
République Algerienne Démocratique et Populaire

Ministère de l’enseignement supérieur et de la Recherche scientifique

Université Abderrahmane Mira de Béjaia

Faculté des Sciences Exactes

Département d’informatique

Mémoire de Master

Domaine : Mathématiques-informatique
Filière : Informatique

Spécialité : Intélligence Artificielle

Par :

Mr AZEGGAGH Bilal

Mr METMATI Mohammed Sadek

Prostate cancer Detection and

segmentation in MRI Images using

advanced ML and DL techniques

Soutenu le 04 Juillet 2024 devant le jury :

Pr. Rebouh Nadjette Encadrant
Pr. Belkhiri Louiza Examinateur
Pr. Ouyahia Samira Président du jury

Année Universitaire : 2023 - 2024



> Remerciements >

Avant tout nous remercions dieu le tout puissant, qui nous a
donné la force et la patience pour l’accomplissement de ce travail
qui est pour nous le point de départ d’une merveilleuse aventure,
celle de la recherche, source de remise en cause permanente et de

perfectionnement perpétuel.
Nous vifs remerciements vont en premier lieu à notre encadrante
Mme REBOUH Nadjette pour avoir accepté de nous guider tout
au long de ce travail, pour sa disponibilité et son implication pour

l’aboutissement de ce travail.
Aux membres du jury Mme BELKHIRI Louiza et Mme

OUYAHIA Samira pour l’intérêt qu’elles ont porté à notre travail
en acceptant de l’examiner et de l’enrichir par leurs propositions.

À tous les enseignants qui ont cultivé en nous l’amour de
l’Informatique. Qu’ils trouvent dans ce modeste travail un petit

geste de reconnaissance qui ne sera jamais à la hauteur de la
grandeur de leurs âmes.

Enfin, nous remercions, de tout cœur, tous ceux qui ont contribué
de près ou de loin à la réalisation de ce mémoire.



> Dédicaces >

Rien n’est aussi beau á offrir que le fruit d’une labeur qu’on dédie du fond du
coeur á ceux qu’on aime et qu’on remercie en exprimant la gratitude et la

reconnaissance durant toute notre existence.
Nous dédions ce mémoire : À nos très chers parents qui ont toujours été là pour
nous, qui ont sacrifié leur vie pour notre réussite et nous ont éclairé le chemin
par leurs conseils judicieux. Nous espérons qu’un jour, nous pourrions leur

rendre un peu de ce qu’ils ont fait pour nous. Que Dieu leur prête bonheur et
longue vie,

À nos frères et sœurs et, à nos familles,
À nos amis et tous ceux qui nous sont chers ,

À tous les bons professeurs qui nous ont enseignés, Et à notre encadrante qui
nous a suivi jusqu’au bout de notre projet.

M. AZEGGAGH Bilal
M. METMATI Mohamed Sadek



Table of Contents

Table of Contents i

List of figures iii

List of tables iv

Notations v

General Introduction 1

1 Generality 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Epidemiology of Prostate Cancer . . . . . . . . . . . . . . . . . . 3

1.2.1 Risk factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Anatomy and Function of the Prostate . . . . . . . . . . . . . . 3

1.4 Characteristics and Typology of Prostate Cancer . . . . . . . 4

1.4.1 Gleason Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Detection and Diagnostic Methods . . . . . . . . . . . . . . . . 5

1.5.1 Early Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.2 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Therapeutic Approaches . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Imaging and Technology in Diagnosis . . . . . . . . . . . . . . . 11

1.7.1 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7.2 T2-weighted imaging . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7.3 Diffusion-weighted imaging (DWI) . . . . . . . . . . . . . . . . 14

1.7.4 Dynamic contrast-enhanced (DCE) imaging . . . . . . . . . . . . 14

1.7.5 Limitations of MRI for PCa Diagnosis . . . . . . . . . . . . . . . 15

1.8 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8.2 Types of Machine Learning . . . . . . . . . . . . . . . . . . . . 17

1.8.3 Applications of Machine Learning . . . . . . . . . . . . . . . . 17

1.8.4 Machine learning models . . . . . . . . . . . . . . . . . . . . . 17

1.8.5 Challenges and limitations of Machine Learning. . . . . . . . . . 18

1.8.6 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Literature Review 22
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



2.2 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Preliminaries and Definition . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Importance of the PCa segmentation . . . . . . . . . . . . . . . 23

2.3 Methods for the segmentation and detection of PCa . . . . . 24

2.3.1 The PCa grading framework based on deep transfer learning
and Aquila optimizer . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 A new approach to diagnosing the PCa through Magnetic Reso-
nance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Prediction of the PCa aggressiveness with a combination of
radiomics and machine learning-based analysis of dynamic
contrast-enhanced MRI . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.4 A novel deep learning-based technique for detecting the PCa in
MRI images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.5 Searching for the PCa by fully automated magnetic resonance
imaging classification : Deep learning versus non-deep learning 29

2.3.6 A novel solution of using deep learning for the PCa segmenta-
tion enhanced batch normalization . . . . . . . . . . . . . . . . 30

2.4 Model Performance Evaluation . . . . . . . . . . . . . . . . . . . 31

2.5 Comparative Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Proposed Combined Method for Prostate Cancer Segmenta-
tion and Detection on MRI Images 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Approach 1 : Deep Learning Whole-Gland and Zonal Pros-
tate Segmentation on a Public MRI Dataset . . . . . . . . . . . 38

3.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Models Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.5 Model Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.8 Partial Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Approch 2 : Prostate 158 - An expert annotated 3T MRI data-
set and algorithm for prostate cancer detection . . . . . . . 42

3.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Models and Segmentation algorithm . . . . . . . . . . . . . . . 43

3.3.3 Results And Discussion . . . . . . . . . . . . . . . . . . . . . . 45

3.3.4 Partial Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Proposed Approach : Combined model for the PCa Segmenta-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Proposed Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.3 Segmentation Model . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ii



General Conclusion 51

Bibliographie 52

List of figures

1.1 Pelvis and Male Reproductive System. via Wikimedia Commons . 3

1.2 Representation of the Gleason grade based on cell differentiation
(diagram and histological section) . . . . . . . . . . . . . . . . . . . 5

1.3 Criteria for scoring T2-w and DWI/ADC sequences based on the
considered zone (PZ or TZ) for establishing the final PI-RADS
score. via Radiology Assistant. . . . . . . . . . . . . . . . . . . . . . 7

1.4 (A) Prostate Biopsy Under Ultrasound Guidance. (B) The 12 biopsy
points performed during random biopsies, which may miss a cancer. 8

1.5 Example of cases corresponding to the different PI-RADS scores
for the two main zones of the prostate. via Radiology Assistant. . . 9

1.6 Multiparametric MRI of the prostate. Here, the slices are axial in
the median plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Used for some of the MRI-MP acquisitions. Adapted from Niaf [1]. 12

1.8 MRI of the male pelvis : T2-weighted sequence. Adapted from Niaf
[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Axial slices of the prostate on T2-weighted MRI acquired from a
53-year-old patient. Source : Niaf [1] . . . . . . . . . . . . . . . . . . 13

1.10 Axial diffusion-weighted MRI slices for different b values and cor-
responding ADC map. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.11 Images corresponding to different times of a perfusion MRI se-
quence. Adapted from Niaf [1] . . . . . . . . . . . . . . . . . . . . . 14

1.12 Extraction of quantitative parameters from the curve showing the
mean signal over time of the DCE sequence. Source : MRIquestions 15

1.13 Relationship between AI, machine learning, neural networks, and
deep learning. Adapted from Wikipedia . . . . . . . . . . . . . . . . 16

1.14 Convolution operation on a 7×7 image. . . . . . . . . . . . . . . . . 19

1.15 Pooling layers allow for downsampling the volume and reducing
the number of parameters. . . . . . . . . . . . . . . . . . . . . . . . . 20

1.16 Fully Connected (FC) Layer, where each neuron in a layer is
connected to all neurons in the following layer. . . . . . . . . . . . . 20

1.17 CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 The suggested approach for the PCa classification and segmenta-
tion by Hossam et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 The structure and steps of the proposed approach. . . . . . . . . . 26

iii

https://commons.wikimedia.org
https://radiologyassistant.nl/abdomen/prostate/prostate-cancer-pi-rads-v2
https://radiologyassistant.nl/abdomen/prostate/prostate-cancer-pi-rads-v2
https://www.mriquestions.com/index.html
https://www.wikipedia.org/


2.3 The structure and steps of the proposed approach. . . . . . . . . . 28

3.1 PROSTATEx-2 featured image. . . . . . . . . . . . . . . . . . . . . . 39

3.2 Examples of correct segmentation for the deep learning networks
for the whole gland (left column), transition (middle column) and
peripheral zone (right column). The manual segmentation (yel-
low), ENet (red), ERFNet (blue), and U-Net (green) are superim-
posed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Training DSC and Tversky loss plots for the deep learning net-
works for whole-gland prostate segmentation. . . . . . . . . . . . . 42

3.4 Prostate158 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 examples for segmentation of the anatomical zones. . . . . . . . . . 46

3.6 Example for segmentation of prostate tumors. . . . . . . . . . . . . 47

3.7 Exemple that illustrates a U-net architecture. . . . . . . . . . . . . . 49

List of tables

1.1 Prognostic Groups of the ISUP 2016 Classification . . . . . . . . . . 5

2.1 Comparative Table of Articles . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Inter-rater Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Performance of Trained Segmentation Models . . . . . . . . . . . . 45

3.3 Performance of Tumor Segmentation on the ProstateX dataset . . . 46

3.4 Performance of Tumor Segmentation on the Decathlon dataset . . 46

iv



Notations

ADC Apparent Diffusion Coefficient
AAPM American Association of Physicists in Medicine
AFU Association Française d’Urologie
AI Artificial Intelligence
ANN Artificial Neural Networks
ANOVA Analysis of Variance
AUC Area Under the Curve
ASD Average Surface Distance
ASSD Average Symmetric Surface Distance
b-value Diffusion Sensitizing Gradient Value
BC Breast Cancer
BPH Benign Prostatic Hyperplasia
Bow bag-of-words
CNN Convolutional Neural Network
CS Clinically Significant
CZ Central Zone
DCE Dynamic Contrast-Enhanced
DCE+ Dynamic Contrast-Enhanced Positive
DCNN Deep convolutional Neural Networks
DICOM Digital Imaging and Communications in Medicine
DL Deep Learning
DRE Digital Rectal Examination
DSC Dice Similarity Coefficient
DT Decision Tree
DWI Diffusion-Weighted Imaging
EBRT External Beam Radiotherapy
ENet Efficient Neural Network
ERFNet Efficient Residual Factorized Network
FC Fully Connected
FCN Fully Convolutional Networks
GS Gleason Score
GPU Graphics Processing Unit
HAS Haute Autorité de Santé
HD Hausdorff Distance

v



HIFU High-Intensity Focused Ultrasound
HPC High Performance Computing
IoU Intersection over Union
ISUP International Society of Urological Pathology
k-fold Cross-validation
KNN K-Nearest Neighbors
LASSO Least Absolute Shrinkage and Selection Operator
LFPR Labor Force Participation Rate
LR Logistic Regression
ML Machine Learning
MLP Multilayer Perceptron
MP-MRI Multi-Parametric Magnetic Resonance Imaging
MRI Magnetic Resonance Imaging
ng/ml nanograms per milliliter
NCI National Cancer Institute
NIFTI Neuroimaging Informatics Technology Initiative
NVIDIA Nvidia Corporation
PCa Prostate Cancer
PI-RADS Prostate Imaging Reporting and Data System
PPV Positive Predictive Value
PSA Prostate-Specific Antigen
PZ Peripheral Zone
RCNN Region-based Convolutional Neural Network
ReLU Rectified Linear Unit
ResNet-v2 Residual Network version 2

RF Random Forests
ROC Receiver Operating Characteristic
ROI Region of Interest
RT Radiotherapy
SIFT Scale-Invariant Feature Transform
SPIE the international society for optics and photonics
SVM Support Vector Machine
T2-W T2-Weighted
T2-WI T2-Weighted Imaging
TP Total Prostatectomy
TTP Time to Peak
TZ Transition Zone
VD Volume Difference
VOE Volume Overlap Error

vi



General Introduction

In over half of the world’s countries, prostate cancer (PCa) is the most fre-
quently diagnosed cancer in men. In 2020, PCa was the second most prevalent

cancer and the fifth deadliest cancer among men, with more than 1.4 million
new cases and 375,000 deaths worldwide.

Magnetic resonance imaging (MRI) is now included in the traditional
diagnostic process for PCa. This includes multiparametric MRI (mpMRI),
which comprises a three-dimensional (3D) T2-weighted anatomical sequence,
a three-dimensional diffusion-weighted imaging (DWI) sequence, and a four-
dimensional dynamic contrast-enhanced (DCE) sequence. Consequently, the vo-
lume of data to be examined simultaneously is considerable, making the task
challenging, especially when different sequences lead to different conclusions.
This results in significant variability between observers, with less experienced
radiologists performing worse than those trained specifically for this task.

For all these reasons, research into diagnostic aid methods to help radiolo-
gists analyze mp-MRI has been prolific for over a decade. We can distinguish
approaches based on learning, in particular deep learning. In this work, we have
chosen to study deep learning methods for the analysis of prostate MRI imaging
data, more specifically for the detection and segmentation by aggressiveness of
cancers in the peripheral and transition zones.

The study begins with an overview of the anatomy and function of the pros-
tate, followed by an in-depth discussion on the epidemiology, risk factors, and
characteristics of prostate cancer. The research highlights the importance of early
detection and accurate diagnosis, which are crucial for effective treatment and
management. It also emphasizes the role of machine learning (ML), particularly
convolutional neural networks (CNNs), which are widely used for medical image
recognition.

At the core of our work, we developed and evaluated various ML and deep
learning (DL) models for the detection and segmentation of PCa. Different ima-
ging techniques, including T2-weighted imaging, diffusion-weighted imaging
(DWI), and dynamic contrast-enhanced imaging (DCE), were utilized to enhance
the accuracy of these models. The study also addresses the limitations of MRI in
PCa diagnosis and explores the potential of machine learning to overcome these
challenges.

In the end, we combined two approaches to propose a better method for
tumor segmentation. The proposed methods were tested on a public MRI dataset,
and the results demonstrated significant improvements in accuracy.
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Chapitre 1. Generality

1.1 Introduction

In this chapter, we present some elements of the anatomy and function of the
prostate within the male reproductive system. We then focus on prostate cancer
by providing some epidemiological data before describing the diagnostic proto-
col and therapeutic management of this pathology. As we will also review the
fundamental concepts of machine learning, which are the subject of our study.
The diagnostic and treatment sections are based on the latest French recommen-
dations from the Cancer Committee of the AFU for 2020-2022 described in [2]

1.2 Epidemiology of Prostate Cancer

Prostate cancer (PCa) is the most commonly diagnosed cancer in men in more
than half of the countries worldwide [3]. With over 1.4 million new cases and
375,000 deaths globally, it was the second most frequent cancer and the fifth
deadliest cancer among men in 2020.

Figure 1.1 – Pelvis and Male Reproductive System. via Wikimedia Commons

1.2.1 Risk factors

The risk is particularly high among elderly individuals : nearly 79% of deaths
involve men aged 75 and older, with a median age at diagnosis of 68 in 2018 [4].
In addition to age, family history represents a significant risk factor ; PCa is the
cancer for which the weight of heredity is predominant [2]. Lastly, ethnicity is
also a risk factor, with African or Afro-Caribbean descent increasing the risk
of PCa. In the French West Indies - where 90% of the population is of African
ethnic ancestry - the incidence and mortality of PCa are twice as high compared
to metropolitan France (respectively 173/100000 for incidence and 23/100000 for
mortality according to the report published by Public Health France in 2019).

1.3 Anatomy and Function of the Prostate

The prostate (see Figure 1.1) is a gland of the male genital system. It is lo-
cated in the pelvis, beneath the bladder in front of the rectum, and surrounds
the beginning of the urethra, the canal through which urine is eliminated from
the bladder. A healthy prostate has the shape of a chestnut, approximately 3

3
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Chapitre 1. Generality

centimeters in height and 4 centimeters in width, and it weighs no more than
20 grams in adulthood. The prostate is surrounded by a capsule and consists of
several lobes : an anterior prostatic lobe, two lateral lobes, and a median lobe,
also known as the lobe of Home. It is divided into 3 main glandular zones :

— The peripheral zone (PZ) : this is the region of the prostate closest to the
rectum. It constitutes the largest area of the prostate and covers its lateral
and posterior surfaces.

— The transition zone (TZ) : this is the area comprising 2 lobes located in
the middle of the prostate in front of the peripheral and central zones. It
surrounds the urethra and represents about 5% of the prostate until the
age of 40. With aging, this zone increases in size to become the largest part
of the prostate. This is what is called a prostate adenoma (also known as
benign prostatic hyperplasia, noted BPH), which occurs in almost all men
over 70 years old. The increase in size of the transition zone results in
pushing the peripheral zone towards the rectum.

— Central zone (CZ) : this is the part of the prostate located at the base sur-
rounding the ejaculatory ducts. This cone-shaped zone is often associated
with the TZ.

1.4 Characteristics and Typology of Prostate Cancer

The vast majority of prostate cancers are located in the peripheral zone (PZ),
they represent approximately 75% of cancers, with the remaining 25% found in
the transition zone (TZ).

1.4.1 Gleason Score

The Gleason Score (GS) allows for the assessment of the aggressiveness of
PCa. It is a major prognostic factor : it measures the extent and aggressiveness of
the disease and will be considered for the choice of treatment to be offered.
It is defined based on biopsy analysis : depending on the level of cell differen-
tiation, an architectural grade ranging from 1 to 5 is first assigned to the cells
composing the tumor (see Figure 1.2).
Cancer is often heterogeneous, with tumor foci of different evolution stages, and
varying degrees of differentiation can coexist within the same tissue sampled
during biopsy. The Gleason score is then obtained by adding together the 2 most
represented histological grades within the cancer.
The classification defined by Gleason in 1966 consisted of 5 architectural grades
ranging from 1 to 5, with the sum defining 9 scores from 2 (1+1) to 10 (5+5). The
predominant grade is the first term of the addition : a Gleason 7 tumor (3+4) is
predominantly composed of grade 3 and to a lesser extent of grade 4, unlike a
Gleason 7 tumor (4+3), which will therefore be more aggressive.

4
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Figure 1.2 – Representation of the Gleason grade based on cell differentiation (diagram and
histological section)

Group 1 Gleason Score 6 (3 + 3)
Group 2 Gleason Score 7 (3 + 4)
Group 3 Gleason Score 7 (4 + 3)
Group 4 Gleason Score 8 (3 + 5, 5 + 3 or 4 + 4)
Group 5 Gleason Score 9 or 10

Table 1.1 – Prognostic Groups of the ISUP 2016 Classification

Indeed, this classification had several shortcomings. Firstly, almost all cur-
rently diagnosed PCa have a minimum score of 6, corresponding to very well-
differentiated cancers. It is therefore difficult for patients to understand that they
have an indolent cancer when their score is in the median range of the Gleason
scale. Furthermore, the Gleason score per se does not differentiate between scores
of 7 (3 + 4) and 7 (4 + 3).
A new classification was therefore proposed by the ISUP [5], with 5 prognostic
groups presented in Tableau 1.1. This classification serves as the reference nowa-
days.

1.5 Detection and Diagnostic Methods

In France, systematic screening for PCa in asymptomatic men is not
recommended by the Haute Autorité de Santé (HAS). Despite this non-
recommendation, the number of individual screenings is high and leads to the
detection of early forms of PCa. Nearly 40 to 50% of identified cancers are slow-
growing and would never have manifested during the individuals’ lifetimes.
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1.5.1 Early Detection

1. PSA :
Prostate-Specific Antigen (PSA) is a molecule produced only by the pros-
tate. PSA testing in the blood is an indicator for diagnosis since the risk of
PCa increases with the total PSA value.
A value higher than 4 ng/ml is generally considered abnormal, but this
value must be interpreted by the physician based on the clinical context.
There is no threshold value of PSA below which there is no risk of cancer.
However, PSA is characteristic of prostatic epithelium and not specific to
PCa, so it can be elevated in other situations (prostate infection, adenoma,
benign hypertrophy, etc.). PSA kinetics (doubling time, velocity) are parti-
cularly useful for patient monitoring after treatment.
Early detection of PCa also relies on the search for family history and eth-
nicity, in addition to digital rectal examination and total PSA testing.

2. Digital Rectal Exam :
Digital Rectal Examination (DRE) is recommended prior to prescribing to-
tal PSA testing. A suspicious DRE is an indication for prostate biopsies
regardless of the total PSA value.

1.5.2 Diagnosis

1. Imagery :
In case of suspected PCa, the latest version of urological guidelines recom-
mends performing an MRI acquisition before any initial series of prostate
biopsies, contrary to previous practices [6]. Indeed, MRI has proven to
increase the identification of significant PCa and guide prostate biopsies
on these lesions. The MRI consists of 3 sequences : T2-weighted (T2-w),
diffusion-weighted (DWI), and dynamic contrast-enhanced (DCE).

2. PI-RADS Score :
The Prostate Imaging Reporting and Data System (PI-RADS) score was es-
tablished to reduce inter-observer variability and improve the analysis of
prostate MRI exams to reliably diagnose significant tumors (GS>7). The
score is obtained by combining the analysis of T2-weighted, DWI, and DCE
sequences for each suspicious area. The criteria differ depending on the
zones (PZ or TZ), and a sequence will be favored in case of discordant se-
quences : DWI for the PZ and T2-w for the TZ. (see Figure 1.3)
The PI-RADS ranges from 1 to 5, corresponding to the probability that the
cancer is clinically significant (CS) :
— PI-RADS 1 : Very low risk of CS cancer.
— PI-RADS 2 : Low risk of CS cancer.
— PI-RADS 3 : Equivocal risk of CS cancer.
— PI-RADS 4 : High risk of CS cancer.
— PI-RADS 5 : Very high risk of CS cancer.

6



Chapitre 1. Generality

Figure 1.3 – Criteria for scoring T2-w and DWI/ADC sequences based on the considered zone
(PZ or TZ) for establishing the final PI-RADS score. via Radiology Assistant.

Examples of cases corresponding to the different PI-RADS are illustrated
in Figure 1.5.
The tumor risk stratification on MRI is based on the PI-RADS score, which
partly determines the biopsy strategy : either simple biopsies not guided
by imaging (PI-RADS score <3), or addition of MRI-guided biopsies if the
MRI is positive (PI-RADS score >3).

3. Biopsy :
A biopsy is a sampling of a part of tissue (here, from the prostate gland) for
analysis. It is an invasive procedure that can be painful and have complica-
tions. The recommended standard scheme for systematic biopsies consists
of 12 samples (Figure 1.4B). For each lobe, samples are taken at the medial
and lateral levels : at the base, middle, and apex. It is important to note
that a biopsy is a localized tissue sample that reflects only one area of the
prostate.
In case of a positive MRI, targeted biopsies are combined with systematic
biopsies. Ultrasound is the reference examination for performing targeted
biopsies on suspicious lesions detected on MRI, either through visual
guidance (cognitive targeting) or through MRI-ultrasound image fusion
techniques (Figure 1.4A). MRI-guided biopsies are technically more chal-
lenging and expensive.
The histopathological examination (microscopic analysis of tissue samples)
allows for defining the Gleason score and the prognostic group of the
corresponding ISUP 2016 classification.

In case of persistent suspicion of PCa after a first series of negative
biopsies, a second series of prostate biopsies may be indicated. There is no
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consensus on the optimal interval between biopsy series. Prior to a second
series of biopsies, MRI-guided biopsies significantly increase the rate of
clinically significant cancers (ISUP grade > 2).

(A) Source : Cancer Research UK, via
Wikimedia Commons (B) Adapted to CCM urology

Figure 1.4 – (A) Prostate Biopsy Under Ultrasound Guidance.
(B) The 12 biopsy points performed during random biopsies, which may miss a cancer.
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(A) for PZ

(B) for TZ

Figure 1.5 – Example of cases corresponding to the different PI-RADS scores for the two main
zones of the prostate. via Radiology Assistant.
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1.6 Therapeutic Approaches

1. Total Prostatectomy (TP) :
TP is one of the standard treatments for localized PCa, offering the greatest
long-term oncological guarantee. The objective of TP is the removal of the
entire prostate and seminal vesicles. However, its inevitable side effects on
urinary continence and erectile function - despite sphincter and neurovas-
cular bundle preservation - have a significant impact on the quality of life
of treated patients.

2. Radiotherapy (RT) :
External beam radiotherapy and brachytherapy are among the potentially
curative therapeutic modalities offered in the treatment of non-metastatic
prostate cancer.

3. Brachytherapy or Internal Radiotherapy :
Brachytherapy is a highly localized treatment for cancer that involves pla-
cing radioactive implants (iodine 125 seeds or iridium 192 sources) inside
the prostate. These implants emit radiation that destroys prostate cancer
cells. Brachytherapy is a possible therapeutic modality for certain low-risk
localized prostate cancers.

4. External Beam Radiotherapy (EBRT) :
External beam radiotherapy is a localized treatment for cancer that uses
ionizing radiation to destroy cancer cells by preventing them from multi-
plying. It involves precisely directing these radiation beams onto the area
to be treated, while preserving healthy tissues and neighboring organs,
known as organs at risk (including the bladder and the last segment of
the digestive system : rectum and anal canal) as much as possible. These
radiations are produced by a device called a particle accelerator. They are
directed in beams towards the prostate to reach, through the skin, the
tumor as well as neighboring lymph nodes. It is also a standard treatment,
in combination with hormone therapy, for high-risk and locally advanced
PCa. It is also associated with a risk of impotence and potentially urinary
incontinence, as well as a risk of rectal inflammation (radiation proctitis).

5. Hormone Therapy :
PCa is a hormonally sensitive cancer, meaning its development is stimu-
lated by male hormones : androgens, particularly testosterone. Hormone
therapy aims to prevent the stimulating action of testosterone on cancer
cells to halt the cancer’s development. Its effect is only temporary. Hor-
mone therapy, combined with EBRT, is the standard treatment for locally
advanced prostate cancers and one of the possible treatments for high-risk
localized forms. Hormone therapy is usually initiated before radiotherapy
and continued after radiotherapy for up to three years.
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6. Chemotherapy :
Chemotherapy is a treatment that targets the mechanisms of cell division.
It is a general, or systemic, treatment that works throughout the entire
body. This allows it to reach cancer cells regardless of their location. It is
indicated for the treatment of metastatic hormone-resistant cancers with
the aim of relieving pain or controlling the symptoms of the disease.

7. HIFU :
High-Intensity Focused Ultrasound is a non-surgical therapy developed
over the past thirty years for selected patients with localized prostate
cancer. It is a minimally invasive treatment that targets prostate cancer by
concentrating high-intensity focused ultrasound waves to destroy cancer
cells through heat without damaging surrounding tissues. This highly
precise local treatment reduces the risk of side effects. Notably, the first
clinical trials began in 1993 at Edouard Herriot Hospital (Lyon, France),
using a prototype developed at the LabTAU laboratory (Lyon, France). The
RHU PERFUSE project, which funds this thesis, continues this work and
aims to evaluate the oncological outcomes of focal HIFU treatment.

8. Focal Treatments :
Other types of alternative focal treatments are being studied but are still
under evaluation : cryotherapy and laser therapy. In general, focal therapy
should be considered an evolving technique. Focal treatment requires pre-
cise knowledge of the location of tumor foci within the gland.

9. Active Surveillance :
Active surveillance allows for delaying the initiation of curative treatment
(and its associated side effects). It is a standard therapeutic option for low-
risk tumors with slow progression. The principle of active surveillance is
based on regular examinations : clinical exams, repeated PSA tests to moni-
tor its progression, prostate biopsies, and possibly MRI. If disease progres-
sion is detected, a treatment aimed at curing the disease can be scheduled.

1.7 Imaging and Technology in Diagnosis

Recently, MRI has become a key imaging technique for prostate cancer. It
guides biopsies, non-invasively assesses the cancer stage, and locates the cancer
for focal treatment.
Prostate MRI is a standardized examination that must follow specific criteria in
its implementation and analysis.

1.7.1 Acquisition

The MRI must be multiparametric and composed of the following sequences :
— Anatomical.
— Morphological (T2-w).

11
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Figure 1.6 – Multiparametric MRI of the prostate. Here, the slices are axial in the median plane.

— Functional.
— Diffusion with a high b-value > 1400 (DWI).
— T1 perfusion with contrast agent injection (DCE).
The reference plane is the oblique axial plane perpendicular to the rectal wall.

Prostate MRI can be performed at 1.5T or 3T. The examination can be conduc-
ted with only an endorectal coil, with an external coil (see Figure 1.7), or by
combining these two coils. A full examination takes 20 to 30 minutes.

(A) Pelvic coil (B) Endorectal coil (C) Siemens 1.5T MRI
Figure 1.7 – Used for some of the MRI-MP acquisitions. Adapted from Niaf [1].

1.7.2 T2-weighted imaging

The T2-weighted sequence is also referred to as the "morphological" se-
quence : it allows visualization of the different zones of the prostate (PZ, TZ, and
CZ). It is the reference sequence for visualizing prostatic tissues. On T2-weighted
images, cancerous lesions appear as areas of low signal intensity.
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Figure 1.8 – MRI of the male pelvis : T2-weighted sequence. Adapted from Niaf [1]

Figure 1.9 – Axial slices of the prostate on T2-weighted MRI acquired from a 53-year-old
patient. Source : Niaf [1]
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1.7.3 Diffusion-weighted imaging (DWI)

Diffusion sequences allow the study of molecular water movements. The ac-
quisition involves applying several diffusion gradients b to a rapid MRI sequence.
The higher the b-value, the more the signal decreases. In abnormal tissues, the si-
gnal persists despite the increase in b, and tumors appear as hyperintense on
diffusion. The slope of the signal curve as a function of b-value allows the extrac-
tion of a feature map called the Apparent Diffusion Coefficient (ADC), on which
cancers appear as hypointense.
Diffusion imaging also provides information about tumor aggressiveness. Stu-
dies do not all report the same conclusions, but there appears to be an inversely
proportional correlation between the ADC value and the Gleason score : the lo-
wer the ADC, the higher the Gleason score would be. A recent literature review
of 39 studies concluded a moderate correlation in the PZ and a weak correlation
in the TZ [7].

Figure 1.10 – Axial diffusion-weighted MRI slices for different b values and corresponding
ADC map.

1.7.4 Dynamic contrast-enhanced (DCE) imaging

Dynamic contrast-enhanced (DCE) imaging allows the study of microvascu-
larization (tissues affected are generally rich in micro blood vessels). The acquisi-
tion relies on the intravenous injection of a contrast agent (gadolinium) in a bolus,
the signal of which can be tracked over time. For this purpose, short T1-weighted
gradient echo sequences of 10-15 seconds are repeated over 2-3 minutes. This se-
quence is also referred to as a "dynamic" sequence.

Figure 1.11 – Images corresponding to different times of a perfusion MRI sequence. Adapted
from Niaf [1]

14



Chapitre 1. Generality

Analysis of the intensity curve over time allows for the extraction of discrimina-
tive parameters such as :

— Maximum enhancement : the maximum intensity of the signal during the
time course.

— Time to peak (TTP) : the time between the onset of enhancement and the
peak enhancement.

— Wash-in rate : the slope of the line between the onset of enhancement and
the peak enhancement.

— Wash-out rate : the slope of the linear regression line to the enhancement
curve between the peak enhancement and the end of the sequence.

— Area under the enhancement curve (AUC) : the integral of the curve bet-
ween the onset of enhancement and the end of the sequence.

Figure 1.12 – Extraction of quantitative parameters from the curve showing the mean signal
over time of the DCE sequence. Source : MRIquestions

A cancer is characterized by early, intense contrast enhancement and rapid wash-
out.
A pharmacokinetic model (Tofts’ two-compartment model) can also be establi-
shed to calculate parameters such as the transfer constant Ktrans, which reflects
the transfer of the contrast agent into the interstitium wash-in.

1.7.5 Limitations of MRI for PCa Diagnosis

MRI has proven itself in recent years and is now at the heart of PCa diagnosis
and patient monitoring. The combined analysis of morphological and functional
sequences enhances cancer detection.
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However, the combined analysis of MRI sequences is time-consuming and can
be particularly challenging in the following cases :

— Presence of artifacts due to post-biopsy hemorrhagic foci.
— Prostatitis (inflammation of the prostate).
— Presence of benign nodules (abnormal round formations) that may be mis-

taken for lesions.
— Discordant sequences : the lesion may only be visible on one or two MRI

sequences.
— Cancers not visible on MRI (mostly low-grade).

For all these reasons, intra- and inter-observer variability is high, experienced
radiologists achieve higher sensitivity when analyzing mp-MRI sequences.
Despite all these efforts, the analysis remains a difficult and laborious task. Fur-
thermore, certain information is currently not detectable on the images, such as
the aggressiveness of the lesion (or Gleason score). This information would be va-
luable in clinical practice, to avoid or limit biopsies by targeting suspicious areas,
or to allow non-invasive active surveillance of patients with low-grade cancers.
In the following section, we present the fundamentals of machine and deep lear-
ning for medical image segmentation.

1.8 Machine Learning

1.8.1 Generalities

Machine learning (ML) is a subclass of artificial intelligence (AI) that enables
a system to learn from data rather than from a predetermined sequence of ope-
rations.

Figure 1.13 – Relationship between AI, machine learning, neural networks, and deep learning.
Adapted from Wikipedia

16

https://www.wikipedia.org/


Chapitre 1. Generality

1.8.2 Types of Machine Learning

There are several types of ML, each with its own advantages and limita-
tions. Supervised learning involves learning from labeled examples, where each
example is associated with a known response. Unsupervised learning involves
finding structures and patterns in unlabeled data. Finally, reinforcement learning
is a technique where the system learns through trial and error by interacting with
a dynamic environment [8].

1.8.3 Applications of Machine Learning

ML is used in many fields, such as image recognition, natural language pro-
cessing, product recommendation, financial fraud detection, and market trend
prediction. ML algorithms are, also, used in broader applications such as mal-
ware recognition and natural disaster prediction [9].

1.8.4 Machine learning models

ML models are algorithms enabling computer systems to learn from data
without explicit programming. In the following, we will present some used ML
models in the studied domain.

Transfer Learning

Transfer learning (TL) is a ML technique that involves leveraging the know-
ledge acquired to solve a given task and applying it to a different but related
task. Instead of starting the learning process from scratch, TL allows models to
benefit from pre-trained models or knowledge gained from previous tasks.
In TL, a model is initially trained on a large dataset and a complex task, such as
image classification or natural language processing. The knowledge and repre-
sentations learned during this initial training are, then, transferred to a different
but related task. This approach is particularly useful when the target task has a
limited amount of labeled data, as the pre-trained model can provide an initial
advantage and improve generalization.

1. Decision Trees :
Decision trees are a ML architecture used for classification and prediction
tasks. Decision trees consist of nodes and leaves. Nodes represent decisions
to be made based on input data, while leaves represent the final classifi-
cation outcomes[8]. Decision trees have been used for tasks such as fraud
detection, predicting machine lifespan, and forecasting election results.

2. Ensemble Learning :
Ensemble learning (EL) is a ML architecture that involves combining mul-
tiple ML models to improve prediction accuracy[10]. Individual models
are often decision trees, neural networks, or other types of models. EL can
be used for classification, regression, or clustering tasks.
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The ML architectures described above are not the only ones that exist,
but they are the most important and commonly used in the industry. The
advantages of these architectures include their flexibility, their ability to
work with large amounts of data, and their capability to discover complex
relationships between data. However, each architecture has its advantages
and disadvantages, and selecting the appropriate architecture depends on
the task at hand and the available data.

Additionally, there are hybrid architectures that combine multiple types of
ML models to achieve better results. For example, Convolutional Neural
Networks can be combined with recurrent neural networks to handle both
spatial and temporal data.

It’s important to note that the choice of ML architecture doesn’t always
guarantee prediction accuracy. Results depend on many factors such as
data quality, dataset size, task complexity, computational capacity, and the
quality of the learning algorithm[10].

1.8.5 Challenges and limitations of Machine Learning.

Despite its numerous applications and benefits, ML also presents chal-
lenges and limitations. Firstly, it requires a significant amount of high-
quality training data to produce accurate results. The data must also be
representative of the population to which the model will be applied ; other-
wise, the model may be biased[11].
Moreover, ML models can be difficult to interpret as they can be highly
complex and may not provide a clear explanation of their predictions.
This can be a problem in critical applications such as medicine, where
predictions need to be understandable and justifiable[12].
Finally, ML is often used in sensitive applications such as surveillance and
facial recognition, raising concerns about privacy and data security. It is
important to consider these challenges and limitations when using ML in
real-world applications[13].

1.8.6 Deep learning

Deep learning (DL) is a subfield of Machine Learning that focuses on crea-
ting relationships between input feature variables and output variables [14].
The architecture of DL was proposed for the first time in 2006 as an Artificial
Neural Network (ANN) with an important learning capacity [15]. Nowadays,
DL is one of the most important fields where it dominates and provides the most
powerful solutions for many tasks such as image processing [16]. However, there
are multiple extensions of DL models.

In the following section, we will present the main model for DL.
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Convoluional Neural Network (CNN)

In classical neural networks, the most common layers are fully connected
layers, where neurons between two adjacent layers are connected pairwise, but
neurons within the same layer do not share connections. CNNs are very similar to
classical neural networks. Their particularity comes from convolution operations
instead of fully connected layers, operations that apply to spatially structured
signals such as text, audio signals, and images, exploiting their properties to
the fullest. A CNN consists of three main types of layers : Convolutional layers,
pooling layers, and fully connected layers. The concatenation of all these layers
forms a CNN. These layers are further detailed in the following sections.

Architecture of CNN

The architecture of a Convolutional Neural Network (CNN) is a key com-
ponent of deep learning, specifically designed to efficiently process data such as
images.
These layers are further detailed in the following section :

1. Convolutional Layer :
Two Dimensions (2D) convolution involves sliding a filter over an image
to extract features. In DL, the convolutional layer corresponds in practice
to the mathematical operation of cross-correlation. The term ’convolution’
will be used, henceforth, in the context of DL. The result of a convolution
is called a feature map.
The use of convolutional layers significantly reduces the number of pa-
rameters compared to fully connected layers, since the same filter is ap-
plied across the entire image (see Figure 1.14). Thus, the weights are shared
among different neurons.

Figure 1.14 – Convolution operation on a 7×7 image.

2. Pooling Layer :
Pooling layers are, often, inserted between convolutional layers in a CNN.
This layer reduces the spatial size of the representation to decrease the
number of network parameters, thus limiting the overfitting. The pooling
layer operates, independently, along the z-dimension on each input feature
map and spatially resizes it in the (x, y) plane using an operation such as
maximum or average pooling. The most common form is max pooling with
2×2 filters applied with a stride of 2, discarding 75% of activations without
altering the depth dimension (see Figure 1.15).

3. Fully Connected Layer (FC) :
The Fully Connected (FC) layer is applied to an input where each neuron
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Figure 1.15 – Pooling layers allow for downsampling the volume and reducing the number of
parameters.

is connected to all neurons. FC layers are, typically, present at the end of
CNN architectures, before the classifier.

Figure 1.16 – Fully Connected (FC) Layer, where each neuron in a layer is connected to all
neurons in the following layer.

4. Normalization Layer :
The Normalization layers, when used, are inserted after a convolutional
layer and before the activation function (see Figure 1.17). Normalization
allows the use of a larger learning rate, limits gradient disappearance, and
reduces excessive dependence on initialization.

5. Classification Layer :
The classification layer corresponds to the last layer of the network. Gene-
rally, the Sigmoid function is used for a binary problem, and the Softmax
classifier is used for a multi-class problem. The softmax classifier is based
on linear regression and is also known as multinomial logistic regression.
Figure 1.17 illustrates an example of a CNN architecture.
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Figure 1.17 – CNN Architecture

1.9 Conclusion

The PCa is a major public health issue. Its diagnosis is continuously evol-
ving, with the recent inclusion of MRI in the diagnostic process even before
performing biopsies, following the demonstrated improvement in performance
by targeting biopsies. However, the joint analysis of these multimodal images
is tedious and time-consuming, especially when the sequences lead to different
conclusions. Furthermore, MRI sensitivity remains low for cancers with a low
Gleason score, and there is high inter-observer variability.

In the following chapter, we present a state-of-the-art that encompasses dif-
ferent approaches for the segmentation and detection of the PCa.
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2.1 Introduction

The literature proposes various methods for the segmentation and detection
of PCa in MRI images, varying based on the type of images to be processed
and the objectives of the analysis. This chapter presents a state-of-the-art review,
defining the key concepts of image segmentation and highlighting its importance
as well as its specific challenges. Then, it provides an overview of some recent
methods proposed in the literature, followed by a synthesis and a comparative
table of the presented methods according to some selected criteria.

2.2 Image Segmentation

Image processing is an important function of any processing and analysis
process found in many computer programs. It consists of dividing an image into
several parts or sections, each representing a specific part of the image. The seg-
mentation phase includes image acquisition, enhancement, interpretation, and
final decision-making. Segments are often defined by properties such as color,
texture, brightness, and shape of objects in the image. Various classification me-
thods have been developed to extract the characteristic features of interest. The
effectiveness of each method depends largely on the characteristics of the image
viewing.

2.2.1 Preliminaries and Definition

Image processing is an image analysis process that aims to simplify or trans-
form an image into an image that is simple and easy to analyze. Due to its
importance, it has been incorporated into many important applications such as
automatic interpretation of biological and satellite images, tracking and compa-
rison of motion capture images, and more. In our case, we are interested in a
practical application of image segmentation in the medical field, which is the
segmentation of the prostate in MRI images. As it is defined, image segmenta-
tion is the procedure of separating a digital image into numerous regions where
each of the pixels in a region is comparable to particular features or calculated
properties, such as color, intensity, or texture. If the image is signified by R, then,
the segmentation is a procedure that partitions R into k sub-regions, R1, R2. . . ,
Rk.
Where Rk ∩ Rj = Ø ∀ k 6= j, and each Rk is a associated region [17]. Segmentation
aims to simplify and/or deviate the design of an image into an alternative form
that is further sensitive and easier to observe. Image segmentation is typically
used to find objects and boundaries (lines, curves, etc.) in images.

2.2.2 Importance of the PCa segmentation

MRI (Magnetic Resonance Imaging) segmentation plays a crucial role in the
detection and treatment of the PCa. Segmentation techniques allow for pre-
cise delineation of the prostate and any tumor lesions, facilitating a more ac-
curate assessment of the disease’s extent. Deep learning-based methods, such as
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convolutional neural networks (CNNs), have demonstrated remarkable efficacy
in analyzing MRI images, offering better resolution and increased contrast of
soft tissues[18]. These technological advances not only enhance diagnostic accu-
racy but also enable personalized treatment plans based on each patient’s speci-
fic characteristics. Furthermore, automatic MRI image segmentation reduces the
time and effort required for manual analysis while minimizing the risk of hu-
man errors [19]. Thus, integrating MRI image segmentation into clinical practice
represents a significant advancement in the PCa management, contributing to
more targeted interventions and improved patient outcomes.

2.3 Methods for the segmentation and detection of PCa

In this section, we present some recent methods that have been highlighted
in the literature within the framework of segmentation and detection of the PCa.

2.3.1 The PCa grading framework based on deep transfer learning and
Aquila optimizer

in this paper, Hossam et al. [20] proposed a hybrid framework for the diag-
nosis and segmentation of the PCa. The proposed framework is divided into two
stages namely classification and segmentation, where they utilized 3 different
datasets : PANDA (resized train data (512 * 512)) is used in the segmentation
phase. Transverse Plane Prostate Dataset and ISUP grade-wise the PCa are used
in the classification phase. Different data preprocessing methods were applied
to make these datasets more efficient in performing the classification and seg-
mentation processes. In the classification part, eight different CNN architectures
via transfer learning were finetuned using Aquila Optimizer (AO). The AO was
applied to tune the hyper-parameters of these models and then applied to diag-
nose patients with the PCa from normal ones. For the segmentation phase, the
authors used U-net which is a convolutional network architecture and is applied
for each masked layer on the PANDA dataset.

Method validation

The obtained results show the effectiveness of the proposed framework. In
the classification phase, the best Accuracy, F1, Precision, Recall, Sensitivity, Spe-
cificity, AUC, IoU, Dice, and Cosine Similarity are obtained using the MobileNet
pre-trained model for the two datasets. In the second stage U-Net achieved pro-
mising results with 98.46% of accuracy, the average loss is 0.0368, AUC is 0.9778,
IoU is 0.9865, and Dice is 0.9873.

Review

The methodology used in this study is appropriate because the authors used
a wide range of useful literature to identify the most effective constructs for the
classification purposes. The data set used is not very diverse and may not be a
true representation of the population. The results showed that this was true only

24



Chapitre 2. Literature Review

Figure 2.1 – The suggested approach for the PCa classification and segmentation by Hossam et
al.

for performance criteria. The authors provide no evidence of how the model was
tested on real data.

2.3.2 A new approach to diagnosing the PCa through Magnetic Resonance
Imaging

The authors in [21] proposed a novel methodology that integrates advan-
ced algorithms and machine learning techniques to enhance the accuracy and
efficiency of the PCa detection and lesion segmentation in MRI images. The
approach combines advanced techniques such as the improved GrowCut algo-
rithm, Zernik feature extraction, and ensemble learning with machine learning
algorithms like KNN, SVM, and MLP (Multilayer Perceptron), which is used in
machine learning and pattern recognition tasks. Firstly, Li Zhang et al. used the
GrowCut algorithm, a segmentation process that starts by initializing seed points
within the MRI image. These seed points serve as markers to indicate the regions
that are likely to belong to the prostate lesions. Then, the algorithm grows re-
gions based on similarity criteria. It propagates the segmentation labels from
the seed points to neighboring pixels that exhibit similar characteristics. This
region-growing process helps delineate the boundaries of the prostate lesions.
Following segmentation, authors applied the Zernik feature extraction algorithm
to extract segment properties, providing valuable information for further analy-
sis and diagnosis. The Zernik moments are computed to capture the geometric
and textural properties of the segmented regions using a series of Zernik poly-
nomials, which are orthogonal functions defined over a circular domain. These
polynomials are used to represent the intensity distribution of the segmented
regions in the MRI images. After the segmentation of the prostate lesion was
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performed, all data should be divided into two sections. The training images are
80% of the total images and the Testing images are 20% of the sample. Then, the
study incorporates ensemble learning, a technique that involves training multiple
base models, such as SVM, KNN, and MLP algorithms, on the same dataset. Each
base model learns to make predictions based on different aspects of the data by
a voting mechanism to combine the predictions of each model. The authors use
MRI and prostate imaging datasets for men (they used 271). A set of 217 samples
is used in the ensemble learning system for training and 54 samples are for tes-
ting. The Figure 2.2 displays the key steps of the algorithm.

Figure 2.2 – The structure and steps of the proposed approach.

Method validation

The proposed method shows a significant improvement compared to other
the PCa diagnostic methods. The approach achieved an accuracy of 80.97%, a
precision of 76.69%, a recall of 77.32%, and an error rate of 19.02%. Compared
to the KNN, SVM, and MLP methods, the proposed method demonstrated an
improvement in accuracy by 4.19% and 24.23%, respectively. The Dice, LFPR,
PPV, and VD criteria were also improved, with respective values of 0.79%, 0.07%,
1.24%, and 0.16%, thus surpassing the other evaluated methods.
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Review

Combining these methods could improve diagnostic accuracy, but the work
lacks details on their application and evaluation. A detailed explanation of each
technique’s steps and a well-structured approach would make the method more
consistent and reproducible. The paper should, also, provide more information
about the dataset used, as it’s crucial for assessing the study’s quality and gene-
rality. Basic information like dataset size, data entry method, and potential biases
in data collection are important for understanding the reliability of the results.
Regarding the results, there is a lack of in-depth analysis and comparison with
existing methods or standards.

2.3.3 Prediction of the PCa aggressiveness with a combination of radiomics
and machine learning-based analysis of dynamic contrast-enhanced
MRI

In [22], authors explore a novel approach to predict the PCa aggressiveness
using radiomics and machine learning techniques applied to dynamic contrast-
enhanced MRI (DCE-MRI) images. The primary aim of the study was to investi-
gate if this combination can predict PCa aggressiveness before biopsy. It included
forty consecutive biopsy-confirmed PCa patients who underwent DCE-MRI exa-
minations. Lesion segmentation was performed on the first and strongest phase
of enhancement on the original DCE-MRI images, quantitative radiomics fea-
tures were automatically calculated from each lesion, resulting in three datasets
(Dataset-F, Dataset-S, and Dataset-FS). Techniques such as the variance threshold
method, the select k-best method, and the LASSO algorithm were employed to re-
duce feature dimensions and select optimal subsets for analysis. Many machine
learning approaches were utilized, including logistic regression (LR), support
vector machine (SVM), random forests (RF), decision tree (DT), and k-nearest
neighbor (KNN). The Cross-validation was used to evaluate the models, and the
area under the receiver operating characteristic curve (AUC) was calculated to
assess performance.

Method validation

Features were selected as optimal subsets in Dataset-F, Dataset-S, and
Dataset-FS with eight, four, and 16 respectively, with LR-based analysis on
Dataset-FS showing the highest prediction efficacy (AUC=0.93). In Dataset-FS,
ten features showed a significant positive correlation with the Gleason score (GS)
of the PCa lesion, indicating their potential as predictive markers for aggressive-
ness. The study concluded that the combination of radiomics and machine lear-
ning analysis of DCE-MRI images can predict PCa aggressiveness non-invasively,
accurately, and automatically. The LR model based on Dataset-FS demonstrated
the best classification efficacy, offering a valuable tool for clinicians in determi-
ning appropriate treatment strategies for PCa patients.
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Review

Although the study demonstrated strengths in the use of multiple machine
learning methods and inference techniques, a clear weakness was the lack of dis-
cussion on specific reproducibility criteria and algorithm selection. The quality
of the data provided by biopsy-confirmed PCa and multiple DCE-MRI images
was good, but the small sample size and lack of inter-observer variability rai-
sed concerns. The results showed that the study could provide additional clinical
information and address biases.

2.3.4 A novel deep learning-based technique for detecting the PCa in MRI
images

The proposed method in [23] involves a deep learning framework based on
a 3D convolutional neural network (CNN) for detecting the PCa in MRI images
that integrate advanced object detection and classification techniques. the au-
thors used the SPIE-AAPM-NCI Prostate dataset. This dataset consists of MRI
images of the prostate gland, including T2-weighted images, Dynamic Contrast-
Enhanced (DCE) images, and Apparent Diffusion Coefficient (ADC) images from
346 patients with PI-RADS scores of 3 or higher. Different data pre-processing
techniques and data augmentation are applied to enhance the dataset’s diversity.
The model is trained on the pre-processed dataset, with specific attention to le-
sion locations, and Gleason scores. The researchers apply transfer learning using
the Faster RCNN with Inception ResNet-v2 architecture during the training pro-
cess of the 3D convolutional neural network.

Figure 2.3 – The structure and steps of the proposed approach.
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Method validation

The results obtained with the proposed model showed 87% overall accuracy,
85% specificity, and 89% sensitivity. This method provides more reliable detec-
tion of the PCa compared to other models in this paper. Regardless of the results
obtained, the authors recommend the use of "ROI Align" for further improve-
ment.

Review

The paper explains the process in detail, including various steps and pro-
cedures. However, it does not provide enough information to adequately know
about the dataset and represent the problem at hand. The authors do not compare
the performance of the proposed method in detail with other existing methods,
which limits the ability to provide a comprehensive evaluation of the effective-
ness of the method used.

2.3.5 Searching for the PCa by fully automated magnetic resonance imaging
classification : Deep learning versus non-deep learning

This paper [24] presents a comprehensive analysis of the application of deep
learning techniques, specifically Deep convolutional Neural Networks (DCNN),
in comparison to non-Deep Learning methods for the automated classification of
the PCa patients based on MRI imaging data. The study involved 172 patients
with 2,602 morphological images of the prostate obtained through axial 2D T2-
weighted imaging. The deep learning method used DCNN to automatically learn
image features from prostate morphological images. The model consisted of five
convolution layers, two inner product layers, max-pooling layers, and non-linear
ReLU layers. The input of the model was a 288x288x3 MR image, and the output
layer provided the probability of a patient having PCA. It was trained using high-
performance computational resources, including two Nvidia Titan X GPUs, and
for 1000 iterations it took only 10 minutes, and testing a patient’s image required
less than 0.5 seconds. On the other hand, non-deep learning methods used SIFT
image extraction and Bag-of-words (Bow) models for recognition and analysis.

Method validation

To compare the performance of the two models, ROC curves were generated.
To quantify the classification, the authors used the area under the ROC curve
(AUC). The study concluded that deep learning with DCNN exhibited superior
differentiation performance compared to the non-deep learning method in dis-
tinguishing PCa patients from the Breast Cancer (BCs) patients based on MRI
imaging data.

Review

In terms of methodology, the lack of information regarding hyper-parameter
tuning and the lack of comparison with other deep learning methods or en-
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semble methods raise concerns about the effectiveness and generalizability of
the method. Due to the quality of the data, the study is limited to describing
data augmentation measures and quality control measures that may affect the
representativeness of the dataset and introduce bias. In terms of results, the fai-
lure to discuss positive and negative falses and the model descriptions limits the
understanding of the error evaluation and the decision-making

2.3.6 A novel solution of using deep learning for the PCa segmentation en-
hanced batch normalization

The proposed work [25] aimed at improving the accuracy of prostate seg-
mentation on MRI images. This method consists of four main stages. In the first
stage, the noise has been eliminated using a de-speckle filter. For the segmen-
tation phase, the U-Nets, based on the FCN 8S standard, are implemented to
delineate the prostate boundary and segment the prostate without dividing the
network with the addition of pooling and up-sampling layers to enhance the seg-
mentation model for more performing segmentation. A The authors used ReLU
as an activation function. Moreover, for the Feature extraction, they used the
batch normalization and dropout layer to optimize the performance.

Method validation

The proposed approach for PCa segmentation using deep learning demons-
trates significant advancements regardless of the accuracy and the efficiency. By
combining multi-level features and employing a deep neural network, the model
effectively extracts high-level and low-level features from MR images. The incor-
poration of modified loss functions, enhanced batch normalization, and ReLU
activation addresses previous limitations, achieving an impressive overall accu-
racy of 95.3% and a reduced processing time of 2.11 seconds. This novel solution
not only enhances the segmentation accuracy but, also streamlines the process,
making it a valuable tool for automating prostate segmentation, thereby aiding
in prostate surgeries and disease diagnosis. Future work could extend this ap-
proach to other imaging modalities, further optimizing the segmentation process
through deep learning techniques.

Review

The innovative approach for PCa segmentation, presented in this work, le-
verages the strengths of deep learning to achieve remarkable precision and ef-
ficiency. By integrating advanced pre-processing techniques such as normaliza-
tion, cropping, and alignment, the model ensures consistent and high-quality in-
put data. The architecture, featuring seven down-sampling and six up-sampling
blocks, enhances feature extraction and resolution, effectively mitigating the
overfitting. The use of extensive data augmentation further enriches the data-
set, promoting robustness and generalizability. With a comprehensive evaluation
using metrics like DSC, HD, ASD, Precision, Recall, and F-1 Score, the model de-
monstrates superior performance, achieving high accuracy and reliable segmen-
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tation. This method holds significant promise for improving clinical workflows
and patient outcomes in PCa diagnosis and treatment.

2.4 Model Performance Evaluation

To evaluate the performance of the segmentation models we previously dis-
cussed, several metrics were employed to provide a comprehensive and accurate
assessment :

Accuracy :
Proportion of correct predictions to the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
.

Precision :
Proportion of true positive predictions to the total positive predictions.

Precision =
TP

TP + FP
.

Recall (Sensitivity) :
Proportion of true positive predictions to the total actual positives.

Recall =
TP

TP + FN
.

F1 Score :
Harmonic mean of precision and recall.

F1 = 2× Precision× Recall
Precision + Recall

.

Specificity :
Definition : Proportion of true negative predictions to the total actual negatives.

Specificity =
TN

TN + FP
.

Receiver Operating Characteristic (ROC) Curves and Area Under the Curve
(AUC) : Used to evaluate the model’s performance in binary classification (pre-
sence or absence of cancer). An AUC close to 1 indicates excellent discriminative
ability.
AUC =

∫ 1
0 TPR(t) dFPR(t).

Where TPR(t) is the true positive rate (sensitivity) at a classification threshold t
and FPR(t) is the false positive rate (1 - specificity) at the same threshold t.

Hausdorff Distance (HD) :
The Hausdorff Distance measures the maximum distance from any point in
set X to the nearest point in set Y, and vice versa. It quantifies the degree of
dissimilarity between two sets of points in a metric space.
HD = max

(
maxx∈X miny∈Y d(x, y), maxy∈Y minx∈X d(x, y)

)
.

Dice Similarity Coefficient (DSC) : Measures the overlap between predicted
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and reference segments. It is calculated as follows :
DSC = 2×|A∩B|

|A|+|B|
Where A is the reference segment and B is the predicted segment. A DSC of 1

indicates a perfect match, while a DSC of 0 indicates no overlap.

Positive Predictive Value (PPV) : Also known as precision, it measures the
proportion of predicted segments that are correct. It is defined as :
PPV = |A∩B|

|B|
Where A is the reference segment and B is the predicted segment. A high PPV
indicates that most predicted segments are correct.

Volume Overlap Error (VOE) : Measures the relative difference between the
volumes of predicted and reference segments. It is calculated as :
VOE = 1 - |A∪B|

|A∩B|
Where A is the reference segment and B is the predicted segment. A low VOE
indicates a good match in terms of volume.

Relative Volume Difference (VD) : Measures the volume difference between
predicted and reference segments as a percentage. It is defined as :
VD =

(
|B|−|A|
|A|

)
×100%

Where A is the reference segment and B is the predicted segment. A VD close to
0% indicates a good volume match.

Average Symmetric Surface Distance (ASSD) : Measures the average dis-
tance between the surfaces of predicted and reference segments. It is calculated
as follows :
ASSD = |SA|+|SB|

2

(
∑x∈SA

d(x, SB) + ∑y∈SB
d(y, SA)

)
Where SA is the surfaces of the reference and SB is the predicted segments, d(x,S)
is the minimum distance between point x and surface S. A low ASSD indicates a
good match in terms of shape and position.
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2.5 Comparative Table

Article
Authors and
Year

Dataset Objectives Methods Results

Article 1

Hossam
Magdy Ba-
laha , Ahmed
Osama Sha-
ban, Eman
M. El-Gendy.
(2024)

ISUP Grade-
wise the PCa
and PANDA :
Resized Train
Data

Precise diag-
nosis and
segmentation
of the PCa.
Utilization
of transfer
learning CNN
models for
classification.
Application
of Aquila
optimizer
for hyper-
parameter
tuning.

Application
of eight dif-
ferent transfer
learning CNN
models. Uti-
lization of
various loss
functions and
optimization
techniques.

Achieved
classification
accuracies
of 88.91%
and 100% on
specific data-
sets. Obtained
an average
segmentation
accuracy of
98.46%. Suc-
cessfully ap-
plied Aquila
optimizer
for hyper-
parameter
tuning.

Article 2

Zhang, L., et
al. (2020)

the PCa MRI
images

Develop a me-
thodology for
the PCa diag-
nosis using
MRI images
by Combining
three methods

Improved
GrowCut al-
gorithm for
lesion seg-
mentation,
Zernik feature
extraction for
identifying
cancerous
areas and
Ensemble
learning with
KNN, SVM,
and MLP
algorithms for
classification

Accuracy :80,97%,
Preci-
sion :76.69%,
Recall :77.32%,
Error : 19.02%

Article 3

B. Liu et al.
(2019)

Dataset-F

Predict PCa
aggressive-
ness using
radiomics
and ML on
DCE-MRI
images

Utilized LR,
RF, DT, KNN,
SVM for clas-
sification tasks
with feature
reduction
techniques

LR on
Dataset-FS
showed hi-
ghest accuracy
(AUC=0.93)
in predicting
PCa aggressi-
veness
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Article
Authors and
Year

Dataset Objectives Methods Results

Article 4

Sanjay Kumar
Singh, Amit
Sinha, Hari-
kesh Singh.
(2023)

MAGNETOM
Trio and Skyra

Develop a deep
learning-based
technique for
detecting the
PCa in MRI
images. Utilize
Gleason grading
for accurate
cancer detection
and grading.
Enhance classifi-
cation accuracy
using stacked
MR images of
ADC, BVAL, and
Ktrans

Convert DI-
COM images
to png or jpeg
format. Stack
multiple MRI
images to
create a 3D re-
presentation.
Implement
data augmen-
tation and
image pre-
processing.
Utilize trans-
fer learning
with Tensor-
Flow Object
Detection
APIs. Employ
Inception
ResNet-v2 for
training the
model. Utilize
a 3D convolu-
tional neural
network for
segmentation

Accuracy :
86.62%, Preci-
sion : 84.93%,
Recall : 88.57%,
Specificity :
84.73%, F1-
Score : 86.71%

Article 5

Xinggang
Wang, Wei
Yang, Jeffrey
Weinreb, Juan
Han, Qiubai
Li. (2017)

axial 2D T2-
weighted ima-
ging

Distinguish
pathologically
confirmed the
PCa (PCa) pa-
tients from
prostate benign
conditions (BCs)
patients with
prostatitis or
benign prosta-
tic hyperplasia
(BPH). Evaluate
the effectiveness
of deep lear-
ning with deep
convolutional
neural networks
(DCNN) compa-
red to non-deep
learning methods

Utilized deep
learning with
DCNN for
automated
classification.
Compared
deep learning
with DCNN
to non-deep
learning with
SIFT image
feature and
bag-of-word
(BoW) model.
Patient-based
classification
requiring
patient-level
labeling and
corresponding
images

AUC : 0.84 for
deep learning vs.
0.70 for non-deep
learning
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Article
Authors and
Year

Dataset Objectives Methods Results

Article 6

Sushma Shres-
tha, Abeer
Alsadoon, P.
W. C. Prasad,
Indra Seher,
Omar Hisham
Alsadoon.
(2021)

Prostate MR
images used
for segmenta-
tion

Enhance the
accuracy and
performance of
prostate segmen-
tation on MR
images. Com-
bine high-level
features with
low-level image
cues to improve
accuracy and
efficiency. Re-
duce inter and
intra-observer
error through
the use of back-
propagation
technique.

Utilization
of U-Nets
for locating
prostate boun-
daries and
segment de-
lineation in
MR images.
Implementa-
tion of batch
normalization
and dropout
layers for
optimization.
Modification
of loss func-
tion using
dice loss and
binary cross
entropy loss
for better seg-
ment overlap
view. Enhan-
cement of
batch nor-
malization
with rectified
linear unit to
address vani-
shing gradient
issue. Integra-
tion of data
augmentation
to test system
robustness.
Application
of leave-one-
out cross-
validation
for system
evaluation.

Accuracy : Pro-
posed model
achieved 2.54%
higher accuracy
than the state-of-
the-art solution,
Processing Time :
Proposed model
reduced pro-
cessing time by
0.18 seconds
compared to the
state-of-the-art
solution, Overall
Performance :
The proposed
model outper-
formed the
state-of-the-art
solution in terms
of accuracy and
processing time.

Table 2.1 – Comparative Table of Articles

2.6 Discussion

The works discussed show significant advances in the use of machine lear-
ning and deep learning for the diagnosis and segmentation of the PCa. The first
article proposes a method combining the improved GrowCut algorithm and Zer-
nike feature extraction with ensemble learning techniques such as KNN, SVM,
and MLP, improving accuracy by 20% compared to existing methods. The se-
cond article presents a technique based on a 3D convolutional neural network,
achieving a specificity of 85%, an accuracy of 87%, and a sensitivity of 89%. The
third article proposes a convolutional neural network architecture with impro-
ved batch normalization, achieving a segmentation accuracy of 95.3% and a Dice
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coefficient of 0.92. The fourth article explores the use of radiomics and machine
learning to predict the PCa aggressiveness, achieving an accuracy of 90% and an
AUC of 0.93. The fifth article proposes a hybrid framework using transfer lear-
ning and the Aquila optimizer, achieving a classification accuracy of 88.91% and
a segmentation accuracy of 98.46%. Finally, the sixth article compares deep and
non-deep learning methods, showing that deep learning with a convolutional
neural network outperformed non-deep methods with an AUC of 0.84 versus
0.70.
Deep learning approaches, particularly convolutional neural networks, have de-
monstrated superior accuracy and efficiency compared to traditional methods.
These advances promise to improve early diagnosis and personalized treatment
of the PCa, thereby contributing to better disease management and improved
patient survival rates.

Conclusion

In this chapter, we have demonstrated that the segmentation and detection
of the PCa in MRI images is a very active research area in computer vision,
with numerous methods developed to identify and assess the presence of pros-
tate tumors. Convolutional neural networks (CNNs) have been widely used for
this task, with approaches such as U-Net and Mask R-CNN. Other techniques,
like random forest-based methods and clustering techniques, have also been ex-
plored. Future improvements include additional data for model training, com-
bining different segmentation methods for increased accuracy, and integrating
segmentation with computer-aided diagnosis systems for more effective clinical
decision-making. The next chapter will be dedicated to presenting our personal
contribution, which primarily relies on neural networks and machine learning.
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Chapitre 3. Proposed Combined Method for Prostate Cancer Segmentation and
Detection on MRI Images

3.1 Introduction

In this chapter, we are interested in presenting two main works in the PCa
segmentation domain. Both works rely on deep learning models to segment the
PCa. However, Both articles present significant advancements in the use of deep
learning for the automatic segmentation of anatomical areas and suspicious can-
cer lesions in prostate MRIs. The first article demonstrates the high performance
of an automatic segmentation model with Dice similarity coefficients comparable
to those of human experts, while also providing publicly available data and code
for reproducible research. The second article compares different deep learning
methods, revealing that ENet offers the best performance and efficiency for pros-
tate segmentation, and highlights the clinical importance of automatic prostate
volume segmentation for calculating biomarkers such as the transition zone PSA
density and the prostate volume index. These studies showcase the potential of
deep learning to enhance the diagnosis and treatment of prostate cancer. Then,
according to this study, we propose a new approach for the PCa segmentation
based on the advantages of both to overcome their limitations.

3.2 Approach 1 : Deep Learning Whole-Gland and Zonal

Prostate Segmentation on a Public MRI Dataset

This work explores the use of deep learning for the segmentation of the pros-
tate and its zones on MRI images. It compares three deep neural networks (U-
Net, ENet, and ERFNet) for their effectiveness in segmenting the whole gland,
the transition zone (TZ), and the peripheral zone (PZ) [26].

3.2.1 Dataset

Description :

The dataset used in this study is PROSTATEx, a public dataset collected by
Radboud University and available on "The Cancer Imaging Archive"[27]. This
dataset includes T2-weighted MRI images of 204 patients, with an in-plane reso-
lution of 0.5 × 0.5 mm and a slice thickness of 3.6 mm. The images were acquired
on 3T scanners (MAGNETOM Trio and Skyra, Siemens Healthineers).

Manual Segmentation :

Four operators performed manual segmentations, including radiology re-
sidents and experienced radiologists. The segmented areas include the entire
gland, the central zone + anterior stroma + transition zone (TZ), and the per-
ipheral zone (PZ).
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Figure 3.1 – PROSTATEx-2 featured image.

3.2.2 Data Preprocessing

Normalization and Resizing :

The MRI images were resized to an isotropic voxel size (1 × 1 × 1 mm3)
with a matrix resolution of 512 × 512 using linear interpolation. The manually
segmented masks were resized using the nearest neighbor interpolation[26]. For
normalization, the authors used the mean and standard deviation of the training
data : Normalized image = (image - mean) / standard deviation.

Data Augmentation :

To reduce the overfitting, six transformations were applied to the training
slices : Random rotation, translation in the x and y directions, shearing, horizon-
tal flipping, and zooming.

3.2.3 Models Used

Convolutional Neural Networks (CNN) :

Three convolutional neural networks were compared for the task of prostate
segmentation : U-net, ENet, and ERFNet[26]. The 3 × 3 convolutions in U-net
were replaced with 5 × 5 to improve the performance.

Implementation and Training :

All models were implemented using the open-source programming language
Python and an HPC system equipped with a GPU (NVIDIA QUADRO P4000). A
learning rate of 0.0001 for the ENet model and 0.00001 for the U-net models with
the Adam optimizer was used. The batch size was eight slices for all experiments,
and the Tversky loss function [definition or ref] was used to adjust the weights
of false positives and false negatives.
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3.2.4 Model Training

The Cross-validation :

A k-fold (k=5) cross-validation [28] was used to train all the networks. Slices
from the same patient were never included in both the training and testing folds.
The performance of each model was calculated by averaging the results from all
validation folds.

Stopping Criterion :

The training process was stopped using an early stopping strategy to avoid
overfitting and optimize the model performance. Specifically, training was halted
when the training loss did not decrease for 10 consecutive epochs, indicating that
the model had reached a performance plateau. This approach ensures that the
model does not continue to train unnecessarily, which could lead to overfitting
the training data and degrade the performance of the test data.
Additionally, a maximum of 100 epochs was set to prevent excessively long trai-
ning times. This limit ensures that the training process remains manageable in
terms of time and computational resources, while still allowing the model to
converge to an optimal solution.

3.2.5 Model Testing

Test Datasets :

The model performances were evaluated on a test set consisting of previously
unseen data. The peripheral zone (PZ) masks were obtained by subtracting the
whole gland and transition zone (TZ) masks.

3.2.6 Results

Model Performance :

The results show that ENet achieved the best performance with an average
DSC of 91% for the whole gland, 87% for the TZ, and 71% for the PZ. U-net and
ERFNet achieved 88% and 87% for the whole gland, 86% and 84% for the TZ,
and 70% and 65% for the PZ, respectively.
In addition to the DSC, the Tversky index was also used to evaluate the model’s
performance. The Tversky index is a generalization of the Dice similarity coeffi-
cient that allows for different weighting of false positives and false negatives. It
is defined as follows :
Tversky = |A∩B|

|A∩B|+α|A\B|+β|B\A|
Where A is the reference segment, B is the predicted segment, and α and β
are weighting parameters. For their evaluations, they used α= 0.5 and β= 0.5,
giving equal weight to false positives and false negatives. The results show that
the model achieved an average Tversky index of 0.83, confirming the model’s
robustness in segmenting regions of interest.
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Figure 3.2 – Examples of correct segmentation for the deep learning networks for the whole
gland (left column), transition (middle column) and peripheral zone (right column). The manual

segmentation (yellow), ENet (red), ERFNet (blue), and U-Net (green) are superimposed.

These results, combining the DSC and the Tversky index, provide a compre-
hensive evaluation of the segmentation model’s performance. They demonstrate
that the model can accurately segment regions of interest while maintaining a
good balance between minimizing false positives and false negatives.

Statistical Analysis :

The analysis of variance (ANOVA) showed significant differences between
the models’ performances (P < 0.05). ENet, also, demonstrated faster convergence
and lower computational complexity compared to U-net and ERFNet.

3.2.7 Discussion

Advantages and Limitations :

The evaluation of the segmentation models revealed several significant ad-
vantages and limitations. Among the advantages, we note the high accuracy,
as evidenced by the average Dice Similarity Coefficient (DSC) of 0.85 and the
average Tversky index of 0.83, indicating that the models accurately segment the
regions of interest while minimizing errors. Additionally, the use of the Tversky
index shows that the models are robust and maintain good performance even
when segmentation conditions vary, which is crucial in clinical scenarios. The
models are, also, adaptable to different segmentation tasks by adjusting the
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Figure 3.3 – Training DSC and Tversky loss plots for the deep learning networks for
whole-gland prostate segmentation.

weighting parameters (α and β) of the Tversky index, allowing optimization for
specific applications such as tumor or organ segmentation.

However, these models also present some limitations. Their performance is
highly dependent on the quality and quantity of the training data, and insuffi-
cient or poor-quality data can reduce their accuracy and robustness. Additionally,
segmentation models, particularly those based on deep neural networks, can be
very complex and require significant computational resources for the training
and the inference, limiting their use in resource-constrained environments. The
performance of the models can, also, be sensitive to parameter choices, such as
the values of (α and β) in the Tversky index, necessitating careful optimization
for each specific application. Finally, segmentation models based on deep neural
networks can be difficult to interpret, posing challenges for clinical acceptance
and validation of results.

3.2.8 Partial Conclusion

This study demonstrated that deep neural networks, particularly ENet, can
accurately segment the prostate and its zones on T2-weighted MRI images. The
adoption of these tools could facilitate the integration of new biomarkers into cli-
nical practice, thereby improving the detection and treatment of prostate cancer.

3.3 Approch 2 : Prostate 158 - An expert annotated 3T MRI
dataset and algorithm for prostate cancer detection

The paper presents the Prostate158 dataset, a collection of expert-annotated
prostate MRI data, including T2-weighted sequences and diffusion-weighted se-
quences with apparent diffusion coefficient (ADC) maps. Two U-ResNet models
were used for segmenting anatomical regions (central gland, peripheral zone)
and suspicious prostate cancer (PCa) lesions with a PI-RADS score of ≥ 4 [29].
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3.3.1 Dataset

Prostate158 [29] was the dataset used in the study. It was obtained after the
examination of patients between February 2016 and January 2020 at a German
University Hospital(Charité University Hospital Berlin), data were acquired ba-
sed on Siemens scanners. Authors had used T2w sequences and DWI sequences
with specific parameters for the acquisition. After that, the obtained images were
segmented manually by two experts radiologists in uro-oncologic to offer anno-
tation for the samples. In fact, two segmentation volumes were created for each
Magnetic resonance imaging (MRI). The first one contains anatomical segmen-
tation, while the other contains the tumor. The annotated samples were stored
as NIFTI files [29] along with the DICOM images of the examinations, regarding
the training set. As a result, the final dataset contained MRIs of 158 patients ;
Where 139 patients were used in the training set, 19 patients in the test set, and
20 patients from the training set were used as the validation set.

Figure 3.4 – Prostate158 dataset.

Pre-processing :

In this part of the approach, authors utilized various techniques such as the
intensity normalization, the resampling and the center cropping. For T2w and
ADC, non-parametric and non-uniform intensity normalization were applied.
They, also, extracted the DWI sequences with the highest b-value. All the exami-
nations were resampled to ensure the congruence of the size and the resolution.
Moreover, the coordinates of the voxels in different sequences corresponded to
the same anatomical regions. Then, the images were cropped to the center by re-
moving 20% of the image merges along the anterior-posterior and lateromedial
axes which help to reduce effectively the size of MRIs by 36% without the loss of
important information.

3.3.2 Models and Segmentation algorithm

Lisa et al. [29] used two models ; One is trained for the segmentation of the
anatomical zones using axial T2w sequences only. However, the other is trained
to segment tumors with the use of T2w, ADC, and DWI. Besides, they used U-
resnet as a segmentation model. It seems interesting as name ; it’s a combination
of U-net and Resnet [30] that are known for their performances in image seg-
mentations.
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Implementation environment

The model was implemented with

1. Programming language : Python(v. 3.9.7)

2. Library : PyTorch(v. 1.9.1), MONAI (v.0.9), and PyTorch Ignite (v.0.4.7)

3. Hardwae : GPU workstation with a Nividia Geforce RTX 3090

U-resnet

As we mentioned before, the authors applied a combined algorithm witch is
U-resnet with six blocks of down-sampling and five blocks of up-sampling. The
first blocks contain four convolution layers, batch normalisation layers, dropout
layers and PReLU activation function for each layer. Kernel size of three for each
layer. Stride of three for the first layer and one for the subsequent layers and Skip
connections after each down-sampling block except the first. The second blocks
structure contains the Transposed convolutional layer with a kernel size of three
and a stride of 2, the Convolutional layer with a kernel size of three and a stride
of 1, and Batch normalization, dropout, and PReLU activation function after each
layer.

Data augmentation

This section consists of creating the modified copies of the sequences contai-
ned in the dataset. Multiple techniques were used such as the intensity alteration,
the simulation of MRIs artifacts, and the affine transformations.

Pre-processing :

MRIs sequences were resampled to an isotropic voxel spacing of (0.5 × 0.5
× 0.5 mm) using eight subregions with a spatial size of (96 × 96 × 96) voxel as
input to uniform the spatial resolution of the MRIs. For the final scaling, intensity
values to a mean of zero and a standard deviation of 1 were applied.

Algorithm training

U-resnet [29], proposed in this paper, was trained for 500 epochs using the
Novograd optimizer, a batch size of two, a weight decay of 0.01, and a one-cycle
learning rate scheduler with an initial learning rate of 0.001. The loss function
used is a combination of Dice Similarity Coefficient (DSC) and cross-entropy.
When the training is finished, the model checkpoint with the highest DSC on the
validation set was loaded and used for the evaluation on the test set.

Validation

Two external datasets were applied in the validation of the baseline model to
segment the tumor zones and anatomical zones of the prostate.
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1. Medical Segmentation Decathlon : This set contains 32 training Prostate
MRIs with the corresponding segmentation of the central gland and the
peripheral zones (PZ).

2. PROSTATEx : This dataset did not provide segmentation masks, so the
masks that are publicly available by Cuocolo et al. [26] were used. The
examinations from this dataset, which included axial T2w, ADC, and DWI
sequences as well as the segmentation for cancer (n = 186), were selected
and pre-processed in the same manner as the internal data.

Test

In the final part of the process, the authors used R (v 4.1.2) and Stands for the
Dice Similarity Coefficient (DSC), the Hausdorff distance(HD) and the average
surface distance (ASD) as metrics for the test to assess the agreement between
raters (radiologists) and the model predictions, as well as inter-rater reliability.
Without a true reference standard, the model performance was considered com-
parable to human performance if the agreement between the model and each
rater was not significantly different from the inter-rater agreement. The mean
and standard deviation for all scores were calculated and visualized with box
plots. The Wilcoxon test [31] was used to compare the performance between ra-
ters and the model, and to compare the patient ages in the training and the test
sets. Nine tests per metric were conducted, with a Bonferroni correction applied,
resulting in a significance level of p < 0.0055. For other tests, a p-value of < 0.05

was deemed significant.

3.3.3 Results And Discussion

Results

The research team gave such detailed and interesting results (shown below)
that show the importance of this paper for PCa segmentation.

1. Interrater Agreement

Region Mean DSC HD (mm) ASD (mm)
Central gland 0.87 11.1 1.0

Peripheral zone 0.75 15.8 0.74

Prostate tumor 0.6 18.8 5.5

Table 3.1 – Inter-rater Agreement

2. Performance of Trained Segmentation Models

Region Mean DSC HD (mm) ASD (mm)
Central gland (model/rater 1) 0.88 18.3 2.2

Peripheral zone (model/rater 1) 0.75 22.8 1.9
Prostate tumor (model/rater 1) 0.45 36.7 17.4

Table 3.2 – Performance of Trained Segmentation Models
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Figure 3.5 – examples for segmentation of the anatomical zones.

3. Performance of Tumor Segmentation

PROSTATEx Dataset Mean DSC HD (mm) ASD (mm)
Prepheral zones 0.71 26.3 2.2
Central glande 0.86 18.6 2.5

Table 3.3 – Performance of Tumor Segmentation on the ProstateX dataset

Decathlon Dataset Mean DSC HD (mm) ASD (mm)
Prepheral zones 0.64 29.2 4.7
Central glande 0.82 22.5 3.4

Table 3.4 – Performance of Tumor Segmentation on the Decathlon dataset
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(A) (B)
Figure 3.6 – Example for segmentation of prostate tumors.

Discussion

As mentioned earlier, the study reveals multiple points that are interesting
and important regarding the results and the impact of these results on
future research and clinical applications.

(a) Advantages :
— Model Performance : The segmentation models showed good per-

formances for the central gland and the peripheral zone, which is
crucial for various clinical applications.

— Public Dataset : Providing a dataset of 158 bi-parametric prostate
MRI scans annotated by experts is a significant contribution to the
research community.

— Clinical Perspectives : The results can be used to improve the accu-
racy of segmentation of anatomical zones and lesions suspected of
PCa.

(b) Inconvenients :
— Complexity of Tumor Segmentation : Prostate tumor segmentation

remains challenging, with significantly lower performance compa-
red to anatomical zone segmentation.

— Data : The paper faces an important limit : The model would be
more optimal with big samples’ size and the availability of DCE
(Dynamic Contrast-enhanced) sequences.

— Evaluation Metrics : They could use more metrics for a better eva-
luation of the model.

—
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3.3.4 Partial Conclusion

Prostate158 is a collection of prostate MRIs that largely adheres to PI-RADS
v2 technical standards and includes expert annotations. Alongside a com-
petitive baseline algorithm, it can serve as a benchmark for developing new
PCa segmentation and detection algorithms.

3.4 Proposed Approach : Combined model for the PCa

Segmentation

3.4.1 Introduction

PCa segmentation goes through a crucial process to obtain optimal perfor-
mances, and for that, the researches does not stop year after year. Due to
the study of the two approaches, we propose a combined approach based
on the strengths of the previous papers and the availability of datasets.

3.4.2 Proposed Dataset

ProstateX and Prostate 158 datasets show the reliability and the quality of
MRIs sequences. For that, we proposed to combine the two of them in one
dataset keeping T2w sequences, diffusion-weighted imaging (DWI), and
Apparent diffusion coefficient (ADC) maps which measure the mobility of
water molecules. This step increases the uniformity after the pre-processing
of the samples. Then, we can avoid the lack of data and external tests. As
the final dataset, we’ll obtain around 340 samples which will be divided
into three groups training, test, and validation.

pre-processing

(a) Normalization : Normalizes the images intensities for each modality
(T2w, DWI and ADC maps).

(b) Cropping : Resizes the images to have a uniform size.

(c) Alignment : Aligns the images of each modality for each patient.

(d) Data Augmentation : To increase the diversity of data, we’ll apply
geometric transformation where the images will be rotated at different
angles.

(e) Merging : Both datasets including images and annotations will be uni-
fied in one dataset.

3.4.3 Segmentation Model

We’ve noticed that the 158 prostate dataset was trained based on two dif-
ferent models to segment Anatomical zones and tumor zones. For that,
we propose to re-frame the same separated models and take advantage of
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the availability of their weights using U-net which shows performance in
Cuocolo and Comelli study.

U-net

The U-Net model is a convolutional neural network (CNN) architecture
specifically designed for image segmentation, and it has demonstrated
great efficiency in processing medical images, particularly magnetic reso-
nance imaging (MRI). Introduced by Ronneberger et al. in 2015, U-Net is
distinguished by its ability to learn hierarchical and contextual represen-
tations through its U-shaped structure, composed of a contracting path
(down-sampling) and an expansive path (up-sampling). The contracting
path captures contextual features via convolutional and pooling layers,
while the expansive path allows for precise localization recovery through
transposed convolutional layers and skip connections that link correspon-
ding layers of both paths. This architecture enables U-Net to effectively
segment complex structures in MRI images, providing accurate and robust
results in applications such as Prostate tumor detection, organ segmenta-
tion, and tissue mapping.[32]

Figure 3.7 – Exemple that illustrates a U-net architecture.

The Proposed Architecture

The proposed model for the segmentation of PCa consists of seven down-
sampling blocks and six up-sampling blocks instead of six and five suc-
cessively to increase the feature extraction, the resolution and avoid the
overfitting. Each down-sampling block contains four convolutional layers,
each followed by a batch normalization layer and Two dropout layers and
ReLU as an activation function. Besides the kernel, the stride we propose
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to use the same as on [29] . And also add another dropout layer instead of
one for the Up-sampling layers and use the ReLU as an activation function
after each layer.

(a) Training : In this phase, we propose to train the model on 80% of the
dataset with 550 epochs using the Adam optimizer instead of Novo-
grad, a batch size of two, weight decay of 0.01, and a one-cycle learning
rate scheduler with an initial learning rate of 0.001, and the cross va-
lidation technique (K-fold) The loss function is the same as Lisa et al.
[29] study,

(b) Metrics : Besides DSC, HD and ASD, we use Precision, Recall and F-1
score as metrics for the best evaluation of the model.

(c) Test : The test part is very important and crucial for the verification so
that the model generalizes to new data and be ready to be deployed,
for that the 20% of the dataset we’ll be utilized as test set.

By the implementation of the model we estimate, high DSC, low HD, ASD
and high precision, Recall and high F-1 score which means better segmen-
tation for PCa and

3.5 Conclusion

In this chapter, we presented two main works in the PCa segmentation
domain. Then, according to their advantages and limitations, we propose
a new approach that, in our opinion, will enhance the performance of PCa
segmentation.
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General Conclusion

MRI image segmentation applied to medicine represents a rapidly expan-
ding field of research. In this master’s thesis, our primary objective was to
develop a hybrid approach that combines two segmentation methods spe-
cifically dedicated to MRI images of prostate cancer, a highly diagnosed
disease in men.
During our study, we highlighted the importance of image segmentation
for the accurate detection of tumors. By examining existing works, we
found that numerous methods have been proposed, using different tech-
niques to address this issue. However, we identified limitations and gaps in
these approaches, which motivated us to develop a new method combining
the advantages of detection and segmentation.
Firstly, we chose U-Net, a well-known object detection model recognized
for its accuracy and performance, and applied it to a new dataset crea-
ted by merging the necessary MRI sequences from two datasets (Prostate-x
and Prostate158). The results obtained from both studied approaches are
very encouraging and open up numerous application perspectives in the
medical field.
Despite the progress made, we acknowledge that there are still opportuni-
ties for improvement and future research directions. For instance, the im-
plementation of the proposed model, further enriching our dataset by inclu-
ding diverse images could enhance detection accuracy after training. Ad-
ditionally, incorporating significant pre-processing steps for input images
could facilitate segmentation and improve the overall system performance.
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Résumé

Le cancer de la prostate (PCa) est une malignité répandue dans le monde
entier, diagnostiquée principalement par l’imagerie par résonance magné-
tique multiparamétrique (IRMmp), qui combine les séquences pondérées
en T2 (T2-w), l’imagerie pondérée par diffusion (DWI) et l’imagerie par
résonance magnétique dynamique avec contraste (DCE), souvent avant
les biopsies. Malgré son utilité, l’IRMmp présente une sensibilité limi-
tée pour détecter les PCa moins agressifs et souffre d’une variabilité
inter-observateurs significative. L’évaluation visuelle seule est insuffisante
pour déterminer de manière fiable l’agressivité du cancer. En réponse,
ces dernières années ont vu le développement de systèmes de détection
et de segmentation assistés par ordinateur utilisant des réseaux de neu-
rones convolutifs (CNN). Cette thèse se concentre sur l’amélioration de la
détection et de la segmentation du PCa dans les images IRM par deux ap-
proches principales. La première approche évalue et compare les modèles
UNet, ENet et ERFNet en utilisant le jeu de données Prostate-x, mettant en
évidence la performance supérieure d’ENet en termes de capacités de géné-
ralisation. La deuxième approche utilise un modèle U-ResNet sur le jeu de
données Prostate158, démontrant des résultats de segmentation robustes
pour l’ensemble de la glande et la zone périphérique, cruciaux pour la
pertinence clinique. En intégrant les forces de ces approches, une méthode
hybride est proposée pour améliorer la précision de la segmentation des
tumeurs, utilisant U-Net sur un nouveau jeu de données combinant les sé-
quences IRM essentielles des jeux de données précédents. Ces innovations
promettent des implications significatives pour le diagnostic du cancer de
la prostate et pourraient potentiellement s’étendre à des applications plus
larges en oncologie et en imagerie médicale.

Mots clés : Cancer ; Prostate ; Apprentissage automatique ; Apprentissage
profond ; Segmentation ;
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Abstract

Prostate cancer (PCa) is a widespread malignancy globally, diagnosed
primarily through multiparametric magnetic resonance imaging (mpMRI),
which combines T2-weighted (T2-w), diffusion-weighted imaging (DWI),
and dynamic contrast-enhanced (DCE) sequences, often preceding biop-
sies. Despite its utility, mpMRI exhibits limited sensitivity in detecting
less aggressive PCa and suffers from significant inter-observer variability.
Visual assessment alone is insufficient to determine cancer aggressiveness
reliably. In response, recent years have seen the development of computer-
aided detection and segmentation systems leveraging convolutional neural
networks (CNNs). This thesis focuses on advancing PCa detection and
segmentation in MRI images through two primary approaches. The first
approach evaluates and compares UNet, ENet, and ERFNet models using
the Prostate-x dataset, highlighting ENet’s superior performance in gene-
ralization capabilities. The second approach employs a U-ResNet model
on the Prostate158 dataset, demonstrating robust segmentation results for
both the entire gland and peripheral zone, crucial for clinical relevance. By
integrating the strengths of these approaches, a hybrid method is proposed
to enhance tumor segmentation accuracy, utilizing U-Net on a new dataset
combining essential MRI sequences from prior datasets. These innovations
promise significant implications for prostate cancer diagnostics and poten-
tially extend to broader applications in oncology and medical imaging.
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