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Introduction 

      The challenge of agricultural production is to continually increase agricultural output, 

improve its quality, and enhance processing and storage capabilities. Chemical fertilizers are 

widely employed to enhance soil condition, increase fertility, and boost crop productivity 

(Uzakbaevna, 2022; de Andrade et al., 2023). Despite their apparent advantages, this practice 

raises serious environmental concerns and has negative impacts on human health due to the 

accumulation of toxic metals and biocide residues in soils and food products (Kouassi, 2001). 

The extensive use of synthetic chemical fertilizers has therefore emerged as a significant and 

pressing issue in agricultural cultivation (Soni et al., 2022; Barun and Colla, 2023). 

        In recent years, scientists have found more advantageous ways to reduce the use of 

chemical fertilizers (Davies, 1995; Badr et al., 2022), the use biofertilizers, which contain 

living micro-organisms (PGPR), helps to preserve the soil´s physical, chemical and biological 

structure over the long term, and to provide plants with sufficient nutrients (Misra el al., 

2020). 

       PGPR are soil microorganisms that colonize the rhizosphere and play a crucial role in 

improving plant health, growth and development through a variety of mechanisms (Suliasih 

and Widawati, 2020; Rehman et al., 2020; Mustami et al., 2024). PGPR also affect plant 

growth through the synthesis of phytohormones such as indole 3-acetic acid and other plant 

growth regulators such as jasmonic acid, ethylene, abscisic acid (Wang et al., 2024; Bhat et 

al., 2024).  

       IAA (Acid Indole Acetic) is one of the most important phytohormones for plant growth, 

(Lebrazi et al., 2020), naturally present in plants, it influences various physiological processes 

and controls plant expansion and development (Roopa et al., 2023). Plays an important role in 

a number of plant activities such as leaf formation, embryo development, root initiation and 

development, abscission, fruit development, etc (Chandra et al., 2018).  
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In this study, our focus is on investigating the production of indole-3-acetic acid (IAA) 

by rhizospheric bacterial isolates obtained from Fava bean, potato, Onion and Turnip 

rhizosphere. Additionally, we aim to assess the potential of these isolates to enhance wheat 

growth. 

The manuscript is divided into three parts: 

      -  The first part is devoted to a literature review, with two brief chapters: the first gives an 

overview of PGPRs and their direct and indirect mechanisms, while the second discusses the 

various phytohormones and their roles. 

     - The second part describes the methodology used in this study, in particular the methods 

employed to carry out various tests to optimize IAA production, as well as the realization of 

an in Vivo test  

    - The third part is reserved to results and discussion. 

      Finally, a general conclusion summarizes the main findings of this study. 
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1. Rhizosphere 

       The term “Rhizosphere” is derived from a Greek word rhizo or rhiza, which means 

"root", and “sphere” which denotes an area or field of influence (Sebihi, 2016). Hilnter (1904) 

described the rhizosphere zone as the area of soil that is directly affected by the living roots. 

This zone spans approximately 1 mm in width but lacks a distinct edge (Hilnter, 1904; 

Chaitanya and Meenu, 2015).  

      The rhizosphere of a plant hosts a vast and active microbial population (Rhizobacteria) 

that can have positive, neutral, or negative impacts on plants through direct or indirect 

processes (Kumar et al., 2012).  

 

2. Rhizospheric microbium or rhizobacteria 

       The diverse bacteria inhabiting the rhizosphere can be classified based on their impact on 

plants and interactions with roots. These rhizobacteria play crucial roles in supporting plant 

health and ecosystem functions, they enhance plant nutrition and soil fertility, control plant 

disease, and contribute to nutrient cycling (Saharam and Nehra, 2011; Nabti and Slimane, 

2020).      

 

3. Plant growth promoting rhizobacteria (PGPR)  

         Plant growth promoting rhizobacteria (PGPR) are a potential microbe of the rhizosphere 

that enhances plant growth, and improve soil health status. By using root exudates, these 

bacteria thrive in the closely adhering region around plant roots, where they can colonize the 

surface or interior of roots (Bent et al., 2001; Bensidhom and Nabti, 2020; Su et al., 2024). 

         PGPR can enhance plant development either directly or indirectly (Utami et al., 2024) 

through various mechanisms. These involve the production of various phytohormones that 

enhances plant nutrition, and tolerance to biotic and abiotic stress (Alhaithloul et al., 2020), as 

well as solubilization of phosphorus, production of siderophore, antimicrobial compounds and 

hydrolytic enzymes, and induction of plant resistance system (Kaymak, 2011; Igiehon et al., 

2024). 
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4. The mechanisms involved in plant growth stimulation by PGPR 

       PGPR are classified into different categories based on their functions: biofertilizers, 

which enhance the availability of plant nutrients, phytostimulation, which promote plant 

growth typically through the production of plant hormones, and biocontrol agents, which 

mainly control plant diseases by producing antibiotics and antifungal metabolites (Somers et 

al., 2004).  

 

4.1. Biofertilization  

       Biofertilizers are biological preparations of efficient microorganisms that enhance 

nutrient availability and uptake by plants.  

 

4.1.1. Nitrogen fixation 

       Nitrogen is the first essential macronutrient and one of the most crucial nutrients for plant 

growth (Bensidhom and Nabti, 2020; Hyder et al., 2023). It is found in the air in significant 

concentrations, but in a gaseous form that plants cannot directly assimilate. One of the 

methods to convert nitrogen into a form available to plants, such as nitrate (NO3-), 

ammonium, amino acids, and ammonia, is through the biological process of nitrogen fixation 

by soil microorganisms (Chakraborty and Akhtar, 2021; Bhat et al., 2023). 

 

4.1.2. Phosphorous solubilization 

        Phosphorus (P), the second important plant growth-limiting nutrient after nitrogen, is 

widely present in soils in organic and inorganic forms (Khan et al., 2009). Despite being 

largely distributed in the soil, the amount of readily accessible forms for plants is typically 

limited (Ahmed and Kibret, 2014). The limited accessibility of phosphorus to plants is due to 

the fact that most soil phosphorus exists in insoluble forms, whereas plants can only absorb it 

in two soluble forms: the monobasic (H2PO4
-) and the dibasic (HPO4

2-) ions (Bhattacharyya 

and Jha, 2012). Several phosphate solubilizing microorganisms (PSMs) are now recorded to 

convert the insoluble form of phosphorus to soluble form (Sharma et al., 2011; Bhattacharyya 

and Jha, 2012; Chaitanya and Meenu, 2015). 

       The ability to solubilize phosphates has been studied in several mycorrhizal bacteria, 

including Bacillus, Rhizobium, Penicillium, Aspergillus, and Staphylococcus (Timofeeva et 

al., 2022; Wang et al., 2024). 
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4.1.3. Hydrolytic Enzymes 

      Soil enzymes are produced by plants, animals, and microorganisms which considered to 

be the main source (Chernysheva et al., 2021; Kompała et al., 2021). Soil enzymatic activities 

are considered "sensors" of soil degradation, as they reflect the physicochemical conditions of 

the soil and serve as indicators of its microbial status (Baum et al., 2003). Enzymes catalyze 

all biochemical reaction and are an integral part of nutrient cycling in the soil. Their activity 

after fertilization can be used as early sensitive indicators of soil nutrient changes after 

fertilization application (Bandick and Dick, 1999; Yagüe et al., 2023). 

The interest in microorganisms producing hydrolytic enzymes, is based on their 

application as biofertilizers and biocontrol agents. Enzymes such as proteases, lipases, 

amylases and cellulases are of remarkable agricultural interest due to their involvement in soil 

fertilization through the degradation of organic polymers (Bensidhoum, 2016). Hydrolytic 

enzymes make nutrients available to plants and soil microorganisms (Dilly et al., 2007; 

Joanisse et al., 2008).   

 

4.2. Phytostimulation  

       The production of phytohormones by bacteria is pivotal in the interaction between plants 

and microorganisms (Yaghoubi Khanghahi et al., 2024). Phytostimulation often occurs due to 

the production of plant growth regulators by microbe, which can enhance plant development 

by influencing elongation, differentiation, and cell division (Beattie, 2007; Benaissa, 2019). 

Five classes of phytohormones are established: auxins, gibberellins, cytokinins, ethylene, and 

abscisic acid (Zahir et al., 2004). 

        Several PGPRs are reported to produce IAA and other plant growth regulators in 

rhizospheric soil, thereby play a significant role in promoting plant growth.  

 

4.3. Biocontrol  

Microorganisms, principally rhizobacteria, can effectively colonize root systems and 

beneficially influence plant growth and health by controlling plant pathogens. Most bacterial 

strains used as biocontrol agent belong to the genera Bacillus and Pseudomonas. PGPR can 

control phytopathogenic agent by several mechanisms including: production of antimicrobial 

substances; the secretion of hydrolytic enzymes, induction of plant resistance and the 

competition for nutrients and space. 
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4.3.1. Antibiosis 

      The main mechanism of biocontrol by PGPR involves producing antimicrobial 

compounds (Bashan and Bashan, 2005; Kenawy et al., 2019; Hassan et al., 2023). These 

compounds are secondary metabolites with low molecular weights that are toxic and effective 

against pathogenic organisms. The antimicrobial substances produced by the antagonistic 

organism are of diverse nature, including: Antimicrobial peptides or proteins; Polyketides; 

Phenolic compounds; Biosurfactants; etc. (Fernando et al., 2005). Bacillus and Pseudomonas 

actively suppress plant pathogens by secreting inhibitory extracellular metabolites at very low 

concentrations (kumar et al., 2024).  

 

4.3.2. Siderophore production  

      Siderophore is a protein molecule capable of solubilizing and sequestering iron from the 

soil, making it available to plant cells. It has a high affinity for Fe3+. PGPRs utilize 

siderophores as mechanisms for biofertilization and in the biocontrol of phytopathogens. By 

producing siderophores, PGPRs prevent phytopathogens from acquiring sufficient iron, 

thereby limiting their ability to multiply (Glick, 2012; Olanrewaju et al., 2017; Bensidhoum 

and Nabti, 2020). Several studies have confirmed that the siderophores produced by the PGPR 

influence significantly plant uptake of various metals, including Fe, Zn, and Cu 

(Egamberdieva, 2007). 

 

4.3.3. Induced systemic resistance (ISR)  

        The interactions of PGPR with plants involved in the fight against pathogenic agents 

consist of stimulating plant defense mechanisms. This phenomenon has been named 'induced 

systemic resistance' or ISR (Induced Systemic Resistance) (Van Loon et al., 1998). Systemic 

resistance can be induced by various microorganisms, including Gram-positive bacteria like 

Bacillus pumilus, as well as Gram-negative bacteria belonging to the genus Pseudomonas (P. 

fluorescens, P. putida, P. aeruginosa) (Jourdan et al., 2008). 

Effective colonization of roots by PGPR is a crucial condition for optimal expression of 

biocontrol activity through ISR (Bloemberg and Lugtenberg, 2001), where the bacterial 

population must reach a sufficient threshold level on roots to trigger the phenomenon. For 

instance, in Pseudomonas, there must be at least 105 cells per gram of roots (Raaijmakers et 

al., 1995). 
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        Rhizobacteria such as Pseudomonas, Bacillus, Rhizobium, and Azospirillum offer 

protection against plant pathogens. These microorganisms can induce systemic resistance in 

plants by recognizing the microbial compounds that pathogens produce (Bloemberg and 

Lugtenberg, 2001; Ghiasian, 2020; Vincze, 2024).   

 

4.3.4. Lytic enzymes production  

         PGPR produce lytic extracellular enzymes such as proteases, chitinases, hydrolases and 

glucanases (Vincze, 2024). These enzymes protect plants against fungal and other soil 

pathogens by the hydrolysis of polymeric components such as protein, cellulose, chitin, and 

hemicellulose. Some of these target compounds are in the plant cell wall which are prone to 

attacks (Kumar et al, 2024).  It has been observed that the β-1,3-glucanase produced by 

Paenibacillus and Streptomyces spp. strains is capable of readily breaking down the fungal 

cell walls of pathogenic F. oxysporum (Dweipayan et al., 2016). 

        The enzyme chitinase hydrolyzes ß (1,4) N-acetylglucosamine's insoluble linear 

polymers (Bensidhom and Nabti, 2020). Since these components represent the majority of the 

fungal cell wall, microorganisms that generate this chitinase impede the growth of fungal 

growth (Hasan et al., 2023). It has been demonstrated that chitinase-producing bacteria 

associated with plants and soil belonging, specifically those from the genera Bacillus, 

Pseudomonas, and Streptomyces, are beneficial against phytopathogenic fungi (Matilla and 

Krell, 2018). 

 

5. Nutrients and niche competition  

          Competition for nutrient acquisition and rhizosphere niche occupation is thought to be 

an indirect biocontrol mechanism by which PGPRs interact and protect plants from plant 

pathogens (Lugtenberg and Kamilova, 2009; Pathak al., 2017). Furthermore, the physical 

occupation of the site by PGPRs is enhanced by delaying tactics, preventing pathogen 

colonization until the available substrate is exhausted (Odoh, 2017). in Addition, root 

colonization by Pseudomonas has been shown to protect tomato plants against stem and root 

rot (Pathak et al., 2017; Panpatte et al., 2019). 
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Figure 1: Mechanisms of plant growth promoting (Mekonnen and Kibret. 2021)  
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1. Introduction  

1.1. Plant hormones  

       Plant hormones or phytohormones are a group of organic substances produced by higher 

plants and many of soil micro-organisms (PGPR). The production of phytohormones is one of 

the mechanisms by which rhizospheric bacteria can promote plant growth and development 

(Kukreja et al., 2004Amara et al., 2015; Pons, 2020). These hormones, derived from essential 

metabolic pathways, play crucial roles in regulating internal development processes and exert 

significant physiological influence at minimal concentrations (Santner et al., 2009; Davies, 

2010; Nadeem et al., 2016). 

        Phytohormones play an active role in every phase of the plant's life cycle, they are 

mainly classified into three groups according to their physiological effects on plants: 

hormones controlling vegetative development (auxin, cytokinin, gibberellin); hormones 

controlling reproduction (ethylene, abscisic acid); and hormones responding to stress 

(salicylic acid, jasmonic acid) (Williams, 2011). 

        It is well established that there are two sources of plant hormones naturally available for 

the plants: endogenous production by plant tissues and exogenous by associated 

microorganisms (Baca and Elmerich, 2007), Bacillus, Rhizobium, Sinorhizobium, 

Azospirillum, Bradyrhizobium, Pseudomonas and Paenibacillus (Utami et al., 2024).   

 

1.2. History of plant hormone  

       The first scientific investigations on phytohormones date back to the beginning of the 

18th century (Sezgin and Kahya, 2018). Charles Darwin discovered in 1880 that a specific 

chemical transferred from coleoptile tips regulates plant phototropism (Baca and Elmerich, 

2007; Williams, 2011). This discovery was published in a book entitled "The power of 

movement in plant" was published by Charles in 1898 (Baca and Elmerich, 2007; Sezgin and 

Kahya, 2018).  

      Ernist Starling used the term "hormone" for the first time in 1905 in reference to animals, 

and it has since been applied to plants as well (Bakshi et al., 2015). Fitting was the first 

person to use the term "hormone" in a botanical context in 1909, 1910. In 1919, Paàl adopted 

the name hormone in his research on phototropism (Weyers and Paterson, 2001). 
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        Several years later, by 1926, the Dutch botanist Frits W. Went discovered auxin and 

described a bioassay for its quantitative detection. The first generally accepted report of the 

occurrence of IAA in a higher plant was published by Haagen-Smit et al. in 1946 (Moore, 

1979). Since then, there have been an increasing number of reports on the discovery of new 

phytohormones or related compounds in plants. 

 

2. The classes of plant hormones  

2.1. Auxin  

        The term auxin is derived from the Greek word “auxein” meaning “to grow”. Indole-3-

acetic acid (IAA), the predominant natural form of auxin, was the initial plant hormone 

isolated and was previously thought to be derived from tryptophan (Went and Thiman, 1937; 

Turnbull and loveys, 1999). Most of the total auxin in plants found in the conjugated form, 

which is one of the important regulatory mechanisms for the activation or inactivation of IAA 

(Bari and Jone, 2009). Auxin is synthetized by plant in the apical meristematic region of 

plants, including the buds and tips of shoots and roots. The production of this hormone in 

green leaves is influenced by light conditions (Went and Thiman, 1937; Mukherjee et al., 

2022). Furthermore, IAA is synthesized from tryptophan or indole in young leaves and once 

synthesized, it is distributed throughout the plant via a cell-to-cell transport system (Santner et 

al., 2009). 

 

2.2. Abscisic acid (ABA) 

       The term "Abscisin" was initially used to describe the substance that controlled the 

abscission of cotton bolls; it was also designated as "dormin" due to its role in bud dormancy 

(Davies, 2010). Later several studies have revealed that the Abscisin or Abscisic Acid (ABA) 

is involved in a number of plant growth and development processes, including stress 

responses, seed germination, embryo maturation, leaf senescence, seed and bud dormancy 

(Wasilewska et al., 2008; Santner et al., 2009; Mukherjee et al., 2022). ABA is synthesized in 

different parts of plant, but is most concentrated in all cells with chloroplasts or amyloplastes 

and found in major organs and tissues (Taiz et al., 2015).  
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2.3. Gibberellins 

        Gibberellins are a plant hormone that form a large group of carboxylic acid. There are at 

least 125 forms of gibberellin, they are found in buds, roots, young leaves, flowers, fruits and 

cambium of plants (Sezgin and Kahya, 2018). These hormones have translocated from roots 

to the aerial parts of plants, their synthesis takes place mainly in developing leaves and stems, 

in developing seeds and during germination. (Went and Thiman, 1937; Turnbull and loveys, 

1999; Goswami et al., 2016). Moreover, several PGPRs including Bacillus and Acinetobacter 

been documented as capable to produce multiple types of GA with substantial quantities 

(Singh et al., 2023). 

 

2.4. Cytokinins 

        Cytokinins (CKs) are an essential plant hormone, mostly produced by inter-root bacteria 

(Raza et al., 2023; Wang et al., 2024). CKs are involved in a number of plant growth and 

development processes including stem-cell control, vascular differentiation, chloroplast 

biogenesis, seed development, growth of shoots and roots, leaf senescence, nutrient balance 

and stress tolerance (Muller and Sheen, 2007). Moreover, CKs are synthetized in roots, where 

they regulate senescence processes and development, and via the xylem, they move to shoots 

to regulate its development (Javid et al., 2011).  

 

2.5. Ethylene  

        Ethylene is a gaseous plant hormone, it is a powerful regulator of plant growth and 

development despite having a simple two-carbon structure (Wang et al., 2002; Lin et al., 

2009). Ethylene is produced in all cells at different rates during plant development, it is 

bioactive in minute amounts and in addition to its countless activities on plant it has 

significant commercial implications (Lin et al., 2009).  

       Moreover, Ethylene plays multiple roles in plant development and environmental 

responses it affects principally the root architecture by regulating bending lateral root 

initiation (Vandenbussche et al., 2012; Anfang and Shani, 2021; Azhar et al., 2023). 
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3. The role of phytohormones 

3.1. The role of Indole-3-acetic acid 

         Indole-3-acetic acid (IAA) is one of the most abundant endogenous auxins in plants 

(Checker et al., 2018). It plays an important role in regulating plant growth by controlling cell 

elongation, tissue development and developing a response to biotic and abiotic stresses (Javid 

et al., 2011; Checker et al., 2018). The IAA released by PGPRs as a secondary metabolite 

mainly affects the root system by increasing roots size and weight, branching numbers and 

surface area in contact with the soil. It allows plants to maximize their nutrient acquisition 

abilities and contributes to their growth (Dweipayan et al., 2016; Goswami et al., 2016; 

Mukherjee et al., 2022).  

         Furthermore, IAA can act as a reciprocal signaling molecule in plant-bacteria interaction 

(Lebrazi et al., 2020). However, the effect of auxin on plants depends on its concentration; 

low amounts of IAA allow primary roots to proliferate and at optimal concentrations it 

increase root surface area and length, thus contributing to enhance nutrient absorption. 

However, high levels of IAA have a negative effect on plant growth and have been shown to 

inhibit root elongation (Raj et al., 2020; Mukherjee et al., 2022). 

 

3.2. The role of Abscisic acid     

         Abscisic acid (ABA) plays a significant role in regulation of many plant physiological 

processes. The concentration of ABA in plants fluctuates depending on environmental 

conditions, leading to variable effects on physiological processes (Sezgin and Kahya, 2018). 

ABA promote the maturation of somatic embryos and the synthesis of storage reserves, it acts 

as a controlling factor of germination and dormancy in somatic embryos (Rai et al., 2011). It 

plays role in the initiation of adaptive responses to various environmental conditions, like 

adaptation to drought, to low temperature and to salinity, as well as the regulation of water 

status and stomatal functioning in various environmental stress (Much-Mani and Much, 2005; 

Rahman et al., 2023). 

         Additionally, ABA is essential for photoperiodic flowering induction, which promotes 

plant growth and development, and increases the plant's sensitivity or resistance to various 

diseases.  Another function of ABA under biotic stresses conditions is the activation of 

stomatal closure; that acts as a barrier against bacterial infection and contribute to the plant 

defense (Gomez-Cadenas et al., 2015; Vincze et al., 2024).   
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3.3. The role of Ethylene  

Ethylene is known as a maturing hormone and even at very low concentration, it has a 

physiological effect on the plant. Its production enables the regulation of a wide range of 

crucial plant processes, such as abscission, fruit ripening, leaf and fruit shedding, and 

enhances stress tolerance as well (Gutierrez et al., 2009; Sezgin and Kahya, 2018; Bhat et al., 

2023).  

          Ethylene plays also an important role in the regulation of the molecular and cellular 

metabolism of plants which promote cell division and elongation, leaf growth, flower and root 

development (Khan et al., 2024).  

 

3.4. The role of Cytokinin  

         Cytokinin is an essential hormone that acts as a stimulator, it plays a key role in a wide 

range of physiological processes in plants, such as cell division, production of chloroplast, 

seed germination and response to biotic and abiotic stress (Gaspar et al., 1996; Gamalero and 

Glick, 2011; Kieber and Schaller, 2018; Hyder et al., 2023). It can also affect the activities of 

meristem cells, and nodule formation during the establishment of nitrogen-fixing symbiosis 

and other interactions between plants and microbes (Miransari and Smith, 2014). Cytokinins 

are thought to delay senescence by preventing protein degradation through the inhibition of 

nuclease and protease formation in foliage. 

       Although the auxines promote root formation, cytokinins promote shoot formation. They 

contribute to organ formation and development in tissue culture media (Sezgin and Kahya, 

2018). 

 

3.5. The role of Gibberellin  

        Gibberellins are a type of plant growth regulator, they influence seed germination and 

plant development (Castro- Camba et al., 2022; Warisman et al., 2024). They regulate lateral 

branches growth, flowering, stem elongation, and leaf expansion (Javid et al., 2011; 

Egamberdieva et al., 2017).     

        When plants are exposed to abiotic stress, gibberellic acid are rapidly accumulated, it 

provides a mechanism to regulate the metabolic process based on sugar signaling and anti-

oxidant enzymes (Fahad et al., 2015).  It contributes also to the   regulation of heavy metals 

toxicities by activating several defense mechanisms (Rahman et al., 2023). 
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1. Soil Sampling  
 

        Four soil samples were collected in March 2024, from different agricultural fields located 

in Bejaia: Ait Idris Taskriout (36°33'43.3"N 5°17'17.9"E); Guendouza, Akbou (36°27'11.7"N 

4°32'13.4"E); Tichy (36°39'24.5"N 5°09'55.3"E) and Adkar (36°44'49.1"N 4°42'44.9"E). 

Sampling was conducted in the root zones (rhizospheres) of the following crops, respectively: 

fava bean, onion, potato, and turnip. The soil collected was placed in sterile vials and 

transported to the laboratory (figure 2). 

 

 

 

 

 

 

 

 

 

Figure 2: Sampling location 

   

2. Isolation and isolates purification  
 

        One gram of each soil sample was suspended in 10 ml PBS (Phosphate-buffered Saline) 

(Annex I) and 1 ml of each soil solution was serially diluted from 10-1 to 10-7 g/ml in the same 

broth medium. 1 ml of each dilution was spread on Plat Count Agar (PCA) (Annex II) in 

duplicate, using the "flooding technique", and then incubated for 24h at 30◦C. Finally, 

successive subcultures of all colonies are performed until getting pure colonies (figure 3). 
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Figure 3: Isolation and purification steps 

 

3. Indole 3-AceticAcid (IAA) detection and quantification 

        The production of IAA by bacterial isolates was determined according to the method of 

Bric et al. (1991) with slight modification. 24h grown cultures of bacterial isolates were 

inoculated into LB medium (Annex III) supplemented with 0.5% glucose and 0.5 mg/ml 

tryptophan, then incubated on a rotary shaker at 120rpm for 4 days at 30°C.          

          After incubation, the cultures were centrifuged at 5000 rpm for 15min, then 800µl of 

supernatant were collected and mixed with an equal volume of Salkowsky´s reagent (Annex 

IV), the mixture was kept in the dark at room temperature for 20min. Development of pink 

color indicate the production of IAA. Measurement of the solution absorbance was performed 

at 530 nm. Then, the concentration of IAA was determined based on a calibration curve 

(Annex V) prepared with standard IAA (BIOCHEM Chemopharma) (figure 4). All 

experiments were done in triplicate. 
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Figure 4: IAA production test  

 

After IAA quantification, four isolates from each sample crop: F4 (Fava bean), P17 

(potato), O3(Onion) and N14(Turnip), producing variable amounts of IAA, were selected for 

further tests 

4. Optimization of IAA production  

       For IAA production, the culture medium was inoculated with 24h grown cultures (OD 

0.08-01) of selected isolates. Three different parameters, namely temperature, pH and L-

tryptophan concentration, were considered for the study to optimize IAA yield. LB medium 

was used as the basic medium to test IAA production. 

4.1. Effect of incubation temperature  

       Temperature is known as an important parameter for IAA production since the growth of 

bacteria is affected by low or high temperatures. Thus, IAA production was quantified at 20, 

25, 30, 35, 40 and 45 °C/4 days. 

4.2.. Effect of pH 

         One of the crucial physicochemical factors influencing the overall production of IAA is 

pH. To ascertain the optimal pH for IAA production by the selected isolates, IAA 

investigation was conducted using LB medium (supplemented with 0.5 mg/ml L-tryptophan 
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and 0.5% glucose) adjusted to different pH values: 5, 6, 7, 8, and 9. The media were 

inoculated and incubated at 30°C for 4 days. 

4.3. Effect of L-tryptophan concentration  

       L-tryptophan is the precursor of IAA and significantly influences its production by 

bacteria. Its effect was investigated using LB medium supplemented with 0.5% glucose and 

varying final concentrations of L-tryptophan: 0, 200, 350, 500, 650, and 800μg/ml. The 

cultures were then incubated at 30°C for 4 days. 

5. Biochemical identification   

 The selected isolates were identified through a few biochemical tests only, specifically 

Gram staining, catalase test, and oxidase test. This represents a partial identification rather 

than a comprehensive one.  

5.1. Gram staining  

       Gram staining was performed for the selected isolates using the following standard 

method:  

The technique begins with heat-fixing a bacterial smear on a glass slide, followed by staining 

with crystal violet for one minute, then fixed with a solution of iodine (Lugol's solution) for 

another minute. Decolorization is then achieved by briefly washing with alcohol for 30 

seconds, and then rinsed with water.  Counterstaining with fuchsin was applied for one 

minute, followed by a final rinse. The slides were dried and a drop of immersion oil was 

applied. The slides were then observed under a light microscope with a 100X objective. 

5.2. Catalase test  

      A small amount of bacterial colony from each isolates was mixed with a drop of hydrogen 

peroxide on a glass slide. Immediate effervescence indicates a positive catalase reaction, 

confirming the presence of catalase enzyme 

 5.3. Oxidase test 

     Add a disc of oxidase to a tube containing the bacterial suspension. A development of 

purple coloration indicates a positive oxidase reaction. 
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6. Plant growth stimulation tests 
 

6.1. Surface disinfection of wheat seeds 

       Wheat seeds were surface-disinfected as described by Götz et al. (2006). First, wheat 

seeds were treated with ethanol (70%) for 1 min and then with 12% acid hypochlorite for 15 

min.  Six consecutive rinses with sterile tap water were performed to remove chlorine (figure 

5).  

 

Figure 5: Surface disinfection of wheat seeds  

 

6.2. Preparation of bacterial suspension 

       The cultures were grown on LB medium (annex II) overnight at 30°C. The bacterial 

culture was centrifuged at 5000 rpm/7min. The supernatant was discarded, and the cell pellet 

was washed twice with 20 ml of phosphate buffered saline (PBS, pH 7.2), and suspended in 

PBS. The optical density of bacterial suspension was 0.1 at 600 nm, corresponding to a cell 

density of 108 cells/ml (figure 6). 
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Figure 6: Preparation of bacterial suspension  

   

6.3. Germination test 

       Surface sterilized wheat seeds were incubated with bacterial suspension for 2h at room 

temperature. Control seeds were incubated in sterile distilled water under the same conditions. 

The seeds were then placed in Petri dishes (16 seeds per dish) containing moistened sterile 

paper and kept in the dark at room temperature. Germinated seeds were counted each daily 

(figure 7). 
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6.4. Wheat growth promotion test 

       This test is conducted using germination trays arranged in seven batches, with each batch 

consisting of seven pots. Each pot is filled with a mixture of ¾ soil and ¼ peat, and watered 

accordingly. The wheat seeds used in this test are identical to those used in the 

aforementioned germination test. They are planted at a rate of one seed per pot, buried to a 

depth of 1 cm. 

       1ml of the bacterial suspension of each isolate was added to each treated batch, and 1ml 

of physiological water was added to the control batch. The experiment was carried out under 

natural conditions at 25-35°C for 15 days (figure 8). Growth parameters were measured after 

15 days, including shoots and roots length, fresh and dry weight of shoots and roots. 

 

Figure 8: Realization of growth test  

  

 

6.5. Chlorophyll assay  

         Photosynthetic pigment content was determined using the Hiscox and Tsraelstam (1979) 

method. 50 mg of fresh material were cut and placed in a flask containing 7 ml of DMSO 

(Dimethyl sulfoxide). The mixture was incubated at 65°C/30 min. After incubation, the 

volume was adjusted to 10 ml with DMSO. Absorbance readings were immediately taken at 

645 nm and 663 nm. Chlorophyll a, chlorophyll b, and total were calculated using the 

equations established by Arnon (1949). 
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Chla (g l-1) = 0, 0127 × A663 - 0, 00269 × A645                                                                                     

Chlb (g l-1) = 0, 0229 × A645 – 0, 00468 × A663                                                                                            

Chl total (g l-1) = 0, 0202 × A645 + 0, 00802 × A663 

 

7. Statistical analysis  
 

  Data obtained were subjected to analysis of variance (ANOVA) by the least significant 

difference (LSD) test at p≤ 0.05 with statistical software GraphPad Prism  
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1. Isolation and isolates purification  

      Macroscopic observation of the morphological appearance of colonies on PCA medium 

revealed a wide diversity in size, shape, color and surface characteristics. Therefore, 61 

different colonies were isolated from each sample crop: 9 (Fava bean), 21 (potato), 13 

(Onion) and 18 (Turnip). 

Agricultural soils, particularly rhizospheric soils harbor an exceptionally high microbial 

biomass and species diversity. Indeed, just 1 gram of rhizosphere soil contain between 10
8
 

and 10
11

 cultivable cells. Due to its significant genetic, ecological, functional, and taxonomic 

diversity (Saleem et al., 2015; Fierer, 2017), the soil microbiome serves as a crucial reservoir 

of microbial traits that could benefit plant growth and health (Saleem et al.,2019). 

2. Indole 3-AceticAcid (IAA) detection and quantification 

      IAA production was carried out on LB medium supplemented with 0.5 mg/ml of 

tryptophan. The appearance of a pink color indicates IAA production by the isolate. The IAA 

values produced by each bacterium are shown in the graphs below. 
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Figure 9: The concentration of IAA produced by all isolates 
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      The obtained data show that the majority of tested isolates have the capacity to produce 

IAA, and the IAA-production ranged from 1.22 to 44.12 µg/ml. The isolates N11, O3, P1 and 

F4, represent the most proficient isolates producing IAA from each sampling site. 

        It is well established that the most important mechanism in the direct plant growth 

stimulation by rhizobacteria involves the production of growth-regulating substances (Baca 

and Elmerich, 2007). According to Zakharova et al. (1999), approximately 80% of 

rhizospheric bacteria are capable of producing IAA. IAA-producing bacteria stimulate seed 

germination, cell and tissue division and enlargement, leaf expansion, and also play a 

significant role in root elongation (Maleki et al., 2010; Martínez-Viveros et al., 2010). 

        The analyze of the obtained results, illustrated in figure above, showed that most of the 

isolates had IAA production activity in the range of 5 to 45 µg/ml, which is in the range of 

other rhizospheric bacteria. According to Beneduzi and Passaglia (2011), a low amount of 

IAA stimulates plant growth, while a high concentration can inhibit root development. 

Egamberdieva et al. (2010) revealed that two strains, Pseudomonas trivialis 3Re27 and 

Pseudomonas extremorientalis TSAU20, produce 12 μg/ml and 10.1 μg/ml of IAA, 

respectively. 

        Egamberdieva (2009) observed a 52% improvement in root growth after wheat 

inoculation with three IAA-producing Pseudomonas strains (producing 5, 5.7, and 7.4 μg/ml 

of IAA). These rates are similar to those produced by the majority of our isolates, affirming 

their potential use as seed inoculants to enhance plant growth and yield. 

        Three isolates from each sample crop; P17 (potato); O3(Onion) and F4 (Fava bean), 

producing 15.74; 29.45 and 44.13 respectively, were selected for further tests. 

     3.  Optimization of IAA production 

3.1. Effect of incubation temperature 

       The effect of different temperatures (20, 25, 30, 35, 40 and 45) on the production of IAA 

is shown in the graph below (figure 10). 
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Figure 10: The effect of temperature incubation on the IAA production  

 

 Temperature plays a crucial role in IAA production as it impacts bacterial growth; 

both low and high temperatures can affect the synthesis of IAA, which is closely related to 

the optimal growth conditions of the microorganisms (Chandra et al., 2018).  

  After analyzing the IAA values obtained at temperatures ranging from 20°C to 40°C, 

it was determined that the optimal temperature for IAA biosynthesis was 30°C for isolate 

O3, and 35°C for isolates P17 and F4. The IAA concentrations are as follows: 116.25 

µg/ml; 116.71 µg/ml and 106 µg/ml respectively. Furthermore, there was a reduction in 

IAA production observed at temperatures exceeding 35°C. 

  30°C has been reported as the optimal temperature for IAA production by 

Streptomyces sp. (Khamna et al., 2010), and by Acetobacter diazotrophicus L1 isolated 

from sugarcane (Patil et al., 2011), Van Giang et al. (2024) have also reported that 30°C 

was the optimal temperature. 

  The results obtained with the isolates P17 and F4, are in accordance with Widawati et 

al. (2020), who reported that the maximum production of IAA by Bacillus siamensis  was 

recorded at 35
o
C (8.42 µg/ml). Randive et al. (2024) found that their isolates produce the 

maximum amount of IAA at 30°C, with production decreasing as temperature increases. 

In other studies, it was shown that 37°C was the best temperature for IAA production in 

the culture medium (Panigrahi et al., 2020). 
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3.2. Effect of pH 

      The effect of different pH (5, 6,7,8 and 9) on the production of IAA is shown in the graph 

below (figure 11). 
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Figure 11: The effect of   pH on the IAA production 

 

 The pH affects the function of enzyme systems also the solubility of many substances that 

are important for bacterial growth (Parvin et al. 2020). 

 In our investigation, we found that the pH 7 and 8 are the optimal pH for IAA 

production. The IAA concentrations are as follows: 120µg/ml and 105µg/ml for O3 and P17 

respectively at pH 7 and 95µg/ml for F4 at pH 7 and 8.  

 Similar results were obtained by Ait Bessai et al (2022), who found that the optimal pH 

was ranging between 7 and 9. Harikrishnan et al. (2014) reported that the maximum IAA 

production by Streptomyces sp VSMGT1014, was recorded at 30 °C and pH 8 for the 

production of 4.76 µg/ml and 26.63 µg/ml respectively. In our research the pH below 6 

(acidic) was found to be unfavorable for IAA production by all tested isolates. This results 

align with those reported by Yousef (2018) who showed that high IAA concentration was 

observed at pH 8. Moreover, Minakshi et al (2020) reported that their isolate showed 

maximum IAA production at pH 8 and indicate that neither acidic nor alkaline conditions 

promotes IAA production. Lebrazi et al (2020) found that the maximum of IAA production by 

their strain has been detected at pH 9. 
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3.3. Effect of L- Tryptophan concentration 

       The effect of different concentration of Tryptophane (0, 200, 350, 500, 650 and 800 

µg/ml) on the production of IAA is shown in the graph below (figure 12). 
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Figure 12: The effect of L- tryptophane concentration on the IAA production 

 

Tryptophan serves as the precursor for IAA, and its inclusion in the growth medium 

enhances bacterial biosynthesis of IAA (Mohite, 2013; Rahayu et al., 2024). Our research 

results demonstrated that IAA production increases with higher concentrations of L-

Tryptophan, similar to findings reported by Patil et al (2011) and Sandur and Onkarappa 

(2023). Karnwal (2009) tested Pseudomonas isolates for their ability to produce IAA in 

the absence and presence of tryptophan, and found that IAA production increased with 

higher concentrations of tryptophan. We found that the maximal concentration for the 

production of IAA are as follows: 800µg/ml for F4 (130µg/ml), 650µg/ml for P17 and O3 

(120µg/ml and 100µg/ml) respectively. Our results are not consistent with those reported 

by Parvin et al. (2018), where the maximum IAA production by Bacillus cepacia UPMB3 

was recorded at a concentration of 4 µg.ml⁻¹ of tryptophan, and with other reports where 

0.2 mg.ml⁻¹ of tryptophan was the optimal concentration for maximum IAA production 

(Khalid et al., 2004; Bharucha et al., 2013).  
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4. Biochemical identification 

       The results of the chemical tests for the selected isolates are shown in the following table 

and figures. 

 

Table I: Results of Gram staining  

Strains Gram Shape 

O3 - Bacille 

F4 - Bacille 

P17 - cocci 

 

Table II: Biochemical identification test  

Chemical test / Strain O3 F4 P17 

Catalase test + + + 

Oxidase  test + + + 

 

 

Figure 13: Biochemical test: A) Catalase test; B) oxidase test        

 

        All isolates were Gram-negative. Similar results were obtained by Grobelak and al 

(2015) who showed that the rhizosphere is colonized mainly by a Gram-negative microbial 

potato community. 

        A bacterium that is Gram-negative, bacillus-shaped, oxidase-positive, and catalase-

positive (O3 and F4) could belong to the genus Pseudomonas. Pseudomonas bacteria are 

typically Gram-negative, rod-shaped, and often test positive for oxidase and catalase. These 

characteristics align with numerous species within this genus, such as Pseudomonas 

protegens, Pseudomonas fluerescens, and other Pseudomonas species commonly found in soil 
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and other natural environments. P17 is a cocci gram negative bacteria, catalase and oxidase 

positive, could belong to the genus Acinetobacter or Moraxella.  

         Pseudomonas sp. are known as plant growth-promoting rhizobacteria (PGPR), they are 

widely used in agriculture as natural biocontrol agents (Kumar et al., 2014). The genetically 

best-characterized biocontrol agents belong to the genus Pseudomonas (Bloemberg and 

Lugtenberg, 2001). The complex of Pseudomonas fluorescens includes several species 

described as plant growth-promoting rhizobacteria (PGPR) potentially active in biocontrol 

and biofertilization (Garrido-Sanz et al., 2016). 

       Moraxella osloensis has shown significant potential due to its production of LPS, which 

acts as an active endotoxin against the grey garde slug Deroceras reticulatum, representing a 

novel biological toxin effective against mollusks. 

         Khalil et al. (2021) have reported that Acinetobacter calcoaceticus displays IAA and 

siderophore production that promotes wheat plant growth, with antagonistic activity to 

different phytopathogens such as Fusarium oxysporum, Aspergillus flavus and A. niger. Kwon 

and Song (2014) have studied Interactions between Indole-3-acetic Acid producing 

Acinetobacter sp. SW5 and Growth of Tomato Plant. This strain produced 4.06 μM of IAA 

from root exudates of 8 tomato seedlings. Given its ability to grow in tomato root exudates, 

the IAA secreted by this bacterium could potentially enhance the growth of tomato plants. 

 

5.    Plant growth stimulation tests 

5.1. Germination test 

        To study the effect of the selected isolates on germination, we tested them on wheat 

seeds, and the germination percentage is represented in the following figure. 
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Figure 14: Germination percentage of wheat seeds  

 

        F4 isolate shows a 5% difference in germinated seeds compared to the uninoculated 

control (95%; 90% respectively), whereas isolates P17 and O3 reduced the seed germination 

rate (75% of germinated seeds). According to Shen et al (2013), all the inoculated bacterial 

strains showed a positive effect on the growth of wheat seedling. Arzoo and al (2024) found 

that the percentage of germination in plants treated with   PGPRs was reported to be  

enhanced by the production of plant growth regulators such as auxins, gibberellins, cytokinin 

and ethylene. 

       The stimulation of seed germination may also be due to the production of IAA. 

According to Wahyudi et al. (2011), the ability of Pseudomonas spp. to stimulate seed 

germination is closely linked to auxin production. 

5.2. Wheat growth promotion test  

       The results of the different growth parameters (shoots and roots length, dry weight and 

fresh weight) of wheat treated with the isolates are presented in the following graphs. 
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Figure 15: Shoots and root length values for inoculated or non-inoculated wheat  

ns : Non significative (p≥0,05) ; *** : p≤0.005 ; **** : p≤0.001 
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Figure 16: Fresh weight values for shoots and roots of wheat grown treated and control 

ns : Non significative (p≥0,05) ; **** : p≤0.001 
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Figure 17: Dry weight values for shoots and roots of wheat grown treated and control 

ns : Non significative (p≥0,05) ; **** : p≤0.001 

 

        The results of the measurements of the various plant growth parameters showed that the 

O3 and P17 strains significantly (p≤0.001) stimulated the various growth parameters of the 

wheat shoots: length (20.63 cm ± 4.4; 19.85 cm ± 3.85), fresh weight  (146.85 mg ± 26.75; 

19.52 mg ± 37.50) and dry weight (21.51 mg ± 5.7; 18.53 mg ± 5.07) respectively,  contrary 

to F4 isolates which moderately stimulated length (16.5 cm ± 3.16) and fresh weight (138.08 

mg ± 24.09) compared to the other two strains mentioned above. 

         These results are similar to those found by Grobelak and al (2015), who found that 

PGPR improved length, fresh weight and dry weight of plant stems compared with control 

plants. Hassan and Bano (2015) found that Pseudomonas increased wheat yield by 15 to 25% 

compared with non-inoculated plants.   

        On roots parameters, no significant difference was detected (p≥0.05) between plants-

treated and untreated control. We can infer that our strains affect stem growth but not root 

growth, suggesting they may be specific strains for promoting stem elongation. 

         Brown and rovira (1999), Khalid et al (2004), Sezen and al (2016) reported that the 

negative effects on various wheat root growth parameters could be due to the production of a 

type of phytotoxin. The IAA-producing PGPRs contribute to plant growth and can be 

considered as a factor in improving plant growth and development as well as yield (Ijaz et al., 
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2019; Noureen and al., 2024). In addition, phytohormones such as Cytokinins and gibberellins 

play a crucial role in cell division and stem elongation (Neshat and al., 2022). Mehrabi and al 

(2024) have described how PGPRs improve plant performance under difficult environmental 

conditions. To be effective, a rhizobacteria must be capable of colonizing the rhizosphere at a 

sufficient population size to exert beneficial effects (Abaid-Ullah and al., 2015). 

5.3. Wheat chlorophyll content 

       The results of chlorophyll a, b and total in wheat treated with the selected isolates are 

presented in the following graph 
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Figure 18: Quantity of chlorophyll a, b and total in treated and control plants. 

ns : Non significative (p≥0,05) ; * : p≤0.05 

 

        In our study, all isolates increase the chlorophyll content of wheat leaves. The highest 

chlorophyll content was obtained with F4 isolates, which significantly (p≤0.05) stimulated 

chlorophyll a and total chlorophyll with (2.52 mgl
-1

 ±
 
0.49; 3.62 mgl

-1
 ± 0.78) compared to the 

control (1.9 ± 0.63; 2.65 ± 0.58) respectively. 

        Strain O3 stimulates significantly (p≤0.001) chlorophyll b and total with (1.45 mgl
-1

 ± 

0.17; 3.5 mgl
-1 

± 0.43) respectively compared to the control. However, 17 slightly stimulates 

all three types of chlorophyll, but the difference is not significant (p≥0.05) 
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        Ray et al (2024) suggest that PGPRs play an important role in green plant growth. 

According to Purbajanti, 2016 and Muhammad et al. (2021) chlorophyll content is increased 

by treatment of plants with PGPRs. Mathivanan et al., (2017), showed that consortium 

treatment (Rhizobium, Pseudomonas, Bacillus) gives higher levels of chlorophyll a, b and 

total. 
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Conclusion 
 

The main objectives of our study is the isolation of IAA-producing rhizobacteria and 

the verification of their potential to promote wheat growth. 

Four soil samples were collected from different agricultural fields located in Bejaia. 

After isolation and purification 61 bacterial isolates were obtained and tested for their ability 

to produce IAA. 

Three isolates were selected and underwent preliminary biochemical identification 

(Gram staining, catalase, and oxidase tests). The obtained results lead us to suggest that the 

isolates O3 and F4 belong to the genus Pseudomonas, while isolate P17 belongs to either 

Moraxella or Acinetobacter 

The results indicate that variations in physicochemical parameters such as pH, 

temperature, and L-tryptophan concentration influence IAA production by the three isolates. 

The optimal conditions for IAA production were observed at different temperatures: 

30°C for isolate O3 (120 µg/ml) and 35°C for isolates F4 and P17 (120 µg/ml and 105 µg/ml 

respectively). The pH conditions favoring production were pH 7and 8 and the concentrations 

of L-tryptophan were 800 µg/ml and 650 µg/ml. 

Wheat growth parameters were significantly enhanced with bacterial treatment 

compared to the control. All the selected isolates enhance significantly shoot growth but not 

root growth, suggesting they may be specific strains for promoting stem elongation.  

The chlorophyll content was significantly higher in the treated wheat than in the 

control 

 

From this study we conclude that our rhizobacteria have the capacity to produce indole 

acetic acid (IAA) in significant quantities and can stimulate wheat growth.  
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 At the end of this study, several perspectives appear necessary for better utilization 

of these isolates: 

 Optimization of IAA production  

 Testing the effect of isolates on the growth of other plants 

 Verification of isolates' ability to produce other agriculturally relevant molecules 

 Molecular identification of the isolates 
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Annex 

Annex I: The composition of PBS media  

 NaCl………………………………………….8g 

 KCl……………………………………………0,2g 

 KH2PO4.............................................................0,24g 

 Na2HPO4………………………………………1,44g 

Annex II: 

1. The composition of PCA media  

 Glucose……………………………………...1g  

 Tryptone…………………………………….5g  

 Yeast extract………………………………...2,5g  

 Agar………………………………………....12g 

 pH………………………………………........7,0 ± 0,2 

2. The composition of LB media  

 Bacto-tryptone……………………………... 10g  

 Yeast extract………………………………....5g  

 NaCl……………………………………….... 5g  

 pH……………………………………………7,2 ± 0,2 

Annex III: The composition of Salkowsky Reagent 

 H2SO4 (98%)…………………………………...150ml 

 H2O…………………………………………….250ml 

 FeCl3(0,5M)……………………………………7,5ml  

 

 

 

 

 



                                                                                                                      Annex

                                                                                                                                                 

 

  Annex IV: Calibration curve of IAA 
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Abstract  

Recent studies have highlighted the effect of the phytohormone synthesised by PGPR on plant 

growth, in particular IAA. The current study focuses on the isolation of IAA-producing 

rhizobacteria and the verification of their potential to promote wheat growth. From 61 IAA-

producing bacteria, four isolates were selected. The influence of temperature, pH and 

concentration of L-tryptophan on IAA production were verified. The selected isolates were 

also tested for their ability to promote wheat germination and growth. The parameters: shoots 

and roots length, fresh and dry weight of shoots and roots as well as chlorophyll content were 

measured. The results indicated that optimal conditions for IAA production were observed at 

different temperatures: 30°C for isolate O3 (120 µg/ml) and 35°C for isolates F4 and P17 

(120 µg/ml and 105 µg/ml respectively). The pH conditions favoring production were pH 

7and 8 and the concentration of L-tryptophan was  800 µg/ml and 650 µg/ml. Wheat growth 

parameters were significantly enhanced with bacterial treatment compared to the control. All 

the selected isolates enhance significantly shoot growth but not root growth, suggesting they 

may be specific strains for promoting stem elongation. In addition, chlorophyll content was 

significantly higher in the treated wheat than in the control. 

Key words: PGPR, phytohormones, Indole 3-acetic acid , optimization. Rhizosphere  

 

Résumé 

Des études récentes ont mis en lumière l'effet des phytohormones synthétisées par les PGPR 

sur la croissance des plantes, en particulier l'AIA. La présente étude se concentre sur 

l'isolement de rhizobactéries productrices d'AIA et la vérification de leur potentiel dans la 

promotion de la croissance du blé. Parmi 61 bactéries productrices d'AIA, quatre isolats ont 

été sélectionnés. L'influence de la température, du pH et de la concentration en L-tryptophane 

sur la production d'AIA a été vérifiée. Les isolats sélectionnés ont également été testés pour 

leur capacité à améliorer la germination et la croissance du blé. Les paramètres suivants ont 

été mesurés : longueur des tiges et des racines, poids frais et sec des tiges et des racines, ainsi 

que la teneur en chlorophylle. Les résultats ont indiqué que les conditions optimales pour la 

production d'AIA étaient observées à différentes températures : 30°C pour l'isolat O3 (120 

µg/ml) et 35°C pour les isolats F4 et P17 (120 µg/ml et 105 µg/ml respectivement). Les 

conditions de pH favorisant la production étaient pH 7 et 8, et la concentration de L-

tryptophane à 800 µg/ml et 650 µg/ml. Les paramètres de croissance du blé ont été 

significativement améliorés avec le traitement bactérien par rapport au témoin. Tous les 

isolats sélectionnés ont significativement amélioré la croissance des tiges mais pas celle des 

racines, suggérant qu'ils peuvent être des souches spécifiques favorisant l'allongement des 

tiges. De plus, la teneur en chlorophylle était significativement plus élevée dans le blé traité 

que dans le témoin. 

Mots-clés : PGPR, Phytohormones, Acide Indole-3-Acétique, Optimisation, Rhizosphère 


