abstract stand-
point, we observe that all operations are broken down into consecutive actions that sequentially
involve the authorities—the CA, followed by the acPCA, and ultimately the SA, as illustrated
in Figure 3.18. The only parameter lacking a precise measurement is the arrival rate to the
first queue corresponding to the CA, which we assume follows a Poisson distribution with a
parameter of λ= 1/5. Additionally, we suppose that all queues are singular and of infinite size.
Regarding the obtained results presented in Table ?? and taking into account that, on average,
in such a system, we perform four times more verifications than the generation of certificates
(an adjustable parameter) and an equal ratio of production and purchasing, we arrive at the
following respective service rates for:

• Certification authority:

µ1 = 0.8 ∗ 0.396 + 0.2 ∗ 0.128 = 0.342 <=> 2.924operation/second

• Product/ service authority:

µ2 = 0.5 ∗ 0.347 + 0.5 ∗ 0.342 = 0.345 <=> 2.899operation/second

• Scoring authority:
µ3 = 0.299 <=> 3.344operation/second

We assume that the service time at each node follows an exponential distribution with a pa-
rameter µ, as obtained in the previous calculations. To implement and measure the performance
parameters of this queue model, we utilize the R language. Specifically, we employ the Simmer
package, which provides numerous advantages, facilitating the acceleration of implementation
and interpretation of results. The results discussed in the following subsection are obtained by
averaging over a hundred different scenarios, each lasting two hours.

CA PCA SA

Figure 3.18: ANPA-GIEFC modeling by queue model

4.4.3 evaluation of resilience to attacks

Table 3.15 depicts the most common attacks against this kind of architecture and describes
the mechanisms by which GEFC should response and stay resilient.
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Attack scenario GEFC response mechanism

Denial-of-service
-Attacker sends a lot of requests
in order to saturate servers

- A classic buffering or bashing approach
should be sufficient to face this kind of
attacks, a redundancy at the server level
could also allow to maintain the performance
when facing this kind of attack

Identity usurpation
- Attacker tries to realize social
engineering attack and to steal
information on users

- Identification information are centralized
by the certification authority and are not
accessible to any user or server, exchanges
in the architecture are done by identifiers
based on public cryptographic key

Data corruption
- Attacker tries to disturb scoring
mechanism and to insert false
transactions

- All transactions intended to be persisted
and impacting user scores must go through
an attribute certificate signed by the
producer, the buyer and the PCA, then they
have to be validated by blockchain participants

Data leakage
- Attacker tries to get information
on users and their goods

- The information of the blockchain are accessible
to all verified users, nevertheless a user can
reconstitute the score of a profile but will not be
able to link it to a customer or a company, only
the legal authorities can reconstitute the complete
information

Misappropriation

- Attacker tries to cash in without
counterpart
- Attacker takes a product or
service without paying

- As the payment can be made by crypto-currency,
in case of non-activation of the good or service
the payment can be cancelled
- On the other hand, if the payment is not made,
the activation of the good can be interrupted,
making it unusable and obliging the buyer to
make the payment

Table 3.15: ANPA-GIEFC response mechanisms to common attacks

4.5 Results discussion

Steps/ time (seconds) 0.1 0.2 0.3 0.4 Mean time
Certificate verification 76 20 04 00 0.128
Certificate generation 00 00 02 98 0.396
Product creation 17 00 42 51 0.347
Product acquisition 00 12 34 54 0.342
Score updating 00 15 71 14 0.299

Table 3.16: ANPA-GIEFC steps timing in seconds

The primary objective of our implementation is to furnish the execution times for the major
steps. These results will be employed for formal modeling. In each phase, represented in rows,
we conducted a hundred iterations, categorizing for each step the number of repetitions that
yielded a precise duration in seconds, as indicated in the corresponding column. These results
are summarized in Table 3.16, where, for each step, we retain the average in the last column.
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Marking Transition p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0 - 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0
2 1 1 0 1 1 0 0 0 0 0 0 0
3 2 1 0 0 1 1 0 0 0 0 0 0
4 3 1 0 0 1 0 1 0 0 0 0 0
5 4 1 0 1 1 0 0 1 0 0 0 0
6 5 1 0 1 0 0 0 1 1 0 0 0
7 6 1 0 1 1 0 0 0 0 1 0 0
8 7 1 0 1 1 0 0 0 0 0 1 0
9 8 1 0 1 1 0 0 0 0 0 0 1

Table 3.17: Petri network marking

In order to confirm the correct operation of GIEFC, we need to prove that at any time t it is
possible to:

• Subscribe to GIEFC as new user.

• Create and declare new good.

• Buy a good.

The challenge of identifying a state in the Petri net that enables the achievement of these
objectives involves determining a branch in the marking graph that results in a marking equal
to (1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0). Table 3.17 depicts a branch in the marking graph of GIEFC that
generates such a marking. It is worth noting that this marking is directly reachable from the
initial mark at p0 by passing sequentially transitions from t0 to t6. Furthermore, once this
marking is reached, it remains stable because, at the conclusion of each completed operation, a
token is returned to the relevant places.

In the basic queue model of GIEFC, as depicted in Figure 3.18, it is evident that the system
never reaches saturation. The cloud in Figure 3.19, where each line represents a specific scenario,
illustrates that the utilization rates in all scenarios are approximately half the server capacity.
Furthermore, for a more detailed insight into the evolution of server occupancy rates, the plot
box in Figure 3.20 reveals that the average overall utilization rate across all scenarios and
throughout the entire duration is close to 40% with minimal variation, constrained to 5%.

Figure 3.21 enables tracking the evolution of waiting time in the system, illustrating the
cumulative waiting time in all queues. The blue line depicts the prevailing trend based on the
average duration across all scenarios. Two key pieces of information can be gleaned: firstly,
the overall waiting time in the system is less than one minute, and secondly, the waiting time
remains nearly constant, represented by a curve constrained by a straight line with a y-intercept
equal to one.

Another crucial and complementary graph illustrates the average duration of activities.
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Figure 3.19: ANPA-GIEFC servers utilization rate evolution

Figure 3.20: ANPA-GIEFC average servers occupation rate

Computed as the average of the sums of the execution times across the hundred scenarios
considered, Figure 3.22 provides a clear view that the overall duration of activity is nearly
constant. This outcome is unsurprising since it represents the sum of treatment durations,
which exhibit minimal dispersion.

Flow duration, depicted by an average, reflects the overall trend of accumulated times between
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Figure 3.21: ANPA-GIEFC system waiting time evolution

Figure 3.22: ANPA-GIEFC activity time evolution

waiting and treatment phases. As illustrated in Figure 3.23, we observe that this duration
remains constant throughout the simulation time, indicating that the system remains in a
steady state.
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Figure 3.23: ANPA-GIEFC total flow time evolution

4.6 Conclusion

In this section we introduced a pioneering global architecture named GIEFC designed for com-
puting ecological impact scores for both companies and customers. Leveraging widely adopted
technologies such as the Internet of Things (IoT) and blockchain, our architecture encompasses
key steps, including: (i) user registration with a central trusted Certification Authority CA,
(ii) declaration of product or service creation/acquisition to a specialized authority known as
the Production/Consumption Authority PCA, and (iii) reporting all activities along with their
corresponding ecological impact scores to the Scoring Authority SA. The latter consolidates the
information onto a distributed ledger maintained by users’ devices.

To validate our architecture, we implemented it in a Python environment, capturing the
execution times for each step. Utilizing these results, we formally represented GIEFC with
a queue model to demonstrate its steady-state behavior over time evolution. Additionally, a
colored Petri network was employed to illustrate that GIEFC fulfills all expected objectives
outlined in the initial specifications. The performance evaluation results are highly satisfactory,
providing a strong foundation for future exploration in this pioneering initiative, which, to the
best of our knowledge, stands as the first of its kind.

Looking ahead to future directions, we propose a more in-depth exploration of the distributed
ledger aspect. Our progress has been constrained by the limitations of existing blockchain im-
plementation tools, which predominantly cater to cryptocurrency transactions. This restric-
tion hindered the completion of the implementation related to recording transactions in the
blockchain. Further analysis of potential attacks against this architecture is warranted, and
there is a need for a more comprehensive implementation and security testing. At this juncture,
we assert that the environmental issue is a governmental priority, and the landscape is conducive
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to such proposals. While refinement is possible, we believe our proposal remains relevant and
worthy of further development.
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5 Chapter conclusion

We have discussed in this chapter the contributions that we have modestly made during our
thesis work. We have contributed at two different levels on the automation problem within the
cloud-centric Internet of Things and which are the embedded mechanisms for the automation
of tasks on the one hand, and the self-organization of large systems deployed around of an IoT
kernel.

We presented a leader election algorithm which is fully distributed and fault tolerant, it
showed very competitive performance in terms of execution time and lifetime of leaders.

We have also produced a multi-level hybrid algorithm for load balancing and tasks scheduling
that has shown exceptional performance and calls for reviewing how workload distribution
should be done in cloud environments in the future.

Another proposal concerned the calculation of the ecological impact of individuals and so-
cieties based on no longer declarative but behavioral data . This solution was made possible
thanks to two key and revolutionary technologies which are the Internet of Things and the
blockchain.

This chapter concludes our thesis report, the following one will try to give an overview of what
has been made during it and on the perspectives or future directions of our research work.
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Conclusion and perspectives

Our thesis centered on the automation and self-organizing applications of the Internet of
Things, providing us with a unique opportunity to delve into research methodology and ad-
dress issues of both theoretical and practical significance. Throughout this academic endeavor,
we delved into the foundational concepts of the Internet of Things (IoT) and the associated
technologies that underpin it, including cloud computing and blockchain.

This exploration allowed us to gain a comprehensive understanding of the intricate interplay
between these technologies and their implications for the evolving landscape of the IoT. By nav-
igating both the theoretical underpinnings and the practical challenges, we aimed to contribute
valuable insights to the broader discourse surrounding the automation and self-organizing as-
pects of IoT applications. In doing so, we not only enriched our own understanding but also
sought to make meaningful contributions to the growing body of knowledge in this dynamic
and impactful field.

At the perception layer, our investigation centered on leader election algorithms in wireless
sensor networks (WSN). In the core layer, we delved into automatic load balancing and task
scheduling within cloud environments. The application-level focus concluded with the develop-
ment of a digital ecological impact calculator. In these areas, our modest contributions included
a distributed, fault-tolerant leader election algorithm for WSN. This algorithm reduces the com-
plexity of the leader election mechanism by distributing it across network areas, bypassing the
time-consuming spanning tree building phase.

Moving to the core layer, we proposed an algorithm that hybridizes load balancing and task
scheduling, optimizing their operation within the cloud environment. Our solution offers ad-
vantages such as high interoperability and decoupling of modules, reducing makespan, and
minimizing SLA violations. This is achieved through operating at different levels, including re-
grouping servers within clusters with similar characteristics and migrating cloudlets to alleviate
overloaded ones.

Finally, we introduced the first privacy-aware ecological impact calculator based on behavioral
information. This tool calculates ecological impact scores for individuals and companies, serving
as a crucial resource for governments in addressing climate warming issues. It enables the
collection of behavioral-based ecological impact scores while respecting the privacy of companies
and end consumers.
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Thorough and meticulously designed experimental protocols were implemented to rigorously
assess the efficacy of our proposed solutions. In direct comparison with the existing state-of-
the-art works in the field, our performance demonstrated exceptional levels of satisfaction. The
outcomes of these experiments not only affirmed the robustness of our approaches but also
positioned them as highly competitive and impactful within the current landscape of research
and innovation.

Above all, this work has given us a glimpse of the infinite possibilities open to us in terms of
scientific research. Indeed, in contributing to these fundamental issues, we had to explore several
paths, abandoning some and pursuing others. We believe that the problem of automation that
has arisen with distributed systems is about to take on a new dimension, and that the avenues
that today have not been fruitful because of the limited technological means available to us may
tomorrow prove to be the scientific grail. In the future, we intend to exploit the parallelization
potential of quantum computing for meta-heuristic optimization, which should enable us to
better scale up our solutions. It is also obvious that we have opened the way for the exploitation
of new technological paradigms to respond to the climatological crisis which is looming, more
proven implementations should be able to allow us to build a proof of concept and have better
chance that the solution will be adopted by targeted third parties.
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Abstract 

The last decade has seen the rise of a set of informa�on technologies, ranging from the expansion of the tradi�onal 
Internet to interconnect smart objects, big data, cloud compu�ng to the blockchain. As these technologies have 
evolved, they have converged to rise a new paradigm known as the Internet of Things. In its cloud-centric architecture, 
the Internet of Things links billions of objects and users worldwide. This has mo�vated researchers to focus on the 
problem of automa�ng ac�ons such as connec�ng new objects to the network, or self-organizing underground 
components such as wireless sensor networks. Our thesis focus on these automa�on mechanisms which aim to reduce 
human interven�on to ensure func�onal safety and availability over �me. At various levels we have iden�fied crucial 
modules, such as the leader elec�on at the percep�on layer, task scheduling and load balancing in the cloud 
environment at the core layer, or even more complex at the applica�on layer, the large-scale deployment of a self-
managed pla�orm for calcula�ng the ecological footprints of companies and individuals. We carried out a state-of-the-
art survey, a compara�ve and assessment study of the most recent solu�ons, before proposing our own approaches. 
Experimenta�on has shown very sa�sfactory results, making our works to be among the most relevant ones in the 
current literature. 

Keywords: Internet of things, cloud compu�ng, blockchain, wireless sensor network, automa�on mechanisms, load 
balancing, tasks scheduling, clustering, leader elec�on, ecological footprint, gene�c algorithm. 

Résumé  

La dernière décennie a connu l’essor d’un ensemble révolu�onnaire de technologies de l’informa�on, parmi elles on 
peut retrouver l’élargissement de l’internet classique pour interconnecter des objets intelligents, le big data, le cloud 
compu�ng ou encore la blockchain. Au fil de leurs évolu�ons ses technologies ont convergé et ont permis la naissance 
d’un nouveau paradigme appelé l’internet des objets. Dans son organisa�on centrée sur le cloud, l’internet des objets 
interconnecte des milliards d’objets et d’u�lisateurs à travers le monde. Ceci a incité les chercheurs à s’intéresser à la 
probléma�que de l’automa�sa�on des ac�ons comme l’intégra�on au réseau de nouveaux objets ou encore comme 
l’auto-organisa�on des par�es dites ensevelies comme les réseaux de capteurs sans fil. Notre thèse s’intéresse à ces 
mécanismes d’automa�sa�on visant à réduire l’interven�on humaine dans l’assurance de la sureté fonc�onnelle et de 
la con�nuité de délivrance des services. À différents niveaux nous avons iden�fié des modules cruciaux, comme le 
leader élec�on au niveau de la couche percep�on, de la planifica�on des tâches et de l’équilibrage des charges dans le 
cloud au niveau de la couche core, ou encore plus complexe au niveau des applica�ons, le déploiement à large échelle 
d’une plateforme auto-gérée pour le calcul des impacts écologiques des entreprises et des individus. Nous avons réalisé 
une étude de l’état de l’art, une étude compara�ve et cri�que des solu�ons les plus récentes avant de proposer nos 
propres approches. Des expérimenta�ons ont permis d’obtenir des résultats très sa�sfaisants posi�onnant de ce fait 
nos travaux comme étant parmi les plus per�nents dans la litérature actuelle.     

Mots-clés: Internet des objets, cloud compu�ng, blockchain, réseaux de capteurs sans fil, mécanismes 
d'automa�sa�on, équilibrage de charge, planifica�on des tâches, clustering, élec�on de leader, empreinte écologique, 
algorithme géné�que. 

 خلاصة

ي  العقد  شهد 
ا  ، المعلومات تقن�ات  من  مجموعة ظهور   الما�ض ي  التوسع من  بدء�

نت �ف والحوسبة الضخمة والب�انات الذك�ة الأش�اء ر�ط إ�  التقل�دي الإن�ت  
ن  لبلوكا إ�  وصولا  السحاب�ة ا  لتظهر  تقار�ت ، التقن�ات هذە تطور  مع. �شني ا  نموذج� نت باسم ُ�عرف جد�د� ي . الأش�اء  إن�ت

ي  بنيته �ف السحابة ع� تركز  اليت   
نت ي��ط ن  الأش�اء مل�ارات الأش�اء إن�ت ي  والمستخدمني

ن  هذا  حفز  وقد . العالم أنحاء جميع �ف �  ع� الباحثني ك�ي توص�ل مثل الإجراءات أتمتة  مشكلة ع� ال�ت  
ي  هذە لأتمتةا آل�ات ع� أطروحتنا  تركز . اللاسل��ة الاستشعار   شبكات مثل الأرض  تحت مكونات لدى  التنظ�م ذات�ة أو  ، بالشبكة جد�دة أش�ا  تهدف اليت  
ي التدخل تقل�ل إ�  انتخاب مثل  ، الحاسمة النمط�ة الوحدات حددنا  ، مختلفة مست��ات ع�. الوقت بمرور   والتوافر  الوظ�ف�ة السلامة لضمان الب�ش  

ي  القائد 
ي  الحمل وموازنة  المهام وجدولة ، الإدراك طبقة �ف

ي  السحابة بيئة �ف
ا  أ���  حىت  أو  ، الأساس�ة الطبقة �ف ي  تعق�د�

نطاق ع� الن�ش  ، التطبيق طبقة �ف  
كات البيئ�ة البصمات لحساب مُدارة منصة واسع ا  أج��نا  لقد . والأفراد  لل�ش قبل ، الحلول لأحدث وتقي�م�ة مقارنة ودراسة  ، طراز   أحدث ع� مسح�  

اح ن  من  أعمالنا  �جعل مما  ، للغا�ة مرض�ة نتائج التجارب أظهرت. الخاصة مناهجنا  اق�ت ي  بالموض�ع صلة الأ���  الأعمال بني
الحال�ة الأدب�ات �ف  . 

نت: المفتاح�ة ال�لمات  ن  البلوك ،  السحاب�ة الحوسبة ،  الأش�اء إن�ت جدولة  الحمل موازنة ، الآ�ي  التشغ�ل آل�ات ، اللاسل��ة الاستشعار  شبكة ، �شني  
الجين�ة الخوارزم�ة ، البيئ�ة  البصمة ، القائد  انتخاب ، التجميع ، المهام  . 


	List of Figures
	List of Tables
	List of Acronyms
	Preface
	Introduction
	Background on computing key technological concepts in the Internet of Things era
	Introduction
	Internet of Things
	Core concepts
	Organizational models
	Underlying technologies
	Security analysis
	Applications
	Conclusion

	Cloud computing
	Preliminary elements
	Architectural model
	Service provisioning models
	Operational mechanisms
	Conclusion

	Blockchain
	Definition and structure
	Layered model and typology
	Consensus protocols
	Applications
	Conclusion

	Chapter conclusion

	State of the art of automation mechanisms and applications of Internet of Things and underlying technologies
	Introduction
	Leader election
	Leader election algorithms
	Conclusion

	Load balancing
	Static approaches
	Dynamic approaches
	Hybrid approaches
	Comparative analysis
	Conclusion

	Digital ecological footprint calculators
	Digital ecological footprint calculators
	Conclusion

	Chapter conclusion

	Contributions
	Introduction
	Distributed and reliable leader election framework (DRLEF)
	Assumptions and notations
	Algorithm and main steps
	Implementation
	Results discussion
	Conclusion

	A novel multi-level hybrid load balancing and tasks scheduling algorithm for cloud computing environment 
	Problem statement
	Assumptions
	Organizational model
	Algorithm and main phases
	Implementation
	Results discussion
	Conclusion

	A novel privacy-aware global infrastructure for ecological footprint calculator (ANPA-GIEFC) based on Internet of Things and blockchain
	Assumptions
	Architectural and functional components
	Phases and algorithms
	Validation methodology
	Results discussion
	Conclusion

	Chapter conclusion


