Abstract:
ce mémoire explore une approche basé sur l'apprentissage profond pour la détection des tumeurs cérébrales à partir d'images IRM. Principalement, nous proposons deux contributions : un modèle de détection de tumeurs basé sur un CNN et un modèle de segmentation de tumeurs utilisant l'architecture U-Net avec apprentissage par transfert. Pour la détection de tumeurs, notre CNN a atteint une précision de 99,5 %, une perte de 2,7 % et un score F1 de 99,09 %. Pour la segmentation de tumeurs, notre modèle U-Net a atteint une précision de 97,13 %, et une perte de 1,8 %. Nos résultats démontrent l'efficacité de notre approche pour détecter avec précision la présence de tumeurs cérébrales et délimiter de manière fiable leurs contours.