Please use this identifier to cite or link to this item:
http://univ-bejaia.dz/dspace/123456789/15334
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alibey, Naima | - |
dc.contributor.author | Hadouche, Fahima | - |
dc.contributor.author | Moussaoui, A ; promoteur | - |
dc.date.accessioned | 2021-05-17T10:30:01Z | - |
dc.date.available | 2021-05-17T10:30:01Z | - |
dc.date.issued | 2020-10-15 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/15334 | - |
dc.description | Option : Analyse Mathématique | en_US |
dc.description.abstract | Dans ce mémoire, nous avons montré l’existence de solutions positives pour des systèmes elliptiques quasi-linéaires présentant éventuellement des singularités à l’origine. Notre approche est basée essentiellement sur la méthode des sous et sur solutions. Ces dernières sont construites moyennant un choix adeéquant de constantes positives ainsi que des fonctions comparables aux premières fonctions propres des opérateurs ?p et ?q. Dans le cas d’un système singulier, deux solutions positives différentes sont obtenues en combinant le degré topologique à la technique des sous et sur solutions. L’idée est de construire deux boules comparables, de sorte que la plus petite contienne la première solution et montrer qu’il existe une autre solution localisée à l’extérieur de cette boule et contenue dans la plus grande boule. | en_US |
dc.language.iso | fr | en_US |
dc.publisher | Université Abderahmane MIRA de Bejaia | en_US |
dc.subject | Solution multgiples : Classe : Système elliiptiques | en_US |
dc.title | Solutions multiples pour une classe de système elliptiques quasi-linéaires singuliers | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Mémoires de Master |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Solutions multiples pour une classe de système elliptiques quasi-linéaires singuliers.pdf | 549.65 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.