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General introduction

Artificial Intelligence (AI) has revolutionized various aspects of our lives,

transforming the way we interact with technology and solve complex problems. From

virtual assistants and personalized recommendations to autonomous vehicles and

intelligent medical diagnosis, AI-powered systems are becoming increasingly

ubiquitous. As AI continues to gain momentum, the development of these systems

demands a structured methodology to ensure their efficient creation and deployment.

The development of AI systems poses unique challenges due to their distinct

characteristics and components, such as sensors, reasoning engines, and machine

learning algorithms. These complexities necessitate a tailored approach to address the

specifications of AI systems, which can vary significantly from usual software

development. Indeed, Waterfall and Agile approaches offer many advantages for

software development, but fail to consider the specifications of AI system. For instance,

developing a simple expert system requires collecting knowledge from a domain

expert and building an inference engine to deduce knowledge from the knowledge

base. It is also necessary to build models in systems based on machine learning

techniques. These steps are not explicit in the usual development methodologies.

Therefore, a well-defined methodology is essential to handle the intricacies of AI

systems and ensure their successful development.

In response to these challenges, this thesis proposes an adapted methodology by

extending the Scrum agile framework, called ScrumAI, to accommodate the unique

requirements of AI system development. Agile methods are widely adopted by

developers for their flexibility and acceptance of change during development. In

particular, the Scrum method is widely used for its simplicity and practicality.

ScrumAI aims to tackle the complexities and specifications of AI systems by improving

the development process, involving the domain expert and cognitive scientist in AI

sprints and adding new AI application practices while retaining the essence of Scrum.

The structure of this thesis is as follows:

 Chapter 1 will delve into the specifications and characteristics of AI systems, as

well as their development process, and examine different development software

methodologies, with a focus on agile frameworks.

 Chapter 2 will review the state of the art in development methodologies for AI

applications, discussing and summarizing 13 relevant papers.
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 Chapter 3 will present the ScrumAI methodology in detail, outlining its workflow

and how it addresses the challenges identified in Chapter 2.

 Finally, in order to validate the ScrumAI approach, Chapter 4 will provide a case

study example to evaluate and discuss any potential weaknesses in the

methodology. We will develop a real intelligent decision support system based on

machine learning techniques that can predict store sales and display intelligent

visual representations.
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Introduction
Artificial Intelligence (AI) has found its way into various industries and aspects of

our lives. From virtual assistants and personalized recommendations to autonomous

vehicles and intelligent medical diagnosis, AI-powered systems are transforming the

way we interact with technology and solve complex problems.

Just like traditional applications, the creation of AI-powered systems also demands a

structured methodology, and often involves the integration of special techniques and

roles.

In this chapter, we will be delving into the specifications of AI applications, including

their characteristics, components, and development life cycle. Furthermore, we will

classify the different AI applications and provide real-world examples.

Additionally, we will explore the various types of development methodologies that

exist. This will include a discussion on both traditional and agile methodologies, as

well as a comparison of their advantages and disadvantages. We will also highlight the

relevance of these methodologies in the context of intelligent system development.

By exploring these aspects, this chapter aims to provide a comprehensive

understanding of the diverse applications of artificial intelligence and the

methodologies employed in the development software applications in general.

1.1 Intelligent system

According to Oxford English Dictionary1, Intelligence is the ability to acquire and

apply knowledge and skills. What about artificial intelligence? What is an intelligent

system?

1 Compact Oxford English Dictionary, 2006
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1.2 What defines artificial intelligent?
Artificial intelligence has seen many definitions across time; we refer to the most

popular definitions [1]:

Artificial intelligence is any computer that passes the Turing test [2]. If a human being

cannot differentiate between a computer and another human being, then the machine

is considered intelligent.

Artificial intelligence is the science and engineering of making intelligent machines [3],

allowing the machine system to achieve goals in a specific environment that usually

requires a human to do it.

In other words, artificial intelligence is giving the software system or the machine the

ability to act on its own and choose the right action in an intelligent way to reach a

certain goal with high performance.

1.3 What is an intelligent system?
The concept of intelligent system has emerged in information technology as a

type of system derived from successful applications of artificial intelligence [4].

Broadly speaking an intelligent system is often defined as a machine or software

program designed to perform a useful task for human beings, such as recommending

shopping, diagnosing diseases or driving a car. We also found several definitions in

the literature, depending on the point of view of the authors.

Based on [5], intelligent systems, or AI-based systems, are software systems with

functionalities enabled by at least one AI component (e.g., image or speech

recognition, prediction or classification, and automating). According to [6], AI-based

systems include any systems that use artificial intelligence algorithms (statistical

machine learning algorithms, rule-based algorithms). As for [4], an AI-based system

represents an agent that can analyze its environment, act on it, interact with other

agents, and perform rational behavior. An intelligent system is an intelligent agent [7].

It is a software system that detects its environment through sensors and acts upon that

environment through actuators by selecting an action that is expected to maximize a

performance measure.
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1.4 Characteristics and proprieties of
intelligent systems
It can be challenging to define intelligent systems; these definitions describe

possible characteristics that an intelligent system might have.

There are many types of AI-based systems with different use cases and goals; each

uses a different approach, technology, and algorithm; therefore, it is necessary to

explore all the different aspects and properties of intelligent systems to fully

understand what AI-based systems are [1], [6]. Here, we rely on definitions based on

the agent concept to describe some interesting properties.

1.4.1 Agents

Represent human users or other intelligent systems. An intelligent system agent can

act autonomously in the environment to perform a specific task by taking its own

decisions, or it can also play an advisor role for a human user agent, suggesting

possible actions to take with the required information to help decide. However, the

human user will make the final decision.

There are three ways of autonomous acting [4], [5]:

 Reactive Decision: This is the simplest form of acting. It includes reacting to

changes with simple decisions and following a set of conditions. For example, an

intelligent system for temperature control will turn on the air conditioner if the

temperature of the room rises above a certain degree (condition).

 Goal Reasoning: This form of acting demands a certain level of reasoning in order

to determine the set of actions required to reach a specific goal. This reasoning

takes into account the right order and timing as well as the right values for the

actions while having a memory to keep track of the states. For instance, a cleaning

robot keeps track of battery level, places already visited and cleaned, and the

charging location.

 Actions reasoning: In addition to goal reasoning, it has the ability to consider

multiple sequences of actions, multiple paths, and their consequences to achieve

the goal with the best performance and minimum loss.
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1.5 Environment
The environments represent the space where the intelligent systems can function

and act. It can take multiple forms and properties. Table 1 expresses the different

forms of the environment.

ENVIRONMENT

PROPERTY

DESCRIPTION

STATIC (OR

DYNAMIC)

The environment does not change (or changes)

while an agent is making a decision.

DISCRETE (OR

CONTINUOUS)

The observed state of the environment, time or

actions are discrete (or continuous).

FULLY-

OBSERVABLE

(OR PARTIALLY-

OBSERVABLE)

Sensors detect (or do not detect) all aspects that are

relevant to the choice of action.

DETERMINISTIC

(OR

STOCHASTIC)

The next state of the environment is (or it is not)

completely determined by the current state and the

action.

EPISODIC (OR

SEQUENTIAL)

Actions do not have influence (or they have

influence) on future actions.

KNOWN (OR

UNKNOWN)

The outcomes for all actions are known (or they are

not known) by the agent in advance.

Table 1 - Forms of the environment [4]
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1.6 Components of an intelligent system
Intelligent systems are composed of various interconnected components that

work together to process information and execute tasks (see Figure 1). Each

component plays a crucial role in ensuring the system operates effectively and

efficiently, whether it's capturing data from the environment or making complex

decisions based on learned knowledge [4].

Sensors: Sensors capture data from the environment, such as text, images, sounds,

temperature, motion, or other forms of input. These inputs serve as the system's

perception of the world.

Reasoning and Inference Engine: The reasoning engine is the intelligent part of

the system; it is responsible for the thinking processes. It takes data as input from

sensors or existing datasets and uses the knowledge base to derive conclusions, make

predictions, or solve problems. It applies several techniques and algorithms to

interpret the data and generate insights. There are two types of reasoning:

 Rule-based reasoning, it applies simple if and else algorithms or a more complex

rule-based algorithms such as forward chaining or backward chaining

 Mathematical-based reasoning, it applies machine learning models such as linear

regression, decision trees, neural networks, and support vector machines.

Knowledge Base: The knowledge base contains domain-specific information that

the intelligent system uses to make decisions or perform tasks. This knowledge can be

represented in various forms, including per-defined rules, ontologies, or databases

that have been verified by experts in the domain.

Actuators: actuators are components that enable the system to interact with its

environment by producing physical actions or outputs. These actions can include

controlling motors, adjusting parameters, returning information or displaying an

image, or communicating with other systems.

User Interface: The user interface provides a way for users to interact with the

intelligent system, presenting information in a human-readable format and allowing

users to input commands or preferences.
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The components of AI systems can vary significantly from one system to another.

While some AI systems might encompass all the components, others might include

only a few of these elements. The specific components used depend on the system's

purpose, complexity, and application requirements.

Figure 1 - The component of an AI system

1.7 Functioning of AI based systems
The functioning of an AI-based system may vary from one system to another,

depending on the type of system and its purpose. However, AI-based systems have a

number of common functionalities, especially in environment analysis and data

processing.

Starting with environment analysis, it can be decomposed into three functionalities:

 Data Acquisition: The objective of this function is to collect the necessary

information from either existing data or through the different sensors. The data

may take various forms (image, temperature, pressure, text, light, etc.).
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 World modeling or data processing: The system will process and generate a

formal representation (machine-readable) of the data collected. For example, a

self-driving car will try to simulate the world around it via the different

information acquired from the different sensors (camera, GPS, etc.).

 Situation analysis, or understanding the environment and other external agents:

It may include using predefined facts and verified beliefs that match the current

situation. For example, an intelligent system for medical diagnosis will analyze

the patient’s symptoms by using already proven knowledge that relates or

matches the input symptoms to an infection or a disease. Understanding the

environment may also require calculating and assigning some values, such as the

distance or time cost of some action.

After this environment analysis, the intelligent system can then take action in the

environment.

Acting in the environment happens after a certain level of reasoning, which takes place

in the reasoning engine or a statistical model. Executing actions using the different

actuators (action component) occurs after receiving the exact sequence of commands

and values for the controllers, for example, the action of slowing down in a self-driving

car will be translated to a command for the “brakes” actuator, and a speed goal will be

set.

Finally the intelligent system can also Communicate with other agents by sending or

receiving different kinds of data (text, images, audio, values, etc.), which can be done

through Wi-Fi, Bluetooth, or cables.

1.8 Classification of intelligent systems
Intelligent systems can be classified in several ways. In the following, we have

chosen to focus on two key classifications that highlight the different functionalities of

these systems and their autonomy hierarchy.

1.8.1 Based on the functionalities of the system

Recommendation systems such as search engines, YouTube recommendations, and

Ali Express recommendations use machine-learning algorithms and large amounts of

data gathered about user interactions, including impressions, clicks, likes, and

purchases. They are capable systems of understanding the preferences, previous

decisions, and characteristics of users [8].
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Decision support systems, such as voice assistants, chatbots, or specialized systems

within an enterprise, are intelligently trained programs that use data and knowledge

from different sources. After analyzing the different data, they can provide a predictive

decision with the necessary information to support and aid the decision-making

process. This information can be in the form of graphs, models, tables, figures, or text

[9].

Expert systems, such as image analysis software, speech and face recognition systems,

and medical diagnostic systems, are computer programs that use artificial intelligence

methods and algorithms (such as forward or backward chaining) to solve problems

within a specialized domain that ordinarily requires human expertise; in other words,

they simulate human expertise [10].

Form recognition systems are capable of recognizing forms, images, objects, sounds,

characters, etc. from noise data that can be pixels or sound waves. An example of this

system is face detection, which is found in smart phones for security, or audio-to-text

applications that convert audio sound to text speech.

Content generation systems, the kind of application that is dominating this latest

period, have the ability to interact with users, understand the natural language of

users in different languages, and generate human-like content from scratch. They can

generate images, text, audio, video, or even programming code. The most famous

examples of these systems are “ChatGPT” for text and code and “DALL.E 2” for image

generation [11].

Game AI: “IBM's Deep Blue computer program once defeated the world champion in a

chess match, proving the use of AI within the game industry” [12]. Games today

include very intelligent systems that make games more entertaining and similar to real

life, for example, giving a game object the ability to have a certain behavior, giving

them a certain goal, such as attacking the player, and making them understand the

game environment [13].

Note that an intelligent system can be classified into one or many classes at the same

time. For example, the ChatGPT chatbot can be classified into content generation

systems as well as decision support systems.

1.8.2 Based on the level of autonomy

According to [8], there exist three levels of autonomy:
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Fully automatic systems: They are AI-based systems programmed to work

automatically without any human interference. For example, a cleaning robot.

Semi-automatic systems: They represent AI-based systems that can function with a

certain level of autonomy. They require an external agent or human user interference

at some point to guarantee a proper functioning system. An example of this system is

“self-driving cars.”

Interactive systems: These systems require a constant interacting user to work. This

interaction is in the form of some text input, voice command, or other kinds of inputs,

for instance, the Chabot systems like “ChatGpt” or voice assistance systems such as

“Google Assistance.”

1.9 Applications and examples of AI-based
systems
Artificial intelligence applications have spread rapidly in recent times, affecting

many fields, including healthcare, finance, education, and factories [14], [15], [16].

In healthcare, for example, diagnostic assistance systems can help doctors analyze and

detect diseases more accurately. Another example is recommending possible

treatments based on the patient's symptoms.

In finance, there are intelligent trading systems that can autonomously trade money

by analyzing market data and values based on predefined algorithms. There are also

recommendation systems that suggest products, services, or videos based on user

preferences and sentiment analysis.

In transportation, self-driving cars powered by AI can navigate roads safely and

efficiently. Traffic analysis systems can find the optimal routing from point A to point

B, similar to a "Google Maps" navigation.

In manufacturing, factories use intelligent maintenance systems that can detect

anomalies and potential failures by monitoring and analyzing real-time sensor data on

measures like pressure and temperature. Factories also deploy intelligent quality

control systems that can inspect products and identify any defects.

In security, intelligent systems can be integrated with sensors like cameras and heat

detectors to monitor for movement or perform facial recognition. In cybersecurity, AI-

based systems are used to detect and filter out fraudulent emails.
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In education, there are intelligent systems that can automatically grade assignments

and provide feedback to students.

1.10 Development of an intelligent system
(life cycle)

The life cycle of an intelligent system passes through a number of steps that might

change slightly depending on the type of system. In the following case, we will explore

a model-based intelligent system since it constitutes the majority of AI systems.

Figure 2 - The development cycle of AI system [17]

As shown in Figure 2 the life cycle of an AI system includes the following steps:

Setting the goal: this includes identifying the system requirements and

functionalities, identifying the users, studying the market, and setting the key

performance indicators.

Planning the development process: this includes calculating the cost and time,

distributing the tasks, adopting a development methodology, selecting the tools and

technology for the development process.
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Collect and prepare the data: this phase requires an understanding of the

domain to collect the right information and prepare high-quality data. This step

includes two main activities:

 Data cleaning: it is used to remove inaccuracies and missing values. Common

tools for that are OpenRafine and RapidMiner.

 Data pre-processing: it involves data transformation, normalization, and

eliminating features and attributes. Common tools for that are Python math

libraries such as Skit-learn.

Designing and building the model: it represents the implementation phase it

includes the following steps:

Specifying the learning mechanism from the three main approaches:

 Supervised learning: the data used for training is already labeled, and the model

has access to the correct answer, most commonly used for accurate prediction

and recognition.

 Unsupervised learning: the data used for training is unlabeled and best used for

classifying and clustering.

 Reinforcement learning: the model learns by rewarding it for the correct result

(learning through trial and error).

Specifying the model architecture: this step is usually for complex systems

using deep learning. Some of the top architectures are convolutional neural networks

(CNN), recurrent neural networks (RNN), and generative adversarial networks (GAN).

Testing and Deploying:

 Conduct thorough testing to ensure the model's performance and reliability.

 Deploy the model to the production environment for real-world use.

In intelligent system development it is important to get the difference between

software and hardware intelligence. Indeed, software intelligence refers to intelligence

that is implemented and executed with a software program like a web application or a

desktop application, moving from digitalization to AI integration, whereas hardware

intelligence refers to intelligence being embedded into the hardware component,

giving it the capacity to be and act intelligent. These involve special hardware designed

to perform tasks such as moving parts.
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Thus, hardware intelligence represents the container that holds software intelligence.

In our case, we will be focusing on software intelligence and present software

engineering methodologies in the next section.

1.11 Software engineering methodologies
This section provides an overview of software development methods, including

traditional approaches like Waterfall and iterative methods like the Spiral model. It

also introduces agile methodologies such as Scrum, Kanban, and Extreme

Programming, highlighting their relevance in the context of intelligent system

development.

1.11.1 Software development

Software development is an organized process that thrives on delivering products in

faster, better, and cheaper ways. There have been many studies and suggestions for

improving the development process.

The software development life cycle (SDLC) is the most important element in software

development. It depicts the necessary phases in software development. SDLC is the

process of building or maintaining software systems. Typically, it includes various

phases, from preliminary development analysis to post-development software testing

and evaluation. It also consists of the models and methodologies that development

teams use to develop the software systems and the methodologies form the framework

for planning and controlling the entire development process.

Currently, there are two SDLC methodologies that are utilized by most system

developers, namely traditional development and agile development [18].

1.11.1.1 Traditional Software Development

Software methods such as Waterfall method, V-model and RUP are known as

traditional software development methods and are among the heavy methods. These

methods are based on processes such as requirements definition, solution design,

testing and implementation. Traditional software development methods require a

well-defined requirements at the beginning of the project.
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Process

According to [18], there are four phases that are characteristic of the traditional

software development method.

The first step is to determine the requirements of the project and determine the time

required to implement the various stages of development, while trying to predict the

problems that will arise in the project.

The next step is the research and design process, where the technical equipment is

created in the form of diagrams. These outline potential problems that will be

encountered as the project progresses and provide developers with a road map to work

towards implementation.

A stage of development where code is released until some goal is achieved.

Development is often divided into sub-tasks and divided into different groups based

on capabilities.

The testing step often follows the development process to ensure that early problems

are solved. When the project is finished and the manufacturer is close to meeting the

requirements, the client becomes part of the test and feedback process and the project

is delivered to the client after his full satisfaction.

Disadvantages of Traditional Software Development

The traditional software development methods are dependent on a set of

predetermined processes and on-going documentation, which is written as the work

progresses and guides further development. The success of a project which is

approached in this way relies on knowing all of the requirements before development

begins, which means that implementing change during the development life cycle can

be somewhat problematic [19].

The disadvantages of traditional methods arise from various factors such as

inflexibility, limited customers’ involvement, late feedback and testing, high risk of

project failure, long delivery cycles, lack of visibility and control, limited room for

experimentation, and difficulty in managing complex projects [20].
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1.11.1.2 Agile Software Development

The term agile means 'moving fast'. The agile methodology is a simple way of creating

software. The agile model was proposed in 2001 by a group of software developers

who came together in Utah to explore new and better ways of developing software,

believing that each project should be approached differently and that existing methods

should be adapted to best meet the needs of the project. In agile development, instead

of a single large model implemented in the standard SDLC, the development lifecycle

is broken down into smaller pieces called "increments" or "iterations", and each of

these steps has an impact on each of the standard development phases. After each

iteration, practical steps are taken and working software is delivered. Each building

gains more character; The final building has everything the customer needs [21].

The success of a project requires regular and frequent feedback from the client. Thus,

the customer work closely with the development team to provide continuous feedback

that ensures better control of the project [22].

When planning, it is necessary to ensure that the schedule is flexible and adaptable to

changes that may occur in the context, technologies, and specifications. Indeed, it is

difficult to think of all the features you would like to have from the beginning, and it is

very probable that the customer will modify its requirements once he sees an early

version of the operating system.

Core values

The Agile model emphasize four core values [23]:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

Principles

The agile methodology consists of several principles represented in Figure 3 [24]:
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Figure 3 - The 12 agile principles

Our top priority is customer satisfaction through early and continuous delivery of
valuable software: the focus is always on customer satisfaction.

The flexibility of agile methods make it accepting the changes even if the software
was under development.

The goal of iterating is to deliver small additions at short, regular intervals. The
length of the cycle usually varies from 1 to 3 weeks, with an extension given at the end
of each cycle. This allows the customer to receive small orders in a short time, unlike
the traditional method where large orders are delivered at the end of the project.

Frequent communication between developers and partners is preferred. Because
it helps, the development team understand all the changes the customer needs and
quickly integrate these changes while building small features.

Motivating developers in agile teams and thus creating an organized team is one
of the most important aspects of agile.

The most effective and efficient way to communicate information in teams and
during development is face-to-face communication.

Functional software is the most important measure of progress: The first sign of
progress is functional software.
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Development teams need to be able to deliver increasing value repeatedly after
each iteration.

Increasing efficiency by maintaining a focus on design and technology is an
important factor.

Encourages the team members to prioritize simplicity and avoid unnecessary
complexity in all aspects of the software.

A better architecture, requirements and designs comes from self-organizing
teams, which increase the efficiency of the team.

At the end of each iteration, there are 'Iteration Review' and 'Iteration
Retrospective' events. These help teams evaluate their work during iteration and
identify many things that are not going so well.

1.11.2 Agile Methods

Agile methods focus more on IT project management. They are based on iteration to

the development according to customer changes. In particular, it allows all employees

and customers to participate in the development of the software.

For more than a decade, there has been an increase in the number of fast methods

available, including technologies and techniques specific to software development.

Agile methods are a subset of systematic and adaptive methods and are based on

iterative processes of improvement and development [22].

These methods can effectively meet customer expectations and improve employee

skills in a short period. These methods are productivity, competitive advantage, and

both customer and supplier sides. Currently, there are many agile methods in use; the

most popular methods are described briefly in this section.

1.11.2.1 eXtrem Programming

The main goal is to reduce the cost of change. Traditional methods involve defining

and determining the requirements at the beginning, followed by increasing costs as

changes are made. XP strives to make the program more flexible and open to change

by incorporating core values, principles and practices.
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The client (project owner) manages the project, while the other team members release

the initial version of the software into the stream, and new versions are released one

after another at a steady pace for critical feedback on the progress of the project. A

group organizes itself to achieve its goals by promoting cooperation among its

members. The team implements automated tests for every feature it develops,

ensuring a high level of robustness [25].

As the Figure 4 shows the process of XP method

Figure 4 - Overview of XP [25]

1.11.2.2 Rational Unified Process (RUP)

Rational Unified Process (RUP) is an agile development process. It provides a

structured approach to assigning tasks and responsibilities in development

management. Its purpose is to ensure high-quality software that satisfies the customer

within schedule and budget, as shown in Figure 5 below, the horizontal axis represents

time and shows the dynamic aspects of the process. And the vertical axis shows the

static aspects of the process [26].

Rational Unified Process is composed of 4 phases [22]:

Inception:

Define the system (scope) and define its relationships with the outside world, Design

an appropriate system architecture, and Identify problems for system efficiency.
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Elaboration:

Create an architecture to implement the functionality and impact of the architecture.

Identify risks that may lead to additional costs and delays. Specify the quality

requirements. Develop a project plan and estimated costs and resources.

Construction:

Capturing all the requirements and complete the analysis, design, implementation and

test use cases, and managing the risks.

Transition:

 Prepare the deployment environment and create documentation for (user

manuals, maintenance manuals). Fix bugs found in beta version.

Figure 5 - A hump chart that illustrates RUP architecture [26]
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1.11.2.3 Scrum

SCRUM is a framework for managing complex projects using agile principles. It is

simple and easy to understand. SCRUM is based on three pillars: clarity, control and

adaptation. Scrum teams deliver software iteratively and incrementally for getting

feedbacks. The successive releases of the "Finished" product ensure that a viable

version of the working product is always available. SCRUM rules connect events,

activities and objects. SCRUM develops the product on the fly. SCRUM meetings

associated with a sprint begin with a SCRUM planning meeting that defines the plan

for the upcoming sprint by selecting features that can be implemented or completed

during the sprint. During the sprint, there should be a daily meeting called Daily

SCRUM. This is a follow-up meeting so the team can monitor and understand the

situation. This meeting will discuss the work done since the previous meeting, the plan

for today and the obstacles. After the sprint is completed, a sprint review meeting is

held. The purpose of this meeting is to review what did and did not work during the

sprint. SCRUM defines three main rules: the SCRUM team, the SCRUM owner and

the product owner. The SCRUM team is a multifunctional, self-managing team; no

title and all team members are responsible for the result. SCRUM master is a

facilitator who helps SCRUM team, product owner and management to apply SCRUM;

he is not a project manager. The Product Owner is responsible for the requirements

and is the representative of the customer. SCRUM defines two items: the product

backlog and the sprint backlog. The product backlog is a list of orders that contains all

the requirements that have been defined, and the sprint backlog is a list that contains

the requirements that will be implemented over time [27].
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Figure 6 - Scrum overview for Agile Software Development [28]

Scrum Team

The Scrum Team consists of the Product Owner, the Development Team and the

Scrum Master. Scrum teams are self-organizing and cross functional. Self-directed

teams choose the best way to accomplish their tasks, rather than letting people outside

the team guide them.

The Product Owner

The Product Owner is responsible for maximizing the product value resulting from the

development team's efforts. How this is done can vary widely between organizations,

Scrum teams and individuals. The product owner can do the above or ask the

development team to do it. However, the product owner is responsible. He can express

the wishes of the committee in the product backlog, but those who want to change the

priority of a product backlog item must communicate with the product owner [28].

The ScrumMaster

The Scrum Master is responsible for promoting and supporting Scrum. Scrum Masters

achieve this by helping everyone understand the concept, principles, rules and values

of Scrum. The Scrum Master is the servant leader of the Scrum team [28].



Chapter 1 Intelligent Systems and Agile Development

24

The Development Team

The development team consists of experts who work to deliver a "Done" product at the

end of each sprint. A "Done" increment is required during an ongoing review. Only

members of the development team perform the increment. The organization created

development teams and entrusted them with organizing and managing their own work.

The resulting synergy optimizes the effectiveness and efficiency of the development

team [28].

1.11.3 Advantages of Agile Software Development

The advantages of agile methodology in software development are mentioned on detail

in [29]:

Adapting to a changing environment: The iteration is characterized by analysis,
design, and implementation and testing. After each iteration, a sub-project is sent to
the client for use and feedback. The customer will approve any changes that update
the software at the development stage.

Customer satisfaction is guaranteed: This process requires customers to be
involved throughout the development process. The output developed after each
change is sent to the user for testing and improvement only based on his feedback.
The result is a high-quality product.

Documentation: Agile methodology documentation is short. The main things that
should be included in the documents are a list of product features, the duration of
each cycle and the date.

The risk of failure is reduced: When upgraded software is released to customers
after each short development cycle and customer feedback is taken into account,
developers are informed of problems that occur more than in later stages of
development. It also helps to detect errors early and correct them immediately.

1.11.4 Disadvantages of Agile Software

Development

The implementation of agile methodologies in project management carries certain

disadvantages that demands careful consideration [28]:

 Interaction with customers is a key factor in successful software development.

Therefore, if the customers do not have a clear idea about the product features,

the development process will go wrong.
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 Lack of documentation: If there is little documentation, development time is

saved in favor of the agile method, although it is a big problem for developers.

Here, the interior design is constantly changing according to the needs of the

users after each iteration. It is therefore not possible to keep detailed

documentation of the design and implementation due to project delays. Therefore,

with less information available, it is very difficult for new developers who join the

development team in the future to understand the software development process.

 Saving time and wasting resources due to constantly changing requirements: If

customers are not satisfied with the software part created by an iteration and

change their requirements, this additional part will not be useful. Therefore, it is a

waste of time, effort and resources needed to develop that growth.

 Better for developer management: The agile method helps organizations make

decisions about software development. However, it is very difficult for senior

developers to cope with an environment that is constantly changing and every

time it changes, the design and code are based only on the requirements of the

time.

1.11.5 Comparing agile and traditional

methodologies

One major difference between agile development and conventional development

methods is that the former methodology possesses the ability to successfully deliver

results quickly and inexpensively on complex projects with ill-defined requirements.

Agile methods emphasize teams, working software, customer collaboration, and

responding to change, while conventional methods stress contracts, plans, processes,

documents, and tools [18].

Most system developers use traditional development or agile development when

approaching their SDLC. Next, we will analyze the comparison between agile and

traditional methods [20]:

Key Objectives: Predictability, repeatability, and optimization are key objectives for

other planning-related processes. Agility quickly creates and adapts to changes.
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Customer Relationships: Agile approaches work best when customers work

closely with the development team and when their knowledge of the overall project is

relevant. This approach carries the risk of gaps in tacit knowledge, which are mitigated

by plan-based approaches that use documents, architectural review boards, and

project-specific expert opinions to fill customer gaps on site.

Communication: While traditional ways favor clear and written communication,

agile encourages face-to-face communication.

Requirements: Traditional methods tend to follow different requirements, but on

the other hand, modern methods can maintain different requirements.

Development: Agility increases the amount of work not being done by determining

computer performance based on deep documents. Although waterfall modeling relies

heavily on software architecture because it is a direct function of the development

process.

Table 2 summarize the differences between Agile and Traditional methodology in

different aspects:

AGILE TRADITIONAL

USER REQUIREMENT Iterative acquisition Detailed user requirements

are well-defined before

coding/implementation

REWORK COST Low High

DEVELOPMENT DIRECTION Readily changeable Fixed

TESTING On every iteration After coding phase completed

CUSTOMER INVOLVEMENT High Low

EXTRA QUALITY REQUIRED

FOR DEVELOPERS

Interpersonal skills

& basic business

Nothing in particular
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knowledge

SUITABLE PROJECT SCALE Low to medium-

scaled

Large-scaled

Table 2 - Agile VS Traditional [18]

Conclusion
In this chapter, we have covered the key aspects of Artificial Intelligence

applications and the different development methodologies with a particular focus on

agile methodologies. We explored the various types of intelligent systems, in addition

to their unique characteristics and specifications. We then examined both traditional

and agile development methodologies, highlighting their advantages, disadvantages,

and relevance in the context of intelligent system development.

The field of software development has experienced tremendous growth and progress

over the past three decades. The increasing dependence on software in various

domains has necessitated the development of numerous methods and models to guide

the software development process. The agile model has emerged as a popular and

effective approach in software development due to its emphasis on flexibility,

collaboration, and iterative development.

However, with the new type of software powered by AI, which is known for its unique

specifications, there is a necessity for new development methodologies that can

accommodate this new age. In the next chapter, we will delve deeper into the related

work and existing methodologies and frameworks specifically designed for AI

development.
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Introduction
In the new age of artificial intelligence and the continuous growth of different AI

systems, creating these AI systems is a complex and difficult task due to their nature

as data-driven systems. They are very sensitive to data changes and unpredictable,

which makes it obvious that traditional development methodologies will not suit these

systems, but an agile approach is more suitable. However, will simply applying the

agile principles solve the problem, or is there a need to adjust software engineering

and development methodologies to become more effective and suitable for handling

the complexities of crafting intelligent systems? In this chapter, we will discuss the

related works. Our objective is to explore any existing approaches tailored to AI

development. By analyzing them, we aim to answer the following questions:

 What methodologies are commonly used in the development of artificial

intelligence systems?

 What are the typical life cycle stages involved in the development of intelligent

systems?

 What are considered the best practices or recommended techniques for

developing intelligent systems?

 What are some of the key challenges or obstacles encountered in the process of

developing intelligent systems?

 What are the essential specifications or requirements that guide the development

of intelligent system projects?

After collecting 13 relevant papers, we proceeded to classify them into three categories

based on their type. Hence, we have established the following categories:

Case study papers: represent every paper that contains in-depth, detailed analysis of a

particular instance or event, focuses on a single subject or problem, and finally

summarizes the results of that study.

Review and survey papers: represent every paper that provides a comprehensive

summary and evaluation of existing works on a particular topic; they usually include

collecting, classifying, and analyzing the different studies paper works with the aim of

identifying research gaps, trends, and areas for future research.
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Original papers: represent every paper that proposes new findings, data, and concepts

through research; they contribute to existing research gaps and problems by reporting

the results of novel experiments, surveys, or analyses.

Table 3 shows the classification of the different articles studied in the three categories

mentioned above.

Paper

type

Authors Title of the paper Year

Case

study

papers

S. Dasgupta and V. K.

Vankayala [30]

Developing Real Time Business

Intelligence Systems the Agile

Way.

2007

M. Haakman, L. Cruz,

H. Huijgens, and A.

Van Deursen [31]

AI lifecycle models need to be

revised: An exploratory study in

Fintech.

2021

M. S. Rahman et al.

[32]

Machine learning application

development: practitioners.

2023

A. Messina and I.

Voloshanovskiy [33]

Hybrid Agile Software

Development for Smart Farming

Application.

2020

S. Das et al. [34] Agile Systems Engineering in

Building Complex AI Systems.

2021

A. Vresk, I. Pihir, and

M. T. Furjan [35]

Agile vs. Traditional Methods for

Managing IT Projects - A Case

Study.

2020

Review

and

survey

I. W. Syahputri, R.

Ferdiana, and S. S.

Does System Based on Artificial

Intelligence Need Software

Engineering Method?

2020
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papers Kusumawardani [36] Systematic Review.

S. Martínez-

Fernández et al. [5]

Software Engineering for AI-

Based Systems: A Survey.

2022

A. El Mehdi, C. M.

Yassin, and E. K. K.

Eddine [22]

Survey and Comparative Study

on Agile Methods in Software

Engineering.

2017

Original

papers

A. Abdelghany, N.

Darwish, and H. Hefni

[37]

An Agile Methodology for

Ontology Development.

2019

P. Kurrek et al. [38] Q-Model:An Artificial

Intelligence Based Methodology

for the Development of

Autonomous Robots.

2020

M. Lourens et al. [39] Agile Technology and Artificial

Intelligent Systems in Business

Development.

2022

P. Lopes De Souza et

al. [40]

ScrumOntoBDD: Agile software

development based on scrum,

ontologies and behaviour-driven

developmen

2021

Table 3 - Paper classification
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2.1 Related works
Having reviewed and analyzed the 13 selected papers, we present a summary of

each paper in this section. We provide a concise overview of the key findings,

methodologies, and contributions of each paper, offering valuable insights into the

existing research landscape.

2.1.1 Review and survey papers

Syahputri et al. [36] conducted a systematic review of 30 papers to determine

whether artificial intelligence-based systems require their own software engineering

(SE) methods and standards.

The criteria used to collect the related papers are as follows: the title must contain

specific sentences such as “development process", "software engineering for AI",

“recommendation system", and “expert system"; the content of the paper must be

about developing recommendation systems, expert systems, or decision support

systems; it must be about software engineering methods for AI; it must be written in

English; and it must be published between 2007 and 2020.

The authors classified the papers selected in a table that includes the type of AI system,

the technology of AI used, and the SE methodology used.

Finally, they proved that 75.9% of AI-based systems used SE methods as shown in

Table 4, whether it was the full application of the method or just some phases, of

which 61% used agile methodologies rather than traditional methodologies.

Type of AI Software Engineering Method Does not use

SE Method

Agile Waterfall

Some/combi

nation phase

Full

Expert system 53.8% 7.6% 38.6%
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Recommendation

system

55.5% 11.1% 33.4%

Decision support

system

75% 25% 0%

Table 4 - Paper’s results [36]

SILVERIO MARTÍNEZ-FERNÁNDEZ et al. [5] conducted a wide review to collect

and analyze the state of the art about SE for AI-based systems. The authors extracted

the different characteristics of AI-based systems, identified the different existing SE

approaches for AI-based systems, and identified the different challenges of SE

approaches when applied to AI-based systems. They reviewed a total of 248 papers.

Some of the criteria that were used to select the relevant papers are the following: The

work has been published between 2010 and 2020, it is mainly focused on SE for AI-

based systems, it is not an exact duplicate of another study, and it is not a short paper

of two pages or less.

They also classified the papers in a number of ways, based on the type of the paper,

based on the year of publication, based on the domain, and based on SE areas.

They extracted a number of challenges in most of the SE areas, starting with the

requirement phase, where they highlight the difficulties in the functional and non-

functional requirements (NFR), such as the need for some new NFR types to be

considered or the need to negotiate upon unfeasible 100% accuracy demands issued

by customers. In the implementation phase, companies struggle to incorporate the

different tools of AI and ML. In testing phase, there is a lack of automatic solutions as

well as the difficulty of collecting enough testing data. In model building, data poses

several challenges, such as ensuring high-quality data and enough varieties, there is a

lack of standards methods for preparing, training, and validating datasets as well as

defining standards quality measures for example ensuring that the model won’t

reinforce existing discriminations (on gender, race, or religion). The rest of the

challenges are related to managements, infrastructure and maintenance.
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2.1.2 Case study papers

Dasgupta and Vankayala [30] talk about the competitive nature of business and

the contentiously changing market; thus, a flexible development process is required to

accommodate the rapidly changing requirements and market expectations. The

iterative and incremental product development principles in agile methods can

guarantee the right flexibility.

The paper is supplemented with a case study for developing a real-time business

intelligent system. The methodology used for the development process is scrum with a

test-driven approach. It consists of planning the different tests starting from the

requirement phase.

They followed the scrum phases, delivering incremental builds and continuous

integration every sprint while making sure the client was always available during the

development process.

They extracted a number of benefits from applying the scrum methodology, including

that test-driven development ensures a clean release, progress is always guaranteed,

even if requirements are not clear since the focus is on high-priority requirements

until other requirements are communicated, and dividing the project into multiple

patch sets makes the project more achievable.

Haakman et al. [31] conducted a case study at a global bank known as the ING

Bank on the topic of AI life-cycle models. They selected and interviewed 17

practitioners with different roles in the process of developing machine learning

applications from different departments of the enterprise. The authors focused on the

machine learning life cycle and reported the three most common life cycles that exist.

The Cross-Industry Standard Process for Data Mining (CRISP-DM) shown in Figure 7.

It consists of six activities, as follows: It typically starts with business understanding to

determine business objectives, then data understanding, followed by data preparation

to make data ready for modeling. The produced model goes through evaluation tests

for deployment.
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Figure 7 - The Cross-Industry Standard Process for Data Mining (CRISP-

DM) [31].

The Team Data Science Process (TDSP) is an agile, iterative data science methodology,

proposed by Microsoft to deliver machine learning solutions efficiently. It is composed

of four main phases as shown in Figure 8: business understanding, data

understanding, data acquisition, modeling, and deployment.
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Figure 8 - The Team Data Science Process TDSP [31].

The Microsoft model described by Amershi et al. [41] includes nine steps (see Figure

9): model requirements, data collection, data cleaning, data labeling, feature

engineering, model training, model evaluation, model deployment, and model

monitoring.

Figure 9 - The Microsoft model described by Amershi et al [31].

Later on, the authors proposed a refined version of these 3 life cycles, we mention the

CRISP-DM life cycle where they added the following activities, as shown in Figure 10:

data collection, a go-no-go checkpoint for feasibility assessment, documentation, risk

assessment, and model monitoring.
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Figure 10 - Refined CRISP-DM model. Additions in red, with bold text [31].

After observing the interview results, they extracted a number of findings and

challenges as follows: A feasibility study at the first iteration is crucial for the

enterprise to determine whether it is worth it to continue the development (fail-fast

approach). Collecting, understanding, and preparing data are the most time-

consuming stages of machine learning projects. Documenting and keeping track of

experiments is essential. The paper also highlighted the need for more automation for

testing, monitoring, and governance of models. The challenges extracted include

model governance and risk assessment, auditing of AI technologies before use, and a

lack of clear performance metrics standards.

Another case study was published by Rahman et al. [32]. They selected 80

practitioners with diverse skills and experiences in developing machine learning

applications to gather insights about trends, challenges, and best practices for the

development process of ML applications.



Chapter 2 AI systems development methodologies: state of the art

38

The selection of practitioners was based on their self-declared profiles in the

professional network LinkdIn, as well as their contributions to the development of ML

applications based on their GitHub repositories. While making sure that they were

attached to ML/AI application development, they focused on four main phases of the

ML life cycle: data collection and processing, feature engineering, model building and

testing, deployment, and monitoring.

The authors summarized 17 findings. The key takeaways are as follows:

 Practitioners mostly use agile methodologies for the development of ML

applications.

 The quality of the input data is very important for the performance of the model.

Feature engineering is a very important task for training a good model.

Practitioners have declared the use of multiple techniques, such as statistical

analysis and domain expertise. In general, data processing tasks are crucial steps

in the development of ML applications, and it can be a time-consuming process.

 Some of the challenges reported by practitioners are the lack of high-quality data.

Automating data cleaning is another reported challenge. There is a lack of

standards; for example, there is no standard definition of “clean data”. Another

issue that has been emphasized by practitioners is the need for domain expertise.

Practitioners also pointed out a few challenges in model deployment, including

difficulties in obtaining real data to test the model in production, difficulties in

maintaining the correct form and type of data coming to the model, the infrastructure

where the model will operate, and the need to evaluate the model with different

business metrics.

The authors observed a number of best practices for evaluation techniques that

include: performance measuring based on other famous datasets, performance

evaluation compared to a baseline model, performance evaluation compared to other

models with different languages, and performance evaluation with domain experts.

Messina and Voloshanovskiy [33], in the context of the final project of the Master

of Science in Information Technology-Software Engineering, they conducted a case

study about building a smart farming application in agile way and adopted the

SCRUM methodology. The authors reported a knowledge gap issue, causing

uncertainty and hesitation about which functionalities should be included in the

application.
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They added a new phase at sprint 0 (the inception phase) as well as enlarging the role

of scrum product owner (PO) to cover the knowledge gap. Besides that, they decided

to engage a domain expert in the development process.

The goal of the inception phase is to help understand the application domain,

investigate the domain, and come up with ideas for the basic functionality needed for

the final product. The PO is responsible for selecting and analyzing the articles and

different internet resources concerning the application domain, communicating and

interacting with experts in the domain (in their case, real farmers), and a number of

other roles concerning the business side, such as investigating competitors. Finally,

the PO communicates his findings with the development team.

In conclusion, they highlighted the term “hybrid agile", agile principles cannot avoid

the need to include hybrid solutions, something different from the usual software

engineering activities.

The paper by Das et al. [34] argues that due to the nature of data being noisy,

inaccurate, and incomplete, the outcome of AI systems can often be vague and unclear.

Thus, an AI project has to be agile in nature; in other words, it has to follow an

iterative mindset.

To confirm that the authors conducted a case study at AdventHealth to build a

decision-support intelligent system, they followed the scrum framework and used

various AI technologies, including natural language processing, machine learning, and

deep learning.

Their experience shows that an agile mindset is highly demanded in the development

of AI systems due to the questions asked during the development process that lack

definitive answers, such as how much data we need, what algorithms to use, what

labels we need, or what level of accuracy is achievable. The authors also confirm that

agility principles with the Extract Transform Load process contribute to a faster and

easier workflow to iterate on data.

In general, the agile approach provides a quick turnaround time for incremental

delivery and meeting client requirements.
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A survey of 16 IT experts was conducted by Vresk et al. [35], with the title Agile vs.

Traditional Methods for Managing IT Projects. The authors selected experts from a

company that switched to using project management according to the agile approach

as opposed to the previously used traditional approach. The experts have experience

with both approaches, which makes them ideal to study and compare both approaches.

In their paper, they analyzed a number of methods, such as waterfall, PRINCE,

PMBOK, and SCRUM. They explored the different methods in many ways and

compared them with different criteria, which include:

 User requirements in traditional methods (TDM) are clearly defined at the

beginning, whereas in agile methodologies (AGM), the requirements aren’t clear

and vague.

 Team size in TDM usually requires larger teams, while AGM can function with

smaller teams.

 The client is TDM is absent most of the time, in contrast to AGM, which demands

constant client feedback.

 In TDM, it is very hard to make changes after the development starts; however, in

AGM, it is highly flexible and accepts changes.

Finally, they concluded a number of advantages and disadvantages of both agile and

traditional methods. The key points include that in TDM, there is less time lost at

meetings, the requirements are clear and defined, and problems are predictable, but it

lacks flexibility to adapt to changes, and it is slow with rare deliveries, whereas in

AGM, it is highly flexible with good team cooperation and frequent deliveries. Even

though it is difficult to hold to deadlines in agile approaches due to the frequent

changes as well as the time lost in the daily meetings, it is agreed that agile methods

are a better choice for most IT projects.
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2.1.3 Original papers

Abdelghany et al. [37] propose a methodology based on agile principles for

developing ontologies. Although ontologies might not be an example of fully AI

systems, they share common characteristics. Ontologies and AI systems both require

domain understanding and knowledge capture; these two activities play a crucial role

in the development of these systems. With that in mind, the authors propose a

methodology based on scrum methodology for developing ontologies (AMOD), which

includes three main phases: pre-game, development, and post-game (see Figure 11).

AMOD also includes the following roles: ontology owner, ontology engineer, and

ontology user. They propose two main activities within the AMOD methodology that

could serve us in AI development: knowledge acquisition for collecting the different

data and conceptualization to organize the knowledge into semi-formal representation.

Finally, they tested their methodology with a case study, and it performed well

according to IEEE standards compared to other existing methodologies.

Figure 11 - AMOD workflow [37].

Kurrek et al. [38] provide an overview of existing development methodologies for

the development of autonomous robots. While focusing on AI-based methodologies,

they propose a new framework named the Q-Model. It integrates AI technologies,

mainly reinforcement learning, for creating the behaviors of the robot by self-learning

instead of the traditional way of hard coding the controls and manually testing and

validating them.
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The Q-model has four main phases presented in Figure 12: system design, module

control, module verification, and system application. AI forms the central point of

these four steps and serves them all.

Figure 12 - Q-Model workflow [38].

The authors describe different stages from non-AI-based development to fully AI-

based methodology. The Q-model aims to make the development process fully

automated by training a neural network model. The design, control, verification,

application, and update processes are done by the AI agent. While the proposed

approach can save a significant amount of time and effort for developers, it is still out

of reach at the current time. It is not clear how AI is actually implemented on the

technical side.

Even though the authors provided a case study where they implemented the Q-model

for building a smart robot agent in a simulation environment run by the Unity Game

Engine, it is not reliable because, in reality, developing such a robot can be quite

challenging and more difficult. Also, relying on AI as a self-learning tool is not 100%

reliable since AI models can be unpredictable.
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Lourens et al. [39] explain how business owners are turning to artificial

intelligence for what it provides for the company in terms of various benefits and value.

The authors use as an example the supply chains of Moroccan logistics firms. They list

a number of benefits and functions of implementing AI in the supply chain, including

identifying anomalies and faults, forecasting inventory, demand, and supply, and

enabling firms to eliminate non-value-adding operations and concentrate on the most

productive ones.

The authors report the use of agile development methodologies for software

development in general and for intelligent systems in particular (see Figure 13). They

highlight the property of continuous testing and integration for AI and ML systems,

which is in compliance with agile principles.

Figure 13 - Agile workflow for AI applications [39].

The paper suggest incorporating AI into the development process. Examples of

incorporating AI techniques are coding helpers, an intelligent coding assistant trained

with machine learning that can check for bugs and suggest code snippets; an accurate

estimator for development time and cost; and AI for project planning and

management.

Lopes De Souza et al. [40] address an issue that frequently occurs in every

development project: having to completely redefine some system behavior scenarios

due to ambiguities in the requirement specifications caused by using neutral language.

The authors consider the use of ontologies and behavior-driven development (BDD)

with the Scrum framework and propose a new methodology called ScrumOntoBDD.
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The proposed approach starts with two main phases that can be performed in parallel

as shown in Figure 14:

 Creating Domain Application Ontologies: This phase is responsible for creating

an ontology that covers domain ambiguities, takes as input domain documents

and user stories in natural language, and has an output of ubiquitous language

terminology.

 Extracting Application Requirements: This phase has an input of user stories and

different behaviors of the system and an output of formally represented

requirements.

 The rest of the phases follow the scrum framework: building product backlog,

defining sprint backlog, executing sprint, sprint review, and retrospective meeting.

Figure 14 - ScrumOntoBDD workflow [40].
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The paper is supplemented with a case study, applying the ScrumOntoBDD approach

to build a software system in the field of education. They verified that the employment

of ontologies resolved the semantic problems and reduced the ambiguities initially

with the project's requirements in the product backlog. Integrating the BDD allowed

the project owner to better follow up and communicate with developers throughout

the development process. The main challenge of this approach is the number of new

roles needed (domain expert, ontology engineer, software engineer) compared to the

traditional scrum. This makes the ScrumOntoBDD approach costly and not suitable

for a limited number of participants.

2.2 Comparative table
In the following table, we will mention each methodology used in the papers analyzed

before with their own advantages and disadvantages

Article Title Approach

Name

Advantages of the

Approach

Disadvantages of

the Approach

ScrumOntoBDD: Agile

software development

based on scrum,

ontologies and

behaviour-driven ScrumOntoBDD

Facilitated,

enhanced project

owner involvement

and improved

communication with

developers

throughout the

development

process.

Number of new roles

needed (domain

expert, ontology

engineer, software

engineer) compared

to the traditional

scrum.

Agile Technology and

Artificial Intelligent

Systems in Business

Development

Agile

development

with

incorporating AI

tools

Automatic testing,

and coding

assistant.

Difficulties in

selecting the right AI

tool and integrating

them.
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Q-Model: An Artificial

Intelligence Based

Methodology for the

Development of

Autonomous Robots

Q-Model

Reduce the time and

effort expended by

developers.

Relying on AI as a

self-developing tool is

not 100% reliable.

An Agile Methodology

for Ontology

Development.

agile

methodology for

ontology

development

(AMOD)

They propose two

main activities that

could serve us in AI

development:

knowledge and

conceptualization.

Ontologies might not

be an example of fully

AI systems.

Developing Real Time

Business Intelligence

Systems the Agile

Way.

Scrum with test-

driven

development

incremental builds

and continuous

integration, clean

release, progress is

always guaranteed.

Use of regular Scrum

with no adaptation for

AI systems, (lack of

data related phases

like data acquisition

and data processing).

Agile Systems

Engineering in

Building Complex AI

Systems.

Scrum

faster and easier

workflow to iterate

on data.

Use of regular Scrum

with no adaptation for

AI systems.

Hybrid Agile Software

Development for

Smart Farming

Application.

Scrum with new

phase and roles

Better

understanding of

the application

domain.

The product owner

now require much

more experience in

data acquisition.

Table 5 - Comparative table
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2.3 Summary
In summary, even though many studies have been published about AI system

development methodologies, there is still a lack of standards. The papers we have seen

fail to agree on common standards to use in the development of these systems. Each

paper treats the problem with different techniques, models, or roles. Nevertheless,

they noted that developing AI systems is different from developing regular software.

AI system operation is based on data and knowledge, and not a hard-coded program;

it requires the collaboration of data scientists and software engineers, which creates

conflicts and other problems. From this, literature review, we have extracted a number

of problems, as follows:

Data-related problems represent the majority:

 Collecting sensitive data requires different access levels and privileges.

 Dealing with sensitive data limits the tools and platforms available for data

scientists.

 All project dependencies need to be previously approved and audited by an

enterprise. This can be frustrating because practitioners have to wait before they

can explore the potential of new technologies.

 Understanding the domain and business is an important factor for collecting the

right data, processing the data, and evaluating the model; thus, the integration of

domain experts is crucial.

 In general, handling the data in AI systems is much more complex than handling

traditional data in databases. As a result, it is a long process and requires an agile

process.

 Lack of standards: for example, there is no clear definition of clean data, and

there are no standards for what accuracy is considered good enough.

Agility-related findings include:

 Being agile is not straightforward in the early phases of machine learning projects.

They argued that understanding the business, collecting data, and treating it in

the first phases do not fit in a small iteration.

 The development process is not standardized, it is sometimes tailored to fit

specific application development contexts. This can be done by adding special

sprints or roles depending on the requirements of the project.
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 Agility has drawbacks, such as the never-ending loop of adding new features and

spending a lot of time in frequent meetings.

Documentation and automation-related problems they involve:

 Lack of documentation, model tracking, and data tracking due to frequent

changes.

 Lack of automation for documentation, data processing, model training, and

deployment.

Model maintenance and governance are usually neglected; there is a need for a special

phase for model testing and risk assessment after the deployment.

In general, agile methodologies like Scrum and XP are widely used for AI system

development due to their flexibility and iterative nature, which are better suited to the

unpredictable and data-driven nature of these systems, compared to traditional

waterfall and V-model approaches. The development life cycle for intelligent systems

faces unique challenges across various stages, including requirements engineering,

data management, model building, testing, and deployment, requiring adaptations

and enhancements to existing software engineering practices.

Conclusion
The review of the related works has revealed the limitations of existing software

engineering approaches in effectively addressing the unique challenges of developing

artificial intelligence and intelligent systems. While agile methodologies have shown

promise, there is a clear need for a more tailored methodology that can fully handle

the complexities inherent in creating advanced AI-powered systems. In the next

chapter, we will propose an adapted software engineering framework specifically

designed to guide the development of intelligent systems, drawing insights from the

key findings and gaps identified in the current literature.
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Introduction
The development of AI systems is different from the development of traditional

software due to the challenges identified in the previous chapter, ranging from data

handling to documentation, automation, and model maintenance. Thus, there is a

need for a structured approach that can present solutions for the problems identified

previously.

In this chapter, we propose an improved scrum methodology tailored to address the

specific challenges in AI projects. Our methodology aims to standardize processes,

enhance collaboration, and ensure robust model maintenance and governance. By

integrating best practices from both data science and software engineering, we seek to

create a flexible yet structured framework that can adapt to the dynamic nature of AI

development.

We will begin by identifying the problem. Next, we will provide a detailed explanation

of our proposed methodology. Finally, we will explore how our methodology

effectively addresses the majority of the issues we have identified.

3.1 Problematic
Despite the successes achieved by agile methodologies such as scrum in

developing various software, they are no longer sufficient for developing the new

generation of software represented by artificial intelligence software or intelligent

systems. This is because these methodologies are not specifically designed for

developing intelligence systems.

This is confirmed by the previous chapter, as the different papers highlight the clear

difference between artificial intelligence software and regular software, and therefore

there are questions as to whether the existing approaches are sufficient to develop

such systems or whether there is a need to upgrade these approaches or propose new

ones that are compatible with the characteristics and needs of intelligent systems,

which include the following:

 data acquisition and data processing,

 the integration of new roles in the development process such as domain

experts,

 the changing nature of intelligent systems and continuous experiments even

after production

 collaboration between data scientists and developers,
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 the appearance of new non-functional requirements such as high accuracy, low

error, business risk, model output safety.

This raises many questions like: Is it necessary to design a new development

methodology for AI systems, or to adapt existing ones? If the latter, how do we adapt

existing methodologies like scrum to fit the life cycle of the process of intelligent

systems? How do we keep track of data changes and model changes? Do we need to

add new, specific roles? What workflow should be followed in order to make the

development easier and faster?

In the coming sections, we will explore scrum as an adapted methodology that will

attempt to discuss these challenges and provide possible solutions.

3.2 Scrum-IA approach
Our proposition consists of adapting the scrum methodology for the

specifications of intelligent systems and the challenges mentioned before. We added a

new cycle (sprint) for the development of the machine learning models in addition to

the traditional software cycle, as shown in Figure 15. Furthermore, we assigned new

roles, including domain experts, cognitive scientist2, and the data scientists team for

data operations (data-ops team). We also added a new meeting that can be arranged at

any point to exchange the necessary information between the development team (dev-

ops team) and the data-ops team during the sprint.

2
A cognitive scientist is someone who studies the human mind and its processes, such as perception, attention, memory,

reasoning, and language.
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Figure 15 – The workflow of ScrumAI

Finally, we emphasize some best practices, including: collaboration between the dev-

ops team and the data-ops team, integrating domain experts in the development and

evaluation process, defining clear boundaries and clear model-evaluation measures for

the project at the start in order to avoid the phenomenon of the never-ending loop of

continuous integration, documenting briefly each sprint at the end while focusing on

documenting main activities such as data processing and model building, using data

version control to keep track of data and model experiments, and automating tasks

such as data cleaning and processing using scripts and data pipelines.
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3.2.1 Model cycle

Data Acquisition: In this phase, the Data-Ops team strives to gain a comprehensive

understanding of the data domain, establish precise requirements, execute data

collection activities, and evaluate its efficacy in aiding the problem-solving process.

Data Preprocessing: In this phase, the Data-Ops team conducts data cleaning activities

through graphical visualizations, encompassing the identification and handling of

missing values, outliers, duplicates, and data format inconsistencies present within

the dataset. These issues are thoroughly examined and addressed through appropriate

actions, such as modifying or eliminating them, to ensure the data is cleansed and

prepared for subsequent stages of modeling.

Model building: Following the data preprocessing phase, the data-ops team identifies

the key entities and their attributes, then proceeds to select the appropriate model for

training the data. Additionally, if the chosen model necessitates data transformation,

it is performed accordingly. Subsequently, the data is split into training and testing

sets.

Model validation: Once the model is applied, a validation process is put into practice

to ensure its alignment with the predefined requirements and expectations. This

validation is performed by some techniques, such as cross-validation, evaluation

metrics (MAE, MSE, RMSE, etc.), a confusion matrix, performance visualization, or

even validation domain experts. The documentation is an obligatory component of

this phase for capturing the design decisions, assumptions, and rationale underlying

the chosen data model. This documentation serves as a valuable resource for

comprehending the data model over time.

Sprint Deployment: At the end of each sprint, the trained model is deployed and

packaged in a deployable format to be integrated with the application, either locally or

online.

3.2.2 Functioning of ScrumAI

In this section, we will offer a comprehensive and detailed explanation of Scrum-AI

and its main phases. This approach integrates a model life cycle within the Scrum

framework alongside the traditional software life cycle. Our focus will be on the model

life cycle, as it represents the new addition in the Scrum-AI methodology.
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3.2.2.1 Main phases of ScrumAI

Here are the key phases of the Scrum-AI:

Sprint Zero: it represents the initial planning phase which involves two roles, the

product owner and analytic manager. In this phase, the client's requirements are

discussed and declared by the product owner, as well as the project’s cost and the

project's life. In Scrum-IA, we recommend defining clear boundaries for the project,

which involves establishing the scope and clear definition for what is considered clean

data and a good model, what is the acceptable error value, and what is the required

accuracy, as well as defining no functional requirements for the model, such as

business safety and the model's output safety.

Clear boundaries reduce the never-ending loop of continuous integration and ensure

focused and well-defined objectives for each iteration, reducing scope creep and

maintaining project alignment. In addition, the technologies needed in the

development process, such as libraries and tools, are discussed in this phase as well.

The analytic manager will define, based on requirements and project life, not only the

number of sprints needed but also the number of developers needed. The outcome of

this phase is a complete product backlog with all total user stories and a project

timeline to follow.

Sprint meeting: this meeting happens at the start of every sprint and involves the

following roles: product owner and development team, which consist of software

engineers, data scientists, and domain experts. In this meeting, they go over the

product backlog and define a number of user stories to develop in the coming sprint.

The outcome of this phase is a sprint backlog.

Sprint: A sprint is a short iteration that usually lasts between 2 and 4 weeks. It is a

work cycle where the development team works to complete a set amount of work. The

sprint in Scrum-AI is decomposed into two different work cycles that can happen in

parallel or in sequence; thus, each work cycle can have its own specific development

team or they can share one team depending on: what features are being developed in

the sprint, the number of developers available, their competence, and their

preferences since the development team in Scrum is self-organized.
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The first work cycle is the software cycle, which is managed by a dev-ops team that

includes software engineers. The second work cycle is the model cycle, which is

managed by the data-ops team and includes data scientists, cognitive scientist, and a

domain expert. As mentioned before. The model cycle includes the following main

phases: data acquisition, data processing, model building, and model evaluation.

During a sprint, the teams check in during the daily standup meeting about how the

work is progressing. The goal of this meeting is to discuss any blockers and difficulties

that would influence the team's ability to achieve the sprint goal.

Critical aspects of ScrumAI include comprehensive documentation and the

involvement of a domain expert, as well as cognitive scientist.

An expert in the application's domain must be integrated into the development

process. Their functionalities range from:

 Data understanding: Bridging the gap between domain-related terms and data

scientists.

 Data Source Identification: Identifying and validating relevant and high-quality

data sources that can be used in model training.

 Feature Engineering: Providing insights into important features and suggesting

domain-specific features.

 Performance Metrics: Choosing meaningful performance metrics and validation

techniques.

Model documentation is another important aspect of Scrum-AI, which details the

iteration process of model building at the end of each sprint, including data processing,

model implementation, and model parameters, enabling the data-ops team to easily

recall data preprocessing procedures already used in previous versions.

Finally, in ScrumAI, we recommend the use of data/model version control systems to

keep track of data and model previous experiments.

The output of the sprint should be a set of ready-to-use software functionalities to be

tested as well as a machine learning model with a brief documentation and a

data/model version.
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Collaboration meeting: this meeting is specific to ScrumAI in the case of having two

different development teams for the software life cycle and the model life cycle. It can

be arranged at any point during the sprint if necessary. The main goal of this meeting

is to exchange the necessary information between the dev-ops team and the data-ops

team in order to keep the workflow of the development process going and avoid long-

term errors that can cost more time and errors. In addition, it helps emphasize team

collaboration. For instance, in an intelligent system for predicting machine failure, the

dev-ops team might need to know which attributes (sensors) are used in the prediction

model in order to implement the right inputs that correspond to the right sensors in

the user interface.

Sprint retrospective meeting: this meeting happens at the end of every sprint and

serves the purpose of identifying areas for improvement for the next sprint.

The workflow of Scrum-AI is shown with more details in Figure 16.

Figure 16 - Detailed workflow of ScrumAI
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3.3 Addressing AI development challenges
with ScrumAI
In this section, we will present evidence supporting our choices and demonstrate

how our approach effectively addresses the previously identified problems. We will

begin by reviewing the specifications of intelligent systems and the challenges

encountered in their development, and then we will explain how each difficulty was

resolved through our approach.

3.3.1 Specifications for intelligent systems

Developing intelligent systems presents several challenges due to their unique

specifications, including the following: The development of intelligent systems is

highly data-driven; thus, data acquisition and processing are fundamental. Intelligent

systems development requires the integration of new roles like domain experts to help

with domain-related data. The dynamic nature of intelligent systems necessitates

continuous experimentation, even after deployment. Collaboration between data

scientists and engineers is crucial. Finally, as new non-functional requirements

emerge, such as high accuracy, low error rates, business risk management, and model

output safety, they need to be clearly defined.

3.3.2 Addressing the challenges

Scrum is the most widely adopted agile methodology in the industry, it has clearly

defined roles, and it offers agility and effective management capabilities. Additionally,

Scrum is scalable and can be applied to projects of varying sizes and complexities.

Despite some drawbacks, the benefits of Scrum outweigh the negatives. We believe

that the capabilities of Scrum (agile, flexible, iterative, and incremental) align perfectly

with the continuously changing and experimenting nature of intelligent systems.

In addition to handling the experimenting nature of intelligent systems, ScrumAI also

tackles the following problems:

 We trust that data acquisition and data processing activities are well handled in

ScrumAI through the separation of work cycles and the integration of the model

cycle in the Scrum sprints.

 We trust that an effective collaboration between data scientists and engineers is

achieved through the collaboration meeting.
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 We defined some new non-functional requirements that need to be considered in

every intelligent system's development such as model risk assessment, which

controls and limits the output of the model, high accuracy and low error which

represent how much accurate is the output of the model.

 Keeping track of the data and model development experiments is obtained by

emphasizing the use of data and model version control platforms and the practice

of model documentation at the end of every sprint.

Conclusion
In this chapter, we have proposed an adapted methodology called Scrum-AI,

which aims to address the unique challenges faced in developing AI-based systems. By

adapting the traditional Scrum framework and integrating it with a dedicated model

life cycle, Scrum-AI provides a structured and collaborative approach to AI

development.

The key aspects of Scrum-AI include clear project scoping, the integration of domain

experts and cognitive scientist, comprehensive documentation, and the use of data

and model versioning tools. These features help to overcome the issues identified in

the previous chapter, such as data handling, model maintenance, and the dynamic

nature of AI systems.

While the Scrum-AI methodology has been tailored specifically for machine learning-

based systems, it can be adjusted slightly to fit other types of intelligent systems as

well. By modifying the model life-cycle phases to other intelligent systems life cycles,

the Scrum-AI approach can be adapted to a wider range of AI-driven applications for

example in the case of an expert system, the model cycle can include the following

phases: data acquisition, data processing, knowledge base building, inference engine

building, test and deploymen.

In the next chapter, we will explore a case study to validate the effectiveness of the

Scrum-AI methodology. By applying this approach to a real-world intelligent system,

we will demonstrate how it can make the development process easier and ensure a

successful intelligent system.
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Introduction
In this final chapter, we will present a case study of developing a real intelligent

system for predicting store sales while adopting the ScrumAI methodology proposed

in the previous chapter. We will begin by outlining the problematic scenario that

necessitated the development of this intelligent system and the solution approach we

chose to address it.

Next, we will discuss a detailed exploration of Sprint Zero, which represents the initial

phase in the ScrumAI process. This will provide insight about the requirements of the

client, the development plan, the selection of roles and development team, the cost of

the project, the technology to use, and other crucial groundwork laid during this

crucial starting point of the project.

Following this, we will briefly discuss the remaining development sprints, offering a

high-level overview of how the project progressed through the iterative nature of the

ScrumAI framework.

Finally, we will conclude the chapter by reflecting on the positive outcomes as well as

any challenges or limitations encountered during the application of the ScrumAI

methodology to this real-world intelligent system development initiative. This will

serve to further validate the practical applicability and effectiveness of ScrumAI.

4.1 Business need
Sales and product demand forecasts are very necessary to brick-and-mortar

grocery stores, which must carefully navigate how much inventory to buy. Predict a

little over, and grocers are stuck with overstocked, perishable goods. Guess a little

under, and popular items quickly sell out, leading to lost revenue and upset customers.

More accurate forecasting can decrease food waste related to overstocking and

improve customer satisfaction by having just enough of the right products at the right

time. This challenge of striking the right balance between supply and demand is a

critical problem facing many grocery retailers.
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4.2 The solution
There exist a number of techniques for demand forecasting by taking advantage

of past sales data. Some use Excel sheets to draw special graphs and analyze them

manually in an attempt to predict the future. These graphs include the Trend graph,

which is a smooth graph that captures the general behavior of sales over a long period

of time (3 months or longer) [42], [43]. However, this graph is not good at capturing

seasonal (short time) behaviors of your sales. The Seasonality graph is another type of

graph that takes seasonality into account and can capture weekly or monthly

behaviors of sales [42], [42]. Some grocers also use their long experience in the

domain to predict future demand.

Today, new techniques have emerged that are based on AI algorithms and techniques,

more precisely machine learning techniques, which will be our go-to solution for this

problem.

Hence, our proposed solution will be based on AI techniques where we will be building

a machine learning model that can predict future sales. The model will be trained on

past sales data, as well as taking into consideration the trend, seasonality, and other

important factors by creating new columns and data that contains those

considerations such as the trend and seasonality. This considerations could have a

high impact on forecasting.

Finally, we will be integrating this machine learning model into a user-friendly

interface accompanied with a number of easy-to-understand graphs in order to get a

complete intelligent system or what's known as a decision support system. This will

allow grocery stores to leverage the power of AI and data-driven insights to optimize

their inventory management and improve customer satisfaction.

4.3 Case study
In this section, we will be adopting the ScrumAI methodology to develop the

solution proposed before

4.3.1 Sprint zero

This is the first stage of the ScrumAI process, it is crucial for establishing the

project's explicit requirements (both functional and non-functional), its duration, its

cost, the roles involved, the tools to use, and the creation of a development plan.
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4.3.2 Functional requirements

Functional requirements describe the functionalities and the behavior of our decision

support system, which include two main functionalities:

Forecasting Functionalities:

 The system should generate accurate sales forecasts for a chosen store and

product family at a specified future date.

 The system should provide intuitive data visualizations, such as graphs and

charts, to clearly communicate the sales forecast. These visualizations should

make it easy for users to understand the predicted sales trends and patterns.

 In addition to the sales forecast, the system should provide supplementary

information that can aid decision-making such as.

Dashboard Functionalities:

 The system should provide interactive dashboards that allow users to explore

historical sales data, display visual representation of past data, including trends

of sales, seasonalities, best-selling product families, and best-selling stores.

 This should include visualizations such as line charts for sales trends and

seasonality patterns, and bar charts for top-performing product families and

stores.

4.3.3 Non-functional requirements

Security:

 The system must have robust security measures to protect against unauthorized

access and data breaches.

 Implement best practices for user authentication, access controls, and data

encryption.

Performance:

 The system should provide quick response times for sales forecasting and data

visualization.
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 Ensure the system can handle the expected data volume and user load without

degradation in performance.

Extensibility:

 The system architecture should be designed to accommodate future feature

additions and scalability.

 Modularity and loose coupling of components will enable easy integration of new

functionalities.

Model Risk Assessment:

 Implement rigorous processes to evaluate the accuracy and reliability of the

machine learning models used for sales forecasting.

 Regularly monitor model performance and update them as needed to maintain

prediction quality.

 Identify any potential business risks associated with the use of the intelligent

system.

4.3.4 Roles

The ScrumAI project requires seven distinct roles to ensure a fluid workflow. Typically,

these roles are defined after the product backlog and the number of sprints have been

established. However, in our case, there are only three people available. Given this

constraint, the roles can be assigned directly, without first defining the product

backlog and sprint details (see Table 6).

Note: we did not have access to a domain expert and a cognitive scientist therefore we

did not assignee them to anyone.

Roles MR Achour

Achroufene

Moh

Mohamed

Zergoun

Yasser

Client √ . .

Product Owner √ . .
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Table 6 - Distribution of roles

4.3.5 Product backlog

After the meeting with the client and identifying both the functional and non-

functional requirements, the product owner creates a product backlog that contains all

the features that need to be implemented in order to fulfill the client's requirements

(see Table 7).

id User stories

1 As a user, I can input data for a specific store and product family to

generate a sales forecast for a future date.

2 As a user, I want to see intuitive data visualizations (e.g., graphs,

charts) that clearly communicate the sales forecast and predicted

trends.

3 As a user, I want to see supplementary information alongside the sales

forecast, such as factors influencing the prediction, confidence

intervals, and potential risks/opportunities.

4 As a user, I can explore historical sales data through an interactive

dashboard.

5 As a user, I want to see visual representations of past sales trends,

seasonality patterns, best-selling product families, and best-selling

ScrumMaster √ . .

Engineers . √ √

Data Scientists . √ √
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stores.

6 As a user, I want the dashboard to include visualizations like line

charts, heat maps, and bar charts to enhance my understanding of

past performance.

7 As a user, I expect the system to provide quick response times for

sales forecasting and data visualization.

8 As a user, I want the system to be able to accommodate future feature

additions and scalability requirements.

9 As a user, I want to be confident in the accuracy and reliability of the

machine learning models used for sales forecasting.

10 As a user, I want the system to regularly monitor and update the

forecasting models to maintain prediction quality.

11 As a user, I want to understand the potential impact of the system on

operations, financial performance, and regulatory compliance.

Table 7 - Product backlog

4.3.6 Tools and technology

Tkinter

Tkinter is a standard Python GUI (Graphical

User Interface) library that provides a set of

tools and widgets to create desktop

applications with graphical interfaces. It is

included with most Python installations,

making it easily accessible for developers who

want to build GUI applications without

requiring additional installations or libraries
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[44].

Figure 17 - Code snippet using Tkinter to create user interface

Pandas

Pandas is a Python package that provides fast,

flexible, and expressive data structures

designed to make working with "relational" or

"labeled" data both easy and intuitive. It aims

to be the fundamental high-level building

block for doing practical, real world data

analysis in Python. Additionally, it has the

broader goal of becoming the most powerful

and flexible open source data analysis /

manipulation tool available in any language. It

is already well on its way towards this goal

[45].
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Figure 18 - Code snippet using pandas to load a dataset

Scikit-learn

Scikit-learn, also known as sklearn, is an

open-source, machine learning and data

modeling library for Python. It features

various classification, regression and

clustering algorithms including support vector

machines, random forests, gradient boosting,

k-means and DBSCAN, and is designed to

interoperate with the Python libraries, NumPy

and SciPy. It implements numerous data

modeling and machine learning algorithms,

and provides consistent Python APIs. It

supports a standardized and concise model

interface across models. For example, Scikit-

learn makes use of a simple fit/predict

workflow model for its classification

algorithms [46].

Matplotlib

Matplotlib is an open-source Python library

used to create high-quality graphs and charts

and serves as an open-source alternative to

MATLAB. For instance, you can create plots,

histograms, bar charts, and various types of

graphs with just a few lines of code. It’s a

comprehensive tool that enables the

generation of highly detailed data

visualizations. This library is especially
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valuable for individuals working with Python

or NumPy [47].

Figure 19 - code snippet using matplotlib to display graphs

NumPy

NumPy is a python library used to work with

arrays. It also contains functions for working

with matrices, the Fourier transform, and

linear algebra. Free to use it as it is an open-

source project [48].

Kaggle

Kaggle serves as a platform for data science

competitions, where machine learning

engineers and data scientists can compete to

develop the best models for analyzing

particular data sets or addressing particular

issues. Additionally, the platform offers a

community where users may exchange code

and data sets, work together on projects, and

benefit from one another's expertise. Kaggle

was founded in 2010 and is currently a part of

Google Cloud. Google acquired the platform in

2017 [49].
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Figure 20 - Code snippet from kaggle environment to train the machine learning model

4.4 Sprint 1
Sprint 1 represents the first iteration in the development process. After the sprint

planning meeting where the development team with the product owner discusses

which features from the product backlog should be implemented during this sprint, as

well as the time estimates for each feature and the distribution of responsibilities

among the team members. A Sprint Backlog is created with priorities assigned from

top to bottom as shown in Table 8.

PRIORITY USER STORY ASSIGNED

TO

TIME
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1 As a user, I can input data for a

specific store and product family to

generate a sales forecast for a future

date.

Moh

Mohamed

2

weeks

2 As a user, I want to see intuitive data

visualizations (e.g., graphs, charts)

that clearly communicate the sales

forecast and predicted trends.

Moh

Mohamed

4 days

3 As a user, I want to see supplementary

information alongside the sales

forecast, such as factors influencing

the prediction, confidence intervals,

and potential risks/opportunities.

Zergoun

Yasser

3 days

Table 8 - Sprint 01 backlog

The Sprint Backlog includes the following information:

 Id: a unique identifier for each user story.

 User story: a description of the user's need or requirement.

 Assigned to: the member of the development team responsible for implementing

the user story.

This sprint backlog represents the first set of features to be implemented, as

determined by the team's priorities and the client's requirements.

4.4.1 Development

In the ScrumAI methodology, the development process is composed of two parallel

cycles:
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A software cycle, which concerns everything related to digitalization, user interface,

and automating tasks like adding or deleting products from a database.

A model cycle, which concerns developing a machine learning model.

The distribution of work can vary depending on the team size, the developers'

competencies, and their preferences. The team can choose to work on the two cycles

(software cycle and model cycle) in parallel, with developers assigned to different

tracks. Alternatively, the team can focus on one cycle at a time.

In our case, the team has only two developers, thus we have decided to work on one

cycle at a time, rather than splitting the work across the two tracks.

4.4.1.1 Model cycle

Since the first priority in the Sprint Backlog is the Sales Forecasting feature, the team

has decided to start by focusing on the model cycle. This involves the following steps:

Data acquisition

This step involves gathering the necessary data required for training the machine

learning model, such as historical sales data, product information, and any other

relevant data sources.

In a real-world scenario, these datasets would typically belong to the client's stores.

The involvement of a domain expert and a cognitive scientist in this step is crucial,

where the domain expert can help with identifying high-quality data that may be

needed, while the cognitive scientist is responsible for communicating with the client

and gather the necessary data, as well reviewing the data and remove any sensitive

information that the client would not want to be viewed. These two roles will help

ensure high-quality data while preserving the security of these data.

However, in our case, our supervisor is simulating the client, and we do not have

access to an actual dataset as well as the lack of both the domain expert and a

cognitive scientist.

Given this constraint, we had to look for a public dataset that has already been

reviewed and processed by a domain expert and a cognitive scientist. Therefore, we

explored the Kaggle platform and found a relevant dataset that serves our purpose.
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The "Store Sales - Time Series Forecasting" dataset belongs to the Favorita stores

located in Ecuador. The dataset records the daily sales over a 5-year period from 2013

to 2017, resulting in a total of 3 million rows of data. The dataset includes 6 attributes

[50]:

 Id

 Daily time-series data

 Product family (with 33 unique values)

 Store number (with 55 unique values)

 The total number of promotions of a given product family at a given date and

store number

 Sales, which represents the total sales at a given date, store number, and product

family

In addition to the sales data, the dataset also includes other relevant information, such

as: Holidays dataset, Daily oil price dataset, Transactions dataset, Store details data

This comprehensive dataset provides a valuable opportunity to develop a forecasting

model for store sales.

Data processing

In this phase, we prepare and transform the data to make it ready for model building.

This may involve tasks such as handling missing values, dealing with outliers, feature

engineering, and other data transformation activities. Data processing may also

involve the domain expert's knowledge and guidance in order to select the appropriate

transformations to apply to the dataset.

In our case, since we did not have access to an actual domain expert to guide the data

transformation phase, we used the resources listed in the dataset description [42] in

addition to online research to look for information about the domain. This help us

detect and understand what are the important factors and attribute that should be

taken in consideration for sales forecasting.

We first checked for any null values in the dataset. We then eliminated the 'id'

attribute, as it did not provide any meaningful information for the modeling process.
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Next, we focused on feature engineering. This involved transforming the date-time

series into more useful features. We extracted the day of the month, day of the week,

month, year, and the new year separately. This will allow us to capture any seasonal

patterns in the data.

On top of that, we extracted another feature known as ‘Lag’. Lagging a time series

means to shift its values forward one or more time steps [42], for example if you have

a daily time series, the ‘lag_1’ feature would have the values from one day ago, the

‘lag_2’ feature would have values from two days ago, and so on (see Figure 21).

The basic idea behind using lag features is that the current value of a time series often

depends on its past values. For this reason we used not only the lag_1 feature but also

we considered the mean value of lag_7, this will allow us to capture information about

the whole previous week.

Figure 21 - Lag features

In the dataset description they also mentioned that a magnitude 7.8 earthquake struck

Ecuador on April 16, 2016, resulting in people buying essential needs and donating

them [50], therefore we added this information as a separate column or feature that

might capture some pattern in the dataset.

Additionally, we created a 'trend' feature by calculating the mean value of sales of a

given store number and a product family over a one-month period. This feature can

help us understand the overall sales trend over time.
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The 'store number' and 'product family' columns are categorical in nature, so we

transformed them into numerical representations to make them suitable for modeling.

Finally, we split the dataset into two parts: a training set and a test set. The training

set will be used to train the machine learning model, while the test set will be used to

evaluate the model's performance using various metrics.

By performing these data preprocessing and transformation steps, we have prepared

the dataset to be effectively utilized for model building and evaluation.

Model building and evaluation

The model building phase involves several key steps: Selecting the appropriate model,

tuning hyperparameters, and Training the model.

Since we are dealing with a supervised regression problem, we chose a

'LinearRegression' as the base model. We trained the model and calculated a number

of evaluation metrics, which include: Mean Absolute Error (MAE), Mean Squared

Error (MSE), Root Mean Squared Error (RMSE), Root Mean Squared Logarithmic

Error (RMSLE), R-squared (R2).

The results of these evaluations are presented in Table 9.

ERROR VALUE

MEAN ABSOLUTE ERROR 107.42

MEAN SQUARED ERROR 137238.24

ROOT MEAN SQUARED

ERROR
370.45

ROOT MEAN SQUARED

LOGARITHMIC ERROR
nan

R-SQUARED 0.88

Table 9 - Evaluation metrics (model 1)
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The base LinearRegression model has performed reasonably well, with an accuracy of

88% and an error value of approximately 370.45 sales units. This suggests the model

is making accurate sales predictions, but there is still a room for improvement.

In the upcoming Sprint, we will experiment with different models and processing

techniques to see if they can further enhance the model's performance and reduce the

error rate.

Sprint deployment

Once the model is built and validated, this phase include exporting the model to be

integrated with the application.

By focusing on the model life cycle first, the team managed to implement the core

machine learning aspects of the forecasting functionalities before moving on to the

software life cycle tasks, such as the user interface and data visualization components.

4.4.1.2 Software cycle

Once we have implemented the model, the next step is to integrate it with a user

interface that has a number of input fields and a way of displaying the forecasting

result in the form of text as well as graph visualization.

In the software development cycle, the requirements have already been defined, which

leaves us with three main phases to focus on:

Architecture design or conception

 In this phase, the developers design the necessary architectural diagrams,

including:

 Use Case Diagrams that describe the different functionalities with their

appropriate actors and their access rights.

 Sequence diagram, which details the order in which the object interact including:

Lifetime of the object, the processes that interact with it and the messages

exchanged.

 Class Diagrams that describe the various entities within the application and serve

as a template for building the database.
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In our case, as the main goal is to create an intelligent system, which does not have

any database-related functionalities, thereby we are utilizing only a Use Case Diagram,

as shown in Figure 22. The user can input data to predict sales, visualize the

prediction through a graph, and get useful information depending on the input.

Figure 22 - Use case diagram (sprint 1)

Implementation

This is the coding phase, where the team implements the required functionalities and

user interfaces. We have used the Python library Tkinter for the interface and other

necessary libraries such as Matplotlib for plotting the graphs, as well as Pickle for

loading the machine learning model and integrating it with the interface.

Test and sprint deployment

In this phase, the team thoroughly tests the developed features and fixes any identified

bugs before delivering the final build of Sprint 1 to the client for testing.
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ScrumAI emphasizes creating a brief model documentation at the end of each sprint,

detailing the model development process. Additionally, they emphasize using a

data/model version control tool to keep track of model experiments.

Table 10 provides an example of the model documentation, highlighting the data

processing steps, model architecture, model parameters, and the evaluation metrics

used.

Data processing steps  Eliminated the 'id' attribute, as it did not

provide meaningful information.

 Created features for the day, month, and year

to capture seasonal patterns.

 Created a 'lag 1' feature and the mean of 'lag 7'

to capture dependencies on past values.

 Created a 'trend' feature by calculating the

mean sales over a one-month period.

 Added a feature to capture the impact of the

magnitude 7.8 earthquake in Ecuador.

 Transformed the 'store number' and 'product

family' columns into numerical

representations.

 Split the dataset into training and test sets.

Model architecture,

model parameters

LinearRegression with no special hyperparameters

Evaluation metrics  Mean Absolute Error (MAE).

 Mean Squared Error (MSE).

 Root Mean Squared Error (RMSE).

 Root Mean Squared Logarithmic Error

(RMSLE).

 R-squared (R2).

Table 10 - Model documentation (sprint 1)
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As for data/model version control, since the team did not have enough time and

experience with specialized data/model version control tools, we opted for a more

simplistic approach. We used a spreadsheet to store an instance of the data used, and

exported the model as a file in the same directory as the dataset instance (see Figure

23).

Figure 23 - Model/Data version control example
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Finally, the output of this sprint shown in Figure 24 is a sprint release that contains a

number of working functionalities including predicting sales, visualizing the result,

and displaying useful information. To wrap up this sprint, a retrospective meeting is

scheduled to discuss what went well and what could be improved for the next sprint.

Figure 24 - Forecasting interface

4.5 Sprint 2
After the second sprint meeting, another sprint backlog was defined as shown

in Table 11:

PRIORITY USER STORY ASSIGNED

TO

TIME

1 As a user, I can explore historical sales

data through an interactive

dashboard.

Moh

Mohamed

1

week

2 As a user, I want to see visual

representations of past sales trends,

seasonality patterns, best-selling

Moh

Mohamed

4 days
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product families, and best-selling

stores.

3 As a user, I want the dashboard to

include visualizations like line charts,

heat maps, and bar charts to enhance

my understanding of past

performance.

Zergoun

Yasser

3 days

Table 11 - Sprint 02 backlog

4.5.1 Development

In the second sprint, our goal was to implement a dashboard and improve the model

forecasting. This time, we started with software-related features rather than the model,

as we believed that improving the model after creating a base model would be

relatively easier and would not take a lot of time, as most of the groundwork had been

done.

4.5.1.1 Software cycle

Following the same procedures as Sprint 1, we modeled a use case diagram as shown

in Figure 25, then implemented the different functionalities, tested them, and fixed

any bugs that were found, as well as bugs that were raised by the client from the

previous build.
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Figure 25 - Use case diagram (sprint2)

4.5.1.2 Model cycle

In this model lifecycle, we tried the RandomForestRegressor model. However, we

faced an issue when training the model because the dataset was very large, with 3

million rows and 96 columns (created from the conversion of categorical columns to

numerical columns). Since we did not have the required resources to train this large

dataset, we had to use different processing techniques this time.

Data processing

After visualizing the data and presenting the performance of each store number and

product family, we selected the top performing store (store number 44), and then we

selected the top 16 performing product families for every store, as shown in Figure 26,

Figure 27.

This resulted in a significant decrease in the dataset size. Following this, we applied

the same data processing steps as the previous sprint, including seasonality features,

trend feature; lag features, and converting categorical features to numerical. Finally,

we split the data into training and test sets to train the model.
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Figure 26 - Most selling product families

Figure 27 - Most selling stores

Model building and evaluation

We trained the RandomForestRegressor model with a dataset of store 44 only, and the

following hyperparameters:

 The number of decision trees that will be used in the Random Forest model:

n_estimators = 100

 the model's random number generator: random_state = 42
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For the evaluation, we used the same metrics as the previous sprint. The results are

presented in Table 12 in addition to a comparison to the previous model (model 1).

ERROR

MODEL 1

LINEAR

REGRESSOR

MODEL 2

RANDOM FOREST

REGRESSOR

MEAN ABSOLUTE

ERROR
107.42 256.11

MEAN SQUARED

ERROR
137238.24 428406.22

ROOT MEAN

SQUARED ERROR
370.45 654.52

ROOT MEAN

SQUARED

LOGARITHMIC

ERROR

nan 0.66

R-SQUARED 0.88 0.96

Table 12 - Evaluation metrics (model 2) and a comparison between the two models

Sprint deployment

Since we now have two different models to work with, we would need to choose the

best one to deploy to our application. To do this, we will use the comparative table to

evaluate the two models based on the different evaluation metrics (see Table 12).

Additionally, an expert in the domain should be consulted, as the evaluation metrics

can depend on the specific requirements of the domain.



Chapter 4 ScrumAI in Action: A Real-World Case Study

84

While Model 1 has lower individual error metrics, the significantly higher R-squared

(Accuracy) of Model 2 indicates that it is likely a better choice for sales forecasting.

The higher R-squared means Model 2 is better at capturing most of the variability of

sales, which is critical for producing accurate and reliable sales forecasts.

In the sales forecasting domain, the ability to explain and predict the sales trend is

often more important than minimizing individual errors. The higher R-squared of

Model 2 suggests it is the superior model for this specific use case, despite its slightly

higher individual error metrics compared to Model 1.

Thus, we exported and deployed Model 2 to the application and we made the

necessary changes and configuration to the interface code to make it work with Model

2.

To extend the application further and allow the forecasting of multiple stores, we

trained four additional RandomForestRegressor models. Each model was trained on

its own corresponding dataset, specific to each store. Finally, we fixed any possible

bugs before giving this build to the client to test it.

A model documentation for sprint 2 (presented in Table 13) is also defined in addition

a model/data instances have been saved. The sprint 2 output is shown in Figure 28,

and Figure 29.
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Figure 28 - Dashboard interface 1

Figure 29 – Dashboard interface 2

Data processing steps

 Eliminated the 'id' attribute, as it did not provide

meaningful information.

 Selected the sales of store number 44
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Table 13 - Model documentation (sprint 2)

4.6 Evaluating ScrumAI

 Selected the sales of the top 16 performing product

families

 Created features for the day, month, and year to

capture seasonal patterns.

 Created a 'lag 1' feature and the mean of 'lag 7' to

capture dependencies on past values.

 Created a 'trend' feature by calculating the mean

sales over a one-month period.

 Added a feature to capture the impact of the

magnitude 7.8 earthquake in Ecuador.

 Transformed the 'store number' and 'product family'

columns into numerical representations.

 Split the dataset into training and test sets.

Model architecture,

model parameters

 RandomForestRegressor

 n_estimators =100

 random_state =42

Evaluation metrics

 Mean Absolute Error (MAE).

 Mean Squared Error (MSE).

 Root Mean Squared Error (RMSE).

 Root Mean Squared Logarithmic Error (RMSLE).

 R-squared (R2).
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Even though an additional final sprint (sprint 3) for optimization, code

refactoring, security, and model output safety would have been ideal, time constraints

prevented us from completing that final phase. However, we have achieved 90%

completion of the intelligent system by following the ScrumAI workflow. This

methodology, which splits the development process into two work cycles, allowed the

team to focus their efforts on one phase at a time. As a result, we experienced better

collaboration among team members, faster development in a shorter period, fewer

bugs, and overall improved software and model quality

The comprehensive model documentation enabled the team to easily recall data

processing steps, model parameters, and evaluation metrics whenever needed. This

ensured traceability and transparency throughout the development process.

The data and model version control system allowed the team to store an instance of

each experiment, including the training dataset, test dataset, and the trained model.

This proved to be very valuable, as it gave the team the ability to easily roll back to a

previous model if the client was not satisfied with the latest version. This flexibility

was crucial for the project.

The integration of the cognitive scientist helped to address several issues. It fixed

security problems by ensuring that the client's dataset was only accessible to the

cognitive scientist, which would then communicate a sanitized version to the

development team. Additionally, the cognitive scientist provides a well-structured

dataset that is easily understandable by the development team

The domain expert played a crucial role in data processing, suggesting useful features

that could impact the forecasting as well recommending specific metrics for the model

evaluation process and interpreting the results based on their expertise.

Overall, this robust ScrumAI workflow enabled the development team to work

efficiently, deliver high-quality models, and address important problems specific to AI

application. The key benefits include: improved team collaboration, faster

development, reduced bugs, traceability, flexibility, and the incorporation of domain

knowledge.
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Conclusion
In this chapter, we have explored a case study example of developing an

intelligent decision support system using the ScrumAI methodology. We have delved

into the different phases of ScrumAI in detail, within a real-world scenario, to test its

effectiveness and identify potential challenges.

Despite having a small development team of only two developers with a limited time

frame, ScrumAI proved to be effective in delivering high-quality intelligent

applications.

However, to fully leverage the benefits of ScrumAI, which involves two distinct cycles,

the development team requires experience in both cycles including software

engineering and model building/machine learning. ScrumAI also could results in

difficulties for managing the many different roles.
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General conclusion

The main objective of this thesis was to propose a methodology for the

development of intelligent systems, taking into account the specification of the process

of building applications integrating AI and machine learning techniques. To achieve

this, we first explored intelligent systems and realized that their role is essential in

business, especially in decision-making and recommendation. In addition, intelligent

systems make use of machine learning techniques for extracting and processing

complex data, knowledge acquisition and representation techniques for building

knowledge bases, and improving the quality of decisions. Next, we looked at software

development methods and found that there are several types, with classical methods

showing their limits in terms of flexibility and adaptability to change, in contrast to

agile methods, which have emerged as an effective response thanks to their flexible,

iterative approach.

Furthermore, we have delved into the state of the art of development methodologies

for AI systems, highlighting the challenges and specifications of these systems.

Through these studies, it has become evident that existing methodologies are not

suitable for AI development, and there is a pressing need for a structured methodology

that can effectively handle the unique specifications and challenges of AI systems

development such as data acquisition and processing, the integration of new roles like

domain experts, the evolving nature of intelligent systems with continuous

experiments, collaboration between data scientists and developers, and the emergence

of new non-functional requirements, raise questions about the sufficiency of existing

approaches. In response to this need, this work has presented a new methodology

called ScrumAI, an adaptation of the Scrum framework tailored to meet the

expectations of AI systems. It adds a model sprint for learning and building model

phase of the development of intelligent systems including new actors as data scientist

and domain expert, while benefiting from the flexibility of agile methods.

To demonstrate the effectiveness of ScrumAI, a case study was conducted for

developing a decision support system that can forecast store sales and generate useful

graphs. We detailed the workflow of ScrumAI, including Sprint Zero where

requirements specification and planification were defined, Sprint 1 for developing the

main functionalities, and a general overview of Sprint 2 for the rest of the

functionalities.
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This case study resulted in a fully functional intelligent system containing a machine

learning model with high accuracy to predicate accurate sales, in addition the systems

display a visual interface for smart graph representations and other useful information

and software related functionalities, this proves the effectiveness of ScrumAI in

building a complete intelligent system.

As we look to the future, there is still much room for improvement in AI development

methodologies. One potential avenue for exploration is the integration of Machine

learning operations (MLOps) best practices and rules to further enhance the efficiency

and effectiveness of ScrumAI. Moreover, we envision a future where AI techniques

and applications are integrated in the development methodologies, to augment and

support them. This could include the development of intelligent techniques and tools

for automatic documentation, intelligent management and work distribution,

intelligent agents simulating domain experts, automatic data processing, testing,

model selection, and training. Such integration has the potential to revolutionize the

development process, enabling developers to focus on higher-level creative tasks while

AI systems handle routine and repetitive tasks. Therefore, we propose that future

research should focus on refining and expanding ScrumAI to address the emerging

challenges and opportunities in AI development, and exploring the potential of AI-

augmented development methodologies.
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Abstract

This thesis proposes "ScrumAI," an adapted Scrum methodology for the development

of intelligent systems. The work explores the characteristics of intelligent systems and

the limitations of existing approaches. The core contribution is the redesign of the

Scrum workflow by adding a new work cycle specifically for AI development, as well as

new roles. The ScrumAI framework also emphasizes best practices to address issues

like evolving specifications and the iterative nature of model training. A real-world

case study performed on the development of a sales forecasting system demonstrates

the practical application and benefits of the ScrumAI approach. We aim to bridge the

gap between agile development and the needs of intelligent systems, providing a

structured yet flexible framework to enhance the efficiency and success of AI projects.

Keywords: Intelligent systems, Agile development, AI system development, Software

engineering, Scrum, Sales forecasting.

Résumé

Ce mémoire propose "ScrumAI", une méthodologie Scrum adaptée au développement

de systèmes intelligents. Le travail explore les caractéristiques des systèmes

intelligents et les limites des approches existantes. La contribution principale réside

dans la refonte du flux de travail Scrum en ajoutant un nouveau cycle de travail

spécifiquement dédié au développement de l'IA, ainsi que de nouveaux rôles. Cette

méthodologie met également l'accent sur les meilleures pratiques pour aborder des

problématiques telles que l'évolution des spécifications et la nature itérative de

l'entraînement des modèles. Une étude de cas réalisée sur le développement d'un

système de prévision des ventes démontre l'application pratique et les avantages de

l'approche ScrumAI. L'objectif est de combler le fossé entre le développement agile et

les besoins des systèmes intelligents, en fournissant un cadre structuré mais flexible

pour améliorer l'efficacité et le succès des projets d'IA.

Mots-clés: systèmes intelligents, développement agile, développement de systèmes

IA, génie logiciel, Scrum, prévision des ventes.
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