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General Introduction

Optimal control problems play an indispensable role in a multitude of fields, en-
compassing engineering, economics, and robotics, among others. These problems lie
at the heart of designing control strategies that optimize a given objective functional
while effectively accounting for the system’s dynamic behavior and constraints. They
provide a framework for determining the best course of action to achieve desired sys-
tem performance.

In numerous practical applications, there exists a compelling need to minimize the
norm associated with the control input. This norm, typically representing a measure
of the control effort, holds great significance as it directly impacts system behavior,
performance, and resource utilization. Minimizing the state norm has far reaching
benefits, such as enhancing system efficiency, reducing energy consumption, improv-
ing stability, and increasing robustness against uncertainties and disturbances. As a
result, norm minimization has emerged as a problem of paramount significance in the
realm of optimal control.

The central focus of this dissertation lies in the exploration of resolution methods
dedicated to norm minimization in optimal control problems. This comprehensive
study entails a thorough examination of diverse approaches and algorithms devised
to tackle the challenge of norm minimization. The goal is to identify control strate-
gies that effectively minimize the state norm while satisfying the system dynamics and
constraints.

The dissertation provides a detailed review of the existing literature on norm min-
imization techniques, analyzing their applicability within our specific problem do-
main. It critically evaluates the strengths and limitations of various methods, algo-
rithms, and optimization techniques employed in norm minimization. Special atten-
tion is given to the mathematical foundations underlying these techniques, including
convex optimization, quadratic programming, and constrained optimization.

To facilitate a deeper understanding of the subject matter, the dissertation is struc-
tured as follows:

Chapter 1 serves as an introductory chapter, elucidating fundamental concepts re-
lated to the control of dynamic systems. It covers topics such as controllability, stabil-
ity, and the optimality of control problems.

Chapter 2 offers a comprehensive overview of convex quadratic programming, plac-
ing particular emphasis on the Support Method (SM) and its application in the pres-
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ence of simple constraints. It provides a solid mathematical foundation for under-
standing optimization techniques used in norm minimization.

Chapter 3 delves into a comprehensive discussion of a linear quadratic optimal
control problem featuring constraints. It explores the formulation of the problem, the
design of cost functionals, and the incorporation of constraints. Various methods for
solving this class of problems are examined, with a focus on norm minimization.

Finally, the last chapter serves as a culmination of the research, presenting a variety
of numerical methods for solving equations and differential equations. It discusses the
numerical techniques employed to solve optimal control problems, including direct
and indirect methods. Additionally, it engages in an extensive discourse on the meth-
ods employed to minimize norms within the context of optimal control. This includes
model predictive control, dynamic programming, optimal control parameterization,
and iterative algorithms.

The significance of this research lies not only in providing insights into norm mini-
mization in optimal control but also in contributing to the broader body of knowledge
in the field. By shedding light on the intricacies of norm minimization and offering a
comprehensive exploration of the techniques and algorithms employed, this disserta-
tion serves as a valuable resource for researchers, practitioners, and engineers working
in the field of optimal control and related disciplines.
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Chapter 1

Introduction to the control of linear
dynamic systems

1.1 Introduction

Linear dynamics systems are principle components. It’s important to understand
how they can be controlled to ensure that they operate as required and to avoid any
unintented consequences .

1.2 Controlled system

A controlled system is a differential system which can be influenced by one or more
parameters known as control :

ẋ(t) = f (x(t),u(t)), x(t0) = x0, (1)

where x(t) is a state vector in Rn, u(t) is a control which belongs to a set Ω of piece-
wise continuous functions with values in a compact set U in Rk, x0 is the inital state at
the moment t0 and ẋ(t) = dx

dt .

We suppose that the function f : Rn ×Rk → Rn is enough regular to ensure the ex-
istence and uniqueness for the solution of the system (1). To control the system (1), it
consists by finding controls u(t) to apply that evolve its state in a desirable way [3].

1.3 Control strategies of a dynamic system

Control strategies are techniques used to manipulate the behavior of a dynamic
system in order to achieve a desired outcome. There are two types of control strategies
[21] :

Open-loop control: It involves setting predetermined control inputs without regard
for the system reply.

Closed-loop control: It involves using feedback from the system to adjust the control
inputs in real-time.
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There are more advanced control techniques like model predictive control, adaptive
control and optimal control. They use mathematical models of the system to forecast
its behavior and optimize the control inputs correspondingly.

1.4 Linear approximation of a controlled system

Generally, control systems are nonlinear. Their analysis is not very developed like
the linear case which was deeply studied. So we must linearize them around the equi-
librium point (xe,ue) , 0, such that f (xe,ue) = 0. If we set

y = x − xe, v = u −ue,

A =
∂f

∂x
(x,u), B =

∂f

∂u
(x,u),

then we get
ẏ = Ay +Bv + ◦(∥(y,v)∥),

where ẏ = Ay +Bv is called the linear approximation of the nonlinear system (1).

1.5 Controllability of dynamic systems

1.5.1 Controllability

The controllability is a leading concept in control theory. In a dynamic system, it
determinates whether it’s possible to guide in a finite time the system from any initial
state to any desired final state using an appropriate control input [21,29].

1.5.2 Accessible set

We consider the controlled system (1) and we have the following definitions :

Definition 1.5.2

The set of the accessible points from x0 at a moment t1 ≥ 0 is determinated by :

Acc(x0, t1) = {xu(t1) : u(t) ∈U,t ∈ T = [0, t1]},

where xu(t) is the solution of the system (1) with the control u(t). We note :

Acc(x0,0) = {x0}.

Definition 1.5.3

The dynamic system ẋ(t) = f (x(t),u(t)) is controllable at the moment t1 if
Acc(x0, t1) = Rn, i.e, for every x0,x1 ∈ Rn, there is a control u ∈Ω with values in U = Rk,
such as the associated trajectory connects x0 to x1 at the moment t1.

1.5.3 Controllability criterion of Kalman

There is an algebraic characterization of a stationary linear system controllability,
due to Kalman.
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Theorem 1.5.1

The system
ẋ(t) = Ax(t) +Bu(t), t ≥ 0,

is controllable if and only if the rank of the controllability matrix of Kalman
K = (B,AB, ...,An−1B) is equal to n, where x(t) ∈ Rn, u(t) ∈ Rk , A ∈ Rn×n and B ∈ Rn×k .

1.6 Example

If we consider the dynamic system :
dx1
dt = −x1 + 2x2 +u, x1(0) = x0

1 = −3;

dx2
dt = x1 + x2, x1(0) = x0

2 = −4,

then we have :

A =
(
−1 2
1 1

)
, B =

(
1
0

)
, AB =

(
−1
1

)
=⇒ K = (B,AB) =

(
1 −1
0 1

)
.

Since detK = 1 , 0 and rank(K) = 2, this system is controllable.

1.7 Linear systems stability

In control theory, stability refers to the behavior of a system over time. A stable
system is one that will eventually settle down to a steady state behavior, even after
experiencing some initial disturbance. For linear systems, many types of stability are
considered [25] :

Bibo stability (Bounded-output): No matter how large the input signal is, the output
will never become infinite.

Internal stability: The system will not exhibit runaway behavior or uncontrollable
oscillations.

If we consider the system below :

ẋ = Ax, (2)

then it admits x = 0 as an equilibrium point, since f (0,0) = A× 0 +B× 0 = 0.

1.7.1 Definition

We say that the equilibrium point x = 0 of the system (2) is stable, if for every ε > 0 , it
exists η > 0 , such as for every solution x(t) of (2) , we have

∥x(0)∥ < η =⇒ ∥x(t)∥ < ε, ∀t ≥ 0. (3)
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1.7.2 Definition

We say that the equilibrium point x = 0 of the system (2) is attractive, if it exists r > 0 ,
such as for every solution x(t) of (2) , we have

∥x(0)∥ < r =⇒ lim
t−→∞

x(t) = 0. (4)

1.7.3 Remark

If the equilibrium point is not stable, it’s called : unstable. Thus, a stable system
is more predictable and easier to control, while unstable system can lead to unpre-
dictable behavior.

1.8 Optimal control problem

It’s a mathematical optimization problem that involves finding the optimal control
strategy that minimizes or maximizes a given performance criterion subject to certain
constraints on the control inputs and the state of the system. The general problematic
of an optimal control is by considering the dynamic system [23] :

ẋ(t) = f (x(t),u(t)), x(0) = x0, t ≥ 0. (5)

We suppose that the admissible controls u(.) belong to Ω which is a set of piecewise
continuous functions with the values in a compact set U ⊂ Rk. For every control u(t) ∈
U , the associated trajectory x(t) is defined on the interval [0, t1], and we define the
associated cost :

J(u) = ϕ(x(t1)) +
∫ t1

0
L(x(t),u(t))dt (6)

where L : Rn ×Rk→ R and ϕ : Rn→ R.

The problem is to determinate an optimal control u(t) ∈ U , where the corre-
sponding trajectory x(.) is a solution of the system

ẋ(t) = f (x(t),u(t)), x(0) = x0,

and both minimize the cost J(u).

1.9 The Pontryagin Maximum Principle (PMP)

It’s a powerfull tool used in optimal control theory to solve certain types of opti-
mization problems. It was developed by the Russian mathematician Lev Pontryagin in
1956.
If we consider the system (5), then the Hamiltonian function is a function that com-
bines the performance criterion and the constraints into a single expression. So, the
Hamiltonian of the system (5) and the cost (6) is [23] :
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H : Rn × (Rn \ {0})×Rk→ R

(x, ψ, u) 7−→H(x,ψ,u) =< ψ,f (x,u) > −L(x,u),

where < ψ,f (x,u) > is the usual scalar product in Rn.
We can also write

H(x(t),ψ(t),u(t)) = ψT (t)f (x(t),u(t))−L(x(t),u(t)), t ∈ T = [0, t1]. (7)

The vector that corresponds to the Lagrange multipliers vector ψ : [0, t1]→ Rn \ {0}
is called a conjugate state vector.

1.9.1 General statement of the PMP

We consider the system (5) and we note U the admissible controls set. We define
the cost of a control u :

J(u) = ϕ(x(t1)) +
∫ t1

0
L(x(t),u(t))dt, (8)

where x(.) is the solution trajectory of (5) associated to the control u, L : Rn ×Rk → R
and ϕ : Rn→ R.

We consider the problem which is about determining a control u(t) ∈ U and a tra-
jectory x(t) which minimize the cost (8). If the control u(t) associated to the trajectory
x(t) is optimal, then it exists an absolutely continuous application ψ(.) : [0, t1] → Rn

such as the Hamiltonian achieves its maximum [23]:

H(x(t),ψ(t),u(t)) = max
v∈U

H(x(t),ψ(t),v), t ∈ T = [0, t1],

where H(x(t),ψ(t),u(t)) =< ψ(t), f (x(t),u(t)) > −L(x(t),u(t)) is the Hamiltonian of the
system, with

ẋ =
∂H
∂ψ

(x(t),ψ(t),u(t), x(0) = x0, (9)

ψ̇ = −∂H
∂x

(x(t),ψ(t),u(t)), ψ(t1) = −
∂ϕ(x(t1))

∂x
. (10)

1.10 Conclusion

In this chapter, we have introduced the fundamental concepts of the control of
linear dynamic systems such as controllability of dynamic systems, their stability and
the Pontryagin maximum principle.
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Chapter 2

Recalls on convex quadratic
programming

2.1 Introduction

Convex quadratic programming plays a main role in solving a wide range of opti-
mization problems, particularly in problems involving quadratic objectives and linear
constraints.

2.2 Quadratic forms and their properties

[4]

2.2.1 Quadratic form

A quadratic form in Rn is an homogeneous polynomial of degree two of n variables.
It is represented as follows :

F(x) = F(x1, ...,xn) =
n∑
i=1

n∑
j=1

aijxixj , (1)

where x1, ...,xn are the n variables, x = (x1, ...,xn)T and A = (aij ,1 ≤ i, j ≤ n). So we get

F(x) = xTAx. (2)

The matrix A is supposed always symmetric, otherwise we define a new symmetric
matrix D such as

D =
A+AT

2
⇒DT =

(A+AT )T

2
=
AT +A

2
=D,

and we always have

F(x) = xTAx = xTDx, ∀x ∈ Rn. (3)

In the sequel, we consider that the associated matrix to a quadratic form is always
symmetric.
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2.2.2 Quadratic form gradient

The gradient of a quadratic form is the vector of its first partial derivatives. If we
consider a quadratic form with a symmetric matrix D :

F(x) = xTDx, (4)

and write the matrix D as a column-vectors :

D = (d1,d2, ...,dj , · · · ,dn), (5)

then we get

F(x) = (x1,x2, ...,xj , ...,xn)



dT1 x
dT2 x

:̇
dTj x

:̇
dTn x


= x1d

T
1 x+ x2d

T
2 x+ ...+ xjd

T
j x+ ...+ xnd

T
n x.

Thus, the gradient of F(x) is :

∇F(x) =



∂F
∂x1
∂F
∂x2
:̇
∂F
∂xj
:̇
∂F
∂xn


, (6)

with :
∂F
∂x1

= dT1 x+ d11x1 + d12x2 + ...+ d1jxj + ...+ d1nxn = 2dT1 x,
∂F
∂x2

= dT2 x+ d21x1 + d22x2 + ...+ d2jxj + ...+ d2nxn = 2dT2 x,
:̇

∂F
∂xj

= dTj x+ dj1x1 + dj2x2 + ...+ djjxj + ...+ djnxn = 2dTj x,

:̇
∂F
∂xn

= dTn x+ dn1x1 + dn2x2 + ...+ dnjxj + ...+ dnnxn = 2Tn x,

and hence

∇F(x) = 2



dT1 x
dT2 x

:̇
dTj x

:̇
dTn x


= 2Dx. (7)

2.2.3 Positive definite quadratic form

We say that F(x) is a positive definite quadratic form if

xTDx > 0,∀x ∈ Rn,x , 0.

Thus D is called a positive definite matrix (D > 0).
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2.2.4 Positive semi-definite quadratic form

We say that F(x) is positive semi-definite quadratic form if

xTDx ≥ 0, ∀x ∈ Rn and ∃x0 , 0 : xT0Dx0 = 0.

Thus, D is called a positive semi-definite matrix (D ≥ 0).

2.2.5 Matrix minors

We consider the symmetric matrix below :

D =


d11 d12 ... d1n
d21 d22 ... d2n

:̇ :̇ ... :̇
dn1 dn2 ... dnn

 .
The minor of the matrix D, which is formed by rows i1, i2, ..., ip and columns j1, j2, ..., jp,
is noted as follows :

D

(
i1, i2, ..., ip
j1, j2, ..., jp

)
=

∣∣∣∣∣∣∣∣∣∣∣
di1j1 ... di1jp
di2j1 ... di2jp

:̇ ... :̇
dipj1 ... dinjp

∣∣∣∣∣∣∣∣∣∣∣ .
This minor is called principal if i1 = j1, i2 = j2, ..., ip = jp, which means that it’s formed
by rows and columns wearing the same numbers. The following minors

D1 = d11, D2 =
∣∣∣∣∣ d11 d12
d21 d22

∣∣∣∣∣ , ... ,Dn =

∣∣∣∣∣∣∣∣∣∣
d11 d12 ... d1n
d21 d22 ... d2n

:̇ :̇ ... :̇
dn1 dn2 ... dnn

∣∣∣∣∣∣∣∣∣∣ ,
are called successive principal minors.

2.2.6 Sylvester criterion

Theorem 2.2.1

(i) For a matrix D to be positive definite (D > 0), it’s necessary and sufficient that the
successive principal minors of D are positive :

D1 > 0, D2 > 0, ..., Dn > 0 ;

(ii) For a matrix D to be positive semi-definite (D ≥ 0), it’s necessary and sufficient
that all the principal minors of D are not negative :

D

(
i1, i2, ..., ip
i1, i2, ..., ip

)
≥ 0, 1 ≤ i1 ≤ i2 ≤ ... ≤ ip ≤ n, p = 1,n.

2.3 Convexity

Convexity is a leading concept which is used in optimization theory and its appli-
cations.
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2.3.1 Convex set

A set S in Rn is called convex if

∀x1,x2 ∈ S,∀λ ∈ [0,1]⇒ λx1 + (1−λ)x2 ∈ S.

2.3.2 Convex function

A function f which is called defined on a convex set S in Rn is convex if the follow-
ing inequality is verified :

f (λx+(1−λ)y) ≤ λf (x)+(1−λ)f (y), ∀x,y ∈ S, ∀λ ∈ [0,1]. (8)

2.3.3 Convex quadratic form

Property 2.3.3.1

A quadratic form F(x) = xTDx is convex if and only if D is a positive semi-definite
matrix (D ≥ 0).

2.4 Non-linear programming

2.4.1 Minimization without constraints

Let f be a non-linear function that is defined from Rn to R and continuously dif-
ferentiable. The non-linear programming problem consists of finding x∗ ∈ Rn such
as

f (x∗) =minf (x),x ∈ Rn. (9)

2.4.2 Local minimum

Let f be a function which is defined on Rn. The function f admits a local minimum
x∗ if

∃ B(x∗, ε) = {x ∈ Rn : ∥x−x∗∥ < ε} ⇒ f (x) ≥ f (x∗), ∀x ∈ B(x∗, ε). (10)

2.4.3 Global minimum

The function f admits a global minimum x∗ ∈ Rn if :

f (x) ≥ f (x∗), ∀x ∈ Rn. (11)

Theorem 2.4.1

If x∗ is a local (or a global) minimum of f on Rn and f is differentiable at x∗ , then

∇f (x∗) = 0. (12)

A stationary point is a point that verifies the condition (12).
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Theorem 2.4.2

If x∗ is a local (or global) minimum of f on Rn and f is twice differentiable, then

i) ∇f (x∗) = 0 (stationarity).

ii) H(x) is positive semi-definite, where H(x) is the Hessian matrix of f at the point x∗

H(x∗) = ∇2f (x∗). (13)

2.4.4 Minimization with constraints

Let f be a non-linear function that is defined from Rn to R and continuously differ-
entiable. The non-linear programming problem consists of finding x∗ ∈ S ⊂ Rn,S , Rn,
such as

f (x∗) =minf (x),x ∈ S. (14)

The constraints’ set S is generally given by equations and / or inequations, linear or
not :

S = {x ∈ Rn : g(x) ≤ 0}, (15)

where g is a vectorial function which is defined from Rn to Rm and continuously dif-
ferentiable, with

g(x) =


g1(x)
g2(x)

:̇
gm(x)

 ,

∇g(x) = (∇g1(x),∇g2(x), ...,∇gm(x)) =


∂g1
∂x1

(x) ∂g2
∂x1

(x) ... ∂gm
∂x1

(x)
∂g1
∂x2

(x) ∂g2
∂x2

(x) ... ∂gm
∂x2

(x)
:̇ :̇ ... :̇

∂g1
∂xn

(x) ∂g2
∂xn

(x) ... ∂gm
∂xn

(x)

 .
The matrix ∇g(x) is called the matrix of the gradients and Jg(x) = [∇g(x)]T is the
Jacobian of g.

2.4.5 Admissible direction

The vector d ∈ Rn,d , 0 , is an admissible direction at a point x ∈ S if it exists a real
parameter α > 0 such as x+θd ∈ S,∀θ ∈ [0,α].

Lemma 2.4.1

If f is differentiable on S and x∗ is its local minimum, then for every admissible
direction d, we have

dT∇f (x∗) ≥ 0. (16)
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2.5 Support method for minimizing a convex quadratic
form with simple constraints

2.5.1 Statement of the problem

We consider the following problem of convex quadratic programming with bounded
variables [7,8] :

min F(x) =
1
2
xTDx+ cT x, (1)

l ≤ x ≤ u,

where D = D(J, J) is a symmetric matrix (DT = D) and it’s positive semi-definite (D ≥
0); c, l,u ∈ Rn, ∥l∥ < ∞, ∥u∥ < ∞, J = {1, · · · , j, · · · ,n} and the symbol ()T represents the
transposition operation.

Since the admissible set S = {x ∈ Rn : l ≤ x ≤ u} is compact, the problem (1) has an
optimal solution x0 ∈ S according to Weirstrass’ theorem :

F(x0) = min
x∈S

F(x) ,

where x runs through the set of feasible solutions S. This optimal solution x0 is unique
if D is positive definite (D > 0).

2.5.2 Optimality criterion

Let x be a feasible solution of the problem (1), so the vector

E(x) = g(x) = ∇F(x) =Dx+ c

is called the gradient of F at the point x or the vector of estimations.

Besides x, we consider an other arbitrary feasible solution x̄ = x+ △ x. Then the
increment of the function F is written as :

△ F(x) = F(x̄)−F(x)

= 1
2 x̄

TDx̄+ cT x̄ − 1
2x

TDx − cT x

= 1
2(x+ △ x)TD(x+ △ x) + cT (x+ △ x)− 1

2x
TDx − cT x

= 1
2x

TDx+ 1
2x

TD △ x+ 1
2 △ x

TDx+ 1
2 △ x

TD △ x

+cT x+ cT △ x − 1
2x

TDx − cT x

= xTD △ x+ 1
2 △ x

TD △ xcT △ x.

If we set
γ =

1
2
△ xTD △ x ≥ 0,
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then we get

△ F(x) = F(x̄)−F(x) = (Dx+ c)T △ x+γ

= ET (x) △ (x)+γ, γ ≥ 0. (2)

So, we have the following optimality criterion :

Theorem (Optimality criterion)

Let x be a feasiable solution of the problem (1). Then the relations

Ej(x) ≥ 0, if xj = lj ;

Ej(x) ≤ 0, if xj = uj ; (3)

Ej(x) = 0, if lj < xj < uj , j ∈ J,

are both necessary and sufficient for the optimality of the vector x.

Proof.Sufficiency

Let x be a feasible solution verifying (3) and we consider an other arbitrary feasible
solution x̄ of the problem (1). So for j ∈ J , we have :

△ xj = x̄j − xj ≥ lj − xj = lj − lj = 0, if xj = lj ;

△ xj = x̄j − xj ≤ uj − xj = uj −uj = 0, if xj = uj ;

According to (3), we get
Ej(x) △ xj ≥ 0, ∀j ∈ J.

Since γ ≥ 0, we deduce from the formula (2) :

F(x̄)−F(x) =
n∑
j=1

Ej(x) △ xj +γ ≥ 0 ,

what provides that x is an optimal solution of the problem (1).

Necessity

We suppose that x is an optimal solution, but the relations (3) are not verified : it
exists an index j0 ∈ J such as :

Ej0 < 0 and xj0 = lj0 ,

or

Ej0 > 0, and xj0 = uj0 , (4)

or

Ej0 , and lj0 < xj0 < uj0 .

In this case, we have always |Ej0 | , 0. So we construct an other feasible solution x̄
such as x̄ = x+θd, where d = (d1, · · · ,dj0 , · · · ,dn), with dj0 = −signEj0 and
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dj = 0,∀j ∈ J, j , j0. So for every case of relations (4), there exists always θ > 0, which
is sufficiently small such that the vector x̄ is a feasble solution. Then we get from the
increment

F(x̄)−F(x) = ET (x) △ x+γ = θ
n∑
j=1

Ej(x)dj +
1
2
θ2dTDd

= −θEj0signEj0 +
1
2
θ2(dj0)2dj0j0

= θ[−|Ej0 |+
1
2
θdj0j0].

For θ > 0 sufficiently small, we get F(x̄) < F(x), contradicting thus the optimality of x.

In summary, the relations (3) are necessarily verified if x is an optimal solution.

2.5.3 Suboptimality criterion

For the problem (1), we can define suboptimal solutions or ε-optimal ones, where
ε ≥ 0 is a certain precision which is already given. Also, xε is a suboptimal or an
ε-optimal solution if

0 ≤ F(xε)−F(x0) ≤ ε,

where x0 is an optimal solution of the problem (1).

We consider the increment (2) after replacing the feasible solution x̄ by an optimal
solution x0 :

F(x0)−F(x) =
n∑
j=1

Ej(x)(x0
j − xj) +γ ≥

n∑
j=1

Ej(x)(x0
j − xj).

Then

F(x)−F(x0) ≤
n∑
j=1

Ej(x)(xj−x0
j ). (5)

Since lj ≤ x0
j ≤ uj , j ∈ J , we can write :

x0
j ≥ lj ⇒ −x0

j ≤ −lj ⇒ xj − x0
j ≤ xj − lj ;

x0
j ≤ uj ⇒ −x0

j ≥ −uj ⇒ xj − x0
j ≥ xj −uj .

Then we have
Ej(x)(xj − x0

j ) ≤ Ej(x)(xj − lj), if Ej(x) > 0;

Ej(x)(xj − x0
j ) ≤ Ej(x)(xj −uj), if Ej(x) < 0.

So, we deduce from the inequality (5) :

0 ≤ F(x)−F(x0) ≤
∑

Ej>0,j∈J
Ej(x)(xj − lj) +

∑
Ej<0,j∈J

Ej(x)(xj −uj).
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The number

β(x) =
∑

Ej>0,j∈J
Ej(xj − lj) +

∑
Ej<0,j∈J

Ej(xj −uj) (6)

is called the suboptimality estimate, because we have always :

0 ≤ F(x)−F(x0) ≤ β(x).

Hence, if β(x) ≤ ε, then x will be a suboptimal or an ε-optimal solution of the problem
(1).

2.6 Support of the objective function

The support of the objective function is an element related to the non linearity of
F, i.e, to its curvature. For a subset JS ⊂ J , we say that JS is a support of the objective
function if

detDS = detD(JS , JS) , 0.

The pair {x, JS}, formed from the feasible solution x and the support JS is called a Sup-
port Feasible Solution (SFS) of the problem (1). The SFS {x, JS} is called non degenerate
if

lj < xj < uj , ∀j ∈ JS .
It’s called consistent if

Es = E(JS) = D(JS , J)x+ c(JS) = 0 .

For a consistent SFS {x, JS}, we can reformulate the optimality criterion of the problem
(1). Indeed, for an other arbitrary feasible solution x̄ = x+ △ x, the increment holds :

F(x̄)−F(x) =
∑
j∈J

Ej(x)(x̄j − xj) +γ =
∑
j∈JN

Ej(x)(x̄j − xj) +γ,

where γ = 1
2 △ x

TDx ≥ 0 and JN = J \ JS .

So, we have the following theorem :

2.6.1 Theorem (The Support Optimality Criterion )

Let {x, JS} be a consistent SFS of the problem (1). Then these relations

Ej(x) ≥ 0, if xj = lj ;

Ej(x) ≤ 0, if xj = uj ; (7)

Ej(x) = 0, if lj < xj < uj ; j ∈ JN ,
are sufficient, and they are also necessary for the optimality of x in the case of non

degeneracy of the SFS {x, JS}.

We note that for a consistent SFS {x, JS}, the suboptimality estimate is written as :

β(x, JS) =
∑

Ej>0,j∈JN

Ej(xj − lj) +
∑

Ej<0,j∈JN

Ej(xj −uj). (8)
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2.6.2 Remark 1

If we set D = 0, then the objective function in the problem (1) becomes linear and
it has no curvature. So, we can set JS = ∅, with detD(JS , JS) , 0 by convention.

2.6.3 Remark 2

The index j ∈ J such as Ej(x) = 0 is an index of universal optimality, in the sense
that it verifies the optimality criterion (7) whatever the value of xj in the interval [lj ,uj].
We note that such indices are susceptible even to the slightest variation of the feasible
solution x. To keep their optimality, JS recieves them when it is possible. Generally,
we chose JS (eventually empty) in the following set :

JS ⊂ J0 = {j ∈ J : Ej(x) = 0}, with detD(JS , JS) , 0.

2.7 Algorithm of resolution

Let {x, JS} be a consistent SFS of the problem (1), such as β(x, JS) > ε, where ε ≥ 0 is
an already chosen accuracy. The purpose of the algorithm is to construct an ε-optimal
solution xε or a completely optimal solution x0. It passes from a consistent SFS {x, JS}
to an other consistent SFS {x̄, J̄} such as F(x̄) ≤ F(x). For this, we form a new feasible
solution x̄ = x + θd, where d is a direction of improvement and θ is the maximal step
along this direction. Indeed, let JNNO be the subset of indices of JN , which do not
verify the optimality criterion (7) :

JNNO = {j ∈ JN : xj = lj ,Ej < 0; xj = uj ,Ej > 0; lj < xj < uj ,Ej , 0}.

After finding the index j0 such as :

|Ej0| = max
j∈JNNO

|Ej |,

then we form the direction d = d(J) = (d(JS),d(JN )) = (dS ,dN ) as follows :

dj0 = −signEj0 , dj = 0, ∀j ∈ JN , j , j0.

The sub-vector dS = d(JS) will be calculated such that

Ej(x̄) = Ej(x) = 0, ∀j ∈ JS .

Then we get
ES(x̄) =D(JS , J)x̄+ cS =DS(JS , J)(x+θd) + cs.

ES(x̄) = ES +θD(JS , JS)dS +θD(JS , JN )dN = 0

So
dS = −D−1

S (JS , JS)D(JS , JN )dN

=D−1
S D(JS , j0)signEj0 .

Therefore the direction d is written as :{
dj0 = −signEj0 , dj = 0, j , j0, j ∈ JN ,

ds = +D−1
s D(Js, j0)signEj0 .
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As for the step θ, it must firstly verify the relation :

l ≤ x+θd ≤ u ⇔


lj0 − xj0 ≤ θdj0 ≤ uj0 − xj0 ,

lj − xj ≤ θdj ≤ uj − xj ; j ∈ JS .
For the index j0, we have

lj0 − xj0 ≤ −θj0signEj0 ≤ uj0 − xj0 ⇒ θj0 =


xj0 − lj0 > 0, if Ej0 > 0,

uj0 − xj0 > 0, if Ej0 < 0.

For the indices j ∈ JS of the relations (10), the maximal step will be :

θs = θjs = min
j∈Js

θj , with θj =


(uj − xj)/dj , if dj > 0 ;

(lj − xj)/dj , if dj < 0 ;

+∞ , if dj = 0 .

Also, the maximal step for which x̄ = x+θd is a feasible solution is :

θ = min{θj0 ,θjs}. (11)

For a quadratic function which is not linear, we must calculate the relaxation step θF
which minimizes the function F(x + θd) = ϕ(θ) along the direction d, it is equivalent
to have :

ϕ′(θF) = ▽FT (x+θFd)d = ET d +θFd
TDd = −|Ej0 |+θFα = 0,

where

α = dTDd = (dS ,dN )TD
(
dS
dN

)
,

α = (dS ,dN )T [D(J, JS)dS +D(J, JN )dN ],

α = dTS D(JS , JS)dS + dTS D(JS , JN )dN + dTND(JN , JS)dS + dTND(JN , JN )dN .

Using the relations (9), we find that :

α =D(j0, JS)D−1
S DSD

−1
S D(JS , j0) + 2(−signEj0)D(j0, JS)D−1

S D(JS , j0)(signEj0) + dj0j0

So

α = dj0j0−D(j0, Js)D
−1
S D(JS , j0). (12)

We deduce that

θF =
{ |Ej0 |

α , if α , 0;
∞ , if α = 0.

(13)

In summary, the new feasible solution x̄ will be formed with the maximal step θ such
as :

θ0 = min{θj0 ,θjs ,θF}, x̄ = x+θ0d. (14)
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As for the support J̄S , it will be formed according to the specefic value of θ0 :

θ0 = θj0 ∨θjs ∨θF .

We observe these three possible cases :

(i) θ0 = θj0 : In this case, the element x̄j0 becomes critical (x̄j0 = lj0 ∨ uj0). The index
j0 becomes an optimal index. So it’s not necessary to change the support, then
we set J̄S := JS ;
The SFS {x̄, J̄S} = {x̄, JS} is a consistent SFS.

(ii) θ0 = θjs : In this case, the element x̄js becomes critical (x̄js = ljs ∨ ujs). The index
js will be picked up from the support for not disturbing the algorithm’s progres-
sion.
So we set J̄S := JS\js, and it’s clear that

Ej(x̄) = 0, j ∈ J̄S , and detD(J̄S , J̄S) , 0.

The pair {x̄, J̄S} is a consistent SFS.

(iii) θ = θF : In this case, the index j0 becomes optimal because :
Ej0(x̄) = Ej0(x) +θFD(j0, J)d = Ej0 −θFα signEj0

Ej0(x̄) = Ej0 −
|Ej0 |
α α signEj0 = Ej0 −Ej0 = 0.

Since α > 0 ( θF is the minimum ), the matrix D(JS ∪ j0, JS ∪ j0) is inversible.
So we can include j0 in the new support. Therefore, we set J̄S := JS ∪ j0.
Then the new SFS {x̄, J̄S} is consistent.

2.8 The convergence of the algorithm

Generally, the algorithm described above is not finite. But there is a rule that can
hold it to be finite. It’s the property of non critical index in the non optimal set JNNO.
Indeed, if we consider the set of the non critical and non optimal indices :

JNC = {j ∈ JNNO : lj < xj < uj},

then the algorithm becomes finite if we set j0 = minj∈JNC j.

According to this rule, the improvement of the support feasible solution {x, Js} is
done firstly by the non basic and non critical elements.
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2.9 Example

We solve the following problem of convex quadratic programming with bounded
variables :

F(x) = 4x2
1 + x2

2 − 4x1x2 − x3 + 6x4 → min

0 ≤ x1 ≤ 6 ;

0 ≤ x2 ≤ 2 ;

−1 ≤ x3 ≤ 3 ;

−3 ≤ x4 ≤ 1 .

Since the function F is convex, it admits a global minimum on R4 at x if and only if :

∂F
∂x

= ▽F(x) = 0 ⇔



∂F
∂x1

= 8x1 − 4x2 = 0,
∂F
∂x2

= −4x1 + 2x2 = 0,

∂F
∂x3

= −1 , 0,
∂F
∂x4

= 6 , 0,

Since ∂F
∂x , 0,∀x ∈ R4, then F does not admit a finite global minimum over R4. But,

F admits a global minimum on the feasible compact set

S = {x = (x1,x2,x3,x4) ∈ R4 : 0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 2; −1 ≤ x3 ≤ 3; −3 ≤ x4 ≤ 1}.

The standard form of the problem is :

F(x) =
1
2

(8x2
1 + 2x2

2 − 8x1x2)− x3 + 6x4 → min,

0 ≤ x1 ≤ 6 ;

0 ≤ x2 ≤ 2 ;

−1 ≤ x3 ≤ 3 ;

−3 ≤ x4 ≤ 1 ;

with

D =


8 −4 0 0
−4 2 0 0

0 0 0 0
0 0 0 0

 , c =


0
0
−1

6

 , l =


0
0
−1
−3

and u =


6
2
3
1

 .
We set ε = 0 and we start with the initial SFS {x, JS}, where x = (6,2,0,0), JS = φ, and

we compute F and its gradient :

F(x) = 100, g(x) =
∂F
∂x

=


8x1 − 4x2
−4x1 + 2x2
−1

6

 =


40
− 20
− 1

6

 .
We have

E1 = g1 = 40 > 0; E2 = g3 = −20 < 0; E3 = g3 = −1 < 0; E4 = g4 = 6 > 0;
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β(x, Js) = E1(x1 − l1) +E2(x2 −u2) +E3(x3 −u3) +E4(x4 − l4)

= 40(6− 0) + (−20)(2− 2) + (−1)(0− 3) + 6(0 + 3)

= 240 + 0 + 3 + 18 = 261 > ε.

The indices {1,3,4} are not optimal, so

JNNO = {1,3,4} ⇒ |Ej0 | = max{|E1|, |E3|, |E4|} = |E1| = 40 ⇒ j0 = 1.

Therefore, we set :

dj0 = d1 = −sign E1 = −1, d2 = d3 = d4 = 0, (because d14 = 0),

θj0 = θ1 = x1 − l1 = 6, θjs = +∞.
We calculate the relaxation step that minimizes the function F(x+θd) :

α = dj0j0 −D(j0, Js)D−1
s D(Js, j0)

α = d11 −D(1, Js)D
−1
s D(Js,1) = d11 = 8 (because Js = φ) ⇒ θF =

40
8

= 5.

The new feasible solution x̄ will be formed with the maximal step θ0 such as :

θ0 = min{θj0 ,θjs ,θF} = min{6,+∞,5} = 5 = θF .

So we get

x̄ = x+θ0d =


6
2
0
0

+ 5


−1
0
0
0

 =


1
2
0
0

 , F(x̄) = 0.

We start the second iteration with the new SFS {x, JS}, with

x := x̄ = (1,2,0,0), JS := JS ∪ j0 = {1} and JN = {2,3,4}.

So we have :

g(x) =
∂F
∂x

=


0
0
−1

6

 , E1 = g1 = 0; E2 = g2 = 0; E3 = g3 = −1 < 0; E4 = g4 = 6 > 0.

The indices {3,4} are not optimal, so :

JNNO = {3,4} ⇒ |Ej0 | =max{|E3|, |E4|} = |E4| = 6 ⇒ j0 = 4.

Therefore, we set :
dj0 = d4 = −sign E4 = −1, d2 = d3 = 0,

djs =D−1
S D (JS , j0)sign Ej0 ,

d1 =D−1
S D (1,4)sign E4 = 1

d11
d14 = 0.

So
θj0 = θ4 = x4 − l4 = 3, θjs = +∞ (because d1 = 0).
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We calculate the relaxation step that minimizes the function F(x+θ0d) :

α = dj0j0 −D(j0, Js)D−1
s D(Js, j0)

α = d44 −D(4,1)D−1
s D(1,4) = d44 − d41

1
d11

d14 = 0 ⇒ θF = +∞.

The new feasible solution x̄ will be formed with the maximal step θ0 such as :

θ0 = min{θj0 ,θjs ,θF} =min{3,+∞,+∞} = 3 = θj0 .

We get

x̄ = x+θ0d =


1
2
0
0

+ 3


0
0
0
−1

 =


1
2
0
−3

 , F(x) = −18.

We start the third iteration with the new SFS {x, JS}, with

x := x̄ = (1,2,0,−3), JS = {1} and JN = {2,3,4}.

So we have :

g(x) =
∂F
∂x

=


0
0
−1

6

 , E1 = g1 = 0; E2 = g2 = 0; E3 = g3 = −1 < 0; E4 = g4 = 6 > 0.

The index {3} is not optimal, so :

JNNO = {3} ⇒ |Ej0 | = |E3| = 1 ⇒ j0 = 3.

Therefore, we set :
dj0 = d3 = −sign E3 = +1, d2 = d4 = 0,

djs =D−1
s D (Js, j0)sign Ej0 ,

d1 =D−1
s D (1,3)sign E3 = 1

d11
d13(−1) = 0 (because d13 = 0).

θj0 = θ3 =
u3 − x3

d3
= 3, θjs = +∞ (because d1 = 0).

We calculate the relaxation step that minimizes the function F(x+θ0d) :

α = dj0j0 −D(j0, Js)D−1
s D(Js, j0)

α = d33 −D(3,1)D−1
s D(1,3) = d33 − d31

1
d11

d13 = 0 ⇒ θF = +∞.

The new feasible solution x̄ will be formed with the maximal step θ0 such as :

θ0 =min{θj0 ,θjs ,θF} = min{3,+∞,+∞} = 3 = θ3.

24



We get

x̄ = x+θ0d =


1
2
0
−3

+ 3


0
0
1
0

 =


1
2
3
−3

 , F(x) = −21.

We start the fourth iteration with the new SFS {x, JS}, with

x := x̄ = (1,2,3,−3), JS = {1} and JN = {2,3,4}.

So we have :

g(x) =
∂F
∂x

=


0
0
−1

6

 , E1 = g1 = 0; E2 = g2 = 0; E3 = g3 = −1 < 0; E4 = g4 = 6 > 0;

In this case, all the indices are optimal,so the algorithm is finished .

In summary, x = (1,2,3,−3) is the optimal solution, with F(x) = −21.

2.10 Conclusion

In this chapter, we have provided an introduction to convex optimization and its
significance in the context of quadratic programming. We have also explored the fun-
damental properties of convex sets and functions, which enable efficient and reliable
optimization algorithms.
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Chapter 3

Linear quadratic optimal control
problem with constraints

3.1 Introduction

Understanding the role of constraints is crucial for developing control strategies
that satisfy operational limitations and achieve desired objectives.

3.2 Problem Statement

Let be a stationary linear dynamic system defined on the interval T = [0, t1] :

ẋ(t) = Ax(t) +Bu(t) + r(t), x(0) = x0, t ∈ T ,

where ẋ(t) =
dx
dt

, x(t) ∈ Rn is the state vector at the moment t, x0 is an initial state,

u = u(t) ∈ Rk is a control, r(t) ∈ Rn is a disturbance function (it can be considered null).
The matrices A,B are of n and (n× k) order respectively.

For the above dynamic system, various controls u(t) generate different trajectories
x(t) and processes (u(t),x(t)), t ∈ T . We can affect the choice of u(t) to get a desired tra-
jectory by optimizing a certain predefined quality criterion. So we obtain an optimal
process (u0(t),x0(t)), t ∈ T , in the sens of this criterion.

We consider the following optimal control problem :

J(u) =
α
2
∥x(t1)∥2 + cT x(t1) +K →min, (1)

ẋ = Ax+Bu + r, x(0) = x0, (2)

u(t) ∈U = [−L,L]k , t ∈ T = [0, t1], (3)

where c = (c1, ..., cn)T ∈ Rn, x = (x1, ...,xn)T ∈ Rn, u = (u1, ...,uk)T ∈ Rk, K,α,L ∈ R, α > 0
and L > 0.

The control u(t) is an admissible control of the problem (1)− (3) if :

• Its values are in U which is a convex and compact set in Rk;
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• It’s piecewise continuous on T , which means that the function u(t) admits a finite
number s of discontinuity points τi of the first kind, where the limits on the right
and on the left exist :

lim
t→τi+0

u(t) = u(τi + 0), lim
t→τi−0

u(t) = u(τi − 0), i = 1, s.

Also, we consider that the control u(t) is continuous on the right at the point τi :

u(τi) = u(τi + 0), i = 1, s and u(t1 − 0) = u(t1).

We say that an admissible control u0(t), t ∈ T , is optimal if it minimizes the qual-
ity criterion (1) on the set of admissible controls. Thus, the corresponding trajec-
tory x0(t) is called an optimal trajectory [5,10].

3.3 Increment of the functional

Let u(t) be an admissible control of the problem (1)− (3) and x(t) its corresponding
trajectory. We consider an other arbitrary admissible control

ū(t) = u(t)+ △ u(t),

and its corresponding trajectory x̄(t) = x(t)+ △ x(t), t ∈ T .
We have

△ x(t) = x̄(t)− x(t), △ x(0) = x̄(0)− x(0) = x0 − x0 = 0.

So, the functional’s increment is :

△ J(u) = J(ū)− J(u)

= α
2 x̄

T (t1)x̄(t1) + cT x̄(t1) +K − α2x
T (t1)x(t1)− cT x(t1)−K

= α
2 (x+ △ x)T (t1)(x+ △ x)(t1) + cT (x+ △ x)(t1)− α2x

T (t1)x(t1)− cT x(t1)

= α
2x

T (t1)x(t1) + α
2x

T (t1) △ x(t1) + α
2 △ x

T (t1)x(t1) + α
2 △ x

T (t1) △ x(t1)

+cT x(t1) + cT △ x(t1)− α2x
T (t1)x(t1)− cT x(t1)

= αxT (t1) △ x(t1) + α
2 △ x

T (t1) △ x(t1) + cT △ x(t1).
We set

γ =
α
2
∥ △ x(t1)∥2 ≥ 0,

and we get

△ J(u) = J(ū)− J(u) = (αx(t1) + c)T △ x(t1) +γ, γ ≥ 0. (4)

Using the Cauchy’s formula, the solution of the system (2) is :

x(t) = eAtx0 +
∫ t

0
eA(t−τ)[Bu(τ) + r(τ)]dτ, t ∈ T .
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So

x(t1) = eAt1x0 +
∫ t1

0
eA(t1−t)[Bu(t) + r(t)]dt,

and

x̄(t1) = eAt1x0 +
∫ t1

0
eA(t1−t)[Bū(t) + r(t)]dt.

Then we have :

△ x(t1) = x̄(t1)− x(t1) =
∫ t1

0
eA(t1−t)[Bū(t)−Bu(t)]dt =

∫ t1

0
eA(t1−t)B △ u(t)dt,

and we deduce from (4) :

△ J(u) = J(ū)− J(u) =
∫ t1

0
(αx(t1) + c)T eA(t1−t)B △ u(t)dt +γ. (5)

We define the following function ψ as :

ψ(t) = −eA
T (t1−t)(αx(t1) + c), t ∈ T . (6)

The function ψ satisfies the following differential equation :

ψ̇(t) = AT eA
T (t1−t)(αx(t1) + c),

ψ̇(t) = −ATψ(t), ψ(t1) = −(αx(t1) + c). (7)

The system (7) is called the conjugate system of the problem (1)− (3).
We consider the Hamiltonian of the system (1)− (3) :

H(x,ψ,u) = ψT (Ax+Bu + r), (8)

and we set

△ū H(x,ψ,u) =H(x,ψ, ū)−H(x,ψ,u). (9)

Then we have

△ū H(x,ψ,u) = ψTB △ u. (10)

From (5) and (6), we get

△ J(u) = −
∫ t1

0
ψT (t)B △ u(t)dt +γ,

Hence, from (10) we get

△ J(u) = J(ū)− J(u) = −
∫ t1

0
△ū H(x(t),ψ(t),u(t))dt. (11)

The expression of the Hamiltonian allows to deduce the primal dynamic system (2)
and its conjugate one (7) as follows :

ẋ =
∂H
∂ψ

, x(0) = x0, (12)

ψ̇ = −∂H
∂x

, ψ(t1) = −(αx(t1)+c). (13)
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3.4 Pontryagin Maximum Principle (PMP)

3.4.1 Theorem 3.1

An admissible control u0(t), t ∈ T , is optimal in the problem (1)− (3) if and only if
along u0(t) and the corresponding trajectories x0(t),ψ0(t), t ∈ T , of the direct system (2)
and the conjugate one (7), the Hamiltonian achieves its maximum [23] :

H(x0(t),ψ0(t),u0(t)) = max
v∈U

H(x0(t),ψ0(t),v), t ∈ T = [0, t1]. (14)

3.4.2 Resolution of the boundary value problem, derived from the
(PMP)

Thus, in order to find the optimal control u0, we will have to solve a differential sys-
tem of 2n equations with (2n+ 1) unknowns (u0,x0,ψ0) at two boundaries : t = t0 = 0
and t = t1, where we suppose that the disturbance function is null : r(t) = 0, t ∈ T , and
k = 1, with B = b ∈ Rn [1].

From the equation (14), if we can express the extremal control u as a function of x
and ψ, i.e, u(t) = u(t,x,ψ), then we get a two boundary value problem of 2n equations
with 2n unknowns :

ẋ(t) = Ax(t) + bu(t,x,ψ), x(0) = x0;

ψ̇(t) = −ATψ(t), ψ(t1) = −(αx(t1) + c).

This problem is difficult to solve, since it is not a Cauchy’s problem.To avoid this diffi-
culty, we set the following Cauchy’s problem :

ẋ(t) = Ax(t) + bu(t,x,ψ), x(0) = x0;

ψ̇(t) = −ATψ(t), ψ(0) = ψ0,

where ψ0 is a parameter representing the initial condition of ψ at t = 0; it must be
found such as the trajectories ψ(t,ψ0) and x(t,ψ0) verify the final condition :

ψ(t1,ψ
0) = −(αx(t1,ψ

0) + c),

i.e,
ψ(t1,ψ

0) +αx(t1,ψ
0) + c = 0.

In order to solve this equation, we set ψ0 = s as a free parameter and we define the
shooting function :

F(s) = ψ(t1, s) +αx(t1, s) + c, (15)

where

s =



s1
s2
...
sj
...
sn


, F(s) =



f1(s)
f2(s)
...

fi(s)
...

fn(s)


, JF(s) =

(
∂fi(s)
∂sj

, 1 ≤ i, j ≤ n
)
.
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Consequently, the optimal solution u0(t) of the problem (1)− (3) is deduced from (14),
with ψ0 = s∗ such as :

F(s∗) = 0. (16)

We apply the Newton’s method to solve (16). For this, if sk is an approximation of
order k, then the approximation of order (k + 1) is written as follows :

sk+1 = sk − JF−1(sk)F(sk), k = 0,1,2, .... (17)

During the application of the shooting method, we will write with more details the
shooting function F(s)(15) and the formula (17).

3.4.3 Linear case

If we set K = 0, α = 0 and r = 0, then we get the linear case :
J(u) = cT x(t1)→min,

ẋ = Ax+ bu, x(0) = x0,

−L ≤ u(t) ≤ L, t ∈ T = [0, t1],

and the following boundary value problem :
ẋ = Ax+ bu, x(0) = x0,

ψ̇ = −ATψ, ψ(t1) = −c.

Example

We consider the following optimal control problem :

J(u) = 2x1(t1)− 2x2(t1)→min,

ẋ1 = u, x1(0) = 3;

ẋ2 = x1, x2(0) = −1; (19)

−2 ≤ u(t) ≤ 2, t ∈ T = [0, t1], t1 = 5.

This problem is easy to solve directly without using the shooting method. Indeed, we
start by finding the Hamiltonian :

H(x,ψ,u) = ψ1ẋ1 +ψ2ẋ2 = ψ1u +ψ2x1 = ψ2x1 +ψ1u.

The conjugate system is expressed as follows :
ψ̇1 = −∂H

∂x1
= −ψ2, ψ1(t1) = −c1 = −2,

ψ̇2 = −∂H
∂x2

= 0, ψ2(t1) = −c2 = 2⇒ ψ2(t) = 2, t ∈ T .
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So
ψ̇1(t) = −ψ2(t) = −2, ψ1(5) = −2 ⇒ ψ1(t) = −2t + 8, t ∈ T = [0,5].

The optimal control is equal to :

u0(t) = 2sign△(t), t ∈ T = [0,5],

where △(t) = ψ1(t), t ∈ T , is the switching function. Hence, we have :

u0(t) = 2sign(−2t + 8) =


+2, if t ∈ [0,4[;

−2, if t ∈ [4,5].

To calculate J(u0), we must solve the primal system (19) setting u = u0. Indeed on
the interval [0,4], we have :

ẋ1(t) = u0 = 2, x1(0) = 3 ⇒ x1(t) = 2t + 3, with x1(4) = 11,

and on the interval [4,5], we have :

ẋ1(t) = u0 = −2, x1(4) = 11 ⇒ x1(t) = −2t + 19; with x1(5) = 9.

On the interval [0,4], we get for the second equation :

ẋ2(t) = x1(t) = 2t + 3; x2(0) = −1 ⇒ x2(t) = t2 + 3t − 1, with x2(4) = 27,

and on the interval [4,5], we obtain :

ẋ2(t) = x1(t) = −2t + 19; x2(4) = 27 ⇒ x2(t) = −t2 + 19t − 33, with x2(5) = 37.

So
J(u0) = 2x1(t1)− 2x2(t1) = 2× 9− 2× 37 = −56.

3.4.4 Weakly linear case

If we set K = 0, α > 0 sufficiently small and c ∈ Rn, then we get the weakly linear
case :

J(u) =
α
2
∥x(t1)∥2 + cT x(t1)→min,

with
ψ(t1) = −αx(t1)− c, 0 < α << 1.
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Example

We consider the following optimal control problem :

J(u) =
α
2
∥x(t1)∥2 + 2x1(t1)− 2x2(t1)→min,

ẋ1 = u, x1(0) = 3;

ẋ2 = x1, x2(0) = −1; (20)

−2 ≤ u(t) ≤ 2, t ∈ T = [0, t1], t1 = 5,

where α is a small real positif parameter.

Here, to solve this problem, we use the solution of the problem (19). For this, we
start by finding the Hamiltonian :

H(x,ψ,u) = ψT (Ax+ bu) = ψ1ẋ1 +ψ2ẋ2 = ψ1u +ψ2x1 = ψ2x1 +ψ1u.

The conjugate system is expressed as follows :
ψ̇1 = −∂H

∂x1
= −ψ2, ψ1(t1) = −αx1(t1)− 2, t ∈ T ;

ψ̇2 = −∂H
∂x2

= 0, ψ2(t1) = −αx2(t1) + 2, t ∈ T .

The optimal control is equal to :

u0(t) = 2sign△(t,α), t ∈ T = [0,5],

where △(t,α) = ψ1(t,α) is the switching function. From the conjugate system, we de-
duce :


ψ2(t) = −αx2(t1) + 2; t ∈ T ;

ψ̇1(t) = −ψ2(t) = αx2(t1)− 2, t ∈ T , ψ1(t1) = −αx1(t1)− 2.

So we get


ψ1(t) = (αx2(t1)− 2)t + k1,

ψ1(t1) = 5(αx2(t1)− 2) + k1 = −αx(t1)− 2,

with

k1 = −αx1(t1)− 2− 5αx2(t1) + 10 = −αx1(5)− 5αx2(5) + 8.

We replace t1 by its value :

ψ1(t) = (αx2(5)− 2)t −αx1(5)− 5αx2(5) + 8.

Let θα be the zero of the switching function :

ψ1(θα) = 0⇔ (αx2(5)− 2)θα −αx1(5)− 5αx2(5) + 8 = 0,
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i.e,
(αx2(5)− 2)θα = αx1(5) + 5αx2(5)− 8,

θα =
αx1(5) + 5αx2(5)− 8

αx2(5)− 2
.

When α tends to zero, then θ0 = 4, and for α > 0 sufficiently small, then we get :

u0(t,α) = 2sign(−2θα + 8) =


+2, if t ∈ [0,θα[;

−2, if t ∈ [θα,5],

where θα ∈ [4− ε,4 + ε].

To calculate J(u0), we must solve the primal system (20) setting u = u0.
On the interval t ∈ [0,θα[, for x1 we have :

ẋ1(t,α) = u0(t,α) = +2; x1(0) = 3 ⇒ x1(t,α) = 2t + 3; x1(θα) = 2θα + 3.

On the interval t ∈ [θα,5], we write :

ẋ1(t,α) = u0(t,α) = −2; x1(θα) = 2θα+3 ⇒ x1(t,α) = −2t+4θα+3, with x1(5,α) = 4θα−7.

On the interval t ∈ [0,θα[, for x2 we have :

ẋ2(t,α) = x1(t,α) = 2t+3; x2(0) = −1 ⇒ x2(t,α) = t2+3t−1, with x2(θα) = θ2
α+3θα−1.

On the interval t ∈ [θα,5], we write :

ẋ2(t,α) = x1(t,α) = −2t + 4θα + 3; x2(θα) = θ2
α + 3θα − 1 ⇒

x2(t,α) = −t2 + 4θαt + 3t − 1− 2θ2
α, with x2(5,α) = −2θ2

α + 20θα − 11.

Then :

J(u0,α) =
α
2

(4θα − 7)2 +
α
2

(−2θ2
α + 20θα − 11)2 + 2(4θα − 7)− 2(−2θ2

α + 20θα − 11)

When α tends to zero, then θ0 = 4 and we find the minimum value of the linear
case :

lim
α−→0

J(u0,α) = −56.

3.5 Conclusion

In this chapter, we have focused on formulating the constrained linear quadratic
optimal control problem and then solving it for the linear and weakly linear cases.
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Chapter 4

Methods for norm minimization in an
optimal control problem

4.1 Introduction

This final chapter focuses on our main objective : norm minimization in the context
of optimal control. We will review existing methods and algorithms that aim to min-
imize norms associated with control inputs. Through a numerical example, we will
illustrate the simple shooting method.

4.2 Problem statement

Let (P ) be the following optimal control problem :

J(u) =
1
2
α∥x(t∗))∥2 + aT x(t∗) → min, (1)

ẋ = Ax(t) + bu(t), x(0) = x0, (2)

−L ≤ u(t) ≤ L, t ∈ T = [0, t∗], (3)

where ẋ = dx
dt ; x(t) is the vector of state at the moment t ; x(0) = x0 is the initial state;

u(t), t ∈ T , is a scalar control, taken from the set of piecewise continuous functions,
and it has a finite number of discontinuity points of first kind. The matrix A is square
of order n; b ∈ Rn; α,L, t∗ ∈ R, with α > 0, L > 0 and t∗ > 0 ( fixed terminal time ).

We note that the problem (P ) has an optimal solution in the set of piecewise con-
stant admissible controls, and this, without searching the existence of solutions in the
space of measurable functions.

The resolution methods of the problem (P ) can be classified into two types : Direct
and Indirect methods [28].

4.2.1 Direct methods

The direct methods for solving an optimal control problem are based on total or
partial discretization, which transforms it into a nonlinear optimization problem of fi-
nite dimension. The resolution of this latter provides an approximate solution for the
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original problem (P).

Among direct methods of resolution of the problem (P ), we can cite :

• Method of total discretization;

• Method of partial discretization, where we treat the problem (P ) in the class of
impulsive controls, without discretizing the linear differential system (2).

The two methods yield an approximate solution for the problem (P ) after solving a
quadratic programming problem in finite dimension.

Advantages

• Simple to use and to understand.

• Computational time is fast.

• The user does not have to be concerned with adjoint variables or switching struc-
tures.

• Work well for small scale problems.

Disdvantages

• Producing less accurate solutions than indirect methods.

• The discretized optimal control problem has sometimes several minima, if the
fonctional J(u) is not convex. Applying the direct methods often ends up in one
of these pseudominima. This solution, however, can be quite a step away from
the true solution satisfying all the necessary conditions from variational calculus
resulting.

• Increasing the dimension of the finite dimensional space does not necessarily
yield better values for the extremely complicated problems.

4.2.2 Indirect methods

The indirect methods for solving an optimal control problem are based on Pon-
tryagin Maximum Principle. They consist of reducing the problem to a two-boundary
value problem, then solving it by shooting method, we get the controls analytically or
numerically using for example Newton’s method.

Advantages

• All kinds of constraints are allowed and very accurate results can be obtained.

• Handle a larger class of optimal control problems.

• Derive analytical solutions and provide explicit feedback laws.
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Disdvantages

• Computationally expensive is the numerical integration of differential equations.

• May not always converge to the solution because of the sensitivity to the initial
conditions.

• Difficult to implement for complex problems with nonlinear dynamics and con-
straints.

4.2.3 Support method or hybrid method

Support method is a resolution algorithm which combines simultanuously the di-
rect and indirect methods. It solves the problem (P ) in the admissible set of piece-
wise continuous functions, and without discretization of the linear dynamic system
(2). First, it solves a quadratic programming problem in finite dimension in order to
improve the current admissible control u, getting thus a new admissible control ū such
that J(ū) ≤ J(u). Then it applies a finishing procedure, close to the shooting method,
and that, in order to calculate an exact solution with a necessary accuracy. For this,
the finishing procedure uses the Newton’s method, known for its fast quadratic con-
vergence [27] .

Before presenting the two first methods, we recall a numerical method for solving
equations, called Newton’s method.

4.3 Newton’s method

Newton’s method (1686) is a numerical method used to find the roots of a given
function or non-linear equation. It’s based on the idea of approximating the root of a
function by finding the tangent line to the function at a given point and then finding
where the tangent line intersects the x-axis. This process is repeated iteratively until a
satisfactory approximation of the root is obtained. The general structure of Newton’s
method is as follows :

For scalar functions

We consider f ∈ C1(I), with I = [a,b] ⊂ R and f ′(α) , 0 ( α is a simple root of f ).

1. We choose an initial guess for the root, denoted by x0. For this, we take in I = [a,b]
two points x1 and x2 such as :

f (x1)× f (x2) < 0, x0 ∈ [x1,x2];

2. We evaluate the function and its derivative at the initial guess f (x0) and f ′(x0);

3. Compute the next approximation of the root :

x1 = x0 −
f (x0)
f ′(x0)
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4. Repeat steps (2) and (3) with x1 as the initial guess until convergence is achieved,
i.e, f (x) is sufficiently small or the absolute difference between two consecutive
approximations is less than a prescribed tolerance level.

Newton’s method algorithm :

We have x0 is an initial guess of the root, xn is the nth approximation of the root , N
is the maximum number of iterations that we can do and ε is a chosen accuracy.

1. Compute :

xn+1 = xn −
f (xn)
f ′(xn)

,∀n ≥ 0;

2. If : |xn+1−xn
xn+1

| < ε, then

• Convergence achieved.

• Write the root xn+1.

• Stop.

• Else ;

3. If the maximum number of iterations N is achieved :

• Convergence not achieved in N iterations;

• Stop.

For vectorial functions

Let F be a function defined on Rn with values in Rn :

F =


f1
f2
...
fn

 , x =


x1
x2
...
xn

 .
If we consider that the equation

F(x) = 0

has at least a solution x∗ and the Jacobian matrix JF(x∗) is an inversible matrix, then the
continuity of JF ensures the invertibility of JF(xk) for all xk nearby x∗ and the exixtence
of xk+1 at the second step of the algorithm.

Let us solve the following system :

[JF(xk)]δk = F(xk).

Then we set :
xk+1 = xk − δk

1.Initialization : k = 0 : choice of x0 nearby x∗.

2.Iteration k : xk+1 = xk − [JF(xk)]−1F(xk);

3.Stopping criterion : If ∥xk+1 − xk∥ < ε, stop.

Else we set k = k + 1 and we return to 2.
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4.4 Method of total Discretization in optimal control

The discretization method in an optimal control problem refers to the process of
approximating a continuous time optimal control problem by discretizing the state
and the control, then converting the problem into a finite dimensional optimization
problem. Here, the smaller the step of the discretization, the closer we get the original
problem (P ). In this case, if we want to obtain diserable approximate solutions, it’s
clear that the problems to solve, are necessarily of large size [11,12].

Also, we choose a subdivision on the interval of time T = [0, t∗], i.e, a set of isolated
moments τj such as :

0 = τ0 < τ1 < . . . < τj < . . . < τN = t∗, TN = {τj , j = 0,N },
τj+1 − τj = h = const, j ∈ J = {0,1, ...,N − 1},

where h = t∗
N > 0 is the step of subdivision.

On the basis of this subdivision, we replace the derivative in the problem (P ) by
a finite difference and the integral by a sum, so we consider that the control takes a
constant value on every interval of the subdivision :

u(t) = uj , t ∈ [jh, (j + 1)h[, j ∈ J = {0,1, ...,N − 1}. (4)

Besides, if we replace the derivative in the system (2) by a simple formula of numerical
derivation, by occuring Euler’s formula, then we get

ẋ(t) ≃ x(t + h)− x(t)
h

.

The dynamic system (2) is then approximated as follows :

x(t + h)− x(t)
h

= ẋ(t) = Ax(t) + bu(t),

i.e,
x(t + h) = x(t) + h[Ax(t) + bu(t)], t ∈ T = [0, t∗].

At the points of the subdivision t = τj , j ∈ J , we will have :

x(τj + h) = x(τj) + h[Ax(τj) + bu(τj)], j ∈ J = {0,1, ...,N − 1}.

We set x(τj) = xj , u(τj) = uj , and we get the following reccurent relation :

xj+1 = xj + h[Axj + buj], j ∈ J = {0,1, ...,N − 1}. (5)

By using the last formula , we write the final state x(t∗), which depends only on the
variables u0,u1, ...,uN−1. Then, we deduce J(u), and we get the following problem of
convex quadratic programming in RN :

J(uN ) =
1
2
α∥x(t∗)∥2 + aT x(t∗) → min,

−L ≤ uj ≤ L, j ∈ J = {0,1, ...,N − 1},
whith uN = (u0,u1, ...,uN−1)T ∈ RN and x(t∗) = x(τN ) = xN .

To solve this problem of finite dimension, we use one of the many algorithms that
treat the problem of convex quadratic programming with simple constraints. Here, we
can apply the Support Method which is described above.
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4.5 Method of Partial Discretization with impulsive con-
trols

For the problem (P ), we also consider on the interval T = [0, t∗] the subdivision
[12,13] :

0 = τ0 < τ1 < . . . < τj < . . . < τN = t∗, τj+1 − τj = h =
t∗
N
, j ∈ J,

where the moments τj are called the points of the discretization.

A piecewise constant function u = (u(t), t ∈ T ) is called an impulsive control, if it
changes its value only at the points of discretization τj , j ∈ J , i.e,

u(t) = uj = const, t ∈ [τj , τj+1[, j ∈ J.

The set of the impulsive controls is a subset of the class of piecewise constant functions.
So, the minimization will be done on this reduced subspace. But, the dynamic system
(2) will not be discretized in this case. Since it’s linear, its solution, under the initial
condition x(s), s ≥ 0, is formulated by using the following formula of Cauchy :

x(t) = eA(t−s)x(s) +
∫ t

s
eA(t−τ)bu(τ)dτ, t ≥ s. (7)

If the states of the system are only measured at the moments τj , j ∈ J , then under
the impulsive control u(t) = uj on the interval [τj , τj+1[, the formula (7) yields for the
consecutive states x(τj) = xj and x(τj+1) = xj+1 the following reccurent relation :

x(τj+1) = eAhx(τj) +
∫ τj+1

τj

eA(τj+1−τ)bujdτ.

In an other way, that means that

xj+1 = A(h)xj + b(h)uj ,

where

A(h) = eAh, b(h) =
∫ τj+h

τj

eA(τj+h−τ)bdτ,

and with change of the variable t = τ − τj , the term b(h) does not depend ultimately on
the index j ∈ J :

b(h) =
∫ τj+h

τj

eA(τj+h−τ)bdτ =
∫ h

0
eA(h−t)bdt.

Thus, for the successive states, we get the following reccurent relation :

xj+1 = A(h)xj + b(h)uj , j ∈ J = {0,1, ...,N − 1}. (8)

Besides, the continuous dynamic system (2), moving under an impulsive control, be-
haves as the discret system (8). The obtained discretized problem (P ′) is written as
follows :

F(uN ) =
1
2
α∥x(τN )∥2 + aT x(τN ) =

1
2
α∥xN ∥2 + aT xN → min, (9)
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xj+1 = A(h)xj + b(h)uj , x(0) = x(τ0) = x0, (10)

−L ≤ uj ≤ L, j ∈ J = {0,1, ...,N − 1}. (11)

The constraint (10) can be deleted, because, in this problem, it can only be used
to express the terminal state x(t∗) = x(τN ) = xN as a function of the variables uN =
(u0,u1, ...,uN−1)T . Indeed, we have

x1 = A(h)x0 + b(h)u0;

x2 = A(h)x1 + b(h)u1 = A(h)[A(h)x0 + b(h)u0] + b(h)u1

x2 = A2(h)x0 +A(h)b(h)u0 + b(h)u1;

x3 = A(h)x2 + b(h)u2 = A(h)[A2(h)x0 +A(h)b(h)u0 + b(h)u1] + b(h)u2

x3 = A3(h)x0 +A2(h)b(h)u0 +A(h)b(h)u1 + b(h)u2;

then we get

xN = AN (h)x0 +AN−1(h)b(h)u0 +AN−2(h)b(h)u1 + ...+A(h)b(h)uN−2 + b(h)uN−1;

i.e,

xN = AN (h)x0 +
∑
j∈J A

N−j−1(h)b(h)uj .

If we set
qj = AN−j−1(h)b(h) ⇒ xN = AN (h)x0 +

∑
j∈J

qjuj ,

then we have

aT xN = aTAN (h)x0 +
∑
j∈J

aT qjuj . (12)

Therefore

1
2 ∥x

N ∥2 = 1
2 ∥A

N (h)x0 +
∑
j∈J qjuj∥2,

= 1
2 < AN (h)x0 +

∑
j∈J qjuj , A

N (h)x0 +
∑
j∈J qjuj >,

= 1
2 ∥A

N (h)x0∥2 + (AN (h)x0)T
∑
j∈J qjuj + 1

2 ∥
∑
j∈J qjuj∥2,

where
1
2
∥
∑
j∈J

qjuj∥2 =
1
2
<
∑
i∈J
qiui ,

∑
j∈J

qjuj > =
1
2

∑
i∈J

∑
j∈J

qTi qjuiuj .

If we set
(Q = qj , j ∈ J),

So we have

1
2
∥
∑
j∈J

qjuj∥2 =
1
2
< QuN ,QuN > =

1
2

(uN )TQTQuN =
1
2
∥QuN ∥2 ≥ 0.
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We also set
pj = qTj A

N (h)x0, j ∈ J.

Then we get

1
2
∥xN ∥2 =

1
2

(uN )TQTQuN +
∑
j∈J

pjuj +
1
2
∥AN (h)x0∥2. (13)

Using the formula (12) and (13), the objective function (9) is written as
follows :

F(uN ) =
1
2
α ∥xN ∥2 + aT xN =

1
2
α(uN )TQTQuN +

∑
j∈J

αpjuj

+
1
2
α∥AN (h)x0∥2 +

∑
j∈J

aT qjuj + aTAN (h)x0,

F(uN ) =
1
2
α (uN )TQTQuN +

∑
j∈J

(aT qj +αpj)uj +
1
2
α ∥AN (h)x0∥2 + aTAN (h)x0,

F(uN ) = 1
2α (uN )TQTQuN +

∑
j∈J (a+αAN (h)x0)T qjuj

+
1
2
α ∥AN (h)x0∥2 + aTAN (h)x0.

If we set
D =QTQ ≥ 0, cN = (cj , j ∈ J), with cj = (a+αAN (h)x0)T qj ,

K =
1
2
α∥AN (h)x0∥2 + aTAN (h)x0,

then the discretized problem (P’) is written as follows :

F(uN ) =
1
2
α(uN )TDuN + (cN )T uN +K →min,

−L ≤ uj ≤ L, j ∈ J = {0,1, ...,N − 1}. (14)

4.6 Simple shooting method

The simple shooting method is one of the indirect methods used to solve ordi-
nary differential equations (ODEs) by converting them into boundary value problems
(BVPs), using initial values that satisfy the boundary conditions. It’s based on Pontrya-
gin maximum principle. It makes the problem more tractable and allows for a simpler
implementation, but may require a larger number of intervals to achieve a desired
level of accuracy[16,27,29].

The general procedure of the shooting method :

1. Guess a set of control inputs that are practicable and sufficiently close to the
optimal solution.

2. Integrate the differential equations forward in time from the initial state using
the guessed control inputs.
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3. Check whether the final state achieved by the integration matches the desired
final state.

4. Adjust the guessed control inputs and repeat steps 2−3 until a satisfactory solu-
tion is found.

For illustration, we consider the following optimal control problem :

J(u) =
α
2
∥x(t1)∥2 + cT x(t1) +K →min, (1)

ẋ = Ax+ bu + r, x(0) = x0, (2)

u(t) ∈U = [−L,L], t ∈ T = [0, t1]. (3)

The optimal control u(t) verifies :

H(x(t),ψ(t),u(t)) = max
v∈U

H(x(t),ψ(t),v),

where

ψ̇(t) = −ATψ(t), ψ(t1) = −(αx(t1) + c), (4)

and
H(x(t),ψ(t),u(t)) = ψT (t)[Ax(t) +Bu(t) + r(t)].

Hence, in order to find the optimal control u0, we will have to solve a differential sys-
tem of 2n equations with (2n+ 1) unknowns (u0,x0,ψ0) at two boundaries : t = t0 = 0
and t = t1, where we suppose that the disturbance function is null : r(t) = 0, t ∈ T .

From the equation (4), if we can express the extremal control u as a function of
x and ψ, i.e, u(t) = u(t,x,ψ), then we get a two boundary value problem of 2n equa-
tions with 2n unknowns. This problem is difficult to solve, since it is not a Cauchy’s
problem.To avoid this difficulty, we set the following Cauchy’s problem :

ẋ(t) = Ax(t) + bu(t,x,ψ), x(0) = x0;

ψ̇(t) = −ATψ(t), ψ(0) = ψ0.

We have
ψ(t) = e−A

T tψ0,

Hence, we have
ψ̇(t) = −AT e−A

T tψ0 = −ATψ(t), t ∈ T ,

where ψ0 is a parameter representing the initial condition of ψ at t = 0; it must be
found such as the trajectories ψ(t,ψ0) and x(t,ψ0) verify the final condition :

ψ(t1,ψ
0) = −(αx(t1,ψ

0) + c),

i.e,
ψ(t1,ψ

0) +αx(t1,ψ
0) + c = 0.
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The Cauchy’s formula allows to write :

x(t1) = eAt1x0 +
∫ t1

0
eA(t1−t)bu(t)dt.

According to the Maximum Principle, we get :

u(t) = L sign∆(t) = L signψT (t,ψ0)b = Lδ(t,ψ0),

with δ(t,ψ0) = signψT (t,ψ0)b,
and we deduce that

x(t1) = x(t1,ψ
0) = eAt1x0 +L

∫ t1

0
eA(t1−t)bδ(t,ψ0)dt.

Thus, we must have :

ψ(t1,ψ
0) = e−A

T t1ψ0 = −(αx(t1,ψ
0) + c).

In order to solve this equation, we set ψ0 = s as a free parameter, so we write :

x(t1, s) = eAt1x0 +L
∫ t1

0
eA(t1−t)bδ(t, s)dt,

ψ(t1, s) = e−A
T t1s = −(αx(t1, s) + c).

We define the shooting function :

F(s) = ψ(t1, s)+αx(t1, s)+c, (5)

where

s =



s1
s2
...
sj
...
sn


, F(s) =



f1(s)
f2(s)
...

fi(s)
...

fn(s)


, JF(s) =

(
∂fi(s)
∂sj

, 1 ≤ i, j ≤ n
)
.

By replacing ψ(t1), s) and x(t1), s) by their values, we obtain :

F(s) = e−A
T t1s+αeAt1x0 +αL

∫ t1

0
eA(t1−t)bδ(t, s)dt.

The optimal solution u0(t) of the problem (1) − (3) is deduced from (4), with ψ0 = s∗

such as :

F(s∗) = 0. (6)

We apply the Newton’s method to solve (6). For this, if sk is an approximation of order
k, then the approximation of order (k + 1) is written as follows :

sk+1 = sk − JF−1(sk)F(sk), k = 0,1,2, ... (7)
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4.7 Example

We apply the simple shooting method to the problem (Pα) :

J(u) =
1
2
α∥x(t1)∥2 + cT x(t1)→min,

ẋ(t) = Ax(t) + bu(t), x(0) = x0,

−L ≤ u(t) ≤ L, t ∈ T = [0, t1]

where α = 1, c = (c1, c2, c3)T = (−18,−4, −14
3 ),

A =

 0 1 0
0 0 1
0 0 0

 , b =

 0
0
1

 , x0 =

 0
0
0

 ,L = 1, t1 = 6.

The Hamiltonian is :

H(x,ψ,u) = ψT ẋ = ψ1x2 +ψ2x3 +ψ3u.

The boundary value problem is written as follows :
ẋ(t) = Ax(t) + bu(t), x(0) = x0,

ψ̇(t) = −ATψ(t), ψ(t1) = −(αx(t1) + c),

where

H(x(t),ψ(t),u(t)) = max
v∈[−L,L]

H(x(t),ψ(t),v)⇒ ψ3(t)u(t) = max
v∈[−L,L]

ψ3(t)v⇒ u(t) = Lsignψ3(t), t ∈ T .

So we obtain the differential system of 6 equations and 6 unknowns at two boundary
value t = t0 = 0 and t = t1 = 6 :

ẋ(t) = Ax(t) +Lbsignψ3(t), x(0) = x0,

ψ̇(t) = −ATψ(t), ψ(t1) = −(αx(t1) + c).

We set the Cauchy’s problem :
ẋ(t) = Ax(t) +Lbsignψ3(t), x(0) = x0 (1)

ψ̇(t) = −ATψ(t), ψ(0) = ψ0 (2)

In this problem of Cauchy, the solutions x(t) and ψ(t) depend on the parameter ψ0, i.e,

x(t) = x(t,ψ0), ψ(t) = ψ(t,ψ0), △ (t) =△ (t,ψ0) = ψ3(t,ψ0).

We note that

sign △ (t,ψ0) = δ(t,ψ0) =


1, if δ(t,ψ0) > 0,

−1, if δ(t,ψ0) < 0.
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We get from (2) :
ψ(t,ψ0) = e−A

T tψ0.

Indeed, we have :

ψ̇(t,ψ0) = −AT e−A
T tψ0 = −ATψ(t,ψ0), ψ(0,ψ0) = ψ0.

We deduce :
ψ(t1,ψ

0) = e−A
T t1ψ0,

x(t1,ψ
0) = eAt1x0 +L

∫ t1

0
eA(t1−t)bδ(t,ψ0)dt.

If we set ψ0 = s, then we get the shooting function :

F(s) = ψ(t1, s) +αx(t1, s) + c,

F(s) = e−A
T t1s+αeAt1x0 + c+αL

∫ t1

0
eA(t1−t)bδ(t, s)dt.

Since δ(t, s) = ±1, then Jδ(t, s) = 0 and we get

JF(s) = e−A
T t1 + 0 = e−6AT = (e−6A)T .

We have
eAt = I3 + tA+

1
2
t2A2 (because A3 = 0), [eAt]−1 = e−At.

Thus,

eAt =

 1 t 1
2t

2

0 1 t
0 0 1

 , e−At = eA(−t) =

 1 −t 1
2t

2

0 1 −t
0 0 1

 .
Then we obtain

e−At1 =

 1 −t1 1
2t

2
1

0 1 −t1
0 0 1

 =

 1 −6 18
0 1 −6
0 0 1

 ,
So we get

e−A
T t1 = (e−6A)T =

 1 0 0
−6 1 0
18 −6 1

 ,
JF(s) = const =

 1 0 0
−6 1 0
18 −6 1

 = e−6AT ,

JF−1(s) = const =

 1 0 0
6 1 0

18 6 1

 .
We have the formula :

sk+1 = sk − JF−1(sk)F(sk),
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where

JF−1(sk) =

 1 0 0
6 1 0

18 6 1

 and F(sk) = e−6AT sk +
∫ 6

0
eA(6−t)bδ(t, sk)dt + c,

with

eA(6−t)b =

 1 6− t 1
2(6− t)2

0 1 6− t
0 0 1


 0

0
1

 =


1
2(6− t)2

−t + 6
1

 ,

e−6AT sk =

 1 0 0
−6 1 0
18 −6 1



sk1
sk2
sk3

 =


sk1

−6sk1 + sk2
18sk1 − 6sk2 + sk3

 ,

δ(t, sk) = signψ3(t, sk), F =

 F1
F2
F3

 .
Then we have

F(sk) =


sk1

−6sk1 + sk2
18sk1 − 6sk2 + sk3

+
∫ 6

0


1
2(6− t)2

−t + 6
1

signψ3(t, sk) +

 c1
c2
c3

 ,
with

F1(sk) = sk1 +
1
2

∫ 6

0
(6− t)2signψ3(t, sk)dt + c1;

F2(sk) = −6sk1 + sk2 +
∫ 6

0
(−t + 6)signψ3(t, sk)dt + c2;

F3(sk) = 18sk1 − 6sk2 + sk3 +
∫ 6

0
signψ3(t, sk)dt + c3.

Remark 1

We obtain ψ3(t, sk) by solving the following conjugate system of Cauchy :

ψ̇ =
−∂H
∂x

= −ATψ, ψ(0) = sk⇒ ψ(t, sk) = e−A
T tsk ,

i.e,

ψ(t, sk) =


ψ1(t, sk)
ψ2(t, sk)
ψ3(t, sk)

 = (e−At)T sk =

 1 0 0
−t 1 0
1
2t

2 −t 1



sk1
sk2
sk3

 =


sk1

−sk1t + sk2
1
2s
k
1t

2 − sk2t + sk3


Hence, we get

ψ3(t, sk) =
1
2
sk1t

2 − sk2t + sk3,

signψ3(t, sk) = sign(
1
2
sk1t

2 − sk2t + sk3)
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We obtain the following formula :

F(sk) =



F1(sk) = sk1 + 1
2

∫ 6
0

(t − 6)2sign(1
2s
k
1t

2 − sk2t + sk3)dt + c1,

F2(sk) = −6sk1 + sk2 +
∫ 6

0
(−t + 6)sign(1

2s
k
1t

2 − sk2t + sk3)dt + c2,

F1(sk) = 18sk1 − 6sk2 + sk3 +
∫ 6

0
sign(1

2s
k
1t

2 − sk2t + sk3)dt + c3.

So we get
sk+1 = sk − JF−1(sk)F(sk)

sk+1 = sk −

 1 0 0
6 1 0

18 6 1



F1(sk)
F2(sk)
F3(sk)

 ,
sk+1 = sk −


F1(sk)

6F1(sk) +F2(sk)
18F1(sk) + 6F2(sk) +F3(sk)

 .
Remark2

We use the following algorithm to find the sign of ψ3(t, sk) on the interval [0,6] :
s0 = [18,112,1058/3]

coefficients = [-18*s0(1), -4*s0(2), -14/3*s0(3)];
x = 0:0.01:6;
y = polyval(coefficients, x);
signes = sign(y);
indices = find(diff(sign(y)) = 0);
pointsdechangement = x(indices);
disp(pointsdechangement);
plot(x, signes);
intervals = [];
signeprecedent = sign(y(1));
intervaldebut = x(1);
for i = 2:length(x)
signeactuel = sign(y(i));

if signeactuel = signeprecedent
intervalfin = x(i-1);
intervals = [intervals; intervaldebut, intervalfin, signeprecedent];
intervaldebut = x(i);
signeprecedent = signeactuel;
end end intervalfin = x(end);
intervals = [intervals; intervaldebut, intervalfin, signeprecedent];
disp(intervals);

We calculate the Newton’s iterations with Matlab in order to calculate
ψ0 = s∗ such as F(s∗) = 0, which corresponds to the optimal control u0(t), t ∈ [0,6]:
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u0(t) =


1, if t ∈ [0,2[;

−1, if t ∈ [2,4[;

1, if t ∈ [4,6],

with
J(u0) =

−1576
9

< 0 (≃ −175,111111).

4.8 conclusion

In this chapter,we have presented the Newton’s method for solving equations, then
we have explored different norm minimization techniques commonly used in optimal
control problems. For illustration, we have solved a numerical example via the Simple
Shooting method.
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General conclusion

In conclusion, norm minimization stands out as a fundamental aspect of optimal
control problems, with its wide-ranging applications spanning numerous fields. The
endeavor to minimize norms necessitates the utilization of various optimization tech-
niques, including both convex and nonconvex optimization. Each approach exhibits
its own strengths and weaknesses, and the selection of the most suitable method de-
pends on the nature and complexity of the specific problem.

Convex optimization, in particular, holds a preference in many cases due to its fa-
vorable mathematical properties. The guarantee of optimality in the solution and the
efficiency of the algorithm make convex optimization an attractive choice. It provides
a solid framework for norm minimization problems and yields efficient and effective
control strategies.

The primary objective of this dissertation was to explore and determine efficient
ways to minimize the norms of terminal states, thereby facilitating the achievement of
desired objectives in control problems. By delving into the existing literature, analyz-
ing various techniques, and investigating optimization methods, this research aimed
to contribute to the development of practical and effective approaches for norm mini-
mization in optimal control.

Throughout the dissertation, we have discussed the mathematical foundations of
norm minimization, reviewed different optimization techniques, and examined their
applicability to optimal control problems. By critically evaluating the strengths and
weaknesses of these methods, we aimed to identify efficient and effective ways to min-
imize norms while considering the complexities and constraints associated with the
control problem.

By providing valuable insights into norm minimization in the context of optimal
control, this research contributes to the broader field of control theory and its related
disciplines. The findings of this dissertation can assist researchers, practitioners, and
engineers in selecting appropriate methods and designing control strategies that ef-
fectively minimize norms, leading to improved system performance, reduced energy
consumption, and enhanced robustness in a variety of applications.
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Agzul ⴰⴳⵣⵓⵍ 

Iswi ugemmir ayi d tazrewt n tarrayin n ferru i-ussaddey n ulugen deg yegna n weswaḍ 

akkay. Di tazwara, nsaher-d s tewzel tiẓri n weswaḍ akkay aked umsihel asnuzmir afesnu. 

Sakin, numa igna imzirgen-isnuzmiren s tmariwin u nemmel-d snat n tarrayin tigejdayin : 

asefraray abruyan s yeswaḍen n udemmer aked tarrayt n walday aḥerfi. Iswi n umahil ayi d 

tiwsi ɣer tigzi talqayant n titiknitin n ussaddey n ulugen deg yiwen wegnu n weswaḍ akkay. 

Awalen n tsura : Aswaḍ akkay, assaddey n ulugen, tarrayt n usefraray abruyan s 

yeswaḍen n udemmer, tarrayt n walday aḥerfi. 

  

Abstract 

This dissertation explores resolution methods for norm minimization in optimal control 

problems. It begins by introducing general concepts of optimal control, followed by an 

overview on convex quadratic programming. Subsequently, it focuses on linear quadratic 

problems with constraints and then delves into two principle methods: partial discretization 

with impulsive controls and the simple shooting method. The ultimate goal of this research is 

to contribute to a deeper understanding of norm minimization techniques in an optimal control 

problem. 

Keywords : Optimal control, norm minimization, method of partial discretization with 

impulsive controls,  simple shooting method. 

 

 ملخص

ي مشاكل التحكم المثلى. يبدأ بتقديم مفاهيم عامة للتحكم 
تستكشف هذه الأطروحة طرق الحل لتقليل المعايير ف 

بيعية  مجة الير بيعية الخطية مع القيود ثم الأمثل، متبوعا بنظرة عامة على الير المحدبة. بعد ذلك، يركز على المشكلات الير

ي من 
ي مع عناصر التحكم الاندفاعية وطريقة التصوير البسيطة. الهدف النهائ 

: التميير  الجزئ  ي طريقتير  أساسيتير 
يتعمق ف 

ي مشكلة التحكم المثلى
ي فهم أعمق لتقنيات تقليل المعايير ف 

 هذا البحث هو المساهمة ف 

. 

، طريقة التصوير البسيطة . ي
، طريقة التميير  الجزئ   الكلمات الرئيسية :التحكم الأمثل، تقليل المعايير

 

Résumé 

Ce mémoire examine les méthodes de résolution pour la minimisation de la norme dans 

les problèmes de contrôle optimal. Il commence par présenter des généralités sur le contrôle 

optimal, suivi d'un aperçu sur la programmation quadratique convexe. Ensuite, il aborde les 

problèmes linéaires quadratiques avec contraintes, avant de se pencher sur deux méthodes 

principales : la discrétisation partielle avec des contrôles impulsionnels et la méthode de tir 

simple. L'objectif ultime de ce travail est de contribuer à une meilleure compréhension des 

techniques de minimisation de la norme dans un problème de contrôle optimal. 

Mots clés : Contrôle optimal, minimisation de  la norme, méthode de discrétisation 

partielle avec des contrôles impulsionnels, méthode de tir simple. 
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