REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE ABDERRAHMANE MIRA BEJAIA FACULTE DE TECHNOLOGIE DEPARTEMENT DE GENIE MECANIQUE

MEMOIRE

Présenté pour l'obtention du diplôme de

MASTER

Filière : Génie Mécanique

Spécialité : Génie des Matériaux

Par :

KHENNICHE Noreddine

Thème

Etude de l'effet de la concentration des contraintes sur la tenue en fatigue des pièces mécaniques

Soutenu le 04/07/2023 devant le jury composé de :

Président : Dr A. IDIR

Rapporteur : Dr S. BOUZIDI

Examinateur : Dr M. METHIA

Année Universitaire 2022-2023

Table des matières

Introduction générale1	
CHAPITRE 1	
Généralités sur la fatigue2	
I Fatigue des matériaux3	
I. 1 Fatigue	
I. 1. 1 Aperçue historique	
I. 1. 2 Introduction4	
I. 2 Diagrammes représentatifs6	
I. 2. 1 Courbe de Wöhler6	
I. 2. 2 Courbes d'équiprobabilité de rupture7	
I. 2. 3 Diagramme de Haigh8	
I. 2. 4 Diagramme de Goodman10	
I. 2. 5 Diagramme de Ros10	
I. 2. 6 Diagramme de Moore, Kommers et Jaspers11	
I. 3 Représentation mathématique de la courbe Wöhler12	
I. 4 Phase de propagation d'une fissure en fatigue13	
I. 4. 1 L'initiation (amorçage) de la fissure : (phase A dans la figure)13	
I. 4. 2 La propagation stable : (phase B dans la figure)13	
I. 4. 3 La propagation rapide : (phase C dans la figure)13	
I. 5 Facteurs de l'endurance des pièces14	
I. 5. 1 Facteurs métallurgiques14	
I. 5. 2 Facteurs géométriques14	
I. 5. 3 Facteurs de surfaces14	
I. 5. 3 Facteurs de l'environnement15	
CHAPITRE 2	
Méthodes de l'estimation de la durée de vie en fatigue16	
Introduction17	
II . 1 Méthodes de l'estimation de la durée de vie de la fatigue17	
II.1.1 Approche en contrainte	

II . 1. 2 Approche en déformation	17
II . 1. 3 Approche de la contrainte locale	
II . 2 Fatigue uni-axiale	
II . 2. 1 Estimation de la durée vie en fatigue sous chargement d'amplitude constante	
II . 2. 2 Formule analytique de la courbe de Wöhler	19
${f I}$. 2. 3. Estimation de la durée de vie en fatigue sous chargement d'amplitude variable \ldots	20
II . 3. Calcul du dommage	21
II . 3. 1. Cumul de dommage	21
II . 3. 2. Loi de Miner	21
II . 3. 3. Loi de Lemaitre-chaboche	22
II . 3. 4 Comptages Rainflow	23
II . 4 Méthode Wöhler	23
II . 5 Fatigue multiaxiale	24
Conclusion	26
Chapitre 3	27
Simulation numérique : Plaque trouée soumise à la traction	
Introduction	28
III.1 Etude statique	28
III.1. 1 Plaque trouée soumise à la traction	28
III.1. 2 Solution analytique	28
III. 1. 3 Solution numérqiue par la méthode des éléments finis	29
III. 1. 4 Conditions aux limites	
III. 1. 5 Résultats obtenus	
III. 2 Etude de fatigue	37
III. 2 .1 Résultats de l'analyse de fatigue	37
Conclusion générale	43

Liste des abréviations

σ_m	Contrainte moyenne			
E	Module d'élasticité ou module d'Young			
\mathbf{F}	Force			
Ν	Nombre de cycles à rupture			
D	Endommagement			
Re	Limite d'élasticité			
Rm	Résistance à la traction			
σa	Contrainte appliquée			
σmax	Contrainte maximale			
σ min	Contrainte minimale			
σ	Limite de fatigue			
A%	Allongement après rupture en %.			
σ_0	Contrainte nominale			
К.	Coefficient de concentration de contrainte			

Liste des figures

Figure. I.1. (a) : Axes de wagons de chemin de fer
Figure. I.1. (b) : Courbes de Wöhler4
Figure. I.2 : Courbe montre l'amplitude de contrainte5
Figure I.3 : Allure de la courbe de Wöhler7
Figure I. 4 : Courbes d'équiprobabilité de rupture (résultats théoriques)7
Figure I.5 : Diagramme de Haigh (résultats théoriques)8
Figure I. 6 : Diagramme de Haigh9
Figure I. 7: Diagramme de Goodman10
Figure I. 8 : Diagramme de Rôs11
Figure I. 9 : Diagramme de Moore- Kommers- Jaspers11
Figure I.10 : Représentation schématique de la propagation d'une fissure14
Figure. I .1 : Organigramme simplifié d'une étude en fatigue avec une approche en Contrainte utilisant
une loi de cumul linéaire25
Figure. III.1 : Les dimensions de la plaque29
Figure. III. 2 : Types d'éléments avec le logiciel de simulation
Figure. III.3 : Modèle CAO d'une plaque carre trouée r =10mm31
Figure. III. 4 : Condition aux limites d'une plaque en traction
Figure. III.5 : Maillage adapté
Figure. III. 6 : Distribution de la contrainte numérique ($\sigma_a = 80 \text{ Mpa}$, r = 5mm)33
Figure. III. 7 : Distribution de la contrainte numérique ($\sigma_a = 80 \text{ Mpa}$, r = 10mm)34
Figure. III. 8 : Distribution de la contrainte numérique ($\sigma_a = 80 \text{ Mpa}$, r = 15mm)35
Figure. III. 9 : Distribution l'endommagement ($\sigma_a = 80$ MPa,r = 5mm, n = 5*10 ⁴ cycles)37
Figure. III. 10 : Distribution de la durée de vie ($\sigma_a = 80$ MPa, r = 5mm, n = 5*10 ⁴ cycles)37
Figure. III. 11 : Distribution l'endommagement ($\sigma_a = 80$ MPa,r = 10mm, n = 5*10 ⁴ cycles)38
Figure. III. 12 : Distribution de la durée de vie ($\sigma_a = 80$ MPa, r = 10mm, n = 5*10 ⁴ cycles)39

Figure. III. 13 : Distribution l'endommagement ($\sigma_a = 80$ MPa,r = 15mm, n = 5*10 ⁴ cycles)40
Figure. III. 14 : Distribution de la durée de vie ($\sigma_a = 80$ MPa, r = 15mm, n = 5*10 ⁴ cycles)40

Liste des tableaux

Tableau. III.1 : Propriétés du matériau AISI 1020	30
Tableau. III. 2 : Valeur des contraintes (r=5mm)	35
Tableau. III. 3 : Valeur de des contraintes (r=10mm)	.35
Tableau. III. 4 : Valeur de des contraintes (r=15mm)	.36
Tableau. III. 5 : Valeur de D^{Max} , D^{Min} , N^{Max} , N^{Min} pour r=5mm, n = 5*10 ⁴	38
Tableau. III. 6 : Valeur de D^{Max} , D^{Min} , N^{Max} , N^{Min} pour r=5mm, n = 5*10 ⁴	39
Tableau . III. 7 : Valeur de D^{Max} , D^{Min} , N^{Max} , N^{Min} pour r=5mm, n = 5*10 ⁴	41

Introduction Générale

Introduction générale

L'étude de l'effet de concentration des contraintes sur la tenue en fatigue des pièces mécaniques est un domaine important de l'ingénierie des matériaux et des structures. Lorsqu'une pièce est soumise à des chargements répétés ou cycliques, des fissures peuvent se former et se propager à partir de zones où les contraintes sont concentrées. Ces concentrations de contraintes peuvent être dues à des géométries particulières, telles que des rainures, des trous, des arêtes vives ou des changements brusques de section.

L'effet de concentration des contraintes est un phénomène complexe qui peut considérablement influencer la durée de vie en fatigue d'une pièce mécanique. Lorsque les contraintes sont concentrées, la probabilité de formation de fissures est plus élevée, ce qui peut conduire à une défaillance prématurée de la pièce. Par conséquent, il est crucial de comprendre et de quantifier l'effet de ces concentrations de contraintes sur la tenue en fatigue.

L'étude de l'effet de concentration des contraintes implique généralement l'utilisation de méthodes expérimentales et numériques. Les méthodes expérimentales comprennent des essais de fatigue sur des échantillons contenant des concentrations de contraintes, tels que des éprouvettes avec des entailles ou des perforations. Ces essais permettent de mesurer la durée de vie en fatigue et de quantifier l'influence de la concentration de contraintes sur les performances de la pièce.

Les méthodes numériques, telles que la méthode des éléments finis, sont largement utilisées pour prédire le comportement en fatigue des pièces soumises à des concentrations de contraintes. Ces méthodes permettent de modéliser de manière précise les géométries complexes et les distributions de contraintes, et de prédire la propagation des fissures dans la pièce.

L'étude de l'effet de concentration des contraintes revêt une importance capitale dans de nombreux domaines de l'ingénierie, tels que l'aéronautique, l'automobile, l'industrie pétrolière et gazière, où la fiabilité et la durabilité des composants sont essentielles. Une meilleure compréhension de cet effet permet de concevoir des pièces plus résistantes à la fatigue et d'améliorer leur durée de vie, ce qui contribue à la sécurité et à l'efficacité des systèmes mécaniques.

CHAPITRE 1 Généralités sur la fatigue

I Fatigue des matériaux

I. 1 fatigue

I. 1. 1 Aperçue historique

Des ingénieurs allemands sont les premier qui mettent en évidence et étudient la fatigue Wöhler qui analysait les nombreuses ruptures d'axes de wagons de chemin de fer figurent 1.8 (a). Il montra grâce à des essais que le nombre de cycles jusqu'à la rupture d'un arbre dépendait de la contrainte maximale dans l'axe (contrainte de flexion variant entre plus et moins l'amplitude maximale à chaque tour de roue) et des détails géométriques de l'axe.

Wöhler fut ainsi le premier à établir des courbes de fatigue qui aujourd'hui portent son nom. La figure 1.8 (b) donne un exemple de ces courbes telles que présentées par Wöhler. Elle montre le nombre de cycles avant rupture pour des aciers en fonction de la contrainte alternée appliquée aux échantillons. Ces résultats montrent la forte diminution de la durée de vie (du nombre de cycles) causée par la présence d'une concentration de contrainte dans l'éprouvette. On reviendra sur la courbe de Wöhler et sur l'effet des concentrations de contrainte [1].

Figure. I.1. (a) Axes de wagons de chemin de fer [1]

I. 1. 2 Introduction

Sous chargement d'amplitude constante, il est généralement admis que les matériaux possèdent une limite de fatigue, c'est-à-dire qu'il existe un niveau de contrainte en dessous duquel aucun endommagement macroscopique de fatigue n'apparaitra au bout d'un nombre de cycles très grand (infini en théorie). Différentes définitions physiques de la limite de fatigue existent. Dans certains cas, elle correspond à la contrainte minimale permettant l'amorçage d'une fissure à l'échelle du grain, celle-ci étant supposée se propager sous le même niveau de chargement jusqu'à rupture complète de la structure. Dans d'autres cas la limite de fatigue est définie comme une limite de non propagation d'une fissure amorcée depuis un défaut sous chargement cyclique. Cette définition fait suite à des observations microscopiques ayant permis de mettre en évidence la présence de fissures de fatigue amorcées dans certains grains situes à la surface d'une éprouvette et bloquées contre des barrières microstructurales pour des niveaux de contraintes inferieures à la limite d'endurance. Ce dernier cas est plus délicat à traiter dans la mesure où l'estimation de durée de vie à l'amorçage d'une fissure macroscopique fait intervenir de nombreux paramètres inhérents à la microstructure [2].

I. 1. 3 Définition d'un phénomène de fatigue

On entend par fatigue ou endommagement par fatigue la modification des propriétés du matériau suite à l'application de cycles d'efforts, dont la répétition peut conduire à la rupture des pièces ou fatigue des matériaux : détérioration progressive des matériaux sans déformation apparente, aboutissant à une rupture. La fatigue d'un matériau résulte de l'application répétée de contraintes.

La rupture par fatigue apparaît de façon soudaine et imprévisible, contrairement à l'usure, à la déformation ou à la corrosion, qu'il est possible de détecter bien avant la rupture. L'étude de la fatigue des matériaux est particulièrement importante ; elle permet de déterminer la résistance mécanique d'éléments de machines et de structures soumises à des contraintes périodiques ou à des vibrations [1]. Les contraintes seront définies par l'amplitude maximale atteinte au cours d'un cycle et σ par la valeur moyenne de la contrainte σ_m , et par le rapport de la contrainte minimale à la contrainte maximale :

$$R = \frac{\sigma_{min}}{\sigma_{max}}$$
(1.1)

On est parfois conduit à distinguer la composante alternative σ_a de la composante statique σ_m . Ainsi, selon des valeurs relatives de ces deux composantes on distingue les essais soussollicitation :

Figure. I. 2 Courbe montrant l'amplitude de contrainte [2]

I. 2 Diagrammes représentatifs

Il existe un certain nombre de représentation possible des résultats obtenus au cours d'essais de fatigue :

- Courbes de Wöhler.
- Courbes d'équiprobabilité de rupture.
- Diagramme de Haigh.
- Diagramme de Goodman.
- Diagramme de Ros.
- Diagramme de Moore, Kommers et Jaspers.

I. 2. 1 Courbe de Wöhler

Cette courbe représente la variation d'une des contraintes dynamiques précitées en fonction du nombre de cycles à rupture (reporte sur échelle logarithmique).

Cette courbe partage le plan de coordonnées en trois domaines :

- 1- Domaine de fatigue oligocyclique, ruptures surviennent nombre cycle $N \le 10^5$ cycles.
- 2- Domaine d'endurance limitée (N>10⁵ cycles) les ruptures surviennent systématiquement après un nombre de cycles croissants avec la décroissance des contraintes.
- 3- Domaine d'endurance illimitée où les ruptures ne se produisent pas avant un nombrede cycles supérieur à la durée de vie envisagée de la pièce.

Entre les deux derniers domaines la courbe de *Wöhler* présente un coude plus ou moins prononcé compris entre 10^6 et 10^7 cycles.

Figure I.3. Allure de la courbe de Wöhler [3]

I. 2. 2 Courbes d'équiprobabilité de rupture

La courbe de *Wöhler* dont nous venons de parler étant une courbe moyenne, son utilisationpeut s'avérer délicate du fait que les valeurs relevées indiquent seulement que la pièce a autant de chances de se rompe que de ne pas se rompe ».

Les courbes d'équiprobabilité de rupture, dont la courbe de Wöhler constitue un cas particulier (p=50% de rupture) sont alors tracées en sous trayant à la valeur moyenne une certaine valeur fonction de la probabilité de rupture recherchée [3].

I. 2. 3 Diagramme de Haigh

Ce diagramme représente la variation de l'amplitude de la contrainte σ_a en fonction de lacontrainte moyenne σ_m , pour un nombre de cycles à rupture [5].

Figure I.5. Diagramme de Haigh (résultats théoriques) [5].

Figure I. 6 Diagramme de Haigh [5].

I. 2. 4 Diagramme de Goodman

Ce diagramme représente la variation des contraintes maximales σ_{max} et minimales σ_{min} enfonction de la contrainte moyenne figure (I.7) [5].

Figure I. 7 Diagramme de Goodman [5]

I. 2. 5 Diagramme de Ros

Essentiellement utilisé dans les pays anglo-saxon ce diagramme représente la variation de la contrainte maximale σ_{max} en fonction de la contrainte minimale σ_{min} figure (I.15) [5].

Figure I. 8 Diagramme de Rôs [5]

I. 2. 6 Diagramme de Moore, Kommers et Jaspers

Relativement peu connu, essentiellement utilisé dans les pays germaniques, ce diagrammeprésente la variation de la contrainte maximale σ_{max} en fonction du rapport des contraintes $R = \sigma_{min}/\sigma_{max}$ [5].

Figure I. 9 Diagramme de Moore- Kommers- Jaspers [5]

I. 3 Représentation mathématique de la courbe Wöhler

La courbe de Wöhler est la plus ancienne des représentations mathématiques des courbes S-N :

 $\log(N) = a - b.S$

Où N est le nombre de cycles à rupture, S l'amplitude de la contrainte appliquée, a et b des constantes.

- En 1910, Basquin a proposé :

$$\log(N) = a - b \log(S)$$

que l'on peut aussi écrire : $S = (A/C)^{c}$

- Dés 1914, *Stromeyer*, pour prendre en compte l'asymptote horizontale, introduit l'équation suivante :

$$\log(N) = a - b \cdot \log(S - E1)$$

Cette équation est plus réaliste que celle de Wöhler et Basquin.

En posant A= e^a et C= 1/b l'équation de *Stromeyer* peut encore s'écrire :

$$S = E1 + \left(\frac{A}{N}\right)$$

- En 1924, Palmgreen propose

$$S = E1 + \left(\frac{A}{N+B}\right)^C$$

- En 1955, Corson introduit l'équation :

$$N = \frac{A}{(S-E1)d^{(S-E1)}}$$

où A, E_1 et d sont des constantes.

En posant c = log(d), on obtient :

$$N = \frac{A.e^{-c(s-E_1)}}{(s-E_1)}$$

- Weibull propose :

$$Log(N+B)=a-b.log(\frac{S-E1}{Rm-E1})$$

Où a, b, B et E1 sont des constantes [06].

I. 4 Phase de propagation d'une fissure en fatigue

L'évolution d'une fissure de fatigue peut être divisée en trois phases.

I. 4. 1 L'initiation (amorçage) de la fissure : (phase A dans la figure)

Est l'influencée principalement par la différence de contraintes, par le facteur de concentration des contraintes (facteur « normalisant » la géométrie du détail), par la microstructure du matériau, par la contrainte moyenne et par l'environnement, on admet que la phase d'initiation est terminée lorsque la fissure atteint une certaine dimension, souvent prise entre 0,1 mm et 0,25 mm. Pendant longtemps la dimension observable de la fissure minimale a été de 0,1mm.

I. 4. 2 La propagation stable : (phase B dans la figure)

Elle est influencée principalement par la différence de contraintes $\Delta \sigma$, par la géométrie du détail (pointe de la fissure), et par la géométrie de la fissure. Alors que la microstructure dumatériau la contrainte moyenne et l'environnement ont une influence moindre.

I. 4. 3 La propagation rapide : (phase C dans la figure)

Qui conduit à la rupture de l'élément. Le nombre de cycles est ici très faible et la propagation très rapide. Mentionnons encore que la rupture fragile peut intervenir à n'importequel moment, alors qu'une rupture ductile à lieu après la phase de propagation rapide. Ce qui ne peut pas être décrite par la mécanique de la rupture linéaire élastique traditionnelle.

Figure I.10. Représentation schématique de la propagation d'une fissure [7]

I. 5 Facteurs de l'endurance des pièces

I. 5. 1 Facteurs métallurgiques

On peut classer dans cette catégorie tous les facteurs liés à la nature du métal qui constitue la pièce (composition chimique et structure cristallographique), à son élaboration et à sa mise en forme (inclusions, défauts...), ainsi qu'aux traitements thermiques (structure métallographique et caractéristiques mécaniques) subis par les pièces [7].

I. 5. 2 Facteurs géométriques

L'influence de ces facteurs intervient par la dimension des pièces (effet d'échelle) et surtout par leurs formes (effet d'entaille et coefficient de concentration des contraintes) [7].

I. 5. 3 Facteurs de surfaces

Les fissures de fatigue prennent le plus souvent naissance dans les couches superficielles. Il convient donc, pour améliorer l'endurance des pièces, de relever dans la mesure du possiblecelle des couches superficielles, on peut y arriver en jouant soit sur la nature du métal, soit sur la résistance des couches superficielles par des traitements de durcissement et le développement de précontraintes [7].

I. 5. 3 Facteurs de l'environnement

Influence de la température : La limite d'élastique et la résistance à la traction diminuante lorsque la température s'élève, il en sera de même de la limite d'endurance [7].

Fatigue sous corrosion : On rencontre très fréquemment la fatigue-corrosion sur des pièces travaillant dans des conditions assez peut agressives en apparence, à titre d'exemple, les eaux saumâtres ou salées, les divers milieux acides [7].

CHAPITRE 2 Méthodes de l'estimation de la durée de vie en fatigue

Introduction

Un ensemble de pièces qui peuvent être effectués dans un groupe de pièces sont généralement très compliqués. Il existe une méthode de comptage de cycle standardisé pour simplifier ces histoires mécaniques. Ces méthodes de comptage n'appliquent qu'une seule variable. Le choix de cette variable dépend de la méthode de prédiction de la vie. Elle est généralement homogène à une contrainte ou à une déformation.

I. 1 Méthodes de l'estimation de la durée de vie de la fatigue [8]

Fondamentalement, deux méthodes peuvent modéliser la résistance à la fatigue du matériau. Des méthodes basées sur des contraintes et des méthodes basées sur la déformation.

I. 1. 1 Approche en contrainte

La méthode employée ici capitalise sur la corrélation entre l'amplitude du cycle de contrainte et la fréquence des ruptures. L'élasticité du matériau est supposée, pour cette approche, ce qui exclut la possibilité de déformations plastiques. Un faible niveau de contrainte est appliqué, ce qui se traduit par un plus grand nombre de cycles. Cette méthodologie est donc mieux adaptée aux scénarios impliquant un grand nombre de cycles.

Les essais de fatigue sous contrainte contrôlée sont utilisés pour modéliser la résistance à la fatigue des matériaux, la disposition de la courbe de Wöhler étant le fondement de cette méthode.

I. 1. 2 Approche en déformation

Dans cette méthode, le test de fatigue est contrôlé par la déformation, et le nombre de cycles de rupture est exprimé en fonction de l'amplitude du cycle de déformation local. On estime que la possibilité de rupture est la plus grande. Cette méthode s'adapte aux bas cycles (fatigue oligocyclique) où des déformations plastiques apparaissent.

I. 1. 3 Approche de la contrainte locale

L'approche de la contrainte locale fait référence à une méthode d'optimisation utilisée pour résoudre des problèmes de programmation mathématique avec des contraintes. Cette approche se concentre sur l'évaluation et la satisfaction des contraintes individuelles, plutôt que sur l'évaluation de la fonction objective globale.

L'idée fondamentale de l'approche de la contrainte locale est de rechercher une solution réalisable en minimisant ou en maximisant les violations de contraintes. Plutôt que d'essayer de trouver la meilleure solution globale, cette approche se concentre sur l'amélioration de la solution courante en se déplaçant dans le voisinage de cette solution.

I. 2 Fatigue uni-axiale

I. 2. 1 Estimation de la durée vie en fatigue sous chargement d'amplitude constante

Pour déterminer la durabilité d'un matériau, un test de fatigue de base consiste à appliquer des cycles de contrainte périodiques d'intensité constante à un échantillon jusqu'à ce qu'il se fracture. Ces tests sont effectués à l'aide de plusieurs amplitudes de contrainte pour établir la courbe de Wöhler, qui représente l'amplitude de contrainte sur l'axe y et la durée de vie à la fracture sur l'axe x. En utilisant cette courbe, les concepteurs peuvent prédire le nombre de cycles nécessaires pour provoquer la défaillance du matériau.

Il est également important de noter que les résultats des tests de fatigue sont statistiquement distribués et représentés sous forme de courbes qui indiquent la probabilité d'amorçage ou de défaillance. Dans la plupart des cas, la courbe de Wöhler est donnée pour une probabilité d'amorçage p = 0,5. Les dispersions observées sont une conséquence de la nature inhérente de l'endommagement par fatigue. Ces variations proviennent de différences intrinsèques aux éprouvettes ou aux pièces, qui peuvent être liées aux caractéristiques internes du matériau (microstructure, défauts, etc.), ou à la préparation des éprouvettes (usinage, etc.), à des facteurs externes tels que la charge appliquée et à l'environnement. [9]

I. 2. 2 Formule analytique de la courbe de Wöhler

La manière la plus courante de présenter les données d'essai de fatigue consiste à utiliser une courbe S-N. Ce type de graphique trace le niveau de contrainte par rapport au nombre de cycles, en utilisant une échelle logarithmique.

Établir la vie pour la sollicitation, les rapports de retenue et la fréquence. Il correspond au nombre de cycles appliqués au test jusqu'à la norme finale du plan. La fin de vie est généralement définie comme la rupture des deux parties de la structure de test.

La courbe S-N peut révéler l'existence d'une limite d'endurance. De toute évidence, il est important pour les ingénieurs pour ce niveau de restriction, car il lui a donné une contrainte de référence réaliste, et il pouvait le concevoir selon sa propre conception.

Une variété d'analyses et d'expressions ont été proposées pour représenter la courbe de Wöhler, ces équations permettent de déterminer le nombre de cycle à rupture en fonction de la contrainte.

La plus ancienne proposée par Wöhler [1870] lui-même s'écrit :

Ou a et b sont des constantes déterminées expérimentalement.

Puis, Basquin [1970] a proposé une relation de forme :

$$\log N_R = a - b - \log \sigma, \qquad \qquad \blacksquare .2$$

Soit encore :

$$N_R \sigma^b = A$$
. II.3

Ces relations assimilent la zone endurance limitée à une droite qui ne tend pas vers une limite σ_D lorsque N_R augmente pour décrire la zone endurance illimitée.

Pour rendre compte de la courbure et de l'asymptote horizontale, Shomeyer [1914] a proposé une autre expression :

$$\log N_R = a - b \log (\sigma - \sigma_D) : \qquad \qquad \blacksquare .4$$

Ou encore :

$$N_R (\sigma - \sigma_D)^n = A \quad . \qquad \qquad \blacksquare .5$$

La valeur de n est généralement comprise entre 1 et 2. puis, Bastenaire [1917] a proposé :

$$(\sigma_R + B) \cdot (\sigma - \sigma_D) e^{A(\sigma - \sigma_D)} = A.$$
 II.6

Ou A, B et C des constantes déterminées à partir de données expérimentales.

I. 2. 3. Estimation de la durée de vie en fatigue sous chargement d'amplitude variable

Dans la pratique, les éléments structuraux sont presque inévitablement sollicités à différents niveaux de charge, il est donc important de comprendre comment évaluer la résistance à la fatigue d'une pièce pour évaluer sa durée de vie restante en termes de dommages cumulés. [10]

I. 3. Calcul du dommage

I . 3. 1. Cumul de dommage

Lorsque la charge est constituée de différents cycles d'amplitudes et de valeurs moyennes différentes, il est nécessaire de quantifier l'endommagement total que produit par ces cycles. Fatemi et Yang sur la fameuse règle d'accumulation linéaire de Palmegren [1924]. Les auteurs concluent qu'il n'existe actuellement aucune loi d'accumulation satisfaisante généralement acceptée.

Une fois la durée de vie du matériau déterminée par rapport à chaque cycle d'extraction, la loi d'endommagement permet de calculer l'endommagement correspondant et de l'accumuler.

Une loi de cumul d'endommagement permet d'accumuler une variable d'endommagement, D, qui est définie par une loi d'endommagement distincte. Dans le cas de chargements cycliques, la variable d'endommagement D est généralement établie par l'analyse des caractéristiques du cycle de chargement, telles que l'amplitude, la moyenne et la contrainte maximale. Lorsque la séquence de chargement est traitée, l'endommagement cumule conduit à l'estimation de la durée de vie du matériau en termes du nombre de répétitions de la séquence à l'amorçage d'une fissure macroscopique.

I. 3. 2. Loi de Miner

Le dommage emmagasiné par le matériau à chaque cycle est uniquement fonction du niveau de contrainte σ ; pour ni cycles appliqués, le dommage au sens de Miner est la fraction de durée de vie dépensée au niveau de contrainte σ_i c'est à dire la quantité :

Où Ni est le nombre de cycles à rupture correspondant au niveau σ i, obtenu sur la courbe de Wöhler expérimentale du matériau considéré.

Dans le cas où k blocs de contraintes d'amplitude σ_i (i = 1, k) sont appliqués successivement avec chacun ni cycles, le dommage total subi par l'éprouvette est

L'amorçage (ou la défaillance d'un composant) se produit lorsque :

$$\mathbf{D} = \sum_{i}^{k} \frac{n_i}{N_i} = 1 \qquad \qquad \mathbf{I} .9$$

Bien que simple d'application, la loi de Miner présente l'inconvénient de ne pas prendre en compte l'effet de séquence et l'influence de cycles en dessous de la limite d'endurance, ce qui conduit à des résultats fortement dispersés.

I. 3. 3. Loi de Lemaitre-Chaboche

Lemaitre-Chaboche propose l'introduction d'une nouvelle variable interne, D, pour refléter les changements structurels qui se produisent au niveau microscopique. Le motif de cette initiative est de modéliser l'échelle macroscopique en tenant compte du dommage, d'où le terme « dommage » pour la variable D.

Pour Chaboche cette variable témoigne de la perte de rigidité de la structure due á l'apparition de microfissures. Il introduit une contrainte effective σ^{\sim} :

$$\sigma^{\sim} = \sigma^{\sim} / (1 \text{ -D}) \qquad \qquad \blacksquare .10$$

Le couplage entre la plasticité et l'endommagement apparait alors dans l'écriture du domaine d'élasticité qui dépend de σ^{\sim} . Pour un critère de type Von-Mises avec deux écrouissages, cinématique X et isotrope R, on obtient :

$$\mathbf{f} = j_2 \, (\sigma^{\sim} - \mathbf{X}) - \mathbf{R} - \sigma_v \qquad \qquad \mathbf{I} . 11$$

La variable d'endommagement a une loi d'évolution propre écrite la plupart du temps sous la forme :

$$\mathbf{D} = \mathbf{f} \left(\boldsymbol{\varepsilon}_{p} ; \boldsymbol{\sigma} \dots \right). \qquad \qquad \mathbf{I} . 12$$

La force de la théorie réside dans sa capacité à s'accommoder des formalismes thermodynamiques des matériaux, ce qui apporte satisfaction à son interprétation physique. Les possibilités d'écriture de la variable d'endommagement D sont nombreuses et peuvent prendre en compte I 'anisotropie par exemple. Néanmoins, la complication du comportement du matériau par l'introduction inévitable de nouveau

paramètre à identifier et l'augmentation des couts en temps de calcul engendré par la complexité de ces nouveaux modèles redent l'utilisation de cette théorie difficile d'un point de vue industriel. [11]

I. 3. 4 Comptages Rainflow

Les méthodes développées jusqu'à présent traitent de la fatigue dans des blocs, dont chacun présente une amplitude de contrainte et une contrainte moyenne constantes. Mais les charges réelles sont souvent plus complexes. Qu'elles soient d'amplitude variable ou décrites par des processus stochastiques, l'application des méthodes décrites jusqu'ici nécessite l'utilisation de méthodes de comptage de cycles, qui permettent de décomposer la charge en cycles élémentaires. Son amplitude et sa moyenne sont connues.

Une méthode de comptage est une méthode de recenser un événement statistique dans une histoire de chargement. Cet événement peut être par exemple, des extrema, des étendues ou des cycles du signal. Une méthode de comptage de cycles de contraintes détermine donc le nombre ou la densité de présence des cycles de contraintes dans le signal de chargement. La méthode de comptage des cycles adoptée aujourd'hui par les auteurs des méthodes de calcul de durée de vie est celle Rainflow. [12]

I. 4 Méthode Wöhler

Le nombre de cycles à la rupture est déterminé par interpolation de la courbe de Wöhler du matériau pour un niveau de contrainte alternée donnée à chaque cycle élémentaire correspond un niveau d'amplitude de contrainte.

$$\Delta \sigma = |\sigma \max - \sigma \min| \qquad \qquad \blacksquare .13$$

Et une contrainte alternée

Salt=
$$1/2\Delta\sigma$$
 II.14

Le dommage d'un cycle élémentaire est égal à l'inverse du nombre de cycles à la rupture

D= 1/N II.15

Dans le cas d'un essai homogène uni-axial avec une contrainte alternée pure (ou symétrique), le nombre de cycles à la rupture est déterminé à partir d'un diagramme d'endurance, encore appelé courbe de Wöhler ou courbe S-N.

Dans le cas de défauts géométriques ou de cycles élémentaires de contrainte moyenne non nulle, des corrections de la courbe de Wöhler sont nécessaires avant la détermination du nombre de cycles à la rupture et donc du dommage élémentaire. [11]

I. 5 Fatigue multiaxiale

Lorsque l'on tente de prédire le comportement d'un composant mécanique sous des charges complexes et n'ayant pour comparaison que la limite de fatigue du matériau en traction et en compression, une contrainte équivalente à l'état de contrainte multiaxiale est définie comme méthode.

La plupart des critères utilisés à ce jour dérivent des deux critères de plasticité de Von Mises et Tresca.

L'organigramme ci-dessous récapitule la méthode d'estimation d'endommagement avec l'approche en contrainte. [13]

Contrainte utilisant une loi de cumul linéaire

fatigue

Conclusion

Trois méthodes sont couramment utilisées pour prédire la durée de vie des pièces soumises à des charges uni-axiales d'amplitude variable :

- La courbe de Wöhler.
- La règle d'endommagement et la loi de cumul.
- La méthode de comptage de cycles.

Il n'existe pas de loi d'endommagement qui puisse résoudre tous ces problèmes, la loi la plus couramment utilisée est la loi de cumul linéaire d'endommagement de Palmgreen-Miner [1945], qui reste le meilleur compromis entre simplicité d'application et qualité.

Chapitre 3

Simulation numérique : Plaque trouée soumise à la traction

Introduction

L'objectif de ce chapitre est de présenter l'effet de la concentration des contraintes sur la tenue en fatigue dans le cas d'une plaque trouée avec déférents diamètres des trous.

Notons que le matériau utilisé dans toute l'étude AISSI 1020.

III.1 Etude statique

III.1. 1 Plaque trouée soumise à la traction

Considérons le problème de la détermination de concentration des contraintes d'une plaque carrée trouée avec des déférents diamètres des trous.

III.1.2 Solution analytique

Dans le ca d'une plaque carrée comportant un trou au centre, le coefficient de concentration des contraintes K_t est donné par la relation suivante :

$$\sigma^{Max(Th\acute{e}o)} = K_t * \sigma_a = K_t \left(\frac{F}{e(h-2r)}\right)$$
(III.1)

$$K_t = 3 - 3.13 \frac{2r}{h} + 3.6 \left(\frac{2n}{h}\right)^2 - 1.53 \left(\frac{2n}{h}\right)^3$$
(III.2)

et : h : Largeur de la plaque,

r : Rayon du trou,

F : Force axiale en traction, $F = \sigma_a(h^*e)$,

 σ_a : Contrainte de la traction appliquée.

III. 1. 3 Solution numérique par la méthode des éléments finis

Les dimensions de la plaque sont indiquées sur la figure ci-dessous :

 $L=120mm,\,h=120mm$, e=8mm.

Fig. III.1 Dimensions de la plaque

Les méthodes numériques se sont étendues avec le développement des moyens et des connaissances en informatique. Elles permettent de traiter des problèmes très complexes.

La méthode des éléments finis est la méthode la plus utilisée dans l'industrie. Elle permet de résoudre tout phénomène dont la formulation se fait à l'aide de systèmes d'équations aux dérivées partielles, ces domaines d'application sont multiples : Thermique, structure, mécanique des fluides, les vibrations, l'hydrodynamique, etc.

Le principe consiste en la résolution par les moyens numériques d'une EDP (Equation à Dérivée Partielle) sur un domaine compact avec des conditions sur la frontière de ce domaine. Le problème continu modélisant le problème physique donné est remplacé par un problème discret (maillage) dont la solution est approchée au moyen de la MEF.

Le maillage est une étape fondamentale de l'analyse, la précision de la solution dépend de la qualité du maillage (taille des éléments, forme des éléments, degré de la fonction de forme, ..).

Fig. III. 2 Types d'éléments finis

III. 1. 4 Conditions aux limites

Comme la montre les figures ci-dessous, on applique les conditions aux limites comme suite :

- Création d'un quart de la plaque et application des déplacements imposés (la symétrie géométrique).
- Application de la traction selon la direction x.
- Application d'un contrôle de maillage de 0.4mm ou niveau du trou et un ration de 1.2, puis appliquer un maillage de 2mm de taille.

Matériaux

AISSI 1020 dont les propriétés sont illustrées dans le tableau (III.1)

Propriété	Valeur	Unités
Module d'élasticité	200000	N/mm^2
Coefficient de Poisson	0.29	S.O.
Module de cisaillement	77000	N/mm^2
Masse volumique	7900	kg/m^3
Limite de traction	420.51	N/mm^2
Limite de compression		N/mm^2
Limite d'élasticité	351.57	N/mm^2
Coefficient de dilatation thermique	1.5e-005	/K
Conductivité thermique	47	W/(m·K)
Chaleur spécifique	420	J/(kg·K)
Rapport d'amortissement du matériau		S.O.

Tab. III.1 : propriétés du matériau AISI 1020.

Fig. III. 4 Conditions aux limites d'une plaque en traction.

Fig. III.5 : Maillage adapté.

III. 1. 5 Résultats obtenus

Apres l'exécution de l'étude statique, l'accès aux résultats s'obtient en utilisant le menu résultats. Le choix est porté sur la contrainte σ_{xx} (l'axe xx représente l'axe de chargement) afin de pouvoir comparer avec la solution théorique.

A) le rayon de trou r = 5mm

La figure (III. 6) montre le tracé des contraintes dans la direction xx (r = 5mm)

Fig. III. 6 : Distribution de la contrainte numérique.

 $(\sigma_a = 80 \text{ Mpa}, r = 5 \text{mm}).$

La concentration des contraintes est bien observée au bord du trou, la contrainte numérique maximale est de 190.8Mpa.

La contrainte théorique maximale $\sigma^{Max(Théo)} = 221.1$ MPa ce qui donne l'erreur relative

Err=100*
$$\left| \frac{\sigma^{Max(Th\acute{e}o)} - \sigma^{Max(Num)}}{\sigma^{Max(Th\acute{e}o)}} \right| = 15.06 \%.$$

σ_a (MPa)	$\sigma^{Max(Th\acute{e}o)}$	$\sigma^{Max(Num)}$	Erreur relative (%)
40	110.55	127.2	15.06
60	165.82	190.8	15.06
80	221.1	254.4	15.06

Tab. III. 2 Valeur de $\sigma^{Max(Th\acute{e}o)} = K_t * \sigma_a$, $\sigma^{Max(Num)}$ et

Erreur relative=100* $| \frac{\sigma^{Max(Th\acute{e}o)} - \sigma^{Max(Num)}}{\sigma^{Max(Th\acute{e}o)}} |$

B) le rayon de trou r = 10mm

La figure (III. 7) montre le tracé des contraintes dans la direction xx (r = 10mm).

Fig. III. 7 : Distribution de la contrainte numérique.

($\sigma_a = 80$ Mpa , r = 10mm).

Le résumé des résultats pour les différentes valeurs de contraintes σ_a sont donnés ci-dessous :

$\sigma_a(MPa)$	$\sigma^{Max(Th\acute{e}o)}$	$\sigma^{Max(Num)}$	Erreur relative (%)
40	102.92	132.6	28.84
60	154.37	198.9	28.84
80	205.83	265.3	28.89

Tab. III. 3 Valeur de $\sigma^{Max(Th\acute{e}o)} = K_t * \sigma_a$, $\sigma^{Max(Num)}$ et

Erreur relative=100* $| \frac{\sigma^{Max(Th\acute{e}o)} - \sigma^{Max(Num)}}{\sigma^{Max(Th\acute{e}o)}} |$

c) le rayon de trou r = 15mm

La figure (III. 8) montre le tracé des contraintes dans la direction xx (r = 15mm).

Fig. III. 8 : Distribution de la contrainte numérique. ($\sigma_{a=}$ 80Mpa r = 15 mm) Le résumé des résultats pour les différentes valeurs des contraintes σ_a dont donnés ci-dessous

σ_a	$\sigma^{Max(Th\acute{e}o)}$	$\sigma^{Max(Num)}$	Erreur relative (%)
40	96.8937	145	49.65
60	145.34	217.5	49.65
80	193.79	290.1	49.70

Tab. III. 4 Valeur de $\sigma^{Max(Th\acute{e}o)} = K_t * \sigma_a$, $\sigma^{Max(Num)}$ et

Erreur relative=100*
$$\left| \frac{\sigma^{Max(Th\acute{e}o)} - \sigma^{Max(Num)}}{\sigma^{Max(Th\acute{e}o)}} \right|$$

On constate une différence entre les solutions analytiques les solutions numériques. Notons que la solution analytique est valable pour une plaque très mince et dans le cadre de l'hypothèse des contraintes planes.

III. 2 Analyse de fatigue

L'étude de fatigue nous permet de déterminer l'endommagement et le nombre de cycles à la rupture.

Soulignons que toute étude de fatigue doit être précédée par l'étude statique, et que les contraintes maximales de l'étude statique précédente sont inférieure à la limite d'élasticité du matériau utilisé, donc le domaine de fatigue étudié est l'endurance limitée.

Propriétés de l'étude de fatigue :

Les mêmes données du calcul d'étude précédentes (traction) sont utilisées pour cette étude.

La valeur du nombre de cycles est supposé égal à $n=5*10^4$ cycles.

III. 2 .1 Résultats de l'analyse de fatigue

Les résultats de l'analyse de fatigue sont illustrés sur les figures (III. 9-III. 14).

Chapitre 3 : Simulation numérique : Plaque trouée soumise à la traction

Fig. III. 9 Distribution l'endommagement (σ_a = 80MPa, r = 5mm, n = 5*10⁴ cycles

Le tableau (III. 5) montre les résultats de l'étude de fatigue pour les différentes valeurs de la contrainte appliquée.

$\sigma_a(MPa)$	D^{Max}	D^{Min}	N ^{Max}	N^{Min}
40	5.005	5	1.001*106	10 ⁶
60	5.005	5	1.001*106	10 ⁶
80	25.02	5	10 ⁶	1.998*10 ⁵

Tab. III. 5 Valeur des D^{Max} , D^{Min} , N^{Max} , N^{Min} pour r=5mm, n = 5*10⁴ cycles

On constate que l'endommagement maximal se trouve dans la zone de concentration des contraintes.

La même étude de fatigue avec la nouvelle valeur de rayon r = 10mm.

Chapitre 3 : Simulation numérique : Plaque trouée soumise à la traction

Fig. III. 12 Distribution de la durée de vie (σ_a = 80MPa, r = 10mm, n = 5*10⁴ cycles

$\sigma_a(MPa)$	D ^{Max}	D^{Min}	N ^{Max}	N^{Min}
40	5.005	5	1.001*10 ⁶	10 ⁶
60	5.005	5	1.001*10 ⁶	10 ⁶
80	29.97	5	106	1.668*10 ⁵

Tab. III. 6 valeur de D^{Max} , D^{Min} , N^{Max} , N^{Min} pour r=10mm, n = 5*10⁴ cycles

On constate que l'endommagement maximal se trouve dans la zone de concentration des contraintes.

La même étude de fatigue avec la nouvelle valeur de rayon r = 15mm

Fig. III. 13 Distribution l'endommagement ($\sigma_a = 80$ MPa, r = 15mm, n = 5*10⁴ cycles)

$\sigma_a(MPa)$	D^{Max}	D^{Min}	N ^{Max}	N^{Min}
40	5.005	5	1.001*10 ⁶	10 ⁶
60	9.241	5	10 ⁶	5.411*10 ⁵
80	51.11	5	10 ⁶	9.784*10 ⁴

Tab. III. 7 Valeurs de D^{Max} , D^{Min} , N^{Max} , N^{Min} pour r=15mm, n = 5*10⁴ cycles

On constate que l'endommagement maximal augmente avec l'augmentation du rayon du trou, et elle se trouve toujours dans la zone de la concentration des contraintes.

Conclusion Générale

Conclusion générale

L'étude de l'effet de concentration des contraintes sur la tenue en fatigue des pièces mécaniques est d'une importance capitale dans le domaine de l'ingénierie. Les contraintes concentrées peuvent se produire en raison de divers facteurs, tels que les changements brusques de forme, les entailles, les trous, les rainures, les filets et les discontinuités géométriques.

La concentration des contraintes a un impact significatif sur la durée de vie en fatigue d'une pièce mécanique. Lorsque les contraintes sont concentrées en un point particulier de la pièce, le niveau de contrainte à cet endroit peut être considérablement plus élevé que dans les régions avoisinantes. Ces concentrations de contraintes locales peuvent entraîner une diminution significative de la résistance à la fatigue de la pièce, ce qui peut conduire à des défaillances prématurées.

L'étude de l'effet de concentration des contraintes implique généralement l'utilisation de techniques analytiques, numériques et expérimentales pour évaluer les contraintes et les contraintes résiduelles dans les zones critiques d'une pièce. Des méthodes telles que l'analyse des contraintes par éléments finis, la modélisation de la propagation de fissures et les essais de fatigue sont souvent utilisés pour étudier ces effets.

L'endommagement maximal calculé à l'aide de la loi de Miner augmente avec l'augmentation du diamètre du trou, et elle se trouve toujours dans la zone de concentration des contraintes.

Références bibliographiques

Références bibliographiques

[1]_ Hichem Djabali Hichem Yousfi (2009) Étude expérimentale de la fatigue en flexion rotative Thèse d'ingénieur d'état Département de génie mécanique. Faculté de technologie Université Hadj Lakhdar de Batna.

[2] Brek Samir 2012 Modélisation numérique de la propagation de l'endommagement et de la rupture dans les matériaux composites stratifiés sous sollicitations thermomécaniques et cycliques Thèse de Doctorat, Département de génie mécanique.Faculté de technologie Université Hadj Lakhdar de Batna.

[3] Jérôme Benabes (18 décembre 2006) Approche énergétique non local du calcul de durée de vie de structure en fatigue multiaxiale sous chargement d'amplitude variable 'application a une roue de train ferroviaire' Thèse de Doctorat, ENSAM, CER de Bordeaux.

[4] Marc Blétry 2007 Méthodes de caractérisation mécanique des matériaux.

[5] Claude Bathias André Pineau (2008) Fatigue des matériaux et des structures tome, Introduction, endurance, amorçage et propagation des fissures, fatigue oligocyclique et giga cyclique

[6] A.-F. Gourgues-Lorenzo(2006) Comportement, endommagement et rupture par fatigue thèse d'Amine Bennani, soutenue à l'Ecole des Mines de Paris.

[7] Didier duprat (2004) Fatigue et mécanique de la rupture des pièces en alliage léger Bureau d'études. Aerospatiale Toulouse.

[8] niemi E ., Stress Determination for Fatigue Analysis of Welded Componsents, International Institute of Welding Abington Publishing, Cambridge, 1995, IIW-1221-93, ISBN 1-85573-213-0,p.69.

[9] J, LU: Fatigue des alliages ferreux, Définitions et diagrammes, Techniques de l'ingénieur, BM5042.

[10] A.Berrehi, Comportement cyclique et tenus en fatigue sous chargement multiaxial d'un polyéthylène : Expériences et critères d'endurance, Thèse de Doctorat, Ensma [2010].

[11] C.G. Diagne, G THAUVIN... -RFM Revue française de ..., 2000 – pascalfrancic.inist.fr, Détermination de la limite d'endurance sous une contrainte moyenne non nulle : influence de la ductilité du matériau, Revue Française de Mécanique' (soumis).

[12] M.Jabbado. Fatigue polycyclique des structures métalliques : Durée de vie sous chargements variables ; Thèse de Doctorat de l'Ecole Polytechnique [2006].

Références bibliographiques

[13] J, Lu : Fatigue des alliages ferreux, Définitions et diagrammes, Technique de l'ingénieur, BM5042.

Résumé

L'endommagement par fatigue se produit principalement dans les zones où les contraintes alternées sont les plus fortes.

Notre objectif dans ce travail est de montrer l'influence de la présence des défauts dans les pièces mécaniques en statique et en fatigue. Le cas étudié est une plaque trouée avec trois géométries des rayons différents et la sollicitation appliquée et une traction uni-axiale.

L'étude de fatigue montre que l'augmentation du diamètre des trous peut significativement influencer la résistance à la fatigue des composants. Cela entraîne généralement une augmentation des concentrations de contraintes, potentiellement réduisant la durée de vie en fatigue.

Mots clé : fatigue, contrainte, courbe de Wöhler, loi de Miner, maillage.

Abstract

Damage due to fatigue mainly occurs in areas where the alternating stresses are the alternating stresses are the strongest.

Our objective in this work is to show the influence of the presence of defects in mechanical part in statics and fatigue. The case studied is a hole plate with three different radii geometries and he applied stress is a tension.

The fatigue study shows that increasing the diameter of the holes on site can significantly influence the fatigue resistance of the components. This generally results in increased stress concentration, potentially reducing fatigue life.

Key words: fatigue, stress, Wohler curve, Miner's law, mesh.