DSpace Repository

Hypoglycemia and Hyperglycemia Prediction using Machine Learning

Show simple item record

dc.contributor.author Amarouche, Faiza
dc.contributor.author Ouaret, Djamila
dc.contributor.author El Bouhissi Brahami, Houda ; promotrice
dc.date.accessioned 2024-12-10T09:35:27Z
dc.date.available 2024-12-10T09:35:27Z
dc.date.issued 2024-07-02
dc.identifier.other 003mas/377
dc.identifier.uri http://univ-bejaia.dz/dspace/123456789/24949
dc.description Option : Sciences des données et aide a la décision en_US
dc.description.abstract Diabetes is a critical global health issue affecting millions worldwide, with cases steadily increasing. Our research focuses on blood glucose levels prediction using a CRNN (Convolutional Recurrent Neural Network) model applied to a newly accessible and extensive dataset, "HUPA-UCM Diabetes," aiming to identify hyperglycemia and hypoglycemia events to enhance diabetes management accurately. This hybrid model integrates CNN and LSTM layers to effectively capture spatial and temporal dependencies in the data, achieving superior accuracy. It utilizes variables such as time, glucose, calories, heart rate, steps, basal rate, bolus volume delivered, and carb input. Our model demonstrated an RMSE value of 3.20 on the testing set, outperforming our state-of-the-art. Furthermore, real-time processing, implemented at five-minute intervals, ensures immediate responses to blood sugar variations with an RMSE of 4.63, improving patient outcomes. en_US
dc.language.iso en en_US
dc.publisher Université Abderramane Mira-Bejaia en_US
dc.subject Diabetes : Hyperglycemia : Hypoglycemia : Blood glucose levels prediction : CRNN model en_US
dc.title Hypoglycemia and Hyperglycemia Prediction using Machine Learning en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account