

جامعة بجابة Tasdawit n Bgayet Université de Béjaïa République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique. Université A. Mira-Bejaia Faculté de Technologie Département de Génie Civil

Mémoire de fin de cycle

En vue d'obtention du diplôme de Master en Génie Civil Option : Structures

Thème

Etude du phénomène de flambement des barres en acier

Présenté par : MEDDOUR Lina KINZI Thiziri

Encadré par : *D^r* BANOUNE Brahim Membres de jury : *M^r* KERNOU Nassim *M^{me}* OUARI Nadia

Faculté de la

Technologie

Université de Bé

Année universitaire : 2022/2023

Remerciement

Avant tout, nous tenons à remercier le dieu le plus puissant qui nous a donné la force, le courage et la volonté pour élaborer ce travail.

Nous tenons à exprimer notre profonde gratitude à *M^r* Banoune Brahim pour la qualité de son encadrement, sa patience, sa rigueur et sa disponibilité durant la préparation de ce travail.

De plus, nous remercions nos chers parents ainsi nos familles qui nous ont toujours encouragés et soutenu durant toutes nos années d'étude.

Nous tenons à remercier les membres de jury pour avoir accepté d'examiner notre travail.

Nous remercions l'ensemble des enseignants du département de Génie Civil.

Enfin, nous tenons à remercier nos camarades avec lesquels on a eu le plaisir de travailler, ainsi que tous ceux qui ont participé de près ou de loin à la réalisation de ce travail.

Dédicace

Je dédie ce modeste travail à :

 mes chers parents pour leur soutien et sacrifices tout au long de ma carrière d'études

Ma chère sœur YASMINE.

Mon chère frère AMINE.

Ma binôme THIZIRI avec qui j'ai partagé de bons et inoubliables moments durant la préparation de ce projet ainsi que sa famille

Mon encadrant M^r BANOUN.

Mes chères tantes et cousines

Je tiens à remercier chaleureusement ma tante SABRINA pour son temps et son soutien

Mes amies MERIEM, AMEL

Toute la promotion de master génie civil
 2022 /2023

LINA

Je dédie ce modeste travail à :

Mon cher père qui a tant sacrifié pour que j'arrive à ce niveau.

Ma chère mère.

Mes chères sœurs : « Samia, Samira, Medina, Wahiba, Thilleli, Maya » pour leurs soutien et encouragements.

Mes chers frères : « Nadir, Tarik, Gaya ».

Mes chers neveux : « Dylane, Brayane, Kouceila, Ilane, Mehdi, Dina, Kinda, Meriem ».

Mon encadrant M^r BANOUNE.

Ma chère binôme Lina et toute sa famille

A toute la promo de Master Génie Civil 2022/2023.

Thiziri

Résumé

L'instabilité est un risque de passage d'un état stable à un état instable des structures, en construction métallique on distingue trois phénomènes d'instabilité le voilement, le diversement et le flambement.

Dans ce projet de fin d'étude, on va étudier le phénomène du flambement des barres en acier sous différents aspects. Premièrement une étude théorique selon la théorie d'Euler qui sert à déterminer l'effort normal critique théorique que peut supporter une barre comprimée, quel que soit ses conditions d'appuis, afin de déterminer les paramètres qui influent sur le flambement (la longueur de la barre et les conditions d'appuis). Ensuite une étude expérimentale à l'aide de l'appareil WP120, qui nous a aidé à bien comprendre la différence entre l'étude théorique qui considère que la barre est parfaite sans aucun défaut et l'étude expérimentale plus proche du cas réel et qui prend en compte les différents défauts existants (défauts de rectitude, défauts de centrage ...etc.). La troisième étude est une étude règlementaire avec laquelle on a constaté que l'Eurocode3 fait entrer des coefficients de sécurité dans les calculs ce qui fait réduire l'effort normal critique. Finalement, une étude numérique en utilisant la méthode des éléments finis avec le logiciel ETABS et qui nous a permet de déterminer l'effort normal critique numérique et la flèche maximale qui lui correspond.

Abstract

Instability is a risk of passage from a stable state to an unstable state of the structures. In metal construction, there are three phenomena of instability: veiling, diversion and buckling.

In this project, we will study the phenomenon of buckling of steel bars in different aspects, first of all, a theoretical study according to euler's theory which serves to determine the theoretical critical normal force that can support a compressed bar regardless of its enhancing conditions, in order to determine the parameters that include buckling (the length of the bar and enhancing conditions) .Then, an experimental study using the WP120 device, which helped us to understand the difference between the theoretical study which considers that the bar is perfect with no defects and experimental study closer to the real case and which takes into account the various existing defects (straightness defects, centering defects, etc.). The third study, is a regulatory study with which it was found that Eurocode 3 includes safety coefficients in the calculations, which reduces the normal critical effort. Finally, a numerical study using the finite element method with ETABS software, which allowed us to determine the numerical critical normal force and the maximum displacement which corresponds to it.

> Chapitre 01 : généralités

Figure I-1 : Diagramme contrainte-déformation pour l'essai de traction	5
Figure I-2 : Essai de résilience.	6
Figure I-3 : schématisation du flambage	9
Figure I-4 : L'effondrement du pont du Québec 1907	10
Figure I-5 : poutre bi- articulée	11

Chapitre 2 : Aspect Théorique du Flambement

Figure II-1 : poutre bi-articulé	. 20
Figure II-2 : Evolution de la contrainte normale en fonction de l'élancement Contrainte critique d'Euler	. 22
Figure II-3 : poutre encastrée-articulée	. 23
Figure II-4 : poutre encastrée- libre	. 25
Figure II-5 : poutre bi-encastrée	. 27
Figure II-6 : poutre sous charge concentrée Q	. 30
Figure II-7 : défaut de rectitude	. 34
Figure II-8 : défaut de centrage	. 37

> Chapitre 3 : Aspect expérimental du flambement

Figure III-1 : Appareil WP120	44
Figure III-2 : Dispositif de l'appareil WP120	45
Figure III-3 : Position de l'appareil	45
Figure III4 : Les encoches en V	46
Figure III-5 : Placement de la barre	46
Figure III-6 : Réglage du comparateur	46
Figure III-7 : Mise en charge	46
Figure III-8 : Barre bi-articulée	48
Figure III-9 : Courbe de la flèche maximale en fonction de la charge N d'une barre	
bi-articulée de 700mm	49

Liste des figures

Figure III-10 : courbe de la flèche maximale en fonction de la charge N d'une barre bi-articulée de 650mm. 50
Figure III-11 : courbe de la flèche maximale en fonction de la charge N d'une barre bi- articulée de 600mm
Figure III-12 : Barre encastrée-articulée 53
Figure III-13 : courbe de la flèche maximale en fonction de la charge N d'une barre encastrée- articulée de 650mm. 55
Figure III-14 : Barre bi-encastrée
Figure III-15 : courbe de la flèche maximale en fonction de la charge N d'une barre bi- encastrée de 650mm
FigureIII-16 : Barre bi-articulée avec une charge transversale
Figure III-17 : courbe de la flèche maximale en fonction de la charge N d'une barre bi-articuléede 650mm avec une charge transversale de 5N60
Figure III-18 : courbe de la flèche maximale en fonction de la charge N d'une barre bi-articuléede 650mm avec une charge transversale de 10N61
Figure III-19 : courbe de la flèche maximale en fonction de la charge N d'une barre bi-articuléede 650mm avec une charge transversale de 15N62
Figure III-20 : Courbes de flambement flexion pour les différentes charges transversales 62
Figure III-21 : Courbe de flambement et facteur d'imperfection

> Chapitre 4 : simulation numérique

Figure IV.1 : Grid suivant l'axe z6	58
Figure IV.2 : Grid suivant l'axe x et y6	58
Figure IV.3 : Caractéristique du matériau6	59
Figure IV.4 : Contrainte limite élastique du matériau	59
Figure IV.5: Section de la barre	70
Figure IV.6 : Application de la charge	71
Figure IV.7 : Définition de la charge appliquée	71
Figure IV.8 : courbe de la charge critique numérique en fonction de coefficient de flambement pour les différentes longueurs	73
Figure IV.9 : Courbe de la charge critique numérique en fonction du moment d'inertie pour les différentes conditions d'appuis	74

Liste des figures

Figure IV.10 : la courbe de la charge critique numérique en fonction de coefficient de	
flambement k pour les différents matériaux	76

> Chapitre I : généralité

Tableau I-1 : Coefficient de la longueur de flambement	14
Tableau I-2 : Influence des liaisons aux appuis	14
Tableau I-3 : Elancement limite Euler	15

> Chapitre II : Aspect Théorique du Flambement

> Chapitre III : Aspect expérimental du flambement

Tableau III-1 : Tableau de mesure d'une barre bi-articulée de 700mm	. 48
Tableau III-2 : Tableau de mesure d'une barre bi-articulée de 6500mm	. 50
Tableau III-3 : Tableau de mesure d'une barre bi-articulée de 600mm	. 51
Tableau III-4 : Tableau de mesure d'une barre encastrée-articulée de 650mm	. 54
Tableau III-5 : Tableau de mesure d'une barre bi-encastrée de 650mm	. 56
Tableau III-6 : Tableau de mesure d'une barre bi-articulée de 650mm avec une charge transversale de 5N	59
Tableau III-7 : Tableau de mesure d'une barre bi-articulée de 650mm avec une charge transversale de 10N	60
Tableau III-8 : Tableau de mesure d'une barre bi-articulée de 650mm avec une charge transversale de 15N	61
Tableau III-9 : Charge critique réglementaire selon l'Eurocode 3	. 65

Chapitre IV : simulation numérique

Tableau IV.1 : Charges critiques numériques selon les différentes conditions d'appuis et longueurs de barres.	72
Tableau IV.2 : Charges critiques numériques en fonction du moment d'inertie pour différentes conditions d'appuis.	74
Tableau IV.3 : Charges critiques numériques selon les différentes conditions d'appuis pour trois matériaux différents.	75
Tableau IV.4 : Charges critiques selon la longueur et les conditions d'appuis	76

- N_c : effort normale critique
- N : effort normal de compression
- C : carbone
- Δl : allongement
- f_y : la limite d'élasticité
- f_u : la limite de rupture
- ϑ : Coefficient de poisson
- E : module de Young (module d'élasticité)
- H : énergie potentiel
- M : masse
- g : gravité
- ε_u : l'allongement relatif ultime
- $M_Z(x)$: moment de flexion
- y : fléchissement latérale (la déformée de la poutre)
- y': la première dérivée de la déformée
- y" : la deuxième dérivée de la déformée
- I_G : moment d'inertie de la poutre
- L_0 : la longueur de la poutre
- L_f : la longueur de flambement de la poutre
- y_{max} : la flèche maximal de la poutre
- A : la section de la poutre
- σ_c : la contrainte critique
- K_f : coefficient de longueur de flambement

- λ : l'élancement de la poutre
- $\bar{\lambda}$: Elancement réduit
- $\lambda_{\lim euler}$: l'élancement limite d'Euler
- $\sigma_{crit Rankine}$: contrainte critique de Rankine

N_{crit Rankine} : effort critique de Rankine

- S : coefficient de sécurité
- F : charge axiale
- σ_e : contrainte maximale caractérisant état de ruine
- σ_t : contrainte proposer par Dutheil
- σ : contrainte normale totale
- R_{cf} : Résistance à la compression par flambement
- *i* : rayon de giration
- N_K:Effort critique théorique (Euler)
- Q : charge transversale concentrée
- P : réaction transversale
- q : charge transversale répartie
- e : excentricité
- σ_e : contrainte maximale caractérisant état de ruine
- V : effort tranchant
- G : module d'élasticité transversale de l'acier
- N_{K}' : charge critique réduite
- α : Coefficient d'imperfection par rapport à la section étudiée
- N_{cr} : effort critique déterminer par expérimentale
- N_R:Effort critique réglementaire
- N_{num} : effort critique numérique

Table des matières

	Introduction générale	1
\triangleright	Chapitre I : Généralités	
I.	Introduction	3
II.	Le matériau constituant des barres	3
	II.1. Le matériau acier	3
	II.2. Fabrication de l'acier	3
	II.3. Classification selon la teneur en carbone	3
	II.4. Classification selon la teneur en éléments d'alliages	4
	II.5. Caractéristiques des aciers de construction	. 4
	II.5.1. Propriétés physiques	. 4
	II.5.2. Propriétés chimiques	4
	II.5.3. Propriétés mécaniques	5
	II.5.3.1. L'essai de traction	5
	II.5.3.2. L'essai de dureté	6
	II.5.3.3. L'essai de résilience	6
	II.5.3.4. L'essai de fatigue	7
	II.6. Nuances normalisées d'aciers	7
	II.7. Aspect réglementaire des calculs	7
	II.8. Les classes de sections selon L'Eurocode3	. 8
III	I. Notion de stabilité et d'instabilité	8
IV	Le flambement	9
	IV.1. Définition du flambement	9
	IV.2. Les dangers du flambement	10
	IV.3. Les lois de résistance au flambement	10
	IV.3.1. Théorie d'Euler	10
	IV.3.1.1. Principe de la théorie d'Euler	10
	IV.3.1.2. Charge critique d'Euler	11
	IV.3.1.3. La contrainte critique d'Euler	13
	IV.3.1.4. Le coefficient de la longueur de flambement	13
	IV.3.1.5. La longueur de flambement et les liaisons aux appuis	14

IV.3.1.6. Conditions d'utilisation de la formule d'Euler	14
IV.3.2. Méthode de Rankine	
IV.3.3. Méthode de Dutheil	16
IV.3.3.1. Principe	16
IV.3.3.2. Calcul de la résistance	16
IV.3.4. Méthode de Tetmayer	

> Chapitre II : Aspect théorique du flambement

I.	Introduction	. 19
II.	Les éléments qui influent sur le flambement	. 19
	II.1. Le moment d'inertie I	. 19
	II.2 . Le module de Young E	. 19
	II.3. La longueur du flambement L_f	. 20
ш	Flambement simple	. 20
	III.1. Poutre bi-articulée	. 20
	III.2. Poutre articulée en tête et encastrée en pied	. 23
	III.3. Poutre encastrée en pied et libre en tête	. 25
	III.4. Poutre bi-encastrée	. 27
IV	• Flambement flexion	. 29
	IV.1. Sous charge concentrée Q	. 30
	IV.2. Sous charge uniformément répartie q	. 33
v.	Prise en compte des défauts	. 34
	V.1. Prise en compte de défauts de rectitude	. 34
	V.2. Prise en compte des défauts de centrage	. 37
VI	Influence de l'effort tranchant sur le flambement des barres	. 39

> Chapitre III : Aspect expérimental du flambement

I.	Introduction	43
II.	Etude expérimentale	43
	II.1. Description de l'appareil	44
	II.2. Mode opératoire	45
	II.3. Choix du matériau	47

	II.3.1. Dimensions des éprouvettes	47
III.	Partie pratique	48
]	III.1. Flambement simple	48
	III.1.1. Barre bi-articulée	48
	III.1.2. Barre encastrée-articulée	53
	III.1.3. Barre bi-encastrée	56
	III.2. Flambement Flexion	59
	III.3. Interprétation des résultats	. 63
IV.	Aspect réglementaire du Flambement	63
V.	Conclusion	66

> Chapitre IV : Simulation numérique

I.	Introduction	68
II.	Les étapes de modélisation d'une barre	68
	II.1. Initialisation du modèle	68
	II.2. Définition des paramètres du modèle	69
	II.3. Dessin du modèle	70
	II.4. Assigner les conditions aux appuis	70
	II.5. Application du chargement	70
	II.6. Maillage de la section	. 71
	II.7. Exécuter l'analyse	. 71
III.	Les éléments qui influent sur la charge critique	72
	III.1 . Les conditions d'appuis et longueur de la barre	72
	III.2. Le moment d'inertie de la barre	73
	III.3. Le module de Young (matériau de la barre)	75
IV.	Récapitulatif des résultats obtenue des barres étudier sous les différentes aspects	
	théorique, expérimental, réglementaire et numérique	76
V.	Conclusion	77
\triangleright	Conclusion générale	79

INTRODUCTION GÉNÉRALE

Introduction générale

La construction métallique est un domaine de construction du génie civil, qui s'intéresse à la réalisation d'ouvrages en métal plus précisément en acier, qui est un alliage métallique constitué essentiellement du fer et de carbone.

Connue par sa légèreté, facilité de conception et ductilité, une structure métallique est tout de même exposée à subir des risques d'instabilités. C'est pour cela qu'on doit assurer la stabilité au niveau de l'ensemble de la structure mais également au niveau de chacun des éléments qui la constituent.

Les composants longs et étroits tels que les barres, poutres, tubulures, sont souvent soumis à une contrainte de compression sous l'effet de forces s'exerçant parallèlement à leur axe longitudinal. Sous l'effet de forces de compression critiques, il est possible que de tels composants perdent en stabilité et soient déportés latéralement. Cette perte de stabilité brutale et continue est désignée par le terme technique de flambement. Dans ce cas, la défaillance ne concerne pas le matériau mais la forme du composant, cette instabilité se manifeste d'autant plus que l'élancement est important.

L'objectif de notre travail est d'étudier le phénomène de flambement des barres en acier.

Notre travail est composé de quatre chapitres : Le premier sera consacré aux généralités dans lequel on va définir le phénomène de flambement, ses dangers et les différentes lois de résistance liées à cette instabilité, suivi d'un deuxième chapitre qui va traiter l'aspect théorique du flambement simple et flambement flexion pour différentes conditions d'appuis et charges appliquées. Le troisième chapitre sera réservé à l'aspect expérimental du flambement simple et flambement flexion pour différentes conditions d'appuis, longueurs et charges appliquées (les essais seront réalisés au laboratoire de RDM de l'université de Bejaia « département génie civil »), et enfin un dernier chapitre qui va traiter l'aspect numérique du flambement avec le logiciel ETABS.

Enfin, on va terminer par une conclusion générale qui va synthétiser notre travail.

CHAPITRE I

Généralités

I. Introduction

Les barres comprimées sont des éléments très répondus dans les structures de génie civil, bien que la barre constitue l'élément le plus simple, son étude permet d'obtenir des résultats d'une grande importance pratique qui peuvent servir de base pour le calcul des structures les plus complexes. [1]

Dans le problème du flambement, le système est stable si l'effort de compression externe N est assez petit et devient instable quant N est grand si l'élancement est suffisamment grand, l'instabilité survient sous l'effort critique N_c .

II. Le matériau constituant des barres

II.1. Le matériau acier

Dans notre étude, le matériau ciblé est l'acier qui est un alliage métallique ferreux, il est d'ailleurs principalement composé de fer, l'élément additionnel étant le carbone, qui n'est présent qu'à l'état de traces infimes. Selon les aciers, la teneur en carbone est comprise entre environ 0,005 % et 1,5 % en masse. Elle atteint très rarement 2 %. **[2]**

II.2. Fabrication de l'acier

L'acier est généralement obtenu par une opération en deux phases :

- Première phase : L'introduction et la combustion de minerai de fer, de coke et de castine dans un haut fourneau, permet d'obtenir de la fonte liquide (matériau à plus de 2 % de teneur en carbone)
- Seconde phase : Il est procédé à la conversion de cette fonte liquide en acier à une température de 1500°C environ par insufflation d'oxygène qui permet de capter Carbonne en excès. L'acier obtenu possède une teneur en carbone ne dépassant pas 1%. Pour cela, il existe plusieurs procédés de conversion (THOMAS, MARTIN, etc.). [2]

II.3. Classification selon la teneur en carbone

Suivant leur teneur en carbone, les métaux ferreux se subdivisent en fonte et en acier :

- **La Fonte** : alliage fer + carbone dont la teneur en carbone $C : 2\% \le C \le 4.3\%$.
- $\blacktriangleright L'acier : C \le 2 \%.$

Contrairement à la fonte qui est fragile et difficilement soudable, l'acier possède un comportement élasto-plastique avec un large palier plastique et se distingue par ses hautes

qualités technologiques (possibilités de soudage et d'usinage). Ainsi selon sa destination, on distingue :

- 1. Les aciers de construction : $0.02 \ \% \le C \le 0.85 \ \%$: cette catégorie possède une bonne plasticité (large palier plastique), une bonne soudabilité ainsi qu'une bonne ductilité (pas de ruptures brutales ou bien fragiles).
- Les aciers à outils : 0.65 % ≤ C ≤ 1.4 % ces aciers possèdent une bonne dureté mais sont plus fragiles. [2]

II.4. Classification selon la teneur en éléments d'alliages

Selon les quantités additionnées d'éléments, on distingue :

- > Les aciers faiblement alliés : contenant jusqu' à 2 % d'éléments d'alliage.
- Les aciers moyennement alliés : de 2 à 10 % d'éléments.
- Les aciers fortement alliés : contenant plus de 10 %. [2]

II.5. Caractéristiques des aciers de construction

II.5.1. Propriétés physiques

Les propriétés physiques sont caractérisées par la couleur, le poids spécifique, la température de fusion, le coefficient de dilatation thermique, la chaleur massique, la conductibilité thermique, électriques, acoustique, etc.

Le poids spécifique ou volumique de l'acier est $\rho_{acier} = 7850$ kg / m^3 .

Le coefficient de dilatation thermique de l'acier $\alpha = 11.10^{-6}$ (à 20°C).

La température de fusion comprise entre 1300 et 1550 °C La conductibilité thermique de l'acier k = 40 à 45 Kcal / (m h °C).

La conductibilité thermique des alliages légers k = 175 Kcal / (m h °C). [2]

II.5.2. Propriétés chimiques

Les propriétés chimiques de l'acier sont déterminées par sa composition chimique et par sa technologie de fabrication. En vue de réduire le poids spécifique et d'améliorer la résistance à la corrosion, on utilise les alliages d'aluminium. L'introduction ce certains éléments tels que le Manganèse, le Silicium, le cuivre, le Nickel, le Chrome et l'Aluminium peuvent augmenter la résistance mécanique sans trop diminuer de sa plasticité. Pour sa part, le carbone améliore la

résistance mécanique mais nuit à la plasticité et à la soudabilité. L'exemple de la fonte en est très significatif. Par ailleurs, les impuretés présentes dans l'acier exercent une influence négative sur ses qualités. En effet, le souffre provoque la fragilité à haute température. Par contre, le phosphore provoque la fragilité à basse température. Cela étant dit, la teneur en impuretés doit être strictement limitée. **[2]**

II.5.3. Propriétés mécaniques

Les propriétés mécaniques de l'acier sont déterminées par les essais de résistance aux sollicitations extérieures, en particulier :

II.5.3.1. L'essai de traction

Il est pratiqué sur une éprouvette cylindrique, soumise à un effort de traction progressif, de 0 à la rupture

Figure I-1 : Diagramme contrainte-déformation pour l'essai de traction. [3]

Le diagramme se décompose en 04 phases

0A : Rectiligne : c'est la zone élastique qui est réversible, si on supprime l'effort de traction $(\frac{\Delta l}{l}=0)$.

AA': Palier horizontal, qui traduit un allongement sous charges constante (zone plastique).

A'B : La charge croit à nouveau avec un allongement jusqu'à B.

Chapitre I

BC : L'allongement continu, bien que la charge soit croissante, jusqu'au point C qui correspond à la rupture.

Les propriétés mécaniques suivantes peuvent être déduites des résultats de l'essai de traction :

- Le module d'élasticité longitudinale (module de Young) E : pente de la droite dans la phase élastique.
- La limite d'élasticité f_y : contrainte obtenue au niveau de la rupture de pente à la fin de la phase élastique (palier plastique).
- La limite de rupture f_u(notée f_t pour l'acier de béton armé) : contrainte maximale obtenue lors de l'essai.
- L'allongement à la rupture A : déformation permanente obtenue à la suite de l'essai. [3]

II.5.3.2. L'essai de dureté

Donne la résistance à l'abrasion. Cet essai n'est nécessaire qu'en cas de présence de forces tangentielles de frottement de forte intensité (par exemple : cas de forces de freinages de forte intensité des galets sur rail des ponts roulants). **[2]**

II.5.3.3. L'essai de résilience

Qui est un essai qualitatif qui permet de donner la classe de qualité de l'acier utilisé (voir norme EN 10 025) et d'en fixer son prix. Par ailleurs, cet essai permet de donner une meilleure appréciation sur la ductilité du matériau utilisé selon trois situations :

1°) situation de chargement brusque et de forte intensité : choc ou séisme,

2°) situation de concentration de contraintes : cas de changement brusque de section ou au voisinage des trous de perçage,

3°) situation de hautes et basses températures : auxquelles certaines impuretés (soufre et phosphore) qui en cas de taux de présence élevé, influeront considérablement sur la fragilité du matériau. **[2]**

Figure I-2 : Essai de résilience. [3]

II.5.3.4. L'essai de fatigue

Lorsqu'on soumet un matériau à des efforts répétés, alternés et variables, il peut se fissurer et se rompre alors que le niveau de sollicitations est inférieur à la limite de rupture à la traction. Cette perte de résistance qui se produit au cours du temps est appelée « fatigue ». **[2]**

II.6. Nuances normalisées d'aciers

Au niveau européen, les divers aciers de construction sont réglementés par la norme européenne EN 10 025 qui concerne les aciers non alliés et laminés à chaud et destinés à la fabrication d'éléments de construction métallique. Cette norme définit les nuances d'acier qui correspondent à leurs caractéristiques mécaniques.

Elle définit également pour une nuance donnée les classes de qualité (JR, JO, J2, G3) qui se distinguent entre elles par leur ductilité et leur soudabilité

En construction, il existe trois nuances essentielles d'acier à savoir :

- l'acier de nuance S235 ($f_y = 235$ MPa) qui est de loin la plus utilisée en Charpente métallique.

- l'acier de nuance S275 ($f_y = 275$ MPa) qui est rarement utilisée.

- l'acier de nuance S355 (f_y = 355 MPa) très utilisé dans les ouvrages d'art.

Ces trois nuances d'acier satisfont aux exigences de calcul en plasticité à savoir :

- La contrainte ultime f_u doit dépasser d'au moins 20 % la limite élastique : $f_u \ge 1.2 * f_v$

- L'allongement relatif ultime doit être supérieur à 15 % : $\varepsilon u \ge 15$ %

- L'allongement relatif ultime (à la rupture) doit être supérieur à 20 fois l'allongement relatif élastique $\varepsilon u \ge 20 * \varepsilon y$. [2]

II.7. Aspect réglementaire des calculs

En substitution aux anciennes règles CM66 et additif80, le CCM97 aujourd'hui en vigueur dans notre pays, constitue le premier règlement algérien de conception et de calcul de structures métalliques. La disposition des sections du CCM97 est fondée sur des critères de flambement etc., plutôt que sur les types d'éléments individuels, comme les poutres, les poteaux, etc. Par ailleurs, il est important de citer le DTR -BC 2-4.10 relatif aux structures mixtes acier-béton. Quant à l'Eurocode 03, celui-ci a été élaboré dans le but d'harmoniser la conception des constructions métalliques au sein de l'union européenne.

Il est à signaler qu'il existe neuf Eurocodes structuraux. Ceux en relation avec les structures en acier sont l'EC1, l'EC3 et l'EC4. L'Eurocode 1 (EC1) traite les actions. Il concerne

principalement les charges appliquées. L'Eurocode 3 (EC3) et l'Eurocode 4 (EC4) traitent les structures en acier et les structures mixtes acier-béton respectivement. **[2]**

II.8. Les classes de sections selon L'Eurocode3

L'EC3 définit quatre classes de sections transversales. La classe à laquelle appartient une section transversale particulière dépend de l'élancement de chaque paroi et de la distribution des contraintes de compression. **[2]**

• Les sections transversales de Classe 1

Sont celles qui peuvent former une rotule plastique, et possèdent une grande capacité de rotation laquelle est exigée pour l'analyse plastique et ce, en donnant lieu à des redistributions favorables de moments fléchissant dans la structure (phénomène d'adaptation plastique).

• Les sections transversales de Classe 2

Sont celles qui, bien qu'elles soient capables de former une rotule plastique, ont une capacité de rotation limitée et ne conviennent donc pas pour les structures calculées par analyse plastique. En effet, ces sections ne peuvent permettre des redistributions favorables à cause de l'apparition du voilement local « immédiatement » après la formation de cette rotule.

• Les sections transversales de Classe 3

Sont celles où la contrainte calculée dans la fibre comprimée extrême peut atteindre la limite d'élasticité mais où le voilement local empêche le développement du moment résistant plastique. En effet, le voilement local apparaît « immédiatement » après la plastification des fibres extrêmes.

• Les sections transversales de Classe 4

Sont celles où le voilement local limite le moment résistant (ou la résistance à la compression pour les éléments sous charges normales). Ce voilement apparaît bien avant la plastification des fibres extrêmes.

III. Notion de stabilité et d'instabilité

La stabilité est la capacité d'un système physique à revenir à l'équilibre lorsqu'il est légèrement perturbé. Pour un système mécanique, on peut adopter la définition donne par Dirichlet : L'équilibre d'un système mécanique est stable si, lorsque l'on place les points du système de leur position d'équilibre d'une quantité infinitésimale et en leur donnant à chacun d'eux une

Chapitre I

faible vitesse initiale, les déplacements des différents ponts du système restent, pendant le déplacement, contenus dans les limites imposées faibles. [4]

L'instabilité est un risque de passage d'un état stable à un état instable des structures de géométrie externe, comme par exemple les éléments comprimés d'élancement important, les plaques minces plates ou encore les coques minces cylindrique. On distingue trois (03) phénomènes d'instabilité :

- Le voilement : désigne le phénomène d'instabilité des parois (âme, semelle) d'une section sous l'effet des contraintes normales de compression engendrées par un effort axial de compression et/ou un moment fléchissant.
- Le diversement : désigne le phénomène d'instabilité qui affecte une poutre subissant un moment de flexion.
- Le flambement, qui affecte les barres simplement comprimés (flambement simple) ou comprimées fléchies (flambement flexion) qui est très dangereux. [5]

IV. Le flambement

IV.1. Définition du flambement

Également appelé flambement, le flambage est un phénomène physique relevant des principes de la résistance des matériaux. Lorsqu'une structure est compressée dans le sens de la longueur, elle a tendance à fléchir perpendiculairement à l'axe de la force appliquée, en raison d'un phénomène d'instabilité élastique. Plus la structure (une poutre, par exemple) est longue et étroite, plus elle se plie facilement, mais d'autres facteurs interviennent comme le système d'attache de la structure au niveau des points de compression. **[6]**

Figure I-3 : schématisation du flambage [7]

IV.2. Les dangers du flambement

Le flambement est l'une des premières causes de ruines des structures parce qu'il affect essentiellement l'élément porteur principal du bâtiment (poteau). Ce phénomène est la cause principale d'énormes catastrophe comme l'effondrement du pont de Québec (1907,74morts) On peut diminuer le phénomène du flambement en réduisant le rapport d'élancement par l'augmentation des dimensions ou 'en répartissant le matériau de manière différente le long de L'élément. **[8]**

Figure I-4 : L'effondrement du pont du Québec 1907. [8]

IV.3. Les lois de résistance au flambement

Il existe plusieurs lois du comportement, les plus utilisées sont celles d'Euler, de Rankine, de Tetmayer et la méthode du Dutheil. Certaines sont purement théorique (Euler), les autres tiennent plus au moins compte de l'expérience.

IV.3.1. Théorie d'Euler :

IV.3.1.1. Principe de la théorie d'Euler :

La méthode d'Euler a été la première à exprimer le phénomène du flambement en 1744, c'est une méthode théorique ,lorsqu'une tige mince rectiligne soumise à la force verticale N inferieur à la force critique N_c il existe une seul position d'équilibre stable c'est ou la tige reste rectiligne sinon si N est supérieur à la force critique N_c en déduit deux (02) positions d'équilibres existantes , la première c'est la flèche de la tige et la $2^{\acute{e}me}$ la tige reste rectiligne mais instable.[9]

IV.3.1.2. Charge critique d'Euler :

La tige bi- articulée est limité par deux point A et B, qui supporte des efforts N en A et B (représenté sur le schéma ci-contre). X et Y sont les coordonnées d'un point courant G de la fibre moyenne

La déformation a une influence sur l'équilibre statique de la tige en provoquant un moment de flexion qui égal :

Figure I-5 : poutre bi- articulée. [5]

- On a deux forces exercée sur les extrémités de la poutre selon l'axe (O, X)
- L'axe (O, Y) normale a la poutre
- y = f(x) La déformée de la poutre
- $M_Z(x)$ Le moment de flexion de la tige à l'abscisse x
- $y' = \frac{df(x)}{dx}$ La première dérivée de la déformée
- $y'' = \frac{d^2 f(x)}{dx^2}$ La deuxième dérivée de la déformée

La relation entre le moment de flexion et *y*["] : (équation de la déformée)

$$M_Z(x) = EI_G y^{"} \quad \mathbf{d'où} \quad EI_Z y^{"} - M_Z(x) = 0$$
$$Ny + EI_G y^{"} = 0$$
$$\mathbf{y}^{"} + \frac{N}{EI_C} \mathbf{y} = \mathbf{0} \quad (\mathbf{I}, \mathbf{2}) \quad \text{Équation différentielle de } 2^{\acute{e}me} \text{ ordre}$$

E:Module de plasticité de la tige

I_G:Moment d'inertie

La solution générale de cette équation est de cette forme :

 $f(x)=A\cos\alpha x + B\sin\alpha x$ (I.3)

On a:

$$\frac{N}{EI} = \alpha^2 \Rightarrow f''(x) = -\alpha^2 \times f(x)$$

Les conditions aux limites : $f(0) = 0, f(L_0) = 0$

• Pour f(0) = 0

A=0 donc
$$\mathbf{f}(\mathbf{x}) = Bsin\alpha \mathbf{x}$$

• Pour $f(L_0) = 0$

 $Bsin(L_0) = 0$ **Donc soit** B=0 ou sin(L_0) = 0

- Si B=0, donc la solution d'équation f(x) = 0 pour tout x vérifiant $0 < x < L_0$, la fonction *f* est nulle donc la déformée est y = 0 danc la tige rectiligne pas de flambement
- Si $sin\alpha L_0 = 0$ ce n'est possible que pour $\alpha L_0 = k\pi$ ou k est un entier
- Le cas ou k=0 pas de flambage
- Pour k=1

$$\alpha L_0 = \pi$$

Avec :

$$\alpha = \frac{\pi}{L_0}$$

Equation de la déformée

$$y(x) = B \times \sin\left(\frac{\pi}{L_0} \times x\right)$$
$$\alpha^2 = \frac{\pi^2}{L_0^2}$$
$$\alpha^2 = \frac{\pi^2}{L_0^2} = \frac{N}{EI}$$
$$N = \frac{\pi^2 EI_G}{L_0^2} \qquad (I.4)$$

Chapitre I

Pour la tige bi articulée $L_f = 1 * L_0$ (ce n'est pas toujours le cas).

 L_f : la longueur de flambage.

Les cas qui sont possible

- $N < N_C$ La tige est en équilibre stable.
- N=N_C la tige peut rester droite ou fléchir (flamber) avec une flèche égale à B elle est dite en équilibre neutre. A noter que B = y_{max} est en général petit.
- $N > N_C$ un équilibre instable avec une forte tendance au flambement. [5]

IV.3.1.3. La contrainte critique d'Euler

La force critique N_c correspond à une contrainte critique $\sigma_c = \frac{N_c}{A}$, A c'est la section droite de la tige.

La contrainte est définie par cette formule :

$$\sigma_c = \frac{N_C}{A} = \frac{\pi^2 E I_G}{L_f^2 A} \qquad (I.4)$$

IV.3.1.4. Le coefficient de la longueur de flambement

Coefficient de la longueur autrement dit coefficient de réduction de longueur k_f Ce coefficient k_f montre par combien il faut multiplier la longueur d'une tige articulée pour que sa charge critique soit égale à celle de la tige de longueur dans de conditions de fixations envisagées. **[9]**

Donc la longueur de flambement donnée par :

$$L_f = K_f \cdot L_0 \qquad (I.5)$$

L₀ : longueur de la tige .

L_f: longueur de flambement.

Le tableau suivant d'écrit le coefficient de la longueur de flambement K_f pour différentes liaisons aux appuis :

Type d'appuis	Coefficient de la longueur de flambement
	K _f
Poutre bi-articulée	1
Poutre encastrée-articulée	0.7
Poutre bi-encastrée	0.5
Poutre encastrée-libre	2

 Tableau I-1 : Coefficient de la longueur de flambement. [10]

IV.3.1.5. La longueur de flambement et les liaisons aux appuis

Les liaisons aux appuis influencent sur la longueur de flambement

	1		
Type de liaison	Schéma	Longueur de	Charge
		flambement	critique (N_c)
		(l_f)	
Appui Bi-			$\pi^2 EI$
Articulée		L	$N_c = \frac{\pi L}{L^2}$
	<u></u>		L-
Libre-			$\pi^2 EI$
Encastrement		2 <i>L</i>	$N_c = \frac{1}{4L^2}$
Encastrement-			$4\pi^2 EI$
Encastrement		0, 5 <i>L</i>	$N_c = \frac{L^2}{L^2}$
		-	
Appui simple-			$2\pi^2 EI$
Encastrement		0, 7 <i>L</i>	$N_c = \frac{1}{I^2}$
			L ²

 Tableau I-2 : influence des liaisons aux appuis. [11]

IV.3.1.6. Conditions d'utilisation de la formule d'Euler

➢ La formule d'Euler est applicable pour les élancements supérieurs à élancement limite

Quelques valeurs de l'élancement limite d'Euler $\lambda_{\lim Euler}$	
S235	93.91
S275	86.81
S355	76.41
S420	70.25
S460	67.12
Fonte	80
Bois	100110

 Tableau I-3 : Elancement limite d'Euler. [10]
 Image: Comparison of the second seco

 Si l'élancement est inférieur à l'élancement limite, le problème de stabilité nécessite une étude particulière.

$$\lambda < \lambda_{\lim Euler}$$

C'est pour cela qu'on utilise les formules empiriques dans le cas des pièces courtes, plus particulièrement la formule de Rankine qui s'énonce de manière suivante :

IV.3.2. Méthode de Rankine

* La charge critique selon Rankine est égale à :

$$N_{\text{crit Rankine}} = \frac{\text{Re.A}}{(1+\bar{\lambda}^2)} \quad (I.6) \quad [10]$$

Avec:
$$\bar{\lambda} = \frac{\lambda}{\lambda_{\lim Euler}}$$

 $\bar{\lambda}$: élancement réduit

$$\lambda_{\lim Euler} = \pi \sqrt{\frac{E}{Re}}$$

***** Contrainte critique :

$$\sigma_{\text{crit Rankine}} = \frac{\text{Re}}{(1+\bar{\lambda}^2)}$$
 (I.7)

$$\sigma_{adm} = \frac{\sigma_{crit Rankine}}{S}$$
(I.8)

Avec :

S : coefficient de sécurité

Donc le calcule de vérification des pièces soumises au flambement nécessite de comparer la contrainte de compression avec la contrainte admissible au flambement.

$$\sigma_{adm} \ge \sigma$$

$$\frac{\sigma_{crit Rankine}}{S} \ge \frac{N}{A} \qquad (I.9)$$

IV.3.3 Méthode de Dutheil

IV.3.3.1. Principe

La méthode de Dutheil tient compte de la flexion et de la compression. Elle est applicable quel que soit la valeur de l'élancement λ . [12]

$$|\sigma|max = \left|\frac{N}{A} - \frac{Mfz}{Igz}\right|$$
 (I.8)

IV.3.3.2. Calcul de la résistance

La flèche maximale au milieu d'une poutre ayant une flèche initiale α est donnée par la relation :

$$f_c = \frac{a}{1 - \frac{F}{F_c}} \qquad (I.9)$$

Dans la section supportant le moment maximal de flexion :

$$|Mfz|\max = F \times \frac{a}{1 - \frac{F}{Fc}}$$
 avec $F_c = \frac{\pi^2 E I g z}{L^2}$

On écrit alors pour une charge axiale |N|=F :

$$|\sigma| \text{Max} = \frac{F}{A} + \frac{\pi^2 E a \upsilon}{L^2} \times \frac{F}{F c - F}$$
 (I.10)

Dans la suite des calculs, on va écrire $\sigma_c = \frac{Fc}{A}$: contrainte critique d'Euler.

Dans la relation (**I.14**) exprimant pour simplifier les écritures : $\sigma_0 = \frac{\pi^2 \times Eav}{L^2}$ (σ_0 est homogène à une contrainte).

Exprimons comme condition limite que $\sigma \leq \sigma_e$ pour une charge axiale $F = \sigma A$, ce qui revient à dire que la poutre sera calculée en compression mais en majorant la contrainte pour tenir compte du moment de flexion. La relation (I.10) s'écrit alors après simplification par A :

$$\sigma^2 - \sigma(\sigma_e + \sigma_c + \sigma_0) + \sigma_c \sigma_e \ge 0 \qquad (I.11)$$

 σ_e : contrainte maximale caractérisant état de ruine

 σ : contrainte normale totale

Notons qu'on écrivant $\sigma \leq \sigma_e$ aucun coefficient de sécurité n'intervient ; nous devrons en tenir compte plus tard.

On sait résoudre cette inéquation du second degré en σ .

Pour simplifier les écritures Dutheil à proposer d'écrire :

$$\sigma_e + \sigma_c + \sigma_0 = \sigma_t \tag{I.12}$$

D'autre part, le terme σ_0 intervenant en terme correctif, Dutheil propose comme expression de σ_t :

$$\sigma_t \approx \sigma_c + 1.3 \sigma_e \tag{I.13}$$

Ce qui évite le calcul de σ_0 . Notons que cette expression (**I.13**) repose sur une vérification expérimentale. La résolution de (**I.11**) donne alors :

$$\sigma \leq \frac{1}{2}\sigma_t - \sqrt{\frac{\sigma_t^2}{4}} - \sigma_e \sigma_c \qquad (I.14)$$

Cependant que la relation (I.14) ne fait intervenir aucun coefficient de sécurité.

La contrainte σ ainsi calculée est appelée « Contrainte d'affaissement » ou « Contrainte de ruine ». [12]

IV.3.4 Méthode de Tetmayer :

Formule expérimentale :

$$N_T = \frac{AR_{cf}}{\alpha} \qquad (I.15)$$

 R_{cf} : Résistance à la compression par flambement établit expérimentalement pour

Différents matériaux et en fonction de λ .

Elle est surtout utilisée dans le domaine des faibles élancements ou la formule

D'Euler donne des valeurs trop favorables, donc, présentant moins de sécurité. [13]

CHAPITRE II

ASPECT THÉORIQUE DU FLAMBEMENT

I. Introduction

Les premiers problèmes d'instabilité élastique, se rapportant au flambement latéral des pièces comprimées, ont été résolus par Euler (1744). Euler a utilisé la méthode classique pour déterminer la force critique de flambement, ou charge d'Euler, d'une poutre droite, de longueur L, soumise à une force de compression N, pour différentes conditions aux limites.

II. Les éléments qui influent sur le flambement

D'après la formule d'Euler on voit que chaque un des termes d'équation à une influence sur le flambement, donc d'après la relation suivante :

$$N_K = \frac{\pi^2 EI}{L_f^2} \qquad (II.1)$$

On a trois influences sur la charge maximal admissible :

- Le moment d'inertie (I)
- Le module de Young(E)
- La longueur du flambement (L_f)

II.1. Le moment d'inertie « I »

Si l'Inertie augmente, la charge maximale admissible augmente.

Le moment d'inertie joue un rôle très important dans le flambement car Il est un facteur multiplicateur dans la formule d'Euler. Le flambement apparaît quand, pour des raisons d'irrégularités de la matière et des forces appliquées, une colonne se met à fléchir sous une charge parallèle à son axe, alors qu'une poutre fléchira sous l'action de charges perpendiculaire à son axe.

Le flambement est finalement un problème de flexion, et il est logique que l'inertie joue un rôle important dans le phénomène. **[14]**

II.2. Le module de Young « E »

Si le module de Young augmente, la charge maximale admissible augmente.

Le module de Young (module d'élasticité) c'est l'un des caractéristiques mécaniques d'un matériau et un facteur multiplicateur dans la relation d'Euler, donc plus le module d'élasticité augmente plus la poutre supporte une charge plus grande. Le module du Young varie selon le matériau utilisé. **[14]**

Exemple :

A section égale, si on remplace une colonne en bois par une colonne en acier (de même géométrie), la charge qu'elle pourra reprendre sera beaucoup plus grande, ce qui est logique.

II.3. La longueur du flambement L_f

Si L_f augmente, la charge maximale admissible diminue.

La longueur de flambement L_f c'est le produit entre la longueur initiale de la barre L_0 et le coefficient de longeur k_f qui est le coefficient de réduction $L_f = L_0 * k_f$. La longueur de flambement diffère d'une barre a une autre à cause des liaisons appliquées à l'extrémité de cette dernière (articulée, encastrée), d'où les liaisons ont une influence sur la longueur de flambement et comme cette longueur c'est un facteur de division dans la formule d'Euler donc elle est inversement proportionnelle à la charge critique (le flambement augmente, la charge

diminue) **[14]**

III. Flambement simple III.1 Poutre bi-articulée

Figure II-1 : poutre bi-articulée [5]

La relation entre le moment de flexion et y'' est :

$$\mathbf{y}'' = \frac{-M}{EI_z} \implies -\frac{d^2 y}{dx^2} \mathbf{E} I_z \tag{II.3}$$

Donc :

On a :

$$\alpha = \sqrt{\frac{N}{EI}} \quad \Rightarrow -\frac{d^2 y}{dx^2} E I_z + a^2 y = 0 \tag{II.4}$$

 $-\frac{d^2y}{dx^2} \mathbf{E}I_z = \mathbf{N} \mathbf{y}$

(3) est une équation différentielle du second ordre, dont la solution générale est de forme :

$$Y = A \sin \alpha x + B \cos \alpha x$$
 (II.5)

La résolution de cette équation au conditions limites :

Pour x=0

$$Y(0) = 0 = B \cos x = 0 \text{ donc} \quad B = 0$$

• Pour $x = l_0$

$$Y(L_0) = 0 \implies AsinaL_0 = 0$$

- Si $\sin \alpha L_0 \neq 0$ donc A=0
- Si sin $\alpha L_0 = 0$ donc $\alpha L_0 = K\pi$

Soit :

$$\alpha = \frac{K\pi}{L_0} = \sqrt{\frac{N}{EI}}$$

D'où :

$$\mathbf{N} = \frac{K^2 \pi^2 EI}{L_0^2}$$

- **Pour** K=0N=0 **donc la tige est rectiligne.**
- Pour que la tige reste fléchie, il faut que K égale au moins 1, ce qui engendre une valeur qui correspond à un équilibre fléchi de la poutre qui vaut :

$$N_k = \frac{\pi^2 EI}{L_0^2}$$
 (II.6)

 N_k : force critique d'Euler
L'équation de la déflexion qui correspond à cette force est :

La Courbe est sinusoïdale donc l'obtention de l'amplitude de flambement « A » n'est pas possible.

La force critique N_k correspond à une contrainte critique $\sigma_k = \frac{N_k}{A}$ avec A la section droite de la tige, qui s'écrit encore :

$$\sigma_k = \frac{\pi^2 E}{L_0^2} \frac{I}{A} = \frac{\pi^2 E}{L_0^2} i^2$$
 (II.7)

Avec $i = \sqrt{\frac{I}{A}}$, **i**: rayon de giration

I : inertie minimale

Le rayon de giration correspond à l'élancement maximal $\lambda = \frac{L_0}{i}$

D'où :

$$\sigma_k = \frac{\pi^2 E}{\lambda^2} \qquad (\text{II.8}) \quad [5]$$

Figure II-2 : Evolution de la contrainte normale en fonction de l'élancement Contrainte critique d'Euler. [3]

Chapitre II

A la limite σ_K = σ_e = f_y correspond un élancement critique λ_K. Pour λ < λ_K, aucun risque de flambement n'est à craindre, la ruine survient par compression simple (écrasement) pour σ_K = σ_e. Pour λ > λ_K, il y a ruine lorsque σ = σ_K. [3]

III.2. Poutre articulée en tête et encastrée en pied

On a:

$$M=Ny - Px \qquad (II.9)$$
$$M=-EI\frac{d^2x}{dy^2} = Ny - P_x$$

On a :

$$\alpha = \sqrt{\frac{N}{EI}}$$

D'où :

Figure II-3 : poutre encastrée-articulée [5]

La résolution aux conditions aux limites

- **Pour y (0) =0** , soit $B \cos \alpha (0) = 0$ donc : **B=0**
- **Pour y** $(L_0)=0$, soit A sina $(L_0)+\frac{P}{N}L=0$

D'où :

$$\sin\alpha(L_0) = \frac{-P}{AN} L_0 \qquad (II.11)$$

- **Pour y'** $(L_0)=0$, soit $A\alpha cos\alpha L_0 + \frac{P}{N}=0$

D'où :

$$\cos\alpha(L_0) = \frac{-P}{NA\alpha}$$
(II.12)

De (II.11) et (II.12) on a :

$$\operatorname{Tan}\alpha L_0 = \frac{\sin \alpha L}{\cos \alpha L_0} = -\frac{P}{AN} L_0 \times \frac{NA\alpha}{-P}$$

D'où l'on tire l'équation transcendante tan $\alpha l_0 = \alpha l_0$, qui a pour plus petite racine $\alpha l_0 = 4.5$ Soit :

$$\alpha = \frac{4.5}{l_0} = \sqrt{\frac{N}{EI}}$$

D'où :

$$N_k = \frac{4.5^2 EI}{L_0^2}$$
, $4.5^2 = K\pi^2$ soit: $K = \frac{4.5^2}{\pi^2}$

Donc :

$$N_k = \frac{2\pi^2 EI}{L_0^2}$$
 (II.13)

D'après la formule d'Euler on a :

$$\frac{\frac{2}{L_0^2} - \frac{1}{L_k^2}}{\frac{1}{2}} \gg L_k = \sqrt{\frac{L_0^2}{2}}$$

$$L_k = \frac{L_0}{\sqrt{2}} = \frac{\sqrt{2}}{2} L_0 \qquad D'où: \quad L_k = 0.7L_0 \quad \text{(II.14)} \quad [2]$$

III.3. Poutre encastrée en pied et libre en tête

Figure II-4 : poutre encastrée- libre. [15]

 $M_z + Ny = 0$

On a:

$$M_z = EIy'' = EI\frac{d^2y}{dx^2}$$

$$EI\frac{d^2y}{dx^2} + Ny = 0 \qquad (II.15)$$

$$\alpha^2 = \frac{N}{EI} \qquad (II.16)$$

$$\alpha = \sqrt{\frac{N}{EI}}$$

On remplace (II.15) dans (II.16) :

$$\frac{d^2y}{dx^2} + \alpha^2 y = 0 \qquad (\text{II.17})$$

La solution de cette équation :

$$y = Acos(\alpha x) + Bsin(\alpha x)$$

Détermination des constante A et B :

Les conditions aux limites :

$$y(0) = 0 = y(2L)$$

 $y'(0) = 0 = y'(2L)$

D'où :

Pour
$$y(0) = 0$$
 d'où A=0
Pour $y(2L) = 0$ donc $Bsin(\alpha 2L) = 0$

 $\alpha 2L = n\pi$ Avec **n** : nombre entier

Pour n=1 (premier mode de flambement) on a :

$$\alpha = \frac{\pi}{2l}$$
 (II.18)

L'équation de la déformée :

$$y(x) = Bsin\left(\frac{2\pi}{2L}\right)$$
 (II.19)

De l'équation (II.18) et (II.16) :

$$\alpha^2 = \frac{\pi^2}{4L^2} = \frac{N}{EI}$$
$$N_K = \frac{\pi^2 EI}{4L_0^2} \quad (\text{II.19})$$

On se référant à la formule d'Euler $\Rightarrow \frac{1}{4L_0^2} = \frac{1}{L_f^2}$

$$L_f^2 = 4L_0^2$$
$$L_f = 2L_0$$

La contrainte est définie par la relation suivante :

$$\sigma_K = \frac{N_K}{A} = \frac{\pi^2 EI}{L_f \cdot A}$$
(II.20)

Le rayon de giration $i = \sqrt{\frac{I_{min}}{A}}$ et l'élancement $\lambda = \frac{L_f}{i}$

On a :

$$L_f = 2L_0 \quad \Rightarrow \lambda = \frac{2L_0}{i}$$

D'où :

$$L_f^2 = \frac{L\lambda^2}{A}$$
 (II.21)

On remplace (**II.21**) dans (**II.20**):

$$\sigma_{K} = \frac{\pi^{2} E I}{\frac{I \lambda^{2}}{A} \cdot A} \quad \Rightarrow \sigma_{K} = \frac{\pi^{2} E}{\lambda^{2}} \quad (II.22) \quad [5]$$

III.4. Poutre bi-encastrée

Figure II-5 : poutre bi-encastrée. [5]

L'équation différentielle est :

$$EI_Z \frac{d^2 y}{dx^2} = M$$

Expression du moment est de la forme :

$$M = -Ny + Cx + D \tag{II.23}$$

Par conséquence :

$$EI_Z \frac{d^2y}{dx^2} + Ny = Cx + D$$

Par intégration on a :

$$y = A\cos\alpha x + B\sin\alpha x + Cx + D$$
 (II.24)

Chapitre II

Les conditions aux limites sont :

$$y(0) = y(L_0) = 0$$

 $y'(0) = y'(L_0) = 0$

D'où :

$$y(0) = A + D = 0$$
 (II.25)

$$y'(0) = B\alpha cos\alpha x + C = 0$$
 (II.26)

$$y(L_0) = A\cos\alpha L_0 + B\sin\alpha L_0 + CL_0 + D$$
 (II.27)

$$y'(L_0) = -A\alpha sin\alpha L_0 + B\alpha cos\alpha L_0 + C$$
(II.28)

On a de l'équation (II.25) :

$$A = -D \tag{(*)}$$

De (**II.26**) on a :

$$\boldsymbol{C} = \boldsymbol{B}\boldsymbol{\alpha} \tag{(**)}$$

On remplace (*) et (**) dans (**II.27**) et (**II.28**) d'où :

$$\begin{cases} A\cos\alpha L_0 + B\sin\alpha L_0 - B\alpha L_0 - A = 0 & (1*) \\ -A\alpha\sin\alpha L_0 + B\alpha\cos\alpha L_0 - B\alpha = 0 & (2*) \end{cases}$$

$$\begin{cases} (1*)*(-1)\\ (2*)*(-1) \end{cases} \Rightarrow \begin{cases} A(1-\cos\alpha L_0) + B(\alpha L_0 - \sin\alpha L_0) = 0 & (1**)\\ A\alpha \sin\alpha L_0 + B\alpha(1-\cos\alpha L_0) = 0 & (2**) \end{cases}$$

De (1**) on a :

$$B = \frac{-A(1 - \cos\alpha L_0)}{(\alpha L_0 - \sin\alpha L_0)} \qquad (***)$$

On remplace (***) dans (4**) d'où :

$$A\alpha \sin \alpha L_0 - \frac{A\alpha (1 - \cos \alpha L_0)}{(\alpha L_0 - \sin \alpha L_0)} * (1 - \cos \alpha L_0) = 0$$

$$\frac{A\alpha(\alpha L_0 - \sin\alpha L_0)\sin\alpha L_0 - [A\alpha(1 - \cos\alpha L_0)^2]}{(\alpha L_0 - \sin\alpha L_0)} = 0 \qquad (II. 29)$$

D'où :

$$A\alpha^{2}L_{0}sin\alpha l_{0} - A\alpha sin^{2}\alpha L_{0} - A\alpha - A\alpha cos^{2}\alpha L_{0} - 2A\alpha cos\alpha L_{0} = 0 \quad (\mathbf{3} *)$$

Où :

$$\alpha L_0 \sin \alpha L_0 = 2(1 - \cos \alpha L_0) \qquad (\text{II. 30})$$

La plus petite racine de cette équation est :

$$\alpha L_0 = 2\pi$$

La force critique d'Euler donc est égale à :

$$N_K = 4\pi^2 \frac{EI}{L_0^2}$$

D'une manière générale, selon les conditions aux appuis, la force critique d'Euler vaut :

$$N_K = m \frac{\pi^2 E I}{{L_0}^2}$$

En introduisant la longueur de flambement L_f d'où :

$$N_{\rm K} = \frac{\pi^2 EI}{L_{\rm f}^2}$$
 avec $L_f = \frac{L_0}{\sqrt{m}} = \frac{1}{\sqrt{m}} L_0$ (II.31)

On peut déduire alors que :

$$k_f = \frac{1}{\sqrt{m}} \quad [5]$$

IV. Le flambement flexion

Il s'agit dans ce cas d'une poutre bi articulée idéal rectiligne, soumise simultanément à a un effort normal N et à un moment fléchissant M_0

Dans le flambement flexion, on a une amplification de la déformée et donc la contrainte de flexion et de compression contrairement au flambement simple c'est seulement la contrainte de compression. [5]

Le moment fléchissant total (comprimé et fléchi), vaut :

$$M(x) = M_0 + Ny$$
 (II.32)

D'où :

$$M(x) = -EI \frac{d^2 y}{d^2 x} \Rightarrow -M_0 = EI \frac{d^2 y}{d^2 x} + Ny$$

Les deux cas les plus courant du moment sont :

- Moment sous charge concentrée transversale.
- Moment sous charge uniformément repartie transversale.

IV.1. Sous charge concentrée Q

Figure II-6 : Sous charge concentrée. [5]

Selon RDM nous avant deux tronçons :

- **Premier on a :** $0 \le x \le a$
- **Deuxième on a :** $a \le x \le L$

$$\sum F = R_A + R_B = Q$$
$$\sum \frac{M}{A} = R_B L - Qa = 0 \implies R_B = \frac{Qa}{L}$$

D'où :

Chapitre II

$$R_A = \frac{+Q(L-a)}{L}$$

On a pour $0 \le x \le a$:

$$M_{Z} + R_{A}x = 0$$
$$M_{Z} = R_{A}x$$
$$M_{Z} = Qx \frac{(L-a)}{L} \qquad (II.33)$$

Pour $a \le x \le L$:

$$\sum M = M_Z - R_A x + Q(x - a) = 0$$
$$M_Z = R_A x - Q(x - a)$$
$$M_Z = \frac{Qa(L - x)}{L}$$
(II.34)

L'intégrale générale a pour expression :

Pour $0 \le x \le a$:

$$y(x) = A\cos\alpha x + B\sin\alpha x + \frac{Q}{N}x\frac{L-a}{L}$$
(II.35)

Pour $a \le x \le L$:

$$y(x) = C\cos\alpha x + D\sin\alpha x + \frac{Q}{N}a\frac{L-x}{L}$$
(II.36)

Les coefficients A, B, C, D sont des déterminés en écrivant que : On a de (II.35) :

$$y(0) = 0$$
 d'où $A\cos\alpha(0) = 0 \Rightarrow A=0$

De (II.35) on a :

$$y'(0) = 0$$
 d'où $y'(0) = B\alpha \cos \propto (0) + \frac{Q}{N} \frac{L-a}{L} = 0 \Rightarrow B = \frac{-Q}{N\alpha} \frac{L-a}{L}$

On écrit :

$$B = \frac{-Q}{N\alpha} \frac{\sin\alpha(L-\alpha)}{\sin\alpha L}$$

On a de (II.36) :

$$y(L) = 0$$
 d'où $y(L) = Ccos\alpha L + Dsin\alpha L + \frac{Q}{N} \alpha \frac{L-L}{L} = 0$
 $\Rightarrow C = -Dtan\alpha L$

D'où :

$$D = \frac{Qsin\alpha a}{\alpha N tan\alpha L} \quad \Rightarrow \quad C = \frac{-Q}{\alpha N} sin\alpha a$$

On remplace les coefficients A, B, C et D dans (II.35) et (II.36) on trouve :

$$y(x) = \frac{-Q}{\alpha N} \frac{\sin\alpha(L-a)}{\sin\alpha L} \sin\alpha x + \frac{Q}{N} x \frac{L-a}{L}$$
(II.37)

$$y(x) = \frac{-Q}{\alpha N} \frac{\sin \alpha \alpha}{\sin \alpha L} \sin \alpha (L - x) + \frac{Q}{N} \alpha \frac{L - x}{L}$$
(II.38)

Pour $x = \frac{L}{2}$ et $a = \frac{L}{2}$ on a :

$$u = \frac{aL}{2} = \frac{L}{2} \sqrt{\frac{N}{EI_z}} = \frac{\pi}{2} \sqrt{\frac{N}{N_K}}$$
$$y_{max} = \frac{-QL^3}{48EI_z} \frac{3(tgu - u)}{u^3}$$
$$y_{max} = \frac{QL}{4} \frac{tgu}{u} \quad (\text{II.39}) \quad [5]$$

IV.2. Sous charge uniformément répartie q

$$u(x) = \frac{qx}{2}(L-x) \quad \text{, en posant : } u = \frac{aL}{2} \text{ il vient :}$$
$$y(x) = \frac{QL^4}{16EI_z u^4} \left[1 - \frac{\cos\left[u\left(1 - \frac{2x}{L}\right)\right]}{\cos u} \right] + \frac{qL^2 u}{8EI_z u^2}(L-u)$$

La flèche maximale pour $x = \frac{L}{2}$ s'écrit :

$$y_{max} = \frac{5}{384} \frac{qL^4}{EI_z} \frac{24(1 - \cos u) - 12u^2 \cos u}{5u^2 \cos u}$$

$$y_{max} = \frac{ql^2}{8} \frac{2(cosu-1)}{u^2 cosu}$$
 (II.40)

• Les résultats, pour les cas usuels, sont rassemblés dans le tableau ci-après, dans lequel

$$t = \frac{al}{2}$$

Conditions aux	Cas de	M _{0max}	M _{max}	Coefficient d'amplification des
appuis	charges	Pour $z = \frac{l}{2}$	Pour $\mathbf{z} = \frac{l}{2}$	moments $\mathbf{r} = \frac{M_{max}}{M_{0_{max}}}$
Bi-articulée	Sous charge répartie q	$q \frac{l^2}{8}$	$q \frac{l^2}{8} r$	$\frac{2}{t^2}\left(\frac{1}{\cos t}-1\right)$
	Sous charge concentrée Q	$Q\frac{l}{4}$	$Q\frac{l}{4}r$	$\frac{1}{t}$ tg t
Bi-encastrée	Sous charge répartie q	$q \frac{l^2}{24}$	$q \frac{l^2}{24} r$	$\frac{3}{t\sin 2t} - \frac{3}{2t^2}$
	Sous charge concentrée Q	$Q\frac{l}{8}$	$Q\frac{l}{8}r$	$\frac{1}{t}tg t$

 Tableau
 II-1 : Sous charge repartie de jean Morel.
 [5]

V. Prise en compte des défauts

Il existe plusieurs défauts qui contribuent à affaiblir les éléments en acier, parmi ces défauts, on distingue :

- 1. Les pièces après leur traitement en laminoir et leurs diverses manutentions et transports ne sont pas rectilignes (défauts de rectitude).
- 2. Leurs inerties ne sont pas constantes (tolérances de laminage).
- Les efforts normaux de compression et les appuis ne sont jamais rigoureusement centrés (défauts de centrage).
- 4. Les poteaux sur chantier ne sont jamais parfaitement verticaux (tolérances de montage).
- 5. Le module d'élasticité E de l'acier n'est pas vraiment constant, du fait des contraintes résiduelles de laminage (défauts d'homogénéité).

Les défauts de rectitude (1 et 2) et les défauts de centrage (3,4 et 5) réduisent la force portante de la barre, et justifient des calculs spécifiques.

V.1 Prise en compte de défauts de rectitude

Considérons une poutre bi-articulée dotée d'une courbure initiale $y_0 = f(x)$ et chargée centriquement.

Figure II-7 : défaut de rectitude [5]

Le moment fléchissant vaut :

$$M(x)=N(y+y_0)$$
 (II.41)

Page | 34

Chapitre II

L'équation de la déformée s'écrit :

$$\mathrm{EI}\frac{d^2y}{dx^2} = -\mathrm{M} = -\mathrm{N}(y + y_0)$$

D'où :

$$\frac{d^2y}{dx^2} = \alpha^2(y + y_0)$$

La déformée de la poutre, à vide, s'exprime par le développement en série de sinus suivante :

$$y_0 = \alpha_1 \frac{\sin \pi x}{L} + \alpha_2 \sin \frac{2\pi x}{L} + \dots$$

Qui, en première approximation (les autres termes étant négligeables) se résume à :

$$y_0 = \alpha \sin \frac{\pi x}{L}$$

Soit :

$$\frac{d^2y}{dx^2} + \alpha^2 (y + \alpha \sin \frac{\pi x}{L}) = 0$$
 (II.42)

La solution générale de cette équation est de forme :

$$y=D\sin\frac{\pi x}{L}$$

Les dérivées sont :

$$\frac{dy}{dx} = D \frac{\pi}{L} \cos \frac{\pi x}{L}$$
$$\frac{d^2 y}{dx^2} = -D \frac{\pi^2}{L^2} \sin \frac{\pi x}{L}$$

L'équation (1) devient alors :

$$\sin\frac{\pi x}{L}(a\alpha^2 + D\alpha^2 - D\frac{\pi^2}{L^2}) = 0$$

D'où l'on tire :

$$D = \frac{a}{\frac{\pi^2}{\alpha^2 L^2} - 1}$$

La flèche additionnelle y prise par la poutre vaut donc :

$$Y = \frac{a \sin \frac{\pi x}{L}}{\frac{\pi^2}{\alpha^2 L^2 - 1}}$$

Elle est maximale à l'abscisse $x=\frac{L}{2}$, soit :

$$y_{max} = f = \frac{a}{\frac{\pi^2}{\alpha^2 L^2} - 1}$$
 (II.43)

Compte tenu que $\alpha^2 = \frac{N}{EI}$ et $N_k = \frac{\pi^2 EI}{L^2}$, (2) s'écrit encore :

$$F = \frac{a}{\frac{N_k}{N} - 1}$$

Les déformations croissent hyperboliquement avec N.

La flèche totale f_t (flèche initiale + flèche additionnelle) vaut donc :

$$f_t = a + f = \frac{a}{1 - \frac{N}{N_k}}$$
(II.44)

- Lorsque N=0 f_t =a (état initial)
 Lorsque N $\rightarrow N_k$ $f_t \rightarrow \infty$ (état de ruine)

La contrainte maximale, caractérisant l'état de ruine est obtenue pour :

$$\sigma_e = \frac{N}{A} + \frac{Nfv}{I}$$

Compte tenu que $c = \frac{l}{vA} = \frac{i^2}{v}$, i étant le rayon de giration et c la distance du centre de gravité de la section à la frontière du noyau central, on a :

$$\sigma_e = \sigma \left[1 + \frac{a}{c} \frac{\sigma}{\sigma_k} \right]$$
(II.45)

 $\frac{\sigma}{\sigma_k - \sigma}$ = coefficient d'amplification de la flèche initiale.

 $\left[1 + \frac{a}{c} \frac{\sigma}{\sigma_{k} - \sigma}\right]$ = coefficient d'amplification de la contrainte.

La charge de ruine N est obtenue par la relation (II.45), en portant $\sigma = \frac{N}{A}$ et $\sigma_k = \frac{\pi^2 E}{\lambda^2}$.

On obtient l'équation suivante du second degré, qui donne N.

$$\frac{\lambda^2}{\pi^2 EA} N^2 - (\frac{\lambda^2 \sigma_e}{\pi^2 E} + \frac{a}{c} + 1) N + A \sigma_e = 0$$
 (II.46) [5]

V.2. Prise en compte des défauts de centrage

Considérons cette fois-ci une poutre rectiligne, chargée d'une force N, parallèle à son axe moyen, mais excentrée de e.

Figure II-8 : défaut de centrage. [5]

Equation de la déformée :

$$\frac{d^2y}{dx^2} + \alpha^2 y = 0$$
 (II.47)

Solution générale :

y=A sinax +B cosax

Conditions aux limites :

y (0) =e, soit **B=0**
y(L)=e, soit
$$A=e\frac{1-cos\alpha L}{sin\alpha L}$$

D'où

y=e
$$(\cos\alpha x + \sin\alpha x \frac{1 - \cos\alpha L}{\sin\alpha L})$$
 (II.48)

Fleche totale maximale pour $x = \frac{L}{2}$:

$$e + f = e \left[cos\alpha \frac{L}{2} + sin\alpha \frac{L}{2} \frac{1 - cos\alpha L}{sin\alpha L} \right]$$

Or:

$$\cos\alpha L = 1-2\sin^2\frac{\alpha L}{2}$$

Chapitre II

$$\sin\alpha L = 2\sin\frac{\alpha L}{2}\cos\frac{\alpha L}{2}$$

D'où :

$$\frac{1-\cos\alpha L}{\sin\alpha L} = tg\frac{\alpha L}{2}$$

La flèche totale vaut donc :

$$e + f = e\left(\cos\frac{\alpha L}{2} + \sin\frac{\alpha L}{2} - tg\frac{\alpha L}{2}\right) = \frac{e}{\cos\frac{\alpha L}{2}}$$

Soit :

$$f = e\left(\frac{1}{\cos\frac{\alpha L}{2}} - 1\right)$$
 (II.49)

- Lorsque N= 0 f=0 (état initial)
- Lorsque $N \rightarrow N_k$ $f \rightarrow \infty$ (état de ruine).

F varie hyperboliquement en fonction de N et asymptote horizontale N_k

Le moment fléchissant maximal vaut :

$$M_f = N(e+f) = \frac{Ne}{\cos\frac{\alpha L}{2}}$$

La contrainte maximale, caractérisant l'état de ruine, est obtenue pour :

$$\sigma_e = \frac{N}{A} + \frac{N(e+f)v}{I}$$

Qui s'écrit encore, en portant $c=\frac{i^2}{v}$ et f tirée de la relation (II.49).

$$\sigma_e = \frac{N}{A} \left[1 + \frac{e}{c.cos\frac{\alpha L}{2}} \right]$$

Or:

$$\cos\frac{\alpha L}{2} = \cos\sqrt{\frac{N}{EI}\frac{L}{2}} = \cos\frac{\lambda}{2}\sqrt{\frac{N}{EA}}$$

Soit enfin :

$$\sigma_e = \frac{N}{A} \left(1 + \frac{e}{c} \frac{1}{\cos\frac{\lambda}{2}\sqrt{\frac{N}{EA}}} \right)$$
(II.50)

La charge de ruine N peut être obtenue par résolution de l'équation (6) cependant, plus simplement, tant que N reste faible vis-à-vis de N_k (petites déformations), on peut admettre avec une précision suffisante, α l étant faible, que :

$$\cos\frac{\alpha L}{2} = 1 - \frac{\alpha^2 L^2}{8}$$

L'équation (II.49) s'écrit alors :

$$f = e\left(\frac{1}{1 - \frac{\alpha^2 L^2}{8}} - 1\right)$$

En portant $\alpha^2 = \frac{N}{EI}$, on obtient finalement :

$$N = \frac{8EIf}{L^2(e+f)}$$
(II.51) [5]

VI. Influence de l'effort tranchant sur le flambement des barres

Effort tranchant est toujours présent dans les barres fléchies ce qui provoque des déformations dont nous n'avons pas tenu compte jusqu'à présent. En fait, la présence d'un effort tranchant ne modifie d'une manière sensible la charge critique N_k .

On va continuer avec le cas simple de la poutre d'Euler (bi-articulée) sollicitée en compression simple.

Nous avions :

$$M = Ny$$
 , $V = \frac{dM}{dx} = N\frac{dy}{dx}$ (II.52)

L'équation de la déformée s'écrit, en prenant en compte les déformations engendrées par l'effort tranchant :

$$\frac{d^2 y}{dx^2} = -\frac{M}{EI} + \frac{d}{dx} \left(\frac{V}{GA_1}\right)$$
$$\frac{d^2 y}{dx^2} = -\frac{Ny}{EI} + \frac{N}{GA_1} \frac{d^2 y}{dx^2}$$

Soit :

$$\frac{d^2y}{dx^2}(1-\frac{N}{GA_1}) + \frac{N}{EI}y = 0$$

Posons :

$$\beta^2 = \frac{N}{EI(1 - \frac{N}{GA_1})}$$

L'équation devient :

$$\frac{d^2y}{dx^2} + \beta^2 y = 0$$
 (II.53)

Elle est similaire à l'équation différentielle du Précédent (équation de la poutre bi-articulé), et se résout de la même façon.

La force critique de flambement, qui valait $N_k = \frac{\pi^2 EI}{l_k^2}$, est réduite en raison de l'influence de l'effort tranchant et devient :

$$N'_{k} = \frac{\pi^{2} EI}{{L_{k}}^{2}} \frac{1}{1 - \frac{\pi^{2} EI}{{L_{k}}^{2}} \frac{1}{GA_{1}}}$$

D'où :

$$N'_{K} = \frac{N_{k}}{1 - \frac{N_{k}}{GA_{1}}}$$

A1C'est la section réduite à l'effort tranchant

• Si A₁ est très grande :

On a:

$$\beta^2 = \frac{N}{EI(1 - \frac{N}{GA_1})}$$

D'ou:

$$\frac{N}{GA_1} \approx 0 \quad \Rightarrow \ \beta^2 = \frac{N}{EI}$$
$$\beta^2 = \alpha^2 = \frac{N}{EI} \text{ et } \quad N'_k = N_k = \frac{\pi^2 EI}{Lk^2}$$

• Si I est très grand :

On a:

$$\frac{dy^2}{dx}\left(1-\frac{N}{GA_1}\right) + \frac{N}{EI}y = 0$$

I très grand d'où :

$$\frac{N}{EI}y\approx 0$$

Donc :

$$\frac{dy^2}{dx}\left(1 - \frac{N}{GA_1}\right) = 0 \qquad (II.54)$$

Pour que (II.54) égale à 0 on a :
$$\begin{cases} \frac{dy^2}{dx} = 0 & (II.55) \\ 0u & \\ 1 - \frac{N}{GA_1} = 0 & (II.56) \end{cases}$$

De (II.56) on a :

 $N''_k = GA_1$

En général, on a :

$$N_k = \frac{\pi^2 EI}{{L_k}^2} \left(1 - \frac{N_k}{GA_1}\right)$$

C'est-à-dire :

$$N_k = N'_k (1 - \frac{N_k}{N''_k})$$

Ou encore :

$$\frac{1}{N_k} = \frac{1}{N'_k} + \frac{1}{N''_k}$$
(II. 57) [5]

Si la diminution est faible pour les poutres à âme pleine, et négligeable, elle est, au

Contraire, sensible pour les poutres triangulées. [5]

CHAPITRE III Aspect expérimental du Flambement

I. Introduction

Dans la théorie de la stabilité, les quatre cas de flambement d'Euler représentent le flambement élastique par flexion des barres droites soumises à une contrainte de compression. A partir d'une charge donnée (charge de flambement), la barre perd en stabilité ce qui engendre une déformation croissante de la barre. L'axe de la barre se déporte latéralement. Euler décrit quatre cas de flambement de la barre élastique avec une force de compression axiale pour différentes conditions d'appuis.

II. Etude expérimentale

> But

L'expérimentation en laboratoire, effectuée sur des poutres élancées soumises à des efforts de compression progressivement croissants. Cette manipulation vise à déterminer les charges critiques d'Euler pour différentes conditions et les comparer à l'effort critique déterminé par la théorie d'Euler.

> Hypothèses

On a une poutre :

- Parfaitement rectiligne.
- Longue par rapport aux dimensions transversales.
- Comprimée par deux forces axiales opposées.

Ce qui engendre une compression pure et en tenant compte du fait que dans les cas réels les charges ne sont pas concentriques, ce chargement va entrainer son fléchissement.

La poutre peut passer d'une sollicitation de compression simple (stable) à une sollicitation composée (flexion et compression simple) à partir d'un effort de compression qui s'appelle effort normal critique N_c .

Ce passage peut être considéré comme une instabilité du comportement de la poutre car sa résistance en compression pure est très affaiblie par l'apparition de la flexion. Cependant on ne peut pas faire varier beaucoup N au-delà de N_c car les déformations augmentent très vite et les conditions de ruine sont donc rapidement atteintes.

On dit alors que la poutre flambe et le phénomène est le « flambement d'une poutre comprimée ».

II.1. Description de l'appareil

Figure III-1 : Appareil WP120. [16]

- Étude de tous les problèmes de flambement importants.
- Vérification de la théorie d'Euler sur le flambement.
- > Essais avec application de forces excentriques et charge transversale.

Le WP 120 examine le comportement au flambement de barres soumises à diverses influences. Tous les problèmes de flambement importants sont illustrés ici dans les essais. Pour cela, une barre est encastrée ou rotulée aux deux extrémités de l'appareil d'essai selon le cas de flambement. Une force de compression est appliquée sur la barre via une traverse de charge réglable en hauteur et une broche à commande manuelle. Un palier axial situé entre la broche et l'appui de la barre empêche toute sollicitation en torsion de la barre d'essai. La force appliquée est mesurée hydrauliquement et s'affiche sur un dynamomètre à cadran. Un comparateur à cadran affiche la déviation latérale de la barre.

Les essais permettent d'illustrer l'influence de différents facteurs comme les longueurs des barres, les matériaux et les types d'appui, sur le comportement de flambement. Un dispositif de charge transversale permet de générer des efforts tranchants supplémentaires sur la barre d'essai. Les essais peuvent être réalisés en position verticale ou horizontale, le dynamomètre à cadran étant orientable à 90°.

Un jeu complémentaire de barres d'essai permet d'étendre les possibilités d'essai du WP120.

Les pièces de l'essai sont disposées de manière claire, et bien protégées dans un système de rangement. [16]

II.2. Mode opératoire

Figure III-2 : Dispositif de l'appareil WP120. [17]

 Installer l'appareil d'essai en position verticale ou horizontale. L'affichage de la force peut être tourné de 90° à cet effet.

Figure III-3 : Position de l'appareil. [17]

Chapitre III

- Placer l'élément de pression avec l'encoche en V dans le réceptacle inferieur pour éprouvette et serrer avec la vis de serrage.
- Placer l'élément de pression long avec encoche en V dans la douille de guidage de la traverse de mise en charge et le maintenir.

Figure III4 : Les encoches en V. [17]

Figure III-5 : Placement de la barre. [17]

- Aligner le comparateur à cadran avec les pinces de statif sur le milieu de l'éprouvette (le comparateur à cadran doit être réglé à angle droit dans la direction du flambage).
- A l'aide du support réglable, régler le comparateur à cadran sur une déviation de 10mm.
- Mettre lentement l'éprouvette en charge à l'aide de l'écrou de mise en charge.

Figure III-6 : Réglage du comparateur. [17]

Figure III-7 : Mise en charge. [17]

• Lire et noter le déplacement de la barre, jusqu'à ce que la charge appliquée n'augmente plus ce qui nous donne la flèche maximale et l'effort critique expérimental.

II.3. Choix du matériau

On adopte les éprouvettes en acier de l'appareil WP120. (Voir Annexe A).

II.3.1. Dimensions des éprouvettes

Les dimensions des éprouvettes sont :

- L= 600mm, 650mm ,700mm
- b=20mm
- h=4mm
- Moment d'inertie de l'éprouvette

$$I = \frac{bh^3}{12} = \frac{20 \cdot 4^3}{12} = 106.66 \ mm^4$$

> Rayon de giration i

$$i = \sqrt{\frac{I}{A}} = \sqrt{\frac{106.66}{20*4}} = 1.1546 \text{ mm}$$

- Elancement
- 1. Barre bi-articulée

$$\lambda = \frac{L_k}{i}$$
 avec $l_k = l_0$

• Pour L_0 =600mm

$$\lambda = \frac{L_0}{i} = \frac{600}{1.1546} = 519.66$$

• Pour $L_0 = 650$ mm

$$\lambda = \frac{L_0}{i} = \frac{650}{1.1546} = 562.965$$

• Pour $L_0 = 700$ mm

$$\lambda = \frac{L_0}{i} = \frac{700}{1.1546} = 606.27$$

2. Barre encastrée-articulée

$$\lambda = \frac{L_k}{i} = \frac{0.7 \times 650}{1.1546} = 394.078$$

3. Barre bi-encastrée

$$\lambda = \frac{L_k}{i} = \frac{0.5 \times 650}{1.1546} = 281.482$$

- **III.** Partie pratique
- **III.1. Flambement simple**

III.1.1. Barre bi-articulée

Figure III-8 : Barre bi-articulée.

On place l'éprouvette entre deux extrémités articulées, et on met l'éprouvette lentement en charge à l'aide de l'écrou de mise en charge jusqu'à obtenir la valeur de la flèche maximale en fonction de la charge N et déduire la charge N_{cr} .

Cette expérience sera effectuée sur trois éprouvettes de différentes longueurs L_0 .

On obtient les résultats suivants :

• Pour $L_0=700$ mm

Tableau III-1 : Tableau de mesure d'une barre bi-articulée de 700mm.

Charge appliquée [N]	Flèche [mm]
100	0
150	0
200	0
250	0.02
300	0.09

350	0.3
400	0.535
450	1.075
480	5.265

Figure III-9 : Courbe de la flèche maximale en fonction de la charge N d'une barre bi-articulée de 700 mm.

> Détermination de la charge critique expérimentale

On remarque que la courbe augmente jusqu'à subir un changement brusque à N = 450 N cela veut dire que la barre est flambée.

On déduit que l'effort critique expérimental $N_{cr} = 450 N$ avec un déplacement approximatif y = 1.075 mm

> Détermination de la charge critique théorique

D'après les équations démontrées par la théorie d'Euler en chapitre deux (II), on a l'effort normal critique théorique vaut :

$$N_K = \frac{\pi^2 EI}{{l_0}^2} \qquad \text{(III.1)}$$

On a : $I = 106.66mm^4$ E = 210000Mpa $l_0 = 700mm$

A.N:

$$N_K = \frac{\pi^2.210000.106.66}{(700)^2} = 451.2N$$

• **Pour** $L_0 = 650 \text{ mm}$

Charge appliquée [N]	Flèche [mm]
100	0
150	0.02
200	0.02
250	0.115
300	0.21
350	0.345
400	0.535
450	0.86
500	1.41
550	3.67
575	7.575

Tableau III-2 : Tableau de mesure d'une barre bi-articulée de 650mm.

Figure III-10 : courbe de la flèche maximale en fonction de la charge N d'une barre bi-articulée de 650mm.

> Détermination de la charge critique expérimentale

On remarque que la courbe augmente jusqu'à subir un changement brusque à N entre 500 et 550 qui est égale à 520 N, cela veut dire que la barre est flambée.

Par interpolation :

$$f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$
 (III.2)

A.N

$$f(520) = f(500) + \frac{f(550) - f(500)}{550 - 500} (520 - 500) = 2.3mm$$

On déduit que l'effort critique expérimental $N_{cr} = 520 N$ avec un déplacement approximatif y = 2.3mm.

> Détermination de la charge critique théorique

D'après les équations démontrées par la théorie d'Euler en chapitre deux (2) on a :

L'effort normal critique théorique vaut :

$$N_K = \frac{\pi^2 E I}{{l_0}^2}$$

On a : $I = 106.66mm^4$ E = 210000Mpa $l_0 = 650mm$

A.N:

$$N_K = \frac{\pi^2.210000.106.66}{(650)^2} = 523.231N$$

• Pour L_0 =600mm

Tableau III-3 : Tableau de mesure d'une barre bi-articulée de 600mm.

Charge appliquée [N]	Flèche [mm]
100	0
150	0.05
200	0.13
250	0.22
300	0.38

350	0.54
400	0.64
450	0.89
500	1.24
550	1.82
600	2.95
650	6.75
675	8
700	9

Figure III-11 : courbe de la flèche maximale en fonction de la charge N d'une barre bi-articulée de 600mm.

> Détermination de la charge critique expérimentale

On remarque que la courbe augmente jusqu'à subir un changement brusque à N=600 N cela veut dire que la barre est flambée.

On déduit que l'effort critique expérimental $N_{cr} = 600 \text{ N}$ avec un déplacement approximatif

y = 2.95 mm

> Détermination de la charge critique théorique

D'après les équations démontrées par la théorie d'Euler en chapitre deux (II) ,on a :

L'effort normal critique théorique vaut :

$$N_K = \frac{\pi^2 EI}{{l_0}^2}$$

On a : I=106.66*mm*⁴

E=210000Mpa $l_0 = 600mm$

A.N:

$$N_K = \frac{\pi^2.210000.106.66}{(600)^2} = 614.0703N$$

III.1.2. Barre encastrée-articulée

Figure III-12 : Barre encastrée-articulée.

On place l'éprouvette entre deux extrémités une est encastrée et l'autre est articulée, et on met l'éprouvette lentement en charge à l'aide de l'écrou de mise en charge jusqu'à obtenir la valeur de la flèche maximale en fonction de la charge N et déduire la charge N_{cr} . Cette expérience sera effectuée sur une seule éprouvette de longueur $L_0 = 650mm$ On obtient les résultats suivants :

Charge appliquée [N]	Flèche [mm]
100	0
150	0.06
200	0.105
250	0.135
300	0.2
350	0.255
400	0.34
450	0.395
500	0.5
550	0.63
600	0.82
650	0.975
700	1.205
750	1.555
800	2.5
850	3.295
900	4.65
950	6.415
1000	8

Tableau III-4 : Tableau de mesure d'une barre encastrée-articulée de 650 mm.

Figure III-13 : courbe de la flèche maximale en fonction de la charge N d'une barre encastréearticulée de 650mm.

> Détermination de la charge critique expérimentale

On remarque que la courbe augmente jusqu'à subir un changement brusque à N = 850 N, cela veut dire que la barre est flambée.

On déduit que l'effort critique expérimental $N_{cr} = 850$ N avec un déplacement approximatif

y = 3.295 mm.

> Détermination de la charge critique théorique

D'après les équations démontrées par la théorie d'Euler en chapitre deux (II), On a :

$$N_K = \frac{2\pi^2 EI}{L_0^2}$$
 (III.3)

On a: I = 106.66*mm*⁴

E = 210000MPa $L_0 = 650mm$

A.N

$$N_K = \frac{2\pi^2.210000.106.66}{650^2} = 1046.463 \text{ N}$$

III.1.3. Barre bi-encastrée

Figure III-14 : Barre bi-encastrée

On place l'éprouvette entre deux extrémités encastrées, et on met l'éprouvette lentement en charge à l'aide de l'écrou de mise en charge jusqu'à obtenir la valeur de la flèche maximale en fonction de la charge N et déduire la charge N_{cr} .

Cette expérience sera effectuée sur une seule éprouvette de longueur $L_0 = 650 mm$ On obtient les résultats suivants :

Charge appliquée [N]	Flèche [mm]
100	0
150	0.1
200	0.13
250	0.15
300	0.16
350	0.19
400	0.22
450	0.24

Tableau III-4 : Tableau de mesure d'une barre bi-encastrée de 650mm

Ē

500	0.27
500	0.27
550	0.31
600	0.33
650	0.37
700	0.41
750	0.46
800	0.53
850	0.59
900	0.64
950	0.68
1000	0.76
1050	0.82
1100	0.91
1150	0.99
1200	1.1
1250	1.25
1300	1.46
1350	1.65
1400	1.81
1450	2.04
1500	2.21
1550	2.42
1600	2.78
1650	3.08
1700	3.63

> Détermination de la charge critique expérimentale

On remarque que la courbe augmente jusqu'à subir un changement brusque à N = 1250 N, cela veut dire que la barre est flambée.

On déduit que l'effort critique expérimental $N_{cr} = 1250$ N avec un déplacement approximatif y = 1.25 mm.

> Détermination de la charge critique théorique

D'après les équations démontrées par la théorie d'Euler en chapitre deux (02), On a :

$$N_K = \frac{4\pi^2 EI}{{l_0}^2}$$
 (III.4)

On a : I = 106.66*mm*⁴

E = 210000 MPa $L_0 = 650 \text{mm}$

A.N

$$N_K = \frac{4\pi^2.210000.106.66}{650^2} = 2092.926 \text{ N}$$

III.2. Flambement Flexion

FigureIII-16 : Barre bi-articulée avec une charge transversale.

Cette expérience sera effectuée sur une seule éprouvette bi-articulée de longueurs L_0 =650mm sous différentes charges transversales :

• Pour Q = 5N

On obtient les résultats suivants :

Tableau III-6 : Tableau de mesure d'une barre bi-articulée de 650mm avec une charge

transv	ersale.
Charge appliquée [N]	Flèche [mm]
100	0.94
150	1.525
200	1.98
250	2.49
300	3.345
350	4.44
400	8.32

450	13.95
475	21

Figure III-17 : courbe de la flèche maximale en fonction de la charge N d'une barre bi-articulée de 650mm avec une charge transversale de 5N.

• Pour Q = 10 N

On obtient les résultats suivants :

Tableau III-7 : Tableau de mesure d'une barre bi-articulée de 650mm avec une charge transversale de10N.

Charge appliquée [N]	Flèche [mm]
100	2.73
150	3.685
200	4.505
250	5.62
300	7.64
350	10.76
400	14.3
425	19.49

Figure III-18 : courbe de la flèche maximale en fonction de la charge N d'une barre bi-articulée de 650mm avec une charge transversale de 10N.

• Pour Q = 15 N

On obtient les résultats suivants :

Tableau III-8 : Tableau de mesure d'une barre bi-articulée de 650mm avec une charge transversale de

Charge appliquée [N]	Flèche [mm]
100	4.235
150	5.235
200	6.54
250	8.54
300	10.465
350	14.92
400	21.25

15N.

Figure III-19 : courbe de la flèche maximale en fonction de la charge N d'une barre bi-articulée de 650mm avec une charge transversale de 15N.

Figure III-20 : Courbes de flambement flexion pour les différentes charges transversales.

III.3. Interprétation des résultats

On remarque que :

- Plus la longueur de la poutre L₀ diminue, la charge de compression supportée par celle ci N_{cr} augmente.
- 2. Les conditions d'appuis influent sur le chargement supporté par la poutre :
- Les poutres bi-articulées utilisées supportent une charge qui ne dépasse pas 600 N.
- La poutre encastrée-articulée peut supporter une charge de 1000 N.
- La poutre bi-encastrée peut supporter jusqu'à 1700 N.
- 3. Pour les trois poutres bi-articulées de différentes longueurs la charge critique théorique N_K est supérieure à celle de l'expérimental N_{cr} .
- 4. Pour les différentes conditions d'appuis la charge critique théorique N_K est supérieure à celle de l'expérimental N_{cr} . Ce qui est attendu du fait que le calcul théorique considère que la barre et parfaite.
- 5. Plus la charge transversale Q augmente, la charge critique N_{cr} supportée par la poutre diminue.
- 6. Pour une poutre de même longueur et de même conditions d'appuis, la flèche maximale atteinte par une barre en flambement flexion est plus importante que celle atteinte en flambement simple, ceci est prévisible du fait que la charge transversale et le moment qu'elle engendre accentue la flèche de la poutre.

IV. Aspect réglementaire du flambement

Selon l'eurocode, en compression simple, le risque de flambement n'est à considérer que :

Si $\overline{\lambda} > 0.2$.

Donc:

- Si $\overline{\lambda} \leq 0.2$: N $\leq N_R$
- Si $\overline{\lambda} > 0.2$: N $\leq \chi \beta_A A \frac{f_y}{\gamma_{M1}}$

Avec :

- γ_{M1}=1.1
- $\beta_A = 1$ Pour les sections de classe 1, 2 et 3
- $\beta_A = \frac{A_{ff}}{A}$ Pour les sections de classe 4
- A: Aire de la section

 $\chi = \frac{1}{\phi + \sqrt{\phi^2 - \overline{\lambda}^2}} \max \chi \le 1$

(III.10)

- f_y : Limite élastique
- χ : coefficient de réduction du au flambement.

Le coefficient χ prend en compte les imperfections de toutes sortes. Pour le déterminer on passe par les 4 courbes de flambement correspondant à une graduation des imperfections présentées par les barres réelles ; les courbes de flambement dépendent du type de section, Des caractéristiques géométriques ainsi que de l'axe de flambement :

- Calculer ε $\varepsilon = \sqrt{\frac{235}{f_y}}$ (III.5)
- Calculer l'élancement critique d'Euler λ_{cr} $\lambda_{cr}=93.9 \varepsilon$ (III.6)
- Calculer l'élancement λ $\lambda = \frac{L_0}{i}$ (III.7)
- Calculer l'élancement réduit $\overline{\lambda}$ $\overline{\lambda} = \frac{\lambda}{\lambda rr} \sqrt{\beta_A}$ (III.8)
- Déterminer la courbe du flambement Tab 5.5.3
 - Calculer \emptyset $\emptyset = 0.5 [1 + \alpha(\overline{\lambda} 0.2) + \overline{\lambda}^2]$ (III.9)
- Calculer χ

•

 α : Facteur d'imperfection

Figure III-21 : Courbe de flambement et facteur d'imperfection. [3]

Pour notre étude on a cinq cas de flambement simple selon les différentes longueurs L_0 et conditions d'appuis.

• Pour une poutre bi-articulée de longueur $L_0=700$ mm

On a une section de classe 1 donc $\beta_A = 1$, avec :

 $L_0 = 700 \text{mm}$ i = 1.1546 mm $A = 80 \text{mm}^2$ $\lambda = 606.27$ $f_y = 300 \text{Mpa}$ $\gamma_{M1} = 1.1$ **A.N:**

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{300}} = 0.885$$

 $\lambda_{cr} = 93.9 \ \varepsilon = 93.9^{*} 0.885 = 83.1$

$$\overline{\lambda} = \frac{\lambda}{\lambda_{cr}} \sqrt{\beta_A} = \frac{606.27}{83.1} * \sqrt{1} = 7.295$$

 $\overline{\lambda} > 0.2$ Donc il y'a risque de flambement

On a une section pleine donc la courbe du flambement est la courbe « c » (Voir Annexe B), d'où $\alpha = 0.49$

Donc :

$$\emptyset = 0.5[1 + \alpha(\overline{\lambda} - 0.2) + \overline{\lambda}^2] = 0.5[1 + 0.49(7.295 - 0.2) + 7.295^2] = 28.846$$

D'où :

$$\chi = \frac{1}{\emptyset + \sqrt{\emptyset^2 - \overline{\lambda}^2}} = \frac{1}{28.846 + \sqrt{28.846^2 - 7.295^2}} = 0.017$$
$$N_R \le \chi \ \beta_A A \frac{f_y}{\gamma_{M1}} = 0.017 \times 1 \times 80 \times \frac{300}{1.1}$$
$$N_R \le 370.9 \text{N}$$

Les résultats sont résumés dans le tableau suivant :

Tableau III-9 : Charge critique réglementaire selon l'Eurocode3.

Longueur L ₀	K	ε	λ_{cr}	λ	λ	α	Ø	X	N _R
600	1	0.885	83.1	519.66	6.25	0.49	21.513	0.023	501.81
650	1	0.885	83.1	562.965	6.77	0.49	25.026	0.02	436.36

700	1	0.885	83.1	606.27	7.295	0.49	28.846	0.017	370.9
650	0.5	0.885	83.1	281.482	3.38	0.49	6.991	0.076	1664.43
650	0.7	0.885	83.1	394.078	4.74	0.49	12.84	0.04	872.727

D'après le tableau suivant on remarque que :

- Plus la longueur de la barre augmente, l'effort normal critique déterminé par l'eurocode N_Rdiminue.
- Plus le coefficient de flambement **K** diminue, l'effort normal critique N_R augmente.
- Aussi que les résultats obtenus avec l'aspect règlementaire prennent plus de sécurité et sont donc même plus petit que ceux de l'aspect expérimental.

V. Conclusion

On conclut que la longueur de la barre et les conditions d'appuis sont parmi les principaux facteurs qui influent sur le phénomène du flambement, et qu'en flambement flexion le moment fléchissant appliqué sur la barre amplifie des contraintes au niveau des sections transversales, ce qui engendre la réduction de la capacité portante par rapport au flambement simple.

La charge critique théorique d'Euler ne pourrait être atteinte que dans le cas idéal d'une barre parfaitement rectiligne et homogène, sans aucune imperfection géométrique et chargée sans aucune excentricité. Dans la réalité, ces imperfections ont pour conséquence de mener à un flambage précoce de la barre, sous-estimé par la formule d'Euler.

Enfin, l'effort normal critique réglementaire est moins important par rapport à la charge critique théorique d'Euler et la charge expérimentale et ceci revient aux coefficients de sécurité prisent par l'Eurocode 3.

CHAPITRE IV SIMULATION NUMÉRIQUE

I. Introduction

Pour analyser un phénomène naturel en général ou un problème d'ingénierie en particulier, on est souvent amené à effectuer une analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques, etc.).

Cette méthode permet par exemple de calculer numériquement le comportement d'objets même très complexes, à condition qu'ils soient continus et décrits par une équation aux dérivées partielles linéaire, exemple : déformation d'une structure métallique.

Pour notre étude on va utiliser le logiciel ETABS comme un outil de simulation numérique.

II. Les étapes de modélisation d'une barre

On prend un exemple d'une barre en acier bi-articulée de longueur $L_0=0.7$ m. Nous avons par la suite fait de même pour toutes les longueurs étudiées expérimentalement et théoriquement.

II.1. Initialisation du modèle

- Démarrer le programme.
- Choisir les unités par défauts avant de commencer, on adopte le [**KN.m**] dans la liste à droite de la barre d'état.
- Commencer un nouveau modèle : File \rightarrow New model \rightarrow Blank.
- Définir la grille verticale et horizontale : Edit→Edit stories and grid systems.

	Edit S	tory and Grid Sys	tem Data				×			ni o	rid System Dat	a										×
Story Data	a			Master		Splice			×		Grid System Na G1 System Origin Global X	0		Story ©	Range Option Default - All Stories User Specified Top Story Story1		Olde	Ref	Show: ference Points ference Planes			A
	Story	Height m	Bevation m	Story	Similar To	Story	Splice Height m	Story Color			Global Y Rotation	0	m deg		Bottom Story Base		B	lubble Size Ind Color	1250	mm	2	$) \rightarrow $
	Story1 Base	0,7	0.7	No	None	No	0				Rectangular Gr	ds Grid Data as	Ordinates	0	Display Grid Data as	Spacing				Quick St	art New Rectangula	r Grids
													Ordinate (m) 0	Visible Yes	Bubble Loc End	Add Delete Sort	G	nd ID 1 2	Y Ordinate (m) 0 0,02	Visible Yes Yes	Bubble Loc Start Start	Add Delete Sort
											Grid ID		X1 (m)		Y1 (m)	X2 (m)		Y2	(m)	Visible	Bubble Loc	Add Delote
Note:	Right Click on Grid for Option	8																				Sott by ID
			ОК	Refresh Vie	cancel											ОК	Car	ncel				Activer

Figure IV.2 : Grid suivant l'axe x et y.

II.2. Définition des paramètres du modèle :

- Définir le matériau : Define→Material properties→ Add new material .
- Ajouter un nouveau matériau « Steel (E=210000 MPa , $\vartheta = 0.3$, $\rho = 7850$ Kg/m³) ».

Material Name	acier		
Material Type	Steel		\sim
Directional Symmetry Type	Isotropic		~
Material Display Color		Change	
Material Notes	Modify	/Show Notes	
Naterial Weight and Mass			
Specify Weight Density	Spec	ify Mass Density	
Weight per Unit Volume		76,9729	kN/m³
Mass per Unit Volume		7849,047	kg/m³
Mechanical Property Data			
Modulus of Elasticity, E		210000	MPa
Poisson's Ratio, U		0,3	
Coefficient of Thermal Expansion, A		0,0000117	1/C
Shear Modulus, G		80769,23	MPa

Figure IV.3 : Caractéristique du matériau.

• Modifier le matériau: Modify/Show material property design data $\rightarrow f_y$ =300 MPa

Material Property Data		×
General Data		
Material Name	acier	
Material Type	Steel 🗸	
Directional Symmetry Type	Isotropic 🗸	
Material Display Color	Change	
Material Property Design Data		\times
Material Name and Type		
Material Name	acier	
Material Type	Steel, Isotropic	
Design Properties for Steel Materials		
Minimum Yield Stress, Fy	300 MPa	
Minimum Tensile Strength, Fu	510 MPa	
Effective Yield Stress, Fye	390.5 MPa	

Figure IV.4 : Contrainte limite élastique du matériau.

- Définir la section de la barre : **Define→Section properties→Frame section→Add** new property→choisir « Steel plate ».
- Section de la barre $(4 \times 20)mm^2$, matériau : acier.

eneral Data				
Property Name	barre			
Material	acier		~	2
Display Color		Change		
Notes	Modify	/Show Notes		
hape				
Section Shape	Steel Plate		~	
ection Property Source				
Source: User Defined				
ection Dimensions				Property Modifiers
Depth		4	mm	Modify/Show Modifiers
Width		20	mm	Currently Default
			-	
				OK

Figure IV.5: Section de la barre.

II.3. Dessin du modèle

On dessine en utilisant les icones de l'interface du logiciel à la base flottante située à droite.

II.4. Assigner les conditions aux appuis

• Sélectionner la base de la barre : Assign \rightarrow Joints \rightarrow Restraints.

(On fait la même chose pour le haut de la barre)

II.5. Application du chargement

Sélectionner le point d'application de la charge (le haut de la barre) : Assign→Joint loads →Force.

Load Pattern Name		Live	~
oads			Options
Force Global X	0	kN	 Add to Existing Loads
Force Global Y	0	kN	Replace Existing Loa
Force Global Z	-1	kN	 Delete Existing Loads
Moment Global XX	0	kN-m	
Moment Global YY	0	kN-m	
Moment Global ZZ	0	kN-m	
ize of Load for Punchir	ng Shear		
X Dimension	0	mm	
Y Dimension	0	mm	

Figure IV.6 : Application de la charge.

• Pour que la barre soit flambée on doit introduire une force dans Load cases :

Define→Load cases →Live→Modify→Buckling.

		Live			Design •
Load Case Type		Buckling		~	Notes
Exclude Objects in this Group		Not Applicat	le		
Mass Source		MsSrc1			
Delta/Nonlinear Stiffness					
Use Preset P-Delta Settings	None			Modify/Show	
O Use Nonlinear Case (Loads	at End of Case NO	T Included)			
Nonlinear Case					
ads Applied					
Load Type	Load Na	me		Scale Factor	0
Load Pattern ~	Live		1		Add
					Delete
ther Parameters					
ther Parameters Number of Buckling Modes				6	

Figure IV.7 : Définition de la charge appliquée.

II.6. Maillage de la section

• Edit→Edit frames→Divide frames→Ok.

II.7. Exécuter l'analyse

L'exécution du problème peut être démarré en sélectionnant **Analyse** et **Run analysis**, ou bien en appuyant sur **F5** ou l'icône .

III. Les éléments qui influent sur la charge critique numérique

Parmi les éléments qui influent sur la charge critique du flambement on cite : la longueur de flambement L_K (Conditions d'appuis et la longueur initiale) , le moment d'inertie I et le module de Young E selon le matériau utilisé.

III.1. Les conditions d'appuis et longueur de la barre

Pour voir l'influence des conditions d'appuis et la longueur de flambement de la barre, on modélise une barre d'acier d'une section de (4×20) mm^2 et d'un module de Young E=210000Mpa, avec changement de conditions d'appuis (bi-encastré, bi-articulé,articulé-encastré) et variation de longueur de la barre $L_0 = (500,550,600,650,700 \text{ mm})$.

Les résultats obtenus sont résumés dans le tableau suivant :

 Tableau IV.1 : Charges critiques numériques selon les différentes conditions d'appuis et longueurs de barres

Longueur de la barre(mm)	Coefficient de flambement K	Charge critique numérique (N)
500	1	884.18
	0.7	1808.5
	0.5	3535.77
550	1	730.7
	0.7	1494.7
	0.5	2922.24
600	1	614.04
	0.7	1256.03
	0.5	2455.6
650	1	523.22
	0.7	1070.33
	0.5	2092.97
700	1	451.15
	0.7	923.12

0.5	1806.1

Les résultats de ce tableau sont représentés sur la courbe suivante :

Figure IV.8 : courbe de la charge critique numérique en fonction de coefficient de flambement pour les différentes longueurs.

D'après cette courbe on remarque que :

- Quel que soit les conditions d'appuis de la barre, plus la longueur de la barre augmente plus la charge critique numérique diminue.
- Quel que soit la longueur de la barre, plus cette dernière est rigide plus la charge critique numérique augmente.

III.2. Le moment d'inertie de la barre

On modélise une barre d'acier E=210000 Mpa et d'une longueur $L_0 = 650mm$ avec une variation d'épaisseurs (4,8,12,16mm), ce qui engendre une variation de moment d'inertie (I) pour différentes conditions aux appuis k=1, k=0.7, k=0.5

Les résultats obtenus sont résumés dans le tableau suivant :

 Tableau IV.2 : Charges critiques numériques en fonction du moment d'inertie pour différentes conditions d'appuis.

Epaisseur (mm)	Moment	Coefficient de flamboment K	Charge critique numérique
	(mm^4)	nambement K	(14)
4	106.66	1	523.22
		0.7	1070.33
		0.5	2092.97
8	853.33	1	4184
		0.7	8557
		0.5	1672
12	2880	1	14115
		0.7	28849
		0.5	56340
16	6826.666	1	33437
		0.7	68280
		0.5	133198

Les résultats du tableau sont représentés sur la courbe suivante :

Figure IV.9 : Courbe de la charge critique numérique en fonction du moment d'inertie pour les différentes conditions d'appuis

D'après cette courbe on remarque que : quel que soit les conditions d'appuis de la barre, plus le moment d'inertie augmente, la charge critique numérique supportée par la barre augmente, ce qui est logique parce que le moment d'inertie est un facteur multiplicateur dans l'équation de la charge critique théorique.

III.3 Le module de Young (matériau de la barre)

On modélise une barre d'une longueur $L_0 = 650mm$ et d'une section $(4*20)mm^2$ avec une variation du matériaux (acier, béton, aluminium) pour différentes conditions aux limites k=1, k=0.7, k=0.5.

Les résultats obtenus sont résumés dans le tableau suivant :

Coefficient de flambement K	Matériau	Charge critique numérique (N)
0.5	Béton (E=31000Mpa)	308.97
	Aluminium (E=69637.05MPa)	694.03
	Acier (E=210000Mpa)	2092.97
0.7	Béton (E=31000Mpa)	158
	Aluminium (E=69637.05MPa)	354.92
	Acier (E=210000Mpa)	1070.33
1	Béton (E=31000Mpa)	77.24
	Aluminium (E=69637.05MPa)	173.5
	Acier (E=210000Mpa)	523.22

Tableau IV.3 : Charges critiques numériques selon les différentes conditions d'appuis pour trois matériaux différents.

Chapitre IV

Les résultats du tableau sont représentés sur la courbe suivante :

Figure IV.10 : la courbe de la charge critique numérique en fonction de coefficient de flambement k pour les différents matériaux

D'après cette courbe on remarque que : quel que soit les conditions d'appuis de la barre, plus le module de Young E augmente, la charge critique numérique supportée par la barre augmente, ce qui est logique parce que le module du Young est un facteur multiplicateur dans l'équation de la charge critique théorique.

IV. Récapitulatif des résultats obtenus des barres étudiées sous les différents aspects théorique, expérimental, réglementaire et numérique

Longueur de la barre	K	$N_k[N]$	$N_{cr}[N]$	$N_R[N]$	<i>N_{num}</i> [N]
<i>L</i> ₀ [mm]		Théorique	Expérimental	Réglementaire	Numérique
700	1	451.2	450	370.9	451.15
650	0.5	2092.93	1250	1664.43	2092.97
650	0.7	1046.46	850	872.727	1070.33
650	1	523.23	520	436.36	523.22
600	1	614.07	600	501.81	614.04

Tableau IV.4 : Charges critiques selon la longueur et les conditions d'appuis

D'après ce tableau on remarque que l'effort normal critique déterminé par ETABS correspond à celui déterminé par la théorie.

V. Conclusion

Après l'étude qu'on a effectuée, on conclut que

- L'Augmentation de la longueur de la barre L₀engendre une augmentation de la charge critique numérique.
- Les encastrements au niveau des appuis engendrent une augmentation d'effort normal critique numérique.
- Le moment d'inertie est proportionnel à la charge critique numérique.
- Le matériau de la barre influe sur la charge critique numérique, plus le module de Young augmente, la charge critique augmente.
- L'effort normal critique déterminé par l'ETABS correspond à celui déterminé par la théorie d'Euler et supérieur à ceux déterminés par l'Eurocode et l'expérimental parce que ETABS considère aussi que la barre est parfaite et que la charge est appliquée au centre de gravité de la section transversale d'extrémité.

CONCLUSION GÉNÉRALE

Conclusion générale

Le projet de fin d'étude est une occasion à l'étudiant d'appliquer les connaissances acquises durant sa formation. Dans le cas notre projet de fin de cycle nous avons étudié le phénomène d'instabilité des barres élancées au flambement, une expérience qui nous a permis d'approfondir nos connaissances sur le phénomène sous différents aspects : théorique, expérimental, règlementaire et numérique.

Par ailleurs, cette étude nous a conduit à dégager un certain nombre de conclusions dont les plus importantes sont :

- Les poutres élancées sont très sensibles aux efforts de compression et de flexion, qui causent le flambement, et par conséquent la connaissance des charges critiques est nécessaire pour la conception des structures.
- Les conditions d'appuis et la longueur de la poutre jouent un rôle très important sur la valeur de la charge critique N_{cr} .
- Les résultats théoriques obtenus sont supérieurs aux résultats expérimentaux, cela veut dire que la poutre n'est pas vraiment parfaite et ne reflète pas les hypothèses théoriques.
- L'Eurocode3 prend en considération des coefficients de sécurité qui englobent les différentes imperfections qui existent dans la poutre, ce qui engendre la diminution de l'effort critique.
- La vérification des résultats avec l'Eurocode3 est indispensable pour une meilleure résistance au flambement.

D'après l'étude qu'on a faite on a constaté que le moyen le plus économique d'améliorer la résistance au flambement d'une barre comprimée est de diminuer sa longueur de flambement, pour cela on peut : disposer des appuis intermédiaires ou modifier ses conditions d'appuis, comme on peut aussi augmenter les dimensions de la section droite.

Annexes

=

Annexe A

Jeu standard WP 120				
N°:	Matériau	Section transversale en mm ²	Longueur mm	Арриі
S1	Acier à outils 1.2842	20 x 4	350	couteau/couteau
S2	Acier à outils 1.2842	20 x 4	500	couteau/couteau
S3	Acier à outils 1.2842	20 x 4	600	couteau/couteau
S4	Acier à outils 1.2842	20 x 4	650	couteau/couteau
S5	Acier à outils 1.2842	20 x 4	700	couteau/couteau
S6	Acier à outils 1.2842	20 x 4	650	encastrement/couteau
S7	Acier à outils 1.2842	20 x 4	650	encastrement/encastrement
S8	Alu. AlMgSi0.5 F22	25 x 6	600	couteau/couteau
S9	Laiton CuZn40Pb2	25 x 6	600	couteau/couteau
S10	Cuivre E-Cu	25 x 6	600	couteau/couteau
S11	Cuivre E-Cu	25 x 6	600	couteau/couteau
Jeu d'a	ccessoires WP 120.01			
Nº:	Matériau	Section transversale mm ²	Longueur mm	Арриі
SZ1	Alu. AIMgSi0.5 F22	25 x 6	500	couteau/couteau e=0mm
SZ2	Alu. AlMgSi0.5 F22	25 x 6	500	couteau/couteau e=1mm
SZ3	Alu. AlMgSi0.5 F22	25 x 6	500	couteau/couteau e=3mm
SZ4	Alu. AlMgSi0.5 F22	40 x 6	500	couteau/couteau
SZ5	Fiberline	25 x10	700	couteau/couteau
SZ6	PVC	Ø16 x 2	400	couteau/couteau
SZ7	PVC	Ø20 x 1,5	400	couteau/couteau
SZ8	Alu. AlMgSi0.5 F22	20 x 10 x 2	700	couteau/couteau
SZ9	Alu. AlMgSi0.5 F22	Ø15 x 2	700	couteau/couteau
SZ10	Alu, AlMaSi0.5 F22	Ø14	700	couteau/couteau

Annexe B

		100	Courbe de flambement			
Section transversale	Limites	Flambement selon l'axe	S 235 S 275 S 355 S 420	S 460		
Profilés laminés	b/b > 1.2	V . V		9		
t, Z	t.≤ 40mm	y-y z-z	b	0 80		
				-0		
		y - y :	ь	а		
	40mm < t _f ≤100mm	z-z	c	а		
h yy						
	h/b ≤ 1,2	у-у	ь	а		
	t _f ≤ 100mm	z - z	c	a		
l b l	t, > 100mm	у - у	d	C		
		z-z	d	G		
Profils en I soudés						
	t _f ≤40mm	y-y Z-Z	c	C C		
			2.07	5.7 1		
уу уу	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	y-y	с	c		
	$t_f > 40mm$	z - z	d	d		
Z Z						
Profils creux						
\square	Laminés à chaud	quelconque	a	a		
	Formés à froid	quelconque	Ь	Ь		
	-					
Caissons soudés	En général (sauf					
	comme ci-dessus)	quelconque	b	b		
h y y	Soudures épaisses et					
	b/t _f < 30	y-y 7-7	c	c		
z b	h/t _w < 30		Ŭ	Ŭ		
Profils en U. en L. en T et profils pleins						
		2422204211		24		
│─╫┼╸ _{┼┼╶┝─}	- <u>1987</u>	quelconque	C	С		

BIBLIOGRAPHIE

[1] AUGUST. G., BARATTA A. : 'Théorie probabiliste de la résistance des barres Comprimées'. Construction métallique N°2 1971

[2] Cour, BECHEUR.A, structures métalliques, université de Bejaïa

[3] Cour, BANOUNE.B, construction métallique, université de Bejaïa

[4] BAPTISTA A.M. MUZEAU J.P. (2002) "Elastic design of tapered beams-columns subjected to concentrated axial and transversal loads" Proceedings of the 3rd European Conference on Steel Structures, Euro steel, Coimbra

[5] JEAN MOREL. Calcul des structures métalliques selon l'Eurocode 3. Edition Eyrolles paris,1994, p331

[6] Site internet, https://www.futura-sciences.com/maison/definitions/maison-flambage-10695/

[7] Site internet, https://fr.wikipedia.org/wiki/Flambage

[8] Mr BENKABA Abdelhak, Etude de problème du flambement des profilés à inertie

Variable. Mémoire de master. Université de Tlemcen ; 2013.p112

[9] LI QS, (2000) "Buckling of elastically restrained non-uniform columns" Journal of Engineering Structures 22, p 1231–1243.

[10] ITTERBEEK R. flambement. Résistance des matériaux, p.8.2-8.28

[11] cour de RDM II, université Hassiba Benbouali de Chlef

[12] Dunod, Paris 1999 pour la 1ére édition ISBN 978-2-10-051634-6

[13] Mémoire de Magister, étudié par Monsieur Mohamed DJELIL.

[14] Site internet, https://www.notionsstructures.be/les-notions/flambement/comprendre

[15] site internet, <u>https://www.dlubal.com/fr/telechargements-et-informations/exemples/exemples-de-verification/000093</u>

[16] Site internet, <u>www.gunt.de</u>

[17] Manuel flambement des barres, appareil WP120(instruction pour expérience)